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O R I G I N A L  A R T I C L E

Regional Ionosphere Delay Models Based on CORS Data and 
Machine Learning 

Randa Natras1  Andreas Goss1  Dzana Halilovic3  Nina Magnet2 
Medzida Mulic4  Michael Schmidt1  Robert Weber3

1  INTRODUCTION

The ionized upper part of the Earth’s atmosphere known as the ionosphere 
affects the propagation of radio waves that are generated by communication and 
navigation systems. Consequently, ionospheric refraction can affect the accuracy 
and reliability of positioning applications that rely on global navigation satellite 
systems (GNSS). Dual-frequency GNSS observations facilitate the estimation of 
ionospheric effects by forming the geometry-free linear combination (L4) as well 
as reductions of most of the ionospheric range error via an ionosphere-free lin-
ear combination (L3) (Hofmann-Wellenhof et al., 2001). However, the ionosphere 
remains one of the major sources of error in single-frequency positioning, where the 
first-order ionospheric term accounts for more than 99.9% of the total ionospheric 
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Abstract
The ionospheric refraction of GNSS signals can have an impact on positioning 
accuracy, especially in cases of single-frequency observations. Ionosphere mod-
els that are broadcasted by the satellite systems (e.g., Klobuchar, NeQuick-G) do 
not include enough details to permit them to correct single-frequency observa-
tions with sufficient accuracy. To address this issue, regional ionosphere mod-
els (RIMs) have been developed in several countries in the western Balkans 
based on dense Continuous Operating Reference Stations (CORS) observations. 
Subsequently, a RIM for the western Balkans was built using an artificial neu-
ral network that combined regional ionosphere parameters estimated from the 
CORS data with spatiotemporal (latitude, longitude, hour of day), solar (F10.7) 
and geomagnetic (Kp, Dst) parameters. The RIMs were tested at the solar maxi-
mum (March 2014), a geomagnetic storm (March 2015), and the solar minimum 
(March 2018). The new RIMs mimic the integrated electron density much more 
effectively than the Klobuchar model. Furthermore, RIMs significantly reduce 
the ionospheric effects on single-frequency positioning, indicating their neces-
sity for use in positioning applications.
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delay associated with phase and code GNSS measurements (Hernández-Pajares 
et al., 2011). Because mass-market GNSS receivers commonly operate on a single 
frequency, the ionospheric range error needs to be corrected or at least mitigated by 
deploying models that minimize the ionospheric effects.

Due to the complex nature of these processes as well as the solar-terrestrial cou-
pling system, different approaches for modeling the ionosphere have been devel-
oped. Current models of the ionosphere can be categorized as physical, empirical, 
or mathematical (Farzaneh & Forootan, 2018). State-of-the-art methods utilize arti-
ficial intelligence, specifically machine learning techniques, to identify nonlinear 
relationships among the variables to improve forecasting, especially factors related 
to space-weather processes (Camporeale et al., 2018; Natras & Schmidt, 2021). 
Physical ionosphere models are based on physical and chemical processes in the 
ionosphere, as shown by the Global Assimilation of Ionospheric Measurements 
(GAIM) model (Schunk et al., 2004) and the Global Ionosphere-Thermosphere 
Model (GITM) (Ridley et al., 2006). These models rely on observations and math-
ematical representations of physical laws and can thus be quite complicated, as 
they require formidable numerical procedures with high computational costs. By 
contrast, empirical models describe the ionosphere with mathematical functions 
derived from historical observational data and statistics (Radicella & Nava, 2020). 
These models represent average conditions and regular variations of the iono-
sphere (i.e., its “climate”). Examples of such climatological empirical models are 
the International Reference Ionosphere (IRI) (Bilitza, 2018) and NeQuick (Nava 
et al., 2008). 

To correct the ionospheric delay in single-frequency observations, navigation 
satellite systems broadcast coefficients within the navigation message that are 
based on these empirical approaches. These models have been widely applied 
largely due to their simplicity. For instance, the well-known Klobuchar model 
(Klobuchar, 1987) that was adopted in the global positioning system (GPS) 
eliminates at least 50% of the ionospheric range delay error. Similarly, a spe-
cial version of the NeQuick model denoted as NeQuick-G that has been imple-
mented in Galileo can correct approximately 70% of the ionospheric code delay 
(Orus Perez et al., 2018). 

The ionospheric refraction of the single-frequency observations can be mod-
eled more precisely using GNSS observations to estimate the total electron con-
tent (TEC) along the signal path within the ionosphere; this value is proportional 
to the ionospheric refraction range. These models are typically based on estima-
tions of the vertical TEC (VTEC) on a global scale using different mathematical 
approaches. For example, global ionosphere maps (GIMs) are routinely generated by 
Ionosphere Associated Analysis Centers (IAACs) of the International GNSS Service 
(IGS) including CODE (Center for Orbit Determination in Europe, Astronomical 
Institute, University of Bern, Switzerland), ESOC/ESA (European Space Operations 
Center from European Space Agency, Darmstadt, Germany), JPL (Jet Propulsion 
Laboratory, Pasadena, California, USA), UPC (Universitat Politècnica de Catalunya; 
Technical University of Catalonia, Spain), NRCan (Canadian Geodetic Survey 
of Natural Resources Canada), WHU (Wuhan University, China), CAS (Chinese 
Academy of Sciences, China) and the OPTIMAP-Group, DGFI-TUM (Deutsches 
Geodätisches Forschungsinstitut der Technischen Universität München; German 
Geodetic Research Institute of the Technical University of Munich, Germany). The 
global VTEC distribution can be represented mathematically in the CODE maps by 
spherical harmonics (Schaer, 1999) with a spatial sampling of 2.5° × 5° in latitude 
and longitude, respectively, and a temporal resolution of two hours until the year 
2015 and one hour thereafter. The GIM products of the IAACs are used to generate 



    NATRAS et al.

a combined solution of the IGS (Hernández-Pajares et al., 2009), which generally 
has global relative errors of 10% to 20% compared to the VTEC estimated from 
topography experiment (TOPEX) satellite altimeter missions observations (Orús 
et al., 2002). The GNSS-derived ionosphere VTEC models and maps are useful 
external sources that provide information for single-frequency GNSS users seeking 
to mitigate the first-order ionospheric delay and directly reduce the ionospheric 
range error (IERS conventions, 2010). The final GIM products commonly feature a 
time delay of 1–2 weeks, while the rapid GIMs are generated with a latency of 1–2 
days (Li et al., 2020; Liu et al., 2021). The latency of GIM products can limit their 
use in real-time positioning applications.

In contrast to these models, regional ionosphere VTEC models (RIMs) may be 
more accurate as they have higher spatial and in some cases, also higher temporal 
resolution because they can incorporate observations from dense GNSS networks. 
The RIMs are based on a different set of mathematical approaches for VTEC rep-
resentation. For example, in Europe, the Royal Observatory of Belgium (ROB) gen-
erates RIMs in near real-time by applying thin plate spline interpolation (Bergeot 
et al., 2014). Other approaches for regional VTEC mapping in Europe include series 
expansions in tensor products of polynomial B-spline functions (Goss et al., 2020), 
weighting functions that take into account the location and the magnitude of the 
global electron maximum (Magnet, 2019), approximations of the ionosphere sin-
gle layer model with Taylor expansions of degree two (Boisits et al., 2020), among 
others. It is critical to recognize that most of the RIMs were developed for large 
regions, such as the European continent.

Regarding the temporal resolution of the ionospheric products, use of the slant TEC 
(dSTEC) RMS can result in improvements of approximately 13% and 20% when the 
temporal sampling is increased from 2 hrs to 1 hr for low and high-resolution global 
ionosphere B-spline models, respectively, (Goss et al., 2019). However, increasing the 
temporal sampling from 1h to 10 min resulted in minimal improvements of only 3% 
to 4% for low and high-resolution global ionosphere B-spline products, respectively. 
Further investigation of global VTEC products in different latitudinal ranges (Liu 
et al., 2021) revealed no differences in the standard deviations of the GIMs at 1 hr, 
45 min, 30 min, and 15 min temporal resolutions in the mid-latitudinal range (30° N 
to 50° N) with regard to VTEC from the Joint Altimetry Satellite Oceanography 
Network (JASON) satellite altimeter mission. By increasing the temporal resolution 
from 1 h to 15 min, the RMS of the dSTEC assessment decreased by less than 0.01 
TECU in the mid-latitudinal range (30° N to 50° N). By contrast, an improvement 
of approximately 0.2 TECU in standard deviation and of 0.5 TECU in the RMS was 
obtained when the temporal resolution was increased from two hrs to one hr.

