
Race to the Door
Eine Goldfingerattacke auf Proof of Work

Kryptowährungen

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering und Internet Computing

eingereicht von

Ing. Andreas Rosegger, Bsc.
Matrikelnummer 01029049

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Privatdoz. Mag.rer.soc.oec. Dipl.-Ing. Dr.techn. Edgar R. Weippl
Mitwirkung: Univ.Lektor Dipl.-Ing. Aljosha Judmayer

Wien, 19. Mai 2021
Andreas Rosegger Edgar R. Weippl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Race to the Door
A Goldfinger Attack on Proof of Work

Cryptocurrencies

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering and Internet Computing

by

Ing. Andreas Rosegger, Bsc.
Registration Number 01029049

to the Faculty of Informatics

at the TU Wien

Advisor: Privatdoz. Mag.rer.soc.oec. Dipl.-Ing. Dr.techn. Edgar R. Weippl
Assistance: Univ.Lektor Dipl.-Ing. Aljosha Judmayer

Vienna, 19th May, 2021
Andreas Rosegger Edgar R. Weippl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Ing. Andreas Rosegger, Bsc.

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 19. Mai 2021
Andreas Rosegger

v

Danksagung

Danke an meine Familie, die mich über ein Jahrzehnt bei diesem Abenteuer unterstützt
hat.

Ich möchte Sarah Brunner danken, für ihre ständige Motivation und Unterstützung
während dieser herausfordernden Zeiten. Danke, dass du mir zugehört hast, wie ich
stundenlang versucht habe, den Sinn in diesem und anderen Themen zu finden.

Als Nächstes möchte ich meinem Assistenzbetreuer Aljoscha Judmayer dafür danken,
dass er mir nicht das Thema gab, das ich wollte, sondern das, das ich brauchte. Ich
möchte mich für die hervorragende Betreuung und den ständigen Input bedanken.

Außerdem möchte ich mich bei meiner Firma Iteratec dafür bedanken, dass sie mich
freigestellt hat, damit ich mich auf den Abschluss meines Studiums konzentrieren kann.
Danke an alle meine Kollegen, die Aufgaben übernommen haben und mir den Rücken
freigehalten haben.

vii

Acknowledgements

Thanks to my family, who supported me for over a decade in this adventure.

I want to thank Sarah Brunner for her constant motivation and support during these
challenging times. Thank you for listening to me spend hours attempting to make sense
of this and other topics.

Next, I want to thank my assistant supervisor, Alyosha Judmayer, for giving me not
the topic I wanted but the one I needed. I would like to express my gratitude for the
excellent support and constant input.

I would also like to thank my company Iteratec for giving me the time off to focus on
finishing my studies. Thanks to all my colleagues who took over responsibilities and kept
my back free.

ix

Kurzfassung

Goldfinger-Attacken zielen darauf ab, den Wert einer Ziel-Kryptowährung zum Absturz
zu bringen, indem die Mehrheit der Stimmrechte im System genutzt wird das zu Grunde
liegende Konsensprotokoll untergraben. In einem Proof-of-Stake-Kontext, in dem die
Stimmkraft auf der Menge der gehaltenen Kryptowährung basiert, kann dies in Form
eines Buy-out-Angriffs erreicht werden, bei dem eine Mehrheit der Zielwährung gekauft
wird. In diesem Zusammenhang wurde der Race to the Door (RTTD)-Effekt beschrieben,
der dazu führt, dass immer mehr Inhaber aus der Zielwährung aussteigen, bevor diese
wertlos wird. Dieser Effekt senkt den Preis für weitere Stimmenanteile, wodurch der
Angriff billiger wird, je weiter er fortschreitet. Diese Arbeit soll zeigen, dass ein Angriff
im Stil von Race to the Door auch in einem Proof-of-Work (PoW)-Kontext technisch
möglich ist, ohne eine Mehrheit der Stimmrechte (d. h. der Hash-Rate) zu erlangen. Zu
diesem Zweck werden die technische Machbarkeit und die Kosten eines solchen Angriffs
am Beispiel von Ethereum untersucht.

Zunächst wird ein Systemmodell für RTTD-Angriffe auf PoW-basierte Kryptowährungen
vorgestellt, um einen Überblick zu geben. Der Angriff wird dabei in die Phasen Vorberei-
tung, Rennen und Angriff unterteilt. Um die technische Machbarkeit zu demonstrieren,
werden diese Phasen in Form von Smart Contracts auf Ethereum umgesetzt. Für die
Angriffsphase werden drei Varianten vorgestellt, die jeweils einen unterschiedlichen Denial-
of-Service-Angriff realisieren. Dazu werden In-Band-Zahlungen genutzt, um entweder das
Auslösen zusätzlicher Transaktionen oder die Erzeugung leerer Blöcke durch Miner zu
incentivieren.

Um die Kosten der vorgeschlagenen Angriffsvarianten abzuschätzen, wird eine empirische
Analyse durchgeführt, bei der Transaktionsdaten von historischen Überlastungsphasen
der Ethereum-Blockchain untersucht werden. Anhand der Ergebnisse werden die Kosten
der Angriffsvarianten geschätzt und verglichen. Die stündlichen Kosten für das Blockieren
von Transaktionen durch das auslösen weiterer Transaktionen betragen etwa 870 Ether.
Die Incentivierung von Minern, die ein Drittel der Blöcke leer lassen, kostet etwa 790
Ether pro Stunde.

Die Arbeit zeigt, dass Race to the Door-Attacken auch im Kontext von PoW-basierten
Kryptowährungen technisch durchführbar sind. Die Kosten des Angriffs hängen dabei
von seiner Intensität und Dauer ab. Die Intensität kann in der Angriffsphase konfiguriert
werden und die Dauer hängt von der für den Angriff verfügbaren Geldmenge ab.

xi

Abstract

Goldfinger attacks aim to crash the value of a target cryptocurrency by undermining
the underlying consensus protocol, utilizing the majority of the voting power in the
system. In a Proof of Stake (PoS) context, where voting power is based on the amount
of cryptocurrency held, this can be achieved in the form of a buy-out attack, where
a majority of the target currency is purchased. In this context, the Race to the Door
(RTTD) effect was described, which leads to more and more holders exiting the target
currency before it becomes worthless. This effect reduces the price of further voting stake,
rendering the attack cheaper the more it progresses. This thesis aims to show that a Race
to the Door style attack is also technically possible in a Proof of Work (PoW) context
without acquiring a majority of the voting power (i.e., hash rate). For this purpose,
the technical feasibility and cost of such an attack are investigated on the example of
Ethereum.

First, a system model for RTTD attacks on PoW cryptocurrencies is presented to provide
an overview. The attack is thereby divided into the phases preparation, race and attack.
To demonstrate the technical feasibility, these phases are implemented in the form of
smart contracts on Ethereum. For the attack phase, three variants are presented, each
realizing a different denial of service attack. For this purpose, in-band payments are used
to incentivize either the triggering of additional transactions or the creation of empty
blocks by miners.

To estimate the costs of the proposed attack variants, an empirical analysis is performed,
where transaction data of historical congestion phases of the Ethereum blockchain are
examined. Based on the results, the estimated costs of the attack variants are calculated
and compared. The hourly costs of Blocking transactions using transaction triggering
are around 870 Ether. Incentivizing miners to leave one-third of the blocks empty costs
about 790 Ether per hour.

The thesis shows that Race to the Door attacks are also technically feasible in the context
of PoW cryptocurrencies. The cost of the attack hereby depends on its intensity and
duration. The intensity can be configured at the attack phase, and the duration depends
on the amount of currency available for the attack.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Aim of the Work . 3
1.4 Structure of the Work . 3

2 Background and State of the Art 5
2.1 Cryptocurrencies . 5
2.2 Consensus Protocols . 5
2.3 Smart Contracts . 6
2.4 Transactions and Fees . 6
2.5 Transaction Ordering . 6
2.6 Goldfinger Attacks . 7
2.7 Race to the Door . 8

3 Attack Model 9
3.1 Actors and Terminology . 9
3.2 Aim and Approach . 10
3.3 Preparation Phase . 11
3.4 Race Phase . 11
3.5 Attack Phase . 13

4 Implementation on Ethereum 17
4.1 Preparation Phase . 17
4.2 Race Phase . 18
4.3 Attack Phase . 23

5 Feasibility and Cost Analysis 39

xv

5.1 Ethereum Data & Data Model . 39
5.2 Transaction Ordering on Ethereum . 40
5.3 Transaction Blocking Costs . 42
5.4 GasPrice Development under Congestion 46
5.5 Estimated Cost Comparison . 55

6 Conclusion and Future Work 59
6.1 Future Work . 61

List of Figures 63

List of Tables 65

Acronyms 67

Bibliography 69

CHAPTER 1
Introduction

This chapter shows the increase in the relevance of cryptocurrencies at present. It identifies
the parties involved in the use of cryptocurrencies and the goals they are pursuing.
Subsequently, problems are identified that stand in the way of these stakeholders to
achieve their goals. Thereafter, research questions are defined, which will be addressed
in this thesis. Finally, the structure of the work is laid out.

1.1 Motivation
As of March 2021 Bitcoin [1] and Ethereum [2] together have reached a market capital-
ization of around $1,142bn [3]. One year ago, market capitalization was only at $92bn
and had grown over 1100%.

Decentralized Finance (DeFi) is another development in cryptocurrencies that has been
gaining momentum lately. DeFi is a term for Decentralized Applications (DApps)
providing financial services on blockchains via Smart Contracts. Most of them run on
the Ethereum blockchain, and they currently lock a value of about $40bn, growing over
3900% compared to the year before [4].

The value growth attracts further interest. Tesla has recently announced to exchange
1.5bn of its cash into Bitcoin and may start to accept Bitcoin as a form of payment
for their products [5]. Also, institutional investors like ARK Invest [6], who focus on
disruptive technologies and have assets under management of $50bn [7], are investing
in cryptocurrencies. The investors are primarily concerned with increasing or at least
maintaining the value of their holdings. DeFi users, on the other hand, need a stable
base system to conduct their financial transactions.

Another noteworthy event has recently been observed in the context of GameStop, and
wallstreetbets [8]. A user of the online forum had noticed that the GameStop share
was heavily shorted and, in his opinion, undervalued [9]. The expiration of these short

1

1. Introduction

positions leads to the forced purchase of the share at the current price. The forum users
took advantage of these circumstances and bought an increasing number of shares in the
company in an attempt to trigger a short squeeze. Finally, the attack was interrupted by
the blocking of buy orders on retail investor platforms like Robinhood [10]. This scheme
could be described as synchronizing via digital means to attack a financial contract.

All these aspects highlight that enormous values are held and transferred with cryptocur-
rencies today. Consequently, any attack that would put these values at risk deserves
closer investigation.

1.2 Problem Statement
There have been attacks on these cryptocurrencies since their early beginnings. Starting
with the publication of the Bitcoin whitepaper in 2008, the possibility of double-spending
attacks was addressed [1]. Some other strategies like selfish-mining [11] have been
proposed to increase mining profits. Recently a broad range of attacks directly targeting
the incentives of participants was summarized under the term Algorithmic Incentive
Manipulation (AIM) attacks[12]. In these attacks, the adversary aims to manipulate the
incentives of rational actors participating in cryptocurrency protocols.

One example of such an attack is the Goldfinger attack, first introduced by Kroll et
al. [13]. This attack was named after the villain Auric Goldfinger from a James Bond
movie [14]. His goal was to destroy the gold reserves in Fort Knox to increase the value
of his gold reserves. The idea behind this attack was applied to cryptocurrencies. By
gaining the majority of voting power, one would be empowered to block all transactions
and render a cryptocurrency useless. Further approaches have been proposed which can
implement a Goldfinger attack by obtaining the majority of voting power [15], including
PoS-based cryptocurrencies. A first practical example of the Goldfinger attack was the
GoldfingerCon [16], which uses a smart contract to incentivize Bitcoin miners to submit
empty blocks by offering a reward.

The consequences of such a Goldfinger attack are severe for those affected. Holders of
the cryptocurrency would suffer financial damage due to the loss of value. Furthermore,
DeFi users would not be able to continue using these cryptocurrencies as a platform for
their financial transactions.

Another variant of these Goldfinger attacks is the Race to the Door attack which has only
been sketched so far [15][12]. The unique feature of the attack is that it builds funds in
the targeted cryptocurrency to destroy it. Generally, Goldfinger attacks, and especially
the Race to the Door attack, have not yet been extensively covered by academic research
in this area.

So far, the Race to the Door attack has been mentioned as a buy-out attack in a PoS
context [15], where more than 51% of the currency has to be bought to gain control
of the consensus protocol. Only lately, this sketch was extended, and the Race to the

2

1.3. Aim of the Work

Door attack was considered to also work in a PoW setting, and without the need of the
majority of the voting power [12].

This work aims to further explore the attack landscape in the area of algorithmic incentive
manipulation. Therefore, the research questions are the following:

• RQ1: How can Race to the Door attacks technically be constructed for PoW-based
cryptocurrencies?

• RQ2: What are the estimated costs associated with such attacks?

• RQ3: By which criteria are transactions ordered, and how can this be exploited to
construct in-band transaction ordering attacks?

1.3 Aim of the Work
First, an overview of the Race to the Door attack model will be provided. In this, the
actors involved will be introduced. The phases of the attack are described and how
the actors participate in them. This part will provide a descriptive model of the attack
without concrete technologies.

Next, concrete technologies are selected with which this attack is implemented. The
individual phases of the attack will be implemented using smart contracts. Different vari-
ations are developed for the attack phase. The resulting implementation will demonstrate
the technical feasibility of the attack.

Finally, the work deals with the analysis of the attack. The costs of the attack are
considered. This part analyzes the monetary feasibility and compares the presented
attack variants.

1.4 Structure of the Work
First, chapter 2 provides background information and state of the art. An overview of
the system model of the Race to the Door attack is given in chapter 3, which is intended
to provide an overview. This model is then implemented with concrete technologies in
chapter 4. Thereby three different attack models are presented. In order to estimate the
costs, historical congestion phases are first examined in chapter 5. On this basis, the
costs of the attack variants are estimated and compared. Finally, the findings of this
work are summarized in chapter 6.

3

CHAPTER 2
Background and State of the Art

In this section, the required background information for the remainder of this thesis is
provided. Furthermore, an overview of related topics in the field of research relevant to
this thesis is given.

2.1 Cryptocurrencies
Cryptocurrencies are digital currencies that process transactions through cryptograph-
ically secured transactions. These transactions are stored within a ledger in the form
of a blockchain. Each of these blocks contains transactions that it has processed and
refers to a previous block. All blocks and transactions are publicly visible. By using
cryptographic functions, it is possible to check whether a block is correct. In this way,
any changes made to processed transactions after the fact would be noticed.

2.2 Consensus Protocols
Unlike banks, new transactions are not processed by any central authority. Instead, they
are processed via the Nakamoto consensus protocol. For this purpose, the transactions
are distributed throughout the entire network. Miners collect these transactions and
form a block. The block includes a reference to the highest block currently known in the
network. In order to append the new block to the blockchain, a cryptographic puzzle
must be solved. The chance of solving this puzzle depends on the processing power of the
miner. Once the miner has solved the puzzle, the new block is published on the network.
For solving the puzzle, the miner receives a block reward and the transaction fees for all
processed transactions in the block. Other miners verify the published block. If the block
is correct, it is considered the highest block and is built upon when forming new blocks.
The above consensus protocol is based on Proof of Work. A nonce is provided as proof of
the work done, which is necessary to solve the puzzle. Another possible way of voting is

5

2. Background and State of the Art

Proof of Stake (PoS). In this case, the voting power depends on the amount of currency
and how long it is held.

