
D I P L O M A R B E I T

The Vapnik-Chervonenkis

Dimensions of Different

Neural Network Architectures

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Technische Mathematik

eingereicht von

Sebastian Bittner, BSc

Matrikelnummer 11776808

ausgeführt am Institut für Analysis und Scientific Computing
der Fakultät für Mathematik und Geoinformation
der Technischen Universität Wien

Betreuung
Betreuer: Associate Prof. Dipl.-Ing. Dr.techn. Clemens Heitzinger
Mitwirkung: Univ.-Prof. Dipl.-Ing. Dr.rer.nat. Radu Grosu

Wien, am 22.05.2023
(Unterschrift Verfasser) (Unterschrift Betreuer)

Contents

1 Introduction 5

2 The VC-Dimension and Growth Function 6

2.1 Definition . 6
2.2 Examples . 6
2.3 The Relation between Growth Function and

VC-Dimension . 8

3 Bounding the VC-Dimension using Geometric

Techniques 9

3.1 The Relationship between Solution Set Components and the Growth Function . 9
3.2 Solution Set Components of Circuits . 17

4 Analyzing Different Network Architectures 22

4.1 Classical Feed-Forward Network . 23
4.2 Liquid Time Constant Networks . 25
4.3 Continuous Time Recurrent Neural Networks . 27
4.4 Summary of Bounds . 28
4.5 Comparing the Network Types . 28

5 Discussion 35

1

Abstract

The Vapnik-Chervonenkis dimension, VC dimension in short, is a measure of expressivity or
richness of a set of functions. In this thesis, we explore this concept in relation to different neural
network architectures that use sigmoid activation functions. More specifically, we will take a
look at classical multilayered feed-forward neural networks and at two NeuralODE architectures,
namely Liquid Time Constant (LTC) networks and Continuous-Time Recurrent Neural Networks
(CT-RNNs). In the latter two, the output of the network is computed by numerically solving an
ordinary differential equation.

For these networks, we derived upper bounds on the VC dimension, depending on the number
of neurons, and in case of the recurrent models (LTC and CT-RNN), discretization steps. This
was done through a method involving the number of components of the zero-set of functions
that are dependent on the network parameters. Here various techniques relating to topology and
geometrical analysis were used. We find a very strong dependence of the VC dimension bound
on the number of neurons and a sizeable dependence on the number of discretization steps. The
recurrent models had a higher bound than the classical network for the same number of neurons,
which is partly due to the recurrent models having more parameters than the classical network.

2

Kurzfassung

Die Vapnik-Chervonenkis-Dimension, kurz VC-Dimension, ist ein Maß für die Expressivität
einer Menge von Funktionen. In dieser Arbeit untersuchen wir dieses Konzept in Bezug auf
verschiedene neuronale Netzwerke, die die Sigmoidfunktion als Aktivierungsfunktion verwen-
den. Genauer gesagt betrachten wir klassische Multilayered Feed-forward Netzwerke und zwei
NeuralODE-Architekturen, nämlich Liquid Time Constant(LTC) Netzwerke und Continuous-
Time Recurrent Neural Networks(CT-RNNs). In den NeuralODE-Architekturen wird die Aus-
gabe durch numerisches Lösen einer gewöhnlichen Differentialgleichung berechnet, wovon sich
auch der Name ableitet.

Für diese Netzwerkklassen leiten wir obere Schranken für die VC Dimension ab, und zwar
in Abhängigkeit von der Anzahl der Neuronen, und im Falle der NeuralODE Modelle auch in
Abhängigkeit von der Anzahl der Diskretisierungsschritte. Hierzu verwenden wir eine Methode,
bei der die Anzahl der Komponenten der Nullmengen von Funktionen – die von den Parametern
des Netzwerks abhängen – eine wesentliche Rolle spielt. Dabei finden verschiedene Methoden
aus Topologie und Geometrischer Analysis Anwendung. Wir finden einen starken Zusammen-
hang zwischen der VC-Dimensions-Schranke und der Anzahl der Neuronen im Netzwerk. Die
Abhängigkeit von der Anzahl der Diskreditierungsschritte ist auch gegeben, allerdings in gerin-
gerem Ausmaß. Die Schranke der NeuralODE-Netze ist etwas höher als die der klassischen Netze
bei gleicher Anzahl an Neuronen, was zum Teil darauf zurückzuführen ist, dass die NeuralODE
Netze mehr Parameter haben.

3

Acknowledgements

I would like to thank my supervisor Clemens Heitzinger for his continuous support and ideas as
to which direction to take the thesis. I would also like to thank my co-supervisor Radu Grosu, as
it was his willingness to introduce me to his work that led to me writing on this topic. Finally,
I would like to thank my family, friends and colleagues, as it was only due to their support of
various kind that I was able to advance and enjoy my studies and finally finish this thesis.

4

1 Introduction

Neural networks have been around since the 1950s and have become very relevant once computers
became fast enough to handle all the required operations in a reasonable time [Ano]. Since then,
numerous different artificial neural network types have emerged, and oftentimes the question
arises as to which type is best suited for the task at hand. This means that there is a necessity
for some sort of comparison between the types. In this thesis, we will take a theoretic approach by
looking at bounds of the VC-dimension. We will be looking at classical feed-forward models, but
also at two different NeuralODE architectures, namely continuous time recurrent neural networks
(CT-RNNs) and Liquid Time Constant networks (LTCs). Note that we only consider networks
using the sigmoid activation function (defined as σ(x) := 1/(1 + e−x)), since our approach is
limited to these.

The VC-dimension, short for Vapnik-Chervonenkis-dimension, is named after Russian mathe-
maticians Vladimir Vapnik and Alexey Chervonenkis. These two authors introduced this concept
in 1968, and a translation of their paper can be found in [VC71]. It is typically seen as a measure
of richness, expressive power or flexibility of a function class. In the 1980s and 1990s, this def-
inition was then applied to the emerging neural networks. For example, Eric Baum and David
Haussler found a bound for the VC-dimension for linear threshold networks in 1989 [BH89]. A
few years later, a bound was found for networks that use so-called Pfaffian activation functions
[KM97]. The most relevant use-case are networks with the sigmoid activation function, for which
the proof will be found in Theorem 4.1.2. This proof will then serve as a blueprint for the proofs
of VC-dimension bounds for both LTC and CT-RNN networks. Most of this thesis is based
on the book Neural Network Learning: Theoretical Foundations by Martin Anthony and Peter
Bartlett [AB99], which was released in 1999 and summarizes all the results that were obtained
the years before. The interest in these theoretic foundations seems to have quieted down since
then, since we are not aware of any major breakthrough in the VC-dimension theory of neural
networks after 1999.

While feed-forward neural networks have been around for a long time, NeuralODE archi-
tectures (including CT-RNNs and LTCs) have garnered attention in recent years. They are
comprised of neurons which are much more complicated than those in feed-forward networks.
The value of such a neuron changes over time based on the values of all other neurons according
to a certain ordinary differential equation. These approaches can be used for processes that
require a continuous output from the network, for example when predicting time series, or when
training agents in a physics simulation. [HLA+20]

The outline of the thesis is as follows. In Chapter 2 we will introduce the Vapnik Chervonenkis
dimension and the growth function, the two most important concepts in this thesis. We will
then continue in Chapter 3 with a number of results about the VC-dimension of certain function
classes. In this chapter, we will lay the groundwork for Chapter 4, where we use these insights
to find bounds to the VC-dimension of neural networks. There, we will figure out the most
important factors that determine the bound. These are the number of neurons, the number of
parameters and in case of the NeuralODE architectures, the number of integration steps. It
turns out, that the difference between the CT-RNN and LTC networks is small, and that the
only important distinction between the two is the number of parameters per neuron. In Chapter
5 we will finally summarize the most important insights of the thesis.

5

2 The VC-Dimension and Growth Function

2.1 Definition

In this section we will introduce the notions of VC-dimension and growth function, which will
be integral to the remainder of this thesis. The definition, Lemma 2.2.5 and Theorem 2.3.1 are
based on [AB99].

Definition 2.1.1. We define the binary sign function on R as

bsgn(x) :=

�
1, if x > 0,
0, else.

Definition 2.1.2. Let H be a class of functions mapping from a set X to {0, 1}. We shall call
a function that maps to {0, 1} a dichotomy. The growth function ΠH : N → N is defined as

ΠH(m) := max
S⊆X,|S|=m

��H|S
��,

where H|S := {h|S : h ∈ H} and | · | denotes the cardinality of a set.
A set S ⊆ X is said to be shattered by H, if for every dichotomy h′ on S there exists h ∈ H

with h|S = h′. The Vapnik-Chervonenkis dimension of H, or VCdim(H) is the largest number
n such that there exists a set S ⊆ X with cardinality n that is shattered by H. Clearly, this is
the largest n such that ΠH(n) = 2n, since there exist 2n dichotomies on a set of cardinality n.
If no such n exists, we say that VCdim(H) = ∞.

2.2 Examples

Let us look at a few examples to illustrate this idea.

Example 2.2.1. Consider

H := {(x �→ bsgn(x− a)) : a ∈ R},
the class of linear threshold functions on R. For any S ⊆ R, H|S then contains all functions
S → {0, 1} that are non-decreasing. Since there exist |S| + 1 such functions, ΠH(m) = m + 1.
Therefore the VC-dimension of H is only 1.

Example 2.2.2. Let X = R and H be the set of functions of the form x �→ bsgn(p(x)) for some
polynomial p with degree at most d. Then H has VC-dimension d+ 1. To see this, choose some
x1 < x2 < · · · < xd+1 in R. Take y1, . . . , yd such that xi < yi < xi+1 for all i. Given a dichotomy
h on S := {x1, . . . , xd+1}, define the polynomials

p0(x) := 1,

pi+1(x) :=

�
pi(x), if bsgn(pi(xi+1)) = h(xi+1),

pi(x) · (yi − x), else.

