
Improving Enterprise IT Security
by Integrating Crowdsourced

Offensive Security

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering and Internet Computing

eingereicht von

Shpend Kurtishaj
Matrikelnummer 01428454

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Thomas Grechenig

Wien, 20. Mai 2021
Unterschrift Verfasser Unterschrift Betreuung

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at





Improving Enterprise IT Security
by Integrating Crowdsourced

Offensive Security

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering and Internet Computing

by

Shpend Kurtishaj
Registration Number 01428454

to the Faculty of Informatics

at the TU Wien

Advisor: Thomas Grechenig

Vienna, 20th May, 2021
Signature Author Signature Advisor

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at





Improving Enterprise IT Security
by Integrating Crowdsourced

Offensive Security

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering and Internet Computing

by

Shpend Kurtishaj
Registration Number 01428454

elaborated at the
Institute of Information Systems Engineering
Research Group for Industrial Software
to the Faculty of Informatics
at TU Wien

Advisor: Thomas Grechenig

Vienna, May 24, 2021

Technische Universität Wien, Forschungsgruppe INSO
A-1040 Wien ⇧ Wiedner Hauptstr. 76/2/2 ⇧ Tel. +43-1-587 21 97 ⇧ www.inso.tuwien.ac.at





Statement by Author

Shpend Kurtishaj
Hasenörlstrasse 67, 1100 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwendeten Quel-
len und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit – einschließlich
Tabellen, Karten und Abbildungen –, die anderen Werken oder dem Internet im Wortlaut oder dem
Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung kenntlich ge-
macht habe.

I hereby declare that I am the sole author of this thesis, that I have completely indicated all sources
and help used, and that all parts of this work – including tables, maps and figures – if taken from
other works or from the internet, whether copied literally or by sense, have been labelled including
a citation of the source.

(Place, Date) (Signature of Author)

i



Kurzfassung

In IT-Sicherheit gewann ein Crowdsourcing-Ansatz zur offensiven Sicherheit (auch als Bug Boun-
ty bekannt) in den letzten Jahren zunehmend an Beliebtheit. In diesem Ansatz lädt eine Organi-
sation externe Sicherheitsforscher ein, um Schwachstellen zu finden und diese zu melden. Im
Gegenzug bietet die Organisation eine Belohnung an, üblicherweise in Form von Bezahlung. Die-
ser Ansatz bietet einige Vorteile gegenüber anderen Sicherheitsmethoden. Erstens wird das Ziel
von einer großen Anzahl von Testern mit unterschiedlichen Fähigkeiten getestet, sodass die Wahr-
scheinlichkeit, Schwachstellen zu erkennen, erhöht wird. Zweitens ist das Kostenmodell attraktiv.
Da Belohnungen nur für gültige Schwachstellenberichte angeboten werden, stehen die Kosten in
dieser Sicherheitstestmethode eng mit den von ihr generierten Ergebnissen in Zusammenhang.

Trotz der Beliebtheit hat sich ein Crowdsourcing-Ansatz zur offensiven Sicherheit in Großun-
ternehmen nur langsam durchgesetzt. Dies ist auf den Mangel an Informationen und formalen
Richtlinien zum Erstellen und Verwalten eines Bug Bounty Programms zurückzuführen. Das Ziel
dieser Arbeit ist es diese Lücke zu schließen und einen praktischen Leitfaden für die Integration
und Ausführung von Crowdsourced-Sicherheitstest in Großunternehmen bereitzustellen. Für die
Integration eines Bug Bounty Programms werden zwei Alternativen vorgestellt: ein institutionel-
ler Ansatz, in dem eine Organisation beschließt ihr Bug Bounty Program selber zu verwalten, und
ein Ansatz in dem ein Bug Bounty Dienstleister mit der Verwaltung beauftragt wird. Für beide
Optionen bietet diese Arbeit detaillierte Anweisungen zum Starten, Betreiben und Verwalten ei-
nes Bug Bounty Programms. Dies umfasst Aspekte wie das Erstellen der Rules of Engagement,
das Zusammenstellen des Betriebsteams, das Definieren von Erfolgsmetriken, das Auswählen der
richtigen Ziele und das Verarbeiten von Schwachstellenberichten.

Um die Konzepte dieser Arbeit zu testen, wird eine Fallstudie für ein Großprojekt durchgeführt.
Experteninterviews werden als zusätzliche Methode zur Bewertung der Leistung dieser Konzepte
verwendet. Die Ergebnisse kommen zu dem Schluss, dass Bug Bounties eine wirksame Maß-
nahme zur Verbesserung der IT-Sicherheit in Großunternehmen darstellt. Die Ergebnisse zeigen
auch, dass Crowdsourced-Sicherheitstests nicht herkömmliche Offensive-Sicherheitstestmethoden
ersetzten. Stattdessen dienen diese als ergänzende Maßnahme und erhöhen bei gleichzeitiger Ver-
wendung die Wirksamkeit anderer offensiver Sicherheitsmethoden.

Schlüsselwörter

Großunternehmen, Offensive Sicherheit, Crowdsourced-Sicherheitstests, Bug Bounty

ii



Abstract

In IT security, a crowdsourced approach to offensive security has seen increasing popularity in
recent years. In this approach, an organization invites external security researchers to find and
report vulnerabilities to them. In return, the organization offers some type of reward, commonly
in monetary form. This approach provides some advantages compared to other offensive secu-
rity methods. First, the target is tested by a large number of testers with various skill sets. This
increases the exposure of the target and is likely to lead to more vulnerability findings. Second,
the return of investment is attractive. Because an organization only pays for valid vulnerability
reports, the cost of this offensive security testing methodology is closely connected to the results
it generates.

Despite its popularity, crowdsourced offensive security has seen slow adoption amongst enterprise
organizations. This is attributed to the lack of information and formal guidelines for creating and
managing a bug bounty program. This thesis aims to fill this void and provide a practical guide-
line for integrating and running crowdsourced offensive security in enterprise IT. Two alternatives
for integrating a bug bounty program in enterprise organizations are discussed: an institutional
approach where the bug bounty program is managed in-house, and utilization of a bug bounty
services provider. For both options, this work offers detailed instructions for launching, operating
and managing a bug bounty program. This includes aspects such as creating the rules of engage-
ment, assembling the operations team, defining success metrics, selecting the right targets and
processing vulnerability reports.

To test the concepts of this thesis, a case study for a major project is conducted. Expert inter-
views are used as an additional methodology to evaluate the performance of these concepts. The
results conclude that crowdsourced offensive security is an effective measure to improve IT secu-
rity in enterprise organizations. The results also show that crowdsourced offensive security does
not replace traditional offensive security methods. Instead, it serves as a complementary measure
and increases the effectiveness of other offensive security methods when used simultaneously.

Keywords

Enterprise IT, Offensive Security, Crowdsourced Security, Bug Bounty

iii



Contents

1 Introduction 1
1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Methodological Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Expected Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 IT Security Basics 4
2.1 Defining Information Security . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 The Need for IT Security . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 The Confidentiality, Integrity and Availability (CIA) Model . . . . . . . 6
2.1.3 Vulnerabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.4 Threats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.5 Risks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.6 Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 An Offensive Approach to Security . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Offensive Security Testing Techniques . . . . . . . . . . . . . . . . . . . 13
2.2.2 Identifying Vulnerabilities via Penetration Testing . . . . . . . . . . . . 14
2.2.3 Emulating Real World Attacks via Red Teaming . . . . . . . . . . . . . 16
2.2.4 Comparison and Discussion of Offensive Security Testing Techniques . . 17

3 Introduction and Discussion of Standards and Concepts for IT Security Policies 19
3.1 Designing a Defense Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 IT Security Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.2 IT Security Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.3 Creating a Cybersecurity Program . . . . . . . . . . . . . . . . . . . . . 23

3.2 IT Security Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 ISO 27001 & 29147 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.1 ISO 27001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.2 ISO 29147 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 NIST 800-53 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 TIBER-EU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.6 Austrian Information Security Manual . . . . . . . . . . . . . . . . . . . . . . . 32
3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Bug Bounties: The Crowdsourced Offensive Security Approach 36
4.1 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.1.2 Types and Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1.3 Running a Bug Bounty Program . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.1 Quantitative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.2 Qualitative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.3 Vulnerability Types and Severity . . . . . . . . . . . . . . . . . . . . . . 43
4.2.4 Reporting and Documentation . . . . . . . . . . . . . . . . . . . . . . . 44

iv



4.3 Commercial Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4 Current State of Adoption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.5 Comparison Against Other Methods of Security Testing . . . . . . . . . . . . . . 48
4.6 Complementing Established Offensive Security Techniques With Bug Bounties . 50

5 Integration of Crowdsourced Offensive Security Into Enterprise IT 51
5.1 Towards an Institutional Bug Bounty Program . . . . . . . . . . . . . . . . . . . 51

5.1.1 Creating the Rules of Engagement . . . . . . . . . . . . . . . . . . . . . 52
5.1.2 Assembling the Operations Team . . . . . . . . . . . . . . . . . . . . . 63
5.1.3 Specifying Stakeholders and Accountability . . . . . . . . . . . . . . . . 64
5.1.4 Rules of Engagement Example . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 Using a Bug Bounty Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6 Improving Enterprise IT Security With Crowdsourced Offensive Security 71
6.1 Defining Success Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2 Selecting and Preparing Targets for Testing . . . . . . . . . . . . . . . . . . . . 74

6.2.1 Selecting the Appropriate Targets for Crowdsourced Testing . . . . . . . 75
6.2.2 Preparing the Target for Testing . . . . . . . . . . . . . . . . . . . . . . 76
6.2.3 Maintaining the Target Being Tested . . . . . . . . . . . . . . . . . . . . 77

6.3 Launching the Bug Bounty Program . . . . . . . . . . . . . . . . . . . . . . . . 77
6.4 Processing Vulnerability Reports . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.4.1 Triaging Vulnerability Reports . . . . . . . . . . . . . . . . . . . . . . . 79
6.4.2 Issuing Rewards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.4.3 Communication With the Vulnerability Finder . . . . . . . . . . . . . . . 84

6.5 Risk Mitigation Through Crowdsourced Offensive Security . . . . . . . . . . . . 85
6.5.1 Low Latency Vulnerability Detection . . . . . . . . . . . . . . . . . . . 86
6.5.2 Faster Vulnerability Remediation . . . . . . . . . . . . . . . . . . . . . 86
6.5.3 Retesting Fixed Vulnerabilities . . . . . . . . . . . . . . . . . . . . . . . 87

7 Enterprise IT Crowdsourced Security in Practice: A Case Study 88
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.2 Creating a Bug Bounty Program for an Enterprise Organization . . . . . . . . . . 88

7.2.1 Selecting the Integration Approach . . . . . . . . . . . . . . . . . . . . 89
7.2.2 Creating the Rules of Engagement . . . . . . . . . . . . . . . . . . . . . 89
7.2.3 Creating the Internal Process and Appointing Stakeholders . . . . . . . . 91
7.2.4 Launching the Bug Bounty Program . . . . . . . . . . . . . . . . . . . . 92
7.2.5 Operating the Bug Bounty Program . . . . . . . . . . . . . . . . . . . . 92

7.3 Expert Interviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.3.1 Interview Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.3.2 Interview Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8 Conclusion and Further Work 97

Bibliography 99
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Online References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

A Appendix 105
A.1 Expert Interviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

v



List of Figures

2.1 The relationship between confidentiality, integrity and availability [28] . . . . . . . . 6
2.2 Risk management system by NIST[42] . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Security documentation pyramid[41] . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 IT Security policy lifecycle[57] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 ISO 27001 risk management process according to Humphreys[67] . . . . . . . . . . 25
3.4 ISO 29147 Process Summary[65] . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5 NIST 800-53 special publication risk management approach[42] . . . . . . . . . . . 29
3.6 TIBER-EU[54] test process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.7 Austrian Information Security Manual ISMS process[55] . . . . . . . . . . . . . . . 33

4.1 Vulnerability report flow as defined for this thesis. . . . . . . . . . . . . . . . . . . . 40
4.2 Noise in public and private programs[15] . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Trend of programs launched on HackerOne[69] . . . . . . . . . . . . . . . . . . . . 47

5.1 F-Secure Hall of Fame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.1 Target selection process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.2 CVSS Base Score Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3 CVSS Base Score XSS Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.4 Bugcrowd Vulnerability Rating Taxonomy SQL Injection Severity . . . . . . . . . . 83

vi



List of Tables

2.1 Comparison of penetration testing and red teams[4] . . . . . . . . . . . . . . . . . . 18

3.1 ISO 27001 security control families[49] . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 NIST security controls and identifiers[42] . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Comparison of offensive security methods . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 Comparison of vulnerability types on Bugcrowd and HackerOne . . . . . . . . . . . 43
4.2 Comparison of bug bounty platforms . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3 Comparison of bug bounty against other methods of security testing . . . . . . . . . 49

5.1 Examples of in-scope targets for a vulnerability disclosure policy . . . . . . . . . . . 56
5.2 List of common non-qualifying vulnerability types by Bugcrowd1 . . . . . . . . . . 58

6.1 Bugcrowd Suggested Reward Ranges . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.1 Success Metrics of Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

vii



List of Abbreviations

A-SIT Austrian Center for Secure Information Technology

APTs Advanced Persistent Threats

BBP Bug Bounty Program

CIA Confidentiality, Integrity and Availability

CISO Chief Information Security Officer

CMM Capability Maturity Model

CVSS Common Vulnerability Scoring System

DDOS Distributed Denial of Service

ENISA European Union Agency for Cybersecurity

GDPR European General Data Protection Regulation

HTTPS Secure HTTP communication

ISMS Information Security Management System

ISO International Organization for Standardization

KPM Key Performance Measures

NIST National Institute of Standards and Technology

OWASP Open Web Application Security Project

PDCA Plan-Do-Check-Act

PGP Pretty Good Privacy

TCT TIBER Cyber Team

TIBER-EU European Framework for Threat Intelligence-based Ethical Red Teaming

TTI Targeted Threat Intelligence

VRP Vulnerability Reward Program

viii



1 Introduction

More than ever, today’s society relies on technology in order to function properly. Individuals,
small businesses and enterprise organizations all use computer systems to complete daily activ-
ities. Sensitive information like social security numbers, credit card information and medical
records are stored and accessible online. If the internet was a place to find and share static in-
formation in the past, nowadays it is the main driver of commerce and plays an important role in
diplomatic relations[1].

The rise of its popularity and opportunity to generate income, inevitably also attracted crimi-
nals. The ability to remotely and anonymously access data made the internet an attractive target
for financial crimes. As shown in the 2019 data breach investigations report[2], 71% of attacks
were financially motivated. Other motivations such as espionage resulted in large investments for
finding ways to hack into systems.

Since the introduction of computer systems and the internet, software has been plagued by vul-
nerabilities1. These vulnerabilities often have been exploited for financial gain, breaching con-
fidentiality, integrity and availability of production systems. In order to protect themselves from
attacks, companies have adopted security programs to find and patch their vulnerabilities.

1.1 Problem Statement

A fundamental part of every security program is an offensive security approach, where assets are
tested for vulnerability identification, according to Proctor and Byrnes[3]. Kim[4] argues that in
this approach, penetration testing and red-team exercises are used to identify weaknesses in target
systems and perform simulations of real world attacks. Although these methods have proven to
be successful, they lack the ability to scale with rising demand, partly due to limited professional
force2. Bug bounties attempt to fix this gap, by offering a crowdsourced model for security assess-
ments. By opening the target under test to numerous testers at a time and incentivising security
research via cash rewards, companies can benefit from techniques and skillsets of a large crowd of
testers with different backgrounds. Whereas penetration testing and red-team exercises show the
security posture of an organization at a single point in time, bug bounties often run for a long (pos-
sibly infinite) time and as such, offer continuous security testing at the benefit of a pay-for-results
model. The concept of crowdsourced security is not new, with a first appearance by Netscape in
1995 and formalized by Mozilla in 2004, as explained by Munaiha and Meneely[5]. Increases in
rewards and emergence of bug bounty platforms have resulted in popularity of this concept among
hackers and companies wanting to improve their security posture3.

According to Maillart et al.[6], implementing a successful bug bounty program has proven to

1 We analysed 18 years of software vulnerabilities: Here’s what we found, https://techmonitor.ai/cybersecurity/
software-vulnerabilities-cves-analysed, last visited on 05/24/2021

2 The Cybersecurity Workforce Gap, https://www.csis.org/analysis/cybersecurity-workforce-gap, last visited on
05/24/2021

3 Bug Bounty Programs are Growing Up Fast and Paying More, https://www.darkreading.com/vulnerabilities—
threats/bug-bounty-programs-are-growing-up-fast-and-paying-more/d/d-id/1328428, last visited on 05/24/2021

1



Chapter 1. Introduction

seriously increase the number of vulnerabilities found as well as their severity, however it comes
with its own challenges. Due to the nature of bug bounties, which is inviting amateurs as well as
professionals to perform analysis upon the target systems, ambivalent quality of reports is an issue
that must be considered in interpreting the metric of quantity. Although a recent mapping study on
bug bounty research by Magazinius et al.[7] reveals that 41 out of 72 papers focus on the organizer
of a bug bounty, Al-Banna et al.[8] show that a set of pre-adoption fears and post-adoption issues
have prevented some organizations from using crowdsourced security. This is especially true for
enterprise organizations, as shown by HackerOne’s yearly report in 2019[9], which states that de-
spite the benefits of crowdsourced vulnerability discovery, 93% of Forbes Global 2000 companies
do not have a known vulnerability disclosure policy. A possible cause for the slow adoption of
crowdsourced security by enterprise organizations could be the to lack of policies and integration
concepts for this new offensive security measure.

1.2 Motivation

While bug bounties have been raising in popularity within the IT Security industry in recent years4,
they have not gotten the same attention from the research field, as concluded by both Fryer et
al.[10] and Magazinius et al.[7]. In their literature reviews, they show the current state of the art
of this field from a scientific perspective.

In the current state of the art, empirical analysis of bug bounty programs is the most prevalent
methodology used. For example, Ruohonen et al.[11] analyzed vulnerabilities reported through
the Open Bug Bounty platform between 2015 and 2017. Zhao et al.[12] collected publicly avail-
able data from HackerOne and Wooyun, and included other platforms such as Bugcrowd and
Cobalt in a later study [13]. Other publications show different aspects of running a bug bounty,
such as practices and issues of running a bug bounty program by Malladi et al.[14], and challenges
of running a bug bounty program at scale by Zhao et al.[15]. The perspective of the security testers
is also covered by Luna et al.[16], who investigate patterns of activity and compare productivity
of security researchers in the bug bounty programs.

As mentioned in the problem statement of this thesis, adoption by enterprise organizations is still
limited. This is also noted by Zhao et al.[15] who demonstrate that missing regulations by policies
hinder a wider approach of bug bounties, and that more research efforts are needed in constructing
such policies for vulnerability research. Therefore, this thesis is going to discuss an approach for
integrating a bug bounty program into enterprise organization’s offensive security efforts.

1.3 Methodological Approach

Initially, scientific literature will be used to define the foundations of IT Security, the threats of
today’s digital world, and why IT Security is needed. The offensive security aspects of an orga-
nization’s security program are covered next, showing the different methods that can be applied
to test resilience against cyberattacks. Going further, the concept of bug bounties will be covered
from a research point of view. Using scientific literature research, the basic principles of how bug
bounties work, why they are a promising approach to offensive security, and how organizations
can profit from them will be analyzed.

4 Bug Bounty Programs are Growing Up Fast and Paying More, https://www.darkreading.com/vulnerabilities—
threats/bug-bounty-programs-are-growing-up-fast-and-paying-more/d/d-id/1328428, last visited on 05/24/2021

Bug Bounties in Enterprise IT Security 2 / 106



Chapter 1. Introduction

Building upon the knowledge of this theoretical study, this work will research an approach for
integrating crowdsourced offensive security into enterprise IT. Development of an effective vul-
nerability disclosure policy will be researched, and an analysis of the different offerings of bug
bounties platforms with regards to integration possibilities will be provided. Additionally, through
analysis of different aspects required to run a bug bounty program, improving enterprise IT Se-
curity with crowdsourced offensive security will be researched. A comparison of bug bounties
against other offensive security measures will be performed and argued whether and if, how bug
bounties complement established offensive security techniques.

Finally, expert interviews will be conducted to determine the effectiveness of the proposed ap-
proach in enterprise environments. A predefined questionnaire will be used, and asked during
conference calls where possible. The selection of IT Security experts will be focused on individu-
als with experience in managing bug bounty programs in enterprise organizations.

1.4 Expected Results

This thesis is expected to provide an approach for integrating bug bounty programs into enter-
prise IT Security. According to A. Kuehn and M. Mueller [17], case studies and reports from bug
bounty platforms show promising results of using crowdsourced security to increase the number
of vulnerability reports against the available attack surface. To evaluate effectiveness, an analysis
of certain metrics like completeness, number of findings and severity will be provided.

To comprehend how to incorporate this emerging offensive testing method in an efficient man-
ner, an analysis of possible methods to integrate bug bounties into enterprise IT Security policies
is shown. It is expected that enterprise organizations will have trade-offs in using a bug bounty
platform versus managing a bug bounty program in-house.

Finally, this thesis will show that enterprise organizations can successfully use crowdsourced of-
fensive security to complement other offensive security efforts, and as such, improve their security
posture.

The objective of this thesis is to answer the following research questions:

• How can enterprise organizations integrate a bug bounty program as an offensive security
measure?

• Is crowdsourced offensive security an effective measure to improve the security posture of
an enterprise organization?

• Can bug bounties complement penetration tests?

Bug Bounties in Enterprise IT Security 3 / 106



2 IT Security Basics

The term „IT Security“ represents a broad field associated with many aspects of protecting com-
puter systems against threats. Computer systems are nowadays a part of daily life, with infor-
mation being stored and constantly flowing through the internet. This brings a heap of security
risks to light, which according to Easttom[1] may be leveraged for various reasons such as finan-
cial gain, political motives etc. In order to discuss the problem field of IT Security in a scientific
manner, it is necessary to agree upon a formal definition of this problem space first.

2.1 Defining Information Security

Because it is such a broad term, defining IT Security is not an easy task. Many fields have their own
view on what security means for their IT systems, which leads to a number of different definitions.
According to the National Institute of Standards and Technology (NIST) 1, the term „IT Security“
is defined as:

„the protection of information and information systems from unauthorized access,
use, disclosure, disruption, modification, or destruction in order to provide confiden-
tiality, integrity, and availability“.

Another definition considered in this thesis is given by Anderson[18] who defines information
security as:

„A well-informed sense of assurance that information risks and controls are in bal-
ance.“

Bosworth et al.[19] defines IT Security as:

„the state of being free from danger and not exposed from accidents or attack “.

Further definitions by Bishop[20] and Mellado et al.[21] either use confidentiality, integrity and
availability as elements to define information security, or expand on them to become more com-
prehensive.

For the purpose of this thesis, the given definition by NIST1 will be used and extended to in-
clude authenticity and nonrepudiation. Each of the individual elements (confidentiality, integrity,
availability, authenticity, nonrepudiation) will be discussed in more detail in section 2.1.2.

Since these elements only describe the security goals of an organization, a definition of poten-
tial threats against these goals is required and provided in section 2.1.4. The probability that such
a threat occurs, and the potential damage it may cause, represent the actual risks that IT Security
faces. A detailed definition of risks is given in section 2.1.5.

1 NIST glossary, https://csrc.nist.gov/glossary/term/information_security, last visited on 05/24/2021

4



Chapter 2. IT Security Basics

2.1.1 The Need for IT Security

As explained by Easttom[1], today the internet is not only used for video and social media, but it
represents the foundation of economic and political relations, and is used for critical systems such
as power distribution, health care, law enforcement, and national defense2. Many business trans-
actions are performed online and a great deal of personal information is stored in various devices
connected to the internet. The technology research firm Gartner reports 14.1 billion connected
devices in 2019, and that this number will reach 25 billion by 20213. Even industrial automation
systems such as power generation, gas and water supply, and transportation have been pressured to
connect to the internet in an attempt to make fast and cost effective decisions, according to Dzung
et al.[22]. All of these devices run code written by people and are prone to errors. Some of these
errors can be leveraged to make systems do actions they are not supposed to do, such as transfer
funds to a malicious account or redirect mail. These errors are called vulnerabilities and will be
defined in section 2.1.3.

The motivation for a malicious actor to attack these systems is best described by looking at data
breaches. According to Privacy Rights Clearinghouse4, there have been more than 4500 breaches
made public since 2005, and the personal information of more than 816 million individuals have
been exposed. Widup et al.[23] reports over 2100 breaches in 2015 alone, with the top three af-
fected industries being public, information and financial services. Some examples of recent data
breaches worth taking a note as given by Symantec5 are:

• Yahoo, 2013: 3 billion user accounts

• Equifax, 2017: 145.5 million accounts

• Anthem, 2015: 78.8 million customers

• U.S. Office of Personnel Management, 2015: 21.5 million current, former, and prospective
federal employees’ personal information

• Friend Finder Networks, 2016: 412 million accounts, including email addresses and pass-
words

Data breaches not only have a negative effect on a company’s stock as per Rosati et al.[24], but they
also cost a lot of money. Cybersecurity ventures6 predict that cybercrime will reach a cost of $6
trillion annually by 2021. In the yearly „Cost of a Data Breach“ report by Ponemon Institute[25],
it is shown that the average cost for a data breach in 2019 was $3.92 million. They also show that
companies which participated in the study, estimate the probability of experiencing a data breach
in the next two years at 29.6%. Due to this, the IT Security marked has experienced tremendous
growth and is expected to reach 248.26 billion U.S. dollars by 2023, according to Statista7. Ad-
ditionally, many countries have created legislation around data breaches. The European Union

2 Internet Infrastructure, https://www.gao.gov/products/GAO-06-672, last visited on 05/24/2021
3 Gartner Identifies Top 10 Strategic IoT Technologies and Trends, https://www.gartner.com/en/newsroom/

press-releases/2018-11-07-gartner-identifies-top-10-strategic-iot-technologies-and-trends, last visited on
05/24/2021

4 Data Breaches | Privacy Rights Clearinghouse, https://privacyrights.org/data-breaches, last visited on 05/24/2021
5 A Brief History of Data Breaches, https://www.lifelock.com/learn-data-breaches-history-of-data-breaches.html, last

visited on 05/24/2021
6 Cybercrime Damages $6 Trillion By 2021, https://cybersecurityventures.com/

hackerpocalypse-cybercrime-report-2016, last visited on 05/24/2021
7 Size of the cybersecurity market worldwide, from 2017 to 2023, https://www.statista.com/statistics/595182/worldwide

-security-as-a-service-market-size, last visited on 05/24/2021

Bug Bounties in Enterprise IT Security 5 / 106



Chapter 2. IT Security Basics

passed the general data protection regulation8 in 2016, which requires companies to notify the re-
spective authority within 72 hours after detecting a breach. Although the US does not have federal
legislation for data breaches, such regulation is being proposed and worked on9. Meanwhile, each
of the 50 member states already have implemented their own versions of it. A comparison of these
legislations is given by Hayes[26]. As is evident, while there are many benefits from the internet,
it comes at a cost.

2.1.2 The Confidentiality, Integrity and Availability (CIA) Model

In section 2.1.1 it is shown that many definitions for IT Security use the elements of confidential-
ity, integrity and availability. These are often referred to as the CIA model (or triad), taking the
first letter of each element. Together they embody the fundamental security objectives for data,
information and computer services according to Stallings and Brown[27]. Figure 2.1 shows these
elements and the relationship between them. As can be seen, IT Security must address all three
goals to ensure protection of systems. Depending on security requirements, there can be situations
where only one or a combination of two will suffice.

Figure 2.1: The relationship between confidentiality, integrity and availability [28]

Confidentiality Confidentiality is a concept which refers to the protection of data from unau-
thorized access. Bishop[20] describes it as the concealment of information or resources, and the
need to keeping it secret. For example, bank account information about balance should be kept
secret from anyone but the account owner, to prevent criminals from going after the person. An-
other example of the requirement for confidentiality is the protection of patient medical records in
healthcare systems.

Bishop[20] also notes that access control mechanisms are used to support confidentiality, one of

8 REGULATION (EU) 2016/679 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL, https://eur-
lex.europa.eu/eli/reg/2016/679/oj, last visited on 05/24/2021

9 Latest draft of U.S. federal privacy bill sidesteps key sticking points, https://www.reuters.com/article/us-usa-
congress-privacy/latest-draft-of-u-s-federal-privacy-bill-sidesteps-key-sticking-points-idUSKBN1YM2NF, last vis-
ited on 05/24/2021

Bug Bounties in Enterprise IT Security 6 / 106



Chapter 2. IT Security Basics

which is cryptography. As Schneier[29] explains, cryptography is the science of keeping messages
secure by encryption and decryption. Encryption is a process wherein a mathematical function is
used upon the data to scramble and make it inaccessible without the key. The key (or password)
can be used to „unscramble“ the data back into meaningful information using another mathemati-
cal function in the decryption process [29].

According to Andress[30], confidentiality can be compromised in many ways. A person look-
ing over the shoulder while a password is being typed in, an e-mail attachment sent to the wrong
person, or a malicious actor penetrating the systems of a target organization and obtaining data.
Any case where access control mechanisms fail to protect the data from unauthorized use is con-
sidered a loss of the element of confidentiality.

Integrity Stallings and Brown[27] define integrity as guarding information against unautho-
rized modification or destruction. They further divide integrity into two subcategories: data in-
tegrity and system integrity. Data integrity assures that information is changed only by authorized
personnel and within specific rules. System integrity ensures that a system is able to perform its
intended functionality but cannot be manipulated to do something else[27]. Continuing with the
bank account example, the services provider must ensure the integrity property in addition to con-
fidentiality. Only authorized users, such as the bank account owner or authorized family members,
should be able to modify the balance. Additionally, the balance should only be modifiable under
specific rules, such as withdrawal through ATM machines or transfers via e-banking. Failure to
ensure integrity could result in financial loss for either the bank itself or its clients.

According to Bosworth et al.[19], several controls can be applied to ensure integrity. Such con-
trols can include checksums and hash totals for completeness of information, automatic checks
and testing for violations of specific controls. Furthermore, Andress[30] explains that a good ex-
ample of meachanisms that ensure integrity are file systems. Such systems implement permissions
that control access of files, authorization of users, and commonly allow to undo changes that are
undesirable[30].

Availability Pfleeger[28] defines availability as the ability to access assets at appropriate times.
In other words, at any point in time, the system must be available and provide the necessary ser-
vices. This applies to systems providing services as well as data whose access is required at a
certain point in time. Threats to availability are commonly referred to as denial of service attacks,
and will be defined in detail in section 2.1.4.

The recent rise of malicious software known as „Ransomware“ is an example of attacks against
availability, as shown by Kolodenker et al.[31]. The attacks carried out by ransomware encrypt all
of the victim’s files using a key (or password) which is only known to the attacker. The attacker
then contacts the victim and extorts money in exchange for decrypting the files. Until the money
is delivered, the victim files are essentially held ransom by the attacker, hence the name „Ran-
somware“. The antivirus manufacturer Kaspersky provides detailed research into WannaCry10, a
ransomware attack that infected 230,000 computers globally in May 2017. Among the affected
computers were thousands of NHS hospitals and surgeries across the United Kingdom, with an
estimated cost of damage of £92 million. 150 different countries were affected by WannaCry,
resulting in a total cost of damage estimated at $4 billion in losses across the globe. It is not
uncommon for organizations to pay the ransom, as the cost of recovering from an attack is of-

10 What is WannaCry ransomware?, https://www.kaspersky.com/resource-center/threats/ransomware-wannacry, last
visited on 05/24/2021

Bug Bounties in Enterprise IT Security 7 / 106



Chapter 2. IT Security Basics

ten exponentially higher than the requested ransom11. For example, the city of Riviera Beach in
Florida agreed to pay $600,000 to hackers who took over their systems12. In another case, Indiana
county paid $130,000 to regain access to their computers infected with ransomware.13

Authenticity As explained by Bosworth et al.[19], the integrity element of the CIA model
only ensures that information is whole or complete, and has not been tampered with. However, it
does not prove the validity or correctness of information. Therefore, the CIA model is extended to
include authenticity. Authenticity is an element that ensures the information is what it is expected
to be, and comes from a trusted source.

As an example, consider a message sent from bob to alice. While integrity ensures the mes-
sage was not modified in transit, authenticity provides assurance that the message was indeed sent
from bob, and not a malicious attacker pretending to be bob. As shown by Aumasson[32], the
most common form of ensuring authenticity is by using digital signatures. In a digital signature,
the sender (bob) signs the message using a key or password which is private and known only to
the sender. The receiver (alice) can then verify the message did in fact come from bob, because it
is signed using bob’s key and bob is the only person that has access to it.

Nonrepudiation Nonrepudiation is closely related to authenticity. As explained by Andress[30],
nonrepudiation is the existence of sufficient evidence such as an individual cannot deny a state-
ment or action performed by them. Continuing with the previous example, whereas authenticity
provides the assurance that bob is the rightful sender of the message, nonrepudiation ensures that
bob cannot deny the message is from him. According to Aumasson[32], digital signatures can be
used for nonrepudiation as well as authenticity. A verified signature can be used to demonstrate
that a message was signed by a particular (private) key, and therefore, it can be attributed to the
holder of that key.