2.3 Smart Contracts
Blockchains such as Bitcoin allow their currency to be sent from a sender address to a
recipient address within a transaction. Other blockchains such as Ethereum also allow
transactions to be sent to smart contracts. These are programs that can be executed
through a transaction. Miners can process these transactions invoking function of smart
contract code running on the Ethereum Virtual Machine (EVM). Smart contracts can
provide different methods to be called by a transaction and allow parameters to be
passed.

2.4 Transactions and Fees
Transaction fees are rewards to miners for processing transactions and are paid by the
issuer of the transaction. Each operation of a transaction is associated with a gas cost,
and more complex operations have a higher gas price. When the transaction is executed,
the gasUsed is calculated by summing up the gas costs of the executed instructions. The
gasUsed is then multiplied by the gasPrice and represents the transaction fee in Ether
that the miner can claim for himself. The issuer of a transaction has to provide the gas
for each transaction, which is an upper limit for the executed instructions. Also the
gasPrice to be provided, which is the amount the issuer is willing to pay per gas. The
gasPrice is used to compensate for the changing value of Ether, so it falls when the value
of Ether rises to keep the resulting transaction costs in check.

2.5 Transaction Ordering
Transaction ordering depends on the client used. There are several possibilities on how
to order the transactions within a block. For example, transactions could be ordered by
the time they arrive at the client. In the case of the permissionless blockchain Ethereum
there exist several clients, each with their default ordering of transactions. Depending on
the adoption of the clients used by miners, different orders in the blocks can be observed.

Transactions may depend on each other, which has to be considered in the sorting
process. In Ethereum, every transaction contains a nonce. For each transaction issued
by the same account, the nonce is incremented by one. By the consensus rules of the
underlying protocol, miners must respect the order by nonce for each account, with no
gaps allowed between two consecutive nonces. This scheme allows account owners to
order the execution of their transactions as their order may of importance.

Clients order transactions to maximize their profits. The algorithms used in the mining
client may order transactions by gasPrice to maximize their profits. It was found in

6

2.6. Goldfinger Attacks

[17] that 78,3% of transactions are sorted using the Geth 1 based sorting alorithm while
20.2% use Parity 2. Geth sortes transactions by their gasPrice with respect to the nonces
3. Parity additionally prioritizes locally submitted transactions 4.

Transaction ordering can be exploited by attacks. As most transactions are ordered by
transaction fee, account owners may increase their transaction fee to speed up transaction
execution. In a front-running attack, [18, 19] an adversary may place a high fee transaction
in the hope to be executed before a lower fee competing transaction.

2.6 Goldfinger Attacks
The goal of the Goldfinger attack is to render an asset useless. The motivation behind
doing so is extrinsic and includes appreciating one’s own assets or some other external
utility. Kroll et al. [13] first introduced Goldfinger as a new class of attacks on cryptocur-
rencies. In his paper, he refers to Auric Goldfinger, a villain from a James Bond movie
[14]. In the movie, Auric holds gold reserves in several locations and tries to eradicate
the United States’ gold reserves in Fort Knox. By doing so, he aims to increase the value
of his holdings. Kroll et al. took the concept to cryptocurrencies and considered an
adversary to disrupt Bitcoin and destroy its value to gain some undefined external utility.
This could be, for example, that everyone has to use a competing (crypto)currency under
the control of the attacker.

As already noted, the motivation to destroy a cryptocurrency is extrinsic. Kroll et al.
noted that if the attack were executed successfully, the targeted cryptocurrency would
lose its value. Possible holdings of the attacker(s) in the cryptocurrency would therefore
also be lost. In conclusion, the attackers’ incentive must come from other sources. In [13]
three possible motivations are named. First, government institutions may be interested
in blocking transactions as cryptocurrencies are suspected to be used in illegal activities.
Second, currencies may be blocked as a political message by a non-state attacker. Third,
investment gains may be a possible incentive in the form of short positions on the currency.
In PoW-based cryptocurrencies, a Goldfinger attack can be executed by attackers with
at least 51% of the total hash rate.

Bonneau et al. [15] revisited the Goldfinger attack model. In his works, he assumes such
an attack may be constructed by gaining the majority of capacity (the voting power) in
the system and describes some common approaches to achieve this (build, rent, bribe,
buy). In PoW-based cryptocurrencies such as Bitcoin and at the time of this writing,
Ethereum an attacker needs to gain control of 51% of the mining power. This can be

1https://geth.ethereum.org/
2https://www.parity.io/ethereum/
3https://github.com/ethereum/go-ethereum/blob/290e851f57f5d27a1d5f0f7ad784c836e017c337/

core/types/transaction.go#L372
4https://github.com/openethereum/parity-ethereum/blob/

c49beccadcd3c60c9fd90d1393921b91598c8eb0/ethcore/src/miner/transaction_queue.
rs#L525

7

https://github.com/ethereum/go-ethereum/blob/290e851f57f5d27a1d5f0f7ad784c836e017c337/core/types/transaction.go##L372
https://github.com/ethereum/go-ethereum/blob/290e851f57f5d27a1d5f0f7ad784c836e017c337/core/types/transaction.go##L372
https://github.com/openethereum/parity-ethereum/blob/c49beccadcd3c60c9fd90d1393921b91598c8eb0/ethcore/src/miner/transaction_queue.rs##L525
https://github.com/openethereum/parity-ethereum/blob/c49beccadcd3c60c9fd90d1393921b91598c8eb0/ethcore/src/miner/transaction_queue.rs##L525
https://github.com/openethereum/parity-ethereum/blob/c49beccadcd3c60c9fd90d1393921b91598c8eb0/ethcore/src/miner/transaction_queue.rs##L525

2. Background and State of the Art

done by permanently buying or temporarily renting mining machines. In PoS-based
cryptocurrencies such as the planned Ethereum 2.0 5, the adversary has to gather a
majority of the currency itself. In opposite to PoW, in PoS the capacity cannot be
borrowed temporarily. Also, the attacker’s stake in the currency would render worthless
in the event of a successful attack.

The importance in the research of Goldfinger attacks increases with their likelihood.
Bonneau et al. [15] state that this class of attack has received relatively little research.
However, he also noted that the costs of mounting such an attack are relatively low to
the total value in the system, and the motivation to mount such an attack increases as
competing currencies rival for adoption.

Goldfinger attacks in the context of cryptocurrencies aim at destroying the value of the
currency. The motivation behind this includes the appreciation of an alternative currency
under the control of the attacker. Claims state that Goldfinger attacks can be performed
without a majority of the voting power. The research in this area is still somewhat
modest, but the costs seem to be low related to the expected damage. This thesis will
explore other possibilities to launch DoS attacks without the need for 51% of capacity in
the system. It will show how rivaling cryptocurrencies motivated in increasing their value
may perform such an attack. This aims to show the relevance of this area of research
which has yet received little attention.

2.7 Race to the Door
Race to the Door attacks are a special form of Goldfinger attacks. A Race to the
Door effect was mentioned as a side effect of the potential buy-out attack on PoS-based
cryptocurrencies[15]. In this buy-out attack, the adversary would announce to gather a
majority of the targeted cryptocurrency to use it for a 51% attack. If the attacker can
convince the holders of the currency that his attempt may be successful, they may be
more willing to sell their stake to avoid being left in the remaining 49% and lose all of
their value.

This attack type has yet only been sketched, but detailed implementations have not been
presented yet. In more recent effort in building a framework for Algorithmic Incentive
Manipulation (AIM) attack categorization [12] the Race to the Door attack was brought
up for discussion once again. It was found that it had not received any further attention
since it was first mentioned. The previous sketch has been extended to PoW systems,
and it was considered that a majority of the voting power might not be necessary.

5https://ethereum.org/en/eth2/

8

CHAPTER 3
Attack Model

This chapter outlines the attack/system model of the Race to the Door attack. First, the
currencies involved and their respective holders are presented in section 3.1. Subsequently,
the attack goal and its overall approach are briefly presented in section 3.2. Then the
individual phases of the attacks are presented in greater detail in sections 3.3, 3.4 and
3.5. Finally, in section 3.5.1, possible approaches of the attack phase are considered.

3.1 Actors and Terminology
For the Race to the Door attack, the currencies C with their respective holders are
considered H as shown in figure 3.1.

C

A

H

O I EB RFT

holds

Figure 3.1: Holders and Currencies of the Race to the Door

The currencies C considered in this model are the following:

9

3. Attack Model

• Target currency T is a cryptocurrency which is aimed to be destroyed by the
attack.

• Funding currency F is a cryptocurrency holding the funds sponsoring the attack
and is expected to gain value in the event of a successful attack.

• Other currency O is another fiat or cryptocurrency whose value is not affected
by the attack.

The currencies described above may be held by the holders H, where a holder could
theoretically own more than one currency. These holders are classified according to the
BAR model [20] into Byzantine B, Altruistic A and Rational R. However, among the
Altruistic holders A, a further distinction is made between the irrational holders I and
the exchanging holders E.

• Byzantine holder B is the sponsor of the attack against the target cryptocurrency
T . He holds funds in cryptocurrency F whose value he wants to increase with the
attack.

• Irrational holders I are Altruistic holders owning funds in the target currency
T . Like all Altruistic holders, irrational holders are honest and follow the rules
of the protocol. Irrational holders cope with the attack by doing nothing. They
neither support nor prevent the attack by simply keeping their funds in the target
currency. They are willing to risk the loss of value of their holdings and become
victims if the attack were to succeed

• Exchanging holders E are also Altruistic holders with funds in the target currency
T and take a neutral stance in the attack. Unlike the irrational holders, exchanging
holders cope with an impending attack by exchanging their holdings for another
fiat or cryptocurrency O. Since the currency O is considered unaffected by the
attack, these holders do neither lose nor gain any profits.

• Rational holders R are holders of the target currency T and act profit-oriented.
In case of an attack, they become supporters if a reward is promised to them. This
could mean exchanging their holdings in T for the funding currency F if they are
offered a favorable exchange rate and appreciation.

3.2 Aim and Approach
The ultimate goal of the attack is to destroy the target currency T . In this process, a
welcome side effect is the potential appreciation of the funding currency F . Since the
funding currency F represents an alternative to T , the attacker B expects an increase
in demand and thus an increase in value. In order to destroy the target currency T , a
nested attack in the Race to the Door attack is necessary. This is to be financed by the

10

3.3. Preparation Phase

target currency T , which must be collected in the preparation. The attack phases are
presented in the following sections, showing how attacker B implements this objective.

3.3 Preparation Phase
In the first phase, the attacker B announces that he will launch an attack on the target
currency T . He demonstrates that he has sufficient funds in the currency F . Since F is
a cryptocurrency, the attacker can use cryptographic means to support this statement
credibly. In addition, the attacker announces that he is willing to exchange his funds in
F for the targeted cryptocurrency T . To increase its reach, the attacker may resort to
using social media to spread its message. This phase aims to attract as much attention
as possible and arouse fear about a possible decline in value that will result from the
upcoming attack.

3.4 Race Phase
In the race phase, the attacker collects funds in the target currency T in exchange for its
holdings in the funding currency F . The goal of this phase is to achieve the funding goal,
which is necessary to carry out the attack. In the following, we will describe how the
different holders behave in this phase.

B I1 Ix E1 E2 Ey R1 Rz... ...

F

E3... R2 R3

T T T T T T T T T T

F

F

F

F

F

F

F

...

Figure 3.2: Race Phase - Initial State

The figure 3.2 shows the initial state of the race phase. In the upper line are the respective
holders according to the extended BAR model. Below are the respective currencies held
by the participants. In this simplified example, the attacker B holds several units of
the currency F which he intends to exchange for the target currency T . The irrational
holders I, exchanging holders E and rational holders R, each own one unit of the target
currency T .

As the race phase progresses, holders exchange their holdings for other currencies. Figure
3.2 shows an updated state in this process highlighting these changes. Attacker B could
exchange two of his units from F for units from T with R1 and R2. The exchanging
holders E1 and E2 exchanged their units of T for another currency O to escape the

11

3. Attack Model

B I1 Ix E1 E2 Ey R1 Rz... ...

T

E3... R2 R3

T T O O T T F F T T

F

F

F

T

F

F

F

...

Figure 3.3: Race Phase - Progress State

effects of the attack. All irrational holders I continue to hold their units of T as they are
not willing to exchange them.

likelihood of a
successful

attack
increases

more holders
exchange their
holdings in T

for F

funding goal
moves closer

Figure 3.4: Race Phase - Race to the Door Effect

The more units of T the attacker can collect, the closer he gets to his funding goal
increases the likelihood of a successful attack. This, in turn, encourages more rational
holders R to exchange their holdings of T for F , thereby causing a vicious cycle that
enables the attacker to achieve his goal even faster. This is the Race to the Door effect
that is driving the attack and is illustrated on figure 3.4.

Finally, the funding goal is reached with the resulting status of the race phase of the
example shown in figure 3.5. In our simplified illustration, six units of T were needed to
launch an attack. The attacker was able to obtain these units by exchanging the rational
holders’ units of T for F . Also, the exchanging holders E continued to exchange into the
currency O to avoid the attack. However, the irrational holders I remained invested in
the target currency T .

12

3.5. Attack Phase

B I1 Ix E1 E2 Ey R1 Rz... ...

T

E3... R2 R3

T T O O O O F F F F

T

F

T

T

T

F

T

...

Figure 3.5: Race Phase - Final State

3.5 Attack Phase
Reaching the funding goal triggers the final phase of the Race to the Door attack. This
attack phase uses the previously collected funds to finance an attack. The goal of the
attack is to render the target currency unusable. A denial of service attack would be a
suitable option for this purpose.

The impact of the attack on the stakeholders would be devastating. As the target currency
is rendered useless by the attack, there may be a loss of value. The remaining holders
fall victim to the attack.

The destruction of the target currency T also has other implications. Affected users of
the target currency T may choose to switch to the funding currency F as it may be a
viable alternative to the destroyed currency. As a result, the value of F might continue
to rise. This has been the goal of the Race to the Door attack from the beginning. The
remaining holdings of attacker B in funding currency F could justify the effort through
the increase in its value.

The severity of the attack depends on two factors. The first factor is the proportion of a
block that is blocked. The larger this percentage, the more devastating the attack. The
second factor is the duration of the attack, i.e. the number of blocks. The longer it lasts,
the more devastating the attack. However, also important is the combination of the two
factors. Thus, an attack with a high percentage of blocked transactions and low duration
has a fairly low severity. Nevertheless, also an attack with a low percentage and high
duration has only a limited impact.

Another thing to consider is the cost of the attack. The attacker wants the greatest
possible impact with the lowest cost and to use the collected funds optimally. Blocking a
large portion of a block will increase costs, which will be analyzed in more detail in a later
chapter. Also, the costs increase with the duration of the attack. Thus, the best possible
combination of these two factors must be found to sufficiently disrupt the operation of
the cryptocurrency but still have a relatively low cost.

The attack phase could be implemented in different ways. In the context of this thesis,

13

3. Attack Model

three different variants of this attack phase are presented. Each of these variants is
intended to contribute to the achievement of the attacker’s objectives and has different
advantages and disadvantages with a different cost structure. However, their common
feature is that they provide incentives to hinder the processing capacity of regular
transactions within the cryptocurrency. In the following, the two underlying approaches
and the categorization of transactions are discussed.

3.5.1 Approaches & Transaction Categorization
The goal of the attack phase is to render the blockchain unusable. Two general approaches
to achieve this goal are presented in this section. These approaches use incentives to
influence the transactions on the blockchain. In order to better understand and compare
the attack variants, the transactions involved in the attack process are categorized.

