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Kurzfassung 
Sandwich-Strukturen haben attraktive Eigenschaften, die in Kombination mit hoher Haltbarkeit 

und fantastischen Gestaltungsmöglichkeiten einen der wichtigsten Schritte auf dem Weg zu 

intelligenten Materialien darstellen. In dieser Studie werden die Auswirkungen von Kerndicke und 

Steifigkeitseigenschaften im Rahmen neuartiger mathematischen Modellierung auf die statische 

Antwort eines Sandwichträgers auf verteilte Belastung dargestellt. In dieser Arbeit werden vier 

Berechnungsmethoden verwendet. Drei davon sind numerische Methoden, nämlich ein FEM-

Modell mit einem kubischen Funktionsansatz und die Ritz-Methode, eine 2D-Simulation mit 

ABAQUS. Zusätzlich zu den numerischen Verfahren wird ein äquivalentes einlagiges 

Balkenmodell betrachtet, um die Ergebnisse des vorgeschlagenen Verbundbalkenmodells zu 

validieren. Eines der Hauptziele dieser Studie war die Bewertung der Fähigkeit des 

vorgeschlagenen Verfahrens zur Modellierung des Trägers als einer Kombination von zwei 

Bernoulli-Euler Balken anstelle von den Deckschichten sowie eines kontinuumsmechanischen 

Modells des Kerns, genaue Ergebnisse für unterschiedliche Materialeigenschaften der Schichten 

des Trägers zu finden. Die wichtigste Erkenntnis der Arbeit dreht sich um die Erfassung des 

Verhaltens des Querschnitts des Trägers durch eine lineare Formulierung. Die Ergebnisse der 

vorgeschlagenen Methode zeigen eine gute Übereinstimmung mit den ABAQUS-Simulationen als 

Referenzlösung. 
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Abstract 

Sandwich structures exhibit attractive properties such as high durability and fantastic design 

capabilities. Owing to their superior mechanical and design capabilities, they are one of the major 

advancing steps towards intelligent materials. In this study, we aim to investigate the effects of 

core thickness and stiffness on the static response of a sandwich beam under distributed loading. 

For this purpose, four methods of analyses are utilized in this thesis. Three of these approaches are 

numerical methods, namely FEM modeling with cubic interpolation functions, Ritz method and 

2D simulation in ABAQUS software. In addition to numerical schemes, an equivalent single layer 

beam model is considered in order to validate the results of proposed compound beam model. One 

of the main goals of this study is to evaluate the capacity of the proposed compound method to 

model the sandwich beam as a combination of two Bernoulli-Euler beams for the face sheets as 

well as a continuum model of the core in order to find accurate total strain energy of sandwich 

beams for various material properties of the layers. The most important findings of the current 

study are related to capturing the behavior of the cross-sections during the deformation in various 

material parameter ranges. The results of the proposed method stand in a good agreement with the 

ABAQUS simulations as a reference solution.  
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Chapter 1 

Introduction 

There is an increasing demand for sandwich structures in aerospace, marine, train, and automobile 

industries. Therefore, finding an accurate and simple way to analyze the behavior of sandwich 

structures under different loads seems necessary in this regard. Classical Bernoulli-Euler beam 

theory, first-order shear deformation theory, multi-dimensional elasticity theory, and finite element 

analysis are considered as some of the most popular approaches and theories [1-3].  

Sandwich beams are widely used in building frames, bridges, cranes, ship hulls, spacecraft, and 

industrial infrastructures as well as transportation systems. These structures are usually made in the 

form of assemblies with one or more members and core units with the capability of withstanding a 

wide range of static and dynamic loads such as shocks, explosions, and forces from sea waves and 

winds. Moreover, these beams have a structure with a regular and periodic core that will create a 

good middle ground between performance (energy absorption) and productivity. Accordingly, the 

core must have an acceptable stiffness in terms of shear forces applied to the structure, which 

consequently prevents the face sheets from slipping relative to each other. Moreover, the materials 

used to cover the two surfaces of the structure vary indefinitely. One common material is a face 

sheet. A plastic core sandwiched between two metallic and thin beams is usually called a double-

sided sandwich panel depending on its thickness. One application of this particular sandwich beam 

is to cover the roof of industrial and workshop sheds. In this type of sandwich panels, the insulations 

used are typically polyurethane, polystyrene and rock wool. In a double-sided sandwich panel, the 

thickness of the sheets used must be the same. Otherwise, the heavy sheet will bend towards the 

lighter sheet. 

Lattice and cellular structures have some unique advantages due to their superior strength, 

modulus, and high adsorption at low densities; therefore, they are used for structures that need to be 

light-weighted such as airplanes, spacecrafts, and cars. A particular attention in the present thesis is 

paid to the structure of a sandwich, which consists of two metal face sheets and the core of cellular 

and lattice materials, combining high energy absorption along with a very lightweight design. The 

core of the sandwich beam, so they work together in carrying the bending loads. On the other hand, 

the upper and lower sheets contribute to the tensile stiffness of the beam. 
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1.1. Composite beams 

Beams made of two or more different materials are called composite beams, which are used in 

thermostats. Plastic-coated tubes and wooden beams with steel reinforcement plates are shown in 

Figure 1.1 as examples of composite beams. 

 

Figure 1.1. Examples of composite beams: a) Bimetallic beams, b) plastic coated pipe, and c) wooden 
beam with steel reinforcing plates [54]. 

In recent years, several types of composite beams are used for industrial applications. The main 

purposes of using these beams are saving the related costs and reducing the weight of structures. 

Since the use of lightweight components with high strength and rigidity is preferred in lightweight 

applications of aerospace industry, sandwich beams, as a type of composite beams, are widely used 

in these applications. Various well-known items such as bookshelves, cardboard boxes, and doors, 

are also made of sandwich beam structures. 

The Figure 1.2 shows some examples of sandwich beams. A typical prototype of this beam 

consists of two thin face sheets with relatively high strength (such as aluminum plates) as well as a 

thick core with a relatively lower weight and strength (such as plastic). It is shown that due to the 

large distance of the plates from the neutral axis (where the most flexural strains occur), their 

behaviors are similar to those of the wings of an I-shaped beam. The core of the sandwich beam acts 

as a filler, which provides the necessary support for the plates of the face sheets (this configuration 

prevents the plates from buckling and wrinkling). Lightweight plastics and foams are mostly used 

for composite beam cores. In the next section, conventional approaches for analyzing the behavior 

of composite beams are introduced.  
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Figure 1.2. Examples of sandwich beams: a) with corrugated core, b) with hive core, and c) with 
plastic core [54]. 

1.2. Literature review 

The compliance and compressibility of the core in terms of thickness are shown to affect the overall 

behavior of the sandwich structure and limit the application of theories that cannot model this core 

behavior [4, 5]. In 1992, a special solution, called the high-order solution of sandwich structures, 

was proposed by Frostig et al. [6]. Accordingly, in this solution, the sandwich structure was divided 

into the following three regions: the upper surface, the three-dimensional body of the core, and the 

lower surface. It was assumed that the upper and lower surfaces follow the classical Bernoulli-Euler 

beam theory, and the core behavior is governed by three-dimensional elasticity theory. By solving 

these three regions relative to each other and considering the equations of displacement continuity 

at the contact point of the core with the sheets, the behavior of the structure was investigated, and 

the amount of core contraction was then obtained. 

One of the advantages of the high-order method is the possibility of applying different boundary 

conditions on the upper and lower surfaces, as well as considering the contraction and shear effects 

of the core. Frostig and other researchers in their studies used high-order sandwich theory to 

investigate the behavior of sandwich structures under different loads with different shapes of beams, 

sheets, and shells, and under different boundary conditions [6-10]. 

Thereafter, this theory was gradually upgraded and expanded [11-13]. In order to increase its 

accuracy in predicting the behavior of sandwich structures, the effect of geometric nonlinearity was 

also considered [14]. Most of the studies conducted on the nonlinearity of the theory emphasized 

that only the nonlinear behavior of the sheets can be modeled by considering the kinematic 

relationships of the sheets based on the von Karman strain [15-16]. The nonlinear behavior of the 

core was considered in two references [17-18]. In all of them, due to the high complexity, the 

complete solution of the obtained equations has gone through extensive simplifications. 
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In addition, the formulation and solution of equations considering large deformations for all the 

components of the sandwich structure are theoretically of great value; however, these have not been 

presented by other researchers so far. From an experimental perspective, the linear theories exhibited 

large errors due to different factors such as the size of the structures, the thinness of the sheets, and 

the compliance of the core. Due to these limitations and considerations, there is a clear need for a 

comprehensive consideration of these nonlinear terms. 