2.1.3 Vulnerabilities

According to Bishop [20], in computer science the term „Vulnerability“ is defined as lapses in
procedures, technology or management, allowing unauthorized access or actions to be performed
by a malicious actor. A vulnerability is sometimes also called a „security flaw“.

There are many causes for vulnerabilities to occur, and providing a standard way to categorize
them has proven difficult, as shown by Tripathi and Singh[33]. For example, the National Vulner-
ability Database14 maintains a list of vulnerability categories that currently has 126 entries. The
MITRE corporation15 provides a classification by software development, hardware design, and
research concepts with future sub-categories. They also maintain the common vulnerabilities and
exposures list16, which is essentially a list of all publicly known vulnerabilities that have at least
one reference available.

11 2018-2020 Ransomware statistics and facts, https://www.comparitech.com/antivirus/ransomware-statistics, last vis-
ited on 05/24/2021

12 Florida city pays $600,000 to hackers who seized its computer system, https://www.cbsnews.com/news/riviera-
beach-florida-ransomware-attack-city-council-pays-600000-to-hackers-who-seized-its-computer-system, last vis-
ited on 05/24/2021

13 Indiana county meets $130,000 ransomware demand, despite advice against payment,
https://www.cyberscoop.com/indiana-ransomware-la-porte-county, last visited on 05/24/2021

14 NVD CWE Slice, https://nvd.nist.gov/vuln/categories, last visited on 05/24/2021
15 Common Weakness Enumeration, http://cwe.mitre.org, last visited on 05/24/2021
16 Common Vulnerabilities and Exposures, http://cve.mitre.org, last visited on 05/24/2021

Bug Bounties in Enterprise IT Security 8 / 106



Chapter 2. IT Security Basics

One of the most prevalent sources of vulnerabilities arise from programming errors, according
to Kuhn et al.[34]. In their analysis of vulnerability trends from 2008-2016, they classify vul-
nerabilities in 3 categories: configuration, design, and implementation errors. They show that
implementation errors (essentially programming errors) account for 72.9% of the vulnerabilities.
They also note that, depending on the programming language used, two types of vulnerabilities
account for more than a third of implementation errors. Those are basic input validation errors and
buffer errors. This shows that typically, vulnerabilities arise during software development and that
one good reason to keep software up to date, is to receive the latest fixes for publicly disclosed
vulnerabilities.

Due to the different types of vulnerabilities that exist, and what an attacker can achieve with
them, there are a couple of means to rate the severity of a vulnerability. The Common Vulnera-
bility Scoring System (CVSS)17 represents a published standard for rating vulnerabilities, which
takes factors such as the attack vector, the privileges required to perform the attack, the impact
on confidentiality, integrity and availability etc. into account. It is the most common form of
determining the severity of a vulnerability. Alternative systems such as Bugcrowd’s Vulnerability
Rating Taxonomy18 use a scoring system of „Critical“ to „Informational“. In all cases, the purpose
is to identify the impact a vulnerability can have, and make decisions based on that. For example,
an organization can decide to prioritize fixing critical vulnerabilities over low impact ones.

To take advantage of a vulnerability, an attacker usually uses an „exploit“. As Stallings and
Brown[27] explain, in most cases an exploit simply represents code written specifically for a
vulnerability or set of vulnerabilities, which makes use of the vulnerability to perform some unau-
thorized actions benefiting the attacker. However, an exploit can also be a physical attack or
sequence of commands executed to leverage the vulnerability, as shown Bosworth et al.[19]. They
use the broad term „Tool“ to define the wide variety of methods available to exploit vulnerabilities
in computer systems. Many exploits are published online in form of scripts, and made available
to the public through databases and websites like Exploit DB19. As Maurushat[35] explains, there
has been much debate about whether public disclosure of vulnerabilities helps improve the secu-
rity of software. Maurushat argues that the movement towards disclosure of vulnerabilities is a
response against the insecurity of software and hardware, with the hope that it will provide incen-
tive for faster patching. Hence the existence of such online resources like Exploit DB. Still the
issue of disclosing vulnerabilities and ready-to-use exploits is a constant discussion topic within
the computer security industry, with pros and cons for either side.

2.1.4 Threats

In computer security, a threat is defined by Bishop[20] as a potential violation of security. This
violation does not need to occur, the mere probability that it may occur makes it a threat. An
actioned threat becomes an attack, which will be further defined in section 2.1.6. Threats are also
important when risk assessments are performed, which will be covered in section 2.1.5.

There can be many different threats that must be considered as part of a security program of
an organization. The EU agency for cybersecurity (ENISA)20 provides a yearly report listing top
threats. In their latest report [36], they found 15 top threats based on analysis of cyberthreat re-

17 Common Vulnerability Scoring System, https://www.first.org/cvss, last visited on 05/24/2021
18 Bugcrowd’s Vulnerability Rating Taxonomy, https://bugcrowd.com/vulnerability-rating-taxonomy, last visited on

05/24/2021
19 Exploit Database, https://exploit-db.com, last visited on 05/24/2021
20 European Union Agency for Cybersecurity, https://www.enisa.europa.eu, last visited on 05/24/2021

Bug Bounties in Enterprise IT Security 9 / 106



Chapter 2. IT Security Basics

lated information found publicly. Threats that are relevant to crowdsourced offensive security are
covered in the paragraphs below.

Malware is one of the most significant categories of threats in computer security, according to
Stallings and Brown[27]. They define malware as a covertly inserted program with the intent to
compromise confidentiality, integrity or availability of data. Another definition of malware is given
by Bosworth et al.[19], who define malware simply as programs or files that are harmful to the end
user. They note that the term „malware“ is used to refer to the entire category of software coded
with malicious intent. An example of malware was covered in section 2.1.2 where ransomware is
discussed. Unlike exploits, malware are inherently malicious and designed for activities such as
damaging devices, demanding ransom or stealing sensitive data21. On the other hand, an exploit
can be used to deliver malware, but the exploit code is not the malware itself. Although malware
and exploits are used in combination, they represent two different threats which require individual
defenses.

Web application attacks have been the top published vulnerabilities in the past years, and some of
the most dangerous threats according to Mitropoulos[37]. These attacks involve improper valida-
tion of untrusted input, security misconfigurations, broken authentication and session management
etc. The open web application security project (OWASP)22 provides a list of top 10 vulnerabilities,
and in the last three Top Ten lists (2007, 2010, 2013), injection attacks have dominated the top five
positions. This matches the results of Kuhn et al.[34] that show injection attacks accounting for
72.9% of vulnerabilities discovered.

Web based attacks are considered those attacks which make use of web systems and services
as the main surface for compromising a victim, according to ENISA[36]. These are different from
web application attacks, which attack the web application itself. Web based attacks are considered
one of the most important threats due to the wide usage of the web23, which offers a big attack
surface and pool of victims. Any user that surfs the world wide web is a potential victim, and can
be exposed to web based attacks by simply visiting a malicious web page.

Phishing is the activity of sending malicious emails and can be used in two ways according to
Diogenes and Ozkaya[38]: as part of information gathering, or as an active form of attack. While
used in information gathering, phishing emails typically attempt to extract valuable information
from the victim. When phishing is the actual attack itself, the emails usually contain attachments
with malware inside them, or link to websites that contain malware. In both scenarios, emails
are disguised as coming from a trusted source. The famous Sony hack24 was accomplished using
phishing, where attackers sent fake Apple ID verification emails to key executives of the company,
and intercepted their passwords. Using those intercepted credentials, the attackers were able to
gain access to Sony’s internal data which, among other things, included information of movies
which were in the works25.

21 Malware vs. Exploits, https://www.paloaltonetworks.com/cyberpedia/malware-vs-exploits, last visited on
05/24/2021

22 OWASP Top Ten, https://owasp.org/www-project-top-ten, last visited on 05/24/2021
23 Internet usage worldwide - Statistics & Facts, https://www.statista.com/topics/1145/internet-usage-worldwide, last

visited on 05/24/2021
24 Sony Hackers Used Phishing Emails to Breach Company Networks, https://www.tripwire.com/state-

of-security/latest-security-news/sony-hackers-used-phishing-emails-to-breach-company-networks, last visited on
05/24/2021

25 ‘Doctor Who’ Set to Become Film, Reveals WikiLeaks Trove of Hacked Sony Emails,
https://www.tripwire.com/state-of-security/latest-security-news/doctor-who-set-to-become-film-reveals-wikileaks-
trove-of-hacked-sony-emails, last visited on 05/24/2021

Bug Bounties in Enterprise IT Security 10 / 106



Chapter 2. IT Security Basics

Denial of service is a threat specifically aimed at violating the availability of a system, as ex-
plained by Abliz[39]. A common technique to perform a denial of service attack is making more
requests than the system can handle at a single time, therefore delaying other (legitimate) requests.
ENISA[36] ranks denial of service 5th in their list of top threats, and note that these threats are
still on the rise. This is further confirmed by looking at the two largest denial of service attacks26

ever registered, both of which happened as recent as 2018 and only 5 days apart each other.

A variant of denial of service is called „distributed denial of service (DDOS)“. As Easttom[1]
explains, this attack is launched from many different machines at once, hence the „distributed“
in the name. These machines can be any device connected to the internet, and which has been
infected with malicious software that gives the attacker control over it. According to Easstom[1],
this sort of denial of service attack is easy to do, and it can be hard to stop.

2.1.5 Risks

Risks are commonly discussed in combination with a risk assessment. Stallings and Brown[27]
define a risk to be the potential of loss, calculated from the likelihood of a threat being exploited,
and the harmful consequence that will result to the organization. As shown, risks are closely asso-
ciated with vulnerabilities and threats of them being exploited.

As Shedden et al.[40] explains, the first step to performing a successful risk assessment is the
systematic identification of assets in need of protection. An asset is considered any system that
is vital for the organization to perform its functions. This can be hardware as well as software,
documentation and even people. Once these assets have been identified, the next step in the pro-
cess is to identify the risks towards which these assets are exposed. According to Stallings and
Brown[27], a risk is calculated as follows:

Risk = (Probability that threat occurs) * (Cost to organization)

By calculating the risk for each threat, an organization can make smart decisions and maximize
benefit from resources invested in security. Each of the risks are then combined into an overall
risk rating for the organization.

2.1.6 Attacks

An attack is defined as a series of steps taken by an attacker to achieve unauthorized access, as
shown by Pfleeger and Pfleeger[28]. It is essentially the realization of a risk as defined in the
previous section, where a malicious attacker finds a vulnerability and exploits it for their benefit.
An attacker can be a human or another system, depending on the scenario.

The motivation behind an attack can be many fold. Bosworth et al.[19] categorize attacks based
on their objective into attacks with political motivation, financial gain, objective of giving dam-
age and the thrill/challenge of being able to successfully execute an attack. They also categorize
attackers into Hackers, Spies, Terrorists, Corporate raiders, Professional criminals, Vandals and
Voyeurs, based on the purpose of the attack. As shown by Verizon’s 2019 Data Breach Inves-
tigations Report[2], professional criminals with financial motivation are the top driver for cyber
attacks, followed by espionage, fun, and other motivations. It is not always easy to determine the

26 Famous DDoS Attacks, https://www.cloudflare.com/learning/ddos/famous-ddos-attacks, last visited on 05/24/2021

Bug Bounties in Enterprise IT Security 11 / 106



Chapter 2. IT Security Basics

motive behind an attack. Some attacks occur because the target is popular, such as the Sony breach
mentioned in section 2.1.4. Other attacks simply pick easy and random targets, usually vulnerable
against publicly known vulnerabilities.

As shown by Donaldson et al.[41], for an organization to protect themselves against attacks, an
effective cybersecurity program is required. The purpose of such a program is to protect the or-
ganization in a cost-effective manner, by balancing available resources with the potential threats
and attacks. An integral part of a cybersecurity program is the assessment of an organization’s
resilience against attacks, by using offensive security as a testing mechanisms. Using this, attacks
can be emulated without taking the risk of consequences from an actual attack.

2.2 An Offensive Approach to Security

As mentioned in the previous sections, an organization needs to have processes in place to pro-
tect against the various threats and risks they face. In their publication about security and privacy
controls for federal information systems and organizations, the National Institute of Standards and
Technology provides a risk management framework[42] which details one possible implementa-
tion of a cybersecurity program. Figure 2.2 shows this process and the individual steps. In the first

Figure 2.2: Risk management system by NIST[42]

step, the identified assets as described in section 2.1.5 are categorized based on importance. Step 2
and 3 select and apply protections, and step 4 is where these protections are tested using offensive
security mechanisms. In step 5, systems are authorized to operate based on risks and results of

Bug Bounties in Enterprise IT Security 12 / 106



Chapter 2. IT Security Basics

implemented security measures, and step 6 is an ongoing monitoring of the effectiveness of these
measures. In the next sections, we will dive into the details of using offensive security as a means
to increase the security level of an organization. As shown by Arce and McGraw[43], computer
security is becoming increasingly sophisticated, and understanding the nature of attacking tech-
niques is an important step towards building more secure systems. This increased complexity in
computer systems has pushed the boundaries of IT Security, therefore, a thorough analysis and
testing of systems has become part of every security design and implementation. Designers need
to understand the motivation and techniques behind attackers, in order to effectively build protec-
tions against them.[43]

2.2.1 Offensive Security Testing Techniques

According to Donaldson et al.[41], a cybersecurity program needs to be constantly assessed and
improved to provide assurance of its capabilities, and to keep up with emerging threats. Such
an assessment also helps in making business decisions by providing quantitative measurement.
Donaldson et al.[41] include three elements in a cybersecurity program assessment: risk mitiga-
tion, security capabilities, and security operations. Threat scenarios are then considered for each
of these elements, and analyzed from the attacker’s perspective using penetration testing and red
team exercises. Improvements in any of the mentioned elements will improve the entire IT Secu-
rity posture of an organization, according to Donaldson et al.[41].

In their risk management framework, NIST[42] includes step 4 to assess the security protections
implemented. This activity’s purpose is to provide assurance to an organization about their se-
curity functionality, and ability to deliver the required security capabilities. The strength of such
security capabilities is defined by the security evidence that can be derived from security policies,
documentation, threat scenarios and security testing. Security testing as a producer of security ev-
idence includes security assessments performed by the organization itself, vulnerability scanning,
penetration testing and red team exercises.

NIST provides a security control called „Penetration Testing“ as part of offensive security test-
ing[42], although in itself, this control includes penetration testing and red team exercises. The
purpose of this control is to mimic activities of attackers and provide a detailed analysis of security
deficiencies which must be improved.

As stated above, penetration testing and red team exercises are common techniques for offensive
security testing. Utilization of such offensive security techniques is often required to be compliant
with regulation such as PCI DSS[44], HIPAA and ISO 27001[45].

Penetration testing is a methodical and rigorous testing technique, according to Kim[4]. It is
used to scan networks and systems for vulnerabilities, take advantage by exploiting them and
document the process. According to Bosworth et al.[19], penetration tests commonly follow a
defined methodology and are limited in time and scope. The result of a penetration test is a well
documented report, which includes actionable results. Usually, such results include patching of
vulnerable systems and adding or improving additional defenses.

Oakley[46] argues that the most accurate description of a red team is adversary emulation.
Through such an emulation exercise, an organization is able to understand and improve its defense,
detection, and resilience capabilities against real threat actors. According to Kim[4], red-team ex-
ercises are not as methodical as penetration tests, and the techniques used depend on the objective
of the campaign. Kim[4] argues that a common objective of a red-team exercise is evaluating the

Bug Bounties in Enterprise IT Security 13 / 106



Chapter 2. IT Security Basics

detection capabilities of a target organization. The evaluated metrics are „Time To Detect“ and
„Time To Mitigate“, which represent the time from the initial occurrence of the attack, to the time
it is detected by tools or personnel and responded to. Other common objectives of red-teams in-
clude infiltration, infection, exfiltration, persistence etc. Depending on the objective, the duration
of the red-team exercise can be from weeks to months long, and no prior announcement to security
teams is given. According to Oakley[46], these characteristics give red-team exercises advantages
over other methods of security testing, because they are tailored to, and provide a unique assess-
ment of the organizations ability to withstand complex attacks.

In the following sections, we will dive into the details of these offensive security testing tech-
niques, understanding the approach and the exact steps taken to achieve the desired results.

2.2.2 Identifying Vulnerabilities via Penetration Testing

As has been established in the previous section, penetration tests are a methodical approach to vul-
nerability discovery. Weidman[47] explains that commonly, penetration testing includes a number
of stages performed by the tester:

1. Pre-engagement

2. Information gathering

3. Threat modeling

4. Vulnerability analysis

5. Exploitation

6. Post-exploitation

7. Reporting

However, the engagement may differ depending on the testing perspective, according to Bosworth
et al.[19]. For example, an external assessment will attempt to identify vulnerabilities originating
from the internet, whereas an internal assessment assumes the role of an attacker who has already
gained access to the internal network.

Oriyano[48] explains that, typically, a penetration test takes the form of a black-box, gray-box
or white-box approach. In a black-box approach, very limited to no information is provided to
the penetration tester. It is the most realistic form of attack, which is carried out from outside
the organization. In a gray-box approach, some information is passed to the penetration tester to
see what can be accomplished. Information can also be provided to ensure the desired coverage is
achieved, and knowing when to stop testing. Finally, in white-box penetration testing, all available
information is given to the tester in advance. This form allows for detailed analysis and in-depth
testing of target systems, and is much more cost-effective compared to the other two forms of
testing[48].

Pre-engagement In this phase the penetration tester and the client meet about the penetra-
tion testing engagement, according to Weidman[47]. The goal of this phase is to understand the
requirements and goals of the penetration test, and ensure both sides agree upon the outcome.
Important topics such as scope of the engagement, the testing window and contact information
are discussed in this meeting. The scope of the engagement defines exactly which systems should
be tested, and to what extend, according to Bosworth et al.[19]. This can include test systems as

Bug Bounties in Enterprise IT Security 14 / 106



Chapter 2. IT Security Basics

well as production systems. It is important to define the scope correctly, to ensure that the client
is receiving the desired level of testing, and the penetration tester does not go out of bounds. The
testing window defines the starting time and duration of the penetration test. This allows the IT
and security departments to distinguish security alerts generated by a penetration test versus an ac-
tual security incident. Other discussion points include non-disclosure agreements from both sides,
payment terms etc., as shown by Weidman[47].

Information gathering As Oriyano[48] explains, during information gathering, the penetra-
tion tester enumerates any available information about the in-scope targets. This information can
come from sources such as search engines, websites, job sites and social engineering (if agreed so
in the scope). Depending on the scope of the engagement, this may include information about em-
ployees, domains and email addresses, ip address ranges and more. According to Weidman[47],
scanning is also part of information gathering. During scanning, the penetration tester starts to
investigate the open and accessible ports of the target systems. Any open port is a potential entry
point for attacking the system and services it supports, and therefore, must be carefully analyzed
by the penetration tester.

Threat modeling After the information gathering phase is finished, the penetration tester starts
to analyze the available information. As shown by Weidman[47], using threat modeling the pene-
tration tester paints a picture of the security boundaries of the organization and starts thinking like
an attacker. An important aspect of this phase is to recognize the organization’s valuable assets
and start developing a strategy for going after them.

Vulnerability analysis With a strategy in place, the penetration tester starts to actively search
for vulnerabilities. This includes running automated tools to identify known vulnerabilities as well
as careful studying and detection of new ones, as explained by Oriyano[48]. Vulnerability scanners
are a common tool for automated vulnerability discovery. As shown by Bosworth et al.[19], these
tools hold a database of known vulnerabilities, and use it to compare against information obtained
from actively scanning targets. If a match is found, the tool reports that a potential vulnerability
has been identified. Although powerful, a vulnerability scanner cannot compensate the critical
thinking of a human according to Weidman[47]. Hence, penetration testers also perform man-
ual analysis of targets. As shown by Bosworth et al.[19], some of the most common penetration
testing techniques for manual analysis are unexpected input attacks, overflow attacks, filesystem
exploits etc.

Exploitation In the exploitation phase, vulnerabilities that have been discovered are lever-
aged with the intention of compromising the system, as explained by Oriyano[48]. Penetration
testers attempt to exploit all vulnerabilities discovered in the previous phases, although this may
not always be possible depending on the size of the target. Some vulnerabilities may not be ex-
ploited at all or under specific conditions. In order to prove exploitability, Oriyano[48] lists some
of the types of attacks that may appear during this phase: Password cracking, Traffic Sniffing, Ses-
sion hijacking, Brute-force attacks, Man-in-the-middle attacks. However, sometimes penetration
testers are required to manually exploit a vulnerability, as shown by Weidman[47]. One tool that
is commonly used to efficiently create exploits is Metasploit27.

Post-exploitation There are a number of activities in this phase. According to Weidman[47],
during post exploitation information about the attacked system is gathered. This includes inter-

27 Metasploit The world’s most used penetration testing framework, https://www.metasploit.com/, last visited on
05/24/2021

Bug Bounties in Enterprise IT Security 15 / 106



Chapter 2. IT Security Basics

esting files, dumping passwords and continuing exploitation of the target to elevate privileges.
The compromised system can also be used as a pivot point to attack other systems which are not
reachable, provided the scope of the engagement allows such actions. Weidman[47] also argues
that this phase is used to demonstrate the damage an actual attacker can do when compromising a
system. According to Oriyano[48], another activity in this phase is ensuring access is maintained.
This is under the assumption that the penetration tester will come back later to perform additional
tasks, or uses the system to pivot further attacks.

Reporting This is the final phase of a penetration test, where the penetration tester conveys
the discovered findings in a meaningful way to the client, as explained by Weidman[47]. Creat-
ing a good report is a difficult task, as the audience is technical as well as non-technical people.
Oriyano[48] suggests that a penetration testing report should start with an overview of the pene-
tration testing process without much technical details. This section is intended for the executive
audience. Further, the report should include all successful system compromises, a detailed list
of all information gathered during the engagement, a detailed list of all vulnerabilities found and
their descriptions, and a recommendation summary for resolving the vulnerabilities. Penetration
testing reports are generally free form, however they may have a specific format when conducted
as part of compliance testing[48].

Donaldson et al.[41] suggest that internet facing networks and user networks should be assessed
using penetration testing at least annually. This is also the case with compliance requirements
such as PCI DSS28, and standards such as the ISO 27001 information security management stan-
dard[49]. For internal networks and critical systems, Pompon[50] suggests monthly and quarterly
assessments depending on the available capacities. Ultimately, unless driven by compliance, the
frequency of penetration testing and offensive security testing in typically driven by the company
security policy.

2.2.3 Emulating Real World Attacks via Red Teaming

As shown in section 2.2.1, the purpose of red teaming is to emulate real world attacks and test the
organization’s resilience against them. Kim[4] explains that in red team campaigns, the assessment
starts with a few key objectives. Such objectives are defined in the scoping phase and, according
to Oakley[46], this is the most important aspect and will drive the activities of the engagement.

Oakley[46] explains that an organization’s needs and goals must be defined first, to allow tai-
loring the red team engagement towards them. These goals are identified in discussions between
the customer and the red team provider. Oakley[46] emphasises that both sides require to have
technical and nontechnical personnel in these discussions, to agree on details. For example, the
customer technical personnel may know about new systems that testing should be focused on, or
less important systems that will be decommissioned. Nontechnical personnel from the customer
will help drive the possible cost benefit and determine to what extend resources can be offered.
From the red team provider, technical personnel will be important to make sure the engagement
stays within the boundaries of whats possible, and nontechnical personnel helps drive the window
of testing and other items such as the contract.

Another important aspect of red team exercises are the rules of engagements. According to
Rehberger[51], these are a clear set of rules established and approved by leadership and legal

28 PCI Security Standards Council Document Library, https://www.pcisecuritystandards.org/document_library?
category=pcidss&document=pci_dss, last visited on 05/24/2021

Bug Bounties in Enterprise IT Security 16 / 106



Chapter 2. IT Security Basics

departments, to ensure permission is given for simulating real world attacks. They dictate how
the assessment upon the previously agreed scope will be performed, and are typically created in
the form of a rules of engagement document. Oakley[46] argues that a rules of engagement doc-
ument serves three main purposes: it creates a legal foundation for the engagement, it establishes
the required approval in form of signatures from both parties, and lastly it defines confidentiality
and liability agreements. A rules of engagement document also specifies the activity types that
are allowed (physical intrusions, social engineering, pivoting)[46], and whether testing should be
performed on production versus non-production systems[51].

Due to the nature of emulating real world adversaries, a red team exercise can take many forms.
Kim[4] argues that one assessment which is highly beneficial to an organization is called an „As-
sumed Breach Exercise“. In this type of engagement, the assumption is made that an attacker
has already gained initial foothold into the internal network, in form of exploiting a vulnerability
or simply a disgruntled employee turned into an attacker. The red team will try to compromise
further systems and move within the internal network of the organization, emulating the attacker.
The goal of this type of engagement is to test the internal security defenses and time it takes to
detect an internal breach.

Another common scenario emulated by red teams are so called „Advanced Persistent Threats“
(APTs). According to Oakley[46], APTs are defined as

„well-resourced malicious actors in cyberspace with specific goals and organized
efforts to attain them.“

This is a challenging task for a red team, since APTs usually have more money, more resources
and more capabilities than a red team can emulate. As Rehberger[51] explains, red teams typically
research and learn past campaigns of an APT with the goal of simulating such events against the
target organization.

Similar to penetration testing, the final phase of a red team engagement is reporting. Oakley[46]
argues that even for technical people, the technical details of the red team attacks will be viewed
in a different light. Therefore, emphasis is put into the less technical audience and the report is
tailored that way. According to Oakley[46], a red team report should have at least the following
elements: who performed the assessment, duration, rules of engagement, high-level summary of
the assessment activity, detailed findings.

2.2.4 Comparison and Discussion of Offensive Security Testing Techniques

When comparing offensive security techniques, they may seem similar due to the same goal:
identifying gaps in IT Security. However, despite similarities, these techniques have their own
approaches as established in the previous sections.

Kim[4] provides a comparison of penetration testing and red teaming in table 2.1, showing the
differences of these techniques. As shown, they share similarities such as intelligence gathering
and reporting, but the overall approach is different. Due to the objective of emulating real world
attacks, red team engagements require much more effort and typically last longer than penetration
testing. They typically also require staffing of professionals with specialized skills, depending
on the target system. Oakley[46] argues that this is particularly important for activities such as
physical and wireless assessments, where experienced red teams are required to perform thorough
testing. Although Oakley’s comparison in table 2.1 argues that there are no rules for red team

Bug Bounties in Enterprise IT Security 17 / 106



Chapter 2. IT Security Basics

engagements, in practice, it is common to have some rules defined. As shown by Rehberger[51],
red team engagements in fact have rules agreed upon by leadership and legal, they just tend to be
less restrictive than rules set for penetration testing.

Another important distinction is that penetration tests are generally announced, whereas red team
engagements are communicated only to key staff of organizations. Although real world attacks
do not come with announcements, Oakley[46] argues that it is important to keep organizations in-
formed about red team activity, allowing them to differentiate the assessment from a real incident.

Penetration Tests Red Teams
Methodical Security Assessments:

• Pre-engagement Interactions

• Intelligence Gathering

• Vulnerability Analysis

• Exploitation

• Post Exploitation

• Reporting

Flexible Security Assessments:

• Intelligence Gathering

• Initial Foothold

• Persistence/Local Privilege Escalation

• Local/Network Enumeration

• Lateral Movement

• Data Identification/Exfiltration

• Domain Privilege Escalation/Dumping
Hashes

• Reporting

Scope:

• Restrictive Scope

• 1-2 Week Engagement

• Generally Announced

• Identify vulnerabilities

Scope:

• No Rules*

• 1 Week – 6 Month Engagement

• No announcement

• Test Blue teams on program, policies,
tools, and skills

*Can’t be illegal.

Table 2.1: Comparison of penetration testing and red teams[4]

Bug Bounties in Enterprise IT Security 18 / 106



3 Introduction and Discussion of
Standards and Concepts for IT Security
Policies

IT Security, like any other important field, has seen various development over the years. As shown
by Susanto et al.[52], a number of private and government organizations have developed standards
and legal regulation for information security, to ensure an appropriate level of protection. In this
chapter, a brief introduction and overview of two standards from the ISO 27000 family are pro-
vided in section 3.3. According to Susanto et al.[52], the ISO 27000 family of standards is one of
the most widely accepted international initiatives for the development and operation of cybersecu-
rity programs.

However, standards themselves do not provide a framework with detailed description of the pro-
cesses required to operate a cybersecurity program, as concluded by Haufe et al.[53] in their map-
ping study. Hence, the development and existence of such frameworks have come to light. In this
thesis, the NIST[42] special publication „Security and Privacy Controls for Federal Information
Systems and Organizations“ framework will be covered in section 3.4, followed by the „Euro-
pean Framework for Threat Intelligence-based Ethical Red Teaming“(TIBER-EU)[54]. Finally,
the „Austrian Information Security Manual“[55] provides a perspective of the local situation in
terms of standards and frameworks.

3.1 Designing a Defense Strategy

As shown by Tounsi and Rais[56], today’s cybersecurity attacks are increasingly more sophisti-
cated. With well funded and organized threat actors, IT Security must adapt and defend appropri-
ately. Diogenes and Ozkaya[38] argue that while hardening systems and installing more security
tools has worked in the past, organizations now need careful planning and a defense strategy to
guide their protection efforts.

According to Diogenes and Ozkaya[38], a cyberstrategy is a documented approach developed
to address the cybersecurity needs of an organization. Such a strategy brings better organiza-
tion through centralized control, covers all possible attack landscapes, provides high-level tactics
for ensuring security, and simplifies cybersecurity for key stakeholders. The importance of hav-
ing such a strategy is shown by the various national cybersecurity strategies developed by many
countries1. For example, austria’s national cybersecurity strategy2 defines 5 fields of actions and
measures:

1. Structures and processes

1 European National Cybersecurity Strategy Map, https://www.enisa.europa.eu/ncss-map, last visited on 05/24/2021
2 Austrian National Cyber Security Strategy, https://www.enisa.europa.eu/topics/national-cyber-security-strategies/

ncss-map/national-cyber-security-strategies-interactive-map/strategies/austrian-cyber-security-strategy, last visited
on 05/24/2021

19



Chapter 3. Introduction and Discussion of Standards and Concepts for IT Security Policies

2. Governance

3. Cooperation between the government, economy and society.

4. Protection of critical infrastructures

5. Awareness raising and training

The ultimate goal of a nation’s cybersecurity strategy is to improve the security and resilience of
critical IT infrastructure.

A security strategy is typically documented using a number of documents. Santos[57] describes
the relationship of such documents as the „policy hierarchy“, and includes the following items:
policies, standards, guidelines, procedures, and baselines. A similar definition is given by Don-
aldson et al.[41], who uses a pyramid to depict the relationship as shown in figure 3.1.

Figure 3.1: Security documentation pyramid[41]

According to Donaldson et al.[41], a policy is a high-level statement and course of action, whereas
standards are documents specifying behaviour of processes, configurations and technologies to be
used. Santos[57] defines guidelines as recommendations and advice to users, with the objective
to help conform to a standard. A procedure is a document that has procedural steps showing how
something must be done, as shown by Diogenes and Ozakaya[38]. Finally, baselines represent
the application of a standard to a specific category or grouping, and according to Santos[57], they
have the primary objective of uniformity and consistency.

3.1.1 IT Security Policies

Information security policies are a necessary foundation for organizational security programs,
according to Knapp et al.[58]. They argue that information security policies address the confiden-
tiality, integrity and availability elements of information systems, and represent the precondition
for implementing effective protections. According to Knapp et al.[58], policies act as clear state-
ments of management and intent. Without an approved policy document, the necessary guidance
is missing and ambiguous situations lead to incorrect decisions or managerial involvement[58]. A
similar definition is given by Santos[57], who argues that the role of policy is to codify guiding
principles and provide those to staff that are tasked with making present and future decisions. An
IT Security policy is defined as a directive which specifies how the organization is going to protect
its assets and systems, as well as ensuring compliance with legal and regulation requirements. The
objective of such a policy is to protect the organization, its employees, customers and partners
from potential threats.[57]

According to Donaldson et al.[41], IT Security policies typically include the following elements:
purpose, scope and applicability, policy statement, compliance, responsibilities. They also ar-
gue that a policy should be unambiguous, well organized, well maintained and balanced between

Bug Bounties in Enterprise IT Security 20 / 106



Chapter 3. Introduction and Discussion of Standards and Concepts for IT Security Policies

security and business needs. Every organization is different and must continue to evolve their cy-
bersecurity program and policies to meet the challenges of IT Security.[41].

Purpose The purpose, or policy goal, is a component that conveys the intent of the policy,
as explained by Santos[57]. This can include one or multiple objectives. The purpose of a policy
also specifies the security requirements and roles necessary to achieve the policy statement, ac-
cording to Donaldson et al.[41].

Scope and Applicability As shown by Donaldson et al.[41], this part of an IT Security policy
defines the group of people within an organization, to whom the policy applies. For example, a
policy could apply to all employees, contractors, or only to a specific company branch.