Via a simple induction one can show that bsgn(pi) corresponds with h on the points x1, . . . , xi

and has degree at most i−1. So bsgn(pd+1) fulfills the requirements. Conversely, if H shatters a
set of points x1, . . . , xn, then there exists a polynomial p whose (binary) sign alternates at these
points. If p is nonzero at all these points, then the polynomial has roots in between the points,
and so n − 1 ≤ deg p = d. If p(xi) = 0 for some i and this root is the only one in [xi−1, xi+1],
then it is a double root such that n ≤ d+ 1 also holds.

6

Example 2.2.3. We consider the class of linear classifiers on R2,

H := {(R2 ∋ x → bsgn(y · x− b)), y ∈ R2, b ∈ R}.

How can we determine for a function g : S → {0, 1} for some finite S ⊆ R2, if g ∈ H|S? If we
consider the line {x : h(x) = 0} and the two half-planes generated by that line, then h maps one
of these half-planes to 0, and the other to 1 (and maps the line to 0 by our definition of bsgn).
The function 1 − h, which is also in H, maps the planes to the opposite value. So g ∈ H|S if
and only if one can find a line that separates all the points x where g(x) = 0 and those where
g(x) = 1.

The VC-dimension of this class is clearly at least 3, since one can just consider 3 points that
are not in the same line. For any g ∈ H|S , we can find a line that separates the points in the
required way. Can we go further than that. What if we take S to be the verteces of a square,
{(0, 0), (0, 1), (1, 0), (1, 1)}? This set cannot be shattered by H, since the points (0, 1) and (1, 0)
cannot be separated from (0, 0) and (1, 1), so the function g := ((x, y) �→ x + y mod 2) is not
in H|S . So can we find other points? From geometrical intuition it seems not to be possible.
Indeed, one can show that the VC-dimension is only 3. A proof can be found in [AB99, Theorem
3.1 and Page 36].

Example 2.2.4. Consider now the class of functions

H := {
�
x

y

�
�→ bsgn(a1x

2 + a2xy + a3y
2 + a4x+ a5y + a6) : a1, . . . , a6 ∈ R}

of second degree polynomials in two variables. Now we can represent the function that maps
(0, 0) and (1, 1) to 1 and (0, 1) and (1, 0) to 0. In fact, bsgn(4xy − 2x − 2y + 1) does exactly
that. Hence the VC-dimension is at least 4, since one can see that all other dichotomies can
also be expressed. The question whether or not one can shatter larger sets seems to be quite
complicated.

From these examples it seems unlikely that a function class that looks simple can have infinite
VC-dimension. But that is not the case as shown by the next lemma.

Lemma 2.2.5. The class of functions F := {(x �→ bsgn(sin(θx)) : θ ∈ R} from R to {0, 1}
shatters every finite subset of {2m : m ∈ N}.
Proof. We show that for xi := 2i−1 and a function h : Sk → {0, 1}, where Sk := x1, . . . , xk, we
can find f ∈ F such that f |Sk

= h. We define h′ := 1 − h and choose c such that its binary
representation is the same as the sequence (h′(x1), . . . , h

′(xk), 1), which means

c :=
k�

i=1

2−ih′(xi) + 2−(k+1).

7

Choose θ to be 2πc and observe that

sin(θxi) = sin

2π

 k�
j=1

2−jh′(xj)) + 2−(k+1)

 2i−1

= sin

π

i−1�
j=1

2i−jh′(xj)� �� �
∈2Z

+h′(xi) +
k�

j=i+1

2i−jh′(xj) + 2i−k−1

�
�

= sin

πh′(xi) + π

 k�
j=i+1

2i−jh′(xj) + 2i−k−1

� �� �

∈(0,π)

����� .

Therefore we see that sin(θxi) < 0 if h′(xi) = 1 and sin(θxi) > 0 if h′(xi) = 0. This implies that
bsgn(sin(θxi)) = 1 − h′(xi) = h(xi), as required. Since h was arbitrary, F shatters Sk. Every
finite subset of {2m : m ∈ N} is also a subset of some Sk, and the claim follows.

2.3 The Relation between Growth Function and

VC-Dimension

The next theorem tightly relates the growth function to the VC dimension.

Theorem 2.3.1. For a function class with VCdim(H) = d, the inequality

ΠH(m) ≤
d�

i=0

�
m

i

�
<

�em
d

�d

holds for m > d.

Proof. Fix a set S = {x1, . . . , xm} ⊆ X. Instead of the restrictions of the functions to the set S,
we consider the set

F := {{x ∈ S : f(x) = 1} : f ∈ H}.

There is clearly a one-to-one correspondence between these and H|S , since the elements of the
latter are just the characteristic functions to the sets in F . So

��H|S
�� = |F |. We will now

transform F into a family of sets that has the same cardinality.
Define a function Tx for x ∈ S as

Tx :=

� P(P(S)) → P(P(S)),
G �→ {A \ {x} : A ∈ G} ∪ {A ∈ G : A \ {x} ∈ G}.

The effect of Tx is that from each set A in G, we remove x in case the set A \ {x} is not in G
already. Tx preserves cardinality, since

f(A) :=

�
A, if A \ {x} ∈ G,

A \ {x}, else,

8

is a bijection from G to Tx(G).
To see this, first notice that if W := f(A1) = f(A2) and A1 ̸= A2, one of these sets is W

and the other W ∪ {x}. W.l.o.g. we have W = A1 ∈ G. But then A2 \ {x} = W ∈ G and
therefore f(A2) = A2 ̸= A1 = f(A1), a contradiction. For the surjectivity, let A ∈ Tx(G). Either
A,A \ {x} ∈ G, then f(A) = A, or A /∈ G and A = B \ {x} for some B ∈ G, in which case
f(B) = A.

We say that H is closed under the subtraction of x ∈ S, if

A ∈ H ⇒ A \ {x} ∈ H.

Clearly, Tx(G) has this property. We now show that Tx(G) is closed under the subtraction of any
y ∈ S, if G already is. To this end, suppose B ∈ Tx(G). In case B = A \ {x} for some A ∈ G,
then B \ {y} = A \ {x, y} ∈ Tx(G), since A \ {y} ∈ G. In case that B and B \ {x} are both in G,
so are B \ {y} and B \ {x, y}. Therefore B \ {y} is also in Tx(G).

Now define F∗ := Tx1
◦ Tx2

◦ · · · ◦ Txm
(F). By what we have just proven, F∗ is closed under

subtraction of all x ∈ S. In particular, if B ⊆ A ∈ F∗, then already B ∈ F∗.
The next step is to prove that any set shattered by F∗ is also shattered by F . Here, R ⊆ S

is said to be shattered by G if G ∩R := {A ∩R : A ∈ G} = P(R). If x ∈ S and R ⊆ R, suppose
that Tx(F) shatters R. If x /∈ R, then of course Tx(F) ∩ R = F ∩ R = P(R). Suppose x ∈ R.
For any A ⊆ R with x /∈ A, we have A ∪ {x} = B ∩ R for some B ∈ Tx(F)(and x ∈ B. By the
definition of Tx, B and B \ {x} are in F , and A = B \ {x} ∩ R. Therefore both A and A ∪ {x}
are in F ∩R, which implies that F shatters F .

Since F has VC-dimension d, F∗ can shatter sets with cardinality no more than d. But F∗

shatters every set that it contains, since every subset of a set in F∗ is again in F∗. So every set
in F∗ has at most cardinality d, which implies

|F∗| ≤
d�

i=0

�
m

i

�
. (1)

By the Binomial Theorem and Euler's inequality ((1 + a/n)n < ea),

d�
i=0

�
m

i

�
≤

�m
d

�d d�
i=0

�
m

i

��
d

m

�d

<
�me

d

�d

, (2)

which finishes the proof.

Example 2.3.2. We know that the linear classifiers from Example 2.2.3 have VC-dimension 3.
Theorem 2.3.1 now gives the bound

ΠH(m) ≤
3�

i=0

�
m

i

�
≤ m3

6
+

m2

2
+m+ 1

for the growth function.

3 Bounding the VC-Dimension using Geometric

Techniques

3.1 The Relationship between Solution Set Components and the Growth

Function

In this section, we will find a way to bound the growth functions of a certain type of parameterized
function class (so-called k-combinations, see Definition 3.1.1) by the number of components of

9

intersections of zero sets of corresponding functions in parameter space. This will be the main
result of this section, Theorem 3.1.10, whereby all other results will be leading up to that theorem.
We follow closely [AB99], and all proofs are based on this book, unless stated otherwise.

Definition 3.1.1. Let H be a class of {0, 1}-valued functions defined on a set X, and F a class
of real-valued functions defined on Rd × X. We call H a k-combination of bsgn(F) if there is
a function g : {0, 1}k → {0, 1} and functions f1, . . . , fk in F such that for any h ∈ H there is a
parameter vector ah ∈ Rd and

h(x) = g(bsgn(f1(ah, x)), . . . , sgn(fk(ah, x))) (3)

for all x ∈ X.

Example 3.1.2. Let F be the class of linear functions from R × R to R. The class of threshold
functions

H := {(x �→ bsgn(x− a)) : a ∈ R}
is a 1-combination of bsgn(F) by the choices f1(a, x) := x− a and g(b) = b.

Definition 3.1.3. A finite set F of differentiable functions mapping from Rd to R is said to
have regular zero-set intersections if for all nonempty subsets {f1, . . . , fk} ⊆ F , the Jacobian of
(f1, . . . , fk) : Rd → Rk has rank k at every point of the solution set

k�
i=1

{a ∈ Rd : fi(a) = 0}.

Note that for every subset of F that contains more than d functions, the solution set of these
functions must be empty since the rank condition cannot be satisfied.

Before we state the main results, we will first have a look at the following lemma. It posits
that having regular zero-set intersection is the usual case, in the sense that given any functions,
almost all translations of these functions lead to a set with regular zero-set intersections.

