
Mlcdifkc Wkc WlmgomWbd ld W Mlafid MWkfmriWplm

IAMREM,M REEMHM

aihbpaocb fh lMmofMg cpgfiggfcho ic oec mcmpfmcfchom cim oec bcdmcc ic M

IPklTi hU KScTgST (IKS)

mplcmqfmcb Vm

Mgcm--KihU-Bi- lTSag-7-Emac
BD- DehicPg ATSd

mpVffoocb Mo oec

RS TUUW

DPSmelm hU CeTSlicSPe CgacgTTicga PgS DgUhifPlchg LTSagheham
C.63 7mlhfPlchg PgS Ahglihe DgklclmlT

Vm

FceeP AiTcldhhU
MfchhM

3pmomfM

MfchhM, AMm 0002

:haiaSp AmeIaaSIa DmmmSam Clhni
7-0,2, GaSe, CnmmWInmmml. 14, CemSleSm4 Wmmi4,,ooo.ISae.mnoaSe.IS.Im

Acknowledgment

I want to express my gratitude to my professor Dr. Univ.-Prof. Dr.techn. Andreas Kugi
and my supervisor Dipl.-Ing. Florian Beck for their invaluable guidance and support
throughout this thesis. Their insights and expertise were instrumental in shaping my
ideas and refining my research.
I would also like to extend my thanks to my friends, who have been a constant source
of encouragement and motivation. I also want to express my gratitude to my friends,
who have constantly motivated and supported me.
To Willi, thank you for always being my sunshine, even on the darkest days. Your
positive attitude and outlook on life have been a constant source of inspiration.
To Iris, for the stimulating conversations, even at 3 AM.
To Sarah, for being the voice of motivation.
To Simon, for challenging me to think critically about every concept and reminding me
that sometimes we must say goodbye to make progress.
To Felix, for being the knight in shining armor.
To Hans, for being the power flower that helped me to stay positive.
To Erich, for his meticulous attention to detail.
And to Kristof, for being the Englishman.

I

Abstract

Robotics is a vibrant field of research with great potential to assist humans in various
ways, particularly with tasks in challenging and uncertain environments that require high
mobility and dexterity. Autonomous mobile manipulators are, therefore, utilized more
frequently compared to conventional manipulators since they can move independently,
execute various tasks with high agility, and perform more time-independent or repetitive
operations, such as handling and transportation.
The increasing demand for wheeled mobile manipulators in high-precision applications
has resulted in new requirements emphasizing resource efficiency and predictive behavior,
including trajectory planning and designing an ideal path where the robot can later
anticipate further actions with the least amount of energy.
This work focuses on assessing the workspace, determining singularities, determining
typical performance indicators for robots, and utilizing them. To construct trajectories,
a nonlinear optimization problem was formulated, and a cost function with constraints
was established. The trajectory planning is optimized in terms of workspace and
manipulability of the robot, ensuring that the robot successfully reaches the desired
pose while complying with the physical limitations of the system. The impact of
manipulability on the resulting trajectories and how the weighting of this component
affects the outcomes were given particular attention.
It was found that including manipulability in the cost function enables the robot’s final
configuration to be anticipatory, purposeful, and prepared for further assignments. As a
result, the robot has more opportunities to perform additional tasks nearby while saving
energy and resources by not having to relocate the platform. Case studies demonstrate
the implementation and the different results.
Future research may find it beneficial to include performance measures in trajectory
planning and to incorporate the acquired workspace information even further, as the
topic has merit in several areas. Being able to accomplish additional tasks when arriving
at a final configuration without consuming much energy opens further research on this
topic in medical care, disaster control, or energy crises, offering promising possibilities.

II

Kurzzusammenfassung

Die Robotik ist ein dynamisches Forschungsgebiet mit großem Potenzial, den Menschen
auf verschiedene Weise zu unterstützen, insbesondere bei Aufgaben in anspruchsvol-
len und unsicheren Umgebungen, die hohe Mobilität und Geschicklichkeit erfordern.
Autonome mobile Manipulatoren werden daher im Vergleich zu konventionellen Ma-
nipulatoren häufiger eingesetzt, da sie sich selbstständig bewegen, eine Vielzahl von
Aufgaben mit hoher Agilität ausführen und zeitunabhängige oder sich wiederholende
Operationen, wie beispielsweise Handhabung und Transport, durchführen können.
Die steigende Nachfrage nach mobilen Manipulatoren in hochpräzisen Anwendungen
hat zu neuen Anforderungen geführt, bei denen die Ressourceneffizienz und das vor-
ausschauende Verhalten im Vordergrund stehen, einschließlich der Trajektorienplanung
und des Entwurfs eines idealen Pfades, auf dem der Roboter später weitere Aktionen
mit dem geringsten Energieaufwand antizipieren kann.
Diese Arbeit untersucht die Bewertung des Arbeitsraums, die Bestimmung von Sin-
gularitäten, die Ermittlung typischer Leistungsindikatoren für Roboter und deren
Nutzung. Zur Konstruktion von Trajektorien wurde ein nichtlineares Optimierungs-
problem formuliert und eine Kostenfunktion mit Nebenbedingungen aufgestellt. Die
Trajektorienplanung wird hinsichtlich des Arbeitsraums und der Manipulierbarkeit des
Roboters optimiert, während der Roboter erfolgreich die gewünschte Pose erreicht und
gleichzeitig die physikalischen Grenzen des Systems einhält. Besonderes Augenmerk
wurde auf die Auswirkungen der Manipulierbarkeit auf die resultierenden Trajektorien
gelegt und darauf, wie sich die Gewichtung dieser Komponente auf die Ergebnisse
auswirkt.
Es wurde festgestellt, dass die Manipulierbarkeit in der Kostenfunktion die Endkonfigu-
ration des Roboters vorausschauend und zielgerichtet auf weitere Aufgaben vorbereitet.
Infolgedessen hat der Roboter mehr Möglichkeiten, zusätzliche Aufgaben in der Nähe
auszuführen, während er gleichzeitig Energie und Ressourcen spart, da er die Plattform
nicht gezwungenermaßen weiterbewegen muss. Fallstudien veranschaulichen die Umset-
zung und die unterschiedlichen Ergebnisse.
Zukünftige Forschungen könnten es als vorteilhaft erachten, Leistungsindikatoren in
die Trajektorienplanung einzubeziehen und die gewonnenen Arbeitsrauminformationen
noch stärker zu berücksichtigen, da das Thema in mehreren Bereichen von Nutzen
ist. Die Möglichkeit, in der Endpose zusätzliche Aufgaben erfüllen zu können, ohne
viel Energie zu verbrauchen, eröffnet weitere Forschungen zu diesem Thema in den
Bereichen medizinische Versorgung, Katastrophenschutz oder Energiekrisen und bietet
vielversprechende Möglichkeiten.

III

Contents

Abstract II

1 Introduction 1
1.1 Literature review . 2
1.2 Thesis objectives . 5
1.3 Thesis structure . 5

2 Mathematical modeling 7
2.1 Manipulator kinematics . 9

2.1.1 Rigid-body structures . 10
2.1.2 Degrees of freedom and redundancy 11
2.1.3 Position, orientation, and quaternions 13
2.1.4 Homogeneous transformations 15
2.1.5 Denavit-Hartenberg Convention 17
2.1.6 Manipulator rigid-body model 18
2.1.7 Forward and inverse kinematics 19
2.1.8 Analytical and geometrical Jacobian 21
2.1.9 The inverse Jacobian . 23
2.1.10 Singularity analysis . 24

2.2 Differential drive kinematics . 26
2.2.1 Kinematic model . 26
2.2.2 Derivation of forward kinematics equations 27

2.3 System coupling . 30

3 Workspace and manipulability 32
3.1 Workspace of the manipulator . 33

3.1.1 Monte Carlo method . 33
3.1.2 Voxelization . 34
3.1.3 Alpha Shape method . 36
3.1.4 Workspace results . 38

3.2 Manipulability measures . 40
3.2.1 Manipulability ellipsoid . 40
3.2.2 Minimum singular value . 41
3.2.3 Condition Number and Isotropy Index 42
3.2.4 Yoshikawa’s measure of manipulability 42

IV

Contents V

3.3 Singularity simulations . 43
3.4 Yoshikawa manipulability histogram 48
3.5 Workspace heterogeneity . 49

4 Trajectory planning and optimization 51
4.1 Optimal control problem . 51

4.1.1 Problem formulation . 52
4.1.2 System dynamics and constraints 53
4.1.3 Optimality criteria and cost function 55
4.1.4 Multi-objective dynamic optimization problem 57
4.1.5 Discretized optimization problem 58

4.2 Implementation . 60
4.2.1 Solver specification . 60
4.2.2 Trajectory generation . 63
4.2.3 Visualization and animation . 63

4.3 Case studies and results . 64
4.3.1 Case study 1 . 67
4.3.2 Case study 2 . 70
4.3.3 Case study 3 . 72
4.3.4 Case study 4 . 74
4.3.5 Case study 5 . 77

5 Conclusion 79

Appendix 81
A1 Symbolic transformation matrix expressions 81
A2 Geometric Jacobian . 82

List of Figures 85

List of Tables 86

Bibliography 87

Chapter 1

Introduction

Autonomous mobile manipulators are increasingly used for various tasks in different
application areas [1]–[3]. They are primarily concerned with tasks in arduous and
precarious environments, e.g., in industry, mining, nuclear facilities, forestry, and
transportation, as well as in human-machine interactions and precision work.
As a combination of a polyarticulated arm and a mobile platform [4], mobile manipula-

tor systems offer various benefits over their stationary pendants: they are transportable
and more maneuverable while having an enlarged workspace [2]. Therefore, they
predominantly execute tasks based on their high mobility and dexterity.
However, the demands on the arm and the platform frequently contradict [5]. The

manipulator requires a firm base to prevent falling over during its motion, while the
mobile platform should be kept lightweight and agile. Thus, the structure of the mobile
manipulator must be carefully engineered and designed to account for these demands.
Furthermore, operation and control are inherently complex due to the numerous degrees
of freedom and the unstructured working environment. Therefore, to get a better
understanding of the complexity, modeling the systems is crucial.
Optimal trajectory planning for mobile manipulator systems is a challenging benchmark

[6] in control engineering, especially when the manipulator has more degrees of freedom
than required to complete an assigned task. Usually, the robot has not only to reach
the desired position and orientation in Cartesian space, but it is reasonable to assume
that it has to perform further tasks near the goal configuration. For example, a mobile
manipulator has to approach an overturned book lying on a shelf and then arrange it
correctly.
Such scenarios necessitate the robot arriving in a configuration that enables it to

perform further tasks. Expectations like this typically require trajectory planning with
a high level of manipulability [7] at the final configuration. This manipulability measure
estimates the versatility of the end-effector’s motion by describing the ability to reach a
specific pose in the Cartesian space and the ability to change the manipulator’s and
the end-effector’s posture at the final configuration.
The thesis deals with developing and implementing a mobile manipulator model and

analyzing its kinematics and workspace. Additionally, an optimized trajectory planner
is designed which is able to realize the same end-effector goal pose with different joint

1

2 1 Introduction 1.1 Literature review

configurations depending on the given objectives. The focus lies on the benefits of
including manipulability. The main contribution of this work is the in-depth analysis
and experiments on the abovementioned topics.
This introductory chapter serves as an overview by summarizing the state of the art

of mobile manipulators, trajectory planning, and performance indices, followed by the
research objectives and questions. Finally, a summary of the thesis structure concludes
the chapter.

1.1 Literature review
Robotics is currently one of the major research areas, as it is a constantly growing

discipline with increasing research interest and use in diverse applications [8], [9].
According to Bogh et al. [10], autonomous mobile manipulation is a more recent,
interdisciplinary field within robotics with a timeline extending over decades. Innovative
techniques and technologies such as RoboCup [11] and 3D object localization [12] aim
to enhance the agility and versatility of robotic systems while reducing costs.
Traditionally, mobile robots have primarily been used for transportation due to their

maneuverability, while stationary manipulator robots have been favored in manufac-
turing due to their flexibility. Mounting a polyarticulated arm on a mobile platform
combines the advantages of both systems. The end-effector is usually attached to the
manipulator’s free end, while the platform is equipped with either two separately driven
wheels or an omnidirectional drive [13]. By integrating the maneuverability of mobile
robots with the flexibility of manipulator arms, mobile manipulators can execute more
complex tasks than their stationary counterparts [2], [13], [14].
As the use of mobile manipulators continues to expand across various industries and

sectors, including agriculture [15], healthcare [16], and military [17], it has become
increasingly important to measure and optimize their performance. This is critical for
addressing each application’s unique challenges and problems. For example, mobile
manipulators can assist with precision agriculture tasks like crop monitoring and
harvesting, improve patient care in healthcare settings, and enable the safe handling of
explosive ordnance in military applications.
Manipulators, especially mobile manipulators, often possess more degrees of freedom

than necessary for a particular task, known as redundancy. The kinematic redundancy
of manipulators has been a focus of research over the past three decades, and it continues
to be an active area of investigation. Many researchers have contributed to this field,
exploring the potential benefits of enhancing performance and addressing problems,
e.g., Y. Nakamura [18], Pin and Culioli [19], Zhang and Wang [20], Zhang et al. [5], Li
and Li [21], and Chiaverini et al. [22].
While redundancy can pose a challenge, it also presents advantages, such as enabling

different motions to accomplish the same objective. Redundant robots make it easier to
attain an optimal configuration than non-redundant variants because the redundant
degree of freedom provides more alternatives for the final pose. Therefore, optimizing
the robot’s configuration during or at the end of its movement is highly tied to this
attribute.

1 Introduction 1.1 Literature review 3

A limitation of any stationary manipulator is that targets outside its workspace cannot
be reached. A mobile platform can effectively expand the manipulator’s workspace
while the manipulator offers various operational functionalities. Guaman et al. [23],
among others, have analyzed how the platform and arm contribute additional degrees of
freedom to the coupled system, increasing versatility. Due to the arm’s higher precision
compared to the platform [4], a common approach for controlling mobile manipulators
is to move the platform to a desired location, park it, and then utilize the manipulator
arm for high-precision manipulation.

The kinematics of standard manipulator arms are often described by the Denavit-
Hartenberg method [24], which uses a minimal set of parameters. In contrast, the
screw-based approach, such as the successive screw displacements method [25], provides
more flexibility, albeit at the cost of increased complexity. Both modeling approaches
offer unique benefits, as extensively demonstrated by Rocha et al. [25].

Mobile manipulators present challenges for planning algorithms due to their kinematic
redundancy and complex dynamics. Two common approaches are separate planning for
the manipulator and platform subsystems or combined planning, treating the system
as a whole. Sandakalum et al. [6] recommend merging the two subsystems because
separate planning may not result in optimal outcomes.

Various researchers have studied modeling and motion trajectory planning, including
search-, sampling-, or optimization-based algorithms [6], [26], [27]. Common goals
are optimizing movement and posture, which are usually subject to constraints, e.g.,
joint limitations. Given that robot performance depends on multiple factors, such
as accuracy, speed, and energy efficiency, it is crucial to establish measurable and
comparable performance evaluations.

Over the years, several performance indices have been developed to evaluate manipula-
tors, including service angle, dexterity, condition number, minimum singular value, and
manipulability index [28]. The workspace can also be considered a performance index,
as noted by Ouyang and Shang [29].

The service angle, for example, describes the full range of the approach angle around
a specific point of the manipulator’s workspace [28]. Based on this measure, Yang and
Lai [30] established the concept of the service sphere and service regions. On the other
hand, the dexterous workspace, introduced by Kumar and Waldron [31], includes all
points that the end-effector can access in any arbitrary orientation. Accordingly, the
dexterity index [31] measures the manipulator’s ability to reach different orientations at
each point within its workspace, and its value varies between 0 and 1.

The Jacobian matrix is a fundamental tool in robotics [32] for performance analysis as
it describes the conversion between joint angular and Cartesian end-effector velocities.
One of its main benefits is helping to detect proximity to singularities, which can lead
to unpredictable behavior or even failure of the manipulator. Several performance
measures in robotics rely on the Jacobian matrix or can be derived from it.

4 1 Introduction 1.1 Literature review

To estimate the kinematic performance, Paul and Stevenson [33] used the determinant of
the Jacobian matrix. If the determinant equals zero at a given point in the manipulator’s
workspace, the manipulator is approaching a singularity. However, this value alone does
not provide information about the degree of ill-conditioning. To address the issue of
ill-conditioning, the condition number can be used. This measure compares the matrix’s
largest and smallest singular values [34] [33].

Another useful indicator based on the Jacobian matrix is the minimum singular value
by Klein and Blaho [35]. It provides a high sensitivity near singularities and efficiently
shows whether the determinant of the Jacobian matrix is approaching zero.

The manipulability index, introduced by T. Yoshikawa [36], is another measure based
on the Jacobian matrix. It evaluates the current configuration by quantifying the extent
to which the velocity of the end-effector can change depending on its current pose. The
index measures the relationship between joint space and Cartesian end-effector motion
and provides information about the manipulator’s ability to move and apply forces in
arbitrary directions.

Manipulability is fundamental in various aspects of robotics, including analysis, design,
robot control, task specification, and optimization. Researchers have extensively studied
the maximization of the manipulability index, such as Dufour and Wael [37] and Maric
et al. [38] contributing to the field. The index is often used to solve inverse kinematics
models or online control of redundant systems, as noted by Vahrenkamp et al. [39].
t also plays a significant role in developing optimal placement methods for mobile
manipulation, as explained by Cui et al. [40]. The manipulability index can also
be utilized for planning optimal trajectories, as emphasized by Akli et al. [41], and
determining reachability data and control approaches, as shown by Andaluz et al. [42]
and Vahrenkamp et al. [43].

Yamamoto and Yun [44] introduced the task-space ellipsoid as a measure of manipula-
bility in their analysis of locomotion and manipulation from a task-space perspective,
making significant contributions to the kinematic and dynamic analysis of robots. Bayle
et al. [45] extended the definition of manipulability for mobile manipulators with
movement-constrained, also known as nonholonomic, platforms, enabling its application
in an inversion procedure aimed at solving redundancy.

To ensure that all robot objectives are achieved, manipulability is typically incorpo-
rated as a criterion paired with other factors. For example, when choosing a mobile
manipulator’s optimal pose, the manipulability and cycle time parameters should be
added, as suggested by Merkt et al. [46]. Similarly, Teka et al. [47] recommend
including the manipulability index and the manipulator’s joint angles as constraints for
redundant mobile manipulators. These examples demonstrate how manipulability is
used as a criterion in optimization problems to influence the motion and performance
of robotic systems.

As mobile manipulators gain prevalence in various industries and sectors, improving
their performance through modeling, trajectory planning, redundancy, and workspace
expansion is becoming increasingly important.

1 Introduction 1.2 Thesis objectives 5

1.2 Thesis objectives
This thesis aims to develop a kinematic model for a nine-degrees-of-freedom mobile

manipulator, analyze its manipulability, and incorporate this measure into an optimal
trajectory planning algorithm.
The goal is to provide a solution that balances energy consumption and execution time

with a high manipulability index. Manipulability optimization is crucial in achieving a
final posture farther from singular configurations, providing a more flexible motion and
a wider operational space.
This work tackles the following topics:

1. Analyze and develop the kinematic model of a seven-axis manipulator and the
mobile platform separately to solve the related kinematic problems.

2. Merge the manipulator and the platform into one coherent model to enable an
in-depth analysis of the possible movements.

3. Create and analyze the robot’s workspace to better understand its heterogeneous
structure.

4. Calculate and analyze the different configurations of the robot to grasp the concept
of manipulability and singular configurations.

5. Define and implement an optimization problem to plan optimal trajectories
incorporating manipulability.

6. Evaluate different test scenarios to analyze the influence of manipulability on the
planned trajectories and highlight the significant findings.

Special consideration is given to the numerical effort and computation time while
implementing and solving the presented optimization problem to achieve a reasonable
execution time and iteration number. Furthermore, a desired property of the resulting
solution is that the system uses a fixed set of parameters so that tuning is not necessary
for each case individually.

1.3 Thesis structure
This work is organized into five chapters. After the brief introduction in Chapter 1,

Chapter 2 provides a detailed mathematical model of the mobile robot system, including
the forward and inverse kinematics. The chapter also covers fundamental concepts for
modeling robotic systems, such as geometric representation and the Denavit-Hartenberg
convention. In addition, it presents the analysis and implementation of the manipulator’s
model combined with the differential drive platform.
Chapter 3 focuses on a detailed description of the manipulator’s workspace and

its manipulability. First, it discusses the problems associated with the workspace
representation and proposes voxels and alpha shapes as options. Then, with the help of
the mathematical model, the robot’s workspace and singularities are analyzed. The
last section explains the difficulties and advantages that arise with the inclusion of
manipulability.

6 1 Introduction 1.3 Thesis structure

Chapter 4 discusses the basics of trajectory optimization and presents the underlying
optimal control problem. It then addresses the specific implementation details of the
solution to the optimization problem and presents results from various case studies.
Finally, Chapter 5 concludes the thesis by summarizing the main findings and results.

It also provides recommendations for future work.

Chapter 2

Mathematical modeling

This chapter deals with the derivation of the mobile manipulator’s kinematic equations
of motion. Figure 2.1 shows the modeled robotic system of the KUKA LBR iiwa R820
seven-axis manipulator mounted on the SALLY V2.0 mobile platform.

Figure 2.1: The modeled seven-axis mobile manipulator of the KUKA LBR iiwa R820
seven-axis manipulator mounted on the SALLY V2.0 mobile platform.

Kinematic models characterize and control the behavior of robots by considering
purely geometric relationships, disregarding the connection between forces and motion.
To simplify the modeling process, the mobile manipulator system is divided into two
distinct subsystems, namely, a mobile platform and a robotic arm. Subsequently, these
subsystems are combined to create the integrated system model. Accordingly, this
chapter presents the mathematical representation of both subsystems and the combined
system.
The model of the articulated manipulator arm is based on the KUKA LBR iiwa R820

redundant seven-axis manipulator of the KUKA GmbH [48]. LBR stands for ’Leicht-
bauroboter’, also known as LWR ’lightweight robot’, while iiwa stands for ’intelligent
industrial work assistant’. The KUKA LBR iiwa R820 belongs to the lightweight robots
with a load capacity of 14 kg and 820 mm range.
As for the mobile platform, the model is based on the Sally V2.0 DS Automation

differential drive platform [49].

7

8 2 Mathematical modeling

The serial manipulator is an open kinematic chain formed by several stiff structural
elements, referred to as links, connected by rotational joints that allow relative movement
between adjacent links. The major structural components are a base frame, a joint
module, and a central hand. The KUKA LBR iiwa R820 is shown in Figure 2.2.

-0.4-0.4 -0.2-0.2 00 0.20.2 0 40 4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Z

z

x y

Figure 2.2: The KUKA LBR iiwa R820 modeled in MATLAB R2021.

Table 2.1 shows the manipulator’s joint limits of both the joint position and angular
velocity of all seven joints according to the KUKA data sheet [50].

θ range of motion speed with rated payload
θ1 ±170◦ ±85◦/s
θ2 ±120◦ ±85◦/s
θ3 ±170◦ ±100◦/s
θ4 ±120◦ ±75◦/s
θ5 ±170◦ ±130◦/s
θ6 ±120◦ ±135◦/s
θ7 ±175◦ ±135◦/s

Table 2.1: The KUKA LBR iiwa R820 joint position and joint velocity limits [50].

This chapter begins with a general introduction to rigid-body structures, the definition
of degrees of freedom, and redundancy. Then, it covers the following objectives regarding
the manipulator arm:

1. Create a parameter-dependent model using the kinematic relationships to deter-
mine the connection between joint and Cartesian coordinates.

2. Calculate the transformation matrices to solve the forward and inverse kinematics
problems.

3. Derive the Jacobian matrix to determine the relation between the joint velocity
and the Cartesian end-effector velocity space.

2 Mathematical modeling 2.1 Manipulator kinematics 9

Figure 2.3 shows the SALLY V2.0 mobile platform.

Figure 2.3: The SALLY V2.0 mobile platform from DS Automotion.

The drive mechanism employed by SALLY V2.0 is a differential drive system comprising
two independently driven wheels arranged on a single axis. The technical data sheet
[49] provides the relevant technical information, as summarized in Table 2.2.

