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Kurzfassung

SAT-Solver sind Programme welche die Erfüllbarkeit aussagenlogischer Formeln bestim-
men können. Moderne SAT-Solver können die Erfüllbarkeit von riesigen Formeln, mit
millionen von Bedingungen und tausenden von Variablen, bestimmen. Dies ist besonders
interessant, da eine große Anzahl kombinatorischer Probleme als aussagenlogische Formel
repräsentiert werden kann und diese Probleme dann mittels dieser hochperformanten
SAT-Solver gelöst werden können.

Trotz der erstaunlichen Leistungsfähigkeit moderner SAT-Solver reicht die Skalierberkeit
oft nicht, um große und komplexe Instanzen zu lösen. Während es viel zu lange dauert,
um die Erfüllbarkeit von komplexen Formeln zu lösen, ist dies für zu große Formeln
praktisch unmöglich.

In dieser Arbeit präsentieren wir verschiedene Lösungsansätze, um die erwünschte Skalier-
barkeit zu erreichen: (i) eine effizientere Repräsentation des kombinatorischen Problems,
(ii) „lazy“Ansätze, bei denen nur ein Teil der Bedingungen verwendet wird und (iii) die
Einbettung von SAT-Solver-basierten Methoden in heuristische Methoden, bei denen der
SAT-Solver für lokale Verbesserungen der Lösung verwendet wird (SLIM).
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Abstract

SAT solvers determine whether a given propositional formula is satisfiable. Today’s
highly engineered SAT solvers can determine the satisfiability of huge formulas with
millions of constraints and thousands of variables. Further, stating other combinatorial
problems in terms of propositional satisfiability allows the use of this great SAT-solving
performance for a large range of combinatorial problems.

Despite the great performance of SAT solvers, scalability becomes an issue whenever
the instances become too large or too complex. For complex instances, the SAT solver
may not be able to determine satisfiability in a reasonable amount of time and for large
instances, the corresponding formula becomes too large, and solving becomes practically
impossible.

In this thesis, we propose different methods for overcoming these scalability issues. In
particular, we discuss examples of efficient encoding design, scalability using a lazy
approach, and embedding SAT-based methods into a heuristic approach using SAT-based
local improvement (SLIM). These methods are discussed in the context of applications:
we propose encodings for computing hypertree width and twin-width; a lazy approach
to the directed feedback vertex problem; and SLIM approaches to graph coloring and
decision tree induction.
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CHAPTER 1
Introduction and

Summary of Results

Propositional logic relates statements—or propositions—with each other, using proposi-
tional variables that can be either true or false. The result is a formula in propositional
logic. Determining whether a given formula is satisfiable—whether there is some assign-
ment to the formula’s variables that makes the formula true—plays an important role
in complexity theory and many practical applications. The propositional satisfiability
problem (SAT) is not only an NP-complete problem but the first problem shown to be
NP-complete (Cook, 1971; Levin, 1973). Despite its theoretical hardness, powerful SAT
solvers exist that can determine the satisfiability of even large propositional formulas.

The NP-completeness gives SAT a central role in computational complexity and allows
many interesting problems to be expressed—or encoded—in terms of SAT. Consider how
we can use a SAT solver to solve the following scheduling problem.

Example 1.1. We want to schedule a meeting with the following people and availabilities:

• Person A has time on Monday and Friday.
• Person B can meet any day except Thursday and Friday.
• Person C has time on Monday and Tuesday.
• Person D cannot meet on Tuesday, Wednesday, or Thursday.

We can represent these constraints in terms of propositional logic using one propositional—
or Boolean—variable per possible day. Whenever a variable is set to true, all people are
free on the corresponding day. The resulting formula looks as follows:

(Mon or Fri) and (not Thu and not Fri) and (Mon or Tue)
and (not Tue and not Wed and not Thu).
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1. Introduction and Summary of Results

We can reformulate the formula using logical symbols:

(Mon ∨ Fri) ∧ (¬Thu ∧ ¬Fri) ∧ (Mon ∨ Tue) ∧ (¬Tue ∧ ¬Wed ∧ ¬Thu),

and give the formula to a SAT solver, which tells us that Monday is the only possible day
for the meeting.

The possibility of encoding various interesting problems into SAT and the availability of
powerful SAT solvers makes SAT highly relevant for practical applications. One of the
most important applications for SAT solvers is bounded model checking (Biere et al., 2003).
Bounded model checking formally verifies the correctness of specifications, particularly
for hardware, such as microchips (Biere et al., 1999; Biere, 2021) and software (Kroening,
2021). Equivalence checking (Kuehlmann et al., 2002)—checking whether two Boolean
functions, given for instance as circuits, are equivalent—is another important task that is
often tackled with SAT solvers. The power and applicability of modern SAT solvers got
widespread attention when the SAT-powered solution to the Pythagorean triples problem
resulted in the largest mathematical proof at the time (Heule et al., 2016) of over 200
Terabytes. In Chapter 4, we will see a class of propositional formulas with millions of
variables whose satisfiability modern SAT solver can determine in minutes.

While finding the best way to encode a problem into SAT can be challenging, creating the
encoding is usually easy. The whole program creating the encoded Pythagorean triples
instance has only 26 lines of C++ code. Another advantage of using SAT encodings
is their high flexibility, as we can easily add further constraints. Consider the example
above. Adding further people or even meeting room availabilities only requires adding
constraints to the formula. Further, instead of having a variable per day, we can subdivide
each day into 24 hours and increase the precision of our scheduling. Starting from an
idea for finding a day when four people are available, we can, with very few modifications,
schedule meetings in a large company with hundreds of people.

The actual solving is delegated to the SAT solver, and the solving algorithm performs
the hard work of solving the encoded problem. Dedicated algorithms for determining
satisfiability have been known since at least the 1960s. The DPLL algorithm (Davis
et al., 1962) uses several rules that speed up the search compared to a simple exploration
of all possible assignments. With several improvements, the DPLL algorithm was the
state-of-the-art for several decades. In the late 1990s, the extension from DPLL to
conflict-driven clause learning (CDCL) (Silva and Sakallah, 1999; Moskewicz et al., 2001)
achieved significantly higher performance and is the basis for the success of modern
SAT solvers. CDCL improves upon DPLL in two key aspects: the algorithm learns
additional constraints to avoid repeating unsuccessful decisions in later iterations, and
these additional constraints allow CDCL a more efficient exploration of the possible
assignments. Today, most SAT solvers, and all we use in this thesis, are based on CDCL.

SAT solvers have become sophisticated and highly engineered pieces of software. Although
the core algorithm is still CDCL, two decades of work refined every part of the algorithm:
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implementation details, heuristics, data structures, pre-, and in-processing. The progress
achieved by algorithm engineering for SAT is “nothing short of spectacular” (Vardi, 2014).
The annual SAT competition1 shows that despite this stunning performance, significant
improvements are achieved yearly. These improvements are highly relevant for SAT-based
approaches. Since we can simply replace the older solver with the newer one and use the
same encoding, we benefit from the improvements without much extra effort.

With conventional SAT solvers, maximization problems can only be solved by repeatedly
asking the solver, “is there a solution larger or equal than k?” and increasing k every time.
As soon as the solver answers “no,” we know that the last “yes” answer corresponds to
the maximum solution. MaxSAT extends SAT with the capability to encode optimization
problems directly. Hence, we can ask a MaxSAT solver directly, “what is the maximum
solution to our encoded instance?” Another extension of SAT, SAT modulo theory (SMT)
allows for encoding optimization problems and extends propositional logic by fragments
from the more powerful first-order logic. While there are many capabilities that SMT
introduces, particularly interesting in the context of this thesis is the support of numerical
variables. MaxSAT solvers usually solve optimization problems considerably faster than
repeatedly calling SAT solvers, and SMT allows encoding problems that are hard to
express in propositional logic. Both SMT and MaxSAT solvers are built on top of SAT
solvers, and we will see the benefits of using these SAT extensions in Chapter 3.

Despite their capabilities, SAT solvers have limits that hinder their applicability. A
frequent issue is that the problem instance we want to encode is already too large, and
the encoded instance is usually even larger. E.g., as we will see in this thesis, the encoded
instance’s size for graph problems is often cubic in the number of the input graph’s
vertices. Hence, encoding such a problem for a graph with 500 vertices requires over 125
million constraints. If we want to encode larger graphs, we quickly exceed the memory of
the machine running the SAT solver. Even if we do not exceed the machine’s memory,
too many constraints can severely slow down the solver to the point where it takes
exceedingly long to determine the satisfiability of the formula.

Worse, even small formulas can be too hard to solve in the desired amount of time
if they are too complex. It is well known that specific problems, like the pigeonhole
principle (Haken, 1985), are notoriously hard for SAT solvers, even though the encoded
instances are small. In general, whether the SAT solver succeeds depends on how many
assignments the solver has to explore until it either finds a satisfying assignment or can
determine that no satisfying assignment exists. As a result, the solver’s success is often
depending on the considered instances and the chosen encoding.

These issues necessitate approaches scaling SAT-based methods to large and complex
formulas. Depending on the issue, different scalability approaches can help. Some
problems require sophisticated encodings, such as the encodings we discuss in Chapters 3
and 4. Here, refining the encoding can help scale to larger instances. These refinements
include finding a more succinct way to express the problem in propositional logic, tuning

1https://satcompetition.github.io/
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1. Introduction and Summary of Results

the encoding to be more amenable to the way CDCL works, and adding constraints
restricting the number of assignments the solver has to consider.

Even with refinements, there are limits to the encoding’s succinctness. Particularly when
the instances we want to solve are large, even the most succinct SAT encoding might
not suffice. This issue can be addressed using lazy encodings. Here, we call the SAT
solver repeatedly using only a small part of the formula. Whenever the SAT solver
determines that this part is unsatisfiable, we know that the entire formula is unsatisfiable.
Otherwise, the solver returns a satisfying assignment, and we repeatedly extend the
partial formula until the solver returns a satisfying assignment that satisfies the entire
formula. The part of the formula that suffices for finding an overall solution is often very
small compared to the entire formula. Therefore, while the entire formula would by far
exceed the capabilities of the SAT solver or even the machine, a lazy approach can still
manage to find a solution. In Chapter 5, we achieve scalability for an encoding that is
exponentially larger than the encoded problem using a lazy encoding.

Whenever we exceed the limits of the previous methods, we can still find a good solution
to optimization instances by combining SAT-encodings with heuristic approaches. The
algorithmic framework SAT-based local improvement (SLIM) starts from a sub-optimal
solution and repeatedly improves smaller—local—parts of the solution using a SAT
solver. Focusing on local parts ensures that the encoding’s size and complexity are
manageable for the SAT solver, which can find the optimal solution for the local part,
thereby improving the overall solution. This approach is very flexible, and we show in
Chapters 6 and 7 how diverse its applications can be.

In this thesis, we focus on these three approaches to scalability: (i) refining the SAT
encoding itself, (ii) using lazy encodings, and (iii) embedding the SAT encoding into a
heuristic method within the SLIM framework.

1.1 Summary of Results

1.1.1 Encoding Refinement

Encoding a problem into SAT is often not straightforward. While some problems, such as
graph coloring or vertex cover, have a straightforward encoding, other problems require a
specific characterization that lends itself to be encoded into SAT. In this thesis, we explore
two problems that require a non-trivial characterization. Both problems, determining
hypertree width and twin-width of a (hyper)graph, stem from the general area of width
parameters for (hyper)graphs. For hypertree width, we show how developing different
characterizations can be beneficial to scalability. In the case of twin-width, we show how
developing different encodings based on the same characterization can yield very different
results.

4



1.1. Summary of Results

Hypertree Width

Hypertree-width (Gottlob et al., 2002) is a generalization of treewidth to hypergraphs.
Intuitively, hypertree-width measures how close the hypergraph’s primal graph is to a tree.
This hypergraph parameter can be used for specialized—or parameterized—algorithms
that are faster on hypergraphs of low width than common algorithms. Hypertree width
is of interest for problems that can be represented as a hypergraph, such as constraint
satisfaction problems and database queries, which become tractable for hypergraph
classes of bounded hypertree width. Currently, a Google scholar search for “hypertree
width” yields about 1500 results, further underlining its importance. Nonetheless, few
methods have been developed to compute it.

In Chapter 3, we propose two SAT encodings for hypertree width that beat the state-
of-the-art approaches. The two encodings are based on two different characterizations
of hypertree width with complementary performance: depending on properties of the
hypergraph, one encoding may perform better than the other, with no clear winner.
Furthermore, we explore how different solving paradigms (SAT, MaxSAT, SMT) perform
and again see a complementary behavior: the MaxSAT solver performs better for large
hypergraphs, while the SMT solver performs better for hypergraphs with large hypertree
width.

In the context of scalability, it is particularly interesting to look at the development of the
encodings. One of the encodings won PACE 2019 (Schidler and Szeider, 2020; Dzulfikar
et al., 2019), beating the state-of-the-art dynamic programming solver. Nonetheless,
using a new characterization, our second encoding (Schidler and Szeider, 2021b) achieved
significantly better performance. The versions presented in this thesis are refinements
of these two encodings, and these refinements achieve similar performance, further
highlighting the importance of encoding refinement.

Twin-Width

Twin-width (Bonnet et al., 2022) is a graph parameter that, similar to hypertree width,
allows for efficient solving of NP-hard problems on graphs of bounded twin-width. In
particular, twin-width allows for fixed-parameter tractable first-order model checking,
parameterized by the length of the first-order formula. Many NP-hard problems, like the
independent set problem, can be expressed in first-order logic and thus become tractable
for graph classes of bounded twin-width. Already the problem of determining if a graph
has twin-width ≤ 4 is known to be NP-hard (Bergé et al., 2022).

Twin-width is based on contractions: in a contraction, we replace two vertices of a graph
with a new vertex adjacent to exactly the neighbors of the two contracted vertices. Twins
are two vertices where contracting them is identical to simply removing one of them.
Twin-width is based on pairwise contracting vertices until the entire graph has been
contracted to a single vertex by a sequence of contractions (a contraction sequence).
Twin-width measures, in a certain sense, how close a graph is to being reducible to a
single vertex by contracting only twins.

5



1. Introduction and Summary of Results

We propose two SAT encodings for computing the exact twin-width of a graph in
Chapter 4. Our encoding is, to date, the only algorithm able to compute the twin-width
of graphs. Both encodings are based on our novel characterization of twin-width, and we
show how differently encoding the same characterization can lead to more succinct and
better scalable encodings. The encodings presented in this thesis are refined versions of
our previously proposed encodings (Schidler and Szeider, 2022).

1.1.2 Lazy Encodings
Engineering a good encoding is not necessarily enough for good scaling. Fortunately,
we often do not need to encode the entire instance. Often a small set of constraints is
sufficient for finding a solution or determining that no solution exists. This fact is used
in lazy approaches. Here, one starts with a small subset of all constraints. Whenever a
solution is found, it is checked against the full set of constraints. Violated constraints are
added to the current subset, and the SAT solver is run again until, eventually, a solution
is found that satisfies all constraints. In practice, for many instances, the necessary
subset is comparatively small. We explore lazy encodings in the context of the directed
feedback vertex set problem.

Directed Feedback Vertex Set

The directed feedback vertex set (DFVS) problem is one of Karp’s original 21 NP-complete
problems (Karp, 1972). Given a directed graph, a directed feedback vertex set is a subset
of the set of vertices, such that the graph without the vertices of the subset is acyclic.
We solve the problem of finding a minimum DFVS.

A straightforward SAT encoding for the DFVS problem checks whether a vertex can
reach itself via any of its successors. This encoding has a size cubic in the number of
vertices in the input graph. Another approach is listing all cycles and computing a hitting
set: a subset of vertices that contains at least one vertex from each cycle. Since there can
be exponentially many cycles in the number of the graph’s vertices, this encoding can
become even larger than the previous one. Given the large encoding sizes, it is impossible
to encode DFVS instances where the graph has several thousands of vertices.

In Chapter 5, we discuss our lazy approach to DFVS that won PACE 2022 and scales
to large graphs (Kiesel and Schidler, 2023).2 We initially encode only some short cycles
and give it to a MaxSAT solver. Then, whenever the solution fails to break some cycles,
we add more cycles until we obtain a valid solution. Furthermore, we show how we can
integrate this logic directly in the MaxSAT solver to further speed up our approach.

1.1.3 SAT-based Local Improvement (SLIM)
So far, we have been able to compute exact solutions to the problems. While the
previously discussed methods provide scalability, at some point, instances become too

2https://pacechallenge.org/2022/
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1.1. Summary of Results

large to be solved exactly, and we search for good heuristic solutions. Nonetheless, we
want these heuristic solutions to be as close to the optimal solution as possible. As it
turns out, embedding SAT-based methods into heuristics, the basic idea behind SLIM, is
an excellent way of finding good heuristic solutions. SLIM starts from an initial heuristic
solution and improves it through a series of local improvements. Key is a method that
extracts small local instances from the heuristic solution. These local instances are small
enough to be tackled by a SAT solver and constructed so that their solution can be
reintegrated into the original global solution, such that the local solution improves the
heuristic solution.

We explore two SLIM approaches in the course of this thesis, one for graph coloring and
one for decision tree learning. The two approaches show how different the details of
SLIM approaches can be within the general SLIM framework.

Graph Coloring

Graph coloring is another one of Karp’s 21 NP-complete problems (Karp, 1972): given
a graph, we want to color each vertex such that adjacent vertices have different colors
using as few colors as possible. While encoding the problem into SAT is straightforward
and the resulting encoding is small compared to the ones discussed above, large or dense
graphs usually result in complex instances.

We propose GC-SLIM (Schidler, 2022), our SLIM approach to graph coloring, in Chapter 6.
GC-SLIM can find good colorings for large and dense graphs by removing one color after
the other from an initial coloring. The key idea is to recolor subgraphs instead of the
entire graph. For each subgraph, GC-SLIM tries to remove a specific color until it is not
used anywhere in the graph. By using a SAT encoding for list-coloring, we ensure that
the new coloring for the subgraph is consistent with the remainder of the graph outside
the subgraph. The list-coloring restriction ensures that no vertex in the subgraph gets
assigned a color of a neighbor outside the subgraph.

In our experiments, GC-SLIM is able to improve the coloring of state-of-the-art heuristics
for graphs with several hundred thousand vertices and more than 1.5 billion edges.
GC-SLIM was among the top solvers in the 2022 CG:SHOP challenge (Fekete et al.,
2022).

Decision Tree Induction

Decision trees are inherently interpretable machine learning models: it is comparatively
easy for a human to understand a given decision tree model, and the path taken for
a decision explains the reasons for the decision. The search for interpretable machine
learning models has increased the interest in decision trees. In this context, small and
shallow decision trees are preferred: the more nodes a decision tree has, the harder it
becomes to comprehend. Further, the depth of the decision tree limits the length of the
explanation for a single decision. We use the term complexity to refer to the decision
tree’s size or depth.

7



1. Introduction and Summary of Results

Unfortunately, finding decision trees of minimum complexity is an NP-hard problem. SAT
encodings are among the methods that have been proposed for finding low-complexity
decision trees. Starting with Narodytska et al.’s (2018) encoding, several encodings
were proposed in the last years, with the latest encoding (Shati et al., 2021) scaling
to medium-sized classification instances. While the performance of the encodings is
impressive, many classification instances from standard machine learning repositories are
still too large to be tackled directly by them.

Our SLIM approach DT-SLIM (Schidler and Szeider, 2021a) in Chapter 7 scales these
encodings to very large decision trees and classification instances. DT-SLIM iteratively
improves the complexity of a given decision tree by selecting different subtrees and
reducing their complexity using a SAT encoding. Whenever the SAT encoding can find a
subtree of lower complexity, it improves the complexity of the whole decision tree.

1.2 Publications
This thesis is based on the following publications.

Chapter 3: Hypertree Decompositions

André Schidler and Stefan Szeider. Computing optimal hypertree decompositions. In
Guy E. Blelloch and Irene Finocchi, editors, Proceedings of the Symposium on Algorithm
Engineering and Experiments, ALENEX 2020, Salt Lake City, UT, USA, January 5-6,
2020, pages 1–11. SIAM, 2020. doi: 10.1137/1.9781611976007.1. URL https://doi.org/10.
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CHAPTER 2
Preliminaries

We introduce some general notation and terminology that is relevant to all chapters.
Each chapter will introduce further background knowledge relevant for the chapter.

2.1 Graphs
If not stated differently, we consider a graph to be connected, simple and undirected.
An undirected graph G consists of a set of vertices V (G) and a set of edges E(G). We
will often assume without loss of generality that V (G) = {1, . . . , |V (G)|}. We denote the
edge between vertices v, w ∈ V (G) by {v, w}. For X ⊆ V (G) we denote by NG(X) =
{ u : {u, v} ∈ E(G) with v ∈ X and u /∈ X } the neighborhood of X. We write NG(v)
instead of NG({v}) and drop the subscript if G is clear from the context. G − X denotes
the graph G′ with V (G′) = V (G) \ X and E(G′) = { {u, v} ∈ E(G) : u, v ∈ V (G′) }.

2.2 Propositional Satisfiability
A propositional logic formula F is defined over a set V of Boolean variables. Each variable
can take the values true and false. We give the definition of propositional formulas in
conjunctive normal form (CNF), as it is the input format we use and every propositional
logic formula can be transformed into an equisatisfiable CNF formula in polynomial
time (Tseitin, 1983; Plaisted and Greenbaum, 1986).
The smallest unit in a CNF formula is a single variable v ∈ V , it can occur unnegated or
negated ¬v. Unnegated and negated variables are called literals. We say a literal ℓ is
negative if it is of the form ℓ = ¬v and positive if ℓ = v. Disjunctions combine one or
more literals. A disjunction between two literals v1 and ¬v2 is denoted as v1 ∨ ¬v2 and a
disjunction of a set L of literals as 	

ℓ∈L ℓ. A CNF formula is a conjunction of clauses.
The conjunction of two clauses C1 and C2 is denoted by C1 ∧ C2, and the conjunction of
a set C of clauses as �

v∈L v. Example 2.1 shows a CNF.
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2. Preliminaries

Example 2.1. (v1 ∨ v2 ∨ ¬v3) ∧ (¬v2 ∨ v3) ∧ ¬v1.

It is often convenient to denote a CNF as a set of clauses, and a clause as a set of literals.
The set representation for Example 2.1 would be { { v1, v2, ¬v3 }, { ¬v2, v3 }, { ¬v1 } }.

A propositional formula is evaluated based on an assignment σ : V → {true, false} of
variables to values. In case σ is a partial function, we say it is a partial assignment.
A positive literal is satisfied if the corresponding variable is assigned true, otherwise,
it is unsatisfied. Similarly, the negative literal is satisfied if the corresponding variable
is assigned the value false. Further, a clause is satisfied if at least one of its literals is
satisfied, and an empty disjunction can not be satisfied. Finally, a CNF is satisfied if all
of its clauses are satisfied. An empty CNF is always satisfied.

The propositional satisfiability problem (SAT) asks: given a propositional formula F ,
does there exist an assignment σ that satisfies F? The satisfying assignments of F are
called models.

In the remainder of this work, we will use the term formula to refer to propositional
formulas. For brevity, we will occasionally use logical equivalency C1 ↔ C2, where C1
and C2 are clauses, and any assignment satisfies either both or none of them.

We denote a SAT encoding for some instance I as F (I).

Example 2.2. We illustrate encodings into SAT with the problem of finding an inde-
pendent set: given a graph G, we want to find a subset V ′ ⊆ V (G) such that for all
u, v ∈ V ′ with u ̸= v it holds that {u, v} /∈ E. This can be encoded into SAT by using
V as the variables and then F (G) = { {¬u, ¬v} : {u, v} ∈ E }. Any model for F (G) can
then be converted into an independent set, by selecting exactly the vertices where the
corresponding variable is assigned the value true.

While the encoding in the example is correct, a trivial independent set is the empty
set. Hence, we usually want to find an independent set of maximum cardinality, which
requires encoding an optimization problem in terms of a decision problem instance.

2.3 Optimization
Since SAT is a decision problem, we need a different approach to solve optimization
problems. We encode an instance I of a maximization problem (minimization is analogous)
as a formula F (I, d), where F (I, d) is satisfiable if and only if there is a solution to I
of value ≥ d. Whenever F (I, d) is satisfiable, we increment d. As soon as F (I, d) is
unsatisfiable, we know the optimal value is d − 1.

Example 2.3. In our running example of finding a (maximum) independent set, we
want to create a formula F (G, d) such that F (G, d) is satisfiable if and only if there exists
an independent set V ′ such that |V ′| ≥ d.
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In Example 2.3, we need to constrain the cardinality of V ′. For optimization problems,
we usually have one or more of these cardinality constraints. In the remainder of this
section, we show how we can encode cardinality constraints and how extensions of SAT
allow for other ways of encoding optimization problems.

2.3.1 Cardinality Constraints
Cardinality constraints can be encoded directly as a set of clauses. Several methods
have been proposed (Batcher, 1968; Bailleux and Boufkhad, 2003; Sinz, 2005; Asín et al.,
2009; Ogawa et al., 2013; Morgado et al., 2014b). The methods differ in various aspects,
including the number of clauses they require. In this thesis, we mainly use the totalizer
constraints (Bailleux and Boufkhad, 2003), as they performed overall best and they can
be incrementally adapted (Martins et al., 2014). Due to their simplicity, we sometimes
use variations of the sequential counters (Sinz, 2005). In the remainder of this work, we
assume that we can express cardinality constraints in propositional logic.

The advantage of using these cardinality constraints is that F (I, d) remains a formula
in propositional logic, and we can use SAT solvers to find an optimal solution. The
disadvantages are that cardinality constraints can introduce a very large number of
additional clauses and little information is used from one value of d to another that can
speed up the search.

The disadvantages give rise to extensions of SAT that allow for explicitly stating both
cardinality constraints and optimization problems, which we discuss next.

2.3.2 Maximum Satisfiability (MaxSAT)
MaxSAT allows expressing optimization problems by stating F (I) and the optimization
goal separately. We give the definition of partial MaxSAT as it is the formalism we use
in this thesis. MaxSAT instances are solved using special MaxSAT solvers that, in turn,
use SAT solvers in a strategic way that speeds up the search for an optimal solution.

A MaxSAT instance consists of two sets of clauses, the hard clauses, given by F (I) and
the soft clauses, given by Fs(I). A solution for the instance is a model for F (I) that
maximizes the number of satisfied clauses in Fs(I). This allows us to directly encode
optimization problems in MaxSAT, as the following example shows.

Example 2.4. We can express the maximum independent set problem as a partial
MaxSAT instance as follows. As hard clauses we use F (G) as defined a above and
Fs(G) = { {v} : v ∈ V }. Any independent set obtained from the solution will then
contain the maximum number of vertices.

2.3.3 SAT Modulo Theory (SMT)
SMT extends propositional logic by fragments of first-order logic (Barrett et al., 2009;
Monniaux, 2016) and provides many more capabilities than those relevant for this thesis.
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Of particular interest for our purposes are variables over integers, arithmetic constraints,
and optimization.

SMT introduces variables over integers, which allows expressing Boolean variables as
integer variables with values 1 and 0 instead of true and false. Together with arithmetic
constraints, we can express the cardinality constraint |X| ≤ d as the following example
shows.

Example 2.5. We can express the cardinality constraint |V ′| ≥ d from our running
example by using for each vertex v ∈ V (G) an integer variable v that has value 1 if v ∈ V ′

and value 0 otherwise. We can then express each propositional clause ¬u ∨ ¬v as a linear
constraint u + v ≤ 1 and the cardinality constraint as �

v∈V v ≥ d. Finally, d is stated as
an explicit maximization goal for the SMT solver.

In the example, we only have integer variables but in more complex encodings integer
and Boolean variables are combined, as we see in Chapter 3.

Integer linear programming and pseudo Boolean solvers offer the same capability of
expressing cardinality constraints in this fashion. We do not consider integer linear
programming solvers as we focus on SAT-based methods, and we do not consider pseudo
Boolean solvers explicitly, as they did not perform well enough to be comparable to
SAT/MaxSAT/SMT solvers in the discussed work.

2.4 SAT-Based Local Improvement (SLIM)
SAT-Based Local Improvement (SLIM) is an anytime meta-heuristic that embeds SAT
encodings into heuristic algorithms. SLIM is used for instances that cannot be solved
directly by a SAT solver due to their size or complexity. Starting from a heuristically
computed global solution, SLIM finds a better solution by repeatedly improving small
parts of the global solution.

Key to this approach is the notion of a local instance: a method that converts a small—
local—part of the global solution into an instance that can be encoded into SAT. This
notion of a local instance must guarantee replacement consistency: the solution for the
local instance must be able to replace the local part of the global solution such that
the global solution remains a feasible solution, and the replacement improves the global
solution.

Local instances are extracted by a selection strategy that picks the most promising local
parts of the global solution that are within a given budget. The budget ensures that the
SAT solver can solve the instance within a specified local timeout. This local timeout
presents a good balance between finding enough improvements, how much the SAT
solver sees of the global solution, and a reasonable chance for the SAT solver to find an
improvement if one exists.

Concrete SLIM approaches are discussed in Chapters 6 and 7.
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2.5 Related Work
Here, we discuss the related work for the overarching topic; we will discuss related
work specific to the different chapters separately. One method for scaling SAT-based
approaches that we do not explore in this thesis is cube and conquer (Heule et al., 2011).
Cube and conquer splits the instance into many sub-problems and uses several solvers in
parallel to solve these sub-problems. The approach is suitable whenever there is a hard
or large instance we want to solve, such as for hard math problems (Heule et al., 2016;
Heule, 2018; Subercaseaux and Heule, 2022). In this thesis, we focus on methods that,
once developed, can be easily applied to different instances of the same problem without
further effort.

SAT Encodings

SAT encodings are a popular means for solving hard combinatorial problems, as the work
in this thesis and numerous papers show. Given this overwhelming body of work, we
focus on work on width parameters for graphs, which are most relevant for the novel SAT
encodings presented in this thesis. Encodings have been proposed for treewidth (Samer
and Veith, 2009; Berg and Järvisalo, 2014; Bannach et al., 2017); clique-width (Heule and
Szeider, 2015), branchwidth (Lodha et al., 2019), special treewidth and pathwidth (Lodha
et al., 2017); treedepth and treecut-width (Ganian et al., 2019). For hypergraphs,
encodings for generalized hypertree width (Berg et al., 2017) and fractional hypertree
width (Fichte et al., 2018, 2020) are known.

The novel encodings introduced in this thesis take methods from this prior work but
require novel ideas specific to the problem. The encoding for hypertree width in Chapter 3
is based on the encodings by Berg et al. (2017) and Fichte et al. (2018) for generalized
hypertree width, but extra effort was necessary to encode the particular properties
of hypertree width. The twin-width encoding in Chapter 4 follows the approach for
treewidth by Samer and Veith (2009), which resulted in an encoding that is quartic in
the size of the input graph. We discuss how the size can be reduced to cubic, and thereby,
better scalability can be reached with twin-width specific adaptions. Surprisingly, the
ideas behind the clique-width encoding by Heule and Szeider (2015) can be used for
decision tree induction, as we will discuss in Chapter 7.

Lazy Encodings

The idea of lazy encodings is used in various other methods for solving combinatorial
problems. The idea of branch & cut used in integer linear programming is a lazy
approach that has many concrete problem-specific instantiations, such as logic-based
benders decomposition (Hooker, 2000) for logic-based constraint programming. In the
context of SAT, the idea is often referred to as counter-example guided abstraction
refinement (CEGAR) originally introduced by Clarke et al. (2003) for bounded model
checking. CEGAR has been successfully used for various other problems, such as
Hamiltonian cycles (Soh et al., 2014), graph coloring (Glorian et al., 2019), propositional
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circumscription (Janota et al., 2010), SMT solving (Brummayer and Biere, 2009), QBF
Solving (Janota et al., 2016), and encoding other PSPACE-hard problems (Lagniez et al.,
2017; Seipp and Helmert, 2018).

The extra clauses can be generated at various points in the solving process. This is often
done after the solver returns a model for the partial encoding that is not a model for
the full encoding. This approach has the advantage that it is solver-agnostic but can
be slow and may introduce more clauses than are necessary for solving the instance.
The idea of generating the extra clauses during the solving, before the solver returns
the assignment, is facilitated using propagators, which allow for adding extra logic at
different points of the solver’s solving process. This has been successfully used for SMT
solving (Brummayer and Biere, 2009) and dynamic symmetry breaking (Kirchweger and
Szeider, 2021). We show how a CEGAR approach for combinatorial problem solving can
be implemented using propagators in Chapter 5.

SLIM

SLIM has shown to be effective in various applications. Although conceptually similar to
Large Neighborhood Search (Pisinger and Ropke, 2010), SLIM defines the neighbourhood
specifically for the use with SAT and related solvers. SLIM was originally used for graph
decomposition problems (Lodha et al., 2019, 2017; Fichte et al., 2017; Ramaswamy and
Szeider, 2020). Further applications for Boolean circuits (Kulikov et al., 2022; Reichl
et al., 2023) and Bayesian network structure learning (Ramaswamy and Szeider, 2021b,a,
2022) show the versatility of the approach as a general framework for applying SAT-based
methods within heuristic algorithms. While successful as a general framework, each SLIM
instantiation requires problem-specific ideas, as we will explore in Chapters 6 and 7.
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CHAPTER 3
Hypertree Decompositions

3.1 Introduction
Hypertree width is a popular hypergraph invariant which was introduced by Gottlob et al.
(2002). Hypertree width is of fundamental nature, as underpinned by the existence of
combinatorial, game-theoretic, as well as logical characterizations (Gottlob et al., 2003).
In their original paper, Gottlob et al. (2002) showed that critical NP-hard problems arising
in databases and constraint satisfaction are polynomial-time tractable for instances whose
associated hypergraph has bounded hypertree width. The hypergraph invariant has found
many further applications, including Projected Solution Counting, Solution Enumeration
(with polynomial delay), Constraint Optimization, and Combinatorial Auctions (see, for
example, the survey article (Gottlob et al., 2014)).

Key to these tractability results is the fact that for any fixed constant bound W , one
can decide in polynomial time1 whether a given hypergraph has hypertree width up to
W , and in the positive case compute a witnessing hypertree decomposition of width W .
Thus, in terms of parameterized complexity (Downey and Fellows, 2013), the problem
of recognizing hypergraphs of hypertree width W is in XP, when parameterized by W .
However, the problem is known to be W[2]-hard (Gottlob et al., 2005) and hence unlikely
to be fixed-parameter tractable. The original XP-algorithm by Gottlob et al. (2002) was
later improved by Gottlob and Samer (2009), and their implementation of the algorithm
(det-k-decomp) represented for several years the state-of-the-art for practically computing
optimal hypertree decompositions.

We propose a new practical approach for computing the exact hypertree width of
hypergraphs. We follow a logical approach which was initiated by Samer and Veith (Samer
and Veith, 2009) for tree decompositions and was later successfully used for other

1The recognition problem is complete for the complexity class LOGCFL, which is contained in AC1

and hence highly parallelizable.
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(hyper)graph width measures, including clique-width (Heule and Szeider, 2015), treecut
width and treedepth (Ganian et al., 2019), fractional hypertree width (Fichte et al.,
2018), and twin-width (Chapter 4). For hypertree width, we had to introduce several
new concepts and ideas to make this approach work.

We propose two encodings, based on two different characterizations of hypertree width.
Both characterizations are ordering-based, where we arrange the vertices of the given
hypergraph in a linear ordering subject to certain constraints. Successful SAT-encodings
for treewidth and fractional hypertree width (Samer and Veith, 2009; Fichte et al., 2018)
already used ordering-based characterizations of the corresponding width measures (for
treewidth, this characterization uses the well-known characterization of graphs of bounded
tree-width in terms of partial k-trees (Bodlaender, 2005)). However, for hypertree width,
an ordering-based characterization is not straightforward. What makes it challenging
to express hypertree width in terms of a linear ordering is the Special Condition in
the definition of hypertree decompositions (see Section 3.2), which is formulated in
terms of the descendancy relation in the decomposition tree. However, we succeeded in
formulating two characterizations in such a way that we could base compact and efficient
SAT encodings on it.

Our first encoding, based on the augmented hypertree ordering characterization of hy-
pertree width, uses in addition to the linear ordering additional relational information,
which allows us to express the Special Condition in a way that closely relates to the
original definition of hypertree width.

Our second encoding, based on the pure hypertree ordering characterization of hypertree
width, avoids the additional relational information and is, therefore, more compact. This
characterization is conceptually more elegant than the augmented one but requires more
formal arguments to establish its equivalence with the original definition of hypertree
width.

For bounding the width of an augmented or pure hypertree ordering, we need to compute
small hyperedge covers of vertex sets. For this purpose, we use in our encodings not only
propositional cardinality constraints (as Samer and Veith did, see 3.4.1) but also soft
clauses in conjunction with a MaxSAT solver and certain arithmetic constraints. During
the solving process, these arithmetic constraints are mapped to propositional logic in an
incremental fashion. This incremental encoding is handled by an SMT solver (Barrett
et al., 2009; Monniaux, 2016), where a First-Order Logic solver (handling the arithmetic
constraints) interacts with the SAT solver.

We implemented the encodings based on augmented and pure hypertree orderings and
tested them on an extensive set of benchmark instances (Hyperbench) consisting of
real-world hypergraphs from various application domains with a number of vertices
and hyperedges ranging up to 2900. We tested two variants, one where the cardinality
constraints are encoded in propositional logic (plain SAT and MaxSAT) and one where the
cardinality constraints are encoded by arithmetic constraints that are dealt with by the
theory component of a SAT Modulo Theory solver (SMT). We compared the two encodings
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with each other, and also with the newest version of Gottlob and Samer’s combinatorial
XP-algorithm new-det-k-decomp (Gottlob and Samer, 2009; Fischl et al., 2018a). The
results are highly encouraging and show that each of our methods improves upon the
state-of-the-art by solving up to 621, or almost 50%, more instances. Furthermore, our
new methods work complementary and can solve even more instances in a portfolio
approach, combining the different encodings and solver paradigms.

The remainder of the chapter is organized as follows. In Section 3.2, we give basic
definitions of hypergraphs, edge covers, and hypertree decompositions. Afterwards in
Section 3.3, we introduce our new ordering-based characterization of hypertree width,
whose correctness we establish in A.1.1 and A.1.2. In Section 3.4, we explain how the
new characterizations can be encoded as a SAT problem. Finally, in Section 3.5, we
present our experimental results.

3.2 Preliminaries
A hypergraph H consists of a set V (H) of vertices and a set E(H) of hyperedges, each
hyperedge is a subset of V (H). A hypergraph H ′ is a partial hypergraph of hypergraph
H if E(H ′) ⊆ E(H) and V (H ′) = �

e∈E(H′) e.

The primal graph (or 2-section) of a hypergraph H is the graph G(H) with vertex
set V (H) and edge set E(G(H)) = { {u, v} : u ̸= v, there is some e ∈ E such that
{u, v} ⊆ e }. A hypergraph is connected if its primal graph is connected, otherwise
it is disconnected. A connected component of a hypergraph H is a maximal connected
partial hypergraph of H. A hypergraph H decomposes into its connected components
H1, . . . , Hr, where V (Hi) ∩ V (Hj) = ∅ and E(Hi) ∩ E(Hj) = ∅, 1 ≤ i < j ≤ r. We write
CC(H) = {H1, . . . , Hr} for the set of connected components of H.

Consider a hypergraph H and a set S ⊆ V . An edge cover of S (with respect to H) is a
set F ⊆ E(H) such that for every v ∈ S there is some e ∈ F with v ∈ e. The size of an
edge cover is its cardinality. Given an edge cover F , we use the shorthand �

F := �
e∈F e.

A tree decomposition of a hypergraph H = (V, E) is a pair T = (T, χ) where T is a tree
with vertex set V (T ) and edge set E(T ) and χ is a mapping that assigns to each t ∈ V (T )
a set χ(t) ⊆ V (H), called the bag at t, such that the following properties hold:

T1 for each v ∈ V (H) there is some t ∈ V (T ) with v ∈ χ(t) (“v is covered by t”),

T2 for each e ∈ E(H) there is some t ∈ V (T ) with e ⊆ χ(t) (“e is covered by t”),

T3 for any three t, t′, t′′ ∈ V (T ) where t′ lies on the path between t and t′′ in T , we
have χ(t) ∩ χ(t′′) ⊆ χ(t′) (“bags containing the same vertex are connected”).

We assume the tree T to be rooted at some arbitrary node r ∈ V (T ), as this will be
needed for extending tree decompositions to hypertree decompositions below.
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Figure 3.1: An example of a hypergraph H (left) and one of its possible hypertree
decompositions D = (TD, χD, λD) (right). The bags χD(t) are represented by rectangles
and the hyperedges in the edge covers λD(t) are indicated by either blue lines or ellipsis.
The vertex g is omitted at bag 2, which does not violate T4, as the node has no
descendants. A case of a Special Condition violation can easily be constructed if we
replace the hyperedge {b, e} in the root’s edge cover by {e, g}. T1–T3 would still hold,
but as g occurs in a bag of a leaf, T4 gets violated. Furthermore, this conflict could not
be resolved by adding g to bag 1, as that would violate T3 since g does not occur in
bag 3.

We say that a vertex v ∈ V (H) is forgotten at node t ∈ V (T ) if v ∈ χD(t), but v is not
in the bag of t’s parent. Every vertex in the bag of the root node r is forgotten at r. We
observe that each vertex v is forgotten at exactly one node t due to T3. Hence, we can
write f(v) = t.

A hypertree decomposition (Gottlob et al., 2002) of H is a triple D = (TD, χD, λD) where
(TD, χD) is a tree decomposition of H , and λD is a mapping that assigns each t ∈ V (TD)
an edge cover λD(t) ⊆ E(H) of χD(t). The width of D is the size of a largest edge cover
in λD. Moreover, the rooted tree TD satisfies, in addition to T1–T3, also a certain Special
Condition (T4). To formulate the Special Condition, we call a vertex v to be omitted
at a node t ∈ V (TD), if v /∈ χD(t), but λD(t) contains a hyperedge e with v ∈ e. The
Special Condition now states the following:

T4 If a vertex v is omitted at t, then it must not appear in the bag χD(t′) of any
descendant node t′ of t.

In other words, T4 states that if t, t′ ∈ V (TD) are nodes such that t′ is a descendant of t,
then for each e ∈ λD(t), we have (e \ χD(t)) ∩ χD(t′) = ∅. The hypertree width htw(H)
of H is the smallest width over all hypertree decompositions of H. We say a hypertree
decomposition D of a hypergraph H is optimal if the width of D equals htw(H). See
Figure 3.1 for an example.