Lemma 3.1.4. Given a finite sequence f1, . . . , fk ∈ Cd(Rd;R), define

S := {c ∈ Rk :

{fi − ci : i = 1, . . . , k} does not have regular zero-set intersections}.
Then λ(S) = 0, where λ denotes the k-dimensional Lesbegue measure.

Proof. Consider a sequence of distinct indizes A := (i1, . . . , iℓ) and let fA := (fi1 , . . . , fiℓ). By
Sard's Theorem (see [Ste64, Theorem 3.1])

SA := fA(x ∈ Rd : dfA(x) < ℓ})

has (ℓ-dimensional) measure 0. Therefore the complement of TA := {c ∈ Rk : (ci1 , . . . , ciℓ) /∈ SA}
also has (k-dimensional) measure 0. Now define

T :=
�
A∈I

TA,

where I is the set of all eligible index sequences.
Let c ∈ S be arbitrary. Since {f1−c1, . . . , fk−ck} does not have regular zero-set intersections,

there existsm and an index sequence (i1, . . . , im) ∈ I such that the Jacobian of (fi1−ci1 , . . . , fim−

10

cim) at some point x of the solution set does not have rank m. Since fij (x) = cij for j = 1, . . . ,m,
this implies (ci1 , . . . , ciℓ)

T ∈ S{i1,...,iℓ} and so c /∈ T{i1,...,iℓ} ⊇ T . Since c ∈ S was arbitrary, we
have S ⊆ T c. Since T c is the finite union of the zero-sets T c

A it is again a zero-set and consequently,
so is S.

The following lemma will now make a connection between the growth function of a k-
combination of bsgn(F), when F is a function class, and the number of connected components
of the complements of the zero-sets of these functions.

Lemma 3.1.5. Let F be a class of functions Rd × X → R that is closed under the addition
of constants. Suppose that f(., x) is d times continuously differentiable for every f ∈ F . Let
H be a k-combination of bsgn(F). Then there exist fi,j ∈ F (i = 1, . . . , k, j = 1, . . . ,m) and
x1, ..., xm ∈ X such that the number of connected components of

Rd \
k�

i=1

m�
j=1

{a ∈ Rd : fi,j(a, xj) = 0}

is at least ΠH(m) and the set

{(a �→ fi,j(a, xj)) : i = 1, . . . , k, j = 1, . . . ,m}
has regular zero-set intersections.

Proof. Let f̃1, . . . , f̃k ∈ F and g : {0, 1}k → {0, 1} such that for every h ∈ H we can find ah ∈ Rd

that satisfies

h(x) = g(bsgn(f̃1(ah, x)), . . . , bsgn(f̃k(ah, x))). (4)

Setting n := ΠH(m), we can find x1, ..., xm ∈ X and h1, . . . , hn ∈ H, such that no two
distinct functions correspond on every xi. For hj we can now find a corresponding coefficient
aj := ahj

according to (4). Choose ε strictly between 0 and

min{fi(aℓ, xj) : fi(aℓ, xj) > 0, i = 1, . . . , k, j = 1, . . . ,m, ℓ = 1, . . . , n}.
If this set is empty, choose any ε > 0. Define I := {1, . . . , k} × {1, . . . ,m} and consider the set

C := (0, ε)km ∩ {(ci,j)(i,j)∈I ∈ Rkm : {fi(., xj)− ci,j : (i, j) ∈ I}
has regular zero-set intersections}.

By Lemma 3.1.4 C is the intersection of a set with positive measure with a set whose complement
has measure zero, therefore λ(C) > 0. In particular, C ̸= ∅. Now choose any ci,j ∈ C and define

fi,j := f̃i − ci,j . Every fi,j is in F since this class is closed under the addition of constants.
According to our choice of ε, we have that

bsgn(f̃i(aℓ, xj)) = 1 ⇒ fi,j(aℓ, xj) > 0, (5)

bsgn(f̃i(aℓ, xj)) = 0 ⇒ fi,j(aℓ, xj) < 0 (6)

for all i, j and ℓ.
Consider now the set

K := Rd \
k�

i=1

m�
j=1

{a ∈ Rd : fi,j(a, xj) = 0}.

11

For ℓ ̸= ℓ′ and j such that hℓ(xj) ̸= hℓ′(xj) we can find i such that

bsgn(f̃i(aℓ, xj)) ̸= bsgn(f̃i(aℓ′ , xj)),

w.l.o.g. we have bsgn(f̃i(aℓ, xj)) = 0, bsgn(f̃i(aℓ′ , xj)) = 1. By (5) and (6) this implies

fi,j(aℓ, xj) < 0 < fi,j(aℓ, xj)

and aℓ, a
′
ℓ ∈ K. In addition, there cannot be a continuous path in K that connects aℓ and aℓ′ .

In fact, for any such path γ : [b, c] → Rd connecting aℓ and a′ℓ, there must exist t ∈ [b, c] such
that fi,j(γ(t), xj) = 0, so γ(t) is not in K. Since the considered set is open, the path-components
and the connected components coincide. (See [Kal14, Lemma 11.3.3 and Proposition 11.3.6.].)
Hence aℓ and a′ℓ are not in the same connected component. In conclusion, a1, . . . , an all lie in
different components of K, therefore CC(K) ≥ n.

Lemma 3.1.5 is already a very remarkable result. However, we would like to have a bound that
is dependent on the number of components of intersections of the zero-sets, not the complement.

Lemma 3.1.6. Let f1, . . . , fk be differentiable functions mapping from Rd to R with regular
zero-set intersections. For i = 1, . . . , k define Zi := f−1

i ({0}). Then the inequality

CC

	
Rd \

k�
i=1

Zi

�
≤

�
S⊆{1,...,k}

CC

	�
i∈S

Zi

�

holds.
The prove of this lemma is quite long, so it will be split up in multiple sub-results. The proof

of the first such subresult, Lemma 3.1.7, is based on [Kal18, Satz 13.4.4] and [War68, Lemma
1.1.].

Lemma 3.1.7. Define functions f1, . . . , fk as in Lemma 3.1.6 and let O ⊆ Rd open. Consider
the sets Zi := f−1

i ({0}) for i = 2, . . . , k. Let C be a connected component of M :=
�k

i=2 Zi ∩ O
and D a connected component of N := f−1

1 ({0}). Then C \ D has at most two connected
components.

Proof. Let y ∈ D∗ := C ∩ D. We will show that C and D∗ are both manifolds, and that the
latter is embedded in the former in a special way. This part of the proof closely follows the
proof of [Kal18, Satz 13.4.4]. Since the involved functions have regular zero-set-intersections, the
Jacobian of (f1, . . . , fk) has rank k, in other words, there exist k coordinates x1, . . . xk such that�

∂fℓ(y)

∂xij

�k

j,ℓ=1

(7)

is a regular matrix. Letting p : Rd → Rd−k be the projection onto the remaining coordinates,
define the map

φ(x) :=

p(x)
f1(x)
...

fk(x)

��� ,

12

which will be a chart that will make D∗ a (d − k)-dimensional manifold. This function is C1,
where

∂φ(x)

∂xi
=

0

∂f1(y)
∂xi

...
∂fk(y)
∂xi

����
for i ∈ {i1, . . . , ik} and

∂φ(x)

∂xi
=

ei

∂f1(y)
∂xi

...
∂fk(y)
∂xi

����
for the remaining coordinates. Here ei denotes the i'th unit vector.

Therefore the Jacobian of φ has the form of a block-diagonal matrix (after a suitable column
permutation) that has the identity matrix and the matrix in (7) in the diagonal, and is therefore
regular. By the inverse mapping theorem, [Kal18, Korollar 13.2.1], there exist open Uy ⊆ Rd

and Vy ⊆ D such that φ|Uy is a diffeomorphism onto Vy and y ∈ Uy. Since the restriction
of a diffeomorphism is again one, we can make these sets smaller such that Uy is contained in

the open set O \ (M \ C ∪ N \D) and such that Vy is a ball. Notice that this is possible since

M \ C∩C = ∅, N \D∩D = ∅ and therefore y ∈ O\(M \ C∪N \D). This restriction means that
Uy is contained in O and is disjoint from other connected components of C and D. Consequently
we have for x ∈ Uy that

x ∈ D∗ ⇐⇒ x ∈ M ∩N ⇐⇒ (f1(x), . . . , fk(x)) = 0

⇐⇒ φ(x) ∈ Rm × {0} ∼= Rm

and

x ∈ C ⇐⇒ x ∈ M ⇐⇒ (f2(x), . . . , fk(x)) = 0

⇐⇒ φ(x) ∈ Rm+1 × {0} ∼= Rm+1.

Let h : Uy ∩C → Ṽy be the homeomorphism p′ ◦ φ, where p′ : Rd → Rm+1 is the projection onto

the first m+ 1 coordinates and Ṽy := p′(Vy). We can now split this ball according to the sign of
the first coordinate into

Ṽ 0
y := {x ∈ Ṽy : x1 = 0},

Ṽ +
y := {x ∈ Ṽy : x1 > 0},

Ṽ −
y := {x ∈ Ṽy : x1 < 0}.

By the definition of φ, the set D∗ ∩ Uy is now mapped by h onto Ṽ 0
y , and clearly Ṽy \ Ṽ 0

y has

two connected components, namely Ṽ +
y and Ṽ −

y .

Now (C \D) ∩ Uy (which is the same as (C \D∗) ∩ Uy) is mapped to the set Ṽy \ Ṽ 0
y , and

since h is a homeomorphism, (C \D)∩Uy also has two connected components, namely h−1(Ṽy
+
)

13

and h−1(Ṽy
−
). Now

D∗ ∩ Uy ⊆ h−1(Ṽy
±
) = h−1(Ṽy

±
). (8)

For each component Ci of the set C \D, consider Ei := D∗ ∩Ci, which is closed in the trace
topology of D∗. We can write this set as

Ei =
�

y∈Ei

D∗ ∩ Uy. (9)

To see this, first notice that, suppose Ci ∩ h−1(Ṽ +
y) = ∅ = Ci ∩ h−1(Ṽ −

y) for some y ∈ Ei, since

Ci ∩ h−1(Ṽ 0
y) ⊆ Ci ∩ D∗ = ∅ we have Ci ∩ h−1(Ṽy) = ∅ and so y /∈ Ci ⊇ Ei, a contradiction.