Sally V2.0 technical data
track width 0.2 m
wheel diameter 0.15 m
max. forward velocity 1.6 m/s

Table 2.2: SALLY V2.0 mobile platform technical specifications [49].

The chapter addresses the following objectives in order to develop the platform’s model:
1. Implement a parameter-dependent model, including the kinematic relationships

to solve the forward kinematics.
2. Analyze and address the specific characteristics of the differential drive model,

which has to be combined with the manipulator arm model.

2.1 Manipulator kinematics
This section provides a comprehensive overview of manipulator kinematics and is

based on the theoretical principles in robot kinematics presented in Robot Modeling
and Control by Spong et al. [32].
Manipulator kinematics is primarily concerned with solving problems of forward

kinematics and inverse kinematics, using their results for further analysis [32]. Forward
kinematics allows calculating the position and orientation of the robot’s end-effector
as a function of the manipulator’s joint coordinates [32], whereas inverse kinematics
allows finding the values of the joint coordinates based on the position and orientation
of the end-effector in Cartesian coordinates [32].
As manipulators are commonly modeled as rigid-body structures, this section introduces

the concept of rigid-body structures and the definitions of degrees of freedom and
redundancy. It describes the pose of a rigid body in terms of position and orientation.
In addition, it briefly presents three methods of defining orientation: rotation matrices,
Euler angles, and quaternions, followed by the Denavit-Hartenberg convention.

10 2 Mathematical modeling 2.1 Manipulator kinematics

This section also derives the mathematical model of the manipulator and solves the
associated forward and inverse kinematics problems. It is concluded by computing the
geometric Jacobian matrix and examining its relevance in avoiding singularities by a
singularity analysis.

2.1.1 Rigid-body structures

According to the framework outlined by Spong et al. [32], rigid-body kinematics
describes the geometric behavior of a robot manipulator to a fixed reference frame,
also called base or world frame, without considering the forces and moments causing
the motion. The kinematic model defines the relationship between the robot’s joint
variables and the manipulator’s end-effector pose.

A robotic manipulator’s mechanical structure comprises a kinematic chain that can be
divided into two subsystems: an articulated mechanism and an end-effector [32]. The
articulated mechanism comprises a chain of rigid links interconnected by joints anchored
at a fixed base, while the end-effector manipulates or interacts with the environment
and is typically located at the chain’s most distal joint.

The topology of a robotic manipulator’s structure refers to the configuration of the
connections between its rigid links in the articulated mechanism [32]. It can be
represented as a graph, with links represented as nodes and joints represented as edges.
The selected topology significantly impacts the robot’s behavior and complexity [32].
Figure 2.4 displays two primary topologies in manipulators: open and closed chains.

.

A0

A1

A2

A3
A4

A0,4

1

2

3

4

0

1

2

3

4J1

J2

J3

J4

J1

J2

J3

J4

0,4

1

2

1

2

3

4

a) b)
open chain closed chain

Figure 2.4: Examples of open and closed chain rigid-body topologies.

Open chains consist of rigid bodies that are connected in sequence [32] as a serial or
tree structure, starting from a fixed base and ending at the extremity. The resulting
motion is obtained by composing the elementary movements of each link in relation
to the preceding one. The structure is characterized by its ease and low complexity,
with typically all joints being actuated. This makes open chains particularly suitable
for industrial applications, and many industrial manipulators are serial-structured open
kinematic chains [32].

2 Mathematical modeling 2.1 Manipulator kinematics 11

Closed chains are comprised of rigid bodies interconnected in a manner that forms
at least one closed loop [32]. Compared to open kinematic chains, closed chains present
greater complexity and technical challenges, often involving fewer actuated joints. On
the other hand, they offer certain benefits, including increased rigidity and accuracy
due to their higher stiffness levels [32].

2.1.2 Degrees of freedom and redundancy
As outlined by Spong et al. [32], a crucial parameter shaping the performance of robots

is the number of degrees of freedom (DOF), referring to specific modes which represent
the range of possible movements for a given kinematic pair and significantly impact the
usability of industrial robots. Robots are typically represented by rigid bodies, with
their number of DOF dependent on the constraints these bodies must obey [32]. One
such constraint is the non-deformity, which requires the relative distance between two
points on a rigid body to remain constant.
The connection between two adjacent links is referred to as a joint, providing limited

relative mobility between two rigid components. The type of joint used determines
the number of constraints. The most common joint types are prismatic (translational
movement in one direction), revolute (rotational movement in one direction), and
spherical joints (rotation in three directions).
Prismatic and revolute joints place five constraints on the motion between two rigid-

body parts, leaving one degree of freedom free. Prismatic joints allow translation along
one axis, while revolute joints enable rotation around one axis. The number of DOF
in an open-chain manipulator typically equals the number of joints and independent
configuration parameters. Figure 2.5 depicts a schematic representation of prismatic
and revolute joints.

prismatic joint revolute joint

Figure 2.5: Schematic representation of prismatic and revolute joints.

The DOF of the configuration space represents the minimum number of independent
displacements necessary to represent a given configuration sufficiently. The configuration
space R3 requires a minimum of six degrees of freedom to represent the Cartesian space
in the ’special Euclidean group’ SE(3) [32]. Three of them define the position, while
the other three define the orientation by angles, which are commonly referred to as roll,
pitch, and yaw (RPY), using aviation terminology [32].
Kinematic redundancy in a manipulator refers to a situation where the manipulator

has a higher DOF than the minimum required in the task space. This allows the
manipulator to solve the same task in different ways. The concept of redundancy and
its associated challenges are discussed in several works, e.g., by Blaho et al. [35].

12 2 Mathematical modeling 2.1 Manipulator kinematics

According to [35], although redundancy increases the complexity of planning and
control, it provides several benefits, such as improved singularity and obstacle avoidance,
posture optimization, and the ability to include additional objectives in the planning
process.
Let a manipulator have a axes that equal its number of degrees of freedom. Let e be

the dimension of the motion attainable by the end-effector in the task space. Let t
be the dimension of the assigned task in the task space. Then the following cases can
occur, as outlined in [22] and [32]:

a) a = e: a non-redundant robot.
b) a > e: a kinematically redundant robot, as the manipulator’s configuration can

be changed without altering the end-effector’s current pose (null-space motion).
c) e = t: the end-effector can provide the DOF required in the task space.
c) e > t: task redundancy, the end-effector has more DOF than required by the

task space.
d) e < t: the dimension of the task space exceeds the dimension of the motion

attainable by the end-effector.

The movement of the end-effector over time is referred to as task-space motion. On
the other hand, null-space motion occurs when the end-effector stays in the same pose,
but the manipulator changes its configuration. This allows for greater versatility in the
robot’s movements. Figure 2.6 shows the difference between task-space and null-space
motions.

Figure 2.6: Example of task-space motion and null-space motion of a four-axis redundant
manipulator in an SE(2) task space.

A simple expression to determine the degrees of freedom is to use Gruebler’s formula
[24], which is widely used in robotics due to its simplicity. The formula (2.1) assumes
that all constraints are independent

DOF = m · (N − 1 − J) +
J∑

i=1
fi, (2.1)

where m denotes the degrees of freedom of a rigid body, N is the number of rigid-body
parts, including the ground, J is the number of joints, and fi stands for the freedom
per joint type.

2 Mathematical modeling 2.1 Manipulator kinematics 13

The KUKA LBR iiwa R820 has seven revolute joints, meaning that J = 7, N = 8,
fi = 1 for i 1 to 7 and operates in an SE(3) task space, so that m = 6. By applying
Gruebler’s formula, the degrees of freedom in (2.2) can be calculated as

DOF = 6 · (8 − 1 − 7) +
7∑

i=1
1 = 7. (2.2)

The KUKA LBR iiwa R820 is a robot with more than six degrees of freedom, which
makes it a redundant manipulator for positioning tasks in an SE(3) task space.

2.1.3 Position, orientation, and quaternions
This subsection strongly relies on the seminal work of B. Siciliano [51], which presents

a comprehensive overview of the foundations of robotics.
The pose of a rigid body consists of its position and orientation [51]. The position

specifies the current location of the end-effector frame origin in the three-dimensional
Cartesian space, whereby the orientation represents the rotation of the end-effector
frame relative to a fixed reference frame. In terms of the manipulator’s task, positioning
refers to placing the end-effector at a specific point within its workspace, and orientation
refers to the alignment of the end-effector with the desired orientation at that position.
To fully describe the pose of the rigid body in the three-dimensional Cartesian space,
the position and orientation must be specified using three coordinates each [51].
Each part of a rigid body, including the end-effector, is associated with its own unique

coordinate frame. The frames are defined as right-handed so that the cross products
of the x and y axes result in the z axis. These axes x, y, and z form an orthonormal
base, meaning they are perpendicular to each other and have a unit length. Let the
coordinate system (O, x, y, z) denote a reference system W with its origin O at zero
and its axes defined as x, y, and z, respectively.
Let (O′,x′, y′, z′) be the orthogonal coordinate system B attached to a rigid-body.

This coordinate system is referred to as the body frame and represents the spatial
orientation of the body relative to W . As illustrated in Figure 2.7, the relative position
and orientation of two coordinate systems W and B define the pose of the body.

.
x'

y'
z'

O'

o'

x

y

z

O
W

B

Figure 2.7: Pose of a coordinate system B in the reference frame W [51].

14 2 Mathematical modeling 2.1 Manipulator kinematics

There are several ways to express the orientation of B with respect to W, e.g., the
Euler-angles, the rotation matrix, or quaternions [52]. Each of the three representations
has its advantages and disadvantages.
Euler angles are widely used to describe the orientation of B in W by a minimal

representation [51], as only three parameters are required that each describe a rotation
about one of the three coordinate axes. On the other hand, Euler angles are prone to
singularities, gimbal lock, and cancellation effects during interpolation.
A gimbal lock occurs when two of the three possible axes of rotation are parallel,

resulting in a loss of one degree of freedom [52] [53]. However, it can also arise during
interpolation between two orientations. Thus, the choice of Euler angle parametrization
should be carefully considered, and two consecutive angles should not be about two
parallel axes. There are 12 allowed combinations of sets, e.g., the ZYZ and the RPY
angles.
The rotation matrix R is another representation of the orientation of B relative to

W . As a square 3 × 3 matrix, its columns serve as the basis vectors of the coordinate
system and are subject to six constraints: three for being unit vectors and three for
being perpendicular to each other. Despite their good analytical features, rotation
matrices require more memory when stored compared to other representations.
The rotation matrix has several important characteristics:

- Its inverse is equal to its transpose, RT = R−1.
- As a result, RT R = I, where I denotes the 3 × 3 unit matrix.
- The determinant of the matrix det(R) is equal to 1, meaning that rotating a

vector does not change its length.
- The matrix product of two rotation matrices is also a rotation matrix.

The set of all 3 × 3 real matrices that meet these conditions form the special orthogonal
group SO(3) [54]. Matrices in SO(3) do not commute, meaning that their matrix
multiplication order is relevant.
The basic rotation matrices about the three main axes of W are known as roll, pitch,

and yaw, depicted by Figure 2.8. The RPY serve as the building blocks of more complex
rotations.

Figure 2.8: Roll, pitch, and yaw rotations about the three main Cartesian axes [32].

2 Mathematical modeling 2.1 Manipulator kinematics 15

Each rotation matrix is an extension of the two-dimensional rotation matrix, in which
one of the coordinates remains constant during the transformation.

• Y aw is the counterclockwise rotation of γ about the x-axis, given by

Rx =

[]] 1 0 0
0 cos(γ) − sin(γ)
0 sin(γ) cos(γ)

]]] . . (2.3)

• P itch is a counterclockwise rotation of β about the y-axis, given by

Ry =

[]] cos(β) 0 sin(β)
0 1 0

− sin(β) 0 cos(β)

]]] . . (2.4)

• Roll is a counterclockwise rotation of ζ about the z-axis, given by

Rz =

[]] cos(ζ) − sin(ζ) 0
sin(ζ) cos(ζ) 0

0 0 1

]]] . . (2.5)

Any arbitrary rotation R can be achieved by multiplying the basic rotation matrices
about the principal axes of the reference coordinate system W in a given sequence,
whereby the order of rotations is relevant.

Quaternions offer a reasonable tradeoff between memory and analytical features, pro-
viding a compact and efficient way to describe three-dimensional orientation, requiring
four parameters instead of the nine needed by a rotation matrix [54]. Introduced by
William Hamilton in 1843, they are widely used in computer graphics, robotics, and
computer vision due to their improved numerical stability, avoidance of problems like
gimbal lock, and ability to interpolate between orientations without discontinuities [54].

Quaternions are hypercomplex numbers [53] and serve as extensions of complex numbers.
They are composed of a scalar and a vector, expressed as

r = x0 + x1i + x2j + x3k, (2.6)

with x0, x1, x2 and x3 as real numbers and i, j, and k as the basic quaternions, which
can be interpreted as unit vectors [54].

2.1.4 Homogeneous transformations

The pose of B relative to W is described by its position and orientation. The position
of B can be represented by a translation vector t of dimensions 3×1 and the orientation
by a 3 × 3 rotation matrix R.

16 2 Mathematical modeling 2.1 Manipulator kinematics

A convenient and compact representation is achieved by combining t and R into a
single 4 × 4 homogeneous transformation matrix T ∈ SE(3) [55], which is constructed
as

T =

[]]]]
R11 R12 R13 x
R21 R22 R23 y
R31 R32 R33 z
0 0 0 1

]]]]] =
[

R3×3 t3×1
01×3 1

]
, . (2.7)

with the rotation matrix R ∈ SO(3), the t3×1 translation vector, 01×3 as the perspective
vector and 1 as the global scaling scalar. It should be noted that T always represents a
rotation followed by a translation and not the other way around.
The transformation matrix T satisfies properties similar to those of the rotation matrix

R. The inverse T −1 of T exists such that T T −1 = I, where I equals the 4 × 4 identity
matrix. The product of two transformation matrices also results in a transformation
matrix. However, the matrix multiplication is not commutative, meaning that the order
of multiplication is relevant. The set of all transformation matrices forms SE(3).
To benefit from the advantages of the transformation matrix, it is necessary to convert

the Cartesian coordinates into homogeneous coordinates. This allows representing
N -dimensional coordinates using N + 1 numbers. The conversion appends a scalar
variable, w, to the three-dimensional Cartesian coordinates, which results in a point rep-
resented as

[
x y z w

]T
in homogeneous coordinates, as opposed to

[
X Y Z

]T

in Cartesian space. The homogeneous coordinates are scale-invariant, meaning that
different homogeneous coordinates can represent the same point in Cartesian space,
depending on the scaling factor w.
The conversion from homogeneous coordinates to Cartesian is as follows[

X Y Z
]T

=
[

x
w

y
w

z
w

]T
. . (2.8)

To create the transformation matrix, the 3 × 1 Cartesian vectors are converted into
4 × 1 homogeneous vectors by simply setting the scaling factor w = 1 and appending it
at the end of each vector. This representation is known as the homogeneous coordinate
representation [55].
Assuming a rotation described by the RPY, with the abbreviations cζ = cos(ζ),

cβ = cos(β), cγ = cos(γ), sζ = sin(ζ), sβ = sin(β), and sγ = sin(γ) representing the
angles, the transformation matrix reads as

T =

[]]]]
cζcβ cζsβsγ − sζcγ cζsβcγ + sζsγ x
sζcβ sζsβsγ + cζcγ sζsβcγ − cζsγ y
−sβ cβsγ cβcγ z

0 0 0 1

]]]]] . . (2.9)

The relationship between coordinate systems can be calculated by multiplying the
transformation matrices of the joints

T j
0 = T 1

0T
2
1...T

j
j−1, (2.10)

where T i
i−1 denotes the transformation from the (i − 1)th coordinate system to the ith

coordinate system.

2 Mathematical modeling 2.1 Manipulator kinematics 17

2.1.5 Denavit-Hartenberg Convention
Describing the pose of a rigid body in three-dimensional space requires six variables,

three for the position and three for the orientation. However, working with six parameters
can be tedious.
To address this issue, Jacques Denavit and Richard S. Hartenberg published the

Denavit-Hartenberg (D-H) convention in 1955 as a compact method for setting
up coordinate systems for rigid-body systems [56] [57]. This convention describes the
transformation between consecutive coordinate frames using four variables: link length,
twist, offset, and joint angle [57]. Using the D-H parameters, the number of parameters
required to describe the pose of a rigid body reduces from six to four.
With this compact representation, an anthropomorphic manipulator with seven degrees

of freedom requires only 7 · 4 = 28 independent parameters, compared to 7 · 6 = 42
using the canonical approach, allowing manipulation to be more efficient.
The D-H convention can transform any arbitrary coordinate system into another

by applying two rotations and two offsets in a specific order. It provides a general
description of robotic geometry and establishes coordinate systems for manipulators
using homogeneous transformations [57].
Typically, rigid-body configurations are represented by right-handed frames so that

each link is assigned to a local coordinate system attached to it using orthogonal
coordinate frames. The center of the joint must coincide with the coordinate frame to
which it is attached, and the z-axis has to point in the direction of the joint.
There are two ways [53] [55] to define the parameters: the standard D-H convention

and the modified D-H convention. These two conventions slightly differ in the parameter
definition.
The standard D-H convention, as shown in Figure 2.9, assumes that the ith (Oi, xi, yi,

zi) coordinate frame is at the (i + 1)th joint and the zi axis is placed in the direction
of the (i + 1)th joint [51]. Furthermore, the xi axis falls in the shared normal (normal
transverse direction) of the axes of the (i + 1)th and ith joint (in z-direction) and points
to the (i + 1)th joint. The robot’s base frame (O0, x0, y0, z0) can be set arbitrarily. The
only constraint is that the z0 axis and the joint’s rotation axis must be collinear.

Figure 2.9: Standard Denavit-Hartenberg parametrization [32].

18 2 Mathematical modeling 2.1 Manipulator kinematics

The four standard D-H parameters are defined as follows:
- di: the physical length of the link, the distance from the origin of (i − 1)th

coordinate frame to the point where the common perpendicular intersects axis
zi−1. For prismatic joints, this is the joint variable.

- ai: the distance between the zi−1 and zi axes along the xi axis, the common
normal of two consecutive links.

- αi: the angle between two consecutive links, from the zi−1 axis to the zi axis on
the xi axis.

- θi: the angle between the current link and the next link, between xi−1 and xi axis
on zi−1 axis. For revolute joints, this is the joint variable.

By using the D-H convention, the homogeneous transformation matrix T i
i−1 can be

defined from the (i − 1)th to the ith frame as

T i
i−1 =

[
Rz(θi) 03×1
01×3 1

] [
03×3 tx(ai)
01×3 1

] [
03×3 tz(di)
01×3 1

] [
Rx(αi) 03×1

01×3 1

]
. .

(2.11)
The D-H convention is by no means unique. If a given manipulator has only revolute

joints, the generalized coordinates q represent the joint angles. The parameters are
usually expressed in form of a matrix, where each row represents a single link. The
corresponding columns are a (m), α (radians), d (m) and θ (radians).
One possible set of D-H parameters describing the kinematic chain of the KUKA LBR

iiwa R820 is shown in Table 2.3, based on the KUKA data sheet [50].

a(m) α(radians) d(m) θ(radians)
0 −π/2 0.36 θ1
0 π/2 0 θ2
0 π/2 0.42 θ3
0 −π/2 0 θ4
0 −π/2 0.40 θ5
0 π/2 0 θ6
0 0 0.06 θ7

Table 2.3: Selected D-H parameters for the KUKA LBR iiwa R820.

2.1.6 Manipulator rigid-body model
With the help of the rigid-body structure, the transformation matrices can be expressed

according to (2.11) between two adjacent body parts based on the D-H parameters

T i
i−1 =

[]]]]
cos(θi) − sin(θi) cos(αi) sin(θi) sin(αi) ai cos(θi)
sin(θi) cos(θi) cos(αi) − cos(θi) sin(αi) ai sin(θi)

0 sin(αi) cos(αi) di

0 0 0 1

]]]]] . (2.12)

2 Mathematical modeling 2.1 Manipulator kinematics 19

T 1
0 (base to first rigid body) and T 2

1 (first to second rigid body) serve as examples

T 1
0 =

[]]]]
cos(θ1) 0 − sin(θ1) 0
sin(θ1) 0 cos(θ1) 0

0 −1 0 0.36
0 0 0 1

]]]]] , (2.13)

T 2
1 =

[]]]]
cos(θ2) 0 − sin(θ2) 0
sin(θ2) 0 cos(θ2) 0

0 1 0 0
0 0 0 1

]]]]] . (2.14)

The entire transformation matrix from the base to the end effector may be obtained
by multiplying the transformation matrices

T 7
0 = T 1

0 T 2
1 T 3

2 T 4
3 T 5

4 T 6
5 T 7

6 . (2.15)

This leads to the transformation matrix T 7
0 from the base to the end-effector

T 7
0 =

[
R7

0 t7
0

01×3 1

]
=

[]]]]
(R7

0)11 (R7
0)12 (R7

0)13 (t7
0)1

(R7
0)21 (R7

0)22 (R7
0)23 (t7

0)2
(R7

0)31 (R7
0)32 (R7

0)33 (t7
0)3

0 0 0 1

]]]]] . (2.16)

In order to speed up the optimization algorithm solver, it is necessary to implement
T 7

0 with symbolic joint variable expressions, despite the resulting elements being long
and highly nonlinear expressions. The exact expressions for R7

0 and t7
0 can be found in

Appendix A1.

The robot was implemented in the MATLAB R2021 environment as a rigid-body
structure. Parameters such as joint type (revolute, prismatic, or fixed), joint limits,
adjacent rigid-body parts, mass, the center of mass, and inertia can be specified
individually for each joint and rigid-body combination.

Accordingly, the KUKA LBR iiwa R820 rigid-body model in MATLAB consists of
seven rigid-body parts and seven revolute joints. Figure 2.10 depicts the manipulator
in its so-called home configuration, which is given by the KUKA LBR iiwa R820 data
sheet [50] as [0◦ 25◦ 0◦ 90◦ 0◦ 0◦ 0◦].

2.1.7 Forward and inverse kinematics

For open-chain manipulators, the kinematic analysis involves two fundamental problems
[32]: the forward (direct) kinematics to find the pose of the end-effector relative given
the joint variables and inverse kinematics to find the joint variables given the end-effector
pose.

20 2 Mathematical modeling 2.1 Manipulator kinematics

Z

z

x y

-0.4
-0.2

0
-0.40.2 -0.200.4 0.20.4

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Y
X

Figure 2.10: KUKA LBR iiwa R820 in home configuration [0◦ 25◦ 0◦ 90◦ 0◦ 0◦ 0◦].

The forward kinematics maps the joint variable coordinates to the position and
orientation of the end-effector in the Cartesian space, describing its pose as a function
of the joint space [24]. The time-dependent forward kinematic equation reads as

xe(t) = k(q(t)), (2.17)

where xe(t) ∈ Rm represents the configuration of the end-effector by a minimal set of
coordinates, q ∈ Rn represents the set of the joint variables, and k(q(t)) ∈ Rm is the
nonlinear vector function, which allows the computation of the end-effector pose.
In this specific case, the forward kinematics is covered by the transformation matrix

T7
0 as defined in (2.16). The translation vector t7

0 provides the position in vector form,
while the orientation is given by the submatrix R7

0 as a rotation matrix. To obtain an
expression for the orientation angles, the matrix was converted into Euler angles.
The inverse kinematics aims to find a configuration of the rigid-body structure so

that the end-effector has the desired position and orientation in space. It means that
the inverse relationship from the end-effector’s configuration space to the joint space is
required

q(t) = k−1(xe(t)). (2.18)
However, inverse kinematics is more complex than forward kinematics as some fun-

damental challenges arise. While the mapping from joint space to the end-effector’s
configuration space is unique, the inverse mapping may vary from zero to infinite
possible solutions, depending on the desired position and orientation. Ideally, a unique,
analytical, and closed-form solution exists, but such a solution can only be obtained for
a restricted set of manipulators having specific properties. For arbitrary robots, there
is no general analytic solution.
Numerical methods are often preferred over analytical methods in inverse kinematics

because they can handle complex and arbitrary robots and are more efficient in finding
solutions. These methods are based on matrix inversion and optimization and can

2 Mathematical modeling 2.1 Manipulator kinematics 21

incorporate additional constraints, such as joint limits, to reduce the number of feasible
solutions. Despite their advantages, finding a solution using numerical methods can be
challenging. They typically require an initial guess followed by an iterative optimization
process using methods such as Newton or gradient methods.
When multiple solutions exist, they can be differentiated by several criteria to reduce

the set of solutions, e.g., minimizing movement from the current position, using the
closest solution concept by moving the links with the lightest weight, or collision
avoidance.
To simplify the complexity resulting from the redundancy of the seven degrees-of-

freedom manipulator, kinematic decoupling can be applied. One analytical decoupling
method is known as Pieper’s method [58], which is applied to manipulators with spherical
wrists. Spherical wrists can be considered when three axes intersect at a point. Applying
Pieper’s method, the inverse kinematics problem is solved in two stages: the inverse
kinematics for the position (of the wrist) and the inverse kinematics for the orientation
(of the end-effector with respect to the wrist).