Taheri-Behrooz et al. [19] investigated the bending behavior of four-point sandwich beams with 

foam and resin cores as well as different lengths. As a result, it was shown that the mechanisms of 

destruction of the beams were the depression of the foam and the subsequent failure of the shell in 

the force application site. 

Cone shells are known as one of the most important components of structures applied in the 

aerospace, civil, and aerospace industries. Lightweight and high force bearing capacities make the 

broad usage of these structures in various fields of engineering. Cone shells are often subjected to 

dynamic loads, which makes it particularly important to study their vibrational behaviors. 

Additionally, the emergence of high-performance composite materials has proposed composite 

mesh shells as good alternatives to structures reinforced with traditional materials. The reinforced 

composite structures consist of shells and reinforcements (in the form of beams) that can be placed 

on both sides of the shells, and then increase the strength and rigidity of the structure significantly 

without causing any significant increase in weight. Composite lattices simultaneously have the 

capabilities of both simple composite structures and lattice structures. The properties that led to the 

widespread use of this type of structure are the ratio of high weight resistance and load-bearing 

capacity at a limited weight. Sandwich structures are created by the addition of a shell to the 

reinforced structure, so the reinforcements are placed between the shells. Given the importance of 

these structures as well as the high cost of performing experimental tests, providing an analytical 

model with the ability of studying the behavior of these structures under different loads, especially 

dynamic ones, is of great importance. Most of the previous studies conducted on the mechanical 

behavior of the reinforced shells have been limited to orthogonal reinforcements, and so far, less 

research has been devoted to the structures reinforced with diagonal reinforcements (ribs). 

Accordingly, Kidane et al. [20], by presenting an analytical model of buckling in their study, 

obtained a continuum model for cylindrical lattice shells with diagonal reinforcements and then 

compared the results of the analysis with the experimental and numerical results. 
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The number of applications for sandwich panels is rapidly increasing. The required accuracy  in 

the structural analysis of the panels was found to depend mostly on the type of application 

considered. For example, in aircrafts, a very detailed response of the sandwich structure may be 

required, whereas an overall global response may suffice in residential buildings when the natural 

vibration frequencies are of much interest. In any case, there is a need for proposing appropriate 

modeling tools for different applications. Reviews on the modeling of sandwich structures have been 

conducted by several authors [21-25]. Modeling methods for sandwich panels can be classified as 

follows: 

a- Full 3-D analysis (computational or analytical), with complete details of the considered face 

sheets and the core structure. 

b- Layer-wise modeling with the considered faces and core as separate continuum layers [26]; 

c- Statically equivalent single layer (ESL) models. 

Although computational 3-D and layer-wise analyses give very detailed stress distributions for 

the panels, they come with inherent disadvantages, including large number of variables, and thus, 

their computational analysis can be very burdensome. Therefore, equivalent single layer theories 

such as the ESL first-order shear deformation (FSDT) beam and plate models, can be considered as 

potential alternatives, especially when the global response of the structure is of main interest without 

accounting for further details. Nowadays, extensive literature exists on the modeling of the sandwich 

beam, plates, and shells by ESL theories [23, 27-29]. 

Recently, it was shown that all-steel hive-core sandwich beams deform so that when an ESL-

FSDT model is used, the model must take anti-symmetric shear deformations into account for the 

response of the sandwich structure to be accurately captured in some applications [30]. 

By the increased interest in micropolar elasticity [31], considerable effort has been devoted to 

developing appropriate finite element models for micropolar continua in general, for more examples, 

see [32-35]. To list a few recent finite element models for micropolar plates, the works of Ansari et 

al. [36, 37] and Godio et al. [38] can be mentioned. Various finite element models have been 

proposed for the bending analysis of micropolar beams, as well. Huang et al. [39] used 3-D non-

compatible finite elements to analyze the bending of beams, and Li and Xie [32] proposed three 

different elements for plane micropolar elasticity and used them to analyze thin in-plane beams. 

Hassanpour and Heppler [40] developed a 1-D micropolar beam finite element model using 

Lagrange interpolation functions. Moreover, Regueiro and Duan [41] derived a finite element model 

for a micropolar Timoshenko beam with the microrotation, which was assumed to be equal to the 
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cross-sectional rotation. More recently, in another study, Karttunen et al. [30] proposed a nodally-

exact 1-D finite element to analyze micropolar Timoshenko beams. In this regard, Ansari et al. [36] 

proposed a 27-node 3-D finite element for the analysis of beams. It is noteworthy that only linear 

strains are considered in developing the finite element models in all above-mentioned papers. 

1.3. Scientific hypothesis of the present dissertation 

In this dissertation, deformation and strain energy of a sandwich beam with a soft core under a static 

distributed load are investigated using geometrically linear modeling. The novelty of the proposed 

approach is that thin upper and lower face sheets are modeled as Euler–Bernoulli beams and the core 

is considered as a two-dimensional continuous body in the state of plane stress that undergoes shear 

and thickness compression; in the following, we refer to this approach as a compound model. The 

kinematics of deformation of the soft core is fully determined by the bending and axial deformations 

of the beams. Thus, the deformation of the entire sandwich structure and its strain energy are known 

as soon as the deformed configurations of the two beams are defined, both with respect to bending 

and longitudinal stretch. So, the present thesis aims at verifying the accuracy and efficiency of this 

novel mechanical model of sandwich beams for the possibly broad range of ratios of the stiffness 

coefficients of the face sheets and the core. 

For this purpose, different methods are applied, in order to determine the deformations of a sandwich 

beam under distributed loading. Along with the proposed compound model, two other models are 

used for comparison purposes: 

- A simple Bernoulli-Euler beam model with an equivalent bending stiffness is considered for 

validating the compound beam model in order to estimate the material parameter range, in 

which using the compound model is preferred. 

- The full two-dimensional plane stress continuum model of the beam was analyzed using 

ABAQUS finite element software, which allowed the validation of the proposed method in a 

broad parameter range as well as estimating the domain of its applicability. 

Finally, the simulations in the framework of the proposed compound model are performed using 

Wolfram Mathematica software via global Ritz approximation and a finite element model. The latter 

approximations provide degrees of freedom of the upper and lower beams of the sandwich structure. 

In this work, vectorial and tensorial quantities are represented in a Cartesian coordinate system.
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Chapter 2 

Problem formulation and simple solution technique 

All theories of sandwich beams feature the reduction of the two-dimensional continuous model to 

a one-dimensional model, which accounts for the particularities of the solution of the plane stress 

problem of the theory of elasticity for the original structure. In the displacement-based approach, 

the primary variables are the generalized displacements (displacement, rotation, etc.). 

Equivalent Single Layer (ESL) models, also known as Smeared Laminate, are generally 

based on a smooth expansion (generally as a power series expansion) over the whole laminate 

thickness of the displacement field in terms of the thickness-wise coordinate. Accordingly, this 

means that the kinematics along the thickness can be assumed to be at least C1-continuous and 

independent of the laminate layup. Consequently, the multilayer structure is substituted with a 

beam composed of an equivalent single layer. Although these are time consuming and also not 

cost effective, ESL models are not accurate in general, especially when through-the-thickness 

distribution of strains and stresses are the main concerns, and the laminate is highly heterogeneous. 

Among the displacement-based ESL models, the most popular ones are the Classical Lamination 

Plate Theory (CLPT) [42], and the First-order Shear Deformation Theory (FSDT) based on the 

Timoshenko beam theory [43, 44]. Correspondingly, both CLPT and FSDT make use of a linear 

expansion of the longitudinal displacement. Besides the weaknesses of the ESL models, it is a 

well-known fact that FSDT needs ad hoc shear correction factors to yield more accurate results 

[43-47]. CLPT and FSDT were found to perform relatively well in predicting global quantities 

such as transverse displacement, fundamental natural frequency, and buckling load for thin and 

moderately thick laminates with a relatively low degree of transverse heterogeneity. However, 

their accuracy rapidly diminishes when they are used to predict the displacement and stress fields 

in highly heterogeneous and/or thick composite as well as sandwich laminates [47, 49-51]. In this 

regard, the improved predictions can be obtained using higher order through-the-thickness 

expansions of the displacements and/or stresses [51]. 