If the decomposition is not required to satisfy the Special Condition, then we call it a
generalized hypertree decomposition, and we define accordingly the generalized hypertree
width ghtw(H) of H as the smallest width over all generalized hypertree decompositions
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of H. Clearly, ghtw(H) ≤ htw(H). It is already NP-hard to decide whether a given
hypergraph has generalized hypertree width ≤ 2 (Fischl et al., 2018b), hence dropping the
Special Condition increases the parameterized complexity of the recognition problem from
XP to para-NP. The even more general parameter fractional hypertree width (with the
same para-NP-hard recognition problem (Fischl et al., 2018b)) arises when one considers
fractional edge covers of the bags instead of edge covers (Grohe and Marx, 2014). Powerful
decomposers have been developed for generalized and fractional hypertree width (Fichte
et al., 2018; Korhonen et al., 2019).

To avoid trivial cases, we consider only hypergraphs H where each v ∈ V (H) is contained
in at least one e ∈ E(H). Consequently, every considered hypergraph H has an edge
cover, and htw(H) is always defined. If |V (H)| = 1 then htw(H) = ghtw(H) = 1.

We will also focus on connected hypergraphs since we can proceed component-wise to
compute an optimal hypertree decomposition:

Proposition 3.1. For every hypergraph H we have htw(H) = maxH′∈CC(H) htw(H ′).

3.3 Elimination Orderings for Hypertree Width
For this section, we consider a fixed, connected hypergraph H and a linear ordering
v1 ≺ · · · ≺ vn of V (H). We think of the ordering as an elimination ordering in the
very same sense as has been used in the context of tree decompositions for graphs
(Bodlaender, 2005). We eliminate one vertex after the other from the primal graph.
Each time a vertex is eliminated, we make all its (remaining) neighbors adjacent (see,
for example, (Bodlaender, 2005)), where newly added edges are referred to as fill-in
edges. For our purposes and the forthcoming encodings, it is convenient to consider this
elimination process on a directed version of the primal graph, where edges are oriented
with respect to the linear ordering.

To that effect, let the set of active arcs A be the smallest subset of V (H) × V (H) such
that

1. if {u, v} ∈ E(G(H)) and u ≺ v then (u, v) ∈ A, and

2. if (u, v) ∈ A, (u, w) ∈ A and v ≺ w then (v, w) ∈ A.

We can now define the following central concept: For a fixed linear ordering ≺ of V (H),
a rooted tree T≺ is a canonical tree for ≺ if

1. V (T≺) = { τ≺(v) : v ∈ V (H) }, i.e., the tree contains one node for each of H’s
vertices,

2. if r is the ≺-largest vertex in V (H), then τ≺(r) is the root of T≺, and
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a bd ef cg

a cb e

c fee gd

a cb e

a cb e

a e

a cb e

τ(a)

τ(b)

τ(c)

τ(e)

τ(d) τ(g) τ( f )
Figure 3.2: An elimination ordering for the hypergraph in Figure 3.1 (top) and the
corresponding decomposition (bottom). Solid lines represent hyperedges and the dotted
line a fill-in edge. The decomposition without the white vertices shows the canonical
translation of the adjacent ordering into a decomposition.

3. for any u ∈ V (H) \ {r}, if w is the ≺-smallest vertex with (u, w) ∈ A, then τ≺(w)
is the parent of τ≺(u) in T≺.

Since all canonical trees are isomorphic, we call T≺ the canonical tree for ≺.

In the sequel, we will also use the transitive closure A∗ of A, i.e., the smallest set
containing A with the property that whenever (u, v) ∈ A∗ and (v, w) ∈ A∗, then also
(u, w) ∈ A∗. We note that in the last item of the definition of T≺, we could have used A∗

instead of A without changing the definition.

Using these definitions, we can construct a generalized hypertree decomposition D =
(T≺, χD, λD) based on ≺, where for each v ∈ V (H):

• χD(τ(v)) := {v} ∪ { w : (v, w) ∈ A }, and

• λD(v) is a smallest edge cover of χD(τ(v)).

Figure 3.2 (bottom) shows an example of such a decomposition. Here, we can see an
inherent problem of this way of characterizing hypertree width in terms of elimination
orderings that we need to address (“accumulating hyperedges”): The bag of the root
cannot be covered without violating T4, as any vertex adjacent to c occurs in the bag
of some descendant. In general, this problem can occur anywhere in the decomposition,
not only at the root. In the example, we can resolve the problem by adding the white
vertices. We observe that even when we ignore the redundant bags above τ≺(e), we do
not get the same decomposition as in Figure 3.1 since this decomposition tree is not the
canonical tree of any ordering.
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3.3. Elimination Orderings for Hypertree Width

We present two characterizations of hypertree width in terms of elimination orderings that
address this issue. The pure hypertree ordering uses properties of hypertree decompositions
to implicitly constrain the elimination ordering, such that the Special Condition is not
violated. The augmented hypertree ordering augments the elimination ordering by
an equivalence relation to address the issue of accumulating hyperedges. The two
characterizations will provide the basis for SAT/MaxSAT/SMT encodings that we will
present in Section 3.4.

3.3.1 Pure Hypertree Orderings
Before we can discuss this characterization, we need further concepts and considerations.

We define for each vertex v ∈ V (H) the set

χ≺(v) := {v} ∪ { w : (v, w) ∈ A }.

This definition is closely related to the construction for the generalized hypertree decom-
position’s bags at the beginning of the section.

For any two vertices u, w ∈ V (H), such that u ≺ w, we define their arc-path

P (u, w) := {u, w} ∪ { v : (u, v) ∈ A∗, (v, w) ∈ A∗ },

and we say a vertex w ∈ V (H) is arc-reachable from u if (u, w) ∈ A∗.

In Figure 3.2 (top), we can find arc-paths by simply following the arcs from left to right.
This illustrates the motivation for arc-paths: whenever one vertex is arc-reachable from
another, the corresponding nodes have a descendancy relationship in the canonical tree.

We now introduce the construction that ensures that the Special Condition holds. As-
suming a mapping λ≺ that assigns an edge cover for χ≺ to each vertex, we divide the
forbidden vertices—vertices that would violate the Special Condition—at any vertex w
into two disjoint sets, B(w) and R(w).

R(w) := { u : (v, w) ∈ A∗ and λ≺(v) ⊆ λ≺(w), for every v ∈ P (u, w) }
B(w) := { u : (v, w) ∈ A∗ and λ≺(v) \ λ≺(w) ̸= ∅, for some v ∈ P (u, w) }

The T4-violations in R(w) can be repaired: whenever every vertex on the arc-path
between u and w has as its edge cover a superset of u’s edge cover, we can omit u at w.
If this property holds, we can add χ≺(u) to all the bags along the arc-path. Whenever
we can find an ordering and an edge cover such that B(w) is empty for each vertex
w ∈ V (H), we can convert the ordering into a hypertree decomposition.

In Figure 3.2 (bottom), R is represented by the white vertices. For the root, B consists
of all vertices except c and the white vertices.

With these definitions in hand, we can now state our first ordering-based characterization
of hypertree width.
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Definition 3.1 (Pure Hypertree Orderings). A pure hypertree ordering of H is a pair
P = (≺, λ≺) where

• ≺ is a linear ordering of V (H) and

• λ≺ is a mapping, assigning to each vertex v ∈ V (H) an edge cover for χ≺(v),

such that the following properties hold:

P1 for all v ∈ V (H), χ≺(v) ⊆ �
λ≺(v), and

P2 for all v ∈ V (H), B(v) ∩ �
λ≺(v) = ∅.

The width of the pure hypertree ordering P is maxv∈V (H) |λ≺(v)|.

Condition P1 states that λ≺ assigns edge covers to the respective vertices. P2 represents
the Special Condition, by defining the distinction between B and R.

Theorem 3.2. The hypertree width of a connected hypergraph equals the minimum width
over all its pure hypertree orderings.

We prove the theorem in Appendix A.1.1 and introduce our second characterization next.

3.3.2 Augmented Hypertree Orderings
This characterization uses a different approach that allows for a more direct definition of
the Special Condition in terms of linear orderings.

Definition 3.2 (Augmented Hypertree Orderings). An augmented hypertree ordering
of H is a triple A = (≺, λ≡≺, ≡) where

• ≺ is a linear ordering of V (H),

• λ≡≺ is a mapping that assigns each v ∈ V (H) a set λ≡≺(v) ⊆ E(H), and

• ≡ is an equivalence relation on V (H)

such that the following conditions hold:

A1 For each vertex v ∈ V (H), λ≡≺(v) is an edge cover of

χ≡
≺(v) := {v} ∪ { w : (v, w) ∈ A } ∪ { w ∈ V (H) : v ≡ w }.

A2 For any two vertices u, v ∈ V (H) with (u, v) ∈ A∗ and any e ∈ λ≡≺(v), it holds that
(e \ χ≡≺(v)≺) ∩ χ≡≺(u) = ∅.
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Vars Range Semantics Count
Ba

se

oi,j 1 ≤ i < j ≤ n vi ≺ vj

n

2
�

o∗
i,j 1 ≤ i, j ≤ n, i ̸= j vi ≺ vj Shorthand

wi,k 1 ≤ i ≤ n, 1 ≤ k ≤ m ek ∈ λ≺(τ≺(vi)) m · n
ai,j 1 ≤ i, j ≤ n, i ̸= j (vi, vj) ∈ A n · (n − 1)
bi,j 1 ≤ i, j ≤ n, i ̸= j (vi, vj) ∈ A∗ n · (n − 1)

Pu
re ri,j 1 ≤ i, j ≤ n, i ̸= j vi ∈ R(vj) n · (n − 1)

ℓi,j 1 ≤ i, j ≤ n, i ̸= j T4 permits vi ∈ �
λ≺(τ≺(vj)) n · (n − 1)

A
ug

. ei,j 1 ≤ i < j ≤ n vi ≡ vj

n

2
�

e∗
i,j 1 ≤ i, j ≤ n, i ̸= j vi ≡ vj Shorthand

Table 3.1: Variables used in the SAT encoding for a hypergraph with n nodes and m
edges.

A3 For all vertices u, v, w ∈ V (H), such that u ≡ w and (u, v), (v, w) ∈ A∗, it holds
that u ≡ v.

The width of the augmented hypertree ordering A is maxv∈V (H) |λ≡≺(v)|.

Theorem 3.3. The hypertree width of a connected hypergraph equals the minimum width
over all its augmented hypertree orderings.

We prove this theorem in Appendix A.1.2.

The equivalence relation directly addresses the problem of accumulating hyperedges.
Condition A1 redefines bags as χ≡≺, based on ≡, while Condition A3 ensures that T3 still
holds with the definition of χ≡≺. With this new definition in hand, the Special Condition
can be expressed as Condition A2. Given that A∗ expresses the descendancy relation
in the canonical tree, Condition A2 restates T4, replacing the use of the descendancy
relation with A∗. This definition allows having already eliminated vertices in a bag and
we can thereby deal with accumulating hyperedges. In Figure 3.1, the accumulating
hyperedges would be solved by setting a ≡ b ≡ c.

Next, we use our characterizations to propose the corresponding encodings.

3.4 Encodings
In this section, we utilize the new characterizations of hypertree width for two new
SAT/MaxSAT/SMT encodings. In the basic setup, we follow closely the SAT encoding
for treewidth as proposed by Samer and Veith (2009), variants of which served as the
basis for several other encodings, for treewidth and other width measures (Bannach et al.,
2017; Berg et al., 2017; Fichte et al., 2018; Lodha et al., 2017; Schidler and Szeider, 2022).
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3. Hypertree Decompositions

Table 3.1 gives an overview of the variables used. We note in passing that the challenge of
finding a characterization of hypertree width that can be put on top of the Samer-Veith
encoding of treewidth was our original motivation to pursue this work.

Again, we assume a given connected hypergraph H = (V, E) with n vertices v1, . . . , vn ∈
V (H), m edges e1, . . . , em ∈ E(G(H)), and a bound W on the hypertree width. The
task is to produce a propositional formula F (H, W ) in Conjunctive Normal Form, which
is satisfiable if and only if htw(H) ≤ W . The construction will allow us to efficiently
transform a satisfying assignment for F (H, W ) into a hypertree ordering and into a
hypertree decomposition of width ≤ W .

3.4.1 Base Encoding
First, we review the basic setup following Samer and Veith’s (Samer and Veith, 2009)
treewidth encoding. The variables oi,j define ≺, where oi,j is true if and only if vi ≺ vj .
We use the shorthand o∗

i,j :

o∗
i,j :=

�
oi,j if i < j;
¬oj,i otherwise.

The following set of clauses establishes transitivity:�
1≤i,j,k≤n
i ̸=j ̸=k ̸=i

¬o∗
i,j ∨ ¬o∗

j,k ∨ o∗
i,k.

The variables ai,j define A, where ai,j is true if and only if (vi, vj) ∈ A. Initially, A
consists of the edges from E(G(H)) in forward direction, expressed by the following three
sets of clauses:�

1≤i,j≤n,
i ̸=j

¬o∗
i,j ∨ ¬aj,i,

�
{vi,vj}∈E(G(H))

¬o∗
i,j ∨ ai,j ,

�
{vi,vj}∈E(G(H))

¬o∗
j,i ∨ aj,i. (3.1)

The following clauses add fill-in edges and complete the definition of A:�
1≤i,j,k≤n
i ̸=j ̸=k ̸=i

¬o∗
j,k ∨ ¬ai,j ∨ ¬ai,k ∨ aj,k.

Variables bi,j express A∗, where bi,j is true if and only if (vi, vj) ∈ A∗. The following
clauses initialize A∗ with A and enforce transitivity:�

1≤i,j≤n,
i ̸=j

¬ai,j ∨ bi,j ,
�

1≤i,j,k≤n
i ̸=j ̸=k ̸=i

¬aj,k ∨ ¬bi,j ∨ bi,k.

We conclude the base encoding, by expressing P1/A1 and thereby λ≺/λ≡≺. This follows
the encoding by Berg et al. (2017) for generalized hypertree decompositions. The weight
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3.4. Encodings

variable wi,k is true if and only if ek ∈ λ≺(vi). For the SMT encoding, instead of Boolean
variables, we use integer valued variables. These integer variables can take the values
1 and 0, corresponding to true and false. The following clauses express P1/A1, or�

λ≺(v) ⊇ χ≺(v): �
1≤i≤n

�
ek∈E,
vi∈ek

wi,k,
�

1≤i,j≤n,
i ̸=j

(¬ai,j ∨
�

ek∈E,
vj∈ek

wi,k).

For the SMT encoding, we replace the disjunctions over wi,k by a constraint stating that
the sum over the weight variables must be at least 1.

Cardinality Constraints

It remains to add cardinality constraints that encode that each bag has an edge cover
of size ≤ W . We use the SAT encodings with the cardinality constraints discussed in
Section 3.4.1.

We also use a MaxSAT encoding. We use the totalizer cardinality constraints as in
the SAT encoding. These constraints define the variables ci,k, 1 ≤ i ≤ n, 1 ≤ k ≤ W ,
where ci,k is true if |λ≺(vi)| ≥ k. Therefore, the encoding so far constitutes the set of
hard clauses. Additionally, we add variables mk for 1 ≤ k ≤ W , where mk is true if the
hypertree width is less than k (as by Berg et al. (2017) in the context of generalized
hypertree width). We ensure the semantics of m by adding for 1 ≤ i ≤ n, 1 ≤ k ≤ W ,
the clauses ¬mk ∨ ¬ci,k. Finally, we let the solver minimize the width by adding for
1 ≤ k ≤ W the soft clauses mk. The MaxSAT solver now finds a solution setting as
many variables mk to true as possible and thereby finds the model corresponding to a
hypertree decomposition of minimum width.

An SMT solver allows for more abstract handling of cardinalities by the algebraic theory
solver within the SMT approach (as used by Fichte et al. (2018) in the context of fractional
hypertree width). In our SMT encoding, we can encode the necessary constraints for
i ≤ n directly as �

ek∈E wi,k ≤ W . Additionally, SMT solvers can, similar to MaxSAT
solvers, automatically search for the minimum W such that the encoding is satisfiable.

This concludes the base encoding. We now discuss the encodings of the pure and
augmented characterizations of hypertree orderings, respectively.

3.4.2 Pure Encoding
This encoding expresses property P2 in two parts: (i) define R, and (ii) use this definition
to express the Special Condition. We discuss this encoding and a possible improvement
in this section.

The repairable T4-violations R are represented by the variables ri,j , where ri,j is true
if and only if for every vertex vk on the arc-path between vi and vj it holds that
λ≺(vi) ⊆ λ≺(vk). We first encode that every hyperedge in the edge cover of vi must also

27



3. Hypertree Decompositions

occur in the edge cover of vj , thereby ensuring λ≺(vi) ⊆ λ≺(vj), expressed by the clauses�
1≤i,j≤n,
1≤k≤m,

i ̸=j

¬ri,j ∨ ¬wj,k ∨ wi,k. (3.2)

This property must hold along the entire arc-path. We express this by stating that the
property only holds for vk if it also holds for all predecessors vj ∈ P (vi, vk) along the
path: �

1≤i,j,k≤n
i ̸=j ̸=k ̸=i

¬bi,j ∨ ¬bj,k ∨ ¬ri,k ∨ ri,j .

The Special Condition can be concisely stated with these two sets of variables. Whenever
a vertex vj is arc-reachable from vertex vi, the edge cover of vj must not use any hyperedge
containing vi. The only exception is the case when the edge cover of every vertex on
the arc-path is a superset of vi’s edge cover. The following clauses express the Special
Condition: �

1≤i,j≤n,ek∈E(H)
i ̸=j,vi∈ek

¬bi,j ∨ rj,i ∨ ¬wj,k.

Improving the encoding of the Special Condition

The number of variables can be further reduced by encoding P2 in a less direct way.
This improvement uses two ideas. The first idea is not to encode the forbidden but
the permitted vertices, i.e., V (H) \ B(v). This makes it possible to use only one set of
variables that combines bi,j and ri,j . The other idea is to restrict the vertices we consider
for R.

We use variables ℓi,j , where ℓi,j is true if and only if vi is permitted in the edge cover of
vj . The first set of clauses restricts the use of hyperedges in the edge covers as before:�

1≤i,j≤n,ek∈E(H)
i ̸=j,vi∈ek

ℓi,j ∨ ¬wj,k,

and the second set of clauses ensures that the allowed property holds along arc-paths:�
1≤i,j,k≤n,
i ̸=j ̸=k ̸=i

¬aj,k ∨ ℓi,j ∨ ¬ℓi,k.

It remains to encode the conditions that define when a vertex is forbidden. Due to the
following result, we can restrict the scope of these arc-paths.

Proposition 3.4. Let u ∈ V (H) and v be the ≺-largest vertex, such that (u, v) ∈ A. For
every vertex w such that v ≺ w, we can remove any hyperedge containing u from λ≺(w).
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Proof. Consider vertices u, v, and w as in the proposition. If P2 holds before the removal
of the hyperedge, it does so afterwards, as the intersection can only become smaller. It
remains to show that P1 holds.

From the definition of A, we know that for each vertex v′ that is adjacent to u, it holds
that either (u, v′) ∈ A or (v′, u) ∈ A. w is, therefore, not adjacent to u. Furthermore,
there is no vertex w′ such that w ≺ w′ and {u, w′} ∈ E(G(H)), as v is the ≺-largest
vertex with an arc from u. Therefore, for all w′ such that v ≺ w′, it holds that w′ is not
adjacent to u. This implies that no vertex in χ≺(w) is adjacent to u, and we can safely
remove any hyperedge containing v from λ≺(w), as χ≺(w) will still be covered.

Using this result, we can discard all vertices that are not direct successors of vi. We add
the clauses �

1≤i,j≤n,ek∈E(H)
i ̸=j,vi∈ek

¬ai,j ∨ ¬aj,k ∨ ¬o∗
i,k ∨ ai,k ∨ ¬ℓi,k.

It remains to check the subset property. As before, we add the clauses�
1≤i,j≤n,
1≤k≤m,

i ̸=j

¬ai,j ∨ ¬ℓi,j ∨ ¬wi,k ∨ wj,k. (3.3)

This concludes the improved pure encoding. The improvement halves the number of
variables and slightly reduces the number of clauses. Next, we discuss our second
encoding.

3.4.3 Augmented Encoding
This encoding follows Definition 3.2 for augmented hypertree orderings. This encoding
has three parts: (i) definition of ≡, (ii) extending A to A≡, and (iii) verifying the Special
Condition.

The variables ei,j encode the equivalence relation ≡, where ei,j is true if and only if
vi ≡ vj . We define the shorthand e∗

i,j such that

e∗
i,j :=

�
ei,j if i < j;
ej,i otherwise.

The following clauses ensure the transitivity of ≡ and property A3: if two vertices are
equivalent, they are equivalent to all the vertices on the arc-path between them:�

1≤i,j,k≤n
i ̸=j ̸=k ̸=i

¬e∗
i,j ∨ ¬e∗

j,k ∨ e∗
i,k,

�
1≤i,j,k≤n
i ̸=j ̸=k ̸=i

¬e∗
i,k ∨ ¬bi,j ∨ ¬bj,k ∨ e∗

i,j .
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We adapt A to A≡ next. This requires a change of the clauses in Equation 3.1, allowing
backward-arcs within equivalence classes:�

1≤i,j≤n,
i ̸=j

e∗
i,j ∨ ¬o∗

i,j ∨ ¬aj,i,
�

{vi,vj}∈
E(G(H))

¬o∗
i,j ∨ ai,j ,

�
{vi,vj}∈
E(G(H))

¬o∗
j,i ∨ aj,i.

The backward-arcs within equivalence classes are enforced using the following clauses:�
1≤i,j≤n,

i ̸=j

¬e∗
i,j ∨ ai,j

Verifying the Special Condition is now possible with the following set of clauses:�
1≤i,j≤n,ek∈E(H)

i ̸=j,vi∈ek

¬bi,j ∨ ¬wj,k ∨ e∗
i,j .

This completes the augmented encoding.

3.4.4 Encoding Comparison
The correctness of the encodings follows by construction and Theorems 3.2 and 3.3.
Obviously, the SAT/MaxSAT/SMT formula F (H, W ) can be constructed in polynomial
time, given H and W . Hence, we arrive at the following result.

Theorem 3.5. Given a hypergraph H with n vertices and m hyperedges and an integer
W , we can construct in time polynomial in n + m + W a SAT/MaxSAT/SMT formula
F (H, W ) which is satisfiable if and only if htw(H) ≤ W . In case of the MaxSAT
encoding, this holds for the hard clauses. Additionally, the model for the optimal solution
to the MaxSAT encoding corresponds to a hypertree decomposition of width htw(H) (see
Section 3.4.1).

Asymptotically, the number of clauses is in Θ(n3 + mn2) for the pure encoding and in
Θ(n3+mn) for the augmented encoding, while the number of variables is in Θ(n2) for both.
These asymptotics are similar to other encodings for structural decompositions (Fichte
et al., 2018; Samer and Veith, 2009; Schidler and Szeider, 2020). However, the actual
constants have a significant influence on performance and scalability of the encoding.

Table 3.2 shows how many variables and clauses are used by the different encodings. On
top of the shown numbers, variables and clauses are added to encode the cardinality
constraints, which depend on the method chosen. The different hypertree ordering
encodings are approximately double the size of the base encoding. The augmented
encoding requires the most clauses but is not as dependent on the number of primal
graph edges as the pure encoding. How many clauses the pure encoding requires depends
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Encoding #Variables #Clauses

Base mn + 3n2−3n
2 2n3 − 5n2 + 4n + 2m

Pure 2n2 − 2n 2n3 − 5n2 + 3n + mn2 + mn
Pure Improved n2 − n 2n3 − 6n2 + 4n + mn2 + mn

Augmented 3n2−3n
2 3n3 − 7n2 + 4n + 2mn

Table 3.2: Number of variables and clauses used in the encodings. The encoding of A∗ is
not included in the base encoding but in the encodings using A∗ since the Pure Improved
encoding does not use A∗ directly.

strongly on m. Since m is bound by n2, the encoding can become asymptotically very
large for dense graphs but is small for sparse graphs.

Introducing auxiliary variables can circumvent this problem. Instead of wi,e, Equations 3.2
and 3.3 use variables ci,j , where ci,j is true if and only if vj ∈ �

λ≺(vi). This requires
n!

(n−3)! many clauses instead of mn · (n − 1). This method also adds n2 variables ci,j ,
and 2mn + n2 clauses for its definition. The result is an encoding that has better
asymptotic bounds for dense graphs and requires slightly more variables and clauses than
the augmented encoding.

Next, we discuss our empirical evaluation of these encodings.

3.5 Experiments
Results2 and code3 of the experiments are available online.

Experimental Setup

We implemented the encodings presented in Section 3.4 using PySAT 1.6.04. We compared
the encoding-based approaches with the state-of-the-art decomposer new-det-k-decomp5

by Fischl et al. (2018a), which implements an XP-algorithm based on dynamic program-
ming over separators.6

We used the following solvers. Optimathsat 1.7.27 (Sebastiani and Trentin, 2020) was used
for the SMT encodings, as it performed better than z3 4.8.9. We tried the SAT solvers
provided by PySAT (Ignatiev et al., 2018), as well as the solver KisSAT 2.0.18 (Biere

2https://doi.org/10.5281/zenodo.7271869
3https://github.com/ASchidler/htdsmt
4https://pysathq.github.io
5https://github.com/TUfischl/newdetkdecomp/ (Commit c06232d)
6Recently the algorithm has been parallelized in the solver BalancedGo (Gottlob et al., 2022). We

compare against new-det-k-decomp as our solution is not parallelized.
7https://optimathsat.disi.unitn.it
8https://fmv.jku.at/kissat/
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et al., 2020) for SAT instances. In our experiments, we used MapleChrono as it performed
best. MaxSAT instances were solved by MaxHS 4.0.09 (Berg et al., 2020), the winner of
the MaxSAT Evaluation 202010. For the SAT encoding, we start at an initial heuristically
computed width. This width is then decremented until the formula is unsatisfiable. We
used servers with two Intel Xeon E5540 CPUs, each running at 2.53 GHz per core. The
servers used Ubuntu 18.04. Each run was limited to six hours and 32 GB RAM. In the
results, each non-solved instance is counted as six hours towards the total runtime.

Benchmark Instances

We tested against the full set of Hyperbench11 instances. Hyperbench consists of in-
stances gathered from various database queries and constraint satisfaction problem
instances (Benedikt et al., 2017; Bonifati et al., 2017, 2019; Fischl et al., 2019; Pottinger
and Halevy, 2001), for which hypertree width is of practical relevance. The instances of
PACE 2019 form a subset of the Hyperbench instances. We removed all disconnected
instances, as by Proposition 3.1 we could solve them component-wise, hence their inclu-
sion would those results that are based on the instance size. We ran each configuration
against the remaining 3008 instances. 2396 of these instances were solved by any solver
configuration, and 1261 were solved by all solver configurations. We present the results
for the 2396 solved instances.

3.5.1 Experimental Results
The aim of the experiments was to see how encodings based on different characterizations
of hypertree width perform in comparison, and not to determine the fastest exact method
for computing the hypertree width.

In Table 3.3, we see a summary of how many instances the different configurations
and solvers were able to solve. This summary, grouped by the hypertree width of the
instances, is shown in Table 3.4. Further, Figures 3.3 and 3.4 show how runtime and
memory usage develop, as the instances become harder to solve.

Encodings

The pure encoding performed slightly better than the augmented encoding in terms of
solved instances by a single solver type. The difference is very small, also in terms of
uniquely solved instances: using a MaxSAT solver, the pure encoding solved 55 instances
that the augmented encoding could not solve. Interestingly, runtime and memory usage
behaved almost identically as well.

The augmented encoding was the better encoding if we would use more than one solver
type in a portfolio approach. While using an SMT solver for the pure encoding had

9https://github.com/fbacchus/MaxHS
10https://maxsat-evaluations.github.io
11https://hyperbench.dbai.tuwien.ac.at/
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Configuration/Solver # Solved Time [s] Unique
Augmented (MAX) 2099 (88%) 8195.7 13
Augmented (SAT) 1866 (78%) 10295.7 4
Augmented (SMT) 2055 (86%) 8593.1 113
Pure (MAX) 2103 (88%) 8159.5 12
Pure (SAT) 1820 (76%) 10710.3 0
Pure (SMT) 1837 (77%) 10557.2 6
New-DetK 1478 (62%) 13793.4 14

Table 3.3: Comparison of different configurations and solvers. Unique shows how many
instances could be solved by this solver type alone. Time gives the average time required
to solve the instances.

Configuration/Solver 1 2 3 4 5 6 >6
461 223 306 381 439 447 139

Augmented (MAX) 461 217 305 381 428 284 23
Augmented (SAT) 461 217 305 380 425 64 14
Augmented (SMT) 457 215 280 316 347 319 121
Pure (MAX) 461 217 305 381 426 299 14
Pure (SAT) 461 217 305 381 403 52 1
Pure (SMT) 457 211 264 313 334 257 1
New-DetK 461 223 306 381 50 40 17

Table 3.4: Number of solved instances grouped by hypertree width. The second row
shows the total number of instances.

little benefit over the MaxSAT solver, it produced interesting results for the augmented
encoding. Here, the SMT solver solved 112 additional instances, thereby surpassing the
pure encoding in a portfolio approach together with the MaxSAT solver.

The difference in performance might come from how well the two encodings handle
high-width instances. Table 3.4 suggests that the augmented encoding handles higher
widths better. While the difference is small for MaxSAT, the gap becomes significant
for the other solver types. The reason why the pure encoding did slightly better with
the MaxSAT solver might stem from the handling of larger graphs, as the asymptotics
suggest. Indeed, Figure 3.5 shows that the pure encoding performed slightly better on
instances with a large number of vertices.

In general, both encodings were able to solve large instances. As Figure 3.5 shows, there
is no order of magnitude, where all instances remained unsolved.
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3. Hypertree Decompositions

Solver Types

Overall, the MaxSAT solver performed best for both encodings and almost strictly
better than the SAT solver. Surprisingly this is also the case in terms of memory
consumption. Given that the encoding size is the same for SAT and MaxSAT encodings,
we expected a similar memory requirement, but the results show that the MaxSAT solver
has significantly lower memory demands. As a consequence, the MaxSAT solver can
use memory limits more effectively: the SAT solver quickly switched from moderate
memory requirements to exceeding the memory limit, while the MaxSAT solver’s memory
consumption increased gradually. The SMT solver’s performance strongly depended
on the encoding. For the pure encoding, it performed almost strictly worse than the
MaxSAT solver. For the augmented encoding, it performed slightly worse than the
MaxSAT solver. Interestingly, the number of uniquely solved instances is very high.
Table 3.4 shows that the SMT solver excelled at instances with high hypertree width.
This may be due to different handling of cardinality constraints in the MaxSAT and
SMT solver. Furthermore, Figure 3.6 suggests that the SMT solver performs significantly
better on large hypergraphs.

New-det-k-decomp

New-detk-decomp solved considerably fewer instances than any of our encodings with
any of the different solver types.12 Table 3.4 suggests that the encodings are better at
handling instances with higher widths: new-det-k-decomp solves very few instances with
a hypertree width of 5 or higher. This behaviour is not surprising, as the nature of the
algorithm requires Ω(|V (H)|htw) time and space. Figures 3.3 and 3.4 show that runtime
and memory consumption behaved very similarly to the SAT solver: both requirements
are very low for instances of small width until they almost instantly exceed the limits.
New-det-k-decomp exhibited this behaviour approximately 400 instances before the SAT
solvers do.

3.6 Conclusion
Summary

We presented the first ordering-based characterizations of hypertree width that are
purely based on linear elimination orderings. This characterization provides new com-
binatorial insights into hypertree decompositions. We utilized the characterizations for
new SAT/MaxSAT/SMT encodings and tested them on an extensive set of benchmark
instances. Indeed, the new encoding clearly outperforms the state-of-the-art combina-
torial algorithm for hypertree decompositions. We expect that the new ordering-based

12Since a bug in new-det-k-decomp caused errors and wrong results for some instances, we counted each
run that finished within the time and memory limit as successful. In total, for 21 instances and 3 uniquely
solved instances it is not clear, whether the instances have indeed been solved by new-det-k-decomp.
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Figure 3.3: A cactus plot comparing the runtime of different solvers. The instances are
sorted by runtime for each solver.
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Figure 3.4: A cactus plot comparing the memory usage of different solvers. The instances
are sorted by memory usage for each solver.

characterizations of hypertree width will also be of interest outside SAT encodings, for
instance, for Branch & Bound algorithms.

Our experimental results show how better scaling can be achieved by looking at multiple
characterizations and solver types. We also showed that it is beneficial to look beyond
the single-best approach: simply using the combination that solves the most instances
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Figure 3.5: Instance sizes and whether the instance could be solved by the Pure or
Augmented MaxSAT encoding. The number of edges refers to the primal graph. The
bar charts represent the shaded area around them. The degree of shading indicates how
many instances of that size were in the instance set, with black being the most.
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Figure 3.6: Instance sizes and whether Instance sizes and whether the Augmented
MaxSAT or SMT encoding could solve the instance. The number of edges refers to the
primal graph. The bar charts represent the shaded area around them. The degree of
shading indicates how many instances of that size were in the instance set, with black
being the most.
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3.6. Conclusion

would miss out on the complementary nature of the different configurations. Particularly
important for dealing with instances of high hypertree width is the SMT solver’s capability
to manage high upper bounds for the cardinality constraints.

Future Work

We hope that in the future, one can build upon our ordering-based characterizations and
encoding, and develop further improvements, including preprocessing and inprocessing
techniques, so that optimal hypertree decompositions can be efficiently found for even
larger instances.
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CHAPTER 4
Twin-Width

4.1 Introduction
Twin-width is a new graph invariant recently introduced by Bonnet et al. (2021a,b, 2022),
inspired by previous work by Guillemot and Marx (Guillemot and Marx, 2014). Graph
classes of bounded twin-width admit the fixed-parameter tractability of First-Order (FO)
model checking, parameterized by the length of the FO formula, provided a witness
for bounded twin-width is given. Many NP-hard problems, such as “does the input
graph contain an independent set of size at least r?” or “does the input graph contain a
subgraph that is isomorphic to a fixed pattern graph H?” can be naturally expressed as
FO model checking. Graph classes of bounded twin-width subsume and generalize several
dense graph classes for which FO model checking is fixed-parameter tractable, including
map graphs, bounded rank-width graphs, bounded clique-width graphs, cographs, and
unit interval graphs. Thus, twin-width boundedness plays a similar role for dense graph
classes as nowhere density plays for sparse graph classes (Grohe et al., 2017).

Bonnet et al.’s (2022) FO model checking algorithm for graphs of bounded twin-width
requires a certificate that the input graph’s twin-width is bounded by a constant d.
There are no practical algorithms known to compute the twin-width of a graph exactly
or approximately, and it is known that checking whether a graph’s twin-width ≤ 4 is
NP-hard (Bergé et al., 2022).

4.1.1 Contributions
In this chapter, we take a SAT-based approach to the exact computation of twin-width.
We propose methods for computing lower and upper bounds for d that allow us to reduce
the interval of possible values of d for running the SAT solver. Both encodings are based
on a new characterization of twin-width in terms of elimination orderings, which are
somewhat related to SAT encodings used for other width measures (Ganian et al., 2019;
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4. Twin-Width

Samer and Veith, 2009) and our encoding from Chapter 3. However, for twin-width, the
situation is more involved because it is not sufficient to globally bound certain static
values (like out-degrees in an elimination ordering for treewidth (Samer and Veith, 2009)).

We demonstrate the potentials and limits of our encodings by utilizing them in the
following three computational experiments.

1. Twin-width of small Random Graphs. We determine experimentally how the twin-
width of a random graph depends on its density. As one expects, the twin-width is
small for dense and sparse graphs. Graphs of edge-probability 0.5 have the highest
twin-width.

2. Twin-width of Famous Named Graphs. Over many decades of research in combi-
natorics, researchers have collected several special graphs, which have been used
as counterexamples for conjectures or for showing the tightness of combinatorial
results. We considered several such special graphs from the literature and computed
their exact twin-width. We believe that these results will be of interest to people
working in combinatorics. This way, we have identified a certain class of strongly
regular graphs (Paley graphs) that provide high lower bounds for twin-width.

3. Twin-Width Numbers. In general, it is not known how many vertices are required
to form a graph of a certain twin-width. In fact, there is limited knowledge on
lower-bound techniques for twin-width. We use our SAT encoding together with a
graph generator to identify the smallest graphs of twin-width 1, 2, 3, 4, and provide
tight bounds for twin-width 5 and 6. This way, we can determine the first few
twin-width numbers, where the d-th twin-width number is the smallest number of
vertices of a graph with twin-width d. A similar computation has been conducted
for clique-width (Heule and Szeider, 2015). Interestingly, up to isomorphism, there
are unique smallest graphs of twin-width 1, 2, and 4, respectively, and there are
five such graphs for twin-width 3.

4.2 Twin-width
A trigraph is an undirected graph G with vertex set V (G) whose edge set E(G) is
partitioned into a set B(G) of black edges and a set R(G) of red edges. We consider an
ordinary graph as a trigraph with all its edges being black. The set NG(v) of neighbors of
a vertex v in a trigraph G consists of all the vertices adjacent to v by a black or red edge.
We call u ∈ NG(v) a black neighbor of v if {u, v} ∈ B(G), and we call it a red neighbor if
uv ∈ R(G). The red degree of a vertex v ∈ V (G) of a trigraph G is the number of its red
neighbors. A d-trigraph is a trigraph where each vertex has red degree at most d.

4.2.1 Twin-Width via Sequences of d-Contractions
We give the original definition of twin-width (Bonnet et al., 2021a,b, 2022).
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4.2. Twin-width

A trigraph G′ is obtained from a trigraph G by contraction: two (not necessarily adjacent)
vertices u and v are merged into a single vertex w, and the edges of G are updated as
follows: Every vertex in the symmetric difference NG(u) △ NG(v) is made a red neighbor
of w. If a vertex x ∈ NG(u) ∩ NG(v) is a black neighbor of both u and v, then w is made
a black neighbor of x; otherwise, w is made a red neighbor of x. The other edges (not
incident with u or v) remain unchanged.

A sequence of d-contractions or d-sequence for a graph G is a sequence of d-trigraphs
G0, G1, . . . , Gn−1 where G0 = G, Gn−1 is the graph on a single vertex, and Gi for
i ≥ 1 is obtained from Gi−1 by contraction. We observe that |V (Gi)| = n − i for
0 ≤ i < n = |V (G)|. The twin-width of a trigraph G, denoted tww(G), is the smallest
integer d such that G admits a d-sequence.

It is indeed sometimes necessary to contract non-adjacent vertices. For instance, Figure 4.1
shows a sequence of 2-contractions for the Wagner graph. Without contracting non-
adjacent vertices, a vertex of red degree > 2 would be created by the first contraction
since each vertex has degree 3 and shares no neighbor with any of its neighbors.
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Figure 4.1: A sequence of 2-contractions for the Wagner graph. Vertices that will be
contracted next are marked blue.

We state here some basic properties of twin-width observed in the original paper (Bonnet
et al., 2022).

Fact 4.1. If G′ is and induced subgraph of a graph G, then tww(G′) ≤ tww(G).

For a graph G, we denote by G its complement graph, which is defined by V (G) = V (G)
and E(G) = { uv : u, v ∈ V (G), {u, v} /∈ E(G), u ̸= v }.

Fact 4.2. For every graph G, we have tww(G) = tww(G).
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4.2.2 Twin-Width via d-Elimination Sequences
Next, we give an alternative definition of twin-width which is better suited for formulating
our SAT encodings.

Let G be a graph, T a tree with V (T ) = V (G), rooted at some vertex rT , and ≺ a linear
ordering of V (T ), where u ≺ v for two vertices u, v ∈ V (T ) such that v is the parent
of u in T . We call T a contraction tree, ≺ an elimination ordering, and the pair (T, ≺)
a twin-width decomposition of G. Thus, when we write V (G) = {v1, . . . , vn} such that
v1 ≺ · · · ≺ vn and vn = rT , then T and G define a sequence of graphs H0, . . . , Hn−1 with
V (Hi) = {vi+1, . . . , vn}. We denote by pi the parent of vi in T . By definition, vi ≺ pi.

We define the edge set E(Hi) recursively as follows. For i = 0, we set E(H0) = ∅, and
for 1 ≤ i < n, we set

E(Hi) = { {u, v} ∈ E(Hi−1) : u, v ∈ V (Hi) } (4.1a)
∪ { {u, pi} : {vi, u} ∈ E(Hi−1), u ̸= pi } (4.1b)
∪ { {u, pi} : {vi, u} ∈ E(G), {pi, u} /∈ E(G), u ∈ V (Hi) } (4.1c)
∪ { {u, pi} : {vi, u} /∈ E(G), {pi, u} ∈ E(G), u ∈ V (Hi) }. (4.1d)

We call the sequence H0, . . . , Hn−1 the elimination sequence for G defined by the twin-
width decomposition (T, ≺); if for an integer d, all the Hi have a maximum degree ≤ d, we
call H0, . . . , Hn−1 a d-elimination sequence. The width of the twin-width decomposition
(T, ≺) of G is the smallest integer d such that (T, ≺) defines a d-elimination sequence.

Figure 4.2 shows an example of a 2-elimination sequence, and in Figure 4.3 the same
elimination sequence is superimposed on the graph.
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⪯ H0 H1 H2 H3 H4 H5 H6 H7

Figure 4.2: A 2-elimination sequence for the Wagner graph, defined by the linear ordering
≺ and the contraction tree T . This is the 2-elimination sequence that we get by applying
the construction from the proof of Theorem 4.3 to the sequence of 2-contractions shown
in Figure 4.1.

Theorem 4.3. Let G be a graph and < an arbitrary linear ordering of V (G). G has
twin-width ≤ d if and only if there exists a twin-width decomposition (T, ≺) of width ≤ d
such that
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Figure 4.3: The Wagner graph with linear ordering ≺ from Figure 4.2 indicated by index
numbers. The contraction tree T is superimposed on the graph, where blue dashed edges
indicate tree edges that are not shared with the graph, and black dashed edges indicate
tree edges that are shared with the graph.

1. if x is the parent of y in T , then x < y;

2. the root of T is the <-maximal element of V (G).