• Incentivizing Users to perform transactions The first approach is to incen-
tivice the uses of the target currency to issue additional transactions. These
transactions are intended to create congestion and thus hinder the processing of
ordinary transactions. Part of the approach involves offering users a reward for
the additional transactions they issue. The FreeMoneyGrab and Fomo10x attacks
discussed below implemented this approach in different ways.

• Incentivizing Miners to exclude transactions The other approach discussed
in this thesis is the targeting of miners. Incentives are set to reward them for
not processing transactions. The PayEmptyBlocks attack variant implements this
approach.

Transaction Categories

Considering the transactions that enter the blocks during the attack or remain in the
mempool, they can be divided into four categories:

• Rewarded triggered Transactions are transactions that users issue due to the
set incentives that promise rewards in return.

• Unrewarded triggered Transactions are also transactions that users triggered
as a result of the set incentives but do not receive a reward.

• Unaffected ordinary Transactions are transactions issued by users regardless
of incentives and are properly executed in a block.

• Affected ordinary Transactions are transactions issued by users regardless of
incentives but are negatively affected by the attack, i.e., delayed execution.

A primary distinction is made between ordinary transactions, which would have been
carried out regardless of the incentives, and triggered transactions, which are added

14

3.5. Attack Phase

due to the incentives that have been set. Since the space in a block is limited, these
triggered transactions displace some of the ordinary transactions referred to as affected
ordinary transactions. The transactions that are not displaced from the blocks are called
unaffected ordinary transactions. One distinguishes between rewarded and unrewarded
between the triggered transactions depending on whether they are compensated or not.

15

CHAPTER 4
Implementation on Ethereum

With the general attack model in the last chapter, an overview of the Race to the Door
attack was given. In order to examine the technical feasibility of the attack, concrete
technologies are selected with which the attack is implemented. First, a scenario is
described in which a Race to the Door attack may be conceivable. This is followed by a
presentation of the technical implementation of the respective phases of the Race to the
Door attack. For the attack phase, three variants are presented to incentivize additional
transactions to create congestion or incentivize miners to create empty blocks.

In the following, the possibility of an attack between two smart-contract-based cryptocur-
rencies is considered. Specifically, an attack between Ethereum and Ethereum Classic is
examined. Where Ethereum takes the role of the funding currency and Ethereum Classic
takes the role of the target currency.

4.1 Preparation Phase
The preparation phase is not really of a technical nature and therefore does not require
any special implementation. As described in the attack model, all that is needed here
is an announcement of the attack as far-reaching as possible. However, what can be
supported technically is the credible demonstration of the availability of the necessary
monetary resources in the funding currency.

To credibly demonstrate the availability of his funds, the attacker could transfer them
to a smart contract, which is subsequently used during the race phase. Since the smart
contract has its own address, anybody can check its balance. Furthermore, with the
transfer, the attacker gives up control over his funds. Only the logic of the smart contract
can now dispose of these funds. However, it may also have the functionality of repayment
to the attacker. In any case, giving control to the smart contract shows that the attacker
is serious about the attack.

17

4. Implementation on Ethereum

The attacker can also collect funds in advance. If a single attacker does not have enough
funds for the attack, a group of attackers can be formed. The necessary funds can be
collected on the funding currency on a smart contract and used in the race phase to
refund the vouchers.

4.2 Race Phase

This phase deals with the accumulation of target currency needed in the final step
of the Race to the Door attack. For this purpose, the attacker offers holders of the
target currency to exchange them for his own holdings in the funding currency. The
implementation presented below is based on a voucher mechanism consisting of one smart
contract per cryptocurrency.

Figure 4.1: Simplified Voucher Mechanism of the Race Phase Implementation

The simplified process of the voucher mechanism is illustrated in Figure 4.1. It shows a
holder of the target currency who wants to use the voucher mechanism to switch to the
funding currency. In a first step, the holder sends target currency to a smart contract on
the target blockchain. In exchange, a voucher is issued to the holder. In a second step,
the holder can redeem this voucher by calling another smart contract on the funding
blockchain and receives a corresponding amount.

18

4.2. Race Phase

Figure 4.2: Requesting and Issuing of a Voucher in the Target Currency and Redemption
in the Funding Currency.

4.2.1 Voucher Request and Redemption Process

The smart contract from the overview used to request and issue vouchers is described in
more detail below. The sequence diagram in figure 4.2 shows the interaction between
the following participants. The holder who wants to exchange his target currency into
a funding currency using a voucher. The attacker Auric, who is responsible for issuing
the vouchers. The smart contract IssueVoucherCon enables the interaction between the
two parties. Another smart contract RedeemVoucherCon on the funding side enables
the redemption of vouchers. The process of requesting and issuing a voucher works
as described below in steps 1 through 9. After the holder receives the voucher and
signature from Auric, it can be redeemed on the funding chain. This redemption process
is described in steps 10 to 12. It should be noted that redemption requires only one
interaction between the holder and RedeemVoucherCon. Auric’s involvement is not

19

4. Implementation on Ethereum

required in this case. This assures the holder that the redemption of the voucher cannot
be easily sabotaged by Auric, as the redeemable funds are under the sole control of the
smart contract RedeemVoucherCon.

1. Auric subscribes to IssueVoucherCon for VoucherRequested events. These are
published when a new voucher is requested.

2. The holder in turn subscribes to IssueVoucherCon for VoucherIssued events, which
are published when a valid voucher is issued.

3. To request a voucher, the holder calls the method requestVoucher() on the Is-
sueVoucherCon. In doing so, the holder must pay the smart contract an amount of
the target currency. In addition, the holders address on the funding currency to
which the amount should finally be transferred is specified in the request.

4. IssueVoucherCon generates a unique ID as a reference for the request. In addition,
the sender address of the request and the current block number for the request is
noted. All the data is stored in the list of pending requests of the smart contract,
and the event VoucherRequested is published.

5. Auric is notified that a VoucherRequested event has occurred.

6. A voucher is then generated consisting of the unique request id, the funding address
of the holder, and the amount to be paid out. To verify the validity, Auric signs
the voucher with its private key.

7. Auric calls the issueVoucher() method of the smart contract passing the voucher
and the signature.

8. When issueVoucher() is called, the smart contract checks the validity of the voucher
and signature with the public key of Auric. Once the validity is confirmed, the
request is deleted from the list of pending requests, and the VoucherIssued event is
published.

9. Finally, the holder is notified that the voucher has been issued. The voucher and
its signature are noted by the holder for later use.

10. For redemption, the holder calls the redeemVocher() method of RedeemVoucherCon.
The voucher data (ID, funding address, funding amount) and the signature are
passed to this invocation.

11. RedeemVoucherCon checks with the id of the voucher whether it has not already
been paid out. The smart contract subsequently validates the voucher data against
the signature that Auric generated when the voucher was created.

12. If the voucher is valid, the voucher id is added to the list of redeemed vouchers, and
the amount of the funding currency is transferred to the funding address specified
in the voucher.

20

4.2. Race Phase

4.2.2 Edge Cases

In the above description, the interaction between the two parties went smoothly. However,
this need not always be the case. In the following, some edge cases are described and
mechanisms to ensure a safe interaction for both parties.

If no Voucher is issued, the Money must be refunded

It could be the case that Auric does not issue a voucher upon the request. In such
a case, the holder would like to receive a refund for the request. For this purpose
the IssueVoucherCon is extended with an additional method payBackById(). When
called with the request id, it checks if the caller was the original requester and if a
configurable number of blocks has passed since the creation of the request. This data was
previously recorded in the list of pending requests when requestVoucher() was called and
can therefore be accessed. If the check is successful, the amount is refunded. This gives
Auric a configurable delay in which he can call issueVoucher() with a signed voucher.

Auric should either respond quickly or not at all

When notified of a VoucherRequested event, Auric should first check the locking period
remaining (i.e., the number of blocks) before the holder can get a refund. If it seems
unlikely that the transaction needed to respond to the request will be completed in time
before a payout is possible, Auric should no longer attempt to respond to the request.
This is because the transaction required for issuing the voucher must contain the voucher
and signature data. This information becomes available to everyone (especially the
holder) before the transaction is even processed. Suppose Auric publishes the transaction
shortly before or even after the locking period. In that case, the holder could start a
front-running attack [18, 19] by sending a transaction to the smart contract for payment.
This creates a race between the two transactions, and the one that is processed first
wins. Thus Auric could lose the collected target currency for the request. Therefore,
it is crucial for Auric not to answer requests where it seems unlikely that they will be
processed before the end of the locking period.

Auric should wait for confirmations before Issuing a Voucher

Due to forks, transactions that landed in the blockchain in the short term can disappear
again. The more blocks (confirmations) that come after the block in which the transaction
was processed, the less likely it will be affected by a fork. If Auric were to issue
a voucher immediately after receiving the VoucherRequested event, it could happen
through forks that this transaction is reversed. Nevertheless, the issued voucher would
still be redeemable on the funding chain, and Auric would lose the amount of the voucher.

21

4. Implementation on Ethereum

Miner may decide to block all Transactions by Auric

Miners could decide to block all transactions. However, Auric needs to access Is-
sueVoucherCon to issue vouchers and claim the payment of the requests. The smart
contract can circumvent this by not verifying the transaction’s sender to be Auric. Instead,
it has to be checked if the signature passed as a parameter comes from Auric. Therefore
it is irrelevant whether the transaction comes from Auric or not. In case Auric’s address
is blocked by the miners, he could switch accounts.

A Voucher must be invalidated when redeemed

The voucher should only be redeemable once. This must be ensured by the smart contract.
ReedemVoucherCon enters the IDs of used vouchers in a list for this purpose. Before a
payout takes place, it is checked whether the voucher has already been redeemed. After
the payout, the voucher is entered into this list. Thus, a voucher can only be redeemed
once.

Vouchers cannot be stolen

The holder already specifies to which funding address the voucher is to be paid out when
it is requested from IssueVoucherCon. This address will be signed by Auric together with
the other voucher data. If the payout address were changed later on, the signature would
not match anymore, and the voucher would lose its validity. Transferring or stealing a
voucher is therefore not possible. What is still possible is that a third party redeems
the voucher for the holder on the target currency, which would also pay to the address
specified by the holder. If such a behavior is not desirable, the RequestVoucherCon can
be easily extended by checking if the caller has the same address as the payout address.

The holder should check RedeemVoucherCon Funds before Request

The holder must check that there is sufficient funding currency available before requesting
a voucher. Due to high demand, the balance of the RedeemVoucherCon may be decreased.
To ensure that the voucher can still be redeemed after receipt, the holder should ensure
that the smart contract still has sufficient funds in the funding currency before requesting
a voucher. Furthermore, the holder can observe how many vouchers have been officially
issued by Auric and how many of them have already been redeemed.

Auric can issue Vouchers to himself

Auric is able to issue himself any number of vouchers. So he could therefore transfer the
remaining funds of RedeemVoucherCon to himself. Holders who have not redeemed their
vouchers at this time would suffer damages equal to the outstanding amount. To protect
himself from this, the holder has to watch the RedeemVoucherCon if only vouchers are
redeemed which have been requested at IssueVoucherCon before. Furthermore, the holder

22

4.3. Attack Phase

could avoid the transfer of larger amounts and split them into smaller amounts which he
transfers one after the other to minimize a potential loss.

Likewise, Auric could now wait until a few open requests have been received. Instead
of answering them, Auric waits and issues vouchers to itself in the background. Next,
he uses the self-issued vouchers to empty the RedeemVoucherCon. Finally, he can issue
the vouchers on IssueVoucherCon to secure the payments of the requests on the target
currency. However, the issued vouchers are useless because the RedeemVoucherCon has
already been emptied. For the holder it is therefore always important to monitor the
RedeemVoucherCon to see if vouchers have been redeemed that were not previously issued
via IssueVoucherCon.

4.2.3 Employing a multiparty Singing Process
As already mentioned in the preparation phase, instead of the individual Auric, there
could also be a group of attackers. They could also jointly issue the vouchers. In this
case, the attackers could employ a threshold signature procedure. The voucher would
only become valid after a threshold of signatures of the attackers. A scheme that enables
this distributed key generation method and the verification in smart contracts can be
found in [21]

4.2.4 Voucher Mechanism vs Traditional Exchanges
There is no third party that can interfere with the attack. Unlike traditional exchange
platforms, no third party stands between the attacker and the holder. For example, if
a traditional exchange platform were to notice that money was being collected for an
attack, it would be able to stop trading or exclude individual users temporarily. Since
there is no third party in the voucher mechanism, it cannot be stopped from the outside.

The collected funds are tied to a specific purpose. When using traditional exchanges,
users can choose to spend the amount of the received amount as they choose. By using
the voucher mechanism, only the holder can access the funds freely. The total funds on
the target currency are tied to the purpose of the attack. The rules of disposing of the
funds are defined in the smart contract and cannot be changed. Any holder who uses the
exchange function can be sure that the deposited funds will be used for the attack.

4.3 Attack Phase
The third and final phase is initiated as soon as a deadline is reached. Instead of reaching
a certain amount as a funding goal, this has the advantage that the attack takes place in
any case. The severity of the following attack phase is then primarily dependent on the
funds collected up to that point.

In this attack phase, the collected funds are used to attack the target currency. A possible
implementation of such an attack would be a denial of service attack. In the next section,

23

4. Implementation on Ethereum

a mechanism will be explored to block transactions with transactions by exploiting the
transaction ordering by gasPrice.

4.3.1 Blocking Transactions With Transactions
One way to create congestion is to use transactions to block other transactions. This
can be shown under the assumption that the transactions in the blocks are generally
sorted by gasPrice, which will be addressed again in a later chapter. If the assumption
is correct, it also holds that miners following this sorting are trying to maximize their
profits. This circumstance could also be exploited for attacks. In the following, such a
method is illustrated using an example.

In the example, a mempool of a miner is considered, and block size (gasLimit) of 10
is assumed. A txId is introduced to identify the transactions. The index indicates the
order according to gasPrice and thus the position in the block. Each transaction has
gasUsed and a gasPrice as well as a resulting txCost which is the product of the two. It
is also assumed that the transactions are independent, and therefore the gasUsed is not
dependent on the order of execution of the transactions.

The miner in the example acts profit-oriented and will therefore sort the transactions by
gasPrice. When assembling the block, the miner tries to put as many transactions as
possible into one block. The gasLimit of 10 is an upper limit of the cummulated gasUsed
of the transactions that fit into a block. Starting with the transaction with the highest
gasPrice the miner will fill the block bit by bit until the blockLimit is reached.

Index txId gasUsed gasPrice txCost
1 A 2 50 100
2 B 2 40 80
3 C 4 30 120
4 D 2 20 40
5 E 2 10 20

Table 4.1: Initial State of a Mempool forming a Candidate Block

Table 4.3 shows the initial state of the mempool, which contains the transactions to be
processed by a client. There are five transactions sorted by gasPrice in descending order.
To fill the block, transactions A to D are selected by the miner. The sum of their gasUsed
is 10, which is precisely the blockLimit of the example. Transaction E does not make it
into the block as it is already full. Here it is also noticeable that transaction C has a
higher txCost than the higher-ranked transactions A or B. This is because C has more
gasUsed despite the lower gasPrice and the resulting txCost is therefore higher.

To effectively block transactions, another transaction can be published with a gasPrice
that is greater than the lowest gasPrice of the block. This is illustrated with table 4.2.
Here, a new transaction X has been published with a gasPrice of 35 and a gasUsed of

24

4.3. Attack Phase

Index txId gasUsed gasPrice txCost
1 A 2 50 100
2 B 2 40 80
3 X 6 35 210
4 C 4 30 120
5 D 2 20 40
6 E 2 10 20

Table 4.2: Updated State of a Mempool including a Transaction X created to block
Transaction C and D

6. Due to the higher gasPrice, this transaction now reaches position 3 in the mempool.
Since the transaction has a high gasUsed, it takes up more space and thus pushes both
transactions C and D out of the block.

