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Kurzfassung

Hilberts zehntes Problem ist die Frage, ob es einen Algorithmus gibt, der für ein gegebenes
Polynom mit ganzzahligen Koeffizienten bestimmt, ob es ganzzahlige Nullstellen hat. Als
Folgerung aus dem MRDP-Theorem wurde gezeigt, dass kein solcher Algorithmus existiert.
Anders ausgedrückt: Diophantische Erfüllbarkeit is unentscheidbar für die Arithmetik der
natürlichen Zahlen. Eine naheliegende Fragestellung ist nun das Problem der Entscheid-
barkeit der Diophantischen Erfüllbarkeit für schwächere arithmetische Theorien.
In dieser Arbeit präsentieren wir einen neuen beweistheoretischen Ansatz, um Diophan-

tische Erfüllbarkeitsprobleme zu entscheiden. Wir arbeiten in einer arithmetischen Theorie
A, deren Sprache Nachfolger, Vorgänger, Addition und Multiplikation enthält. Ein Resul-
tat von Shepherdson erlaubt es uns, eine Theorie AB zu definieren, die sich nur um ein
Axiomenschema von der Theorie der offenen Induktion über A unterscheidet. Wir zeigen,
dass das Diophantische Erfüllbarkeit für AB entscheidbar ist.





Abstract

Hilbert’s 10th problem is the question whether there is an algorithm which, given a poly-
nomial with integer coefficients, determines whether it has integer roots. It has been shown
that no such algorithm exists as a consequence of the MRDP theorem. In other words: Dio-
phantine satisfiability is undecidable for arithmetic. One can now ask whether the problem
of Diophantine satisfiability is decidable for weaker theories of arithmetic.

In this thesis we present a novel proof-theoretic approach for deciding Diophantine satis-
fiability problems. We work in a base arithmetical theory A in the language with successors,
predecessors, addition and multiplication and use a result by Shepherdson to define a the-
ory AB which is one axiom schema short of the theory of open induction over A. We show
that Diophantine satisfiability of AB is decidable.
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1 Introduction

Hilbert’s 10th problem is the question whether there is an algorithm which, given a poly-
nomial with integer coefficients, determines whether it has integer roots. It has been shown
that no such algorithm exists as a consequence of the MRDP theorem, named after Matiya-
sevič, Robinson, Davis and Putnam.

A generalization of Hilbert’s 10th problem is this: Given an arithmetical theory T , is
there an algorithm which decides for every Diophantine equation, whether one can prove
its unsolvability in T? We call such problems Diophantine satisfiability problems. Some
variations of the MRDP theorem show the undecidability of Diophantine satisfiability prob-
lems for theories weaker than Peano arithmetic. A positive result has been obtained by
Jeřábek, who showed in [3] that Diophantine satisfiability in the Robinson arithmetic Q is
decidable. The decidability for IOpen, the theory of open induction over Q has remained
an open problem since it was posed by Shepherdson [4].
In this thesis we present a new proof-theoretic approach for deciding Diophantine satis-

fiability. We work in an arithmetical base theory A whose language consists of successors,
predecessors, addition and multiplication, but does not contain inequality. Using a result
by Shepherdson [5] we extract a subtheory AB of the theory of open induction over A and
show decidability of Diophantine satisfiability for AB.
The rest of this thesis is structured as follows: In chapter 2 we introduce definitions and

notations for the rest of the thesis and mention basic results from proof theory and the
study of arithmetical theories. Chapter 3 introduces the main result of this thesis, defines
the specialized proof calculus PT , outlines the proof strategy and shows the soundness of
PT as a first result. In chapters 4 and 5 respectively we show completeness and decidability
of PT . The thesis concludes in chapter 6 by giving an outline for future work.
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2 Preliminaries

2.1 Logic and proof theory

In this thesis we will use several different proof calculi, so we introduce a general notion of
proof calculus which fits these different scenarios:

Definition 2.1. Let X be a set. For n ∈ N an inference rule of arity n on X is a relation
I ⊆ Xn+1. Elements of I are called I-inferences and for (S, S1, . . . , Sn) ∈ I we also write

S1 · · · Sn

S
I .

Furthermore, S is called the conclusion of the inference and S1, . . . , Sn are called the
premises of the inference. A non-empty inference rule of arity 0 is called initial.

A proof calculus on X is a set C of inference rules on X. The relation π is a C-proof of S
(in symbols: π |−C S) is inductively defined as the smallest relation with the following closure
property: If I ∈ C is an n-ary inference rule, S1, . . . , Sn ∈ X, π1 |−C S1, . . . , πn |−C Sn such
that (S, S1, . . . , Sn) ∈ I, then (S, I, π1, . . . , πn) |−C S.

Instead of (S, I, π1, . . . , πn) |−C S we also write

π1 · · · πn
S

I,

and instead of π1 |−C S1, . . . , πn |−C Sn, (S, I, π1, . . . , πn) |−C S we write

(π1)
S1 · · ·

(πn)
Sn

S
I.

We say π is a C-proof if there exists an S ∈ X such that π |−C S. By definition, we have
that if π is a C-proof then there is a unique S such that π |−C S. If π |−C S, we say that S
is the conclusion of π. We say that π ends in an inference rule I if π = (S, I, π1, . . . , πn)
for some C-proofs π1, . . . , πn and S ∈ X. We inductively define that a C-proof π uses an
inference rule I if π ends in I or π = (S, J, π1, . . . , πn) and any of the proofs π1, . . . , πn uses
I. If π = (S, I, π1, . . . , πn), then π1, . . . , πn are called direct subproofs of π. Further, we
inductively define that ρ is a subproof of π if ρ = π or ρ is a subproof of a direct subproof
ρ� of π. If π = (S, I, πleft, πright) we call πleft the left direct subproof of π and πright the
right direct subproof of π. Further let ρ, σ be subproofs of π. We say ρ is between π and
σ if σ is a subproof of ρ. We say ρ is strictly between π and σ if ρ is between π and σ,
ρ &= σ and ρ &= π. We say a subproof ρ of π with a certain property is a lowermost such
subproof if the only subproof between π and ρ with that property is ρ itself. We say that ρ
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2 Preliminaries

is an uppermost such subproof, if the only subproof of ρ with that property is ρ itself. We
inductively define the number of inferences in π = (S, I, π1, . . . , πn), written as #(π) by
#(π) := 1 +

�n
i=1#(πi). We define the number of I-inferences in π (denoted by #I(π))

as the number of subproofs of π that end in an I-inference.
We write |−C S or C |− S to mean there exists a C-proof π with π |−C S. If C is a proof

calculus on X and J is an inference rule on X we write C+J for the proof calculus C∪{J}.
In this thesis we will only use languages with equality. Therefore, we will just use language

when we mean language with equality.

Definition 2.2. We define the set of variables as V := {xn |n ∈ N}. Let L be a language.
We call T (L) the set of L-terms. Further we write A(L) for the set of L-atoms, N(L) for
the set of negated L-atoms and Lit(L) for the set of L-literals. For ϕ ∈ Lit(L) we write ϕ⊥

for the dual literal of ϕ, i.e. for ϕ we set ϕ⊥ :≡ ¬ϕ and for ϕ ≡ ¬ψ we set ϕ⊥ :≡ ψ.
F (L) denotes set of L-formulas built from ¬ (negation), ∧ (conjunction), ∨ (disjunction),

⊃ (implication), ∀x (universal quantification) and ∃x (existential quantification). Fqf(L)
is the set of quantifier-free L-formulas. For L-formulas ϕ, ψ we write ϕ ↔ ψ as a shorthand
for (ϕ ⊃ ψ) ∧ (ψ ⊃ ϕ).

Definition 2.3. Let X be a set. A multiset over X is a function X → N. Let Γ be a
multiset. For x ∈ X we write x ∈ Γ, if Γ(x) > 0. Let Δ be another multiset. We write
Γ ⊆ Δ if Γ(x) ≤ Δ(x) for all x ∈ X. We write Γ ∪Δ for the multiset x #→ Γ(x) + Δ(x),
Γ ∩Δ for the multiset x #→ min(Γ(x),Δ(x)) and Γ−Δ for the multiset x #→ Γ(x) .−Δ(x)
where n .− m is n − m if n ≥ m and 0 otherwise. We define the support of Γ, denoted
by supp(Γ), as the set {x ∈ X |Γ(x) > 0}. We say Γ is finite if Γ(x) > 0 only for finitely
many x ∈ X. If Γ is finite we denote by |Γ| size of Γ, defined as

�
x∈X Γ(x). We write ∅

for the multiset x #→ 0. We write M(X) for the set of finite multisets over X.

Definition 2.4 (sequent). Let L be a language and let Γ, Δ be finite multisets of formulas
in F (L). Then the tuple (Γ,Δ) is called a L-sequent, written as Γ −→ Δ. Γ is called the
antecedent of the sequent and Δ is called the succedent of the sequent. If Γ = {ϕ1, . . . , ϕn}
and Δ = {ψ1, . . . , ψm} we often omit the curly braces and write ϕ1, . . . , ϕn −→ ψ1, . . . , ψm

for the sequent Γ −→ Δ. We also mix these notations and e.g. write ϕ,Γ −→ Δ, ψ for the
sequent Γ ∪ {ϕ} −→ Δ ∪ {ψ}. The set of L-sequents is denoted by Seq(L).

Definition 2.5. Let L be a language and ϕ ∈ F (L). We denote the set of free variables of
ϕ by FV(ϕ). If FV(ϕ) = ∅, we say that ϕ is closed. We extend these notions to multisets of
formulas Γ by FV(Γ) :=

�
ϕ∈Γ FV(ϕ) and sequents Γ −→ Δ by FV(Γ −→ Δ) := FV(Γ∪Δ).

Notation 2.6. Let L be a language, t ∈ T (L) and let x1, . . . , xn be variables. We write
t(x1, . . . , xn) to mean that the variables x1, . . . , xn may occur in t. Further, if we have
u1, . . . , un ∈ T (L) we write t(u1, . . . , un) for the term which results from simultaneously
substituting the variables xi in t by the terms ui. We extend this notation for substitution to
substituting free variables in formulas, multisets of formulas, sequents and proofs. Instead
of writing u1, . . . , un we often abbreviate to ū, if n is clear from the context or irrelevant.

Definition 2.7. Let L be a language, ϕ, ψ ∈ F (L). We write ψ ) ϕ if ψ is a subformula
of ϕ and also say ϕ contains ψ. We say ϕ contains ¬, if there is a ψ ∈ F (L) with
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2.1 Logic and proof theory

(¬ψ) ) ϕ. Similarly, for � ∈ {∧,∨,⊃}, we say ϕ contains �, if there are ψ, χ ∈ F (L) with
(ψ�χ) ) ϕ. For Q ∈ {∀, ∃} we also say ϕ contains Q, if there is a ψ ∈ F (L) and a variable
x with (Qxψ) ) ϕ. Now let Γ,Δ be multisets of L-formulas and s ∈ {¬,∧,∨,⊃, ∀, ∃}. We
say Γ contains s if there is a ϕ ∈ Γ such that ϕ contains s. We say Γ −→ Δ contains s if
Γ ∪Δ contains s.

Definition 2.8. Let L be a language. In the following, Γ, Δ, Π and Λ denote arbitrary
multisets of L- formulas, ϕ and ψ denote arbitrary L-formulas, A denotes an arbitrary
atomic L-formula, t denotes an arbitrary L-term and x, y denote variables. We now define
inference rules on Seq(L) by their inferences:

(i) logical axiom:

A −→ A
axiom.

A is called the principal occurrence.

(ii) weakening:
Γ −→ Δ

ϕ,Γ −→ Δ
wleft and

Γ −→ Δ
Γ −→ Δ, ϕ

wright.

ϕ is called the principal occurrence, Γ,Δ is called the context.

(iii) contraction:

ϕ,ϕ,Γ −→ Δ

ϕ,Γ −→ Δ
cleft and

Γ −→ Δ, ϕ, ϕ

Γ −→ Δ, ϕ
cright.

ϕ in the conclusion is called the principal occurrence, The ϕ-occurrences in the
premises are called auxiliary occurrences. Γ,Δ is called the context.

(iv) cut:
Γ −→ Δ, ϕ ϕ,Π −→ Λ

Γ,Π −→ Δ,Λ
cut.

We call ϕ the cut formula. The occurrences of ϕ in the premises are called auxiliary
occurrences. cut has no principal occurrence. Γ,Π,Δ,Λ is called the context

If ϕ is atomic we call the cut-inference atomic.

(v) negation:
Γ −→ Δ, ϕ

¬ϕ,Γ −→ Δ
¬left and

ϕ,Γ −→ Δ

Γ −→ Δ,¬ϕ ¬right.

The occurrence of ϕ in the premise is called auxiliary occurrence. The occurrence of
¬ϕ in the conclusion is called principal occurrence. Γ,Δ is called the context.

(vi) conjunction:

ϕ, ψ,Γ −→ Δ

ϕ ∧ ψ,Γ −→ Δ
∧left and

Γ −→ Δ, ϕ Π −→ Λ, ψ

Γ,Π −→ Δ,Λ, ϕ ∧ ψ
∧right.

The occurrences of ϕ, ψ in the premises are called auxiliary occurrences. The occur-
rences of ϕ∧ψ in the conclusion are called principal occurrences. Γ,Δ and Γ,Π,Δ,Λ
are called the context respectively.

5



2 Preliminaries

(vii) disjunction:

ϕ,Γ −→ Δ ψ,Π −→ Λ

ϕ ∨ ψ,Γ,Π −→ Δ,Λ
∨left and

Γ −→ Δ, ϕ, ψ

Γ −→ Δ, ϕ ∨ ψ
∨right.

The occurrences of ϕ, ψ in the premises are called auxiliary occurrences. The occur-
rences of ϕ∨ψ in the conclusion are called principal occurrences. Γ,Δ and Γ,Π,Δ,Λ
are called the context respectively.

(viii) implication:

Γ −→ Δ, ϕ ψ,Π −→ Λ

ϕ ⊃ ψ,Γ,Π −→ Δ,Λ
⊃left and

ϕ,Γ −→ Δ, ψ

Γ −→ Δ, ϕ ⊃ ψ
⊃right .

The occurrences of ϕ, ψ in the premises are called auxiliary occurrences. The oc-
currences of ϕ ⊃ ψ in the conclusion are called principal occurrences. Γ,Δ and
Γ,Π,Δ,Λ are called the context respectively.

(ix) universal quantification:

ϕ(t),Γ −→ Δ

∀xϕ(x),Γ −→ Δ
∀left and

Γ −→ Δ, ϕ(y)

Γ −→ Δ, ∀xϕ(x) ∀right

where y &∈ FV(Γ −→ Δ, ∀xϕ(x)). The occurrence of ϕ in the premise is called
auxiliary occurrence. The occurrence of ∀xϕ in the conclusion is called principal
occurrence. Γ,Δ is called the context. y is called eigenvariable. The condition that
y does not occur in the lower sequent is called the eigenvariable condition.

(x) existential quantification:

ϕ(y),Γ −→ Δ

∃xϕ(x),Γ −→ Δ
∃left and

Γ −→ Δ, ϕ(t)

Γ −→ Δ, ∃xϕ(x) ∃right

where y &∈ FV(∃xϕ(x),Γ −→ Δ). The occurrence of ϕ in the premise is called
auxiliary occurrence. The occurrence of ∃xϕ in the conclusion is called principal
occurrence. Γ,Δ is called the context. y is called eigenvariable. The condition that
y does not occur in the lower sequent is called the eigenvariable condition.

(xi) reflexivity:

−→ t = t refl.

t = t is called the principal occurrence.

(xii) equality:
Γ −→ Δ, t = u A(t),Π −→ Λ

A(u),Γ,Π −→ Δ,Λ
eq→left ,

Γ −→ Δ, t = u Π −→ Λ, A(t)

Γ,Π −→ Δ,Λ, A(u)
eq→right ,

Γ −→ Δ, t = u A(u),Π −→ Λ

A(t),Γ,Π −→ Δ,Λ
eq←left ,

Γ −→ Δ, t = u Π −→ Λ, A(u)

Γ,Π −→ Δ,Λ, A(t)
eq←right .
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2.1 Logic and proof theory

In all the equality inferences we call t = u the auxiliary equality and A the prin-
cipal equality. We also call the occurrences of t = u, A(u), A(t) in the premises
auxiliary occurrences and the occurrences of A in the conclusion principal occur-
rences. Γ,Π,Δ,Λ is called the context. We call the rules eq→left and eq→right the
left-to-right equality rules and eq←left and eq←right the right-to-left equality rules.

We also define sets of inference rules:

(i) structural rules S := {axiom,wleft,wright, cleft, cright, cut},
(ii) propositional rules B := {¬left,¬right,∧left,∧right,∨left,∨right,⊃left,⊃right},
(iii) quantifier rules Q := {∀left, ∀right, ∃left, ∃right},
(iv) equational rules E := {refl, eq→left, eq→right, eq←left, eq←right},
(v) sequent calculus with equality LK=(L) := S ∪ B ∪ Q ∪ E.
If the language L is known from the context, we just write LK= instead of LK=(L). It

is well-known that LK= is a reasonable proof calculus for first order logic with equality by
the following

Theorem 2.9. (soundness and completeness of LK=) Let L be a language. Then for all
closed L-sequents Γ −→ Δ there holds: LK=(L) derives Γ −→ Δ if and only if


ϕ∈Γ
ϕ ⊃

�
ψ∈Δ

ψ

is valid in first order logic with equality.

Proof. It is straightforward to see that all rules in LK= are sound.
For completeness we use the fact the the equality calculus LKe in [6] is complete and

note that it is straightforward to show that the equality axioms can be proven in LK=

using the equality rules in LK=. More precisely, let n ∈ N, t1, . . . , tn, u1, . . . , un ∈ T (L),
let f ∈ L be an n-ary function symbol and let R ∈ L ∪ {=} be an n-ary relation symbol.
It is straightforward to show the following in LK=:

LK= |− −→ t = t,

LK= |−t1 = u1, . . . , tn = un −→ f(t1, . . . , tn) = f(u1, . . . , un),

LK= |−t1 = u1, . . . , tn = un, R(t1, . . . , tn) −→ R(u1, . . . , un).