2.1.8 Analytical and geometrical Jacobian
Forward and inverse kinematics map the joint positions into the end-effector’s configu-

ration space and vice versa. However, as the end-effector frame moves and changes its
pose, the joint variables also vary [32].
Therefore, to establish a unique relationship between the different types of representa-

tional velocities and the differential kinematics of the system, the mapping between
the joint velocity space and the end-effector velocity space must be defined [55]. This
involves determining the joint variable vector, which is a highly nonlinear function, and,
thus, makes differential kinematics calculations nontrivial.
The resulting relationship between joint and end-effector velocities is described by

the Jacobian matrix [55]. This matrix also connects the end-effector wrenches, joint
forces, and torques [55]. There are two types of Jacobian matrices [32]: geometric and
analytical.
The analytical Jacobian JA is directly derived from the forward kinematics by ∂k

∂q
and

provides differential quantities in the operational space, while the geometric Jacobian
JG is based on the geometric relation and has quantities with clear geometric meaning.
Although the analytical and geometric Jacobians result in the same linear velocities,

their interpretation of the resulting angular velocities differ. For the analytical Jacobian,
the angular velocities depend on the local coordinate system of SE(3) and the chosen
angles (e.g., roll-pitch-yaw) to represent the orientation of the end-effector. In contrast,
the geometric Jacobian calculates the angular velocities around the three orthogonal
axes (x,y,z).
As the analytical and geometric Jacobians are related, a mapping exists between

them [32], which can be expressed with the help of a parametrization-dependent
transformation matrix E(L) with the choice L = [ζ β γ]T , and ζ, β and γ denoting the
roll-pitch-yaw angles [53].

22 2 Mathematical modeling 2.1 Manipulator kinematics

The matrix E(L) then is defined as

E(L) =

[]] 1 0 sin(β)
0 cos(ζ) − cos(β) sin(ζ)
0 sin(ζ) cos(β) cos(ζ)

]]] . . (2.19)

Furthermore, E(L) can also map the joint velocity limits to end-effector velocity limits.
Then the relation between the analytical and geometric Jacobians can be expressed as

JA(q) =
[

I3×3 03×3
03×3 E−1(L)

]
JG(q). (2.20)

The analytical Jacobian JA is directly derived from the forward kinematics. Let a
minimum set of coordinates xe(t) represent the configuration, as in 2.17. The velocities
are the time derivatives of these coordinates.
The matrix can be obtained by differentiating the time-dependent joint variables.

ẋe = ∂k

∂q

∂q

∂t
. (2.21)

Now the analytical Jacobian can be expressed as

JA(q) = ∂k

∂q
, (2.22)

where JA denotes the analytical Jacobian matrix JA ∈ Rm×n, with n as the number of
joints, and m as the dimension of the operational space.
With t7

0 and L(q) as the Euler angle representation of R7
0 from (2.16), the analytical

Jacobian matrix reads as

JA =

[]]
∂t

∂q1
∂t

∂q2
... ∂t

∂q7
...
∂L
∂q1

∂L
∂q2

... ∂L
∂q7

]]] . (2.23)

In contrast, the geometric Jacobian JG maps the generalized velocities q̇ to the
end-effector velocities we as

we =
[

ve

ωe

]
= JG(q)q̇, (2.24)

where ve denotes the linear velocity vector and ωe the angular velocity vector.
The matrix JG ∈ R6×n is defined as

JG =

[]]jP,1 jP,2 ... jP,n

... ...
jO,1 jO,2 ... jO,n

]]] , (2.25)

with the vectors jP,i ∈ R3×1, jO,i ∈ R3×1, i= 1...n, and n as the number of joints, so
that the ith column of the matrix depends on the ith joint type.

2 Mathematical modeling 2.1 Manipulator kinematics 23

To express jP,i and jO,i, let z0 be z0 = [0 0 1]T and zi denoting the first three elements
of the third column of the transformation matrix T i

0. Furthermore, let t0,E be the
forward kinematics for the end-effector position relative to the base frame, while t0,i−1
is the partial forward kinematics in the base frame position Oi−1. These values can be
obtained from the corresponding transformation matrix.

Then the ith column of JG can be calculated as[
jP,i

jO,i

]
=

[
zi−1 × (ti−1,E)

zi−1

]
. (2.26)

For revolute joints, ti−1,E is calculated as

ti−1,E = t0,E − t0,i−1. (2.27)

As the modeled KUKA LBR iiwa 820 has seven revolute joints and zero prismatic
joints, the geometric Jacobian J0

7(q) be determined as

J0
7(q) =

[
z0 × (t0,E) z1 × (t1,E) ... z6 × (t6,E)

z0 z1 ... z6

]
. (2.28)

The symbolic geometric Jacobian J0
7(q) ∈ R6×7 is derived and provided in Appendix

A2. Due to the highly nonlinear matrix elements, the resulting symbolic expression
is complex. Despite this complexity, using the symbolic geometric Jacobian, like the
transformation matrix, is essential for saving computational resources.

2.1.9 The inverse Jacobian

For a robot to follow a desired end-effector path, the controller needs to compute
the inverse position and velocity kinematics. However, singularities can cause this
calculation to fail, causing the kinematics and dynamics of the rigid-body structure
to become indeterminate [24]. Singularities are more likely to occur when the path is
specified in Cartesian space instead of joint space, leading to the loss of one or more
degrees of freedom in the manipulator [32].

When solving the inverse kinematics problem, it is necessary to find the inverse of the
Jacobian matrix. For JA, the inverse calculation of (2.21) can be expressed as

q̇ = J−1
A (q)ẋe. (2.29)

Similarly, in case of JG and (2.24), the equation reads as

q̇ = J−1
G (q)we, (2.30)

If the Jacobian is an n×n nonsingular matrix, the inverse matrix exists, and the desired
end-effector velocities can immediately be mapped into their joint-space counterparts.

24 2 Mathematical modeling 2.1 Manipulator kinematics

When the Jacobian matrix is not square, a pseudo-inverse matrix can be used instead.
One of the most common forms of the pseudoinverse is the Moore-Penrose pseudoinverse,
which guarantees that, while trying to match the desired velocity, the joint movement
is minimal [59] [60]. Now, the pseudoinverse J+

A of the real matrix JA can be expressed
as

J+
A = (JT

AJA)−1JT
A. (2.31)

Singularities occur when the determinant of (JT
AJA) equals zero [61].

With the help of (2.31), the velocity mapping from Cartesian space to joint space
calculates as

q̇ = J+
A(q)ẋe. (2.32)

The same reasoning applies to the geometric Jacobian JG, and the approach can also
be extended to this case.
To evaluate the Jacobian matrix’s ill-conditionedness, the Singular Value Decomposition

(SVD) [55] is a useful tool that detects discontinuities and instability near singularities
and from which the pseudo-inverse matrix can be computed. Subsection 3.2.1 will explain
the SVD in detail. Analyzing the singularities enables evaluating the manipulator’s
configuration and how it affects its degrees of freedom [32].

2.1.10 Singularity analysis
Singularity analysis is crucial for robot control and manipulation, as it aims to identify

when singular configurations occur and how to avoid them. The types and complexity
of singularities depend on the number, type, and arrangement of joints, and they fall
into two categories: internal singularities and boundary singularities [62].
Boundary singularities occur when a robot reaches its joint limits, decreasing the

number of independent columns in the Jacobian matrix and a singular configuration.
Internal singularities occur when links become collinear, resulting in a reduced rank in
the kinematic Jacobian matrix.
Redundant manipulators may approach singular configurations where the Jacobian

matrix loses rank, and its pseudoinverse becomes singular. This poses safety risks,
especially for large industrial robots, as small Cartesian space velocities require high joint-
space velocities, reducing trajectory accuracy and requiring high torques to maintain
control. When a joint reaches its limits, an immediate rank reduction of the Jacobian
follows, necessitating limits on joint-space velocities to mitigate risk. To prevent
boundary singularities, joint limits can be monitored, and the robot’s range of motion
can be constrained.
Joint limits impose a natural constraint on achievable movements, e.g., when the

manipulator becomes fully stretched in one direction. Scott B. Nokleby and Ron P.
Podhorodeski [61] [63] proposed a methodology for analyzing singularities in the case
of redundant manipulators. This method involves selecting linearly independent joint
screws and constructing a submatrix from the Jacobian matrix. Nevertheless, Waldron
et al. [64] recommend changing the reference frame when calculating the Jacobian
matrix to simplify the matrix elements.

2 Mathematical modeling 2.1 Manipulator kinematics 25

In this thesis, to investigate singular configurations of the KUKA LBR iiwa R820,
the method and results presented by Beck et al. [65] and Zhang et al. [66] are used,
and Boudreau and Podhorodeski [67] and the KUKA documentation [68] are used for
comparison. Accordingly, the resulting singularity conditions can be summed up as

1. θ2 = 0◦ and θ3 = ±90◦ as internal singularity,
2. θ4 = 0◦ as boundary singularity,
3. θ2 = 0◦ and θ6 = 0◦ as internal singularity,
4. θ5 = ±90◦ and θ6 = 0◦ as internal singularity.

Figure 2.11 demonstrates the abovementioned configurations.

Figure 2.11: KUKA LBR iiwa R820 singular configurations.

26 2 Mathematical modeling 2.2 Differential drive kinematics

2.2 Differential drive kinematics
This section is based on the theory presented in Modern Robotics: Mechanics, Planning,

and Control by Lynch K. and Park F. [24].
Differential drives are considered one of the simpler drive configurations for wheeled

mobile robots [24]. Typically, they are used in small, inexpensive robots for indoor
tasks. This type of drive system includes two driven wheels mounted on collinear axes,
each controlled by a separate drive unit. By varying the relative velocity of the wheels,
the robot can turn by modifying its point of rotation.
The Sally V2.0 differential drive mobile platform has a pair of driven wheels aligned

on the same axis and a non-motorized wheel that supports the system [49].

2.2.1 Kinematic model
To derive the kinematic equations, mobile platforms are typically modeled as two-

dimensional structures.
Let the global reference frame (OG, XG, YG) be denoted by G and a local reference

frame (OL, XL, YL) as L attached to a rigid body on a two-dimensional horizontal
surface. Furthermore, let the origin OL of L be the axis-midpoint of the driven wheels
and let the XL axis always be parallel to the forward direction of the chassis [53].
Then, the rigid body has three degrees of freedom (DOF): two independent DOF for

the position (xl, yl) in G and one for the orientation (the angle θl) along the vertical
axis XG. Here θl denotes the heading angle, the angular difference between G and L, as
the velocity vector always points in the forward direction of the robot.
The pose of L can be expressed as a vector η in G as

η =
[
xl yl θl

]T
. (2.33)

These three DOF are sufficient to describe any pose of the body in a 2D global reference
frame, see Figure 2.12.

Figure 2.12: Global and local coordinate frames for differential drive platform.

2 Mathematical modeling 2.2 Differential drive kinematics 27

Mapping the orientation between L and G can be done by an orthogonal rotation
matrix R(θ)

R(θl) =

[]] cos(θl) sin(θl) 0
− sin(θl) cos(θl) 0

0 0 1

]]] . (2.34)

Differential-drive robots are commonly considered highly maneuverable. The robot’s
differentiable degrees of freedom (DDOF) refer to the number of independent parameters
that describe the motion of a mobile platform. They determine the directions in which
the robot can move, and the trajectories can be traversed.
The Sally V2.0 mobile platform has two DDOF. The robot can move in the XL

direction and rotate L relative to G. However, it is unable to move instantaneously in
the YL direction. Any pose in G can be reached, whereby all movements in a particular
direction require at least a translational motion.
Furthermore, some simplifications and assumptions are necessary to simplify the

calculations. It is assumed that:

- the plane of a given wheel is continuously perpendicular to the ground,
- a point on the wheel is in constant contact with the ground (the robot has ideal

suspension),
- wheels do not slip at the point of contact, e.g., the relative speed there is zero

(nonholonomic constraint),
- internal degrees of freedom are not taken into account,
- the wheels have fixed positions on the chassis, and as such, the geometry of the

chassis does not change over time.

2.2.2 Derivation of forward kinematics equations
This section presents the nonlinear kinematic equations of the nonholonomic mobile

platform as outlined in [24] and [53].
The geometrical parameters of the model are the radius r of the driven wheels and

the axis length 2d, which is the distance of the parallel planes of rotation of the wheels.
The mobile platform is described by velocities, where uR denotes the angular and vR

the linear velocity of the right wheel and uL the angular and vL the linear velocity of
the left wheel. Then the time-continuous model of η̇ can be expressed as

η̇ =

[]]ẋl

ẏl

θ̇l

]]] = f(d, r, θl, uR, uL) =

[]]
r
2 cos(θl) r

2 cos(θl)
r
2 sin(θl) r

2 sin(θl)
− r

2d
r

2d

]]] [
uL

uR

]
. (2.35)

28 2 Mathematical modeling 2.2 Differential drive kinematics

A single standard wheel cannot have a lateral motion along its horizontal axis. This
axis is called the zero motion line. Figure 2.13 depicts when the local XL axis shows in
the direction of motion, and the local YL axis represents the zero motion line.

wheel

direction of
motion

zero motion
line

Figure 2.13: A wheel and its zero motion line, with YL representing the zero motion
line, while the XL shows in the direction of motion.

Two steerable wheels mounted on the same axis share a common zero motion line.
To change the heading angle θl, the robot must rotate around a point located along
the common axis of the left and right wheels, which forms a circle of radius R. The
origin of this circle, which lies along the zero motion line, is the ICC - Instantaneous
Center of Curvature (ICC), also called as Instantaneous Center of Rotation (ICR), see
Figure 2.14. The rate of rotation around ICC is the angular velocity ω(t).

Figure 2.14: Differential drive wheels on the same axis sharing a common zero motion
line, rotating around ICC with the radius R and the angular velocity ω(t).

A differential-drive robot is controlled by the velocities vL(t) and vR(t) of its two
separately driven wheels. The common velocity v(t) reads as

v(t) = vR(t) + vL(t)
2 , (2.36)

and the angular velocity ω(t) of the platform can be expressed as

ω(t) = vR(t) − vL(t)
2d

. (2.37)

The radius R can be calculated as the distance between the mid-point of the differential-
drive axis and the ICC

R = 2d

2
vL + vR

vR − vL

. (2.38)

2 Mathematical modeling 2.2 Differential drive kinematics 29

As the rate of rotation ω(t) around the ICC must be equal for both wheels, the
following equations hold

vR(t) = ω(t) (R + d) , (2.39a)
vL(t) = ω(t) (R − d) . (2.39b)

The ICC constrains wheels on the same chassis, as their zero motion lines must intersect
at the same center of rotation, and they move with the same angular velocity ω(t), see
Figure 2.15.

Figure 2.15: Two pairs of rotating wheels on the same chassis sharing the same center
of rotation.

The midpoint of the rear wheel axis can be represented by xl(t) and yl(t) in Cartesian
space so that the ICC can be expressed as

ICC = [xl − R sin(θl), yl + R cos(θl)]. (2.40)

Depending on the wheel velocities, different maneuvers are possible. In case that
vL = vR ̸= 0, then R = ∞, and ω = 0, the wheels are driven in the same direction at
the same speed, and the robot moves forward along a straight line. If one of the wheels
slows down, the robot turns in the direction of the decelerated wheel. In particular,
when one of the wheel velocities equals zero, the ICC coincides with that wheel. If
the wheels are rotated in opposite directions at the same speed vL = −vR, the robot
rotates in place around the midpoint of the wheel axis and R = 0. The sharpness of
the turn depends on the difference in speed between the rotations of the two wheels.
Furthermore, as the robot turns around the ICC, the heading angle and the position
change.
Using the ICC, the new position can be calculated using a rotation matrix from (2.34).

30 2 Mathematical modeling 2.3 System coupling

2.3 System coupling
The manipulator and the mobile platform models can be combined to represent the

full robot kinematics. The resulting model provides a comprehensive understanding
of the robot’s movements and positioning, considering both the platform’s and the
manipulator’s movements.

The merged model has nine degrees of freedom, seven coming from the manipulator
and two from the platform. The resulting redundancy means additional three degrees of
freedom for the system to solve tasks in an SE(3) task space. The platform’s role is to
increase the robot’s workspace by advancing and changing the pose of the manipulator’s
base.

The arm is mounted at a 45◦ angle and a height of 685 mm on the platform, as
illustrated in Figure 2.1. The movement of the platform and the arm mounting can
be represented by the transformation matrices Tsally and Tmount. The transformation
matrix Tsally reads as

Tsally =

[]]]]
cos(θC) − sin(θC) 0 xC

sin(θC) cos(θC) 0 yC

0 0 1 0
0 0 0 1

]]]]] . (2.41)

The arm mounting is represented by a constant matrix Tmount in the form

Tmount =

[]]]]
0 0 1 0

−0.7071 −0.7071 0 0
0.7071 −0.7071 0 0.685

0 0 0 1

]]]]] . (2.42)

Now, Tsally and Tmount can be multiplied with the manipulator’s transformation matrix
T 7

0 from (2.16) to obtain the transformation matrix Tfinal for the combined system

Tfinal = Tsally Tmount T 7
0 . (2.43)

When determining a robotic system’s Jacobian matrix and manipulability, it is common
to consider the entire system. However, this work prioritizes the arm’s maneuverability
and thus only considers the Jacobian matrix of the KUKA LBR iiwa R820. As a
result, the manipulability and the Jacobian of the mobile manipulator depend only on
the manipulator’s configuration and are not affected by the movements of the mobile
platform.

A simulation tool was developed in MATLAB to understand better and visualize the
robot’s movements, as the MATLAB Robotics Systems Toolbox offers a rigid-body
model representation using the D-H convention. However, it locks the manipulator
models at the origin of the global coordinate system.

2 Mathematical modeling 2.3 System coupling 31

To replicate the robot’s unrestricted behavior, the differential drive was mapped to a
rigid-body system, a simple revolute-prismatic-revolute rigid-body tree. The first two
revolute-prismatic joints reenact the position that the differential drive can achieve
as the revolute joint rotates the platform and the prismatic joint maintains it at the
according distance from the map’s center. The second revolute joint simulates the
platform’s heading angle.
This approach enabled the visualization of the robot’s movements using the Toolbox,

as shown in Figure 2.16.

Figure 2.16: Visualization of the implemented robot model in MATLAB 2021.

In the following chapter, the workspace of the robot will be thoroughly defined and
analyzed using the established model. Furthermore, calculating specific performance
indices will enhance the validity and accuracy of the results obtained.

Chapter 3

Workspace and manipulability

The robot’s workspace will be studied in this chapter based on the previously developed
model in Section 2.3. Furthermore, the model will be used to compute and study several
performance metrics, particularly the manipulability index.
The collection of all positions that the robot’s end-effector can reach using any

combination of joint angles is known as the manipulator’s workspace. The size and
shape of the workspace depend on the geometry, kinematics, joint restrictions, and
designated mounting point of the manipulator.
Mobile manipulators, carried by a wheeled platform, offer a wider range of applications

due to their ability to access different environments, compared to regular robotic arms
with a stationary base. To evaluate and optimize their capabilities in an objective
manner, the use of performance indices is essential.
The scope of performance measures can be divided into local and global indices, see, e.g.,

[28]. Local indices are configuration-dependent indicators of the local properties of the
robot that change depending on the configuration. Global indices have a generic, single
value for the robot over the entire workspace and are independent of the configuration.
In most cases, they are expanded versions of local indices.
Local indices like the condition number [28] and the manipulability index [36] are based

on the Jacobian matrix because they depend on the robot’s current configuration. An
example of a global index is the Global Conditioning Index (GCI) [28], which assesses
the overall performance.
The three subgroups of performance characteristics are kinematic, dynamic, and simple

indices [28]. Kinematic indices, which assess the kinematic behavior, depend on the
structure of the robot and, thus, are based on the Jacobian matrix. Dynamic indices
describe dynamic features and rely heavily on inertial traits. Simple indices, like the
service angle [30] and the dexterity index [69], do not fit into either group and form
their own.
Depending on the application, indices are distinguished between intrinsic and extrinsic

indices [28]. Intrinsic indices are inherent traits and are task-independent, such as
condition number, manipulability, and dexterity. Extrinsic indices quantify how well
the robot can solve a given task, for example, the power manipulability index [28] or
the robot-task conformance index [28].

32

3 Workspace and manipulability 3.1 Workspace of the manipulator 33

As shown earlier, it is crucial to understand how freely the end-effector can move
during task performance. This can be evaluated using a local kinematic intrinsic index,
the manipulability index. It is common practice to use manipulability indices to provide
a quantifiable measurement for modifying the movement and applying forces in any
direction. They can be obtained from the robot’s kinematics and further optimized
by imposing various constraints, providing insights into force and motion transmission.
The manipulability ellipsoid and manipulability measurements must be introduced to
analyze this performance aspect from a kinematics approach. Therefore, this chapter
will strongly focus on this performance index.

3.1 Workspace of the manipulator
Knowing the workspace’s quality and geometry helps gain a better understanding of

the manipulator’s performance. The workplace is often not homogeneous since the robot
may access certain areas quickly while others may take longer. As a result, determining
the boundary surfaces and consequently analyzing the various sections is critical.
In order to obtain information about the workspace, two methods are commonly used,

as outlined in [70]: analytical and numerical methods.
Analytical methods involve closed-form descriptions of the workspace boundary surfaces

and rely on kinematic equations, but can be highly complex due to nonlinearities and
matrix inversions. Furthermore, their use is limited to specific types of manipulators.
On the other hand, numerical methods are more versatile and can be adapted to a wider
range of manipulators. However, they solely provide approximate boundary surfaces
and are less accurate than the boundaries established by analytical approaches.
The workspace is expected to have a concave volume and the shape of a sphere with

an interior cavity. This cavity depicts the restricted area where the manipulator is
located, hence is inaccessible to it.
Section 3.1 aims to define a representation encompassing both the volume and the

boundary surfaces. After defining the workspace, it is subdivided into two subspaces:
a reachable workspace, which consists of the points that the end-effector can access,
and a dexterous workspace, which includes all the locations that are not only reachable
but also allow the end-effector to have any orientation. The reachable workspace can
be stored offline, which speeds up online tasks like path planning. Adding quality
measurements to the workspace data makes it possible to determine which areas are
easier to manipulate than others and can further improve performance.

3.1.1 Monte Carlo method
The Monte Carlo method, as shown by Rastegar and Perel [71], is a widely used and

straightforward technique for estimating the manipulator’s workspace. It is a numerical,
random sampling method that uses forward kinematics to generate the workspace
volume and boundary surfaces as it generates uniformly distributed configurations at
random samples.

34 3 Workspace and manipulability 3.1 Workspace of the manipulator

The Monte Carlo method is easy to apply and works well for most manipulators,
which makes it particularly suitable for robots with kinematic redundancy. It generates
most sampling points within the workspace and fewer on the boundary surfaces. The
method’s drawback is that, like all numerical methods, it yields an inaccurate workspace,
which might complicate motion planning.

The method solely considers the manipulator’s forward kinematics solution. The
joint values are randomly distributed between their limits, resulting in a pose of the
end-effector, which is then translated into a Cartesian coordinate point with the help of
the forward kinematics. The approach can generate an arbitrary number of reachable
end-effector points. The higher the number of created points, the higher the resolution
of the workspace. Figure 3.1 shows the results of generating point sets with an increasing
number of data points.