Apart from the equivalent single-layer modeling assumptions, layer-wise theories assume 

that the behavior of a laminate is determined by an assembly of the individual layers whose 
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kinematic fields are independently described while satisfying some certain physical continuity 

constraints [48]. It is indicated that the increased kinematic freedom provided by the layer-wise 

schemes enables the enforcement of the interlaminar stress continuity conditions as well as the 

modeling of zigzag-like displacement distributions through a laminate thickness. However, the 

major drawback of such theories is that the number of kinematic variables depends on the number 

of layers. Therefore, for thick laminates or sandwich structures with a large number of plies, such 

approaches can be considered as computationally inefficient and particularly cumbersome in order 

to be implemented within a displacement-based finite element method. 

2.1. Dimensions and material properties 

A sandwich structured composite is a special class of composite materials fabricated by attaching 

two thin but stiff skins (face sheets), to a light weight but thick core. The core material is normally 

made of low strength material, but its higher thickness provides the sandwich composite with high 

bending stiffness with an overall low density. In this regard, the opened and closed cell-structured 

foams such as polyvinylchloride, polyurethane, polyethylene or polystyrene foams, and 

honeycombs are commonly used as core materials. The opened and closed cell metal foam can 

also be used as core materials. Notably, laminates of glass or carbon fiber reinforced 

thermoplastics or mainly thermo set polymers (unsaturated polyesters, epoxies, etc.) are widely 

used as skin materials. Sheet metal can also be used as a skin material in some cases. 

There are different types of sandwich structures like metal composite material (MCM), which 

is a type of sandwich formed from two thin skins of metal bonded to a plastic core during a 

continuous process under the controlled pressure, heat, and tension. As well, recycled paper is 

currently being used over a closed cell recycled craft honeycomb core, in order to create a 

lightweight, strong, and fully repulpable composite board. This material is used due to its 

applications, including point-of-purchase displays, bulkheads, recyclable office furniture, 

exhibition stands, and wall dividers. Of note, to fix different panels, a transition zone is normally 

selected among other solutions. Accordingly, this causes a gradual reduction in the core height, 

until the two fiber skins will be in touch. In this place, the fixation can be made using bolts, rivets 

or adhesive. The strength of the composite material depends largely on the following two factors: 

- The outer skins or face sheets: If the sandwich is supported on both sides and stressed using 

a force in the middle of the beam, then the bending moment will introduce shear forces in 
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the material. The core material also spaces these two sheets apart. The thicker the core 

material, the stronger the composite. This principle works in the same way as an I-beam 

does. 

- The interface between the core and the sheets: Because the shear stresses in the composite 

material rapidly change between the core and the sheets, the adhesive layer also undergoes 

some degrees of shear force. If the adhesive bond between the two layers is too weak, 

delamination is the most probable outcome. 

 

Figure 2.1. The scheme of the considered sandwich beam. 

 

 

Figure 2.2. Bending of a sandwich beam with no extra deformation due to core shear. 
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In this study, the upper and lower face sheets are modeled as Euler–Bernoulli beams along 

with the core as a two-dimensional continuum. Accordingly, the core resists shear, transverse, and 

longitudinal loads. In addition, at all points of contact, the connection between the sheets and the 

core is assumed to be perfect. Perfect bonding means that the degrees of freedom (DOF) of the 

upper side of the middle layer are equal to the DOF of the upper face sheet. It also applies exactly 

to the lower face sheet and lower side of the middle layer. The geometries of the sandwich beam 

and the assumed coordinate system for the upper sheet, core, and lower sheet are shown in Figure 

2.1. The compound beam is bent with a uniform transverse load per unit length along with the 𝑥-

axis, which is applied to the upper face sheet.  

The sandwich structure is built from two materials. As well, the upper and lower sheets 

are made of steel [52] and the core is made of rubber [52]. The basic values of the material 

properties are provided in Table 2.1. Both materials are isotropic and 𝜈 is the Poisson ratio of 

materials.  

Table 2.1 Material properties [52]. 

Material 𝐸 (GPa) 𝜈 

Steel 210 0.3 

Rubber 10−2 0.49 

 

As shown in Figure 2.1, the dimensions of the sandwich beam are chosen in a way that the ratio 

of the thickness of the middle layer compared to the thickness of the face sheets is 50 and the 

length of the face sheets in comparison to the beam length is equal to 1000. The beam’s boundary 

conditions are clamped-free. The sheets and the core have different material properties; hence, 

Young modulus of the compound beam is 𝑦-dependent. In this study, no plastic deformation is 

examined . 

2.2. Equivalent single layer Bernoulli-Euler beam solution 

In order to make a comparison, in this section, we presented the simplest possible solution for the 

formulated problem of bending a three-layered sandwich beam. Based on the classical kinematics 

of unshearable Bernoulli-Euler beam theory, this solution should be considered as valid only as 
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long as the core is sufficiently stiff, such that the shear deformations are not very pronounced. 

Accordingly, this solution provided us a reference for performing the subsequent thorough 

evaluation of the properties of the compound model presented in section 3. 

2.2.1. General stress and strain in composite beams 

Following the basic principles of the calculation of the strains in beams consisting of one material, 

we determine the strains in composite beams using conventional kinematic assumptions of the 

Bernoulli-Euler beam theory. Accordingly, this rule is always applied to pure bending and it does 

not depend on the nature of the beam material. Hence, in a composite beam, the amount of 

longitudinal strain 𝜀𝑥 linearly changes by moving from the top of the beam to its bottom. The 

relationship of this strain is as follows: 𝜀𝑥 = − 𝑦𝜌 = −𝜅𝑦, (2.1) 

where 𝑦 is the distance from the point under study to the neutral axis, 𝜌 is the radius of curvature 

of the deformed axis of the beam, and 𝜅 is the curvature. 

To calculate the stress and strain in any type of composite beam, we start from the above-

mentioned Eq. (2.1). To illustrate how this operation is performed, we must consider the composite 

beam shown in Figure 2.3. Correspondingly, this beam is composed of two different materials 

(materials 1 and 2). 

 

Figure 2.3. Composite beam consists of two materials [54]. 

The combination of these two materials that makes up a composite beam (as shown in Figure 2.3), 

such that its behavior against the applied loads can be considered as the behavior of a single 
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material. The overall deformation of this composite beam can be assumed as a single structure. In 

Figure 2.3, the 𝑥 − 𝑦 plane is considered as the symmetry plane and the 𝑥 − 𝑧 plane is the neutral 

plane of the beam. The Euler beam equation arises from a combination of the following four 

distinct subsets of beam theory: the kinematic, constitutive, force resultant, and equilibrium 

definition equations. In the following, kinematic and constitutive ones are represented in detail. 

2.2.2. Kinematics 

The displacement fields in the direction of the 𝑥 and 𝑦 axes, shown by u(𝑥, 𝑦) and w(𝑥, 𝑦), 

respectively, are as follows: 

𝑢(𝑥, 𝑦) = 𝑦 𝑑𝑤 𝑑𝑥  , (2.2) 𝑤(𝑥, 𝑦) = 𝑤(𝑥), (2.3) 

where 𝑤 is the lateral displacement of the neutral fiber of the beam, the displacement in 𝑧-direction 

is negligible, 𝑥 is the longitudinal coordinate, and 𝑦 is the coordinate in the direction of the 

thickness measured from the neutral fiber of the beam.  

 

Figure 2.4. Two states of a Euler-Bernoulli beam. 

As shown in Figure 2.4, in-plane displacement is accompanied with a rotation of the beam's neutral 

axis, defined as 𝜃, and by a rotation of the beam's cross-section, defined as 𝜙. 

u(𝑥, 𝑦) is the displacement in the 𝑥-direction across a beam cross section, from which we find the 

normal strain 𝜀𝑥(𝑥, 𝑦) by the following equation: 
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𝜀𝑥 = 𝜕𝑢𝜕𝑥 , (2.4) 

For this purpose, it is required to make a few assumptions on how a beam cross section rotates. 

For the Bernoulli-Euler beam, the assumptions are given by Kirchoff, which dictated how the 

normals behave [26][53]: 

1. Before deformation, straight lines were perpendicular to the midsurfaces, and after 

deformation, they still remain straight 

2. The transverse normals experience no elongation. 

3. The rotation of transverse normals is performed in a way that they still remain perpendicular 

to the beam’s axis 

With the straight and unstretched normals, we can safely assume that there is a negligible strain in 

the 𝑧 direction. With the straight and unstretched normals, we can safely assume that there is a 

negligible strain in the 𝑧 direction. Along with normals remaining normal to the neutral plane, we 

can make the 𝑦 dependency explicated via a simple geometric expression as follows: 𝑢(𝑥, 𝑦) = 𝑦𝜙(𝑥), (2.5) 

𝜀𝑥(𝑥, 𝑦) = 𝑦𝑑𝜙𝑑𝑥 , (2.6) 

Finally, with normals that are always remaining perpendicular to the cross-sections, we can tie the 

cross-section rotation 𝜙 to the neutral plane rotation 𝜃, and eventually to the beam's displacement 𝑤̅ as: 

𝜙 = −𝜃 = −𝑑𝑤𝑑𝑥  . (2.7) 

2.2.3. Constitutive equation 

The constitutive equation describes how both the normal stress 𝜎 and normal strain 𝜀 within the 

beam are related to each other. If we were to cut the beam at a given location, we would find a 

distribution of stresses acting on the beam cross section as shown in Figure 2.5. 
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Figure 2.5. Normal stress. 