Definition 2.10. Let L be a language. An L-theory is a set of closed L-formulas. For
Γ −→ Δ ∈ Seq(L) we write T |− Γ −→ Δ if LK= |− T0,Γ −→ Δ for a finite set T0 ⊆ T .
For a formula ϕ ∈ F (L) we write T |− ϕ, if T |−−→ ϕ. If T = {σ1, . . . , σn} is finite
we often omit the curly braces and write σ1, . . . , σn |− Γ −→ Δ or σ1, . . . , σn |− ϕ. Let
Φ ⊆ F (L). The deductive closure of T in Φ is T |−(Φ) := {ϕ ∈ Φ |T |− ϕ}. Further, the
deductive closure of T is T |− := T |−(F (L)). We say T is consistent if T &|−−→. Let
M be an L-structure. For an L-term we write tM for the interpretation of the term t
in M. For an L-formula ϕ we write M |= ϕ if M satisfies ϕ. The theory of M is
Th(M) := {ϕ ∈ F (L) |ϕ is closed and M |= ϕ}.

7



2 Preliminaries

When showing statements of the form T |− ϕ where T is a theory, it is often cumbersome
and less readable to write out a LK=-proof explicitly. In those situations we will instead
carry out the proof in ordinary mathematical reasoning, prefix it with the phrase “Work
in T” and be cautious to only use the axioms given in T . Since LK=(L) is complete by
Theorem 2.9, an explicit LK=(L)-proof can be constructed.

Even in cases where we provide an explicit proof in a proof calculus it is often useful to
shorten some straightforward inferences. To this end we introduce the following notation:
Let I be a unary inference rule. We write

π
S

I∗

to mean that from a proof π of we can construct a proof of S by repeated application of
the inference rule I. For rules where there is a left and right variant say Ileft and Iright we
also just write

π
S

I∗

to mean that from a proof π of we can construct a proof of S by repeated application of the
inference rules Ileft and Iright. We will mostly use this notation for the rules wleft,wright, cleft
and cright.
In a few cases we use the notation

π
S

I, J

to denote that we first apply I to π and then J to the resulting proof.
In this thesis we will also use some standard definitions and results of proof theory:

Definition 2.11. Let L be a language. A variable x is called eigenvariable of an LK=(L)-
proof π if x is eigenvariable of an inference which is used by π. An LK=(L)-proof π is
called regular, if all eigenvariables of π are pairwise different.

Lemma 2.12. Let L be a language and π |−LK=(L) S. Then there exists a regular proof

π� |−LK=(L) S.

Proof sketch. Rename the eigenvariables appropriately.

Lemma 2.13. Let L be a language S(x̄) ∈ Seq(L) and t̄ ∈ T (L). If LK=(L) |− S(x̄), then
LK=(L) |− S(t̄).

Proof sketch. Let π(x̄) |−LK=(L) S(x̄). Without loss of generality t̄ does not contain
an eigenvariable of π and no variable in x̄ is an eigenvariable of π (otherwise rename
eigenvariables in π accordingly). Replacing x̄ by t̄ in all sequents of π yields a proof
π(t̄) |−LK=(L) S(t̄).

Theorem 2.14 (cut elimination). Let L be a language. If LK=(L) |− Γ −→ Δ, then there
exists an LK=(L)-proof π of Γ −→ Δ where all cuts are atomic.

Proof. See [6].

An important corollary of the cut elimination theorem is the subformula property. For
LK= we will use the following form:

8



2.2 Arithmetical theories

Theorem 2.15 (subformula property). Let L be a language and let s ∈ {¬,∧,∨,⊃, ∀, ∃},
S ∈ Seq(L) and π |−LK=(L) S where all cuts are atomic. If π uses the inference rule sleft
or sright, then S contains s.

Proof sketch. Since s can only occur in non-atomic formulas and all cuts are atomic, there
is no inference rule where s is in the upper sequent, but not in the lower sequent. Thus,
the statement can be shown by a straightforward induction on π.

2.2 Arithmetical theories

Definition 2.16. We define the language Sp := {0, s, p,+, ·} where 0 is a constant symbol,
s, p are unary function symbols and +, · are binary function symbols. Furthermore we set
S := Sp \ {p}.

Definition 2.17 (theory A). Consider the formulas

∀x s(x) &= 0, (A1)

p(0) = 0, (A2)

∀x p(s(x)) = x, (A3)

∀x x+ 0 = x, (A4)

∀x ∀y x+ s(y) = s(x+ y), (A5)

∀x x · 0 = 0, (A6)

∀x ∀y x · s(y) = x · y + x. (A7)

We define A := {A1, . . . , A7}.

Definition 2.18 (induction axiom). Let L be a language with L ⊃ S. Let ϕ(x, z̄) ∈ F (L).
Then the induction axiom for ϕ with respect to x is the formula

Ix(ϕ) :≡ ∀z̄ (ϕ(0, z̄) ⊃ ∀x (ϕ(x, z̄) ⊃ ϕ(s(x), z̄)) ⊃ ∀xϕ(x, z̄)) .

For F ⊆ F (L) we define I(F ) := {Ix(ϕ) |ϕ ∈ F, x is a variable}.

In this thesis, by IOpenp, we refer to the theory of open induction in the language Sp.
Consequently we define:

Definition 2.19 (IOpenp). We define IOpenp := A ∪ I(Fqf(Sp)).

Notation 2.20. Let t ∈ T (Sp) and n ∈ N. We inductively define the term nt ∈ T (Sp) by
0t :≡ 0 and (n+ 1)t :≡ t+ nt.

IOpenp has a characterization due to Shepherdson (see [5]):

9



2 Preliminaries

Theorem 2.21. Over the theory A the set of formulas I(Fqf(Sp)) is equivalent to the
formulas

∀x (x = 0 ∨ x = s(p(x))), (B1)

∀x ∀y x+ y = y + x, (B2)

∀x ∀y ∀z (x+ y)+ z = x+ (y + z), (B3)

∀x ∀y ∀z (x+ y = x+ z ⊃ y = z), (B4)

∀x ∀y x · y = y · x, (B5)

∀x ∀y ∀z x · (y · z) = (x · y) · z, (B6)

∀x ∀y ∀z x · (y + z) = x · y + x · z (B7)

and

∀x ∀y ∀z
�
mx = my ⊃

m−1�
i=0

(z + i) · x = (z + i) · y


, for m ≥ 2. (C �

m)

This allows us to consider variations of IOpenp:

Definition 2.22. We define AB := A ∪ {B1, . . . , B7}. Further, consider the formulas:

∀x ∀y (mx = my ⊃ x = y) for m ≥ 2. (Cm)

Then we define ABCm := AB ∪ {Cm |m ≥ 2}.
Remark 2.23. It is straightforward to show ABCm |− C �

m for m ≥ 2. Thus we have
AB|− ⊆ IOpenp

|− ⊆ ABCm
|−.

Let L ⊇ S be a language and let T be an L-theory. The Diophantine satisfiability problem
for T is the question whether the set

DT := {(t(x̄), u(x̄)) ∈ T (S)× T (S) |T ∪ {∃x̄ t(x̄) = u(x̄)} is consistent}

is decidable. Two results in this area are that DQ is decidable where Q is the Robinson
arithmetic (see [3]) and DTh(N) is undecidable as a consequence of the MRDP theorem.
The decidability of DIOpen is a long-standing open problem (see [4]). In this thesis we show
that DAB is decidable as a consequence of the decidability of AB|−(N(S)).
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3 The main result

Our goal in this thesis is to show

Theorem 3.1. AB|−(N(S)) is decidable.

In the remainder of this short chapter we briefly outline our proof strategy: We will
first introduce a specialized proof calculus PT , show its soundness and completeness with
respect to AB|−(N(S)) and then prove its decidability.

3.1 Calculus PT

Our calculus is based on the observation that the axioms in AB without A1, A2, A3 and
B1 allow us to more or less work with terms as with polynomials. We will expand on this
observation later, but now introduce a notion of equivalence to factor out this polynomial
part and present a simple calculus based only on A1 and B1.

Definition 3.2. Let L be a language and Γ a multiset of L-formulas. We define the relation
⇔at

Γ on A(L) by

ϕ ⇔at
Γ ψ : ⇐⇒ LK= |− Γ, ϕ −→ ψ and LK= |− Γ, ψ −→ ϕ.

We extend ⇔at
Γ to Lit(L) by setting

⇔Γ := ⇔at
Γ ∪�

(¬ϕ,¬ψ) |ϕ, ψ ∈ A(L) and ϕ ⇔at
Γ ψ

	
.

Lemma 3.3. ⇔Γ is a congruence relation with respect to ⊥.

Proof. (i) Reflexivity: If ϕ ∈ A(L), then ϕ ⇔at
Γ ϕ and thus ϕ ⇔Γ ϕ by

ϕ −→ ϕ
axiom.

If ϕ ∈ N(L), then ϕ⊥ ⇔at
Γ ϕ⊥ by what has been just shown. Thus ϕ ⇔Γ ϕ.

(ii) Symmetry: Follows immediately from the definition.

(iii) Transitivity: Let ϕ, ψ, χ ∈ Lit(L) with ϕ ⇔Γ ψ and ψ ⇔Γ χ. By the definition of
⇔Γ we have either ϕ, ψ, χ ∈ A(L) or ϕ, ψ, χ ∈ N(L). In the first case we have proofs
π1 |−LK= Γ, ϕ −→ ψ and π2 |−LK= Γ, ψ −→ χ. Now Γ |− ϕ −→ χ by

(π1)
Γ, ϕ −→ ψ

(π2)
Γ, ψ −→ χ

Γ,Γ, ϕ −→ χ
cut

Γ, ϕ −→ χ
c∗left

.
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3 The main result

Γ |− χ −→ ϕ follows similarly.

If ϕ, ψ, χ ∈ N(L), then the statement follows by what has just been shown and the
definition of ⇔Γ.

(iv) Congruence: By the definition of ⇔Γ we have ϕ ⇔Γ ψ if and only if ϕ⊥ ⇔Γ ψ⊥.

Definition 3.4. For ϕ ∈ Lit(L) we denote its equivalence class with respect to ⇔Γ by [ϕ]Γ.
For a multiset Φ ⊆ Lit(L) we set [Φ]Γ := {[ϕ]Γ |ϕ ∈ Φ}, i.e. the multiset of equivalence
classes of literals in Φ.

The following shows that substitution is well-defined for equivalence classes:

Lemma 3.5. Let L be a language, Γ a multiset of L-formulas, ϕ(x̄), ψ(x̄) ∈ Lit(L) with
ϕ(x̄) ⇔Γ ψ(x̄) and t̄ ∈ T (L). Then ϕ(t̄) ⇔Γ ψ(t̄).

Proof. Follows from Lemma 2.13.

Definition 3.6. Let T := AB \ {A1, A2, A3, B1}. The calculus PT acts on [N(S)]T and
has the inference rules

[s(t) &= 0]T
Aax

1 and
[ϕ(0)]T [ϕ(s(x))]T

[ϕ(x)]T
Bvar

1

where t ∈ T (S), ϕ ∈ N(S) and x is a variable.

Remark 3.7. Note that the theory T implies the laws of a commutative semiring. By B4

and congruence of + we have that T |− ∀x ∀y ∀z x+ y = x+ z ↔ y = z.

Example 3.8. Let ϕ(x) :≡ x · x &= x+ s(0). We show PT |− [ϕ(x)]T . It is straightforward
to show ϕ(0) ⇔T s(0) &= 0 and ϕ(s(x)) ⇔T x · x + x &= s(0). Furthermore, we have
ϕ(s(0)) ⇔T s(0) &= 0 and ϕ(s(s(x))) ⇔T s(x · x+ x+ x+ x) &= 0. Thus we get a PT -proof
of [ϕ(x)]T by

[s(0) &= 0]T
Aax

1

[s(0) &= 0]T
Aax

1 [s(x · x+ x+ x+ x) &= 0]T
Aax

1

[x · x+ x &= s(0)]T
Bvar

1

[ϕ(x)]T
Bvar

1 .

We reduce our main result to the following three results:

Theorem 3.9 (soundness of PT ). Let ϕ ∈ N(S). If PT |− [ϕ]T , then AB |− ϕ.

Theorem 3.10 (completeness of PT ). Let ϕ ∈ N(S). If AB |− ϕ, then PT |− [ϕ]T .

Theorem 3.11 (decidability of PT ). The set PT
|− := {ϕ ∈ N(S) | PT |− [ϕ]T } is decidable.

Now the main result follows by

Proof of Theorem 3.1. By soundness (Theorem 3.9) and completeness (Theorem 3.10) we
have that AB |− ϕ if and only if PT |− [ϕ]T . Thus AB|−(N(S)) is decidable by the
decidability of PT (Theorem 3.11).

12



3.2 Soundness of PT

A straightforward corollary of Theorem 3.1 is

Corollary 3.12. DAB is decidable.

Proof. By Theorem 3.1 we get that AB|−(N(S)) is decidable. Now the statement follows
from

DAB = {ϕ(x̄) ∈ A(S) |AB ∪ {∃x̄ ϕ(x̄)} &|−−→}
= {ϕ(x̄) ∈ A(S) |AB &|− ∃x̄ ϕ(x̄) −→}
= {ϕ(x̄) ∈ A(S) |AB &|− ϕ(x̄) −→}
= {ϕ(x̄) ∈ A(S) |AB &|− ¬ϕ(x̄)}
= {ψ(x̄) ∈ N(S) |AB &|− ψ(x̄)}
= N(S) \AB|−(N(S)).

We show Theorem 3.9 in the next section. The following two chapters are dedicated to
proving theorems 3.10 and 3.11 respectively.

3.2 Soundness of PT

We show soundness of PT by transforming proofs in PT into LK=-proofs. For this we use

Lemma 3.13. Let ϕ(x) ∈ N(Sp) and t ∈ T (Sp). Then

{B1} |− ϕ(0), ∀xϕ(s(x)) −→ ϕ(t).

Proof. Work in {B1}: By B1 we have t = 0∨ t = s(p(t)). In the first case we can use ϕ(0)
to prove ϕ(t). In the other case we use ∀xϕ(s(x)) for x = p(t).

Proof of Theorem 3.9. Let π |−PT
[ϕ]T . Since ϕ ∈ N(S) we have ϕ⊥ ∈ A(S). We proceed

by induction on π. If π =

[ϕ]T
Aax

1 ,

then, ϕ ⇔T s(t) &= 0 for some t ∈ T (S). Since ⇔T is congruent we have ϕ⊥ ⇔T s(t) = 0.
Therefore we have a proof π� |−LK= T, ϕ⊥ −→ s(t) = 0. Now LK= |− AB −→ ϕ by

(π�)
T, ϕ⊥ −→ s(t) = 0

s(t) = 0 −→ s(t) = 0
axiom

s(t) &= 0, s(t) = 0 −→ ¬left

A1, s(t) = 0 −→ ∀left
T,A1, ϕ

⊥ −→ cut

AB,ϕ⊥ −→
wleft

AB −→ ϕ
¬right.

If π =
(π0)
[ϕ0]T

(πs)
[ϕs]T

[ϕ]T
Bvar

1 ,
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3 The main result

then there is a variable x such that for ϕ = ϕ(x) we have ϕ0 ⇔T ϕ(0) as well as
ϕs ⇔T ϕ(s(x)). Using the induction hypothesis we have proofs πϕ(0) |−LK= AB −→ ϕ(0)
and πϕ(s(x)) |−LK= AB −→ ϕ(s(x)). By applying Lemma 3.13 we get a proof

π� |−LK= B1, ϕ(0), ∀xϕ(s(x)) −→ ϕ.

Now we have LK= |− AB −→ ϕ by

(πϕ(s(x)))

AB −→ ϕ(s(x))

AB −→ ∀xϕ(s(x)) ∀right
(πϕ(0))

AB −→ ϕ(0)
(π�)

B1, ϕ(0), ∀xϕ(s(x)) −→ ϕ

AB,B1, ∀xϕ(s(x)) −→ ϕ
cut

AB,AB,B1 −→ ϕ
cut

AB −→ ϕ
c∗left.
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4 Completeness

Our goal for this chapter is to show completeness of PT with respect to provability of
negated equations in AB, i.e. for ϕ ∈ N(S) with AB |− ϕ there holds PT |− [ϕ]T .
First we observe that we can remove the predecessor axioms A2 and A3 by using a

“deskolemized” version of B1:

Definition 4.1. We define B∃
1 :≡ ∀x (x = 0 ∨ ∃y x = s(y)) and

AB∃ := (AB \ {A2, A3, B1}) ∪
�
B∃

1

�
.

AB∃ proves that s is injective:

Lemma 4.2. A4, A5, B2, B4 |− ∀x ∀y (s(x) = s(y) ⊃ x = y)

Proof. Work in AB∃:
s(x) = s(y)

A4=⇒ s(x+ 0) = s(y + 0)

A5=⇒ x+ s(0) = y + s(0)

B2=⇒ s(0)+ x = s(0)+ y

B4=⇒ x = y.

Lemma 4.3. Let ϕ ∈ F (S). If AB |− ϕ, then AB∃ |− ϕ.

Proof. We show this statement by contraposition. If AB∃ &|− ϕ, then there is a model
M = (M, 0M, sM,+M, ·M) of AB∃ such that M &|= ϕ. We now construct a model Mp of
AB such that Mp &|= ϕ. We set Mp = (M, 0M, sM,+M, ·M, pMp) where pMp : M → M is
defined as

pMp(a) =

�
0M if a = 0M

b if a = sM(b) for some b ∈ M.

Note that this is well-defined: Since M |= A1, the two cases are distinct. Because M |= B∃
1

we have that for all a ∈ M that either a = 0M or there is a b ∈ M such that a = sM(b).
Furthermore, by Lemma 4.2 we have that there is at most one such b.

By construction we have that Mp |= AB \ {A2, A3, B1}. It remains to show Mp |= A2,
Mp |= A3, Mp |= B1 and Mp &|= ϕ. Clearly, by definition of pMp we have pMp(0M) = 0M,
therefore Mp |= A2. Now let b ∈ M , then we also have pMp(sM(b)) = b by definition,
therefore Mp |= A3. Also, if b &= 0M, then there is a c ∈ M such that b = sM(c)
since M |= B∃

1 . Then sM(pMp(b)) = sM(c) = b. Therefore Mp |= B1. Since ϕ is
a formula without predecessors and Mp has the same interpretation as M on formulas
without predecessors, we get that Mp &|= ϕ.
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4 Completeness

Also note the following reduction:

Lemma 4.4. Let ϕ ∈ A(S). If AB∃ |− ¬ϕ, then AB∃ |− ϕ −→.

Proof. Let π |−LK= AB∃ −→ ¬ϕ. Then we have AB∃ |− ϕ −→ by

(π)

AB∃ −→ ¬ϕ
ϕ −→ ϕ

axiom

¬ϕ,ϕ −→
¬left

AB∃, ϕ −→ cut.