The transaction could be given an even higher gasPrice. This transaction would be ranked
higher, but still, only the lowest transactions would be excluded from the block. Therefore,
from an attacker’s point of view, an even higher gasPrice only leads to increased txCost
for the same effect. In order to remain cost-efficient, a gasPrice of a blocking transaction
should therefore be chosen only slightly above that of the transaction to be blocked.

This leads to the following procedure. First, the transaction to be blocked is chosen.
Then a transaction with a higher gasPrice is constructed. This transaction must also
have a gasUsed which exactly pushes the transaction to be blocked out of the block. It is
important that the transaction does not become too large so that it can no longer fit in
the block. To minimize this risk, the constructed transaction can be split into several
transactions with the same gasPrice but lower gasUsed.

4.3.2 FreeMoneyGrab

Auric’s goal in the attack phase is to block the majority of ordinary transactions. For this
purpose, the FreeMoneyGrap is introduced, which sets incentives to trigger transactions
that push other transactions out of the block. The basic idea of FreeMoneyGrab is that
when a smart contract method is called, it reimburses the caller for the transaction
costs and pays a bonus. This triggers transactions from users who are interested in the
reward. These triggered transactions take up space in the block which would be used
by ordinary transactions. Some of these ordinary transactions are pushed out by the
triggered transactions and thus become affected ordinary transactions.

Only a portion of ordinary transactions of a block should be blocked. Beforehand, the
attacker would like to specify the percentage of a block that he wants to block. Triggered
transactions which are within this limit should be rewarded. The attacker can reward
these triggered transactions by reimbursing them for the transaction costs and paying
them a bonus. Triggered transactions that go beyond the desired fraction should be

25

4. Implementation on Ethereum

penalized. These triggered unrewarded transactions can be punished by neither refunding
the transaction costs nor paying a bonus, leaving the issuer with the transaction costs.

Furthermore, only the cheapest transactions of a block are paid out. This causes that
only the cheapest triggered transactions (in terms of fee/gasPrice) within the limit to
be paid out. These then become rewarded triggered transactions. Calling transactions
above the limit are not paid out and are unrewarded triggered transactions. Paying out
only the cheapest transactions helps to make the attack cheaper and thus increases its
duration.

Furthermore, the definition of an upper limit for the payout makes sense. Miners could
otherwise create a block containing only transactions issued by them to FreeMoneyGrab
with high gasPrice. The smart contract cannot detect this case and would pay out a very
high reward. Due to the high gasPrice it would be possible for the miner to earn a large
part of the funds of the smart contract. An upper limit could protect against this case to
some extent.

Issues of detecting the Position of a Transaction within a Block

During the invocation of a smart contract, it is difficult to determine whether the invoking
transaction should be rewarded or penalized. The EVM of Ethereum does not offer
the possibility to view the position of the current transaction in the block. Also, there
is no global variable how many transactions have been processed in the block so far.
Furthermore, the cumulative gasUsed in the block so far is not accessible, although this
seems technically feasible since the EVM has to keep a record of it. Thus it is not possible
to determine the position of the calling transaction in the block. The position would give
an insight into whether the transaction belongs to the part to be rewarded or not.

Even if the calling transaction is in the desired part of the block, it may not be one of the
cheapest in the block. The miners process the blocks sorted by gasPrice, but they still
have to consider the nonce. These circumstances are further discussed in the following
chapter. This consideration of the nonce can lead to transactions in a later position in
the block but having a higher gasPrice. This means that there is no point in paying out
a certain number of transactions according to the reverse position in the block if it is
intended to pay out the cheapest ones.

Calculating the Number of rewarded Transactions per Block

The percentage of the block to be blocked (percentToBlock) can be converted into a
number of rewarded transactions as follows. The creator of the FreeMoneyGrab knows
the typical gas usage of a call to the smart contract (gasPerCall). Furthermore, the
gasLimit per block is known, i.e., the maximum amount of gas that can be processed per
block. If the attacker now wants to block about 50 percent of the transactions of a block,
the gasPerCall of the transactions to FreeMoneyGrab must also take a total of about 50
percent of the gasLimit of the block. So the attacker can multiply the gasLimit by the

26

4.3. Attack Phase

percentToBlock divided by gasPerCall and get the number of transactions that should
be rewarded per block.

Approach

The goal of FreeMoneyGrab is to pay out the cheapest N transactions of a block. As
described above, the smart contracts can neither recognize the position of a transaction
nor can they trust a correct sorting or whether further calls in a block follow. Therefore
it is also not possible for FreeMoneyGrab to decide immediately if a reward is to be paid.

FreeMoneyGrab solves this problem by delayed processing of the calls. So the calls within
a block are first only recorded. For this, the smart contract maintains a list with the N
cheapest transactions of a block which it wants to reward in the future. As soon as a
call takes place in a new block, the smart contract can assume that the previous block
has been completed and begin with the payment of the collected transactions. This
procedure is described in more detail below.

Execution Phases of the Smart Contract

In the following, a procedure is described that overcomes these problems and can be
implemented as a smart contract. The smart contract offers only one method, which can
be called repeatedly. With each call, the following 4 phases will be executed:

• Record. Each call of the method is recorded. The address of the caller is noted,
which can be used for the payment of the reward. Since the transaction hash
cannot be accessed, a consecutive id is generated for referencing. Furthermore, the
gasPrice of the transaction and the current blockNumber are stored with the entry.

• Reorder. The calling transaction is grouped with other transactions of the same
block into a collection and sorted by gasPrices. Since only one transaction is
inserted into an already sorted collection at a time, a heap[22] is a suitable data
structure for efficiency reasons.

• Retain. In advance, the attacker determines how many transactions will be
rewarded. If the number of items would exceed this limit after inserting another
item, the transaction with the highest gasPrice will be removed. This helps to keep
a list of the current lowest transactions per block.
When using a heap for keeping track of block transactions, a max heap regarding
gasPrice should be used with a size equal to the number of transactions that are
going to be rewarded per block. As long as the heap is not full, the newly recorded
transaction is simply added to the heap. When adding a new transaction with a
full heap, the gasPrice of the new transactions must first be compared to the most
expensive transaction recorded so far. If the new transaction has a lower gasPrice
than the highest one, it is replaced with the top transactions, and the order of
the heap is restored. If the gasPrice of the new transaction is higher, it is ignored,

27

4. Implementation on Ethereum

and the heap remains unchanged. This way, the heap retains only the relevant
transactions of a block.

• Reward. With the processing of a call within a later block, it can be assumed
that all collections built to the previous blocks contain only the calling transactions
with the lowest gasPrice. Therefore, if possible, a transaction from a previous block
that has not yet been paid out is selected in each call. For this transaction, the
transaction costs, as well as a bonus, are paid out to the caller, and the transaction
is marked.

To get a better picture of this procedure, the following example is considered. In this
example, it is assumed that the four cheapest transactions are paid out. Table 4.3 shows
the state of the smart contract after transactions A to D. The four transactions have
been grouped into block 1 and sorted by gasPrice. Since block 1 is the current block of
the contract, no transactions have been paid out yet.

BlockNr txId gasPrice paid out
1 A 50 false
1 B 40 false
1 C 30 false
1 D 20 false

Table 4.3: Initial State of FreeMoneyGrab with Transactions A to D

Assuming that another transaction E with gasPrice of 10 is added. In the recording phase,
the transaction is assigned an id, and the gasPrice and blockNr are determined. As the
transaction happens still within block 1 it is regrouped with the collections containing
transactions A to D and then reordered by gasPrice. In the retain phase, the size of the
collection is checked. As the maximum collection size of 4 is exceeded, transaction A is
removed since it has the largest gasPrice. Subsequently, the rewarding phase is carried
out. Since the smart contract has not recorded any previous blocks and one cannot be
sure if further transactions will follow in block 1, no transaction will be paid out at this
point. The final state of this run is shown in table 4.4.

BlockNr txId gasPrice paid out
1 B 40 false
1 C 30 false
1 D 20 false
1 E 10 false

Table 4.4: State of FreeMoneyGrab after Transaction E

Next, assume that another transaction F takes place in a new block 2 with a gasPrice of
60. The record phase will still identify the transaction and note the gasPrice as well as

28

4.3. Attack Phase

the blockNr. During the retain phase, a new collection has to be initialized containing the
new transaction. Since the collection size of 1 is below the limit of 4, there is nothing to
do in the retain phase. However, the rewarding phase now detects that the current block
number has changed from 1 to 2. Since it is no longer possible to add transactions to block
1, it can be assumed that its collection now contains only the four cheapest transactions
that have called the smart contract. Therefore, the cheapest unpaid transaction E will
be paid out to its sender and marked as paid. The state after processing the transaction
F can be found on table 4.5.

BlockNr txId gasPrice paid out
1 B 40 false
1 C 30 false
1 D 20 false
1 E 10 true
2 F 60 false

Table 4.5: State of FreeMoneyGrab after Transaction F

Finally, consider one more transaction G in block 2 with a gasPrice of 50. The record
phase records the data as usual. Again, the collection size of block 2 is still under the
limit, so the transaction is simply added. In the rewarding phase, another transaction
from block 1 is selected again and paid out. The next cheapest unpaid transaction is
D, so the sender is paid, and the transaction is marked as paid. The final state of our
example after processing transaction G can be found on table 4.6.

BlockNr txId gasPrice paid out
1 B 40 false
1 C 30 false
1 D 20 true
1 E 10 true
2 F 60 false
2 G 50 false

Table 4.6: State of FreeMoneyGrab after Transaction G

How the Incentives influence Participants

The smart contract cannot guarantee that the transactions it records are the last in the
block. Only transactions that call the smart contract can be recorded, other transactions
that are in the same block can therefore not be observed. So the smart contract cannot
determine if the transactions are the last and therefore the cheapest in the block. However,
the callers of the smart contract are incentivized to bring their transaction into the block
with the lowest possible gasPrice in order to get paid. If a caller would call the smart

29

4. Implementation on Ethereum

contract with a relatively high gasPrice, other callers could decide to submit lower-priced
transactions which could prevent the first caller from being paid. Therefore, the callers
are encouraged to monitor the current state of the mempool in order to position their
transactions optimally. This is also desirable from the attacker’s point of view, as it
makes the attack cheaper since expensive transactions do not have to be paid out.

Another option to reinforce this kind of behavior could be to charge a fee to the smart
contract, which has to be deposited when calling. This fee could be refunded when the
transaction is paid out. However, if the transaction is not among the cheapest, the caller
loses his transaction costs and the deposited amount, thus increasing his losses even more.
The fees collected in this way could then be used to prolong the attack further.

Reward Size and Attacks against the Smart Contract

The size of this bonus is crucial to prevent attacks on the smart contract itself. As already
mentioned, the cheapest transactions of a block will be refunded, and an additional bonus
will be paid. A possible attack against the smart contract would be if the attacker would
make many transactions with abnormally high gasPrice so that no other transactions in
the block would go to the smart contract. In this case, only the cheapest ones would
be paid, but they would also receive an abnormally high bonus. The calculation of the
bonus size and the number of transactions to be paid out must therefore be made so that
the losses due to the transactions that are not paid out are much higher than the profits
gained from the transactions that are paid out.

4.3.3 Fomo10x
An already known contract that successfully performs transaction triggering is Fomo3D.
This is a turn-based game and Ponzi scheme which sets three different incentives:

• In the game, keys can be bought. When buying a key, there is a certain chance to
get paid a bonus.

• Every key gets dividends for each additional key that is purchased at a later time.

• An internal timer counts down to the end of the round. When a key is bought, the
timer is increased. If the timer runs out, the last buyer wins a majority of the pot.

This combination leads to many transactions early on, which quickly drop off and only
occur sporadically towards the end. This is because many players want to buy keys at
the beginning to benefit from the dividends when additional keys are purchased later in
the game. Just before the timer would expire, the incentive is high to buy a new key.
This could be because the cost of buying a key is relatively small compared to the offered
reward.

Fomo10x eliminates undesirable incentives and increases the desirable incentives. It
represents a modified version of Fomo3D that satisfies the attacker’s requirement to

30

4.3. Attack Phase

create congestion. Thereby, the attacker uses the collected funds as a pot for the game.
Like Fomo3D, a timer is decremented by a constant number (txPerBlock) per block.
With each call to Fomo10x, however, the timer is incremented. If it reaches 0, the winner
is determined who is the first caller of the previous block. Furthermore, the timer is
increased only so little that at least txPerBlock calls per block are necessary not to let
the timer run out.

The strategy from the player’s point of view is to get the transaction as high as possible
into the next block when the timer is about to run out. However, the other players
following the same strategy would also try to push their transaction ahead to be counted
as the winner. This, in turn, can lead to the block receiving enough transactions for the
timer to not run out and for the round to continue.

Game and Game State

The smart contract is responsible for maintaining a game state and paying out the
winnings at the end of a round. Fomo10x provides a method that goes through phases
and updates this game state.

The game state of Fomo10x consists of the following three variables:

• credits. The variable credits acts as a timer, which is decreased by a fixed amount
txPerBlock with each past block. Each call to Fomo10x increases the credits by 1.
When the credits reach 0, the winner is determined, and the pot is paid out.

• latestBlockNumber. Fomo10x stores the last observed block number in the
variable latestBlockNumber. This can be used to determine whether and how many
blocks have passed since the last call.

• currentWinner. The first caller of a new block is stored in this variable. When
the timer expires, this caller is declared the winner of the round and is paid the
pot.

Furthermore, the following two constants are defined:

• startCredits. The startCredits are the initial credit of the round. These have the
purpose of cushioning the start of the round. Especially at the first start of the
game it can happen that some players do not know that the round has started and
therefore less transactions are issued. This would lead to an abrupt end right at
the beginning, which is prevented with the startCredits.

• txPerBlock. The amount of credits deducted per past block is txPerBlock. In
other words, this constant defines the average amount of transactions in a block that
is needed for the game not to end. Thus the strength of the desired congestion can
be controlled by the attacker. The higher the constant, the more transactions need
to be in a block for the game to continue and the higher the resulting congestion.

31

4. Implementation on Ethereum

Fomo10x.play()

Fomo10x provides a method play() that updates the game state depending on the state
of the contract and the block in which the transaction is executed.

When the method is called for the first time, the game is initialized. For this, the credits
are set to the startCredits, the current blockNumber is set as latestBlockNumber, and
the caller is set as currentWinner.

When called later, Fomo10x first checks whether the current block number is still the
latestBlockNumber. If this is not the case, the credits must be updated. This is done
by subtracting the amount of txPerBlock for each past block. If the credits are gone,
the currentWinner is paid, and the round is finished. If the credits are not expired, the
current caller is set as currentWinner because this is the first caller in the new block.
In case the latestBlockNumber is equal to the current block number, the credits are
increased by 1.

txId blockNr sender credits latestBlockNumber currentWinner
A 1 player1 9 1 player1
B 3 player2 2 3 player2
C 3 player1 3 3 player2
D 3 player3 4 3 player2
E 4 player1 - - -

Table 4.7: Fomo10x Game State Changes while processing Transactions

For a better understanding, the following example is considered. The txPerBlock is set
to 4 and the startCredits to 8. Table 4.7 shows the transactions and state changes of the
game. On the left side, the txId, blockNr, and sender of the transactions calling Fomo10x
are displayed. The right side of each line shows the game state of Fomo10x after each
transaction is processed.

With transaction A the game is called for the first time and set to the start state. For
this, the credits are set to the startCredits and incremented by 1 as with every call. The
blockNumber of transaction A is 1, which is entered in latestBlockNumber. Furthermore
the caller player1 is set as currentWinner.