Beam theory typically uses the simple 1-dimensional Hooke's equation, 𝜎𝑥(𝑥, 𝑦) = 𝐸𝜀𝑥(𝑥, 𝑦) . (2.8) 

Of note, the stress and strain are known as the functions of the entire beam cross section (i.e., they 

can vary with y). 

2.2.4. Effective elastic properties 

This subsection represents an overview of the properties of the material. In fact, this is a 

simplification of the whole model. A simple Eulerian beam works with a singular effective 

bending stiffness. Thereafter, the model is analytically solvable. The sheets and the core have 

different material properties; hence, Young’s modulus of the beam is 𝑦-dependent. 

The total potential energy (Π) of the beam is constructed from the following two parts: the strain 

energy (𝑈) and the external force work (𝑊) 𝛱 = 𝑈 + 𝑊. (2.9) 

The strain energy can also be assumed from: 

𝑈 = 12 ∫ 𝑀2(𝑥)𝐾𝐽𝑧 𝑑𝑥 ,𝑙
0  (2.10) 

where 𝑙 is the length of the beam, respectively (Figure 2.1). Additionally, the bending moment can 

be written in the following form: 
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𝑀𝑧 = −∫𝜎𝑦𝑑𝐴𝐴 . (2.11) 

Since this equation is independent of 𝑧 direction and ℎ, it can be written in the following form: ℎ = 2𝐻𝑠 + 𝐻𝑚 , (2.12) 

where 𝐻𝑠 and 𝐻𝑚 are explained from Figure 2.2. The total bending moment follows to  

𝑀𝑧 = 𝑏 ∫ 𝐸(𝑦)𝜅𝑦2𝑑𝑦ℎ2−ℎ2 , 
(2.13) 𝜅 is the curvature factor and 𝑏 is width of the sandwich beam model (Figure 2.1). Effective bending 

stiffness K is now defined as follows: 

𝐾 = 𝑏 ∫ 𝐸(𝑦)𝑦2𝑑𝑦ℎ2−ℎ2 = 𝑏 (∫ 𝐸𝑆𝑡𝑒𝑒𝑙𝑦2𝑑𝑦−𝐻𝑚2−(𝐻𝑚2 +𝐻𝑠) + ∫ 𝐸𝑅𝑢𝑏𝑏𝑒𝑟𝑑𝑦𝐻𝑚2−𝐻𝑚2 +
∫ 𝐸𝑆𝑡𝑒𝑒𝑙𝑦2𝑑𝑦𝐻𝑚2 +𝐻𝑠𝐻𝑚2 ),  

(2.14) 

Using beam theory, the deformations induced as a result of the applied distributed load can be 

determined without solving the two-dimensional equations of the theory of elasticity. The 

following summary shows the procedure when the cross-section, the modulus of elasticity and the 

distribution of the bending moment are held constant over the length of the beam: 

𝐾𝐽𝑧 𝑑2𝑤𝑑𝑥2 = 𝑀, (2.15) 

𝐾𝐽𝑧 𝑑𝑤𝑑𝑥 = ∫𝑀𝑑𝑥 + 𝐶1, (2.16) 

𝐾𝐽𝑧𝑤 = ∬𝑀𝑑𝑥 𝑥𝐶1 + 𝐶2. (2.17) 

The two integration constants are represented by 𝐶1 and 𝐶2. These coefficients are determined by 

applying two boundary conditions and are equal to 0: 𝑤′𝑥=0 = 0 and 𝑤𝑥=0 = 0, (2.18) 

which results in the complete form of the deflection equation.  
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𝑤(𝑥) = 𝑓24𝐾 (6𝑙2𝑥2 − 4𝑙𝑥3 + 𝑥4), (2.19) 

In our case, 𝑓 is a distributed load that is applied on top of the upper face sheet (Figure 2.1). 

Subsequently, one can determine the displacement at the end point 𝑙 as follows: 

𝑤(𝑥 = 𝑙) = 𝑓𝑙48𝐾 , (2.20) 

and the respective strain energy is: 

𝑈 = 𝑏𝑙5𝑓240𝐾  . (2.21) 
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Chapter 3 

Compound beam model 

In this chapter, we examine the mathematical modeling of the core as a function of the upper and 

lower face sheets. This study is performed based on the previous definition of the displacement 

parameters mentioned in Chapter 2 for the description of the bending of beams. 

The sandwich beam is made of three layers. The top and bottom layers are made of steel and the 

middle layer is made of rubber. The stiffness properties of such a beam are obtained from the 

properties of the constituent layers by procedures derived in this chapter. Figure 3.1 gives us a 

brief overview of the geometry of this mathematical model in two dimensions. 

 

Figure 3.1. Compound beam model under the distributed load. 

3.1. Hypotheses 

• The beam has a midplane symmetry. 

• The layers are isotropic, and the layer axes coincide with the 𝑥, 𝑦, 𝑧 axes of the beam. 

• The 𝜀𝑥𝑧 strain is negligible. 

• Under plane stress condition  𝜎𝑧𝑥 = 𝜎𝑥𝑧 = 𝜎𝑧𝑦 = 𝜎𝑧 = 0, the Hooke's law is as follows: 
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[ 𝜀𝑥𝜀𝑦𝛾𝑥𝑦] =
[  
   

1𝐸 − 𝜈𝐸 0− 𝜈𝐸 1𝐸 00 0 1𝐺]  
   [ 𝜎𝑥𝜎𝑦𝜏𝑥𝑦], 

(3.1) 

or in an inverse form: 

[ 𝜎𝑥𝜎𝑦𝜏𝑥𝑦] = [  
  𝐸1 − 𝜈2 𝜈𝐸1 − 𝜈2 0𝜈𝐸1 − 𝜈2 𝐸1 − 𝜈2 00 0 𝐺]  

  [ 𝜀𝑥𝜀𝑦𝛾𝑥𝑦]. 
(3.2) 

 
In a typical sandwich beam structure, the distortion of the beam section due to transverse shear is 

illustrated below.  

 

 

Figure 3.2. Schematic of the Distortion of the Beam Section due to Transverse Shear 𝜏𝑥𝑦 

 3.2. Kinematics of deformation of the core layer 

By assuming that both the upper and lower sheets are simple Bernoulli-Euler beams, the 

displacement of the middle axis of the core is assumed as an average displacement of the neutral 

axes of the two sheets as follows: 

𝒖𝑀 = 12 [𝑢1(𝑥) + 𝑢2(𝑥)𝑤1(𝑥) + 𝑤2(𝑥)], (3.3) 
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where the displacements of the upper and lower sheets in 𝑥-direction and 𝑦-direction are indicated 

by 𝑢1, 𝑢2 and 𝑤1, 𝑤2 at points 𝑃1 and 𝑃2, respectively, see Figure 3.3. The external force is 

assumed as the distributed load applied on the upper sheet as shown in Figure 3.1.Thereafter, by 

deforming the upper sheet, to transfer the displacements to the bottom sheet, a certain deformation 

appears in the thickness of the core because of its high thickness to length ratio. In this regard, to 

calculate the deformation in the core, two particles on both upper and lower sheets, namely 𝑃1 and 𝑃2, are chosen as shown in Figure 3.1. After the deformation, these particles move to positions 𝑃1′ 
and 𝑃2′ . 

 

Figure 3.3. Compound beam model dimensions. 

we need an approximation of the displacement field in the core layer. The idea is a linear 

approximation. This approach must satisfy continuity conditions and the displacement field is 

assumed to vary linearly in the thickness direction. These conditions uniquely determine the 

displacement field within the body of the core: 

𝒖𝑃(𝑥, 𝑦) = [𝑢1(𝑥) + 𝑢2(𝑥)2𝑤1(𝑥) + 𝑤2(𝑥)2 ] + [𝑢1(𝑥) − 𝑢2(𝑥)ℎ𝑤1(𝑥) − 𝑤2(𝑥)ℎ ] 𝑦.  