Recently, there has been increasing interest in state-of-the-art machine learning 
applications for global and regional ionosphere modeling. Among these studies, a 
feed-forward neural network was applied for regional VTEC modeling over Nigeria 
(Okoh et al., 2016) that was based on inputs of geomagnetic latitude and longitude, 
year, day of the year, the hour of the day, Dst index, sunspot number, and critical 
plasma frequency (foF2) from the International Reference Ionosphere (IRI) model. 
Other applications include regional VTEC modeling over Brazil using inputs of lat-
itude and longitude (Leandro & Santos, 2007), global VTEC modeling with inputs 
of latitude and longitude, day of the year, F10.7 and Kp indices (Orus Perez, 2019), 
regional VTEC modeling over South Africa using the day of the year, the hour of 
the day, a four-month running mean of sunspot number and the running mean 
of the previous eight hours of the Ap index (Habarulema et al., 2009), as well as 
others. Zhao et al. (2021) used spherical harmonics with a neural network based on 
an extreme machine-learning technique for real-time modeling of the ionospheric 
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delay. Similarly, Zhang et al. (2019) successfully combined the machine learning 
algorithm of a support vector machine with the regional VTEC polynomial model 
based on the CORS observations. Liu et al. (2020) utilized a type of recurrent neu-
ral network known as long short-term memory (LSTM) to forecast global VTEC 
maps; the LSTM model processes sequences of past observations of spherical har-
monic coefficients, extreme ultraviolet (EUV) flux, and Dst index, among others to 
understand temporal-dependent relationships. Kaselimi et al. (2020) also applied 
an LSTM model with inputs that included satellite position coordinates, the azi-
muth and the elevation angles of the satellite, and the output of the VTEC. The 
wavelet neural network for VTEC modeling (El-Diasty, 2017) combines the inputs 
of the day of the year, the hour of the day, latitude, and longitude of the ionosphere 
pierce point (IPP) with the estimated Klobuchar model at the same IPP point and 
VTEC output data for the model training estimated from the CORS stations obser-
vations. Another application of support vector machines extrapolates VTEC in 
regions where GNSS observations are not available (Kim & Kim, 2019). The inputs 
include the hour of the day, the day of the year, F10.7 and Kp indices, sunspot 
number, and VTEC from areas where GNSS observations were available to provide 
estimates for VTEC for regions devoid of GNSS observations (Kim & Kim, 2019). 
Also, an ensemble of tree-based meta-estimators has been developed by combin-
ing random forest, adaptive boosting (AdaBoost), and extreme gradient boosting 
(XGBoost) methods for VTEC forecasting during both calm and stormy geomag-
netic conditions (Natras et al., 2022a) and estimating forecast uncertainties as an 
ensemble spread (Natras et al., 2022b). Various machine-learning approaches and 
applications have been proposed. The input data can include spatial information 
(latitude and longitude of the station or the IPP or the satellite position, among oth-
ers), temporal information (year, day of year, hour of day), solar activity (sunspot 
number, F10.7, EUV flux, and others), geomagnetic activity (Kp and Dst) as well 
as ionosphere information (IRI, Klobuchar, GNSS-derived VTEC, VTEC polyno-
mial model, and spherical harmonic coefficients). Most previous studies employed 
a fully-connected feed-forward neural network. Regarding the size of the training 
dataset, different lengths of time were used in previous studies, including one day 
(Zhang et al., 2019; Zhao et al., 2021), four days (El-Diasty, 2017; Kaselimi et al., 
2020), ten days (Leandro & Santos, 2007), one to two years (Kim & Kim, 2019; Liu 
et al., 2020; Natras et al., 2022a), and four years (Habarulema et al., 2009; Okoh 
et al., 2016; Orus Perez, 2019) among others. Results from previous studies demon-
strated the feasibility of machine learning for VTEC estimation, with a focus on 
artificial neural networks and also when applied to a limited dataset of several 
days. While large datasets are typically perceived as essential for training neural 
networks, it is possible to train these models with relatively small amounts of data 
(Motamedi et al., 2021; Rajpurkar et al., 2020). The lack of large datasets will need 
to be compensated by high-quality data. This represents the core of a data-centric 
approach in machine learning (Motamedi et al., 2021). In these cases, data quality 
is more important than the dataset size, i.e., shifting from big data to good data. 
This facilitates effective training of neural networks with smaller datasets.

Most of the aforementioned ionosphere models rely on GPS or GPS + 
GLONASS observations from the IGS, the European EUREF Permanent 
Network (EPN), and/or the CORS network as a source of VTEC information. 
The yellow area in Figure 1 shows the approximate location of the Balkan 
Peninsula (36° N to 48° N, 13° E to 30° E). The distribution of IGS and EPN 
tracking ground stations is poorer in this region compared to the rest of Europe. 
However, most countries in this region operate dense CORS networks. This is 
also a case in the countries in the western part of the Balkan Peninsula, whose 
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observations have not been previously used to generate ionosphere VTEC mod-
els. These networks provide denser GNSS observation coverage for VTEC mod-
eling in the western Balkans.

This research aims to extend current knowledge in the field of RIM development 
based on GNSS observations by generating ionosphere models for a region that is 
much smaller than most continents using information available from dense CORS 
networks. With this in mind, this paper describes the development, validation, and 
applicability of regional GNSS-based ionosphere models while accounting for ion-
osphere effects in positioning applications. We will determine how to use data from 
CORS networks for regional/national VTEC modeling and identify the advantages 
that VTEC models developed for small regions can bring to positioning applica-
tions, using the western Balkans as a test case example. Therefore, the aim of the 
study is not to describe the physical and/or chemical processes associated with the 
ionosphere constituents, but instead to generate models that take into account and 
mitigate the ionospheric effects that hinder GNSS/GPS positioning utilizing avail-
able CORS data. Until now, no regional ionosphere model based on the national 
GNSS infrastructure has been established or developed in the countries in the 
western Balkans region. To address this knowledge gap, this paper presents three 
new regional ionosphere models based primarily on the observations from the 
CORS networks: (i) a first model developed for a small region inside one country; 
(ii) a second model developed for several countries within the western Balkans; and 
(iii) a third model that covers the entire western region of the Balkan Peninsula. As 
part of the third model, we propose an approach based on state-of-the-art machine 
learning techniques including the use of an artificial neural network. These models 
will be evaluated in single-frequency precise point positioning. To the best of our 
knowledge, this is one of the first studies to use observations from the CORS net-
works located in the western part of the Balkan Peninsula to generate GNSS-based 
ionosphere models and to evaluate them in positioning applications to mitigate the 
effects of ionospheric refraction.

FIGURE 1 Locations of GNSS tracking ground stations used by CODE to produce GIMs 
(obtained from Jee et al. (2010)). 
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2  METHODOLOGY

The impact of the ionosphere on the propagation of radio waves propagation can 
be described by the STEC in Equation (1):

	 STEC N s dse
k

i

� � ( ) � (1)

where Ne (s) is the electron density along the signal ray path between the sat-
ellite i and the receiver k. STEC is measured in TEC units (TECU), where 
1 TECU= 1016 electrons/m2. The vertical TEC (VTEC) can be expressed as shown 
in Equation (2):

	 VTEC STEC z� �cos ' � (2)

where z’ is the zenith angle of the signal path in a mean altitude H of the iono-
spheric shell. The ionosphere is approximated as the single-layer model (SLM), 
which assumes that all free electrons are concentrated within a shell of infinitesimal 
thickness. The SLM mapping function F(z) can be written as shown in Equation (3):

	 F z STEC
VTEC z

( )
cos '

= =
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R H
z�
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where z is the zenith angle at the height of the receiver, R is the mean Earth radius 
and H is the aforementioned height of the SLM above the Earth’s surface (Schaer, 
1999). The SLM height typically ranges between 350 km to 450 km (Jiang et al., 
2017; Mannucci et al., 1998; Schaer, 1999). IGS analysis centers have adopted a thin 
layer height of 450 km for the ionosphere products (Feltens, 2003). In this study, we 
also adopted the SLM height of 450 km above the Earth’s surface. 

2.1  Selection of Study Region and Data

Figure 2 shows the locations of stations that belong to the CORS (blue dots) and 
the EPN (red dots) networks whose dual-frequency GPS observations were used in 
this study to generate VTEC models. Two VTEC models were developed based on 
the regions covered, namely, RIM IONO_BH and RIM IONO_WB. 

To estimate the RIM IONO_BH, the station network was selected to include 
nine Bosnia and Herzegovina Positioning Service (BIHPOS) stations each located 
approximately 80 km from the central EPN station in Sarajevo. An orange ellipse on 
the map marks this area. The RIM IONO_WB was derived from GPS observations 
obtained from the following CORS networks: the Albanian GNSS Permanent Stations 
(AlbGNSS), BIHPOS, the Croatian Positioning System (CROPOS), the Macedonian 
Positioning System (MAKPOS), and the Slovenia-Geodesy-Navigation-Location 
(SIGNAL). We also used observations from eight EPN stations within this region. 
Observations from the CORS networks located in Serbia and Kosovo were not avail-
able from the network providers and are not freely available to the public; thus this 
information was not used in this study. Also, historical data from the CORS network 
in Montenegro were not preserved for these study periods and thus not available 
for use in this study. Consequently, CORS observations from these countries were 
not included in the RIM IONO_WB. The network selected for the RIM IONO_WB 
included approximately 80 CORS and EPN stations between approximately 40° N 
to 47° N and 13° E to 23° E. RIM IONO_WB was developed as an independent 
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model that would be applicable for each of the participating countries mentioned 
above. Therefore, the RIM IONO_WB includes files with the extension “ION” that 
contain separate sets of ionospheric corrections for each country. The reference 
point of the Taylor series expansion was set approximately in the mid-range of 
each country included in the study. Permanent stations that were used to validate 
the newly-developed RIMs are highlighted on the map with inner black and white 
circles (Figure 2). These stations were not used for estimating the regional models. 
The following stations shown on the map were used to validate the RIM IONO_BH: 
EPN SRJV and BIHPOS SARA (which are very close to one another), BIHPOS SEKO, 
and, additionally, two stations outside the modeled region, EPN POZE and EPN 
DUB2. Stations used for the RIM IONO_WB and the RIM IONO_WB_AI validation 
included EPN GSR1, EPN POZE, EPN SRJV, IGEWE TIRA, and EPN ORID. 

2.2  Regional Ionosphere Modeling with Bernese GNSS 
Software

Bernese GNSS Software version v.5.2 (Dach et al., 2015) was used to process 
GNSS data, estimate ionosphere models and perform positioning. Before gener-
ating ionosphere models, several pre-processing steps must be carried out. Table 1 
summarizes routines and the processing steps according to the order of their exe-
cution. Additional details on each routine and processing step in the Bernese GNSS 
software are described by Dach et al. (2015). The ionosphere models were esti-
mated within the IONEST routine using the Bernese-recommended values (Dach 
et al., 2015) listed in Table 2. This routine works only on the assumption of GPS 
zero-difference observations. 

FIGURE 2 Map documenting the locations of the dual-frequency stations of the CORS 
(blue dots) and the EPN (red dots) networks whose observations were used for VTEC modeling. 
Stations used for the RIM validation are highlighted with an inner black dot with a white rim; 
their names are indicated on the map.
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Ionosphere mapping was performed on the undifferenced (zero-difference) level 
by analyzing the so-called geometry-free linear combination (L4) of phase obser-
vations which are formed by subtracting observables at different frequencies. This 
means that all frequency-independent effects such as the satellite-receiver geomet-
rical range, clock errors, and tropospheric delay, among others, were canceled out, 
while the ionospheric effect remained (Ciraolo et al., 2007). Thus, the geometry-free 
linear combination includes the ionospheric delay and can be used to estimate the 
ionosphere model. With this approach, the carrier phases are not fitted to code 
(pseudo-range) observations; this means that no code-phase leveling was applied.