The next call and Fomo10x happens with transaction B in block 3 and has been submitted
by player2. Since the latestBlockNumber of 1 is 2 blocks behind the current blockNumber
3, the txPerBlock of 4 is subtracted from the credits twice, resulting in preliminary
credits of 1. As the credits are above 0, the game continues, therefore the credits are
increased by 1 and the current winner is set to player2. The latestBlockNumber is set to
the current blockNumber 3.

Transactions C and D are still in the same block 3, therefore neither the latestBlockNumber
nor the currentWinner changes. Only the credits are increased by 1 per call, resulting in
the credits to be set to 4 at the end of block 3.

32

4.3. Attack Phase

Finally, a call from transaction E reaches the smart contract in a new block 4. Since the
blockNumber has increased by 1, txPerBlock is subtracted from the credits, . As the credit
reaches 0, the winner is determined. This is done by simply taking the currentWinner
variable, which is player2, the first caller of the previous block. Player2 will be paid the
prize, and the round ends.

How the Incentives of Fomo10x influence Players

Fomo3D incentivizes transaction triggering by giving the prize to the last caller before
the timer expires. When the timer approaches 0, players are willing to buy another key
to become the last caller. The cost of a key is relatively low compared to the expected
profit. However, the purchase increases the timer, and the game continues. If the timer
is about to run out again, the phenomenon repeats itself.
Fomo10x reinforces this incentive by counting down the timer faster. The timer counts
down so fast that several calls per block are necessary not to run out. Therefore, each new
block could be the last one of the round. This incentivizes players to make a transaction
with a high gasPrice which ranks them as the first caller and declares them the current
winner.
Assuming the credits of Fomo10x are slightly above txPerBlock, the timer may expire
with the next blocks, and the currentWinner of the next block would become the winner.
This may motivate a player to issue a new transaction calling Fomo10x and make that
player the currentWinner when the timer expires. Other players may observe such a
transaction, for example, in the mempool that compiles the next block, and they have
two options to counter.

• Go higher. Option one is to issue a transaction with a higher gasPrice which
would push their transaction ahead of the other players’ transactions. Therefore,
the sender would become the currentWinner of the next block. This option makes
sense if the cost of outbidding the transactions is low and there are not enough
transactions at Fomo10x in the block so that the round is extended by another
block.

• Go lower. Option two would be to issue cheaper transactions, generating enough
calls to Fomo10x so that the timer is extended to run for another block and try to
become the currentWinner in the following block. This makes sense if outbidding the
currentWinner is very expensive, or there are already some transactions that would
extend the timer for one more block when including the additional transactions.

When players choose the go higher option, they should be careful not to extend the timer
with the additional call. However, suppose some high transactions have already been
issued. In that case, it makes sense to issue cheaper transactions that only aim to extend
the timer since the currentWinner is not updated for their senders. All together this
results in an amount of transactions that is on average higher than txPerBlock as long as
the game is running, which is the primary goal of the attacker.

33

4. Implementation on Ethereum

4.3.4 PayForEmptyBlocks
To achieve Auric’s goal of generating congestion, the third smart contract uses a different
approach than the previously presented attacks. Instead of incentivizing users to issue
more transactions, this smart contract targets miners to process fewer transactions instead.
This is achieved by offering miners a reward that they can collect from PayForEmptyBlocks
if they can prove that they have added an empty block to the blockchain. When called,
the smart contract can then check if the block contains no transactions and if the caller
is the miner of the block. If the data is valid, a reward is paid out.

The reward size depends on the lost transaction fees. By mining an empty block, the
miner cannot collect transaction fees that he would receive by processing transactions.
Therefore, it only makes sense for the miner to work on an empty block if the smart
contract promises to pay a reward that is higher than the amount of the lost transaction
fees and pays an additional amount on top of that.

Validating if a given Block is empty

Empty blocks are blocks that do not contain any transactions. Ethereum’s block headers
include a transaction root hash of the Patricia tree [23][24] referencing the processed
transactions of the block. If a block does not contain any transactions, the Patricia tree
is empty, and its hash has a specific value. To validate if a block does not contain any
transactions, the transaction root hash from its block header can be compared with this
empty hash value.

EVM Restrictions

To validate the requests to PayForEmptyBlocks, the data of the corresponding block
header data must be checked. So the transaction root hash must be read from a block
header to compare it with the empty hash. In order to pay out the reward correctly to the
miner, the coinbase address is also required. This is the address to which the block reward
for creating the block was paid out and is also located in the block header. Unfortunately,
the Ethereum Virtual Machine (EVM) allows only limited access to underlying blockchain
data [25]. The EVM only allows access to the block hash (i.e. the hash of the block
header) of the last 256 past blocks. Accessing the necessary data for verification and
payout like the transaction root hash or the coinbase address of a block is not possible.
Therefore, it is not possible for the smart contract to verify whether this block is empty
by providing a block number. For the same reason, it is also impossible to make a secure
payout to the correct miner.

Overcoming EVM Restriction to Validate Empty Blocks

Although it is not possible to read header data from the blockchain within a call, it is
possible to verify whether a certain block hash occurs in the blockchain. This hash is
calculated from the header of the block. To calculate the hash of a block, the block header

34

4.3. Attack Phase

is needed, which contains 15 variables, including the coinbase address, the transaction
root hash, and the block number. These value are now arranged in a certain order and
Recursive Length Prefix (RLP) encoded [26]. The encoded header is then hashed with
keccak-256 [27] which gives the hash of the block.

The solution for the EVM restrictions is that the caller provides the block data. This
data can then be hashed and verified if the hash is present in the blockchain. The block
header also contains all relevant variables necessary for checking for emptiness and the
payment of the reward.

Submitting an empty Block on PayForEmptyBlocks

The smart contract provides a method for miners to submit mined empty blocks to collect
a reward. This method takes the RLP encoded block header data as a parameter. When
called, the following three steps are executed:

• Extract. First, the required variables must be read from the encoded block
header data. The PayForEmptyBlocks subsequently requires the block number,
the coinbase, and the transaction root hash. For this purpose, the header data is
decoded, and the respective variables are read via their index. The strict order of
the data in the header ensures that the data is read correctly.

• Verify. To verify the block data, the received block header data is first hashed
with keccak-256. With the extracted block number and the block hash function of
the EVM the actual block hash is fetched from the blockchain. These two hashes
are checked for a match to determine if the received header has been processed on
the blockchain. Furthermore, it is checked if the transaction root hash is identical
to the empty hash to determine that no transaction was processed in the block. If
one of the checks fails, the transaction is aborted.

• Payout. Once the block header has been verified, the miner is rewarded. To do
this, the smart contract first checks an internal list to see if the block has already
been paid out. If the block is not yet paid out, a reward is send to the extracted
coinbase address, and the block is entered in the list of paid out blocks.

Example: Encoding a Block Header

To send the block header data to the PayForEmptyBlocks the variables must be ordered
in a certain sequence and encoded with RLP. In this section, this is demonstrated with
block number 12,398,939 from the Etherum network.

Obtaining the raw block data. First, the block header data must be retrieved from
the network. For this, the mining client geth offers the method eth_getBlockByNumber
via a JSON-RPC API [28]. If this method is called with the block number 12,398,939
of the example, the header data is displayed as shown in listing 4.1. This data includes
all 15 required header variables as well as some extra information. It should also be

35

4. Implementation on Ethereum

noted that this block is an empty block, i.e., it does not process any transactions. This is
indicated by the gasUsed of 0 and the transactionRootHash, which is equal to the empty
hash.
{
d i f f i c u l t y : ’7798586123748724 ’ ,
extraData : ’0 x73706964657231330e321fd0 ’ ,
gasLimit : 14985035 ,
gasUsed : 0 ,
hash : ’0 x411f8c2770f0b68a829406a05c94a6b8d9d0c0d3d6da97d844d802a0657264ae ’ ,
logsBloom : ’0 x000
000
000
000
000
000
0000000000000000 ’ ,
miner : ’0 x04668Ec2f57cC15c381b461B9fEDaB5D451c8F7F ’ ,
mixHash : ’0 x83b2572892a253fc5495155048420bd5fc72fa1f990b2bf7c6baeee1693c3a2d ’ ,
nonce : ’0 x432a92900058319e ’ ,
number : 12398939 ,
parentHash : ’0 x1df88c44a6352759d63ab58418036cc5edebd169628834910a5092efae711458 ’ ,
r e c e i p t s R o o t : ’0 x56e81f171bcc55a6f f8345e692c0f86e5b48e01b996cadc001622fb5e363b421 ’ ,
sha3Uncles : ’0 x1dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d49347 ’ ,
s i z e : 530 ,
stateRoot : ’0 x5f0d38ba68c6f453861e3dc4961c1b2ec86c641565917285aed211df8fe00592 ’ ,
timestamp : 1620546814 ,
t o t a l D i f f i c u l t y : ’24417290626396067328458 ’ ,
t r a n s a c t i o n s : [] ,
t r a n s a c t i o n s R o o t : ’0 x56e81f171bcc55a6f f8345e692c0f86e5b48e01b996cadc001622fb5e363b421 ’ ,
u n c l e s : []
}

Listing 4.1: Raw Block Data from Block 12,398,939

Ordering and hex conversion. After the header data has been fetched, the next
step is to convert some variables. The values of difficulty, number, gasLimit, gasUsed,
timestamp have to be converted to hexadecimal numbers. It is important that 0 values
like the gasUsed are not converted to ’0x0’ but ’0x’. The resulting hex values together
with the remaining block header data must then be arranged in a list in the same order
as it is processed by the geth [29] client:

1. parentHash

2. sha3Uncles

3. miner

4. stateRoot

5. transactionsRoot

6. receiptsRoot

7. logsBloom

8. difficulty

9. number

36

4.3. Attack Phase

10. gasLimit

11. gasUsed

12. timestamp

13. extraData

14. mixHash

15. nonce

This list is now passed to an RLP encoder function which returns the output of listing
4.2:
f9020aa01df88c44a6352759d63ab58418036cc5edebd169628834910a5092efae711458a01dcc4de8dec
75 d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d493479404668ec2f57cc15c381b461b9fedab
5 d451c8f7 fa05f0d38ba68c6f453861e3dc4961c1b2ec86c641565917285aed211df8fe00592a056e81 f1
71 bcc55a6f f8345e692c0 f86e5b48e01b996cadc001622fb5e363b421a056e81 f171bcc55a6f f8345e692
c0f86e5b48e01b996cadc001622fb5e363b421b901000
000
000
000
000
000
00871 bb4c5d3a8057483bd315b83e4a74b8084609
794 fe8c73706964657231330e321fd0a083b2572892a253fc5495155048420bd5fc72fa1f990b2bf7c6ba
eee1693c3a2d88432a92900058319e

Listing 4.2: Rlp encoded Block Header of Block 12,398,939

Validation. The RLP encoded data would now be ready to be submitted to PayForEmp-
tyBlocks. To validate this data, the keccak-256 hash can be calculated before. If the
steps have been done correctly, this hash should match the block hash we originally
received from geth and is shown in listing 4.1.

4.3.5 How the Incentives of PayForEmptyBlocks influence Miners
Auric’s goal in the attack phase is to create congestion. In contrast to the approach of
incentivizing participants to issue additional transactions that push ordinary transactions
out of the block, the approach behind PayForEmptyTx targets the miners. Here, the
miners are offered a reward if they do not process any transactions in their blocks. This
would disrupt the processing of all ordinary transactions that would have been processed
in such a block.

The amount of the expected reward is essential for the miner. Under normal circumstances,
the miner receives transaction fees for processing transactions. However, this source of
profit is eliminated if the miner decides to mine empty blocks. For profit-oriented miners,
mining empty blocks only makes sense if the expected reward from PayForEmptyTx for
submitting empty blocks is higher than processing the currently open transactions.

As long as empty blocks are mined, congestion is created. The resulting congestion leads
to delays in the processing of transactions. Therefore, some transaction issuers may

37

4. Implementation on Ethereum

decide to increase the gasPrice and thus the transaction fees of their transactions to
incentivize faster processing. In sum, this could tilt the threshold for the miner so that it
is again more profitable to process transactions.

38

CHAPTER 5
Feasibility and Cost Analysis

This chapter focuses on the feasibility of the attack in the context of Ethereum. To
this end, the topic of transaction ordering will be revisited, and the current status will
be examined closely. In order to estimate the costs of the attack, historical congestion
phases are first examined. On this basis, the estimated costs of the attack variants are
calculated and compared.

5.1 Ethereum Data & Data Model
In order to perform the following analyses, data about the blocks and transactions of the
Etherum blockchain must be collected. The collection of the relevant blockchain data is
supported by a data model presented in the following. This data model also serves as a
basis for queries and enables the evaluation of the data.

Block

blockNr: BigInt
gasUsed: BigInt
gasLimit: BigInt
timestamp: Date
miner: Address

Transaction

blockNr: BigInt
index: Int
from: Address
to: Address
value: BigInt
nonce: Int
gas: BigInt
gasUsed: BigInt
gasPrice: BigInt

1 *

Figure 5.1: Data Model for Ethereum Blockchain Data

39

5. Feasibility and Cost Analysis

Figure 5.1 shows the data model for the two entities Block and Transaction. Blocks can
contain a set of transactions. Each block has a unique consecutive blockNr. The gasUsed
of a block is the sum of the consumed gas of the associated transactions. The gasLimit is
an upper bound on the total amount of gas that is allowed to be processed in a block.
The timestamp is the moment when the block was created by the miner. The miner
property is the coinbase address which is the beneficiary, where the block reward is paid
out.

Transactions reference the blocks via the blockNumber and have an index that specifies
the order within the block. Also, they have a sender address from and a receiver address
to as well as an optional amount value. The upper limit of the execution steps in of
the transaction is the gas. These steps must be paid for, and the gasPrice indicates
the amount of gas per step that the sender is willing to pay. The actual amount of gas
consumed by the transaction is gasUsed.

For the following analysis, data was collected from the Ethereum blockchain network.
Specifically, these are the blocks starting with blockNr 11564730 through 11660330. The
data spans a 15-day period starting with the first and ending on January 15, 2021. A
total of 95,601 blocks with 14,408,746 transactions were recorded.

5.2 Transaction Ordering on Ethereum
Transaction ordering is an essential prerequisite for the feasibility of the attack and
estimation of the costs associated with a race to the door attack on Ethereum. In
section 2.5 transaction ordering was already mentioned. In [17] generally implies sorting
according to gasPrice. In order to make sure that the assumption of sorted transactions
within the blocks is still valid, the collected data will first be examined.

Some blocks are empty. There are exactly 1837 empty blocks in the dataset1. This means
that these blocks do not contain any transactions. The reason for this could be that there
are too few transactions to process. Figure 5.2 shows the block utilization compared with
the percent of empty blocks. The block utilization here is the ratio of gasUsed to gasLimit
and is on average 97.02 percent for the entire period under consideration. These numbers
suggest that although there are enough transactions, they are not being processed for a
reason. One possible explanation for this phenomenon could be SPV mining [30]. SPV
mining is a common practice in some mining pools where a new block is built before the
previous one has been validated. The goal is to continue working on the longest chain
and to maximize profits. When a new block header is received, an empty block template
is created containing only the coinbase transaction. Only when the previous block has
been fully downloaded and validated, a valid block can be created, which also contains
transactions. Thereupon, blocks were searched for, which only consist of transactions
originating from miners themselves. The miner transactions are identified by having

1In this section, the blocks and containing transactions from blockNumber 11564730 to 11660330
from the Ethereum main network are analysed.