Policy statement Santos[57] defines the policy statement as a high-level directive, where the
rules to be followed are laid out. The policy statement provides actionable items as well as direc-
tives for specific scenarios, deviations and exceptions.

Compliance In the compliance component, penalties and disciplinary actions for violation
of the policy are defined, as shown by Donaldson et al.[41]. The lack of complying with a policy
could also have legal ramifications, and enforcement of the policy should be periodically assessed
by IT Security[41].

Responsibilities According to Donaldson et al.[41], roles and responsibilities required to achieve
the desired security goals are defined in this component. This includes responsibilities such as pro-
viding the necessary resources to achieve the policy statement, review and adaption of the policy
etc.

Typically, the development of an IT Security policy is performed in a number of steps. Figure
3.2 shows the typical lifecycle of a policy development, according to Santos[57]. He further ar-

Figure 3.2: IT Security policy lifecycle[57]

gues that the success of a policy is dependent upon the development approach of an organization,
and that a structured approach with defined responsibilities has a greater chance of success.

A policy can be organizational-wide and apply to the whole organization, or it can be specific
to systems and functions. Donaldson et al.[41] divide policy development efforts by functional
areas. As such, they provide policy samples for areas such as system administration, network
security, application security, incident response and more. Easttom[1] suggests that a good set
of policies for the end user include at least the following: Password policy, internet use policy,
email policy, software installation policy, instant messaging policy, desktop configuration policy
and personal devices policy.

Bug Bounties in Enterprise IT Security 21 / 106



Chapter 3. Introduction and Discussion of Standards and Concepts for IT Security Policies

As stated above, there are various policies that regulate different aspects of the cybersecurity
program of an organization.

3.1.2 IT Security Controls

Stallings and Brown[27] define IT Security controls as follows:

„An action, device, procedure, or other measure that reduces risk by eliminating or
preventing a security violation, by minimizing the harm it can cause, or by discovering
and reporting it to enable corrective action.“.

Another definition is given by Donaldson et al.[41], who use the following terminology:

„A security control consists of security capabilities or audit activities that are applied
to an IT system or business process to prevent, detect, or investigate specific activities
that are undesirable; an incident response is issued when those activities occur“.

As is evident, in both definitions IT Security controls are considered as some form of preventive
measure that reduces risk. Hence, for the purpose of this thesis, a simpler definition for IT Security
controls will be used. In this work, any action or measure taken to reduce the risk of threats will
be considered an IT Security control.

According to Kohnke et al.[59], there are three types of IT Security controls: preventative, detec-
tive and reactive. Preventive controls will attempt to stop an attack from happening, as the name
implies. Through detective controls, intrusions can be identified and alerted upon. Finally, reac-
tive controls attempt to apply corrective measures to situations that may arise from an attack[59].
Stallings and Brown[27] use a different classification of security controls. They categorize secu-
rity controls in management controls, operational controls and technical controls. Each of these
categories then includes sub-categories which are similar to Kohnke’s classification. Stallings and
Brown[27] argue that management controls are focused on policies, standards and other high-level
planning which influences the two other categories. Operational controls are used to ensure cor-
rect implementation of the security policies and standards defined earlier, while technical controls
invoke the necessary hardware and software to achieve the required security capabilities.[27]

A number of international standards provide lists of suggested security controls. For example,
NIST’s special publication[42] on security and privacy controls offers a classification of IT Secu-
rity controls based on families. These families include controls such as awareness and training,
configuration management, personnel security, physical security etc. A detailed description of
NIST’s special publication[42] and the security controls it offers are given in section 3.4. Sim-
ilarly, the ISO’s information security management standard[49] provides categories of controls
such as security policies, asset management, operations security, communications security etc.
For these, a detailed description is covered in section 3.3

According to Yevseyeva et al.[60], the selection of IT Security controls depends upon a num-
ber of factors. The primary objective is the assessment of security vulnerabilities, and mitigation
of identified threats and risks faced by the organization. However, other factors come in to play,
such as budget limitations and maintaining a balance between productivity and security. NIST[42]
and ISO[49] offer selection processes as part of their publications to help with this problem. Ad-
ditionally, ongoing research in this field provides novel approaches to this problem. For example,

Bug Bounties in Enterprise IT Security 22 / 106



Chapter 3. Introduction and Discussion of Standards and Concepts for IT Security Policies

Almeida and Respicio[61] provide a framework for decision making based on investment opti-
mizations and minimizing expected losses. Breier and Hudec[62] propose a method based on grey
relational analysis combined with the TOPSIS decision making method, providing a quantitative
technique for selection and prioritization of security controls. Ultimately, the decision to select
appropriate security controls is left to the management of the organization, as shown by Stallings
and Brown[27].

3.1.3 Creating a Cybersecurity Program

According to Schreider[63], a successful cybersecurity program is created through careful design
and proper structure. If not properly designed, a cybersecurity program will have conflicting opin-
ions of stakeholders, who use strategies that affect the completeness of the program. One of the
most common ways to design a cybersecurity program is to use one of the popular standards such
as NIST’s special publication[42] or the ISO 27001 standard[49].

Donaldson et al.[41] argue that the following elements are needed for an effective cybersecurity
program: policy, people, budget, technology, strategy, engineering, operations and assessment.
Further, they explain that the chief information security officer (CISO) is the ultimate author-
ity for cybersecurity, and directs cybersecurity policy as well as implementation. Similarly, in
Schreider[63]’s definition of a cybersecurity program, everything starts from the CISO of the or-
ganization, where policies and strategic planning are done. In both approaches, policies are used
to derive the responsibilities of personnel and technology. In turn, these elements ensure execution
of the various tasks needed in security engineering and security operations. For the purpose of this
thesis, a cybersecurity program will be defined using four components: people, policy, engineer-
ing, and operations.

People According to Donaldson et al.[41], the CISO organizes cybersecurity people and teams,
and defines their roles and responsibilities. The CISO also makes a case for budget required to
fund the cybersecurity program. Furthermore, Schreider[63] explains that the CISO is also re-
sponsible for creating the policies, which represent the foundation of the cybersecurity program.

Policy Donaldson et al.[41] argue that any activity performed in staffing, engineering, oper-
ations and technology must be traced back to a policy. This traceability marks the foundation of
the entire cybersecurity program. Policies usually include standards, guidelines, procedures and
baselines for the entire organization[41].

Engineering According to Schreider[63], engineering involves the architecture and design of
secure operating environments. This includes domains such as cryptography, network security,
identity and access management etc. Engineering is typically staffed with architecture and design
experts, as the operational responsibility is turned over to operations.

Operations Donaldson et al.[41] argue that if cybersecurity is not maintained, it will become
ineffective over time. This is where operations come into play. According to Donaldson et al.[41],
security technologies must be operated and maintained to stay effective. Schreider[63] explains
that this component includes a security operations center, security automation and aspects of a
service desk dedicated to security.

Typically, a cybersecurity program is an ongoing process. According to Schreider[63], key per-
formance measures (KPM) are the second most effective way to direct a cybersecurity program
(policies being the first). KPMs provide a concrete way of measuring a cybersecurity program,
producing metrics that show trends in positive or negative directions. Donaldson et al.[41] argue

Bug Bounties in Enterprise IT Security 23 / 106



Chapter 3. Introduction and Discussion of Standards and Concepts for IT Security Policies

that an important aspect of cybersecurity program measurement, is the expression of metrics in
everyday terms that are familiar to the organization. This allows comprehension by non-technical
stakeholders as well as judgement by experts.

Through measurement of a cybersecurity program, improvements can be applied. As shown by
Donaldson et al.[41], security improvements generally fall into three categories:

• Risk mitigations focus on the detection and prevention of known threats and attacks.

• Security capabilities focus on addressing unknown threats and attackers who use novel
techniques.

• Security operations which help risk mitigation and security capabilities work together to
defend against attacks on an ongoing basis.

3.2 IT Security Standards

According to Bosworth et al.[19], standards are established for providing uniformity and essential
characteristics amongst different entities. They allow the understanding and comparison of such
characteristics by different parties. In terms of IT Security, Moschovitis[64] explains that stan-
dards are the ecosystem of a policy, and allow the meaningful implementation of policies.

There are a number of sources for standards, as shown by Bosworth et al.[19]. Standards can
be created by governments, international organizations, military, or consulting firms. For exam-
ple, one national body that issues standards for federal systems in the united states, is the US
NIST3 . These standards set the minimum requirements for federal information processing sys-
tems, and other attributes such as security, privacy and best practices. Other examples of national
bodies include the british standards institute4, the german federal office for information security5

and the european committee for standardization6.

One of the most popular sources for standards is the international organization for standardiza-
tion (ISO)7. They provide standards for quality management, health and safety, and IT Security
standards such as the 27000 family8. Another popular organization is the PCI security standards
council9, which provides a number of standards, frameworks and specifications focused on pay-
ment card industry. Finally, there are also technology specific sources of standards, such as the
web application security consortium10, cloud security alliance11, ISACA12 etc.

As shown by Bosworth et al.[19], there are many types of standards that apply to specific in-
dustries. For example, capability standards such as the capability maturity model (CMM)13 and

3 NIST, https://www.nist.gov, last visited on 05/24/2021
4 British Standards Institute, https://www.bsigroup.com, last visited on 05/24/2021
5 Federal Office for Information Security, https://www.bsi.bund.de/DE/Home/home_node.html, last visited on

05/24/2021
6 European Committee for Standardization, https://www.cen.eu, last visited on 05/24/2021
7 International Organization for Standardizaiton, https://www.iso.org, last visited on 05/24/2021
8 Family of IT Security Standards, https://www.iso.org/search.html?q=27000, last visited on 05/24/2021
9 PCI Security Standards Council, https://www.pcisecuritystandards.org, last visited on 05/24/2021
10 Web Application Security Consortium, https://www.webappsec.org, last visited on 05/24/2021
11 Cloud Security Alliance, https://cloudsecurityalliance.org, last visited on 05/24/2021
12 ISACA, www.isaca.org, last visited on 05/24/2021
13 CMMI Institute, https://cmmiinstitute.com/resource-files/public/take-organizational-performance-to-the-next-level,

last visited on 05/24/2021

Bug Bounties in Enterprise IT Security 24 / 106



Chapter 3. Introduction and Discussion of Standards and Concepts for IT Security Policies

ISO 900014 measure the organization’s competence in building security-related products. Some
standards specify security functionality of products, such as IETF’s IPSec standard15. In the fol-
lowing sections, we will look at the details of a number of international security standards, as well
as the regional and local situation.

3.3 ISO 27001 & 29147

In the following section, two popular standards created by the international organization for stan-
dardization16 are covered: ISO 27001 and ISO 29147. The ISO 27001 standard[49] concerns itself
with IT Security and management, whereas ISO 29147[65] gives guidelines for vulnerability dis-
closure.

3.3.1 ISO 27001

The ISO 27001[49] standard has been established for creating, implementing, maintaining and
continually improving an information security management system. According to Eloff and Eloff
[66], an information security management system (ISMS) addresses all aspects of creating and
maintaining a secure information environment within an organization. The goal of an information
security management system is to preserve the confidentiality, integrity, and availability of infor-
mation systems.

As shown by Humphreys[67], the ISO 27001 standard provides a number of security processes
based on a Plan-Do-Check-Act (PDCA) model. Further, Humphreys[67] argues that ISO 27001 is
a risk-based standard and requires organizations to have a risk management process. Figure 3.3
shows the risk management process applied in the ISO 27001 Plan-Do-Check-Act model.

Figure 3.3: ISO 27001 risk management process according to Humphreys[67]

The ISO 27001 standard[49] has the following requirements: context of the organization, lead-
ership, planning, support, operation, performance evaluation and improvement. Additionally, a
reference for security controls and objectives is provided.

Context of the organization This requirement demands that organizations determine internal

14 ISO 9000 Family, https://www.iso.org/iso-9001-quality-management.html, last visited on 05/24/2021
15 IP Security (IPsec) and Internet Key Exchange (IKE) Document Roadmap, https://tools.ietf.org/html/rfc6071, last

visited on 05/24/2021
16 International Organization for Standardizaiton, https://www.iso.org, last visited on 05/24/2021

Bug Bounties in Enterprise IT Security 25 / 106



Chapter 3. Introduction and Discussion of Standards and Concepts for IT Security Policies

and external issues that may affect the information security management system. It also expects
that organizations determine interested third parties and the scope of their information security
management system[49].

Leadership The leadership requirement calls for demonstrated commitment by management
to ensure information security objectives are established, and that a strategy is in place to achieve
them. This includes creating an information security policy that is appropriate for the organization
and its aforementioned security objectives[49].

Planning In this requirement, it is expected that plans for the various processes are created.
This includes general planning for treating issues identified, and the creation of processes for risk
management and risk treatment[49].

Support The support requirement pushes organizations to provide the necessary resources
for the implementation and maintenance of their information security management system. It in-
cludes creating and updating documentation, and gives directives on communication such as what
to communicate, when to do it, with whom etc[49].

Operation This requirement expects organizations to implement and control the processes
needed to meet the information security objectives defined earlier. The expected interval for per-
forming risk assessments and treatments, as well as planned changes are determined in this re-
quirement[49].

Performance Evaluation In this requirement, monitoring, measurement and evaluation are
performed, to determine the effectiveness of the information security management system. This
includes determining what to monitor and the method for doing so[49].

Improvement The final requirement expects the organization to continue improving the ef-
fectiveness of their information security management system, and to react to non-conformity with
appropriate actions[49].

The enumeration of security control families as provided by ISO 27001 are shown in table 3.1. It
is important that the selected controls align with the risk assessment and risk treatment plan that
has been previously identified[49].

Control Families
1. Information security policies 8. Operations security
2. Organization of information security 9. Communications security
3. Human resource security 10. System acquisition, development and

maintenance
4. Asset management 11. Supplier relationships
5. Access control 12. Information security incident manage-

ment
6. Cryptography 13. Information security aspects of business

continuity management
7. Physical and environmental security 14. Compliance

Table 3.1: ISO 27001 security control families[49]

Bug Bounties in Enterprise IT Security 26 / 106



Chapter 3. Introduction and Discussion of Standards and Concepts for IT Security Policies

3.3.2 ISO 29147

The international organization for standardization provides guidelines for the disclosure of poten-
tial vulnerabilities in the ISO 29147 standard[65]. This includes guidelines for how to receive
vulnerability information, how to publish resolution of vulnerabilities, what kind of information
should be obtained, and some examples.

According to the ISO 29147 standard[65], the vulnerability disclosure processes is composed of
five high-level steps: receipt of vulnerability report, verification, resolution development, release
and post release. A summary of the process is shown in figure 3.4.

Figure 3.4: ISO 29147 Process Summary[65]

The ISO 29147 standard[65] requires the creation of a vulnerability disclosure policy, which states
the intention and responsibilities of the vendor and vulnerability finder. A vulnerability disclosure
policy should be clear and simple, to allow easy reporting of vulnerabilities. According to the ISO
29147 standard[65], the minimum aspects that a vulnerability disclosure policy should cover are:

• how the vendor would like to be contacted (email, phone, web form).

• secure communication options and expectations.

• useful information when reporting a vulnerability.

• out of scope services.

• how submitted reports are tracked.

There are also optional aspects such as crediting the vulnerability finder, public disclosure and dis-
tribution of a security advisory. It is recommended to publish this vulnerability disclosure policy,
although parts of it with sensitive content can be kept internal to the organization[65].

For receiving vulnerability information, the ISO 29147 standard[65] details the information that
should be included. A typical report includes a description of the vulnerability, proof of concept

Bug Bounties in Enterprise IT Security 27 / 106



Chapter 3. Introduction and Discussion of Standards and Concepts for IT Security Policies

code, and the target product which is vulnerable. Because vulnerability reports often include sen-
sitive information, a vendor should provide a means for secure transmission. Once a vulnerability
report has been received, the ISO 29147 standard[65] suggests responding to the finder within
the time period defined in the vulnerability disclosure policy. Communication should be ongoing
with the finder, until the vulnerability is resolved. Finally, the ISO 29147 standard[65] requires
having a tracking system to record all incoming vulnerability reports. A unique identifier should
be assigned to the report, and used in further communication with stakeholders[65].

The ISO 29147 standard[65] also provides guidelines for the dissemination of an advisory. This
is done after the presence of a vulnerability is confirmed, and information is prepared to help
affected users. According to the ISO 29147 standard[65], a number of things need to be consid-
ered when creating a process for publishing advisories. First, the intended audience should be
considered from a reader perspective, stating the target of the advisory. A method for verifying
the authenticity and integrity of the advisory should be provided, to avoid counterfeit. Next, an
advisory should ideally be accompanied with the remediation of the vulnerability. In situations
where this is not possible, workarounds should be given. Further, if a vulnerability affects multi-
ple vendors, then an advisory is best released by coordinating all parties involved. Vendors should
also consider creating a mailing list for interested parties, and provide a scoring system such as
CVSS for disclosed vulnerabilities. Finally, a trusted database with information about remediated
vulnerabilities should be created and offered to both public and private consumers of vulnerability
information[65].

The contents of an advisory are also specified by the ISO 29147 standard[65]. Typically this
includes an identifier, a title, and overview, affected products, a description, impact, remediation,
references, credits, a revision history, contact information and terms of use. In order to improve
understanding of an advisory, the ISO 29147 standard[65] suggests using a consistent format for
published advisories.

3.4 NIST 800-53

The NIST 800-53 special publication[42] is a publication which provides a catalog of security
controls and a process for selecting them, to protect assets, operations and data from threats. The
first version came out in 200517, and since then there have been 4 revisions. There is a 5th revi-
sion18 under way, which is currently in final draft state.

According to Dempsey et al.[68], this publication provides a comprehensive set of security con-
trols, three baselines (low, moderate, and high), and guidance for selecting the appropriate security
controls. They argue that the provided security controls are designed to be technology-neutral, and
focus on the fundamental measures needed to protect the organization. The NIST 800-53 special
publication[42] is composed of the following parts:

1. Introduction: provides purpose, applicability, target audience and relationship to other pub-
lications.

2. The fundamentals: provides risk management approach, security control structure and
baselines.

17 SP 800-53, https://csrc.nist.gov/publications/detail/sp/800-53/archive/2005-02-28, last visited on 05/24/2021
18 SP 800-53 Rev. 5, https://csrc.nist.gov/publications/detail/sp/800-53/rev-5/final, last visited on 05/24/2021

Bug Bounties in Enterprise IT Security 28 / 106



Chapter 3. Introduction and Discussion of Standards and Concepts for IT Security Policies

3. The process: provides a process for selecting security controls, tailoring and documenting
the selection process.

According to NIST’s 800-53 special publication[42], the purpose of this publication is to provide
guidelines and security controls, for meeting the minimum security requirements for federal in-
formation and information systems19. It applies to all components of information systems that
store, process or transmit federal information. With the exception of national security systems,
this publication applies to all federal information systems. The publication’s intended audience is
information security professionals, but also individuals with system development responsibilities,
and commercial companies producing security-related technologies.

As shown by Dempsey et al.[68], to integrate a risk management process throughout an orga-
nization, the NIST 800-53 special publication[42] provides a three-tiered approach. Figure 3.5
shows a summary of this process. By dividing the risk management process into layers, risks can

Figure 3.5: NIST 800-53 special publication risk management approach[42]

be addressed at the organizational level, mission / business process level and information systems
level. The overall objective remains the continuous improvement of the organization’s security
posture, and a feedback loop is maintained through through inter-tier communication.

The security controls provided by NIST’s 800-53 special publication[42] have a well defined
structure, and are organized in families. Each family contains security controls related to a specific
security topic. Table 3.2 shows the security control identifiers and family names. The security con-
trols within these families treat various aspects of an organization’s security program, including
policy, oversight, supervision, manual and automated processes, individual actions etc.

To overcome the challenge of selecting the right set of security controls, NIST’s 800-53 spe-
cial publication[42] provides the concept of a baseline. A baseline represents the starting point
for the security control selection process, and is based on the security category and impact level

19 FIPS 200, https://csrc.nist.gov/publications/detail/fips/200/final, last visited on 05/24/2021

Bug Bounties in Enterprise IT Security 29 / 106



Chapter 3. Introduction and Discussion of Standards and Concepts for IT Security Policies

of information systems. In this special publication, there are three security control baselines: low-
impact, moderate-impact, and high-impact baselines for information systems. These align with
the three security categories provided by FIPS 20019, which are used to determine the impact level
of systems.

ID FAMILY ID FAMILY
AC Access Control MP Media Protection
AT Awareness and Training PE Physical and Environmental Protection
AU Audit and Accountability PL Planning
CA Security Assessment and Authoriza-

tion
PS Personnel Security

CM Configuration Management RA Risk Assessment
CP Contingency Planning SA System and Services Acquisition
IA Identification and Authentication SC System and Communications Protec-

tion
IR Incident Response SI System and Information Integrity

MA Maintenance PM Program Management

Table 3.2: NIST security controls and identifiers[42]

As shown by Dempsey et al.[68], organizations may tailor the selected security control baseline in
any of the three tiers, to support particular security objectives. The process of tailoring the baseline
is comprised of several steps, as shown in NIST’s 800-53 special publication[42]:

1. Identifying and designating common controls in initial security control baselines.

2. Applying scoping considerations to the remaining baseline security controls.

3. Selecting compensating security controls, if needed.

4. Assigning specific values to organization-defined security control parameters via explicit
assignment and selection statements.

5. Supplementing baselines with additional security controls and control enhancements, if
needed.

6. Providing additional specification information for control implementation, if needed.

Once the appropriate security controls are selected and adapted for the organization use case,
NIST’s 800-53 special publication[42] requires the documentation of the process. Dempsey et
al.[68] argue that this documentation aids in review activities, security planning and future risk
assessments. According to Dempsey et al.[68], this documentation is essential when examining
security considerations for the information systems of an organization.

3.5 TIBER-EU

The European framework for „threat intelligence-based ethical red-teaming“(TIBER)[54] is an
EU-wide guide for testing the resilience of entities against threats. It represents an intelligence-
based, controlled red team test of a target’s critical production systems. Such a test involves the
use of various real-life attacking techniques to simulate sophisticated cyber attacks.

Bug Bounties in Enterprise IT Security 30 / 106



Chapter 3. Introduction and Discussion of Standards and Concepts for IT Security Policies

TIBER-EU has been developed by the European Central Bank and EU national banks, published
in May 201820. The main objectives of this framework are the enhancement of entities’ resilience
(especially the finance sector) against cyber attacks, the standardization of red team testing across
the EU, providing guidance for establishing this form of testing in the European level, and enabling
collaboration of the various national authorities. The adoption of TIBER-EU is voluntary and can
be done at a national or european level[54]. Typical authorities involved in the implementation
are: central banks, supervisory authorities, intelligence agencies, relevant ministries, etc.

The TIBER-EU[54] test process is composed of three mandatory phases:

1. Preparation phase

2. Testing phase

3. Closure phase

Figure 3.6 shows each of these phases and the procedures within them.

Figure 3.6: TIBER-EU[54] test process

Preparation Phase In the preparation phase, the TIBER-EU test engagement is launched for-
mally. This includes a number of activities. First, the entities which are going to perform the
TIBER-EU test should be decided. The relevant authorities are then notified in a pre-launch meet-
ing. What follows is the procurement of services for external threat intelligence and red teaming
services. There is a formal TIBER-EU certification and accreditation process, which helps to iden-
tify suitable providers of these services. Finally, the engagement is formally scoped between the
entities and relevant authorities involved. This concludes the preparation phase[54].

Testing Phase After scoping has been completed, TIBER-EU[54] explains that the testing
phase begins. This is composed of two parts: threat intelligence and red teaming. Threat intel-
ligence aims to use reconnaissance and related actions that help develop attack scenarios. The
result of the threat intelligence procedure is a targeted threat intelligence (TTI) report[54]. In
the red-teaming procedure, the service provider executes a targeted attack against the systems,
based on the TIBER-EU[54] red team testing guidelines. The provider conducts a realistic and
comprehensive red team test based on the objectives agreed in the preparation phase. The testing
methodology is an emulation of real world attacks as described in section 2.2.3.

Closure Phase This is the final phase and includes remediation planning and result sharing[54].
The service provider will deliver a red team test report which includes details of the testing process
and findings. From there, a remediation plan is developed by the entities responsible as defined in

20 What is TIBER-EU?, https://www.ecb.europa.eu/paym/cyber-resilience/tiber-eu/html/index.en.html, last visited on
05/24/2021

Bug Bounties in Enterprise IT Security 31 / 106



Chapter 3. Introduction and Discussion of Standards and Concepts for IT Security Policies

the preparation phase. This remediation plan can be used to present a business case for patching
the vulnerabilities identified during the red team test. Once everything in the reports has been
agreed upon, the results can be shared with other relevant authorities[54].

TIBER-EU[54] also suggests the creation of a „TIBER Cyber Team“(TCT) that will monitor the
process of implementation and maintenance. This team is also responsible for the necessary mod-
ifications when adopting the framework at a national level. A TCT can be set up as a single
authority, or a centralised team of experts from different parts of authorities[54].

3.6 Austrian Information Security Manual

The austrian information security manual[55] is a joint development of the austrian federal chan-
cellery and austrian center for secure information technology (A-SIT)21, in cooperation with the
german federal office for security in information technology22 and swiss federal IT steering unit23.
It made its first appearance in October 199824, and the current release dates December 2019[55].

The main purpose of the austrian information security manual[55] is to help public and private
organisations in implementing the ISO 27000 family of standards25. Additionally, this manual
fills the void of a comprehensive and detailed guideline for information security. It is also consid-
ered good material for furthering education, and as a helping tool for self-checks[55].

The structure is closely aligned with the ISO 27001 and 27002 standards, with 18 chapters and
a number of appendixes[55]. Chapter one provides an introduction to the manual, and an exec-
utive summary. In chapter two and three, the process of maintaining and improving information
security is explained. This is primarily directed at public organizations, but the same can be used
for private organizations as well. Chapter 4 to 18 describe the details for correctly implementing
security measures in various fields such as personnel, infrastructure, technology etc. Finally, the
appendixes provide additional helping material such as documentation templates, references and
tools[55].

According to the austrian information security manual[55], information security management is a
continuous process where effectiveness and strategy must be constantly measured and improved.
Core activities as part of an information management system include: development of informa-
tion security policies, performing risk assessments, creating a security concept, implementation of
security measures, ensuring information security in production environments, and constant mon-
itoring and improvement of the information security management system. This process is shown
in figure 3.7 and can be applied to parts or the whole organization.

Development of Information Security Policies As shown in the austrian information secu-
rity manual[55], an organization-wide information security policy provides a long-term strategy
for securing information systems. It is part of a hierarchy of documents and depends upon the
security requirements and IT infrastructure of the organization. A detailed description of security

21 Austrian Center for Secure Information Technology, https://www.a-sit.at/en/
secure-information-technology-center-austria, last visited on 05/24/2021

22 German Federal Office for Security in Information Technology, https://www.bsi.bund.de/EN/Home/home_node.
html, last visited on 05/24/2021

23 Federal IT Steering Unit, https://www.isb.admin.ch/isb/en/home.html, last visited on 05/24/2021
24 Österreichisches Informationssicherheitshandbuch – A-SIT. https://sectank.net/blog/2011/03/25/

osterreichisches-informationssicherheitshandbuch, last visited on 05/24/2021
25 Family of IT Security Standards, https://www.iso.org/search.html?q=27000, last visited on 05/24/2021

Bug Bounties in Enterprise IT Security 32 / 106



Chapter 3. Introduction and Discussion of Standards and Concepts for IT Security Policies

policies is provided in section 3.1.1.

Performing Risk Assessments The austrian information security manual[55] provides three
risk assessment strategies as part of its information security management system (ISMS) guide-
line: detailed risk assessment, base assessment and a combined assessment. The selection of the
appropriate risk assessment is left to the organization, and should be specified in the information
security policy. Further details on risks and the risk assessment process can be found in section
2.1.5

Figure 3.7: Austrian Information Security Manual ISMS process[55]

Creating a Security Concept According to the austrian information security manual[55], sep-
arate security guidelines should be created for important IT systems and applications. These pro-
vide the concrete measures taken to secure those systems, and should be compatible with the
organization’s information security policies. The selection of these measures, together with the
creation of security guidelines and risk assessments, provide the elements of a security concept.

Implementation of Security Measures Once the appropriate measures have been selected,
according to the austrian information security manual[55], they can be implemented. For correct
and efficient implementation, the financial and personnel responsibilities should be defined. Ad-
ditionally, project management techniques should be used to ensure expected timelines and costs
are met. Simultaneous with the implementation of security measures, users should be trained and
prepared for correct usage[55].

Information Security in Production Environments After the desired security level has been
reached, the austrian information security manual[55] explains that maintenance is required to
maintain that level of security. Because the implemented security measures will lose effectiveness

Bug Bounties in Enterprise IT Security 33 / 106



Chapter 3. Introduction and Discussion of Standards and Concepts for IT Security Policies

over time (due to new threats and risks), further activities need to counteract and maintain the
security of information systems.

Monitoring and Improvement of the Information Security Management System
Similar to the previous activity, the information security management system must be maintained
and improved. The austrian information security manual[55] provides guidelines for implement-
ing monitoring where feasible. Through monitoring, actual metrics can be compared to expected
values and as such, the organization can react to deficiencies in the security of information systems,
or react to an attack. Monitoring also allows to provide a complete picture to upper management,
showing the achieved security level, measures taken, and risks mitigated.

3.7 Discussion

As shown in the previous sections, there are many resources to help organizations manage their IT
Security strategy. They provide various aspects of information security management, such as the
Plan-Do-Check-Act security process of ISO 27001[49], NIST’s risk management framework[42],
TIBER-EU’s framework for red team assessments[54], and the ISMS process of the austrian in-
formation security manual[55]. For the purpose of this thesis, the security controls and offensive
security aspects of these resources are of interest.

In terms of offensive security, the ISO 27001[49] standard provides the A.12.6 control called
„Technical vulnerability management“, which requires the detection and addressing of technical
vulnerabilities. However, this control does not specify how vulnerability information is obtained.
It is left to the organization to decide the appropriate means. Similarly, NIST’s[42] special pub-
lication provides the „Security Assessment and Authorization“ family of controls for offensive
security. This control requires the use of security assessments and penetration testing for offensive
security. Penetration tests are also part of the austrian information security manual[55], which also
requires security tests, vulnerability identification and qualification tests. TIBER-EU[54] provides
a framework for red team assessments as part of offensive security, whereas ISO 29147 [65] only
describes the intake of vulnerabilities from public sources. Table 3.3 shows the comparison of
offensive security methods provided by these resources.

Resource Offensive Security Methods

ISO 27001 Left at discretion of organization

NIST Security Assessments
Penetration Testing

Austrian Information Security Handbook Security Tests
Penetration Testing
Vulnerability Identification
Qualification Tests

TIBER-EU Red Team Assessment

ISO 29147 Vulnerability intake from public sources

Table 3.3: Comparison of offensive security methods

Bug Bounties in Enterprise IT Security 34 / 106



Chapter 3. Introduction and Discussion of Standards and Concepts for IT Security Policies

As shown, none of the resources cover a crowdsourced approach for offensive security. Although
case studies and reports show promising results of using crowdsourced security to increase the
number of vulnerability reports[17], there is a lack of adoption by enterprise organizations[9]. A
possible cause for this could be missing policies and integration concepts for this new offensive
security measure, and the lack of standards that support it.

Bug Bounties in Enterprise IT Security 35 / 106



4 Bug Bounties: The Crowdsourced
Offensive Security Approach

Bug bounties are an offensive security method, where crowdsource techniques are used to invite
participants to find security vulnerabilities. These participants are commonly known as whitehat
hackers or security researchers[69]. Typically, finding a vulnerability and reporting it to the ven-
dor results in a monetary reward, acknowledgement, or some other form of recognition.

According to Fryer and Simperl[10], bug bounty programs have become a popular cybersecu-
rity initiative in recent years. This kind of approach has seen adoption in many different areas
such as e-voting systems1, government systems2 and self-driving cars3. As a result, platforms
that offer tools and services for managing bug bounties have appeared, such as Bugcrowd and
HackerOne. According to Bugcrowd’s annual report[70], an increase of 29% in the number of
programs launched has been observed in 2019. Additionally, a 50% increase in public programs
was also noted.

4.1 Characteristics

In the following section, bug bounty definitions and characteristics are laid out. First, a definition
of bug bounty itself is given, followed by a definition for the crowd. The different bug bounty
types and their usage are covered next. Finally, the various aspects that must be considered for
running a bug bounty program are described in detail.

4.1.1 Definitions

One definition of bug bounty programs is given by Kuhen and Mueller[17]:

„Bug bounty programs (BBP), also referred to as vulnerability rewards programs
(VRP) or bug challenges, reward independent security researchers, penetrations testers,
and whitehat hackers for discovering exploitable software vulnerabilities and sharing
this knowledge with the operator of a particular bug bounty program“.

Another definition is given by Fryer and Simperl[10], who use the following:

„A ‘bug bounty’ or ‘vulnerability reward program’ (VRP) is the process for rewarding
the discovery of a flaw or vulnerability in a piece of software.“.