The observation equation for zero-difference phase observations can be outlined 
as shown in Equation (4):

	 L L L
f f

F z VTEC s BIPP IPP4 1 2
1
2

2
2 4

1 1
� � � � � �

�

�
�

�

�
� � � � � �� � � �( ) ( , ) � (4)

where L4 is the geometry-free phase observable, � � � � �4 03 1017 2 1. ms TECU  is a 
constant, f1, f2 are the frequencies associated with the carriers L1 and L2, � ��  rep-
resents the wind-up term associated with the right-handed polarized GPS signal 
(typically a centimeter-level term), B B B4 1 1 2 2� � � �� �  is a constant phase bias 
caused by the initial phase ambiguities (i.e, unknown integer number of cycles) B1 
and B2 with their corresponding wavelengths λ1  and λ2 .  The initial phase ambigu-
ities B1 and B2 are estimated as real-value parameters within the initial least-squares 
adjustment using the phase observations L1 and L2 on both frequencies. The initial 
phase ambiguity has the same value provided that no loss of signal lock occurs. At 
least one parameter ( )B4  has to be solved for each receiver and satellite pass since 
it contains phase ambiguities. For cycle slip detection, differences between two sat-
ellites for the same epoch are formed from the measurements in the observation 
files. If cycle slips are detected, the geometry–free linear combination L4  is checked 

TABLE 1
Processing Steps in the Bernese GNSS Software

Steps Bernese software routine

Cutting 24-hour RINEX observations into 1-hour files CCRINEXO

Orbit and Earth’s orientation information preparation POLUPD, PRETAB, ORBGEN

Satellite clock correction files preparation RNXCLK, CCRNXC

Import of RINEX observation data into the Bernese format RXOBV3

Receiver clock synchronization CODSPP

Ionosphere model estimation IONEST

TABLE 2
The Specific Options for the VTEC Modeling (IONEST Routine)

Pre-processing and processing options

Linear combination for break detection (data cleaning) L4

A priori sigma of a single observation 0.01 m

Elevation cut-off angle 15°

Height of the single layer 450 km

Degree of Taylor series expansion in latitude (nmax) 1

Degree of Taylor series expansion in hour angle (mmax) 2
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in order to determine their size in both frequencies. A new ambiguity is set up at 
the corresponding epoch of the detected cycle slip. Pre-processing options were set 
in the IONEST routine to define a new ambiguity parameter B4  for each detected 
cycle slip. The resulting geometry-free linear combination in Equation (4) allows 
us to estimate VTEC as a function of geographic latitude φIPP and the Sun-fixed 
longitude sIPP at the intersection point of the line-of-sight between the satellite 
and the receiver with the ionospheric layer. This intersection point is known as the 
ionospheric pierce point (IPP). 

The regional VTEC model is based on the two-dimensional (2-D) Taylor series 
expansion shown in Equation (5): 

	 VTEC s c s sIPP IPP nm
m

m

n

n

IPP
n

IPP o
m( , ) ( ) ( )

maxmax
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��
��

00
0 � (5)

where n, m are the degree values of the 2-D Taylor series expansion in geographic 
latitude and Sun-fixed longitude, nmax, mmax are the maximum degree values of the 
Taylor series expansion in geographic latitude and Sun-fixed longitude (Table 2), 
φ0 0, s  denote the coordinates of the origin of the Taylor expansion and cnm  stands 
for the unknown coefficients of the Taylor series expansion, i.e., the regional iono-
sphere model parameters to be estimated (Dach et al., 2015; Wild, 1994).

The Sun-fixed longitude s is related to the local solar time (LT) as shown in 
Equation (6): 

	 s LT UTIPP IPP� � � � �� � � � (6)

where UT is an abbreviation for the Universal Time, LT is local time, and λIPP 
denotes the geographical longitude of the IPP; all values are in radians. 

The latitude φIPP and the longitude λIPP  as shown in Equation (7) and Equation (8):

	 � � � � �IPP k k zA� ��sin (sin cos cos sin cos )1 � (7)

	 � �
�

�IPP k
z

IPP

A
� �

�

�
��

�

�
��

�sin
sin sin
cos

1 � (8)

where � �k k,  are the latitude and longitude of the receiver k, Az stands for the azi-
muth from the receiver to the satellite, and ψ  is the angle between the lines joining 
the center of the Earth with the IPP and receiver location. It can be calculated as 
shown in Equation (9):

	 �
�
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�

�

�
�

�

�
��

2
1E R
R H

El lsin cos � (9)

where El  stands for the elevation angle.
Ionosphere models were derived with a temporal sampling of one hour with 

the Bernese default extension ION and later combined into a 24-hour file for each 
day, namely the RIM IONO_BH and RIM IONO_WB, as described in Section 2.1.

When applying the ionosphere model presented in Equation (5), the ionospheric 
range corrections (in meters) for the zero-difference GPS observations of the i-th 
frequency can be computed as shown in Equation (10):

	 �i IPP IPP
i

IPP IPPs z
f
F z VTEC s( , , ) ( ) ( , )�

�
�� �

2
	 with i = 1, 2� (10)
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where the negative sign is used for phase observations and the positive sign for 
code observations.

2.3  Regional Ionosphere Modeling with Machine 
Learning

Machine learning represents a branch of artificial intelligence (AI) that can 
approximate the function between inputs and outputs based on rules/relationships 
that an AI system has “learned” from the data during the learning/training phase. 
This characteristic distinguishes machine learning from traditional modeling/
programming approaches which require an extensive list of rules describing rela-
tionships between inputs and outputs to be explicitly specified (Natras & Schmidt, 
2021). More specifically, machine learning addresses the problem of finding an 
approximation function that maps inputs (called predictors, features, or indepen-
dent variables) to one or more outputs (called responses or dependent variables). 
This study focuses on the estimation of a single output (VTEC). Therefore, the out-
put is presented below as a single-column vector. To start, a dataset was prepared 
that contained the measurements of the input feature x j  ( ), � ,� ,�j p� �1 2  and the 
output y  for a set of observations i i n�( ,� , � , � )� �1 2  as indicated in Equation (11):
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Artificial neural networks (ANNs) represent a state-of-the-art technique with 
widespread applications in many fields. The ANN usually consists of an input layer 
with input variables, an output layer with output variables, and one or more hid-
den layers between them. Hidden layers allow the model to create a complex non-
linear mapping function between the network inputs and outputs by introducing 
a nonlinear activation function (Sharma et al., 2020). To estimate the values of the 
neurons in a current layer, parameters (weights) need to be added to the values of 
the neurons from the previous layers. The weight matrices can be defined as shown 
in Equation (12):
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Where the matrix W contains all weights in the neural network. W( )k−1  are weight 
matrices assigned to p neurons from the previous layer (k–1) in order to estimate 
values of L neuron(s) in the current hidden or output layer (k) with k = (2, 3, …, K), 
where k = 1 corresponds to the input layer. wl o,  is the bias term ( ),� , � , �l L� �1 2 .  
In the matrix X  we added an element xi o, = 1  to each row. It is convenient to 
include this element, because of the bias term wo  as this will permit us to present 
Equation (13) in vector form as a scalar product. Thus, the linear model will predict 
the output yi  given a vector of input features xi  and weights wl  with l = 1,  i.e., the 
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model consists of an input and an output layer, which can be expressed as shown 
in Equation (13): 

	
=

+ = = = =∑1 1, , 10( )ˆ , p T
i i i i j i j ijy e y f w xx w w x � (13)

where ei  is an error. The weights in W are determined during the training phase 
using the method of least squares to minimize the sum of the squares of the error 
ei  and as shown in Equation (14):

	
= =

= = −∑ ∑2 2
1 1( ) ( )ˆ .n n

i i ii iR e y yW � (14)

In a fully connected network, all neurons in one layer are connected to all neurons 
in the next layer; this is also known as a multilayer perceptron network (Ramchoun 
et al., 2016). A feed-forward network indicates that the connections between the 
neurons are all in one direction (from input to output) and hence the information 
is fed-forward from one layer to the next. Afterward, the backpropagation is used to 
adjust the weights of the ANN using a stochastic gradient descent method (Bottou, 
1991) to minimize R( )W , as shown in Equation (14). In this study, we tested differ-
ent setups of an ANN architecture and inputs. These specifications are presented 
in Table 3. In total, six ANN and two Random Forest (RF) models have been devel-
oped. One ANN model does not contain a hidden layer (ANN1); all other ANN 
models have hidden layers. The ANN1 model is an example of the linear model, 
where the outputs are estimated as described by Equation (13). The architecture 
of the ANN5 model is shown in Figure 3. ANN5 is a fully-connected feed-forward 
network with an input layer, three hidden layers, and an output layer. The number 
of neurons in the first layer corresponds to the length of the vector x j .  Neurons in 
each layer can be referred to as activation neuron vector ai

k( )  (k = 1, … , K). The 
input layer can be expressed as a xi i

( )1 = .  Hidden layers compute the derived fea-
tures from ai

( )2  to ai
K( )−1 .  The last layer provides the output yi i

K
 = a( ) .  Activation 

neurons in the hidden layer can be calculated as described in Equation (15):

	 a z W ai
k k

i
kq q T( ) ( ) ( )( )� � � �� �1 1 � (15)

where q  is the activation function (Hastie et al., 2009). The activation function used 
in hidden layers is known as a ReLu (Rectified Linear unit) function (Sharma et al., 
2020). ReLu is a non-linear activation function that is widely used in deep learning 
models because of its simplicity and effectiveness. It is defined in Equation (16):

	 q( ) max( , )z z= 0 � (16)

meaning that the function will generate a value of zero for any negative value of 
z; for any positive value, it will return that value. The network output yi  can be 
defined as shown in Equation (17): 

	 y qi i
K K

i
KT

 � � � �� �a W a( ) ( ) ( )1 1 . � (17)

The optimal hyper-parameters (number of neurons, number of hidden layers, 
learning rate for the stochastic gradient descent, and so on) were selected by test-
ing different values within a certain range and observing the changes in R( )W . 
Hyperparameters were searched within the following intervals: number of hidden 
units = [5, 10, 20, 30, 40, 60], number of hidden layers: [1, 2, 3, 4], epochs = [100, 
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200, 300, 400, 500], batch size = [50, 100, 200, 300, 400, 500]. Batch size refers to 
the number of training examples propagated through the network in one iteration 
(forward/backward pass). The number of epochs represents the number of com-
plete passes through all the training examples. Hyperparameters that minimize 
R( )W  were selected. The optimal number of hidden units was identified as 10 with 

TABLE 3
AI Models with Input data, Architecture, and Training Quantities. A bias unit is added to the 
input and the hidden layers in the ANN. ReLu, Rectified Linear Unit, SGD, Stochastic Gradient 
Descent.