(3.4) 
 

The displacements of the core are approximated based on the displacements of the two face sheets. 

Furthermore, the displacements of the core must be linear so as to be consistent with the 

displacements of the two face sheets at the boundary. To investigate the validity of this 

approximation and its capability in assuming the correct displacements, the strains at the boundary 

and throughout the thickness of the core are presented as follows 
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𝜺 = [ 𝜀𝑥𝜀𝑦𝛾𝑥𝑦] =
[  
   
 𝜕𝑢(𝑥)𝜕𝑥𝜕𝑤(𝑥)𝜕𝑦𝜕𝑤(𝑥)𝜕𝑥 + 𝜕𝑢(𝑥)𝜕𝑦 ]  

   
 . 

 

(3.5) 
 

In order to validate the derived mode, we consider several specific cases of deformation and audit 

the boundary conditions in respect to strain distribution within the core. By substituting Eq. (3.4) 

into Eq. (3.5), the strain tensor in the core is determined as 

𝜺 = [  
  01ℎ (𝑤1(𝑥) − 𝑤2(𝑥))1ℎ (𝑢1(𝑥) − 𝑢2(𝑥)) ]  

  .  

(3.6) 
 

Firstly, we assume 𝑤1(𝑥) = 𝑤2(𝑥) = 𝑢2(𝑥) = 0 and the 𝑥-direction displacement of the upper 

sheet as 𝑢1(𝑥) = 𝑘𝑥, from Eq. (3.5) we obtain the displacement of the core as 

 

It can be observed that the axial strain of the core is equal to 𝑘2 + 𝑘ℎ 𝑦, strain at the upper boundary 

in 𝑦 = ℎ2, is equal to 𝑘. The amount of the strain under assumed conditions is the same as the axial 

strain of the upper face sheet. Also, at the bottom boundary, it is apparent that the axial strain in 

the core is zero, which is consistent with zero displacement of the bottom face sheet. To further 

validate the approximation, the following examinations are conducted similar to the above 

examination of Eq. (3.7). 

Vertical displacements of both beams and the horizontal displacement of the upper sheet are 

considered to be zero (𝑤1(𝑥) = 𝑤2(𝑥) = 𝑢1(𝑥) = 0), and also, the 𝑥-direction displacement of the 

bottom sheet is considered to be 𝑢2(𝑥) = 𝑘𝑥: 

𝜺 = [  
  𝑘2 + 𝑘ℎ 𝑦0𝑘ℎ 𝑥 ]  

  , 
(3.7) 
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𝜺 = [  
  𝑘2 − 𝑘ℎ 𝑦0−𝑘ℎ 𝑥 ]  

  . 
(3.8) 

Which at the upper and lower boundary confirms the consistency of the displacement field. Also, 

the elongation of the lower face sheet results in the longitudinal strains linearly distributed over 

the height of the beam as well as the shear strains, which grows along the axial direction. 

At the next stage, the effect of changing the vertical displacement of the upper beam is examined. 

By assuming 𝑢1(𝑥) = 𝑢2(𝑥) = 𝑤2(𝑥) = 0 and substituting 𝑤1(𝑥) = 𝑘𝑥, in Eq. (3.4) and 

implementing the results into Eq. (3.5), the following equation is obtained: 

𝜺 = [  
  0𝑘ℎ 𝑥( 𝑘2ℎ + 𝑘ℎ 𝑦)𝑥]  

  . 
(3.9) 

Yet again, the strains in the core and at the boundaries are in agreement with the axial and through 

the thickness strains of the face sheets. Similarly, 𝑤1(𝑥) = 𝑢2(𝑥) = 𝑢(𝑥) = 0 and 𝑤2(𝑥) = 𝑘𝑥 

𝜺 = [  
  0−𝑘ℎ 𝑥( 𝑘2ℎ − 𝑘ℎ 𝑦)𝑥]  

  . 
(3.10) 

The same conclusion similar to the one achieved in Eq. (3.9) is observed to occur in Eq. (3.10). 

For the case of inclination of both beams 𝑤1(𝑥) = 𝑤2(𝑥) = 𝑘𝑥 and vanishing displacements in 𝑥 

we observe a simple shear deformation 

𝜺 = [00𝑘].  

(3.11) 

The trivial longitudinal stretch 𝑢1(𝑥) = 𝑢2(𝑥) = 𝑘𝑥 results in 

𝜺 = [𝑘00]. 
(3.12) 
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For a rigid body rotation, displacements are 𝑢1 = −𝑘 ℎ2, 𝑢2 = 𝑘 ℎ2, 𝑤1(𝑥) = 𝑤2(𝑥) = 𝑘𝑥, and the 

implementation in Eq. (3.5) indeed results in vanishing strains: 

𝜺 = [000], 
(3.13) 

Eq. (3.13) indicates a whole-body movement as well as a separation from the axial boundary. The 

approach to compute the strain energy in the middle layer of the compound beam for the given 

deformations 𝑤1, 𝑢1, 𝑤2, and 𝑢2 of the face sheets is given as follows: 

𝑈𝑀𝑖𝑑.𝑙𝑎𝑦𝑒𝑟 = 𝑏 ∫ ∫ (12𝐸𝑅𝑢𝑏𝑏𝑒𝑟(𝜀𝑥2 + 𝜀𝑦2) + 2𝜇𝜀𝑥𝑦2 )𝑑𝑦𝑑𝑥ℎ 2⁄−ℎ 2⁄
𝐿

0 , 
(3.14) 𝜇 = 𝐸𝑅𝑢𝑏𝑏𝑒𝑟2(1 + 𝜈). (3.15) 

Notably, the strain energy of the middle layer depends on the strains induced in this layer through 

the displacements of the face sheets. Furthermore, the strain energy of the beams is separated into 

a part due to tension and a contribution from bending: 𝑈𝐵𝑒𝑎𝑚 = 𝑈𝑏𝑒𝑛𝑑𝑖𝑛𝑔 + 𝑈𝑇𝑒𝑛𝑠𝑖𝑜𝑛, (3.16) 

𝑈𝑏𝑒𝑛𝑑𝑖𝑛𝑔 = ∫ 𝑀22 𝐸𝑠𝑡𝑒𝑒𝑙  𝐽𝑧  𝑑𝑥𝑙
0 = 12 𝐸𝑠𝑡𝑒𝑒𝑙  𝐽𝑧 ∫ (𝑑2𝑤𝑖𝑑𝑥2 )2𝑙

0 𝑑𝑥, (3.17) 

𝑈𝑇𝑒𝑛𝑠𝑖𝑜𝑛 = ∫ 𝑁22 𝐴𝐸𝑠𝑡𝑒𝑒𝑙  𝑑𝑥𝑙
0 = 12 𝐸𝑠𝑡𝑒𝑒𝑙𝐴 ∫ (𝑑𝑢𝑑𝑥)2𝑙

0 𝑑𝑥, (3.18) 𝐽𝑧 = 112𝐻𝑠3. 𝑏, (3.19) 𝐴 = 𝐻𝑠 . 𝑏. (3.20) 

The total strain energy of the sandwich structure is determined using the following equation: 𝑈𝑡𝑜𝑡𝑎𝑙 = 𝑈𝑀𝑖𝑑.𝑙𝑎𝑦𝑒𝑟 + 𝑈𝐵𝑒𝑎𝑚,𝑢𝑝 + 𝑈𝐵𝑒𝑎𝑚,𝑑𝑜𝑤𝑛 . (3.21) 

The strain energies of the face sheets are different based on their displacements and locations. The 

strain energies of both beams are similar and 𝑈𝐵𝑒𝑎𝑚,𝑢𝑝 represents the amount of bending and 

tension energy in upper face sheet and 𝑈𝐵𝑒𝑎𝑚,𝑑𝑜𝑤𝑛 represents the energies for lower face sheet.
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Chapter 4 

Approaches to analyzing the compound beam model 

Herein, we present some methods for finding the state of static equilibrium by minimizing the total 

potential energy of the compound model of the sandwich beam. To fulfill this, the field variables 

of 𝑤1(𝑥), 𝑢1(𝑥), 𝑤2(𝑥), 𝑢2(𝑥) need to be approximated, such that we represent them by a finite 

set of variables. Thereafter, two approaches are considered: global Ritz approximation and finite 

element approximation, which needs a C1-continuous approximation to fulfill the kinematic 

requirements of the beam theory. 