1 0.5

-0.4
-0.2
0
0.2
0.4

1

0.6
0.8
1
1.2

10.5 0.50 0-0.5 -0.5-1 -1

-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
1.2

10.50 0-0.5 -0.5-1 -1

-0.4
-0.2
0
0.2
0.4

1

0.6
0.8
1
1.2

10.5 0.50 0-0.5 -0.5-1 -1

1000 data points 5000 data points 10000 data points

x y

z z

x y

z

x y
0.5

1

1000 data points 5000 data points 10000 data points
z z

x y

z

x yx y x y

zz z

xy

Figure 3.1: Workspace point sets generated by the Monte Carlo method with an in-
creasing number of data points.

A point set representation of the workspace is insufficient as it lacks continuity, and
testing every possible joint arrangement to determine every end-effector configuration
is not feasible. In order to address this issue, the acquired data must be refined and
smoothed, which helps to accurately describe the reachable volume and obtain the
workspace’s boundary surfaces.

Over the years, researchers presented various approaches to depict the manipulator’s
workspace, including voxel-based estimation [72] and the alpha-shape method [73], both
of which will be discussed in this work.

3.1.2 Voxelization

A common strategy for improving the workspace representation is to discretize the
workspace and tessellate it into a grid of uniform cuboids. This technique is known as
voxelization [72], which is a time-efficient approach to model and represent volumetric
data.

Voxels are small, three-dimensional volumes, splitting up the space into small, uniform
components. The required resolution determines the size of the cuboids. Each point of
the point set generated by the Monte Carlo method gets assigned to a cell of the grid.

3 Workspace and manipulability 3.1 Workspace of the manipulator 35

The approach consists of the following steps:

1. Creating a seed workspace by generating a point set with the Monte Carlo method
(e.g., 1000 points).

2. Enveloping the full point cloud by a cuboid (maximum and minimum values of
the points on all three coordinate axes give the side lengths), which then will be
used for further tessellation of the workspace.

3. Discretizing the enveloping cuboid by dividing it into uniform cells. The cuboids’
size depends on the desired resolution, as shown in Figure 3.2. The workspace
can be modeled more accurately with higher resolution and more data points.

z z z

xy yxx

-0.5
1

0

0.5 1

0.5

0.5

1

0

1.5

0-0.5 -0.5
-1 -1

-0.5
1

0

0.5 1

0.5

0.5

1

0

1.5

0-0.5 -0.5
-1 -1

-0.5
1

0

0.5 1

0.5

0.5

1

0

1.5

0-0.5 -0.5
-1 -1

y

125 cuboids1 cuboid 1000 cuboids

Figure 3.2: The enveloping cuboid of the workspace is tessellated by different resolutions
depending on the size of the cuboids.

4. Equipping the voxels with the binary hit/no-hit variable. Only the elements
containing at least one Monte Carlo data point are assigned a value of 1 and
subsequently displayed. The cells without any data points are given a value of 0.
When the point set is large, it is common for multiple points to be located within
the same cell, depending on the chosen resolution.

Figure 3.3 displays a 100-point Monte Carlo point cloud, and the unique cuboids
containing at least one data point are well visible.

Figure 3.3: A Monte Carlo point cloud with 100 data points, showing the unique cuboids
containing at least one data point.

36 3 Workspace and manipulability 3.1 Workspace of the manipulator

As outlined in [74], modeling the workspace at a higher resolution can produce
remarkably accurate results but requires more computational resources. Current
technology is optimized to render polygons, and there is no specialized hardware for
rendering high-resolution voxels adequately. Therefore, voxels require significantly more
memory in comparison to polygons.

3.1.3 Alpha Shape method
The alpha shape method is a different way to represent and organize unstructured

data elements by taking advantage of the tessellation of a point cloud [75]. The purpose
of this approach, which is based on the Delaunay triangulation algorithm [73] [75],
is to generate a bounding hull that contours the seed point cloud. In terms of the
α-shape method, the underlying triangulation generates a mesh of triangles covering
the majority of the data points.
The Delaunay triangulation of a finite point set S ∈ R2 means that the circumcircle or

for S ∈ R3 the circumsphere of every triangle is empty so that neither of the triangles
has points in their interior. The algorithm examines if, in case of S ∈ R2 a circle, or in
case of S ∈ R3 a sphere, which crosses three points, includes any other data point. If
so, the triangle is rejected. If not, the triangle is accepted.
This indicates that the triangles are larger in areas with few data points, whereas the

triangles are considerably smaller in densely populated regions. The drawback of this
approach is having too large triangles, resulting in a hull that is significantly larger
than the actual object.
Figure 3.4 compares a Delaunay triangulation to a non-Delaunay triangulation and

demonstrates that the Delaunay algorithm does not have uniformly sized triangles.

A

B
C

D

E

A

B
C

D

E

Delaunay triangulation Non-Delaunay triangulation

E is in the
circle ABC

Figure 3.4: A Delaunay triangulation compared to a non-Delaunay triangulation.

The α-shape approach is frequently used to generate a nonconvex hull for point clouds
[73] [75]. Even though the Delaunay triangulation serves as the foundation, it is
enhanced by an additional parameter, α, which is bounded between 0 and ∞. This
α serves as the predefined upper limit for the radius of any circle through the three
vertices of the triangle. This constraint requires all radii to be equal to or less than
this value. If α equals ∞, the contouring is convex. If not, the shape degenerates as α
decreases.

3 Workspace and manipulability 3.1 Workspace of the manipulator 37

The steps of the α-shape approach are as follows:

1. Generation of the seed point cloud.
The smoothness of the resulting alpha shape and the value of the α parameter
depend on the size of the point cloud, which is generated by the Monte Carlo
method. Increasing the dataset provides better resolution and allows for improved
visualization of the workspace. As an initial attempt, a point cloud size of 10000
data points is used.

2. Hull construction using the Delaunay triangulation.
The resulting polyhedron envelopes the whole set of the Monte Carlo points.
Furthermore, the hull can be better observed when the point cloud is set to
invisible, see Figure 3.5.

-0.5

0

0.5

1

1

10.5 0.50 0-0.5 -0.5-1 -1

-0.5

0

0.5

1

1

10.5 0.50 0-0.5 -0.5-1 -1y

z z

yxx

Figure 3.5: Polyhedron enveloping Monte Carlo points using Delaunay triangulation.

3. Optimizing the α parameter for a more precise shape.
The alpha shape can be adjusted using the α parameter for a better fit by either
tightening or loosening the volume. To accurately capture the features of a
workplace, such as dents and holes, the alpha shape needs to be able to represent
inward lines, which makes convex contouring unsuitable.

There is a correlation between the chosen α and the number of data points of the point
cloud. Depending on the selected α, it produces a different shape space. The larger the
cloud, the smaller the α can be chosen while maintaining a coherent structure.
Initially, the value of α is set to the default α = ∞, which results in a convex shape

without any cavity. To reveal a central void in the shape, α had to be decreased.
However, any value above α > 0.4 still resulted in a convex hull, necessitating further
reduction of α.
The shape starts to show visible changes once α < 0.4. At α = 0.35, a small cavity is

revealed, which expands further with decreasing α. At α = 0.18, a noticeably larger
cavity is observed. Below α < 0.1, the shape starts to disintegrate into smaller pieces,
and at α = 0.05, it is merely a large number of small polyhedrons.
The resulting alpha shapes for various values of α are presented in Figure 3.6, illustrating

the changes in the shape as the value of α is decreased.

38 3 Workspace and manipulability 3.1 Workspace of the manipulator

Figure 3.6: Illustration of alpha shapes for varying α, demonstrating the changes in the
shape as α decreases.

As it is case specific, the optimal value of α has to be determined empirically depending
on the data size by adjusting it. The point cloud has no predefined shape and may
feature inward bendings or caverns, making the experimental adaptation of α necessary.

The challenge is to find an optimal balance between the shape, the volume, and the
surface hull. As it can be seen, for 10000 data points, an optimal α value is around
α = 0.18.

3.1.4 Workspace results

This section concludes the findings of the manipulator’s workspace evaluation. The
method of representation was carefully considered, and it was determined that using
alpha shapes provides numerous advantages over voxels, including precision in the
boundary representation, improved efficiency, better representation of curved surfaces,
easier analysis, and improved visual representation. The results of using alpha shapes
to represent the manipulator’s workspace are shown and discussed.

3 Workspace and manipulability 3.1 Workspace of the manipulator 39

To improve the resolution of the workspace, a larger point cloud with 50000 data
points was generated with the Monte Carlo method, and after empirical testing, an α
value of α = 0.05 was selected. Figure 3.7 shows the resulting shape and the cavity
cross-section.

-0.5

0

0.5

1

1

10.5 0.50 0-0.5 -0.5-1 -1

-0.4

-0.2

0

0.2

0.4

0.6

1

0.8

1

1.2

0.5
0 1-0.5 0.5-1 0

z

x
y

x y

z

Figure 3.7: Alpha shape and cross-section of the workspace generated from a point
cloud of 50000 data points using an α = 0.05.

As the manipulator is mounted on the mobile platform, the workspace has a vertical
offset and is tilted, as depicted in Figure 3.8.

Figure 3.8: Modified workspace of KUKA LBR iiwa R820 considering the vertical offset
and the mounting angle on the mobile platform.

The workspace is now adequately represented, including the volume and boundary
surfaces, and the workspace data can be efficiently computed and saved. This enables
further analysis, such as evaluating performance indices, e.g., the manipulability index.

40 3 Workspace and manipulability 3.2 Manipulability measures

3.2 Manipulability measures
Manipulability refers to the robot’s dexterity [53] and ability to generate Cartesian

velocities and apply forces within its workspace [36]. It provides a quantitative measure
of how well the velocity of the end-effector can be changed depending on its current
pose: it indicates the relative capability to move in different directions. Furthermore, it
provides information regarding the proximity to singularities. To accurately measure
manipulability, mathematical approaches are used. These measures can be derived from
the robot’s kinematics and optimized by incorporating constraints.
There are various ways of defining manipulability, leading to various manipulabil-

ity indices. Most of these indices can be related to and derived from the so-called
manipulability ellipsoid, a concept described by Wen and Wilfinger [76].

3.2.1 Manipulability ellipsoids
The manipulability ellipsoid is a graphical representation of the capacity of a robot’s

end-effector to change its position and orientation at a given configuration. Ideally,
the end-effector should have isotropic movement, meaning it should be equally capable
of moving in all directions. This ability can be represented by a unit sphere in the
n-dimensional Euclidean space. However, isotropic movement is not always possible,
and the sphere may deteriorate.
The dimensions of the manipulability ellipsoid provide valuable information about the

robot’s possible end-effector velocities, and the shape of the ellipsoid varies depending
on the robot’s current configuration. However, as discussed in Subsection 2.1.10, a
robot’s configuration may be singular or close to being so, which can result in the
sphere collapsing and being reduced to a line, thereby making the motion in one of the
Cartesian directions impossible. Therefore, the manipulability ellipsoid is a valuable
tool, providing insights into the manipulator’s ability to execute tasks and reach various
parts of its workspace.
As shown in Subsection 2.1.8, the Jacobian matrix JG maps the joint velocities to

Cartesian velocities. Now, to derive a generic expression for the ellipsoid of the end-
effector velocity, let the manipulator be with n degrees of freedom acting in an m
dimensional task space. Assuming that m ≤ n, the velocity mapping from Cartesian
space to joint space follows as in (2.24), see [53]. In the redundant case when m < n,
the pseudoinverse Jacobian J+

G is used.
Assuming that the joint velocity is within the unit sphere, i.e.

∥q̇∥2
2 = 1, (3.1)

this unit sphere is mapped to the Cartesian velocity space as

∥q̇∥2
2 = ẇT

e (J−1
G)T J−1

G ẇe, (3.2)

which is the expression for the ellipsoid of the end-effector velocity if J−1
G exists.

Otherwise, the pseudoinverse J+
G must be used.

3 Workspace and manipulability 3.2 Manipulability measures 41

The ellipsoids represent the characteristics of the feasible motion and are called
manipulability ellipsoids. Their proximity to collapsing can be used to calculate how
near the robot is to a singular configuration, i.e., if the ellipsoid volume is zero, the
robot is in a singular configuration.
According to the singular value decomposition (SVD) [55], any matrix M ∈ Rm×n can

be decomposed into the product of three matrices, U , D and V in the form

M = UDVT , (3.3)

where U ∈ Rm×m and V T ∈ Rn×n are orthogonal matrices. Furthermore, D ∈ Rm×n is
a diagonal matrix with non-negative diagonal elements. It contains the singular values
(σ1,σ2, .. σm) on the diagonal of the matrix. The matrix M is singular if at least one of
these σ values is zero. The other two matrices, U and V , are the orthonormal bases for
the range and the null space. The non-zero singular values correspond to given columns
in the U matrix (u1, u2, . . . um).
Applying the SVD to JG allows calculating the manipulability ellipsoids. The principal

axes, which are the axes of symmetry of the manipulability ellipsoid, are given by
σ1u1,σ2u2 . . . σmum in an ordered way from the highest to the lowest singular value.
The end-effector can move most easily in the σ1u1 direction, which represents the major
axis. In contrast, the axis of the least movement is given by σmum.
In cases when the ellipsoid is a sphere, all directions are equally favorable. Furthermore,

the manipulability ellipsoid’s size also indicates the end-effector’s movement speed, as a
larger ellipsoid corresponds to a faster movement for a given joint velocity [55].
By using the manipulability ellipsoid to represent the capabilities of the end-effector’s

motion, it is possible to derive various manipulability measures to evaluate the degree
to which the robot approaches singularity and analyze its performance further. These
indices, known as manipulability measures, provide insights into the robot’s capabilities
and limitations [28]. Four of these measures will be introduced next.
The first measure is the minimum singular value [28] of the singular value decomposition,

which is the length of the shortest axis. The second index is the ratio of the ellipsoid’s
longest to the shortest axis, known as the condition number [28]. These two indices
provide information about the stability of the manipulator’s motion and the shape of
the manipulability ellipsoid. The third measure is the isotropy index [28], which is
the reciprocal value of the condition number. This index addresses how isotropic the
motion capabilities of the end-effector are. The final metric is the square root of the
product of the eigenvalues, called Yoshikawa’s measure of manipulability [36], which
is proportional to the ellipsoid’s volume and provides information about the overall
manipulability of the end-effector.

3.2.2 Minimum singular value
The minimum singular value σm is the smallest value resulting from the singular value

decomposition (SVD), as shown in (3.3). For each non-zero singular value in the D
matrix, there is a corresponding column in U , which spans the space of solutions.

42 3 Workspace and manipulability 3.2 Manipulability measures

As σm approaches zero, the manipulator is closer to singularity, and its ability to
perform subsequent tasks becomes limited [28]. This is a straightforward measure.
However, the SVD method suffers from high computational costs, which limit its
practical use for online applications.

3.2.3 Condition Number and Isotropy Index
Salisbury and Craig [77] expanded the concept of manipulability by introducing the

condition number ΓC(JG). By calculating the SVD with (3.3) of JG and then comparing
the largest σ1 and the smallest σm singular values, ΓC(JG) can be obtained in the form

ΓC(JG) = σ1

σm

. (3.4)

A higher ratio indicates a more ill-conditioned matrix, provoking larger joint velocities.
Thus, this measure gives a clear insight into the stability of the manipulator’s motion
by providing the ratio of the ellipsoid’s longest to the shortest axis.
The manipulability ellipsoid is said to be isotropic and can move in all directions if

this measure, which is lower-bounded by 1, equals 1. This value has no upper bound
and approaches infinity as the robot draws closer to a singularity. The geometrical
interpretation of this measure is the length ratio of the major and minor semi-axis of
the manipulability ellipsoid. Yoshikawa [78] regarded this measure as an indicator of
the velocity ellipsoid’s directional uniformity.
As can be seen, this metric only traces the most difficult and easiest directions of

motion and disregards the other ones. A disadvantage is that it can be sensitive to
small changes in the input data, which can lead to significant differences in the value of
the condition number.
The isotropy index ΓI(JG) evaluates the directional uniformity of the manipulability

ellipsoid. It is defined as the reciprocal of the condition number ΓC(JG) from (3.4).
It was introduced as an alternative to the condition number to avoid issues that arise

when the Jacobian matrix becomes ill-conditioned and ΓC(JG) approaches infinity.
Similarly to the condition number, the disadvantage of the isotropy index is that it
solely considers two singular values, disregarding the others.

3.2.4 Yoshikawa’s measure of manipulability
In [36], T. Yoshikawa introduced the manipulability index w to measure the kinematic

performance. It is a quantitative scalar measure based on the Jacobian matrix. In the
case of non-redundant manipulators, the measure can be calculated simply with the
help of the determinant

w = det(JG). (3.5)
For redundant manipulators, w is defined as the square root of the determinant of the
Jacobian matrix JG times its transpose

w =
√

det(JGJT
G). (3.6)

3 Workspace and manipulability 3.3 Singularity simulations 43

As outlined and explained by T. Yoshikawa in [36], this measure is also related to the
manipulability ellipsoid, or more precisely, to the ellipsoid’s volume space

V = δw, (3.7)

where δ is a constant coefficient whose value depends on the number of singular values.
This implies that the volume is directly proportional to w, which can be expressed by
the singular values σ1, σ2 . . . σm of the Jacobian matrix

w = σ1σ2 . . . σm. (3.8)

The manipulability index is considered by Tadokoro et al. [79] to be a more accurate
measure of dexterity compared to the minimum singular value and the condition
number. This is because, contrary to the indices only evaluating motion in one or two
dimensions, the manipulability index considers the end-effector’s motion in all directions.
Furthermore, the manipulability index is invariant to changes in the reference frame,
unlike the condition number and the minimum singular value.

3.3 Singularity simulations
As demonstrated in Section 2.1.10, the KUKA LBR iiwa R820 has four singular

configurations. Verifying whether these criteria result in singularity is possible with the
manipulability indices.
The conditions to be examined are :

1. θ2 = 0◦ and θ3 = ±90◦,
2. θ4 = 0◦,
3. θ2 = 0◦ and θ6 = 0◦,
4. θ5 = ±90◦ and θ6 = 0◦.

In the following, the four singular configurations are evaluated by three manipulabil-
ity indices: the minimum singular value, the condition number, and the Yoshikawa
manipulability index. The results are depicted from Figure 3.9 to Figure 3.12.
As the minimum singular value evaluates merely the least favorable direction, it is

expected to provide only modest information. Even though this measure indicates
when the configuration is approaching a singularity, it provides no further data about
the other directions. Nevertheless, the minimum singular value is the most effective
measure of distance from singular configurations.
As it compares the largest and lowest singular values, the condition number is expected

to increase rapidly and significantly as the system approaches a singular configuration.
The Yoshikawa manipulability index is anticipated to be a more comprehensive measure

of the workspace as it considers the whole Jacobian matrix. This measure is also expected
to be smoother and to provide more nuanced results.

44 3 Workspace and manipulability 3.3 Singularity simulations

Case 1: θ2 = 0◦ and θ3 = ±90◦: the joint angles are set to the configuration
[0◦ θ2 θ3 90◦ 0◦ 90◦ 0◦], θ2 and θ3 vary.

Figure 3.9: Performance indices for the singular case θ2 = 0◦ and θ3 = ±90◦.

3 Workspace and manipulability 3.3 Singularity simulations 45

Case 2: θ4 = 0◦: the joint angles are set to the configuration [0◦ 25◦ 0◦ θ4 0◦ 90◦ 0◦]
and only θ4 is variable.

Figure 3.10: Performance indices for the singular case θ4 = 0◦.

46 3 Workspace and manipulability 3.3 Singularity simulations

Case 3: θ2 = 0◦ and θ6 = 0◦: the joint angles are set to the configuration
[0◦ θ2 0◦ 90◦ 0◦ θ6 0◦], θ2 and θ6 vary.

Figure 3.11: Performance indices for the singular case θ2 = 0◦ and θ6 = 0◦.

3 Workspace and manipulability 3.3 Singularity simulations 47

Case 4: θ5 = ±90◦ and θ6 = 0◦: the joint angles are set to the configuration
[0◦ 25◦ 0◦ 90◦ θ5 θ6 0◦], θ5 and θ6 vary.

Figure 3.12: Performance indices for the singular case θ5 = ±90◦ and θ6 = 0◦.
As the results show, the minimum singular value and the condition number, even

though they indicate the presence of a singularity, do not calculate the manipulability
in the whole workspace as the Yoshikawa index does.

48 3 Workspace and manipulability 3.4 Yoshikawa manipulability histogram

Contrary to the other two measures, the Yoshikawa manipulability index considers the
end-effector motion in all directions. This is especially true for the condition number,
which increases rapidly near and at singularities but otherwise remains flat. On the
other hand, low condition numbers can be utilized in trajectory planning since robot
configurations with small condition numbers help prevent significant variations in the
joint rates.

3.4 Yoshikawa manipulability histogram
The Monte Carlo method can be employed with the forward kinematics to generate a

data set with the guarantee that the configurations are reachable for the manipulator.
Now, to get a better understanding of the workspace, the Yoshikawa manipulability

measure can be calculated for each data point. Then, the results can be presented as a
histogram chart to demonstrate the frequency and distribution of the manipulability
values.
The histogram can be generated for different point clouds. However, comparing the

results is challenging because of the sample size and bin width disparities. This can be
avoided by having a constant bin width and normalizing the histograms such that the
bars total up to one. Figure 3.13 shows the results for three different sample sizes.

0 0.05 0.1 0.15 0.2 0.25
manipulability

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Re
la
tiv

e
fr
eq

ue
nc
y

N = 1000

N = 10000

N = 50000

Figure 3.13: Histograms with different data set sizes follow a similar distribution.

The experiments validate the predictions, as a similarly decreasing distribution across
all data sets can be observed regardless of the data size. To model the point set, a
gamma distribution was chosen due to its flexibility in modeling right-skewed data [80],
which reads as

γ(x,a,b) = 1
baΓ(a)xa−1e−x/b, (3.9)

where x is a non-negative real number, Γ(a) is the gamma function evaluated at a, and
a and b are positive real numbers representing the shape and scale of the distribution,
respectively. The function parameters can be estimated by using curve fitting, which
was performed using MATLAB. A gamma distribution with the parameters a = 1.754
and b = 0.043 fits the point cloud data well, as shown in Figure 3.14.

3 Workspace and manipulability 3.5 Workspace heterogeneity 49

0 0.05 0.1 0.15 0.2 0.25
manipulability

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Re
la
tiv

e
fr
eq

ue
nc
y

0 0.05 0.1 0.15 0.2 0.25
manipulability

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Re
la
tiv

e
fr
eq

ue
nc
y

N = 50000

fitted curve

Figure 3.14: Curve fitting by a gamma distribution with a = 1.754 and b = 0.043.

In the following Section, the data is categorized into groups with varying degrees of
manipulability, which enables a heterogeneous representation.

3.5 Workspace heterogeneity
The selected approach is the alpha shape method, as introduced in Section 3.1.3. The

sampling size is N = 50000 with α = 0.1 to have a large enough data set, which was
then extended with the Yoshikawa manipulability index for each data point. The points
were then grouped in clusters to generate boundary surfaces. The different sections of
the heterogeneous workspace are depicted in Figure 3.15 and Figure 3.16.

w < 0.005

0.005 <= w < 0.01

0.01 <= w < 0.02

0.02 <= w

central
 cavity

z

y

Figure 3.15: α-shape cross section boundary representation.

50 3 Workspace and manipulability 3.5 Workspace manipulability heterogeneity

Figure 3.16: Heterogeneous workspace cross-section and upper view.

As expected, the lower the minimum allowed manipulability index value is, the larger
the considered workspace becomes. The outside border and the internal cavity are rigid
boundaries limiting the workplace. The highest manipulability is in the interior of the
volume, far away from the central cavity.

Chapter 4

Trajectory planning and optimization

Trajectory planning is the generation of trajectories in joint or Cartesian space to
coordinate the different joint and wheel variables. This allows the end-effector of the
mobile manipulator to reach desired points in space with the desired orientation while
taking into account the limits of the actuators and the robot in general. In line with
the ideas advanced in [32] [24], and [81], the thesis considers trajectory planning as a
dynamic optimization problem subject to the robot’s kinematics and other constraints.
This chapter aims to determine the optimal control inputs for the mobile manipulator

to achieve optimal trajectories to the desired pose. This is accomplished by using
the mathematical model containing seven actuated joints and two actuated wheels, as
established in Chapter 2.
In this thesis, the offline trajectory planning employs the angular jerk as the control

input.
The problem is first stated and specified, including the cost function, the system’s

various restrictions, and the task itself. The kinodynamics of the robot serves as a
basis for the planning task, including the kinematic constraints, which are referred to as
interior or robot constraints. The exterior or workspace constraints include the initial
and goal conditions.
This chapter also introduces the employed technique and its parameters, which were

implemented and tested in the MATLAB R2021 environment. Finally, the results of the
optimization are presented, along with an investigation into the influence of integrating
weighted manipulability in the optimal control problem and the impact of the weighting
factor on the solution.