Proof. Let G be a graph and assume that tww(G) ≤ d. By definition, there exists a
d-sequence G0, G1, . . . , Gn−1, and each Gi, i > 0, is obtained from Gi−1 by contracting
two vertices ui and vi, i.e., merging them into wi, a new vertex. We slightly change
contraction steps. Instead of introducing a new vertex wi, we reuse one of the two vertices
ui, vi as wi. We use the ordering < to decide which of the two vertices to reuse:

wi =
�

ui if ui > vi;
vi otherwise.

(4.2)

This way, we obtain a sequence G′
0, G′

1, . . . , G′
n−1, with V (G′

i) ⊆ V (G), where each G′
i is

isomorphic to Gi. Since V (G) = V (G′
0) ⊋ · · · ⊋ V (G′

n−1), this gives us a linear ordering
≺ of V (G) in a natural way. We obtain a contraction tree T by taking V (T ) = V (G)
and E(T ) = { {ui, vi} : 1 ≤ i ≤ n − 1 }. Because of (4.2), the contraction tree satisfies
the two conditions claimed in the statement of the theorem. A d-elimination sequence
H0, . . . , Hn−1 is provided by taking Hi as the subgraph of G′

i formed by its red edges.
Thus (T, ≺) is a twin-width decomposition of G of width ≤ d.

Conversely, assume (T, ≺) is a twin-width decomposition of G of width ≤ d. Let
H0, . . . , Hn−1 be the corresponding d-elimination sequence. We turn the d-elimination
sequence into a d-sequence by contracting pairs of vertices as indicated by T . Hence
tww(G) ≤ d.

4.3 Preprocessing
In this section, we show how to decompose a given graph G in polynomial time into a col-
lection prime(G) of induced subgraphs of G, such that tww(G) = maxH∈prime(G) tww(H).
This decomposition can serve as a preprocessing step for twin-width computation.
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We require some definitions. A module of a graph G is a nonempty set M ⊆ V (G)
such that for any x, y ∈ M and z ∈ V (G) \ M we have {x, z} ∈ E(G) if and only if
{y, z} ∈ E(G). A module M is trivial if M = V (G) or |M | = 1. M is a maximal module
if it is not strictly contained in any nontrivial module. A graph is prime if all its maximal
modules are trivial. For every graph G, there exists a unique partition Pmax of V (G) into
maximal modules M1, . . . , Ms, and this partition can be found in linear time (Cournier
and Habib, 1994; McConnell and Spinrad, 1994). This partition gives rise to the quotient
graph G/Pmax whose vertices are the maximal modules of P , and where two modules
Mi, Mj , i ̸= j, are joint by an edge if and only if all the pairs xi ∈ Mi, xj ∈ Mj are
joined by an edge in G. If we select for each module Mi a representative vertex xi ∈ Mi,
then the set {x1, . . . , xs} of representatives induces a subgraph of G that is isomorphic
to G/Pmax. If G and its complement graph G are connected, then G/Pmax is a prime
graph (Gallai, 1967; Habib and Paul, 2010). We recursively define the set prime(G) as
follows:

1. If G is disconnected, then prime(G) is the union of the sets prime(C) for all
connected components C of G.

2. If G is disconnected, then prime(G) is the union of the sets prime(C) for all
connected components C of G.

3. If both G and G are connected, then prime(G) is the union of {G/Pmax} and the
sets prime(G[M ]) for all nontrivial M ∈ Pmax.

The three cases above give rise to the modular decomposition of the graph G, represented
as a rooted tree (Habib and Paul, 2010). The root of the tree is associated with G, the
children of each vertex are associated with the connected components (cases 1 and 2), or
the maximal modules (case 3) of the graph associated with their parent. The leaves of
the tree are in a 1-to-1 correspondence with the vertices of G.

Theorem 4.4. For every graph G we have tww(G) = maxP ∈prime(G) tww(P ).

Proof. Let d = maxP ∈prime(G) tww(P ). As observed above, G/Pmax is isomorphic to an
induced subgraph of G; by induction, this holds for all the graphs in prime(G). Because
of Fact 4.1, tww(G) ≥ d follows.

For showing tww(P ) ≤ d, we proceed by induction on |V (G)| = n. The statement is
certainly true if n = 1 since then prime(G) = {G}. Now assume n > 1. We distinguish
several cases.

Consider the case where G is disconnected into components C1, . . . , Cr. For each
1 ≤ i ≤ r we have prime(Ci) ⊆ prime(G), and so, by induction, we have
tww(Ci) ≤ maxP ∈prime(Ci) tww(P ) ≤ d. Thus, for each Ci there is a d-sequence end-
ing in a single-vertex graph. Using the contractions of these d-sequences, we obtain a
d-sequence for G, which ends in an edgeless graph that consists of r isolated vertices.
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We can extend this d-sequence by contracting the isolated vertices pairwise in any order,
eventually obtaining a single-vertex graph without generating any red edges. Thus
tww(G) ≤ d. The case where G is disconnected follows from the previous argument and
Fact 4.2.

Finally, assume that G and G are connected. Thus G/Pmax is prime and is isomorphic to
an induced subgraph G′ ∈ prime(G) of G. For each M ∈ Pmax, prime(G[M ]) ⊆ prime(G).
By induction hypothesis, tww(G′) ≤ d and tww(G[M ]) ≤ d. We thus obtain a d-sequence
for G by putting together d-sequences for G[M ], M ∈ Pmax, and a d-sequence for G′,
which contract first each G[M ] on a single vertex of G′, and then contract G′ on a single
vertex. Hence, tww(G) ≤ d.

Theorem 4.4 provides the basis for a preprocessing phase for twin-width computation. If
the given graph G is not prime, we compute prime(G) and determine the twin-width of
all the graphs in prime(G). Since for a non-prime graph G, the graphs in prime(G) are
smaller than G, it is more efficient to run a costly twin-width algorithm on the graphs
in prime(G) than on G itself. Hence, this preprocessing can be highly beneficial for
non-prime graphs.

4.4 Encodings
In this section, we present two SAT encodings for twin-width. Assume we are given a
graph G with vertices v1 . . . vn and an integer d. We will define a propositional formula
F (G, d) in Conjunctive Normal Form (CNF) that is satisfiable if and only if tww(G) ≤ d.
For the construction of F (G, d), we use the characterization of twin-width in terms of
a twin-width decomposition (T, ≺), as established in Theorem 4.3. We use the indices
1 ≤ i, j, k, m ≤ n and subsequently omit the upper and lower bounds for readability.
Furthermore, we use the mapping φ≺(vi) to denote the position of vi in ≺.

We give two different encodings for F (G, d) that differ in how we encode ≺. In the
relative encoding Frel, we encode for all mutually distinct pairs vi, vj if vi ≺ vj , while
in the absolute encoding Fabs we encode φ≺(vi) for all vi. The absolute encoding in
this thesis differs from the one we originally proposed (Schidler and Szeider, 2022), and
performs much better than the original version. We first introduce our two encodings
and discuss the differences in Section 4.6.

4.4.1 Relative Encoding
In our first encoding, we use a relative ordering of the vertices, as used in the treewidth
encoding by Samer and Veith (2009): instead of encoding φ≺(vi) directly, we encode for
vertices vi, vj ∈ V (G), whether φ≺(vi) < φ≺(vj) or not. Table 4.1 shows the variables
utilized in the encoding. For the ordering, we use


n
2
�

variables oi,j with i < j, where oi,j

is true if and only if vi ≺ vj . We subsequently use the shorthand o∗
i,j where o∗

i,j is oi,j if
i < j and ¬oj,i if i > j. We encode the semantics by enforcing transitivity: for mutually
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Name Range Meaning
ai,j 1 ≤ i < j ≤ n {vi, vj} ∈ Ek for some k
oi,j 1 ≤ i < j ≤ n vi ≺ vj

pi,j 1 ≤ i < j ≤ n pi = vj

ri,j,k 1 ≤ i, j ≤ n and j < k ≤ n {vj , vk} ∈ E(Hφ≺(vi)) after eliminating vi

Table 4.1: The variables used in the relative encoding.

distinct 1 ≤ i, j, k ≤ n we add the clauses

¬o∗
i,j ∨ ¬o∗

j,k ∨ o∗
i,k.

Next, we encode the contraction tree T . In view of Theorem 4.3, we can assume that
when pi is the parent of pj in T , then i < j (Condition 1), and vn is the root of T
(Condition 2). Hence, we can use


n
2
�

variables pi,j with i < j, where pi,j is true if and
only if pi = vj . We encode that every vertex, except the root, has exactly one parent.
For that, we utilize at-least-one constraints by adding for each 1 ≤ i < n the clause	

i<j pi,j and at-most-one constraints by adding for mutually distinct 1 ≤ i, j, k ≤ n the
clauses ¬pi,j ∨ ¬pi,k. Additionally, we ensure that vi ≺ vj holds between a vertex vi and
its parent vj , by adding for 1 ≤ i < j ≤ n the clauses

¬pi,j ∨ o∗
i,j .

So far we have encoded ≺ and T . Next, we encode the elimination sequence H0, . . . , Hn

with two additional sets of variables. We take n

n

2
�

variables ri,j,k with j < k, where ri,j,k

is true if and only if after eliminating vi it holds that {vj , vk} ∈ E(Hφ≺(vi)). We also use
n
2
�

auxiliary variables ai,j with i < j, where ai,j is true if and only if there exists a k
such that {vi, vj} ∈ E(Hk). We use shorthands a∗ and r∗ which are defined analogously
to o∗.

We encode the semantics of a by adding, for all mutually distinct 1 ≤ i, j, k ≤ n with
i < j, the clauses

¬o∗
i,j ∨ ¬o∗

i,k ∨ ¬r∗
i,j,k ∨ a∗

j,k.

Furthermore, we encode the semantics of r by encoding Subsets (4.1a)–(4.1d) of E(Hi)
according to the definition given in Section 4.2. Subsets (4.1c) and (4.1d) are encoded
by adding for 1 ≤ i < j ≤ n and vk ∈ (NG(vi) △ NG(vj)) \ {vi, vj} the clause

¬pi,j ∨ ¬o∗
i,k ∨ r∗

i,j,k.

Further, Subset (4.1b) is encoded by adding, for mutually distinct 1 ≤ i, j, k ≤ n, with
i < j, the clauses

¬pi,j ∨ ¬o∗
i,k ∨ ¬a∗

i,k ∨ r∗
i,j,k.
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Name Range Meaning
o′

t,i 1 ≤ t < n − d − 1 φ≺(vi) = t

p′
t,j 1 ≤ t < n − d − 1, 1 ≤ i ≤ n pφ−1

≺ (t) = vj

r′
t,i,j 1 ≤ t < n − d − 1, 1 ≤ i < j ≤ n {vi, vj} ∈ E(Ht)

et,i 1 ≤ t < n − d − 1, 1 ≤ i ≤ n {vφ−1
≺ (t), vj} ∈ E(Ht−1)

Table 4.2: The variables used in the absolute encoding.

Finally, we encode Subset (4.1a) by adding for mutually distinct 1 ≤ i, j, k, m ≤ n, k < m
the clauses

¬o∗
i,j ∨ ¬o∗

j,k ∨ ¬o∗
j,m ∨ ¬r∗

i,k,m ∨ r∗
j,k,m.

The O(n4) clauses required to encode the Subset (4.1a) dominate the size of the encoding.
Unfortunately, this is unavoidable: without knowing φ≺(.), we have O(n2) possible
orderings of vi, vj , and for each such ordering, we have O(n2) possible edges vkvm.

We enforce the upper bound d using cardinality constraints as discussed in Section 2.3.1.
For each vertex vi, we limit the set { r∗

i,j,k : 1 ≤ j, k ≤ n, i ̸= j ̸= k ̸= i } to at most d true
values.

4.4.2 Absolute Encoding
The main idea behind our second encoding is to directly encode the absolute position of
each vertex in ≺. The resulting encoding’s size is in O(n3), significantly improving upon
the bound of the relative encoding. We use the index t with 1 ≤ t < n − d − 1 to denote
the current position in ≺. The limit of n − d − 1 comes from the fact that a graph with
d + 1 vertices can have at most tww d, and we can eliminate the last d + 1 vertices in
any order. We first propose the encoding and then discuss the differences between the
encodings.

We use n · (n − d − 2) variables o′
t,i, where o′

t,i is true if and only if φ≺(vi) = t. For
each t, we require one at-most-one and one at-least-one constraint over the variables
{ o′

t,i : 1 ≤ i ≤ n }. Further, for each i, we require an at-most-one constraint over the
variables { o′

t,i : 1 ≤ t < n − d − 1 }.

The trick for a more succinct encoding is the representation of T . Instead of using pi,j to
encode T , we use n · (n − d − 2) variables p′

t,j with the semantics that p′
t,j is true if and

only if vj is the parent of vertex φ−1
≺ (t). For each t we limit the set { p′

t,i : 1 ≤ i ≤ n }
with one at-most-one and one at-least-one constraint. Further, for each i, we limit the
set { p′

t,i : 1 ≤ t < n − d − 1 } with an at-most-one constraint. These constraints ensure
that each eliminated vertex has exactly one parent in T . Additionally, we ensure that if
p′

t,j is true, it holds that φ≺(vj) > t, i.e., that the parent is never an eliminated vertex,
by adding for all 1 ≤ i ≤ n, 1 ≤ t′ ≤ t < n − d − 1 the clauses

¬o′
t′,i ∨ ¬p′

t,i.
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We conclude the encoding of T by enforcing that the parent is lexicographically larger
than the child by adding for all t and j the clauses

¬p′
t,j ∨

�
i<j

o′
t,i.

Next, we encode the elimination sequence H0, . . . , Hn−d−2. We start by introducing
(n−d−2) · 
n

2
�

variables r′
t,i,j with i < j, where r′

t,i,j is true if and only if {vi, vj} ∈ E(Ht).
We use the shorthand r′∗ similarly to r∗ in the relative encoding.

In the previous section, encoding Subset (4.1a) was the main contributor to the encoding’s
size. This subset can be encoded more succinctly in the absolute encoding, as we can
add for all 1 < t < n − d − 1 and 1 ≤ i < j ≤ n the clauses

o′
t,i ∨ o′

t,j ∨ ¬r′∗
t−1,i,j ∨ r′∗

t,i,j ,

which only requires a number of clauses in O(n3).

The critical part of the absolute encoding is Subset (4.1b), as a straightforward encoding
would be quartic. We avoid this using the different representation of T and introducing
(n − d − 2) · n variables et,i, where et,i is true if and only if {φ−1

≺ (t), vi} ∈ Ht−1. In other
words, et,i is true if and only if for Ht the edge to vi is in Subset (4.1a). These semantics
are enforced by adding for all 1 < t < n − d − 1 and distinct 1 ≤ i, j ≤ n the clauses

¬o′
t,i ∨ ¬r′∗

t−1,i,j ∨ et,j .

We can then encode Subset (4.1b) succinctly by adding for all 1 < t < n − d − 1 and
distinct 1 ≤ i, j ≤ n the clauses

¬p′
t,i ∨ ¬et,j ∨ r′∗

t,i,j .

The remaining clauses to encode the elimination sequence are similar to the relative
encoding. Subsets (4.1c) and (4.1d) are encoded by adding for each 1 ≤ t < n − d − 1,
1 ≤ i < j ≤ n, and vk ∈ (NG(vi) △ NG(vj)) \ {vi, vj} the clause

¬o′
t,i ∨ ¬p′

t,j ∨ r′∗
t,j,k ∨

�
t′≤t

o′
t′,k.

Finally, we use cardinality constraints for r′ as in the relative encoding to enforce that
the width is at most d. The resulting encoding’s number of clauses is then in O(n3).

Towards Better Reasoning

The absolute encoding is much more succinct than the relative encoding in terms of the
number of clauses. This is shown by the asymptotics, but also practically, as we discuss
in Section 4.6.
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The reduced number of clauses comes at the price of a more indirect encoding. Splitting
the variables pi,j into o′

t,i and p′
t,j means that it is hard for the solver to learn about

the structure of T . Further, the variables o′
t,i encode specific positions in the ordering,

further limiting the information gain from conflicts. In practice, we observed that showing
unsatisfiability often takes very long using the absolute encoding as stated above.

We can improve the encoding with two changes: we reintroduce the pi,j variables on top
of the absolute encoding and use the at-most-one constraints to get something similar
to reasoning about relative positions. While adding pi,j increases the number of both
variables and clauses, it improves the capabilities to reason about the structure of T .

We encode the semantics of pi,j using the absolute encoding’s variables. We make the
values of p′

t,i and pi,j consistent with each other by adding for all 1 ≤ t < n − d − 1 and
1 ≤ i < j ≤ n the clauses

¬o′
t,i ∨ ¬p′

t,j ∨ pi,j .

The semantics of pi,j is then enforced by constraining for each i the cardinality of
{ pi,j : i < j } with an at-most-one constraint, ensuring that each vertex has at most one
parent.

We slightly change the cardinality constraints for o′
t,i. We do not introduce additional

constraints but specify that the at-most-one constraints for a given i on the cardinality of
{ o′

t,i : 1 ≤ t < n−d−1 } is encoded using sequence counters (Sinz, 2005). This introduces
a new variable ct,i for each o′

t,i with the semantics that ct,i is true if φ≺(vi) ≤ t. We
strengthen the “if” to “if and only if” by adding for all 1 ≤ t < n − d − 1 and 1 ≤ i ≤ n
the clauses

¬ct,i ∨
�
t′≤t

o′
t′i.

The new variables allow us to reason in a more relative way about the position of vertices.
Instead of stating that a vertex is eliminated at position t, we can now state a vertex is
eliminated before at position t.

We use the variables ct,i to encode the property that p′
t,i implies φ≺(vi) > t more

succinctly by using for all 1 ≤ t < n − d − 1 and 1 ≤ i ≤ n the clauses

¬ct,i ∨ ¬p′
t,i.

The biggest change to the observed behaviour of the encoding comes from encoding
Subsets (4.1c) and (4.1d) using the newly introduced variables. We use for each 1 ≤ t ≤
n − d − 1, 1 ≤ i < j ≤ n, and vk ∈ (NG(vi) △ NG(vj)) \ {vi, vj} the clause

¬ct,i ∨ ct,j ∨ ct,k ∨ ¬pi,j ∨ r′∗
t,j,k.

Iterative Absolute Encoding

The absolute encoding allows for a straightforward iterative use. We modify the encoding
to a formula Fabs(G, d, s), with s ≤ n − d − 1, which is satisfiable if and only if there
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exists an elimination sequence H0, . . . , Hs−1 for G such that all Hi with 1 ≤ i < s have
red degree ≤ d. Hence, we limit the length of the elimination sequence by limiting t to s
instead of to n − d − 1. For small values of s, this method severely reduces the number
of clauses.

The incremental encoding is originally Fabs(G, d, 1); when the formula is satisfiable, we
add the clauses for Fabs(G, d, 2) and so forth, until s = n − d − 1. Whenever the formula
is unsatisfiable, we increment d. This incremental approach is useful to lower the time
required for unsatisfiable calls, i.e., when d < tww(G). Here, one can often establish that
tww(G) ≥ d with only a few contractions and, therefore, with a much smaller encoding.
E.g., for a 6 × 6 grid graph it takes 32 contractions to establish tww(G) ≤ 3, but it takes
only Fabs(G, 2, 9) to verify that tww(G) > 2.

Since the constructions of Frel(G, d) and Fabs(G, d) closely follow the definitions given in
Section 4.2, we have the following result.

Theorem 4.5. Given a graph G with n vertices and an integer d, we can construct in
time polynomial in n · d a propositional formula F (G, d), which is satisfiable if and only
if tww(G) ≤ d.

This concludes the introduction of our encodings. We discuss the empirical differences
between our encodings in Section 4.6.

4.5 Lower and Upper Bounds
This section describes a simple approach for deriving lower and upper bounds for the
twin-width of graphs. We use these bounds for limiting the range for d when running the
SAT solver on F (G, d).

We first discuss the lower bound. Let r be a positive integer and G a graph with at least r
vertices. We define the lower bound lbr of order r for tww(G) as the maximum degree of
the first r + 1 graphs H0, . . . , Hr−1 of any elimination sequence for G. In particular, for
r = 1 we have

lb1(G) = min
u,v∈V (G),u ̸=v

|NG(u) △ NG(v)|.

Clearly, lb1(G) ≤ lb2(G) ≤ · · · ≤ lbn(G) = tww(G). If r is a constant, then lbr(G) can
be computed in polynomial time.

For obtaining an upper bound on the twin-width of a given graph G, we propose a simple
greedy algorithm. The algorithm computes an elimination ordering ≺ and a contraction
tree T step-by-step, greedily choosing the next vertex vi in the ordering. Assume we
have already computed the first i vertices of the elimination ordering v1, . . . , vi−1 and the
corresponding sequence of graphs H0, . . . , Hi−1 with V (Hi−1) = {vi, . . . , vn}. We choose
the next vertex vi ∈ V (Hi−1) and the corresponding parent pi ∈ {vi+1, . . . , vn}, pi > vi

in the lexicographic ordering of the vertices, such that the degree of pi in Hi is minimized;
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in case of a tie, we take the lexicographically minimal pair (vi, pi). We add the edge
{vi, pi} to the contraction tree. The width of the resulting twin-width decomposition
(T, ≺) gives the upper bound ubgreedy on the twin-width of G. Our implementation of
the greedy heuristic uses caching to avoid computing the degree of potential pairs (vi, pi)
over and over again.

4.6 Experiments
We computed the twin-width of several graphs using our encodings1. We implemented
and ran the encodings using Python 3.8.0 and PySAT 1.6.0 (Ignatiev et al., 2018)2.

We ran the large-scale experiments using random instances on servers with two Intel
Xeon E5-2640 v4 CPUs—10-cores running at 2.40 GHz—with 160 GB memory and using
Cadical3 as a SAT solver. We used Cadical as it outperformed the other SAT solvers
implemented in PySAT by far.

The experiments on named graphs were run on a computer with an Intel Core i5-9600KF
CPU with six cores running at 3.70 GHz, 32 GB RAM and using Kissat, an improved
rewrite of Cadical (Biere et al., 2020)4.

4.6.1 Named Graphs

We computed the twin-width of several named graphs, which are well-known from the
literature (Weisstein, 2021). The names of the graphs either reflect their topology or their
discoverer. For most of the considered graphs, the twin-width was not known. Table 4.3
provides an overview of our results, including lower and upper bounds as described in
Section 4.5. Preprocessing has no effect on the named graphs, which all turned out to
be prime (as one would expect, as these graphs often provide a smallest example or
counterexample for a combinatorial property).

Interestingly, the lower bound lb1 often coincides with the exact twin-width. One
possible explanation is the high level of symmetry in many of the graphs. A particularly
interesting class of symmetric graphs are the strongly regular graphs: these graphs are
usually parameterized by the tuple (n, k, λ, µ), where n is the number of vertices, k is
the degree of each vertex, and every pair of vertices has either λ common neighbors if
they are adjacent, or share µ neighbors otherwise. For a strongly regular graph G with
parameters (n, k, λ, µ), we can immediately determine the lower bound of order 1

lb1(G) = min{2(k − µ), 2(k − λ − 1)}.

1Source code can be found at https://github.com/ASchidler/twin_width. The results can be found
at https://doi.org/10.5281/zenodo.7271869.

2https://pysathq.github.io
3http://fmv.jku.at/cadical/
4http://fmv.jku.at/kissat/
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Graph |V | |E| lb1 tww ubgreedy

Balaban 10-Cage* 70 105 4 ≤5 6
Brinkmann 21 42 6 6 6
Chvátal 12 24 2 3 5
Clebsch 16 40 6 6 8
Desargues 20 30 4 4 5
Dodecahedron 20 30 4 4 4
Dürer 12 18 2 3 4
Ellingham* 78 117 4 4 5
Errera 17 45 4 5 6
FlowerSnark 20 30 4 4 4
Folkman 20 40 2 3 3
Franklin 12 18 2 2 4
Frucht 12 18 2 3 3
Goldner 11 27 2 2 4
Grid 6 × 8* 48 82 2 3 4
Grötzsch 11 20 2 3 5
Herschel 11 18 2 2 4
Hoffman 16 32 2 4 5
Holt 27 54 6 6 7
Kittell 23 63 4 5 6
McGee 24 36 4 4 5
Moser 7 11 2 2 2
Nauru 24 36 4 4 5
Paley-73* 73 1314 36 36 64
Pappus 18 27 4 4 5
Peterson 10 15 4 4 4
Poussin 15 39 3 4 5
Robertson 19 38 6 6 6
Rook 6 × 6* 36 180 10 10 12
Shrikhande 16 48 6 6 8
Sousselier 16 27 4 4 5
Tietze 12 18 2 4 4
Wagner 8 12 2 2 2
Watsin* 50 75 4 4 5

Table 4.3: Results for famous named graphs. For all graph not marked with *, the
twin-width could be computed in at most five seconds. lb1 gives the lower bound of
order 1, ubgreedy gives the width of an elimination ordering computed by the greedy
algorithm of Section 4.5.

Examples of strongly regular graphs in Table 4.3 are Clebsch (16, 5, 0, 2), Peter-
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son (10, 3, 0, 1), Rook n × n (n2, 2n−2, n−2, 2), and Shrikhande (16, 6, 2, 2). A family
of strongly regular graphs, the Paley graphs, stick out due to their high twin-width in
relation to their size. For every prime power n such that n ≡ 1 (mod 4), the Paley graph
on n vertices (Paley-n) is defined and is strongly regular with parameters k=(n−1)/2,
λ=(n−5)/4, µ=(n−1)/4. Further, Paley graphs are self-complementary, i.e., Paley-n
and Paley-n are isomorphic (Godsil and Royle, 2001). With our relative SAT encoding,
we could verify that for Paley graphs with up to 73 vertices, the lower bound of order 1
gives the exact twin-width. We originally conjectured (Schidler and Szeider, 2022) that
tww(Paley-n) = (n − 1)/2 holds in general. This has later been independently proven
by Ahn et al. (2021). It is still an open question, whether there are graphs of the same
size that have higher twin-width, or in the contrary, Paley graphs define an upper bound
on the twin-width, given a specific number of vertices.

The twin-width of two-dimensional grid graphs is also interesting. They are known to
have unbounded treewidth and clique-width, but it is easy to see that their twin-width is
at most 4 (Bergé et al., 2022). Interestingly, with our encodings, we found that smaller
grid graphs, of size up to 8×6, do have twin-width 3. We see it as an interesting challenge
to determine the exact twin-width of all square grids. The 3-elimination sequence that
we found with our encodings do not suggest any obvious general pattern that could
be generalized to all grid graphs, hence we still expect that at a certain size the width
switches from 3 to 4.
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Figure 4.4: Twin-width for randomly generated graphs: each edge exists with probability p.
Each point is the average over 100 graphs.

4.6.2 Random Graphs
We tested the twin-width on randomly generated graphs. For this purpose, we created
Erdős-Rény graphs G(n, p), where |V (G)| = n ∈ {10, 15, 20} and each edge exists with
probability p, where p takes values between 0 to 1 in 0.02 increments.

The results in Figure 4.4 show that the twin-width increases quickly with increasing graph
size. Furthermore, the vertical distance between the peaks is similar. The symmetric
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shape is expected due to Fact 4.2.

Many of the graphs can be simplified using the preprocessing discussed in Section 4.3.

4.6.3 The Twin-Width Numbers
For every d > 0, let twwd be the smallest integer such that there exists a graph with twwd

many vertices of twin-width d. We call twwd the d-th twin-width number. In contrast
to other width measures like treewidth, where similar numbers are easy to compute
(the d-th treewidth number is d + 1), no uniform method is known for computing the
twin-width numbers. The situation is similar for clique-width, where no uniform method
is known either; Heule and Szeider (2015) computed the first few clique-width numbers.

The computation of twin-width numbers provides a challenge for any exact method, as
the search space grows quickly with each increment of d. However, with our encodings,
run on prime graphs generated by Nauty5 (McKay and Piperno, 2014), we were able to
identify the first few twin-width numbers and give tight bounds for further ones.

Proposition 4.6. The sequence of twin-width numbers starts with 4, 5, 8, 9; the fifth
twin-width number is 11 or 12; the sixth twin-width number is at most 13.

For computing the twin-width numbers, we only need to consider graphs G with |E(G)| ≤
n
2
�
/2, as by Fact 4.2, |E(G)| >


n
2
�
/2 implies |E(G)| ≤ 
n

2
�
/2. Further, according to

Theorem 4.4, we only need to consider prime graphs. In particular, since every prime
graph G and its complement graph G are connected, we only need to consider connected
graphs. The results are shown in Table 4.4.

The preprocessing described in Section 4.3 can be used for all graphs that are not prime.
We can see in Table 4.4 that there are many connected graphs that are not prime, and
thereby eligible for preprocessing.

Interestingly, for the first, second, and fourth twin-width number twwd, there is a unique
graph, up to isomorphism, with twwd many vertices and twin-width d. For the third twin-
width number, there are five such graphs: G8,3,i, i = 1, . . . , 5. G8,3,3 is self-complementary;
the other four form two complementary pairs. In Figure 4.5, we display these graphs
together with an optimal d-sequence, showing only one graph from each complementary
pair.

The unique graph certifying tww1 = 4 is the path on 4 vertices (P4). The unique graph
certifying tww1 = 5 is the cycle on five vertices (C5). The unique graph certifying
tww4 = 9 is the graph Paley-9 (see Section 4.6.1). In fact, C5 = Paley-5, so also tww2
is certified by a Paley graph. Further, if we remove any vertex from Paley-9, we obtain
G8,3,3. Similarly, we obtain P4 by removing a vertex from Paley-5. Therefore, Paley
graphs are related to all of the first four twin-width numbers. We could establish with
our method that among all graphs with 10 vertices, there is no graph of twin-width

5http://cs.anu.edu.au/people/bdm/
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5, hence tww5 ≥ 11. We could not check all graphs with 11 vertices, as there are too
many. Paley-13 shows that tww6 ≤ 13. By deleting any single vertex from Paley-13, its
twin-width drops to 5. This implies that tww5 ≤ 12, and so 11 ≤ tww5 ≤ 12 as stated in
Proposition 4.6.
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Figure 4.5: Smallest graphs for given twin-width d. The integer vertex labels give a
d-sequence, and the dashed edges give a contraction tree, as in Figure 4.3.

twin-width
|V | connected prime 1 2 3 4

4 3 1 1 0 0 0
5 11 4 3 1 0 0
6 73 26 16 10 0 0
7 618 260 90 170 0 0
8 8573 4670 655 4010 5 0
9 224875 145870 4488 137565 3816 1

10 11716571 8110356 30318 6144756 1935226 56

Table 4.4: The number of graphs, prime graphs, and prime graphs of a specific twin-width,
with a specific number of vertices.
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4.6.4 Encoding Comparison
In these experiments, we compare our two encodings. Table 4.5 shows a comparison
based the named graph where determining the twin-width is hard. The results show the
runtimes for running both F (G, tww) (SAT) and F (G, tww − 1) (UNSAT).

SAT UNSAT
Graph |V| tww Encoding Vars Clauses Time Time
Balaban 10-Cage6 70 ≤ 5 Relative 1.2 m 15 m >43200 s >43200 s

Absolute 1.2 m 4.6 m 1600 s >43200 s
Ellingham 78 4 Relative 1.7 m 22 m 958 s 153 s

Absolute 1.6 m 6.1 m 128 s 4 s
Grid 8 × 6 48 3 Relative 371 k 3.4 m 3690 s 3 s

Absolute 348 k 1.3 m 160 s 7 s
Paley-73 73 36 Relative 2.4 m 28 m 159 s 880 s

Absolute 1.2 m 10 m 262 s 12 s

Table 4.5: Comparison of the two twin-width encodings on difficult famous graph instances.
m denotes million and k thousand.

As expected, the number of clauses for the absolute encoding is much smaller than for
the relative encoding, even for small graphs. The story is different for the number of
variables. For small d, when |V | − d − 1 is close to |V |, the absolute encoding uses a
similar number of variables compared to the relative encoding. This behaviour changes
with a higher upper bound, as for the Paley-73 graph, where the twin-width is almost |V |

2 .
Here, the absolute encoding uses significantly fewer variables.

Comparing the encoding sizes based on different graphs reveals additional details. The
Ellingham and Balaban 10-Cage graphs have small twin-width, while the Paley-73 graph
has a very high twin-width. All three graphs have roughly the same size. The relative
encoding’s size and number of variables increase significantly with higher twin-widths,
due to the cardinality constraints requiring more variables and clauses. This is confirmed
by looking at Frel(Paley-73, 4), where the number of variables drops to 1.4 million and
the number of clauses to 17 million. The still much higher number of clauses compared
to the other two graphs is explained by the Paley-73 graph’s high density, which requires
more clauses to encode Subsets (4.1c) and (4.1d).

The absolute encoding behaves differently. Since a higher upper bound means that
the encoded elimination sequence is shorter, the number of variables does not increase.
Table 4.5 still suggests that the number of clauses increases, but a look at Fabs(Paley-73, 4)
shows that the excess number of clauses is only due to the higher density. Indeed,

6The encodings could not verify whether the twin-width is 5 or 4. For the purposes of the discussion
we treat 5 as the twin-width, as it still shows the comparative performance of the two encodings.
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Fabs(Paley-73, 4) even requires slightly more variables and clauses than Fabs(Paley-73, 36).
Hence, at least in terms of size, the absolute encoding handles higher twin-widths better
than the relative encoding.

The runtime for the satisfiable solver calls generally reflects the difference in encoding
sizes, except for the Paley-73 graph. It is not completely clear why the relative encoding
performs slightly better here. One possible explanation is that the graph’s twin-width is
comparatively easy to find: due to the high twin-width and high density, non-optimal
contractions quickly exceed the bound. Indeed, the solver using the relative encoding
runs into comparatively few conflicts: in not even twice the time, the solver runs into
more than twelve times as many conflicts compared to the absolute encoding.

The runtimes for the unsatisfiable calls using the relative encoding are somewhat puzzling.
Here, the absolute encoding behaves as expected, with very short runtimes when lb1 =
tww(G) and a high runtime for the hard Balaban 10-Cage instance. The relative encoding,
on the other hand, requires a long time to figure out that there is not a single contraction
possible without violating the upper bound.

The named graphs used in this experiment are few and very structured. We scale the
comparison to a larger number of graphs without a clear structure by running both
experiments on a large number of random graphs. The results are shown in Figure 4.6,
where each point represents the average runtime over 100 instances. We omit the
ten-vertex graphs, as both encodings solve them in under a second on average. For
fifteen-vertex graphs, the absolute encoding starts to perform visibly better, and for
twenty-vertex graphs, particularly with higher densities, the absolute encoding performs
better on almost all instances.
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Figure 4.6: Runtimes for twin-width encodings on random graphs with different numbers
of vertices. The x-axis shows the edge density and each point represents the average
runtime over 100 graphs.

The strength of the relative encoding is its consistency. This is illustrated in Figure 4.6b,
where the points for the relative encoding form a bell shape, while the points for the
absolute encoding form no clear shape. Further analysis of the results reveals the reason
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for this difference. While the absolute encoding is indeed faster than the relative encoding
on almost all instances, the average runtime is dominated by very few instances, where
the absolute encoding takes a comparatively long time for the last, unsatisfiable, solver
run. The relative encoding’s runtime, on the other hand, is similar on all instances.

4.7 Conclusion
We proposed the first practical approach to computing the exact twin-width of graphs,
utilizing the power of state-of-the-art SAT-solvers. This allowed us to reveal the twin-
width of several important graphs. Our results provide the first step for showing
general twin-width bounds for infinite graph classes. For instance, our data suggests
tww(Paley-n) = (n − 1)/2. Surprisingly, up to n = 6, the n × n grids have twin-width 3.
It would be interesting to know if and when twin-width 4 is required.

The two proposed SAT encodings’ different performance is impressive: while the relative
encoding can determine the twin-width of small graphs very fast, the absolute encoding
scales better to larger graphs and graphs for which finding the twin-width is hard. The
absolute encoding’s better scaling comes not only from its reduced size but also from
being tweaked towards better complementing the SAT-solving process. Our results show
the benefits of investing extra effort into refining the SAT encoding.

We hope that our results provide new insights and stimulate further theoretical inves-
tigations on twin-width. We also hope that our results provide a first step towards a
practical use of twin-width. A next step would be the implementation and testing of
twin-width-based dynamic programming algorithms like the algorithms for k-Independent
Set and k-Dominating Set proposed by Bonnet et al. (2021b), which are single exponential
in the twin-width.
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CHAPTER 5
Directed Feedback Vertex Set

5.1 Introduction
The directed feedback vertex set problem (DFVSP) is one of Karp’s original 21 NP-complete
problems (Karp, 1972) and has a wide range of applications such as for argumentation
frameworks (Dvorák et al., 2012, 2022), deadlock detection, program verification and
VLSI chip design (Silberschatz et al., 2018). The problem is to find for a given directed
graph a set of vertices—a directed feedback vertex set (DFVS)—such that every directed
cycle uses at least one of the DFVS’ vertices. In this chapter, we consider the optimization
version of the problem, where we search for a minimum DFVS of the graph.

While the problem is known to be fixed parameter-tractable (Chen et al., 2008) in the
size of the minimum DFVS, these algorithms do not help us in practice (Fleischer et al.,
2009), where the size of a minimum DFVS can become prohibitively large. Other possible
approaches include explicit branch-and-bound solvers (Lin and Jou, 1999), as well as
encodings into a standard format for optimization problems. However, also these do not
manage to solve all practically relevant instances (Lin and Jou, 1999).

We attack this problem from two directions. First, we use knowledge from the Vertex
Cover Problem (VCP) where the key to success is the application of data reductions, which
results in a smaller graph that allows for easier solving. The reductions’ transfer from
VCP to DFVSP is possible since VCP is a special case of DFVSP. Moreover, although
many DFVSP instances do not match this special case, we give a theoretical basis that
allows us to lift many data reductions from VCP to DFVSP. We use the fact that for
these data reductions, it is often sufficient that the DFVSP instance behaves locally like a
VCP instance. We use this to lift several VCP data reductions to DFVS and, additionally,
introduce several more general data reductions.

Our second advancement revisits the idea of using a general-purpose optimization solver
for DFVSP. We consider Maximum Satisfiability (MaxSAT) solvers as they build on top
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of Propositional Satisfiability (SAT) solvers, which are designed for efficiently handling
binary decisions, in our case, inclusion or exclusion of a vertex, and have seen tremendous
advances in the last decade.

The problem we face when encoding DFVSP in propositional logic is that the resulting
formula quickly becomes prohibitively large. A straightforward well-performing encoding
has a size cubic in the number of vertices (Janota et al., 2017). Worse, the size of the
encoding that is most suitable for our purposes can become exponential in the number of
vertices: we list all cycles and state that any solution must contain at least one vertex
from every cycle.

Fortunately, it is known that a subset of an instance’s constraints is often sufficient for
finding a feasible solution for the whole instance. This is formalized in approaches like
counter-example guided abstraction refinement (CEGAR) (Clarke et al., 2003). CEGAR
starts with a subset of the constraints, called an under-abstraction, and whenever the
solver returns an infeasible solution, further constraints are added for the next solver run
until a feasible solution is obtained. We propose an even faster approach: by implementing
cycle propagation directly into the MaxSAT solver, it is possible to immediately add
necessary constraints whenever they are needed instead of waiting for the solver to finish.
The solver then immediately corrects its decision and never returns an infeasible solution.

Our implementation won PACE 2022 (Schulz et al., 2022).

5.1.1 Contributions

Our main contributions are as follows:

1. We found a general condition that allows us to lift data reductions from the vertex
cover problem to the DFVSP problem.

2. For many reductions, we went even further and provided non-trivial generalizations of
vertex cover reductions that are applicable in a wide range of cases.

3. We show that implementing cycle propagation is highly beneficial for MaxSAT-based
DFVSP-solving, especially since it is tightly integrated into the MaxSAT solver.

4. In terms of data reductions, our experimental evaluation reveals that our novel reduc-
tions can significantly reduce instance sizes, especially on structured instances.

5. In terms of cycle propagation, the experiments showed a significant speedup, which is
even larger when the cycle propagation happens within the MaxSAT solver.

Overall, the theoretical innovations of this work, together with the highly engineered
MaxSAT solvers as a basis, provide a new and highly efficient strategy of exactly solving
DFVSP instances that significantly outperforms any currently available implementation.
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5.1.2 Related Work
We discussed CEGAR already in Section 2.5 and will focus on DFVSP. There has been
previous work on data reductions for DFVSP (Koehler, 2005; Lemaic, 2008; Levy and
Low, 1988; Lin and Jou, 1999), approximate solvers (Even et al., 1998; Zhou, 2016), and
exact solvers (Bao et al., 2018; Fages and Lal, 2006; Funke and Reinelt, 1996). Especially
for the latter, there has been a large increase recently since DFVSP was the topic of
this year’s PACE (Schulz et al., 2022). Here, many approaches were also based on a
CEGAR-like method, i.e., repeatedly refining a small set of constraints but using integer
linear programming solvers instead of MaxSAT solvers. Nevertheless, to the best of our
knowledge, both our data reductions as well as the idea of using cycle propagation within
a solver for DFVSP are novel.

5.2 Preliminaries
(Di)Graphs

We consider both undirected and directed graphs (digraphs). For a (di)graph G, we
denote by V (G) its set of vertices and by E(G) its set of edges (or arcs if G is a digraph).
Further, we denote an (undirected) edge between vertices u and v as {u, v} and the arc
from u to v as (u, v). If for an arc (u, v) ∈ E(G) also the arc in the other direction is
present, i.e., (v, u) ∈ E(G), then we call it a bi-edge, and an arc (u, u) is called a loop.
The neighbors of a vertex in a graph G are denoted by NG(v), and for a digraph we use
Npre

G (v), N succ
G (v), N bi

G (v), NG(v) for the set of predecessors, successors, their intersection,
and their union, respectively. If G is clear from the context, we may omit the subscript.
In a (di)graph a (di)clique is a set S of vertices where each v ∈ S satisfies S \ {v} ⊆ N(v).

In the later sections we need some operations to modify (di)graphs. We define

• G − S as the (di)graph obtained by removing a set S of vertices or edges from a
(di)graph G. If S is a singleton set {v} or {(u, v)} we may omit the brackets and write
G − v or G − (u, v).

• G + S is defined analogously but adds vertices or edges.
• G[S] as the induced sub(di)graph of G with respect to a set of vertices S, i.e., V (G[S]) =

S and E(G[S]) = E(G) ∩ S × S.
• Π(G) for a digraph G as the graph with V (Π(G)) = V (G) and E(Π(G)) =

{{u, v} : (u, v), (v, u) ∈ E(G)}.