1 Switzerland paying e-voting hackers, https://www.euronews.com/2019/02/13/
switzerland-offers-cash-to-hackers-who-can-crack-its-e-voting-system, last visited on 05/24/2021

2 United States Department of Defense: Expanding hack the Pentagon,
https://dod.defense.gov/News/News-Releases/News-Release-View/Article/1671231/
department-of-defense-expands-hack-the-pentagon-crowdsourced-digital-defense-pr, last visited on 05/24/2021

3 AI trends: Bug bounties and AI systems: The case of AI self-driving cars, https://www.aitrends.com/ai-insider/
bug-bounties-and-ai-systems-the-case-of-ai-self-driving-cars, last visited on 05/24/2021

36



Chapter 4. Bug Bounties: The Crowdsourced Offensive Security Approach

As stated above, the essence of bug bounty programs is rewarding the finder for responsibly shar-
ing the vulnerability information with the vendor. For the purpose of this thesis, the definition
given by Fryer and Simperl[10] will be used, as it sufficiently describes the nature of bug bounties.

The finder is defined as any independent security researcher that is able to identify security vul-
nerabilities in assets of the bug bounty vendor, and complies with the rules of engagement. In
their recent report[71], Bugcrowd provides several insights into „the crowd“. According to this
report, 46% of the crowd are of Asian ethnic and 24% are caucasian. The average age of security
researchers is dominated by younger individuals aged 18-24 (53%), followed by 25-34 (32%).
There are also various motivations for participating in bug bounties, such as improving skills,
increasing security, fame and financial incentives.

4.1.2 Types and Usage

Depending on the method of implementation, bug bounties can be categorized in different types.
One way to categorize bug bounties is given by Malladi and Subramanian[14], who use the fol-
lowing types:

1. Institutional bug bounty programs

2. Bug bounty platforms

3. Private intermediary programs

Institutional bug bounty programs are hosted directly by the bug bounty owner. Examples of these
include Google’s VRP4, Facebook’s bug bounty program5, Microsoft bug bounty program6 etc.
In institutional bug bounty programs, the program operator controls the complete process, from
publication of the rules of engagement to accepting and rewarding a vulnerability report. Bug
bounty platforms are intermediary hosts of bug bounty programs for many organizations. They
offer bug bounties as a service, and manage various aspects of the bug bounty program for their
clients. Examples of prominent bug bounty platforms include Bugcrowd7, HackerOne8, Synack9

etc. Private intermediary programs such as Zerodium10 purchase vulnerabilities from security re-
searchers and use them for their services. They are usually interested in novel research for popular
products and provide higher rewards. For the purpose of this thesis, private intermediaries will not
be considered as they violate the definition used for bug bounties.

The emergence of bug bounty platforms in the last years and their innovation has led to various
methods of running a bug bounty program. For example, both Bugcrowd and HackerOne offer
two types of bug bounty programs: public and private. A private bug bounty program represents
an invite-only form of participation. In this type, the bug bounty platform will invite only a limited
number of security researchers to the program. In public bug bounty programs, any researcher can
participate. In both cases, all characteristics described in section 4.1 apply, and researchers must
follow the rules of engagement to be eligible for a reward. The Bugcrowd bug bounty platform

4 Google Vulnerability Reward Program, https://www.google.com/about/appsecurity/reward-program, last visited on
05/24/2021

5 Facebook whitehat, https://www.facebook.com/whitehat, last visited on 05/24/2021
6 Microsoft bug bounty program, https://www.microsoft.com/en-us/msrc/bounty, last visited on 05/24/2021
7 Bugcrowd, https://www.bugcrowd.com, last visited on 05/24/2021
8 HackerOne, https://www.HackerOne.com, last visited on 05/24/2021
9 Synack, https://www.synack.com, last visited on 05/24/2021
10 Zerodium, https://www.zerodium.com, last visited on 05/24/2021

Bug Bounties in Enterprise IT Security 37 / 106



Chapter 4. Bug Bounties: The Crowdsourced Offensive Security Approach

offers additional program types, such as the three options for vulnerability disclosure programs11.
These options include: email-intake, embedded form, and Bugcrowd hosted. Email intake allows
organizations to configure an email address which can be used by security researchers to report
vulnerabilities. In the embedded form option, a form for submitting vulnerability reports is pub-
lished on the organization website. Both options result in vulnerability reports created within the
Bugcrowd platform, which then are processed using the standard flow described in section 4.1.
The final option is to run the program directly on the Bugcrowd platform, where the details and
the processes are handled in it. A detailed description of bug bounty platforms is provided in sec-
tion 4.4.

According to Malladi and Subramanian[14], crowd collaboration through bug bounties can be
used at every phase of product development. For example, a fuzzing competition through a pri-
vate bug bounty program can be used during the development phase. Fuzzing is an automated
software testing technique that involves providing invalid, unexpected, or random data as inputs
to provoke errors or unexpected outcomes[38]. A description of a private bug bounty program
is given in section 4.2. In summary Malladi and Subramanian[14] recommend conducting bug
bounty engagements throughout the software development life-cycle as follows:

• Requirements and Design: Test plan and budgeting for bug bounty

• Development: Fuzzing competition through private bug bounty

• Public and Private Beta: Private bug bounty

• Product Market Launch: Either public or private bug bounty

• Post-Release: Public or private or fuzzing competition bug bounty

4.1.3 Running a Bug Bounty Program

As shown by Bell et al.[72], running a bug bounty program requires careful consideration of a
number of aspects such as: staffing, rules of engagement, rewards, processing reports, public dis-
closure.

Staffing Bug bounties require a solid security team to handle the incoming vulnerability re-
ports. Being able to quickly respond to vulnerability reports and fostering relationships with the
bug bounty community is a key factor to the success of the program. Using a bug bounty platform
can help acting as a filter to reduce the number of invalid reports, however it comes at the cost of
having less control over the program. The benefits and drawbacks of using a bug bounty platform
are elaborated further in section 5.2

Rules of engagement As shown by Laszka et al.[73], the rules of engagement define the
program rules that govern interactions between organizations and whitehat hackers. Common
items that are defined in the rules of engagement include: in-scope targets, expectations around
rewards, eligible vulnerability types, legal requirements etc. The „in-scope targets“ section defines
specifically which targets should be tested. There may also be a specific list of targets explicitly
out-of-scope and for which testing is prohibited[73]. The rules of engagement also specify ex-
pectations for the type of reward received when reporting a valid vulnerability. Additionally, it is
common to exclude a number of vulnerability types which don’t apply to the application. This is

11 Bugcrowd vulnerability disclosure program, https://www.bugcrowd.com/products/vulnerability-disclosure, last vis-
ited on 05/24/2021

Bug Bounties in Enterprise IT Security 38 / 106



Chapter 4. Bug Bounties: The Crowdsourced Offensive Security Approach

done by either including a list of eligible vulnerability types, or an exclusion list. Finally, the rules
of engagement typically specify legal information which permit the testing of listed targets[72].

Rewards As shown by Bell et al.[72], it is good practice to state the type of reward that security
researchers can expect for reporting a vulnerability. For example, a reward can be a sum of money,
items such a t-shirts or stickers, or public acknowledgement. For monetary rewards, it is common
to have reward ranges associated with the severity of the vulnerability, and potentially bonuses for
high impact. Delivering the money can be tricky considering that researchers may be all over the
world. Bug bounty platforms help in this regard by taking that responsibility of issuing the reward
to the security researcher. Similar logistical challenges are expected when items such as t-shirts
or stickers are rewarded. Another common form of reward is listing the security researcher in a
bug bounty hall of fame12. Kuehn and Mueller[17] argue that reputation is a crucial element in the
security research community, and being listed in a popular bug bounty hall of fame will increase a
security researcher’s reputation.

Processing reports Once a vulnerability has been identified and reported by a security re-
searcher, the bug bounty program operator must process it. The typical flow of a vulnerability
report as part of a bug bounty program is shown in figure 4.1. Initially, the vulnerability re-
port is checked to ensure it complies with the rules of engagement. If the vulnerability report is
not compliant, the researcher is notified and no further processing is performed. Typically, bug
bounty platforms apply penalties13 for reports that do not comply with the rules of engagement,
as a means to drive down the number of invalid reports. Next, the vulnerability report is com-
pared against previous reports to determine whether it is a duplicate. Bug bounties work by only
rewarding the first finder of a vulnerability. All future reports that have the same root cause are
considered duplicates and receive no reward14. Provided that both of these checks are cleared,
typically the bug bounty operator attempts to reproduce the behaviour internally. As shown by
Malladi and Subramanian[14], this is an important step because of quality issues that arise from
misaligned researcher motivations. Reports may miss critical information, which requires the bug
bounty operator to ask clarifying questions and invoke the cycle of communication as shown in
figure 4.1. To avoid this situation, Bell et al.[72] suggest creating a structure in the vulnerability
report form used by security researchers. This has also further advantages such as better metrics
and keeping vulnerability reports separated[72]. Finally, if the report is a valid security vulnera-
bility, it can be filed with the organization’s internal systems used to keep track of vulnerabilities.
At this point, the researcher is notified that they have reported a valid security vulnerability, and a
reward is issued.

Public disclosure The last aspect of running a bug bounty program is public disclosure. Simi-
lar to the motivations for having a hall of fame mentioned above, security researchers typically like
to publicly disclose their report. This is another means for the security researcher to increase their
reputation. However, Laszka et al.[73] argue that public disclosure is a concern for the bug bounty
operator. Because publicly disclosing vulnerability reports gives information about the internal
security state of an organization, a bug bounty program may prohibit disclosure by specifying so
in the rules of engagement.

12 Firefox Bug Bounty Rewards, https://www.mozilla.org/en-US/security/bug-bounty/hall-of-fame, last visited on
05/24/2021

13 The Importance of Scope – Bug Bounty Hunter Methodology, https://www.bugcrowd.com/blog/
the-importance-of-scope-bug-bounty-hunter-methodology, last visited on 05/24/2021

14 Duplicate Reports, https://docs.HackerOne.com/programs/duplicate-reports.html, last visited on 05/24/2021

Bug Bounties in Enterprise IT Security 39 / 106



Chapter 4. Bug Bounties: The Crowdsourced Offensive Security Approach

Figure 4.1: Vulnerability report flow as defined for this thesis.

In their study, Laszka et al.[73] found that 38 out of 111 programs had information about public
disclosure in their rules of engagement. However, as shown in section 2.1.3, disclosure of vul-
nerabilities is a response against the insecurity of software and hardware that attempts to provide
incentives for faster patching[35]. Hence, public disclosure of vulnerabilities reported through bug
bounty programs is generally desired. Popular platforms such as HackerOne15 and Bugcrowd16

offer built-in functionality for researchers to request public disclosure, and for bug bounty opera-
tors to approve or deny them.

4.2 Metrics

As shown in section 1.1, there are a set of pre-adoption fears and post-adoption issues that prevent
some organizations from using crouwdsourced security. Al-banna et al.[8] show that one of these
post-adoption issues is the low quality of submissions. Hence, quality of vulnerability reports rep-
resents one of key metrics for measuring the effectiveness of a bug bounty program.

15 Disclosure, https://docs.HackerOne.com/hackers/disclosure.html, last visited on 05/24/2021
16 Public disclosure policy, https://researcherdocs.bugcrowd.com/docs/disclosure, last visited on 05/24/2021

Bug Bounties in Enterprise IT Security 40 / 106



Chapter 4. Bug Bounties: The Crowdsourced Offensive Security Approach

In this section, a number of metrics will be defined, that allow to measure and improve the suc-
cess of a bug bounty program. Quantitative analysis will look at the number of valid and invalid
reports. This is commonly referred to as signal to noise ratio[8] . Other metrics such as the quality
of vulnerability reports with regards to reproducibility, severity and vulnerability types are also
covered.

4.2.1 Quantitative Analysis

The most common quantitative analysis in bug bounty programs is the signal to noise ratio. As
shown by Al-banna et al.[8], this represents the ratio of valid and invalid vulnerabilities compared
to the total number of reports. Bugcrowd shows that in 2018, 30% of submissions were invalid
and accounted for noise[74]. HackerOne reported a platform-wide signal of 80% for 2018, which
means that 20% of vulnerability reports were noise17.

According to Laszka et al.[75], invalid reports are considered any type of report that is either
spam (completely irrelevant), false positive (issues that don’t exist or do not have security impact),
or reports that do not comply with the rules of engagement. Typically, invalid reports are a result
of incorrect research and lack of validation by the finder. For example, a security researcher might
run a vulnerability scanner and report the findings without manual verification. Since vulnerabil-
ity scanners commonly report false positives[76], these reports usually have an invalid outcome
during triage. Other examples of invalid reports include submissions where the security researcher
makes up false assumptions about the target application. Since filtering out noise is costly for a
bug bounty program operator, they are usually accompanied by some form of penalty. For exam-
ple, Bugcrowd applies a -1 point penalty for out of scope submissions18, and HackerOne applies
-5 points for not applicable and -10 points for spam reports19. More aggressive penalties may
drive a better signal to noise ratio, but could also result in fewer valid submissions.

Another common form of avoiding a high amount of noise, is to run a private bug bounty pro-
gram. As established in section 4.2, a private bug bounty program invites a limited number of
participants. The participants can be chosen based on their previous records of valid reports. In
figure 4.2, Zhao et al.[15] show the results of public vs private programs from data obtained by
the HackerOne bug bounty platform. As is evident, the amount of noise in private programs is
considerably less than in public programs. However, Zhao et al.[15] argue that due to the limi-
tations in using the crowd, private programs cannot produce the same results as public programs
can. Hence, the total number of valid reports is higher for public bug bounty programs.

4.2.2 Qualitative Analysis

In the qualitative analysis of vulnerability reports, the ability to clearly articulate the security
problem is analyzed. This includes describing the vulnerability root cause, providing exact re-
production steps and potentially a method for patching. As shown by Zhao et al.[15], failing to
clearly explain the vulnerability not only leads to many rounds of communication between the
whitehat hacker and bug bounty operator, but can also result in the report being marked invalid.
This process is costly for the bug bounty operator, and can result in delays while issuing a reward

17 The Hacker-Powered Security Report 2018, https://www.HackerOne.com/blog/
118-Fascinating-Facts-HackerOnes-Hacker-Powered-Security-Report-2018, last visited on 05/24/2021

18 Researcher Documentation - Reporting a bug, https://researcherdocs.bugcrowd.com/docs/reporting-a-bug, last vis-
ited on 05/24/2021

19 Report States, https://docs.HackerOne.com/programs/report-states.html, last visited on 05/24/2021

Bug Bounties in Enterprise IT Security 41 / 106



Chapter 4. Bug Bounties: The Crowdsourced Offensive Security Approach

Figure 4.2: Noise in public and private programs[15]

to the researcher.

According to Malladi and Subramanian[14], a pre-requisite for high-quality vulnerability reports
is the provision of a „proof of concept“ test case. This allows the bug bounty operator to see the
vulnerability in action, and proves its existence. Similar arguments are made by Zimmerman et
al.[77], who report that steps to reproduce and stack traces are the most useful information in bug
reports. Although Zimmerman’s study is not restricted to vulnerability reports, the same principles
apply. They found that the most severe problems encountered by developers are errors in steps to
reproduce, incomplete information, and wrong observed behaviour[77]. The results of these prob-
lems were longer times to triage the bug report, and false positives.

There are various ways to incentivize high-quality vulnerability reports. Zhao et al.[15] suggest
that instructions in the bug bounty rules of engagement can improve the quality of reports sub-
mitted by whitehat hackers. By clearing stating reporting guidelines and vulnerability types of
interest, organizations can direct finders efforts and achieve desired results. A similar argument is
given by Munaiha and Meneely[5], who noticed that overall report quality and reproducibility in-
creased when emphasized in the bounty criteria. An additional motivator for quality vulnerability
reports is higher rewards, as shown by Malladi and Subramanian[14]. This plays into the financial
incentive that is a primary driver for many whitehat hackers. By attaching the reward amount to
the quality of the vulnerability report, an increase of quality can be expected (although at a higher
cost). The same has been confirmed by Laszka et al.[75], who show that the number of invalid

Bug Bounties in Enterprise IT Security 42 / 106



Chapter 4. Bug Bounties: The Crowdsourced Offensive Security Approach

reports can be reduced by rewarding the researcher validation efforts. Since writing a good and
detailed vulnerability report requires effort, rewarding such behaviour can be traced to an increase
in vulnerability report quality.

4.2.3 Vulnerability Types and Severity

Since bug bounties utilize a large crowd that typically has a variety of skillsets, many types of
vulnerabilities are uncovered. In their empirical analysis, Zhao et al.[12] show a correlation be-
tween the size of the finder community, and the number and types of vulnerabilities found. They
also show that the top 3 vulnerability types were cross-site scripting (XSS), sql injection and logic
errors. Although cross site scripting remains the most common security problem, other top cate-
gories have changed as shown in table 4.1. This table shows the top vulnerability types reported
in the Bugcrowd[70] and HackerOne[9] bug bounty platforms.

No Bugcrowd HackerOne
1 Cross-Site Scripting (XSS) Cross-Site Scripting (XSS)
2 Improper Access Control Information Disclosure
3 Privilege Escalation Violation of Secure Design Principles
4 Open redirect Improper Authentication
5 Cross-Site Request Forgery (CSRF) Cross-Site Request Forgery (CSRF)
6 Broken Authentication & Session Manage-

ment
Open Redirect

Table 4.1: Comparison of vulnerability types on Bugcrowd and HackerOne

As shown in section 2.1.3, there are a number of ways to classify vulnerabilities. While HackerOne
uses a subset of the common weakness enumeration20 classification, Bugcrowd have created their
own classification named „Bugcrowd Vulnerabilty Rating Taxonomy“21. Whichever method of
classification is used, bug bounties typically require a means to identify the type of vulnerability
that is being reported. This helps with further actions such as triaging the vulnerability, rewarding,
remediation etc.

Similar to vulnerability type, the vulnerability severity is a critical component in bug bounties.
Generally, the amount of reward is closely tied to the severity: the higher the severity, the higher
the reward. For example, Bugcrowd22 rewards 40 reputation points for a critical vulnerability and
HackerOne offers 50 points for the same23. While monetary rewards can vary across programs,
the principle of higher severity = higher reward remains. Vulnerabilities with critical impact can
earn tens of thousands of dollars, as shown by the largest bounty ever paid by Facebook24.

One way to determine the severity of a vulnerability, is to use the CVSS25 system as shown in
section 2.1.3. HackerOne uses this method for determining the severity (and later the reward),
while Bugcrowd uses their own system severity levels of P1(critical) to P5(informational).

20 Weakness, https://docs.hackerone.com/hackers/weakness.html, last visited on 05/24/2021
21 Bugcrowd’s Vulnerability Rating Taxonomy, https://bugcrowd.com/vulnerability-rating-taxonomy, last visited on

05/24/2021
22 Getting Rewarded, https://researcherdocs.bugcrowd.com/docs/getting-rewarded, last visited on 05/24/2021
23 Effects of Bounties on Reputation, https://docs.hackerone.com/hackers/reputation.html, last visited on 05/24/2021
24 Facebook, Under Scrutiny, Pays Out Largest Bug Bounty Yet, https://www.wired.com/story/

facebook-bug-bounty-biggest-payout, last visited on 05/24/2021
25 Common Vulnerability Scoring System, https://www.first.org/cvss, last visited on 05/24/2021

Bug Bounties in Enterprise IT Security 43 / 106



Chapter 4. Bug Bounties: The Crowdsourced Offensive Security Approach

4.2.4 Reporting and Documentation

As shown in section in section 4.2.1, running a bug bounty program will result in overhead required
to manage noise. Inherently, reporting is required to measure the performance of a bug bounty
program. Apart from the quantitative metrics of section 4.2.1 and qualitative metrics of section
4.2.2, the following data points can be used to measure a bug bounty program:

1. Finder participation

2. Program response time

3. Program reward amounts

4. Coverage

1. Finder participation As shown by Zhao et al.[12], there exists a correlation between the
number of whitehat participants and the number of vulnerabilities discovered. This means that the
larger the crowd, the more vulnerabilities will be found. It can simply be measured as the number
of people who have reported at least one vulnerability. For private bug bounty programs, a differ-
entiation between the number of people who accepted an invitation and those who actually found
a vulnerability can be shown. However, as explained by Zhao et al.[12], the productivity of finders
is more important than just the plain number of reports. That is due to reports being duplicate or
invalid. As such, the productivity of whitehat hackers (in the form of signal to noise)can be taken
into account as well.

2. Program response time Another important metric for ensuring the success of a bug bounty
program is response time. As shown by Zhao et al.[15], this is considered the time to the first
response of vulnerability report, the time to triage it, and the time to issue a reward. A timely
response to a vulnerability report ensures the researcher is promptly rewarded for their efforts,
which in turns keeps them engaged and motivated. Bug bounty platforms go so far as to set re-
quirements on responsiveness for their clients. For example, HackerOne26 requires a maximum of
5 days response for first touch, a 10 days response for triage, and a reward timeline of 1 day after
triage. According to Walshe and Simpson[69], this standard is met in 97% of vulnerability reports.

3. Program reward amounts The reward amounts give great insight in the return of in-
vestment for the bug bounty program. Additionally, they serve as a means to motivate and attract
whitehat hackers, as shown in section 4.2.2. In their study, Walshe and Simpson[69] found that the
average cost of running a bug bounty program for an entire year is less than hiring two additional
software engineers. Additionally, they found that the average reward is $318, which can be used
to determine the initial reward amounts based on severity. As the program continues, the reward
amounts can be adjusted to maintain a stable cost of operation.

4. Coverage As shown by Großmann et al.[78], coverage is an important item for security
testing. The same principle applies for bug bounty programs. To ensure crowd collaboration on
all the in-scope targets, coverage must be consistently monitored and evaluated. One method to
measure coverage is to require security researchers to use a VPN and monitor all traffic. This

26 Response Standards and Targets, https://docs.hackerone.com/programs/response-target-metrics.html, last visited on
05/24/2021

Bug Bounties in Enterprise IT Security 44 / 106



Chapter 4. Bug Bounties: The Crowdsourced Offensive Security Approach

is popular method and particularly popular with bug bounty platforms, as shown by Synack’s27

LaunchPoint technology which does exactly that.

4.3 Commercial Platforms

As mentioned in section 1.1, the popularity of crowdsourced offensive security resulted in the
emergence of bug bounty platforms. These platforms act as an intermediary between the white-
hat hackers and organizations running bug bounty programs. They offer various services such as
clearing out the noise, managing the crowd, and integrations with external systems.

The biggest and oldest platforms are Bugcrowd and HackerOne, which have been mentioned
throughout this chapter. At the time of writing this thesis, other platforms found offering bug
bounty services include: Cobalt, Synack, Intigriti, Yeswehack, and Safehats.

Bugcrowd Bugcrowd was founded in 201228 and is the oldest of the platforms. At the time
of this writing, Bugcrowd offers four major solutions29: Penetration Testing, Bug Bounty, Vul-
nerability Disclosure, and Attack Surface Management. Their penetration testing offerings differ
from traditional penetration testing, because Bugcrowd uses the crowd to deliver the testing. For
bug bounty, Bugcrowd offers two types: a continuous engagement that lasts for a year, and a
time-based engagement. Bugcrowd also offers various integrations30, such as Jira, Github, Trello,
Slack, and an API for custom integrations. Finally, as mentioned in section 2.1.3, Bugcrowd uses
their own vulnerability rating taxonomy for deciding the vulnerability severity.

HackerOne HackerOne was also founded in 201231 shortly after Bugcrowd. They currently
offer three products32: Vulnerability Disclosure, Bug Bounty, and Penetration Testing. Similar to
Bugcrowd, the penetration testing offering is delivered via the crowd, while still supporting com-
pliance checks. HackerOne’s bug bounty offering includes private programs, public programs,
time-bound and virtual/live hacking events. Apart from their API, HackerOne also a range of in-
tegrations33 including Jira, Bugzilla, Github, GitLab, Slack, Zendesk etc. As is evident, there are
many similarities between HackerOne and Bugcrowd. The only difference from the comparison in
this thesis is the severity calculation for which HackerOne34 uses CVSS instead of implementing
their own version (as did Bugcrowd).

Cobalt Cobalt was founded in 201335 and is heavily focused on penetration testing. Their
products36 include a number of penetration testing variants such as: web application pentest, mo-
bile application pentest, external network pentest etc. As in the other platforms, the penetration
testing is performed by a crowd member. However, contrary to Bugcrowd and HackerOne where
anyone can sign up, Cobalt requires to have an invitation. Additionally, Cobalt performs heavy
vetting of its members and has an initial probation period before allowing full membership.

27 Synack Coverage Analytics, https://www.synack.com/wp-content/uploads/2017/11/
Synack-Coverage-Analytics-11-2017-WEB.pdf, last visited on 05/24/2021

28 Bugcrowd LinkedIn Page, https://www.linkedin.com/company/bugcrowd/about, last visited on 05/24/2021
29 Bugcrowd Solutions, https://www.bugcrowd.com/solutions, last visited on 05/24/2021
30 Bugcrowd Integrations, https://www.bugcrowd.com/products/platform/integrations, last visited on 05/24/2021
31 HackerOne LinkedIn Page, https://www.linkedin.com/company/hackerone/about, last visited on 05/24/2021
32 HackerOne offerings, https://www.hackerone.com/product/overview, last visited on 05/24/2021
33 HackerOne Integrations, https://docs.hackerone.com/programs.html, last visited on 05/24/2021
34 HackerOne Severity, https://docs.hackerone.com/programs/severity.html, last visited on 05/24/2021
35 Cobalt LinkedIn Page, https://www.linkedin.com/company/cobalt_io/about, last visited on 05/24/2021
36 Cobalt products, https://cobalt.io/services/pentest-service, last visited on 05/24/2021

Bug Bounties in Enterprise IT Security 45 / 106



Chapter 4. Bug Bounties: The Crowdsourced Offensive Security Approach

Synack Founded in 201337, Synack offers a wide range of services. In addition to bug bounty
and crowd-delivered penetration testing services, Synack also offers security testing through an
AI-powered scanning tool38. Similar to Cobalt, Synack restricts crowd membership. To become a
Synack member, whitehat hackers have to apply and provide personal details. A skills assessment
is also performed prior to allowing membership.

Intigriti Intigriti is a european based bug bounty platform founded in 201639. Currently,
Intigritis only offering appears to be bug bounty. They do not have restrictions for becoming a
member of the crowd, but bug bounty operators can set up restrictions on who can participate in
their programs.

Yeswehack Yeswehack is another european based bug bounty platform, founded in 201340.
Similar to Intigriti, the only offering of Yeswehack is bug bounty. The different bug bounty
program types supported are: private program, public program, and on-site events. Yeswehack
advertises full compliance with the european general data protection regulation(GDPR), and holds
certifications such as ISO 27001.

Safehats Founded in 201241, Safehats is an indian based bug bounty platform. Their current
list of offerings42 include enterprise bug bounty, a bug bounty hackathon, a startup-focused bug
bounty program called „RISE“, and a community driven yellow pages for bug bounty programs.

As is evident, Bugcrowd and HackerOne are the largest platforms with the highest number of
programmes. The other platforms are either focused on penetration testing (Synack & Cobalt), or
bug bounty (Intigriti & Yeswehack). Table 4.2 shows the platforms and different offerings.

Platform Offerings Membership Integrations
Bugcrowd Bug Bounty

Penetration Testing
Vulnerability Disclosure
Attack Surface Manage-
ment

open yes

HackerOne Bug Bounty
Penetration Testing
Vulnerability Disclosure

open yes

Cobalt Penetration Testing invitation-based no
Synack Bug Bounty

Penetration Testing
AI-powered scanning

application-based no

Intigriti, Yeswehack, Safehats Bug Bounty open no

Table 4.2: Comparison of bug bounty platforms

37 Synack LinkedIn Page, https://www.linkedin.com/company/synack-inc-/about, last visited on 05/24/2021
38 Synack products, https://www.synack.com/products, last visited on 05/24/2021
39 Intigriti LinkedIn Page, https://www.linkedin.com/company/intigriti/about, last visited on 05/24/2021
40 Yeswehack LinkedIn Page, https://www.linkedin.com/company/yes-we-hack/about, last visited on 05/24/2021
41 Safehats LinkedIn Page, https://www.linkedin.com/company/safehats/about, last visited on 05/24/2021
42 Safehats website, https://safehats.com, last visited on 05/24/2021

Bug Bounties in Enterprise IT Security 46 / 106



Chapter 4. Bug Bounties: The Crowdsourced Offensive Security Approach

4.4 Current State of Adoption

As mentioned in the problem statement of this thesis, bug bounties have seen increasing popularity
over the years. This has resulted in an increase of adoption by organizations as well as an increase
in hacker membership. As shown by Walshe and Simpson[69], the number of launched programs
on the HackerOne platform has been trending increasingly since 2013. The depiction of this trend
is shown in figure 4.3.

Figure 4.3: Trend of programs launched on HackerOne[69]

According to HackerOne’s 2019 report[9], they serve more than 1,400 client organizations from
59 countries. This is an increase of 30% from the previous year. The United States remains the
country with the most organizations that operate a running bug bounty, but HackerOne also reports
clients from diverse countries such as Ghana, Slovakia, Aruba and Ecuador. In fact, the region with
the biggest year-over-year increase in launched programs is observed in Latin America with 41%,
followed by North America (34%), EMEA(32%), and finally APAC(30%). In a similar report,
Bugcrowd[70] shows an increase of 42% in launched programs across all regions.

Looking at the industry perspective, HackerOne[9] reports that technology companies are the
leaders in adoption and account for 60% of all active bug bounty programs. They are followed
by internet & online services with 28%, and computer software with 21%. In terms of trends,
HackerOne[9] shows the biggest year-over-year increase in federal government with 214%, fol-
lowed by automotive (113%), telecommunications (91%), consumer goods (64%), and cryptocur-
rency (64%). Bugcrowd[70] on the other hand reports their biggest increase in the financial ser-
vices industry with 71%, followed by an increase in retail with 50%, healthcare with 41%, tech-
nology with 26%, and a 13% increase in automotive industries.

Similar to the adoption of bug bounty by countries and industries, the hacker community has
also seen widespread growth. According to Bugcrowd’s „Inside the mind of a hacker“ report[71],
their community of whitehat hackers covers 6 continents and over 100 different countries. The
majority of them is located in India, followed by the United States. Similarly, HackerOne[79]
reports that 18% of their vulnerability submissions came from India, followed by United States
with 11%. They also report hacker members from countries such as Panama, New Zealand, Hun-
gary, Senegal etc. The popularity of bug bounties combined with easy participation and monetary
rewards can be considered the main driver for emerging hackers around the globe.

Despite the popularity and demonstrated effectiveness of crowdsourced offensive security, Hacker-
One[9] reports that only 7% of the world’s top companies have adopted this measure. Therefore,
this work aims to analyze the problem space of integrating bug bounties into enterprise grade se-
curity programs. Furthermore, a case study is used to show that bug bounties can be effectively
used to improve enterprise IT Security.

Bug Bounties in Enterprise IT Security 47 / 106



Chapter 4. Bug Bounties: The Crowdsourced Offensive Security Approach

4.5 Comparison Against Other Methods of Security Testing

In section 2.2, the details of penetration testing and red teaming as offensive security measures
are discussed. With this information at hand, a comparison of bug bounties against these security
testing techniques can be provided. As shown by Maillart et al.[6], running a bug bounty program
can seriously increase the number of vulnerability findings, but it comes with its own set of chal-
lenges. As such, bug bounties bring benefits and drawbacks into the offensive security toolkit of
an organization.

The benefits of bug bounties are manyfold. The most important advantage and a key difference
against other security testing methods is the large number of testers. As shown by HackerOne’s
annual report[79], they have a pool 600,000 security researchers which may be potential testers.
Typically, the active number of testers is lower than advertised, and the actual number of testers is
even lower, since this number is spread across all bug bounty programs operated by HackerOne.
Nevertheless, the number of active testers is generally higher than the number of testers typically
allocated in a penetration test..

According to Maillart et al.[6], bug bounties benefit from the engagement of a large crowd of
testers because each security researcher offers a unique set of skills. The different backgrounds of
security researchers almost always ensure the participation of an expert in the technology used by
the target. As such, vulnerabilities which are typically missed by penetration testers can be discov-
ered by bug bounty testers. The same argument is given by Magazinius et al.[7], who considers
that a large and diverse bug hunter community is able to discover more vulnerabilities, simply by
outnumbering the internal and external security teams of an organization or penetration testing
services provider.

In addition to the benefit in number of testers, bug bounties also provide a better return of in-
vestment. Due to the nature of bug bounties, which only reward valid vulnerabilities found by
the first security researcher, the cost (in form of monetary rewards) is directly correlated to the
number of vulnerabilities found. This is different compared to penetration testing and red teaming
where payment is contractually agreed upon, regardless of findings[72]. However, the pay-for-
results model could become a drawback in cases where the target has many vulnerabilities and has
had no prior testing. In this situation, the amount of vulnerabilities can quickly outgrow the cost
of a penetration test which could potentially have identified the same vulnerabilities, or at least
raised concerns about the security in general. Nevertheless, bug bounties remain a cost-effective
offensive security testing measure for most applications, and by advertising the rewards for vul-
nerabilities upfront, they are able to maintain flexibility in controlling spend.