Without loss of generality, Ci ∩ h−1(Ṽ +
y) ̸= ∅. Since h−1(Ṽ +

y) is a connected subset of C \D, it

must lie entirely in one connected component of C \D, so h−1(Ṽ +
y) ⊆ Ci. According to (8) this

implies

D∗ ∩ Uy ⊆ D∗ ∩ h−1(Ṽ +
y) ⊆ D∗ ∩ Ci = Ei

for every y ∈ Ei. Since clearly Ei ⊆
�

y∈Ei
D∗ ∩ Uy, this proves (9). In particular, Ei is open in

the trace topology of D∗. Being both an open and closed as a subset of the connected set D∗,
either Ei = ∅ or Ei = D∗. Suppose Ei = D∗ ∩ Ci is empty, that means Ci is open (connected
components of open sets are open) and closed in C (since Ci ∩C = Ci ∩ (C \D) = Ci), therefore
Ci = C which is a contradiction since Ci ⊆ C \D ⊊ C (C ∩D is nonempty.) Hence Ei = D∗.
In particular, for any y ∈ D∗, we have y ∈ Ci, which implies Uy ∩ (C \ D) ∩ Ci ̸= ∅, for every
component Ci of C \ D. This means that (C \ D) does not have more connected components
than Uy ∩ (C \D), which has two. This concludes the proof.

Lemma 3.1.8. Let f1, . . . , fk and Z1, . . . , Zk as in Lemma 3.1.6. Let I ⊊ {1, . . . , k} with ℓ ∈ Ic

and M :=
�

i∈I Zi. Then the inequality

CC

M \
�
j∈Ic

Zj

 ≤ CC

M \
�

j∈Ic,j ̸=ℓ

Zj

+ CC

M ∩ Zℓ \
�

j∈Ic,j ̸=ℓ

Zj

holds.

Proof. Let S := M \ �
j∈Ic,j ̸=ℓ Zj and let C1, . . . , CN be the connected components of S. (If

S has infinitely many components, the claim is trivial.) For arbitrary j ∈ {1, . . . , N} consider
the set Cj . Define A1 to be a connected component of Cj ∩ Zℓ. Since the set

�
j∈Ic,j ̸=ℓ Zj is

open, the set S fulfills the requirement for M in Lemma 3.1.7, so Cj \A1 has no more than two
components. Let A2 be a second component of Cj ∩ Zℓ (in case it exists). Since A2 is disjoint
from A1, it must lie entirely in one connected component of Cj \A1. Call these components D1

and D2, in such a way that D1 ∩A2 = ∅. (Define D1 := ∅ in case there is only one component.)
Again by Lemma 3.1.7, CC(D2 \A2) ≤ 2, and so

CC(Cj \ (A1 ∪A2)) = CC((Cj \A1) \A2) =

CC(D1 \A2 ∪D2 \A2) = CC(D1 ∪D2 \A2)

≤ 1 + CC(D2 \A2) ≤ 3

14

since D1 ∪D2 = Cj \A1. We can proceed inductively in the same way to obtain

CC(Cj \ Zℓ) ≤ CC(Cj ∩ Zℓ) + 1.

Therefore we can conclude the proof by calculating

CC

M \
�
j∈Ic

Zj

 = CC(S \ Zℓ) = CC(
N�
j=1

Cj \ Zℓ) =
N�
j=1

CC(Cj \ Zℓ)

≤
N�
j=1

CC(Cj ∩ Zℓ) + 1 = CC (Cj ∩ Zℓ) +N = CC(S ∩ Zℓ) + CC(S).

(Here we use that CC(
�m

i=1 Ai) =
�m

i=1 CC(Ai) for “seperated” sets Ai.)

We can now prove Lemma 3.1.6.

Proof of Lemma 3.1.6. We prove by induction in b the following statement. Suppose i ≥ b. Let
{f1, . . . , fi} and {Z1, . . . , Zi} with properties as in the lemma. Let I ⊆ {1, . . . , i} with |I| = i−b.
Define MI :=

�
j∈I Zj . Then

CC(MI \
�
j∈Ic

Zj) ≤
�
S⊆Ic

CC

MI ∩
�
j∈S

Zj

 ,

where MI ∩
�

j∈∅ Zj := MI .
For b = 0, the statement reads CC(MI) ≤ CC(MI), which is clearly true.
Suppose the statement holds for some b ∈ N ∪ {0}. Consider i ≥ b + 1, I ⊆ {1, . . . , i} with

|I| = i− b− 1 and fj 's and Zj 's as above. Choosing some ℓ ∈ Ic, we use Lemma 3.1.8 to obtain

CC(MI \
�
j∈Ic

Zj) ≤ CC(MI \
�

j∈Ic\{ℓ}
Zj) + CC(MI ∩ Zℓ \

�
j∈Ic\{ℓ}

Zj) (10)

≤
�

S⊆Ic\{ℓ}
CC

MI ∩
�
j∈S

Zj

+
�

S⊆Ic\{ℓ}
CC

MI ∩ Zℓ ∩
�
j∈S

Zj

 . (11)

In the last inequality, note that we applied the induction hypothesis to
{f1, . . . , fi} \ {fℓ} and I for the first expression. In the second expression we applied it to
{f1, . . . , fi} and Ĩ := I ∪ {ℓ} and made use of the fact that MĨ = MI ∩ Zℓ. Note that in both
cases the condition |I| = i− b is fulfilled.

To continue the calculation in (10), we notice that the intersections in the first expression
contain indizes from subsets of S without ℓ, whereas the second expressions contains all the
subsets that include ℓ. This implies

CC(MI \
�
j∈Ic

Zj) ≤
�
S⊆Ic

CC

MI ∩
�
j∈S

Zj

 ,

which proves the induction. Now taking k = i, we obtain the required statement.

15

Definition 3.1.9. Let G be a set of functions in C1(Rd;R). We say that G has solution set
components bound B if for any 1 ≤ k ≤ d and any {f1, . . . , fk} ⊆ G that has regular zero-set
intersections, we have

CC

	
k�

i=1

f−1
i ({0})

�
≤ B.

A set G̃ of functions Rd × X → R (for some set X) with f(., x) ∈ C1(Rd;R) for every f ∈ G̃
and x ∈ X has solution set component bound B with respect to the first d variables, if

{f(., x) : f ∈ G̃, x ∈ X}
has solution set components bound B.

We are now ready to prove the final result, which ties it all together. We will now be able
to bound the growth function of a function class using the solution set components bound from
Definition 3.1.9.

Theorem 3.1.10. Let F be a class of functions Rd ×X → R that is closed under the addition
of constants. Suppose that f(., x) ∈ Cd(Rd;R) for every f ∈ F . In addition, let H be a k-
combination of bsgn(F), therefore consisting of functions X → {0, 1}. If F has solution set
components bound B with respect to the first d variables, then

ΠH(m) ≤ B
d�

i=0

�
mk

i

�
.

Proof. By Lemma 3.1.5 we can find fi,j ∈ F, i = 1, . . . , k, j = 1, . . . ,m and x1, . . . , xm ∈ X
such that

ΠH(m) ≤ CC

Rd \
k�

i=1

m�
j=1

{a ∈ Rd : fi,j(a, xj) = 0}

holds and {fi,j(., xj), i = 1, . . . , k, j = 1, . . . ,m} has regular zero-set intersections. Applying
Lemma 3.1.6 to these functions we obtain

ΠH(m) ≤ CC

Rd \
k�

i=1

m�
j=1

{a ∈ Rd : fi,j(a, xj) = 0}

≤
�

S⊆{1,...,k}×{1,...,m}
CC

 �
(i,j)∈S

{a ∈ Rd : fi,j(a, xj) = 0}

≤
�

S⊆{1,...,k}×{1,...,m},|S|≤d

B = B
d�

i=0

�
mk

i

�
.

Note that this holds since for |S| > d the intersection of the zero sets must be empty.

Remark 3.1.11. In the setting of Theorem 3.1.10, if F is not closed under addition of constants,
one can consider F̃ := {f + c : f ∈ F, c ∈ R}. This class clearly is closed under the addition
of constants, and H is also a k-combination of F̃ . Therefore Theorem 3.1.10 can be used to
determine a bound for the growth function of H using the solution set components bound of F̃ .

16

Example 3.1.12. Consider the linear threshold functions from Example 3.1.2. They are a 1-
combination of the linear functionals on R×R. We have to determine a solution set components
bound of {(x �→ ax+ by + c) : a, b, c, y ∈ R}, which is the set of affine maps on R. The solution
set of one such function is at most 1, so that is also a solution set components bound. Applying
Theorem 3.1.10 gives a growth function bound of

m
0

�
+

m
1

�
= m+1. As we have seen in Example

2.2.1, this bound is tight.

3.2 Solution Set Components of Circuits

Since we now have a way to bound the growth function, it is now the goal to find solution set
components bounds for the function classes we are interested in. We follow again [AB99] to find
a solution set components bound to function classes described by circuits (see Lemma 3.2.6).
We will see later that neural networks with sigmoid activation functions can be viewed as such
a circuit.
First, we introduce the quite technical concept of intermediate variables.

Definition 3.2.1. Let G be a set of functions in C1(Rd;R) and G̃ a set of functions in
C1(Rd(n+1)). We say that G̃ computes G with n intermediate variables if, for any 1 ≤ k ≤ d and
{f1, . . . , fk} ⊆ G, there is a set

{f̃1, g1,1, . . . , g1,n, . . . , f̃k, gk,1, . . . , gk,n} ⊆ G̃

that satisfies the following conditions.