The Directed Feedback Vertex Set Problem (DFVSP)

We can now introduce the central problem addressed in this chapter.
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a
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c

d

e

f

g

h

(a) A DFVSP instance.

C = {{ a, b}, {c, f, g},

{b, c}, {c, e, g, h}}
S = {{¬a}, {¬b}, {¬c}, {¬d}

{¬e}, {¬f}, {¬g}, {¬h}}

(b) As CNF C and set of soft clauses S.

P = {¬a, b, ¬c, ¬d,

¬e, ¬f, g, ¬h}

(c) An optimal solution.

a

c

d

e

f
h

(d) The resulting DAG.

Figure 5.1: Example of a DFVSP instance, a solution, and its encoding as a MaxSAT
instance.

Definition 5.1 (Cycle, DFVS). Given a digraph G a path is a list of vertices v1, . . . , vn

such that for i = 1, . . . , n − 1, there exists an arc (vi, vi+1) ∈ E(G). A cycle is a path
v1, . . . , vn such that v1 = vn. Furthermore, a path (or cycle) is uncovered, if there is no
cycle v′

1, . . . , v′
m such that { v′

i : i = 1, . . . , m } ⊊ { vi : i = 1, . . . , n } and the length of a
cycle is the number of distinct vertices in the cycle. C(G) refers to the set of all uncovered
cycles in G.

A Directed Feedback Vertex Set (DFVS) of G is a set D ⊆ V such that every cycle of G
contains at least one vertex in D. A minimum DFVS is a DFVS of minimum cardinality.
We denote by DFV S(G) the minimum cardinality of any DFVS of G.

An example of a DFVSP-instance with a solution is given in Figures 5.1a and 5.1d. As
an example for covered and uncovered cycles, consider the cycle a, c, b, a. The cycle is
covered, as vertices of both (uncovered) cycles a, b, a and c, b, c are proper subsets of
{ a, b, c }.

We introduce problems (Vertex Cover, Propositional Satisfiability) and relate them to
DFVSP. Throughout this chapter, we make this correspondence clearer by using similar
names for corresponding objects, e.g., Ci for a clause in propositional logic as they
correspond to cycles.

Whenever each uncovered cycle has length 2 and using Π(G), we can state DFVSP as
follows:

Definition 5.2 (Vertex Cover). Let G be an undirected graph. A minimum Vertex
Cover (minimum VC) is a set D ⊆ V (G), such that D is of minimum cardinality and
for each edge {u, v} ∈ E(G), it holds that {u, v} ∩ D ̸= ∅. V C(H) denotes the minimum
cardinality over all VCs of H.
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Propositional Logic and SAT solvers

We use the definitions from Section 2.2 and connect them to DFVSP. We refer to a CNF
formula as C, the set of variables used in C as V , the clauses of C as Ci, and denote
clauses as a set of literals. Further, we use the equivalency ¬¬v = v.

We represent truth assignments as subsets of V ∪ { ¬v : v ∈ V } that for any v ∈ V does
not contain both v and ¬v. Here, a positive literal indicates the value true, a negative
literal the value false, and if a variable does not occur in the assignment, it isn’t assigned
a value (yet).

We encode DFVSP as a MaxSAT instance by using V (G) as the variables and adding for
each uncovered cycle v1 . . . vn ∈ C(G) a corresponding hard clause { v1, . . . , vn }. Thus, if
vi is true, it is in the DFVS. Accordingly, to achieve minimum cardinality, we add a soft
clause {¬v} for each v ∈ V (G). A MaxSAT solution then maximizes the elements that
are not in the DFVS, effectively minimizing the elements that are in the solution. In
Figures 5.1b and 5.1c, we see an example of the MaxSAT encoding and the corresponding
solution.

5.3 Solver Architecture and Outline
We give a brief overview of our algorithm, which also determines the structure of the
chapter. The general algorithm is shown in Algorithm 5.1.

Algorithm 5.1: The complete DFVSP algorithm.
1 G ←Reduce(G)
2 C′ ← FindShortCycles(G)
3 if C′ = C(G) then
4 G, C′ ← ReduceWithAllCycles(G, C′)
5 end
6 D ←DFVS_MaxSAT(G, C′)
7 return D

The algorithm starts with performing general data reductions, discussed in Section 5.4,
and then searches for a small set of short cycles.

Short cycles are cycles with a specified maximum length. Bounded depth-first search can
easily find these short cycles, as long as the bound, i.e., cycle length, is small enough.
We discuss the associated limits on both the cycle length and the number of cycles in the
implementation details in Section 5.6.

Should the set of short cycles represent all uncovered cycles, we can apply additional data
reductions, which are also discussed in Section 5.4. We increase our chances of finding
all uncovered cycles by ignoring the aforementioned limits and incrementally extending
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the maximum length of a cycle, as long as the number of new cycles we find decreases
monotonically.
A MaxSAT solver is then used to solve the reduced instance. The set C′ ⊆ C(G) is given
to the solver as the initial set of constraints. In case C′ contains all uncovered cycles, the
MaxSAT solver simply computes a minimum DFVS. When C′ is not complete, the cycle
propagation discussed in Section 5.5 ensures that the solver still returns a valid DFVS.
We evaluate how effective our solver is in Section 5.6.

5.4 Data Reductions1

Data reductions are the first step in our approach. They aim to shrink the input digraph
in such a way that a minimum DFVS for the reduced digraph can easily be extended
to a minimum DFVS for the original digraph. To this end, we apply a wide range of
reduction rules.

5.4.1 DFVSP Reductions
For DFVSP, there is already a wide range of rules by Levy and Low (1988); Lemaic
(2008); Lin and Jou (1999), which we use in an unmodified manner. In this section, we
focus on our novel reductions and list already established reductions in Appendix A.2.1.
We only give the following reduction by Lin and Jou (1999), as its inapplicability is a
precondition for a later reduction:

Reduction 5.1 (PIE). If there is an arc (u, v) ∈ E(G) such that (v, u) ̸∈ E(G) and
every path from v to u in G uses a bi-edge, replace G by G − (u, v).

Apart from this, we generalized DOME (Lin and Jou, 1999) from arcs dominated by
length 2 paths to arcs dominated by arbitrary length paths:

Reduction 5.2 (DOME++). If there is an arc (v, u) ∈ E(G) such that (u, v) ̸∈ E(G) and
(i) every path that starts at v and ends at u uses a bi-edge or a vertex from Npre(u)\{v} or
(ii) every path that starts at u and ends at v uses a bi-edge or a vertex from N succ(v)\{u},
then replace G by G − (v, u).

Additionally, while enumerating all uncovered cycles is generally not feasible due to their
potentially exponential number, it is often possible in practice. This allows the following
reduction.

Reduction 5.3 (ALLCYCLES). If there is an arc (v, u) ∈ E(G) such that every cycle
that visits v immediately after u is covered, then replace G by G − (v, u).

Fact 5.1. DOME++ and ALLCYCLES are sound if G is loop-free.

Apart from the DFVSP reductions, we also lifted and generalized VCP reductions.
1Proofs for all theorems are in Appendix A.2.3
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5.4.2 VCP Reductions
As noted already in the preliminaries, VCP and DFVSP are related. We formalized this
intuition as follows:

Lemma 5.2. Let G be a digraph, then S ⊆ V (G) is a DFVS if and only if

• S is a VC of Π(G), and

• S is a DFVS of G − E(Π(G)).

Thus, we can treat a DFVSP instance as a combination of a VCP instance Π(G) and
a smaller DFVSP instance without bi-edges. Hence, given sufficient preconditions, it
suggests itself to apply VCP reductions to DFVSP. We derive these preconditions using
boundary reductions similar to those of (Fellows et al., 2018), which intuitively locally
replace one part the a graph with another.

Definition 5.3 (Boundary VCP Reduction). A boundary VCP reduction is a tuple
r = (H, H ′, B, c), where H, H ′ are graphs, B ⊆ V (H) ∩ V (H ′) is a set of non-isolated
vertices in both H and H ′, and c ∈ Z, such that for all X ⊆ B it holds that

V C(H − X) = V C(H ′ − X) + c.

A reduction r is applicable to G, if the vertices in B are (i) not isolated in G, (ii)
an independent set in G, and (iii) the overlapping vertices, i.e., V (G) ∩ V (H) = B =
V (G) ∩ V (H ′).

Example 5.1. An example of a boundary reduction r = (H, H ′, B, c) is given by the
boundary B = {b1, b2}, size difference c = 1, and the graphs

H = b1 v1 v2 b2 H ′ = b1 b2.

r is a boundary reduction since for X ⊆ {b1, b2}, X ̸= ∅, there is always still the edge
between v1 and v2 in H − X, which means that V C(H − X) = 1, whereas H ′ − X
is edgeless. On the other hand, if X = ∅, then V C(H − X) = V C(H) = 2 and
V C(H ′ − X) = V C(H ′) = 1.

Importantly, applicability guarantees soundness and the desired locality property (Proof
in Appendix A.2.3):

Theorem 5.3. For every graph G such that (H, H ′, B, c) is applicable it holds that for
every minimum VC S of G+V (H)+E(H) there is a minimum VC S′ of G+V (H ′)+E(H ′)
such that |S| = |S′| + c, and S ∩ V (G) = S′ ∩ V (G).
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Not only does this theorem guarantee that the size of a minimum VC changes by c,
but it also tells us that the modification only has local effects on the minimum VCs.
This locality is particularly interesting for lifting VCP reductions to DFVSP, as it allows
their application when a digraph “locally behaves like a VCP instance”. This intuition is
formalized in the following theorem, whose proof can be found in Appendix A.2.3.

Theorem 5.4. Let G be a digraph, r = (H, H ′, B, c) be a boundary VCP reduction and
Π(G) = G′ + V (H) + E(H) such that r is applicable to G′. If
(i) all edges incident in G to any v ∈ V (H) \ B are bi-edges and
(ii) for every arc (u, w) ∈ E(G) at least one of the following holds:
(ii.a) (u, w) is a bi-edge or
(ii.b) |{u, w} ∩ B| ≤ 1 then

DFV S(G) = DFV S(G∗) + c,

where G∗ = G − (V (H) \ B) − B × B + V (H ′) + { (u, v) : {u, v} ∈ E(H ′) }.

We can, thus, use many VCP reductions without modification by checking the precondi-
tions of Theorem 5.4. We omit those reductions that we strictly generalize in the next
section. They can, however, be found in Appendix A.2.2. This leaves only the following
reduction, which we apply without any changes:

Reduction 5.4 (3EMPTY (Stege and Fellows, 1999; Fellows et al., 2018)). If there exists
a vertex v ∈ V (G) such that |N(v)| = 3 and |E(G[N(v)])| = 0, then let N(v) = { a, b, c }
and replace G by

G − v + {{a, b}}, {{b, c}} + {a} × N(b) + {b} × N(c) + {c} × N(a).

5.4.3 Directed Versions of VCP Reductions
Some VCP reductions can be generalized to DFVSP, even when Theorem 5.4 does
not apply. Note that all of the following reductions are strict generalizations of VCP
reductions. I.e., when a digraph only has bi-edges, then each of the new DFVS reductions
corresponds to a VCP reduction.

A simple example of this is the SUBSET reduction:

Reduction 5.5 (SUBSET). If there exists v, u ∈ V (G) such that (v, u), (u, v) ∈ E(G),
Nin(v) ⊆ Nin(u) ∪ {u}, and Nout(v) ⊆ Nout(u) ∪ {u}, then replace G by G − u.

Observation 5.5. Let G be a digraph. After applying SUBSET to vertices v, u resulting
in G′, it holds that for every minimum DFVS S of G′ the set S ∪ {u} is a minimum
DFVS of G.

Other reductions, such as the MANYFOLD reduction, are more advanced.

Reduction 5.6 (MANYFOLD). If there exists a vertex v ∈ V (G) such that N(v) =
N bi(v) and there is a partition (C1, C2) of N(v), where
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• |C1| ≥ |C2|,
• G[Ci] is a diclique for i = 1, 2,
• M is the set of non-arcs of G[N(v)],
• (c, d) ∈ M implies that either (d, c) ∈ M and there is no uncovered path between c and

d, or (d, c) ̸∈ M and every uncovered path from d to c uses the arc (d, c)
• for each c1 ∈ C1, there is exactly one c2 ∈ C2 (denoted c2(c1)) such that (c1, c2) ∈ M

or (c2, c1) ∈ M ,

then, replace G by

G − v − C2

+ �
c1∈C1{c1} × N succ(c2(c1)) ∪ Npre(c2(c1)) × {c1}

− �
c1∈C1(c1, c1).

We go over the conditions to explain their relevance.

• N(v) = N bi(v) needs to hold to ensure that when a minimum DFVS S does not
contain v, then it must be the case that N(v) is a subset of S.

• For each c1 ∈ C1 there is exactly one c2 ∈ C2 with missing arc (c1, c2) or (c2, c1).
This ensures that when c1 is not in a minimum DFVS S, then either all vertices
from C2 are in S, or only the uniquely determined vertex c2 is not in S.

• The conditions on M ensure that when we perform the contraction, we only add
cycles for which there exists a corresponding cycle in the original digraph.

Note that the conditions on the arcs in M are NP-hard to check. Later, we discuss
alternative tractable and sufficient conditions. First, we state soundness (Proof in
Appendix A.2.3).

Theorem 5.6. Let G be a loop-free digraph, such that PIE is not applicable and MANY-
FOLD is applicable to v∗ ∈ V (G) and G′ be the graph obtained from G after MANYFOLD
was applied on vertex v∗, then DFV S(G) = DFV S(G′) + |C2| and given a minimum
DFVS of G′, we can in polynomial time compute a minimum DFVS of G.

We need to check two possible conditions on the arcs in M . First, if (d, c) ∈ E(G) we
use straightness:

Definition 5.4 (Straightness). Let G be a digraph and (d, c) ∈ E(G). Then (d, c) is
straight if (c, d) ̸∈ E(G) and either (i) every arc (d, c′) ∈ E(G), such that c′ ̸= c is a
bi-edge, or (ii) every arc (d′, c) ∈ E(G) such that d′ ̸= d is a bi-edge.
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As desired, if the arc (d, c) is straight, then every uncovered path that contains d after c
uses it. If, on the other hand, (d, c) is not in E(G), we need to prohibit the existence of
an uncovered path between c and d. Here, we give a sufficient condition using Strongly
Connected Components (SCCs). Recall that an SCC is a subset maximal set S of vertices
such that for every combination v, u of vertices in S, there is a (directed) path from u
to v.

We consider for a digraph G the SCCs of G − E(Π(G)), i.e., G without bi-edges, and
denote for a vertex v ∈ V (G) by SCCG

|| (v) the unique SCC containing it. If G is clear
from the context, we may omit the superscript. Then, the PIE reduction (Lin and Jou,
1999) allows us to remove arcs between vertices u, v such that SCC||(v) ̸= SCC||(u).
This entails that when SCC||(v) ̸= SCC||(u), every path between u and v uses a bi-edge
and is thus covered.

Together, these conditions give us a tractable way of guaranteeing the applicability of
MANYFOLD regardless of whether both (c, d) and (d, c) are in M or whether only one
of them is. Figure 5.2 shows example applications.

v

a1a2

a3

b1 b2

b3

a1a2

a3

b2

b3

v

a b

c

a

c

Figure 5.2: MANYFOLDs: Left is before, right is after. The first row shows MANYFOLD,
where SCC||(a1) = {a1, a2, a3} ̸= {b1, b2, b3} = SCC||(b1) and the second row shows
MANYFOLD, where the arc (a, b) is straight.

We note that it is not necessary to recompute SCCs at every step since we can update
them after each reduction in an approximate but safe manner and only recompute them
periodically.

Apart from MANYFOLD, we can also generalize 4PATH in a similar manner by exploiting
the lack of uncovered paths between some of the involved vertices.

Reduction 5.7 (4PATH). If there exists a vertex v ∈ V (G) such that

• N(v) = N bi(v) = {a, b, c, d},

• E(G[N(v)]) = { (a, b), (b, a), (b, c), (c, b), (c, d), (d, c) },

• and there is no uncovered path between any pair of vertices from
{ {a, c}, {a, d}, {d, b} },

then replace G by
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Algorithm 5.2: An algorithm that checks whether a vertex v is unconfined in
a graph G.
1 A ← {v}
2 N ← { u ∈ V (G) : G[A ∪ {u}] is cyclic }
3 P ← {u ∈ N | |N succ(u) ∩ A| + |Npred(u) ∩ A| = 2}
4 if P ̸= ∅ then
5 u ← argminu′∈P |N(u′) \ (N ∪ A)| if |N(u) ← (N ∪ A)| = 0 then
6 return True
7 else if |N(u) \ (N ∪ A)| = 1 then
8 A ← A ∪ {u}
9 go to 3

10 end
11 return False

G − v + {(a, c), (c, a), (a, d), (d, a), (b, d), (d, b)}
+ {a, b} × N succ(d) + Npred(d) × {a, b}
+ {c, d} × N succ(a) + Npred(a) × {c, d}.

Again, we practically ensure that every path is covered by requiring SCC||(a) ̸=
SCC||(c), SCC||(a) ̸= SCC||(d) and SCC||(d) ̸= SCC||(b).

Theorem 5.7. Let G be a digraph such that 4PATH is applicable to v∗ ∈ V (G) and G′

be the graph obtained from G after 4PATH was applied to the vertex v∗, then

• DFV S(G) = DFV S(G′), and

• given a minimum DFVS of G′, we can in polynomial time compute a minimum
DFVS of G.

The proof is in Appendix A.2.3.

Whereas the above reductions all capture fixed graph patterns, the applicability of the
following one is determined by the iterative procedure in Algorithm 5.2.

Reduction 5.8 (UNCONFINED). If there is a vertex v ∈ V (G) such that
CheckUnconfined(v, G) returns True, replace G by G − v.

When a vertex v is unconfined, this guarantees us that while there may be minimum
DFVSs that do not contain v, there is at least one, which does.

Theorem 5.8. Let G be a digraph. After applying UNCONFINED to vertex v resulting
in G′, it holds that for every minimum DFVS S of G′ the set S ∪ {v} is a minimum
DFVS of G.
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The proof is in Appendix A.2.3.

This concludes the data reductions that we use and brings us to the solving step.

5.5 MaxSAT Solver
We compute the minimum DFVS for the reduced instance using a MaxSAT solver. Recall
from Section 5.2 that we add one disjunction per cycle containing exactly the variables
corresponding to the vertices in the cycle. Since there is a 1:1 correspondence between
vertices and variables, cycles and clauses, as well as model and DFVS, we treat them
synonymously in this section. We also refer to a DFVS candidate that does not break all
cycles as infeasible and to a DFVS as a feasible solution.

Enumerating all cycles for a complete encoding is generally not feasible. A well-established
technique that deals with this issue is CEGAR (Clarke et al., 2003). In the context of
DFVSP, a CEGAR approach initially gives the solver a small, usually not comprehensive,
set of uncovered cycles. Whenever the solver returns a solution that is not a valid DFVS,
we add cycles that are not broken by the infeasible solution. This is repeated until the
solver returns a feasible solution. Very often, a comparatively small number of constraints,
in our case cycles, is sufficient for finding a feasible solution.

The main drawback of this CEGAR approach is the computational overhead. While a
solver’s decision may quickly imply that the solution is infeasible, the solver may run
long past that point until it returns a solution. Further, after an infeasible solution is
returned, it is hard to determine which of the solver’s decisions caused the infeasibility.
Lacking this knowledge, we have to add many cycles that are not necessary for guiding
the solver towards a feasible solution.

We propose cycle propagation for improved performance. Cycle propagation adds the
feasibility check directly into the MaxSAT solver’s logic and adds the necessary cycles
at exactly the point where the MaxSAT solver’s decision would cause the solution to
become infeasible.

We focus on core-guided MaxSAT solvers. Here, the MaxSAT solver implements the
search for an optimal solution and calls the SAT solver repeatedly. For each SAT call,
the MaxSAT solver extends the input CNF by extra clauses related to the search for
an optimal solution (Morgado et al., 2014a). We, therefore, add cycle propagation to
the SAT solver, as the decisions that lead to infeasibility are made here. In order to
introduce cycle propagation, we first discuss the basics of CDCL, the algorithm used by
most modern SAT solvers (Silva and Sakallah, 1999; Moskewicz et al., 2001).

5.5.1 Conflict Driven Clause Learning (CDCL)
We limit ourselves to a cursory discussion of CDCL that introduces the necessary concepts
to understand cycle propagation. Remember from Section 5.2 that a SAT instance consists
of a set of variables V and a set of clauses C. The whole algorithm, including cycle
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Algorithm 5.3: The modified CDCL algorithm.
1 D ← ∅;
2 while |C| > 0 do
3 C ← C \ { C ∈ C : D ∩ C ̸= ∅ };
4 D′ ← { ¬ℓ : ℓ ∈ D };
5 if |{ C ∈ C : |C \ D′| = 0 }| > 0 then
6 if No Decisions then
7 return false
8 end
9 C ← C∪ analyzeConflict();

10 C, D ← backtrack();
11 else if |{ C ∈ C : |C \ D′| = 1 }| > 0 then
12 D ← booleanClausePropagation();
13 else
14 V ′ = { v ∈ V (G) : ¬v ∈ D };
15 if G[V ′] contains a cycle C then
16 C ← C ∪ C;
17 else
18 D ← D ∪ { decideLiteral() };
19 end
20 end
21 return true

propagation, is shown in Algorithm 5.3. Ignoring cycle propagation in the block starting
at Line 14, the listing shows the basic CDCL algorithm.

CDCL incrementally extends a partial assignment D, assigning values to some of the
variables, to a full assignment until it either obtains a model or knows that the formula
is unsatisfiable. The algorithm only keeps unsatisfied clauses and removes satisfied ones
(Line 3).

Conflicts occur when a clause C cannot be satisfied by any extension of D to a full
assignment because D contains the negation of C’s literals, as is checked in Line 5.
Here, two things can happen. If the conflict occurred without any prior decision, the
set of clauses implies a conflict, and the formula is unsatisfiable. Otherwise, CDCL
learns a conflict clause: a clause based on the decisions that lead to the conflict and
that prevents the solver from making the same set of decisions again. Afterwards, the
solver backtracks, where it removes the corresponding literals from D and restores the
corresponding removed clauses and literals to C.

Boolean constraint propagation and decisions are used by CDCL to extend D. Boolean
constraint propagation adds implied literals to D, where a literal is implied if there exists
a clause where this literal is the only one remaining that can be satisfied by an extension
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of D, as is checked in Line 11. Decisions add a selected literal to D after exhaustively
applying Boolean constraint propagation without a conflict, as denoted in Line 18.

This description of CDCL is deliberately conceptual. Modern SAT and MaxSAT solvers
are well-engineered pieces of software that use sophisticated data structures and algorithms
which are integral to their performance. Particularly conflict analysis, backtracking,
and decisions have not been covered here. We refer the interested reader to related
literature (Biere et al., 2021) for more details.

With the knowledge of how CDCL works, we discuss the integration of cycle propagation
next.

5.5.2 Cycle Propagation
Conflicts are a central concept in CDCL, as they signal the solver that a partial assignment
is infeasible. Cycle propagation uses this mechanism to ensure that the solver stops as
soon as D implies a cycle. We perform this check after Boolean constraint propagation
in Line 14.

Cycles are only implied by negative literals since negative literals indicate that a vertex
remains in the graph. Hence, it is sufficient to check whether the set of negative literals
V ′ = { v ∈ V : ¬v ∈ D } induces an acyclic graph, i.e., whether G[V ′] is acyclic. In case
a cycle C is found, it is added as a clause to C.

Adding C immediately causes a conflict since by definition D contains the negation
of C. Hence, we achieve our goal of immediately stopping the solver. Further, we add a
single cycle and corresponding conflict clause, thereby minimizing the number of extra
constraints. This usually guides the solver quicker to a feasible solution than adding
several cycles after the solver returns an infeasible solution. Note that the solver with
cycle propagation never returns an infeasible solution.

The acyclicity check is performed using a DAG implemented as a simple doubly linked
data structure. Here, each vertex knows its predecessors, successors, and has an order.
The structure preserves two invariants: it is a DAG, and the order of a vertex is the
maximum order over its predecessors plus one, or 0 if the vertex has no predecessors.
Whenever a new vertex is inserted, its order is recursively propagated to the successors.
Recursive calls are only necessary when the propagated order plus one is larger than the
successor’s order. Should the propagation reach the inserted vertex, we have found a
cycle, and we remove the vertex, preserving the invariant that the structure is a DAG.
Removal of a vertex requires recursively propagating the change to all successors whose
ordering depends on the target vertex. Since the insertion of a vertex can introduce
several cycles, we perform the propagations in a breadth-first order, which finds shorter
cycles than depth-first order. Shorter cycles lead to shorter clauses and usually increased
performance.

Cycle propagation is performed after Boolean constraint propagation for practical reasons.
First, modern SAT solvers spend most of their time performing Boolean constraint
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propagation and can perform this task very fast. Checking for cycles after each change
to D would, therefore, cause a considerable slowdown of the solver. Second, we keep track
of the changes to the partial assignment in between cycle propagation runs. This allows
us to perform the aforementioned modifications to our data structure in bulk, further
speeding up the acyclicity check. With these considerations, the runtime percentage
dedicated to cycle propagation shown in the profiler is in the low single digits, as Boolean
constraint propagation still takes up almost all of the runtime.

This concludes the conceptual description of our approach. Next, we discuss our empirical
evaluation.

5.6 Experiments2

Instances

We use instances from the recent PACE, the argumentation framework competition IC-
CMA, and random graphs. The recent PACE provides 200 dedicated DFVSP instances.3,4

The 137 ICCMA instances come from a recent argumentation framework competition5,
where we selected those instances with 50 to 1000 vertices. We also generated 1140
random instances using different parameterizations for the number of vertices and the
probability an edge exists using the methodology of (Zhou, 2016). We generated 10
instances for each parameterization, which are reported as 114 instances, averaging the
results over the respective 10 instances. The number of vertices ranges between 100 and
10000, and the average degree of a vertex varies from 2 to 50.

We preprocessed the instances by removing all self-loops, as the PACE instances met this
requirement, and the competition solvers were not able to deal with instances containing
self-loops.

Implementation

We implemented the proposed algorithm in our solver DAGer. Our implementation is
based on the MaxSAT solver EvalMaxSAT (Avellaneda, 2020b), which uses Glucose 3 in
the backend (Audemard and Simon, 2009). We chose EvalMaxSAT because it placed
well in the 2021 MaxSAT evaluation6 and the code base has no dependencies and can
easily be modified and integrated.

We initially give up to 25000 short cycles with a maximum length of 4 to the MaxSAT
solver. These limits have performed best overall. A lower maximum length does not find

2Source code is available at https://github.com/ASchidler/dfvs, results are available at https://doi.
org/10.5281/zenodo.7271869

3https://pacechallenge.org/2022/tracks/
4At the time of writing, details on the origin of the instances have not been released.
5https://argumentationcompetition.org/2021/
6https://maxsat-evaluations.github.io/2021/
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any cycles for some instances, while a higher maximum length seems to slow down the
solver, as does a larger number of cycles.

Setup

Our implementation uses C++ and was compiled using gcc 7.5.0. We compared our
solver to the second-place PACE solver grapa-java7, which uses a CEGAR-like approach
together with an integer linear programming solver and new data reductions.8 As an
additional baseline, we also used a direct DFVSP encoding into SAT, based on the
transitive closure encoding for acyclicity (Janota et al., 2017), using our data reductions
for preprocessing.

We used a time limit of 30 minutes and a memory limit of 8 GB. The experiments were
run on servers with two AMD EPYC 7402 CPUs, each with 24 cores running at 2.8 GHz,
and using Ubuntu 18.04.

An instance counts as solved if it was solved in all five runs, otherwise, if it was solved in
at least one run, it is counted as partially solved. The given values are averaged over all
runs.

5.6.1 Solvers
Comparing DAGer’s performance to that of other solvers was the goal of our first
experiment. The results, together with different configurations from the next experiment,
are shown in Table 5.1 and as a cactus plot in Figure 5.3.

PACE ICCMA Random
Solver Solved Partial Solved Partial Solved Partial
DAGer 186 2 64 0 13 5
grapa-java 165 0 52 0 10 5
SAT 134 3 59 0 12 5
Configuration Solved Partial Solved Partial Solved Partial
No Cycle Propagation 180 2 62 0 11 6
No Data Reductions 151 6 63 1 13 5
No CP & DR 146 3 62 0 10 7

Table 5.1: Number of solved instances for different solvers and DAGer configurations.
Solved and Partial show the number of solved and partially solved instances respectively.

DAGer performs better than both grapa-java and the SAT encoding for every instance
group. Interestingly, the SAT encoding performs better than grapa-java on non-PACE

7https://gitlab.informatik.uni-bremen.de/grapa/java
8We tried to obtain further solvers for comparison. Unfortunately, for (Bao et al., 2018), we did not

manage to get in contact with the authors, for (Fages and Lal, 2006) the source code is lost and the
implementation by (Koehler, 2005) did not contain an exact solver
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Figure 5.3: Cactus plot for different solvers and DAGer configurations.

instances. The cactus plot shows that instances are either very hard, or very easy, with
very few solved instances having a high runtime.

DAGer excels on the PACE instances and solves almost half the ICCMA instances,
but random instances seem to be hard for all solvers. We will examine this behavior for
DAGer further in subsequent experiments.

5.6.2 Features

We measured the impact of our contributions by disabling cycle propagation (CP) or our
new data reductions (DR). Table 5.1 shows the performance of these three additional
configurations, and Figure 5.3 shows the runtime behavior. Without cycle propagation,
DAGer calls the MaxSAT solver incrementally and whenever the solution D is infeasible,
we add disjoint cycles from G − D. Hence, our experiment tests precisely the benefit of
the integration into the solver.

Cycle propagation has a small impact in terms of the number of instances. While the
number is small, the respective instances are hard and contain a very large number of
uncovered cycles that we were unable to enumerate within the runtime. Without cycle
propagation, DAGer solved 253 instances. The initial solution was infeasible for 132 of
those instances, lazily generated clauses were not necessary for the remaining instances.
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The impact of the data reduction depends strongly on the instance set. PACE instances
are heavily reduced, but the impact on ICCMA and random instances is almost none.
The reason for this is that our new reductions rely heavily on structural properties that
are unlikely in randomized graphs. For ICCMA instances, the reason is different, which
we will explore next.

Overall, without our contributions, DAGer would perform worse than grapa-java, but
better than the SAT baseline, showing that the incremental approach is the more
promising SAT approach for DFVSP.

5.6.3 Data Reductions
The effectiveness of the data reductions is not well represented by the number of instances
the solving algorithm can solve, as in the future, they might be beneficial for instances
that are too hard for current solvers. Figure 5.4 shows how much all instances were
reduced in size and offers some interesting insights. First, many instances, particularly
ICCMA instances are directly solved by our data reductions. The ICCMA instances seem
to be either easily reducible and also easy to solve, or they are hard to reduce and solve.
Second, the result on random instances shows that the reductions become less effective
with increasing density. Lastly, on most instances, the data reductions can significantly
decrease the instance’s size.

We also wanted to see how much benefit our computationally more expensive reductions
have over the simple reductions proposed by Levy and Low (1988). Figure 5.5 shows
that our data reductions do not have much benefit over the simple reductions on random
instances. For PACE instances, the reductions are very useful, reducing the size of almost
all instances and directly solving many of them. For the ICCMA instances, the reductions
either solve the instance or are ineffective.

5.6.4 Instance Size
Our last experiment focused on the potential correlation between the graph’s size and
the MaxSAT solver’s ability to find a minimum DFVS. Figure 5.6 shows which instances
have been solved, partially solved, or remained unsolved in relation to the number of
vertices and density. While the number of uncovered cycles would also have been of
interest, we could not enumerate them in a reasonable amount of time for hard instances.
Since we were interested in the MaxSAT solver’s performance, the figure uses the data
from the reduced instances.

The figure shows that increased size and density indeed make the instance harder.
Whereas for small graphs up to around 100 vertices, the density does not matter much,
the density matters for larger graphs. The size limit for our approach seems to be around
10000 vertices, where the solver fails even for very sparse graphs.

Interestingly, at around 1000 vertices, there is a cluster of instances with high density
that the solver solved successfully. It seems that instances, where almost the whole graph

76



5.6. Experiments

10 1 100 101 102 103 104 105

Unreduced

10 1

100

101

102

103

104

105

R
e
d
u
c
e
d

ICCMA

PACE

Random

Figure 5.4: Comparison of graph sizes before and after applying data reductions. Due to
the use of the logarithmic scale, we treat 0 as 0.1.

is part of a minimum DFVS, are again easier to solve than mid-density instances.

Random instances provide some more insight. For 100 vertices, DAGer solved almost
all instances. The only exception is when the minimum DFVS size is around 50, here
DAGer only managed to solve half the instances. Hence, they seem to be harder. For
the remaining instances, DAGer was not able to solve instances with an average degree
higher than 3, but managed to solve random instances with up to 1000 vertices.

5.6.5 Discussion
The results show that the data reductions perform particularly well on the PACE instances,
where many instances have a high enough number of bi-edges. While still useful on the
ICCMA instances, as there they solve many instances directly, the data reductions are
not necessary, as the solver would have solved almost all of them.

Cycle propagation works in a complementary fashion to our data reductions. It works
particularly well on instances that have few uncovered short cycles but a large number
of uncovered cycles. While not many of the instances in our instance sets fell into this
category, cycle propagation helped to solve several hard instances.

In general, a CEGAR approach works well for DFVSP as even without cycle propagation
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Figure 5.5: Comparison between using only simple reductions and using the data
reductions we propose. Due to the use of the logarithmic scale, we treat 0 as 0.1.

and our data reductions the solver outperformed the second-best PACE solver on non-
PACE instances.

Particularly challenging for all tested solvers are instances of high edge density, although
there is a visible trend that indicates that instances with very high density could in turn
become easier.

5.7 Conclusion
In this chapter, we discussed our novel approach to DFVSP. Key features are new data
reductions lifted from related problems. Apart from the reductions themselves, we also
provided a theoretical basis that can be used to lift further reductions in the future.
The other key feature is cycle propagation. While lazily extending the set of constraints
to obtain a feasible solution with a limited set of constraints works well, we managed
to solve several hard instances by integrating this extension directly into the MaxSAT
solver.

We have shown that cycle propagation works well in practice. We think that there are
two avenues where we might further improve its performance: (i) there are several SAT
solver details that might be used to further improve performance, particularly adapting
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inprocessing and decision heuristics to incorporate domain-specific knowledge about
DFVSP, and (ii) we used a core-guided MaxSAT solver for our implementation; it would
be interesting to see how well cycle propagation performs integrated into an implicit
hitting set based MaxSAT solver.

In the context of scalability, the results presented in this chapter show how effective
a lazy approach can be in scaling a SAT encoding to larger instances. Even without
integrating cycle propagation, this approach outperformed the runner-up solver from
PACE. Furthermore, using a full encoding was not feasible for many hard instances. We
could not enumerate all uncovered cycles for many instances, which rules out the encoding
we used. Further, given that we solved instances with over 1000 vertices, any encoding
cubic in the size of the vertices would use more than 109 many clauses, exceeding the
solver’s capabilities if the instance is not very easy to solve.
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CHAPTER 6
Graph Coloring

6.1 Introduction

Graph coloring is the fundamental computational problem of coloring the vertices of a
given undirected graph with as few colors as possible, avoiding monochromatic edges,
or, equivalently, partitioning the graph’s vertex set into as few independent sets as
possible. Graph coloring arises naturally in many applications, including scheduling,
register allocation, pattern matching, and computational geometry. The decision version
of the problem—where the number of colors is given, and one asks whether a coloring
exists—can be naturally cast as a constraint satisfaction problem: The graph’s vertices
are variables that range over a finite domain of colors, and each edge represents a
binary inequality constraint. Graph coloring is one of Karp’s 21 fundamental NP-hard
problems (Karp, 1972).

For decades, much research has been devoted to developing algorithmic methods for
graph coloring. One can distinguish between exact methods that search for a coloring
with the smallest number of colors possible and heuristic methods that possibly yield
suboptimal colorings.

Exact methods for graph coloring include constraint programming (CP), propositional
satisfiability (SAT), and integer linear programming (ILP) formulations (Burke et al.,
2010; Glorian et al., 2019; Hebrard and Katsirelos, 2019b). Here, the problem is expressed
in terms of constraints, propositional logic, or linear constraints over integer domains,
respectively, and then solved by a general solver. Generally, these exact methods do
not scale to graphs with more than a few thousand vertices, as these encodings become
prohibitively large. In our experiments, the largest graph successfully colored by a SAT
encoding had around 14000 vertices and was comparatively easy to color due to the
graph’s sparsity.
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Heuristic graph coloring methods include various forms of greedy colorings combined with
local search, especially tabu search, reducing the number of colors used by the greedy
coloring (Blöchliger and Zufferey, 2008; Brélaz, 1979; Hao and Wu, 2012). Such heuristic
methods scale to very large graphs and find good colorings for sparse graphs but struggle
with large, dense graphs.

The CG:SHOP Challenge 20221 posed a problem that is reducible to graph coloring.
Instances for the competition were crafted such that they are noticeably different from
well-known graph coloring instances (Fekete et al., 2022) and yield graph coloring instances
that are comparatively large and dense graphs. Since the aforementioned methods do
not perform well on them, new approaches for graph coloring were developed, one of
which is this chapter’s subject.

In this chapter, we propose an approach which is hybrid between exact and heuristic
techniques, following the SLIM method (see Section 2.4) Our idea is to enhance tabu
search by applying SAT encodings locally. Our hybrid algorithm GC-SLIM incrementally
improves a candidate coloring by repeatedly selecting small subgraphs (local instances)
and coloring them optimally with a SAT solver. The problem solved by the SAT solver
is a list coloring problem, where each vertex has a list of available colors. The lists
ensure that the subgraph’s coloring is consistent with the colors of the vertices outside
the selected subgraph. GC-SLIM’s most essential ingredients include strategies for local
instance selection, the SAT-based solution of the local instance, and a technique called
chain propagation.

GC-SLIM scales to dense graphs with several hundred thousand vertices and over 1.5
billion edges. Our experimental evaluation shows that our hybrid algorithm beats
state-of-the-art methods on large, dense graphs.

6.1.1 Related Work
Since the work on graph coloring is extensive, we discuss only the most relevant work for
this chapter. We refer to Sun’s dissertation (Sun, 2018) for a more exhaustive survey on
graph coloring algorithms.

Greedy colorings are the most common and easy heuristics for graph coloring. Given
an ordering of the vertices, each vertex gets assigned the smallest color that avoids
monochromatic edges in the given order. Different heuristics use different orderings.
DSatur (Brélaz, 1979) is one of the most successful greedy heuristics, and we use it in
our approach. DSatur always chooses as the next vertex one that is most constrained,
i.e., one with the fewest colors available.

Tabu search has been successfully used for graph coloring. Most relevant to this paper is
Partialcol (Blöchliger and Zufferey, 2008) that we discuss in more detail in Section 6.2.3.

Iterated-DSatur (I-DSatur) (Hebrard and Katsirelos, 2019a) is a SAT-based extension of
DSatur that combines DSatur with extensive pre-processing and SAT-solving to a new

1https://cgshop.ibr.cs.tu-bs.de/competition/cg-shop-2022/
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method that can compute optimal colorings for small graphs. Used as a heuristic, it scales
to sparse graphs with several million vertices. I-DSatur adds a reordering mechanism
to DSatur invoked whenever the current uncolored vertex v cannot be colored with
any of the existing colors, i.e., the current partial k-coloring would become a partial
(k + 1)-coloring. At this point, I-DSatur tries to find a better coloring for all the vertices
colored so far and v. If successful, no new color is required; if unsuccessful, the best
lower bound on the number of required colors known to I-DSatur can be increased. The
main difference between GC-SLIM and I-DSatur is that GC-SLIM tries to reduce the
number of colors by improving several smaller local instances, while I-DSatur tries to
find improvements for a single local instance that is as large as possible. The former
scales better on dense graphs, while the latter performs better on sparse graphs, as we
will further discuss in our experimental evaluation.

Large graphs yield a prohibitively large encoding size when the standard SAT encodings
for graph coloring are used. Recently, a new approach based on clause learning has been
proposed (Glorian et al., 2019; Hebrard and Katsirelos, 2019b), which can circumvent
the size issue for many instances using a lazy approach, similar to ours in Chapter 5.
This approach is also used in I-DSatur (Hebrard and Katsirelos, 2019a).

Much research in recent years focused on very large and sparse graphs. The advantage of
sparse graphs is that they can often be colored with a small number of colors relative
to their size and are easily reducible to smaller graphs. State-of-the-art approaches
use these and other structural properties of sparse graphs to scale to graphs with
millions of vertices (Lin et al., 2017; Rossi and Ahmed, 2014; Verma et al., 2015). We
compare GC-SLIM to the most recent such algorithms FastColor (Lin et al., 2017) and
I-DSatur (Hebrard and Katsirelos, 2019a).

The top three submissions to the CG:SHOP Challenge 2022 used different variations of
the same idea. They perform local search guided by a conflict score, i.e., how often a
vertex has been recolored (Crombez et al., 2022; Fontan et al., 2022; Spalding-Jamieson
et al., 2022). This strategy performed better on the competition instances than other
established local search strategies. We will further discuss this strategy in Section 6.2.3.

6.2 Preliminaries
6.2.1 Graphs and Colorings
We consider connected simple graphs G as introduced in Section 2.1.

Let k ≥ 1 be an integer, we denote the set {1, . . . , k} by [k]. A partial k-coloring of a
graph G is a mapping c : V (c) → [k] defined on a set V (c) ⊆ V (G) such that c(u) ̸= c(v)
for every {u, v} ∈ E(G) with u, v ∈ V (c). If V (c) = V (G), then c is a full k-coloring or
simply a k-coloring of G.2 The chromatic number χ(G) of a graph G is the smallest k

2Some authors use the term k-coloring to refer to a mapping c : V (G) → [k] that allows monochromatic
edges (edges {u, v} ∈ E(G) with c(u) = c(v)) and call c a proper k-coloring if it has no monochromatic
edges.
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such that G has a k-coloring. We say a k-coloring is optimal if k = χ(G).