4.1 Optimal control problem
The process of choosing a dynamic system’s control and state trajectories over time to

minimize an optimality criterion is known as optimal control, which will be covered in
this section.
The initial step is to analyze the planning problem itself. Therefore, this first part

aims to define the trajectory planning problem through differential equations, algebraic
equalities, and inequalities, including cost function and constraints.

51

52 4 Trajectory planning and optimization 4.1 Optimal control problem

4.1.1 Problem formulation

The considered dynamic optimization problem formulation reads as

min
x,u,tf

J(x,u, tf) = φ(tf ,x(tf)) +
∫ tf

t0
l(t,x(t),u(t))dt cost functional (4.1a)

s.t. ẋ = f(t,x,u) system dynamics (4.1b)
x(t0) = x0 initial conditions (4.1c)
ψ(tf ,x(tf)) = 0 terminal conditions (4.1d)
hj(x,u) ≤ 0 , j = 1, . . . , q inequality constraints (4.1e)

The state x ∈ Rn represents the state of the nonlinear system, while the input variable
u ∈ Rm is the control input applied to it. φ(tf ,x(tf)) is the terminal cost, which
is a function of the final state of the system and l(t,x(t),u(t)) is the running cost,
which penalizes the system for deviations from the desired state and control inputs
over the time interval [t0,tf]. The terminal conditions are given by the vector function
ψ(tf ,x(tf)) = 0, which specifies constraints on the final state of the system. The
inequality constraints are given by the functions hj(x,u) ≤ 0, j = 1, . . . , q, specifying
further constraints on the state and input variables.

The goal of (4.1a) is to find an optimal control input u(t), t ∈ [t0,tf] and state
trajectory x(t), t ∈ [t0,tf] that minimize a cost functional J(x,u, tf), subject to the
system dynamics (4.1b), initial (4.1c) and terminal conditions (4.1d), and inequality
constraints (4.1e). The terminal time tf is also an optimization variable that determines
the final time of the state trajectory.

The given trajectory planning problem aims to satisfy the following requirements:

1. The fundamental task is to move the end-effector from its start pose to the desired
pose in Cartesian space.

2. The resulting trajectories must be sufficiently smooth: the angular positions,
velocities, and accelerations must be continuous and differentiable.

3. The task termination time is limited, and the movement must end within this
time constraint.

The state variables x of the manipulator are given by x1 = q, x2 = q̇, x3 = q̈,
denoting the joint angles, velocities, and accelerations, respectively, with q = [q1, . . . q7]
representing the seven joint angles. The state variables of the mobile platform are
according to (2.33) x4 = xl, x5 = yl and x6 = θl representing the current position and
the heading angle, see Section 2.2.1. The wheel velocities vL and vR are summarized as
v = [vL,vR]T and are represented as state variables by x7 = v, their accelerations as
x8 = v̇, respectively.

The summarized state variables can be expressed as

x = [qT , q̇T , q̈T , xl, yl, θl, vT , v̇T]T . (4.2)

4 Trajectory planning and optimization 4.1 Optimal control problem 53

This leads to the following dynamic system

ẋ = d

dt

[]]]]]]]]]]]]]]

q
q̇
q̈
xl

yl

θl

v
v̇

]]]]]]]]]]]]]]]
= f(x, t, um, up), (4.3)

where f(x, t, um, up) represents the dynamics of the system, um(t) ∈ R7 is the control
input for the manipulator and up(t) ∈ R2 is the control input for the mobile platform.
The system dynamics f(x, t, um, up) will be derived in the subsequent Subsection 4.1.2
and presented in (4.7).

To control the manipulator, the jerks j(t) = um(t) are used as control variables. For the
mobile platform, individual left and right wheel jerks jL(t) = up,L(t) and jR(t) = up,R(t)
are used, which are summed up in up(t) = [up,L, up,R]T . This modification changes the
platform’s system dynamics slightly, as the wheel velocities and accelerations are now
calculated from the jerk inputs, similar to how the manipulator’s joint velocities and
accelerations are calculated.

4.1.2 System dynamics and constraints

Constraints play an important role in optimization problems as they define the feasible
region for the possible values of the optimization variables.

They can be classified as equality or inequality constraints. Distinguishing between
them is important because it enables the optimization algorithm to handle each type
of constraint properly. Equality constraints are used to ensure that certain conditions
are met, while inequality constraints limit the range of possible solutions. Another
classification of constraints is their source, internal or external.

Internal or robot constraints reflect the physical nature of the robot and impose
kinematic equality constraints on its motion. They can be defined for both the KUKA
LBR iiwa R820 manipulator and the SALLY V2.0 mobile platform.

As for the manipulator, the kinematic equality constraints of motion can be expressed
as a simple integrator chain[]] ẋ1

ẋ2
ẋ3

]]] =

[]]07×7 I7×7 07×7
07×7 07×7 I7×7
07×7 07×7 07×7

]]]
. .. .

Am

[]] x1
x2
x3

]]] +

[]] 07×7
07×7
I7×7

]]]
. .. .

Bm

um, (4.4)

with Am ∈ R21×21 as the system matrix and Bm ∈ R21×7 as the control matrix.

54 4 Trajectory planning and optimization 4.1 Optimal control problem

In addition to the manipulator constraints, the mobile platform has its own constraints
that affect its position, orientation, and rear-axis velocity. To model these constraints,
a time-continuous model was introduced in (2.35), representing the constraint equations
for the differential drive. This model takes into account the non-holonomic nature of
the mobile platform, where the robot can only move in certain directions due to its
mechanical constraints. The platform dynamics are given by[]] ẋ4

ẋ5
ẋ6

]]] =

[]]
1
2 cos(x6) −1

2 cos(x6)
1
2 sin(x6) 1

2 sin(x6)
− 1

2d
1
2d

]]] x7. (4.5)

The remaining kinematics of the mobile platform can be expressed as an integrator
chain [

ẋ7
ẋ8

]
=

[
02×2 I2×2
02×2 02×2

]
. .. .

Ap

[
x7
x8

]
+

[
02×2
I2×2

]
. .. .

Bp

up, (4.6)

with Ap ∈ R4×4 as the system matrix and Bp ∈ R4×2 as the control matrix.
The coupled system’s dynamics, as in (4.3), can now be summed up as[]]]]]]]]]]]]]]

ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6
ẋ7
ẋ8

]]]]]]]]]]]]]]]
= f(x,t, um, up) =

[]]]]]]]]]]]]]]

Am

[]] x1
x2
x3

]]] + Bmum[]]
1
2 cos(x6) −1

2 cos(x6)
1
2 sin(x6) 1

2 sin(x6)
− 1

2d
1
2d

]]] x7

Ap

[
x7
x8

]
+ Bpup

]]]]]]]]]]]]]]]
. (4.7)

The robot’s joint positions, velocities, and accelerations, denoted as x1(t), x2(t), and
x3(t) respectively, are constrained within the specified minimum and maximum values.
Similarly, the wheel velocities and accelerations, denoted as x7 and x8, are also bounded

xi,min ≤ xi(t) ≤ xi,max, with i ∈ {1, 2, 3, 7, 8}. (4.8)

Finally, tf is also limited
0 < tf ≤ tmax. (4.9)

There are a total of 52 inequality constraints for the manipulator and mobile platform
system. The manipulator has 42 constraints due to the upper and lower limits on
the seven joints, velocities, and accelerations (2 · 3 · 7). The mobile platform has 8
constraints for the wheel velocities and accelerations (2 · 2 · 2) and 2 constraints for the
motion time.
External or workspace constraints reflect the restrictions on the workspace and robot

due to the specific task. The robot begins moving from a predetermined standstill
configuration which corresponds to the initial conditions. The manipulator’s starting
configuration x1(t0) is given as the home configuration, while the platform’s position

4 Trajectory planning and optimization 4.1 Optimal control problem 55

and heading angle are at the origin, as well as the initial velocities and accelerations
are zero

x1(t0) = x1,0 = [0◦ 25◦ 0◦ 90◦ 0◦ 0◦ 0◦], (4.10a)
xi(t0) = 0, with i ∈ {2, 3, 7, 8}, (4.10b)
xi(t0) = 0, with i ∈ {4, 5, 6}. (4.10c)

In order to achieve the desired end pose of the robot in Cartesian space, the position and
orientation must be accurately calculated. To accomplish this, the entire kinematic chain
of the mobile manipulator is utilized as a transformation matrix. For the orientation of
the robot, quaternions are used to calculate the final orientation of the robot.
The terminal conditions must be met at t = tf , and the robot must reach the desired po-

sition pd and orientation od. The position pEE,f and orientation oEE,f of the end-effector
in the Cartesian space at tf are expressed by pEE,f = [xEE(tf), yEE(tf), zEE(tf)]T
and oEE,f = [γEE(tf), βEE(tf), ζEE(tf)]T , respectively. The terminal conditions are
expressed as

pEE,f = pd = [xd(tf), yd(tf), zd(tf)]T , (4.11a)
oEE,f = od = [γd(tf), βd(tf), ζd(tf)]T . (4.11b)

Additionally, the robot must come to a complete stop when it reaches the intended
destination, therefore at t = tf , both the velocity and acceleration of the manipulator
and the platform must be zero

xi(tf) = 0, with i ∈ {2, 3, 7, 8}. (4.12)

4.1.3 Optimality criteria and cost function
As noted and outlined by Chiddarwar and Babu [81], trajectory planning can be guided

by several optimality criteria, including

(1) minimum energy
(2) minimum acceleration
(3) minimum jerk
(4) minimum execution time
(5) maximum manipulability

Each criterion provides a way to balance the trade-offs that arise when determining the
optimal trajectory. Considering the specific requirements and limitations of the system
and application, a suitable set of criteria can be selected to ensure that the resulting
trajectory satisfies the specifications.
Minimum energy based trajectory planning seeks to generate a trajectory that requires

the least amount of energy [81]. This criterion is particularly useful in applications
with scarce energy resources, such as underwater or space exploration. By minimizing
the energy required for motion, this criterion results in smoother trajectories with less
stress on the actuators, reducing their efforts and potential for wear and tear.

56 4 Trajectory planning and optimization 4.1 Optimal control problem

Minimum acceleration trajectory planning aims to minimize the integral of the squared
acceleration values [81]. This results in smooth joint trajectories and continuously
differentiable velocity profiles, making it a desirable criterion in many applications.
However, its effectiveness depends on the chosen parametrization.
Jerk is the third derivative of position and the time derivative of acceleration, playing

a significant role in determining the smoothness of a system’s motion. Minimum jerk
criterion trajectories aim to minimize this quantity in order to produce a smooth motion
[81]. This criterion reduces the potential for wear and tear on the system and helps
avoid the excitation of resonance frequencies that can cause vibrations and errors. The
trade-off is that higher levels of jerk enable the system to adjust faster to changes in
movement.
The minimum jerk criterion can be expressed as an optimization problem that minimizes

the integral of the squared jerks over the duration of motion, denoted by tf , and the
time range from t0 to tf

min
x

∫ tf

t0

...
x 2(t) dt. (4.13)

Higher-order derivatives, such as the fourth (snap), fifth (crackle), or sixth (pop)
derivatives, have not been considered for producing smoother trajectories, as Richardson
et al. [82] demonstrated that as the order of the derivative increases above three, the
solution of x(t) approaches a step function, resulting in extreme velocity changes.
When using the minimum execution time criterion, the goal is to minimize the duration

of motion
min

tf

∫ tf

t0
1 dt. (4.14)

Considering the time in the cost function is highly recommended [81]. Taking the
duration of the trajectory as a design variable impedes generating extremely time-
consuming but low-energy-requiring paths and avoids an overly long processing time,
which is typically competing with smoothness objectives.
Maximum manipulability is a practical design criterion helping the robot to have a

high degree of freedom during or at the end of its movement [81]. Furthermore, it helps
in avoiding singularities. Yoshikawa’s manipulability index [36], as stated in Section
3.2.4, can be determined with the help of the Jacobian matrix JG(q(t)) calculated at tf

in the form (3.6), which reads as

m(q(tf)) =
√

det(JG,fJT
G,f). (4.15)

The index equals zero only in singular configurations. Due to the time-consuming
computation, only the final posture of the end-effector at tf is evaluated in the cost
function. The cost function to maximize the manipulability reads as

max
q(tf)

m(q(tf)), (4.16)

which is equivalent to the following minimization problem

min
q(tf)

− m(q(tf)). (4.17)

4 Trajectory planning and optimization 4.1 Optimal control problem 57

However, the issue of designing the minimization problem in this form is that the
negative sign causes direct compensation of other cost factors. Therefore, it is preferable
to extend the formulation of the maximum manipulability criterion with a scalar
0 < ε ≪ 1 as follows, which helps to prevent division by zero

min
q(tf)

1
ε +

√
det(JG,fJT

G,f)
. (4.18)

Besides fulfilling the main task and adhering to the constraints, the execution time
should be decreased. Simultaneously, the robot’s final configuration should be selected
so that future movement in the immediate vicinity is simple, preferably without moving
the platform.

We select the minimum jerk (4.13), minimum time (4.14) and the maximum manipu-
lability (4.18) as optimality criteria for the optimization problem. The designed cost
function reflects a multi-objective dynamic optimization problem, as the cost function
consists of three individual optimality criteria combined into one objective. Accordingly,
the cost function reads as

min
x,um,up,tf

J(x,um, up, tf) = w1

∫ tf

t0
uT

m(t)um(t) dt + w2

∫ tf

t0
uT

p (t)up(t) dt+

+ w3

∫ tf

t0
1 dt + w4

1
ε +

√
det(JG,fJT

G,f)
,

(4.19)

with w1, w2, w3 and w4 representing the positive scalar weighting factors.

4.1.4 Multi-objective dynamic optimization problem

Summing up, the dynamic optimization problem reads as

min
x,um,up,tf

J(x,um, up, tf) = w1

∫ tf

t0
uT

m(t)um(t) dt + w2

∫ tf

t0
uT

p (t)up(t) dt+

+ w3

∫ tf

t0
1 dt + w4

ε +
√

det(JG,fJT
G,f)

, w1, w2, w3, w4, ε > 0
(4.20a)

s.t. ẋ = f(x,t,um,up) (4.20b)
x1(t0) = x1,0 (4.20c)
xi(t0) = 0, with i ∈ {2, 3, 7, 8} (4.20d)
xi(t0) = 0, with i ∈ {4, 5, 6} (4.20e)
xi(tf) = 0, with i ∈ {2, 3, 7, 8} (4.20f)
pEE,f = pd (4.20g)
oEE,f = od (4.20h)
hi(x,t,um,up) ≤ 0, i = 1,2 . . . , 52. (4.20i)

58 4 Trajectory planning and optimization 4.1 Optimal control problem

4.1.5 Discretized optimization problem
Direct transcription techniques will be used to transform the problem into a discrete

optimization problem [83]. This involves dividing the time domain into a finite number
of intervals, resulting in a finite-dimensional nonlinear programming problem (NLP)
where all state and control variables are discretized in time. Due to the complexity of
the resulting NLP, highly efficient solvers are necessary for finding the optimal solution.

Let the number of waypoints be N . The division of the time domain [t0, tf] into N
finite intervals [∆t0,∆t1 . . . ,∆tN−1] can be expressed such as

N−1∑
i=0

∆ti = tf . (4.21)

The intervals can be chosen to be equidistant or have variable lengths. Using non-
equidistant intervals can reduce the number of required waypoints, but convergence
may be slower. Additionally, incorporating time intervals as optimization variables adds
complexity to the problem and requires more computational resources.
In light of the trade-off between convergence speed and the number of required

waypoints, equidistant time intervals were selected

∆t = tf

N
. (4.22)

The system dynamics of the manipulator need to be expressed as a difference equation.
To do so, the equations of motion, which are a simple integrator chain (4.4), must be
discretized. The state vector xi,k with i ∈ {1,2,3}, which represents the state at each
time step k∆ti, is a function of the previous state and the input vector um,k. The
evolution of the state is described by the state transition matrix Φm given by

Φm = exp(Am∆t). (4.23)

The effect of inputs on the system is captured by the input matrix Γm, given by

Γm =
∫ ∆t

0
exp(Amτ)dτBm. (4.24)

Thus, the discrete-time system reads as[]] x1,k+1
x2,k+1
x3,k+1

]]] = Φm

[]] x1,k

x2,k

x3,k

]]] + Γmum,k. (4.25)

In addition to the manipulator dynamics, the dynamics of the mobile platform must
also be considered as [

x7,k+1
x8,k+1

]
= Φp

[
x7,k

x8,k

]
+ Γpup,k, (4.26)

with Φp = exp(Ap∆t) and Γp =
∫ ∆t

0 exp(Apτ)dτBp, according to (4.6).

4 Trajectory planning and optimization 4.1 Optimal control problem 59

To obtain a time-discrete model for the mobile platform, integration methods such as
the forward Euler method can be used [84], which approximates the time derivative at
time k∆ti by the difference quotient 1

∆t
(x((k + 1)∆ti) − x(k∆ti)), where ∆t is the time

step. Applying this to each equation in (4.5) yields

x4,k+1 = x4,k + 2d

2
x7,1,k + x7,2,k

x7,2,k − x7,1,k

(
sin

(
x7,2,k − x7,1,k

2d
∆t + x6,k

)
− sin(x6,k)

)
, (4.27)

x5,k+1 = x5,k − 2d

2
x7,1,k + x7,2,k

x7,2,k − x7,1,k

(
cos

(
x7,2,k − x7,1,k

2d
∆t + x6,k

)
− cos(x6,k)

)
, (4.28)

x6,k+1 = x6,k + ∆t

2d
(x7,2,k − x7,1,k) . (4.29)

The discrete-time model of the whole system takes the form[]]]]]]]]]]]]]]

x1,k+1
x2,k+1
x3,k+1
x4,k+1
x5,k+1
x6,k+1
x7,k+1
x8,k+1

]]]]]]]]]]]]]]]
= F(xk, um,k, up,k) =

[]]]]]]]]]]]]]]]]

Φm

[]] x1,k

x2,k

x3,k

]]] + Γmum,k

x4,k + 2d
2

x7,1,k+x7,2,k

x7,2,k−x7,1,k

(
sin

(
x7,2,k−x7,1,k

2d
∆t + x6,k

)
− sin(x6,k)

)
x5,k − 2d

2
x7,1,k+x7,2,k

x7,2,k−x7,1,k

(
cos

(
x7,2,k−x7,1,k

2d
∆t + x6,k

)
− cos(x6,k)

)
x6,k +

(
x7,2,k−x7,1,k

2d

)
∆t

Φp

[
x7,k

x8,k

]
+ Γpup,k

]]]]]]]]]]]]]]]]]
.

(4.30)
The jerks are chosen as the control variables as um,k and up,k, and are considered to be

constant over the corresponding time interval k∆ti. The initial and terminal conditions
do not change.
Now the discrete optimization problem can be formulated as

minx0,..,xNum,0,..,um,N−1
up,0,..,up,N−1

tf

J(x,um, up, tf) = w1

N−1∑
i=0

uT
m,ium,i + w2

N−1∑
i=0

uT
p,iup,i+

w3

N−1∑
i=0

∆ti + w4

ε +
√

det(JG,fJT
G,f)

, w1, w2, w3, w4, ε > 0

(4.31a)

s.t. xk+1 = F(xk, um,k, up,k) (4.31b)
x1,0 = x1,0 (4.31c)
xi,0 = 0, with i ∈ {2, 3, 7, 8} (4.31d)
xi,0 = 0, with i ∈ {4, 5, 6} (4.31e)
xi,N = 0, with i ∈ {2, 3, 7, 8} (4.31f)
pEE,f = od (4.31g)
oEE,f = od (4.31h)
xi,min ≤ xi,k ≤ xi,max, with i ∈ {1, 2, 3, 7, 8} (4.31i)
tmin ≤ tf ≤ tmax (4.31j)

60 4 Trajectory planning and optimization 4.2 Implementation

4.2 Implementation
The finite-dimensional NLP was solved in MATLAB R2021a. The first step was

choosing a solver to solve the designed problem (4.31) and then implementing it with
some necessary adjustments. Then, using the obtained waypoints, a smooth trajectory
is calculated with the help of piecewise polynomial curves with minimum support,
also known as B-splines. This approach paves the way for future experimentation and
testing of various cost function versions with varying weights for the different optimality
criteria.

4.2.1 Solver specification
The gradient-based nonlinear programming solver fmincon was selected to solve the

designed problem. It is defined as

X = fmincon(costfun, X0, A, b, Aeq, beq, lb, ub, nonlcon, options), (4.32)

with the function costfun to be minimized, X0 as the initial guess, specified as real
vector array, A, b, Aeq, beq as linear equality and inequality constraints, lb and ub as
lower and upper bounds on the variables, specified as vector arrays.
The nonlcon function sums up the nonlinear constraints, including the inequality and

equality constraints. The versatile options include, among others, the optimization
algorithm, the tolerance of constraint violation, and the maximum number of iterations.
The matrix to be optimized is the X ∈ RN×38 matrix, where N equals the number

of rows and is a variable parameter, depending on the number of waypoints. Having
additional waypoints can lead to a more efficient but also more complicated and resource-
intensive trajectory, therefore, necessitating more testing. The columns correspond
to

• 7 × 3 = 21 columns for the manipulator joint positions, velocities, accelerations,
• 2 × 2 = 4 columns for the platform wheel velocities and accelerations,
• 3 columns for the platform’s position and heading angle,
• 9 columns for the jerk controls,
• 1 column for the time intervals.

The cost function costfun is implemented according to the discrete optimization
problem (4.31). To reduce the solver’s computational effort, the Jacobian matrix is
pre-calculated and implemented in symbolic form. The adjustable weight parameters
w1 to w4 were used to adjust the cost function, and the parameter w4 was used to study
the impact of the manipulability index on the solution.
The convergence of fmincon and other numerical, nonlinear optimization algorithms

is sensitive to the initial guess. The choice of the initial guess determines how fast the
algorithm converges to a solution and, for functions with more than one local extrema,
to which local optimum it converges.

4 Trajectory planning and optimization 4.2 Implementation 61

Based on these arguments, the goal location determines the initial guess X0. The
robot’s surroundings are separated into four areas: the original workspace, one segment
of 90°, and two segments of 135°. Depending on the location of the goal position, the
robot obtains a different initial guess. The areas are illustrated in Figure 4.1.

y

x

1 2

3

4

Figure 4.1: Different initial guess depending on the goal position, marked with four
segments.

The segments are:

• Segment 1: If the goal pose is located in the initial workspace area of the robot,
it can be assumed that the robot will not move away from its initial position
unless the optimization is subject to a high level of expected manipulability at
the final configuration.

• Segment 2: If the goal is located in this area, it is reasonable to assume that
the robot must move the platform forward; hence, the wheel control inputs get
an equal, modest initial value.

• Segment 3: If the goal is located in this area, it is realistic to expect the robot
to turn right. Therefore, the left wheel’s control input is higher than the right
wheel’s. For the robot to reach the rear region behind the workplace, it must turn
since the platform cannot drive backward.

• Segment 4: In this segment, a left turn is intended, thereby increasing the right
wheel’s initial control values.

The lower bounds lb and upper bounds ub correspond to the system’s physical
limitations, in particular, the velocity and acceleration limits and the joint position
restrictions. The time intervals are also bounded between plausible boundaries to help
the solver to converge to a solution faster.
The nonlcon function aggregates all equality and inequality constraints, including

the system kinematics and the requirement to reach the goal position and orientation.
Achieving the desired goal pose requires additional consideration. The end-effector’s
position must equal the desired target position at the last waypoint, which is the
translation vector of (2.43).

62 4 Trajectory planning and optimization 4.2 Implementation

Reaching the desired final orientation is a more challenging task, as even though
expressing the desired orientation is more intuitive in Euler angles, they have dis-
continuities that vary depending on the used convention. The Euler angles can be
converted into a rotation matrix, as described in Subsection 2.1.3. However, the matrix
representation is redundant as only four of its nine elements are independent.