Thus it suffices to transform LK=-proofs of AB∃, ϕ −→ into PT -proofs of [¬ϕ]T . We do
this in a series of steps and introduce intermediate proof calculi where the axioms of AB∃

are replaced by rules in the calculus: We then extend LK= with rules that resemble Aax
1

and Bvar
1 of PT to get a calculus called LKP=

T . This allows us to get rid of the axioms
A1 and B1. Next, we get rid of quantifier and propositional rules as well as the remaining
theory T in a calculus called P=

T . We then introduce a notion of normality for P=
T -proofs

which will allow us to get rid of equational and structural rules to only be left with rules
from PT .

4.1 From LK= to LKP=
T

We extend LK= by two inference rules which resemble the inference rules of PT :

Definition 4.5. The inference rules Aax
1 and Bvar

1 are given by

s(t) = 0 −→ Aax
1 and

x = 0,Γ1 −→ Δ1 x = s(y),Γ2 −→ Δ2

Γ1,Γ2 −→ Δ1,Δ2
Bvar

1

where t ∈ T (S), x &= y ∈ V and y &∈ FV(Γ1,Γ2 −→ Δ1,Δ2), i.e. Bvar
1 has an eigenvariable

condition. Furthermore we set LKP=
T to be the proof calculus LK= +Aax

1 +Bvar
1 .

The goal for this section is to prove a completeness result for LKP=
T :

Proposition 4.6. Let ϕ ∈ A(S). If AB |− ¬ϕ, then LKP=
T |− T, ϕ −→.

In particular we want to get rid of A1 and B1 in the theory and instead use the rules
Aax

1 and Bvar
1 . To do this for Aax

1 is straightforward, but to do this for Bvar
1 we need some

groundwork. To simplify the following proofs, we introduce a notation for instantiating
universal quantifiers in a formula:

Definition 4.7. Let L be a language, ϕ ∈ F (L) and t ∈ T (L). We define

ϕ[t] :=

�
ψ(t) if ϕ ≡ ∀xψ(x) for some ψ(x) ∈ F (L),

ϕ otherwise.

We call every formula of the form ϕ[t] a partial instance of ϕ.
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4.1 From LK= to LKP=
T

A first important observation is that, even though Bvar
1 only does a case distinction on

variables, this is enough to prove B∃
1 [t] from axioms in T for an arbitrary term t ∈ T (S).

To show this we need some closure properties of provability of partial instances of B∃
1 :

Lemma 4.8. For x ∈ V and t, u ∈ T (S) we have:

(i) LK= +Bvar
1 |−−→ B∃

1 [x],

(ii) LK= |−−→ B∃
1 [0],

(iii) LK= |−−→ B∃
1 [s(t)],

(iv) LK= |− A4, A5, B
∃
1 [t], B

∃
1 [u] −→ B∃

1 [t+ u],

(v) LK= |− A5, A6, A7, B5, B
∃
1 [t], B

∃
1 [u] −→ B∃

1 [t · u].
Proof. (i) It is straightforward to find proofs π1 |−LK= x = 0 −→ x = 0 ∨ ∃y x = s(y)

and π2 |−LK= x = s(y) −→ x = 0 ∨ ∃y x = s(y). Thus the statement is given by

(π1)
x = 0 −→ x = 0 ∨ ∃y x = s(y)

(π2)
x = s(y) −→ x = 0 ∨ ∃y x = s(y)

−→ x = 0 ∨ ∃y x = s(y), x = 0 ∨ ∃y x = s(y)
Bvar

1

−→ x = 0 ∨ ∃y x = s(y)
cright.

(ii) By

−→ 0 = 0 refl

−→ 0 = 0, ∃y 0 = s(y)
wright

−→ 0 = 0 ∨ ∃y 0 = s(y)
∨right.

(iii) By

−→ s(t) = s(t)
refl

−→ ∃y s(t) = s(y)
∃right

−→ s(t) = 0, ∃y s(t) = s(y)
wright

−→ s(t) = 0 ∨ ∃y s(t) = s(y)
∨right.

(iv) Work in
�
A4, A5, B

∃
1 [t], B

∃
1 [u]

	
: We do a case distinction on B∃

1 [u]. If u = 0, then by
A4 we have t+ u = t. Thus, the conclusion follows from B∃

1 [t]. If u = s(y) for some
y, then t+ u = s(t+ y) by A5. Thus, the conclusion follows from (iii).

(v) Work in
�
A5, A6, A7, B5, B

∃
1 [t], B

∃
1 [u]

	
: We do a case distinction on B∃

1 [u]. If u = 0,
then by A6 we have t ·u = 0 and the conclusion follows from (ii). If u = s(x) for some
x, we do a case distinction on B∃

1 [t]. If t = 0, then by B5 we have t · u = u · 0 and by
A6 we get t ·u = 0. Thus, the conclusion follows from (ii). Now let t = s(y) for some
y. We have t · u = t · x+ t by A7 since u = s(x). By A5 we have t · u = s(t · x+ y).
Thus, the conclusion follows from (iii).

Lemma 4.9. Let t ∈ T (S). Then LK= +Bvar
1 |− A \ {A1, A2, A3} , B5 −→ B∃

1 [t].
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4 Completeness

Proof. We proceed by induction on t. The case t ∈ V follows from Proposition 4.8 (i). The
case t ≡ 0 follows from Proposition 4.8 (ii). The case t ≡ s(u) for some u ∈ T (S) follows
from Proposition 4.8 (iii).
If t ≡ u+ v for some u, v ∈ T (S), then by induction hypothesis, there are proofs

πu |−LK=+Bvar
1

A \ {A1} −→ B∃
1 [u]

πv |−LK=+Bvar
1

A \ {A1} −→ B∃
1 [v].

By Proposition 4.8 (iv), there is a proof

πu+v |−LK= A4, A5, B
∃
1 [u], B

∃
1 [v] −→ B∃

1 [u+ v].

Now the statement is follows from

πv

πu πu+v

A \ {A1} , A4, A5, B
∃
1 [v] −→ B∃

1 [u+ v]
cut

A \ {A1} , A \ {A1} , A4, A5 −→ B∃
1 [u+ v]

cut

A \ {A1} −→ B∃
1 [u+ v]

c∗left.

If t ≡ u · v for some u, v ∈ T (S), then the proof is analogous to the previous case but we
use Proposition 4.8 (v) instead of Proposition 4.8 (iv).

Now we can replace A1 and B∃
1 by the rules Aax

1 and Bvar
1 :

Lemma 4.10. If LKP=
T |− Π,Γ −→ Δ, where Π is a multiset with supp(Π) ⊆ �

B∃
1 , A1

	
,

then LKP=
T |− A \ {A1, A2, A3} , B5,Γ −→ Δ.

Proof. For this proof we set A� := A \ {A1, A2, A3}. Let π |−LKP=
T

Π,Γ −→ Δ. We show

the statement by induction on π. We first consider the cases where A1 is introduced as an
element of Π:
If π =

(π1)
Π�,Γ −→ Δ

A1,Π
�� �� �

=Π

,Γ −→ Δ
wleft,

then apply the induction hypothesis to π1 to get the desired proof.
If π =

(π1)
A1, A1,Π

�,Γ −→ Δ

A1,Π
�� �� �

=Π

,Γ −→ Δ
cleft,

then again apply the induction hypothesis to π1 to get the desired proof.
If π =

(π1)
s(t) &= 0,Π�,Γ −→ Δ

A1,Π
�� �� �

=Π

,Γ −→ Δ
∀left,
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4.1 From LK= to LKP=
T

then apply the induction hypothesis to π1 to get a proof

π�
1 |−LK=+PT

s(t) &= 0, A�, B5,Γ −→ Δ.

Now the statement follows by

s(t) = 0 −→ Aax
1

−→ s(t) &= 0
¬right

(π�
1)

s(t) &= 0, A�, B5,Γ −→ Δ

A�, B5,Γ −→ Δ
cut.

There are no other rules that can introduce A1 on the left.
Now consider the cases where B∃

1 is introduced in the last inference as an element of
Π. The cases where B∃

1 is introduced via wleft or cleft are analogous to the cases for A1.
Therefore we only consider the case where B∃

1 is introduced by ∀left, i.e. π =

(π1)

B∃
1 [t],Π

�,Γ −→ Δ

B∃
1 ,Π

�� �� �
=Π

,Γ −→ Δ
∀left,

then by induction hypothesis and Lemma 4.9 we have proofs

π�
1 |−LKP=

T
A�, B5, B

∃
1 [t],Γ −→ Δ,

πt |−LK=+Bvar
1

A�, B5 −→ B∃
1 [t].

Now the statement follows by

πt π�
1

A�, B5, A
�, B5,Γ −→ Δ

cut

A�, B5,Γ −→ Δ
c∗left.

The remaining cases are all very similar: We apply the induction hypothesis to the
premises of the last inference, reapply the inference to the resulting proofs and do contrac-
tions. Consider for example the case where π ends in ∨left, i.e. π =

(π1)
ϕ,Π�

1,Γ1 −→ Δ1

(π2)
ψ,Π�

2,Γ2 −→ Δ2

ϕ ∨ ψ,Π�,Γ −→ Δ
∨left.

Then by induction hypothesis we get proofs

π�
1 |−LKP=

T
A�, B5, ϕ,Γ1 −→ Δ1,

π�
2 |−LKP=

T
A�, B5, ψ,Γ2 −→ Δ2.

Note that in the induction hypothesis we always consider ϕ and ψ as elements of Γ, not of
Π, even if they equal A1 or B∃

1 . Now the statement follows by

π�
1 π�

2

A�, B5, A
�, B5, ϕ ∨ ψ,Γ −→ Δ

∨left

A�, B5, ϕ ∨ ψ,Γ −→ Δ
c∗left.
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If π ends in an initial sequent, then Π = ∅ since all initial sequents only contain atomic
formulas and thus cannot introduce A1 or B∃

1 . We then apply appropriate weakenings.

This leads us to the main result of this section:

Proof of Proposition 4.6. Let AB |− ¬ϕ. Then by Lemma 4.3 we have AB∃ |− ¬ϕ. Using
Lemma 4.4 we get AB∃ |− ϕ −→. By Lemma 4.10 we have a proof

π� |−LKP=
T

A \ {A1, A2, A3} , B5� �� �
⊆T

, AB∃ \ {A1, B
∃
1}� �� �

=T

, ϕ.

Now by applying cleft a few times we get a π�� |−LKP=
T

T, ϕ −→ which concludes the

proof.

We conclude this section by showing cut-elimination and a subformula property for
LKP=

T .

Definition 4.11. An LKP=
T -proof π is called regular if all inferences with eigenvariable

conditions have pairwise different eigenvariables. Note that this includes the eigenvariable
condition for Bvar

1 .

Proposition 4.12. If LKP=
T |− Γ −→ Δ. Then there exists a regular LKP=

T -proof π of
Γ −→ Δ

Proof sketch. Very similar to the LK= case.

Proposition 4.13. If LKP=
T |− Γ −→ Δ. Then there exists a LKP=

T -proof π of Γ −→ Δ
where all cuts are atomic.

Proof. The proof follows the standard cut-elimination procedure for LK=. We can assume
that the proof is regular because of Proposition 4.12. We have to show that we can perform
rank- and degree-reduction in the presence of Bvar

1 . Since Bvar
1 does not introduce a formula

in the lower sequent, it suffices to show rank-reduction. There are four cases to consider:
Bvar

1 can be the left or right inference above cut and the cut formula can be in the left
or right inference above Bvar

1 . We only consider the case where Bvar
1 is the left inference

above cut and the cut formula occurs in the right inference above Bvar
1 . The other cases

are similar. Now consider

(π1)
x = 0,Γ1 −→ Δ1

(π2)
x = s(y),Γ2 −→ Δ2, ϕ

Γ1,Γ2 −→ Δ1,Δ2, ϕ
Bvar

1
(π3)

ϕ,Γ3 −→ Δ3

Γ1,Γ2,Γ3 −→ Δ1,Δ2,Δ3
cut.

Because of the eigenvariable condition on Bvar
1 we have y &∈ FV(Γ1,Γ2 −→ Δ1,Δ2, ϕ). We

can rewrite this proof into

(π1)
x = 0,Γ1 −→ Δ1

(π2)
x = s(y),Γ2 −→ Δ2, ϕ

(π3)
ϕ,Γ3 −→ Δ3

x = s(y),Γ2,Γ3 −→ Δ2,Δ3
cut

Γ1,Γ2,Γ3 −→ Δ1,Δ2,Δ3
Bvar

1 .
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T to P=

T

Since the proof is regular we have that y &∈ FV(Γ3 −→ Δ3), thus the eigenvariable condition
still holds for Bvar

1 . Also, the resulting cut has lower rank.

Next we state a subformula property for LKP=
T :

Proposition 4.14. Let s ∈ {¬,∧,∨,⊃, ∀, ∃}, S ∈ Seq(S) and π |−LKP=
T

S where all cuts

are atomic. If π uses sleft or sright, then S contains s.

Proof. The proof is similar to the proof of Theorem 2.15: Since s can only occur in non-
atomic formulas and all cuts are atomic, there is no inference rule where s is in the upper
sequent, but not in the lower sequent. This also applies to Bvar

1 since x = 0 and x = s(y)
are atomic. Thus, the statement can be shown by a straightforward induction on π.

4.2 From LKP=
T to P=

T

We now introduce a calculus which operates on [A(S)]T and only uses Aax
1 , Bvar

1 , equational
and structural rules. This serves as an intermediate step towards our goal calculus PT which
allows us to get rid of quantifier and propositional rules and the premise of T in the proof
of the previous lemma.

Definition 4.15. P=
T is the proof calculus acting on [A(S)]T where for every inference

Γ1 −→ Δ1 . . . Γn −→ Δn

Γ −→ Δ
I

with I ∈ S ∪ E ∪ {Aax
1 , Bvar

1 } we have the corresponding inference

[Γ1]T −→ [Δ1]T . . . [Γn]T −→ [Δn]T
[Γ]T −→ [Δ]T

[I]T

in P=
T .

In proofs we will often omit the [·]T around multisets and formulas for ease of notation
and instead imply it by the use of [·]T in the inference rule. So, instead of the above we will
often just write

Γ1 −→ Δ1 . . . Γn −→ Δn

Γ −→ Δ
[I]T .

We also inherit the notions of auxiliary/principal occurrence/equality and cut formula
from LKP=

T into this calculus. Since we are now dealing with equivalence classes of for-
mulas, we have to modify the notion of eigenvariable (condition) in [Bvar

1 ]T . Consider an
inference

x = 0,Γ −→ Δ x = s(y),Π −→ Λ

Γ,Π −→ Δ,Λ
[Bvar

1 ]T .

We say that the eigenvariable condition is satisfied if for all [ϕ]T ∈ [Γ]T ∪ [Π]T ∪ [Δ]T ∪ [Λ]T
there exists a ψ ∈ [ϕ]T such that ψ does not contain y.
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4 Completeness

Remark 4.16. An alternative calculus is the calculus S∪E∪{Aax
1 , Bvar

1 } on A(S) extended
with the rules

A,Γ −→ Δ

A�,Γ −→ Δ
⇔T left

Γ −→ Δ, A

Γ −→ Δ, A� ⇔T right

where A,A� ∈ A(S) and A ⇔T A�. This too allows us to exchange atoms with T -equivalent
atoms which is implicit in the calculus we introduced before.

For this section we formalize the notion of quantifier-free instance by expanding on
Definition 4.7:

Definition 4.17. Let L be a language and ϕ ∈ F (L). A ψ ∈ Fqf(L) is called a quantifier-
free instance of ϕ, if there are terms t1, . . . , tn ∈ T (L) such that ψ ≡ ϕ[t1] . . . [tn].

We show that we can transform LKP=
T -proofs of T, t = u −→ into P=

T -proofs. For this
we use a few lemmas:

Lemma 4.18. Let ϕ be a quantifier-free instance of a formula in T \ {B4} and t ∈ T (S).
Then ϕ ∈ A(S) and ϕ ⇔T t = t.

Proof. Checking the formulas in T we see that the only axiom with non-atomic quantifier-
free instances is B4. Thus ϕ ∈ A(S).
Now we have LK= |− T, ϕ −→ t = t by

−→ t = t refl

T, ϕ −→ t = t
w∗
left.

Let ψ ∈ T be the formula that ϕ is a quantifier-free instance of. Then LK= |− T, t = t −→ ϕ
by

ϕ −→ ϕ axiom

ψ −→ ϕ
∀∗left

T, t = t −→ ϕ
w∗
left.

Lemma 4.19. Let ϕ, ψ ∈ F (S) such that ϕ ⊃ ψ is a quantifier-free instance of B4. Then
ϕ, ψ ∈ A(S) and ϕ ⇔T ψ.

Proof. Since ϕ ⊃ ψ is an instance of B4, there are t, u, v ∈ T (S) such that ϕ ≡ t+u = t+v
and ψ ≡ u = v. We have LK= |− T, u = v −→ t+ u = t+ v by

u = v −→ u = v axiom −→ t+ u = t+ u refl

u = v −→ t+ u = t+ v
eq→right

T, u = v −→ t+ u = t+ v
w∗
left

and LK= |− T, t+ u = t+ v −→ u = v by

t+ u = t+ v −→ t+ u = t+ v axiom u = v −→ u = v axiom

t+ u = t+ v ⊃ u = v, t+ u = t+ v −→ u = v
⊃left

B4, t+ u = t+ v −→ u = v
∀∗left

T, t+ u = t+ v −→ u = v
w∗
left.
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4.2 From LKP=
T to P=

T

Lemma 4.20. If LKP=
T |− Π,Γat −→ Δat such that supp(Γat ∪Δat) ⊆ A(S) and Π is a

multiset of partial instances of formulas in T , then P=
T |− [Γat]T −→ [Δat]T .

Proof. Let π |−LKP=
T

Π,Γat −→ Δat. We can assume that the cuts in π are atomic be-

cause of Proposition 4.13. By Lemma 4.14 we then have that π does not use any of the
rules ¬left, ¬right, ∧left, ∧right, ∨left, ∨right, ∃left and ∃right. We show that there is a proof
π� |−P=

T
[Γat]T −→ [Δat]T .

If π ends in axiom, then π =
ϕ −→ ϕ axiom.

for an atomic formula ϕ. If ϕ ∈ Γat, then π� =

ϕ −→ ϕ [axiom]T .

Otherwise ϕ ∈ Π and since ϕ is atomic, it is quantifier-free and we have ϕ ⇔T 0 = 0 by
Lemma 4.18. Thus π� =

−→ ϕ [refl]T .

If π =

−→ t = t
refl,

then π� =
−→ t = t

[refl]T .

If π =

s(t) = 0 −→ Aax
1 ,

note that no formula of the form s(t) = 0 is an instance of a formula in T and therefore
Π = ∅. Thus π� =

s(t) = 0 −→ [Aax
1 ]T .