For a (partial) k-coloring c of G, we call the integers [k] colors and the sets cℓ(G) =
{ v ∈ V (G) : c(v) = ℓ }, ℓ ∈ [k], the color classes of c. Observe that each color class
is an independent set of G and that color classes are pairwise disjoint. We also write
c0(G) = V (G) \ V (c) for the set of uncolored vertices and write c(v) = 0 for a vertex
v ∈ V (G) \ V (c). We write cℓ, instead of cℓ(G), if G is clear from the context. Since its
color classes uniquely determine a partial k-coloring, we will often specify a k-coloring
this way. Further, we write NG,c,ℓ(X) = NG(X) ∩ cℓ(G), the ℓ-colored neighborhood.
Whenever G and c are clear from context, we drop the subscript and use Nℓ(X). The
prevalence of a color ℓ is |cℓ|, and the prevalence of a color ℓ with respect to a vertex v is
|NG,c,ℓ(v)|. Therefore, a least prevalent color of a k-coloring c in the neighborhood of v
is arg minℓ∈[k] |NG,c,ℓ(v)|.
The graph coloring problem takes an undirected graph G as input; the task is to produce
a coloring of G that uses the least possible number of colors. The decision version of the
problem takes as input G and an integer k; the task is to decide whether G admits a
k-coloring.

6.2.2 Minimum Partition into Plane Subgraphs Problem (MPPS)
The Minimum Partition into Plane Subgraphs Problem (MPPS) takes as an instance a
geometric graph G, with vertices V (G) represented by points in the plane, and edges E(G)
by straight-line connections between vertices. The task is to find a partitioning of E into
as few classes E1, . . . , Ek as possible, such that each subgraph Gi, with V (Gi) = V (G)
and E(Gi) = Ei, is plane.

In this chapter, we consider the MPPS problem in terms of graph coloring. There is a
natural reduction from the MPPS problem to graph coloring, which reduces an MPPS
instance G to the conflict graph G′, containing a vertex for each line segment and where
two vertices are adjacent if the corresponding line segments intersect. Evidently, G
admits a partitioning into k plane subgraphs if and only if G′ has a k-coloring.

6.2.3 Tabu Search
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Figure 6.1: Tabu Search example that shows how vertex x is colored through a series of
swaps. Note that for the last two graphs, two swaps are performed at once.
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Tabu search is a very successful local search approach to graph coloring. We use
Partialcol’s search strategy (Blöchliger and Zufferey, 2008). Starting from a (non-optimal)
(k + 1)-coloring c of the given graph G, Partialcol selects a color e ∈ [k + 1] to eliminate.
The vertices in ce are then removed from c and considered uncolored, making c a partial
k-coloring. Partialcol now tries to complete c and color the vertices in c0 by performing
swaps: For a partial k-coloring c, a vertex v∗ ∈ c0, and a color ℓ ∈ [k], a (color) swap of
v∗ to ℓ is obtained from c by setting c(v∗) := ℓ, and c(w) := 0 for all w ∈ Nℓ(v∗). The
swap is a p-swap if |Nℓ(v∗)| = p. Let u = |c0| be the number of uncolored vertices before
the swap, then |c0| = u + p − 1 after a p-swap.

In each iteration, the algorithm performs a p-swap with smallest p. The choice of color ℓ
for the p-swap is restricted by a tabu list for vertex v∗: a list of the colors assigned to v∗

in the last few iterations. This mechanism ensures that vertices do not get re-assigned
the same colors within a certain number of iterations and forces the algorithm to explore
more of the search space. Figure 6.1 shows how a series of swaps can empty c0.

Partialcol terminates if c0 = ∅, in which case c is now a full k-coloring, or when it reaches
a prescribed number of iterations. Usually, tabu search is run repeatedly, choosing
different colors to eliminate.

Conflict Scores

The winning submissions (Crombez et al., 2022; Fontan et al., 2022; Spalding-Jamieson
et al., 2022) to the CG:SHOP Challenge are based on heuristic algorithms that utilize a
different selection criterion. While Partialcol picks the vertex that minimizes p of the
necessary p-swap, these algorithms minimize a conflict score based on q(v), defined as
follows: whenever a vertex v is removed from c0, i.e., whenever the vertex is colored,
q(v) is incremented. The different algorithms use different functions to calculate the
conflict score. We follow the approach by Spalding-Jamieson et al. (2022) due to its
simplicity: the solver picks a random vertex v ∈ c0 and swaps it to the color ℓ that
minimizes �

u∈Nℓ(v) 1 + q(u)2.

6.3 SAT-Based Local Improvement for Graph Coloring
Our new SLIM (see Section 2.4) approach to graph coloring, GC-SLIM, tries to eliminate
one color at a time in a fashion similar to Partialcol. Starting from a heuristically
computed (k + 1)-coloring, GC-SLIM selects a color e ∈ [k + 1], removes e from c, and
tries to iteratively recolor subgraphs using a SAT solver until all vertices are colored, and
c gives rise to a k-coloring.

We first discuss the core of every SLIM algorithm: a method to extract local instances
such that their improvement eventually translates to an overall improvement. First, we
discuss how we define local instances, i.e., we show how we can color subgraphs of G
with a SAT solver while maintaining replacement consistency with the coloring of the
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remaining graph. Then, we discuss how we find good local instances. We also discuss
further additions to GC-SLIM that enhance its performance.

6.3.1 Local Instances and SAT
Let G be the input graph and c a partial k-coloring of G. Since G is too large to be
encoded as a whole to SAT, we select a subset X ⊆ V (G), based on a process described
in the next subsection, limiting the size of X in terms of a budget parameter b. The goal
is now to find a partial k-coloring for the induced subgraph G′, with V (G′) = X and
E(G′) = { {u, v} ∈ E(G) : u, v ∈ X }.

However, a newly found k-coloring of G′ will, in general, not be compatible with the
coloring c of the vertices outside X. We consider the vertices adjacent to X as extra
constraints by defining the local instance in terms of the list coloring problem: Let L be
a mapping that assigns each vertex v ∈ X a set L(v) ⊆ [k], called the list of v. Here in
particular, we let

L(v) = [k] \ { c(u) : u ∈ NG(v) \ X }.

A partial list coloring of (G′, L) is partial k-coloring c′ of G′ with the additional property
that c′(v) ∈ L(v) for each v ∈ V (c′). Let c ◦ c′ denote the partial k-coloring obtained by
composing c and c′:

(c ◦ c′)(v) =
�

c(v) if v ∈ V (c) \ X;
c′(v) if v ∈ V (c′).

The following lemma provides an important link between colorings and list colorings.

Lemma 6.1. Given a graph G and X ⊆ V (G). Let c be a partial k-coloring of G, (G′, L)
be the local instance for X, and c′ be a partial list coloring of (G′, L). Then, c ◦ c′ is a
partial k-coloring of G.

Proof. Consider an edge {u, v} ∈ E(G). If u, v ∈ V (c) \ X, then (c ◦ c′)(u) = c(u) ̸=
c(v) = (c ◦ c′)(v). If u, v ∈ X ∩ V (c′), then (c ◦ c′)(u) = c′(u) ̸= c′(v) = (c ◦ c′)(v). If
u ∈ V (c) \ X and v ∈ V (c′), then c(u) /∈ L(v) since u ∈ NG(v), hence (c ◦ c′)(u) = c(u) ̸=
c′(v) = (c ◦ c′)(v).

We note in passing that the list coloring problem is a proper generalization of the graph
coloring problem. For instance, graph coloring is fixed-parameter tractable in the graph’s
treewidth, while list coloring is W[1]-hard (Fellows et al., 2011).

Our general aim is to increase the number of colored vertices. Ideally, we would find a
full k-coloring for (G′, L). While this is often not possible, it turns out that it is still
useful to obtain a partial list coloring c′ of (G′, L), which colors all previously uncolored
vertices and minimizes the number of newly introduced uncolored vertices.

We achieve this by a slight tweak of the local instance. For all v ∈ X \ c0, we add 0 to
L(v) and thereby allow them to become uncolored. The problem is now a minimization
problem: find a partial list coloring c′ for (G′, L) that minimizes |c′

0|.
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We encode the existence of a partial list coloring of G′ that minimizes the number of
uncolored vertices. To this end, for r ≤ |X|, we define a propositional formula F (G′, L, r)
which is satisfiable if and only if (G′, L) has a partial list coloring c′ where |c′

0| ≤ r. We
can minimize the number of uncolored vertices by solving F (G′, L, r) for different values
of r.

The encoding requires one set of variables and two sets of clauses. For each v ∈ X and
ℓ ∈ L(v), the variable cv,ℓ is true if and only if v ∈ V (c′) and c′(v) = ℓ or v /∈ V (c′) and
ℓ = 0.

The first set of clauses encodes that each vertex v ∈ X is assigned at least one color
ℓ ∈ L(v) or is set to 0: �

v∈X

�
ℓ∈L(v)

cv,ℓ.

Hence cv,0 is true if and only if v /∈ V (c′).

The second set of clauses encodes that adjacent vertices in G′ must not have the same
color: �

{v,w}∈E(G′),v<w,
ℓ∈L(u)∩L(v),ℓ̸=0

¬cv,ℓ ∨ ¬cw,ℓ.

Note that cv,0 and cw,0 can both be true even if {v, w} ∈ E(G). Finally, we use a totalizer
encoding (Bailleux and Boufkhad, 2003) to express the cardinality constraint

|{ v ∈ X : cv,0 = true }| ≤ r.

The constraint adds Θ(|X| · log |X|) many variables and Θ(|X|2) many clauses.

6.3.2 Local Instance Selection

1

2 3 4

5
x

6

7

9

8 10

11

12 13

(a) X1

1

2 3 4

5
x

6

7

9

8 10

11

12 13

5

7

9

(b) X2

1

2 3 4

5
x

6

7

9

8 10

11

12 13

5

6

7

9

(c) 5 first
branch

1

2 3 4

5
x

6

7

9

8 10

11

12 13

5

6

7

9

8

(d) 7 first
branch

1

2 3 4

5
x

6

7

9

8 10

11

12 13

5

6

7

9

8 10

(e) 9 first
branch

1

2 3 4

5
x

6

7

9

8 10

11

12 13

5

6

7

9

8 10

2

(f) 5 second
branch,
budget hit,
X3

1

2 3 4

5
x

6

7

9

8 10

11

12 13

1

2 3 4

5
x

6

7

9

8 10

11

12 13

(g) A
possible
solution.

Figure 6.2: Example for local instance selection with branching factor 2 and a budget of
8. The selected component is indicated by discolored (gray) vertices.

In this section, we describe how GC-SLIM constructs local instances for the SAT encoding
described in the previous section. Let G be the input graph, and c a partial k-coloring
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of G. Our goal is to select a suitable subset X ⊆ V (G) that defines our local instance.
The overall approach is to start at a single uncolored vertex and perform a breadth-first
search among the least prevalent colors in the neighborhoods where the size of X is
limited by a budget b and the breadth by a branching factor f .

We first select an uncolored vertex v∗ ∈ c0. We initially put X0 = ∅, X1 = {v∗} and
continue computing a chain of sets X0 ⊊ X1 ⊊ · · · ⊊ Xs as long as |Xs| ≤ b. If no further
addition is possible, we stop as we have found the set X = Xs.

Assume we have constructed Xi, i ≥ 1. We now construct Xi+1 by starting from
Xi+1 := Xi and incrementally extending Xi+1. Let S = Xi \ Xi−1, for each w ∈ S,
we find the smallest non-empty set Nℓ(w), ℓ ∈ [k] such that Nℓ(w) ∩ Xi+1 = ∅. If
|Nℓ(w)| + |Xi+1| ≤ b, we add Nℓ(w) to Xi+1 and in any case, we proceed to the next
vertex in S. We repeat this step at most f times, i.e., for each vertex in S we add at most
f colors from the neighborhood of the vertex to finish constructing Xi+1. We observe
that X \ V (c) = {v∗}, i.e., v∗ is the only uncolored vertex in X. Figure 6.2 illustrates
local instance selection on a simple graph.

The goal of the budget b is to keep the size of the local instance small enough such that
the SAT solver can solve it within the local timeout. In practice, the best budget varies
greatly with the instance, so we automatically adjust it. Whenever a specified number of
consecutive SAT solver calls time out, the budget is decreased, and conversely, whenever
the same number of consecutive SAT solver calls return a result, the budget is increased.

We described the process such that we always expand Xi+1 using the color ℓ such
that Nℓ(w) is minimal. Alternatively, we can also use the conflict score discussed in
Section 6.2.3. We discuss both options in our experimental section.

6.3.3 Chain Propagation
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Figure 6.3: Example of a chain propagation sequence coloring vertex x.

In this section, we describe chain propagation, which is a powerful technique that allows
us to determine whether we can quickly color a given uncolored vertex v∗ by using a
chain, or sequence, of swaps and sequence, of swaps and propagating the impact of the
swaps in the chain until hopefully finding a 0-swap. This concept is inspired by s-chain
tabu search (Morgenstern, 1993), where chains up to a length s are explored, and by the
consideration of a single flat chain in I-DSatur (Hebrard and Katsirelos, 2019a), where a
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chain of 1-swaps is applied within a single iteration whenever available. Another way to
view chain propagation is as a lookahead for the actions that Partialcol would perform.

We start with the set of uncolored vertices U = {v∗}, and try to empty this set by
applying the following rules until either U = ∅ or no rule is applicable. Whenever we
find a chain of swaps that empties U , we have found a chain that successfully colors v∗.
Figure 6.3 illustrates these rules using our running example.

Rule 6.1 (0-swap). Take a vertex w ∈ U and a color ℓ ∈ [k] such that Nℓ(w) = ∅. Swap
the color of w to ℓ and remove w from U .

The immediate goal of local search is finding a 0-swap, as a 0-swap decreases the number
of uncolored vertices. The problem with 0-swaps is that they only consider the immediate
neighborhood of the vertex.

Therefore, local search may miss possible 0-swaps if they are not included in our local
instance or hidden behind larger swaps. We remedy this issue by extending chain
propagation beyond 0-swaps, and exploring all chains of limited complexity with the goal
of coloring v∗.

A slightly more elaborate case prevails when we apply the following rule multiple times,
keeping the number of uncolored vertices constant, completed by a final application of
Rule 6.1.

Rule 6.2 (1-swap). Take a vertex w ∈ U , such that for a color ℓ ∈ [k] and a vertex u we
have Nℓ(w) = {u}. Swap the color of w to ℓ, make u uncolored, and replace w with u in
set U .

We call such a sequence of rule applications a 1-swap chain, sometimes called a flat
chain (Hebrard and Katsirelos, 2019a).

Even more powerful but also more costly is a p-swap chain, where p > 1 is a fixed
constant. It uses the following generalization of Rule 6.2.

Rule 6.3 (p-swap). Take a vertex w ∈ X, such that for a color ℓ ∈ [k] we have |Nℓ(v)| ≤ p.
Swap the color of w to ℓ, make all the vertices in Nℓ(w) uncolored, and replace w with
Nℓ(w) in X.

Chain propagation explores the possible chains exhaustively. Bookkeeping is necessary
to avoid re-applying the same series of swaps, as this leads to cycles, and consequently,
chain propagation may not terminate. Further, we apply the rules in order, as it is faster
to explore chains without p-swaps.

Two hyperparameters regulate the complexity of the chains. Since Rule 6.3 increases
the number of uncolored vertices, it is the main factor for the complexity of the chains
explored and, therefore, the main factor on the runtime of chain propagation. We limit
the applications of the rule in two ways: (i) we limit p and thereby how much the number
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of uncolored vertices can increase within one rule application, and (ii) we limit how
often Rule 6.3 can be applied within one chain for the same reason. Together, the two
hyperparameters regulate how much the number of uncolored vertices can increase within
a single chain.

6.3.4 Putting it all together
Algorithm 6.1 combines the main ingredients of GC-SLIM that we have discussed. Initially,
we compute a k-coloring c with a heuristic like DSatur and then repeatedly call GC-SLIM
with different colors as the elimination goal. Each call either succeeds, reducing the
number of colors, or fails, in which case we restore c to its initial state. For each call, we
pick the least prevalent color we have not yet tried as the elimination goal, breaking ties
arbitrarily.

Algorithm 6.1: GC-SLIM
1 iteration ← 1
2 Remove color e from c.
3 while c0 ̸= ∅ and iteration < iteration_limit do
4 Update tabu list.
5 Pick vertex v∗ ∈ c0 to color.
6 if chain propagation for v∗ is not successful then
7 m ← minℓ∈[k] |Nℓ(v)|
8 I ← construct_local_instance(v∗)
9 Changes ← call_sat(I, m, local_timeout)

10 if finding a list coloring I with at most m uncolored vertices fails then
11 Perform m-swap of v∗.
12 Check if budget should decrease.
13 else
14 Check if budget should increase.
15 end
16 end
17 end
18 if c0 = ∅ then
19 return c
20 else
21 Restore c. return Failed
22 end

In Algorithm 6.1, GC-SLIM starts with adjusting c according to the given elimination
goal and then tries to complete c for a prescribed number of iterations. In each iteration,
it picks a vertex v∗ and first tries to color it using chain propagation. If this fails,
the algorithm creates a local instance based on v∗ and tries to color it using the SAT
encoding. The number of uncolored vertices in the solution to the local instance is limited

90



6.3. SAT-Based Local Improvement for Graph Coloring

to m, where m is the prevalence of the least prevalent color in the neighborhood of v∗.
This limit of m ensures that GC-SLIM will not perform worse than a p-swap. If the
local instance is (partially) colored successfully, GC-SLIM proceeds to the next vertex;
otherwise, it defaults to a p-swap as Partialcol would perform.

The algorithm contains several hyperparameters, which we will discuss next.

6.3.5 Hyperparameters
The hyperparameters controlling Algorithm 6.1 are the iteration limit, the local timeout
for the SAT solver, and the choice of SAT solver.

The iteration limit controls how much time the algorithm spends on eliminating a
single color. Lower iteration limits cause shorter runtimes. Therefore, one can try to
eliminate more colors in the same amount of time at the price of possibly missing some
improvements: sometimes GC-SLIM will run many iterations with very few uncolored
vertices until eventually finding the 0-swaps that complete the coloring. A low iteration
limit will miss these improvements. Omitted in the listing is a mechanism that grants
GC-SLIM an extra 10% of the iteration limit whenever the number of uncolored vertices
decreases. Thus, GC-SLIM runs as long as it reduces the number of uncolored vertices,
no matter the iteration limit.

The local timeout for the SAT solver follows a similar tradeoff. Lower values lead to
quicker search space exploration by trying many different local instances, while larger
values may discover new improvements. While the iteration limit regulates how often
GC-SLIM generates a local instance, the local timeout strongly influences the budget for
the local instances.

The SAT solver can also impact the performance of GC-SLIM, both in terms of memory
usage and speed, and different solvers may perform very differently for different instances.

The hyperparameters from this section, together with the branching factor, budget, and
p-limit for chain propagation as discussed above, control GC-SLIM. As we will discuss
next, some further options can significantly impact GC-SLIM’s performance. We will
further explore this impact in our experiments.

6.3.6 Further Options
In this section, we discuss several minor options that can affect GC-SLIM’s efficiency
positively or negatively, depending on the instance. We will explore their effects further
in the next section.

Prerun Tabu Search

Partialcol iterations are much faster than GC-SLIM iterations and can often reduce the
number of colors quicker, while GC-SLIM can find improvements that Partialcol misses.
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Running Partialcol for several iterations before starting GC-SLIM tries to take the best
from both worlds.

Flexible Vertices

We say that a vertex v ∈ V (G) is flexible with respect to a (partial) k-coloring c if
v ∈ V (c) and there is a color ℓ ∈ [k] \ {c(v)} such that Nℓ(v) = ∅. Thus, we can change
the color of a flexible vertex and still have a (partial) k-coloring. We let Fc ⊆ V (G) be
the set of all vertices that are flexible w.r.t c. Flexible vertices provide an additional
option when choosing a color: instead of simply choosing the least prevalent color, we
redefine the prevalence of a color ℓ as |cℓ \ Fc| and the prevalence w.r.t. the neighborhood
of a vertex analogously. This can lead to a more accurate estimation since flexible vertices
allow immediate 0-swaps. This calculation is heuristical, as adjacent flexible vertices can
block each other’s color options, so we actually can only change the color of one of them.

Parallelization

GC-SLIM can run in parallel with minimal synchronization: each thread runs GC-SLIM,
and whenever one thread successfully eliminates a color, GC-SLIM is restarted in each
thread with the improved coloring. This introduces the new hyperparameter thread count.
Generally, more threads are better as they enable faster search space exploration. Threads
can either try to eliminate different colors, the same colors with different hyperparameter
settings, or a mixture of both.

6.4 Experiments
The aim of this chapter is not to determine the fastest graph coloring method but to
investigate how SAT/CP methods can be utilized for the coloring of large, dense graphs.

We conduct three sets of experiments, one that evaluates the impact of the different
hyperparameter settings and, by extension, the different features of GC-SLIM. The
second experiment compares GC-SLIM to the state-of-the-art graph coloring methods
FastColor and I-DSatur3. In the last experiment, we look at GC-SLIM’s performance on
the whole set of CG:SHOP instances.

Setup

We ran our experiments on a cluster where each server had two Intel Xeon E5-2640 v4
CPUs with 10 cores to 2.4 GHz for the first and second experiment, and two AMD EPYC
7402 CPUs, each with 24 cores running at 2.8 GHz, for the last experiment. The servers
ran on Ubuntu 18.04 and used gcc 7.5.0. The runs were limited to 64 GB of memory.

3Code is available at https://github.com/ASchidler/coloring/ and results at https://doi.org/10.5281/
zenodo.7271869
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6.4. Experiments

We implemented our approach in C++ and used Glucose 34 and Cadical 1.5.05 as SAT
solvers.

Our implementation of DSatur (Brélaz, 1979) computed the initial colorings. We compare
GC-SLIM against FastColor6 (Lin et al., 2017) and I-DSatur7 (Hebrard and Katsirelos,
2019a), representing state-of-the-art methods for coloring massive graphs. FastColor and
I-DSatur runs were limited to 128 GB, as lower memory limits were insufficient for large
and dense graphs.

We used an initial budget of 300 for the local instance. Whenever three consecutive SAT
solver calls timed out, we decreased the budget by 60 vertices; whenever three consecutive
calls succeeded, we increased the budget by 60. In practice, the budget varied between
60 for very dense graphs and over 2000 for sparse graphs.

Instances

We used four sets of instances: (i) instances from the CG:SHOP 2022 competition
(CG)8, (ii) large random graphs (Random), (iii) large graphs from the Snap repository
(Snap)9 (Leskovec and Sosič, 2016; Leskovec and Krevl, 2014; Zitnik et al., 2018), and
(iv) hard DIMACS instances (DIMACS)10. An overview of the number of vertices, edges,
and densities are in Table 6.2.

The CG:SHOP competition11 instances are very dense and have more structure than
random graphs. The instances have up to 73000 vertices and 1.5 billion edges. We picked
10 instances of the 225 used in the competition for our second experiment: five instances
are from the largest instances in the set with over 73000 vertices; the other five were
chosen such that density and size vary.

We used random graphs as it was hard to find large benchmark instances that were not
also very sparse. Therefore, we generated 14 Erdos-Renyi random graphs, which vary in
size between 10000 and 100000 nodes and in density between 0.05 and 0.5.

The instances from the Snap repository12 and 10th DIMACS instances13 contain large
graphs with up to several million vertices and have been used in related work (Hebrard
and Katsirelos, 2019a; Lin et al., 2017). We preprocessed the instances by removing all
vertices with degrees smaller than the lower bound on the chromatic number, determined
in related work (Hebrard and Katsirelos, 2019a). We picked the 11 instances with more

4https://www.labri.fr/perso/lsimon/glucose/
5http://fmv.jku.at/cadical/
6https://lcs.ios.ac.cn/~caisw/Color.html
7https://bitbucket.org/gkatsi/gc-cdcl/
8https://cgshop.ibr.cs.tu-bs.de/competition/cg-shop-2022/
9https://snap.stanford.edu/snap/

10https://www.cc.gatech.edu/dimacs10/
11https://cgshop.ibr.cs.tu-bs.de/competition/cg-shop-2022/
12https://snap.stanford.edu/snap/
13https://www.cc.gatech.edu/dimacs10/
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than 10000 and fewer than 280000 vertices from these preprocessed instances. The 280000
limit was due to memory constraints since we focused on supporting dense graphs, and
adjacency matrices become very memory intensive for larger graphs. The mentioned
sizes refer to preprocessed instances.

The DIMACS instances have been used in many papers for graph coloring and are
included for reference, as GC-SLIM was not designed for such small instances. We used
10 instances that are considered hard (Hao and Wu, 2012).

6.4.1 Hyperparameter Impact
We explore how the different hyperparameter settings change the results in the first set
of experiments. We use a base configuration and vary the setting of one parameter at a
time. Each run for each instance was limited to seven hours.

As the base configuration, we use a local timeout of 10 seconds, 300 iterations, no chain
propagation, a branching factor for local instances of 3, no multithreading, and no prerun
tabu search. We count the instances for which a hyperparameter value finds the best
coloring. We also count the instances where it does so uniquely, i.e., no other setting for
this hyperparameter found an equally good or better coloring.

Local Timeout

We try different values for the local timeout: 5, 10 (default), 30, and 60 seconds. A
timeout of 5 seconds found the best result for 37 of the 44 instances, where it reached
the unique best result on 15 of the instances. The results quickly deteriorate with higher
timeouts: while a timeout of 10 seconds found the unique best result for 4 instances, the
higher timeouts achieved the same for only one instance.

A closer look at the number of SAT calls and the size of the local instances explains the
results. While local instances contain 1511 vertices on average with a 5 seconds timeout,
they only increase to 1610 vertices on average with a 60 seconds timeout. This is in stark
contrast to the number of SAT calls which decreases from 13910 to 6764. Depending on
the instance, 25% to 50% of the SAT calls eventually time out, leading to a significant
decrease in the number of possible SAT calls with higher timeouts. Therefore, higher
timeouts should be reserved for later stages when lower values fail to find improvements.

Chain Propagation

We use different limits for the maximum size of the swaps in the chains we propagate.
We use values of 0 (default), 1, 2, 3, and 5. A limit of 2 achieves the overall best result,
reaching the best result on 34 of the 44 instances and the unique best on 18 instances.
Limiting the chains to 1-swaps or using no chain propagation at all performs very poorly.
Higher limits can be beneficial for some instances, as, for example, a limit of 5 performs
slightly better on the Snap instances. This indicates that higher limits might be beneficial
for large and very sparse graphs.
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Figure 6.4: Comparison of how many colors are eliminated over time with different swap
limits for chain tracing. Time is on minutes on the x-axis and the number of colors is on
the y-axis.

Figure 6.4 shows how chain propagation impacts GC-SLIM for large, dense instances. We
can see that the number of improvements over time speeds up significantly and becomes
comparable to Partialcol in terms of speed, sometimes surpassing it.

Impact of the SAT solver

We consider Glucose and Cadical as SAT solvers due to good results and their capability
for incremental solving. Overall, Cadical achieves the unique best result on 19 of the 44
instances and Glucose on 10. This makes Cadical the best default choice, while Glucose
may be better suited for individual instances. Glucose generally performs better on
random instances and worse on the other instances in our experiments.

Flexible Vertices

Using flexible vertices does not give a clear advantage in the number of best results.
Considering flexible vertices achieves the unique best result on 17 of the instances and not
considering them on 14. While this does not seem like a clear advantage, the reduction
in colors is significant, up to 100 colors for the instances where it performs better. For
instances where it performs worse, the relative increase in the number of colors is never
worse than 6. Considering flexible vertices performs consistently better for the CG
instances.

Prerun tabu search

The benefits of running tabu search prior to GC-SLIM are very instance-specific. It
achieves consistently better results on the DIMACS and Snap instances and worse results
on the random and CG instances. This indicates that this configuration is beneficial
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for small and sparse graphs. One possible explanation is that the tabu search iterations
become slower for dense graphs, reducing the efficiency gain over GC-SLIM.

Conflict Score

Another option is using a conflict score to determine swaps and selecting local instances
instead of simply picking the smallest colored neighborhood. This achieves the unique
best result for 16 instances, while not using this option gives the unique best result on
15, making its benefits very instance specific. Using prerun tabu search with the conflict
score gives the unique best result on 19 instances, in contrast to 17 instances where the
basic configuration finds the unique best result. It performs consistently bad for the
random instances, mixed for the DIMACS instances, and consistently good on the CG
and snap instances.

Iteration Limit

We try iteration limits of 100, 300 (default), 500, 1000, and 5000. None of the limits
performs significantly better than the others, with 500 and higher performing better
and 5000 performing overall best with 7 uniquely best results. While 1000 iterations
is a good default setting, different settings may perform better for different instances.
Furthermore, higher iteration limits may be necessary if the number of colors is close to
optimal, and it becomes harder to eliminate a color.

Branching

We try branching factors of 2, 3 (default), 5, 10, and 15. The overall best is a branching
factor of 2, which achieves the best result on 31 of the 44 instances and finds 13 uniquely
best instances. The results worsen with higher branching factors, except for the Snap
instances, where a branching limit of 10 performs best. This matches the results for chain
propagation, where higher limits also perform better for the Snap instances, suggesting
that a search focused on breadth over depth may be a generally good strategy for sparse
instances.

Initial Node Limit

When creating the local instance, we treat the initial vertex as a special case: instead of
limiting the number of colors we choose, we limit the number of neighbors we add for the
initial vertex. This system chooses more different colors if there are many low-prevalence
colors and fewer if not. We try limits of 10, 25, 50 (default), 75, and 100.

Each limit leads to the best result on about 16 to 21 instances and a unique best result on
4 to 5 instances. Therefore, there is no discernible good default, and choosing the right
value always depends on the instance at hand. A pattern similar to chain propagation
and the branching limit emerges here: the lower the density, the better a higher initial
limit, i.e., more focus on breadth, works.
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Instance Set TO Chain Flex Iterations Prerun TS Conflict Branching Initial Solver
CG 5 2 N 1000 Y Y 2 75 Cadical
DIMACS 5 2 N 1000 Y N 3 10 Cadical
Random 10 2 Y 1000 N N 3 50 Glucose
Snap 5 5 Y 5000 Y Y 10 100 Cadical

Table 6.1: Best hyperparameter settings for different instance sets.

6.4.2 Comparison and Parallelism

We use the results from the first experiment to discern a best configuration for each of
the four sets of instances; the configurations are shown in Table 6.1. In our comparison,
we use different GC-SLIM configurations, FastColor, I-DSatur, and Partialcol. Each was
run with a 24-hour time limit. We additionally run other methods and use their output
as GC-SLIM’s input, i.e., we prerun our own implementations of I-DSatur (IS) and/or
Partialcol (PC). Partialcol runs either 7 hours alone or four hours together with I-DSatur.
We also apply multithreading with 4 threads and varying the configuration parameters.
The multithreading runs for only six hours and has twice the memory. The results are in
Table 6.2.

The results show how well GC-SLIM performs on large and dense graphs. On the CG and
Random instances, it significantly outperforms FastColor and I-DSatur. Interestingly,
for random instances, a Partialcol prerun performs consistently better than any other
configuration. For the CG instances, using a portfolio of varied configurations performs
best, and the overall best configuration performs comparatively poorly.

While GC-SLIM also outperforms both algorithms on the small DIMACS instances, it
does not come close to reaching the best-known value on almost all instances. This shows
that specialized algorithms for these small instances work better.

FastColor and I-DSatur shine on the Snap instances where they benefit from the structure
of sparse graphs, which GC-SLIM does not particularly exploit. Still, FastColor, which
performs better than I-DSatur, finds the best solution for six of the instances, as does
the varied configuration. Note that our goal was not to compare FastColor and I-DSatur,
but to compare these approaches to GC-SLIM on various graphs.

The GC-SLIM configurations perform very differently. Figure 6.5 shows the progression
over time for selected instances.

Overall, the results show that a varied configuration is better than a single, tuned
configuration. This finding is strengthened by the fact that multithreading incurs an
overhead, as each thread has to restart once a color has been eliminated.
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Figure 6.5: Comparison of how many colors are eliminated by different configurations
over time. The x-axis shows the time in minutes and the y-axis the number of colors.
The vertical dotted line indicates when Partialcol preruns end and for multithreaded
runs, the times are multiplied by the number of threads.

6.4.3 CG:SHOP Instances

The competition used 225 instances in total, separated in different classes, where instances
into each class are created by the same process but with different sizes and densities. The
instances were created such that then-available graph coloring solvers failed to produce
good results. This is supported by the fact that these solvers would have placed very low
in the competition (Fekete et al., 2022).

We started our submission by implementing Partialcol. This implementation was run
for several days for each instance, and we only started implementing GC-SLIM, when
Partialcol failed to find improvements. During that time, we varied and randomized every
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parameter and decision in our implementation. This gives us the possibility to compare
GC-SLIM to these long Partialcol runs in Figure 6.6. The figure shows that GC-SLIM is
able to significantly improve the colorings, even after the long Partialcol runs.
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Figure 6.6: The CG:SHOP 2022 instance results. For each instance, we show the
initial solution using DSatur, the long-term improved coloring using Partialcol, and the
eventually submitted solution obtained using GC-SLIM.

We also have results from a more controlled experiment, where GC-SLIM runs for 24 hours
using the best configuration. Figure 6.7 shows that the final GC-SLIM implementation
achieves almost the same results as the results from the long runs of Partialcol and
GC-SLIM during development as described above. Our final implementation achieves
these results in a fraction of the time. This further shows how well GC-SLIM performs
on these instances. Finally, Figure 6.8 shows the comparison between the best GC-SLIM
run and the best results from the competition.
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Figure 6.7: The results from a 24 hour run of
GC-SLIM.
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Figure 6.8: Comparison of a
long GC-SLIM run with the
best result from the CG:SHOP
Challenge 2022.
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6.5 Conclusion
With GC-SLIM, we have presented a new hybrid approach to graph coloring that enhances
tabu search with SAT-based local improvement. Key elements of this combination are the
selection method for local instances, the SAT-based solution for local instances, and chain
propagation. Further improvements are due to hyperparameter tuning, the prerunning
of tabu search, and different metrics for selecting vertices for color elimination. We also
proposed and tested a parallel version of GC-SLIM. Our experimental evaluation shows
that GC-SLIM complements existing methods and can find colorings with significantly
fewer colors than other methods on large dense graphs.

GC-SLIM scales to instances that are out of reach for other SAT-based methods. While
the largest instances in our experiments are far beyond the capabilities of SAT encodings,
GC-SLIM also shows excellent performance compared to I-DSatur. While both heuristic
SAT-based methods are comparable on sparse graphs, GC-SLIM significantly outperforms
I-DSatur on dense graphs, making it the more versatile of the two approaches. GC-SLIM’s
performance shows how well the SLIM framework is suited for achieving scalability.

For future work, we see two main paths. The first one is improving the selection of
local instances, as we expect a better criterion than using the least prevalent color. The
other path is adapting GC-SLIM to more general graphs. We have seen that FastColor
excels even for large random graphs and can handle even larger graphs. GC-SLIM can
be adapted to handle large and sparse graphs. This would also require implementing
features from FastColor and I-DSatur that exploit the structural properties of sparse
graphs, as well as preprocessing. Integrating these features may also lead to a better
method for local instance selection.
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Table 6.2: Comparison of 24 hour runs. DS shows the DSatur run used as input
for GC-SLIM. Best shows the best known result for the instance from the literature.
For comparison, we list Fast Color, Iterated DSatur (IS), and our Partialcol (PC )
implementation. GC-SLIM configurations start with G, V denotes varying parameters, I
indicates a IDSatur Prerun, and P a Partialcol Prerun.

Instance |V | |E| Dens. DS Best Fast IS PC G GV GP GI GPI

C
G

reecn56737 56k 308m 0.19 316 258 314 307 270 266 265 265 271 268
reecn73116 73k 610m 0.23 433 349 426 438 372 371 362 367 375 365
rvisp20601 20k 19m 0.09 99 81 93 115 85 87 86 85 87 99
sqrp49981 49k 621m 0.5 353 270 345 389 280 274 272 278 281 275
sqrp73525 73k 1560m 0.58 418 329 451 504 352 348 343 341 356 342
sqrpecn71571 71k 1272m 0.5 761 630 752 826 659 656 667 659 667 655
visp40191 40k 53m 0.07 125 104 119 130 110 113 110 110 115 125
visp70702 70k 192m 0.08 186 145 184 186 159 166 158 159 168 186
vispecn26914 26k 30m 0.08 264 176 234 243 195 207 190 190 195 191
vispecn74166 74k 205m 0.07 476 332 444 450 376 378 365 367 382 366

R
an

do
m

rnd_100000_10 100k 499m 0.1 1247 - 1256 1247 1089 1091 1112 1081 1096 1097
rnd_100000_5 100k 250m 0.05 665 - 676 663 580 577 584 571 581 573
rnd_10000_10 10k 4995k 0.1 169 - 171 170 145 144 145 142 145 142
rnd_10000_25 10k 12m 0.25 399 - 398 396 333 337 340 329 339 330
rnd_10000_5 10k 2499k 0.05 93 - 94 93 80 79 93 78 80 78
rnd_10000_50 10k 24m 0.5 844 - 837 840 703 715 722 698 715 699
rnd_25000_10 25k 31m 0.1 371 - 377 371 319 317 321 314 321 315
rnd_25000_25 25k 29m 0.1 247 - 234 234 246 195 197 196 196 196
rnd_25000_5 25k 15m 0.05 202 - 204 200 173 172 173 170 173 170
rnd_25000_50 25k 156m 0.5 1896 - 1877 1899 1613 1630 1646 1604 1636 1605
rnd_50000_10 50k 124m 0.1 679 - 687 677 585 586 592 578 590 579
rnd_50000_5 50k 62m 0.05 363 - 371 364 314 314 316 309 316 310
rnd_75000_10 75k 281m 0.1 968 - 975 968 839 842 852 830 847 834
rnd_75000_5 75k 140m 0.05 517 - 525 517 449 447 452 443 450 444

Sn
ap

G_n_pin_pout 99k 500k 0.0 6 5 6 6 6 5 5 6 5 6
HR_edges 23k 328k 0.0 14 13 13 14 13 13 13 13 13 14
WikiTalk 13k 728k 0.01 50 48 48 49 50 50 50 50 50 50
artist_edges 18k 606k 0.0 23 19 19 21 20 20 20 20 20 23
com-youtube 47k 670k 0.0 25 23 23 24 25 25 25 25 25 25
gplus_combined 13k 6766k 0.08 326 326 327 337 346 326 326 326 326 326
kron_g500-s-l16 17k 1495k 0.01 156 145 152 155 151 148 150 148 149 147
p2p-Gnutella31 24k 100k 0.0 5 5 5 5 5 5 5 5 5 5
smallworld 100k 499k 0.0 8 6 7 8 6 6 6 6 6 8
sx-stackoverflow 131k 10m 0.0 69 66 66 70 69 69 69 69 69 69
wave 155k 1057k 0.0 9 7 8 9 8 8 7 8 8 9

D
IM

A
C

S

C2000.5 2000 999k 0.5 208 145 205 207 168 170 173 167 170 167
C2000.9 2000 1799k 0.9 555 408 534 547 429 425 441 429 423 428
C4000.5 4000 4000k 0.5 377 259 376 376 312 313 317 311 312 311
dsjc1000.1 1000 49k 0.1 26 20 25 25 22 22 22 22 22 26
dsjc1000.5 1000 249k 0.5 116 83 112 114 93 93 97 92 93 92
dsjc1000.9 1000 449k 0.9 303 222 287 297 232 229 241 231 228 231
flat1000_50_0 1000 245k 0.49 114 50 111 112 50 69 88 50 50 114
flat1000_60_0 1000 245k 0.49 116 60 111 113 90 76 115 90 60 78
flat1000_76_0 1000 246k 0.49 114 81 111 112 92 93 94 92 90 114
latin_square_10 900 307k 0.76 127 97 118 125 102 106 103 102 104 127
r1000.1c 1000 485k 0.97 102 98 103 103 99 100 98 99 99 102
r1000.5 1000 238k 0.48 242 234 235 240 245 236 235 239 236 236
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CHAPTER 7
Decision Trees

7.1 Introduction
Decision trees are indispensable tools for the description, classification, and generalization
of data (Larose, 2005; Murthy, 1998; Quinlan, 1986). Since decision trees are easy to
understand, they are particularly attractive for providing interpretable models for the
data they represent. This aspect has been emphasized in recent years (Darwiche and
Hirth, 2020; Doshi-Velez and Kim, 2017; Goodman and Flaxman, 2017; Lipton, 2018;
Monroe, 2018). In this context, one prefers trees of low complexity, which are trees of low
depth (length of a longest path from the root to a leaf) and/or of small size (total number
of nodes). A decision tree of low depth guarantees a low number of tests required to
classify a sample (desired if tests are expensive or even intrusive (Podgorelec et al., 2002);
a decision tree of small size limits the overall effort of understanding its decision-making
and thus promotes transparency and interpretability. Decision trees are also used as part
of larger implementations like functional synthesis, where the size of the decision tree
can have a large impact on the runtime of the application (Golia et al., 2020, 2021).
However, inducing decision trees of the lowest complexity is intractable (Hyafil and Rivest,
1976). Therefore, several exact methods (SAT and CP-based) have been proposed for
that purpose (Bessiere et al., 2009; Narodytska et al., 2018; Avellaneda, 2020a; Janota
and Morgado, 2020; Hu et al., 2020).

Scalability is often an issue with exact methods. For this reason, we propose a novel
approach to learning decision trees of low complexity. We combine the scalability of
heuristic methods with the strength of encoding-based exact methods following the
principle of SAT-based Local Improvement (SLIM) (see Section 2.4).

Key to our approach is a suitable notion of a local instance which is based on using the
decision tree’s subtrees. Given a subtree of the decision tree, a SAT solver tries to find a
subtree of lower complexity that correctly classifies all the samples the selected subtree
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classifies correctly. Whenever the SAT solver is successful, the improved subtree can
then replace the selected subtree. This, in turn, may lower the complexity of the whole
decision tree. By adding weights and new classification categories to the local instance,
we ensure that this replacement does not introduce misclassifications or increase the
decision tree’s complexity.

Because of the new classification categories and weights, a local instance poses a more
complex classification problem. We show how SAT encodings can be generalized to
accommodate non-binary weighted classification instances and propose a subtree selection
strategy that avoids weights (Corollary 7.3). We further propose a new encoding based
on a characterization of decision trees in terms of partitions (Theorem 7.4), which allows
us to handle local instances of higher depth than it is possible with known encodings.