40

5.2. Transaction Ordering on Ethereum

Figure 5.2: Average Block Utilization per Day

the same from address as the block miner (coinbase) address of the block in which they
are processed in. In the dataset, 2177 further blocks of this type were found. These
could also indicate SPV mining. Instead of an empty block to mine, own transactions
are included to increase the utilization. A total of 4014 blocks or 4.20 percent can be
attributed to SPV mining.

As described above, miners aim to maximize profits. They are therefore incentivized to
prioritize the transactions with higher transaction fees. This transaction fee is calculated
from gasPrice times gasUsed. However, the gasUsed can only be calculated when the order
of the transactions has already been determined. Furthermore, the transaction occupies
space in proportion to its gasUsed. Therefore it makes sense to sort the transactions
by gasPrice. In the present dataset, only 30499 blocks, or 31.90 percent, are strictly
sorted by gasPrice. This means that for every transaction, it holds that there is not a
single other transaction in the block with a higher gasPrice. This is because the sorting
algorithms have to consider the consecutive nonce of a sender. So transactions that have
to be processed later can have a higher gasPrice. Taking this into account, we arrive
at 75912 sorted blocks or 79.41 percent. Earlier, we saw that miners treat their own
transactions differently. So miners could process own transactions preferentially despite a
low gasPrice. If these miner transactions are ignored in the sorting, there another 10833
blocks can be considered sorted, and the total number of blocks amounts to 86745 or
90.74 percent.

The available data set confirms the assumptions that the miners act profit-oriented.
About 91 percent of the blocks are sorted by gasPrice, taking into account the increasing
nonces. Including the 2 percent of empty blocks, the total number of sorted or empty
blocks is 93 percent. This leaves about 7 percent of blocks where no clear sorting can be

41

5. Feasibility and Cost Analysis

observed.

5.3 Transaction Blocking Costs
Considering the mechanism of blocking transactions with transactions as described in
section 4.3.1 from the cost perspective, further observations can be made. Transaction X,
which displaces transactions C and D from the block, has a txCost of 210, which is more
than the sum of the two individual transactions. Assuming that X has the same gasPrice
as C but still a gasUsed of 6 and remains in the same position, it would continue to
displace the other transactions. In this case, its txCost would be 180, exactly 20 more
than the sum of the displaced transactions.

Index txId gasUsed gasPrice txCost premium
1 A 2 50 100 -
2 B 2 40 80 -
3 X 6 30 180 -
4 C 4 30 120 (30 - 30) * 4 = 0
5 D 2 20 40 (30 - 20) * 2 = 20
6 E 2 10 20 -

Table 5.1: Updated State of a Mempool including a Transaction created by the Attacker
with equal gasPrice as the highest displaced Transaction

This is due to the difference in gasPrice compared with transaction D. The newly
considered transaction X’s gasPrice is by 10 higher. Multiplied with the gasUsed of
transaction D results in a total 20 in txCost. As there is no difference in gasPrice for
transaction C, there is also no additional txCost for this transaction. This premium of 20
is what that the attacker involuntarily pays to the miner for pushing out the transactions
from this block. The state of the mempool for this example is shown in table 5.1.

Index txId gasUsed gasPrice txCost premium
1 A 2 50 100 -
3 X 6 40 320 -
2 B 2 40 80 (40 - 40) * 2 = 0
4 C 4 30 120 (40 - 30) * 4 = 40
5 D 2 20 40 (40 - 20) * 2 = 40
6 E 2 10 20 -

Table 5.2: Updated State of a Mempool including a Transaction created by the Attacker
with equal gasPrice as the highest displaced Transaction

If the example is extended further by the attacker trying to block transaction B as well.
The corresponding state of the mempool can be found on table 5.2. So transaction X

42

5.3. Transaction Blocking Costs

would have to be adjusted to a gasPrice of 40 with a gasUsed of 8. This results in a
total txCost of 320. The difference between transaction X and the sum of the txCost
of the pushed-out transactions amounts to 80. This is made up of the premium for C
of 40 plus the premium for D, which is now also 40. The higher the gasPrice of the
first transaction to be blocked, the higher the premium for each subsequent transaction.
Likewise, the amount of gasUsed that is displaced is a factor. As a result, the lower
limit for the transaction block cost is obtained by multiplying the highest gasPrice of the
displaced transactions by the sum of the gasUsed displaced transactions.

By applying this formula to the data set, it is now possible to estimate the cost of blocking
a portion of the transactions in a block. Under the assumption that the transactions
of each block are strictly ordered by gasPrice, they are then equally divided among 10
buckets. To estimate what it costs to block a percentage of a block’s transactions (up to
a certain bucket), the sum of the displaced gasUsed is multiplied by the highest gasPrice
of the displaced transactions for each block.

Figure 5.3: Average Costs of Blocking a Portion of Transactions

The results of this evaluation on the dataset2. can be found in figure 5.3. It shows
the development of the average cost of blocking with an increasing percentage in Ether.
Blocking 10 percent of the transactions is costing on average 0.11 Ether. Blocking half of
a block requires an average of 1.10 Ether. The curve seems to increase almost linearly
until blocking 90 percent of the transactions costs about 2.26 Ether. However, the average
cost of blocking all transactions is 7.2 Ether, which is more than three times the cost of

2This section analyses blocks and containing transactions from blockNumber 11564730 to 11660330
from the Ethereum main network.

43

5. Feasibility and Cost Analysis

blocking 90% of all transactions within a block. The linear trend, therefore, does not
seem to hold.
At the time of writing, the reward for finding a block is 2 Ether. For processing
transactions, the miners receive additional transaction fees averaging 1.27 Ether per block
for the observed period. The costs related to blocking 60 percent of the transactions
is 1.10 Ether, and blocking 70 percent is costing 1.34 Ether. This means that it makes
more sense for the attacker to pay the miner a reward of more than 1.27 Ether to mine
an empty block than to block 70 percent of the transaction and pay 1.34 Ether.

Figure 5.4: Relative gasUsed per Bucket

To find the reason for this irregularity in blocking costs on the upper end, another look at
the formula is taken. One factor is the gasUsed of the transactions. It could be the case
that the transactions in the block which have a high gasPrice and therefore are ranked
higher also have a high gasUsed. To investigate this, the sum of all gasUsed is compared
in relation to the total sum of all gasUsed per bucket. The comparison is shown on Figure
5.4. The proportions of the buckets range between 9.3 and 10.4 percent, roughly equal in
relation to the gasUsed. An increased share of gasUsed in the bucket of the transactions
with the highest gasPrice cannot be detected. The most expensive transactions even
have the second-lowest share with only 9.45 percent. The decisive factor must therefore
be a sharp increase or outlier in the gasPrice.
To confirm this assumption, the minimum, maximum, and median values are measured in
addition to the average. These values are listed in table 5.3. The first thing to note here
is the max value for the 100 bucket, which is almost 1800 Ether. This is a clear outlier
with an average around 7 Ether. Since the calculation of the average is unfortunately
very susceptible to such outliers, the median is also given on the right side, which is less

44

5.3. Transaction Blocking Costs

blockedTxPercent meanBlockCosts minBlockCosts maxBlockCosts medianBlockCosts
10 0.111949 5.354100e-05 7.657972 0.083490
20 0.250470 1.326915e-07 8.613791 0.188321
30 0.400604 8.651180e-11 8.628491 0.302427
40 0.563636 7.878352e-11 10.760531 0.425472
50 0.751645 2.424884e-11 26.778612 0.562087
60 1.102898 1.193381e-11 48.435922 0.765181
70 1.344781 1.225835e-11 63.232731 0.951148
80 1.660840 1.230476e-11 341.199061 1.161761
90 2.261684 1.246657e-11 453.057423 1.477563
100 7.212969 1.232384e-02 1797.566739 3.237533

Table 5.3: Min, Max, Mean and Median of Costs for Blocking certain Percentages of a
Block in Ether

sensitive. The median values of each bucket are lower than their mean values, which
could indicate a skewed distribution. For the 100 bucket, the median value is less than
half of the mean value. The plot of the mean and median values is also shown in figure
5.5.

Figure 5.5: Average Costs of Blocking a Portion of Transactions including Median in
Ether

Using the data above, it is possible to calculate the cost of blocking x blocks with y
percent. To do this, multiply the percentage y in the 5.3 table by the desired number of
blocks to be affected. For example, the cost of blocking 50 percent of transactions for

45

5. Feasibility and Cost Analysis

30 minutes can be calculated as follows. Assuming a block time (the time between two
blocks) of about 15 seconds, or about 4 blocks per minute, one would have to block 30
times 4 equals 120 blocks. The cost of blocking 50 percent of transactions in a block is
0.75 Ether. Therefore, the cost to block 120 blocks at 50 percent is 120 times 0.75 equals
90 Ether.

Similarly, how many blocks can be blocked with a certain amount of Ether can be
calculated. Suppose the attacker has 110 Ether and wants to block 60 percent of the
transactions as long as possible. The cost of blocking 60 percent of the transactions is
1.10 Ether/block on average. The attacker’s funds of 110 Ether have to be divided by
1.10 Ether/block, which results in 100 blocks. Assuming about 4 blocks per minute, this
would result in an attack time of about 25 minutes.

5.4 GasPrice Development under Congestion
The previous section examined the cost of blocking a certain portion of transactions in a
block. However, it did not take into account that the gasPrice of transactions can be
affected by the congestion that occurs. Congestion in this context refers to the increased
volume of transactions caused by high-profile or famous smart contracts that everyone
wanted to interact with. The focus of this section is to analyse the magnitude of these
additional transactions and the impact on the gasPrice.

5.4.1 Congestion
In this work, the congestion with respect to a set of smart contracts is defined as the
sum of the gasUsed of transactions to these smart contracts divided by the gasLimit of
the block in which they were processed. For example, consider a block with a blockLimit
of 100. This block contains three transactions with 10 gasUsed each interacting with one
certain smart contract. Furthermore, in this block are other transactions that interact
with another smart contracts. This results in a congestion related to the smart contract
of 3 * 10 / 100, which is 0.30 for this block.

block tx gasUsed per tx gasUsed per block blockLimit congestion
A 50 2 100 100 1
B 30 5 150 200 0.75

Table 5.4: Example for the Calculation of Congestion in Block A and B

The congestion is a good value to compare different blocks. Assume that two different
blocks are compared as shown in table 5.4 In one block A, there are 50 transactions to
smart contract S1. In block B, there are only 30 transactions to another smart contract
S2. Therefore, one could conclude that block A is more affected by transactions to S1
than the other block is by the transactions to S2, since 50 is larger than 30. However,
the error here is that the gasUsed were not considered. Assuming the transactions to S1

46

5.4. GasPrice Development under Congestion

now have a gasUsed of 2 and those of transactions to S2 a gasUsed of 5. So one could
conclude that period B is more affected because 100 < 150. Here, too, another factor has
not been taken into account. The gasLimit in block A is only 100, whereas the gasLimit
in block B is 200. The congestion in block A is 100 / 100 = 1 and in block B 150 / 200 =
0.75. The congestion definition in this thesis takes these circumstances into account and
allows for comparing transactions of different sizes in blocks with different gasLimits.

5.4.2 Congestion Periods Analysis
Looking at the Etheruem Blockchain, there are several possible candidates, which can be
called a congestion phase. In the following, three examples are selected and examined in
more detail.

CryptoKitties

Figure 5.6: Congestion during Peak Transaction Volume of CryptoKitties after its Launch
in 2017

One example of this is the rush to the game CryptoKitties 3 after its launch [31]. Figure
5.6 shows the Transactions the CryptoKitties Contract on 0x06012c8cf97bead5deae237
070f9587f8e7a266d from November 27th of 2017 to Jan 6th of 2018. It shows how the
congestion of transactions to the game’s smart contract increases after the official start
of the launch in December 2017 to almost 100,000 calls per day. Furthermore, it also
shows the gasPrice development, which increases strongly at the same time. It is only
after December 8th that the congestion related to CryptoKitties starts to decrease again.

3The analysis of CryptoKitties focuses on the blocks 4566385 to 4838611 of the Ethereum main
network.

47

5. Feasibility and Cost Analysis

During the peak congestion, the gasPrice quadruples to 60 gwei compared to about 15
gwei before.

Figure 5.7: Block Utilization during the CryptoKitties Lauch

Noticeable in Figure 5.6 is the lag between the increased transaction volume from
CryptoKitties and the rising gasPrices. One reason could be that the blocks were not yet
full at the time. Since ordinary transactions still find space in unfilled blocks, gasPrices
do not have to be increased to be processed. Figure 5.7 confirms this assumption. It
shows the block utilization over the same period. In the beginning, the block utilization
is around 0.6, slowly rising with the increased congestion caused by CryptoKitties. Only
from the 4th of December, where the block utilization rises to over 0.9, the gasPrice
starts to rise as well.

Figure 5.8 compares the gasPrice of transactions addressed to CryptoKitties with the
gasPrice of other transactions. First, the transactions to CryptoKitties have a much
lower gasPrice. With the increasing congestion, starting from December 3rd, the gasPrice
of both increases strongly and stays at a similar level. By December 11th, the gasPrice
of CryptoKitties transactions is again visibly below the level of the other transactions.
The overall level of the gasPrice remains elevated after the peak volume compared to the
beginning of the period.

48

5.4. GasPrice Development under Congestion

Figure 5.8: GasPrice of CryptoKitties and other Transactions compared during the
CryptoKitties Launch

Fomo3D Long

Figure 5.9: Congestion during Peak Transaction Volume of Fomo3D Long Smart Contract
in July of 2017

49

5. Feasibility and Cost Analysis

The Fomo3D4 smart contract is another example of high transaction volume, which has
already been mentioned in this thesis. This game allows buying of keys as part of a Ponzi
scheme. The smart contract distributes the revenue from later key purchases to owners
of earlier keys. This incentivizes players to buy these keys as early as possible. Figure 5.9
shows the data of the Fomo3D Long smart contract at the address 0xa62142888aba83707
42be823c1782d17a0389da1 from July 18th to 25th of 2018. The selected period covers
the peak volume of transactions to the smart contract. The congestion increases to over
0.16 and then decreases sharply. As the number of transactions associated with Fomo3D
increases, so does the average gasPrice in the network. However, it can be observed that
the gasPrice before and after the peak congestion is at a similar level as during the peak.
Therefore, it can be assumed that the congestion was too low to have a significant impact
on the gasPrice development.

Figure 5.10: Block Utilization during the Peak Transaction Volume of Fomo3D Long in
July of 2017

Besides the lower congestion, a lower block utilization could also be a reason for the
gasPrice hardly being influenced. Figure 5.13 shows the block utilization, which is above
90 percent over the entire period. Due to this high block utilization, the low congestion
is more plausible as a cause for the weak influence on the gasPrice.

The figure 5.11 shows the gasPrice comparison between transactions to Fomo3d and other
transactions. The gasPrice of the transactions to Fomo3D rises from under 6 gwei on
July 18 to over 12 gwei by July 20 and slowly starts to fall after July 21. The gasPrice of
other transactions, on the other hand, moves at an elevated level compared to Fomo3D
in a range from 11 to about 16 gwei.

4The analysis of Fomo3D focuses on the blocks 5983399 to 6030335 of the Ethereum main network.

50

5.4. GasPrice Development under Congestion

Figure 5.11: GasPrice of Fomo3D and other Transactions compared during the Peak
Transaction Volume of Fomo3D Long in July of 2017

Uniswap

The third case of a possible congestion is Uniswap [32]. This decentralized exchange
consists of several smart contracts:

• Router 2. The Uniswap router allows for swapping of ERC-20 Tokens. Deployed
on 0x7a250d5630b4cf539739df2c5dacb4c659f2488d.

• Token Distributor. Manages the distribution of UNI Tokens. Deployed on 0x09
0d4613473dee047c3f2706764f49e0821d256e

• UNI Token. An ERC-20 token. Deployed on 0x1f9840a85d5af5bf1d1762f925bdad
dc4201f984.