If π =
(π1)

ϕ,ϕ,Γ −→ Δat

ϕ,Γ −→ Δat
cleft,

with Γ such that Γ ∪ {ϕ} = Π ∪ Γat. If ϕ ∈ Π, we apply the induction hypothesis to π1 to
get a proof π�

1 of [Γat]T −→ [Δat]T . Then π� = π�
1. If ϕ ∈ Γat, then we apply the induction

hypothesis to π1 to get a proof π�
1 of [ϕ]T , [ϕ]T , [Γ ∩ Γat]T −→ [Δat]T . Then π� =

(π�
1)

ϕ,ϕ,Γ ∩ Γat −→ Δat

ϕ,Γ ∩ Γat� �� �
=Γat

−→ Δat
[cleft]T .

The cases where π ends in cright, wleft or wright are argued similarly.
Now consider the case π =

(π1)
Γ1 −→ Δ1, ϕ

(π2)
ϕ,Γ2 −→ Δ2

Γ1,Γ2 −→ Δ1,Δ2
cut
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4 Completeness

with Γ1,Γ2,Δ1,Δ2 such that Γ1∪Γ2 = Π∪Γat and Δ1∪Δ2 = Δat. Since ϕ is atomic we can
apply the induction hypothesis to π1 and π2 to get proofs π

�
1 |−P=

T
[Γ1∩Γat]T −→ [Δ1]T , [ϕ]T

and π�
2 |−P=

T
[ϕ]T , [Γ2 ∩ Γat]T −→ [Δ2]T . Now, π

� =

(π�
1)

Γ1 ∩ Γat −→ Δ1, ϕ
(π�

2)
ϕ,Γ2 ∩ Γat −→ Δ2

Γ1 ∩ Γat,Γ2 ∩ Γat� �� �
=Γat

−→ Δ1,Δ2� �� �
=Δat

[cut]T .

If π =
(π1)

Γ1 −→ Δ1, t = u
(π2)

ϕ(t),Γ2 −→ Δ2

ϕ(u),Γ1,Γ2 −→ Δ1,Δ2

eq→left

with ϕ atomic and Γ1,Γ2,Δ1,Δ2 such that Γ1∪Γ2∪{ϕ(u)} = Π∪Γat and Δ1∪Δ2 = Δat.
Since ϕ(t) and t = u are atomic we can apply the induction hypothesis to π1 and π2 to get
proofs π�

1 of [Γ1 ∩ Γat]T −→ [Δ1]T , [t = u]T and π�
2 of [ϕ(u)]T , [Γ2 ∩ Γat]T −→ [Δ2]T . Now

let π�
3 :=

(π�
1)

Γ1 ∩ Γat −→ Δ1, t = u
(π�

2)
ϕ(t),Γ2 ∩ Γat −→ Δ2

ϕ(u),Γ1 ∩ Γat,Γ2 ∩ Γat −→ Δ1,Δ2� �� �
=Δat

[eq→left]T .

If ϕ(u) ∈ Γat we have Γat = {ϕ(u)} ∪ (Γ1 ∩ Γat) ∪ (Γ2 ∩ Γat) and π� = π�
3. Otherwise,

ϕ(u) ∈ Π and we have ϕ(u) ⇔T 0 = 0 by Lemma 4.18. Thus, π� =

−→ ϕ(u)
[refl]T

(π�
3)

ϕ(u),Γ1 ∩ Γat,Γ2 ∩ Γat −→ Δ1,Δ2

Γ1 ∩ Γat,Γ2 ∩ Γat� �� �
=Γat

−→ Δ1,Δ2� �� �
=Δat

[cut]T .

If π ends in other equality rules, we perform a similar transformation.

Now consider π =

(π1)
x = 0,Γ1 −→ Δ1

(π2)
x = s(y),Γ2 −→ Δ2

Γ1,Γ2 −→ Δ1,Δ2
Bvar

1 ,

with Γ1,Γ2,Δ1,Δ2 where Γ1∪Γ2 = Π∪Γat, Δ1∪Δ2 = Δat and y &∈ FV(Γ1,Γ2 −→ Δ1,Δ2).
Since x = 0 and x = s(y) are atomic we can apply the induction hypothesis to π1 and π2 to
get proofs π�

1 of [x = 0]T , [Γ1∩Γat]T −→ [Δ1]T and π�
2 of [x = s(y)]T , [Γ2∩Γat]T −→ [Δ2]T .

Then π� =

(π1)
x = 0,Γ1 ∩ Γat −→ Δ1

(π2)
x = s(y),Γ2 ∩ Γat −→ Δ2

Γ1 ∩ Γat,Γ2 ∩ Γat� �� �
=Γat

−→ Δ1,Δ2� �� �
=Δat

[Bvar
1 ]T .
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4.3 From P=
T to [Bvar

1 ]T -normal proofs

Now consider π =
(π1)

Γ1 −→ Δ1, ϕ
(π2)

ψ,Γ2 −→ Δ2

ϕ ⊃ ψ,Γ1,Γ2 −→ Δ1,Δ2
⊃left,

with Γ1,Γ2,Δ1,Δ2 such that {ϕ ⊃ ψ} ∪ Γ1 ∪ Γ2 = Π ∪ Γat. Since ϕ ⊃ ψ is not atomic, it
is an instance of a formula in T . The only formula in T which contains ⊃ is B4, therefore
we have ϕ ≡ t + u = t + v and ψ ≡ u = v for some t, u, v ∈ T (S). There holds ϕ ⇔T ψ
by Lemma 4.19. Since ϕ and ψ are atomic we can apply the induction hypothesis to π1
and π2 to get proofs π�

1 of [Γ1 ∩Γat]T −→ [Δ1]T , [ϕ]T and π�
2 of [ψ]T , [Γ2 ∩Γat]T −→ [Δ2]T .

Since [ϕ]T = [ψ]T , we can replace ⊃left by a cut to get π� =

(π�
1)

Γ1 ∩ Γat −→ Δ1, ϕ
(π�

2)
ψ,Γ2 ∩ Γat −→ Δ2

Γ1 ∩ Γat,Γ2 ∩ Γat� �� �
=Γat

−→ Δ1,Δ2� �� �
=Δat

[cut]T .

π cannot end in ⊃right since all formulas in Δat are atomic.
Now consider π =

(π1)
ϕ(t),Γ −→ Δat

∀xϕ(x),Γ −→ Δat
∀left

with {∀xϕ(x)} ∪ Γ = Π ∪ Γat. Since ∀xϕ(x) is not atomic we have that ∀xϕ(x) and ϕ(t)
are instances of a formula in T . Thus we can apply the induction hypothesis to π1 to get
a proof π�

1 of [Γat]T −→ [Δat]T . Now, π
� = π�

1.
Note that π cannot end in ∀right since all formulas in Δat are atomic.

Now, the main result for this section follows:

Proposition 4.21. Let ϕ ∈ A(S) and LKP=
T |− T, ϕ −→. Then P=

T |− [ϕ]T −→.

Proof. Follows directly from Lemma 4.20 for Π = T , Γat = {ϕ} and Δat = ∅.

4.3 From P=
T to [Bvar

1 ]T -normal proofs

In this section we discuss the notion of [Bvar
1 ]T -normal proofs which will allow us to extract

the PT -proof structure from P=
T -proofs. Further, [Bvar

1 ]T -normal proofs will give us the
ability to substitute free variables in P=

T -proofs: Note that the [Bvar
1 ]T -rule is not preserved

under substitutions of variables by arbitrary terms in proofs. Since the rule requires that we
use a variable x in the antecedent of the premises we cannot substitute x by arbitrary terms
since then the corresponding [Bvar

1 ]T -inference might not be valid anymore. To do this, we
first need to be able to uniquely identify the variables associated with a [Bvar

1 ]T -inference.

Lemma 4.22. Let x, y be variables. If x = 0 ⇔T y = 0, then x = y.

Proof. By assumption we have T |− x = 0 −→ y = 0. Now further assume that x &= y.
Since N is a model of T we have that N |= x = 0 ⊃ y = 0. However, under the variable
mapping b with b(x) = 0 and b(y) = 1 we have that x = 0 is satisfied, but y = 0 is not.
Therefore we have a contradiction and x = y.
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4 Completeness

Lemma 4.23. Let x, y, z, w be variables with x &= z and y &= w. If x = s(z) ⇔T y = s(w),
then x = y and z = w.

Proof. By assumption we have T |− x = s(z) −→ y = s(w). Since N is a model of T we
have N |= x = s(z) ⊃ y = s(w). Now assume x &= y. Under the variable mapping b with
b(x) = 1 and b(y) = b(z) = b(w) = 0 we have N |= x = s(z), but N &|= y = s(w) which is
a contradiction. Therefore x = y. Now assume z &= w, then under the variable mapping b
with b(x) = b(y) = 1, b(z) = 0 and b(w) = 1 we have that N |= x = s(z), but N &|= y = s(w),
which is a contradiction. Therefore w = z.

This means the following is well-defined:

Definition 4.24. Consider a [Bvar
1 ]T -inference

x = 0,Γ −→ Δ x = s(y),Π −→ Λ

Γ,Π −→ Δ,Λ
[Bvar

1 ]T .

We call x the split variable and y the eigenvariable of this inference. For a P=
T -proof π we

write EV(π) for the set of variables which are eigenvariable of a [Bvar
1 ]T -inference in π and

SV(π) for the set of variables which are split variables of a [Bvar
1 ]T -inference in π. We say

π is EV-regular if all eigenvariables of [Bvar
1 ]T -inferences in π are pairwise distinct.

This allows us to formulate conditions under which substitution of terms is allowed:

Lemma 4.25. Let π(x) |−P=
T

[Γ(x)]T −→ [Δ(x)]T . Further let x be a variable such that

x &∈ SV(π(x)) and let t ∈ T (S) such that FV(t) ∩ EV(π) = ∅. Then there exists a proof
π(t) |−P=

T
[Γ(t)]T −→ [Δ(t)]T with #[Bvar

1 ]T (π(t)) = #[Bvar
1 ]T (π(x)).

Proof. We proceed by induction on π.
If π(x) =

s(u(x)) = 0 −→ [Aax
1 ]T ,

then π(t) =

s(u(t)) = 0 −→ [Aax
1 ]T

is a P=
T -proof of [Γ(t)]T −→ [Δ(t)]T . A similar argument holds, if π ends in [refl]T or

[axiom]T .
If π(x) ends in a contraction or weakening we can apply the induction hypothesis to the

direct subproof π�(x) of π(x). We can then reapply the contraction or weakening to π�(t)
to get the desired proof.
If π(x) =

(π1(x))
Γ1(x) −→ Δ1(x), u(x) = v(x)

(π2(x))
ϕ(u(x), x),Γ2(x) −→ Δ2(x)

ϕ(v(x), x),Γ1(x),Γ2(x) −→ Δ1(x),Δ2(x)
[eq→left]T ,

then by induction hypothesis we have π1(t) |−P=
T

, [Γ1(t)]T −→ [Δ1(t)]T , [u(t) = v(t)]T and

π2(t) |−P=
T

[ϕ(u(t), t)]T , [Γ2(t)]T −→ [Δ2(t)]T . Thus, applying [eq→left]T to π1(t) and π2(t)

gives the desired result. A similar arguments works for the other equality rules and [cut]T .
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1 ]T -normal proofs

If π(x) =

(π1(x))
y = 0,Γ1(x) −→ Δ1(x)

(π2(x))
y = s(z),Γ2(x) −→ Δ2(x)

Γ1(x),Γ2(x) −→ Δ1(x),Δ2(x)
[Bvar

1 ]T ,

then note that y &= x since x &∈ SV(π(x)) and z &= x since z is an eigenvariable and x is a
free variable in π. By induction hypothesis we have proofs

π1(t) |−P=
T

[y = 0]T , [Γ1(t)]T −→ [Δ1(t)]T

and
π2(t) |−P=

T
[y = s(z)]T , [Γ2(t)]T −→ [Δ2(t)]T .

Thus, applying [Bvar
1 ]T to π1(t) and π2(t) gives the desired result. Note that the eigenvari-

able condition is satisfied since FV(t) ∩ EV(π(x)) = ∅.
Note than in all cases the number of [Bvar

1 ]T -inferences was preserved.

The following property makes it easier to fulfill the conditions for Lemma 4.25.

Definition 4.26. Let π |−P=
T

[Γ]T −→ [Δ]T . We say π is [Bvar
1 ]T -regular if for all subproofs

ρ of π and all subproofs ρ� of ρ there holds: If ρ and ρ� end in [Bvar
1 ]T and both their last

[Bvar
1 ]T -inferences have the same split variable, then ρ = ρ�.

To extract the PT -proof structure from P=
T -proofs we transform P=

T -proofs into proofs
where [Bvar

1 ]T -inferences occur after all [cut]T and equality inferences. To do this, the
following definitions are useful.

Definition 4.27. Let C be a proof calculus and I,J ⊆ C. We say a C-proof π is I
J -formed

if all subproofs ρ of π which end in one of the rules in I, do not use any of the rules in
J . We say a C-proof π is I ↓-formed if π is C\I

I -formed. Let ρ be a subproof of π, and let
ρ� be a subproof of ρ. Further let ρ� end in a rule from J and let ρ end in a rule from I.
Then we call (ρ�, ρ) an I

J -violating pair of π. If ρ� is a direct subproof of ρ we call (ρ�, ρ)
a direct I

J -violating pair of π. If I = {I} we often omit the braces and write I
J -violating

pair. Similarly if J is a singleton set.

Remark 4.28. It is straightforward to show that a proof is I
J -formed if and only if it has

no I
J -violating pairs. Also note, there is a C\I

I -violating pair if and only if there is a direct
C\I
I -violating pair.

Definition 4.29. We set

ET := {[eq→left]T , [eq→right]T , [eq←left]T , [eq←right]T , [cut]T }

and
WT := {[wleft]T , [wright]T } .

Now we can define what we mean by [Bvar
1 ]T -normal proofs:
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Definition 4.30. A P=
T -proof π is called [Bvar

1 ]T -normal if all of the following hold:

(i) π is EV-regular.

(ii) π is [Bvar
1 ]T -regular.

(iii) π is ET
[Bvar

1 ]T
-formed.

(iv) π is WT ↓-formed.

The goal for this section is to show that we can always obtain [Bvar
1 ]T -normal P=

T -proofs:

Proposition 4.31. If P=
T |− [Γ]T −→ [Δ]T , then there exists a [Bvar

1 ]T -normal P=
T -proof

of [Γ]T −→ [Δ]T .

4.3.1 WT ↓-formed proofs

In this subsection we show that weakenings can be moved down in P=
T -proofs which also

allows us to consider proofs without weakening.

Lemma 4.32. Let π |−P=
T

[Γ]T −→ [Δ]T . Then there exists a proof π� |−P=
T

[Γ]T −→ [Δ]T
such that:

(i) π� is WT ↓ formed.

(ii) If π is EV-regular, then so is π�.

(iii) If π is [Bvar
1 ]T -regular, then so is π�.

(iv) If π is ET
[Bvar

1 ]T
-formed, then so is π�.

Proof. This proof is similar to the procedure for removing weakenings in [2]. In this proof

we write violating pair to mean
P=
T \WT
WT -violating pair.

Let π� |−P=
T

[Γ]T −→ [Δ]T . By Remark 4.28 it suffices to show that there is a proof

π |−P=
T

[Γ]T −→ [Δ]T such that π has no violating pairs. To do this, we proceed by

induction on the number of violating pairs of π�. If π� has no violating pairs, we are done.
Otherwise let (ρ�, ρ) be a direct violating pair and let I �, I be the inferences that ρ�, ρ end
in respectively. We distinguish two cases:

(i) If the principal occurrence of I � is in the context of I, we can exchange I and I � and
still have a P=

T -proof. For example if ρ� ends in [wleft]T and ρ =

(ρ��)
Π1 −→ Λ1, ψ

ϕ,Π1 −→ Λ1, ψ
[wleft]T

(ρ���)
ψ,Π2 −→ Λ2

ϕ,Π1,Π2 −→ Λ1,Λ2
[cut]T
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then we have a proof of [Γ]T −→ [Δ]T with at least one fewer violating pair by
replacing ρ in π with

(ρ��)
Π1 −→ Λ1, ψ

(ρ���)
ψ,Π2 −→ Λ2

Π1,Π2 −→ Λ1,Λ2
[cut]T

ϕ,Π1,Π2 −→ Λ1,Λ2
[wleft]T .

Thus, we can apply the induction hypothesis. A similar procedure works for other
rules in P=

T .

(ii) Otherwise the principal occurrence of I � is an auxiliary occurrence of I.

(a) If ρ =
(ρ��)

ϕ,Π −→ Λ

ϕ,ϕ,Π −→ Λ
[wleft]T

ϕ,Π −→ Λ
[cleft]T ,

then by replacing ρ in π by ρ�� we get a proof of Γ −→ Δ with at least one fewer
violating pair. A similar argument works, if ρ ends in [cright]T .

(b) If ρ =
(ρ��)

Π1 −→ Λ1

Π1 −→ Λ1, t = u
[wright]T

(ρ���)
ψ(t),Π2 −→ Λ2

ψ(u),Π1,Π2 −→ Λ1,Λ2
[eq→left]T ,

then by replacing ρ in π by

(ρ��)
Π1 −→ Λ1

ψ(u),Π1,Π2 −→ Λ1,Λ2
[w∗]

we get a proof of [Γ]T −→ [Δ]T with at least one fewer violating pair than π
and we can apply the induction hypothesis. A similar argument works for other
equality rules, [cut]T and [Bvar

1 ]T and also if ρ� is the right direct subproof of ρ.

Note that in all cases, EV-regularity, [Bvar
1 ]T -regularity and ET

[Bvar
1 ]T

-form are preserved.

Lemma 4.33. Let π |−P=
T

[Γ]T −→ [Δ]T . Then there are Γ� ⊆ Γ, Δ� ⊆ Δ and a proof

π� |−P=
T \WT

[Γ�]T −→ [Δ�]T . If π is EV-regular, then so is π�.

Proof. Let π |−P=
T

[Γ]T −→ [Δ]T . By Lemma 4.32 we can assume that π is WT ↓-formed.

Note that this preserves EV-regularity. We show the statement by induction on the number
of inferences from WT that π uses. If π does not use any rules from WT we can set
Γ� = Γ,Δ� = Δ and π� = π. Otherwise π ends in a rule from WT since π is WT ↓-formed.
If π =

(π1)
Γ1 −→ Δ1

ϕ,Γ1 −→ Δ1
[wleft]T ,
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then by induction hypothesis we have a π�
1 |−P=

T \WT
[Γ�

1]T −→ [Δ�
1]T for some Γ�

1 ⊆ Γ1∪{ϕ}
and Δ�

1 ⊆ Δ1. With π� = π�
1, Γ

� = Γ�
1 and Δ� = Δ�

1 the statement follows. A similar
procedure of “walking up the proof tree” works for [wright]T .