We establish a prototype implementation of our approach (DT-SLIM) and empirically
evaluate it on data sets from the UCI Machine Learning Repository and prior work. Our
experimental results are very encouraging: we can lower the complexity of heuristically
obtained decision trees in almost all cases, in some cases significantly, without sacrificing
much in terms of accuracy on unseen data.

We further apply DT-SLIM in a more realistic setting, where we apply pruning after
reducing the complexity of the decision tree using DT-SLIM. Pruning is a method where
parts of the decision tree are removed that will most likely not generalize well to unseen
data. Our results are again very encouraging, showing SLIMed and pruned decision trees
often outperform pruned decision trees in both complexity and accuracy.

This chapter is structured as follows. We will first give some necessary background and
notation in Section 7.2. Next, we discuss the key contribution: how SLIM works in the
context of decision trees (Section 7.3). In Section 7.4, we discuss how SAT encodings can
induce decision trees, which includes a description of our new encoding DT_pb. Data
reductions are necessary to solve many instances and are the topic of Section 7.5. We
combine the previously introduced concepts in our approach DT-SLIM in Section 7.6 and
give some practical considerations in Section 7.7. The last remaining piece in our approach
is pruning, which is applied after SLIM and is briefly introduced in Section 7.8. Finally,
we thoroughly test our approach against the state-of-the-art by a set of experiments in
Section 7.9.

7.2 Preliminaries
7.2.1 Classification problems
A classification instance over a set F of features is a pair I = (E, c) where E is a
finite set of samples and c is a mapping that assigns each sample e ∈ E a class c(e).
CI = { c(e) : e ∈ E } is the set of classes of the instance I. A sample e ∈ E is a mapping
that assigns each feature f ∈ F a value e(f). The domain of a feature f ∈ F is denoted
by D(f) and the feature’s domain relative to E is the set DI(f) = { e(f) : e ∈ E }. We
call I a binary classification instance if |CI | = 2. We assume w.l.o.g. that the classes
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are ordered, particularly that we can determine a maximum over the set of classes. We
say a feature is numerical if its domain contains only real numbers and otherwise we say
it is categorical. We denote the set of numerical features by N(F ) and the categorical
features by R(F ).

7.2.2 Decision Trees
A decision tree is a rooted binary tree T with node set V (T ), arc set A(T ), and root r;
Tv denotes the subtree of T rooted at v ∈ V (T ). The depth dT (v) of a node v in T is the
length (i.e., number of edges) of the path from T ’s root r to v; thus r has depth 0. T ’s
depth d(T ) is the largest depth over all its nodes; T ’s size is its number of nodes.

Each internal node v ∈ V (T ) is labeled by a feature feat(v), a threshold thresh(v) ∈
D(feat(v)), and a comparison operator ◦v ∈ {=, ≤}. If feat(v) is numerical, then
◦v is ≤; if feat(v) is categorical, then ◦v is =.1 Each internal node has exactly two
children, a left one and a right one. L(T ) denotes the set of T ’s leaves. We write
feat(T ) = { feat(v) : v ∈ V (T ) \ L(T ) }.

Consider a classification instance (E, c) over a set F of features and a decision tree T
with feat(T ) ⊆ F . For each v ∈ V (T ), we define a set ET (v) ⊆ E: if r is the root
of T , we put ET (r) = E; if v1 is the left and v2 the right child of a node u, we put
ET (v1) = { e ∈ ET (u) : e(feat(u))◦u thresh(u) } and ET (v2) = ET (u)\ET (v1). We define
the classification cI,T (ℓ) of a leaf ℓ ∈ L(T ), with respect to the classification instance
I = (E, c) as

cI,T (ℓ) = arg max
c∈CI

|{ e ∈ ET (ℓ) : c(e) = c }|,

ties are broken arbitrarily. We say T correctly classifies a sample e ∈ E if for the unique
leaf ℓ ∈ L(T ) with e ∈ ET (ℓ) we have c(e) = cI,T (ℓ). T correctly classifies I = (E, c) if it
correctly classifies all the samples e ∈ E; in that case, we simply say T is a decision tree
for I.

We use a training set (E, c) to induce the decision tree and a test set (E′, c′) to determine
the accuracy of the tree, where E ∩ E′ = ∅. The accuracy of a decision tree on a given
instance is the fraction of samples from E′ it correctly classifies. We use the term training
accuracy if the accuracy is measured on E instead of E′.

7.2.3 Related Work
We limit the discussion in this section to the induction of optimal decision trees and refer
the reader to the survey by Costa and Pedreira (2022) for a comprehensive summary
of state-of-the-art methods for different decision tree induction tasks and algorithms.
We discuss two different concepts of optimality: complexity-optimal decision trees and
accuracy-optimal decision trees.

1Note that in practice, one can enforce any of the two comparison operator for a specific feature
by preprocessing. I.e., ordering a categorical domain and using the order as values, or use non-real
representations of the real values.
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◦C Weather Day Length Hike
29.1 Sunny Sat 3 h Yes
22.3 Thunder Mon 2 h No
21.5 Rain Thu 1 h Yes
23.7 Rain Fri 3 h Yes
14.3 Rain Wed 4 h No
14.7 Sunny Tue 3 h Yes

Weather: Thunder

No Duration: 2

Yes Weather: Rain

Yes◦C: 16

YesNo

= ̸=

>≤

̸==
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Figure 7.1: Left: A classification instance on when to hike and when not, with |E| = 6,
|F | = 4, using numeric and categorical features. Right: a decision tree of depth 4 and
size 9 for the instance on the left.

Complexity-optimal decision trees correctly classify all training set samples and have
minimal depth and/or size. Hence, inducing complexity-optimal decision trees is a
knowledge compilation task. Pruning is usually required for good accuracy on unseen
data, as correctly classifying all training samples often causes overfitting. Inducing
decision trees that correctly classify the training set and then pruning the decision tree
follows the non-optimal approach of widely used decision tree heuristics like CART and
C4.5 (Quinlan, 1993; Breiman et al., 1984). We discuss pruning in Section 7.8.

Several SAT-based methods for inducing complexity-optimal decision trees have been
proposed. Initially, Bessiere et al. (2009) explored the use of a SAT encoding, but
it performed poorly compared to their constraint programming approach. The first
success was achieved by Narodytska et al. (2018): their proposed SAT encoding scaled
to small instances. This success sparked a series of further research into SAT encodings
for complexity-optimal decision trees (Hu et al., 2020; Avellaneda, 2020a; Janota and
Morgado, 2020; Schidler and Szeider, 2021a; Ignatiev et al., 2021; Shati et al., 2021),
and theoretical work (Ordyniak and Szeider, 2021). We discuss more details about these
approaches in Section 7.4.

An accuracy-optimal decision tree has a constrained structure and maximizes the training
accuracy. The structural constraints are different for different approaches, but most
approaches impose a limit on the size and the depth of the tree. Maximizing the training
accuracy of small trees follows the idea that good accuracy on the training samples
correlates with good accuracy on unknown samples for small decision trees. Many
approaches for inducing accuracy-optimal decision trees have been proposed: using
SAT (Hu et al., 2020; Shati et al., 2021), constraint programming (Verhaeghe et al.,
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2020b), mixed integer programming (Bertsimas and Dunn, 2017; Verwer and Zhang,
2019), and dynamic programming/branch & bound (Hu et al., 2019; Aglin et al., 2020;
Lin et al., 2020; Demirovic et al., 2022).

Accuracy-optimal methods have the advantage that they can handle huge instances:
when the size bound is very small, we can easily enumerate all possible decision trees.
Hence, it is easy to find an accuracy-optimal decision tree of very small size, but the
training accuracy of such a tree can be rather low. In contrast, complexity-optimal
methods fail to induce any decision tree whenever the optimal decision tree becomes too
large for the used method. Nonetheless, the accuracy of accuracy-optimal decision trees
on unseen data depends on several instance-dependent factors. Even if an accurate and
small decision tree exists, the accuracy-optimal approach has to find it among all possible
decision trees with maximal training accuracy. We revisit this discussion in Section 7.9
when we compare the accuracy-optimal method BinOCT (Verwer and Zhang, 2019) to
our method.

7.3 Local Improvement

Our approach follows the SLIM framework discussed in Section 2.4. Assume we are given
a classification instance I = (E, c), which is too large for inducing a decision tree of
smallest depth using an exact method such as a SAT encoding. We can use a heuristic
method to compute a non-optimal decision tree T for I. The idea of local improvement is
to repeatedly select subtrees T ′ of T that induce a local instance I ′ that is small enough
(possibly after further simplification and reduction) to be solved by an exact method.
Once we have found a decision tree T ′′ for I ′ of smallest depth (or at least a depth that
is smaller than the depth of T ′), we can replace T ′ in T with the new T ′′, obtaining a
new decision tree T ∗ for I. We will focus on depth reduction for the theoretical part.
Size reduction works analogously and will be discussed explicitly in Section 7.7.

We need to develop a suitable concept of a local instance to instantiate this general idea.
This concept must guarantee replacement consistency: after replacing T ′ with T ′′, the
new decision tree T ∗ correctly classifies all samples. This task becomes harder if we allow
that some leaves of T ′ are internal nodes of T , i.e., L(T ′) \ L(T ) ̸= ∅. In this case, after
replacement, the nodes in L(T ′′) \ L(T ) must be extended with parts of T to complete
T ∗ into a decision tree for I. The key to our solution is based on the introduction of new
classes, as follows.

Let r′ be the root of T ′, let ℓ1, . . . , ℓk ∈ L(T ′) \ L(T ) be those leaves of T ′ that are not
leaves of T , and let s = maxe∈E c(e). The local instance associated with T ′ is the pair
I ′ = (E′, c′) where E′ = ET (r′) and c′ is the mapping defined by

c′(e)=
�

c′(e)=s + i if e ∈ ET (ℓi) for some 1 ≤ i ≤ k;
c′(e)=c(e) otherwise.
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Although |ET (r′)| is independent of the subtree below r′, the local instance size can be
further reduced by the reduction methods discussed in Section 7.5. The effect of these
reductions is highly dependent on the structure of T ′.

Let T ′′ be any decision tree for I ′. Obviously, T ′′ will contain for each i ∈ {1, . . . , k} at
least one leaf m such that cI,T (m) = {s + i}. We call such a leaf m a special leaf with
classification s + i.

To describe how the new decision tree T ∗ is constructed, we need the following operation
on decision trees: Let T1, T2 be decision trees for the same instance, x a leaf of T1 and y
the root of T2. The extension of T1 at x with T2 is the decision tree T3 obtained from T1
and T2 by taking the vertex-disjoint union of the two trees and identifying x with y.

To construct T ∗, we start with the decision tree T0 obtained from T by deleting all
descendants of the root r′ of T ′. From T0 we obtain T1 by extending it at r′ by T ′′.
Finally, from T1 we obtain T ∗ by extending each special leaf m with classification s + i
with a new copy T m

ℓi
of Tℓi

. Figure 7.2 shows an example of this process.

T for I T ′ for I ′ T ′′ for I ′ T ∗ for I

0 0
01

1
1

0
1 0

01

0 0
01

1
0

1 0
0

1 1
1 0

1
31

2
13 3 2

Figure 7.2: Local improvement workflow. The numbers indicate the leaves’ classes;
squares indicate special leaves.

The next theorem states that this replacement process is sound.

Theorem 7.1. T ∗ correctly classifies I.

Proof. For showing the claim, let ℓ∗ be any leaf of T ∗. We will show that |{ c(e) : e ∈
ET (ℓ∗) }| ≤ 1. Let P be the unique path in T ∗ from the root of T ∗ to ℓ∗. We distinguish
several cases.

Case 1: P does not run through r′. Hence ℓ∗ is also a leaf of T . Since T correctly
classifies I by assumption, 1 ≥ |{ c(e) : e ∈ ET (ℓ∗) }| = |{ c(e) : e ∈ ET ∗(ℓ∗) }|.
Case 2: P runs through r′.

Subcase 2.1 : ℓ∗ is a leaf of T ′′. Since ℓ∗ is also a leaf of T ∗, it isn’t a special leaf. Since
T ′′ correctly classifies I ′, the latter implies that cI,T ∗(ℓ∗) = cI′,T ′′(ℓ∗) and, therefore, we
have |{ c(e) : e ∈ ET ′′(ℓ∗) }| ≤ 1, hence again |{ c(e) : e ∈ ET ∗(ℓ∗) }| ≤ 1.

Subcase 2.2 : ℓ∗ is not a leaf of T ′′. Consequently, P runs through a special leaf m of
T ′′. Let s + i be the classification of m. By construction, the subtree T ∗

m of T ∗ is a
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copy of the subtree Tℓi
of T , and the leaf ℓ∗ of T ∗

m is the copy of a leaf ℓ of Tℓi
. Since

cI′,T ′′(m) = {s + i}, we have ET ∗(m) ⊆ ET (ℓi). Consequently ET ∗(ℓ∗) ⊆ ET (ℓ). Since T
correctly classifies I, |{ c(e) : e ∈ ET (ℓ) }| ≤ 1, and from ET ∗(ℓ∗) ⊆ ET (ℓ) we thus get
|{ c(e) : e ∈ ET ∗(ℓ∗) }| ≤ 1.

Let us now turn to the question of decreasing the depth of the input decision tree T
employing such a local replacement. This does not work out of the box: Even when
d(T ′′) < d(T ′) it still can happen that d(T ∗) > d(T ) since the depth of a special leaf v of
T ′′ of classification s + i can be larger than the depth of the corresponding leaf ℓi of T ′,
resulting in a larger depth of T ∗ if the subtree attached to v at T ∗ is large.

To overcome this problem, we enrich the local instance with additional information,
defining a weighted version of the classification problem.

7.3.1 Weighted classification.
A weighted classification instance is a tuple Iw = (E, c, d) where I = (E, c) is a classifica-
tion instance, and d is a mapping that assigns each c ∈ CI(E) a positive integer d(c). I
and Iw have the same decision trees, just the depth for decision trees are defined differ-
ently for I and Iw. Consider a decision tree T for Iw. For a leaf ℓ of T with classification
c (i.e., cI,T (ℓ) = c), we define the weighted depth of ℓ in T as dw,T (ℓ) = dT (ℓ) + d(c). The
weighted depth dw(T ) of T is the maximum weighted depth over all its leaves.

We will show how locally decreasing the weighted depth of the weighted local instance
within our local improvement setting allows us to decrease the depth of the global decision
tree.

Let I = (E, C), I ′ = (E′, C ′), T , T ′, T ′′ and T ∗ as above, and let I ′
w = (E′, C ′, d) denote

the weighted local instance, where the weights for c ∈ c′(E′) are defined as follows: if
c = s + i then d(c) = d(Tℓi

); if c ≤ s, then d(c) = 0. We note that T ′ is a decision tree of
the weighted local instance, and hence dw(T ′) is defined.

Theorem 7.2. If dw(T ′′) ≤ dw(T ′) then d(T ∗) ≤ d(T ).

Proof. Assume dw(T ′′) ≤ dw(T ′) and consider a longest path P ∗ in T ∗ between the root
of T ∗ and a leaf ℓ∗ of T ∗. We denote the length of a path P ∗ by len(P ∗)

If P ∗ does not pass through r′′, the root of T ′′, then it is also a root-to-leaf path of T ,
and so d(T ∗) = len(P ∗) ≤ d(T ), and the claim of is established.

It remains to consider the case where P ∗ passes through r′′. Let P be a longest path in
T which passes through r. Consequently, len(P ) ≤ d(T ).

We can write len(P ∗) = len∗
0 + len∗

1 + len∗
2 where len∗

0 is the length of the part of P ∗

between the root of T ∗ and r′′, len∗
1 is the length of the part of P ∗ between r′′ and a leaf

of T ′′, and len∗
2 is the length of the part of P ∗ between a leaf of T ′′ and ℓ∗. It is possible

that len∗
2 = 0.
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Similarly, we can write len(P ) = len0 + len1 + len2, where the three integers are defined
similarly, using len1 for the length of the part of P inside T ′.

By the definition of the weights, we have len1 + len2 = dw(T ′), and len∗
1 + len∗

2 = dw(T ′′).
Since dw(T ′′) ≤ dw(T ′), len∗

1 + len∗
2 ≤ len1 + len2. Since len∗

0 = len0 by construction, this
gives d(T ∗) = len(P ∗) ≤ len(P ) ≤ d(T ), as claimed.

We now identify a special case of Theorem 7.2 where we only need to consider the
unweighted local instance and still ensure that d(T ∗) ≤ d(T ). Let us call a subtree T ′

of T to be safe if for every leaf ℓ of T ′ it holds that d(T ′) ≤ dw(T ′) − dT (ℓ).

Corollary 7.3. If T ′ is safe and d(T ′′) ≤ d(T ′) then d(T ∗) ≤ d(T ).

Proof. Let T ′ be a safe subtree with d(T ′′) ≤ d(T ′). Let ℓ′′ be a leaf of T ′′ with
dw,T ′′(ℓ′′) = dw(T ′′) and let c be the classification of ℓ′′ in T ′′. From the definitions we
get dw(T ′′) = dw,T ′′(ℓ′′) = d(c) + dT ′′(ℓ′′) ≤ d(c) + d(T ′′) ≤ d(c) + d(T ′). Since T ′ is
safe, we have d(T ′) ≤ dw(T ′) − d(c), and so we get from dw(T ′′) ≤ d(c) + d(T ′) that
dw(T ′′) ≤ d(c) + dw(T ′) − d(c) = dw(T ′). By Theorem 7.2, d(T ∗) ≤ d(T ) follows.

This concludes our concept of local improvement for decision trees. Next, we discuss how
SAT-based decision tree induction works.

7.4 Encodings
The subsequent SAT encodings address the problem Bounded-Depth Decision Tree
Induction: Given a classification instance I over a classification scheme, find a decision
tree of minimal depth that correctly classifies I. The encodings also allow for minimizing
the size for a given depth.

A SAT approach to Bounded-Depth Decision Tree Induction, given a classification
instance I and an integer d, entails formulating a propositional formula F (I, d), called
the encoding, which is satisfiable if and only if there exists a decision tree of depth at
most d that correctly classifies I. The encoding is then tested by a SAT solver with
increasing values for d until it becomes satisfiable, i.e., represents an (optimal) decision
tree. Given a size z, we can extend this idea to a formula F (I, d, z), which is satisfiable
if and only if there exists a decision tree of depth at most d that has at most z many
nodes and correctly classifies I. Introducing the size as a second minimization goal offers
the possibility for different optimization strategies, prioritizing one or the other.

Different encodings have been proposed that mainly differ in two respects: (i) how they
model the decision tree and (ii) how they assign thresholds to internal nodes. A common
way to represent thresholds is via binary encodings, where each possible threshold value
is represented by one binary variable. This requires �

f∈F |DI(f)| many binary variables,
resulting in large encodings for instances with large feature domains.
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We will first discuss our encoding DT_pb, and then discuss the main ideas for encodings
from related work.

7.4.1 DT_pb
The idea behind DT_pb is to formulate the problem in terms of partitions. This approach
has been used successfully for different graph-related problems and was introduced by
Heule and Szeider (2015) for clique-width computation. We first reformulate the problem
of finding a decision tree of a given depth for a classification instance I by partitioning the
set of samples (Theorem 7.4). We then directly convert this definition into a propositional
CNF formula F (I, d), that is satisfiable if and only if a decision tree of depth d that
correctly classifies I exists (Theorem 7.5).

Let I = (E, c) be a classification instance and S = (S0, . . . , Sd) a sequence of partitions
of E. We refer to the classes as groups and partitions S0, . . . , Sd as the levels 0, . . . , d. S
is a DT-sequence that correctly classifies I if the following conditions hold.

DT1 S0 = {E}.

DT2 For all 1 ≤ m ≤ d it holds that, for each group g ∈ Sm−1 \ Sm, there are groups
g′, g′′ ∈ Sm with g = g′ ∪ g′′, such that for some f ∈ feat(E) and t ∈ DI(f) it holds
that e′(f) ◦ t for all e′ ∈ g′, and there exists no e′′ ∈ g′′, such that e′′(f) ◦ t, where
◦ is ≤ if f is numerical and = if f is categorical.

DT3 For each g ∈ Sd it holds that for all e1, e2 ∈ g we have c(e1) = c(e2).

We note that the definition implies that Sm is a refinement of Sm−1, for 1 ≤ m ≤ d. The
definition of DT-sequences corresponds to the definition of ET (v) and it is easy to see
that a decision tree of depth d can be converted into a DT-sequence of length d + 1; and
the other way around. This leads us to the following theorem.

Theorem 7.4. A classification instance can be classified by a decision tree of depth d if
and only if it can be classified by a DT-sequence of length d.

We encode a DT-sequence of length d for I = (E, c) where E = {e1, . . . , en} and
F = feat(E) = {f1, . . . , fk}. The result of our encoding is a propositional formula
F (I, d). This formula is satisfiable if and only if there exists a DT-sequence of length d,
and therefore a decision tree of depth d that correctly classifies I.

We use the variables

• gi,j,m, for 1 ≤ i < j < n, 0 ≤ m ≤ d, with the semantics that gi,j,m is true if and
only if samples ei and ej are in the same group at level m,

• si,m,ℓ for 1 ≤ i ≤ n, 0 ≤ m < d, 1 ≤ ℓ ≤ k, where si,m,ℓ is true if and only if the
group of sample ei at level m is split into two groups using feature fℓ.
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• li,m for 1 ≤ i ≤ n, 0 ≤ m < d, that is true if and only if the sample ei at level m is
in the group where e(f) ◦ t.

At the start, i.e., the first set of partitions in the sequence, all samples belong to the
same group (DT1). We add the unary clauses�

1≤i<j≤n

gi,j,0.

At the last level, all samples in one group must belong to the same class (DT3). We
enforce this by adding the unary clauses�

1≤i<j≤n
c(ei) ̸=c(ej)

¬gi,j,d.

The remaining clauses enforce DT2. As Sm is a refinement of Sm−1, we have to ensure
that samples in different groups cannot be in the same group at a higher level. We state
this by adding the clauses �

1≤i<j≤n
0≤m<d

gi,j,m ∨ ¬gi,j,m+1.

Next, we ensure that at each level m, for every sample i there exists a corresponding
feature to satisfy. For this purpose, we add the clauses�

1≤i≤n
0≤m<d

�
1≤ℓ≤k

si,m,ℓ,

and ensure consistency within groups by adding the clauses�
1≤i<j≤n,
0≤m<d,
1≤ℓ≤k

¬gi,j,m ∨ ¬si,m,ℓ ∨ sj,m,ℓ.

The next step in encoding DT2 is determining in which group the sample is in the next
level. We distinguish between numerical and categorical features and add the following
clauses. First, we handle categorical features and samples that agree on this feature
value: �

fℓ∈R(F ),
1≤i,j≤n,i ̸=j
ei(f) ̸=ej(f),

0≤m<d

¬gi,j,m ∨ ¬si,m,ℓ ∨ ¬li,m ∨ lj,m.

Next, we handle those samples that disagree on the feature value:�
fℓ∈R(F ),
1≤i<j≤n

ei(f)=ej(f),
0≤m<d

¬gi,j,m ∨ ¬si,m,ℓ ∨ ¬li,m ∨ ¬lj,m.
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For numerical features, we handle the sample based on the ordering of the feature value.
We use the shorthand notation g∗ as follows:

g∗
i,j =

�
gi,j if i < j;
gj,i otherwise.

We can now state that the split in two groups has to be consistent with the ordering of
the feature values: �

fℓ∈N(F ),
1≤i,j≤n

ei(f)≤ej(f),
0≤m<d

¬g∗
i,j ∨ ¬si,m,ℓ ∨ ¬lj,m ∨ li,m.

For the case the two features have the same feature value, we add the following clauses:
�

fℓ∈N(F ),
1≤i<j≤n

ei(f)=ej(f),
0≤m<d

¬g∗
i,j ∨ ¬si,m,ℓ ∨ ¬li,m ∨ lj,m.

We finalize the encoding of DT2 by ensuring that the refinement into groups is according
to the values in l: �

1≤i<j≤n,
0≤m<d

gi,j,m+1 ↔ (gi,j,m ∧ (li,m ↔ lj,m)).

By construction of the formula and from Theorem 7.4 we obtain the following result.

Theorem 7.5. F (I, d) is satisfiable if and only if there exists a decision tree of depth at
most d that correctly classifies I.

The number of clauses in F (I, d) is O(|E|2 · |feat(E)| · d). While most of these clauses
are short, the number of literals per clause is in O(|feat(E)|). Therefore, the main factor
determining the encoding size is the number of samples and not the depth.

Encoding Weights

We can encode weights with DT_pb by using different maximum depths for the different
classes. Let dmin be the lowest weight among all classes. Given a class c, for all ei, ej ∈ E
such that C(ei) = c, C(ej) ̸= c, we add the clauses ¬gi,j,w, where w = d − d(c) + dmin is
the allowed depth in regards to the weight of c.
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Minimizing Size

We define the formula F (I, d, z) for limiting the size of the decision tree. The following
modification does not guarantee that the decision tree has at most z nodes but that the
decision tree has at most z leaves. For this purpose, we add variables zi for 1 ≤ i ≤ n,
where zi is true if ei is the first sample in its group, i.e., ei is not in any leaf that correctly
classifies any ej with 1 ≤ j < i. We express these semantics with the following clauses:�

1≤j≤n,
0≤m<d

zj ∨
�

1≤i<j,
c(ei)=c(ej)

gi,j,d.

The number of leaves can then be restricted using a cardinality constraint encoding
(see Section 3.4.1).

7.4.2 Further Encodings
We discuss four representative encodings from the literature.
The encoding by Narodytska et al. (2018) defines a propositional Formula F (I, z), which
is satisfiable if and only if there exists a decision tree for I with at most z nodes. In
the encoding, the structure of the z many nodes is not fixed, and the solver can arrange
them as needed. Thresholds are encoded in a one-hot fashion: for each feature f ∈ F and
value t ∈ DI(f), one variable is used to encode for each node v whenever feat(v) = f and
thresh(v) = t. While in every encoding, features and thresholds have to be matched to
nodes, the dynamic structure of the decision tree introduces an extra degree of freedom.
Consequently, finding a model for F (I, z) is comparatively hard, as our experiments show
(Section 7.9). The advantage of this encoding is that it is the only one that minimizes
the size of the decision tree without fixing the depth.
Avellaneda (2020a) achieves better scalability by fixing the structure of the decision tree
as a perfect tree of a given depth. The thresholds are represented by a one-hot encoding,
as in the encoding by Narodytska et al. (2018). While the fixed decision tree structure
significantly increases performance, large domain sizes are a weak point of this encoding,
as they require many extra variables and clauses. Further, the encoding requires Ω(2d)
many clauses, making it unsuitable for instances that require deep decision trees.
Shati et al. (2021) proposed a more efficient variation of the encoding. In this encoding,
thresholds are encoded implicitly, and therefore, the size depends on the number of
features but not on their domain sizes. This improves the performance but still suffers
from the exponential dependency on the maximum depth of the tree.
Our encoding DT_pb circumvents both problems: it can handle deep decision trees and
large domain sizes. Its weakness is instances with many samples where the other encodings
perform better. This makes DT_pb particularly interesting for smaller instances that
require complex decision trees, e.g., instances that require one very deep branch in a
comparatively small decision tree.
We discuss the empirical evaluation of how different encodings perform in Section 7.9.
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7.5 Instance Size Reduction
As we have seen in the previous section, the number of samples is one of the main
factors determining encoding size. Encoding size, in turn, often correlates with the
solving time. Hence, as we try to reduce the encoding size, and since we cannot reduce
the required depth, we have to reduce the number of samples using the data reduction
methods proposed subsequently. Additionally, our methods often remove features, further
decreasing the encoding size.

The main idea behind our methods is that we can ignore duplicate samples: given two
samples with the same values for all features, we can remove one of them and still obtain
a classifying decision tree for the original instance. Hence, our novel data reduction
methods strategically modify the samples to reduce the number of values in each feature’s
domain. This, in turn, increases the chance that two samples have the same values.
The drawback of these data reduction methods is that we lose optimality: a lowest
depth/smallest decision tree for the reduced instance might be deeper and/or larger than
a lowest depth/smallest decision tree for the unreduced instance.

We formalize this idea using active domains DA
I (f) ⊆ DI(f): the set of domain values

of a feature f that we consider as possible thresholds. We first show how small active
domains help to reduce the number of samples and then introduce our methods for
finding small active domains.

7.5.1 Removing Samples
Given active domains DA

I (f) ⊆ DI(f) for each feature f , we create the reduced instance
I ′ = (E′, c) as follows. First, we remove all features f with DA

I (f) = ∅. Next, we add for
each numerical feature f the value max DI(f) to the feature’s active domain. Finally,
we add for each e ∈ E a reduced sample e′ to E′ defined as

e′(f) :=

����
e(f), if e(f) ∈ DA

I (f)
min{ t ∈ DA

I (f) : t > e(f) }, if f is numerical
unused, otherwise.

Here, the unused value for categorical features is a special value that is not used as a
threshold when inducing a decision tree for I ′. Hence, at every node that uses the feature,
the corresponding samples will always take the right path. The reduction in the number
of samples is then automatically achieved whenever several samples in E map to one
sample in E′.

Since in a decision tree for I ′ each sample’s path is, by construction, the path that the
unreduced sample would take, we observe the following:

Observation 7.6. A decision tree that correctly classifies the reduced instance I ′ also
correctly classifies I.
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Next, we discuss our methods for computing small active domains.

7.5.2 Threshold Reduction
This method aims to reduce the active domain size of a single feature independent of the
other features. This can already drastically reduce the encoding size for encodings that
use a binary representation for the possible thresholds.

For each numerical feature f ∈ F , we denote by Ef [i] the i-th sample in E sorted by the
values for f . We now define

DA
I (f) := { Ef [i](f) : 1 ≤ i ≤ |E| − 1, c(Ef [i]) ̸= c(Ef [i + 1]) }.

In other words: for each numerical feature, we only consider those values that separate
the ordered samples into partitions of the same class and ignore all other values.

The runtime of this method is in O(|F | · |E| · log |E|), as we have to sort the samples
according to each feature. However, for most non-trivial instances, it holds that |F | ≪ |E|.
Although using these methods’ active domains may lead to deeper and/or larger decision
trees, we could not observe this sub-optimality in our experiments.

7.5.3 Feature Reduction
Classification instances with fewer features result in smaller SAT encodings, and it is,
therefore, useful to remove features as long as we do not misclassify samples in the original
instance. A support set, for an instance I = (E, c) over a feature set F , is a subset
F ′ ⊆ F , such that for any two samples that have a different class, the support set contains
at least one feature the two samples disagree on (Ibaraki et al., 2011; Ordyniak and
Szeider, 2021). Removing features as long as the remaining features form a support set
guarantees that the induced decision tree will still classify the original instance. However,
we observed that it is rarely possible to remove features this way for instances with few
features and large domains, as in this case, the set of features is often already a minimal
support set.

We, therefore, refine the notion of support sets to threshold support sets, which gives us
more potential for data reduction. A threshold support set S for I is a set of pairs (f, t)
with f ∈ F and t ∈ DI(f). Further, for any two samples e1, e2 ∈ E with c(e1) ̸= c(e2), S
contains a tuple (f, t) such that t separates e1 and e2 on feature f , which means that, if
f is numerical, then e1(f) ≤ t < e2(f) or e1(f) > t ≥ e2(f), and if f is categorical, then
e1(f) = t ̸= e2(f) or e1(f) ̸= t = e2(f). Given a threshold support set S, we define the
active domain as follows:

DA
I (f) := { t : (f ′, t) ∈ S, f ′ = f }.

We can compute a subset-minimal threshold support S set by starting with S = ∅, and
by comparing all samples of different classes, adding a new pair to S whenever none of
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the existing thresholds separate the two samples. Let D = maxf∈F |DI(f)|, then this
algorithm runs in time O(|E|2 · |F | · D) where the actual running time strongly depends
on the instance. Which features and thresholds are chosen for S in what order can
determine the quality of the result. We choose these elements randomly.

In general, threshold support sets result in smaller active domains compared to the
simple threshold reduction discussed before. Nonetheless, it is useful to apply the simpler
method, as it is usually much faster, and it speeds up and informs the second method,
providing overall better threshold support sets.

We now combine all discussed components in our approach DT-SLIM, the topic of the
next section.

7.6 DT-SLIM
In this section, we describe DT-SLIM, the overall algorithm that facilitates the SAT-based
local improvement, building upon the theoretical results of Section 7.3, the encodings
described in Section 7.4, and using the data reductions from the previous section.

As before, let T be a decision tree for a classification instance I = (E, c). Our aim is to
select a subtree T ′ which gives rise to a local instance I ′ = (E′, c′) and a weighted local
instance I ′

w = (E′, c′, d). Since we will try to find a better decision tree T ′′ for I ′
d with a

SAT encoding, we need to select T ′ in such a way that the encoding size remains feasible.

We ensure that the local instance is small enough using a budget given by integer-valued
parameters d̂ and ĉ. The maximum depth of T ′ is limited by d̂, thereby limiting one of
the main factors for the encoding size. The other main factor, the number of samples, is
limited by ĉ. Further, since the depth of T ′ gives us an upper bound, we search for an
improved decision tree starting with F (I ′, d(T ′) − 1) and incrementally decrementing
the depth limit. Therefore, with each successful SAT call, we improve upon T ′, even if
we cannot find the optimal depth.

7.6.1 Operations

Given an internal node r′ that is the root of T ′, we have three different operations we
can perform:

Leaf select: Whenever d(Tr′) ≤ d̂ and |ET (r′)| ≤ ĉ, we can simply create a local
instance using all the samples in ET (r′) as they are.

Leaf reduce: In case d(Tr′) ≤ d̂ and |ET (r′)| > ĉ, we need to reduce the number of
samples in ET (r′) using the reduction methods discussed in Section 7.5. We can use the
local instance if the number of samples after the reduction does not exceed ĉ.
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Mid reduce: In case both d(Tr′) > d̂ and |ET (r′)| > ĉ, we need to select a subtree
of Tr′ as T ′ in a way such that d(T ′) ≤ d̂. Afterwards, we introduce special leaves as
discussed in Section 7.3, and modify ET (r′) accordingly to obtain our local instance.
Finally, we apply Section 7.5’s data reductions to the local instance and thereby try to
get the size of the local instance to conform to ĉ.

We try to apply the three operations in the above order, and whenever one is applicable,
after performing the respective reductions, we do not need to try the others for the
same r′.

7.6.2 Subtree Selection
We propose the following search strategy for local instances. We find a leaf ℓ of maximum
depth and proceed on the path P (ℓ) from the root to ℓ. We try each internal node in
turn as the root r′ until we reach ℓ or we can apply leaf selection or reductions, at which
point we know that no further improvements on this path are possible. We then proceed
with the next leaf and never use a node in P (ℓ) as a possible root r′ again. In general, we
never choose a node for r′ that has already been tried unsuccessfully in a prior iteration.
Once we tried all nodes, we exhausted our options. Whenever we find an improvement,
we discard P (ℓ) and start again, as there might be a different leaf of maximum depth
after the improvement. The reason why we proceed from top to bottom is that changes
in the top affect the path that samples take later on, and the top-down order requires
fewer tries.

The structure of T ′ for leaf selection and leaf reduction is clear; for mid reduction
we propose the following strategy. We start with T ′ consisting only of the root r′

and then incrementally grow T ′ as follows: in each iteration, we add all nodes v from
V (Tr′) \ V (T ′) where d(Tv) is maximal until we either hit d̂ or after data reductions
|E′| > ĉ. Maximizing the depth has two advantages: (i) T ′ is usually unbalanced, which
creates more opportunities for depth reduction, and (ii) T ′ is always safe. We, therefore,
do not have to use weights.

Data Reductions

The heuristic for computing threshold support sets discussed in Section 7.5.3 is quadratic
in the number of samples and therefore becomes prohibitively slow when the number of
samples becomes too high. We use the following observation in case the local instance
has too many samples to apply the heuristic.

Observation 7.7. For a given decision tree T ′ the set { (feat(v), thresh(v)) : v ∈ V (T ′) \
L(T ′) } is a threshold support set.

While this method is significantly faster than the heuristic, it limits the possible improve-
ments to a rearrangement of nodes. We, therefore, only use it when the local instance
has too many samples, and the quadratic worst-case runtime is infeasible.

118



7.6. DT-SLIM

7.6.3 Algorithm
We can now formulate the entire algorithm, which we refer to as DT-SLIM(H), where H
denotes the heuristic used to generate the initial decision tree T . The pseudo-code for
DT-SLIM(H) is shown in Algorithm 7.1. It iteratively selects a leaf v with maximum
depth, ignoring those in the set D of completed nodes.

The three operations are stated as an if-then-else construct. Leaf select in Line 8, leaf
reduce in Line 12, and mid reduce in Line 17. The SAT solver call is triggered by
induce_dt and instance size reduction by the call to reduce.

Algorithm 7.1: DT-SLIM(H)
Data: An instance I = (E, c), a decision tree T = (V, A) with root r induced

using H, a depth limit d̂, a sample limit ĉ.
Result: A new decision tree T ∗ with d(T ∗) ≤ d(T ).

1 D ← ∅
2 T ∗ = T
3 while V (T ∗) \ D ̸= ∅ do
4 ℓ ← arg maxℓ∈L(T )\Dd(v)
5 P ← path(r, ℓ)
6 foreach v ∈ P do
7 if v /∈ D then
8 if d(T ∗

v ) ≤ d̂ and |ET ∗(v)| ≤ ĉ then
9 I ′ ← (ET ∗(v), c)

10 T ′′ ← induce_dt(I ′, d(Tv) − 1)
11 D ← D ∪ P

12 else if d(T ∗
v ) ≤ d̂ then

13 I ′ ← (ET ∗(v), c)
14 I ′ ← reduce(I ′)
15 if |E′

T ∗(v)| ≤ ĉ then
16 T ′′ ← induce_dt(I ′, d(Tv) − 1)
17 else
18 T ′, E′, c′ ← construct_subtree(v)
19 I ′ ← (E′

T ′(v), c′)
20 I ′ ← reduce(I ′)
21 if |E′

T ′(v)| ≤ ĉ then
22 T ′′ ← induce_dt(I ′, d(T ′) − 1)
23 if any T ′′ found then
24 T ∗ = replace(T ∗, T ′, T ′′)
25 break
26 D ← D ∪ {v}
27 end
28 end
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7.7 Implementation
So far, we have discussed our approach conceptually. In this section, we will discuss the
practical aspects: which encoding we use, why we use it, and how we determine good
values for the budget.

7.7.1 Choosing an Encoding
We tested all the encodings we discussed so far (see Section 7.9). Overall, the encoding
by Shati et al. (2021) performed best. As expected from the asymptotics, at higher
depths, when the encoding can handle only a limited number of samples, our encoding
DT_pb starts to perform better. For this reason, we use a Dynamic Encoding in our
implementation: up to depth 10, we use the encoding by Shati et al. (2021), and for
higher depths, we use DT_pb.

7.7.2 Determining the Budget
With the encodings in hand, the next question is, which value to use for d̂, ĉ, and at
which depth should we switch encodings.

We used randomly generated subsets of increasing size from different instances (see
Section 7.9 for details on the instances). We increased the size until the respective
encoding failed.

Further, we also used a heuristically computed decision tree T and used different nodes
v ∈ V (T ) to generate local instances from ET (v). Our results show that instead of an
absolute sample limit, it works best to define for each 1 ≤ m ≤ d̂ a specific ĉm. With
increasing m, the value of ĉm decreases until it reaches 0 when m > d̂.

The depth and number of samples provide a crude estimate for the solver’s running
time, as the solving time can greatly vary for the same depth and number of samples.
Therefore, we picked our limits such that it is reasonable to expect that the solver will
finish within a local timeout of five minutes. While choosing a higher local timeout allows
DT-SLIM to try more improvements, it also means that the timeout will be exceeded
very often, and, therefore, a lot of time is spent on SAT-solver runs that will not find a
reduction in depth or size.

We use a sample limit of 25000 samples for low depths and incrementally lower it to 250
until the maximal depth of 14.

7.7.3 Size Minimization
Minimizing only the depth can severely increase the decision tree’s size, as the solver
balances the tree and often requires more nodes to achieve lower depths. The use of
special leaves aggravates this problem, as any duplication of a special leaf effectively
duplicates a whole subtree. We propose several options that directly address that issue
and limit the size increase in a single DT-SLIM iteration.
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The core technique uses the size minimization offered by all the encodings. This gives
us the choice of size as an additional optimization goal, either before or after depth.
Alternatively, we can enforce that the size does not increase without minimizing it.
Special leaves can be constrained such that they can only occur once by stating that all
samples whose class corresponds to the special leaf have to be classified by the same leaf.
These options highlight another benefit of using a SAT-based approach: adding extra
constraints that constrain the decision tree to fit application-specific requirements is easy.

These options directly tackle the size of a decision tree after a single DT-SLIM iteration.
It is important to mention that this does not automatically lead to smaller decision trees
after a full DT-SLIM run for several iterations. For example, duplicating special leaves
may be beneficial, as it might enable more improvements in the subtrees, decreasing the
overall size later on. Similar effects occur when minimizing the size first, where later
improvements are made impossible. In fact, the only configuration that showed an overall
benefit, compared to only minimizing the depth, was minimizing the size as a secondary
objective. For this reason, we only consider the minimization of depth and depth then
size in our experiments.

7.7.4 Unknown values

Sometimes e(f) is unknown for a feature f and a sample e, i.e., e is a partial function.
In such a case, we use the most prevalent value for f among the other samples. In case
this causes inconsistencies, i.e., using the most prevalent value for sample ei causes it to
be equal to another sample ej that was previously different, but c(ei) ̸= c(ej), we ignore
this sample when inducing the decision tree.

7.8 Decision Tree Pruning

Decision tree pruning is well known to be an essential tool for generalization, i.e., high
accuracy on unseen data. Surprisingly, it has not been considered in the literature in
conjunction with SAT-based methods. We provide the first integration of SAT-based
methods and state-of-the-art pruning techniques. We use established post-pruning
methods, i.e., methods that are applied after inducing a classifying decision tree. We
first briefly discuss these techniques and then their integration with SAT-based methods.

Pruning heuristically removes subtrees from a decision tree to achieve a better gener-
alization. In other words, pruning is a method that trades an increased error rate on
the training data for a lower estimated error rate on unseen data. Pruning of a decision
tree T is performed relative to a specific non-leaf node v ∈ V (T ) \ L(T ); there are
two pruning operations illustrated in Figure 7.3: make v a leaf and thereby omit Tv

(subtree-replacement), or, let u and w be the children of v in any order, replace v by u,
thereby lifting Tu and removing Tw (subtree-lifting). We consider two different pruning
methods. Each method defines its metric and checks the tree’s nodes in turn. A pruning

121



7. Decision Trees

u w

v v wv

Tu Tw

Tw

(a) (b) (c)

u

Tu

Figure 7.3: The illustration shows the original tree (a) and result of subtree-replacement
(b) and subtree-lifting (c).

operation is then performed whenever it improves the metric. More specifically, we use
the following methods.