1. For every i = 1, . . . , k there are functions ϕi,1, . . . , ϕi,k and open sets Oi,1, . . . , Oi,k ⊆
Rd(n+1) such that ϕi,j ∈ C1(Oi,j ;R). These functions can be written as

ϕi,1(a, b) = ϕi,1(a),

ϕi,j(a, b) = ϕi,j(a, bi,1, . . . , bi,j−1), 2 ≤ j ≤ n,

where a ∈ Rd and b = (bi,j)1≤i≤k,1≤j≤n ∈ Rdn and (a, b) ∈ Oi,j. The function ϕi,j can be
thought of as computing the intermediate variables, as it only depends on the input and the
previously computed variables. Note that these ϕi,j do not have to belong to the class G̃.

2. For i = 1, . . . , k and j = 1, . . . , n the function gi,j can be written as

gi,j(a, b) = gi,j(a, bi,1, . . . bi,j).

3. Let i = 1, . . . , k and ℓ = 1, . . . , n and a ∈ Rd, b ∈ Rdn as before. If (a, b) ∈ Oi,j and
bi,j = ϕi,j(a, b) for j = 1, . . . , ℓ− 1 , then (a, b) ∈ Oi,ℓ and

gi,ℓ(a, b) = 0 ⇐⇒ bi,ℓ = ϕi,ℓ(a, b)

and

∂gi,ℓ
∂bi,ℓ

(a, ϕi,1(a, b), . . . , ϕi,ℓ(a, b)) ̸= 0.

This means that the functions gi,ℓ implicitly defines the function ϕi,ℓ.

4. For a ∈ Rd and b ∈ Rdn, if bi,j = ϕi,j(a, b) for 1 ≤ i ≤ k and 1 ≤ j ≤ n, then

fi(a) = f̃i(a, b)

for 1 ≤ i ≤ k.

17

Example 3.2.2. Let G̃ be the class of linear functionals on R2d. Let us now try to find out
which functions can be computed with one intermediate variable. Suppose we have 1 ≤ k ≤
d and functions f1, . . . , fk ∈ G ⊆ C1(Rd;R), whereby G̃ computes G with one intermediate
variable. This implies the existence of functions gi,1 and ϕi,1 for each 1 ≤ i ≤ k that satisfy the
requirements of Definition 3.2.1. Then gi,1(a, bi,1) = v · a + wbi,1 for some v ∈ Rd, w ∈ R, and
therefore

ϕi,1(a) = bi,1 ⇐⇒ gi,1(a, bi,1) = 0

⇐⇒ (w ̸= 0 ∧ bi,1 =
−v · a
w

) ∨ (w = 0 ∧ v · a = 0).

In the first case, it must hold that ϕi,1(a, b) = − v·a
w , so ϕi,1 is again linear. In the second case

we cannot find a corresponding function ϕi,1. Therefore fi = f̃i(a, ϕ1,1(a), . . . ϕk,1(a)) is again a

linear function. In conclusion, if G̃ computes G with one intermediate variable, every function
in G is linear.

The concept of intermediate variables is mainly useful because of the following theorem.

Theorem 3.2.3. Let G̃ compute G with n intermediate variables, n being some natural number.
If G̃ has solution set components bound B, so has G.

Lemma 3.2.4. Let f1, . . . , fk, ϕ be real-valued C1 functions, each defined on an open sub-
set of Rd, and let f̃1, . . . , f̃k be real-valued C1 functions on open subsets of Rd+1. Suppose�k

i=1 f
−1
i ({0}) ⊆ domϕ. Also suppose that for all a ∈ domϕ and i = 1, . . . , k,

a ∈ dom fi ⇐⇒ (a, ϕ(a)) ∈ dom f̃i,

fi(a) = f̃i(a, ϕ(a)).

Let g ∈ C1(Rd+1;R) such that for a ∈ Rd, b ∈ R,

g(a, b) = 0 ⇐⇒ a ∈ domϕ ∧ b = ϕ(a) (12)

and

∂

∂b
g(a, ϕ(a)) ̸= 0, a ∈ domϕ.

Defining

Z :=
k�

i=1

f−1
i ({0}),

Z̃ := g−1({0}) ∩
k�

i=1

f̃−1
i ({0}),

it holds that CC(Z) = CC(Z̃). In addition, for a ∈ Z, the Jacobian of (f1, . . . , fk) at a has rank
k if and only if the Jacobian of (f̃1, . . . f̃k, g) at (a, ϕ(a)) has rank k + 1.

Proof. Consider the map

ψ :=

�
Z → Z̃,
a �→ (a, ϕ(a)).

18

This map is well-defined because of (12), and since Z ⊆ domϕ. For (a, b) ∈ Z̃, we have g(a, b) = 0
and further b = ϕ(a), which together with f̃i(a, ϕ(a)) = 0, i = 1, . . . , k, implies a ∈ dom fi and
fi(a) = 0. Consequently, ψ−1(a, b) = a from Z̃ to Z is well defined, and (12) shows that it is
indeed the inverse to ψ. Hence ψ is a homeomorphism, which implies CC(Z) = CC(Z̃). For
the second claim set f := (f1, . . . fk, g) and f̃ := (f̃1, . . . , f̃k). Fix a ∈ Z. In what follows, we
will consider the Jacobians of f at a and of f̃ and g at ((a, ϕ(a)), which are all well-defined. To
simplify notation, we will just write df, df̃ , dg. Furthermore, we will write dbg for ∂g

∂b and dbf̃ for
∂f̃
∂b . We can write

d(f̃ , g) =

�
daf dag

dbf̃ dbg

�
.

Since dbg ̸= 0, we can write 	
Ik 0

−dbf̃
dbg

1

�
,

which is a regular (k + 1)× (k + 1) matrix. Therefore we have

rank d(f̃ , g) = rank

��
daf̃ dag

dbf̃ dbg

��
= rank

	�
daf̃ dag

dbf̃ dbg

�	
Ik 0

−dbf̃
dbg

1

��

= rank

		
daf̃ − dbf̃

dbg
dag dag

0 dbg

��

= rank

	
daf̃ − dbf̃

dbg
dag

�
+ 1.

Now, 0 = d
dag(a, ϕ(a)) = dag + dbg · dϕ, therefore dϕ = −dag

dbg
, which implies

df =
d

da
f̃(a, ϕ(a)) = daf̃ + dbf̃ · dϕ

= daf̃ − dbf̃ · dag
dbg

.

In conclusion, the rank of d(f̃ , g) is exactly one more than the rank of df , as required.

With the help of this lemma, we are now able to prove Theorem 3.2.3.

Proof of Theorem 3.2.3. Let

S1 := {f1, . . . fk} ⊆ G

be a set with regular zero-set intersections. Let

S2 := {f̃1, . . . , f̃k, g1,1, . . . gk,n}

19

be the corresponding functions according to Definition 3.2.1. Define

ϕi,j→j(a, b) := bi,j ,

ϕi,j→k+1(a, b) := ϕi,k+1(a, bi,1, . . . , bi,j , ϕi,j→j+1(a, b), . . . , ϕi,j→k(a, b)),

for all a and b where this is well-defined, which is the set

{a,b ∈
k�

ℓ=j+1

domϕi,j→ℓ :

(a, bi,1, . . . , bi,j , ϕi,j→j+1(a, b), . . . , ϕi,j→k(a, b)) ∈ domϕi,k+1}.

This function represents computing intermediate variables with indices from j + 1 to k + 1.
Now we want to change the functions in S1 one by one. Let qi(j) := ⌊ j+i−1

k ⌋, or any other
integer valued function with the property that qi(0) = 0, qi(j + 1) = qi(j) + 1 for exactly one
i, qi(j + 1) = qi(j) for all other i and qi(dk) = d for all i. Define also for i = 1, . . . , k and
j = 0, . . . , n the helper functions

f j
i (a, b) := f̃i(a, b1,1, . . . , b1,q1(j),ϕ1,q1(j)→q1(j)+1(a, b), . . . , ϕ1,q1(j)→n(a, b), (13)

. . . , bk,1, . . . , bk,qk(j),ϕk,qk(j)→qk(j)+1(a, b), . . . , ϕk,qk(j)→n(a, b)). (14)

This means that for the first q1(j) variables we take the input value to the function, and the
subsequent ones are calculated using the ϕ functions. This definition implies fkn

i = f̃i, since
qi(dk) = d for all i. It also holds that f0

i = fi. To see this, define xi,j := ϕi,0→j(a, b) and

x := (xi,j)i=1,...,k,j=1,...,n. Then xi,j = ϕi,j(a, xi,0, . . . , xi,j−1) and therefore fi(a) = f̃i(a, x) by

Definition 3.2.1 and f̃i(a, x) = f0
i (a, b) by (13).

Now define

Gj := {f j
1 , f

j
2 , . . . , f

j
k , g1,1, . . . , g1,q1(j), . . . , gk,1, . . . , gk,qk(j)}, j = 0, . . . , kd,

where we view all these functions as functions in the j + d variables

a1, . . . , ad, b1,1, . . . , b1,q1(j), . . . , bk,1, . . . , bk,qk(j).