AI models Input data Architecture Training

ANN1 Regional ionosphere 
coefficients 
Latitude, Longitude

Input layer: 27 neurons 
Output layer: 1 neuron
Linear mapping

Optimizer: SGD
Learning rate: 2e-1
Momentum: 0.9
Epochs: 400
Batch size: 300

ANN2 Regional ionosphere 
coefficients 
Latitude, Longitude

Input layer: 27 neurons
Hidden layer 1: 10 neurons
Hidden layer 2: 10 neurons
Hidden layer 3: 10 neurons
Output layer: 1 neuron
Activation function: ReLU

Optimizer: SGD
Learning rate: 1e-3
Momentum: 0.9
Epochs: 400
Batch size: 300

ANN3 Regional ionosphere 
coefficients 
Latitude, Longitude
HoDsin , HoDcos

Input layer: 29 neurons
Hidden layer 1: 10 neurons
Hidden layer 2: 10 neurons
Hidden layer 3: 10 neurons
Output layer: 1 neuron
Activation function: ReLU

Optimizer: SGD 
Learning rate: 1e-3
Momentum: 0.9
Epochs: 400
Batch size: 300

ANN4 Regional ionosphere 
coefficients
Latitude, Longitude
HoDsin ,  HoDcos
F10.7

Input layer: 30 neurons
Hidden layer 1: 10 neurons
Hidden layer 2: 10 neurons
Hidden layer 3: 10 neurons
Output layer: 1 neuron
Activation function: ReLU

Optimizer: SGD 
Learning rate: 1e-3
Momentum: 0.9
Epochs: 400
Batch size: 300

ANN5
IONOWB_
AI

Regional ionosphere 
coefficients
Latitude, Longitude
HoDsin , HoDcos
F10.7
Kp, Dst

Input layer: 32 neurons
Hidden layer 1: 10 neurons
Hidden layer 2: 10 neurons
Hidden layer 3: 10 neurons
Output layer: 1 neuron
Activation function: ReLU

Optimizer: SGD 
Learning rate: 1e-3
Momentum: 0.9
Epochs: 400
Batch size: 300

ANN6 Latitude, Longitude
HoDsin , HoDcos
F10.7
Kp, Dst

Input layer: 7 neurons
Hidden layer 1: 10 neurons
Hidden layer 2: 10 neurons
Hidden layer 3: 10 neurons
Output layer: 1 neuron
Activation function: ReLU

Optimizer: SGD 
Learning rate: 1e-4
Momentum: 0.9
Epochs: 200
Batch size: 50

RF1 Regional ionosphere 
coefficients
Latitude, Longitude
HoD
F10.7, Kp, Dst

Number of trees= 300
Min_samples_split=5
Min_samples_leaf=3

Criterion: Mean 
squared error

RF2 Latitude, Longitude
HoD
F10.7, Kp, Dst 

Number of trees= 300
Min_samples_split=5
Min_samples_leaf=5

Criterion: Mean 
squared error
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three hidden layers. This architecture was kept constant in all ANN models from 
Table 3 tested; additional fine-tuning resulted in no significant differences. The 
addition of more neurons and more layers to the ANN increases the complexity 
of the interactions between layers and neurons. While this can be perceived as 
a positive, too much complexity can lead to overfitting the training data as the 
machine learns from its noise and is thus not capable of generalizing informa-
tion from new examples. Choosing the appropriate complexity of an ANN requires 

FIGURE 3 Representation of the architecture of the ANN5 model with one input, three 
hidden, and one output layer (right). An additional bias unit was added to the input and the 
hidden layers. ANN architectures were drawn using the web-based tool NN-SVG (LeNail, 2019).
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careful attention when optimizing the model. Additionally, the Random Forest 
(RF) algorithm (Breiman, 2001), which builds an ensemble of decision trees, can 
be used to compare results and determine which input features are relevant. The 
RF algorithm provides the possibility of easily estimating the relative importance 
or contribution of each input feature (Breiman, 2001). A detailed explanation of 
how a decision tree and RF are built to address the VTEC problem can be found in 
Natras et al. (2022a). The RF model includes 300 decision trees; the quality of splits 
within the trees is measured with the mean squared error.

Most of the input data for these models consists of the coefficients c ,nm  
i.e.  regional ionosphere parameters from Equation (5), which is estimated for 
each hour in each country within the study region (Section 2.1) by processing the 
GNSS observations in the Bernese GNSS Software. During the training phase, the 
geographical coordinates belonging to the origin of the coefficient expansion were 
provided with the output data of the VTEC at these positions. Information on lati-
tude and longitude was then added to extract spatial interactions. Additional input 
data were introduced to each new model. The information regarding time was 
added to extract temporal dependencies and features. For the ANN models, the 
sine and cosine components are calculated to preserve their cyclic significance, as 
shown in Equation (18):
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where HoD is the hour of the day. Decision tree-based algorithms, such as RF, do 
not require time information to be split into sine and cosine components (Boussard 
et al., 2017). Also, RF considers just one input feature at a time as the splitting vari-
able when building a tree (Breiman, 2001). Therefore, it will fail to process sine and 
cosine components simultaneously, although they are expected to be considered as 
one system. Data on solar and geomagnetic activity such as the solar flux F10.7 and 
the geomagnetic indices of Kp and Dst were also introduced gradually. Eventually, 
the models (ANN6 and RF2) were trained solely on information regarding time, 
location, and solar and geomagnetic activity. The data were shuffled and randomly 
divided into training (80%) and validation datasets (20%). Using the training data, 
we built models that can approximate the function between inputs and outputs 
and estimate the outcome for new inputs. Using validation data, values for the 
hyperparameters were selected. All input features were scaled (i.e. standardized) 
to obtain data with a mean value of zero and a standard deviation of one. This is 
standard procedure in many learning algorithms that are sensitive to the scale of 
the input features (Zheng & Casari, 2018). This ensures that all inputs are treated 
equally, even if the variables have different scales. Also, gradient descent can con-
verge faster, meaning that the optimal parameters for each neuron can be located 
more quickly. Feature standardization is defined in Equation (19):

	 x
x x

i j
i j j
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where xi j,  is the data point i from j-th input feature, x j  is the mean of the j-th 
input feature (over all data points from test and validation datasets together), σσ j  is 
the standard deviation of the j-th input feature, xi j,  is the resulting standardized 
data point i from j-th input feature. Scaling is performed on each input feature 
independently. Mean and standard deviation values are then stored for later data 
to perform the consistent transformation. 
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A correlation heatmap is created from a 2D correlation matrix of the input 
features and the output (Figure 4). Coefficients cnm of the regional ionosphere 
are presented as Cnm in the heatmap. Five coefficients were estimated for 
each country, as explained in Section 2.1. Mean correlations for coefficients are 
presented. The coefficient c00 has the strongest positive correlation to VTEC, 
followed by c10 and c02, both of which have a moderate negative relationship 
to VTEC. The F10.7 index has a positive moderate relationship, while the Dst 
and Kp indices have a weaker relationship with VTEC. The lowest correlations 
involve HoD, and latitude and longitude, which were added to extract temporal 
and spatial features.

Figure 5 and Table 4 show that the temporal, solar, and geomagnetic activ-
ity information increase the ANN model accuracy, respectively, in terms of the 
RMSE and the correlation coefficients (CCs) between the VTEC model output 
and VTEC from Equation (5). These input data are useful for deriving tempo-
ral, solar, and geomagnetic features and relationships. Moreover, removing the 
regional ionosphere coefficients from the AI models (ANN6 and RF2) increases 

FIGURE 4 Correlation heatmap of the input features and the output of the machine learning 
model.
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the RMSE approximately three times and decreases the CCs by approximately 
0.1. The ANN6 and RF2 models are not as accurate as the linear model with the 
regional ionosphere coefficients (ANN1). These results indicate that estimating 
the VTEC using only the spatiotemporal (latitude, longitude, and HoD), geo-
magnetic, and solar parameters (F10.7, Kp, and Dst) will not be sufficient. These 
data alone cannot provide an accurate description of VTEC. However, in con-
junction with more influential, descriptive parameters of VTEC variations, such 
as regional ionosphere coefficients, one can significantly improve the model. 
Based on these results, the ANN5 model was selected as optimal and henceforth 
referred to as the RIM IONOWB_AI model.

Knowing the underlying relationships between the inputs and the output 
of the AI model is useful for interpreting what the AI model has learned and 
which input features have been selected as relevant. The relative importance 
of the input features was calculated as a root square of the sum of the squared 
improvements over the nodes in a tree generated by RF when a specific input 
feature xj was selected (Breiman, 2001). The importance of the input features 
was estimated using the RF1 and RF2 models (Figure 6). The relative impor-
tance of each coefficient is calculated as the mean importance of the regional 
ionosphere coefficients estimated for five countries. For the RF1 model, the 
first coefficient c00 contributes most to the VTEC output, followed by HoD 
and F10.7 index. Contributions from other coefficients were at similar levels. 
Smaller contributions were provided by the Dst index, longitude, latitude, and 
Kp index. These parameters extract spatial dependence and provide additional 
geomagnetic-dependent VTEC variations and relationships, but do not have a 
dominant influence in defining the VTEC variations with respect to the other 
inputs. Because the coefficients were calculated from the CORS and EPN obser-
vations, they already contain regional ionosphere information related to the 

FIGURE 5 The RMSE (left) and correlation coefficients (CCs, right) for training and 
validation of ANN and RF models.

TABLE 4
RMSE and CCs for Training and Validation Datasets for Different AI Models.

Dataset ANN1 ANN2 ANN3 ANN4 ANN5 ANN6 RF1 RF2

RMSE
(TECU)

Train 7.31 3.99 3.00 2.86 2.60 8.34 2.67 8.51

Validation 7.15 4.01 3.11 2.86 2.73 8.73 2.83 8.75

CC
Train 0.906 0.974 0.985 0.986 0.989 0.876 0.988 0.870

Validation 0.910 0.973 0.984 0.986 0.987 0.869 0.986 0.868
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origin of the Taylor series expansion and therefore, they have a large impact on 
the model output. When training a model with no regional ionosphere param-
eters, the highest contribution (nearly 70%) comes from HoD. The other most 
influential inputs are the F10.7, Dst, and Kp indices. The contributions of these 
inputs are higher in the RF2 model than in the RF1 model. This is because 
the RF2 model does not include input parameters that describe the regional 
ionosphere. Regional ionosphere coefficients correlate much more closely with 
the VTEC than any of the other input features. The least critical contributions 
come from latitude and longitude. This may be because the F10.7, Kp, and Dst 

FIGURE 6 Relative importance of input variables when training AI models with (left) and 
without coefficients (right) estimated using Random Forest (RF).

FIGURE 7 Flowchart leading to the development of RIMs. First, GPS data from local 
CORS and EPN observations were processed in the Bernese GNSS software to form geometry-
free linear combinations of phase observations which were then used to estimate coefficients 
representing the regional ionosphere parameters that form the basis of the RIM IONOBH and 
the RIM IONOWB. Regional ionosphere parameters were then fed into the ANN along with the 
spatial and temporal parameters as well as solar and geomagnetic indices, resulting in the RIM 
IONOWB_AI model.
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indices are not spatially dependent. These results provide us with some intu-
ition of how the AI models learn from these datasets.