4.3.2 ET
[Bvar

1 ]T
-formed proofs

Now we show that P=
T -proofs can be transformed into proofs where [Bvar

1 ]T -inferences are
the last binary inferences. To do this we use a well-founded order on multisets:

Definition 4.34. Let X be a set and let > a binary relation on X. We define the multiset
order >mul on M(X) by Γ >mul Δ if and only if there are Π,Λ ∈ M(X) with ∅ &= Π ⊆ Γ,
Δ = (Γ−Π)∪Λ and for all y ∈ Λ there exists a x ∈ Π such that x > y. We write Γ <mul Δ
if Δ >mul Γ.

Lemma 4.35. (X,>) is well-founded if and only if (M(X), >mul) is.

Proof. See for example [1] Theorem 2.5.5.

Definition 4.36. Let π be a P=
T -proof. Further let π1, . . . , πn be the direct subproofs of

π. We now inductively define the ET
[Bvar

1 ]T
-violation measure of π (denoted as V (π)) by the

multiset

V (π) =

n�
i=1

V (πi) ∪
��

#[Bvar
1 ]T (π)

�
if π ends in a rule from ET

∅ otherwise.

Remark 4.37. The sum of the elements in V (π) is the number of ET
[Bvar

1 ]T
-violating pairs.

Lemma 4.38. Let π be a P=
T \WT -proof. There holds:

(i) π is ET
[Bvar

1 ]T
-formed if and only if all elements in V (π) are 0.

(ii) maxV (π) ≤ #[Bvar
1 ]T (π).

(iii) Let ρ be a subproof of π with conclusion [Γ]T −→ [Δ]T and let ρ� |−P=
T

[Γ]T −→ [Δ]T

with V (ρ�) <mul V (ρ). Further let π� be the proof where ρ is replaced by ρ� in π. Then
V (π�) <mul V (π).

Proof. (i) Straightforward.

(ii) Follows by a straightforward induction on π.

(iii) We proceed by induction on the number of subproofs between π and ρ. If there is only
one such subproof, then π = ρ and the statement follows by assumption. Otherwise
let σ be the subproof of π such that ρ is a direct subproof of σ. Further, let σ�

be the proof where ρ is replaced by ρ� in σ�. Then by the definition of V we have
V (σ�) <mul V (σ) and we can apply the induction hypothesis to π and σ.

The following definition is useful in the upcoming proof.
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Definition 4.39. Let Γ be a multiset and n ∈ N. We inductively define the multiset n · Γ
by 0 · Γ := ∅ and (n+ 1) · Γ := (n · Γ) ∪ Γ.

As a reminder, note that

P=
T \WT = {[Aax

1 ]T , [B
var
1 ]T , [cut]T , [axiom]T , [cleft]T , [cright]T ,

[refl]T , [eq→left]T , [eq→right]T , [eq←left]T , [eq←right]T }.

Lemma 4.40. Let π |−P=
T \WT

|− [Γ]T −→ [Δ]T . Then there exists a ET
[Bvar

1 ]T
-formed proof

proof π� |−P=
T \WT

[Γ]T −→ [Δ]T . If π is EV-regular, then so is π�.

Proof. Let π |−P=
T \WT

[Γ]T −→ [Δ]T . We proceed by induction on V (π) with respect to

>mul (note that >mul is well-founded by Lemma 4.35). If all elements in V (π) are 0 we are
done by Lemma 4.38 (i). Otherwise there is an uppermost subproof ρ of π such that ρ ends
in a rule from ET and #[Bvar

1 ]T (ρ) > 0 is maximal in V (π). Since #[Bvar
1 ]T (ρ) > 0 there is a

lowermost subproof ρ� of ρ that ends in [Bvar
1 ]T . Since we chose ρ and ρ� to be uppermost

and lowermost respectively we have that the inferences of subproofs strictly between ρ and
ρ� are only contractions.
Now we only consider the case where ρ ends in [eq→left]T . The cases where ρ ends in

a different equality rule or [cut]T can be argued similarly. Further we only consider the
case where ρ� is a subproof of the right direct subproof of ρ. Again, the other case can be
handled analogously. Now ρ =

(ρ1)
Γ1 −→ Δ1, t = u

(ρ2)
x = 0,Γ2,Φ2(t) −→ Δ2

(ρ3)
x = s(y),Γ3,Φ3(t) −→ Δ3

Φ2(t),Φ3(t),Γ2,Γ3 −→ Δ2,Δ3
[Bvar

1 ]T

ϕ(t),Π −→ Λ
[c]∗T

ϕ(u),Γ1,Π −→ Δ1,Λ
[eq→left]T

where Φ2(t) and Φ3(t) are the multisets with supp(Φ2(t)), supp(Φ3(t)) ⊆ {ϕ(t)} which are
contracted to the ϕ(t)-occurrence in the right premise of the last inference of ρ.

Now for n ≤ |Φ2| we inductively define a proof

ρn2 |−P=
T \WT

x = 0, n · {ϕ(u)} , (|Φ2| − n) · {ϕ(t)} , n · Γ1,Γ2� �� �
=:Γn

−→ n ·Δ1,Δ2� �� �
=:Δn

by ρ02 = ρ2 and ρn+1
2 =

(ρ1)
Γ1 −→ Δ1, t = u

(ρn2 )
x = 0, n · {ϕ(u)} , (|Φ2| − n) · {ϕ(t)} ,Γn −→ Δn

x = 0, (n+ 1) · {ϕ(u)} , (|Φ2| − n− 1) · {ϕ(t)} ,Γ1,Γ
n� �� �

=Γn+1

−→ Δ1,Δ
n� �� �

=Δn+1

[eq→left]T .

Note that this corresponds to a repeated application of [eq→left]T with ρ1 as the left premise
and ρ2 as the base case for the right premise. Now we set

ρ�2 := ρ
|Φ2|
2 |−P=

T \WT
x = 0,Φ2(u), |Φ2| · Γ1,Γ2 −→ |Φ2| ·Δ1,Δ2.
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It is straightforward to see that ρ�2 uses |Φ2| many new [eq→left]T -inferences.
Similarly we obtain a proof

ρ�3 |−P=
T \WT

x = s(y),Φ3(u), |Φ3| · Γ1,Γ3 −→ |Φ3| ·Δ1,Δ3

Note that similar constructions are possible for other equality rules and [cut]T .
Now set ρ� =

ρ�2 ρ�3
Φ2(u),Φ3(u), (|Φ2|+ |Φ3|) · Γ1,Γ2,Γ3 −→ (|Φ2|+ |Φ3|) ·Δ1,Δ2,Δ3

[Bvar
1 ]T

ϕ(u),Γ1,Π −→ Δ1,Λ
[c]∗T .

We have

V (ρ) = V (ρ1) ∪ V (ρ2) ∪ V (ρ3) ∪
�
1 + #[Bvar

1 ]T (ρ1) + #[Bvar
1 ]T (ρ2) + #[Bvar

1 ]T (ρ3)
�

� �� �
:=Π�

and

V (ρ�) = (|Φ2|+ |Φ3|) · V (ρ1) ∪ V (ρ2) ∪ V (ρ3) ∪ |Φ2| ·
�
#[Bvar

1 ]T (ρ1) + #[Bvar
1 ]T (ρ2)

�
∪ |Φ3| ·

�
#[Bvar

1 ]T (ρ1) + #[Bvar
1 ]T (ρ3)

�
.

Now we have V (ρ�) = (V (ρ)−Π�) ∪ Λ� for Λ� :=

(|Φ2|+ |Φ3| − 1) · V (ρ1) ∪ |Φ2| ·
�
#[Bvar

1 ]T (ρ1) + #[Bvar
1 ]T (ρ2)

�
∪ |Φ3| ·

�
#[Bvar

1 ]T (ρ1) + #[Bvar
1 ]T (ρ3)

�
.

By Lemma 4.38 (ii) we get

maxV (ρ1) ≤ #[Bvar
1 ]T (ρ1) < 1 + #[Bvar

1 ]T (ρ1) + #[Bvar
1 ]T (ρ2) + #[Bvar

1 ]T (ρ3).

and therefore we have

maxΛ < 1 + #[Bvar
1 ]T (ρ1) + #[Bvar

1 ]T (ρ2) + #[Bvar
1 ]T (ρ3) ∈ Π.

Thus V (ρ�) <mul V (ρ). Let π� be the proof where ρ is replaced by ρ� in π, then by Lemma
4.38 (iii) we get V (π�) <mul V (π). Now, by induction hypothesis there is a ET

[Bvar
1 ]T

-formed

P=
T \WT -proof of [Γ]T −→ [Δ]T . Note that EV-regularity is preserved in every step.

4.3.3 Regular proofs

In this subsection we show that we can construct EV-regular and [Bvar
1 ]T -regular proofs.

First observe that we can rename free variables in P=
T -proofs:

Lemma 4.41. Let π(x) |−P=
T

[Γ(x)]T −→ [Δ(x)]T and let y ∈ V with y &∈ EV(π(x)). Then

there exists a proof π(y) |−P=
T

[Γ(y)]T −→ [Δ(y)]T such that:
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(i) If π(x) is WT ↓-formed, so is π(y).

(ii) If π(x) is ET
[Bvar

1 ]T
-formed, so is π(y).

(iii) If π(x) is [Bvar
1 ]T -regular and either y = x or y is not a split variable of a [Bvar

1 ]T -
inference in π(x), then π(y) is [Bvar

1 ]T -regular.

(iv) EV(π(y)) = EV(π(x)).

(v) #[Bvar
1 ]T (π(y)) = #[Bvar

1 ]T (π(x)).

Proof. We proceed by induction on π.
If π(x) =

s(u(x)) = 0 −→ [Aax
1 ]T ,

then π(y) =

s(u(y)) = 0 −→ [Aax
1 ]T .

Similarly, if π(x) ends in [refl]T or [axiom]T .
If π ends in a contraction or a weakening we can apply the induction hypothesis to the

direct subproof π� of π. We can then reapply the contraction or weakening to π� to get the
desired proof.
If π(x) =

(π1(x))
Γ1(x) −→ Δ1(x), u(x) = v(x)

(π2(x))
ϕ(u(x), x),Γ2(x) −→ Δ2(x)

ϕ(v(x), x),Γ1(x),Γ2(x) −→ Δ1(x),Δ2(x)
[eq→left]T ,

then by induction hypothesis we have π1(y) |−P=
T

[Γ1(y)]T −→ [Δ1(y)]T , [u(y) = v(y)]T
and π2(y) |−P=

T
[ϕ(u(y), y)]T , [Γ2(y)]T −→ [Δ2(y)]T . Thus, applying [eq→left]T to π1(y)

and π2(y) gives the desired result. A similar arguments works for the other equality rules
and [cut]T .

Now consider π(x) =

(π1(x))
z = 0,Γ1(x) −→ Δ1(x)

(π2(x))
z = s(w),Γ2(x) −→ Δ2(x)

Γ1(x),Γ2(x) −→ Δ1(x),Δ2(x)
[Bvar

1 ]T .

If z &= x, then by induction hypothesis we have proofs

π1(y) |−P=
T

[z = 0]T , [Γ1(y)]T −→ [Δ1(y)]T ,

π2(y) |−P=
T

[z = s(w)]T , [Γ2(y)]T −→ [Δ2(y)]T .

Applying [Bvar
1 ]T to π1(y) and π2(y) gives the desired result.

Otherwise, if z = x, then by induction hypothesis we have proofs

π1(y) |−P=
T

[y = 0]T , [Γ1(y)]T −→ [Δ1(y)]T ,

π2(y) |−P=
T

[y = s(w)]T , [Γ2(y)]T −→ [Δ2(y)]T
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and we have π(y) =

(π1(y))
y = 0,Γ1(y) −→ Δ1(y)

(π2(y))
y = s(w),Γ2(y) −→ Δ2(y)

Γ1(y),Γ2(y) −→ Δ1(y),Δ2(y)
[Bvar

1 ]T .

Note that y &= w since y &∈ EV(π(x)) by assumption.
Since we do not change the proof structure we have that π(y) preserves WT ↓-form and
ET

[Bvar
1 ]T

-form. [Bvar
1 ]T -regularity is preserved by the variable change, if y is not already a

split variable of a [Bvar
1 ]T -inference in π or if y = x (i.e. the proof is not changed). Also no

eigenvariables are changed, therefore EV(π(x)) = EV(π(y)). Furthermore note that in all
cases the number of [Bvar

1 ]T -inferences was preserved.

Lemma 4.42. Let π |−P=
T

[Γ]T −→ [Δ]T and let X be a finite set of variables. Then there

exist an EV-regular proof π� |−P=
T

[Γ]T −→ [Δ]T such that EV(π�) ∩X = ∅.
Proof. We proceed by induction on π.
If π ends in an initial rule, then π has no eigenvariables and the statement follows trivially.
If π ends in a contraction or weakening we can apply the induction hypothesis to the

direct subproof π� of π. We can then reapply the contraction or weakening to π� to get the
desired proof.
If π =

(π1)
Γ1 −→ Δ1, t = u

(π2)
ϕ(t),Γ2 −→ Δ2

ϕ(u),Γ1,Γ2 −→ Δ1,Δ2
[eq→left]T ,

then by applying the induction hypothesis to π1 and π2 get EV-regular P=
T -proofs π�

1 of
[Γ1]T −→ [Δ1]T , [t = u]T such that X ∩EV(π1) = ∅ and π�

2 of [ϕ(t)]T , [Γ2]T −→ [Δ2]T such
that (X ∪EV(π�

1))∩EV(π�
2) = ∅. Thus, applying [eq→left]T to π�

1 and π�
2 gives the desired

proof. A similar argument works for the other equality rules and [cut]T .
Now consider π =

(π1)
x = 0,Γ1 −→ Δ1

(π2(y))
x = s(y),Γ2 −→ Δ2

Γ1,Γ2 −→ Δ1,Δ2
[Bvar

1 ]T .

By induction hypothesis we get an EV-regular proof π�
1 |−P=

T
[x = 0]T , [Γ1]T −→ [Δ1]T

such that EV(π�
1)∩ (X∪{y}) = ∅. Also by induction hypothesis we then get an EV-regular

proof π�
2(y) |−P=

T
[x = s(y)]T , [Γ2]T −→ [Δ2]T such that EV(π�

2)∩ (X ∪ {y} ∪EV(π�
1)) = ∅.

If y &∈ X, then applying [Bvar
1 ]T to π�

1 and π�
2 gives the desired result. Otherwise pick a

variable y� such that y� &∈ X ∪ EV(π�
1) ∪ EV(π�

2) and y� is not a split variable of a [Bvar
1 ]T -

inference in π�
2(y). By Lemma 4.41 we have that π�

2(y
�) |−P=

T
[x = s(y�)]T , [Γ2]T −→ [Δ2]T

and π�
2(y

�) preserves EV-regularity. Now π� =

(π�
1)

x = 0,Γ1 −→ Δ1

(π�
2(y

�))
x = s(y�),Γ2 −→ Δ2

Γ1,Γ2 −→ Δ1,Δ2
[Bvar

1 ]T

is a proof with the desired properties.
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Lemma 4.43. Let π |−P=
T

[Γ]T −→ [Δ]T be EV-regular, WT ↓-formed and ET
[Bvar

1 ]T
-formed.

Then there is a [Bvar
1 ]T -normal proof π� |−P=

T
[Γ]T −→ [Δ]T .

Proof. We show that we construct a [Bvar
1 ]T -regular proof from π while preserving EV-

regularity, WT ↓-formedness and ET
[Bvar

1 ]T
-formedness. For this we proceed by induction on

#(π).
If π ends in an initial rule or a rule from ET then π does not use [Bvar

1 ]T by ET
[Bvar

1 ]T
-

formedness and thus is trivially [Bvar
1 ]T -regular. If π ends in a weakening rule we can apply

the induction hypothesis to the direct subproof of π and reapply the weakening rule to get
the desired proof. This works similarly if π ends in a contraction rule.
Now consider π =

(π1)
x = 0,Γ1 −→ Δ1

(π2)
x = s(y),Γ2 −→ Δ2

Γ1,Γ2 −→ Δ1,Δ2
[Bvar

1 ]T .

By induction hypothesis there are ET
[Bvar

1 ]T
-formed, [Bvar

1 ]T -regular proofs

π�
1 |−P=

T \WT
[x = 0]T , [Γ1]T −→ [Δ1]T ,

π�
2 |−P=

T \WT
[x = s(y)]T , [Γ2]T −→ [Δ2]T .

Note that π�
1 and π�

2 do not use weakening, since π is WT ↓-formed. We set π�� =

(π�
1)

x = 0,Γ1 −→ Δ1

(π�
2)

x = s(y),Γ2 −→ Δ2

Γ1,Γ2 −→ Δ1,Δ2
[Bvar

1 ]T .

If x is not a split variable of any [Bvar
1 ]T -inference that π�

1 or π�
2 use, then we set π� = π��.

Now π� is still ET
[Bvar

1 ]T
-formed and [Bvar

1 ]T -regular, since the split variable x is distinct from

those in π�
1 and π�

2.
If x is a split variable of some [Bvar

1 ]T -inference that π
�
1 or π

�
2 use, then there is a subproof

of π�
1 or π

�
2 that ends in a [Bvar

1 ]T -inference with split variable x. Since π�
1 and π�

2 are [B
var
1 ]T -

regular, both contain at most one such subproof. Let ρ be such a subproof, i.e. ρ =

(ρ1)
x = 0,Π1 −→ Λ1

(ρ2(z))
x = s(z),Π2 −→ Λ2

Π1,Π2 −→ Λ1,Λ2
[Bvar

1 ]T .

We now show that there is a proof ρ� |−P=
T

[Π1]T , [Π2]T −→ [Λ1]T , [Λ2]T such that no

[Bvar
1 ]T -inference in ρ� has x as split variable. For this we distinguish two cases:

(i) ρ is a subproof of π�
1: As a lemma we show that the conclusion of all subproofs ρ��

between π�
1 and ρ contains an occurrence of x = 0 which is in the context of the last

inference of ρ��. Then, in particular this applies to ρ. We do this by induction on the
number of subproofs between π�

1 and ρ: If there is one such subproof, then ρ = π�
1

and π�
1 has this property. Otherwise, since π�

1 is WT ↓-formed and ET
[Bvar

1 ]T
-formed,
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all subproofs between π�
1 and ρ end in [cleft]T , [cright]T or [Bvar

1 ]T . All these rules
preserve the property from the conclusion to the premises. In particular [Bvar

1 ]T -
inferences have a split variable distinct from x because of [Bvar

1 ]T -regularity. Thus we
can apply the induction hypothesis and conclude the proof of this lemma.