We denote the vector of these variables as vj . By the above considerations, G0 = S1 and
Gkd = S2. We want to show that S1 and S2 have the same number of solution set components.
To this end we want to apply Lemma 3.2.4 to Gj and Gj+1. We denote by ℓ the index where
qℓ(j +1) = qℓ(j) + 1. Then the functions in Gj+1 are in the variables vj+1, which is the same as
(vj , bℓ,qℓ(j+1)). gℓ,qℓ(j+1) and ϕℓ,qℓ(j+1) will take on the roles of g and ϕ, and we will denote them

in this way from now on forward. If f j
i (vj+1) = 0, then in particular ϕi,q1(j) is defined. From

the definition it follows from induction that

ϕℓ,qℓ(j)→m(vj , ϕ(vj)) = ϕℓ,qℓ(j)+1→m(vj , ϕ(vj)), m ≥ qℓ(j) + 1,

and therefore f j
i (vj) = f j+1

i (vj , ϕ(vj)), in the sense that the left side is defined iff the right side
is. Also clearly gi,j(vj) = gi,j(vj , ϕ(vj)) for all gi,j that are in Gj . Definition 3.2.1 grants the
rest of the requirements. Lemma 3.2.4 shows that the zero-set of Gj+1 has the same number of
components as the zero-set of Gj . If we also assume that the differential of

f j
1 , f

j
2 , . . . , f

j
k , g1,1, . . . , g1,q1(j), . . . , gk,1, . . . , gk,qk(j)

20

has full rank, we obtain that

f j
1 , f

j
2 , . . . , f

j
k , g1,1, . . . , g1,q1(j+1), . . . , gk,1, . . . , gk,qk(j+1)

has full rank. Doing this step kn times, we have shown that the zero-sets of S2 and S1 have
the same number of components. The zero-set intersections in S1 are regular, which implies the
same for S2. The zero-set of S2 has at most B components by assumption, which now also holds
for S1, which finishes the proof.

Now we present the main result of the section: the components bound for the circuits. A
circuit computes its result in multiple steps, where the result of each step can be interpreted as
an intermediate variable. For that we need the following function class.

Lemma 3.2.5. Let f1, . . . , fq be fixed affine functions Rd → R. Let G be the class of polynomials
in a1, . . . , ad, e

f1(a), . . . , efq(a) with degree at most ℓ. Then G has solution set components bound

B = 2q(q−1)/2(ℓ+ 1)2d+q(d+ 1)d+2q.

The proof for Lemma 3.2.5 can be found in [Kho91, Section 3.14, Corollary 3].

Lemma 3.2.6. Consider a circuit satisfying the following conditions: The circuit contains q
gates, the output gate computes a rational function of degree no more than ℓ > 1, each non-output
gate computes the exponential function of a rational function of degree no more than ℓ, and the
denominator of each rational function is never zero. Let G be the class of functions defined on
Rd, that this circuits computes for each possible combination of eligible rational functions. Then
G has solution set components bound 2(qd)

2/2(9qdℓ)5qd.

Proof. Let F be the class of polynomials in the variables ai, bi,j , ci,j and eci,j (i = 1, . . . , d and
j = 1, . . . , q) with degree at most ℓ + 1. We will now show that F computes G with 2q − 1
intermediate variables. To this end, fix functions f1, . . . , fk, k ≤ d, in G. Per definition, for each
function fi and each gate j, there exist polynomials ni,j and di,j (i = 1, . . . , k, j = 1, .., q), such
that

vi,j(a) = exp

�
ni,j(a, vi,1(a), . . . , vi,j−1(a))

di,j(a, vi,1(a), . . . , vi,j−1(a))

�
(15)

and

fi(a) =
ni,q(a, vi,1(a), . . . , vi,q−1(a))

di,q(a, vi,1(a), . . . , vi,q−1(a))
.

vi,j denotes the output of gate j in the circuit of function fi.

Now we define ϕi,j(a, b, c) :=
�

ni,j(a,bi,1,...,bi,j−1)
di,j(a,bi,1,...,bi,j−1)

�
on the sets

Oi,j := {(a, b, c) ∈ Rd(2q+1) : di,j(a, b, c) ̸= 0}, and ϕ′(a, b, c) := eci,j . These will serve the
function of the maps ϕi,j of Definition 3.2.1. If ci,j = ϕi,j(a, b, c) and bi,j = ϕ′

i,j(a, b, c) for all
i, j, then clearly ci,j is the expression inside the exponential in (15) and bi,j = vi,j(a), and so in
that case fi(a) = ϕi,q(a, b, c). Consider the functions

f̃i(a, b, c) := ci,q,

gi,j(a, b, c) := ci,jdi,j(a, bi,1, . . . , bi,j−1)− ni,j(a, bi,1, . . . , bi,j−1),

hi,j(a, b, c) := eci,j − bi,j , j = 1, . . . , q − 1,

21

which will serve as our implicitly defining functions. Clearly these are in F , since di,j has degree
at most ℓ. To check item 3 in Definition 3.2.1, suppose that (a, b, c) ∈ Oi,j and ci,j = ϕi,j(a, b, c),
bi,j = ϕ′

i,j(a, b, c) for j = 1, . . . , ℓ − 1. We then have that di,ℓ(a, b, c) ̸= 0 (per assumption, the
denominator is never 0). This implies (a, b, c) ∈ Oi,ℓ and gi,ℓ(a, b, c) = 0 ⇔ ϕi,ℓ(a, b, c) = ci,ℓ and
hi,ℓ(a, b, c) = 0 ⇔ ϕ′

i,ℓ(a, b, c) = bi,ℓ. Finally,

∂gi,ℓ
∂ci,ℓ

(a, ϕi,1(a, b), . . . , ϕi,ℓ(a, b)) = di,j(a, ϕi,1(a, b), . . . , ϕi,ℓ(a, b)) ̸= 0,

∂hi,ℓ

∂bi,ℓ
(a, ϕi,1(a, b), . . . , ϕi,ℓ(a, b)) = 1 ̸= 0.

Using Lemma 3.2.5, we get the solution set components bound

B = 2((q−1)d)((q−1)d−1)/2(ℓ+ 2)4dq+(q−1)d(2qd+ 1)2qd+2(q−1)d (16)

≤ 2(qd)
2/2(9qdℓ)5qd. (17)

for F . (We have substituted (q − 1)d for q, qd(q − 1)d+ d for d and ℓ+ 1 for ℓ.) Theorem 3.2.3
implies that this is also a bound for G.

4 Analyzing Different Network Architectures

The results from the previous section now allow us to find bounds on the VC-dimensions of
a whole range of different network architectures that use sigmoid activation functions. Our
approach follows [AB99, Theorem 8.13], which establishes a VC-dimension bound for standard
sigmoid networks and is described here in Theorem 4.1.2. On this basis, we then prove bounds
for Liquid Time Constant networks (Theorem 4.2.4) and CT-RNNs (Theorem 4.3.2). First we
cite a quite general Theorem. The proof can be found in [AB99, Theorem 8.14].

Theorem 4.0.1. Let h : Rd × Rn → {0, 1}, determining the class

H := {x �→ h(a, x)}.

Suppose that h can be computed by an algorithm that takes (a, x) ∈ Rd×Rn as input and outputs
h(a, x) after no more than t of the following operations:

• addition, subtraction, multiplication and devision on real numbers,

• jumps conditioned on comparisons using >,≥, <,≤,=, ̸= on real numbers,

• the exponential function x �→ ex

• output 0 or 1.

Then

VCdim(H) ≤ t2d(d+ 19log2(9d)).

In principle, for each of the network types we consider we could use this theorem to find a
VC-Dimension bound. We will, however, use a more direct approach in the rest of this section,
where we will need the following lemma.

Lemma 4.0.2. Suppose 2m ≤ Cmb, then m ≤ 2 log2(C) + b log2(
b

ln 2).

22

Proof. First we will prove the inequality ln(a) ≤ ab+ ln(1/b)− 1 for a > 0, b > 0. By looking at
the derivative, one can deduce ex ≥ 1 + x for x ∈ R. This implies eab−1 ≥ ab and subsequently
ln ab ≤ ab− 1.

Using this inequality, we obtain

log2(m) ≤ m

2b
+ log2

�
b

ln 2

�
and further

2m ≤ Cmb =⇒ m ≤ log2(C) + b

�
m

2b
+ log2

�
b

ln 2

��
⇐⇒ m ≤ 2

�
log2(C) + b log2

�
b

ln 2

��
.

4.1 Classical Feed-Forward Network

First we take a look at a classical feed-forward network. This architecture is one of the oldest
neural-network architectures and the most straight-forward. The value of a neuron is determined
by the value of a certain collection of other neurons. This is shown in Figure 4.1, where the black
lines represent which neurons take input from which. Oftentimes the neurons are organized in
layers, such as in the figure, but it does not nessecarily have to be the case. The only restriction
of the connections is that there are no loops, so no neuron is indirectly dependent on its own
value. We now give a formal definition of feed-forward networks.

Definition 4.1.1. For our purposes, we define a standard sigmoid network in the following way.
Let d denote the number of input neurons and k the number of non-input neurons. These neurons
are represented by the functions x1, . . . , xk, which will be defined below. Let C ⊆ {1, . . . , k}2,
where i < j for every (i, j) ∈ C, denote the “connection matrix”. A pair (i, j) being in C means
that neuron j takes input from neuron i. The restriction i < j means that neurons only take
inputs from previous neurons. Similarly, D ⊆ {1, . . . , d}×{1, . . . , k} denotes which neuron takes
input from which input unit. For every w̃ = (wi,j)(i,j)∈C ∈ RC , w′ = (w′

i,j)(i,j)∈D ∈ RD(weights)

and b = (bi)
k
i=1 ∈ Rk(biases), we write w = (w̃, w′, b) and define

xj(w, a) := σ

bj +
�

i:(i,j)∈C

wi,jxi +
�

i:(i,j)∈D

w′
i,jai

 , j = 1, . . . , k − 1,

and

xk(w, a) = bj +
�

i:(i,k)∈C

wi,kxi +
�

i:(i,k)∈D

w′
i,kai,

where σ(t) := 1
1+et . The number xj(w, a) is the value of the jth neuron of a network with weights

and biases w, that is given the vector a (∈ Rd) as input. xk represents the output neuron, so the
associated binary classifier is given by (a �→ bsgn(xk(w, a))).

Theorem 4.1.2. Let H be the set of functions computed by a standard feed-forward sigmoid-
network as in Definition 4.1.1 with W parameters (weights and biases) and k − 1 computation
units. Then

ΠH(m) ≤ 2(Wk)2/2(18Wk2)5Wk
�em
W

�W

23

Figure 1: A feed-forward neural network.

(provided m ≥ W) and subsequently

VCdim(H) ≤ (Wk)2 + 11Wk log2(18Wk2).