Regional ionosphere parameters estimated from the CORS and EPN observa-
tions for each country included in the development of RIM IONO_WB were com-
bined with spatiotemporal (latitude, longitude, and HoD), solar (F10.7 index), and 
geomagnetic (Kp and Dst indices) parameters via an AI technique using the ANN 
algorithm; this has resulted in the RIM IONOWB_AI model (Figure 7). This model 
can estimate VTEC for any location in the western Balkans. 

2.4  Selection of the Study Period

Three time periods were selected for the study:

•	 March 20–26, 2014,
•	 March 15–20, 2015, and
•	 March 20–26, 2018.

These periods were chosen because they included different phases of the solar 
cycle and varying ionosphere activity. Specifically, the solar maximum occurred 
in 2014, the declining phase of the solar cycle was in 2018, and a severe geo-
magnetic storm occurred in March 2015. There were large ionosphere distur-
bances over the study region that resulted in VTEC changes of 60% to 150% on 
the day of the storm in March 2015 and between 50% and 80% on the following 
days compared to its regular variability (Natras et al., 2023). Furthermore, all 
periods evaluated were around the spring equinox, when one can expect to find 
the highest number of electrons within the ionosphere over the study region 
(Natras et al., 2023).

The RIM IONOBH model was estimated for the first and third study periods, 
while the RIM IONOWB was generated for the first and second study periods. 
Therefore, while both models were established for the period of the solar max-
imum in 2014, different time frames were chosen for the second study period, 
including the solar minimum period (March 2018) for the RIM IONOBH and the 
geomagnetic storm period (March 2015) for the RIM IONOWB. This was because 
the models were developed independently of each other as part of two different 
projects implemented at different research institutes with different objectives, 
i.e., to study RIMs in the period of solar maximum (2014) and minimum (2018), 
and to analyze RIMs during a severe geomagnetic storm (2015). Furthermore, data 
were not available from all CORS networks for all periods examined; this resulted 
in different second study periods.

2.4.1  Overview of Solar and Geomagnetic Activity

Solar and geomagnetic indices are presented in Figure 8 for periods 
March 20–26, 2014 (left), March 15–20, 2015 (middle), and March 20–26, 2018 
(right). These indices include the sunspot number R, radio flux F10.7 of the Sun’s 
emission at the 10.7 cm wavelength (Covington, 1969), disturbance storm time 
Dst (Sugiura, 1964), and Kp (Chapman & Bartels, 1962) obtained from the NASA/
GSFC OMNI data set via OMNIWeb (https://omniweb.gsfc.nasa.gov/form/dx1.
html). The first study period represents a solar maximum that reached its peak 
in April 2014. Therefore, the number of sunspots was increased throughout, 

https://omniweb.gsfc.nasa.gov/form/dx1.html
https://omniweb.gsfc.nasa.gov/form/dx1.html
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ranging from 112 to 151, and F10.7 had values larger than 150 sfu. By contrast, 
the geomagnetic conditions were mostly quiet with Kp values below 4 with small 
fluctuations in the Dst index at approximately zero. The second investigation 
period included the strongest geomagnetic storm of the solar cycle 24, known as 
the St. Patrick’s Day Storm, that occurred on March 17, 2015. This severe storm 
was characterized by a main phase in which the Kp index reached a value of 8 
and the Dst index was less than –200 nT. This was followed by a recovery phase 
that began on March 18, 2015, and lasted for several days until the geomagnetic 
field returned to normal conditions. It is worth mentioning that both the number 
of sunspots (from 20 to 53) and the solar radio flux (about 110 sfu) were signifi-
cantly lower compared to those measured during the first period. The third study 
period featured low levels of solar activity during the decline phase of the solar 
cycle toward its minimum. This period was characterized by no sunspots and 
an F10.7 less than 70 sfu. The geomagnetic activity was calm to active, with no 
geomagnetic storms.

2.5  Validation of the Regional Ionosphere Models

The RIMs IONOBH and IONOWB were validated against other ionosphere 
models, including:

•	 GIMs final products from CODE and IGS (from https://cddis.nasa.gov/
archive/gnss/products/ionex/)

•	 European RIM from the GIOMO model, based on weighting functions and 
developed at the Department of Geodesy and Geoinformation, Vienna 
University of Technology (Magnet, 2019)

•	 European RIM based on polynomial B-spline functions developed at DGFI-
TUM as a two-step VTEC model (TSM-Product 2c) named as OTHR model 
(Goss et al., 2020).

FIGURE 8 Overview of solar and geomagnetic indices for the three study periods. Left 
panel: March 20–26, 2014; middle panel: March 15–20, 2015; right panel: March 20–26, 2018. 
From top to bottom: R sunspot number (SN), solar radio flux F10.7 in sfu (solar flux units), Dst in 
nT, Kp (Quiet kp · 10 < 30, Moderate 30 ≤ kp · 10 < 40, Active 40 ≤ kp · 10<50, Storm kp · 10 ≥ 50).

https://cddis.nasa.gov/archive/gnss/products/ionex/
https://cddis.nasa.gov/archive/gnss/products/ionex/
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•	 NeQuick2 (computed via https://t-ict4d.ictp.it/nequick2/nequick-2-web-
model)

•	 GPS broadcasted model Klobuchar. VTEC values were calculated from 
broadcast ephemeris data (https://cddis.nasa.gov/archive/gnss/data/daily/).

The climatological empirical model NeQuick2 (Nava et al., 2008) is the latest 
version of the NeQuick ionosphere electron density model developed for the com-
putation of slant electron density profiles and TEC in the ionosphere at a given 
height, geocentric latitude, and geocentric longitude. Information on solar activity 
is provided to the model by the daily solar radio flux F10.7. The NeQuick2 model 
takes into account the contribution of the plasmasphere to VTEC up to 40,000 km. 
Although the electron density in the plasmasphere is much lower than in the ion-
osphere, under some conditions, such as at night and during periods of low solar 
activity, the contribution of the plasmasphere may represent a larger proportion 
of the VTEC. The relative global contribution of the plasmasphere to the VTEC 
depends on latitude and solar activity, with a minimum contribution of about 10% 
during daytime hours and a maximum of up to 60% at night.

The VTEC data of the RIM GIOMO model were provided for the study periods 
in March 2014 and March 2018 during the project that led to the development of 
the IONOBH. By contrast, VTEC data from the RIM OTHR model were available 
for all study periods.

The ionosphere models were also evaluated for precise point positioning (PPP) by 
processing single-frequency ( )L1  observations for selected GNSS stations using the 
Bernese GNSS Software. The following cases of L1 PPP solutions were carried out: 

•	 L1 positioning solution without ionospheric corrections, 
•	 L1 positioning solution with ionospheric corrections from the final GIM 

CODE, and
•	 L1 positioning solution with ionospheric corrections from the RIMs IONOBH 

and IONOWB.

However, there is no interface in the Bernese software that can be used to 
process broadcasted ionospheric delay models. Therefore, we could not apply 
corrections from the Klobuchar model. The following processing steps were 
implemented for the PPP method: data preprocessing (RNXSMT), import of data 
into the Bernese format (RXOBV3), preparing orbit and Earth’s orientation infor-
mation (POLUPD, PRETAB, ORBGEN), data preprocessing 2 (CODSPP, GPSEST, 
RESRMS, SATMRK), performing a solution for epoch parameters, and/or cre-
ation of normal equations NEQ (GPSEST) and an NEQ-based final session solu-
tion (ADDNEQ2). More details on each step are included in Dach et al. (2015). 
Positioning errors were estimated as differences between “true” positions and 
the single-frequency positioning results expressed as north, east, and up com-
ponents. The weekly combined EPN solutions (https://www.epncb.oma.be/ftp/
product/combin/) were used as “true” positions for the EPN stations. For the 
CORS stations, “true” positions were estimated with the dual-frequency PPP 
method in the Bernese GNSS software. For the analysis, errors were expressed as 
1-D RMS vertical and 2-D RMS horizontal position errors, as well as, 3-D RMS 
position errors as shown in Equation (20):
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https://t-ict4d.ictp.it/nequick2/nequick-2-web-model
https://t-ict4d.ictp.it/nequick2/nequick-2-web-model
https://cddis.nasa.gov/archive/gnss/data/daily/
https://www.epncb.oma.be/ftp/product/combin/
https://www.epncb.oma.be/ftp/product/combin/


    NATRAS et al.

	 2 1 2 2

1
D RMS horizontal error

n
E Ni i

i

n
_ _ _ ( )� �

�
� � � � (20b)

	 3 1 2 2 2

1
D RMS error

n
E N Ui i i

i

n
_ _ ( )� � �

�
� � � � � (20c)

where ΔEi, ΔNi, ΔUi are errors in the east, north, and up (vertical) components, 
respectively, of the i-th position estimate sample and n is the total number of posi-
tion estimate samples.

3  RESULTS

Section 3.1. compares the new RIMs with other ionosphere models as described 
in Section 2.5. The developed RIMs were then applied to correct the ionospheric 
range error in single-frequency positioning. The results of this procedure are pre-
sented in Section 3.2. 

3.1  VTEC Results

The results shown in Figure 9 include the VTEC time series for the EPN station 
SRJV estimated from the RIM IONOBH for March 2014 (first panel) and March 
2018 (third panel); differences between the RIM IONOBH and other ionosphere 
models are also shown (second and fourth panels). The IONOBH VTEC variability 
was at least five times higher in March 2014 (solar maximum) than in March 2018 
(solar minimum). The VTEC values from the GIMs are mostly higher than the 
VTEC values from the RIM IONOBH. The largest differences between the GIMs 
and the RIM IONOBH occur during the night, with differences of up to 10 TECU 
in March 2014 and up to approximately 5 TECU in March 2018. During the day, 
the differences between the RIM IONOBH and the GIMs are reduced by a factor 
of 2 (i.e., mostly below 5 TECU in March 2014 and 2 TECU in March 2018). Higher 
differences were observed with respect to the GIOMO model, up to 20 TECU in 
2014 and primarily up to 5 TECU in 2018. Interestingly, the GIOMO corresponds 
more effectively to the RIM IONOBH in 2018 and at night. Most of the results 
from RIM OTHR are in better agreement with the RIM IONOBH with differences 
smaller than those observed from the GIM CODE in March 2014 and March 2018. 
The models NeQuick2 and Klobuchar underestimate the VTEC in March 2014, 
while the Klobuchar model overestimates VTEC in March 2018. Differences from 
the Klobuchar model are up to 20  TECU. In March 2018, the results from the 
RIM IONOBH were in better agreement with those from the NeQuick2 model 
with differences up to 5 TECU during the day and mostly below 2 TECU at night. 
These results correspond to results reported by Wang et al. (2017) and Shi et al. 
(2019). In their studies, they show that climatological models, such as NeQuick2 
and IRI2016, provide extremely underestimated values for VTEC during periods 
of high solar activity; however, these models are consistent with the GIM IGS in 
mid-latitudes and during periods of low solar activity (Shi et al., 2019). Differences 
between the RIMs IONOBH and IONOWB_AI are below 5 TECU for March 2014, 
with higher differences observed primarily at night.
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The results shown in Figure 10 illustrate the differences between VTEC of the 
RIM IONOWB and VTEC of the other models, as well as VTEC time series from 
the RIMs IONOWB for the location of the EPN station SRJV for March 2014 (top 
two panels) and March 2015 (bottom two panels). In March 2014, the VTEC differ-
ences between the RIM IONOWB and other models were comparable to the results 
obtained with the RIM IONOBH (Figure 9, top).