Cost-complexity Pruning (Breiman et al., 1984)

We prune a node v if the pruning decreases Rα(v) = fTv (ET (v), C) + α|L(Tv)|. The
parameter α controls the trade-off between error rate and the number of leaves; the
higher α, the smaller the resulting tree.

C4.5’s Pruning (Quinlan, 1993)

We prune a node v if eT (v) < e′
T (v), where e′

T (v) and eT (v) are the estimates for error
rates before and after pruning, respectively, defined as follows:

eT (v) =


f + z2

2ET (v) + z ·
�

f

ET (v) − f2

ET (v) + z2

4ET (v)2

�
·


1 + z2

ET (v)

�−1

where f is the error rate after pruning and z is the percent point function value for
confidence c (Tan et al., 2019). The error estimate for the current subtree is calculated
by e′

T (v) =

 �

ℓ∈L(Tv)(ET (ℓ) · eT (ℓ))
� · 


ET (v)
�−1

. C4.5’s pruning uses another parameter
m: all leaves ℓ ∈ L(T ) with |ET (ℓ)| < m are pruned immediately.

Cost-complexity pruning and C4.5’s pruning come with hyperparameters α and (c, m)
respectively. These hyperparameters have to be tuned to good values using for example
cross validation. We assume that the hyperparameter settings are part of the input.

Pruning for SAT-based Methods

SAT-based methods offer several options for pruning. The straightforward approach is
to induce a decision tree first and then prune it, using the same process as widely used
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heuristics like C4.5 and CART. There is also the option to encode the pruning itself.
Shati et al. (2021) showed that their SAT encoding, could be modified such that not the
depth but the training accuracy is minimized. Yu et al. (2021) encoded cost-complexity
pruning for decision lists and sets. The two ideas could, therefore, be combined to directly
apply cost-complexity pruning for SAT encodings for inducing decision trees.

Pruning for DT-SLIM

The options for DT-SLIM look different. Since we run the SAT encoding many times
on different parts of the decision tree and pruning decreases the training accuracy, the
pruned decision tree does not necessarily correctly classify the instance. Non-classifying
decision trees are generally not an issue to the SLIM approach, and DT-SLIM handles
them by correctly classifying the samples that were correctly classified before, thereby
not decreasing the training accuracy. Therefore, it is possible to integrate pruning
directly into DT-SLIM, but it is not trivial, as there are different ways of handling
non-classifying decision trees, applying pruning, handling hyperparameters, developing
selection strategies, picking termination criteria, etc., which would exceed the scope of
this chapter. We, therefore, keep to the established process of improving the decision
tree, keeping it classifying, and then pruning it afterwards.

In the final section, we will evaluate DT-SLIM with and without pruning.

7.9 Experiments
Instances

We collected a comprehensive set of instances used in related work (Bessiere et al.,
2009; Olson et al., 2017; Narodytska et al., 2018; Verwer and Zhang, 2019; Avellaneda,
2020a; Schidler and Szeider, 2021a), totaling 69 base instances. Eight of these instances
come with a test set. We split the other 61 instances into five folds for cross validation,
resulting in 313 instances in total. This section reports results for the 69 base instances,
averaged over the folds. The instances provide a good variety in the number of samples,
features, and classes, as Table 7.1 shows. Features vary from all-numerical to mixed and
to all-categorical. As we will discuss below, SAT encodings were able to optimally solve
37 of the base instances, and we only consider the remaining 32 base instances for our
DT-SLIM experiments.

Setup

Our implementation2 uses Python 3.9 and PySAT 0.1.73 (Ignatiev et al., 2018). We use
an adapted version of the Glucose 3.04 (Audemard and Simon, 2009) SAT solver, as it is

2https://github.com/ASchidler/decision_tree, results under https://doi.org/10.5281/zenodo.7271869
3https://pysathq.github.io/
4https://www.labri.fr/perso/lsimon/glucose/
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Instance |E| |F | |C| Solved Instance |E| |F | |C| Solved

anneal 798 38 5 iris 150 4 3 x
appendicitis 106 7 2 x irish 500 5 2 x
audiology 200 70 24 x kr-vs-kp 3196 36 2
australian 690 14 2 letter recognition 20000 16 26
backache 180 32 2 x lymphography 148 18 4 x
balance-scale 625 4 3 x magic04 19020 10 2
banknote 1372 4 2 x messidor 1151 19 2
bank conv 4521 51 2 meteo 14 4 2 x
biodeg 1055 41 2 monks-1 124 6 2 x
breast-cancer-wisconsin 699 10 2 x monks-2 169 6 2 x
cancer 683 9 2 x monks-3 122 6 2 x
car 1728 6 2 x mouse 70 5 2 x
ccdefault 30000 23 2 mushroom 8124 22 2 x
cleve 303 13 2 x musk1 476 166 2
cleveland 303 13 5 x musk2 6598 166 2
colic 368 22 2 x mux6 128 6 2 x
compas-scores 11752 16 11 new-thyroid 215 5 3 x
corral 160 6 2 x objectivity 1000 59 2
german-credit 1000 24 2 pendigits 7494 16 10
haberman 306 3 2 x primary-tumor 339 17 21 x
hand posture 78095 36 5 promoters 106 58 2 x
heart-statlog 270 13 2 x segment 2310 19 7
heloc dataset v1 10459 23 2 seismic bumps 2584 18 2
hepatitis 155 19 2 x shuttleM 14500 9 2 x
hiv 1625 1625 8 2 soybean-large 307 35 19 x
hiv 746 746 8 2 spambase 4601 57 2
hiv impens 947 8 2 spect 267 22 2 x
hiv schilling 3272 8 2 splice 3190 60 3
house-votes-84 435 16 2 x Statlog satellite 4435 36 6
HTRU 2 17898 8 2 tic-tac-toe 958 9 2
hungarian 294 13 2 x vehicle 846 18 4
hypothyroid 3163 25 2 x wine 178 13 3 x
ida 60000 170 2 yeast 1484 8 10
IndiansDiabetes 768 8 2 zoo 101 16 7 x
Ionosphere 351 34 2 x

Table 7.1: A list of all instances considered for our experiments. Solved indicates that a
depth optimal decision tree for the instance could be induced by a SAT encoding.

among PySAT’s solvers that performed best and has a low memory profile. We induce
heuristic initial decision trees using C4.5 implemented in Weka 3.8.55 (Frank et al., 2005)
and CART implemented in scikit-learn 0.24.16 (Pedregosa et al., 2011). Additionally, we
compare DT-SLIM to the mixed-integer programming tool BinOCT (Verwer and Zhang,
2019)7. We ran the experiments with a memory limit of 12 GB on servers with two Intel
Xeon E5-2640 v4 CPUs running at 2.40 GHz and using Ubuntu 18.04. DT-SLIM was
limited to 12 hours per run.

5https://www.cs.waikato.ac.nz/~ml/weka/
6https://scikit-learn.org/
7https://github.com/SiccoVerwer/binoct
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7.9.1 Encodings
In our first experiment, we were interested in the performance of the encodings themselves.
We can see in Table 7.2 that the encodings alone can already solve a majority of the
instances. The encoding by Shati et al. (2021) performed best overall. Besides solving
the most instances, it was also the fastest, solving many of the instances within the
first minute. Our encoding DT_pb performed similarly to the encoding by Avellaneda
(2020a). The encoding by Narodytska et al. (2018) solved the fewest instances but is
the only encoding that minimizes the size. None of the instances had few samples but
required a deep decision tree. Hence, the results do not fully reflect the usefulness of
DT_pb within DT-SLIM.

<1m <5m <10m <1h <3h <6h
Instance S P S P S P S P S P S P
Narodytska et al. (2018) 8 0 10 0 10 0 11 1 12 1 12 2
Avellaneda (2020a) 18 0 19 0 20 0 27 0 29 1 30 2
Avellaneda (2020a) + Size 16 0 17 0 18 0 21 1 25 2 26 2
DT_pb 15 0 20 0 20 0 26 0 29 1 30 2
DT_pb + Size 11 0 14 0 16 0 18 0 20 1 20 1
Shati et al. (2021) 23 0 26 0 27 0 31 0 35 0 36 2
Shati et al. (2021) + Size 18 0 20 0 20 1 24 1 26 2 27 2
Dynamic Encoding 23 0 27 0 27 0 32 0 35 0 35 2
Dynamic Encoding + Size 17 0 20 0 21 1 24 1 26 2 27 2

Table 7.2: Solved instances by encoding grouped by runtime. For each encoding, S
(Solved) indicates the number of instances where all slices were solved and P (Partial)
the number of instances where at least one but not all slices were solved. For each
depth-minimizing encoding, the table also shows the variant, where the size is minimized
as a secondary objective.

Adding size minimization, after finding the optimal depth, makes the problem considerably
harder for each of the depth-minimizing encodings, severely decreasing the number of
solved instances. Interestingly, with size minimization, the encodings by Avellaneda
(2020a) and Shati et al. (2021) perform very similarly.

Depth Limit

To gauge the maximum depth any of the encodings can handle, we devised a small
experiment. We incrementally created an artificial instance with d + 1 samples, such that
any decision tree needs exactly a branch with depth d to correctly classify the instance.
Hence, it is the smallest instance that requires depth d. We gave each encoding up to
one hour per instance. The encoding by Avellaneda (2020a) managed depth 11 in 635
seconds. Further, the encoding by Shati et al. (2021) was able to handle depth 12 in 2247
seconds. The encoding by Narodytska et al. (2018) had an advantage here, as although
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the depth was high, the number of nodes was low. This encoding managed 29 nodes or
depth 14 in 1263 seconds. Finally, DT_pb was able to handle depth 15 in 342 seconds.
This shows the unique property of our encoding to handle high depths comparatively
well, as long as the number of samples is low.

7.9.2 DT-SLIM

In this experiment, we tested how well DT-SLIM can improve the decision trees induced
by the state-of-the-art decision tree heuristics, C4.5 and CART, and the results are listed
in Tables 7.3 and 7.4. We consider plain DT-SLIM, where only the depth is minimized,
and DT-SLIM + Size, where in each iteration, after trying to improve the depth, the
solver gets the same time for improving the size. The tables are sorted by the number of
samples. In both tables, it is noteworthy that for the largest initial decision trees, the
size after running DT-SLIM is actually higher than without DT-SLIM.

Figures 7.4 and 7.5 show why this is the case, illustrated by two instances HTRU 2 and
ida, plotting the trajectories of depth, size, and accuracy over time. While the first figure
shows one of the larger initial decision trees in our experiments, the second figure shows
the decision tree for one of the largest instances in our set in terms of the number of
samples. In both cases, the depth decreases monotonically, but the size goes up and down
in waves. The reason for this is that DT-SLIM balances the tree since we minimize the
depth (first), and might require more nodes than before to achieve this. This also means
that after the improvement, the same number of samples is spread over more branches.
This, in turn, gives DT-SLIM more chances for improvement. Hence, the number of
nodes goes up when the subtrees are balanced and down once DT-SLIM improves the
new branches.
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Figure 7.4: The DT-SLIM progression for instance HTRU 2.

In comparison, Figure 7.6 shows the progression for the largest initial decision tree. Here,
DT-SLIM never got to the phase where it reduces the branches, as the run did not finish.
Extending the runtime for this instance indeed results in a smaller decision tree, but
given the large number of possible improvements given the large decision tree size, the
runtime for an entire DT-SLIM run can extend over several days. The obvious solution,
immediately searching the subtree after each improvement, turns out to perform worse,
as it drastically increases the overall runtime.
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Figure 7.5: The DT-SLIM progression for instance ida.
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Figure 7.6: The DT-SLIM progression for instance ccdefault.

DT-SLIM works well for initial decision trees induced by C4.5. The depth is almost
always significantly reduced, and even without minimizing the size, DT-SLIM is often
able to reduce the size. With size minimization, DT-SLIM reduces the size of almost all
C4.5 decision trees. In terms of accuracy, C4.5 performs a little better, although, on the
instances where the accuracy decreases, it does so only slightly. Overall, the accuracy
stays relatively stable, while depth and size are often greatly reduced.

The results are different for CART. When comparing CART and C4.5, the decision
tree sizes are similar—with CART decision trees being slightly smaller—but the depth
differs significantly. CART produces more balanced decision trees, hence, we expected
that DT-SLIM would not work as well here since, as we have seen above, balancing the
subtrees is an important mechanism, and CART trees do not give many opportunities
for it. Indeed, while DT-SLIM still manages to improve the depth of almost all instances,
the size reduction was not as successful. In terms of size, DT-SLIM can achieve better
size, if it minimizes the depth and size. Particularly, again, on the largest instances,
where DT-SLIM does not finish, CART achieves better results. Interestingly, although
CART achieves, in general, a better accuracy on most instances, for the largest instances,
the accuracy using DT-SLIM is better.

7.9.3 Pruning
C4.5 and CART both perform their pruning after inducing the decision tree, in a separate
step. This allows us to insert DT-SLIM between the decision tree induction and the
pruning. In this experiment, we compare the decision trees obtained from the heuristics
with pruning to the decision trees obtained by running DT-SLIM before pruning. Pruning
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C4.5 DT-SLIM(C4.5) DT-SLIM(C4.5)+Size
Instance Size Depth Acc. Size Depth Acc. Size Depth Acc.
musk1 67.4 18.6 0.74 51.4 6.0 0.54 37.4 5.2 0.61
australian 139.8 16.0 0.82 145.8 7.0 0.80 114.6 7.0 0.79
hiv 746 168.6 47.0 0.73 172.6 24.0 0.76 152.6 25.6 0.79
IndiansDiabetes 225.4 18.6 0.71 227.0 7.8 0.66 195.4 7.4 0.69
vehicle 238.2 34.8 0.71 272.2 9.4 0.68 188.2 9.0 0.68
anneal 123.0 23.0 0.72 109.0 7.0 0.80 79.0 7.0 0.90
hiv impens 183.4 21.6 0.83 201.0 15.6 0.84 176.6 16.2 0.85
tic-tac-toe 125.4 11.6 0.77 139.4 7.0 0.80 115.8 7.0 0.79
german-credit 349.4 22.6 0.68 344.6 10.0 0.66 259.8 9.6 0.67
objectivity 201.0 18.4 0.73 203.0 8.4 0.74 157.0 8.4 0.72
biodeg 195.4 19.6 0.79 187.8 7.8 0.78 159.4 8.8 0.78
messidor 370.2 32.4 0.62 376.6 10.6 0.59 311.4 11.6 0.60
yeast 831.0 26.8 0.47 925.0 13.4 0.47 753.4 13.2 0.47
hiv 1625 208.2 21.8 0.87 220.6 11.6 0.87 176.6 11.6 0.87
segment 125.4 13.6 0.96 121.4 7.6 0.95 96.6 8.2 0.96
seismic bumps 360.2 24.2 0.82 339.4 11.4 0.83 274.6 11.4 0.82
splice 253.0 14.4 0.91 308.2 10.0 0.90 237.0 9.8 0.92
kr-vs-kp 87.4 15.2 0.98 139.4 10.0 0.93 106.6 10.0 0.95
hiv schilling 539.0 30.8 0.73 601.8 18.0 0.74 497.8 18.0 0.74
Statlog satellite 610.6 32.8 0.81 675.8 12.8 0.79 503.4 11.8 0.79
bank conv 664.2 27.8 0.87 640.2 16.4 0.86 502.2 16.0 0.87
spambase 483.8 29.2 0.88 455.0 21.6 0.87 364.6 21.2 0.87
musk2 233.8 19.8 0.66 233.8 11.6 0.60 248.2 12.4 0.64
heloc dataset v1 3107.4 44.8 0.66 5406.2 36.2 0.65 4105.0 36.6 0.66
pendigits 507.0 17.0 0.92 457.0 11.0 0.92 407.0 10.0 0.91
compas-scores 3846.2 58.8 0.76 5487.4 33.6 0.77 4611.8 37.0 0.77
HTRU 2 702.2 23.2 0.97 661.8 10.6 0.96 563.4 10.6 0.96
magic04 3120.2 38.0 0.82 6029.8 27.8 0.82 4219.0 28.4 0.82
letter recognition 3751.8 27.0 0.87 5088.6 22.0 0.87 4243.4 22.2 0.87
ccdefault 7800.2 67.8 0.73 12036.2 55.4 0.74 9362.6 57.6 0.73
ida 693.0 33.0 0.98 391.0 22.0 0.98 309.0 24.0 0.98
hand posture 3010.6 36.4 0.72 3561.4 31.0 0.72 3226.2 30.4 0.72

Table 7.3: Size, depth, and accuracy of unpruned decision trees induced by C4.5 and
improved by DT-SLIM(C4.5).

without DT-SLIM is performed by the respective heuristics implementations, and the
pruning after DT-SLIM is performed by our implementations of C4.5 pruning and
cost-complexity pruning.

Hyperparameters are required by both pruning methods discussed in Section 7.8, and we
tune them as follows: in addition to the test set, we withhold an additional slice, the
validation set8. We induce the decision tree using the remaining slices. Afterwards, we

8For the eight instances that provided a test set, the validation set is created by splitting off 25% of
the samples.
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CART DT-SLIM(CART) DT-SLIM(CART)+Size
Instance Size Depth Acc. Size Depth Acc. Size Depth Acc.
musk1 73.4 15.4 0.70 67.8 7.2 0.65 58.6 6.8 0.63
australian 143.4 12.0 0.81 147.4 7.0 0.79 119.8 7.0 0.81
hiv 746 137.4 14.6 0.81 172.2 10.2 0.75 151.4 10.2 0.79
IndiansDiabetes 217.8 15.0 0.72 221.4 7.6 0.66 190.6 7.8 0.66
vehicle 230.2 15.4 0.71 262.2 8.4 0.69 209.8 8.8 0.69
anneal 129.0 20.0 0.92 147.0 7.0 0.93 101.0 7.0 0.83
hiv impens 170.2 18.2 0.81 208.6 13.6 0.82 177.8 13.4 0.82
tic-tac-toe 112.6 10.6 0.79 131.8 7.0 0.81 115.0 7.0 0.80
german-credit 333.0 16.4 0.68 335.4 8.6 0.65 293.4 9.2 0.66
objectivity 207.4 19.2 0.75 195.8 8.4 0.72 161.8 8.8 0.73
biodeg 195.8 14.8 0.80 195.8 8.0 0.78 153.8 7.4 0.78
messidor 357.0 20.4 0.62 369.8 10.4 0.59 292.2 10.4 0.60
yeast 825.0 25.2 0.50 926.2 11.8 0.46 820.6 12.2 0.45
hiv 1625 188.2 14.0 0.86 228.2 10.8 0.84 181.8 11.0 0.86
segment 127.4 15.6 0.96 119.0 8.6 0.96 107.0 8.0 0.96
seismic bumps 351.4 19.8 0.81 336.6 9.8 0.81 267.0 9.6 0.80
splice 245.0 14.2 0.92 297.8 9.8 0.89 255.0 10.0 0.90
kr-vs-kp 94.6 14.6 0.98 163.8 9.6 0.94 133.8 9.6 0.93
hiv schilling 502.6 20.0 0.77 588.6 16.6 0.77 507.4 16.6 0.76
Statlog satellite 618.6 22.2 0.80 607.8 11.6 0.78 527.0 11.8 0.80
bank conv 623.8 26.8 0.87 807.4 15.2 0.86 658.2 16.2 0.86
spambase 465.8 32.0 0.89 463.0 17.6 0.87 437.4 19.2 0.87
musk2 226.6 18.4 0.68 225.8 10.4 0.67 189.0 11.4 0.67
heloc dataset v1 2913.4 32.4 0.61 4586.2 23.0 0.62 3560.2 23.8 0.62
pendigits 479.0 17.0 0.91 501.0 10.0 0.90 373.0 11.0 0.92
compas-scores 3659.8 32.4 0.76 5075.0 23.0 0.77 4340.6 22.8 0.77
HTRU 2 685.4 21.8 0.97 665.0 9.8 0.97 578.2 10.0 0.96
magic04 3210.2 34.4 0.82 5351.4 24.0 0.82 4025.8 25.2 0.82
letter recognition 3897.0 27.2 0.88 5077.8 22.8 0.87 4556.2 22.8 0.87
ccdefault 7505.0 42.4 0.73 10380.2 34.0 0.74 8954.6 34.4 0.73
ida 659.0 32.0 0.99 1261.0 23.0 0.99 1189.0 20.0 0.99
hand posture 3226.6 43.4 0.70 4041.0 30.8 0.70 3667.8 31.6 0.70

Table 7.4: Size, depth, and accuracy of unpruned decision trees induced by CART and
improved by DT-SLIM(CART).

vary the hyperparameters and pick the values that have the highest accuracy on the
validation set. In case of DT-SLIM, we first perform DT-SLIM and then pruning, and in
this section, we give the results of the pruning method with the hyperparameter settings
that performed best according to the validation set. The accuracy in the results is then
again measured on the test set that was never visible to the heuristic, DT-SLIM, or
pruning method during the whole process.

Table 7.5 shows the results for C4.5. We can see that the DT-SLIM’s depth reductions are
maintained even after pruning. In terms of size, the results are more mixed. Interestingly,
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C4.5 DT-SLIM(C4.5) DT-SLIM(C4.5)+Size
Instance Size Depth Acc. Size Depth Acc. Size Depth Acc.
musk1 30.2 9.4 0.65 39.8 5.2 0.69 36.2 5.6 0.58
australian 16.6 6.2 0.84 16.2 4.0 0.84 14.2 4.6 0.86
hiv 746 36.2 16.0 0.82 30.2 9.0 0.75 32.6 6.8 0.76
IndiansDiabetes 13.0 4.4 0.75 16.6 4.4 0.73 27.0 5.0 0.73
vehicle 61.4 9.2 0.71 92.6 7.0 0.67 100.2 7.8 0.66
anneal 53.0 12.0 0.98 59.0 6.0 0.86 59.0 6.0 0.77
hiv impens 44.2 10.4 0.85 64.2 9.4 0.85 43.8 8.0 0.85
tic-tac-toe 43.4 6.0 0.80 41.0 5.2 0.76 41.0 5.0 0.72
german-credit 49.0 12.0 0.73 50.6 7.8 0.70 48.2 5.8 0.71
objectivity 47.0 7.6 0.79 16.2 4.2 0.76 23.0 3.4 0.78
biodeg 29.8 8.0 0.82 44.6 5.0 0.75 60.2 6.8 0.79
messidor 31.0 7.8 0.64 37.4 5.4 0.62 66.6 7.8 0.64
yeast 55.0 8.6 0.56 33.4 6.0 0.53 63.8 7.4 0.53
hiv 1625 53.4 12.0 0.84 39.8 6.8 0.83 60.6 8.2 0.84
segment 69.8 11.6 0.96 92.6 7.2 0.95 81.0 7.2 0.96
seismic bumps 33.8 6.6 0.91 39.4 4.8 0.93 55.8 6.2 0.93
splice 56.6 10.4 0.94 33.0 6.8 0.93 40.6 7.0 0.93
kr-vs-kp 41.4 10.4 0.97 54.2 7.8 0.94 61.0 8.6 0.93
hiv schilling 57.0 8.6 0.87 21.0 4.2 0.87 27.0 4.8 0.87
Statlog satellite 123.8 12.8 0.82 186.6 10.2 0.79 115.0 9.8 0.81
bank conv 35.0 7.8 0.90 76.2 7.0 0.90 45.4 7.6 0.90
spambase 64.2 12.8 0.89 91.4 10.6 0.89 89.4 10.6 0.88
musk2 38.2 9.2 0.81 40.6 5.0 0.77 28.2 3.6 0.83
heloc dataset v1 92.2 13.2 0.74 66.2 9.8 0.73 44.2 9.8 0.74
pendigits 325.0 15.0 0.92 317.0 11.0 0.91 281.0 11.0 0.92
compas-scores 101.8 11.8 0.81 445.0 16.4 0.81 117.0 12.2 0.81
HTRU 2 20.6 6.0 0.98 25.0 5.4 0.98 49.4 7.4 0.98
magic04 325.8 15.6 0.85 659.8 20.6 0.84 445.0 20.8 0.85
letter recognition 2721.8 24.8 0.86 4185.8 21.6 0.85 3555.0 21.0 0.85
ccdefault 78.2 9.8 0.82 17.8 5.0 0.82 15.8 4.8 0.82
ida 179.0 21.0 0.99 249.0 16.0 0.99 169.0 20.0 0.99
hand posture 713.0 21.8 0.68 788.2 19.2 0.67 717.4 19.4 0.67

Table 7.5: Size, depth, and accuracy of pruned decision trees induced by C4.5 and
processed by DT-SLIM(C4.5).
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CART DT-SLIM Depth DT-SLIM Depth+Size
Instance Size Depth Acc. Size Depth Acc. Size Depth Acc.
musk1 43.4 8.6 0.62 33.4 4.2 0.63 27.0 4.0 0.62
australian 35.0 5.4 0.82 18.6 4.0 0.83 10.2 3.4 0.85
hiv 746 41.0 7.2 0.77 36.6 7.0 0.77 21.8 6.2 0.79
IndiansDiabetes 53.4 9.6 0.74 28.6 4.6 0.71 21.4 4.4 0.74
vehicle 101.4 12.0 0.68 85.8 6.6 0.69 79.4 6.4 0.69
anneal 123.0 19.0 0.91 41.0 6.0 0.87 69.0 7.0 0.91
hiv impens 75.0 10.0 0.85 75.4 7.8 0.86 82.2 8.0 0.85
tic-tac-toe 53.4 6.6 0.76 59.8 6.6 0.79 57.4 6.4 0.80
german-credit 59.4 9.4 0.72 31.4 5.0 0.73 29.8 6.0 0.71
objectivity 43.4 8.2 0.80 42.6 5.2 0.78 14.6 3.6 0.79
biodeg 87.8 11.2 0.80 54.2 5.6 0.79 50.6 6.0 0.80
messidor 34.2 8.6 0.65 176.6 9.0 0.63 111.8 6.8 0.63
yeast 45.8 8.4 0.55 82.6 8.2 0.54 73.0 7.6 0.54
hiv 1625 58.2 8.4 0.81 37.0 6.0 0.84 57.8 7.0 0.84
segment 102.2 15.4 0.95 93.4 7.8 0.95 72.6 8.0 0.95
seismic bumps 31.4 7.2 0.93 49.4 4.4 0.93 47.0 3.8 0.93
splice 45.8 8.0 0.95 42.6 7.4 0.94 43.4 7.4 0.94
kr-vs-kp 48.6 10.0 0.97 48.6 7.8 0.93 54.6 8.4 0.95
hiv schilling 88.6 6.2 0.87 99.0 6.2 0.87 44.6 6.4 0.87
Statlog satellite 88.2 9.0 0.79 107.8 9.4 0.80 96.2 9.6 0.80
bank conv 35.8 7.8 0.90 47.0 7.4 0.89 36.6 7.0 0.90
spambase 173.8 17.4 0.88 110.6 9.8 0.88 79.8 9.2 0.88
musk2 36.2 8.0 0.77 45.0 6.4 0.74 49.0 6.6 0.67
heloc dataset v1 50.2 7.8 0.73 61.4 11.8 0.73 77.0 10.4 0.72
pendigits 393.0 14.0 0.90 371.0 10.0 0.91 303.0 11.0 0.92
compas-scores 137.5 10.5 0.81 460.5 15.2 0.80 55.0 8.8 0.81
HTRU 2 17.4 3.8 0.98 26.6 6.0 0.98 28.6 7.2 0.98
magic04 249.4 13.2 0.85 514.6 17.8 0.84 344.2 16.4 0.84
letter recognition 3128.2 28.8 0.86 4141.8 21.8 0.86 3581.8 23.2 0.86
ccdefault 22.2 5.2 0.82 30.6 6.4 0.82 15.0 5.4 0.82
ida 67.0 9.0 0.99 247.0 15.0 0.99 313.0 16.0 0.99
hand posture 535.0 15.2 0.67 741.8 14.6 0.64 841.4 19.2 0.63

Table 7.6: Size, depth, and accuracy of pruned decision trees induced by CART and
processed by DT-SLIM(CART).

using size minimization does not automatically achieve a smaller size after pruning,
hinting that balancing the subtrees may actually help pruning. Overall, DT-SLIM
improved decision trees are overall smaller and less deep than C4.5 decision trees, as C4.5
achieved the smallest size on 13 and the smallest depth on 3 of the 32 instances. In terms
of accuracy, C4.5 decision trees do a little better. While the difference is mostly small,
for instances with many unknown values, like anneal, the combination of DT-SLIM and
pruning is less accurate. Here, DT-SLIM with size minimization achieves higher accuracy
than DT-SLIM without size minimization.
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Comparing CART and C4.5 after pruning, C4.5 decision trees are smaller and more
accurate, while CART decision trees remain less deep. The results are shown in Table 7.6.
Here, the size varies: sometimes CART does better without DT-SLIM, while the depth
is almost always better using DT-SLIM. Overall, CART without DT-SLIM achieves the
best size on 11 and the best depth on 6 of the 32 instances. DT-SLIM(CART)-improved
decision trees are comparatively accurate. The two DT-SLIM configurations found the
most accurate decision tree for all but 8 instances, and on these 8 instances, the accuracy
was only slightly lower than that of the CART-induced decision tree.

Pruning is important, as can be seen by comparing the result with and without pruning.
Independent of DT-SLIM, the decision trees become much smaller, less deep, and most
of the time, much more accurate. Particularly the largest unpruned decision tree for
instance ccdefault with around 7000 nodes, can achieve better generalization with only
22 nodes after pruning. Therefore, we should always compare our methods with and
without pruning. DT-SLIM still reduces the complexity and increases the accuracy of
many of the instances, making it a valuable addition before pruning.

7.9.4 CP Methods

CP methods aim for a similar goal as DT-SLIM, small and accurate decision trees,
but try to directly compute them instead of applying pruning. Hence, we wanted to
compare DT-SLIM to state-of-the-art CP methods. Unfortunately, many of them require
instances with binary domains and at most two classes (Hu et al., 2019; Verhaeghe et al.,
2020a; Aglin et al., 2020; Demirovic and Stuckey, 2021). The restriction to two classes,
limits the number of instances we could compare, and the binary domains cause practical
problems, as converting the instances causes the size to increase dramatically. Particularly
OSDT (Hu et al., 2019), which seems the most promising comparison, already exceeds
the memory bounds on medium sized instances.

We, therefore, used BinOCT (Verwer and Zhang, 2019) for our comparison, as it supports
instances with many classes and arbitrary domains. We used BinOCT with depth limits
from 2 to 6. Table 7.7 shows a comparison between DT-SLIM-improved decision trees
and BinOCT-induced decision trees. For both methods, we picked the decision trees
that performed best in terms of accuracy (Virtual Best). It is noteworthy that BinOCT
induced the decision trees much faster than DT-SLIM improved them.

The results show that, in general, DT-SLIM achieves better accuracy, but the decision
trees are usually more complex. When not picking the virtual best but the best according
to the validation set, BinOCT’s accuracy compares slightly better. Nonetheless, in this
comparison, DT-SLIM is sometimes a few percentage points worse but often significantly
better. The underlying idea behind BinOCT and similar methods is that high training
accuracy correlates with high testing accuracy. This correlation does not necessarily hold
for larger decision trees. Hence, for the instances that require large decision trees, it is
not surprising that DT-SLIM performs better.
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Virtual Best Validation Best
DT-SLIM BinOCT DT-SLIM BinOCT

Instance Size Dep Acc. Size Dep Acc. Size Dep Acc. Size Dep Acc.
musk1 42.6 5.2 0.73 29.0 5.0 0.69 29.4 4.2 0.64 21.0 4.0 0.69
australian 12.6 4.4 0.87 7.0 2.0 0.86 11.8 4.0 0.84 15.0 2.6 0.85
hiv 746 19.8 6.6 0.81 13.0 3.0 0.56 21.8 8.0 0.76 7.0 2.0 0.56
IndiansDiabetes 33.4 5.4 0.75 44.6 5.0 0.73 26.2 5.0 0.73 22.2 3.2 0.72
vehicle 118.2 7.4 0.71 49.8 5.0 0.68 109.4 7.6 0.69 39.0 4.4 0.67
anneal 83.0 8.0 0.94 5.0 2.0 0.82 41.0 6.0 0.87 5.0 2.0 0.82
hiv impens 73.8 9.4 0.87 13.4 3.0 0.85 30.2 7.6 0.85 13.0 2.8 0.84
tic-tac-toe 44.2 6.2 0.84 26.2 4.0 0.73 51.8 6.4 0.79 37.8 4.8 0.67
objectivity 21.0 4.2 0.81 39.8 5.0 0.81 26.6 4.4 0.80 15.8 3.0 0.81
german-credit 42.6 6.8 0.75 15.0 3.0 0.72 32.6 5.2 0.71 36.2 4.4 0.70
biodeg 60.6 6.4 0.82 46.2 5.0 0.78 44.6 5.2 0.78 34.6 4.4 0.79
messidor 89.4 7.2 0.66 26.6 4.0 0.64 95.0 8.2 0.64 19.4 3.4 0.64
yeast 59.8 7.6 0.57 57.8 5.0 0.56 59.0 7.6 0.53 30.6 3.6 0.54
hiv 1625 49.8 7.2 0.85 37.4 5.0 0.78 36.6 6.4 0.84 10.6 2.4 0.77
segment 81.0 7.4 0.96 29.4 6.0 0.92 73.8 7.2 0.96 19.4 5.0 0.86
seismic bumps 19.4 4.4 0.93 14.6 3.0 0.93 5.8 1.6 0.93 8.6 2.2 0.93
splice 39.4 7.0 0.94 26.2 4.0 0.75 42.6 7.4 0.94 18.2 3.0 0.74
kr-vs-kp 41.0 7.4 0.95 9.8 3.0 0.58 49.8 7.8 0.94 10.6 2.8 0.58
hiv schilling 51.8 7.2 0.88 65.0 6.0 0.83 19.8 4.4 0.87 11.0 2.4 0.83
Statlog satellite 91.8 8.6 0.82 56.2 5.0 0.79 76.2 8.8 0.80 56.2 5.0 0.79
bank conv 17.0 4.2 0.90 15.0 3.0 0.90 29.4 6.2 0.89 11.8 2.4 0.90
spambase 75.8 8.2 0.90 68.2 6.0 0.89 72.2 8.4 0.88 40.2 4.6 0.88
musk2 48.6 5.4 0.85 45.8 6.0 0.80 48.6 5.8 0.74 27.0 4.2 0.80
heloc dataset 31.0 8.0 0.74 61.0 5.0 0.73 40.6 8.8 0.73 40.6 4.2 0.73
pendigits 259.0 11.0 0.92 101.0 6.0 0.80 259.0 11.0 0.92 61.0 5.0 0.77
compas-scores 75.0 8.8 0.81 117.0 6.0 0.81 49.4 9.6 0.81 46.6 4.4 0.80
HTRU 2 23.0 5.0 0.98 30.6 4.0 0.98 6.6 2.8 0.98 7.0 2.0 0.98
magic04 358.6 15.6 0.85 109.8 6.0 0.84 160.2 13.0 0.84 53.8 4.8 0.83
letter rec 3703.4 22.0 0.86 97.0 6.0 0.47 3563.0 22.2 0.86 56.6 5.0 0.37
ccdefault 21.4 5.6 0.82 15.0 3.0 0.82 8.6 3.0 0.82 13.0 2.6 0.82
ida 181.0 16.0 0.99 55.0 5.0 0.99 139.0 12.0 0.99 7.0 2.0 0.98
hand posture 760.2 18.0 0.70 123.8 6.0 0.63 571.8 15.6 0.68 40.6 4.2 0.59

Table 7.7: Comparison between BinOCT and DT-SLIM. The left side shows the virtual
best in regards to the testing accuracy and the right hand side the best according to the
accuracy on the validation set.
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7.10 Conclusion
We introduced DT-SLIM, an anytime method that reduces the complexity of decision
trees and scales to very large decision trees and classification instances. Our approach
includes the novel SAT encoding DT_pb and novel data reductions.

The experimental results show how effectively DT-SLIM can reduce the size and depth
of decision trees induced by a standard heuristic. For very large decision trees, the
effectiveness is limited by the speed of DT-SLIM. Hence, improving the efficiency of
DT-SLIM could improve the results on these instances. Unsurprisingly, the reduction in
size is generally more significant if we minimize not only the depth but also the size. In
terms of accuracy, DT-SLIM might slightly reduce the accuracy. Hence, in applications
where a smaller or less deep decision tree is essential, DT-SLIM is very applicable.

Pruning is of utmost practical relevance, and the results look very different after applying
pruning. Generally, the decision tree’s size decreases drastically, independent of whether
it is DT-SLIM improved or not. Here, the initial decision tree after pruning can become
smaller without DT-SLIM than with DT-SLIM. In terms of accuracy, the results vary
greatly, depending on the heuristic used for the initial decision tree. For CART-induced
decision trees, DT-SLIM improves the depth consistently, achieves overall good size
reduction, and provides comparatively very good accuracy. For C4.5-induced decision
trees, DT-SLIM is also able to provide low-depth, small, and accurate decision trees.
While DT-SLIM can overall improve CART decision trees very well, it is more instance-
dependent for C4.5, where it can nonetheless very often improve the decision tree, not
only regarding the complexity but also the accuracy.

DT-SLIM shows the versatility and flexibility of the SLIM framework. The learning
context poses some unique challenges among SLIM instantiations. The encoding’s size
depends on two factors: the depth of the decision tree and the number of samples. This
two-dimensionality already makes determining a budget considerably harder. In the
encodings, keeping the decision tree consistent with the training data requires many
constraints. The large number of constraints, in turn, necessitates the use of data
reductions, as otherwise, many local instances would be too large for the solver. Even
with data reductions, the local instances become very large, which requires a long local
timeout. This long local timeout allows for comparatively few improvements. Hence,
we need a good selection strategy that will pick very few local instances that do not
admit any improvements, as we would otherwise waste a lot of time. DT-SLIM masters
all these challenges and scales far beyond the capabilities of the encodings themselves.
Furthermore, other approaches for finding low-complexity decision trees try to maximize
the accuracy, given a specific size or depth of a decision tree, like the CP methods.
While this approach works well, as our experiments show, CP methods do not work for
larger decision trees. To the best of our knowledge, GC-SLIM is the only approach that
explicitly scales to large decision trees and large instances.

In short, the results show that DT-SLIM is indeed able to reduce the complexity of
decision trees, often drastically. Further, we have shown that when considering pruning,
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the benefits carry over for many instances. DT-SLIM is, therefore, a viable method for
reducing decision tree complexity in a variety of use cases. Particularly if the depth of
the decision tree is of importance, as DT-SLIM provides significant reductions in depth.

7.10.1 Future Work
We see two parts of DT-SLIM that can be improved in future work. The running time,
as our method still requires a significant time investment and different ways of pruning
that are more interleaved into the improvement iterations.

Running Time

DT-SLIM, in the current implementation, still offers room for improvement. One avenue
of improvement is parallelization, as DT-SLIM can run in parallel on independent
subtrees. Particularly on large decision trees, this could significantly improve runtime.
Additionally, the current implementation is written in Python, but the supporting code
around the SAT solver has become relatively complex. A significant part of the runtime
is spent selecting the local instances and there, particularly on instance size reduction.
Therefore, re-implementing the supporting code in a native language, e.g., C++, could
bring considerable improvement in efficiency.

Pruning

While post-pruning works well, there are other options. As discussed in Section 7.8,
pruning can be included in the SAT encoding. In the context of DT-SLIM, it would be
possible to apply this method instead of finding classifying decision trees. While this can
be applied and tuned in many ways, it could improve the overall accuracy of the decision
tree. Furthermore, the pruning results hint at the possibility that DT-SLIM might help
post-pruning remove larger parts of the decision tree. The results could be improved
when DT-SLIM could be tuned more towards providing a good input for the pruning
method.
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CHAPTER 8
Conclusion

8.1 Concluding Remarks
We discussed different methods for scaling SAT-based methods to large instances. Our
results show that even if the encoded instance seems too large or complex to be solved,
several methods may still allow us to harness the power of modern SAT solvers. Whenever
a good, but not necessarily optimal, solution is sufficient, SLIM sets a high bar for
maximum size and complexity of an instance.

Encoding Refinement

We discussed encodings for two different problems: hypertree width and twin-width.
These encodings represent a large group of encodings with two properties: (i) the encoded
instance is considerably larger than the original instance, and (ii) they require a dedicated
characterization for the SAT encoding. In comparison, the encodings for DFVS and
graph coloring in Chapters 5 and 6 follow directly from the definition of the encoded
problem. In both cases, there is nothing we can do to make encoded instances smaller
besides choosing a different encoding. On the other hand, we showed how we can refine
the hypertree width and twin-width encodings to great effect. In the case of hypertree
width, the key was a good characterization, while for twin-width we succeeded by finding
good encodings based on the same characterization.

The performance of these refinements becomes clearer when considering the whole history
of the encodings. Since they were originally introduced in the respective papers (Schidler
and Szeider, 2020, 2021b, 2022), they were refined, and the versions presented in this thesis
perform much better. The augmented hypertree width encoding (Schidler and Szeider,
2020) originally performed much worse than the pure hypertree width encoding (Schidler
and Szeider, 2021b). The refined version discussed in Chapter 3 performs even better
than the pure encoding. The story is even more impressive for the absolute twin-width
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encoding. Here the original version (Schidler and Szeider, 2022) could solve almost no
instances, while the version presented in Chapter 4 performs better than the relative
encoding on most instances.

Another success story for encoding refinements is the decision tree encodings discussed
in Chapter 7. Table 7.2 shows how much better the refinement of Avellaneda’s (2020a)
encoding by Shati et al. (2021) performs. Overall, the success story of decision tree
encodings is also a success story of refining the encodings.

SAT encodings often work well with little effort, but, as our results show, extra effort for
refinement can go a long way towards better scalability.

Lazy Encodings

We showed one lazy encoding approach that is similar to many other lazy approaches.
Our results and a history of successful applications show how powerful lazy encodings can
be, even if the encoded instance is very large. This scalability can be supported using data
reductions, which also supported scalability in Chapter 7. Our implementation discussed
in Chapter 5 beats all available methods for DFVSP and is the new state-of-the-art for
finding minimum DFVS.