Finally, another benefit of bug bounties is testing times. Whereas other offensive security methods
provide a picture of the security posture for a single point in time, bug bounties can run for any
duration and even indefinitely. This delivers continuous security testing against the target applica-
tion, and provides huge benefits to fast-paced organizations that deploy new functionality quickly.
Because the targets are tested all the time, a newly introduced vulnerability can be quickly and
cost-effectively identified, instead of waiting for the next penetration test cycle.

Just like bug bounties bring a lot of advantages in offensive security, there are challenges for
achieving success with them. As shown by Al-Banna et al.[8], one of the major fears of orga-
nizations is the distrust in the security testers. In penetration testing and red teaming, the testers
are employed by the security services provider and trusted individuals. Additionally, these testers
are bound to the contract and rules of engagement for the penetration test. This is different in bug
bounties, where potentially anyone can participate if the bug bounty program is open to the public.

Bug Bounties in Enterprise IT Security 48 / 106



Chapter 4. Bug Bounties: The Crowdsourced Offensive Security Approach

There are no assurances about the location, tools and skills provided by the whitehat hacker. Al-
though bug bounties have rules of engagement, there is no guarantee that bug hunters will adhere
to them, and using legal means to enforce them is challenging because the majority of testers may
live outside the country[79].

The quality of vulnerability reports received in bug bounties can also present a challenge, as shown
by Al-Banna et al.[8]. Because participation is open to anyone, the quality of testing and reporting
can differ. Furthermore, monetary incentives and the principle of rewarding only the first valid
vulnerability report, motivates security researchers to rush sending the report without taking the
proper time to verify their findings or provide a good summary. Researchers might also use an
incorrect or misleading vulnerability severity. This can happen due to not having the business
impact of the organization in mind, or trying to drive a higher reward. Finally, low quality reports
can lead to longer processing times and a higher cost of maintaining the bug bounty program.

Other challenges with bug bounties include coverage, managerial experience and internal test-
ing. Since bug bounty testers do not use a defined methodology, parts of the application might
be missed or not tested at all. This is different in penetration testing, where a specific methodol-
ogy ensures coverage of the entire target application. There is also the lack of expertise in bug
bounties, especially for organizations looking to get started with it. Since this is a relatively new
field, knowledge and capacity needs to be build within the organization. Penetration testing and
red teaming on the other hand, have been around for much longer. As such, standards, regulation
and industry have driven experience in organizations. Finally, bug bounties may not be able to test
internal networks, as testing is typically performed remotely. In comparison, security providers
often send penetration testers on site to test targets which may not be reachable from the internet.

Table 4.3 shows a comparison of bug bounties with penetration testing and red teaming. As is
evident, each has their own advantages and disadvantages. Many of the challenges with bug boun-
ties are already being addressed in current research, as shown by Malladi and Subramanian[14],
Al-Banna et al.[8] etc. Nevertheless, adoption of bug bounties remains low as shown in section
4.3, and more practical research is needed to increase usage of bug bounties in enterprise organi-
zations.

Characteristic Penetration Testing Red Teaming Bug Bounty
Number of testers few few many
Quality of reports controlled controlled uncontrolled
Management over-
head

low low high

Cost type fix fix per vulnerability
Testing duration 1-2 weeks 1 week - 6 months indefinite
Coverage full full partial
Internal testing yes yes no
Liability yes yes difficult to enforce

Table 4.3: Comparison of bug bounty against other methods of security testing

Bug Bounties in Enterprise IT Security 49 / 106



Chapter 4. Bug Bounties: The Crowdsourced Offensive Security Approach

4.6 Complementing Established Offensive Security Techniques With
Bug Bounties

After having gained an understanding on how bug bounties work, and the difference between bug
bounties and other offensive security methods, the question arises whether one can replace or com-
plement the other. This is also part of this thesis’ research questions as seen in section 1.4.

Bell et al.[72] argue that bug bounties cannot replace penetration tests, however, they can make
penetration testing more effective. Besides the benefits of crowdsourced offensive security as
mentioned in the previous sections, Bell et al. argue that penetration testing teams will have to
work much harder when the target has an active bug bounty program. Typically, penetration test-
ing providers want to have some results to show for their engagement. If their findings and report
have little material, the chances of being asked for more penetration tests in the future diminish.
It is not uncommon for penetration testing reports to include a number of low impact issues, just
for the sake of reporting[72] . This results in a bad return of investment for the organization, as
the cost for the penetration test does not change. However, when the target is actively being tested
as part of a bug bounty program, many of these low impact issues and other vulnerabilities will be
found and reported by the crowd. This leaves no easy findings for the penetration testing team to
report. As a result, the penetration testing services company will be forced to utilize more senior
staff and find harder vulnerabilities, to make sure they are providing value to the organization by
reporting them. In this way, bug bounties not only provide continual assessment and discovery of
vulnerabilities, but they also drive better value for other offensive security engagements.

A similar argument is given by Laszka et al.[75], who agree that whitehat hacker’s efforts ef-
fectively complement traditional testing such as web vulnerability scanning. They also argue that
it would be prohibitively expensive to directly employ a large and diverse number of testers, as
they appear with bug bounties. This is mainly possible because of the pay-for-results model as
described in section 4.1.3. Such statements are also observed from various industry experts43.
They argue that bug bounty is a much needed alternative and provides benefits such as in-depth
testing, something which is not common in penetration testing due to the shortage of security pro-
fessionals. However, it is emphasized that bug bounties will not replace penetration tests. Reasons
for that include coverage as discussed in section 4.5, and other vectors such as physical or social
attacks. Bug bounties typically list these types of attacks as out of scope, and focus on technical
vectors. As such, bug bounties have their own place in offensive security testing, next to penetra-
tion testing and red teaming.

Finally, the answer to research question 3 of this thesis can be provided. From the previous para-
graphs and sections, it can be concluded that crowdsourced offensive security is able to improve
and complement other offensive security methods. Bug bounties bring various advantages to secu-
rity testing, and some of its disadvantages are remediated by traditional offensive security testing.
As a result, bug bounties increase the effectiveness of penetration testing, and rightfully take their
place in an organization’s offensive security testing methods.

43 How to use bug bounties with penetration testing to bolster your app sec, https://techbeacon.com/security/
how-use-bug-bounties-penetration-testing-bolster-your-app-sec, last visited on 05/24/2021

Bug Bounties in Enterprise IT Security 50 / 106



5 Integration of Crowdsourced
Offensive Security Into Enterprise IT

In the previous chapter bug bounties have been introduced and it was shown that they effectively
complement other offensive security methods. The lack of adoption amongst enterprise organiza-
tions was also covered. The following chapter will show possibilities for integrating crowdsourced
offensive security into enterprise IT. As discussed in section 4.1.2, there are two main possibilities
for running a bug bounty program: an institutional approach where the bug bounty program is
managed in house, and using a bug bounty services provider.

When using the institutional approach, an organization must provide the rules of engagement
for the bug bounty program. These are also known as a vulnerability disclosure policy. The rules
of engagement specify various aspects of the crowdsourced offensive security efforts. These as-
pects include: how to report a vulnerability, which targets should be tested, what type of testing
is allowed, which vulnerabilities are eligible for a reward etc. The ISO 29147 standard[65] will
be referenced and analyzed in more detail during this chapter, as it is the only standard concerned
with crowdsourced offensive security in the context of this thesis.

The alternative to an institutional approach is using one of the available bug bounty service
providers. A quick introduction of these platforms was given in section 4.3. In this chapter,
guidelines for using bug bounty platforms by an enterprise organization will be provided. There
are various pros and cons when using a bug bounty platform in enterprise organizations, which
will be discussed in more detail.

By laying out the two possible approaches for integrating crowdsourced offensive security into
enterprise IT, and providing guidelines for it, this chapter will give an answer to the first research
question on possibilities for integrating crowdsourced offensive security.

5.1 Towards an Institutional Bug Bounty Program

With an institutional approach, the organization decides to take management of their bug bounty
program in their own hands. This requires the creation of rules of engagement, creating opera-
tional processes and assembling a team to manage the program. Bell et al.[72] argue that running
a bug bounty program in house not only gives ultimate control over it, but may also be cheaper if
a technical security team is already established.

As shown in section 4.1.3, typical items covered in the rules of engagement are the targets to be
tested, various restrictions and legal requirements, information about rewards and communication
requirements etc. While real attackers do not follow any rules, the concept of rules of engagement
is well established in the bug bounty community and provides a basis for participation[73].

A team for handling the daily operations needs to be established when running an institutional
bug bounty. This includes not only technical security personnel for vulnerability verification, but
also engineers that will work to fix them, support personnel and a leader to manage them. There

51



Chapter 5. Integration of Crowdsourced Offensive Security Into Enterprise IT

is also the stakeholder aspect of the program, which defines various people as stakeholders within
the organization.

Finally, this section will provide an example rules of engagement, which can as a template or
starting point for organizations to create their own version.

5.1.1 Creating the Rules of Engagement

As shown in section 4.1.3, the rules of engagement are a necessary foundation for running a bug
bounty program. Weulen Kranenbarg et al.[80] argue that it also serves as an invitation for white-
hat hackers to report any vulnerabilities they find in an organization’s assets. Generally, the rules
of engagement are the only information source for crowdsourced security testers about a particu-
lar bug bounty program. Hence, it must include all details about the bug bounty. A bug bounty
program with more specific rules of engagement tends to be more successful, as shown by Laszka
et al.[73] in their study of rules of engagement.

The ISO 29147 standard[65] suggests that at a minimum, a vulnerability disclosure policy should
include the following: how the vendor would like to be contacted, secure communication op-
tions, setting communication expectations, information that is useful in a vulnerability report, out
of scope services, and how reports are tracked. The standard also defines optional items such as
crediting the finder, coordinated public disclosure and distribution of vulnerability reports. Weulen
Kranenbarg et al.[80] further suggest that a vulnerability disclosure policy should include verbiage
to prevent unauthorized public disclosure or passing the vulnerability details to third parties. As
mentioned in section 2.1.3, part of the security community argues that disclosing vulnerabilities
publicly is the only reliable way to pressure organizations in improving their security1. To set cor-
rect expectations around this behaviour, the rules of engagements must clarify if and when public
disclosure is allowed, and how the process is coordinated.

Having these details in the rules of engagement can be beneficial to both parties involved, as it
provides certainty. For the organization, the policy provides the benefits of learning about vulner-
abilities and potential risks to their systems. For the whitehat hacker reporting the vulnerability,
it provides two main benefits: first, by acting based on the organization’s vulnerability disclosure
policy, the whitehat hacker is not acting illegally and is ensured no criminal investigation. Second,
by reporting a vulnerability as a part of a disclosure policy, the whitehat hacker may receive some
form of reward as discussed in section 4.1.3.

For enterprise organizations, this work suggests the following elements to be included in the rules
of engagement:

1. Introduction

2. Reporting a Vulnerability

3. Scope

4. Excluded Vulnerability Types

5. Testing Restrictions

1 Schneier: Full Disclosure of Security Vulnerabilities a ’Damned Good Idea, https://www.schneier.com/essays/
archives/2007/01/schneier_full_disclo.html, last visited on 05/24/2021

Bug Bounties in Enterprise IT Security 52 / 106



Chapter 5. Integration of Crowdsourced Offensive Security Into Enterprise IT

6. Geolocation Restrictions

7. Handling Vulnerability Reports on Third-Party Software

8. Hall of Fame

9. Public disclosure

1. Introduction

It is recommended to start the rules of engagement with an introduction paragraph, introducing
the bug bounty program and organization. In this paragraph, an organization can describe what
they plan to achieve with the program, and state their commitments towards crowdsourced security
researchers. This paragraph can also be used to introduce what the organization does, and why it
choses to engage crowdsourced offensive security.

The introduction segment is helpful in many ways. It shows whitehat hackers that an organi-
zation cares about security in general, and also that it is committed to work with them. It also
explains what the rules of engagement are (and what they are not), for new crowdsourced security
testers, non-security professionals and the general public interested in it.

2. Reporting a Vulnerability

This section of the rules of engagement provides guidelines on how to report a vulnerability. There
are two aspects of this process:

• Communication options for reporting a vulnerability.

• Information to be included in a vulnerability report.

Communication options for reporting a vulnerability. Communication is one of the most
important details of a vulnerability disclosure policy. As shown in section 3.3.2, a vulnerability
report as part of a bug bounty includes all necessary details to reproduce the issue. Because those
details could allow a malicious actor to abuse a vulnerability, it is important to ensure secure com-
munication. In addition to this, a vulnerability disclosure policy must also specify the available
means of communication.

As specified in the ISO 29147 standard[65], part of the minimum requirements for a vulnera-
bility disclosure policy is to specify how the vendor would like to be contacted. Typical options
for reporting a vulnerability are e-mail or completing a web form. Each has its advantages and
disadvantages which will be covered in the following sections.

For communication via email, one or multiple email addresses should be provided. The ISO
29147 standard[65] suggests to use an e-mail alias such as: security-alert@example.com, secu-
rity@example.com, secure@example.com, psirt@example.com, or csirt@example.com. Report-
ing vulnerabilities via email is a common method used in an institutional bug bounty approach. For
example, Deutsche Telekom2 requires vulnerability reports to be send to bugbounty@t-mobile.cz.
One advantage for using e-mail as the communication option is the ease of use and IT infrastruc-
ture which is generally available in enterprise organizations. This makes e-mail a preferred choice

2 Closing security gaps, https://www.telekom.com/en/corporate-responsibility/data-protection-data-security/security/
details/closing-security-gaps-360054, last visited on 05/24/2021

Bug Bounties in Enterprise IT Security 53 / 106



Chapter 5. Integration of Crowdsourced Offensive Security Into Enterprise IT

for quick setup.

In case the desired communication is via web form, a link to the submission form should be
provided. Web forms have the advantage of allowing more control over the structure of the vul-
nerability information being reported. As mentioned previously, the lack of structure in vulnera-
bility reports sent via emails is a disadvantage when compared to a web form. Since bug bounty
participation may be open to anyone, this can result in a lot of noise or vulnerability reports with
incomplete information. When using a web form, separate fields can be used for the various pieces
of information required in a vulnerability report. Some (or all) of these fields can be made manda-
tory, further enforcing structural requirement on information reported as part of a vulnerability
report.

Another form of communication that has become popular in recent years3 are platforms such
as Slack4 and Discord5. Besides real-time messaging between users, these platforms also offer
channels (essentially group conversations based on topics) for collaboration, file uploads, various
integrations with other tools etc. Therefore, it is an option that can be considered for reporting and
receiving security vulnerabilities. Compared to communication via email, this form offers a less
formal means of communication between security researchers and bug bounty operators. The real-
time aspect allows for a more fluid stream of messages, and potential disputes may be resolved
faster. This form of communication can only be effective if participants are present, therefore,
issues such as staffing the platform with security engineers must be considered. Finally, some
security engineers may prefer email, which should always be present as an option.

As mentioned before, vulnerability reports contain sensitive information which must be protected
against eavesdropping. As such, the ISO 29147 standard[65] cites that depending on the selected
communication form, a secure medium of transmission should be provided. For email, tech-
nologies such as PGP or S/MIME can be used, as shown by Garfinkel et al.[81]. Likewise, if
communication is specified via web form, it can be served over a secure connection (HTTPS).

Information to be included in a vulnerability report. Besides communication options, a
vulnerability disclosure policy should specify the pieces of information required in vulnerability
reports[65]. This information contains details about the vulnerability type, security impact, repro-
duction steps etc.

Bugcrowd provides some guidelines6 for useful information to be sent in a vulnerability report.
They suggest that the following information should be provided in a vulnerability report as part of
a bug bounty:

• Summary Title

• Technical Severity

• Vulnerability Details

– Bug URL

3 What Is Slack, and Why Do People Love It?, https://www.howtogeek.com/428046/
what-is-slack-and-why-do-people-love-it, last visited on 05/24/2021

4 Slack is where work happens, https://slack.com/intl/en-at, last visited on 05/24/2021
5 Your place to talk, https://discord.com, last visited on 05/24/2021
6 Submitting Vulnerability Using Embedded Form, https://docs.bugcrowd.com/researchers/

reporting-managing-submissions/reporting-a-bug, last visited on 05/24/2021

Bug Bounties in Enterprise IT Security 54 / 106



Chapter 5. Integration of Crowdsourced Offensive Security Into Enterprise IT

– Description

– HTTP Trace Dump

– Additional Information

– Attachments

• Email Address

• Confirmation of Agreement to Terms & Conditions

Summary Title This field is the title of the vulnerability report. It usually includes some informa-
tion about the vulnerability type and the target that is affected.

Technical Severity This field allows the whitehat hacker to provide their assessment of sever-
ity. Note that this severity assessment is from a technical standpoint, and the organization running
the bug bounty program will assess the final impact to the business. One of the rating systems
shown in section 2.1.3 can be used here, for example CVSS.

Vulnerability Details These sub-fields include the details of the vulnerability itself. The bug url
holds the URL of the target endpoint where the vulnerability has been identified. The description
field provides space for the whitehat hacker to describe the vulnerability and provide information
to reproduce for the organization. The HTTP trace dump is a field where whitehat hackers can
provide the full HTTP request/response logs which trigger the vulnerability. A field for additional
information gives the whtiehat hacker space to provide information such as tools used, the type
of browser etc. Finally, the whitehat hacker is able to attach files such as screenshots and videos
which are useful for the security team trying to reproduce the issue.

Email Address This field obtains an email address from the vulnerability reporter, for further
communication and attribution. This field can be made optional if the organization permits anony-
mous reports.

Confirmation of Agreement to Terms & Conditions The last field is a checkbox that confirms
the whitehat hacker has read and agrees to the terms & conditions of the bug bounty program. It is
recommended to make this mandatory, which then serves as a reminder that the rules of engage-
ment must be followed.

Of course this is not the only way to construct a web form for vulnerability reports. For example,
Google7 uses a form wherein a list of targets is given. The form also has fields for specifying
whether the issue is publicly known or not. Organizations are free to build and modify the form
to fit their needs, however, more information obtained during the reporting can results in less
communication required afterwards for vulnerability verification.

3. Scope

The scope section in the rules of engagement defines the exact targets for which testing is permit-
ted. This can be a single target, a list of targets, or the entire IT infrastructure of an organization. As
shown by Erbes et al.[82], the IT infrastructure in enterprises is changing rapidly. The availability
of cloud services, consumer devices and increasing cross-enterprise collaboration fundamentally
changes the traditional system of in-house IT. This has also led to an exponential growth in the

7 Report a security vulnerability, https://www.google.com/appserve/security-bugs/m2/new, last visited on 05/24/2021

Bug Bounties in Enterprise IT Security 55 / 106



Chapter 5. Integration of Crowdsourced Offensive Security Into Enterprise IT

size of IT assets owned and operated by enterprise organizations[82].

From a crowdsourced offensive security perspective, authorizing security testing on the entire
infrastructure will generally lead to more vulnerability reports[12]. There are examples of large
enterprises8 who have successfully operated bug bounties with an open scope and issued rewards
in total of millions of dollars. In this sense, an open scope means any asset owned by the or-
ganization is considered in scope. However, inviting the crowd to test any system owned by the
organization may lead to undesired results and instability. As mentioned previously, nowadays
enterprise IT infrastructures encompass a huge number of assets, some of which may not be suit-
able for crowdsourced security testing. For example, there may be legacy systems which may not
withstand security testing with modern tools. Other assets may be under active development or
waiting to undergo internal testing. If the scope definition is open and includes these assets, white-
hat hackers may find them and report valid vulnerabilities which must be rewarded. Depending
on the number of vulnerabilities, this may become exponentially more expensive than running a
traditional penetration test.

In order to direct whitehat hackers to the desired targets for crowdsourced security testing, a vul-
nerability disclosure policy should clearly specify the assets that are in-scope. As shown by Laszka
et al.[73], these statements define the exact scope of the bug bounty. This can include production
targets, staging targets or assets set up specifically for security testing. Additionally, organizations
may specify other components such as APIs, mobile and desktop applications and even physical
products if available. In general, a detailed list of in-scope targets will lead to better information
for researches and correlate to a lower number of false positive vulnerability reports[73].

There are a number of ways to define different types of targets such as: web applications, apis,
mobile applications etc. Table 5.1 shows common examples of targets listed as in-scope and their
interpretation.

Scope Meaning
www.target.com The target at www.target.com and all its paths are

in scope
*.target.com Any subdomain of target.com (including tar-

get.com itself) are in scope
api.target.com The APIs at api.target.com are in scope

https://github.com/exampleinc/target The application source code at the given link is in
scope

Android app at https://play.google.com/... The Android application found via the given link
is in scope

iOS app at https://apps.apple.com/... The iOS application found via the given link is in
scope

Target SDK The target software development kit is in scope

Table 5.1: Examples of in-scope targets for a vulnerability disclosure policy

For web targets, if a domain name is given, whitehat hackers will likely interpret that any path and
functionality within that domain is in scope for testing. If a more restrictive definition is desired,
the individual paths can be listed in the targets table. In cases where the domain is prepended by a

8 Verizon Media, PayPal, Twitter Top Bug Bounty Rankings, https://threatpost.com/
verizon-media-paypal-twitter-bug-bounty-rankings/157040, last visited on 05/24/2021

Bug Bounties in Enterprise IT Security 56 / 106



Chapter 5. Integration of Crowdsourced Offensive Security Into Enterprise IT

star (*), all subdomains of the target are considered in scope. The same interpretation of path and
functionality applies for all subdomains in this case.

If the target is open source, asking whitehat hackers to set up their own test instance can be an
effective approach with less overhead for the organization. This is also a favourable situations
since the crowd can perform whitebox testing, and list the vulnerable code. For organizations, it
is recommended to have an internal test instance for vulnerability verification.

The ISO 29147 standard[65] also recommends specifying „out of scope“ services. These are
targets for which testing is not desired, but also include other security related events such as se-
curity incidents or third party services. Out of scope services may be listed in a similar fashion to
in-scope services, by calling out explicitly that testing is not permitted. However, caution should
be taken when specifying both in-scope and out-of-scope targets, as this may lead to confusion for
targets that fall in neither category. In this situation, specific targets should be included in only one
of them, while the other category provides a statement about „everything else“. For example, if
in-scope targets have been provided, the following statement can be used to default all other assets
as out-of-scope:

„Any domain/property not listed in the in-scope targets section is considered out of
scope and should not be tested.“.

While this may be common sense, in situations where targets are specified in the out of scope
section, it should be clarified that only targets owned by the organization are considered in scope.
The following statement can be used to declare this:

„Unless listed in the out-of-scope section of this policy, all assets owned by Acme Inc.
are considered valid targets.“.

Finally, the scope section must clarify the situation for vulnerability reports on third-party systems.
Generally, active testing on third-party systems is not desired as those systems are not owned by
the bug bounty operator. Hence, no permission for testing on these systems can be provided.
Therefore, it should be clearly specified that testing third-party systems is out of scope. For situa-
tions with known vulnerabilities in third-parties or misconfigurations, it is recommended to handle
them as defined in the section on handling vulnerabilities in third-party systems below.

There could also be situations where a new vulnerability becomes public and vulnerability re-
ports from whitehat hackers immediately start to come in. While this is valuable information, it
leaves no time for the organization to patch their systems. Therefore, it is recommended to set
a patching-period delay for public vulnerabilities. For example, the vulnerability disclosure pol-
icy could state that reports for publicly disclosed vulnerabilities will not be accepted for the first
30 days after publication. This allows for ample time to patch systems, while retaining valuable
information from reports after the patching period has expired, which may find systems missed
during initial remediation.

4. Excluded Vulnerability Types

The rules of engagement also typically define a list of vulnerability types which are excluded from
the bug bounty program. There are various reasons why an organization may decide to exclude
some vulnerability types. Typically, many low impact vulnerabilities such as session-management

Bug Bounties in Enterprise IT Security 57 / 106



Chapter 5. Integration of Crowdsourced Offensive Security Into Enterprise IT

related issues are excluded. There can also be exclusions for attacks that require social engineer-
ing or a high-privileged access to succeed. Bugcrowd9 suggests that exclusions are essential to
a successful bug bounty brief and includes low impact vulnerabilities, intended functionality that
may appear vulnerable, and issues that are already known to the organization.

In their standard disclosure terms10, Bugcrowd provides a list of common non-qualifying sub-
missions types. These are vulnerability types that generally have a low impact and an organization
does not want them to be reported through their bug bounty program. Table 5.2 shows Bugcrowd’s
common list, which is a good starting point for organizations to build their own version.

Excluded Vulnerability types
Descriptive error messages (e.g. Stack Traces, application or server errors)
HTTP 404 codes/pages or other HTTP non-200 codes/pages
Banner disclosure on common/public services
Disclosure of known public files or directories, (e.g. robots.txt)
Clickjacking and issues only exploitable through clickjacking
CSRF on forms that are available to anonymous users (e.g. the contact form)
Logout Cross-Site Request Forgery (logout CSRF)
Presence of application or web browser ‘autocomplete’ or ‘save password’ functionality
Lack of Secure and HTTPOnly cookie flags
Lack of Security Speedbump when leaving the site
Weak Captcha / Captcha Bypass
Username enumeration via Login Page error message
Username enumeration via Forgot Password error message
Login or Forgot Password page brute force and account lockout not enforced
OPTIONS / TRACE HTTP method enabled
SSL Attacks such as BEAST, BREACH, Renegotiation attack
SSL Forward secrecy not enabled
SSL Insecure cipher suites
The Anti-MIME-Sniffing header X-Content-Type-Options
Missing HTTP security headers

Table 5.2: List of common non-qualifying vulnerability types by Bugcrowd11

Another common exclusion is functionality that may appear vulnerable, but works as intended.
For example, web applications that allow customization of their user interface may receive reports
for content spoofing or content injection vulnerabilities. While this may appear to be a valid vul-
nerability, in applications designed to be customized, this can be functionality that is working as
intended. To avoid confusion from whitehat hackers, such functionality should be explicitly called
out as not being a vulnerability in the context of the application.

Finally, vulnerabilities which are already known to the organization (for example due to previ-
ous penetration tests) should be excluded if possible. Excluding such issues without giving away

9 Essential to a Successful Bounty Brief: Exclusions, https://www.bugcrowd.com/blog/
exclusions-essential-to-successful-bounty-brief/, last visited on 05/24/2021

10 Bugcrowd Standard Disclosure Terms, https://www.bugcrowd.com/resource/standard-disclosure-terms, last visited
on 05/24/2021

11 Bugcrowd Common Non-qualifying Submission Types, https://www.bugcrowd.com/resource/
standard-disclosure-terms, last visited on 05/24/2021

Bug Bounties in Enterprise IT Security 58 / 106



Chapter 5. Integration of Crowdsourced Offensive Security Into Enterprise IT

too much information about the vulnerabilities may be difficult, however, it is recommended to at
least have a callout in the rules of engagement that set correct expectations with the crowd. If a
target has a high number of known vulnerabilities that have yet to be fixed, it is better to perform
a thorough remediation before engaging in crowdsourced security testing.

5. Testing Restrictions

Since a vulnerability disclosure policy is the main document for communicating the rules of en-
gagement, it needs to also contain information about restrictions. These include actions that are
not desired from the organization operating the bug bounty, and therefore, are prohibited. Disre-
garding these testing restrictions typically results in disqualification from receiving a reward for
the reported vulnerability. However, violations may also result in a ban or even legal actions from
the bug bounty operator against the reporter.

As shown by Laszka et al.[73], testing restrictions may include a number of categories such as:
restrictions for automated scanning, social engineering, denial of service attacks, interaction with
other user accounts etc.

Automated scanning Vulnerability scanners are not perfect and often report false positives,
as shown by Makino and Klyuev[83]. Combined with the ability for anyone to participate in open
participation bug bounties, there can be many false positive reports from inexperienced whitehat
hackers. This increases the noise and is generally undesired. Additionally, vulnerability scanners
themselves are noisy and inject lots of traffic into the target application. This may be undesired
when the target is a production environment or not intended to handle high traffic loads. Hence,
the permission for using automated scanning should be evaluated and specified in the vulnerability
disclosure policy.

Social engineering Social engineering is the process of manipulating people into performing
actions or divulging confidential information[84]. If this type of testing is desired, it is typically
performed by trusted individuals as part of a penetration test or red-team engagement. Hence, this
type of testing is generally excluded from crowdsourced security testing, because there is no direct
relationship between the organization and the security tester.

Denial of service Denial of service attacks are described in detail in section 2.1.6. While it
is useful information in knowing whether a target is vulnerable to denial of service attacks, it is
typically excluded in crowdsourced security testing. This is especially important when in-scope
targets are production applications, to avoid making them inaccessible to normal users while test-
ing is under way. In special cases where dedicated targets for security testing are available, denial
of service can be allowed as there is no impact if the target crashes.

Interaction with other user accounts Another typical undesired behaviour is for whitehat
hackers to interact or access legitimate user accounts. This is another problem which commonly
applies only to production systems. Because whitehat hackers are required to provide proof of
concepts for their findings, they will not shy away from accessing legitimate user’s data. This
is generally undesired by organizations, as it would result in leakage of personal information of
those users and considered an incident. Hence, this is a typical restriction as part of the rules of
engagement.

Pivoting As mentioned in section 4.5, whitehat hackers will try to find the highest impact
possible to derive a bigger reward. In this attempt, sometimes they may use a vulnerability on
one target to reach another target. This is commonly called „pivoting“[46]. In general, pivoting

Bug Bounties in Enterprise IT Security 59 / 106



Chapter 5. Integration of Crowdsourced Offensive Security Into Enterprise IT

is not a problem as long as all targets are in scope. This also provides a better picture of what
a real attacker is possible to achieve. However, organizatons may also decide to completely dis-
allow pivoting. For example, Facebook disallows exploitation of a vulnerability for any purpose
other than testing its validity12. Instead, Facebook will work internally to determine the maximum
impact an issue may have, and issues rewards according to that. Whether pivoting is allowed or
prohibited, it should be clearly called out as part of the rules of engagement. Having no statement
about pivoting may lead to different interpretations by crowdsourced security testers, and as a re-
sult, undesired behaviour of whitehat hackers.

As can be seen, there are various situations which arise during crowdsourced offensive security
testing which must be clarified. The list above is not final and does not work for every organiza-
tion. For example, there may be organizations that would like to see testing for denial of service
and understand whether they can withstand such attacks. It should be noted that many situations
may arise during testing that can be found undesired and added to these restrictions after launch-
ing the bug bounty program. The rules of engagement are not intended as a static resource, and
adaptions should be made on the go. Ideally, whitehat hackers are notified about changes through
email or other mechanisms. If this is not possible, it should be called out that rules of engagement
may change and should be frequently revisited.

6. Geolocation Restrictions

Another important aspect that should be regulated in a vulnerability disclosure policy is restric-
tions on geolocations. Theoretically, a bug bounty can be open for participation to anyone in the
world. However, bug bounties still have to abide by local and international law. There can also be
restrictions imposed by organizations themselves on who can participate. Therefore, in practice
bug bounties are often not open to everyone, since these restrictions prevent some testers from
participating.

The first and most important restriction is related to nationality of the whitehat hackers. De-
pending on the country of origin where the bug bounty operator’s headquarters are located, there
may be restrictions or sanctions imposed on other countries. This is usually regulated by law and
may cause legal issues if one does not comply. For example, the United States has imposed various
political and economical sanctions on Iran, as shown by Dizaji and Farzanegan[85]. While they
may be far from IT and bug bounties, laws still prohibit any type of economical trade with citizens
from said country. Hence, a bug bounty operator will want to notify potential whitehat hackers
from these countries in advance, by having such a clause in their rules of engagement.

A second but also important restriction typically imposed by bug bounty operators is to disqualify
their own employees from participation. There are good reasons for doing this: to prevent conflict
of interest. As mentioned previously, some organizations can spend millions in rewards which
results in quite a lucrative income for bug bounty hunters. In fact, HackerOne reports that seven
members of their crowd have surpassed $1 million dollars in rewards13. Therefore, in order to pre-
vent employees from intentionally writing insecure software, they are not allowed to participate in
the bug bounty program of their employer. Employees would also have an advantage against the
larger crowd, profiting from internal information and access to internal systems.

12 Facebook whitehat, https://www.facebook.com/whitehat, last visited on 05/24/2021
13 Congratulations, Cosmin! The world’s seventh million-dollar bug bounty hacker, https://www.hackerone.com/blog/

congratulations-cosmin-worlds-seventh-million-dollar-bug-bounty-hacker, last visited on 05/24/2021

Bug Bounties in Enterprise IT Security 60 / 106



Chapter 5. Integration of Crowdsourced Offensive Security Into Enterprise IT

Finally, bug bounty operators may decide to restrict participation of whitehat hackers under the le-
gal minimum age of employment. This is because monetary rewards are seen as payment against
„work“ done by security researchers, and many countries specify a minimum age for legal em-
ployment[86].

A vulnerability disclosure policy typically also includes a legal clause. This is used to specify
details about legal claims and issues. The most important callout on a legal clause is the commit-
ment to not legally persecute whitehat hackers, which perform security testing as part of, and in
compliance with the rules dictated in this vulnerability disclosure policy. The legal clause may
also callout whitehat hackers to remember to abide by their local laws, as well as the laws of the
country hosting the bug bounty operator. Finally, another legal aspect that is covered in this sec-
tion, is the right to modify the rules of engagement at any time. Some organizations even reserve
the right to not issue rewards. Of course this may shy away whitehat hackers, as they are not en-
sured payment for their work. As long as this is called out on the vulnerability disclosure policy,
whitehat hackers have access to this information and can decide whether or not they would like to
participate.