In March 2015, the regular maximum VTEC daily values during March 15–16 
(i.e., without disturbances from a geomagnetic storm) were about 20 TECU 
lower than in March 2014. During these days, the differences in VTEC from the 
RIM IONOWB with respect to the GIMs and the OTHR model were mostly less 
than 5 TECU; by contrast, differences from the NeQuick2 model were as high as 
10 TECU during the daytime and below 3 TECU at night. On the day of the St. 

FIGURE 9 VTEC time series and differences between VTEC from the RIM IONOBH and 
other models that were estimated based on the location of the EPN SRJV station. Top two panels: 
March 20–26, 2014 (solar maximum); bottom two panels: March 20–26, 2018 (solar minimum). 
Note the different scaling of the y-axes due to the effect of the solar cycle on VTEC.
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Patrick’s geomagnetic storm (March 17), the RIM IONOWB showed two VTEC 
peaks, including one around local noon (greater than 60 TECU) and another in the 
evening (greater than 40 TECU). The maximum differences detected on this day 
were 15 TECU. During the daytime, the differences from GIMs were mostly below 
5 TECU, and almost zero during occurrences of the two aforementioned peaks. 
The higher VTEC differences between the RIM IONOWB and the other models 
occurred later in the evening. By contrast, the largest differences (up to 40 TECU) 
were those associated with the climatological model during the main storm phase; 
these findings correspond to results reported by Wang et al. (2017). The VTEC 
decreased during the recovery phase of the storm (March 18–21). Differences in 
the VTEC were mostly below 4 TECU compared to those of the GIMs and the 

FIGURE 10 VTEC time series and differences between VTECs from the RIM IONOWB 
and other ionosphere models estimated based on the location of the EPN SRJV station. Top two 
panels: March 20–26, 2014 (solar maximum); bottom two panels: March 15–20, 2015 (includes a 
severe geomagnetic storm). Note the different scaling of the y-axes due to the solar cycle and the 
effects of the geomagnetic storm on VTEC.
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OTHR model. With respect to the NeQuick2 model, the differences were below 
10 TECU during the daytime and below 3 TECU at night. A comparison of the RIM 
IONOWB and IONOWB_AI reveals differences of up to 5 TECU, mainly occurring 
at night. During the daytime of the main phase of the storm (March 17), the dif-
ferences were mostly around 0 with maximum differences of less than 4 TECU. 
Differences between the RIM IONOWB and the Klobuchar model were as high as 
10 TECU before the storm, near 30 TECU during the main storm phase, and up to 
20 TECU during the recovery.

A comparison between the newly-developed RIMs IONOBH and IONOWB and 
the other models shows that the smallest differences during daytime are between 
the new RIMs and the final GIM CODE. At night, the new RIMs agree most fre-
quently with the NeQuick2 model, as it takes into account the contributions of the 
plasmasphere electron content to the ionospheric VTEC.

Figure 11 presents the RMSE between VTECs of the newly-developed RIMs 
and those from GIM CODE, RIM OTHR, RIM GIOMO, and the Klobuchar (Klob.) 
model for the study periods March 2014, March 2015, and March 2018. The RMSE 
is provided for the entire day from 00:00 to 23:00 UTC (upper left) and during day-
time hours from 6:00 to 16:00 UTC (upper right). Correlation coefficients are pro-
vided for the entire day (bottom) together with the mean RMSE and the mean 
correlation coefficients.

An analysis of the RIMs IONOWB and IONOWB_AI was performed for the 
stations EPN GSR1, EPN POZE, EPN SRJV, IGEWE TIRA, and EPN ORID. An 
analysis of RIM IONOBH was done for the stations EPN SRJV, BIHPOS SEKO, 
EPN POZE, and EPN DUB2. The RMSE values were lower in the daytime than 
at night, with values mostly below 4 TECU, except for the Klobuchar model. The 

FIGURE 11 Top: RMSE values for study periods March 2014, March 2015, and March 2018 
for the entire day (0:00 to 23:00 UTC, upper left) and daytime hours only (6:00 to 16:00 UTC, 
upper right). Bottom: Correlation coefficients for the entire day (00:00 to 23:00 UTC). Note that 
correlations from 0.7 to 1.0 are shown.
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highest RMSE values were compared to the Klobuchar model, while the lowest 
were compared to the GIM CODE and the RIM OTHR. The RMSE values with 
respect to Klobuchar were about 7.5 TECU for all three study periods; the highest 
discrepancies were during daytime when the RMSE approached 10 TECU. A com-
parison of the RMSE values between the new RIMs and GIOMO revealed values 
of approximately 7 TECU in March 2014, including values below 5.5 TECU during 
the daytime. In March 2018, the RMS errors were reduced by a factor of 2, i.e., 
to below 3 TECU. In 2014, RMSE values compared to those from the GIM CODE 
and RIM OTHR were about 5 TECU for the entire day, and about 3.5 to 4 TECU 
during the daytime alone. In 2015, the RMSE values were below 4 TECU, while in 
2018, the RMSE values were below 1.5 TECU during daytime and below 3 TECU 
at night when compared to the GIM CODE and RIM OTHR. In March 2014, the 
RMSE with respect to the RIM OTHR were approximately 0.3 TECU lower than 

FIGURE 12 VTEC maps (from left to right) for RIM IONOWB_AI, RIM OTHR, and 
GIM CODE (top). Middle: VTEC differences (from left to right): VTECIONOWB_AI – VTECOTHR, 
VTECIONOWB_AI – VTECCODE, and VTECOTHR – VTECCODE. Bottom: VTEC map for the Klobuchar 
model (left) and VTEC difference VTECIONOWB_AI – VTECKlob (right). All maps were from 12 UTC 
on March 21, 2014.
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RMSE for the GIM CODE; during the daytime, the RMSE values differed by less 
than 0.1 TECU. In March 2015, values from the newly-developed RIMs corre-
sponded with those from the GIM CODE at 0.3 TECU level during the entire day, 
and 0.5 TECU better during the daytime than those provided by the RIM OTHR. 
In March 2018, the RMSE from the RIM OTHR were about 0.35  TECU lower 
than those from the GIM CODE, where their differences during the daytime can 
be neglected (i.e., 0.03 TECU). Correlations were the highest between new RIMs, 
and the GIM CODE and RIM OTHR.

Figure 12 presents VTEC maps for March 21, 2014, which was a day with high 
solar activity (F10.7 = 153 sfu) and quiet geomagnetic conditions (Kp = 2) at 
12 UTC. The VTEC maps for March 17, 2015, the day of the severe geomagnetic 
storm at 12 UTC (F10.7 = 139 sfu, Kp = 8) and for March 18, 2015, the day after the 
main storm phase at 12 UTC (F10.7 = 114 sfu and Kp = 5) are shown in Figure 13 

FIGURE 13 VTEC maps (from left to right) for RIM IONOWB_AI, RIM OTHR, and 
GIM CODE (top). Mid: VTEC differences (from left to right): VTECIONOWB_AI – VTECOTHR, 
VTECIONOWB_AI – VTECCODE, VTECOTHR – VTECCODE. Bottom: VTEC map for Klobuchar (left) 
and the VTEC difference VTECIONOWB_AI – VTECKlob (right). All maps relate to 12 UTC on 
March 17, 2015.
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FIGURE 14 VTEC maps (from left to right) for RIM IONOWB_AI, RIM OTHR, and 
GIM CODE (top). Middle: VTEC differences (from left to right): VTECIONOWB_AI – VTECOTHR, 
VTECIONOWB_AI – VTECCODE, and VTECOTHR – VTECCODE. Bottom: VTEC map for the Klobuchar 
model (left) and the VTEC difference VTECIONOWB_AI – VTECKlob (right). All maps relate to 12 
UTC on March 18, 2015.

TABLE 5
Overview of the Mean Differences for the Solar Maximum (March 21, 2014) and the Geomagnetic 
Storm (March 17–18, 2015) for the Region from 13°E to 23°E Longitude and from 40°N to 47°N 
Latitude. Mean values from both periods (final column) were calculated based on the mean 
differences from March 21, 2014, and the mean differences averaged over March 17–18, 2015.

Differences between 
models

Absolute mean differences (TECU)

March 21, 2014 March 17, 2015 March 18, 2015 Mean values

IONOWB_AI – OTHR 0.94 1.36 1.03 1.07

IONOWB_AI – CODE 1.48 1.40 1.05 1.35

OTHR – CODE 1.51 0.55 0.49 1.02

IONOWB_AI – Klob. 23.24 25.16 13.24 21.22
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and Figure 14, respectively. VTECs from the RIM IONOWB_AI, RIM OTHR, GIM 
CODE, and the Klobuchar model were estimated on the 1° × 1° grid in latitude 
and longitude in the range from 40°N to 47°N and 13°E to 23°E. VTEC maps of 
RIM IONOWB_AI, RIM OTHR, and GIM CODE show the lowest daily ionization, 
mostly from 46°N to 47°N (upper parts of the maps), and the highest ionization 
from 40°N to 41°N (lower parts of the maps). 