Now we have x = 0 ∈ Π1 ∪Π2. Again, we distinguish two cases:

(a) If x = 0 ∈ Π1, we set ρ� =

(ρ1)
x = 0,Π1 −→ Λ1

Π1 −→ Λ1
[cleft]T

Π1,Π2 −→ Λ1,Λ2
[w∗]T .

(b) If x = 0 ∈ Π2, we set ρ� =

(ρ1)
x = 0,Π1 −→ Λ1

Π1,Π2 −→ Λ1,Λ2
[w∗]T .

(ii) ρ is a subproof of π�
2: By Lemma 4.41 we can replace the variable z in ρ2 by y (note

that π is EV-regular, thus y &∈ EV(ρ2(z))) to get a WT ↓-formed and ET
[Bvar

1 ]T
-formed

proof ρ2(y) |−PT
[x = s(y)]T , [Π2]T −→ [Λ2]T . Without loss of generality ρ2(y) is

[Bvar
1 ]T -regular. Otherwise we apply the induction hypothesis to it. Similar to the

previous case we can show x = s(y) ∈ Π1 ∪Π2. Again, we have two cases:

(a) If x = s(y) ∈ Π1, we set ρ� =

(ρ2(y))
x = s(y),Π2 −→ Λ2

Π1,Π2 −→ Λ1,Λ2
[w∗]T .

(b) If x = s(y) ∈ Π2, we set ρ� =

(ρ2(y))
x = s(y),Π2 −→ Λ2

Π2 −→ Λ2
[cleft]T

Π1,Π2 −→ Λ1,Λ2
[w∗]T .

Now we replace ρ by ρ� in π�� to get a proof π��� |−P=
T
[Γ]T −→ [Δ]T . Since ρ

� does not have
any [Bvar

1 ]T -inferences which have x as split variable, we have that π��� is [Bvar
1 ]T -regular.

Also note that π��� is ET
[Bvar

1 ]T
-formed since π�

1, π
�
2 and ρ� are. Finally we get π� by applying

Lemma 4.32 to π���. Note that EV-regularity is preserved in every step.

Proof of Proposition 4.31. Let π |−P=
T

[Γ]T −→ [Δ]T . We apply Lemma 4.42 for X = ∅ to

π to get an EV-regular proof π0 |−P=
T

[Γ]T −→ [Δ]T . Then by Lemma 4.33 we get Γ� ⊆ Γ

and Δ� ⊆ Δ and an EV-regular proof π1 |−P=
T \WT

[Γ�]T −→ [Δ�]T . With Lemma 4.40 we

get an EV-regular, ET
[Bvar

1 ]T
-formed proof π2 |−P=

T \WT
[Γ�]T −→ [Δ�]T . By Lemma 4.43 we

get a [Bvar
1 ]T -normal proof π3 |−P=

T
[Γ�]T −→ [Δ�]T . Now we apply appropriate weakenings

to π3 get the desired [Bvar
1 ]T -normal proof.
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4.4 From [Bvar
1 ]T -normal proofs to PT

In this section we finally transform [Bvar
1 ]T -normal proofs into PT -proofs. First we reduce

this problem to the transformation of P=
T -proofs without weakening and [Bvar

1 ]T :

Definition 4.44. We set

A=
1 := P=

T \ {[wleft]T , [wright]T , [B
var
1 ]T }

= {[Aax
1 ]T , [cleft]T , [cright]T , [cut]T , [eq→left]T , [eq→right]T , [eq←left]T , [eq←right]T }

We will use the following proposition now and prove it at the end of this section

Proposition 4.45. Let ϕ ∈ A(S) and let Γ be a multiset with supp(Γ) ⊆ {ϕ} such that
A=

1 |− [Γ]T −→. Then there exists a t ∈ T (S) with ϕ ⇔T s(t) = 0.

The following is a completeness result for PT with respect to P=
T :

Proposition 4.46. Let ϕ ∈ A(S) and let Γ be a multiset with supp(Γ) ⊆ {ϕ} such that
P=
T |− [Γ]T −→. Then PT |− [¬ϕ]T .

Proof. Let ρ |−P=
T

[Γ]T −→. By Proposition 4.31 we can assume that ρ is [Bvar
1 ]T -normal.

Now let π be the lowermost subproof of ρ which is not a weakening or contraction. Then,
since ρ is WT ↓-formed, we have π |−P=

T \WT
[Γ�]T −→ for some multiset Γ� such that

supp(Γ�) ⊆ {ϕ}. We proceed by induction on #[Bvar
1 ]T (π).

If π does not use [Bvar
1 ]T , then π |−A=

1
[Γ�]T −→. Thus, by Proposition 4.45 we have a

t ∈ T (S) such that ϕ ⇔T s(t) = 0 and therefore PT |− [¬ϕ]T by Aax
1 .

Otherwise, since π is ET
[Bvar

1 ]T
-formed we have that π ends in [Bvar

1 ]T , i.e. π =

(π0(x))
x = 0,Γ1(x) −→

(πs(x, y))
x = s(y),Γ2(x) −→

Γ1(x),Γ2(x) −→ [Bvar
1 ]T .

By Lemma 4.42 we can assume that x is not an eigenvariable of π0 or πs. Since π is
[Bvar

1 ]T -regular we have that x is not a split variable in any [Bvar
1 ]T -inference that π0 or πs

use. Furthermore y &∈ EV(πs(x, y)) since π is EV-regular. Thus, by Lemma 4.25 we have
proofs

π0(0) |−P=
T \WT

[0 = 0]T , [Γ1(0)]T −→
and

πs(s(y), y) |−P=
T \WT

[s(y) = s(y)]T , [Γ2(s(y))]T −→
such that #[Bvar

1 ]T (π0(0)) = #[Bvar
1 ]T (π0(x)) and #[Bvar

1 ]T (πs(s(y), y)) = #[Bvar
1 ]T (πs(x, y)).

Now we have proofs χ0 =

−→ 0 = 0
[refl]T

(π0(0))
0 = 0,Γ1(0) −→

Γ1(0) −→ [cut]T
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and χs(y) =

−→ s(y) = s(y)
[refl]T

(πs(s(y), y))
s(y) = s(y),Γ2(s(y)) −→

Γ2(s(y)) −→ [cut]T .

By Lemma 4.41 there is a [Bvar
1 ]T -normal proof χs(x) |−P=

T \WT
Γ2(s(x)) −→ such that

χs(x) has the same number of [Bvar
1 ]T -inferences as χs(y). Since #[Bvar

1 ]T (χ0) < #[Bvar
1 ]T (π)

and #[Bvar
1 ]T (χs(x)) < #[Bvar

1 ]T (π), we can apply the induction hypothesis to get proofs
π1 |−PT

|− [¬ϕ(0)] and π2 |−PT
[¬ϕ(s(x))]. Now PT |− [¬ϕ(x)] by

(π1)
[¬ϕ(0)]T

(π2)
[¬ϕ(s(x))]T

[¬ϕ(x)]T
Bvar

1 .

To finish the completeness proof it remains to show Proposition 4.45. For the following
proofs we use some simple results about the relation ⇔Γ introduced in Chapter 3.

Lemma 4.47. Let L be a language, Γ a multiset in A(L), ϕ ∈ A(L) and t ∈ T (L). Then
ϕ ⇔Γ t = t if and only if LK= |− Γ −→ ϕ.

Proof. =⇒ : We have LK= |− Γ, t = t −→ ϕ. Thus, by using refl and cut we get
LK= |− Γ −→ ϕ.

⇐= : LK= |− Γ, ϕ −→ t = t follows from refl and weakenings. LK= |− Γ, t = t −→ ϕ
follows by using the assumption and one wleft.

Lemma 4.48. Let L be a language, Γ ⊆ Π multisets of L-formulas and ϕ, ψ ∈ A(L). If
ϕ ⇔Γ ψ, then ϕ ⇔Π ψ.

Proof. Follows immediately by using weakenings.

Lemma 4.49. Let L be a language, Γ a multiset in F (L), ϕ(x) ∈ A(L), t, u ∈ T (L) and
π |−LK= Γ −→ t = u. Then ϕ(t) ⇔Γ ϕ(u).

Proof. LK= |− Γ, ϕ(t) −→ ϕ(u) follows by

(π)
Γ −→ t = u ϕ(t) −→ ϕ(t)

axiom

Γ, ϕ(t) −→ ϕ(u)
eq→right

and LK= |− Γ, ϕ(u) −→ ϕ(t) follows similarly by using ϕ(u) in axiom and eq←right.

Lemma 4.50. Let ϕ ∈ F (S), let Γ be a multiset in F (S) and let ψ ∈ Γ ∪ {0 = 0} such
that ϕ ⇔Γ−{ψ} ψ. Then LK= |− Γ −→ ϕ.

Proof. We distinguish two cases:

(i) ψ ∈ Γ: Then LK= |− Γ− {ψ} , ψ −→ ϕ, i.e. LK= |− Γ −→ ϕ.
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(ii) ψ ≡ 0 = 0: Then LK= |− Γ − {0 = 0} , 0 = 0 −→ ϕ. Since LK= |−−→ 0 = 0 by
using a cut and, if 0 = 0 ∈ Γ, using a weakening we get LK= |− Γ −→ ϕ.

Lemma 4.51. Let Γ,Δ be multisets in A(S) and π |−A=
1

[Γ]T −→ [Δ]T . Then [Δ]T has

at most one element and π does not use [cright]T .

Proof. We show the statement by induction on π. Clearly the statement holds for the
initial sequents. If π ends in [cleft]T then the statement follows by applying the induction
hypothesis to the direct subproof. Note that π cannot end in [cright]T : If it did, then
by induction hypothesis the succeedent of the direct subproof of π can have at most one
element which means that [cright]T cannot be applied.

If π =
(π1)

Γ1 −→ Δ1, ψ
(π2)

χ,Γ2 −→ Δ2

Γ1,Γ2 −→ Δ1,Δ2
[cut]T ,

with ψ ⇔T χ, then by induction hypothesis we have Δ1 = ∅ and Δ2 has at most one
element and π does not use [cright]T . Thus Δ has at most one element.

If π =
(π1)

Γ1 −→ Δ1, t = u
(π2)

ψ(t),Γ2 −→ Δ2

ψ(u),Γ1,Γ2 −→ Δ1,Δ2
[eq→left]T ,

then by induction hypothesis we have that Δ1 is empty, Δ2 has at most one element and
π does not use [cright]T . Thus Δ has at most one element.

If π =
(π1)

Γ1 −→ Δ1, t = u
(π2)

Γ2 −→ ψ(t),Δ2

Γ1,Γ2 −→ ψ(u),Δ1,Δ2
[eq→right]T ,

then by induction hypothesis we have that Δ1 and Δ2 are empty and π does not use
[cright]T . Thus, Δ has at most one element. A similar argument works for the cases where
π ends in other equality rules.

Lemma 4.52. Let Γ be a multiset in A(S) and ϕ ∈ A(S). If A=
1 |− [Γ]T −→ [ϕ]T , then

there exists a ψ ∈ Γ ∪ {0 = 0} such that ϕ ⇔T∪Γ−{ψ} ψ.

Proof. Let π |−A=
1

[Γ]T −→ [ϕ]T . We show the statement by induction on π.

If π ends in [refl]T , then ϕ ⇔T t = t for some t ∈ T (S). By Lemma 4.47 we then have
ϕ ⇔T 0 = 0.

If π ends in [axiom]T , then we have Γ = {χ} and χ ⇔T ϕ, therefore the statement
follows.

π cannot end in [Aax
1 ]T , since the succeedent of the conclusion of π is not empty.

By Lemma 4.51 we have that π does not use [cright]T . If π ends in [cleft]T , then the
statement follows by applying the induction hypothesis to the direct subproof of π.
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Now consider the case where π ends in cut. By Lemma 4.51 we have that the left premise
of the last cut-inference has at most one element in the suceedent. This must be the cut
formula. Therefore ϕ can only occur in the right premise. Thus, π =

(π1)
Γ1 −→ χ1

(π2)
χ2,Γ2 −→ ϕ

Γ1,Γ2 −→ ϕ
[cut]T

with χ1 ⇔T χ2. We apply the induction hypothesis to π1 and π2 to get a ψ1 ∈ Γ1∪{0 = 0}
with χ1 ⇔T∪Γ1−{ψ1} ψ1 and a ψ2 ∈ Γ2∪{χ2, 0 = 0} with ϕ ⇔T∪Γ2∪{χ2}−{ψ2} ψ2. By Lemma
4.50 we get LK= |− T,Γ1 −→ χ1. From χ1 ⇔T χ2 we now get LK= |− T,Γ1 −→ χ2 by
using a cut and contractions. We further distinguish two cases:

(i) ψ2 &= χ2: Then we have LK= |− T,Γ1 −→ χ2 and ϕ ⇔T∪Γ2∪{χ2}−{ψ2} ψ2. Thus we
get LK= |− T,Γ− {ψ2} , ψ2 −→ ϕ and LK= |− T,Γ− {ψ2} , ϕ −→ ψ2 by introducing
appropriate cuts and contractions. Therefore we have ϕ ⇔T∪Γ−{ψ2} ψ2.

(ii) ψ2 = χ2: Then ϕ ⇔T∪Γ2 χ2 ⇔T χ1 ⇔T∪Γ1−{ψ1} ψ1. By using Lemma 4.48 we get
ϕ ⇔T∪Γ−{ψ1} ψ1.

Now consider the case where π ends in an equality rule. Note that ϕ cannot be in the
succedent of the left premise since the auxiliary equality is already in the succeedent and
by Lemma 4.51 there can be at most one formula in the succeedent. We first consider the
case where π ends in [eq→left]T . Thus, π =

(π1)
Γ1 −→ t = u

(π2)
χ(t),Γ2 −→ ϕ

χ(u),Γ1,Γ2 −→ ϕ
[eq→left]T .

We apply the induction hypothesis to π1 and π2 to get a ψ1 ∈ Γ1 ∪ {0 = 0} such that
t = u ⇔T∪Γ1−{ψ1} ψ1 and a ψ2 ∈ Γ2 ∪ {χ(t), 0 = 0} such that ϕ ⇔T∪Γ2∪{χ(t)}−{ψ2} ψ2. By
Lemma 4.50 we get LK= |− Γ1 −→ t = u. We now distinguish two cases:

(i) ψ2 &= χ(t): Using Lemma 4.49 we get LK= |− Γ1, χ(u) −→ χ(t). Also, since
ϕ ⇔T∪Γ2∪{χ(t)}−{ψ2} ψ2 we get LK= |− T,Γ − {ψ2} , χ(u), ψ2 −→ ϕ as well as
LK= |− T,Γ − {ψ2} , χ(u), ϕ −→ ψ2 by introducing appropriate cuts and contrac-
tions. Therefore we have ϕ ⇔T∪Γ−{ψ2} ψ2.

(ii) ψ2(t) = χ(t): Then we have ψ2(t) ⇔T∪Γ1 ψ2(u) by Lemma 4.49 and thus we get
ϕ ⇔T∪Γ−{ψ2(u)} ψ2(u) ∈ Γ2(u) by Lemma 3.5.

If π =
(π1)

Γ1 −→ t = u
(π2)

Γ2 −→ ϕ(t)

Γ1,Γ2 −→ ϕ(u)
[eq→right]T ,

i.e. ϕ is the principal equality, then again by induction hypothesis we get a ψ ∈ Γ2∪{0 = 0}
such that ϕ(t) ⇔T∪Γ2−{ψ} ψ. We also have ϕ(u) ⇔T∪Γ1 ϕ(t) by Lemma 4.49 and thus
ϕ(u) ⇔T∪Γ−{ψ} ψ by Lemma 4.48. The cases where π ends in [eq←left]T or [eq←right] can
be proven analogously.
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Lemma 4.53. Let Γ be a multiset in A(S). If A=
1 |− [Γ]T −→, then there exist ψ ∈ Γ and

t ∈ T (S) such that ψ ⇔T∪Γ−{ψ} s(t) = 0.

Proof. Let π |−A=
1
[Γ]T −→. We show the statement by induction on π. Note that π cannot

end in [refl]T or [axiom]T since the conclusion of π has an empty succeedent.
If π ends in [Aax

1 ]T , then [Γ]T = {[s(t) = 0]T } for some t ∈ T (S). Thus the statement
follows for ψ ≡ s(t) = 0.
By Lemma 4.51 π cannot end in [cright]. If π ends in [cleft]T , then the statement can be

proven by applying the induction hypothesis to the direct subproof of π.
If π =

(π1)
Γ1 −→ χ1

(π2)
χ2,Γ2 −→

Γ −→ [cut]T

with χ1 ⇔T χ2, then by applying the induction hypothesis to π2 we get a ψ2 ∈ Γ2 ∪ {χ2}
and a t ∈ T (S) such that ψ2 ⇔T∪Γ2∪{χ2}−{ψ2} s(t) = 0. By applying Lemma 4.52 to the
conclusion of π1 we then get a ψ1 ∈ Γ1 such that χ1 ⇔T∪Γ1−{ψ1} ψ1. We now distinguish
two cases:

(i) ψ2 ∈ Γ2: We have LK= |− T,Γ1 −→ χ1 by χ1 ⇔T∪Γ1−{ψ1} ψ1. By χ1 ⇔T χ2

we get LK= |− T,Γ1 −→ χ2. From ψ2 ⇔T∪Γ2∪{χ2}−{ψ2} s(t) = 0 we now get
ψ2 ⇔T∪Γ−{ψ2} s(t) = 0 by introducing appropriate cuts and contractions.

(ii) ψ2 = χ2: We have ψ2 ⇔T∪Γ2 s(t) = 0. Thus we get

ψ1 ⇔T∪Γ1−{ψ1} χ1 ⇔T χ2 = ψ2 ⇔T∪Γ2 s(t) = 0

and in total ψ1 ⇔T∪Γ−{ψ1} s(t) = 0.