Of interest for this work is the time period of the introduction of the UNI-Token5 on
September 16th 2020 [33][34]. For this, the combined volume of the UNI Token and Token
Distributor smart contracts are examined. Figure 5.12 shows the congestion and overall
gasPrice development on the period before and during the launch. A close relationship
between the two variables can be observed. The combined congestion caused by the two
contracts increases to over 0.2 in just one day. With the increase in transactions, the gas
price also increases from about 150 to 200 gwei to almost 550 gwei, which is more than

5This part of the analysis of Uniswap focuses on the blocks 10863238 to 10902386 of the Ethereum
main network.

51

5. Feasibility and Cost Analysis

Figure 5.12: Congestion during Peak Transaction Volume of Uniswap Token Launch in
September 2020

2.8 to 3.7 times higher than before. It can be said that the Uniswap token launch has
had an impact on the gasPrice.

It should be noted that the router contract also received an increase from 130 thousand
transactions to 180 thousand transactions on September 16, 2020. However, this was not
taken into account as it is more often subject to similar fluctuations.

Figure 5.13 shows the average block utilization during the period. The block utilization is
above 97 percent for the entire period. This shows that many transactions were processed
before the peak volume phase.

Congestion Phases Compared

Fomo3D had almost no impact on the gasPrice. As the block utilization at the time
was relatively high, this may be due to the low congestion related to the contract.
CryptoKitties did manage to generate higher levels of congestion, and a strong gasPrice
increase was evident. However, at the time, the block utilization was low in the beginning,
and the gasPrice was only increased once the block utilization reached over 0.9. Current
blockchain conditions at the time of writing show a very high block utilization in the
network. Uniswap’s token launch shows similar levels and, therefore, better reflects the
current situation. To get a better insight on how a congestion could look like in these
conditions, Uniswap will be further analyzed.

52

5.4. GasPrice Development under Congestion

Figure 5.13: Block Utilization during Peak Transaction Volume of Uniswap Token Launch
in September 2020

5.4.3 Analyzing Uniswap Launch

The Uniswap token launch is further examined. In particular, a closer look will be taken
on September 17, when the smart contracts reached maximum congestion6. Furthermore,
it will be examined whether the gasPrice of the transactions to the smart contract
develops differently from the gasPrice of other transactions.

Figure 5.14 shows the hourly development of congestion and gasPrice on September 17.
A substantial increase in congestion and gasPrice from 0:00 to 2:00 can be observed.
From 03:00 to 09:00, the congestion moves between 0.25 and 0.4. The gasPrice at this
time ranges between 500 and 750 gwei. At 10:00, the congestion moves back below 0.25
and drops to slightly above 0.1 by the end of the day. The gasPrice decreases a bit slower
at this time from about 680 to about 440 gwei.

The average gas price for the previous day was 152.92 gwei. This value can now be taken
as a reference value, and the period from 02:00 to 09:00 where the congestion was above
0.25 can be considered. At this time, the average congestion was at 0.33, and the average
gasPrice was 4.34 times higher than the reference value.

Another question that remains open is whether the gasPrice of the transactions to
the smart contracts also develops similarly to the gasPrice of the other transactions.
Figure 5.15 shows exactly the development of the gasPrice for these two different sets

6This part of the analysis of Uniswap focuses September 17, including the blocks 10876243 to 10882832
of the Ethereum main network.

53

5. Feasibility and Cost Analysis

Figure 5.14: Hourly Congestion of Uniswap on September 17, 2020

Figure 5.15: GasPrice of Uniswap and other Transactions compared from September
17th 2020

of transactions. It becomes apparent that in the case of the Uniswap token launch, the
gasPrice of all transactions has developed in approximately the same way.

54

5.5. Estimated Cost Comparison

5.5 Estimated Cost Comparison
In this section, the costs of the attack variants are estimated and compared. For this
purpose, a scenario is assumed in which similar conditions prevail to those in which the
Uniswap token was introduced. On this basis, parameters are selected for the smart
contracts of the attack phase variants. Then, the costs associated with the parameterized
smart contracts are compared.

5.5.1 Scenario
Consider that the accumulation phase of the Race to the Door attack has been completed
and that the collected funds will now be used for an attack. Furthermore, it is assumed
that the block utilization is above 0.9 during the entire period. The block limit is assumed
to be 15M gas. The attacker aims to generate a congestion of 0.33 with the attack. This
means for a targeted congestion, on average, 15M gas * 0.33 ≈ 5M gas per block has to
be blocked. Similar to Uniswap, gasPrice is assumed to be 153 gwei before the attack.
Since the congestion is also at the same level as Uniswap, the gasPrice is expected to
increase to 663 during the attack. The block time (i.e., the interval in which blocks are
mined) is assumed to be 15 seconds.

5.5.2 FreeMoneyGrab
1 b lock_l imi t = 15_000_000
2 gas_price = 663
3 conge s t i on = 0.33
4
5 gas_per_block = block_l imi t ∗ conge s t i on
6 # 4950000.0
7
8 # c a l c u l a t e b lockHeapSize
9 money_grab_call_costs = 250_000

10 blockHeapSize = round(gas_per_block / grab_ca l l_costs)
11 # 20
12
13 # c a l c u l a t e c o s t s per b l o c k
14 reward_percentage = 0 .1
15 block_tx_fees = money_grab_call_costs ∗ blockHeapSize ∗ gas_pr ice
16 block_rewards = block_tx_fees ∗ reward_percentage
17 block_costs = block_tx_fees + block_rewards
18 block_costs = round(b lock_costs / pow(10 , 9) , 4)
19 # 3.61
20
21 # c a l c u l a t e c o s t s f o r 1 hour
22 c o s t s = block_costs ∗ 60 ∗ 4
23 # 866.4

Listing 5.1: Calculating blockHeapSize, Costs per Block and Costs for 1 hour of the
Attack using FreeMoneyGrap in the given Scenario

55

5. Feasibility and Cost Analysis

FreeMoneyGrap has a parameter blockHeapSize which can be used to set the number of
transactions to be paid out per block. The attacker knows that the payout function of
FreeMoneyGrap consumes on average about 250k gas. To block 5M gas per block, about
20 calls are necessary since 20 * 250k gas = 5M gas. The blockHeapSize parameter of
FreeMoneyGrap must therefore be set to 20. This calculation is shown in listing 5.1 in
lines 1 to 11.

Another parameter to be set is the amount of reward to be paid out on top of the refund of
the transaction fee. In the context of this cost estimation, the reward_percentage is set
at 10 percent of the transaction costs. This allows calculating the block_costs as shown in
lines 13 to 19. To do this, the paid transaction fees per block (block_tx_fees) are calcu-
lated, which is the product of the call costs, the number of calls paid out (blockHeapSize),
and the gas_price. Then the additional reward costs per block (block_rewards) are
calculated by multiplying the previous result with the reward_percentage. Adding the
fees and rewards and converting the resulting number from gwei to Ether, the block_costs
for FreeMoneyGrap in this scenario totals 3.61 Ether.

An estimation of the costs for an Attack of 1 hour is done in lines 21 to 23. A block time
of 15 seconds results in 4 blocks every minute or 240 blocks per hour. The hourly costs
are calculated by the product of the blocks and block_costs totaling 866.4 Ether for 1
hour.

5.5.3 Fomo10x
1 b lock_l imi t = 15_000_000
2 gas_pr ice = 663
3 conge s t i on = 0.33
4
5 gas_per_block = block_l imi t ∗ conge s t i on
6 # 4950000.0
7
8 # c a l c u l a t e txPerBlock
9 fomo10x_cal l_costs = 30_000

10 txPerBlock = round(gas_per_block / fomo10x_cal l_costs)
11 # 165

Listing 5.2: Calculating txPerBlock parameter of Fomo10x in the given Scenario

For Fomo10x the parameter txPerBlock must be calculated, which is done in a similar
fashion as shown in listing 5.2. The parameter determines by how much the internal
timer is counted down per past block. Since the timer is increased by 1 per call, at least
txPerBlock transactions are required per block to prevent the timer from running out.
The play function consumes about 30k gas per call. With 165 calls, 165*30 ≈ 5M gas
will be generated. Hence 165 is taken as the value for the txPerBlock parameter.

The duration of Fomo10x depends on the game dynamics of the players and is therefore
difficult to estimate. Assuming the 1 hour costs of FreeMoneyGrap of 866.4 Ether are

56

5.5. Estimated Cost Comparison

offered as a reward, it is still questionable this amount is a sufficient incentive to maintain
the number of transactions for a long time. At the time of writing, the Fomo3D Long
smart contract offers a reward of 1228 Ethern and needs far fewer transactions to keep
the timer up. Unlike Fomo3D Long, Fomo10x does not require any additional fee from
the player to play and emerge as a potential winner.

5.5.4 PayForEmptyBlock
1 b lock_l imi t = 15_000_000
2 gas_price = 663
3 conge s t i on = 0.33
4
5 # c a l c u l a t e b l o c k reward s i z e
6 reward = block_l imi t ∗ gas_pr ice
7 reward = round(reward / pow(10 , 9) , 4)
8 # 9.945
9

10 # c a l c u l a t e c o s t s f o r 1 hour
11 avg_block_costs = reward ∗ conge s t i on
12 c o s t s = round(avg_block_costs ∗ 60 ∗ 4 , 4)
13 # 787.644

Listing 5.3: Calculating Reward Size and Costs for 1 hour of the Attack using Pay-
ForEmptyBlocks in the given Scenario

PayForEmptyBlock can only control the level of congestion via the amount of the offered
reward. Profit-oriented miners would mine on empty blocks as long as the offered reward
is greater than the transaction fees to be collected. However, by not processing the
transactions, congestion occurs, raising the transaction fees, and thus the miners start
processing transactions again. By processing transactions, the congestion decreases again,
and the transaction fees decrease again, making the rewards from the empty blocks seem
more attractive again. Thus, the miner will swing back and forth between processing
transactions and mining empty blocks.

By providing a block reward equal to the transaction fees of a block in time of congestion,
the miners are incentivized to produce empty blocks until the desired congestion level
is reached and the processing of ordinary transactions becomes profitable again. To
calculate the reward offered by PayForEmptyBlocks the blocklimit has to be multiplied
with the gas_price under congestion as shown in listing 5.3 in lines 5 to 8. This scenario
results in a reward of 9.945 Ether for submitting an empty block.

For the sake of comparison, it is worth mentioning that the gas cost for a PayForEmpty-
Block call is 68k gas. Since the call must happen in a timely manner as the contract only
has access to the last 256 block hashes, this results in a transaction cost of 0.0045 Ether
during the attack.

PayForEmptyBlock offers a reward of 9,945 Ether per empty block. This should in-
centivize miners to leave about every 3rd block empty and instead accept the reward

57

5. Feasibility and Cost Analysis

from the smart contract. The costs for 1 hour can be calculated by first calculat-
ing the average_block_costs, which is the product of reward and congestion. These
average_block_costs can then be multiplied by the number of blocks of 240 for 1 hour,
resulting in a total costs of 787.644 Ether.

5.5.5 Discussion
PayForEmptyBlock appears to be the cheaper option compared to FreeMoneyGrap to
generate the same amount of congestion. If Fomo10x were given the same amount as a
potential reward as the others, it might be the cheapest option if it can run for more
blocks than the others can pay.

The prices with the current exchange rate in Euro seem to be high. However, due to
the Race to the Door effect, the exchange rate could fall in the event of an approaching
attack. In that case, the costs in Euro would look cheaper.

Costs are low compared to the volume. At the time of writing, the trading volume of
Etheruem reaches about 24M Ether daily7. The cost of less than 1,000 Ether per hour is
relatively low compared to the volume.

The cost might be too high for a single person, but several attackers could join forces.
As mentioned above, a group of attackers could join forces for the attack. Together they
could deposit their funds into the RedeemVoucherCon in the funding currency. They
could also use threshold signatures to issue the vouchers so that no single party has
access to all the funds. Thus, more funds could be made available for the attack.

Another cost advantage of the Race to the Door attack is that there are no high acquisition
costs and only low operational costs. The attack does not have to buy or rent mining
hardware. Only the smart contracts have to be deployed and the funds deposited. Costs
are only generated by the payout of the rewards to the transaction issuer or empty block
miner. These costs are based only on the displacement of space in the block (gasUsed)
and the gasPrice and therefore have little overhead.

7https://www.coingecko.com/en/coins/ethereum

58

CHAPTER 6
Conclusion and Future Work

The goal of this work is to show that Race to the Door attacks, previously considered
buy-out attacks in a PoS context, are also possible in a PoW context. The thesis thus
demonstrates the potential threat posed by the execution of such an attack to holders
and smart contract users of the targeted cryptocurrency. To investigate the feasibility
of the Race to the Door attack, it was evaluated based on its technical implementation
(RQ1), the associated costs (RQ2), and the underlying transaction ordering behavior of
miners, as well as possible exploits (RQ3).
First, a general system model for RTTD attacks on PoW cryptocurrencies was presented
to give an overview of the attack. For this purpose, the required actors and terms were
introduced. Furthermore, the attack was divided into a preparation phase, race phase,
and attack phase. In the preparation phase, smart contracts are set up on the funding
currency and the target currency, and the attack is announced. In the following race
phase, users of the target currency have the opportunity to exchange their target currency
for the funding currency offered by the attacker with the help of a voucher mechanism.
The collected funds will be used for a later attack. By exchanging, more and more target
currency is collected for this purpose, which increases the likelihood of a devastating
attack. This creates a vicious circle that encourages even more people to trade. The
exchange mechanism represents the exit door to escape the attack, which is why it is
called the Race to the Door attack. In the final attack phase, the total funds are used for
a DoS attack. In-band payments are used to incentivize either the triggering of additional
transactions or to get miners to create empty blocks.
In order to demonstrate the technical feasibility (RQ1), concrete technologies were
selected in which the phases of the attack are implemented. In this context, Ethereum
was chosen, and the smart contracts were implemented in Solidity. For the race phase and
its voucher mechanism, two smart contracts were implemented, which allow the secure
request and issuance of vouchers in the target currency and the redemption in the funding
currency. For the implementation of the attack phase, three different variants were

59

6. Conclusion and Future Work

implemented, two of them presenting possible exploits of in-band transaction ordering
attacks (RQ3). FreeMoneyGrab incentivizes transaction triggering by reimbursing callers
for their transaction costs and also paying a bonus. Fomo10x is a game based on the
well-known game Fomo3D, which also provides incentives for transaction triggering by
paying out the collected funds to a winner. Furthermore, PayForEmptyBlocks was
introduced, which pays miners a reward for submitting empty blocks. These smart
contracts implementations demonstrate the technical feasibility of the Race to the Door
attack and the challenges involved.
Finally, an empirical analysis was performed on data from the Ethereum blockchain.
First, the transaction ordering (RQ3) was analyzed, on which the blocking of transactions
by means of transactions is based. It was found that despite high block utilization, which
was 97 percent, about 2 percent of the blocks are empty, which could indicate SPV mining.
It was found that 31.90 percent of the blocks contain transactions that are strictly sorted
by gasPrice. By taking into account the nonce in the sorting, which imposes a strict
order of transactions per account, this amounts to 79.41 percent of blocks with sorted
transactions. If the transactions are ignored, which were issued by miners themselves
and are possibly treated preferentially, the result increases to 90.74 percent sorted blocks.
The data shows that the miners act profit-oriented and prefer transactions with higher
gasPrice to potentially receive more transaction fees.
For the collected data set, the costs that would arise from blocking a certain proportion of
transactions were also analyzed. A linear increase was observed up to around 90 percent
of blocked transactions. Blocking all transactions in one block by using other transactions
results in an average cost of more than 3 times the cost of blocking 90 percent of the
transactions. With the average transaction fees per block of 1.27 Ether observed over the
period, it makes sense to block a maximum of 60 percent, which would cost 1.10 Ether.
Instead of increasing blocking from this point, it would make more sense to pay the miner
directly to create empty blocks and offer him a reward covering the lost transaction costs
plus a bonus.
Furthermore, the development of the gasPrice under contract-induced congestion was
investigated. Congestion in relation to a set of smart contracts was defined as the gasUsed
of transactions within a block addressed to these popular smart contracts in relation
to the block limit. This measure was used to compare different congestion phases. For
CryptoKitties, the congestion caused the gasPrice to quadruple. It was found that the
Fomo3D Long start had little influence on the gasPrice. In more detail, the Uniswap
token launch was examined, which also led to a quadrupling of the gasPrice due to its
congestion.
Based on the empirical data collected, the cost of the attack variants was estimated. A
scenario was considered in which circumstances similar to those of the Uniswap token
launch were selected to further analyze the costs of the attack (RQ2) and compare the
different attack variants. For this purpose, the smart contracts were parameterized
to set their incentives to achieve a similar level of congestion as in the token launch.
Subsequently, the attack duration of the different variants was compared at which they

60

6.1. Future Work

can maintain this level of congestion. The costs associated with creating congestion for 1
hour with FreeMoneyGrab, are 870 Ether. PayForEmptyBlocks can bring the costs down
to 790 Ether per hour. The attack costs of Fomo10x depend on the game dynamics and
are therefore difficult to compare with the others.