Proof. Let H be the class of classifiers of Definition 4.1.1. For every such classifier h, there is
w ∈ RW , such that h(a) = bsgn(xk(w, a)), which means that H is a 1-combination of {xk}
(where we view xk : RW × Rd → R). Following Definition 3.1.9 and Remark 3.1.11, we consider
the class of functions {(w �→ xj(w, a) + c, a ∈ Rd, c ∈ R}. We will respresent the computation
of the network as a circuit of the kind in Lemma 3.2.6. To do this, we split the computation
of the sigmoid function into the computation of (t �→ et) and (t �→ 1

1+t), which will be done by

different circuits. So in the setting of the previous definition, define yj :=
1
xj

− 1 (notice that per

24

definition xj ̸= 0). Then

yj(w, a) = exp

bj +
�

i:(i,j)∈C

wi,jxi(w, a) +
�

i:(i,j)∈D

w′
i,jai

= exp

bj +
�

i:(i,j)∈C

wi,j
1

1 + yi(w, a)
+

�
i:(i,j)∈D

w′
i,jai

for j = 1, . . . , k and

xk(w, a) + c =
1

1 + yk(w, a)
+ c.

So for every input a ∈ Rd, the values y1, . . . , yk, xk + c are computed by a circuit of the kind
in Lemma 3.2.6 with k + 1 gates. (Note: According to [AB99], only k − 1 gates are needed.
We believe this to be an error. However, it does not substantially affect the rest of this theses.)
The first sum is a sum of at most k − 1 numbers, since each summand corresponds to a neuron.
Therefore, the expression inside the exponential can be factorized into a rational function in
(w, y1(a), . . . , yk(a)) of degree at most k. Since functions of the form xk(., a) + c are a subset
of all possible circuits of the size, Lemma 3.2.6 shows that {xk + c : c ∈ R} has solution set
components bound

2(kW)2/2(9k2W)5kW

with respect to the first d variables. Now we use Theorem 3.1.10 to obtain

ΠH(m) ≤ 2(kW)2/2(9k2W)5kW
W�
i=0

�
m

i

�
≤ 2(kW)2/2(9k2W)5kW (em/W)W , (18)

where the last inequality is because of (2). If ΠH(m) ≥ 2m, then by Lemma 4.0.2 we have

m ≤ (kW)2 + 10kW log2(9k
2Wℓ) + 2W (log2(e)− log2(W)) +W log2(

W

ln 2
).

Therefore VCdim(H) ≤ (kW)2 + 11kW log2(9k
2W).

4.2 Liquid Time Constant Networks

Liquid Time Constant networks are a new neural network algorithm. They described for example
in [HLA+20]. It is a form of NeuralODE, which means that each neuron has a value that is
dependent on time (where time goes from 0 to some positive value T) and these values are
described by an ordinary differential equation (namely (19) and (20)). Its design is inspired by
biological neural networks.

Definition 4.2.1. An LTC network is a structure made up of n neurons, each of which stores a
value that is dependent on time. We call this value xj(t), where j ∈ {1, . . . , n} is the index of the
neuron and t ∈ [0, T] is the time. Now in an LTC network, these functions satisfy the following
set of equations (where (19) is differential).

Cx′
i(t) = wli(eli − xi(t)) +

n�
j=1

yji(t), (19)

yji(t) = wjiσ(vji(xj(t) + µji))(eji − xi(t)). (20)

25

In addition, if a = (a1, . . . , an) is the vector of inputs, then

xi(0) = ai. (21)

The classifier to a set of parameters w is then defined as h(a) := bsgn(xn(T)), and x1, . . . , xn is
the unique solution to the initial value problem (19) – (21).

Remark 4.2.2. This initial value problem does in fact have a unique global solution by the
Picard-Lindelöf theorem.

Definition 4.2.3. Both in our theoretical considerations and in practice we use a discretized
version of the ODE. We use a form of hybrid implicit/explicit one-step method, introduced in
[HLA+20]. For the integration times 0 = t0 < t1 < . . . < tN = T define

xi(tk+1) =
xi(tk)Ci/δk + wlieli +

�n
j=1 wjiσ(xj(tk), µj)eji

Ci/δk + wli +
�n

j=1 wjiσ(xj(tk), µj)
, (22)

where δk = tk+1 − tk.

Theorem 4.2.4. Let H be the class of classifiers produced by a discretized LTC network with W
weights, n neurons and N integration steps, where n,N ≥ 4.L Then V Cdim(H) ≤ (nNW)2 +
11nNW log2(9(nN)2W).

Proof. As in Theorem 4.1.2, we will try to rewrite this equation into a circuit described in Lemma
3.2.6. For this, define again yi(tk) := exp(−xi(tk)). Then we have

yi(t0) = exp(−ai), (23)

yi(tk+1) = exp

	
−
xi(tk)Ci/δ + wlieli +

�n
j=1

wji·eji
1+yj(tk)

Ci/δ + wli +
�n

j=1
wji

1+yj(tk)

�
, k = 0, . . . , N − 2, (24)

xn(tN) =
xn(tN−1)Ci/δ + wlieli +

�n
j=1

wji·eji
1+yj(tN−1)

Ci/δ + wli +
�n

j=1
wji

1+yn(tN−1)

. (25)

Here we drop the dependency of yi and xi on the parameters w and inputs a. The remaining
difficulty lies in describing the term xi(tk). We can see by an inductive argument, using the fact
that

xi(tk+1) =
xi(tk)Ci/δ + wlieli +

�n
j=1

wji·eji
1+yi(tk)

Ci/δ + wli +
�n

j=1
c5

1+yi(tk)

=

�n
ℓ=1(1 + yℓ(tk))(xi(tk)Ci/δ + wlieli) +

�n
j=1

�
1≤ℓ≤n
ℓ̸=j

(1 + yℓ(tk))wji · eji�n
ℓ=1(1 + yℓ(tk))Ci/δ + wli +

�n
j=1

�
1≤ℓ≤n
ℓ̸=j

(1 + yℓ(tk))wji
, (26)

that xi(tk) = ri,k(w, y(t0), . . . , y(tk−1)) , where r is a rational function. The degrees of these
rational functions satisfy the inequality

deg ri,k+1 ≤ deg ri,k + 1 + 2 + n+ 3n− 3 + 2n− 2 ≤ deg ri,k + 7n− 1.

Since deg ri,0 = 0, we get deg ri,k ≤ 7nk − 1. Therefore the degree inside the exponential is at
most 7nN + 3n+ 2 ≤ 8nN (since n,N ≥ 4). Equations (23) – (25) define a circuit with Nn+ 1
gates, so Lemma 3.2.6 gives

ΠH(m) ≤ 2(nNW)2/2(72nNWnN)5nNW (em/W)W . (27)

26

This inequality holds due to the slightly lower bound in (16) compared to the formulation of the
lemma. Again using Lemma 4.0.2, 2m = ΠH(m) implies

m ≤ (nNW)2 + 10nNW log2(72nNWnN) + 2W log2(
e

W
) +W log2(W),

from which

VCdim(H) ≤ (nNW)2 + 11nNW log2(72(nN)2W)

follows.

4.3 Continuous Time Recurrent Neural Networks

Continuous time recurrent neural networks, also known as CT-RNNs, are also a form of Neu-
ralODE. They have been around for a little longer than LTCs, and are very similar. The defining
differential equation is a little bit different.

Definition 4.3.1. A CT-RNN network is a structure made of n neurons with time-dependent
values, which will be denoted as xj(t), similar to the LTC networks of Definition 4.2.1. A CT-
RNN network is defined by the equation

x′
i(t) = −τixi +

�
j

ai,jσ(vi,j(xj + µi,j)), i = 1, . . . , n.

For i, j = 1, . . . , n, the variables τi,ai,j, vi,j, µi,j are learnable parameters of the network.
We discretize the equation in a hybrid manner as

xi(tk+1) = xi(tk)− τixi(tk+1) +
�
j

ai,jσ(vi,j(xj(tk) + µi,j)),

which we can rewrite as

xi(tk+1) =

xi(tk) +
�
j

ai,jσ(vi,j(xj(tk) + µi,j))

 1

1 + τi
.

As with LTCs, we consider the binary classifier h(a) = bsgn(xn(T)).

Theorem 4.3.2. The set of classifiers produced by the discretized version of a CT-RNN with
n neurons, W parameters and N integration steps has a V C dimension of at most (nNW)2 +
11nNW log2(9nNW (n+ 1)(N + 1)).

Proof. Define again yi(tk) := exp(−vi,j(xj(tk) + µi,j)) such that

yi(tk+1) = exp

−vi,j

xi(tk) +
�
j

ai,j
1

1 + yi(tk)
+ µi,j

 1

1 + τi

 .

Again, we need to express xi(tk) in terms of a polynomial in yi(tk) and the parameters. For this
we use the identity

xi(tk+1) =

xi(tk) +
�
j

ai,j
1

1 + yj(tk)

 1

1 + τi
.

27

We see that the degree of the rational function increases by at most n + 1 each step, so the
degree is at most (n + 1)N . From this we can conclude that the rational functions inside the
exponential have a degree of at most (n+1)N +n+1. Analogous to the proof of Theorem 4.2.4,
Lemma 3.2.6 and Theorem 3.1.10 give

ΠH(m) ≤ 2(nNW)2/2(9nNW (n+ 1)(N + 1))5nNW (em/W)W . (28)

Using Lemma 4.0.2 we get for m ≤ VCdim(H)

m ≤ (nNW)2 + 10nNW log2(9nNW (n+ 1)(N + 1))

+ 2W log2(
e

W
) +W log2(W),

in other words,

VCdim(H) ≤ (nNW)2 + 11nNW log2(9nNW (n+ 1)(N + 1)).

As one can see, the estimate for the two network types is virtually identical. An LTC network
with equal size will be a little more powerful due to the fact that it has more parameters.

4.4 Summary of Bounds

The following table summarizes the results of this section.