If π =
(π1)

Γ1 −→ u = v
(π2)

Γ2, ϕ(u) −→
Γ1,Γ2, ϕ(v) −→ [eq→left]T ,

then by applying the induction hypothesis to π2 we get a ψ2 ∈ Γ2 ∪{ϕ(u)} and a t ∈ T (S)
such that ψ2 ⇔T∪Γ2∪{ϕ(u)}−{ψ2} s(t) = 0. By applying Lemma 4.52 to the conclusion of π1
we then get a ψ1 ∈ Γ1 such that u = v ⇔T∪Γ1−{ψ1} ψ1. We now distinguish two cases:

(i) ψ2 ∈ Γ2: We have LK= |− T,Γ1 −→ u = v by u = v ⇔T∪Γ1−{ψ1} ψ1. By Lemma
4.49 we get ϕ(v) ⇔T∪Γ1 ϕ(u) and in particular LK= |− T,Γ1, ϕ(v) −→ ϕ(u). From
ψ2 ⇔T∪Γ2∪{ϕ(u)}−{ψ2} s(t) = 0 we now get ψ2 ⇔T∪Γ−{ψ2} s(t) = 0 by introducing
appropriate cuts and contractions.

(ii) ψ2 = ϕ(u): Now ψ2 ⇔T∪Γ2 s(t) = 0.

By Lemma 4.49 we have ϕ(u) ⇔T∪Γ1 ϕ(t). Thus ϕ(u) ⇔T∪Γ−{ϕ(u)} s(t) = 0.

Lemma 4.54. Let t ∈ T (S). Then T &|− 0 = 0 −→ s(t) = 0
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Proof. N |= T and N |= 0 = 0, but N &|= s(t) = 0 for any t ∈ T (S).

Proposition 4.55 (consistency of A=
1 ). P=

T &|−−→.

Proof. Assume π |−A=
1

−→. Then π can only end in [cut]T since all other rules in A=
1

have at least one element in the conclusion. Therefore π =

(π1)
−→ ϕ

(π2)
ψ −→

−→ [cut]T

with ϕ ⇔T ψ. By Lemma 4.52 we have ϕ ⇔T 0 = 0 and by Lemma 4.53 we have
ψ ⇔T s(t) = 0 for some t ∈ T (S). Thus 0 = 0 ⇔T s(t) = 0 which is a contradiction to
Lemma 4.54

Proof of Proposition 4.45. By Proposition 4.55 we have that Γ is not empty. Now let π
be an A=

1 -proof of [Γ]T −→. Since supp(Γ) = {ϕ} we get A=
1 |− [ϕ]T −→ by applying

contractions. Now the statement follows from Lemma 4.53.

With this we can conclude the completeness proof for PT :

Proof of Theorem 3.10. Let AB |− ¬ϕ. By Lemma 4.4 we have AB |− ϕ −→. From
Proposition 4.6 we get LKP=

T |− T, ϕ −→. Using Proposition 4.21 gives us P=
T |− [ϕ]T −→.

Finally, by Proposition 4.46 we have PT |− [¬ϕ]T .
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5 Decidability

The goal for this chapter is to show the decidability of PT
|−. To do this, we first observe a

correspondence between polynomials with coefficients in N and T (S). We then introduce
an order on polynomials as well as a normal form for polynomial equations. Finally we show
a necessary condition for PT -provability and use this to formulate a decision procedure for
PT

|−.

5.1 A polynomial normal form

The goal for this section is to show a correspondence between T (S) and the polynomials
with coefficients in N with variables as indeterminates.

Definition 5.1. By N[V ] we denote the set of polynomials with coefficients in N and inde-
terminates in V (i.e. the variables). A polynomial p is an element of N[V ]. A monomial
m is a polynomial such that exactly one coefficient is 1 and the others are 0. The set of
monomials is denoted by M [V ]. Note that every monomial m can be identified by the finite
multiset of variables vars(m) : V → N : x #→ exponent of x in m. The monomial m with
vars(m) = ∅ corresponds to the constant monomial and is also denoted by 1. Every polyno-
mial p can be identified by the finite multiset of monomials mons(p) : M [V ] → N : m #→ [m]p
where [m]p denotes the coefficient of m in p. We say m is a monomial of p if [m]p > 0.
We define <V to be the strict total order on V , defined by xn <V xm if and only if n < m.
We define <M [V ] to be the strict total order on M [V ] defined by m1 <M [V ] m2 if and only

if vars(m1) <
mul
V vars(m2), where <mul

V denotes the multiset order with respect to <V . We
define the set variables of p by v(p) :=

�
m∈mons(p) supp(vars(m)). By abuse of notation

we sometimes write v(p) for the tuple of pairwise distinct variables (x1, . . . , xn) such that
v(p) = {x1, . . . , xn} and x1 <V . . . <V xn.

It seems unusual to identify polynomials with a multiset of monomials where the mul-
tiplicity of each monomial is given by the coefficient of the monomial in the respective
polynomial, but it works nicely together with a multiset order we use later on.

Lemma 5.2. <M [V ] is a strict total order.

Proof. See [1] Lemma 2.5.4.

There is a correspondence between T (S) and N[V ]:

Definition 5.3. poly : T (S) → N[V ] is the computable function recursively defined by the
following procedure:
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Let t ∈ T (S).

If t ≡ x for a variable x, then poly(t) = x.

If t ≡ 0, then poly(t) = 0.

If t ≡ s(u) for some u ∈ T (S), then poly(t) = poly(u) + 1.

If t ≡ u+ v for some u, v ∈ T (S), then poly(t) = poly(u) + poly(v).

If t ≡ u · v for some u, v ∈ T (S), then poly(t) = poly(u) · poly(v).
Definition 5.4. For n ∈ N and t1, . . . , tn ∈ T (S) we inductively define the terms

�n
i=1 ti

and
�n

i=1 t by
0�

i=1

ti :≡ 0,
n+1�
i=1

ti :≡ t1 +
n�

i=1

ti+1,

0�
i=1

ti :≡ 1,
n+1�
i=1

ti :≡ t1 ·
n�

i=1

ti+1.

Definition 5.5. Let m ∈ M [V ]. Then the term m ∈ T (S) is defined by
�n

i=1 xi where
{x1, . . . , xn} = vars(m) and x1 ≤V · · · ≤V xn. Let p ∈ N[V ], then the term p is defined by�n

i=1mi where {m1, . . . ,mn} = mons(p) and m1 ≤M [V ] · · · ≤M [V ] mn.

Lemma 5.6. Let t ∈ T (S). Then T |− s(t) = s(0)+ t.

Proof. Work in T :

s(0)+ t
B2
= t+ s(0)

A5
= s(t+ 0)

A4
= s(t).

Lemma 5.7. Let t, u ∈ T (S). Then T |− poly(t) + poly(u) = poly(t) + poly(u) and
T |− poly(t) · poly(u) = poly(t) · poly(u).
Proof sketch. Since T contains commutativity and associativity laws for + and · and a
distributivity law (B2, B3, B5, B6 and B7), it can be shown that sums and products can
be rearranged in T .

The following lemma shows that t #→ poly(t) acts as a normal form for S-terms:

Lemma 5.8. Let t ∈ T (S). Then T |− poly(t) = t.

Proof. We proceed by induction on t.
If t ≡ 0, then poly(t) = 0 and 0 = 0, thus the statement holds.
If we have t ≡ s(u) for some u ∈ T (S), then we have poly(t) = poly(u) + 1 as well as

poly(u) + 1 = s(0) + poly(u). We then have T |− poly(t) = s(poly(u)) by Lemma 5.6.
Using the induction hypothesis we get T |− poly(t) = t.
If t ≡ u+ v for some u, v ∈ T (S), then by induction hypothesis we get T |− poly(u) = u

and T |− poly(v) = v. Thus T |− poly(u) + poly(v) = t. By Lemma 5.7 we have
T |− poly(u)+ poly(v) = poly(t) and thus T |− poly(t) = t.
If t ≡ u · v for some u, v ∈ T (S), then by induction hypothesis we have T |− poly(u) = u

and T |− poly(v) = v. Thus T |− poly(u) · poly(v) = t. Using Lemma 5.7 we get
T |− poly(u) · poly(v) = poly(t) and thus T |− poly(t) = t.
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Definition 5.9. Let p ∈ N{x1, . . . , xn}, let x1, . . . , xn be pairwise distinct variables and
let p = p(x1, . . . , xn). Then p induces a function p : T (S)n → N[V ] : (t1, . . . , tn) #→
poly(p(t1, . . . , tn)).

Lemma 5.10. Let p ∈ N[V ], let x1, . . . , xn be pairwise distinct variables, let t1, . . . , tn ∈
T (S) and let p = p(x1, . . . , xn). Then T |− p(t1, . . . , tn) = p(t1, . . . , tn).

Proof. Note that p(t1, . . . , tn) = poly(p(t1, . . . , tn)). Thus the statement follows by Lemma
5.8.

5.2 A polynomial order

The following definition will allow us to formulate a necessary condition for provability in
PT .

Definition 5.11. Let m1,m2 ∈ M [V ] and p, q ∈ N[V ]. We write m1 <mon m2 if m1

strictly divides m2, i.e. if vars(m1) � vars(m2). Note that <mon is a strict partial order.
We say m1 is a maximal monomial of p if m1 is maximal in mons(p) with respect to <mon.
The multiset of maximal monomials in p is denoted by maxmons(p). We write p <mon q if
mons(p) <mul

mon mons(q). We say p and q are strictly monomially comparable (in symbols:
p ≶mon q) if either p <mon q or q <mon p.

We now study this monomial order in more detail.

Lemma 5.12. <mon is a well-founded strict partial order on N[V ].

Proof. It is well-known that <mon is a well-founded strict partial order on M [V ]. The
corresponding multiset order <mul

mon is a well-founded strict partial order (see [1] Lemmas
2.5.4 and 2.5.5). Thus <mon is a well-founded strict partial order on N[V ].

Lemma 5.13. Let p, q ∈ N[V ] with p <mon q. If mons(p) ∩ mons(q) = ∅, then for all
x ∈ mons(p) there is a y ∈ maxmons(q) such that x <mon y.

Proof. Since p <mon q there are ∅ &= Π ⊆ mons(q) and Λ with mons(p) = (mons(q)−Π)∪Λ
such that for all x ∈ Λ there exists a y ∈ Π such that x <mon y. Since mons(p)∩mons(q) = ∅
we have Π = mons(q) and therefore Λ = mons(p). Now for all x ∈ mons(p) there is
a y ∈ mons(q) such that x <mon y. If y is not maximal in mons(q), then there exists
a y� ∈ maxmons(q) with y <mon y� and by extension x <mon y�. Thus the statement
follows.

Lemma 5.14. Let p, q ∈ N[V ] with maxmons(p)∩maxmons(q) = ∅. Then p <mon q if and
only if maxmons(p) <mul

mon maxmons(q).

Proof. =⇒ : By assumption there are multisets ∅ &= Π ⊆ mons(q) and Λ ⊆ mons(p) with
mons(p) = (mons(q) − Π) ∪ Λ such that for all x ∈ Λ there exists a y ∈ Π such that
x <mon y. Now let x ∈ maxmons(p). Then either x ∈ Λ or x ∈ mons(q). We show in
both cases that there is a y� ∈ maxmons(q) such that x <mon y�. If x ∈ Λ, there is a
y ∈ Π ⊆ mons(q) such that x <mon y and therefore there is a y� ∈ maxmons(q) such that

45



5 Decidability

x <mon y�. If x ∈ mons(q), then x /∈ maxmons(q) since maxmons(p) ∩ maxmons(q) = ∅.
Thus, there is a y� ∈ maxmons(q) such that x <mon y�. Therefore we have

maxmons(p) = (maxmons(q)−maxmons(q)) ∪maxmons(p)

and for all x ∈ maxmons(p) there is a y� ∈ maxmons(q) with x <mon y, which means
maxmons(p) <mul

mon maxmons(q).
⇐= : By assumption there are multisets ∅ &= Π ⊆ maxmons(q) and Λ such that

maxmons(p) = (maxmons(q) − Π) ∪ Λ and for all x ∈ Λ there exists a y ∈ Π such that
x <mon y. Since maxmons(p) and maxmons(q) are disjoint we have Π = maxmons(q)
and Λ = maxmons(p). Thus, for all x ∈ maxmons(p), there is a y ∈ maxmons(q) such
that x <mon y. Now let x ∈ mons(p). Then there exists a x� ∈ maxmons(p) and a
y� ∈ maxmons(q) such that x ≤mon x� <mon y�. Therefore with Π = mons(q), Λ = mons(p)
we get mons(p) = (mons(q)−Π) ∪ Λ which means mons(p) <mul

mon mons(q).

Lemma 5.15. Let m be a monomial, let x1, . . . , xk be pairwise distinct variables and set
s(x̄) := (s(x1), . . . , s(xk)). Further let m0 be a monomial of m(s(x̄)) with m0 &= m. Then
we have m0 <mon m and as a consequence

maxmons(m(s(x̄))) = {m} .

Proof. Let X := {x1, . . . , xk}. Note that we have

m(s(x̄)) =
�

x∈vars(m)
x∈X

(x+ 1) ·
�

x∈vars(m)
x �∈X

x.

Distributing out this product shows that every monomial of m(s(x̄)) has the form
�

x∈Xm
x

for some Xm ⊆ vars(m), i.e. every monomial of m(s(x̄)) divides m. By assumption
we have m0 &= m and thus m0 <mon m. Since m ∈ mons(m(s(x̄))) it follows that
maxmons(m(s(x̄))) = {m} .
Lemma 5.16. Let m ∈ M [V ], (x1, . . . , xk) := v(m) and s(x̄) := (s(x1), . . . , s(xk)). Then
mons(m(s(x̄))) =

��
v∈Δ v |Δ ⊆ vars(m)

	
, i.e. m� ∈ mons(m(s(x̄))) if and only m� divides

m.

Proof. Similarly to the previous proof we get

m(s(x̄)) =
�

v∈vars(m)

(v + 1).

Distributing out this product shows that every monomial of m(s(x1), . . . , s(xk)) has the
form

�
v∈Δ v for some multiset Δ ⊆ vars(m). Furthermore given Δ ⊆ vars(m) induces

a monomial m via vars(m) = Δ. This shows the second part of the statement since m�

divides m if and only if vars(m�) ⊆ vars(m).

Lemma 5.17. Let p ∈ N[V ] and let x1, . . . , xk be pairwise distinct variables. Then

maxmons(p(s(x1), . . . , s(xk))) = maxmons(p)
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Proof. Note thatm is a maximal monomial of p(s(x1), . . . , s(xk)) if and onlym is a maximal
monomial in the multiset

�
m∈mons(p)maxmons(m(s(x1), . . . , s(xk))) which equals mons(p)

by Lemma 5.15. This means m is a maximal monomial of p(s(x1), . . . , s(xk)) if and only if
m is a maximal monomial of p. Therefore the statement follows.

5.3 A normal form for polynomial equations

The following function allows us to compute a normal form of negated equations between
S-terms.

Definition 5.18. reduce : N[V ]× N[V ] → N[V ]× N[V ] is the computable function defined
by (p, q) #→ (p�, q�) where p� is the polynomial with mons(p�) = mons(p)−mons(q) and q� is
the polynomial with mons(q�) = mons(q)−mons(p).

Lemma 5.19. Let p, q ∈ N[V ] and (p�, q�) := reduce(p, q). Then

(i) mons(p�) ∩mons(q�) = ∅
(ii) mons(p) = mons(p�) ∪ (mons(p) ∩mons(q)),

(iii) mons(q) = mons(q�) ∪ (mons(p) ∩mons(q)),

(iv) p = q ⇔T p� = q�.

Proof. (i) to (iii) follow directly from the definition of reduce. Now we show (iv): By
B4 and congruence of + we get T |− ∀x ∀y ∀z x + y = x + z ↔ y = z. In addition to
commutativity and associativity of + this implies that monomials that occur in both p and
q can be cancelled while preserving ⇔T .

For the following a characterization of multiset orders is useful:

Lemma 5.20. Let (X,>) be a strict partial order and M,N ∈ M(X). Then

M >mul N ⇐⇒ M &= N and for all n ∈ N −M there is an m ∈ M −N with m > n

Proof. See [1] Lemma 2.5.6.

Lemma 5.21. Let p, q ∈ N[V ] and (p�, q�) := reduce(p, q). Then p <mon q if and only if
p� <mon q�.

Proof. By Lemma 5.20 we have p <mon q if and only if mons(p) &= mons(q) and for all
m1 ∈ mons(p) − mons(q) there is a m2 ∈ mons(q) − mons(p) with m1 <mon m2. By the
definition of reduce and Lemma 5.19 this exactly the case if p� <mon q�.

Lemma 5.22. Let p, q ∈ N[V ] with p <mon q, mons(p) ∩ mons(q) = ∅. Furthermore let
x̄ := (x1, . . . , xk) be pairwise distinct variables such that {x1, . . . , xk} = v(p)∪v(q). We set
s(x̄) := (s(x1), . . . , s(xk)) and (p�, q�) := reduce(p(s(x̄)), q(s(x̄))). There holds:

(i) p� <mon q�,
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(ii) If p &= 0, then p� <mon p.

Proof. (i) p� <mon q�: By Lemma 5.17 we have maxmons(p(s(x̄))) = maxmons(p(x̄)) and
maxmons(q(s(x̄))) = maxmons(q(x̄)). By Lemma 5.14 we get p(s(x̄)) <mon q(s(x̄)).
Therefore we have p� <mon q� by Lemma 5.21.

(ii) We show this result in two steps:

(a) supp(maxmons(p(s(x̄)))) ⊆ supp(mons(q(s(x̄)))): Since p &= 0 we get p(s(x̄)) &= 0
and thus mons(p(s(x̄))) &= ∅. Now letm be a maximal monomial of p(s(x̄)). Then
by Lemma 5.17 m is a maximal monomial of p. Since mons(p) ∩ mons(q) = ∅
and p <mon q there is a maximal monomial mq of q, with m <mon mq by
Lemma 5.13. Therefore m =

�
v∈Γ v for some multiset Γ � vars(mq). By

Lemma 5.16 we have mons(mq(s(x̄))) =
��

v∈Δ v |Δ ⊆ vars(mq)
	
and therefore

m ∈ mons(mq(s(x̄))) ⊆ mons(q(s(x̄))), i.e. m ∈ mons(q(s(x̄))).

(b) p� <mon p: Since p &= 0 we have mons(p(s(x̄))) &= ∅. By (a) we thus have
Π := mons(p) ∩mons(q(s(x̄))) &= ∅. Let

mons(p(s(x̄)))<p :=
�

m∈mons(p)

(mons(m(s(x̄)))− {m}).