Thus it was shown that a Race to the Door attack in a PoW context is technically feasible.
Hourly operational costs for launching the attack amount to roughly 0.002 percent of the
24h trading volume (or 0.047 percent of hourly trading volume)1. The intensity of the
attack can be adjusted by parameters. The duration depends on the degree of congestion
and the funds collected in the race phase.

6.1 Future Work
This thesis has analyzed the gasPrice developed under times of congestion induced by
popular contracts. However, it is not clear how the gasPrice develops under different levels
and categories of congestion, for example, a general increase in demand. Furthermore, it
could be investigated how gasPrice developments affect the exchange rates of the involved
cryptocurrencies or how the exchange rate of cryptocurrencies relate to each other.

With the help of a framework as presented in [12] the Race to the Door attack could be
categorized and compared to other attacks.

Furthermore, other attack variants of the attack could be explored. For example, the
utilization of threshold signatures in the preparation phase or different techniques to
optimize the funding of DDoS attacks on the target cryptocurrency could be analyzed.

1Calculation based on 24h trading volume from https://www.coingecko.com/en/coins/
ethereum converted to Ether at the time of writing.

61

https://www.coingecko.com/en/coins/ethereum
https://www.coingecko.com/en/coins/ethereum

List of Figures

3.1 Holders and Currencies of the Race to the Door 9
3.2 Race Phase - Initial State . 11
3.3 Race Phase - Progress State . 12
3.4 Race Phase - Race to the Door Effect . 12
3.5 Race Phase - Final State . 13

4.1 Simplified Voucher Mechanism of the Race Phase Implementation 18
4.2 Requesting and Issuing of a Voucher in the Target Currency and Redemption

in the Funding Currency. 19

5.1 Data Model for Ethereum Blockchain Data 39
5.2 Average Block Utilization per Day . 41
5.3 Average Costs of Blocking a Portion of Transactions 43
5.4 Relative gasUsed per Bucket . 44
5.5 Average Costs of Blocking a Portion of Transactions including Median in

Ether . 45
5.6 Congestion during Peak Transaction Volume of CryptoKitties after its Launch

in 2017 . 47
5.7 Block Utilization during the CryptoKitties Lauch 48
5.8 GasPrice of CryptoKitties and other Transactions compared during the Cryp-

toKitties Launch . 49
5.9 Congestion during Peak Transaction Volume of Fomo3D Long Smart Contract

in July of 2017 . 49
5.10 Block Utilization during the Peak Transaction Volume of Fomo3D Long in

July of 2017 . 50
5.11 GasPrice of Fomo3D and other Transactions compared during the Peak

Transaction Volume of Fomo3D Long in July of 2017 51
5.12 Congestion during Peak Transaction Volume of Uniswap Token Launch in

September 2020 . 52
5.13 Block Utilization during Peak Transaction Volume of Uniswap Token Launch

in September 2020 . 53
5.14 Hourly Congestion of Uniswap on September 17, 2020 54
5.15 GasPrice of Uniswap and other Transactions compared from September 17th

2020 . 54

63

List of Tables

4.1 Initial State of a Mempool forming a Candidate Block 24
4.2 Updated State of a Mempool including a Transaction X created to block

Transaction C and D . 25
4.3 Initial State of FreeMoneyGrab with Transactions A to D 28
4.4 State of FreeMoneyGrab after Transaction E 28
4.5 State of FreeMoneyGrab after Transaction F 29
4.6 State of FreeMoneyGrab after Transaction G 29
4.7 Fomo10x Game State Changes while processing Transactions 32

5.1 Updated State of a Mempool including a Transaction created by the Attacker
with equal gasPrice as the highest displaced Transaction 42

5.2 Updated State of a Mempool including a Transaction created by the Attacker
with equal gasPrice as the highest displaced Transaction 42

5.3 Min, Max, Mean and Median of Costs for Blocking certain Percentages of a
Block in Ether . 45

5.4 Example for the Calculation of Congestion in Block A and B 46

65

Acronyms

AIM Algorithmic Incentive Manipulation. 2, 8

DApps Decentralized Applications. 1

DeFi Decentralized Finance. 1, 2

DoS Denial of Service. 8

EVM Ethereum Virtual Machine. 6, 26, 34, 35

PoS Proof of Stake. 2, 6, 8, 59

PoW Proof of Work. 3, 5, 7, 8, 59, 61

RLP Recursive Length Prefix. 35, 37

SPV Simplified Payment Verification. 40, 41, 60

67

Bibliography

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” tech. rep., Manubot,
2019.

[2] G. Wood et al., “Ethereum: A secure decentralised generalised transaction ledger,”
Ethereum project yellow paper, vol. 151, no. 2014, pp. 1–32, 2014.

[3] “Cryptocurrency prices, charts and market capitalizations | coinmarketcap.” https:
//coinmarketcap.com/, 2021. [Online; accessed 06-March-2021].

[4] “Defi - the decentralized finance leaderboard at defi pulse.” https://defipulse.
com/, 2021. [Online; accessed 06-March-2021].

[5] Tesla Inc., “Annual report on form 10-k for the year ended decem-
ber 31, 2020.” https://www.sec.gov/ix?doc=/Archives/edgar/data/
1318605/000156459021004599/tsla-10k_20201231.htm, 2021. [Online;
accessed 29-March-2021].

[6] “Ark invest | we believe innovation is key to growth.” https://ark-invest.com/,
2021. [Online; accessed 29-March-2021].

[7] C. Ballentine, “Cathie wood amasses $50 billion and a new nickname: ‘money
tree’.” https://www.bloomberg.com/news/articles/2021-02-05/
cathie-wood-amasses-50-billion-and-a-new-nickname-money-tree,
2021. [Online; accessed 29-March-2021].

[8] “r/wallstreetbets.” https://www.reddit.com/r/wallstreetbets/, 2021.
[Online; accessed 29-March-2021].

[9] DeepFuckingValue. https://www.reddit.com/user/DeepFuckingValue/,
2021. [Online; accessed 29-March-2021].

[10] C. Gartenberg, “Robinhood blocks purchase of gamestop, amc, and black-
berry stock.” https://www.theverge.com/2021/1/28/22254102/
robinhood-gamestop-bloc-stock-purchase-amc-reddit-wsb, 2021.
[Online; accessed 29-March-2021].

69

https://coinmarketcap.com/
https://coinmarketcap.com/
https://defipulse.com/
https://defipulse.com/
https://www.sec.gov/ix?doc=/Archives/edgar/data/1318605/000156459021004599/tsla-10k_20201231.htm
https://www.sec.gov/ix?doc=/Archives/edgar/data/1318605/000156459021004599/tsla-10k_20201231.htm
https://ark-invest.com/
https://www.bloomberg.com/news/articles/2021-02-05/cathie-wood-amasses-50-billion-and-a-new-nickname-money-tree
https://www.bloomberg.com/news/articles/2021-02-05/cathie-wood-amasses-50-billion-and-a-new-nickname-money-tree
https://www.reddit.com/r/wallstreetbets/
https://www.reddit.com/user/DeepFuckingValue/
https://www.theverge.com/2021/1/28/22254102/robinhood-gamestop-bloc-stock-purchase-amc-reddit-wsb
https://www.theverge.com/2021/1/28/22254102/robinhood-gamestop-bloc-stock-purchase-amc-reddit-wsb

[11] I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoin mining is vulnerable,” in
International conference on financial cryptography and data security, pp. 436–454,
Springer, 2014.

[12] A. Judmayer, N. Stifter, A. Zamyatin, I. Tsabary, I. Eyal, P. Gaži, S. Meiklejohn,
and E. Weippl, “Sok: Algorithmic incentive manipulation attacks on permissionless
pow cryptocurrencies.” Cryptology ePrint Archive, Report 2020/1614, 2020. https:
//eprint.iacr.org/2020/1614.

[13] J. A. Kroll, I. C. Davey, and E. W. Felten, “The economics of bitcoin mining, or
bitcoin in the presence of adversaries,” in Proceedings of WEIS, vol. 2013, p. 11,
2013.

[14] (Director). G. Hamilton, “Goldfinger,” 1964.

[15] J. Bonneau, “Hostile blockchain takeovers (short paper),” in International Conference
on Financial Cryptography and Data Security, pp. 92–100, Springer, 2018.

[16] P. McCorry, A. Hicks, and S. Meiklejohn, “Smart contracts for bribing miners,” in
International Conference on Financial Cryptography and Data Security, pp. 3–18,
Springer, 2018.

[17] L. Zhou, K. Qin, C. F. Torres, D. V. Le, and A. Gervais, “High-frequency trading
on decentralized on-chain exchanges,” arXiv preprint arXiv:2009.14021, 2020.

[18] P. Daian, S. Goldfeder, T. Kell, Y. Li, X. Zhao, I. Bentov, L. Breidenbach, and
A. Juels, “Flash boys 2.0: Frontrunning in decentralized exchanges, miner extractable
value, and consensus instability,” in 2020 IEEE Symposium on Security and Privacy
(SP), pp. 910–927, IEEE, 2020.

[19] S. Eskandari, S. Moosavi, and J. Clark, “Sok: Transparent dishonesty: front-running
attacks on blockchain,” in International Conference on Financial Cryptography and
Data Security, pp. 170–189, Springer, 2019.

[20] A. S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J.-P. Martin, and C. Porth, “Bar fault
tolerance for cooperative services,” in Proceedings of the twentieth ACM symposium
on Operating systems principles, pp. 45–58, 2005.

[21] P. Schindler, A. Judmayer, N. Stifter, and E. Weippl, “Ethdkg: Distributed key
generation with ethereum smart contracts.” Cryptology ePrint Archive, Report
2019/985, 2019. https://eprint.iacr.org/2019/985.

[22] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms,
Third Edition. The MIT Press, 3rd ed., 2009.

[23] D. R. Morrison, “Patricia—practical algorithm to retrieve information coded in
alphanumeric,” Journal of the ACM (JACM), vol. 15, no. 4, pp. 514–534, 1968.

70

https://eprint.iacr.org/2020/1614
https://eprint.iacr.org/2020/1614
https://eprint.iacr.org/2019/985

[24] S. Edelkamp, “Patricia tree.” https://xlinux.nist.gov/dads/HTML/
patriciatree.html. [Online; accessed 17-May-2021].

[25] “Solidity - units and globally available variables.” https://docs.
soliditylang.org/en/v0.5.3/units-and-global-variables.html#
block-and-transaction-properties. [Online; accessed 17-May-2021].

[26] A. Coglio, “Ethereum’s recursive length prefix in acl2,” Electronic Proceedings in
Theoretical Computer Science, vol. 327, p. 108–124, Sep 2020.

[27] M. J. Dworkin, “Sha-3 standard: Permutation-based hash and extendable-output
functions,” 2015.

[28] “Ethereum json-rpc api.” https://ethereum.org/en/developers/docs/
apis/json-rpc/. [Online; accessed 17-May-2021].

[29] “go-ethereum block header.” https://github.com/ethereum/go-ethereum/
blob/master/core/types/block.go#L69. [Online; accessed 17-May-2021].

[30] B. Research, “Empty block data by mining pool.” https://blog.bitmex.com/
empty-block-data-by-mining-pool/, 2017. [Online; accessed 11-April-
2021].

[31] O. Kharif, “Cryptokitties mania overwhelms ethereum network’s process-
ing.” https://www.bloomberg.com/news/articles/2017-12-04/
cryptokitties-quickly-becomes-most-widely-used-ethereum-app,
2017. [Online; accessed 16-May-2021].

[32] H. Adams, N. Zinsmeister, M. Salem, R. Keefer, and D. Robinson, “Uniswap v3
core,” 2021.

[33] “Introducing uni.” https://uniswap.org/blog/uni/. [Online; accessed 17-
May-2021].

[34] S. Edelkamp, “Ethereum fees spike after uniswap’s
uni token launch.” https://cryptobriefing.com/
ethereum-fees-spike-uniswaps-uni-token-launch/, 2020. [Online;
accessed 17-May-2021].

71

https://xlinux.nist.gov/dads/HTML/patriciatree.html
https://xlinux.nist.gov/dads/HTML/patriciatree.html
https://docs.soliditylang.org/en/v0.5.3/units-and-global-variables.html#block-and-transaction-properties
https://docs.soliditylang.org/en/v0.5.3/units-and-global-variables.html#block-and-transaction-properties
https://docs.soliditylang.org/en/v0.5.3/units-and-global-variables.html#block-and-transaction-properties
https://ethereum.org/en/developers/docs/apis/json-rpc/
https://ethereum.org/en/developers/docs/apis/json-rpc/
https://github.com/ethereum/go-ethereum/blob/master/core/types/block.go#L69
https://github.com/ethereum/go-ethereum/blob/master/core/types/block.go#L69
https://blog.bitmex.com/empty-block-data-by-mining-pool/
https://blog.bitmex.com/empty-block-data-by-mining-pool/
https://www.bloomberg.com/news/articles/2017-12-04/cryptokitties-quickly-becomes-most-widely-used-ethereum-app
https://www.bloomberg.com/news/articles/2017-12-04/cryptokitties-quickly-becomes-most-widely-used-ethereum-app
https://uniswap.org/blog/uni/
https://cryptobriefing.com/ethereum-fees-spike-uniswaps-uni-token-launch/
https://cryptobriefing.com/ethereum-fees-spike-uniswaps-uni-token-launch/

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Problem Statement
	Aim of the Work
	Structure of the Work

	Background and State of the Art
	Cryptocurrencies
	Consensus Protocols
	Smart Contracts
	Transactions and Fees
	Transaction Ordering
	Goldfinger Attacks
	Race to the Door

	Attack Model
	Actors and Terminology
	Aim and Approach
	Preparation Phase
	Race Phase
	Attack Phase

	Implementation on Ethereum
	Preparation Phase
	Race Phase
	Attack Phase

	Feasibility and Cost Analysis
	Ethereum Data & Data Model
	Transaction Ordering on Ethereum
	Transaction Blocking Costs
	GasPrice Development under Congestion
	Estimated Cost Comparison

	Conclusion and Future Work
	Future Work

	List of Figures
	List of Tables
	Acronyms
	Bibliography