4.1. Variational principles 

Variation calculus seeks to find a set of paths and curves with longitudinal extremums as both 

continuous and derivative functions (often referred to as the minimum or maximum in physical 

problems). In mathematics, the value of this extremum is denoted by the following definite 

integral: 

𝑅 = ∫𝑓(𝑡, 𝑦, 𝑦̇)𝑑𝑡. (4.1) 

Functionals are often expressed as the definite integrals in which their functions and derivatives 

appear. Moreover, the functions that maximize and minimize the functionals are found in the 

calculus of variations using the Euler-Lagrange equations. 

To derive the functionals and the overall Euler-Lagrange equations, three variational principles 

are used as follows: 

a) The Principle of Conservation of Energy 

b) The Principle of Virtual Work 

c) The Principle of Minimum Potential Energy 

The minimization is done after performing the displacement approximations with the help of the 

two methods that are explained in the following sections. 
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4.2. Ritz method implementation 

To approximate the displacements in the upper and lower face sheets, the Ritz method is utilized. 

The Ritz method is a numerical method which is based on variational principles. Accordingly, the 

principle of minimum potential energy is the main principle behind the energy method developed 

by Ritz. Using this method, the approximation is done by assuming the displacements as a power 

series: 

𝑞 = [𝑞1,1𝑢 , 𝑞1,2𝑢 , 𝑞1,3𝑢 , … , 𝑞1,𝑛𝑢𝑞1,2𝑤 , 𝑞1,3𝑤 , 𝑞1,4𝑤 , … , 𝑞1,𝑛𝑤 ], (4.2) 

𝑢𝑖(𝑥) = ∑ 𝑞𝑖,𝑘𝑢 𝑥𝑘𝑛
𝑘=1      𝑖 = 1,2, (4.3) 

𝑤𝑖(𝑥) = ∑ 𝑞𝑖,𝑘𝑤 𝑥𝑘𝑛
𝑘=2      𝑖 = 1,2, (4.4) 

where the vector of degrees of freedom 𝑞 comprises the coefficients in the approximations of the 

variables to be determined. To simplify these equations, some of the coefficients are assumed to 

be zero as shown in Eq. (4.2). The boundary conditions at 𝑥 = 0 require the displacements at that 

point to be zero, hence the coefficients of those points will vanish from the series solution.  

By substituting Eqs. (4.3) and (4.4) into Eq. (3.4), the displacement of an arbitrary point in the 

core (point 𝑃 in section 3.2) is found. Additionally, the strain of the core is determined by 

substituting the displacement components, which are derived in Eqs. (4.3) and (4.4) in Eq. (3.5). 

Finally, the strain energy of the beam is determined as a quadratic form with a stiffness matrix 𝐾: 

𝑈𝑡𝑜𝑡𝑎𝑙 = 12𝑞𝑇𝐾𝑞. 
(4.5) 

To determine the stiffness matrix of the beam, the total energy of the beam is considered as a 

function of the coefficients of the Ritz approximation as 

𝐾 = 𝜕2𝑈𝜕𝑞2 . 
(4.6) 

In addition, the linear form of the potential of external force using the vector of generalized forces 

is defined as: 
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𝑊𝑡𝑜𝑡𝑎𝑙 = −𝑏 ∫ 𝑓𝑙0 𝑤𝑖𝑑𝑦 = −𝑞𝑇𝐹, 
(4.7) 

where 𝑓 is the distributed load. Thereafter, similar to the stiffness matrix, the resultant matrix in 

the vectorized form is derived: 

𝐹 = −𝜕𝑊𝜕𝑞 . 
(4.8) 

The equations of static equilibrium follow from the principle of minimality of the total energy 𝑈𝑡𝑜𝑡𝑎𝑙 + 𝑊𝑡𝑜𝑡𝑎𝑙. We seek the minimum by demanding that the derivatives with respect to the 

degrees of freedom q must vanish. Eventually these results into the following linear algebraic 

system of equations: 𝐹 = 𝐾𝑞. (4.9) 

The Ritz’s coefficients are then computed from Eq. (4.9) and the expressions for the approximated 

displacement of the upper and the lower face sheets are determined. 

4.3. Finite Element Method implementation 

As an alternative to the global polynomial approximation in the form of Eqs. (4.3) and (4.4), we 

consider a finite element scheme, which is a subclass of the Ritz method with localized shape 

functions. One can thus consider two finite elements on top of each other as a compound problem 

specific finite element, consisting of the finite elements of both beams and a piece of the middle 

layer between them within the finite element. Similar to the previous section, the displacement of 

the core is calculated through the two displacements of the surrounding sheets. In the standard 

Finite Element Method with nodal identity shape functions, the continuity of the derivative of 

displacement between elements is not guaranteed. However, assuming derivatives of deflection as 

the additional DOF, the continuity of the derivative of deflection is also guaranteed. This prevents 

the kink production in the nodes, which is not allowed in the kinematics of Bernoulli-Euler beams. 

Cubic shape functions [52] are used to approximate the deformation of sandwich beam within an 

element. These functions are shown in Figure 4.1. To further simplify the integrals for calculation 

of the total strain energy, the shape functions and the displacement approximations are transformed 

into the local coordinates. In local coordinate system, each of the shape functions has either the 

value 1 or the derivative 1 in one of the two nodes of the element, whereas all other nodal values 
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and derivatives vanish. The mapping relation between global coordinate and local coordinate 𝜁 is 

demonstrated in Eq (4.10). We discretized the length of the beam into n elements, numbered from 

1 to n. An element number i has nodes with numbers i-1 at the left and i at the right. At each 

element a local coordinate 𝜁 is introduced, which varies from -1 to 1.  

𝜁(𝑥) = 2𝑥 − (𝑥𝑖−1 + 𝑥𝑖)𝑥𝑖 − 𝑥𝑖−1 ,  (4.10) 

Cubic shape functions are defined as follow: 𝑆1 = 14 (2 − 3𝜁 + 𝜁3), (4.11) 𝑆2 = 14 (−1 + 𝜁)2(1 + 𝜁), (4.12) 𝑆3 = 14 (2 + 3𝜁 − 𝜁3), (4.13) 𝑆4 = 14 (−1 + 𝜁)(1 + 𝜁)2. (4.14) 

 
Utilizing these shape functions, the displacement of the i-th element of j-th face sheet is evaluated 

as given by Eqs. (4.15) -(4.16) subject to continuity conditions of Eqs. (4.17) -(4.18) 𝑢𝑗(𝑖) = 𝑢𝑖−1,𝑗 . 𝑆1 + 𝜖𝑖−1,𝑗 . 𝑆2 + 𝑢𝑖,𝑗 . 𝑆3 + 𝜖𝑖,𝑗 . 𝑆4, (4.15) 𝑤𝑗(𝑖) = 𝑤𝑖−1,𝑗 . 𝑆1 + 𝜃𝑖−1,𝑗 . 𝑆2 + 𝑤𝑖,𝑗 . 𝑆3 + 𝜃𝑖,𝑗 . 𝑆4, (4.16) 𝑢𝑗(𝑖)(−1) = 𝑢𝑖−1,𝑗 , 𝑢𝑗(𝑖)(1) = 𝑤𝑖 , ∂𝜁𝑢𝑗(𝑖)(−1)  = 𝜖𝑖−1, ∂𝜁𝑤𝑗(𝑖)(1) = 𝜖𝑖 , (4.17) 𝑤𝑗(𝑖)(−1) = 𝑤𝑖−1,𝑗 , 𝑤𝑗(𝑖)(1) = 𝑤𝑖 , ∂𝜁𝑤𝑗(𝑖)(−1) = θ𝑖−1,∂𝜁𝑤𝑗(𝑖)(1) = θ𝑖, (4.18) 

in which, 𝜃 and 𝜖 are the first derivative of w and u with respect to local coordinate 𝜁, respectively. 

The following nodal variables play thus the role of the degrees of freedom of the finite element 

model: 𝑢 , 𝑤, 𝜃, 𝜖 

The discretized form of Eq (3.4) can be recast into the following equations: 

  𝑢 = 12 (𝑢1(𝑖)+𝑢2(𝑖))+ 1ℎ (𝑢1(𝑖)- 𝑢2(𝑖))y, (4.19) 𝑤 = 12 (𝑤1(𝑖)+𝑤2(𝑖))+ 1ℎ (𝑤1(𝑖)- 𝑤2(𝑖))y, (4.20) 
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Similar to the Ritz method, the displacements are approximated through the elements. Length of 

each element is assumed as follows: 𝑙0 = 𝑥𝑖 − 𝑥𝑖−1. (4.21) 

 

Figure 4.1. Polynomial shape functions. 