Since for all monomials m we have m ∈ mons(m(s(x̄))) by Lemma 5.15 we
get mons(p(s(x̄))) = mons(p) ∪mons(p(s(x̄)))<p. Furthermore by the definition
of reduce we have mons(p�) = mons(p(s(x̄))) − mons(q(s(x̄))). Therefore we
have mons(p�) = (mons(p) ∪ mons(p(s(x̄)))<p) − mons(q(s(x̄))). We now set
Λ := mons(p(s(x̄)))<p−(mons(q(s(x̄)))−Π) to get mons(p�) = (mons(p)−Π)∪Λ.
Now for x ∈ Λ we have x ∈ mons(p(s(x̄)))<p and thus there is an m ∈ mons(p)
such that x ∈ mons(m(s(x̄))) − {m} and thus x <mon m by Lemma 5.16. Now
there exists a y ∈ maxmons(p) such that x <mon y since either m is already
maximal in mons(p) or there is a maximal monomial y ∈ mons(p) such that
m <mon y. By (a) we have y ∈ mons(q(s(x̄))) and therefore y ∈ Π. In total we
have p� <mon p.

5.4 A necessary condition for PT -provability

We now study the T -equivalence of equations more closely. A useful result is the following:

Proposition 5.23. Let (R,+R, 0R, ·R, 1R) be a commutative ring with 1. We also set
R := (R, 0R, sR,+R, ·R) with

0R := 0R,

sR(x) := x+R 1R,

+R := +R,

·R := ·R.
Then R |= T .
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Proof. Straightforward.

Remark 5.24. We denote by Z[V ] the set of polynomials with coefficients in Z and inde-
terminates in V . Note that Z[V ] is a commutative ring with 1. For p ∈ Z[V ] we define the
ideal generated by p as (p) := {q · p | q ∈ Z[V ]}. A result from abstract algebra shows that
the quotient Z[V ]/(p) is again a commutative ring with 1.

Definition 5.25. For t, u ∈ T (S) we define [[t = u]] := poly(t)− poly(u) ∈ Z[V ].

Lemma 5.26. Let p ∈ Z[V ], t, u ∈ T (S) and M := Z[V ]/(p). Then M |= t = u if and
only if [[t = u]] ∈ (p).

Proof. Note that M |= t = u ⇐⇒ tM = uM. Since M satisfies ring axioms we get
tM = uM ⇐⇒ tM−uM = 0+(p). It is straightforward to show that for all terms v ∈ T (S)
we have vM = poly(v)+(p). Thus tM−uM = 0+(p) ⇐⇒ (poly(t)−poly(u))+(p) = 0+(p).
This means tM − uM = 0 + (p) ⇐⇒ [[t = u]] + (p) = 0 + (p). This is exactly the case if
[[t = u]] ∈ (p).

Lemma 5.27. Let t1, t2, u1, u2 ∈ T (S). If T |− t1 = t2 −→ u1 = u2, then [[t1 = t2]] divides
[[u1 = u2]].

Proof. Set M := Z[V ]/([[t1 = t2]]). By Proposition 5.23 and Remark 5.24 we have M |= T
and thus M |= t1 = t2 ⊃ u1 = u2. By Lemma 5.26 we have M |= t1 = t2. Thus
M |= u1 = u2. By Lemma 5.26 we get [[u1 = u2]] ∈ ([[t1 = t2]]), i.e. [[t1 = t2]] divides
[[u1 = u2]].

Proposition 5.28. Let t1, t2, u1, u2 ∈ T (S) such that t1 = t2 ⇔T u1 = u2. Then we have
[[t1 = t2]] = ±[[u1 = u2]].

Proof. By Lemma 5.27 we get that [[t1 = t2]] divides [[u1 = u2]] and [[u1 = u2]] divides
[[t1 = t2]]. As a consequence we have [[t1 = t2]] = ±[[u1 = u2]].

Lemma 5.29. Let p, q ∈ N[V ]. If PT |− [p &= q]T , then p ≶mon q.

Proof. By Lemmas 5.19 and 5.21 we can assume mons(p) ∩mons(q) = ∅, otherwise apply
reduce to (p, q). Now let π |−PT

[p &= q]T . We proceed by induction on π.
If π ends in Aax

1 , then p = q ⇔T s(v) = 0 for some v ∈ T (S). Then by Proposition 5.28
we have that [[p = q]] = ±[[s(v) = 0]]. Note that [[s(v) = 0]] ∈ N[V ]. Therefore [[p = q]]
either has only non-negative coefficients or only non-positive coefficients. Note that not
both p and q can be 0, since then PT |− [0 &= 0]T which contradicts the soundness of PT

(Theorem 3.9). Since mons(p)∩mons(q) = ∅ we get p = 0 or q = 0. In both cases we have
p ≶mon q.

If π ends in Bvar
1 , i.e. π =

[p(0) &= q(0)]T [p(s(x)) &= q(s(x))]T

[p(x) &= q(x)]T
Bvar

1 ,

then p(0) &= q(0) ⇔T p(0) &= q(0) and p(s(x)) &= q(s(x)) ⇔T p(s(x)) &= q(s(x)) by
Lemma 5.10. By induction hypothesis we have p(s(x)) ≶mon q(s(x)). By Lemma 5.17
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there holds maxmons(p(s(x))) = maxmons(p) as well as maxmons(q(s(x))) = maxmons(q).
Therefore maxmons(p(s(x))) ∩maxmons(q(s(x))) = ∅ and by Lemma 5.14 we either have
maxmons(p(s(x))) <mul

mon maxmons(q(s(x))) or maxmons(q(s(x))) <mul
mon maxmons(p(s(x))).

Therefore maxmons(p) <mul
mon maxmons(q) or maxmons(q) <mul

mon maxmons(p) and thus
p ≶mon q by Lemma 5.14.

Note that the corresponding property does not hold in N: We have that N |= 2x &= 2y+1
since the left side is even and the right side is odd, but 2x &≶mon 2y + 1, since x &≶mon y.

5.5 A decision procedure for PT
|−

We now consider the terms that arise from using Bvar
1 in PT -proofs in more detail:

Definition 5.30. Let k ∈ N and let x1, . . . , xk be pairwise distinct variables. We define
the set

Y (x1, . . . , xk) := {(t1, . . . , tk) | for all i ∈ {1, . . . , k} ti ∈ {0, s(xi)}} .
We now show some reductions for PT -provability:

Lemma 5.31. Let ϕ(x) ∈ N(S). Then PT |− [ϕ(x)]T if and only if PT |− [ϕ(0)]T and
PT |− [ϕ(s(x))]T .

Proof. ⇐= : Apply Bvar
1 to the given proofs.

=⇒ : Let π |−PT
[ϕ(x)]T .

If π ends in Aax
1 , then ϕ(x) ⇔T s(t(x)) &= 0 for some t(x) ∈ T (S). Then by Lemma 3.5

we have ϕ(0) ⇔T s(t(0)) &= 0 and ϕ(s(x)) ⇔T s(t(s(x))) &= 0. Thus [ϕ(0)]T and [ϕ(s(x))]T
are provable by Aax

1 .
If π =

(π1)
[ϕ(0)]T

(π2)
[ϕ(s(x))]T

[ϕ(x)]T
Bvar

1 ,

then π1 and π2 are the desired proofs.

Lemma 5.32. Let k ∈ N and ϕ(x1, . . . , xk) ∈ N(S). Then PT |− [ϕ(x1, . . . , xk)]T if and
only if PT |− [ϕ(ū)]T for all ū ∈ Y (x1, . . . , xk).

Proof. We proceed by induction on k. If k = 0, then Y (x1, . . . , xk) = {()} and the statement
follows trivially.
Now let ϕ = ϕ(x1, . . . , xk, xk+1). Note that Y (xk+1) = {0, s(xk+1)}. Therefore a restate-

ment of Lemma 5.31 is PT |− [ϕ(x1, . . . , xk+1)]T if and only if PT |− [ϕ(x1, . . . , xk, uk+1)]T
for all uk+1 ∈ Y (xk+1). Thus, by induction hypothesis we have PT |− [ϕ(x1, . . . , xk, uk+1)]T
if and only if PT |− [ϕ(u1, . . . , uk, uk+1)]T for all (u1, . . . , uk) ∈ Y (x1, . . . , xk) and also
uk+1 ∈ Y (xk+1). Since we have

Y (x1, . . . , xk+1) = {(u1, . . . , uk, uk+1) | (u1, . . . , uk) ∈ Y (x1, . . . , xk), uk+1 ∈ Y (xk+1)}

this concludes the proof.

50
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|−

Definition 5.33. decideN[V ] : N[V ]× N[V ] → {0, 1} is recursively defined as

Let p�, q� ∈ N[V ].

Compute (p, q) := reduce(p�, q�).

If p &≶mon q, return 0.

If q = 0 return 1 if [1]p ≥ 1, otherwise return 0.

If p = 0 return 1 if [1]q ≥ 1, otherwise return 0.

In all other cases let x̄ := v(p) ∪ v(q).

Compute (pū, qū) := reduce(p(ū), q(ū)) for ū ∈ Y (x̄)

Return min
�
decideN[V ](pū, qū) | ū ∈ Y (x̄)

	
.

We introduce a well-founded strict partial order to show termination of decideN[V ]:

Definition 5.34. Let p1, p2, q1, q2 ∈ N[V ]. If p1 ≶mon p2 we set

min(p1, p2) :=

�
p1 if p1 <mon p2,

p2 if p2 <mon p1.

We define

(p1, p2) <mon (q1, q2) : ⇐⇒ p1 ≶mon p2 and q1 ≶mon q2 and min(p1, p2) <mon min(q1, q2)

and
(p1, p2) <t (q1, q2) : ⇐⇒ |v(p1) ∪ v(p2)| < |v(q1) ∪ v(q2)| or

|v(p1) ∪ v(p2)| = |v(q1) ∪ v(q2)| and

(p1, p2) <mon (q1, q2).

Lemma 5.35. <mon on N[V ]× N[V ] and <t are well-founded strict partial orders.

Proof. Showing that <mon is a strict partial order is straightforward. The well-foundedness
of <mon follows from the well-foundedness of <mon on N[V ] (Lemma 5.12). Note that <t

is a lexicographic product of two well-founded strict partial orders. Therefore <t is also a
well-founded strict partial order (see for example [1] Lemmas 2.4.1 and 2.4.2).

Lemma 5.36. Let p, q ∈ N[V ] and let x̄ := (x1, . . . , xk) be pairwise distinct variables
such that {x1, . . . , xk} = v(p) ∪ v(q). Furthermore we set s(x̄) := (s(x1), . . . , s(xk)) and
(p�, q�) := reduce(p(s(x̄)), q(s(x̄))). If p &= 0, q &= 0 and p ≶mon q, then (p�, q�) <mon (p, q).

Proof. If p <mon q, then by Lemma 5.22 we have p� <mon q� and p� <mon p, thus (p�, q�) <mon

(p, q). A similar argument works, if q <mon p.

Lemma 5.37. decideN[V ] terminates.
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Proof. We proceed by induction on <t: First observe that decideN[V ] terminates for p�, q�

where v(p�) ∪ v(q�) = ∅: In this case we have p, q ∈ N. If p &≶mon q, then decideN[V ]

terminates (in this case p &≶mon q simply means p = q). If p ≶mon q, then p &= q. If
p >mon q, then [1]p = p > 0 and q = 0 by the definition of reduce. If q >mon p, then
[1]q = q > 0 and p = 0 by the definition of reduce. In both cases decideN[V ] terminates.
Now let there be at least one variable in v(p�) ∪ v(q�), let p, q &= 0 and p ≶mon q (oth-

erwise decideN[V ] terminates trivially). Also set s(x̄) := (s(x1), . . . , s(x|x|)). Then we have
(pū, qū) <t (p

�, q�) for ū ∈ Y (x̄) \ {s(x̄)} since |v(pū) ∪ v(qū)| < |v(p�) ∪ v(q�)|. Further we
have (ps(x̄), qs(x̄)) <mon (p, q) by Lemma 5.36. Also (p, q) <mon (p�, q�) by Lemma 5.21.
Therefore we have (ps(x̄), qs(x̄)) <t (p

�, q�) and the statement follows by the induction hy-
pothesis.

Lemma 5.38. Let p�, q� ∈ N[V ]. Then decideN[V ](p
�, q�) = 1 if and only if PT |− [p� &= q�]T .

Proof. We proceed by induction on (p�, q�) with respect to <t. Let (p, q) := reduce(p�, q�).
If p &≶mon q, then decideN[V ](p, q) = 0 and PT &|− [p &= q]T by the contraposition of

Lemma 5.29. Now consider the case where p ≶mon q. If p = 0 and [1]q ≥ 1, then
decideN[V ](p, q) = 1. Also we have T |− p = s(q − 1) and therefore p &= q ⇔T s(q − 1) &= 0,
thus PT |− [p &= q]T by Aax

1 . A similar argument applies if q = 0 and [1]p ≥ 1.
If p = 0 and [1]q = 0, then decideN[V ](p, q) = 0. Now q(0, . . . , 0) = 0 = p(0, . . . , 0) and

PT &|− [0 &= 0]T by soundness of PT (Theorem 3.9). Thus, by Lemma 5.32 PT &|− [p &= q]T .
A similar argument applies if q = 0 and [1]p = 0.

Now consider the case where p &= 0, q &= 0 and p ≶mon q. Let (pū, qū) as in Definition
5.33. Now

decideN[V ](p, q) = min
�
decideN[V ](pū, qū) | ū ∈ Y (x̄)

	
.

By Lemma 5.32 we have PT |− [p &= q]T if and only if PT |− [p(ū) &= q(ū)]T for all ū ∈ Y (x̄).
By Lemma 5.19, this is equivalent to PT |− [pū &= qū]T . Note that (pū, qū) <t (p

�, q�). Thus,
by induction hypothesis this is equivalent to decideN[V ](pū, qū) = 1 for all ū ∈ Y (x̄), i.e. if
and only if decideN[V ](p, q) = 1.

Now we can show that PT
|− is decidable:

Proof of Theorem 3.11. The decision procedure is as follows:

Let ϕ ∈ N(S). Extract the t, u ∈ T (S) such that ϕ ≡ t &= u. Return
decideN[V ](poly(t), poly(u)).

By Lemma 5.37 this procedure terminates and by Lemma 5.38 the procedure decides
whether PT |− [poly(t) &= poly(u)]T . By Lemma 5.8 we get poly(t) &= poly(u) ⇔T ϕ and
thus this procedure decides whether PT |− [ϕ].

Example 5.39. Let ϕ(x) :≡ x · x &= x+ s(0) as in example 3.8. The decision procedure
on this example proceeds as follows: Note that ϕ(x) ∈ N(S), thus we extract the polyno-
mials p := x2 and q := x + 1 and compute decideN[V ](p, q). We have x2 >mon x + 1,
since x and 1 are strict divisors of x2. Neither p nor q are 0, therefore we compute
decideN[V ](reduce(p(0), q(0))) and decideN[V ](reduce(p(s(x)), q(s(x)))). We have p(0) = 0,
q(0) = 1, and reduce(p(0), q(0)) = (0, 1) and therefore decideN[V ](reduce(p(0), q(0))) =
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1. Furthermore we have p(s(x)) = x2 + 2x + 1 and q(s(x)) = x + 2. Thus we get
reduce(p(s(x)), q(s(x))) = (x2 + x, 1) := (p�, q�). Since neither p� nor q� are 0 we com-
pute decideN[V ](reduce(p

�(0), q�(0))) and decideN[V ](reduce(p
�(s(x)), q�(s(x)))) = 1. We

have p�(0) = 0 and q�(0) = 1, therefore decideN[V ](reduce(p
�(0), q�(0))) = 1. We get

p�(s(x)) = x2 + 3x+ 2 and q�(s(x)) = 1. Thus reduce(p�(s(x)), q�(s(x))) = (x2 + 3x+ 1, 0).
Now decideN[V ](reduce(p

�(s(x)), q�(s(x)))) = 1 and decideN[V ](reduce(p(s(x)), q(s(x)))) and
in total decideN[V ](reduce(p, q)) = 1. This confirms that PT |− [ϕ(x)]T as already shown
in example 3.8. Note that the computation of decideN[V ](p, q) mirrors the tree structure of
the proof from example 3.8. The computation can be visualized in tree form:

x2 &= x+ 1

0 &= 1

1

x2 + 2x+ 1 &= x+ 2

x2 + x &= 1

0 &= 1

1

x2 + 3x+ 2 &= 1

x2 + 3x+ 1 &= 0

1

x �→ 0 x �→ s(x)

reduce

x �→ 0 x �→ s(x)

reduce

Example 5.40. Let ϕ(x, y) :≡ 2 · x · y + 1 &= 2 · (x + y). We show PT |− [ϕ(x, y)]T by
drawing the computation tree as in the previous example. We omit most of the reduce steps
for brevity. We have poly(2 · x · y+ 1) = 2xy+1 and poly(2 · (x+ y)) = 2x+2y. Now the
computation tree looks like

2xy + 1 &= 2x+ 2y

1 &= 0

1

0 &= 2y + 1

1

0 &= 2x+ 1

1

2xy + 2x+ 2y + 3 &= 2x+ 2y + 4

2xy &= 1

0 &= 1

1

0 &= 1

1

0 &= 1

1

2xy + 2x+ 2y + 1 &= 0

1

x �→ 0
y �→ 0

x �→ 0
y �→ s(y)

x �→ s(x)
y �→ 0

x �→ s(x)
y �→ s(y)

reduce

x �→ 0
y �→ 0

x �→ 0
y �→ s(y)

x �→ s(x)
y �→ 0

x �→ s(x)
y �→ s(y)
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6 Conclusion

We presented a novel approach based on proof-theory to solve Diophantine satisfiability
problems and applied it to a theory AB adjacent to a theory of open induction over a
base arithmetical theory A whose language includes successors, predecessors, addition and
multiplication (but no inequality). To do this we introduced a simple specialized proof
calculus PT and showed its soundness and completeness with respect to AB. Finally,
showing the the decidability of PT allowed us to decide Diophantine satisfiability for AB.

Using this approach leads to some avenues for future work: Note that the axioms Cm

have a very similar structure to the axiom B4, in that the implication is an equivalence.
Thus, by incorporating the axioms Cm into the theory T , we suspect that the method we
presented in this thesis can be adapted to show

Conjecture 6.1. DABCm is decidable.

The axioms C �
m have a more complicated structure. However, it may be possible to

incorporate them into the proof calculus PT by introducing a new inference rule, as we
did with A1 and B1. This will however require a more careful analysis of the interaction
between that inference rule with Bvar

1 :

Conjecture 6.2. DIOpenp is decidable.

Note that in this thesis IOpenp refers to open induction over a language without ≤.
Therefore, even if the above conjecture is true, the long-standing question of the decidability
of DIOpen still remains an open problem.

55





Bibliography

[1] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,
1998.

[2] M. Baaz and S. Hetzl. On the non-confluence of cut-elimination. The Journal of
Symbolic Logic, 76(1):313–340, 2011.
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