During solar maximum (Figure 12), RIMs IONOWB_AI and OTHR differed 
by less than 3 TECU with a mean difference of 0.9 TECU (Table 5). The largest 
differences between the RIMs were from 43°N 21°E to 44°N 23°E (3 TECU) and 
along 40°N (about 2 TECU). The smallest differences were in the areas cover-
ing Slovenia, Croatia, Bosnia-Herzegovina (BH; except around 44° latitude), 
and Montenegro with differences of less than 1 TECU and a mean difference 
of 0.4 TECU. Differences between the IONOWB_AI and the GIM CODE are 
up to approximately 4 TECU with a mean difference of 1.5 TECU. The largest 
differences were observed in the southern part of the map, where only a few 
IGS/EPN stations were used to estimate the GIM for the study area. By contrast, 
regions in which no GNSS stations were used to estimate the RIM IONOWB 
showed smaller differences. For example, the regions of Serbia and Kosovo 
(19°E–23°E, 42°N–46°N) showed a mean difference of 1.2 TECU compared to 
the RIM OTHR and 0.9 TECU compared to the GIM CODE. The average VTEC 
differences for the region of Montenegro (18°E–20°E and 42°N–44°N) were 0.8 
TECU compared to RIM OTHR and 1.3 TECU compared to the GIM CODE. 
The VTEC difference maps between the RIM IONOWB_AI, RIM OTHR, and 
GIM CODE reveal unique VTEC features from the IONOWB_AI model with 
nonlinear spatial variations. The Klobuchar model underestimated VTEC by 
more than 20 TECU.

During the main phase of the storm (Figure 13), the ionization increased across 
the western Balkans. VTEC differences of RIM IONOWB_AI compared to RIM 
OTHR and GIM CODE show higher values in the northern part of the maps (up to 
4.4 TECU). No GNSS observations from this region nor any of the more northern 
countries were used to generate the RIMs in this study; this led to the larger dif-
ferences observed during the storm. The mean differences for the western Balkans 
regions, where GNSS observations were not used, were up to 1.2 TECU (Serbia, 
Kosovo) and 0.5 TECU (Montenegro) with respect to the RIM OTHR, and 1.4 TECU 
(Serbia, Kosovo) and 0.6 TECU (Montenegro) with respect to the GIM CODE. The 
VTEC values of the countries Slovenia, Croatia, and BH correspond better to the 
RIM OTHR with a mean difference of 0.5 TECU. The VTEC values in the southern 
part of this region correspond more closely with those from the GIM CODE with 
a mean difference of 0.7 TECU. The Klobuchar model underestimated VTEC by 
more than 24 TECU and failed to approximate the sudden VTEC increase during 
the main storm phase.

On the day after the main storm phase, the ionization was twice as low as 
on the previous day (Figure 14). The highest differences between the RIM 
IONOWB_AI, and the RIM OTHR and GIM CODE were identified in a region 
that included Italy, which was not part of this study. The average differences 
in the western Balkans countries were 0.6 TECU and 0.7 TECU between 
IONOWB_AI and the RIM OTHR and the GIM CODE, respectively. The mean 
differences over the western Balkans regions, with GNSS observations that 
were not used in this study, were 0.5 TECU (Serbia, Kosovo) and 0.6 TECU 
(Montenegro) compared to the RIM OTHR, and 0.6 TECU (Serbia, Kosovo) and 
0.7 TECU (Montenegro) compared to the GIM CODE. The largest differences 
with regard to the RIM OTHR were along 44°N latitude (up to 1 TECU), while 
differences up to 0.6 TECU were detected for the same location compared to 
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the GIM CODE. By contrast, the RIMs IONOWB_AI and OTHR showed bet-
ter agreement in the area 18°E–23°E and 42°N–40°N with a mean difference 
of 0.6 TECU; the mean difference was twice as high. at 1.2 TECU compared 
to the GIM CODE. The Klobuchar model overestimated VTEC by more than 
10 TECU, and therefore, cannot be used to approximate the decline in VTEC 
during the recovery phase of the storm.

Our results (Figure 9–Figure 14) reveal that results from the Klobuchar model 
deviate significantly from those generated by the newly-developed RIMs. Findings 
generated by the new RIMs correspond much more closely to the GIM CODE, 
which is considered the most accurate and precise source of VTEC information 
that is currently available. These results suggest that the new RIMs might replace 
the broadcasted Klobuchar model for applications involving single-frequency 
positioning.

3.2  Single-Frequency Positioning Solutions

To assess the RIM IONOBH, vertical and horizontal RMS position errors were 
calculated from 24-hour solutions for March 2014 and March 2018 for selected sta-
tions (Figure 15). 

Positioning solutions without ionospheric corrections revealed RMS vertical 
position errors of approximately 5.5 m and 1.3 m in March 2014 and March 2018, 
respectively. As expected, single-frequency positioning solutions with ionospheric 
corrections represented a significant improvement, especially with respect to the 
vertical component. When applying the final GIM CODE, the vertical RMS errors 
were between 0.7 and 1 m in March 2014 and between 0.1 and 0.3 m in March 2018. 
The application of the new RIM IONOBH led to a higher vertical position accuracy 
for all stations with an RMS error between 0.4 and 0.7 m in March 2014 and 0.1 
and 0.2 m in March 2018. The horizontal RMS errors between the GIM CODE and 

FIGURE 15 RMS errors of single-frequency positioning solutions without ionospheric 
corrections compared to the GIM CODE and the RIM IONO_BH. Shown are vertical position 
errors on March 20–26, 2014 (top left), horizontal position errors on March 20–26, 2014 (top 
right), vertical position errors on March 20–26, 2018 (bottom left), horizontal position errors on 
March 20–26, 2018 (bottom right).
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the RIM IONOBH were similar, at approximately 0.5 m for the RIM IONOBH and 
0.6 m for the GIM CODE in March 2014 and 0.2 to 0.3 m in March 2018.

Figure 16 presents both vertical and horizontal RMS errors determined in 
March 2014 and March 2015 for selected stations that were used to assess the 
RIMs IONOWB and IONOWB_AI. Positioning solutions without ionospheric cor-
rections had RMS vertical position errors of approximately 3.5 m in March 2015. 
Once the final GIM CODE was applied, the vertical RMS errors were between 0.6 
and 1.2 m in March 2014 and 0.3 and 0.6 m in March 2015. After applying the new 
RIMs IONOWB and IONOWB_AI, the vertical RMS errors were between 0.5 and 
0.8 m in March 2014 and 0.3 and 0.4 m in March 2015. The horizontal RMS errors 
were approximately 0.6 m for the CODE GIM and from 0.5 to 0.6 m for the RIMs 
IONOWB and IONOWB_AI in March 2014. In March 2015, the horizontal RMS 
errors were between 0.3 and 0.4 m for the CODE GIM, the RIMs IONO_WB, and 
IONOWB_AI. In March 2014, positioning errors after applying the IONOWB and 
IONOWB_AI corrections were at the same level as the GIM CODE (station GSR1) 
or better (for all the other stations). A significant improvement in position accu-
racy when using the RIMs IONOWB and IONOWB_AI was observed for stations 
SRJV, ORID, and TIRA in March 2014. In March 2015, both the vertical and hori-
zontal position accuracy for the stations ORID and TIRA was improved by apply-
ing the RIMs IONOWB and IONOWB_AI. These stations are located in the lower 
part of the study region where larger VTEC differences between IONOWB_AI 
and GIM CODE were observed (Figure 9 and Figure 11). These differences may 
be attributed to the fact that information from very few stations was used to esti-
mate the GIM CODE in this area; information from these stations was used in the 
newly-developed RIMs. Therefore, RIMs IONOWB and IONOWB_AI outperform 
the GIM CODE in this region. However, better positioning results were obtained 
with the GIM CODE in March 2015 stations located in the upper parts of the 
study region (i.e., GSR1 and POZE). There, larger VTEC differences between the 
RIM IONOWB_AI and GIM CODE were observed during the main storm phase 

FIGURE 16 RMS errors of single-frequency positioning solutions without ionospheric 
corrections compared to the GIM CODE and the RIM IONO_WB. Shown are vertical position 
errors on March 20–26, 2014 (top left), horizontal position errors on March 20–26, 2014 (top 
right), vertical position errors on March 15–20, 2015 (bottom left), and horizontal position errors 
on March 15–20, 2015 (bottom right).
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(Figure 10) due to the larger VTEC differences in the neighboring countries, which 
are located outside the region examined in this study. Since a storm can induce 
significant variability in the ionosphere, the RIM for Slovenia would most likely 
benefit from including stations from other neighboring countries to improve posi-
tion accuracy during a storm. 

When using the L1 frequency without ionospheric range delay corrections, the 
vertical position errors are approximately three to four times higher than the hori-
zontal position errors (Figure 12 and Figure 13). After applying ionospheric correc-
tions from the GIM CODE and the RIMs, the vertical accuracy was improved by 80 
to 90% and the horizontal accuracy was improved by 50 to 60%. This is consistent 
with findings reported by Wang et al. (2013) who showed that ionospheric cor-
rections reduce ionospheric vertical delay errors more effectively than horizontal 
delay errors. Also, the ionosphere models can produce biases with a common sign 
in the line-of-sight slant observations that may be gathered from negative eleva-
tions. The ionosphere model projection bias in the north-south and the east-west 
directions can be partially compensated by one another. In this study, the eleva-
tion angle was set to 15° to gather more observations covering wider regions while 
reducing observations from the negative elevations to avoid positioning error bias.

Table 6 depicts RMS vertical, 2D horizontal, and 3D positional errors averaged 
over all stations evaluated; the improvement in RMS 3D error is compared to the 
solutions without ionosphere corrections. The newly-developed RIMs improved 
the 3D positional accuracy by 85% or more during the solar maximum (March 
2014); by contrast, the improvement observed with GIM CODE was approximately 
80%. During the geomagnetic storm, the new RIMs improved the 3D positional 
accuracy by approximately 84%, which was similar to that resulting from the GIM 
CODE. Interestingly, the new RIMs improve the vertical positional accuracy more 
effectively than the GIM CODE for all study periods. At times of low solar activity 
(March 2018), improvements of approximately 74% and 75% were observed for the 
GIM CODE and the new RIMs, respectively.

Since the mean differences and RMS errors between the new RIMs and the 
Klobuchar model are at least two to three times higher than those between the 

TABLE 6
RMS errors for Vertical (1D), Horizontal (2D), and 3D Position Solutions from Static 24-hour 
Positioning Data. Data were averaged over all stations examined. Improvement of the RMS 3D 
error was observed compared to the solutions generated without ionosphere corrections.