The bending and tension energy of i-th element is calculated with the help of Eq. (4.22) -(4.23) 𝑈𝑤𝑗(𝑖) = 12 𝐸𝑠𝑡𝑒𝑒𝑙  𝐽𝑧 ∫ 𝑤′′1
−1 𝑑𝑥 = 12𝐸𝑠𝑡𝑒𝑒𝑙  𝐽𝑧 ∫ (𝜕𝜁2𝑤(𝜕𝑥𝜁)2)2𝜕𝜁𝑥1

−1 𝑑𝜁, (4.22) 

𝑈𝑢𝑗(𝑖) = 12 𝐸𝑠𝑡𝑒𝑒𝑙  𝐴∫ 𝑢′1
−1 𝑑𝑥 = 12𝐸𝑠𝑡𝑒𝑒𝑙  𝐴 ∫ (𝜕𝜁𝑢(𝜕𝑥𝜁))2 𝜕𝜁𝑥1

−1 𝑑𝜁, (4.23) 

In order to transfer the derivatives 𝑤′ and 𝑢′ from global coordinates to the local coordinates, 𝜕𝜁𝑥=𝑙0/2 and 𝜕𝑥𝜁 = 2/𝑙0 is derived which results into Eqs. (4.24) -(4.25). 

𝑈𝑤𝑗(𝑖) = 12𝐸𝑠𝑡𝑒𝑒𝑙  𝐽𝑧(2𝑙0)3 ∫ (𝜕2𝑤𝑖𝜕𝑥2 )21
−1 𝑑𝜁, (4.24) 

𝑈𝑢𝑗(𝑖) = 12 𝐸𝑠𝑡𝑒𝑒𝑙𝐴(2𝑙0)1 ∫ (𝜕𝑢𝑖𝜕𝑥 )21
−1 𝑑𝜁. (4.25) 

Total bending and tension energies of both face sheets are calculated from Eq. (4.26) -(4.27) 

𝑈𝐵𝑒𝑛𝑑𝑖𝑛𝑔 = ∑∑𝑈𝑤𝑗(𝑖),2
𝑗=1

𝑛
𝑖=1  

(4.26) 
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𝑈𝑇𝑒𝑛𝑠𝑖𝑜𝑛 = ∑∑𝑈𝑢𝑗(𝑖)
2

𝑗=1
𝑛

𝑖=1 . 
(4.27) 

 To determine the total strain energy of the whole beam, the strain energy of the middle layer is 

also needed. For this purpose, the strain tensor is expressed in the following form utilizing the 

local coordinate 𝜁: 

𝜺 =
[  
   
 2𝑙0 𝜕𝑢𝜕𝜁𝜕𝑤𝜕𝑦2𝑙0 𝜕𝑤𝜕𝜁 + 𝜕𝑢𝜕𝑦]  

   
 . 

(4.28) 

  

For this purpose, we substituted Eq. (4.28) in Eq. (3.14) and obtained Eq. (4.29) as follow 

𝑈𝑀𝑖𝑑.𝑙𝑎𝑦𝑒𝑟 = 𝑏 ∫ ∫ (12𝐸𝑅𝑢𝑏𝑏𝑒𝑟(𝜀𝜁2 + 𝜀𝑦2) + 2𝜇𝜀𝜁𝑦2 )𝑑𝑦𝑑𝜁ℎ 2⁄−ℎ 2⁄
1

−1 , (4.29) 

By substituting Eqs. (4.26) -(4.27) and (4.29) in Eq (3.21), 𝑈𝑡𝑜𝑡𝑎𝑙 is obtained. Subsequently, the 

overall differential Euler-Lagrange equation is transformed into a system of linear 

nonhomogeneous algebraic equations. The structure of the stiffness matrix of the beam is 

demonstrated in Figure 4.2 and obtained from Eq. (4.6). As clearly can be seen, the degrees of 

freedom in nodes, which are separated by more than 1 element, are uncoupled. 
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Figure 4.2. The profile structure of the stiffness matrix. 

Same as in section 4.2, unknown coefficients 𝑞 are obtained by solving the linear system of 

equations in Eq. (4.9).  

4.4. ABAQUS simulations 

At this stage, the commercial finite element simulation program ABAQUS is employed as a 

validation technique, since it displays valid results within the broad range of parameter values. 

Using ABAQUS, the cantilever beam is simulated. In doing so, we partition the beam into three 

sections in order to take the three layers of the sandwich beam into account. A two-dimensional 

quadratic element (CPS8) is then chosen. 

 

Figure 4.3.The meshing of the cantilever beam at a corner. 
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Afterward, the beam is meshed into 163879 elements as shown in Figure 4.3. Notably, all element 

sizes are set at 0.005 m. Although the size of the mesh does not play a critical role in the overall 

simulations, the elements are still chosen to be very small in leu of the simplicity of the model to 

achieve higher accuracy. 

The material properties of the beam are set to data provided in this study, the upper and lower face 

sheets are modeled along with the core as a two-dimensional continuum at plane stress conditions. 

Accordingly, the core resists shear, transverse, and longitudinal loads. In addition, at all points of 

contact, the connection between the sheets and the core is assumed to be perfect. Perfect 

connection means that the degrees of freedom (DOF) of the upper side of the middle layer are 

equal to the DOF of the upper face sheet. It applies exactly to the lower face sheet and lower side 

of the middle layer also. The geometries of the sandwich beam and the assumed coordinate system 

for the upper sheet, core, and lower sheet are shown in Figure 2.1. The compound beam is bent 

with a uniform transverse load per unit length along with the x-axis, which is applied to the upper 

face sheet.  

The sandwich structure is built from two materials. As well, the upper and lower sheets are made 

of steel [52] and the core is made of rubber [52]. The basic values of the material properties are 

provided in Table 2.1. Both materials are isotropic and ν is the Poisson ratio of materials. Finally, 

the beam is connected on its outer leftmost nodal points to an immovable boundary; hence, all the 

degrees of freedom are constrained there, which corresponds to the clamping boundary condition. 

The geometric characteristics of the beam are found in section 2.1. On the upper surface of the 

beam, a distributed load of 1000 N/m2 is assumed. Accordingly, all the results are obtained using 

geometrically linear simulations. 
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Chapter 5 

Results of numerical experiments and validation 

In this chapter, the results of the calculations performed based on the numerical schemes discussed 

in previous chapters, are provided. The beam is subjected to a distributed load in order to be 

analyzed using different methods. These methods can be categorized into two different 

mathematical proceedings. Three numerical analysis methods are used in this regard, namely FEM, 

Ritz methods, and ABAQUS 2D simulation. The analytical models include equivalent single layer 

beam model. The effect of different parameters variation such as height of the beam, elastic moduli 

of the constituents, and the number of interpolation functions are also investigated. 

5.1. Convergence study 

Numerical models initially require a convergence study before being considered as validated. The 

effect of increasing the number of terms for the Ritz approximation on the calculated total energy 

of the beam is presented in Figure 5.1. Accordingly, by increasing the number of interpolation 

order, the convergence is firstly observed for up to 20 terms, and then the results are getting 

essentially less accurate. Of note, this behavior does not naturally occur in abstract mathematics. 

However, at increasing number of approximation functions, the stiffness matrix becomes more 

and more ill-conditioned, the accuracy of solving the linear system of equations diminishes, and 

errors occur as a result of rounding employed by the commercial program Mathematica. Thus, for 

the simplified calculations, the number of terms for the following results pertaining to Ritz model 

is set to 10. 
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Figure 5.1. Convergence of the Ritz model versus the number of terms employed in approximation 

As mentioned earlier, the convergence of numerical methods is of utmost importance. For the 

following FEM analyses, it is attempted to calculate the total energy convergence by increasing 

the number of elements. As shown in Figures 5.2-5-4, total energy of the beam is plotted against 

the number of elements. Additionally, by increasing the elastic modulus of the core, the optimum 

number of elements for convergence is investigated for conducting further analyses. 

 

Figure 5.2. Total energy of the beam versus the number of elements for 𝐸𝐶𝑜𝑟𝑒 = 210 . 103 .  
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Figure 5.3.  Total energy of the beam versus the number of elements for 𝐸𝐶𝑜𝑟𝑒 = 210 . 107 . 

 

 

Figure 5.4. Total energy of the beam versus the number of elements for 𝐸𝐶𝑜𝑟𝑒 = 210 . 109 . 