The alternative approach employs quaternions to avoid the rotation matrix as a set of
equality constraints. The lack of discontinuities significantly benefits quaternions over
Euler angles and rotation matrices. Another advantage is the faster calculation of the
distance between two quaternions.

Thus, the explicit requirement that the rotation matrices or the Euler angles be
identical is not part of the orientation equality condition. Instead, at the end of
the movement, the distance between the desired quaternion od and the end-effector
orientation quaternion oEE,f must equal zero, as defined in Section Section 4.1. The
in-built MATLAB function dist computes the distance between the two quaternions,
which is measured as the minimum angle of rotation between the two quaternions,
expressed as the magnitude of the difference. The result is a number between 0 and π.

Accordingly, the constraint regarding the desired orientation at tf is implemented as

dist(od, oEE,f) = 0. (4.33)

The solver is given specification choices in the form of the optimization options. This
approach requires explicit specification of the optimization algorithm, the maximum
number of permitted function evaluations, and the bound-honoring.

The solution algorithm must be chosen carefully (interior-point, trust-region-reflective,
sequential quadratic programming, or active-set). Each offers unique benefits and
drawbacks, e.g., available gradient or Hessian information, depending on the scale size.

The chosen solver algorithm is the sequential quadratic programming (SQP) algorithm,
which is a state-of-art approach under the nonlinear programming methods. SQP is a
good choice as it is vital to use a strategy that respects the constraints at all iterations,
offers a reasonably trustworthy certificate of infeasibility, and can benefit from a good
initial guess. Each major iteration approximates the Hessian of the Lagrangian function
by using a quasi-Newton updating approach which is then utilized to create a QP
subproblem. The result of the subproblem serves as the search direction for a line
search technique.

The option HonorBounds was set to true so that the algorithm always honors the
bounds. To assure better outcomes, the parameter MaxFunctionEvaluations was also
increased from its default value to a higher value, 8e + 04.

Due to the high level of complexity, it was not feasible to express the manipulability
index, the cost function, the gradients of the constraints, and the Hessian matrix
symbolically.

4 Trajectory planning and optimization 4.2 Implementation 63

4.2.2 Trajectory generation

The next step is to create a smooth trajectory using the data. After fmincon solves
the discrete optimization problem, the matrix X delivers all the necessary information
for the trajectory waypoints. It is critical since a hypothetical controller must provide
the control inputs in considerably shorter time intervals.

Robots are frequently required to perform tasks that require configuration profiles
with complicated geometries. They are typically described by a set of waypoints. After
the solver determines the waypoints and the end time, the trajectory is equally sampled
between the start and end time. As a result, the objective is to generate a piecewise
cubic B-spline trajectory for the waypoints. Because of their versatility, spline functions
are widely utilized in robot trajectory planning, among many other applications.

Splines of the so-called B-form, or B-splines, are frequently favored because they are
significantly simpler to compute, enabling quick and easy local adjustments without
recomputing the entire trajectory. Using B-spline trajectories with specified time inter-
vals between waypoints allows for creating more through points while maintaining the
integrity of the remaining trajectory so that local adjustments can be easily performed.

4.2.3 Visualization and animation

Visualizing the end-effector’s movement in Cartesian space is critical, as visual feedback
is essential for understanding how the modeled robot performs. The MATLAB Toolbox
supports displaying rigid-body systems. It is challenging to determine whether the
results are correct based solely on the resulting location, velocity, and acceleration
profiles. Therefore, to directly illustrate the behavior of the mobile manipulator, the
generated trajectories were played as a video.

First, interpolated trajectories were displayed between arbitrary start and end configu-
rations, as Figure 4.2 illustrates.

Figure 4.2: Interpolated manipulator trajectories between start and end configurations.

64 4 Trajectory planning and optimization 4.3 Case studies and results

It can be seen that using simple interpolation to generate trajectories for manipulators
does not yield optimal results, often resulting in excessive and unnecessary movements.
Furthermore, achieving goal poses located within the inner sphere or beyond the
manipulator’s workspace is not possible without repositioning the manipulator’s base,
which can be accomplished through the aid of a mobile platform.
Simulations provide a simpler way to identify faulty behavior and highlight variations

among optimization solutions. Therefore, the conversion of the platform into a rigid-
body structure, as described in Section 2.3, allowed the simulation of the complete
mobile manipulator in MATLAB and provided insight into the calculated trajectories.
This modification facilitated the visualization of the platform’s movement during the
simulations. As depicted in Figure 4.3, the black dots represent the platform’s trajectory.

Figure 4.3: The mobile manipulator model with the platform trajectory depicted.

4.3 Case studies and results
The main objective of this section is to evaluate the described discrete optimization

and trajectory planning results, in particular, the impact of the different weightings of
the manipulability index in the cost function.
Two assumptions are made at this point. First, it is assumed that moving the platform

instead of the manipulator requires more energy since the platform is heavier than the
arm. Second, the manipulator is generally more accurate than the platform, allowing it
to position and orient the end-effector precisely. These assumptions suggest that the
arm should lead the movement, and the platform should only move when necessary.

4 Trajectory planning and optimization 4.3 Case studies and results 65

The jerk-based optimization favors the manipulator, resulting in limited movement of
the platform. This can cause the arm to remain fully stretched near the edge of the
workspace or in a disadvantageous posture. It is undesirable, though, as one would
anticipate that the desired pose is selected with the understanding that the robot
would subsequently need to perform additional tasks near the target. This issue is
demonstrated in Figure 4.4, where different results are obtained depending on the initial
robot position, some of which are visibly inadequate.

maximum distance

minimum distance

y

x

Figure 4.4: Depending on the current position where the platform stays, the manipulator
arm has different possibilities to reach the desired goal.

One would like to use the arm to achieve the desired position rather than moving the
platform, but in a manner that leaves the robot in the desired pose with a high degree
of dexterity at the end of the movement. Thus, if the platform needs to move from its
original position, it should do so without stopping at the workspace’s boundary so that
the manipulator can eventually achieve a more beneficial configuration.
The goal is to analyze when it makes sense to move the platform and when it is

sufficient to move with the arm, which, of course, highly depends on the given task.
Consider a scenario when the target pose is already in the workspace. The robot would
not move the platform, even if the final configuration is excessively disadvantageous.
By including manipulability in the cost function, the platform will move to achieve a
more favorable final posture.
To investigate the aforementioned considerations, five distinct scenarios have been

identified that can serve as test cases. Each scenario provides valuable insights into the
system’s behavior and capabilities, which are presented in Table 4.1.
The scenarios were tested by increasing the weight w4 assigned to the manipulability

criterion in the cost function from w4 = 0 to w4 = 1000. The hypothesis suggests that
as the manipulability criterion increases, the platform will move more, and the duration
of the movement will increase.
It is also anticipated that the higher importance of the manipulability criterion will re-

sult in increased energy consumption, longer execution times, and higher computational
costs of the optimization algorithm.

66 4 Trajectory planning and optimization 4.3 Case studies and results

Description x,y,z in m α,β,γ in deg

Case 1 goal is outside the workspace (front) 1.2 -1.0 0.8 -34◦ -120◦ 50◦

Case 2 goal is is outside the workspace (back) -1.2 0.5 0.8 -34◦ 120◦ 50◦

Case 3 goal is in immediate proximity 0.1 0.1 0.4 -34◦ 120◦ 50◦

Case 4 goal is in the front part of the workspace 0.9 0.0 0.7 -34◦ 120◦ 50◦

Case 5 goal is in the back part of the workspace 0.0 0.0 0.8 -34◦ -120◦ 50◦

Table 4.1: Selected study cases with description and desired pose.

Figure 4.5 illustrates the relative position of the selected goal poses with respect to
the workspace, as viewed from above and from the side.

y

x

1

2

4

3

5 z

x

12

3

5
4

Figure 4.5: Sketches of the relative position of the selected goal poses with respect to
the workspace, as viewed from above and from the side.

The desired pose and orientation are specified as constraints in the optimization
problem. Due to solver tolerance, achieving the exact desired values may not always be
possible. Instead, the optimization problem is solved subject to a certain level of error
or tolerance. It is crucial to consider the impact of this error on the overall system
performance and ensure it remains within acceptable limits.
The observed factors are:

1. orientation error : the distance between the end-effector’s desired orientation and
its final orientation in degrees.

2. position error : the Euclidean distance between the end-effector’s desired position
and its final position in m.

3. platform effort: the share of the cost function due to the platform’s movement:
N−1∑
i=0

uT
p,iup,i. (4.34)

4 Trajectory planning and optimization 4.3 Case studies and results 67

4. manipulator effort: the share of the cost function due to the manipulator’s
movement:

N−1∑
i=0

uT
m,ium,i. (4.35)

5. task execution time (in s): the required time tf to execute the movement of the
mobile manipulator as in (4.21).

6. manipulability measure: the Yoshikawa manipulability measure with JG,f as the
Jacobian matrix at the final time tf as in (4.15).

7. evaluation time: the time the solver requires to find a solution, in s.
8. iteration number : number of iterations which the solver needs.

The scenarios were designed with a fixed number of waypoints N = 15, while additional
tests were conducted with different numbers of waypoints that are not presented in
this work. In the simulation results, the start and final poses of the end-effector are
distinguished by turquoise and orange colors, respectively.

4.3.1 Case study 1
For the first case study C1, the desired goal is outside of the initial workspace, requiring

the mobile robot to drive away from the initial position:
Goal position (m) x = 1.2 y = −1.0 z = 0.8
Goal orientation (◦) α = −34◦ β = −120◦ γ = 50◦

The expected behavior is, excluding the high manipulability criterion, that the robot
tries to move the platform as little as possible, resulting in a completely stretched arm,
ending the movement as soon as possible.
When the manipulability criterion is included with an increasing w4, it is expected

that the execution time elongates as the platform drives closer to the end pose and that
the manipulability value increases as well. Table 4.2 summarizes the results.

w4 0 1
100

1
10 1 2 5 10 1000

∆ orientation (◦) 2.3425 2.3388 2.4859 5.1761 6.1225 6.4470 6.0298 6.6349
∆ position (m) 0.0054 0.0055 0.0058 0.0062 0.0061 0.0056 0.0287 0.0324
platform effort 0.4850 0.4930 0.5350 0.6080 0.6210 0.6370 1.3060 1.5150
manipulator effort 0.1910 0.1823 0.2085 0.1698 0.1837 0.1838 0.1869 0.0806
exec. time(s) 7.9192 7.9206 7.9592 8.1656 8.2325 8.2726 10.055 10.327
manipulability 0.0594 0.0708 0.1187 0.1764 0.1819 0.1835 0.1835 0.1835
eval. time (s) 23.68 38.28 38.28 37.25 35.48 34.89 33.42 43.18
iteration # 65 67 64 61 55 55 52 72

Table 4.2: C1 results with the desired pose located beyond the initial workspace but still
positioned ahead of the robot.

68 4 Trajectory planning and optimization 4.3 Case studies and results

As the results show, the more weight is given to the manipulability, the more energy
the platform requires compared to the manipulator, as the base has to travel further.
More significant are the results of the execution time and the manipulability, as shown
in Figure 4.6 on a logarithmic scale.

10-3 10-2 10-1 100 101 102 103

manipulability weighting factor

6

7

8

9

10

11

12

13

14

15

ex
ec

ut
io

n
tim

e
(t)

Execution time over weighting factor

10-3 10-2 10-1 100 101 102 103

manipulability weighting factor

0

0.05

0.1

0.15

0.2

0.25

0.3

m
an

ip
ul

ab
ilit

y
m

ea
su

re

Manipulability over weighting factor

Figure 4.6: C1 execution time and Yoshikawa manipulability index over increasing w4.

It can be observed that around the factor of w4 = 1 − 5, the manipulability starts
to reach its local maximum, and the curve gets saturated. Choosing an appropriate
weighting factor is decisive and should be selected to improve the final posture while
not significantly deteriorating the execution time and energy profiles.
A visual comparison between two scenarios with the excluded manipulability criterion

w4 = 0 in Figure 4.7 and a suitably included w4 = 2 in Figure 4.8 showcase this result.

z

y
x

z

yx

Figure 4.7: C1 trajectory results with w4 = 0 weighting of the manipulability criterion.

In the case of w4 = 0, the robot ends the movement with a stretched configuration,
which is not beneficial for subsequent activities.

4 Trajectory planning and optimization 4.3 Case studies and results 69

In comparison, with w4 = 2, the robot reaches a beneficial posture while still having
only slightly increased execution time.

z

y
x

z

yx

Figure 4.8: C1 trajectory results with w4 = 2 weighting of the manipulability criterion.

For the case w4 = 2, Figure 4.9 illustrates that the manipulator has to execute large
joint changes to reach a high manipulability at the end-configuration.

0 1 2 3 4 5 6 7 8
execution time (t)

-150

-100

-50

0

50

100

150

jo
in

t p
os

iti
on

 in
 d

eg
re

es
 (°

)

Manipulator joint profiles

q1
q2
q3
q4
q5
q6
q7

0 1 2 3 4 5 6 7 8
execution time (t)

0

0.05

0.1

0.15

0.2

0.25

m
an

ip
ul

ab
ilit

y

Manipulability over time
Yoshikawa manipulability index

Figure 4.9: C1 joint profiles and Yoshikawa manipulability index over time for w4 = 2.

70 4 Trajectory planning and optimization 4.3 Case studies and results

4.3.2 Case study 2
For the second case study C2, the desired pose was chosen outside of the initial

workspace, behind the robot, requiring the platform to turn around before reaching it:
Goal position (m) x = −1.2 y = 0.5 z = 0.8
Goal orientation (◦) α = −34◦ β = 120◦ γ = 50◦

This is a demanding task as the base cannot reverse and must execute an almost 180◦

turn in order to reach the goal pose. As a result, it is anticipated that the robot will
require additional execution time to perform the turn and move the platform accordingly.
The results are presented in Table 4.3.

w4 0 1
100

1
10 1 2 5 10 1000

∆ orientation (◦) 6.4863 6.4440 2.1278 4.2918 3.5759 2.3034 3.3278 6.6560
∆ position (m) 0.0293 0.0294 0.0300 0.0326 0.0333 0.0352 0.0368 0.0110
platform effort 1.3140 1.3230 1.3390 1.3770 1.3990 1.4940 1.5480 3.0110
manipulator effort 0.0454 0.0383 0.0476 0.1336 0.1379 0.1277 0.1284 0.0211
exec. time(s) 9.7196 9.7231 9.7811 10.068 10.124 10.331 10.445 12.698
manipulability 0.0095 0.0300 0.0895 0.1953 0.2020 0.2049 0.2076 0.2102
eval. time (s) 55.41 69.05 65.28 49.76 50.75 41.43 40.68 40.88
iteration # 76 69 78 85 70 66 50 66

Table 4.3: C2 results with the desired pose located outside and behind the initial workspace.

The results confirm that as the weight of the manipulability criterion increases, the
platform’s traveling distance also increases, leading to improvements in manipulability
and final posture. Figure 4.10 clearly shows that the execution time suffers a significant
increase after the manipulability weighting factor w4 exceeds 2.

10-3 10-2 10-1 100 101 102 103

manipulability weighting factor

6

7

8

9

10

11

12

13

14

15

ex
ec

ut
io

n
tim

e
(t)

Execution time over weighting factor

10-3 10-2 10-1 100 101 102 103

manipulability weighting factor

0

0.05

0.1

0.15

0.2

0.25

0.3

m
an

ip
ul

ab
ilit

y
m

ea
su

re

Manipulability over weighting factor

Figure 4.10: C2 execution time and Yoshikawa manipulability index over increasing w4.

4 Trajectory planning and optimization 4.3 Case studies and results 71

A visual comparison between two scenarios with w4 = 0 and w4 = 2 showcases
the conclusion that increasing the manipulability weight improves the final posture.
As shown in Figure 4.11, a trajectory with w4 = 0 from the side and upper view
demonstrates the need for improvement.

z

y
x

z

yx

Figure 4.11: C2 trajectory results with w4 = 0 weighting of the manipulability criterion.

In comparison, Figure 4.12 illustrates the final trajectory and configuration for w4 = 2.
As evident from the figure, the end-effector reaches a more desirable configuration.

z

y
x

yx

z

Figure 4.12: C2 trajectory results with w4 = 2 weighting of the manipulability criterion.

Furthermore, as Figure 4.13 shows, the resulting trajectory is smooth, and the final
posture reaches a high level of manipulability. Additionally, the joint trajectories remain
within their respective limits, indicating that the robot’s motion is feasible and safe.

72 4 Trajectory planning and optimization 4.3 Case studies and results

0 2 4 6 8 10
execution time (t)

-150

-100

-50

0

50

100

150

jo
in

t p
os

iti
on

 in
 d

eg
re

es
 (°

)

Manipulator joint profiles

q1
q2
q3
q4
q5
q6
q7

0 2 4 6 8 10
execution time (t)

0

0.05

0.1

0.15

0.2

0.25

m
an

ip
ul
ab

ilit
y

Manipulability over time
Yoshikawa manipulability index

Figure 4.13: C2 joint profiles and Yoshikawa manipulability index over time for w4 = 2.

4.3.3 Case study 3
The third case study, C3, examines the scenario where the desired pose is located

within the inner, non-reachable sphere of the initial workspace, which is in the immediate
vicinity of the robot’s body. This requires the robot to move away from its initial
position to reach the goal.

Goal position (m) x = 0.1 y = 0.1 z = 0.4
Goal orientation (◦) α = −34◦ β = 120◦ γ = 50◦

The results of the experiment are presented in Table 4.4.

w4 0 1
100

1
10 1 2 5 10 1000

∆ orientation (◦) 7.4340 7.4804 7.4229 2.6456 2.2461 2.1745 2.4046 6.4013
∆ position (m) 0.0056 0.0056 0.0058 0.0072 0.0038 0.0017 0.0364 0.1364
platform effort 0.1300 0.1400 0.1750 0.4450 1.0540 1.1580 1.5470 4.2750
manipulator effort 0.4727 0.4583 0.4170 0.4424 0.1739 0.1544 0.1815 0.0218
exec. time(s) 7.8252 7.8289 7.8364 8.5453 9.4579 9.6726 10.540 14.593
manipulability 0.0871 0.0921 0.1039 0.1474 0.2265 0.2403 0.2436 0.2469
eval. time (s) 24.24 54.68 49.24 58.36 49.41 42.89 37.68 52.69
iteration # 79 85 79 95 83 68 59 83

Table 4.4: C3 results with the desired pose located within the initial workspace’s inner,
non-reachable sphere.

When the desired goal pose is in close proximity to the robot, the manipulator needs
to move away from its initial position. Increasing the weight of the manipulability
criterion in the cost function enhances manipulability but at the expense of higher
energy consumption and execution time. However, the manipulability plateaus beyond
a certain weight, as depicted in Figure 4.14, while energy and execution time keep
increasing without notable improvement in the final configuration.

4 Trajectory planning and optimization 4.3 Case studies and results 73

10-3 10-2 10-1 100 101 102 103

manipulability weighting factor

6

7

8

9

10

11

12

13

14

15

ex
ec

ut
io

n
tim

e
(t)

Execution time over weighting factor

10-3 10-2 10-1 100 101 102 103

manipulability weighting factor

0

0.05

0.1

0.15

0.2

0.25

0.3

m
an

ip
ul

ab
ilit

y
m

ea
su

re

Manipulability over weighting factor

Figure 4.14: C3 execution time and Yoshikawa manipulability index over increasing w4.

Increasing the manipulability criterion’s weight in the cost function necessitates larger
movements, with the robot turning around almost completely, resulting in a considerable
increase in task execution time. Simulations confirm this behavior, showing that when
w4 = 0, the manipulator ends up in a final posture close to a singular configuration, as
illustrated in Figure 4.15.

y

z

z

x
y

x

Figure 4.15: C3 trajectory results with w4 = 0 weighting of the manipulability criterion.

When the manipulability is included in the cost function with a relative weight
of w4 = 2, the manipulator’s movement results in the robot turning almost 180◦,
significantly increasing the task execution time and platform movement. Despite the
resulting increase in task execution time, the final configuration enables the robot
to reach nearby points without requiring the platform to move as significantly, as
illustrated by Figure 4.16.

74 4 Trajectory planning and optimization 4.3 Case studies and results

z

x
y

y

z

x

Figure 4.16: C3 trajectory results with w4 = 2 weighting of the manipulability criterion.

Figure 4.17 demonstrates the smooth trajectories of the manipulator’s joints for w4 = 2
and visualizes the increased manipulability as a result of the major adjustments made
to the base’s final orientation.

0 1 2 3 4 5 6 7 8 9
execution time (t)

-150

-100

-50

0

50

100

150

jo
in

t p
os

iti
on

 in
 d

eg
re

es
 (°

)

Manipulator joint profiles

q1
q2
q3
q4
q5
q6
q7

0 1 2 3 4 5 6 7 8 9
execution time (t)

0

0.05

0.1

0.15

0.2

0.25

m
an
ip
ul
ab
ilit
y

Manipulability over time

Yoshikawa manipulability index

Figure 4.17: C3 joint profiles and Yoshikawa manipulability index over time for w4 = 2.

4.3.4 Case study 4
In scenario C4, the manipulator is tasked with achieving a goal pose initially located

within its initial workspace, where the platform usually remains stationary. However,
when the manipulability criterion is included in the optimization process, it may be
necessary to move the platform to achieve a better final configuration.

Goal position (m) x = 0.9 y = 0.0 z = 0.7
Goal orientation (◦) α = −34◦ β = 120◦ γ = 50◦

The results are summarized in Table 4.5.

4 Trajectory planning and optimization 4.3 Case studies and results 75

w4 0 1
100

1
10 1 2 5 10 1000

∆ orientation (◦) 6.9524 6.9052 6.8221 5.5672 5.0719 4.6579 4.5331 4.4641
∆ position (m) 0.0017 0.0019 0.0024 0.0020 0.0024 0.0029 0.0033 0.0029
platform effort 0.0000 0.0021 0.0110 0.0207 0.0260 0.0320 0.0400 0.0930
manipulator effort 0.4348 0.4280 0.4118 0.5133 0.5383 0.5471 0.5455 0.5150
exec. time(s) 6.8914 6.8923 6.9042 7.1962 7.2901 7.3427 7.3641 7.4543
manipulability 0.1083 0.1174 0.1375 0.1720 0.1789 0.1808 0.1811 0.1815
eval. time (s) 21.43 41.01 38.21 40.91 38.49 36.66 33.42 35.95
iteration # 72 71 66 67 63 59 52 55

Table 4.5: C4 results with the desired pose in the initial workspace’s front section.

The execution time required to achieve this goal does not change significantly, even
when the cost function includes the manipulability criterion. However, when the
weighting factor of the manipulability is increased up to w4 = 5, a significantly better
final posture is achieved, as shown in Figure 4.18. This contrasts with the default
solution, where the manipulator is solely responsible for achieving the final pose.

10-3 10-2 10-1 100 101 102 103

manipulability weighting factor

6

7

8

9

10

11

12

13

14

15

ex
ec

ut
io

n
tim

e
(t)

Execution time over weighting factor

10-3 10-2 10-1 100 101 102 103

manipulability weighting factor

0

0.05

0.1

0.15

0.2

0.25

0.3

m
an

ip
ul

ab
ilit

y
m

ea
su

re

Manipulability over weighting factor

Figure 4.18: C4 execution time and Yoshikawa manipulability index over increasing w4.

Simulations show no significant differences in the robot’s motion, as the goal pose is
near the initial configuration. Figure 4.19 illustrates the resulting trajectory for w4 = 0.

In contrast, as shown in Figure 4.20, increasing the weighting factor of the manipula-
bility criterion to w4 = 2 results in a final configuration that is not only more favorable
but also takes into account the end-effector orientation, which can be beneficial for
subsequent tasks.

The resulting joint and manipulability profiles for w4 = 2 are depicted in Figure 4.21.

76 4 Trajectory planning and optimization 4.3 Case studies and results

z

y

x

y

z

x

Figure 4.19: C4 trajectory results with w4 = 0 weighting of the manipulability criterion.

z

y

x

y

z

x

Figure 4.20: C4 trajectory results with w4 = 2 weighting of the manipulability criterion.