Network type Proven bound Appr. bound

Feed-forward (Wk)2 + 11Wk log2(18Wk2) (nW)2/2

CT-RNN (nNW)2 + 11nNW log2(9nNW (n+ 1)(N + 1)) (nNW)2/2

LTC (nNW)2 + 11nNW log2(9(nN)2W) (nNW)2/2

The approximate bounds are derived from equations (18), (27) and (28), since for large

n,N,W all terms except 2(nW)2 or 2(nNW)2 are relatively small.

4.5 Comparing the Network Types

In this section, we will look at some examples with concrete numbers that compare the VC-
dimension bounds of the different network types. The bounds were not calculated with neither
proven bound nor approximate bound from the table above, but instead by finding numerically
the highest value m, such that equations (18), (27) or (28) are satisfied when substituting 2m

for ΠH(m). The number of parameters for the NeuralODE models is caculated as

paramLTC(n) = 4n(n− 1) + 3n,

paramCTRNN(n) = 3n(n− 1) + n,

where n is the number of neurons. For the feed-forward network, we used the formula

paramFFW(w, d, i) = wd+ wi+ w2(d− 1),

where w is the number of neurons per layer (“width”), d is the number of layers except for the
input layer (“depth”) and i is the number of input neurons. The networks considered are built
in such a way that w = 10d (for simplicity it was not ensured that w and d are integers). The

28

Integration steps LTC (×109) CT-RNN (×109)
10 13.023 6.922
20 52.059 27.711
30 117.108 62.366
40 208.168 110.888
50 325.240 173.277

Table 1: VC Dimension of LTC and CT-RNN with 16 neurons.

Integration steps LTC (×109) CT-RNN (×109)
10 845.781 463.155
20 3 382.828 1 852.819
30 7 611.131 4 169.000
40 13 530.686 7 411.700
50 21 141.492 11 580.919

Table 2: VC Dimension of LTC and CT-RNN with 32 neurons.

number of inputs is always equal to the number of neurons of the neuralODE that it is being
compared to. We made this choice since this will ensure that the compared networks both have
the same number of inputs.

First we will have a look at LTCs and CT-RNNs. Since the bound formula is virtually the
same for both types, the difference in expressiveness at the same size comes from the fact that
the LTC has more parameters per neuron. In Tables 1, 2 and 3 one finds a numerical comparison
of these values. As one can see, the VC dimension of the LTC is about double that of the CT-
RNN. The VC-dimension increases rapidly with the number of integration steps, and even more
rapidly with the number of neurons. This is because the bound approximately increases by a
power of 6 with the number of neurons (note that more neurons means more parameters) and
only quadratically with the number of integration steps. The same tendency can also be seen in
Figure 2. The type of model used only makes a small difference for the bound compared to the
number of integration steps and neurons.

Next, we will have a look at classical feed-forward networks and compare them to LTC models.
The comparison to CT-RNNs is omitted since we have already seen that there is no big difference
to LTCs. In Figure 4.5 one can see how large a classical neural net needs to be to have the same
VC dimension bound as an LTC network, dependent on number of neurons and integration steps.
There seems to be a almost linear dependence between the two. Looking a bit closer, Figure 5
shows the ratio of the size of a classical net and an LTC. As one can see, the ratio does actually

Integration steps LTC (×1015) CT-RNN (×1015)
10 3.505 1.959
20 14.019 7.834
30 31.542 17.627
40 56.075 31.337
50 87.618 48.964

Table 3: VC Dimension of LTC and CT-RNN with 128 neurons.

29

increase with size (and of course the number of integration steps of the LTC). For 20 integration
steps, a small LTC has the same VC dimension bound as a classical neural network only 5 times
the size, while for a 1000 neuron LTC one would already need a feed-forward network with 10 000
neurons. The difference is larger in the case of 500 integration steps, where a 50 times larger
classical net is needed.

Lastly, we look at the effect of the structure of the feed-forward network. In Figure 6 we
can see how big a classical neural network needs to be to match the VC dimension bound of a
given LTC. The different lines represent different ratios of width and depth. For the ratio 5 for
example, this means that there are 5 times more neurons in each layer than there are layers. We
find a sizeable effect that makes the VC dimension bound of wider networks higher as compared
to deeper networks. That is because the number of parameters increases faster with width than
with depth. In Figure 7 we find a variation to Figure 5. Here, we fix the depth of the network
to 5 layers. We see that in this case, the LTC really is just a constant factor larger than the
classical network. The classical network is made larger only by increasing the number of neurons
per layer, which makes the number of parameters grow faster than increasing the number of
layers.

30

Figure 2: Comparison of LTC and CT-RNN

Figure 3: Comparing feed-forward and LTC networks.

31

Figure 4: Size of equivalent classical NN dependent on LTC integration steps

32

Figure 5: Ratio of sizes of classical/LTC networks

Figure 6: Effect of width-depth ratio

33

Figure 7: Size ratio of equivalent classical network with fixed depth and LTC

34

5 Discussion

Our results showcase the important variables in determining the VC-dimension of neural net-
works. These are the number of neurons, the number of parameters, and in case of recurrent
model types, the number of integration steps. One potential upside to the recurrent types is
that you can have a much bigger VC-dimension with fewer neurons. This is because the number
of integration steps increases the VC-dimension, and also because these architectures typically
have a lot more parameters per neuron. Arguably, this is helpful for the interpretability of these
networks for the following reasons. Oftentimes, it is possible to understand the behaviour of a
single neuron, even if it is very complex. This in turn makes it is easier to understand networks
that have fewer neurons. In other words, a neuralODE with the same number of neurons as a
regular neural net is more powerful, while still having the same interpretability.

In our approach of looking at the VC-dimension of recurrent models we treat these models
as a binary classifier, of which the output is based on the value of a specific neuron at a specific
time. This is oftentimes not the way they are used in practice. For example, if used for au-
tomatic parking, the value of multiple neurons and at every timestep determines the path that
the car takes. This discrepancy needs to be taken into account when wanting to estimate the
expressiveness of these networks in the different use cases. It is to be assumed though, that a
higher power as a classifier also suggests a higher power in other situations.

Two further questions come to mind. Firstly, how accurate are the bounds to the VC-
dimension? This is of course hard to answer. But it depends on how tight the bounds are in
Theorem 3.1.10, in Theorem 3.2.3, in Lemma 3.2.5 and also in the final estimates of Theorems
4.1.2, 4.2.4 and 4.3.2. Note that in these final estimates we used the VC-dimension bound for the
function class of all circuits and did not take into account that only a small subset of these circuits
actually respresents the computations of a neural network. Also, for feed-forward networks, the
discrepancy between the best known upper bound (O((Wk)2), see Theorem 4.1.2) and lower
bound (Ω(W 2), see [AB99, Theorem 8.9]) is still very large.

Secondly, is the VC-dimension even a suitable tool for measuring the expressiveness of a
neural network? If a network has VC dimension n, then there are n points in the input space
such that the network can express every possible classification of these points. So it is a measure
of how complicated the classifications that the network expresses can be. It can be argued that
a high VC-dimension also suggests that the network will be able to be more expressive in a
situation where it is not used as a classifier.

It shall be noted at this point, that a high VC-dimension is not always preferable. Higher
VC-dimension is generally associated with more difficult learning. In [AB99, Theorem 4.2] one
can find such a result. It gives an estimation of the learning success when drawing a sample
from any distribution. It is dependent on the VC-dimension of the function class containing
the possible classifiers, and the bound only works if the size of the sample is at least half the
VC-dimension. One remarkable thing about neural networks is that much smaller sample sizes
are oftentimes sufficient for good learning success.

35

References

[AB99] Martin Anthony and Peter L. Bartlett. Neural Network Learning: Theoretical Foun-
dations. Cambridge University press, 1999.

[Ano] Anonymous. Wikipedia: History of artificial neural networks. https://en.

wikipedia.org/wiki/History_of_artificial_neural_networks.

[BH89] Eric B. Baum and David Haussler. What size net gives valid generalization? Neural
Computation, 1:151–160, March 1989.

[HLA+20] Ramin M. Hasani, Mathias Lechner, Alexander Amini, Daniela Rus, and Radu Grosu.
Liquid time-constant networks. Computing Research Repository, abs/2006.04439,
2020.

[Kal14] Michael Kaltenbäck. Fundament Analysis. Berliner Buchreihe zur Mathematik. Hel-
dermann Verlag, 2014.

[Kal18] Michael Kaltenbäck. Analysis 3 für Technische Mathematik, 2018. Lecture Notes,
TU Wien.

[Kho91] A.G. Khovanskii. Fewnomials, volume 88 of Translation of Mathematical Monographs.
American Mathematical Society, 1991.

[KM97] Marek Karpinski and Angus Macintyre. Polynomial bounds for VC Dimension of
sigmoidal and general pfaffian neural networks. Journal of Computer and System
Sciences, 54:169–176, 1997.

[Ste64] Shlomo Sternberg. Lectures on Differential Geometry. Prentice-Hall, 1964.

[VC71] V. N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence of relative
frequencies of events to their probabilities. Theory of Probability & Its Applications,
16(2):264–280, 1971.

[War68] Hugh E. Warren. Lower bounds for approximation by nonlinear manifolds. Transac-
tions of the American Mathematical Society, 133(1):167–178, August 1968.

36

https://en.wikipedia.org/wiki/History_of_artificial_neural_networks
https://en.wikipedia.org/wiki/History_of_artificial_neural_networks

	Introduction
	The VC-Dimension and Growth Function
	Definition
	Examples
	The Relation between Growth Function and VC-Dimension

	Bounding the VC-Dimension using Geometric Techniques
	The Relationship between Solution Set Components and the Growth Function
	Solution Set Components of Circuits

	Analyzing Different Network Architectures
	Classical Feed-Forward Network
	Liquid Time Constant Networks
	Continuous Time Recurrent Neural Networks
	Summary of Bounds
	Comparing the Network Types

	Discussion