7. Handling Vulnerability Reports on Third-Party Software

As shown by Al-Banna et al.[8], organizations have increasingly complex systems which rely on
many external services such as cloud services, external APIs and programming libraries, etc. Nat-
urally, vulnerabilities in these services will be identified as part of running a bug bounty program.
As shown in the scope section, typically all third-party systems are excluded from the bug bounty
program by declaring them out of scope. However, this could lead to having the organization’s
data stored on vulnerable (third-party) systems. For example, a third-party services provider may
have already released a patch which needs to be installed. Or it may be that the third-party doesn’t
have enough resources and takes a long time to patch the vulnerability, putting the security of the
organization’s data into their hands.

For organizations running a bug bounty program, an internal process should be defined that han-
dles vulnerability reports on third-party systems. For vulnerabilities where remediation can be
performed by the organization itself (for example, by applying a patch), it can be handled via the
standard process as defined in section 6.4. If the vulnerability must be patched by the third-party,
a process for communicating and tracking the issue should be specified. Finally, if the vulnerable
third-party is not able to remediate the issue, alternative options for removing the risk should be
identified.

8. Hall of Fame

As shown by Bell et al.[72], crediting the whitehat hacker for having identified a valid vulnerabil-
ity is a very important aspect of a bug bounty program. Credits are typically listed in a „Hall of
Fame“, which is a publicly accessible resource. The format for crediting a whitehat hacker can be
just the name of the finder, a twitter handle, a link to a website or more. Some organizations also
list the date of the finding, and the vulnerability type14.

Malladi and Subramanian[14] argue that a hall of fame can act as a motivator for whitehat hacker
participation. By listing new comers but also top contributors, an organization’s bug bounty pro-
gram becomes attractive for testers motivated by fame and reputation. Some organizations even

14 Deutsche Telekom Acknowledgements, https://www.telekom.com/en/corporate-responsibility/
data-protection-data-security/security/details/acknowledgements-358300, last visited on 05/24/2021

Bug Bounties in Enterprise IT Security 61 / 106



Chapter 5. Integration of Crowdsourced Offensive Security Into Enterprise IT

gamify their hall of fame and have special leaderboards, such as Github15. Crediting researchers
and managing reputation is also a common part of bug bounty platforms, which use this informa-
tion for inviting testers to private bug bounty programs16.

Picture 5.1 shows the hall of fame for F-Secure’s bug bounty program17.

Figure 5.1: F-Secure Hall of Fame

9. Public Disclosure

As mentioned in section 2.1.3, public disclosure of vulnerabilities is a hot debate in the cybersecu-
rity community. Whereas one side argues that public disclosure of vulnerabilities helps to improve
the security of software, the other side argues that by making such information public, it benefits
attackers and results in higher risk of exploitation[35].

By default, it is recommended that public disclosure of vulnerabilities as part of a bug bounty
is not allowed. Instead, coordinated vulnerability disclosure should be used. As shown by Weulen
Kranenbarg et al.[80], coordinated vulnerability disclosure is a well-known practice for finding and
patching flaws in IT-systems. Using this practice, a vulnerability reported by a whitehat hacker
will only be disclosed after it has been patched.

Laszka et al.[73] argue that organizations are generally not in favour of public disclosure. By
publicly disclosing the vulnerabilities reported to them, organizations are concerned about the
perceived image of their internal systems and application security. In their study of 111 rules of

15 GitHub Security Bug Bounty, https://bounty.github.com, last visited on 05/24/2021
16 Reputation, Signal & Impact Calculation Enhancements, https://www.hackerone.com/blog/

reputation-signal-impact-enhancements-whats-changing-and-why-it-matters, last visited on 05/24/2021
17 Hall of Fame, https://www.f-secure.com/en/business/programs/vulnerability-reward-program/hall-of-fame, last vis-

ited on 05/24/2021

Bug Bounties in Enterprise IT Security 62 / 106



Chapter 5. Integration of Crowdsourced Offensive Security Into Enterprise IT

engagement for bug bounty programs, only 38 programs had statements about public disclosure in
their vulnerability disclosure policy. However, there may be cases where public disclosure is de-
sired and beneficial. For example, immediately disclosing a vulnerability in open source software
could speed up remediation through community contributions.

Regardless of whether public disclosure is allowed or not, it should be specified in a vulnera-
bility disclosure policy to set correct expectations with the researchers. It is recommended to have
a statement related to coordinated disclosure, with an emphasis on a case by case analysis. As
shown by Ruohonen et al.[11], only relatively few whitehat hackers like to disclose their vulner-
ability reports. This can be traced back to the desire of keeping methods and tools secret, for
the competitive advantage against other whitehat hackers. With this mind, the expected number
of requests for public disclosure of vulnerability reports should be low. As such, a case by case
analysis would be feasible. Such an approach also gives the organization time to analyze and think
of possible outcomes of disclosing a vulnerability report. There are situations where a public dis-
closure may be beneficial and show that the organization cares about security.

Finally, the rules of engagement should provide a statement to clarify consequences of breaching
public disclosure requirements. Typically, breaching any part of the rules of engagement results
in (at least) disqualification from receiving a bounty. If the breach is severe, disqualification from
further participation in the bug bounty program may also be issued. To this end, it is important to
clearly specify what constitutes a breach of public disclosure requirements, and the consequences
of doing so.

5.1.2 Assembling the Operations Team

With the rules of engagement defined, an organization needs to assemble the team for managing
the bug bounty program. It is important to have enough resources for managing the daily opera-
tions. As shown by Bell et al.[72], a timely response to vulnerability reports is a key success factor
for running a bug bounty program, therefore, these response capabilities need to be established.
There are also other activities that require staffing dedicated personnel who is committed for suc-
cessfully running a bug bounty program.

As shown in section 4.1.3, there are various activities during a bug bounty program lifecycle.
The main responsibility and majority of efforts are with the security team that handles vulnerabil-
ity reports. This is usually a team of security engineers that work to reproduce and validate the
vulnerabilities reported by whitehat hackers. Typically, they also handle communication with se-
curity researchers, to let them know about the status of their reports. Although it is recommended
to have a team of security engineers responding to vulnerability reports, it can be staffed with a
single person. One key aspect is to maintain a timely response to vulnerability reports and not
let crowdsourced security testers wait for days. If response times are long, whitehat hackers may
become discouraged from further testing. Another critical aspect is the technical competence of
the security team. While many whitehat hackers will report low or trivial issues, there are also
highly skilled testers that will report very technical vulnerabilities. If the security team is unable
to understand the report and continues to push the whitehat hacker for additional information, it
may appear that the organization is not investing in their team’s security skillset.

Other typical members of the organization that have responsibilities and (indirectly) affect the
success of the bug bounty program are product managers and engineers. A product manager takes
reported vulnerabilities which have been verified from the security team, and schedules patches
for them. Software engineers will then work to patch the vulnerabilities and notify the security
team of the remediation. It is important that both product managers and engineers are involved in

Bug Bounties in Enterprise IT Security 63 / 106



Chapter 5. Integration of Crowdsourced Offensive Security Into Enterprise IT

the bug bounty program. They should at least understand what the program is, what purpose it has
and when their involvement is required. This helps to have a smooth transition from vulnerability
report to a ticket in the bug tracking system of the enterprise organization.

As can be seen, multiple organization members have different roles and require a tight commu-
nication loop. Therefore, it is recommended to have a role which coordinates all members and
ensures the success of the bug bounty program. This can be accomplished by creating a „bug
bounty coordinator“ role, or using a generic project manager. The bug bounty coordinator would
ensure the contribution of individual members, the communication flow, and general health of the
bug bounty program. Additionally, as shown by Zhao et al.[15], whitehat hackers need incentives
to keep testing for security vulnerabilities. This could be handled by the bug bounty coordinator,
or it could be separated into its own role. Finally, a member of the organization needs to handle
support-related issues, when whitehat hackers have problems with accessing infrastructure or sim-
ilar issues.

Finally, the process for issuing rewards needs to be staffed. This includes activities such as: de-
ciding the reward type, determining the amount, delivering the reward, and updating the hall of
fame (if available). If monetary rewards are awarded, it is recommended to create a reward panel.
Since determining the amount of the reward requires technical as well as business knowledge, a
panel which consists of members from different stakeholder departments will be best positioned
to make such a decision. A good example of reward decision management via a panel is Google’s
Vulnerability Reward Program18. Once the amount has been decided, the reward must be deliv-
ered. Typically, this responsibility is left to the finance department, and the bug bounty coordinator
role manages the process. The bug bounty coordinator is also responsible for updating and main-
taining the „hall of fame“ list, which credits researchers who have found a valid vulnerability as
part of the bug bounty program.

5.1.3 Specifying Stakeholders and Accountability

Determining the stakeholders and accountable personnel within an organization is another aspect
required for running a bug bounty program. Stakeholders are people who have an interest in the
success of the program, and may be accountable for it. Obvious stakeholders of crowdsourced
offensive security are the CISO of the organization, as well as the bug bounty coordinator. These
roles work closely together to achieve the goals and purpose of the bug bounty program.

Besides the previously mentioned organization members that are involved in running and man-
aging a bug bounty program, other stakeholders may include departments such as legal, public
relations and finance. This is because bug bounty management requires interaction with external
entities, and from their perspective all interactions are observed on behalf of the company as a
whole. Involving the legal department is especially important, as they handle the liability parts in
case a whitehat hacker breaks the rules of engagement and accesses sensitive information. The
legal clause section of the vulnerability disclosure policy is typically handled by the legal depart-
ment. They should also be consulted about restrictions as described in section 5.1.1. The other
non-obvious stakeholder is public relations or the marketing team. As shown by Bell et al.[72], the
inherently public nature of bug bounty programs can result in positive as well as negative PR, and
it mostly depends on the testers’s interaction experience with the bug bounty program[72]. For
example, a popular videoconferencing platform called „Zoom“ received a lot of negative media

18 Google Vulnerability Reward Program (VRP) Rules, https://www.google.com/about/appsecurity/reward-program,
last visited on 05/24/2021

Bug Bounties in Enterprise IT Security 64 / 106



Chapter 5. Integration of Crowdsourced Offensive Security Into Enterprise IT

attention after a researcher publicly disclosed a critical vulnerability19. However, simply having
a vulnerability disclosure policy can result in good publicity[80]. It shows that an organization
cares about its security, but also about security researchers that are trying to help them improve
it. The existence of the ISO 29147 standard[65] and the fact that even the Pentagon[87] success-
fully ran a bug bounty program are good indicators of the positive aspect of bug bounty programs.
Finally, the finance department is considered a stakeholder since they secure the budget and are
responsible for delivering monetary rewards. As mentioned previously, the logistics of delivering
the money to various countries in the world may be tricky, and requires close cooperation with
financial experts.

This thesis suggests that members from following departments should be considered when de-
termining the stakeholders of an organization’s bug bounty program:

1. Chief Information Security Officer

2. Product Manager

3. Engineering

4. Bug Bounty Coordinator

5. Finance

6. Marketing

7. Legal

5.1.4 Rules of Engagement Example

In this section, an example for rules of engagement is provided. It acts as a template that may be
used as a basis for building their own version. As discussed in section 5.1, a vulnerability disclo-
sure policy invites whitehat hackers to report vulnerabilities they find to the organization. For this
process to work, rules must be clearly stated and advertised. In the following paragraphs, sample
content for each part of the rules of engagement as described in section 5.1 will be provided.

Introduction An introduction paragraph explains what the policy is for:

Acme Inc. is committed to resolving vulnerabilities to meet the needs of its customers
and the broader technology community. This document describes Acme Inc.’s policy
for receiving reports related to potential security vulnerabilities in its products and
services.

Reporting a vulnerability This section lists the communication options and process as defined
in section 5.1.4. Text colored in blue represents links to URLs and should be adjusted by the
organization as needed:

If you have identified a vulnerability, we ask you to file a vulnerability report by com-
pleting this form or sending an email to security@acmeinc.com. Please include all

19 Bug bounty platforms buy researcher silence, violate labor laws, critics say, https://www.csoonline.com/
article/3535888/bug-bounty-platforms-buy-researcher-silence-violate-labor-laws-critics-say.html, last visited on
05/24/2021

Bug Bounties in Enterprise IT Security 65 / 106



Chapter 5. Integration of Crowdsourced Offensive Security Into Enterprise IT

necessary details for us to be able to understand the impact and reproduce the vulner-
ability. We also ask you to provide and justify a CVSS score for the vulnerability. If
we have trouble understanding or reproducing the vulnerability, we will contact you
via email.

To ensure confidentiality, we encourage you to encrypt all communication to us via
e-mail. We are equipped to receive messages encrypted using S/MIME. A copy of the
certificate that can be used to encrypt your email can be found here.

The email address security@acmeinc.com is intended for reporting security vulnera-
bilities ONLY. For technical support matters, please use the respective help pages of
the product or service in question.

After a vulnerability has been reported, Acme Inc. will acknowledge the receipt within
3 business days. To the best of our ability, we will work to confirm the existence of the
vulnerability and initiate remediation. Acme Inc. commits to a transparent process
and will update you on the status of the vulnerability as needed, but certainly when it
has been remediated.

Scope The targets which are eligible for testing:

This policy applies to the following target systems and services owned by Acme Inc.:

1. *.acmeinc.com

2. www.acmeinc-staging.com

3. api.acmeinc-staging.com

4. Acme Inc. Android application [link]

5. Acme Inc. Ios Application [link]

Any target not listed above should be considered out of scope for the purposes of this
bug bounty program, thus any testing of these targets is prohibited.

Excluded Vulnerability Types A list of typically excluded vulnerability types. The list should
be modified and adapted based on the needs of the targets and organization’s security program.

The following vulnerability types are specifically excluded from the bug bounty pro-
gram:

• Descriptive error messages (e.g. Stack Traces, application or server errors)

• HTTP 404 codes/pages or other HTTP non-200 codes/pages

• Banner disclosure on common/public services

• Disclosure of known public files or directories, (e.g. robots.txt)

• Clickjacking and issues only exploitable through clickjacking

• CSRF on forms that are available to anonymous users (e.g. the contact form)

• Logout Cross-Site Request Forgery (logout CSRF)

• Presence of application or web browser ‘autocomplete’ or ‘save password’
functionality

Bug Bounties in Enterprise IT Security 66 / 106



Chapter 5. Integration of Crowdsourced Offensive Security Into Enterprise IT

• Lack of Secure and HTTPOnly cookie flags

• Lack of Security Speedbump when leaving the site

• Weak Captcha / Captcha Bypass

• Username enumeration via Login Page error message

• Username enumeration via Forgot Password error message

• Login or Forgot Password page brute force and account lockout not enforced

• OPTIONS / TRACE HTTP method enabled

• SSL Attacks such as BEAST, BREACH, Renegotiation attack

• SSL Forward secrecy not enabled

• SSL Insecure cipher suites

• The Anti-MIME-Sniffing header X-Content-Type-Options

• Missing HTTP security headers

Restrictions Defines the various restrictions of the vulnerability disclosure policy:

Any services not explicitly listed in the in-scope section of this policy are considered
out of scope, and testing on these targets is prohibited. Any active research and test-
ing on out-of-scope targets is considered a violation of this policy. If it is unclear
whether a particular system falls within the scope of this policy, please contact us
first at security@acmeinc.com.

In addition to the excluded targets and services, the following actions are prohib-
ited while testing as part of this vulnerability disclosure policy:

1. Social Engineering

2. Physical attacks against Acme Inc. infrastructure

3. Denial of service attacks

4. Automated scanning

5. Interaction with legitimate user data

Finally, Acme Inc. excludes the following individuals from participating in this vul-
nerability disclosure program:

1. Individuals residing in a sanctioned country designed as such by local or inter-
national law

2. Employees and contractors of Acme Inc.

3. Individuals under the age of 18

Vulnerabilities on third-party software This section handles the situation when vulnerabili-
ties have been identified in third-party software used by the organization:

Acme Inc. uses various services and products from third parties providers. Please
note that third-party systems are not covered by this policy and active testing cannot
be authorized. Any vulnerabilities identified in third-party systems are not considered
in scope as part of this vulnerability disclosure policy. We ask that you report any

Bug Bounties in Enterprise IT Security 67 / 106



Chapter 5. Integration of Crowdsourced Offensive Security Into Enterprise IT

identified vulnerabilities directly to the third party.

For recently disclosed vulnerabilities on software used by Acme Inc., this policy ap-
plies a „patching period“ delay. As such, reports for recently disclosed vulnerabilities
will not be accepted until 30 days since the initial disclosure have passed.

Hall of Fame This section is used to credit whitehat hackers for finding valid vulnerabilities:

Acme Inc. would like to thank anyone for participating in our bug bounty program.
We acknowledge the hard work and responsible behaviour of the security community.
Visit the following page for a list of individual contributors. If you have found and
reported a valid vulnerability, our team will automatically add your contribution to
the hall of fame.

Public disclosure This section handles requests to publicly disclose reported vulnerabilities:

Acme Inc. is committed to the protection of customer data. To that end, any unau-
thorized disclosure of vulnerability information to the public will be considered a
violation of this policy. If you would like to publicly disclose a vulnerability, explicit
permission is required by contacting security@acmeinc.com. Public disclosure re-
quests will be evaluated on a case-by-case basis and the full contents of the writeup
must be provided ahead of disclosure.

Legal notice This section covers the legal aspects of running the bug bounty program, taken
from academic research and public examples20. It should be adjusted and adapted to the organiza-
tion’s needs:

To encourage responsible disclosure, we will not pursue civil action or initiate a com-
plaint to law enforcement for security research and vulnerability disclosure activities
conducted in consistence with all this policy guidelines. We consider security re-
search and vulnerability disclosure activities conducted in consistence with this pol-
icy and guidelines „authorized“ conduct under the Computer Fraud and Abuse Act,
the DMCA and applicable anti-hacking laws such as Cal. Penal Code 502(c). We
waive any DMCA claim against you for circumventing the technological measures we
have used to protect the applications in scope.

Please understand that if your security research involves the networks, systems, in-
formation, applications, products, or services of another party (which is not us), that
third party may determine whether to pursue legal action. We cannot and do not au-
thorize security research in the name of other entities.

You are expected, as always, to comply with all applicable laws.

20 Template 2: Explicit safe harbor without good faith violations, https://github.com/EdOverflow/legal-bug-bounty/
blob/master/templates/safe_harbor.md, last visited on 05/24/2021

Bug Bounties in Enterprise IT Security 68 / 106



Chapter 5. Integration of Crowdsourced Offensive Security Into Enterprise IT

5.2 Using a Bug Bounty Platform

The alternative to the institutional approach is using one of the available bug bounty services plat-
forms. As shown in section 4.3, there are a number of providers in the market with different
offerings and platforms. The obvious advantage of using a bug bounty platform is to benefit from
platform functionality such as integration tools, crowd management, reward delivery etc. Further-
more, these third party providers already have established communities of whitehat hackers which
are ready for testing an organization’s targets[72]. If triage services are purchased, these platforms
can also filter out most of the noise that comes from invalid reports, effectively reducing the effort
on the organization side. However, Bell et al.[72] argue that using a bug bounty platform comes
at the cost of losing control. They say that outsourcing the bug bounty program means that others
will be representing and making decisions about the organization’s security. Additionally, the third
party will have knowledge of vulnerabilities and internal security, making them a liability for the
organization.

The first step for using a bug bounty platform is to pick the right vendor. As shown in section
4.3, certain vendors have better dispositions for running certain types of testing. For example, if
the goal is to test a large scope of targets using a wide pool of testers, Bugcrowd and HackerOne
are favorites due to their large crowds. For targets which require trusted whitehat hackers and
tight control over the testing process, Synack and Cobalt are providers with a focus in this area.
Some vendors may also have limitations that would prevent enrolling certain targets. For example,
production targets may have monitoring tools in place which would raise alerts of an attack while
crowdsourced testing is being performed. This requires the vendor to have a vpn or proxy service,
to separate and whitelist traffic generated from the bug bounty program. Vendors that cannot fulfil
this requirement can be disqualified immediately. To properly decide the best vendor, a selection
based on a set of criteria should be performed. Some useful criteria when selecting a bug bounty
vendor are:

1. Product offerings (private programs, public programs, crowd-sourced penetration testing)

2. Services offerings (triage service, retest service, reward delivery, crowd management)

3. Integrations (api, slack, jira)

4. Platform functionality (notifications, alerts, reporting, analytics)

5. Cost

It is recommended to add additional criteria which is specific to the business impact of the targets.
The personnel involved in the criteria selection and final decision should be the stakeholders as
mentioned in section 5.1.7. Additional personnel can be included as needed.

Once the vendor has been selected, they should be tested for their performance by running a
trial. This can be a time-bound private bug bounty program with a limited number of testers. It
is recommended to select a target which is easily accessible and requires little setup to run the
bug bounty program. More detailed instructions about picking the right target are given in section
6.2.1. If financially possible, it is recommended to run a trial program with multiple vendors. This
allows for direct comparison of performance, and can be included in the vendor selection criteria.
When running a trial program, this thesis suggests to consider the following performance metrics:

1. Effort required to enrol targets.

a) How easy can targets be added and removed?

Bug Bounties in Enterprise IT Security 69 / 106



Chapter 5. Integration of Crowdsourced Offensive Security Into Enterprise IT

b) How are rules of engagement managed for each target?

2. Platform functionality and integrations.

a) Is the platform intuitive to work with?

b) Do all advertised integrations work as expected?

3. Speed and professionalism in services delivery.

a) Are services completed in time?

b) Is the team professional and capable?

4. Crowd performance and behaviour.

a) Are whitehat hackers finding interesting vulnerabilities?

b) Are whitehat hackers staying within scope and following the rules of engagement?

5. Cost

a) What is the cost for using the platform and its services?

b) Are there minimum requirements for reward amounts?

If the trial run is successful and the vendor performs at the expected level, they can be fully on-
boarded. This includes actions such as: setting up a target enrolment process, specifying points of
contact, reward guidelines, signing contract etc.

Enrolment process Since enterprise organizations typically will enrol more than one target, a
process of enrolment needs to be defined. It should be clarified with the vendor how targets can be
added and removed to the platform, and how rules of engagement are managed. It is particularly
important for exclusions and restrictions to be set on a per-target basis, since targets may have
different requirements. If multiple targets use the same restrictions, one option is to create a base
„restrictions and exclusions“ segment, where individual per-target items can be added as needed.

Point of contact Since using a bug bounty platform is a partnership, ongoing communication
is a key success factor. Each side should specify the main point of contact and set up an ongoing
cadence of meetings. There are a number of actions within the bug bounty platform which require
input from the organization. For example, sometimes the business impact is not clear and a mem-
ber of the organization’s security team needs to make that call. Also, unless agreed otherwise, the
normal process for deciding the reward amount and issuing the reward within the platform is left
to the organization running the program.

Reward guidelines Typically, reward amounts are advertised in the rules of engagement. This
is an additional item that needs to be synchronized with the bug bounty platform vendor. It is
important that rewards can be advertised on a per-target basis, since not every target has the same
impact to the business. In case there are a high number of targets, it is recommended to separate
them into categories and advertise rewards for each category separately.

After onboarding has been completed and testing is under way, it is recommended for an orga-
nization to monitor the performance metrics and activity of the crowd. As mentioned in section
5.1.7, there are various ways to incentivize the crowd and direct their testing efforts. Typically,
bug bounty platforms have dedicated personnel for managing the crowd and will work with the
organization to achieve the best performance.

Bug Bounties in Enterprise IT Security 70 / 106



6 Improving Enterprise IT Security
With Crowdsourced Offensive Security

In the previous chapter, two options for integrating crowdsourced offensive security in enterprise
IT have been presented. It was shown that with an institutional approach, it is necessary to cre-
ate rules of engagement for the bug bounty program. The individual rules were discussed, and a
template is provided which can be used and modified by enterprise organizations. When using a
bug bounty platform, the advantages and disadvantages were discussed, along with guidelines for
selecting a vendor.

In this chapter, it will be shown how enterprise IT Security can be improved by using crowd-
sourced offensive security. As shown by Bell et al.[72], running a bug bounty program requires
careful consideration of aspects such as staffing, rules of engagement, processing reports, issuing
rewards, etc. This chapter will offer guidelines for these aspects from an enterprise perspective,
and show the value added by crowdsourced offensive security.

As shown in section 4.2, metrics play an important role in measuring the success of a bug bounty
program. Quantitative analysis such as the signal-to-noise ratio provide insight into the value
generated by vulnerability reports in comparison to the effort required to manage it. Qualitative
metrics on the other hand deal with accuracy of vulnerability reports, and efforts required to un-
derstand the root cause. These and other metrics need to be measured and analyzed to improve the
effectiveness of the bug bounty program.

Another important detail is selecting and preparing targets for crowdsourced security testing. As
shown in section 5.1.1, not every target is ready to be tested using bug bounty, and an enrolment
process is required to select which ones are appropriate. Additionally, certain targets such as non-
production ones are generally safer to test via the crowd. In either case, a target should be prepared
for crowdsourced testing and requires maintenance as testing commences.

Finally, vulnerability reports must be received and processed. This includes actions such as filter-
ing out invalid reports, verifying vulnerabilities by reproducing them, deciding and issuing rewards
etc. All of these processes enable an enterprise organization to utilize crowdsourced offensive se-
curity for improving their overall system security.

6.1 Defining Success Metrics

This section is going to define success metrics that need to be measured and monitored when run-
ning a bug bounty program. As shown by Ransome et al.[88], defining success metrics is a critical
component in software security which tracks costs and provide significant help in various return
of investment calculations. For bug bounties, some of these metrics have been defined in section
4.2, such as the signal-to-noise ratio. However, other metrics can be of interest. For example, the
total number of vulnerability reports and total reward amount can give an idea on return of invest-
ment compared to penetration testing. Another example is to look at the most common types of
vulnerabilities reported, which may give indication on weaknesses in certain areas of development.

71



Chapter 6. Improving Enterprise IT Security With Crowdsourced Offensive Security

This work suggests the following metrics to be defined and measured as part of running a bug
bounty program:

1. Total number of vulnerability reports

2. Signal-to-noise ratio

3. Average communication messages per report

4. Total amount of rewards

5. Average amount of reward

6. Average time to reward

7. Average time to fix

8. Number of unique participants

9. Number of rewarded participants

10. Top vulnerability categories

11. Total enrolled applications

Each of these metrics is defined in the paragraphs below, and a formula for measuring them is
given.

1. Total number of vulnerability reports This metrics records the total number of vulner-
ability reports against the target, regardless of the outcome. It serves as an indicator of the crowd’s
interest in a target, and the amount of testing being performed against it. This metric can be used
to direct crowd efforts against desired targets, by modifying the rules of engagement as shown in
section 5.1.1.

Total vulnerability reports = count(vulnerability reports)

2. Signal-to-noise ratio As defined in section 4.2.1, the signal and noise ratios represent the
ratio of valid and invalid vulnerabilities compared to the total number of reports:

signal =
valid reports
total reports

⇥ 100 noise =
invalid reports
total reports

⇥ 100

These are considered some of the main health metrics of a bug bounty program, showing the
actual value gained and overhead. If there is a high percentage of noise, it could mean that white-
hat hackers are not motivated correctly to submit quality reports, or that the rules of engagement
are confusing. Generally, an organization should attempt to increase the signal and decrease the
noise as much as possible, to achieve maximum productivity with little overhead.

3. Average communication messages per report The average communication messages is
a metric that shows the amount of back and forth between the whitehat hacker and triaging team.
This metric indicates the effort required to verify the vulnerability reports. Generally, a higher
number indicates that researchers are not reporting all the necessary details, which could be a
result of bad communication in the rules of engagement or inappropriate design of vulnerability
submission form.

Bug Bounties in Enterprise IT Security 72 / 106



Chapter 6. Improving Enterprise IT Security With Crowdsourced Offensive Security

Average communication effort =
sum(vulnerability reports)

(total reports)

4. Total amount of rewards The total amount of rewards is simply the sum of all individ-
ual rewards issued as part of the bug bounty program. It shows the value gained and can be a
good metric to compare against results and cost of other offensive security testing. Additionally,
this metric can be associated with the signal metric of the bug bounty program, to understand the
return of investment in terms of vulnerabilities identified for the cost incurred.

Total amount of rewards = sum(individual rewards)

5. Average amount of rewards As the name implies, this metric is the average amount of re-
ward issued for valid vulnerabilities. This can be an important metric when calculating forecasts
in terms of costs and annual budgets. Additionally, the average reward is typically published by
bug bounty platforms such as Bugcrowd[70] and HackerOne[9]. In order to get the attention of
the whitehat hackers, it is recommended to have an average reward similar to the bug bounty plat-
forms, and advertise the reward to the crowd.

Average reward =
(total rewards)
(total reports)

6. Average time to reward This metric calculates the average time required to issue a reward
for a vulnerability report. It is calculated from the moment the vulnerability report is sent, to the
moment it is verified and a reward is attached to it. Apart from the valuable information on speed
of vulnerability verification by security engineers, it is highly recommended to publicly advertise
this metric as it sets expectations with the crowd around waiting.

Average time to reward =
sum(time to reward valid vulnerabilities)

(total reports)

7. Average time to fix In this metric, the average time required to remediate a vulnerability is
measured. It is calculated from the moment the vulnerability report is verified and passed to the
appropriate team, to the moment it has been remediated and deployed. This is a crucial measure-
ment and not only shows the speed of improving the security of an enterprise organization, but
keeping the value low will also result in less duplicate submissions and as a result, a more en-
gaged crowd of testers.

Average time to fix =
sum(time to remediate valid vulnerabilities)

(total reports)

8. Number of unique participants The number of unique participants is a great metric to un-
derstand the diversity and size of the crowd taking part in the bug bounty program. Generally,
this number is desired to be as high as possible. As shown in section 4.2.2, there are various
ways to incentivize participation which leads to increase this number. For retaining participants,
previously mentioned metrics such as the average time to reward and average reward amount are
important.

Unique participants = count(individual participants)

9. Number of rewarded participants This metric will show the number of participants that
have reported at least one valid vulnerability and received a reward for it. The importance of this
number is for general crowd health, and making sure that whitehat hackers are benefiting from the
bug bounty program as is the organization. After all, crowdsourced offensive security relies on

Bug Bounties in Enterprise IT Security 73 / 106



Chapter 6. Improving Enterprise IT Security With Crowdsourced Offensive Security

a healthy and participating crowd to contribute with their security testing, and without return of
investment participants will leave quickly.

Rewarded participants = count(individual participants rewarded)

10. Top vulnerability categories By looking at the top types of vulnerabilities being reported, a
general feel for weaknesses in development can be identified. This could allow organizations to
better understand their strengths and weaknesses in IT Security, and work on mitigation strategies.
For example, if many client-side (valid) vulnerabilities are being reported, it could indicate that
developers need better training on that front. Or if the bug bounty programs identifies a lot of
sensitive information exposed, the attack surface needs to be better managed.

Top vulnerability categories = count(vulnerability reports per category)

11. Total number of enrolled targets As mentioned in section 5.1.1, enterprise organizations
typically have a rapidly changing IT infrastructure with many potential targets. Ideally, all of
these targets are put in scope for the bug bounty program, and scrutinized by crowdsourced se-
curity testing. However, section 5.1.1 also clarified why some targets may have challenges with
this type of testing and are left out. By measuring the targets which have been enrolled in the bug
bounty program of an enterprise organization, an overall picture of security testing coverage by
the crowd can be obtained. This metric can also serve to set internal goals for target enrolment by
the organization. Since enterprise organizations may have many smaller independent departments,
the bug bounty program must be advertised internally for them to join. Some of the metrics men-
tioned in this section can help to achieve this, and as a result, increase coverage of crowdsourced
security testing within the organization.

Total number of enrolled targets = count(number of targets)

These metrics should provide a good baseline for understanding the health and progress made
by a bug bounty program. Additional metrics can be added or particular ones can be removed if
an organization is not interested in that number.

It is also recommended to track trends in these metrics, as they can provide valuable insights.
For example, a decrease of a particular vulnerability category can hint at improvements being
made in the security training of engineers. Increases in the number of participants show a greater
interest in the bug bounty program, possibly as a result of a successful marketing campaign.

6.2 Selecting and Preparing Targets for Testing

As established in section 5.1.1, not every target is suited for crowdsourced security testing. For
example, legacy systems may not be able to withstand against modern security testing tools and
crash. Also, crowdsourced security testing on targets without any kind of prior security testing
could result in a high number of discovered vulnerabilities, and as a result, much higher cost than
other security testing methods. Therefore, a selection process is required which will serve two
main purposes: selecting appropriate targets for crowdsourced security testing, and determining
whether a target is ready for it.