0 1 2 3 4 5 6 7
execution time (t)

-150

-100

-50

0

50

100

150

jo
in

t p
os

iti
on

 in
 d

eg
re

es
 (°

)

Manipulator joint profiles

q1
q2
q3
q4
q5
q6
q7

0 1 2 3 4 5 6 7
execution time (t)

0

0.05

0.1

0.15

0.2

0.25

m
an
ip
ul
ab
ilit
y

Manipulability over time

Yoshikawa manipulability index

Figure 4.21: C4 joint profiles and Yoshikawa manipulability index over time for w4 = 2.

4 Trajectory planning and optimization 4.3 Case studies and results 77

4.3.5 Case study 5
The final case study C5 examines the situation where the goal pose is situated in the

rear section of the robot’s workspace.
Goal position (m) x = 0.0 y = 0.0 z = 0.8
Goal orientation (◦) α = −34◦ β = −120◦ γ = 50◦

By default, the robot adjusts only its manipulator arm to achieve a desired pose without
moving the base. However, this configuration may not be optimal for subsequent tasks.
Incorporating the manipulability in the cost function yields a notably improved final
configuration, as demonstrated in the results presented in 4.6.

w4 0 1
100

1
10 1 2 5 10 1000

∆ orientation (◦) 3.1696 3.2626 2.8359 5.4614 6.2226 6.5750 6.4275 5.7218
∆ position (m) 0.0017 0.0017 0.0017 0.0017 0.0017 0.0020 0.0065 0.0307
platform effort 0.0000 0.0010 0.0040 0.0510 0.0460 0.0437 0.1810 1.8230
manipulator effort 0.4107 0.4139 0.3912 0.4878 0.5063 0.5266 0.5382 0.1076
exec. time(s) 6.6520 6.6532 6.7676 7.2032 7.2574 7.3120 7.8634 10.634
manipulability 0.0218 0.0265 0.0330 0.0881 0.0899 0.0907 0.0971 0.1887
eval. time (s) 51.97 81.11 69.85 69.15 73.13 82.32 71.58 132.1
iteration # 81 83 69 69 77 92 62 119

Table 4.6: C5 results with the desired pose located in the rear portion of the workspace.

As shown in Figure 4.22, there is a possibility to improve the final configuration
through the inclusion of manipulability. However, this results in a significant increase
in execution time, as the base starts to execute a 180◦ turn. The trajectory for w4 = 0
is illustrated in Figure 4.23, while the beginning of the base turning can be observed in
Figure 4.24 due to w4 = 2.

10-3 10-2 10-1 100 101 102 103

manipulability weighting factor

6

7

8

9

10

11

12

13

14

15

ex
ec

ut
io

n
tim

e
(t)

Execution time over weighting factor

10-3 10-2 10-1 100 101 102 103

manipulability weighting factor

0

0.05

0.1

0.15

0.2

0.25

0.3

m
an

ip
ul

ab
ilit

y
m

ea
su

re

Manipulability over weighting factor

Figure 4.22: C5 execution time and Yoshikawa manipulability index over increasing w4.

78 4 Trajectory planning and optimization 4.3 Case studies and results

z

y

x

y

z

x

Figure 4.23: C5 trajectory results with w4 = 0 weighting of the manipulability criterion.

z

y

x

y

z

x

Figure 4.24: C5 trajectory results with w4 = 2 weighting of the manipulability criterion.

Figure 4.25 demonstrates that the selected final Cartesian goal pose results in low
manipulability values but still leads to a significant change in joint configuration.

0 1 2 3 4 5 6 7
execution time (t)

-150

-100

-50

0

50

100

150

jo
in

t p
os

iti
on

 in
 d

eg
re

es
 (°

)

Manipulator joint profiles

q1
q2
q3
q4
q5
q6
q7

0 1 2 3 4 5 6 7
execution time (t)

0

0.05

0.1

0.15

0.2

0.25

m
an
ip
ul
ab
ilit
y

Manipulability over time

Yoshikawa manipulability index

Figure 4.25: C5 joint profiles and Yoshikawa manipulability index over time for w4 = 2.

Chapter 5

Conclusion

This thesis aimed to develop and implement a nonlinear jerk-based trajectory optimiza-
tion algorithm for a mobile manipulator robot. In real-world scenarios, it is reasonable
to assume that a mobile robot may need to execute additional tasks in close proximity
to the new position after relocating its base. To achieve this efficiently, trajectory
planning must ensure that the robot’s final configuration enables the robot to execute
subsequent tasks. Accordingly, the primary research question addressed in this thesis
is how to generate trajectories that meet these requirements while accounting for the
robot’s movement characteristics.
By integrating manipulability as a performance index, this thesis demonstrates that

it is possible to generate trajectories that guarantee a high manipulability of the
manipulator in its final configuration. The results show that the weighting factor for
the manipulability in the cost function of the optimization problem plays a critical role
in shaping the final configuration and influencing the execution time of the generated
trajectories. It was illustrated that the produced trajectories are efficient in terms of
energy consumption, control inputs, and achieving the ideal posture.
This work places significant emphasis on developing and implementing the mobile

manipulator model, serving as a basis for trajectory planning and optimization. The
first step involved the derivation of a mathematical model of the manipulator using
kinematic equations based on the Denavit-Hartenberg convention. Transformation and
Jacobian matrices were calculated to solve the forward and inverse kinematics problems.
This enabled us to determine the singular configurations of the manipulator, which are
critical because, at these configurations, the manipulator loses its ability to move in
certain directions.
A Monte-Carlo-based method was combined with the forward kinematics solution

to sample the manipulator’s workspace. The workspace is represented as a bounding
hull generated using alpha shape polyhedra. Finally, manipulability measures were
introduced, and various performance indices were analyzed to determine the most
suitable one for the subsequent optimization problem. It was found that the Yoshikawa
manipulability index was the most suitable measure for improving the trajectory
planning process, particularly near singular configurations.
The next step was formulating an optimal control problem to generate trajectories

for the mobile manipulator. The problem was subject to the system’s kinematics and

79

80 5 Conclusion

was designed to minimize a cost function with several criteria: minimizing the total
execution time, minimizing the jerk, and maximizing the manipulability index. The
problem was discretized, and a numerical method was used to find the optimal solution.
A series of simulations were conducted to validate the effectiveness of the proposed

trajectory planning and optimization method. The results show a significant improve-
ment in terms of task completion time and overall efficiency compared to traditional
approaches. The analysis reveals a range in which the manipulability of the final
configuration significantly improves while the impact on execution time is relatively
small, thus suggesting the existence of a trade-off between these criteria. Below this
range, the manipulability effect becomes negligible while the execution time increases.
Above the range, the manipulability does not change significantly anymore, and the
execution time rapidly increases without further benefits. These findings suggest that a
careful selection of the corresponding weighting factor based on the conducted tests
should be one to five times higher than other terms, substantially impacting the final
configuration.
While this work demonstrates promising results, it is important to acknowledge its

limitations. The described control problem was tested exclusively on the model, not
the actual mobile manipulator, which may introduce biases and discrepancies due to
idealized assumptions. Additionally, the baseline scenario assumed a level of precision
in joint and wheel control that is not always achievable in practical applications, where
system imperfections and estimation errors are common.
Numerous ways to improve the current implementation offer exciting opportunities for

future research. One area of focus could be exploring efficient approaches for integrating
the heterogeneity of the workspace information into the optimization problem. Another
potential improvement could be the cost function, where implementing a method for
symbolic manipulability value or an estimation technique with lower computational
demand could yield significant progress. Furthermore, non-equidistant time segments
and flexible time constraints could be another approach. While equidistant time
segments were ultimately selected for simplicity and computational efficiency, alternative
approaches could be explored in future work.
Efforts were made to optimize the computational time of the trajectory. One approach

considered was the manual definition of gradients and the Hessian matrix for the cost
function and constraints. However, due to its high computational demands, this method
was not practical within the scope of the thesis, and the current implementation is
unsuitable for real-time solutions. Finally, testing the current solution on a physical
robot would provide valuable insights into its ability to replicate real-world behaviors.

Appendix

A1 Symbolic transformation matrix expressions
The symbolic transformation matrix expressions of the t7

0 and the rotation matrix R7
0 of

the transformation matrix (2.15), with the abbreviations sin(θi) = si and cos(θi) = ci.

t7
0 =

[]]
21c1s2

50 + 3c6σ10
50 − 3s6σ9

50 + 2s4σ19
5 + 2c1c4s2

521s1s2
50 − 3c6σ8

50 − 2s4σ18
5 + 3s6σ7

50 + 2c4s1s2
521c2

50 + 2c2c4
5 + 3s6σ11

50 + 3c6σ12
50 + 2c3s2s4

5 + 9
25

]]] (.1)

R7
0 =

[]]s7σ5 − c7σ2 c7σ5 + s7σ2 c6σ10 − s6σ9
c7σ1 − s7σ4 −c7σ4 − s7σ1 s6σ7 − c6σ8
c7σ3 − s7σ6 −c7σ6 − s7σ3 s6σ11 + c6σ12

]]] (.2)

σ1 = sin(θ6) σ8 + cos (θ6) σ7
σ2 = sin (θ6) σ10 + cos (θ6) σ9
σ3 = cos (θ6) σ11 − sin (θ6) σ12
σ4 = sin (θ5) σ13 − cos (θ5) σ14
σ5 = sin (θ5) σ15 − cos (θ5) σ16
σ6 = sin (θ5) σ17 − cos (θ5) sin (θ2) sin (θ3)
σ7 = cos (θ5) σ13 + sin (θ5) σ14
σ8 = sin (θ4) σ18 − cos (θ4) sin (θ1) sin (θ2)
σ9 = cos (θ5) σ15 + sin (θ5) σ16
σ10 = sin (θ4) σ19 + cos (θ1) cos (θ4) sin (θ2)
σ11 = cos (θ5) σ17 + sin (θ2) sin (θ3) sin (θ5)
σ12 = cos (θ2) cos (θ4) + cos (θ3) sin (θ2) sin (θ4)
σ13 = cos (θ4) σ18 + sin (θ1) sin (θ2) sin (θ4)
σ14 = cos (θ1) cos (θ3) − cos (θ2) sin (θ1) sin (θ3)
σ15 = cos (θ4) σ19 − cos (θ1) sin (θ2) sin (θ4)
σ16 = cos (θ3) sin (θ1) + cos (θ1) cos (θ2) sin (θ3)
σ17 = cos (θ2) sin (θ4) − cos (θ3) cos (θ4) sin (θ2)
σ18 = cos (θ1) sin (θ3) + cos (θ2) cos (θ3) sin (θ1)
σ19 = sin (θ1) sin (θ3) − cos (θ1) cos (θ2) cos (θ3)

81

82 Appendix A2 Geometric Jacobian

A2 Geometric Jacobian
The symbolic geometric Jacobian matrix expressions of (2.28) were calculated with
Maple 2021. Commands and results follow in this section.

Maple Commands

z0 = [0; 0; 1]
z1 = T01(1 : 3,3)
z2 = T02(1 : 3,3)
z3 = T03(1 : 3,3)
z4 = T04(1 : 3,3)
z5 = T05(1 : 3,3)
z6 = T06(1 : 3,3)

o0 = [0; 0; 0]
o1 = T01(1 : 3,4)
o2 = T02(1 : 3,4)
o3 = T03(1 : 3,4)
o4 = T04(1 : 3,4)
o5 = T05(1 : 3,4)
o6 = T06(1 : 3,4)
o7 = T07(1 : 3,4)

Jv1 = cross(z0,(o7 − z0))
Jv2 = cross(z1,(o7 − z1))
Jv3 = cross(z2,(o7 − z2))
Jv4 = cross(z3,(o7 − z3))
Jv5 = cross(z4,(o7 − z4))
Jv6 = cross(z5,(o7 − z5))
Jv7 = cross(z6,(o7 − z6))

Jv = [Jv1, Jv2,Jv3, Jv4, Jv5, Jv6, Jv7]
Jw = [z0, z1, z2, z3,z4,z5,z6]
Jacobian = [Jv; Jw]
Results

Jacobian = J0
7 (q) =

[]]]]]]]]]

δ1 c1σ3 δ11 δ2 δ5 δ9 δ15
σ1 s1σ3 δ12 δ3 δ6 δ13 δ16
0 δ8 δ10 δ4 δ7 δ14 δ17
0 s1 c1s2 σ33 − σ34 σ35 − s4σ39 σ24 − s5σ32 σ41
0 −c1 s1s2 σ36 σ28 σ5 σ4
1 0 −c2 s2s3 −σ31 − σ30 σ7 σ42

]]]]]]]]]]
(.3)

Appendix 83

sin(θi) = si

cos(θi) = ci

δ1 = σ14 − σ17 − σ15 − σ18 − σ16
δ2 = −σ36 (σ22 + σ19 + σ20 + σ21) − sin (θ2) sin (θ3) (σ17 + σ15 − σ14 + σ16)
δ3 = −(σ34 − σ33) (σ22 + σ19 + σ20 + σ21) − sin (θ2) sin (θ3) (σ11 − σ10 + σ13 − σ12)
δ4 = σ36 (σ11 − σ10 + σ13 − σ12) − (σ34 − σ33) (σ17 + σ15 − σ14 + σ16)
δ5 = (σ31 + σ30) (σ17 + σ15 − σ14 + σ16) − σ28 (σ22 + σ19 + σ20 + σ21)
δ6 = (σ31 + σ30) (σ11 − σ10 + σ13 − σ12) − σ26 (σ22 + σ19 + σ20 + σ21)
δ7 = σ28 (σ11 − σ10 + σ13 − σ12) − σ26 (σ17 + σ15 − σ14 + σ16)
δ8 = cos (θ1) σ1 + sin (θ1) σ2
δ9 = −σ5 (σ19 + σ20) − σ7 (σ17 − σ14)
δ10 = cos (θ1) sin (θ2) σ2 − sin (θ1) sin (θ2) σ1
δ11 = cos (θ2) σ2 − sin (θ1) sin (θ2) σ3
δ12 = cos (θ1) sin (θ2) σ3 − cos (θ2) σ1
δ13 = −σ9 (σ19 + σ20) − σ7 (σ11 − σ10)
δ14 = (σ11 − σ10) σ5 − σ9 (σ17 − σ14)
δ15 = σ8 (σ17 − σ14) − (σ19 + σ20) σ4
δ16 = (σ11 − σ10) σ8 − σ6 (σ19 + σ20)
δ17 = (σ11 − σ10) σ4 − σ6 (σ17 − σ14)
σ1 = 2 cos(θ1) sin(θ2)

5 − σ11 + σ10 − σ13 + σ12
σ2 = σ18 + σ17 + σ15 − σ14 + σ16
σ3 = 2 cos(θ2)

5 + σ22 + σ19 + σ20 + σ21
σ4 = cos (θ6) σ28 − sin (θ6) σ27
σ5 = sin (θ5) σ37 − cos (θ5) σ36
σ6 = cos (θ6) σ26 − sin (θ6) σ25
σ7 = sin (θ5) σ38 − cos (θ5) sin (θ2) sin (θ3)
σ8 = sin (θ6) σ29 + σ23
σ9 = sin (θ5) σ32 − σ24
σ10 = 2 sin(θ6) σ25

25
σ11 = 2 cos(θ6) σ26

25
σ12 = 2 cos(θ1) cos(θ4) sin(θ2)

5
σ13 = 2 sin(θ4) σ39

5
σ14 = 2 sin(θ6) σ27

25
σ15 = 2 sin(θ4) σ40

5
σ16 = 2 cos(θ4) sin(θ1) sin(θ2)

5
σ17 = 2 cos(θ6) σ28

25
σ18 = 2 sin(θ1) sin(θ2)

5
σ19 = 2 sin(θ6) σ29

25
σ20 = 2 cos(θ6) (σ31+σ30)

25
σ21 = 2 cos(θ3) sin(θ2) sin(θ4)

5
σ22 = 2 cos(θ2) cos(θ4)

5
σ23 = cos (θ6) (σ31 + σ30)
σ24 = cos (θ5) (σ34 − σ33)

84 Appendix

σ25 = cos (θ5) σ32 + sin (θ5) (σ34 − σ33)
σ26 = sin (θ4) σ39 − σ35
σ27 = cos (θ5) σ37 + sin (θ5) σ36
σ28 = sin (θ4) σ40 + cos (θ4) sin (θ1) sin (θ2)
σ29 = cos (θ5) σ38 + sin (θ2) sin (θ3) sin (θ5)
σ30 = cos (θ3) sin (θ2) sin (θ4)
σ31 = cos (θ2) cos (θ4)
σ32 = cos (θ4) σ39 + cos (θ1) sin (θ2) sin (θ4)
σ33 = cos (θ1) cos (θ2) sin (θ3)
σ34 = cos (θ3) sin (θ1)
σ35 = cos (θ1) cos (θ4) sin (θ2)
σ36 = cos (θ1) cos (θ3) + cos (θ2) sin (θ1) sin (θ3)
σ37 = cos (θ4) σ40 − sin (θ1) sin (θ2) sin (θ4)
σ38 = cos (θ2) sin (θ4) − cos (θ3) cos (θ4) sin (θ2)
σ39 = sin (θ1) sin (θ3) + cos (θ1) cos (θ2) cos (θ3)
σ40 = cos (θ1) sin (θ3) − cos (θ2) cos (θ3) sin (θ1)
σ41 = sin (θ6) σ25 − cos (θ6) σ26
σ42 = − sin (θ6) σ29 − σ23

List of Figures

2.1 The modeled seven-axis mobile manipulator of the KUKA LBR iiwa R820
seven-axis manipulator mounted on the SALLY V2.0 mobile platform. 7

2.2 The KUKA LBR iiwa R820 modeled in MATLAB R2021. 8
2.3 The SALLY V2.0 mobile platform from DS Automotion. 9
2.4 Examples of open and closed chain rigid-body topologies. 10
2.5 Schematic representation of prismatic and revolute joints. 11
2.6 Example of task-space motion and null-space motion of a four-axis

redundant manipulator in an SE(2) task space. 12
2.7 Pose of a coordinate system B in the reference frame W [51]. 13
2.8 Roll, pitch, and yaw rotations about the three main Cartesian axes [32]. 14
2.9 Standard Denavit-Hartenberg parametrization [32]. 17
2.10 KUKA LBR iiwa R820 in home configuration [0◦ 25◦ 0◦ 90◦ 0◦ 0◦ 0◦]. 20
2.11 KUKA LBR iiwa R820 singular configurations. 25
2.12 Global and local coordinate frames for differential drive platform. . . . 26
2.13 A wheel and its zero motion line, with YL representing the zero motion

line, while the XL shows in the direction of motion. 28
2.14 Differential drive wheels on the same axis sharing a common zero motion

line, rotating around ICC with the radius R and the angular velocity ω(t). 28
2.15 Two pairs of rotating wheels on the same chassis sharing the same center

of rotation. 29
2.16 Visualization of the implemented robot model in MATLAB 2021. . . . 31

3.1 Workspace point sets generated by the Monte Carlo method with an
increasing number of data points. 34

3.2 The enveloping cuboid of the workspace is tessellated by different resolu-
tions depending on the size of the cuboids. 35

3.3 A Monte Carlo point cloud with 100 data points, showing the unique
cuboids containing at least one data point. 35

3.4 A Delaunay triangulation compared to a non-Delaunay triangulation. . 36
3.5 Polyhedron enveloping Monte Carlo points using Delaunay triangulation. 37
3.6 Illustration of alpha shapes for varying α, demonstrating the changes in

the shape as α decreases. 38
3.7 Alpha shape and cross-section of the workspace generated from a point

cloud of 50000 data points using an α = 0.05. 39

85

86 List of Figures List of Figures

3.8 Modified workspace of KUKA LBR iiwa R820 considering the vertical
offset and the mounting angle on the mobile platform. 39

3.9 Performance indices for the singular case θ2 = 0◦ and θ3 = ±90◦. 44
3.10 Performance indices for the singular case θ4 = 0◦. 45
3.11 Performance indices for the singular case θ2 = 0◦ and θ6 = 0◦. 46
3.12 Performance indices for the singular case θ5 = ±90◦ and θ6 = 0◦. 47
3.13 Histograms with different data set sizes follow a similar distribution. . . 48
3.14 Curve fitting by a gamma distribution with a = 1.754 and b = 0.043. . 49
3.15 α-shape cross section boundary representation. 49
3.16 Heterogeneous workspace cross-section and upper view. 50

4.1 Different initial guess depending on the goal position, marked with four
segments. 61

4.2 Interpolated manipulator trajectories between start and end configurations. 63
4.3 The mobile manipulator model with the platform trajectory depicted. . 64
4.4 Depending on the current position where the platform stays, the manip-

ulator arm has different possibilities to reach the desired goal. 65
4.5 Sketches of the relative position of the selected goal poses with respect

to the workspace, as viewed from above and from the side. 66
4.6 C1 execution time and Yoshikawa manipulability index over increasing w4. 68
4.7 C1 trajectory results with w4 = 0 weighting of the manipulability criterion. 68
4.8 C1 trajectory results with w4 = 2 weighting of the manipulability criterion. 69
4.9 C1 joint profiles and Yoshikawa manipulability index over time for w4 = 2. 69
4.10 C2 execution time and Yoshikawa manipulability index over increasing w4. 70
4.11 C2 trajectory results with w4 = 0 weighting of the manipulability criterion. 71
4.12 C2 trajectory results with w4 = 2 weighting of the manipulability criterion. 71
4.13 C2 joint profiles and Yoshikawa manipulability index over time for w4 = 2. 72
4.14 C3 execution time and Yoshikawa manipulability index over increasing w4. 73
4.15 C3 trajectory results with w4 = 0 weighting of the manipulability criterion. 73
4.16 C3 trajectory results with w4 = 2 weighting of the manipulability criterion. 74
4.17 C3 joint profiles and Yoshikawa manipulability index over time for w4 = 2. 74
4.18 C4 execution time and Yoshikawa manipulability index over increasing w4. 75
4.19 C4 trajectory results with w4 = 0 weighting of the manipulability criterion. 76
4.20 C4 trajectory results with w4 = 2 weighting of the manipulability criterion. 76
4.21 C4 joint profiles and Yoshikawa manipulability index over time for w4 = 2. 76
4.22 C5 execution time and Yoshikawa manipulability index over increasing w4. 77
4.23 C5 trajectory results with w4 = 0 weighting of the manipulability criterion. 78
4.24 C5 trajectory results with w4 = 2 weighting of the manipulability criterion. 78
4.25 C5 joint profiles and Yoshikawa manipulability index over time for w4 = 2. 78

List of Tables

2.1 The KUKA LBR iiwa R820 joint position and joint velocity limits [50]. 8
2.2 SALLY V2.0 mobile platform technical specifications [49]. 9
2.3 Selected D-H parameters for the KUKA LBR iiwa R820. 18

4.1 Selected study cases with description and desired pose. 66
4.2 C1 results with the desired pose located beyond the initial workspace but still

positioned ahead of the robot. 67
4.3 C2 results with the desired pose located outside and behind the initial workspace. 70
4.4 C3 results with the desired pose located within the initial workspace’s inner,

non-reachable sphere. 72
4.5 C4 results with the desired pose in the initial workspace’s front section. . . . 75
4.6 C5 results with the desired pose located in the rear portion of the workspace. 77

87

Bibliography

[1] O. Madsen, S. Bøgh, C. Schou, R. Andersen, J. Damgaard, M. Pedersen, and
V. Krueger, “Integration of mobile manipulators in an industrial production,”
Industrial Robot, vol. 42, no. 1, pp. 11–18, 2015 (cit. on p. 1).

[2] M. Yang, E. Yang, R. C. Zante, M. Post, and X. Liu, “Collaborative mobile
industrial manipulator: A review of system architecture and applications,” in
Proceedings of the 25th International Conference on Automation and Computing
(ICAC), 2019, pp. 1–6 (cit. on pp. 1, 2).

[3] Y. Xiong, P. From, and V. Isler, “Design and evaluation of a novel cable-driven
gripper with perception capabilities for strawberry picking robots,” in Proceedings
of the IEEE International Conference on Robotics and Automation (ICRA), 2018,
pp. 7384–7391 (cit. on p. 1).

[4] B. Hamner, S. Koterba, J. Shi, R. Simmons, and S. Singh, “An autonomous mobile
manipulator for assembly tasks,” Autonomous Robots, vol. 28, no. 1, pp. 131–149,
2010 (cit. on pp. 1, 3).