Cycle propagation, the implementation of the lazy clause generation directly into the
MaxSAT solver gives our approach a significant performance boost. Indeed, without our
data reductions, cycle propagation would have made the difference between winning or
not winning PACE 2022. While some solvers offer interfaces that allow such an approach
without changing the solver itself, this is not the case for our MaxSAT solver of choice.
Hence, we had to modify the solver, and while the results are great, our solution is
solver-dependent, removing one of the advantages of a SAT-based approach. We hope
that our results, together with other approaches that work similarly, such as for dynamic
symmetry breaking (Kirchweger and Szeider, 2021), will lead to the inclusion of the
necessary APIs in future solvers.

SLIM

The two SLIM approaches discussed in this thesis highlight two characteristics of SLIM:
(i) how effective SLIM is, and (ii) how different SLIM approaches can be in detail.

While most local improvements on a decision tree lower the decision tree’s overall
complexity—when focusing on deep branches—we need many improvements to eliminate
a single color from a graph. This difference in the effectiveness of the improvements
allows us to work with a long local timeout for decision trees and requires a short local
timeout for graph coloring.

Another big difference is the size of the encoding. While the list coloring encoding is
relatively small and becomes smaller the more constrained it is, the decision tree encoding
is comparatively large, particularly when considering the depth of the decision tree. The
result is that the local instances in DT-SLIM are limited by size and complexity. In
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contrast, the local instances in GC-SLIM are usually only limited by complexity, as
the size becomes an issue much later. This leads to a static budget in DT-SLIM and a
dynamic budget in GC-SLIM.

The last major difference is how elaborate the selection of a local instance is. In GC-
SLIM, the construction follows a clear algorithm and will quickly lead to a local instance.
Therefore, GC-SLIM’s runtime is almost entirely used by the SAT solver. DT-SLIM
constructs local instances by relying heavily on data reductions, and the local instance
selection, together with the data reductions, take up a considerable amount of the runtime.
These differences also affect how we select local instances, as the penalty for choosing an
unimprovable local instance in DT-SLIM is higher due to the elaborate selection and the
long local timeout.

Overall, both SLIM instantiations and those mentioned in related work show how well
SLIM achieves scalability. This scalability does not only compare well to other SAT-based
methods: for DT-SLIM there is no comparable non-SAT-based method, and for GC-SLIM
none of the other approaches perform as well on such a large variety of graphs.

8.2 Future Work
We have already outlined much future work in the respective chapters. In the more
general scope of this thesis, we still see much interesting work that can be done.

Although we discussed both lazy approaches and SLIM, there has not yet been a combined
approach, i.e., a SLIM approach that solves the local instances using a lazy encoding.
For graph coloring, such a lazy encoding exists (Glorian et al., 2019), and for decision
trees, finding a good lazy encoding might be a worthwhile endeavour on its own. We
expect that by using lazy encodings, we can increase the size of the local instance and
thereby leverage more improvements.

Twin-width is an interesting topic, as due to its novelty, many open questions exist. We
can use our encoding to find the twin-width of interesting graphs and expect to scale
this approach up further using cube-and-conquer and creates a very good heuristic using
a SLIM approach. While the theoretical knowledge about twin-width and how to use it
is increasing, little is known about how to compute it. We see this as another avenue for
scaling the encoding, as many insights could be included in the encoding in the form of
symmetry breaking and a propagation-like mechanism, as discussed in Chapter 5.

In a more general scope, we see many applications for SAT-based methods that can
scale. Particularly the area of explainable AI has seen many applications of logic-based
methods, among them SAT. In this thesis, we showed that decision tree learning could
be tackled using SLIM, and we expect to expand this to more areas in explainable AI.
This expectation is founded in the fact that in the context of explainable AI, we often
deal with large amounts of data and complex models, which sounds like the ideal use
case for a SLIM approach.
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APPENDIX A
Appendices

A.1 Hypertree Decompositions (Chapter 3)
In this section, we present the proofs for our two main theorems in Chapter 3, showing
the correctness of our two characterizations.

A.1.1 Proof of Theorem 3.2
In this section, we establish Theorem 3.2 in an algorithmic way, by providing polynomial-
time algorithms that transform hypertree decompositions into pure/augmented hypertree
orderings of the same width, and conversely, polynomial-time algorithms that transform
pure/augmented hypertree orderings into hypertree decompositions of the same width.
Also for this section, let H be an arbitrary connected hypergraph.

From Hypertree Decompositions to Pure Hypertree Orderings

Let D = (TD, χD, λD) be a hypertree decomposition of H of width W . We will translate
D into a pure hypertree ordering P of width W .

We assume, w.l.o.g, that the following properties hold for D:

N1 For all t ∈ V (TD), e ∈ λD(t): e ∩ χD(t) ̸= ∅.

N2 For all {t, t′} ∈ E(TD), if t′ is the parent of t then χD(t) ̸⊆ χD(t′).

We observe that N1 can be established by removing all violating hyperedges from the
respective covers. N2 can be established by contracting edges between violating nodes
and retaining the parent’s cover and bag. Due to this property, at least one vertex is
forgotten at every node (recall the definition of “forgetting a vertex” from Section 3.2).
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Next, we define a preorder ⪯∗ on V (H) by setting v ⪯∗ w if and only if f(v) is in the
subtree rooted at f(w) (this includes the case f(v) = f(w)). By letting ≺ be any total
ordering that refines ⪯∗ and setting λ≺(v) := λD(f(v)), we define P = (≺, λ≺). Further,
let A be the set of active arcs according to ≺ and A∗ its transitive closure (see Section 3.3).

We first show some properties of the transformation and then establish its correctness.
The following two observation state basic properties of pure hypertree orderings and will
be used in the following proofs:

Observation A.1. If (v, w) ∈ A∗ then there is some u ∈ V (H) such that (u, w) ∈ A,
where possibly u = v.

Lemma A.2. If (u, w) ∈ A and (u, v) ∈ A∗, such that v ≺ w then (v, w) ∈ A.

Proof. Let v′ be the ≺-smallest vertex such that (u, v′), (v′, v) ∈ A∗ holds. By the
definition of A, (u, v′) ∈ A and therefore (v′, w) ∈ A∗. The hypothesis follows inductively
by using v′ instead of u.

Lemma A.3. If (v, w) ∈ A and {v, w} ̸∈ E(G(H)) then there is some u ∈ V (H) such
that {u, w} ∈ E(G(H)) and v is arc-reachable from u.

Proof. Given the premise, there must be a u′ ∈ V (H) such that (u′, w) ∈ A and
(u′, v) ∈ A. Either {u′, w} ∈ E(G(H)) or there must be a vertex u′′ ∈ V (H) such
that (u′′, w) ∈ A and (u′′, u′) ∈ A. Since u′′ ≺ u′ ≺ v, this process moves towards the
beginning of ≺ in a strictly monotonous fashion. We therefore arrive at a vertex u such
that {u, w} ∈ E(G(H)) (Observation A.1). Since we arrived at u following an arc-path,
v is arc-reachable from u.

Lemma A.4. If (u, w) ∈ A∗, then f(u) is in the subtree rooted at f(w).

Proof. From the premise, we know that w is arc-reachable from u. We show the desired
property by induction on |{ v : (u, v) ∈ A∗, (v, w) ∈ A∗ }|, the length of the arc-path.

Base Case: The path has length 0. In this case the premise implies that {u, w} ∈
E(G(H)). Therefore, T2 implies that u and w must occur in a bag together and due to
T3 it holds that u ∈ χD(f(w)) or w ∈ χD(f(u)). Therefore, by the definition of ≺, it
holds that w ∈ χD(f(u)), as otherwise w ≺ u which would contradict the premise that
(u, w) ∈ A∗. The hypothesis is implied by w ∈ χD(f(u)) and T3.

Induction Step: The path has length i + 1. By the definition of A∗ there exists a v
such that (u, v) ∈ A∗ and (v, w) ∈ A∗. By the induction hypothesis, f(v) is in the subtree
rooted at f(w) and f(u) in the subtree rooted at f(v), consequently the induction step
holds.

Lemma A.5. If (v, w) ∈ A, then w ∈ χD(f(v)).
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Proof. Case 1: {v, w} ∈ E(G(H)). By T2, there has to be a t ∈ V (TD) such that
{v, w} ⊆ χD(t). Due to T3, w has to occur in the bag of every node on the path between
t and f(w). Since v ∈ χD(t) and by Lemma A.4, f(v) is in the subtree of TD rooted at
f(w), thus w ∈ χD(f(v)) and the lemma holds.

Case 2: {v, w} ̸∈ E(G(H)). By Lemma A.3, there exists some u ∈ V (H) such that
{u, w} ∈ E(G(H)) and v is arc-reachable from u. By T2, there is a node t ∈ V (TD) such
that {u, w} ⊆ χD(t). Due to Lemma A.4, f(u) is in the subtree of TD rooted at f(v) and
f(u) is in the subtree rooted at f(w). Since v ≺ w, it holds that f(v) is in the subtree
rooted at f(w). Since w ∈ χD(t), by T3, w must occur in all bags of the nodes on the
path between t and f(w), including f(v). Therefore, the lemma follows.

Proposition A.6. P is a pure hypertree ordering of H of width W .

Proof. We first observe that we do not change any edge cover and therefore, the width
does not increase.

Next we show that P1 holds. For every vertex v ∈ V (H) it holds that v ∈ �
λ≺(v) by

the definition of λ≺. Further, for every vertex w ∈ V (H) such that (v, w) ∈ A it holds
that w ∈ χD(f(v)) by Lemma A.5. This implies that w ∈ �

λD(f(v)) = �
λ≺(v) and

therefore, P1 holds.

Next, we show that P2 holds by contradiction. We assume for vertices v, w ∈ V (H) that
v ∈ B(w) and v ∈ �

λ≺(w). Given the definition of B and Lemma A.4, we know that v
occurs in at least one of the bags in the subtree rooted at f(w). Since λ≺(w) = λD(f(w))
and v ∈ �

λ≺(w) it must hold that v ∈ χD(f(w)) due to T4. Since v ≺ w, this
implies f(v) = f(w), therefore λ≺(v) = λ≺(w). Consequently, every u ∈ P (v, w) has
the same edge cover and thereby v ∈ R(w), implying v ̸∈ B(w) and contradicting the
assumption.

From Pure Hypertree Orderings to Hypertree Decompositions

We now proceed and show the other direction. The following lemma formally justifies
the definition of R.

Lemma A.7. Let D = (TD, χD, λD) be a hypertree decomposition and let t, t′ ∈ V (TD),
such that {t, t′} ∈ E(TD) and t′ is the parent of t. If λD(t) ⊆ λD(t′) then we can add all
vertices from χD(t) to χD(t′) and D remains a valid hypertree decomposition.

Proof. Since T1–T4 held before the transformation, we show that they also hold after
the transformation. Since we did not remove any vertices from the bags, T1 and T2 still
hold. Since t and t′ are adjacent in the tree, T3 also holds. Since by adding vertices to
the bag, we can only reduce the number of omitted vertices, T4 also holds. Finally, since
λD(t′) contains at least the hyperedges in λD(t), it remains a valid edge cover.
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Corollary A.8. Let D be a hypertree decomposition (TD, χD, λD) and let t, t′ ∈ V (TD),
such that t is in the subtree rooted at t′. If for every node t′′ on the path between t and
t′ (including t′) it holds that λD(t) ⊆ λD(t′′), then we can add all vertices in χD(t) to
χD(t′′) and D remains a valid hypertree decomposition.

Given a pure hypertree ordering P = (≺, λ≺) of H, we define D = (T≺, χD, λD), where

• T≺ is the canonical tree,

• λD(τ≺(v)) = λ≺(v) for all v ∈ V (H), and

• χD(τ≺(v)) := χ≺(v) ∪ �
u∈R(v) χ≺(u) for all v ∈ V (H).

This definition implies that for every v ∈ V (H), f(v) = τ≺(v).

Lemma A.9. If v ∈ χD(τ≺(u)) and u ≺ v then v ∈ χ≺(u) and (u, v) ∈ A.

Proof. Since v ∈ χD(τ≺(u)) either (i) (u, v) ∈ A or (ii) (u′, v) ∈ A with u′ ∈ R(u). Case
(i) implies that v ∈ χ≺(u) by definition of χ≺. Case (ii) implies that u is arc-reachable
from u′. Let u′′ be the successor of u′ in the arc-path from u′ to u. Since (u′, v) ∈ A and
(u′, u′′) ∈ A it follows that (u′′, v) ∈ A. The same argument holds for u′′ and repeating
the process eventually shows the desired property for u.

Corollary A.10. If (u, w) ∈ A, (u, v) ∈ A∗, and v ≺ w, then (v, w) ∈ A.

Proposition A.11. D = (T≺, χD, λD) is a hypertree decomposition of H of width W .

Proof. By definition of the canonical tree, T≺ is rooted at τ≺(r) ∈ V (T≺), where r ∈ V (H)
is the ≺-largest vertex. We argue that every node, except τ≺(r), has exactly one parent,
i.e., that T≺ is indeed a tree. Since H is connected, for each vertex u ∈ V (H), except r,
there exists a vertex v ∈ V (H) such that (u, v) ∈ A. Due to the definition of E(T≺) this
implies that τ≺(u) is connected to exactly one τ≺(v) such that u ≺ v. Therefore, τ≺(v)
is the parent of τ≺(u) and T≺ is connected. Since Property P1 holds, it follows that
for every τ≺(v) ∈ V (T≺), R(v) only contains vertices covered by λ≺(v). Therefore, the
preconditions of Corollary A.8 are met and λD(v) is a valid edge cover for χD(v).

Conditions T1 and T2 hold as well, as we have the following for each e ∈ E. Let u be
the ≺-smallest vertex in e, then for each v ∈ e \ {u} it holds that (u, v) ∈ A. Therefore,
by the construction of χD, e ⊆ χD(τ≺(u)).

Next we show that T3 holds. Let u, w ∈ V (H) be arbitrary vertices, such that w ∈
χD(τ≺(u)). Whenever w ≺ u and therefore w /∈ χ≺(u), T3 holds on the path from τ≺(w)
to τ≺(u) by construction of R and χD. We therefore assume that u ≺ w. It remains to
show that for each node τ≺(v) ∈ V (T≺) on the path between τ≺(u) and τ≺(w) it holds
that w ∈ χD(τ≺(v′)). We proceed by induction on the position of τ≺(v) on the path from
τ≺(u) to τ≺(w).
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Base Case: The first edge on the path is {τ≺(u), τ≺(v)} ∈ E(T≺). By Lemma A.9
it holds that (u, w) ∈ A. It then follows from Corollary A.10 that (v, w) ∈ A, thereby
showing the base case.

Induction Step: Consider an arbitrary edge {τ≺(v′), τ≺(v′′)} ∈ E(T≺) on the path
between τ≺(u) and τ≺(v). Since we know that w ∈ χD(τ≺(v′)), we can use the same
argument as in the base case to show that w ∈ χD(τ≺(v′′)). Therefore, the hypothesis
and T3 hold.

Next we prove that T4 holds by contradiction. Assume vertices u, v, w ∈ V (H), such that
v is omitted at τ≺(w), v ∈ χD(τ≺(u)) and τ≺(u) is a descendant of τ≺(w) in T . Since
v ∈ χD(τ≺(u)), either (u, v) ∈ A or (u′, v) ∈ A, where u′ ∈ R(u). Both cases imply that
either (i) (v, w) ∈ A∗ or (ii) (w, v) ∈ A∗. Case (i) implies that v ∈ R as otherwise P2
would be violated. This contradicts the assumption that v /∈ χD(τ≺(w)). Case (ii) implies
by Lemma A.9 that (u, v) ∈ A. Therefore, by Corollary A.10, (w, v) ∈ A, contradicting
the initial assumption that v is omitted at τ≺(w). Therefore, T4 holds.

Since T is a tree, λD assigns edge covers, and T1–T4 hold, D is indeed a hypertree
decomposition for H of width W .

Propositions A.6 and A.11 establish Theorem 3.2.

A.1.2 Proof of Theorem 3.3
Similar to the previous section, we prove this theorem in an algorithmic way. As before,
let H be an arbitrary connected hypergraph.

For convenience, we write

A≡ := A ∪ { (u, v) : u ≡ v },

which gives
χ≡

≺(v) = {v} ∪ { w : (v, w) ∈ A≡ }.

A.1.3 From Hypertree Decompositions to Augmented Hypertree
Orderings

Let D = (TD, χD, λD) be a hypertree decomposition of H of width W . We define
A = (≺, λ≡≺, ≡) as follows:

• We let ≡ be the equivalence relation where any two vertices u, v ∈ V (H) are
equivalent (in symbols u ≡ v), if f(u) = f(v).

• Let ≺∗ be the partial order where u ≺∗ v if f(u) is a descendant of f(v) in TD, for
any u, v ∈ V (H). We let ≺ be an arbitrary, but fixed, total order that refines ≺∗.
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• We let λ≡≺(u) = λD(f(u)) for all u ∈ V (H).

Proposition A.12. A is an augmented hypertree ordering of H of width W .

Proof. We show that A1 holds, i.e., that λ≡≺(u) contains edge covers for all bags in
χ≡≺. For this purpose, we assume w.l.o.g., that the following holds for TD: for any two
nodes t, t′ ∈ V (TD) such that {t, t′} ∈ E(TD), it holds that χD(t) \ χD(t′) ̸= ∅ and
χD(t′) \ χD(t) ̸= ∅, i.e., neither of the two sets χD(t) and χD(t′) is a subset of the other.
This can be achieved by contracting violating edges {t, t′} and retaining the larger bag.
This does not affect the validity of the decomposition, as T1, T2, T3 and T4 still hold.
This assumption implies that at each node in T at least one vertex is forgotten (recall,
again, the definition of “forgetting a vertex” from Section 3.2).

We will argue by case distinction that, given an arbitrary vertex u, it holds that χ≡≺(u) ⊆
χD(f(u)). A vertex v is contained in χ≡≺(u) for at least one of the four reasons:

(i) u = v,

(ii) u ≡ v,

(iii) {u, v} ∈ E(G(H)), or

(iv) (u, v) is a fill-in edge in A≡.

Case (i): the hypothesis χ≡≺(u) ⊆ χD(f(u)) holds, as u ∈ χD(f(u)).

Case (ii): similarly to Case (i), the hypothesis holds, as by definition f(u) = f(w).

For the remaining cases, we assume that the first two cases do not prevail.

Case (iii): by T2, there exists a bag χD(t) such that u, v ∈ χD(t). By T3 either f(u)
is a descendant of f(v) or f(v) a descendant of f(u). Since v ∈ χ≡≺(u) and we eliminated
Cases (i) and (ii) we know that u ≺ v and therefore by definition f(u) is a descendant of
f(v). By T3 this implies that v ∈ χD(f(u)).

Case (iv): this case follows similarly: from the definition of A≡ we know that u ≺ v.
Following the definition of fill-in edges, any fill-in edge (u, v) requires (possible fill-in)
edges (w, u) and (w, v). From this we also know that w ≺ u ≺ v and by definition
f(w) = f(u), or f(w) is a descendant of f(u). Since fill-in edges require other edges
to the same vertex, there has to be at least one (w′, v) such that {w′, v} ∈ E(G(H))
and by definition f(w′) = f(u) or f(w′) is a descendant of f(u), where w′ = w if
{w, v} ∈ E(G(H)). Now the desired property v ∈ χD(f(u)) holds, either because w′ ≡ u,
or because f(w′) is a descendant of f(u) and by T2 v occurs in a bag below f(u) and by
T3 in the bag of f(u).
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In order to show that A2 (the Special Condition) holds, we assume the contrary, i.e., there
are two vertices u, v ∈ V (H) such that (u, v) ∈ A∗ and there is a vertex w ∈ �

λ≡≺(v),
such that w /∈ χ≡≺(v) and w ∈ χ≡≺(u). It cannot hold that u ≡ v as then, by definition,
χ≡≺(u) = χ≡≺(v). Further, f(w) is a descendant of f(v), as otherwise v ≺ w, and
(v, w) ∈ A≡, due to fill-in edges, contradicting that w /∈ χ≡≺(v). This would imply that
w /∈ χD(f(v)), which would violate T4. Therefore A2 holds.

Since all vertices that are forgotten at the same node are equivalent and are next to each
other in ≺, A3 holds as well.

It remains to observe that since we do not change any of the edge covers in λD, the width
remains the same. This concludes the proof of the proposition.

From Augmented Hypertree Orderings to Hypertree Decompositions

Let A = (≺, λ≡≺, ≡) be an augmented hypertree ordering of H of width W . We define
D = (T≺, χD, λD) where

• T≺ is the canonical tree,

• χD(τ≺(v)) = χ≡≺(v), and

• λD(τ≺(v)) = λ≡≺(v).

Proposition A.13. D is a hypertree decomposition of H of width W .

Proof. The width of D is the same as the width of A, as we do not change λ≡≺, and A1
guarantees that for all v ∈ V (H), λD(τ≺(v)) is an edge cover of χD(τ≺(v)).

T1 holds as each v ∈ V (H) has a corresponding node τ≺(v) ∈ V (T≺) and τ≺(v)’s bag
contains v.

For T2, assume an arbitrary e ∈ E(H) and the ≺-smallest vertex v in e; now e ⊆ χD(v)
by the definitions of A≡ and χ≡≺.

To verify Condition T3, assume to the contrary that T3 is violated: i.e., there exist nodes
τ≺(u), τ≺(u′), τ≺(u′′) ∈ V (T≺), such that τ≺(u′) is on the path between τ≺(u) and τ≺(u′′).
Further, for some vertex v ∈ V (H) it holds that v ∈ χD(u), v ∈ χD(u′′), and v /∈ χD(u′).
Therefore, the set of nodes { t ∈ V (T≺) : v ∈ χD(t) } induces in T≺ the (connected)
subtrees T1, . . . , Tk, where k > 1 since T3 is violated. Let Ti be the subtree, such that
τ≺(v) ∈ V (Ti); due to A3 { τ≺(w) : w ∈ [v]≡ } ⊆ V (Ti). Further, let j ∈ {1 . . . k} \ {i}
and τ≺(rj) be the root of Tj . By assumption, v ∈ χD(τ≺(rj)), which implies by the
definition of A≡ that (rj , v) ∈ A≡ and that τ≺(rj) is not the root of T≺. Hence, there
exists a parent τ≺(pj) of τ≺(rj). By construction, v /∈ χ≡≺(pj), and pj is the ≺-smallest
vertex with an incoming arc from rj , hence pj ≺ v. Since (rj , v) ∈ A≡ and (rj , pj) ∈ A≡,
by the definition of A≡ also (pj , v) ∈ A≡, contradicting v /∈ χ≡≺(pj). Therefore T3 holds.

T4 holds due to A2.
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This concludes the proof of the proposition.

The conjunction of Propositions A.12 and A.13 establishes Theorem 3.3.

A.2 Directed Feedback Vertex Set (Chapter 5)
In this section, we list reductions from related work that we used in our implementation
and give the proofs for the correctness of the novel reductions in Chapter 5.

A.2.1 Standard DFVSP Reductions
Here, we use G ◦ v as the digraph, called the exclusion of v from a digraph G by letting
G ◦ v := G − v + Nout(v) × Nin(v). The most well-known reduction rules for DFVSP
preprocessing are those of Levy and Low (1988):

Reduction A.1 (LOOP). If there exists v ∈ V (G) such that (v, v) ∈ E(G) replace G by
G − v.

Reduction A.2 (IN0/1). If there exists v ∈ V (G) such that v has at most one incoming
edge, replace G by G ◦ v.

Reduction A.3 (OUT0/1). If there exists v ∈ V (G) such that v has at most one
outgoing edge, replace G by G ◦ v.

The latter two rules were later subsumed by Lemaic (2008), using the reductions.

Reduction A.4 (INDICLIQUE). If there exists v ∈ V (G) such that the incoming edges
of v form a diclique, replace G by G ◦ v.

Reduction A.5 (OUTDICLIQUE). If there exists v ∈ V (G) such that the outgoing
edges of v form a diclique, replace G by G ◦ v.

Apart from this, Lemaic introduced two new reductions

Reduction A.6 (DICLIQUE-2). If there exists v ∈ V (G) whose neighbors can be
partitioned into two disjoint cliques N1, N2 such that the bi-edges of v are a strict subset
of N1, replace G by G ◦ v.

Reduction A.7 (DICLIQUE-3). If there exists v ∈ V (G) without bi-edges whose
neighbors can be partitioned into three disjoint cliques N1, N2, N3, replace G by G ◦ v.

Note, that for soundness of all the above reductions it is necessary that LOOP is not
applicable to v.

Furthermore, Lin and Jou introduced three further reductions that make use of bi-edges
in the digraph.
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Reduction A.8 (PIE). If there is an arc (u, v) ∈ E(G) such that (v, u) ̸∈ E(G) and
every path from v to u in G uses a bi-edge, replace G by G − (u, v).

Reduction A.9 (DOME). If there is an arc (v, u) ∈ E(G) such that (u, v) ̸∈ E(G) and
one of the following holds

• { p : (p, v) ∈ E(G), (v, p) ̸∈ E(G) } ⊆ { p : (p, u) ∈ E(G) }, i.e., for every (p, v) ∈
E(G) that is not a bi-edge there is an arc (p, u) ∈ E(G).

• { p : (u, p) ∈ E(G), (p, u) ̸∈ E(G) } ⊆ { p : (v, p) ∈ E(G) }, i.e., for every (u, p) ∈
E(G) that is not a bi-edge there is an arc (v, p) ∈ E(G).

then replace G by G − (v, u).

Reduction A.10 (CORE). If there exists v ∈ V (G) such that all arcs of v are bi-edges
and the neighbor of v form a diclique, replace G by G ◦ v.

The CORE reduction is a special case of the INDICLIQUE and OUTDICLIQUE reduc-
tions.

A.2.2 Standard VCP Reductions
Reduction A.11 (SUBSET (Stege and Fellows, 1999)). If there exists v, u ∈ V (G) such
that {v, u} ∈ E(G) and N(v) ⊆ N(u) ∪ {u}, then replace G by G − u.

Another reduction by Fellows et al. is more complicated but generalizes many others like
the 2FOLD reduction (Xiao and Nagamochi, 2013).

Reduction A.12 (MANYFOLD (Fellows et al., 2018)). If there exists a vertex v ∈ V (G)
such that there is a partition (C1, C2) of N(v), where

• |C1| ≥ |C2|,
• Ci is a clique for i = 1, 2, and

• for each c1 ∈ C1, there is precisely one c2 ∈ C2 such that {c1, c2} ̸∈ E(G).

Then, replace G by

G − v − C2 +
�

{c1,c2}∈M,c1∈C1

{c1} × N(c2),

where M denotes the set of missing edges from G[N(v)].

Whereas MANYFOLD works well on dense graphs, the following reduction works on
sparse graphs.
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Reduction A.13 (4PATH (Fellows et al., 2018)). If there exists a vertex v ∈ V (G) such
that

• N(v) = {a, b, c, d}, and

• E(G[N(v)]) = {{a, b}, {b, c}, {c, d}},

then replace G by

G − v + {{a, c}, {a, d}, {b, d}}
+ {a, b} × N(d) + {c, d} × N(a).

Algorithm A.1: An algorithm that checks whether a vertex v is unconfined in
a graph G.
1 S ← {v}
2 P ← { u ∈ N(S) : |N(u) ∩ S| = 1 }
3 if P = ∅ then
4 u ← argminu′∈P |N(u′) \ (N(S) ∪ S)|
5 if |N(u′) \ (N(S) ∪ S)| = 0 then
6 return True
7 else if |N(u) \ (N(S) ∪ S)| = 1 then
8 S ← S ∪ {u}
9 go to 3

10 end
11 return False

While the above reductions all capture a fixed graph pattern, the applicability of the
following one is determined by an iterative procedure in Algorithm A.1.

Reduction A.14 (UNCONFINED (Xiao and Nagamochi, 2013; Akiba and Iwata, 2016)).
If there is a vertex v ∈ V (G) such that CheckUnconfined(v, G), replace G by G − v.

All of these reductions induce boundary reductions.

A.2.3 Proofs for DFVSP reductions
Theorem 5.3. For every graph G such that (H, H ′, B, c) is applicable it holds that for
every minimum VC S of G+V (H)+E(H) there is a minimum VC S′ of G+V (H ′)+E(H ′)
such that |S| = |S′| + c, and S ∩ V (G) = S′ ∩ V (G).

Proof. Let S be a minimum vertex cover of G + H and X = B ∩ S. We know that
V C(H − X) = V C(H ′ − X) + c and that Sl = S ∩ (V (H) \ B) is a minimal vertex cover
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of H − X. Therefore, |Sl| = V C(H − X), which implies that there exists a vertex cover
S′

l of H ′ − X such that |Sl| = |S′
l| + c. Then, S′ = S ∩ V (G) ∪ S′

l is a vertex cover of
G + H ′ and it holds that |S| = |S′| + c and S ∩ V (G) = S′ ∩ V (G).

It remains to show that S′ is also minimum. Assume that there was another vertex cover
C of strictly smaller cardinality. Then we can use the same steps as above to obtain a
vertex cover C ′ of G + H of strictly smaller cardinality than S. This is a contradiction,
which implies that S′ is a minimum vertex cover.

Theorem 5.4. Let G be a digraph, r = (H, H ′, B, c) be a boundary VCP reduction and
Π(G) = G′ + V (H) + E(H) such that r is applicable to G′. If
(i) all edges incident in G to any v ∈ V (H) \ B are bi-edges and
(ii) for every arc (u, w) ∈ E(G) at least one of the following holds:
(ii.a) (u, w) is a bi-edge or
(ii.b) |{u, w} ∩ B| ≤ 1 then

DFV S(G) = DFV S(G∗) + c,

where G∗ = G − (V (H) \ B) − B × B + V (H ′) + { (u, v) : {u, v} ∈ E(H ′) }.

Proof. The proof is analogous to that of Theorem 5.3.

Theorem 5.6. Let G be a loop-free digraph, such that PIE is not applicable and MANY-
FOLD is applicable to v∗ ∈ V (G) and G′ be the graph obtained from G after MANYFOLD
was applied on vertex v∗, then DFV S(G) = DFV S(G′) + |C2| and given a minimum
DFVS of G′, we can in polynomial time compute a minimum DFVS of G.

Proof. The main observation that is used to proof soundness for the MANYFOLD
reduction in the VCP case, is that without loss of generality there are only two possible
cases we need to consider. For this, first note that if v∗ is not contained in a minimum
DFVS of G, then the vertices in C1 ∪ C2 = NG

bi (v∗) are. On the other hand, if v∗ is
in a minimum DFVS S of G, then still since C1 and C2 are dicliques, it holds that
|S ∩ Ci| ≥ |Ci| − 1 for i = 1, 2. In fact, if |S ∩ Ci| = |Ci| for one of i = 1, 2 then we can
assume that it holds for both i = 1 and i = 2, since in this case v∗ must be in S and we
can replace it by the missing vertex without changing the size. Therefore, w.l.o.g. for a
minimum DFVS S of G it holds that either

1. S ∩ Ci = Ci for i = 1, 2 and v∗ ̸∈ S, or

2. |S ∩ Ci| = |Ci| − 1 for i = 1, 2.

Assume now, that we are given a minimum DFVS S of G such that 1. holds. In this case,
we obtain a DFVS of G′ as S′ = S \C2 and it follows that DFV S(G)−|C2| ≥ DFV S(G′).
To see that S′ is a DFVS of G′ observe that every edge that G′ has but not G contains a
vertex from C1 ⊆ S \ C2 = S′.
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If instead we are given a minimum DFVS S of G such that 2. holds, then let ci ∈ Ci \S. In
this case, S′ = S \(C2 ∪{v∗}) is a DFVS of G′ and thus DFV S(G)−|C2 \{c2}|+ |{v∗}| =
DFV S(G) − |C2| ≥ DFV S(G′). To see that S′ is a DFVS of G′, assume the contrary.
Then there must be cycle that is not covered by S′.

We know that at at least one of (c1, c2) and (c2, c1) is in M and proceed by a case
distinction on whether both are in M or not.

Case both are in M : Then there is no uncovered path between c1 and c2 since the
reduction is applicable. Assume there is a (w.l.o.g.) uncovered cycle. Then this cycle
must use the vertex c1 since the only added arcs, which do not have a vertex in S′ use c1.
Furthermore, the cycle must contain an arc between NG(c2) and c1 and between NG(c1)
and c1. If only the latter holds true, then the same cycle is also present in G − S. If only
the former holds true, then there is an equivalent cycle in G − S, where c1 is replaced by
c2. Since the cycle is uncovered, the arcs must go into opposite direction, i.e., be of the
form (v2, c1) and (c1, v1) or (v1, c1) and (c1, v2), where vi ∈ NG(ci), i = 1, 2. Assume the
first form, then we can transform the uncovered cycle into an uncovered path from c1 to
c2 in G by going from v2 to c2 instead of c1. This is a contradiction to the assumption
that there are no uncovered paths between c1 and c2. The argument for the latter form
is analogous.

Case only (c1, c2) is in M . Thus, every uncovered path in G from c2 to c1 uses the arc
(c2, c1). This implies that a cycle c1 . . . c1 in G′ − S′ is also a cycle in G − S, there is
a corresponding cycle with c1 replaced by c2 in G, or there is a corresponding cycle
c1 . . . c2c1 in G − S. This a contradiction to the assumption that S is DFVS of G.

Case only (c2, c1) is in M . Thus, every uncovered path in G from c1 to c2 uses the arc
(c1, c2). This implies that a cycle c1 . . . c1 in G′ − S′ is also a cycle in G − S, there is
a corresponding cycle with c1 replaced by c2 in G, or there is a corresponding cycle
c1c2 . . . c1 in G − S. This a contradiction to the assumption that S is DFVS of G.

Thus, it follows that DFV S(G) ≥ DFV S(G′) + |C2|.
As for the other direction, let S′ be a minimum DFVS of G′. Again, we consider two
cases, namely |S′ ∩ C1| = |C1| and |S′ ∩ C1| = |C1| − 1, which are the only possible cases
for the cardinality of the intersection.

Case |S′ ∩ C1| = |C1|: Then S = S′ ∪ C2 is a DFVS of G, which implies DFV S(G) ≤
DFV S(G′) + |C2|. To see that S is a DFVS of G, observe that G − S − v∗ and G′ − S′

are equal and N(v∗) ⊆ C1 ∪ C2 ⊆ S.

Case |S′ ∩ C1| = |C1| − 1: Let c1 ∈ C1 \ S′ and c2 ∈ C2 the unique vertex such that there
is no bi-edge between c1 and c2 in G. Then S = S′ ∪ (C2 \ {c2}) ∪ {v∗} is a DFVS of G,
which implies DFV S(G) ≤ DFV S(G′) + |C2|. It remains to show that S is a DFVS of
G. We consider two subcases for the number of arcs that use c1 and c2 in M .

Case only one of (c1, c2) is in M or (c2, c1) is in M . Assume (c1, c2) is in M , the other
case works analogously. Thus, every uncovered path in G from c2 to c1 uses the arc
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(c1, c2). Assume that there is a (w.l.o.g.) uncovered cycle in G − S. We know that this
cycle must use c1 and is thus of the form c1 . . . c1. Furthermore it must use c2, which
implies that there is an uncovered path from c2 to c1 as a part of the cycle. This the
cycle is actually of the form c1 . . . c2c1. Then however, there is a corresponding cycle
c1 . . . c1 in G′ − S′ since all the arcs of c2 were added to c1, which is a contradiction.

Case both (c1, c2) and (c2, c1) are in M . Assume that there is a (w.l.o.g.) uncovered
cycle in G − S. As in the previous case, we know that the cycle must use both c1 and c2
since it is otherwise also a cycle in G′ − S′. Thus, this cycle gives us an uncovered path
from c1 to c2, which is a contradiction to the assumption on M .

Since these are the only cases, we are done and DFV S(G) ≤ DFV S(G′) + |C2|, meaning
that overall DFV S(G) = DFV S(G′) + |C2|. Furthermore, the constructions used in the
proof are possible in polynomial time, which was the second claim of the theorem.

Theorem 5.7. Let G be a digraph such that 4PATH is applicable to v∗ ∈ V (G) and G′

be the graph obtained from G after 4PATH was applied to the vertex v∗, then

• DFV S(G) = DFV S(G′), and

• given a minimum DFVS of G′, we can in polynomial time compute a minimum
DFVS of G.

Proof. Let S be a minimum DFVS of G. If NG(v∗) ⊆ S, then S is also a DFVS of G′ and
DFV S(G) ≥ DFV S(G′) since every added arc uses a vertex from NG(v∗). Otherwise,
we can assume w.l.o.g. that |NG(v∗) ∩ S| = 2 and v ∈ S, since for every minimum DFVS
of G, with |NG(v∗) ∩ S| = 3, there is a minimum DFVS S∗ with NG(v∗) ⊆ S∗ of the
same size. Furthermore, there cannot be a DFVS of G, which contains less than two
elements from NG(v∗), since the elements in NG(v∗) form a path of four elements, where
every arc is a bi-edge. So let S be a minimum DFVS of G such that |NG(v∗) ∩ S| = 2
and v ∈ S. We proceed by case distinction over the two neighbors of v∗ that are in S.

Case N(v∗) ∩ S = {b, c}: In this case S′ = (S \ {v∗}) ∪ {a} is a DFVS of G′ and
DFV S(G) ≥ DFV S(G′). Assume that on the contrary, there is a (w.l.o.g.) uncovered
cycle. Then this cycle must use the vertex d since the only added arcs, which do not
have a vertex in S′ use d. Furthermore, the cycle must contain an arc between NG(a)
and d and between NG(d) and d. If only the latter holds true, then the same cycle is
also present in G − S. If only the former holds true, then there is an equivalent cycle
in G − S, where d is replaced by a. Since the cycle is uncovered, the arcs must go into
opposite direction, i.e., be of the form (va, d) and (d, vd) or (vd, d) and (d, va). Assume
the first form, then we can transform the uncovered cycle into an uncovered path from d
to a in G by going from va to a instead of d. This is a contradiction to the assumption
that there are no uncovered paths between a and d. The argument for the latter form is
analogous.
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Case N(v∗) ∩ S = {a, c}: In this case S′ = (S \ {v∗}) ∪ {d} is a DFVS of G′ and
DFV S(G) ≥ DFV S(G′). The argument showing that S′ is a DFVS of G′ is analogous
to that of the previous case.

Case N(v∗) ∩ S = {b, d}: In this case S′ = (S \ {v∗}) ∪ {a} is a DFVS of G′ and
DFV S(G) ≥ DFV S(G′). The argument showing that S′ is a DFVS of G′ is analogous
to that of the first case.

As for the other direction, let S′ be a minimum DFVS of G′. If NG(v∗) ⊆ S′, then S′ is also
a DFVS of G and DFV S(G) ≤ DFV S(G′). Otherwise, we know that |NG(v∗) ∩ S′| = 3
since G′[NG(v∗)] is a diclique.

Case NG(v∗)∩S′ = {a, b, c}: Then S = (S′\{a})∪{v∗} is a DFVS of G and DFV S(G) ≤
DFV S(G′). Assume that on the contrary there is a cycle. Then this cycle must contain
a. However, since d has the same neighbors as a in G′ this implies the existence of an
equivalent cycle with a replaced by d in G′, which is a contradiction to d ̸∈ S′.

Case NG(v∗)∩S′ = {a, b, d}: Then S = (S′\{a})∪{v∗} is a DFVS of G and DFV S(G) ≤
DFV S(G′) by an analogous argument as above.

The other two cases follow from symmetric arguments.

In order to prove soundness of UNCONFINED, we use the following definitions inspired
by (Xiao and Nagamochi, 2013).

For a set A ⊆ V (G) such that G[A] is acyclic let

Nc(A) = { u ∈ V (G) : G[A ∪ {u}] is cyclic },

i.e., the neighbors of any vertex in A such that there is a cycle through A and the vertex.
A vertex u ∈ Nc(A) is called a directed child of A if it has exactly two arcs that are
shared with vertices in A (i.e., |Nsucc(u) ∩ A| + |Npred(u) ∩ A| = 2). The vertices in A
that share arcs with u are called its parents.

Lemma A.14. Let A be a set of vertices from G such that

• G[A] is acyclic, and

• for every minimum DFVS S of G it holds that A ∩ S = ∅.

Then for each directed child u of A no minimum DFVS of G contains all vertices
w ∈ N(u) \ (Nc(A) ∪ A).

Proof. Assume that there is a minimum DFVS S of G such that S∩(N(u)\(Nc(A)∪A)) =
(N(u) \ (Nc(A) ∪ A)) for some directed child u ∈ Nc(A). The parents p1, p2 of u are in A
and thus by assumption not in S. Furthermore, since S is a DFVS and A ∩ S = ∅, we
know that Nc(A) ⊆ S since Nc(A) contains the vertices v such that G[A ∪ {v}] is cyclic.

154



A.2. Directed Feedback Vertex Set (Chapter 5)

It follows that N(u) \ A ⊆ S and thus N(u) \ A ⊆ S′, where S′ = (S ∪ {p1}) \ {u} (or
(S ∪ {p2}) \ {u}). Recall that u is a directed child of A and therefore only has two arcs
that go from or to A, which use the parents. Since we put one of u’s parents into S′ there
is at most one arc that uses u in the graph G − S′, implying that u cannot be contained
in any cycle in G − S′. Thus, the removal of u can be compensated by the addition of p1
(or p2) and we see that S′ is a minimum DFVS of G, which shares a vertex with A. This
is a contradiction.

Theorem 5.8. Let G be a digraph. After applying UNCONFINED to vertex v resulting
in G′, it holds that for every minimum DFVS S of G′ the set S ∪ {v} is a minimum
DFVS of G.

Proof. The result follows from Lemma A.14. The idea of Algorithm 5.2 is the following:
We start by assuming that S = {v} has an empty intersection with any minimum DFVS.
If this leads to a contradiction together with Lemma A.14 then v must be contained in
some DFVS and the theorem follows.

In particular, we get a contradiction, when there is a directed child u such that |N(u) \
(Nc(A)∪S)| = 0. In this case, we know that there is a DFVS of G that contains v. If there
is no immediate contradiction but there is a u ∈ Nc(A) with |N(u) \ (Nc(A) ∪ S)| = 1,
then we know that the unique vertex v′ ∈ N(u) \ (Nc(A) ∪ S) must also not be contained
in any minimum DFVS of G, which means that we can extend S by adding v′.
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