The selection process will find suitable targets for crowdsourced security testing within an en-
terprise organization. It takes into account a number of factors such as whether prior testing has
been conducted, what was the result of prior security testing, can the target be reached from the

Bug Bounties in Enterprise IT Security 74 / 106



Chapter 6. Improving Enterprise IT Security With Crowdsourced Offensive Security

internet, is it a production or staging environment etc. The selection process can be used when
creating a bug bounty program for the first time, or when crowd engagement starts to drop and
fresh targets need to be introduced. Section 6.2.1 will provide details on how the selection process
works.

Once a target has been selected for crowdsourced security testing, it must be prepared for the
upcoming test and maintained during testing. Preparation actions include things such as: deploy-
ing a testing instance, creating test credentials, populating test data etc. Some of these actions may
need to be repeated while testing is under way. For example, more test credentials may be required
because of interest by whitehat hackers, or the target must be reset and cleaned up from time to
time. Section 6.2.2 and 6.2.3 will go into details for these processes.

6.2.1 Selecting the Appropriate Targets for Crowdsourced Testing

As established in section 4.2, bug bounties effectively complement other security testing methods
such as penetration testing. Hence, this and other factors need to be considered when deciding on
targets for crowdsourced security testing. Figure 6.1 shows a recommended process for selecting
targets to be added to a bug bounty program. The external nature of whitehat hackers in crowd-

Figure 6.1: Target selection process

sourced security testing requires the target to be reachable from the internet. If the target requires
access to the internal work, it is not a good candidate for this type of testing. Because the target is
internal, it is not exposed to external attacks as other targets are. Hence, traditional security testing
such as penetration testing and red team engagement may suffice in this scenario.

Another reason to exclude a target from crowdsourced security testing is if it was not assessed
before using other offensive security testing methods. As shown in section 5.1.1, such a target

Bug Bounties in Enterprise IT Security 75 / 106



Chapter 6. Improving Enterprise IT Security With Crowdsourced Offensive Security

may contain a high number of vulnerabilities and result in exponentially higher cost compared to
penetration testing. Prior security testing may also identify issues that need to be considered when
security testing is performed, such as managing credentials for login.

If the target is a production environment, crowdsourced security testing may result in disruption
of normal business continuity. Because they are not bound to a testing methodology, whitehat
hackers will test any functionality and fill out any form. This may result in an increase of false
positive requests to the business and disrupt or delay legitimate ones. There are ways to mitigate
these issues which are shown in the following section.

Finally, some targets may have high confidentiality requirements such military systems or crit-
ical infrastructure. Knowledge of the existence of these systems or public access may provide real
threat actors an opportunity to investigate and analyse the systems. For these targets, alternative
offensive security testing methods should be considered.

6.2.2 Preparing the Target for Testing

Preparing a target for crowdsourced security testing is of similar importance as selecting the ap-
propriate target. After a target has been selected, necessary preparations should be made before
going live. This should include at least the following actions:

• Deploy a test instance (if possible)

• Prepare testing credentials

• Prepare test data

Deploy a test instance (if possible) As shown by Schanes et al.[89], security testing in large IT
infrastructures is commonly done on test environments. While this may have limitations and not
fully emulate operational environments, there are also benefits. First, when using a test environ-
ment there is no impact if the target crashes and goes offline. As such, denial of service testing can
be included in scope. Additionally, credentials can be more easily managed in test environments,
and the instance can be reset if something goes wrong. A test environment has also the benefit of
being decoupled from (sensitive) production data in case whitehat hackers find critical vulnerabil-
ities. Of course there is additional management overhead when setting up a separate instance just
for security testing, and there are cases when this is not possible at all.

Prepare testing credentials To achieve the most coverage, testing credentials should be provided
for whitehat hackers. If the target allows self-signup, then there is no need to create credentials.
However, there are cases where where registering is not possible due to it being disabled, request-
ing a credit card or social security number etc. In these situations it is beneficial to directly provide
credentials to the crowd. Distribution of them can be done by the support representative, and the
process for requesting credentials can be stated in the disclosure policy. For targets which require
multiple roles, a set of credentials for each role should be provided. Again, the goal is to al-
low whitehat hackers to test all available functionality for security vulnerabilities. This increases
coverage from the organizaiton perspective, and also provides more attack surface for whitehat
hackers to find vulnerabilities and get paid for their efforts.

Prepare test data As has been established, interaction with real customer data is generally unde-
sired. Therefore, if possible the target should be populated with test data for security testing. Test
data provides a clean separation and enables security testing without disturbing legimiate users.

Bug Bounties in Enterprise IT Security 76 / 106



Chapter 6. Improving Enterprise IT Security With Crowdsourced Offensive Security

For example, if the target is a hotel booking system, then a test hotel should be established for
security testing. When the target is a test environment, testing data may be required for whitehat
hackers to be able to interact with and test all functionality.

Additional preparations such as the ability to reset the test environment may be useful. The or-
ganization can also decide to involve the marketing team and advertise the scope increase, which
picks the crowd’s attention back to the program.

6.2.3 Maintaining the Target Being Tested

As testing by whitehat hackers is under way, various issues can arise that must be repaired. There-
fore, a target tested by bug bounty should be maintained regularly. One such issue may be invalid
data stored by the crowd. Because the number of testers is large and many of them use automation
tools, the test instance can grow large with dummy data. Hence, regular cleanup is recommended.

As has been established, the target may also crash during testing. Therefore, having monitor-
ing systems that raise alerts should be considered as part of target maintenance. For production
systems, such monitoring may already exist and the bug bounty operator only requires to subscribe
to those notifications. If no such mechanism exists, it is recommended to create one.

Target maintenance is also considered resetting existing credentials and creating new ones for
distribution. In the previous section it was shown why credentials are important. Since a large set
of whitehat hackers will be engaged in testing the target, many of them will require credentials.
Others will stop testing the target after some time, and those credentials can be recycled for new
testers.

6.3 Launching the Bug Bounty Program

With rules of engagement in place and targets selected, the bug bounty program can be officially
launched. This can be as simple as publishing the rules of engagement and enabling receipt of
vulnerability reports. However, it may make sense to include the marketing team and advertise
the launch of the program to attract whitehat hackers. This is especially true for institutional bug
bounty programs. When using a bug bounty services provider, typically a process for launching a
program and inviting security testers is already established.

As shown by Maillart et al.[6], launching a bug bounty program will result in an initial spike
of vulnerability reports. The same is reported in practice by large organizations such as Yelp1,
who experienced a large volume of new reports in the first few days after the public launch. To
provide a good first impression and maintain researcher satisfaction, this work suggests to have
at least two dedicated security engineers for the first two weeks. If a bug bounty coordinator is
appointed, they should also be fully allocated to the success of the program in this initial period.
This helps to ensure operational processes are successfully executed and potential issues resolved.

After the initial spike of vulnerability reports, the bug bounty program will begin to stabilise
in terms of work overhead. The next phase can be seen as a learning period, where the bug
bounty management team shall closely observe how operational processes are functioning, if
crowdsourced security testers are reporting issues etc. The learning period will also allow se-

1 First 100 Days of Yelp’s Public Bug Bounty Program, https://engineeringblog.yelp.com/2016/12/
100-days-public-bug-bounty-program.html, last visited on 05/24/2021

Bug Bounties in Enterprise IT Security 77 / 106



Chapter 6. Improving Enterprise IT Security With Crowdsourced Offensive Security

curity engineers to get used to the process. Observations throughout this period may identify
process improvements for efficiency, such as certain tools to use during vulnerability triage. There
may also be opportunities to improve the rules of engagement, by excluding certain vulnerability
types which are being reported as false positives. It is recommended to make observations and
improvements throughout the lifecycle of the bug bounty program, however, the initial period will
be more intensive. As the program matures and the organization gains experience, a normal oper-
ating mode will become standard.

As defined in section 6.1, metrics should be measured to ensure the success of the bug bounty
program. This work recommends that measuring these metrics begins after the initial spike of
vulnerability reports. Because the initial volume is not representative of the normal workload
throughout the bug bounty program, it is generally not of interest with regards to success met-
rics. Of course, an organization can decide to measure everything and observe the success of the
preparation for the launch. It is important to be aware that if metrics are collected from the start,
a longer period of time will be required to gain a true picture of the data. Finally, the process for
collecting these metrics must be defined. Generally, the bug tracking system used to maintain valid
vulnerabilities can also be used to extract these metrics. However, if it does not have all necessary
capabilities, alternatives should be taken into consideration. Collecting the metrics manually will
likely result in high overhead and may be subject to errors or process failures.

Finally, an organization should be prepared to temporarily pause the bug bounty program. This can
happen for a number of reasons. For example, testing by the crowd may disrupt normal business
operations or prevent them completely. An organization may also identify systematic vulnerabil-
ities in their systems, and may decide to pause and evaluate the next steps. The decision to pause
the program will likely result in dissatisfaction with the crowd, since it will prevent them from
continuing testing after having invested time to get familiar with the targets. Therefore, it is im-
portant to have good communication. This work recommends that the following actions are taken
if a bug bounty program is temporarily suspended:

1. Update the rules of engagement and state the program is pausing.

2. Disable receipt of vulnerability reports if possible.

3. Message each existing participant.

Updating the rules of engagement will ensure that new participants are aware of the situation.
However, existing participants will typically read the rules only once, and then focus on testing.
Therefore, it is recommended to also notify all existing participants. It is also important to state
the reason for the temporary suspension, and provide a date for the program restart. If such a date
cannot be provided, a date for the next communication should be given. This helps to set correct
expectations with the whitehat hackers. Finally, all existing vulnerability reports should be triaged
and rewarded. Because those vulnerability reports were submitted when the bug bounty program
was live, they should be handled accordingly. This information should also be accompanied in the
messaging that goes to the crowd, to ensure they will be compensated for the work they have done.

6.4 Processing Vulnerability Reports

Receiving and processing vulnerability reports is one of the main activities when running a bug
bounty program, as established in section 4.1.3. This includes activities such as verifying validity
of vulnerability reports, issuing rewards, as well as maintaining communication with the reporter.

Bug Bounties in Enterprise IT Security 78 / 106



Chapter 6. Improving Enterprise IT Security With Crowdsourced Offensive Security

As shown in section 5.1.1, there are a number of ways to receive vulnerability reports. One
common approach is to use an email address and request whitehat hackers to submit a report via
email. Another approach is use to use a submission form which has the advantage of defining
a structure. By requesting whitehat hackers to fill all fields of the form, information required to
process the report can be obtained in a desired format.

By now it has been established that bug bounty programs receive many reports which are in-
valid[15]. Hence, it is needed to verify the validity of them. Typically, this includes reproducing
the researcher claims and assessing whether it actually is a vulnerability (that is, where it has se-
curity impact). This process filters invalid reports and effectively the noise of the program.

An important aspect in handling vulnerability reports is communication with the vulnerability
finder. In order to avoid confusions and researchers asking for an update of their report, a steady
and transparent communication stream should be maintained. As shown by Malladi and Subrama-
nian[14], transparency and responsiveness are amongst the key factors for building trust with the
whitehat hacker community.

6.4.1 Triaging Vulnerability Reports

Once a vulnerability has been reported, it must be verified for validity. As can be seen above, this
typically includes reproducing the vulnerability and determining whether it has security impact.
This is typically the responsibility of security engineers involved with the bug bounty program.

In section 4.1.3, the typical flow of a vulnerability report as part of a bug bounty program is
shown. It includes the following activities:

1. Check if the vulnerability report is in scope

2. Check if the same vulnerability has already been reported

3. Check if the vulnerability report is a valid security issue

4. Reproduce the claims in the vulnerability report

The first three activities are also known as filtering out the noise or invalid reports. As established
in section 4.1.3, these are reports which are completely irrelevant, false positives or out of scope
for the bug bounty program. There are various reasons why crowdsourced security testing is ac-
companied with invalid vulnerability reports: incorrect research, lack of validation by the finder
etc. Filtering out invalid reports can be time consuming, which is why bug bounty platforms typ-
ically apply penalties for them2. When enterprise organizations use a bug bounty platform, they
can purchase triage services3 which encompass submission processing, and as part of it clear out
the noise. In an institutional approach, organizations must handle this process internally.

Once a vulnerability report passes the initial noise filter, its claims need to be verified by the bug
bounty operator. This includes following the steps provided by the whitehat hacker, and checking
if the results match their claims. The verification process can further identify invalid reports, if
the claims are false or the results have no security impact. If the claims are verified and indeed a
security issue is identified, the vulnerability can be filed with the internal bug tracking software of

2 Report States, https://docs.HackerOne.com/programs/report-states.html, last visited on 05/24/2021
3 HackerOne Services, https://www.hackerone.com/services, last visited on 05/24/2021

Bug Bounties in Enterprise IT Security 79 / 106



Chapter 6. Improving Enterprise IT Security With Crowdsourced Offensive Security

the organization.

In the following sections, each of these activities will be described in more detail. Typically,
all these activities are performed by security engineers. Triaging vulnerability reports as part of a
bug bounty program requires IT Security skillsets, even for filtering out noise. That is because an
inexperienced person may discard valid vulnerabilities as noise, resulting in the loss of value and
risking exposure of the target organization.

1. Check if the vulnerability report in scope. This check confirms whether the vulnerability
report complies with rules of engagement. This requires performing two sub-checks: check if
the target is in scope, and check if the vulnerability type is allowed. Checking whether the target
is in scope is done by comparing the target of the vulnerability report with the in-scope targets.
This is a fast process and therefore suggested to be done in the beginning. If the check fails, the
vulnerability can be discarded and the reporter notified. However, there are also situations when
this check is more time consuming. For example, if the scope of the bug bounty program allows
reports on any assets owned by the organization, the security engineer performing this check must
first ensure whether the target is owned by the organization or not. Another situation may be an
out-of-scope report by a whitehat hacker who is simply acting responsibly, which should be ac-
knowledged. If the target check is passed, the vulnerability type must be identified and compared
against the excluded vulnerability types as specified in the rules of engagement. Determining the
vulnerability type is easy, since whitehat hackers typically use it to claim security impact. The
comparison against the list of excluded vulnerabilities is also a fast process, and allows to easily
discard vulnerabilities which are not desired.

2. Check if the vulnerability has already been reported. While duplicate vulnerability re-
ports are not necessarily noise, they do not bring additional value to the bug bounty operator.
Hence, they are considered noise. Generally, comparing a vulnerability report against previous
report is a fast process. However, if a large number of vulnerability reports have been received in
the past, the time required to check them can increase drastically. Another factor is the number of
reported vulnerabilities which have not been patched yet. If the number is high, there will be more
duplicate reports which are noise for the organization and generally result in dissatisfaction with
the crowd. Finally, sometimes the same vulnerability may get rewarded multiple times. For ex-
ample, if a vulnerability has been remediated as a result of a previous report, but has appeared due
to a regression, it should be rewarded as a new finding. Another example is if a whitehat hacker
has found a bypass for a previously fixed vulnerability, it should not be treated as a duplicate. A
good rule to follow is asking the question whether the vulnerability report provides value to the
organization. In this situation, without the vulnerability report for the reappearance or bypass of
the (previously fixed) vulnerability, the organization would not have known about it. Hence, this
should be considered a valid vulnerability and rewarded accordingly.

Check if report is invalid. As has been established, some vulnerability reports are simply spam
and provide no useful information. In order to determine this, a security engineer needs to read
and understand the whole report. Therefore, the time required to perform this action may vary de-
pending on the length of the vulnerability report. An invalid vulnerability report can be discarded,
however, the reporter should be notified about it. Generally, crowdsourced security testers will not
submit spam vulnerability reports for malicious reasons. Instead, it is much more likely that they
do not understand the application, or lack the relevant security experience. If possible, a quality
score should be maintained for each report. This allows to estimate the likelihood of a report’s
validity based on the history of the reporter. Bug bounty platforms generally have this built in
their platforms, and profit from a large history of reports across their programs. They also publish

Bug Bounties in Enterprise IT Security 80 / 106



Chapter 6. Improving Enterprise IT Security With Crowdsourced Offensive Security

lists of top whitehat hackers, which can be used by an organization to determine report accuracy.

Check if report is reproducible. Finally, if all previous checks have passed, a vulnerability must
be reproduced. For reproduction, security engineers will use information provided by whitehat
hackers to recreate the vulnerability internally. This is a time consuming process and may have a
number of outcomes. For example, there are situations when incomplete information is provided
by the reporter. This leads to an unsuccessful attempt at reproducing the claim by the security
engineers, and they must communicate with the whitehat hacker to ask for additional information.
This situation will also add overhead to the next time a security engineer will attempt to reproduce
the report. That is because the context around the vulnerability needs to be rebuilt, and the claims
reverified . The importance of collecting as much information as possible during the initial report-
ing is emphasized in section 5.1.1. An additional situation may arise when reproduction results in
discarding the vulnerability report. This may happen if whitehat hackers make wrong assumptions
about particular functionality. For example, a security tester may change security settings on their
account, and later report a vulnerability claiming they found a weakness. These situations may be
time consuming if the tester fails to report all details, and security engineers attempt to reproduce
a false claim. Sometimes it may require research on the security engineer’s behalf to understand
what is causing the false alarm with the whitehat hackers. In these situations, security engineers
must communicate and explain why the vulnerability report has limited or no impact, and as a re-
sult, it does not qualify for a bug bounty. At last, if the vulnerability is reproduced and the claims
are found to be true, it can be filed with the internal bug tracking software of the organization.
Additionally, the process for issuing a reward can be initiated.

In public bug bounty programs there may be a lot of incoming vulnerability reports. Therefore,
organizational activities such as prioritizing and resource allocation are needed. In institutional
bug bounty programs this may be a difficult task without support by proper software. On the other
hand, bug bounty platforms usually have this built in and provide functionality such as sorting,
searching, altering on old reports etc.

As can be seen, processing reports can be a time consuming process that scales with the num-
ber of incoming submissions. When enterprise organizations use a bug bounty platform, they can
purchase triage services which help to deal with such a scaling workload. In an institutional ap-
proach, organizations must handle this process internally. In section 4.2, a number of ways to
incentivize high quality reports have been shown. Zhao et al.[15] suggest that clearer instructions
in the rules of engagement can improve the quality of submitted vulnerability reports. Malladi
and Subramanian[14] suggest that a higher reward for high-quality reports will drive results due to
the financial motivation of security testers. Another form of reminding the crowdsourced security
testers is to implement a „speedbumb“ before they are able to file a report. This can be used to
remind the security tester that the rules of engagement must be followed. Other measures could
be providing an example report, placeholder text in the report form, or educational material such
as blog posts or videos.

Another possibility is to keep the bug bounty program as invite-only, and allow participation only
to selected individuals. This is a common approach for lowering noise in bug bounty platforms4.
In an institutional approach, the lack of historical information about whitehat hacker quality his-
tory makes running a private bug bounty program harder. Instead of this approach, organizations
may have two options at disposal: run a public program without rewards and a private program

4 Reducing Noise in Crowdsourced Security, https://www.bugcrowd.com/blog/
reducing-noise-in-crowdsourced-security, last visited on 05/24/2021

Bug Bounties in Enterprise IT Security 81 / 106



Chapter 6. Improving Enterprise IT Security With Crowdsourced Offensive Security

with rewards simultaneously, and only invite researchers with a history of good quality reports to
the private program. The second option is to look at the history of whitehat hacker’s report quality,
and prioritize reports from higher quality researchers. This however creates a problem of duplicate
checking, where a new researcher’s report may get delayed and known good researchers may get
rewarded for duplicate reports.

6.4.2 Issuing Rewards

For triaged vulnerability reports which result in valid security issues and are the first of its kind,
rewards must be issued according to the rules of engagement. For this process, the vulnerability
severity must be evaluated first. Afterwards, an appropriate reward amount can be determined and
transferred to the reporter.

As shown in section 4.2.3, two popular methods for determining the severity is the CVSS sys-
tem and Bugcrowd’s vulnerability rating taxonomy5. CVSS6 is a universal scoring system that
produces a numeric value representative of the severity of a vulnerability. It contains three types
of scores: base score, temporal score and environmental score. As shown by Munaiah and Me-
neely[5], temporal and environmental scores are rarely used in practice. Hence, for the purpose of
rating a vulnerability as part of a bug bounty program, the base score will likely suffice. The base
score is made up of a number of metrics, which are then used in the base score equation to obtain
the severity of a vulnerability. The metrics are grouped by different aspects of the vulnerability,
and each metric has a list of possible values as shown in figure 6.2.

Figure 6.2: CVSS Base Score Metrics

For calculating the score, a CVSS calculator7 can be used. An example calculation for a reflected
XSS vulnerability is shown in figure 6.3. CVSS scores can be converted to a simple system which
has only "Low", "Medium", and "High" ranking. This can be useful for determining the reward
amount when using reward ranges as shown below. NVD8 provides a table which can be used to
convert base scores into the respective ranking.

5 Bugcrowd’s Vulnerability Rating Taxonomy, https://bugcrowd.com/vulnerability-rating-taxonomy, last visited on
05/24/2021

6 Common Vulnerability Scoring System SIG, https://www.first.org/cvss, last visited on 05/24/2021
7 Common Vulnerability Scoring System Version 3.0 Calculator, https://www.first.org/cvss/calculator/3.0, last visited

on 05/24/2021
8 Vulnerability Metrics, https://nvd.nist.gov/vuln-metrics/cvss, last visited on 05/24/2021

Bug Bounties in Enterprise IT Security 82 / 106



Chapter 6. Improving Enterprise IT Security With Crowdsourced Offensive Security

The alternative is to use Bugcrowd’s vulnerability rating taxonomy13. Bugcrowd uses a simple
rating system where vulnerabilities can be one of the following severities:

• Critical (P1)

• High (P2)

• Medium (P3)

• Low (P4)

• Informational (P5)

Figure 6.3: CVSS Base Score XSS Example

Bugcrowd’s vulnerability rating taxonomy is an attempt to streamline and set expectations for
both whitehat hackers and bug bounty operators around severity of reported vulnerabilities. They
acknowledge9 that it serves as a base priority, and can be adjusted depending on other factors
which may affect severity. It classifies vulnerabilities in categories, subcategories and variants. For
each entry, Bugcrowd provides a pre-set severity value. There are also a number of vulnerability
types classified as „Varies“, which means that the technical severity should be evaluated on a case
by case basis. The technical severity for an SQL injection according to Bugcrowd’s vulnerability
rating taxonomy is shown in figure 6.4

Figure 6.4: Bugcrowd Vulnerability Rating Taxonomy SQL Injection Severity

Once the vulnerability has been rated with a severity, a reward amount can be decided. There are
several ways to select an appropriate reward for a valid vulnerability. For example, in their rules
of engagement10 Facebook commits to a minimum of $500 reward without information for higher

9 Usage guide, https://bugcrowd.com/vulnerability-rating-taxonomy, last visited on 05/24/2021
10 Facebook Whitehat, https://www.facebook.com/whitehat, last visited on 05/24/2021

Bug Bounties in Enterprise IT Security 83 / 106



Chapter 6. Improving Enterprise IT Security With Crowdsourced Offensive Security

severities. On the other hand, Google provides top level rewards for some vulnerability categories
and reward ranges for others11.

A good starting point for determining reward ranges is the Bugcrowd vulnerability pricing model12.
They suggest to set reward ranges based on previous testing performed on a target. Table 6.1 shows
these suggestions, which are based on Bugcrowd’s own vulnerability rating taxonomy.

Security Maturity Model
Target P4 P3 P2 P2
Untested Target $125 400−600 1, 000−1,200 1, 750−2,000
Moderately Tested Target $150 600−750 1, 500−1,800 3, 100−3,500
Well Tested Target $200 750−1,000 1, 800−2,100 4, 500−5,000
Well Hardened Target $300 1, 000−1,250 2, 100−2,500 7, 500−10,000
Well Hardened Thick Client
Binary / Embedded Devices

$500 1, 500−2,000 4, 500−5,000 $10,000-20,000+

Table 6.1: Bugcrowd Suggested Reward Ranges

Another factor that may impact the decision on reward ranges is the available budget for the bug
bounty program. If the budget is low, it is suggested to start with lower reward ranges and see
the crowd’s interest. Reward ranges can always be increased if little testing is being done by the
crowd, but lowering reward ranges will likely result in dissatisfaction. It is also recommended to
advertise reward ranges in the rules of engagement, to set researcher’s expectations on amounts
they may receive for valid vulnerability reports.

Finally, the reward can be delivered to the reporter. Popular methods for issuing the reward are via
bank transfer and paypal. Bugcrowd13 and HackerOne14 both offer these two options. HackerOne
additionally offers payment via Bitcoin. It is also important to communicate the severity and re-
ward amount to the vulnerability reporter. This will provide insight into the decision process and
avoid confusion by the reporter. Sometimes a whitehat hacker may argue for a higher impact.
These should be evaluated and analyzed whether the reward amount should be adjusted. However,
determining the reward is usually at the bug bounty operator’s discretion, as long as it complies
with the advertised ranges in the rules of engagement.

6.4.3 Communication With the Vulnerability Finder

The importance of communication was established in section 5.1.7, which also showed the conse-
quences of miscommunication. It is therefore recommended to maintain a healthy and continuous
communication with the whitehat hacker reporting a vulnerability. If possible, an update should
be given for all actions performed in the flow for processing reports as shown in section 4.1.3.

When a vulnerability report is received, a message should be delivered to the reporter acknowl-
edging the receipt. This can be an automatic message with default content. It is also a good idea to

11 Google Vulnerability Reward Program (VRP) Rules, https://www.google.com/about/appsecurity/reward-program,
last visited on 05/24/2021

12 Bugcrowd’s Defensive Vulnerability Pricing Model, https://www.bugcrowd.com/resources/guides/
bugcrowds-defensive-vulnerability-pricing-model, last visited on 05/24/2021

13 Setting Up Payment Methods, https://docs.bugcrowd.com/researchers/payments/setting-up-payment-methods, last
visited on 05/24/2021

14 Payout Preferences, https://docs.hackerone.com/hackers/payout-methods.html, last visited on 05/24/2021

Bug Bounties in Enterprise IT Security 84 / 106



Chapter 6. Improving Enterprise IT Security With Crowdsourced Offensive Security

add information about typical response times in this message. Although this is already advertised
in the rules of engagement as shown in section 5.1.4, it helps to remind and reemphasise the same
in this automated response to the finder.

Once a submission is being processed, communication can continue based on the flow shown
in section 4.1.3. For vulnerability reports which are out of scope, a message should notify the
researcher about the outcome. It is also recommended to remind the reporter about the scope of
the bug bounty program. Similarly, for duplicate reports a message of the outcome should be sent.
If possible, some information about the original report should be provided to remove doubt and
increase transparency.

If a submission is not reproducible by the security engineer, a message should be sent to the re-
porter asking for clarification. It is important to provide as much details as possible, and pinpoint
exactly where the reproduction fails. In a similar fashion to how vulnerabilities are reported by the
crowd, the security engineer working to verify the report should provide their steps of action taken
and the results obtained. Screenshots and videos can help to clarify the situation. Additionally, it
is recommended to ask the whitehat hacker to retry the vulnerability on a newly created account,
to avoid some false positives related to misconfigurations. For submissions which are not appli-
cable or have no security impact, it is recommended to send a message explaining the security
engineer’s take on the vulnerability. It is important to clarify the situation, but never take things
as final. Instead, a chance should be given to the reporter to explain their claims. As has been es-
tablished, crowdsourced security testers have a diverse skillset, and it could very well be possible
that the security engineer lacks expertise to understand the issue. If the whitehat hacker can prove
their claims, the vulnerability report should be revised by senior security experts if possible.

Just as security engineers may lack experience in some vulnerability types, the same applies for
crowdsourced testers. There can be situations where a whitehat hacker reports a vulnerability
and firmly claims it is valid, even if in reality it has no security impact. In this instance, com-
munication can go back and forth many times, taking time away from security engineers. When
appropriate, security engineers should end this communication cycle by sending one final mes-
sage. This message should explain once more why the vulnerability report is not considered valid,
and also explain that no further communication related to this matter will be performed.

Finally, as shown by Bell et al.[72], fostering relationships through respectful communication is
one of the key success factors of a bug bounty program. This includes prompt responses and keep-
ing the whitehat hacker informed throughout the process of vulnerability verification. It should
also be noted that for many of the reporters, english may not be their first language. Hence,
respectful and clear communication should be a top priority for any bug bounty operator.

6.5 Risk Mitigation Through Crowdsourced Offensive Security

After having defined the processes for launching and successfully running a bug bounty program,
this section will show that enterprise IT Security can improve by leveraging crowdsourced security
testing. Specifically, insight into speed of vulnerability discovery, remediation, and retesting fixed
vulnerabilities will be provided.

With characteristics such as a large number of testers and different backgrounds, crowdsourced
offensive security enables a faster vulnerability discovery cycle. Accessibility to the vulnerability
finder also enables quicker remediation, while providing learning opportunities to the development
team. Finally, the participating whitehat hackers can be used to test remediations applied for valid

Bug Bounties in Enterprise IT Security 85 / 106



Chapter 6. Improving Enterprise IT Security With Crowdsourced Offensive Security

vulnerability findings. This can be used to identify potentials errors in remediation, and work to
correct them.

The purpose of this section is to show that crowdsourced offensive security is an effective measure
that can be deployed by enterprise organizations. As a result, the research question 2 of this thesis
as defined in section 1.4 will be answered.

6.5.1 Low Latency Vulnerability Detection

As established in section 4.1, one advantage of using crowdsourced security testing is the number
of testers. If participation to the bug bounty program is open to public, there can be thousands of
testers from around the world looking to find vulnerabilities in target systems[79]. Due to different
locations, timezones and working hours of security testers, for the bug bounty operator this can be
expressed as continuous security testing around the clock. It is highly likely that at any point dur-
ing the day, some whitehat hacker somewhere in the world will be looking and testing the targets
for security vulnerabilities.

One benefit of continuous security testing is faster vulnerability detection. Compared to tradi-
tional security testing which can be performed once or multiple times a year, bug bounties have a
much faster vulnerability detection time[41]. For example, HackerOne[9] reports that 77% of bug
bounty programs receive their first vulnerability report within 24 hours. The continuous aspect of
bug bounty programs also provides a lower latency for detecting vulnerabilities introduced with
new functionality or systems. As a result, the duration of exposure due to a vulnerability is much
lower.

A large amount of testers also brings a diverse set of skills with them, as shown by Maillart et
al[6]. This increases the likelyhood that some security testers are familiar with the technologies
employed by the organization. These testers can use their familiary and experience to discover
more vulnerabilities. As shown by Magazinius et al.[7], a large and diverse group of testers with
diverse skillsets are likely to discover more vulnerabilities.

As can be seen above, running a bug bounty program provides great benefits to enterprise organi-
zations. Vulnerabilities are detected faster due to continuous security testing by a crowd located
around the world. Additionally, the diverse skillset will raise chances of security testing performed
by someone who is an expert in the technologies used by the targets. As a result, it can be con-
cluded that bug bounties can be deployed in enterprise organzations, and effectively improve IT
Security.

6.5.2 Faster Vulnerability Remediation

Similar to how bug bounties speed up vulnerability detection, they can enable faster remediation.
While it may not be obvious at first, this thesis provides the following arguments why vulnerabil-
ities can be fixed faster:

• Communication with vulnerability reporter.

• Continuous remediation leads to more experience.

• Insight into discovery process.

Communication with vulnerability reporter. As shown in section 6.4.3, maintaining a healthy
communication with the vulnerability reporter is a key aspect of crowdsourced security testing.

Bug Bounties in Enterprise IT Security 86 / 106



Chapter 6. Improving Enterprise IT Security With Crowdsourced Offensive Security

Engaging the vulnerability reporter during remediation can aid software engineers to better under-
stand the root cause, and as a result, apply remediations faster.

Continuous remediation leads to more experience. Another aspect of bug bounties that may
improve remediation speed, is its continuous nature. In traditional offensive security methods
such as penetration testing and red-teaming, the development team deals with security vulnera-
bilities only after every testing cycle. However, bug bounties continuously raise security issues
that must be addressed. This ensures that software engineers are dealing with security all the
time, thereby gaining valuable experience. The constant nature of security testing by bug bounties
keeps software engineers alert and conscious about security implications that may arise as a result
of their code. As shown by Poller et al.[90], security audits increase the security awareness of
software developers and as such, contribute to better code security.

Insight into discovery process. Finally, the discovery process of whitehat hackers reveals valu-
able insights for organizations running a bug bounty program. It provides a realistic picture of
external attackers, how they approach a target and what patterns they use to test them. Such in-
formation can be incorporated into the cybersecurity program of the organization, to strengthen
defences and detection capabilities.

6.5.3 Retesting Fixed Vulnerabilities

The last aspect of bug bounties that contributes to better risk mitigation, is the ability to perform
retesting of valid vulnerabilities after a patch has been applied. Because the vulnerability finder is
easily accessible and communication is available, they can be asked to retest their finding.

Retesting fixed vulnerabilities has two main benefits: it verifies that the original security concern
has been remediated, and it offers the reporter an opportunity to find a bypass. It may be possible
that software engineers did not understand the root cause of the vulnerability and therefore apply
a wrong or incomplete fix. By asking the original vulnerability reporter to retest the issue, both
of these situations can be identified and acted upon. Compare this to traditional offensive security
testing, where typically remediations are not tested until the next testing cycle and may be missed
entirely.