In Figures 5-2-5-4, after 68 elements, the total calculated relative increments in the strain energy 

becomes less than our defined tolerance 10−6. The relative error is calculated as follow  𝐸𝑟𝑜𝑟𝑟𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 = 𝑈𝑖 − 𝑈𝑖−1𝑈𝑖−1  . (5.1) 
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This convergence is also observed to occur in all the above figures. The increase in the number of 

elements plays a much larger part in capturing the essence of the material, since the beam is 

partially observed to be isotropic. By increasing elements number, in Figures 5-2-5-4 the results 

are not varied more than 14%. 

In the following section, Ritz and FEM models used in the present study will be validated. In 

addition, by analyzing the results obtained from Figures 5-2-5-4 and Eq. (5.1) the optimum number 

of elements is assumed to be 68. As shown in this section, the convergence of our model is not 

strongly affected by different elastic moduli; in all three studies, the magnitude of strain energy 

converged to a constant value. 

 

5.2. Validation 

In chapter 3, a compound beam model was presented. By comparing the results obtained from 

the compound beam model and 2D ABAQUS simulations, the presented model is validated. The 

deflection of a beam against the changes in the elastic modulus ratio of the rubber core to the steel 

face sheets is illustrated in Figure 5.5 As we see, both the simple beam model and the compound 

beam model predict accurate responses for stiffness ratios under 500. However, as can be seen, the 

error of the simple beam model is more pronounced with higher ratios. On the other hand, the 

compound beam model predicts an accurate deflection compared to the reference solution. The 

manifested difference is presumed as a result of the differences in the effective elastic modulus of 

the beam. It is found that the simple beam model cannot accurately display the overall deflection 

of the beam, since after a ratio of 100, the kinematics of the deformation of the Bernoulli-Euler 

beam theory is insufficient to describe the more complicated behavior of the sandwich structure at 

such high stiffness ratios. In Figure 5.5, we assumed 10 as the polynomial order of the Ritz method 

according to the convergence study conducted in the previous section. 
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Figure 5.5. Deflection of the beam versus elastic modulus ratio. 

In Figure 5.6 we demonstrate the variations of the total strain energy of the beam for varying 

stiffness ratios at a given loading computed using the above-mentioned 4 methods. It must be noted 

that the Ritz method and the FE method are in agreement, the difference between the two models 

is within our defined tolerance range from 10−3 to 10−6. Accordingly, the results of the developed 

compound model are in good agreement with the 2D ABAQUS simulation as a reference solution. 

As discussed earlier, the changes in the elastic modulus ratio have not been accurately reflected in 

the equivalent single layer model. In Figure 5.6, the total energy of the beam is observed to reach 105 for a beam with nearly no core strength. Correspondingly, this phenomenon can be explained 

by assuming a massive deflection in the upper face sheet, a nearly flattened state for the core, as 

well as a small deflection for the bottom face sheet. Figure 5.7 shows a zoomed in version of 

Figure 5.6, in order to indicate the separation point of the simple beam model with the rest of them. 

The graph presented in Figure 5.6 can be explained in 3 sections. As indicated, from point A to 

point B, all these 4 methods provide the same response, the difference between two results is less 

than our relative error 10−3. From point B to point C, the three numerical methods again predict 

the same response, but they start to deviate from the simple beam model since the shear 

deformation starts growing as the rubber core is  restricted by the longitudinal strain of the face 

sheet. This effect is not captured by the simple model. From point C forward, even the transverse 

stiffness of the core is getting so small, that the upper face sheet withstands the external loading 

on its own without the support of the lower one. By ratios above 108, the core seemingly ceases 

to have an interaction with the movements of the top or bottom layer. Further increases in this 
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parameter have no longer influence on the total strain energy of the beam and the graph continues 

on a horizontal line.  

 

 

Figure 5.6. Changes in the total strain energy of the beam versus elastic modulus ratio. 

To further validate the accuracy of the presented study, a section of the graphs between points B 

and C in Figure 5.6 is presented in a larger scale. In Figure 5.7, the use of the compound beam 

model in both FEM and Ritz methods has proven to be in relative agreement with the results 

obtained with the ABAQUS simulations. 

A 

B 

C 
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Figure 5.7. Changes in the total strain energy of the beam versus elastic modulus ratio (zoomed). 

Similarly, the results presented in Figure 5.8 prove the accuracy of the presented model. The 

deflection of the mid plane of the beam calculated through the compound beam model is compared 

with the 2D simulations of ABAQUS. As shown, the model proves to be capable in determining 

the deflection of the beam with less computational time and resources and acceptable accuracy.   
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Figure 5.8. Deflection of the top surface of the upper face sheet with 10 elements. 

5.3. Parametric study 

To investigate the effects of beam thickness on the overall strain energy of the sandwich beams of 

varying thicknesses and core strengths, all under a constant distributed load, as mentioned in the 

previous chapters, Ritz method is used for obtaining the results presented in Figure 5.9. By 

increasing the thickness of the beam, it is observed that the energy changes assume a downward 

trend until the thickness effects are no longer visible. This phenomenon is related to the 

deformation transference in the core, and this is more apparent if the core has a lower strength than 

the face sheets. The peculiar trends observed for the core strengths smaller than 210 × 103 require 

further investigations. 
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Figure 5.9. Variation of energy versus height of core. 

The deformation of the beam is calculated using both the Ritz method and 2D ABAQUS 

simulations, as shown in Figures 5.10-5.12. Figure 5.10 shows the deflection of a beam with a core 

ratio of 1, which essentially makes the sandwich beam a whole steel beam. As can be seen in 

Figure 5.10, the maximum deflection and the structural deformation of the beam according to both 

Ritz and ABAQUS look similar. From these figures, it can quantitatively be seen that the 

deformation from the structural mechanics model matches the deformation from the continuum 

mechanics model. Due to the low strength of the material in the second case, the area of the model 

with the maximum deflection magnitude is significantly more than the first case. In the third case, 

in addition to the increased amount of deformation, its behavior also changed. due to the fact that 

in the 3rd case the material of the core and face sheets are very different, therefore this s shaped 

relationship appears. In addition, in the representation of diagrams, the same scaling factor is used. 
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Figure 5.10. Deflection of the beam using Ritz and ABAQUS for 𝐸𝐶𝑜𝑟𝑒 =  𝐸𝐹𝑎𝑐𝑒 𝑆ℎ𝑒𝑒𝑡𝑠. 

 

 

Figure 5.11. Deflection of the beam using Ritz and ABAQUS for 𝐸𝐶𝑜𝑟𝑒 =  𝐸𝐹𝑎𝑐𝑒 𝑆ℎ𝑒𝑒𝑡𝑠 . 10−2 . 



Results of numerical experiments and validation 

41 
 

 

Figure 5.12. Deflection of the beam using Ritz and ABAQUS for 𝐸𝐶𝑜𝑟𝑒 =  𝐸𝐹𝑎𝑐𝑒 𝑆ℎ𝑒𝑒𝑡𝑠 . 10−6. 

 



 

42 
 

Chapter 6 

Conclusion 

Two approximation methods, namely simple beam model and compound beam model, are utilized 

to determine the deflection of a sandwich beam under distributed loading. As it is extensively 

described in chapter 5 of this study, the simple beam model (equivalent single layer) is found to 

be applicable in a certain parameter range, which is in good agreement with the predictions of 

other methods. As soon as the difference between the stiffness properties of the face sheets and 

the core of the sandwich increases above a certain threshold, the equivalent single layer loses its 

validity. 

To take more complex deformation modes into account, a continuum mechanics-based 

commercially available program, ABAQUS, is utilized. The predictions derived from this program 

are used as the validation reference for the developed compound beam model presented in chapter 

3. Major advantages of the compound beam model are found to be its one-dimensional nature, the 

simplified mathematical evaluation to a sandwich beam.  

We considered the results of the simulation by varying the stiffness parameters of the model. 

Additionally, the effect of core thickness and stiffness and the number of finite elements of the 

domain discretization used in FEM are examined.  

6.1. Future aspects of the work: 

One major finding of this work is the accuracy of the proposed linear methods on par with the 

linear predictions of the ABAQUS. To further extend this method, several suggestions can be 

considered: 

- The deformations of the rubber core can be analyzed in more detail using the asymptotic 

method to see how it behaves under the conditions presented in this work. 

- Deployment of the model for complex structures such as cylinders or anisotropic materials. 

- Using numerical models such as the generalized differential quadrature (GDQ) and 

variational differential quadrature (VDQ), in order to solve the functionals and weak forms. 
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- Coupled thermally induced deformations. 

- Study of rapid heating effects using compound beam model in small time increments. 
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