[5] Y. Zhang, J. Wang, and Y. Xia, “A dual neural network for redundancy resolution
of kinematically redundant manipulators subject to joint limits and joint velocity
limits,” IEEE Transactions on Neural Networks, vol. 14, no. 3, pp. 658–667, 2003
(cit. on pp. 1, 2).

[6] T. Sandakalum and M. H. Ang, “Motion planning for mobile manipulators:
A systematic review,” Machines, vol. 10, no. 2, 97, 2022. [Online]. Available:
https://www.mdpi.com/2075-1702/10/2/97 (visited on 04/24/2023) (cit. on
pp. 1, 3).

[7] F. Valero, V. Mata, F. Rubio, and J.-L. Suñer, “Influence of a manipulability index
on trajectory planning for robots in a workspace with obstacles,” in Advances in
Robot Kinematics: Theory and Applications. Springer Dordrecht, 2002, pp. 67–76
(cit. on p. 1).

[8] M. Dadvar and S. Habibian, “Contemporary research trends in response robotics,”
ROBOMECH Journal, vol. 9, no. 1, 9, 2022. [Online]. Available: https://doi.
org/10.1186/s40648-022-00221-z (visited on 04/24/2023) (cit. on p. 2).

88

https://www.mdpi.com/2075-1702/10/2/97
https://doi.org/10.1186/s40648-022-00221-z
https://doi.org/10.1186/s40648-022-00221-z

Bibliography Bibliography 89

[9] F. Rubio, F. Valero, and C. Llopis-Albert, “A review of mobile robots: Concepts,
methods, theoretical framework, and applications,” International Journal of Ad-
vanced Robotic Systems, vol. 16, no. 2, 172988141983959, 2019. [Online]. Available:
https://journals.sagepub.com/doi/10.1177/1729881419839596 (visited on
05/14/2023) (cit. on p. 2).

[10] M. Hvilshøj, S. Bøgh, O. Nielsen, and O. Madsen, “Autonomous industrial mobile
manipulation (AIMM): Past, present and future,” Industrial Robot, vol. 39, no. 2,
pp. 120–135, 2012 (cit. on p. 2).

[11] T. Wisspeintner, T. van der Zant, L. Iocchi, and S. Schiffer, “Robocup@home:
Scientific competition and benchmarking for domestic service robots,” Interaction
Studies, vol. 10, no. 3, pp. 392–426, 2009 (cit. on p. 2).

[12] A. Andreopoulos, S. Hasler, H. Wersing, H. Janssen, J. Tsotsos, and E. Körner,
“Active 3D Object Localization Using a Humanoid Robot,” IEEE Transactions
on Robotics, vol. 27, no. 1, pp. 47–64, 2011 (cit. on p. 2).

[13] S. Bøgh, M. Hvilshøj, M. Kristiansen, and O. Madsen, “Autonomous Industrial
Mobile Manipulation (AIMM): From Research to Industry,” in Proceedings of the
42nd International Symposium on Robotics, 2011 (cit. on p. 2).

[14] B. Hamner, S. Koterba, J. Shi, R. Simmons, and S. Singh, “An autonomous mobile
manipulator for assembly tasks,” Autonomous Robots, vol. 28, no. 1, pp. 131–149,
2010 (cit. on p. 2).

[15] C. Cheng, J. Fu, H. Su, and L. Ren, “Recent advancements in agriculture robots:
Benefits and challenges,” Machines, vol. 11, no. 1, 48, 2023. [Online]. Available:
https://www.mdpi.com/2075-1702/11/1/48 (visited on 05/14/2023) (cit. on
p. 2).

[16] Z. Li, P. Moran, Q. Dong, R. J. Shaw, and K. Hauser, “Development of a
tele-nursing mobile manipulator for remote care-giving in quarantine areas,” in
Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), 2017, pp. 3581–3586 (cit. on p. 2).

[17] G. Marchant, B. Allenby, R. Arkin, E. Barrett, J. Borenstein, L. Gaudet, O. Kittrie,
P. Lin, G. Lucas, R. O’Meara, and J. Silberman, “International governance of
autonomous military robots,” in Handbook of Unmanned Aerial Vehicles. Springer
Dordrecht, 2015, pp. 2879–2910 (cit. on p. 2).

[18] Y. Nakamura, Advanced robotics: redundancy and optimization. Addison-Wesley,
1991 (cit. on p. 2).

[19] F. G. Pin and J.-C. Culioli, “Optimal positioning of combined mobile platform-
manipulator systems for material handling tasks,” Journal of Intelligent and
Robotic Systems, vol. 6, no. 2, pp. 165–182, 1992 (cit. on p. 2).

[20] Y. Zhang and J. Wang, “Obstacle avoidance for kinematically redundant manip-
ulators using a dual neural network,” IEEE transactions on systems, man, and
cybernetics, vol. 34, no. 1, pp. 752–759, 2004 (cit. on p. 2).

https://journals.sagepub.com/doi/10.1177/1729881419839596
https://www.mdpi.com/2075-1702/11/1/48

90 Bibliography Bibliography

[21] Z. Li and S. Li, “Model-based recurrent neural network for redundancy resolution
of manipulator with remote centre of motion constraints,” International Journal
of Systems Science, vol. 53, no. 1, pp. 1–14, 2022 (cit. on p. 2).

[22] S. Chiaverini, G. Oriolo, and I. D. Walker, “Kinematically redundant manip-
ulators,” in Springer Handbook of Robotics. Springer Berlin Heidelberg, 2008,
pp. 245–268 (cit. on pp. 2, 12).

[23] R. Guaman, R. Garcia Alvarado, A. Martínez Rocamora, and F. Auat Cheein,
“Workspace analysis of a mobile manipulator with obstacle avoidance in 3D
printing tasks,” Applied Sciences, vol. 11, no. 17, pp. 1–16, 2021 (cit. on p. 3).

[24] K. M. Lynch and F. C. Park, Modern Robotics: Mechanics, Planning, and Control.
Cambridge University Press, 2017 (cit. on pp. 3, 12, 20, 23, 26, 27, 51).

[25] C. Rocha, C. Tonetto, and A. Dias, “A comparison between the Denavit–Hartenberg
and the screw-based methods used in kinematic modeling of robot manipulators,”
Robotics and Computer-Integrated Manufacturing, vol. 27, no. 4, pp. 723–728,
2011 (cit. on p. 3).

[26] M. Chen and A. Zalzala, “Dynamic modelling and genetic-based trajectory gen-
eration for non-holonomic mobile manipulators,” Control Engineering Practice,
vol. 5, no. 1, pp. 39–48, 1997 (cit. on p. 3).

[27] M. Korayem, M. Nazemizadeh, and V. Azimirad, “Optimal trajectory planning of
wheeled mobile manipulators in cluttered environments using potential functions,”
Scientia Iranica, vol. 18, no. 5, pp. 1138–1147, 2011 (cit. on p. 3).

[28] S. Patel and T. Sobh, “Manipulator performance measures - a comprehensive
literature survey,” Journal of Intelligent and Robotic Systems, vol. 77, no. 3,
pp. 547–570, 2014 (cit. on pp. 3, 32, 41, 42).

[29] B. Ouyang and W. Shang, “Wrench-feasible workspace based optimization of the
fixed and moving platforms for cable-driven parallel manipulators,” Robotics and
Computer-Integrated Manufacturing, vol. 30, no. 6, pp. 629–635, 2014 (cit. on
p. 3).

[30] D. C. H. Yang and Z. C. Lai, “On the dexterity of robotic manipulators—service
angle,” Journal of Mechanisms Transmissions and Automation in Design, vol. 107,
no. 2, pp. 262–270, 1985 (cit. on pp. 3, 32).

[31] A. Kumar and K. J. Waldron, “The workspaces of a mechanical manipulator,”
Journal of Mechanical Design, vol. 103, no. 3, pp. 665–672, 1981 (cit. on p. 3).

[32] M. Spong, S. Hutchinson, and M. Vidyasagar, Robot Modeling and Control. John
Wiley & Sons, Inc., 2020 (cit. on pp. 3, 9–12, 14, 17, 19, 21, 23, 24, 51).

[33] R. P. Paul and C. N. Stevenson, “Kinematics of robot wrists,” The International
Journal of Robotics Research, vol. 2, no. 1, pp. 31–38, 1983 (cit. on p. 4).

[34] J. W. Demmel, “The geometry of III-conditioning,” Journal of Complexity, vol. 3,
no. 2, pp. 201–229, 1987 (cit. on p. 4).

Bibliography Bibliography 91

[35] C. A. Klein and B. E. Blaho, “Dexterity measures for the design and control of
kinematically redundant manipulators,” The International Journal of Robotics
Research, vol. 6, no. 2, pp. 72–83, 1987 (cit. on pp. 4, 11, 12).

[36] T. Yoshikawa, “Manipulability of robotic mechanisms,” The International Journal
of Robotics Research, vol. 4, no. 2, pp. 3–9, 1985 (cit. on pp. 4, 32, 40–43, 56).

[37] K. Dufour and W. Suleiman, “On maximizing manipulability index while solving
a kinematics task,” Journal of Intelligent and Robotic Systems, vol. 100, no. 5,
pp. 3–13, 2020 (cit. on p. 4).

[38] F. Marić, O. Limoyo, L. Petrovic, T. Ablett, I. Petrovic, and J. Kelly, “Fast
manipulability maximization using continuous-time trajectory optimization,”
in Proceedings of the IEEE International Conference on Intelligent Robots and
Systems (IROS), 2019, pp. 8258–8264 (cit. on p. 4).

[39] N. Vahrenkamp and T. Asfour, “Representing the robot’s workspace through
constrained manipulability analysis,” Autonomous Robots, vol. 38, no. 1, pp. 1–14,
2014 (cit. on p. 4).

[40] Z. Cui, P. Cao, Y.-M. Shao, D.-H. Qian, and X.-C. Wang, “Trajectory planning for
a redundant mobile manipulator using avoidance manipulability,” in Proceedings
of the IEEE International Conference on Automation and Logistics, 2009, pp. 283–
288 (cit. on p. 4).

[41] I. Akli, M. Haddad, B. Bouzouia, and N. Achour, “Trajectory generation for
operational task execution with manipulability analysis,” in Proceedings of the
International Conference on Advanced Robotics (ICAR), 2011, pp. 94–99 (cit. on
p. 4).

[42] V. Andaluz, F. Roberti, J. Toibero, and R. Carelli, “Adaptive unified motion
control of mobile manipulators,” Control Engineering Practice, vol. 20, no. 12,
pp. 1337–1352, 2012 (cit. on p. 4).

[43] N. Vahrenkamp, T. Asfour, and R. Dillmann, “Efficient inverse kinematics com-
putation based on reachability analysis,” International Journal of Humanoid
Robotics, vol. 9, no. 4, p. 1 250 035, 2012. [Online]. Available: https://www.
worldscientific . com / doi / abs / 10 . 1142 / S0219843612500351 (visited on
05/15/2023) (cit. on p. 4).

[44] Y. Yamamoto and X. Yun, “Unified analysis on mobility and manipulability of
mobile manipulators,” in Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), vol. 2, 1999, pp. 1200–1206 (cit. on p. 4).

[45] B. Bayle, J.-Y. Fourquet, and M. Renaud, “Manipulability analysis for mobile
manipulators,” in Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), vol. 2, 2001, pp. 1251–1256 (cit. on p. 4).

[46] W. Merkt, Y. Yang, T. Stouraitis, C. E. Mower, M. Fallon, and S. Vijayaku-
mar, “Robust shared autonomy for mobile manipulation with continuous scene
monitoring,” in Proceedings of the IEEE Conference on Automation Science and
Engineering (CASE), 2017, pp. 130–137 (cit. on p. 4).

https://www.worldscientific.com/doi/abs/10.1142/S0219843612500351
https://www.worldscientific.com/doi/abs/10.1142/S0219843612500351

92 Bibliography Bibliography

[47] B. Teka, H. Jangid, R. Raja, and A. Dutta, “Advanced KSOM based Redundancy
Resolution of a Mobile Manipulator System for Motion on an Uneven Terrain,” in
Proceedings of the Advances in Robotics, Association for Computing Machinery,
2017, pp. 1–6 (cit. on p. 4).

[48] R. Bischoff, J. Kurth, G. Schreiber, R. Koeppe, A. Albu-Schaeffer, A. Beyer, O.
Eiberger, S. Haddadin, A. Stemmer, G. Grunwald, and G. Hirzinger, “The KUKA-
DLR Lightweight Robot arm - a new reference platform for robotics research and
manufacturing,” in Proceedings of the (ISR) International Symposium on Robotics
and German Conference on Robotics (ROBOTIK), 2010, pp. 1–8 (cit. on p. 7).

[49] SALLY Flexibles Mini-FTF, DS Automotion GmbH, 2022. [Online]. Available:
https : / / www . ds - automotion . com / fileadmin / user _ upload / Fahrzeug _
Renderings/Sally/PDF/SALLY_Onepager_2022_DE.pdf (visited on 04/22/2023)
(cit. on pp. 7, 9, 26).

[50] LBR iiwa LBR iiwa 7 R800, LBR iiwa 14 R820 Specification, KUKA Roboter
GmbH, 2015. [Online]. Available: https://www.oir.caltech.edu/twiki_oir/
pub/Palomar/ZTF/KUKARoboticArmMaterial/Spez_LBR_iiwa_en.pdf (visited
on 04/29/2023) (cit. on pp. 8, 18, 19).

[51] B. Siciliano, L. Sciavicco, V. Luigi, and G. Oriolo, Robotics: Modelling, Planning
and Control. Springer London, 2011 (cit. on pp. 13, 14, 17).

[52] E. Hemingway and O. O’Reilly, “Perspectives on euler angle singularities, gimbal
lock, and the orthogonality of applied forces and applied moments,” Multibody
System Dynamics, vol. 44, no. 9, pp. 31–56, 2018 (cit. on p. 14).

[53] P. I. Corke, Robotics, Vision & Control: Fundamental Algorithms in MATLAB,
Second. Springer Cham, 2017, ISBN 978-3-319-54413-7 (cit. on pp. 14, 15, 17, 21,
26, 27, 40).

[54] B. Hall, Lie Groups, Lie Algebras, and Representations. Springer Cham, 2013
(cit. on pp. 14, 15).

[55] B. Siciliano and O. Khatib, Springer Handbook of Robotics. Springer Berlin
Heidelberg, 2008 (cit. on pp. 16, 17, 21, 24, 41).

[56] F. Steinparz, “Co-ordinate transformation and robot control with Denavit-Hartenberg
matrices,” Journal of Microcomputer Applications, vol. 8, no. 4, pp. 303–316, 1985
(cit. on p. 17).

[57] P. Corke, “A Simple and Systematic Approach to Assigning Denavit–Hartenberg
Parameters,” IEEE Transactions on Robotics, vol. 23, no. 3, pp. 590–594, 2007
(cit. on p. 17).

[58] D. L. Pieper, “The kinematics of manipulators under computer control,” PhD
Thesis, Stanford University, Computer Science Department, 1968 (cit. on p. 21).

[59] E. H. Moore, “On the reciprocal of the general algebraic matrix,” Bulletin of the
American Mathematical Society, vol. 26, no. 9, 394–395, 1920 (cit. on p. 24).

[60] R. Penrose, “A generalized inverse for matrices,” Mathematical Proceedings of the
Cambridge Philosophical Society, vol. 51, no. 3, 406––413, 1955 (cit. on p. 24).

https://www.ds-automotion.com/fileadmin/user_upload/Fahrzeug_Renderings/Sally/PDF/SALLY_Onepager_2022_DE.pdf
https://www.ds-automotion.com/fileadmin/user_upload/Fahrzeug_Renderings/Sally/PDF/SALLY_Onepager_2022_DE.pdf
https://www.oir.caltech.edu/twiki_oir/pub/Palomar/ZTF/KUKARoboticArmMaterial/Spez_LBR_iiwa_en.pdf
https://www.oir.caltech.edu/twiki_oir/pub/Palomar/ZTF/KUKARoboticArmMaterial/Spez_LBR_iiwa_en.pdf

Bibliography Bibliography 93

[61] S. B. Nokleby and R. P. Podhorodeski, “Reciprocity-based resolution of velocity
degeneracies (singularities) for redundant manipulators,” Mechanism and Machine
Theory, vol. 36, no. 3, pp. 397–409, 2001 (cit. on p. 24).

[62] Z.-H. Kang, C.-A. Cheng, and h. Huang, “A singularity handling algorithm
based on operational space control for six-degree-of-freedom anthropomorphic
manipulators,” International Journal of Advanced Robotic Systems, vol. 16, no. 3,
p. 172 988 141 985 891, 2019. [Online]. Available: https://journals.sagepub.
com/doi/10.1177/1729881419858910 (visited on 05/15/2023) (cit. on p. 24).

[63] S. B. Nokleby and R. P. Podhorodeski, “Velocity degeneracy determination for
the kinematically redundant CSA/ISE STEAR testbed manipulator,” Journal of
Robotic Systems, vol. 17, no. 11, pp. 633–642, 2000 (cit. on p. 24).

[64] K. J Waldron, S.-L. Wang, and S. J Bolin, “A study of the jacobian matrix of serial
manipulators,” Journal of mechanical design (1990), vol. 107, no. 2, pp. 230–237,
1985 (cit. on p. 24).

[65] F. Beck, M. N. Vu, C. Hartl-Nesic, and A. Kugi, Singlularity avoidance with
application to online trajectory optimization for serial manipulators, 2022 (cit. on
p. 25).

[66] L. Zhang, S. Guo, Y. Huang, and X. Xiong, “Kinematic singularity analysis
and simulation for 7dof anthropomorphic manipulator,” International Journal
of Mechatronics and Applied Mechanics, vol. 1, no. 6, pp. 157–164, 2019 (cit. on
p. 25).

[67] R. Boudreau and R. Podhorodeski, “Singularity analysis of a kinematically simple
class of 7-jointed revolute manipulators,” Transactions of the Canadian Society
for Mechanical Engineering, vol. 34, no. 1, pp. 105–117, 2010 (cit. on p. 25).

[68] KUKA Sunrise.OS KUKA Sunrise.Workbench, Operating and Programming In-
structions for System Integrators, KUKA Roboter GmbH, 2016 (cit. on p. 25).

[69] C. Gosselin, “Dexterity indices for planar and spatial robotic manipulators,” in
Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), vol. 1, 1990, pp. 650–655 (cit. on p. 32).

[70] K. Abdel-Malek, F. Adkins, H.-J. Yeh, and E. Haug, “On the determination
of boundaries to manipulator workspaces,” Robotics and Computer-Integrated
Manufacturing, vol. 13, no. 1, pp. 63–72, 1997 (cit. on p. 33).

[71] J. Rastegar and D. Perel, “Generation of manipulator workspace boundary geom-
etry using the monte carlo method and interactive computer graphics,” Journal
of Mechanical Design, vol. 112, no. 3, pp. 452–454, 1990 (cit. on p. 33).

[72] P. Anderson-Sprecher and R. Simmons, “Voxel-based motion bounding and
workspace estimation for robotic manipulators,” in Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), 2012, pp. 2141–
2146 (cit. on p. 34).

https://journals.sagepub.com/doi/10.1177/1729881419858910
https://journals.sagepub.com/doi/10.1177/1729881419858910

94 Bibliography Bibliography

[73] X. Xu and K. Harada, “Automatic surface reconstruction with alpha-shape
method,” The Visual Computer, vol. 19, no. 7, pp. 431–443, 2003 (cit. on pp. 34,
36).

[74] P. Mileff and J. Dudra, “Simplified voxel based visualization,” Production Systems
and Information Engineering, vol. 8, no. 1, pp. 5–18, 2019 (cit. on p. 36).

[75] W. Zhou and H. Yan, “Alpha shape and delaunay triangulation in studies of
protein-related interactions,” Briefings in bioinformatics, vol. 15, no. 1, pp. 54–64,
2014 (cit. on p. 36).

[76] J. Wen and L. Wilfinger, “Kinematic manipulability of general constrained rigid
multibody systems,” IEEE Transactions on Robotics and Automation, vol. 15,
no. 3, pp. 558–567, 1999 (cit. on p. 40).

[77] J. K. Salisbury and J. J. Craig, “Articulated hands: Force control and kinematic
issues,” The International Journal of Robotics Research, vol. 1, no. 1, pp. 4–17,
1982 (cit. on p. 42).

[78] T. Yoshikawa, “Dynamic manipulability of robot manipulators,” in Proceedings
of the IEEE International Conference on Robotics and Automation (ICRA), 1985,
pp. 1033–1038 (cit. on p. 42).

[79] S. Tadokoro, I. Kimura, and T. Takamori, “Dexterity measure for trajectory
planning and kinematic design of redundant manipulators,” Proceedings of the
Annual Conference of IEEE Industrial Electronics Society - (IECON), 1989,
pp. 415–420 (cit. on p. 43).

[80] W. G. Manning, A. Basu, and J. Mullahy, “Generalized modeling approaches to
risk adjustment of skewed outcomes data,” Journal of Health Economics, vol. 24,
no. 3, pp. 465–488, 2005 (cit. on p. 48).

[81] S. Chiddarwar and N. Babu, “Optimal trajectory planning for industrial robot
along a specified path with payload constraint using trigonometric splines,”
International Journal of Automation and Control, vol. 6, no. 1, pp. 39–65, 2012
(cit. on pp. 51, 55, 56).

[82] M. J. E. Richardson and T. Flash, “Comparing smooth arm movements with the
two-thirds power law and the related segmented-control hypothesis,” Journal of
Neuroscience, vol. 22, no. 18, pp. 8201–8211, 2002 (cit. on p. 56).

[83] P. Foehn, A. Romero, and D. Scaramuzza, “Time-optimal planning for quadrotor
waypoint flight,” Science Robotics, vol. 6, no. 56, eabh1221, 2021. [Online]. Avail-
able: https://www.science.org/doi/10.1126/scirobotics.abh1221 (visited
on 04/24/2023) (cit. on p. 58).

[84] E. P. Z. Bartosiewicz, “Euler’s discretization and dynamic equivalence of nonlinear
control systems,” in Nonlinear control in the year 2000. Springer London, 2001,
vol. 2, pp. 183–191 (cit. on p. 59).

https://www.science.org/doi/10.1126/scirobotics.abh1221

	Abstract
	1 Introduction
	1.1 Literature review
	1.2 Thesis objectives
	1.3 Thesis structure

	2 Mathematical modeling
	2.1 Manipulator kinematics
	2.1.1 Rigid-body structures
	2.1.2 Degrees of freedom and redundancy
	2.1.3 Position, orientation, and quaternions
	2.1.4 Homogeneous transformations
	2.1.5 Denavit-Hartenberg Convention
	2.1.6 Manipulator rigid-body model
	2.1.7 Forward and inverse kinematics
	2.1.8 Analytical and geometrical Jacobian
	2.1.9 The inverse Jacobian
	2.1.10 Singularity analysis

	2.2 Differential drive kinematics
	2.2.1 Kinematic model
	2.2.2 Derivation of forward kinematics equations

	2.3 System coupling

	3 Workspace and manipulability
	3.1 Workspace of the manipulator
	3.1.1 Monte Carlo method
	3.1.2 Voxelization
	3.1.3 Alpha Shape method
	3.1.4 Workspace results

	3.2 Manipulability measures
	3.2.1 Manipulability ellipsoid
	3.2.2 Minimum singular value
	3.2.3 Condition Number and Isotropy Index
	3.2.4 Yoshikawa's measure of manipulability

	3.3 Singularity simulations
	3.4 Yoshikawa manipulability histogram
	3.5 Workspace heterogeneity

	4 Trajectory planning and optimization
	4.1 Optimal control problem
	4.1.1 Problem formulation
	4.1.2 System dynamics and constraints
	4.1.3 Optimality criteria and cost function
	4.1.4 Multi-objective dynamic optimization problem
	4.1.5 Discretized optimization problem

	4.2 Implementation
	4.2.1 Solver specification
	4.2.2 Trajectory generation
	4.2.3 Visualization and animation

	4.3 Case studies and results
	4.3.1 Case study 1
	4.3.2 Case study 2
	4.3.3 Case study 3
	4.3.4 Case study 4
	4.3.5 Case study 5

	5 Conclusion
	Appendix
	A1 Symbolic transformation matrix expressions
	A2 Geometric Jacobian

	List of Figures
	List of Tables
	Bibliography