Study 
periods

RMS 
Vertical 

error

RMS 
Horizontal 

error

RMS 3D 
error

Improvement 
In 3D error

March 2014 NO IONO 5.46 1.25 5.49

GIM CODE 0.91 0.60 1.10 79.96%

IONOBH 0.56 0.50 0.75 86.34%

IONOWB 0.66 0.50 0.83 84.88%

IONOWB_AI 0.65 0.51 0.83 84.88%

March 2015 NO IONO 3.30 0.96 3.43

GIM CODE 0.38 0.38 0.54 84.26%

IONOWB 0.37 0.40 0.54 84.26%

IONOWB_AI 0.35 0.39 0.55 83.97%

March 2018 NO IONO 1.34 0.51 1.45

GIM CODE 0.25 0.24 0.38 73.79%

IONOBH 0.11 0.26 0.36 75.17%
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new RIMs and the GIM CODE (Section  3.1), the expected positioning error 
using the Klobuchar model is at least twice as large. For example, the RMS posi-
tion error is expected to be more than 2 m during a solar maximum. In March 
2014, the VTEC of the Klobuchar model was on average approximately 15 TECU 
lower than the VTEC of the new RIMs. Considering that 1 TECU is equivalent 
to 0.162  m of L1 signal delay, a difference of 15 TECU results in a remaining 
L1 signal delay of approximately 2.4 m. This is about two or three times higher 
than the 3D position solutions obtained using the GIM CODE or the new RIMs, 
respectively. Even larger position errors could be expected during the March 2015 
geomagnetic storm.

4  DISCUSSION AND CONCLUSIONS

Regional VTEC models for BH (IONOBH), for specific countries in the west-
ern part of the Balkan peninsula (IONOWB), and the western Balkans region 
(IONOWB_AI) have been developed using the GNSS observations that were avail-
able from local CORS and the EPN networks in these countries. The IONOBH and 
IONOWB models are based on regional ionosphere coefficients of a Taylor series 
expansion estimated from the CORS observations processed in the Bernese GNSS 
Software. Machine learning techniques were also utilized to develop the IONOWB_
AI model. The IONOWB_AI model includes coefficients of Taylor series expansion, 
spatial (latitude, longitude), temporal (time of day), solar (F10.7), and geomagnetic 
(Kp and Dst) parameters to estimate the VTEC at any specified position and time by 
applying a feed-forward neural network with backpropagation to minimize errors. 
These newly-developed RIMs were validated against GIMs, European RIMs, the 
NeQuick2 climatological empirical model, and the broadcasted Klobuchar model 
for different study periods including those featuring high and low solar cycle 
phases and quiet and disturbed geomagnetic periods. The spring equinox, when 
the highest VTEC values during a year can be expected in this study region, has 
also been covered. The new RIMs were applied in single-frequency positioning to 
evaluate their ability to mitigate the ionospheric refraction effect on precise posi-
tioning applications. 

During the solar maximum, the differences between all examined models were 
higher than at the solar minimum, as expected. Differences between the VTEC val-
ues from the RIMs IONOBH and IONOWB and the GIMs were minor during the 
daytime and higher at night in March 2014. GIMs usually deliver higher VTEC 
values than the RIMs IONOBH and IONOWB. The mean difference in the solar 
maximum (March 2014) was approximately 5 TECU, while the mean difference at 
the solar minimum (March 2018) was approximately 2 TECU (i.e., reduced by more 
than a factor of 2). The largest differences were observed at night when the plas-
maspheric contributions to VTEC prevail; agreement during the daytime is at least 
two times better. During the days before the storm (March 15–16, 2015), the mean 
differences were approximately 3 TECU. On the day of the severe storm (March 17, 
2015), the mean differences were approximately 5 TECU, while during the recovery 
phase, the mean differences were below 2 TECU. Thus, we conclude that the dif-
ferences between VTEC values from the RIMs IONOBH and IONOWB and those 
from the GIMs are dependent on the solar cycle phase and geomagnetic activity. 

The analysis with respect to the European RIMs shows better agreements with 
the OTHR model than with the GIOMO model, especially during the maximum 
of the solar cycle phase (March 2014). Differences between the new RIMs and 
the OTHR are often smaller than differences between GIM CODE and the RIMs. 
However, differences with respect to the OTHR and the GIM CODE are quite 
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similar to one another with similar trends, indicating small differences between 
these two models.

The largest discrepancy was between the newly-developed RIMs and the 
Klobuchar model. The Klobuchar model underestimated VTEC by more than 
20 TECU during the daytime during the solar maximum and the main phase of the 
geomagnetic storm when compared to results from the new RIMs. In the recovery 
phase of the geomagnetic storm and at the solar minimum, the Klobuchar model 
overestimated VTEC by up to 20 TECU. The new RIMs correspond at least 4 to 
10 times better to the GIM CODE than to the Klobuchar model, with mean differ-
ences from 2 to 5 TECU. 

The NeQuick2 climatological model underestimated VTEC most of the time. 
During the solar minimum (March 2018), the NeQuick2 model was in much bet-
ter agreement with the new RIMs than during the solar maximum (March 2014). 
During the main storm phase, differences with respect to the NeQuick2 model 
were the highest. These differences can be explained by the fact that the NeQuick2 
provides a climatological description of the electron density in the ionosphere and 
its performance depends significantly on both solar and geomagnetic activity. Our 
results are consistent with those reported by Shi et al. (2019) and Wang et al. (2017).

The RIM IONOWB_AI, which is based on an ANN and the IONOWB regional 
ionosphere, spatiotemporal, solar, and geomagnetic parameters, can estimate 
VTEC for any location in the western part of the Balkan peninsula. In areas where 
no GNSS observations were used to estimate regional ionosphere parameters, the 
RIM IONOWB_AI provides VTEC with sufficient accuracy compared to the RIM 
OTHR and GIM CODE. Moreover, VTEC maps reveal non-linear VTEC signatures 
and regional ionosphere variations not seen in the GIM CODE. During the daily 
VTEC peaks (at 12 UTC) the mean differences in the study region are mostly below 
1.50 TECU compared to findings generated by the RIM OTHR and GIM CODE. 
During the main storm phase, when the largest VTEC values were detected, the 
RIM IONOWB_AI estimated VTEC with differences that were primarily below 
2 TECU (at 12 UTC) with respect to the RIM OTHR and the GIM CODE. During 
the recovery phase, the observed differences were even lower. By contrast, the 
Klobuchar model failed to describe the VTEC variations associated with geomag-
netic activity. Collectively, our results demonstrate that the VTEC estimated by 
RIM IONOWB_AI provides a much better estimate of the integrated electron den-
sity than can be achieved using the Klobuchar model during the solar maximum 
or a geomagnetic storm.

Single-frequency positioning solutions show a similar or in some cases better 
positional accuracy when applying ionosphere corrections from the new RIMs (i.e., 
IONOBH, IONOWB, and IONOWB_AI) rather than from the final GIM CODE. 
Vertical positional accuracy can be achieved with these newly-developed RIMs at 
the decimeter level. Compared to the final GIM CODE, improvements in position-
ing with the new models are particularly effective when observed during the solar 
maximum. Also, the improvements are more significant for all study periods for 
stations located in the southern part of the region. This may be because of the higher 
ionization observed over those stations, and because no GNSS stations are used in 
this area to produce the GIM CODE. As a result, the RIMs show better performance 
in these regions. During the geomagnetic storm (March 2015), the positional accu-
racy achieved when applying RIMs IONOBH, IONOWB, and IONOWB_AI were 
within a similar range as that obtained with the final GIM CODE. Slightly better per-
formance with the GIM CODE was achieved during March 2015 for stations located 
in the northern part of the study region (GSR1 and POZE). This may be because the 
GNSS stations from neighboring countries in this region were not used to generate 
the new RIMs. VTEC maps show larger differences when comparing outcomes from 
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the RIM IONOWB_AI and GIM CODE in this northern area as a result of drastic 
changes in conditions in the ionosphere during the main phase of the severe geo-
magnetic storm. Given the fact that this was the strongest storm of the previous 
11-year solar cycle and that modeling such intense ionospheric variations remains 
a significant challenge, the results obtained using the new RIMs are satisfactory. As 
the results indicate, positional accuracy depends strongly on solar and geomagnetic 
activity. Moreover, the newly developed IONOBH, IONOWB, and IONOWB_AI 
models facilitate the correction of the ionospheric refraction in a way that leads to 
increased positioning accuracy; improvements in 3D positioning of greater than 80% 
were observed during periods of solar maximum and severe geomagnetic storm.

The results presented here demonstrate that VTEC models generated for small 
regions from dense observations from the CORS networks can provide much 
more accurate estimates of VTEC than can be achieved using the Klobuchar 
model, which is currently used as the standard for single-frequency positioning. 
Additionally, a machine learning approach enabled us to generate spatiotempo-
ral RIMs that can estimate VTEC for areas in which no GNSS observations were 
available. The results reveal that the new RIMs are in much better agreement with 
the GIM CODE than with the Klobuchar model. Taking into account that the GIM 
CODE is considered the most accurate and precise source of VTEC information 
currently available, the new RIMs might surpass this standard and significantly 
improve ionosphere modeling compared to the Klobuchar model. The new RIMs 
correct single-frequency range errors with an accuracy that is similar to that of the 
final GIM products and in some cases even better. Furthermore, the final GIMs 
are produced with a latency of several days or even weeks, and thus they are not 
well suited for real (or even near-real) time positioning applications. The avail-
able real-time Klobuchar model fails to provide an accurate description of the 
ionosphere and, consequently, it cannot precisely reduce the ionospheric signal 
refraction. The RIMs developed as part of this study can be generated from GNSS 
observations from the CORS network in near-real time (within approximately 
three hours) and corrections can be provided to the single-frequency GNSS users. 
The findings suggest that these new models may properly address the needs of 
single-frequency GNSS users and provide an effective ionospheric correction.

Recommendations and plans for future work include:

•	 Models with a higher temporal resolution may be beneficial for use in capturing 
sudden VTEC variations due to geomagnetic storms, traveling ionosphere 
disturbances, and other features.

•	 The addition of dense CORS observations from other countries within the 
study region can improve the accuracy of the RIMs and fill and/or reduce the 
observation gaps.

•	 Observations from the EPN stations near and further away from the border of 
the study region can be introduced to fill in the observation gaps between the 
IPPs if additional CORS observations are not available.

•	 GNSS data should be processed over a longer period to retrain the ANN model 
and thus improve its accuracy and applicability.

•	 The machine learning approach can be improved by automatically extracting 
features in the spatial domain using a convolutional neural network and those in 
the temporal domain using a recurrent neural network. It would be interesting 
to compare this combination with the approach presented in this paper. 

•	 It may also be interesting to test the RIMs over a longer period.
•	 To facilitate their application in national positioning services, models should 

be implemented in near-real time.
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