This work recommends to offer some form of compensation for this action, since it is takes ef-
fort on the side of the whitehat hacker. This compensation is likely to be a smaller cost to the
organization, compared to allocating their internal security team for this task. The reason is that
the original vulnerability reporter has context around the security vulnerability, and potentially
also a ready environment. This allows for much faster retesting, compared to an internal security
engineer that must build the context and prepare the testing environment before they can retest the
fix.

Bug Bounties in Enterprise IT Security 87 / 106



7 Enterprise IT Crowdsourced
Security in Practice: A Case Study

In this chapter, a case study of creating a bug bounty program for an enterprise organization is
presented. This case study is used to practically apply the concepts of this thesis and analyze the
results. Based on the results, lessons learned for improving the process will be noted and conclu-
sions drawn.

After introducing the organization, the process of creating a bug bounty program for one of its
products is shown. The approach for integrating a bug bounty is given, along with the process
and reason for selecting that specific approach. Afterwards, the learnings of creating the rules of
engagement are covered. Further sections show the process for launching and operating the bug
bounty program, as well as an analysis of the case study. Finally, expert interviews are conducted
to evaluate the performance of this thesis.

7.1 Introduction

This case study was conducted in cooperation with an international IT services provider with over
20 years of experience in IT planning, IT infrastructure, IT architecture and software develop-
ment. The organization is based in Austria, and has developed projects ranging from small to
highly complex IT systems with budget in millions of euros.

This organization decided to run a bug bounty program on one of its major products, a solution for
electronic health record management. This product is a service package for healthcare providers
and insured patients, and provides optimal integration between involved parties. By storing infor-
mation such as diagnosis, results, therapeutic measures, treatment reports, information on vacci-
nations etc. it provides an excellent information and decision-making basis for doctors, therapists
and pharmacies.

The product offers mobile applications in android and iOS for insured patients, backend services
and a software development kit for integration by healthcare providers. A key aspect of this prod-
uct is the security and privacy of its data and systems. Patients are given the ability to decide who
can access their information and to what extent. This is achieved through a high security IT in-
frastructure, which provides the necessary means to securely store and exchange the data between
parties.

7.2 Creating a Bug Bounty Program for an Enterprise Organization

In order to test the security of this product, the organization decided to run a bug bounty program.
Due to the high security requirements, the product has been designed with security mind. Ad-
ditionally, the organization used its internal security team to perform penetration testing on the
applications. The decision to run a bug bounty program was made as a complementary security
measure, and serves two main purposes:

88



Chapter 7. Enterprise IT Crowdsourced Security in Practice: A Case Study

1. Confirm a high security level of the application and that no low impact issues can be found.

2. Improve security by offering rewards to crowdsourced security testers.

This engagement also serves as a trial for crowdsourced offensive security, and lays the grounds
for expanding it to other products.

7.2.1 Selecting the Integration Approach

For the purpose of running a bug bounty program on this specific product, the organization has
chosen an institutional approach. Although this thesis recommends taking bug bounty platforms
into consideration when deciding the integration methodology, a number of reasons influenced the
decision to go forward with an institutional bug bounty program.

As shown in section 5.1.1, one reason to select an institutional approach is to keep complete
control of the bug bounty program. Due to the highly sensitive nature of health information stored
in this product, it was built as a high security system. Therefore, being able to control all aspects
of the bug bounty program was a key factor in the decision. Additionally, having complete control
over the program provides flexibility in operational processes and changes. Any latency that may
have been generated by bug bounty platforms is not an issue here, since in-house security engi-
neers are familiar with the product and can quickly verify vulnerability reports.

Another reason to chose an institutional bug bounty program is to prevent third-parties from having
access to data. As has been established, the product stores critical health data such as diagnosis,
results and therapeutic measures. Running a bug bounty program through one of the bug bounty
services providers would give them access to information and potential vulnerabilities, which is
undesired in this situation.

The final reason for selecting an institutional approach is cost. The expected workload in terms of
reported vulnerabilities seems to be manageable due to the high security nature of the system and
relatively low attack surface. Additionally, the organization has the necessary resources to manage
the bug bounty program with its large internal security team. Therefore, managing the bug bounty
program in-house is seen as a more cost-effective option compared to purchasing services from a
bug bounty services provider.

7.2.2 Creating the Rules of Engagement

After the integration approach has been decided, the process for creating the rules of engagement
has been initiated. The template provided in this thesis has been used as a starting point, with
adaptions made as follows:

• Specified the scope.

• Specified the contact option.

• Adapted restrictions and exclusions.

Specified the scope Since the organization is running the bug bounty program specifically for
its e-health application, the scope was determined to include all assets of this product. Following
the recommendations in section 5.1 of this thesis, it was determined that a specific scope will likely
lead to better results. Therefore, the scope was specified as follows:

Bug Bounties in Enterprise IT Security 89 / 106



Chapter 7. Enterprise IT Crowdsourced Security in Practice: A Case Study

1. Domain and all subdomains of target application.

2. Android application.

3. iOS application.

4. All API endpoints contact by one of the mobile applications.

This scope definition includes an exact specification of the target’s web and mobile applications,
while having a catch-all entry for API endpoints. This entry allows API endpoints which are un-
known to the organization, to be included in scope. Further, as defined in section 5.1.1, a statement
which excludes all other targets from the scope of the bug bounty program has been adopted.

Specified the contact option For the purpose of this bug bounty program, the organization
decided to use e-mail as the form of communication. As shown in section 5.1, this is also an
approach suggested by this thesis. The e-mail address used for receiving vulnerability reports was
decided to be bugbounty@organziation-domain.com. Additionally, the organization requested that
PGP encryption is used for e-mail communication, and that it is made mandatory. In the example
rules of engagement (section 5.1.4) of this thesis, this work suggests to use the formulation:

„To ensure confidentiality, we encourage you to encrypt all communication to us via
e-mail.“.

However, due to the high security requirements of the product, the organization decided to change
it as follows:

„To ensure confidentiality, we require you to encrypt all communication to us via
e-mail.“.

Additionally, a statement was added to the rules of engagement which explains that unencrypted
vulnerability reports will be considered a breach of this policy.

Finally, as suggested in section 5.1.1 of this thesis, a template for vulnerability reports has been
provided. This template requires the following information to be included:

• Title

• Vulnerability type

• Short description of vulnerability and impact

• Affected product/service

• Detailed steps to reproduce

– In case of web applications, including specific URI, parameter and a copy of the HTTP
request(s)

– For mobile applications, include all steps taken to decompile/reverse engineer the vul-
nerability

• A CVSS score

• The date and time of testing performed on the service/product

Bug Bounties in Enterprise IT Security 90 / 106



Chapter 7. Enterprise IT Crowdsourced Security in Practice: A Case Study

• The version of the application (if available)

• Proof of concept files

Adapted restrictions and exclusions As suggested in this thesis, the restrictions and exclu-
sions given in the example rules of engagement have been adapted. The exclusions for web targets
required no modifications, however, additional exclusions for android and iOS applications have
been added. These are not provided as part of this thesis and were taken from other resources.

The testing restrictions as suggested in section 5.1.4 were also modified. Specifically, the organi-
zation decided to allow testing for denial of service attacks in the application layer, while keeping
network-based denial of service attacks as out of scope. Additionally, automated scanning has
been allowed. However, to avoid vulnerability reports taken directly from automated scanners, a
statement which requires prior verification of these findings by the security tester has been added.

7.2.3 Creating the Internal Process and Appointing Stakeholders

Following the creation of rules of engagement, the internal processes for supporting the bug bounty
program were defined. Here, the following items were discussed and agreed upon:

• Stakeholders and responsible personnel

• If and what software to use for processing vulnerability reports

• How reward amounts are decided and issued

• Creation of internal policy that documents the process

Stakeholders and responsible personnel For deciding the staff and its responsibilities, the
stakeholders organized a meeting. The product owner and security team lead specified a project
manager, a security lead and a bug bounty coordinator. Additionally, the person responsible for
issuing rewards was appointed. It was also decided when the bug bounty program should go live,
and what kind of marketing should be done around the launch. For this product, the decision was
made to launch without marketing and observe interest before taking further steps in that direction.

If and what software to use for processing vulnerability reports Although the communica-
tion option was decided to be e-mail, for internal processing of vulnerability reports, the decision
whether to use software such as a ticketing system had to be made. The stakeholders also assessed
the impact of using a mail client, however, limitations in search and tracking assignments elimi-
nated this option. Since the organization already had an internal ticketing system and it supports
integration with an email address, the decision to use this software was made.

How reward amounts are decided and issued The stakeholders also decided the two activi-
ties required for rewarding valid vulnerabilities: determining the amount and issuing the reward.
For determining the amount, the creation of a vulnerability reward panel was decided as suggested
in section 5.1.2 of this thesis. The following members of the reward panel were appointed as
mandatory participants:

1. Security lead

2. Penetration testing lead

3. Bug bounty coordinator

Bug Bounties in Enterprise IT Security 91 / 106



Chapter 7. Enterprise IT Crowdsourced Security in Practice: A Case Study

Additionally, mandatory attendance was requested for all security engineers who filed a vulnera-
bility for rewarding. Optional attendance was decided for the project manager, product manager,
and other personnel as needed. For managing the issuing of rewards, the bug bounty coordinator
was appointed to send emails to the person responsible for issuing rewards. These emails include
the contact details of the tester and the reward amount for transfer. Afterwards, the person respon-
sible for issuing the rewards handles the process of requesting bank information and transferring
the reward to the whitehat hacker.

Creation of internal policy that documents the process Finally, all these details decided
by stakeholders were included in an internal policy document for reference. The document also
includes details about the scope and rules of engagement, so readers are aware these exist and
where to look for them.

7.2.4 Launching the Bug Bounty Program

As shown in chapter 6 of this thesis, some preparation is required before launching a bug bounty
program. In section 6.1, it is recommended that success metrics are created and measured. A
number of example metrics are also provided. For this case study, table 7.1 shows the selection of
metrics their success criteria.

Metric Success value/range
Total number of vulnerability reports >100
Signal-to-noise ratio At least 30% signal
Total amount of rewards >10,000 EUR
Average amount of reward 500 EUR
Average first response <3 days
Number of unique participants 50

Table 7.1: Success Metrics of Case Study

For target preparation as suggested in section 6.2.2, no preparation was required for this case study.
Due to the complexity of the system, the organization decided to run the bug bounty program on
their production environment. Additionally, it was decided that no testing credentials are created
for the initial launch, and this decision would be revisited if participation is lower than desired.

The stakeholders also made some technical decisions regarding implementation. Due to this,
certain resources were created to support the bug bounty program. These included setting up a
ticketing system, creating the e-mail address for receiving vulnerabilities, creating pgp keys for
encryption and publishing the rules of engagement. Finally, the bug bounty program was launched
on the date decided by stakeholders. In practice, this action meant that the rules of engagement
were made publicly available. As mentioned in the previous section, it was decided that no market-
ing efforts shall be taken for the launch. Internally, an email was sent to all stakeholders notifying
them about the launch of the program.

7.2.5 Operating the Bug Bounty Program

Now that the bug bounty program was live, the organization was ready to receive vulnerability
reports. Internally, the process for handling vulnerability reports worked as expected. The bug
bounty coordinator and one security engineer were tasked with monitoring the queue and process-
ing tickets. Vulnerabilities were triaged per the process shown in section 6.4.1 of this thesis. The
ticketing system was used to assign outcomes to reports and send replies to researchers. For easier

Bug Bounties in Enterprise IT Security 92 / 106



Chapter 7. Enterprise IT Crowdsourced Security in Practice: A Case Study

communication with whitehat hackers, the bug bounty coordinator created templated responses
for similar vulnerability reports. These were taken and adopted in the internal policy document.

Because no valid vulnerabilities were reported, the reward process was not tested as part of this
case study. Additionally, no requests for public disclosure were received. To increase interest and
quality of vulnerability reports, stakeholders discussed about publicly marketing the bug bounty
program. Publishing documentation regarding the target applications and their implementation
was also considered. During the case study, these considerations were still being discussed and no
actions was taken.

7.3 Expert Interviews

As part of this case study, expert interviews were conducted to evaluate the performance of the
concepts suggested in this thesis. As shown by Bogner et al.[91], the use of expert interviews is a
popular research methodology to validate design concepts, amongst other things.

For this case study, interviews with three IT Security experts were conducted. The interviews
were carried out after the bug bounty program was launched, to allow reflecting back on the case
study and analyse the results. In the following sections, the interview process and results are dis-
cussed. After the interview methodology is presented, the topics covered in the interviews are
discussed. Finally, the results of the interviews are shown and analyzed.

7.3.1 Interview Methodology

For the purpose of evaluating the case study, this work uses a semi-structured interview method-
ology. As shown by Newcomer et al.[92], semi-structured interviews are a useful methodology
to supplement and add depth to other research methods. A semi-structured interview allows to
ask open-ended questions and obtain valuable information by participants. Through follow up
questions and probing, formative evaluation of programs by interviewing key staff members can
be achieved[92].

The concepts of this thesis are practically applied via the case study as shown in section 7.2.
To support the case study, a semi-structured interview is considered to be an appropriate approach.
The interview participants can give their opinion about the performance of this work applied in
the case. By interviewing IT Security experts who have experience with offensive security testing,
a qualitative evaluation of the case study can be performed. Additionally, the interviewer can ask
follow-up questions and discuss potential improvements.

7.3.2 Interview Topics

The main focus of these expert interviews is to evaluate the performance of this thesis in the case
study. Hence, most questions revolve around the implementation of the bug bounty program.
Questions are asked to reason about the decision to run a bug bounty program and the expected
results. Another topic covers the selection of the integration approach and reasons behind it. Addi-
tionally, a number of questions are asked to shed light on how the concepts of this thesis performed
in creating rules of engagements, running and managing the bug bounty program.

A secondary goal of the interviews is to understand the experts’ opinion on crowdsourced offensive
security as a security measure in enterprise organizations. Questions regarding the expert’s expe-
rience with bug bounty programs are asked, and their thoughts on the future of this methodology
are discussed. The full list of questions can be found in the appendix of this thesis.

Bug Bounties in Enterprise IT Security 93 / 106



Chapter 7. Enterprise IT Crowdsourced Security in Practice: A Case Study

7.3.3 Results

The interviews began with introductions wherein the interviewees were asked about their current
role and experience with offensive security. All interviewees hold positions relevant to offensive
and defensive security, and have many years of experience in these fields. All interviewees also
confirmed that they have experience with e-health products in some form or another. When asked
about crowdsourced offensive security, only one interviewee had some passive experience with
the field, without being actively involved. The other interviewees had no prior experience with
crowdsourced offensive security.

The interview continued with questions whether offensive security and bug bounties are useful
measures for e-health products. The interviewees all agreed that offensive security is a must-have
measure for this type of product, because of the sensitive nature of the data. The interviewees also
unanimously agreed that bug bounties provide their contribution in securing these products even if
other offensive security measures have been applied. Two Interviewees mentioned the continuous
testing aspect of bug bounties as an advantage compared to other measures which are performed
for a limited time period. One interviewee stressed the need for controlling what testing is applied
and when to stop. Further, two interviewees strongly advised that bug bounties cannot replace
other offensive security measures and should not be considered an all-in-one solution to security
testing.

For the interview questions particular to the case study, interviewees agreed that an institutional
approach was the correct decision for this use case. The sensitive nature of the data involved, as
well as having control over the program were the main reasons. Additionally, interviewees agreed
that the rules of engagement template fulfils its job in providing a starting point for organizations
wanting to launch a bug bounty program. Most comments and remarks were made about the roles
suggestions of this work. All interviewees suggested that the bug bounty coordinator role can
be replaced with a generic project manager. Additionally, interviewees remarked that software
engineers would only access the result of crowdsourced offensive security, which is the reported
vulnerabilities they would need to fix. Hence, they would not be directly involved with the bug
bounty program.

After reviewing the case study, interviewees were asked whether their thoughts about crowd-
sourced offensive security have changed. All interviewees answered that their thoughts remained
the same, and that crowdsourced offensive security is a valuable asset in offensive security efforts.
When asked about the future of offensive security and bug bounties, one interviewee suggested
the importance of both will drop. This was attributed to the prediction that programming will be
largely automated in the future, and that hopefully results in less vulnerabilities.

Bug Bounties in Enterprise IT Security 94 / 106



Chapter 7. Enterprise IT Crowdsourced Security in Practice: A Case Study

7.4 Analysis

This section provides an analysis of the case study, and how the concepts of this thesis performed
in practice. As shown in section 7.1, the bug bounty program is created for the e-health solution of
an enterprise organization. Because an institutional bug bounty program was desired, the concepts
presented in section 5.1 were used to drive the integration process. Additionally, the concepts in
chapter 6 were used to launch and operate the bug bounty program, including vulnerability report
processing and issuing rewards.

For creating the rules of engagement, the template in section 5.1.4 served as a good basis and
required only small modifications. Building on top of such a template not only helped to speed up
the process, but it gave stakeholders a clear picture of expectations. This in turn guided discussions
around potential modifications and adaptions, making them practical and effective. One shortcom-
ing of the template was noted regarding mobile applications. Specifically, the template does not
provide a list of exclusions for android or ios apps. Nevertheless, by having web exclusions in
the template, it was easy to create a similar list for mobile applications. Overall, the template was
regarded as an important and effective item in the process of creating rules of engagement.

The conducted case study also followed the suggestion of section 5.1.2 in creating a bug bounty
coordinator role. This proved to be very effective, as there was a single person in charge with
the successful creation of the bug bounty program. Even though multiple stakeholders and staff
members were involved and decisions had to be made, having the bug bounty coordinator role
allowed for a single point of contact when it came to questions around the bug bounty program.
The bug bounty coordinator also handled project management tasks such as organizing meetings
and documentation, effectively removing the need for a dedicated project management person. In
general, this case study showed that having a bug bounty coordinator role is advantageous, espe-
cially for organizations with little or no experience in crowdsourced offensive security.

As shown in section 6.1, success metrics are useful for measuring the performance of the bug
bounty program. For this case study, only a subset of the given metrics were used, as shown in
section 7.2.4. A selection of meaningful metrics had to be made, because of the characteristics
of the target application. For example, due to the high security level of the system, only a small
number of vulnerability reports were expected. Therefore, metrics regarding the incoming number
of reports were considered to be inappropriate for determining the success of the program. Addi-
tionally, because the target was specified ahead of time, the selection process as shown in section
6.2.1 was not applied for this case study.

In preparation for launching the bug bounty program, questions regarding the handling of in-
coming vulnerability reports came up. While this work provides instructions for what the process
looks like in section 4.1.3, there are no practical suggestions or software recommendations to
manage resource allocation. One can argue that resource allocation is a generic problem and not
specific to bug bounties[93], however, suggestions for practical solutions could steer organizations
in the right direction. For organizations which already have effective resource allocation in place,
such suggestions would offer a chance for comparison and adaptions as needed. In this case study,
options for managing incoming vulnerability reports via email and a ticketing system were con-
sidered. Upon considerations regarding the designed bug bounty, the stakeholders decided to use
a ticketing system.

Using a ticketing system provided a number of benefits in operating the bug bounty program. Be-
sides resource allocation, the ticketing system enabled better search, tagging reports and abstracted
encryption. Such functionality does not just make processing vulnerability reports easier, but it

Bug Bounties in Enterprise IT Security 95 / 106



Chapter 7. Enterprise IT Crowdsourced Security in Practice: A Case Study

also makes the process faster. In situations when a large number of vulnerabilities are reported
in a short amount of time, this can be a key factor for meeting success criteria and maintaining
a healthy program. Contributing factors also appeared to be the experience of security engineers
with ticketing systems, as well as their ease of use. Providing regular trainings for the ticketing
system functionality and bug bounty process may be effective, especially when there are rotations
of security engineers doing triage work.

Expert interviews provided valuable insight and perspectives from people with different roles and
viewpoints. For example, the interviews showed that roles required for running a bug bounty pro-
gram are not static and should be adapted depending on the organization’s human and IT Security
capacities. Additionally, the different views on whitehat hackers coming in contact with produc-
tion data was an interesting aspect. While one interviewee suggested this can result in a massive
leak, another saw this as a positive situation when bug bounty participants find these vulnerabil-
ities instead of malicious attackers. Both viewpoints are warranted and potential situations that
may arise. The actual outcome likely depends on a number of factors, including the researcher
ethics, the bug bounty program reputation and maximum reward amounts.

The expert interviews also confirmed the pre-adoption fears mentioned in the problem statement
of this work. While crowdsourced offensive security is not an unknown term, the idea of invit-
ing external people to perform offensive security testing seems dangerous. A lot of interviewee
remarks and comments are made around control and protection from undesired situations. Such
situations could be when production data are accessed, coming in contact with legitimate users or
disturbing legitimate functioning of the targets being tested. Of course the same can happen with
other offensive security methods such as penetration testing, however, the existence of a contract
and closer contact with the testers appears to this reduce this concern here. As a result, the con-
cept of bug bounties must be marketed and sold internally. This includes guides and operational
instructions for avoiding undesired situations, but taking examples from other organizations will
likely contribute as well. Especially if organizations in the same business spectrum are already
using crowdsourced offensive security successfully, case studies and testimonials may ease some
of the fears of using this offensive security measure.

Finally, the existence of a bug bounty program provides a good incentive for doing the right thing
when a vulnerability has been discovered. As mentioned by interviewees, malicious attackers
will always be present and attempt to penetrate systems. However, the existence of a bug bounty
program not only drives more security testing from individuals looking to make money, it also
serves as a communication vehicle for those that stumble upon a vulnerability and want to report
it with ethical obligation. In the end, there is no such thing as absolute security and crowdsourced
offensive security is another layer of prevention in the security efforts of organizations.

Bug Bounties in Enterprise IT Security 96 / 106



8 Conclusion and Further Work

The principal goal of this thesis is to make crowdsourced offensive security approachable in en-
terprise organizations. The integration approach in chapter 5 and operational guidelines in chapter
6 provide practical instructions for creating and managing a bug bounty program. To evaluate this
work, a case study has been conducted. Additionally, IT Security experts have been interviewed
to assess the concepts of this thesis and how they performed in the case study. In summary, this
thesis gives answers to the following research questions:

• How can enterprise organizations integrate a bug bounty program as an offensive security
measure?

• Is crowdsourced offensive security an effective measure to improve the security posture of
an enterprise organization?

• Can bug bounties complement penetration tests?

The analysis of security standards in chapter 3 of this thesis showed that despite its rising popu-
larity, crowdsourced offensive security has not been adapted in existing resources for enterprise
IT Security. The only standard that covered some aspects of bug bounties was ISO 29147[65].
However, ISO 29147 only overlaps with this work in the area of handling vulnerability reports
from external researchers. This thesis finds that there is a lack of comprehensive information in
acknowledged security guidelines for enterprise organizations wanting to use crowdsourced offen-
sive security. With its rising popularity and demonstrated effectiveness, it can be concluded that
security standards need to adopt this emerging offensive security method.

To answer the first research question, chapter 5 of this thesis offers insight into the two most
common ways to integrate crowdsourced offensive security testing: an institutional approach and
using a bug bounty services provider. It was shown that each approach has its advantages and may
be useful for certain situations. This thesis concludes that these two integration options offer good
alternatives for different types of organizations and their requirements. The institutional approach
presents an attractive option for organizations wanting full control. However, the case study shows
that having the necessary resources to create and manage the bug bounty program is a key factor
for its successful execution. For organizations without such resources, using a bug bounty services
provider and one of its time-based offerings will likely result in a more cost effective solution.

For the third research question, chapter 6 of this thesis provides practical guidelines for preparing,
launching and managing a bug bounty program in an institutional approach. The effectiveness of
crowdsourced offensive security, and its place in the IT Security program of an organization was
also discussed. As a result of this discussion, this thesis finds that crowdsourced security test-
ing does not replace other offensive security methods. Instead, it provides the most value when
applied as a complementary measure in addition to traditional offensive security methods such
as penetration testing and red-teaming. For example, while bug bounties excel with low latency
vulnerability detection and a large number of skilled testers, they do not guarantee methodology
and coverage. On the other hand, penetration testing guarantees exactly these items by following
a standardized method of testing and covering the entire application. Together, these two offen-
sive security methods offer the best of both. This thesis also concludes that offensive security is

97



Chapter 8. Conclusion and Further Work

an effective measure to improve the security of enterprise organizations, thereby answering the
second research question. Alongside the benefits of low latency vulnerability detection and faster
remediation as shown in chapter 6, bug bounties provide talented hackers an ethical and legal way
to earn money. In the past, the only way to profit from a vulnerability discovery has been to sell
it in the black market[94]. With bug bounties offering lucrative monetary rewards, an incentive to
ethically report the vulnerability to the vendor has been created. Hence, it can be concluded that
crowdsourced offensive security provides many contributions to the improvement of an organiz-
tion’s security posture.

As shown in the problem statement of this work, although crowdsourced offensive security has
been around for long it only gained popularity in recent years. Hence, this work recognizes that
this field is dynamic and continuously evolving, and that running bug bounty programs may change
in the future. This work also recognizes its limited testing through the single case study of chapter
7. Future work may apply the concepts in this thesis to various organizations of different branches
and evaluate its performance. Undoubtedly, there will be room for improvement, some of which
have already been identified in section 7.4. Nevertheless, this thesis answered important questions
about the usefulness of crowdsourced offensive security, while at the same time providing a clear
guide for enterprise organizations wanting to get started with it.

This work has been created with the purpose of finding application in any large organization want-
ing to adopt this emerging offensive security method. It is mainly aimed as a practical resource for
quickly integrating and using bug bounty programs. As a secondary purpose, this work aims to
fill the gap of information in current security standards and guidelines. This thesis also concludes
that more research is needed in the integration process for crowdsourced offensive security. The
literature research conducted as part of this work shows that this field is actively being researched,
however, most papers are centered around different aspects such as crowd incentives or empiri-
cal analysis. Research around integration concepts and operational aspects have only been found
sparsely. This work also finds that significant research contributions were made by bug bounty
services providers, with annual reports about statistics and bug bounty adoption. However, further
research is needed to investigate the learnings and processes that these providers use for running
and managing programs. This may present a challenging endeavour since such information may
be considered intellectual properly. Researching organizations with institutional bug bounty pro-
grams may also present a challenge for the same reasons. Nevertheless, this thesis finds that the
contributions of crowdsourced offensive security are significant enough for investing resources
and research time in this dynamic new field.

Bug Bounties in Enterprise IT Security 98 / 106



Bibliography

References

[1] C. Easttom, Computer Security Fundamentals, Pearson, 2016, ISBN: 978-0-7897-5746-3.

[3] P. E. Proctor and C. Byrnes, The Secured Enterprise: Protecting Your Information Assets,
Prentice Hall PTR, 2002, ISBN: 978-0-13-061906-8.

[4] P. Kim, The Hacker Playbook 3: Practical Guide to Penetration Testing, Independently
published, 2018, ISBN: 978-1-980901-75-4.

[5] N. Munaiah and A. Meneely, Vulnerability severity scoring and bounties: Why the discon-
nect? ACM Press, 2016. DOI: 10.1145/2989238.2989239.

[6] T. Maillart et al., Given enough eyeballs, all bugs are shallow? Revisiting Eric Raymond
with bug bounty programs, in „Journal of Cybersecurity“ 2017. DOI: 10.1093/cybsec/
tyx008.

[7] A. Magazinius et al., Bug Bounty Programs – A Mapping Study 2019. DOI: 10 .1109/
SEAA.2019.00070.

[8] M. Al-Banna et al., Friendly Hackers to the Rescue: How Organizations Perceive Crowd-
sourced Vulnerability Discovery 2018. [Online]. Available: https : / / aisel . aisnet . org /
pacis2018/230/ (last visited on 02/16/2021).

[10] H. Fryer and E. Simperl, Web Science Challenges in Researching Bug Bounties ACM
Press, 2017. DOI: 10.1145/3091478.3091517.

[11] J. Ruohonen and L. Allodi, A Bug Bounty Perspective on the Disclosure of Web Vulnerabil-
ities 2018. arXiv: 1805.09850.

[12] M. Zhao et al., An Empirical Study of Web Vulnerability Discovery Ecosystems ACM Press,
2015. DOI: 10.1145/2810103.2813704.

[13] M. Zhao et al., Crowdsourced Security Vulnerability Discovery: Modeling and Organizing
Bug-Bounty Programs, in „Proc. of the 4th AAAI Workshop on Mathematical Founda-
tions of Human Computation“ 2016. [Online]. Available: http://aronlaszka.com/papers/
zhao2016crowdsourced.pdf (last visited on 02/16/2021).

[14] S. S. Malladi and H. C. Subramanian, Bug Bounty Programs for Cybersecurity: Practices,
Issues, and Recommendations, in „IEEE Software“ 2019. DOI: 10.1109/MS.2018.2880508.

[15] M. Zhao et al., Devising Effective Policies for Bug-Bounty Platforms and Security Vulner-
ability Discovery, in „Journal of Information Policy“ 2017. DOI: 10.5325/jinfopoli.7.2017.
0372.

[16] D. Luna et al., Productivity and Patterns of Activity in Bug Bounty Programs: Analysis of
HackerOne and Google Vulnerability Research ACM Press, 2019. DOI: 10.1145/3339252.
3341495.

[17] A. Kuehn and M. Mueller, Analyzing Bug Bounty Programs: An Institutional Perspective
on the Economics of Software Vulnerabilities, in „SSRN Electronic Journal“ 2014. DOI:
10.2139/ssrn.2418812.

99



Chapter 8. Conclusion and Further Work

[18] J. M. Anderson, Why we need a new definition of information security, in „Computers &
Security“ May 2003. DOI: 10.1016/S0167-4048(03)00407-3.

[19] S. Bosworth et al., Computer Security Handbook, Wiley, 2014, ISBN: 978-1-118-12706-3.

[20] M. Bishop, Computer Security: Art and Science, Addison-Wesley, 2003, ISBN: 978-0-201-
44099-7.

[21] D. Mellado and D. G. Rosado, An Overview of Current Information Systems Security Chal-
lenges and Innovations J.UCS Special Issue, in „Journal of Universal Computer Science“.
[Online]. Available: http://www.jucs.org/jucs_18_12/an_overview_of_current/jucs_18_
12_1598_1607_editorial.pdf (last visited on 11/20/2020).

[22] D. Dzung et al., Security for Industrial Communication Systems, in „Proceedings of the
IEEE“ Jun. 2005. DOI: 10.1109/JPROC.2005.849714.

[23] S. Widup et al., 2015 Verizon Data Breach Investigations Report 2015. DOI: 10.13140/
RG.2.1.4205.5768.

[24] P. Rosati et al., Social media and stock price reaction to data breach announcements:
Evidence from US listed companies, in „Research in International Business and Finance“
Jan. 2019. DOI: 10.1016/j.ribaf.2018.09.007.

[26] C. M. Hayes, Comparative Analysis of Data Breach Laws: Comprehension, Interpretation,
and External Sources of Legislative Text, in „SSRN Electronic Journal“ 2019. DOI: 10.
2139/ssrn.3334688.

[27] W. Stallings and L. Brown, Computer Security: Principles and Practice, Pearson, 2015,
ISBN: 978-0-13-377392-7.

[28] C. P. Pfleeger and S. L. Pfleeger, Security in Computing, Prentice Hall, 2007, ISBN:
978-0-13-239077-4.

[29] B. Schneier, Applied Cryptography: Protocols, Algorithms, and Source Code in C, Wiley,
1996, ISBN: 978-0-471-12845-8.

[30] J. Andress, The Basics of Information Security: Understanding the Fundamentals of InfoSec
in Theory and Practice, Elsevier/Syngress, 2014, ISBN: 978-0-12-800744-0.

[31] E. Kolodenker et al., PayBreak: Defense Against Cryptographic Ransomware ACM Press,
2017. DOI: 10.1145/3052973.3053035.

[32] J.-P. Aumasson, Serious Cryptography: A Practical Introduction to Modern Encryption,
No Starch Press, 2017, ISBN: 978-1-59327-882-3.

[33] A. Tripathi and U. K. Singh, Towards Standardization of Vulnerability Taxonomy IEEE,
Nov. 2010. DOI: 10.1109/ICCTD.2010.5645826.

[34] D. R. Kuhn et al., An Analysis of Vulnerability Trends, 2008-2016 IEEE, Jul. 2017. DOI:
10.1109/QRS-C.2017.106.

[35] A. Maurushat, Disclosure of Security Vulnerabilities, Springer London, 2013, ISBN: 978-
1-4471-5003-9.

[36] European Union and Agency for Network and Information Security, ENISA Threat Land-
scape Report 2018: 15 Top Cyberthreats and Trends. 2019, ISBN: 978-92-9204-286-8.

[37] D. Mitropoulos et al., Defending Against Web Application Attacks: Approaches, Challenges
and Implications, in „IEEE Transactions on Dependable and Secure Computing“ Mar. 1,
2019. DOI: 10.1109/TDSC.2017.2665620.

[38] Y. Diogenes and E. Ozkaya, Cybersecurity - Attack and Defense Strategies - Second Edition,
2019, ISBN: 978-1-83882-779-3.

Bug Bounties in Enterprise IT Security 100 / 106



Chapter 8. Conclusion and Further Work

[39] M. Abliz, Internet Denial of Service Attacks and Defense Mechanisms. [Online]. Available:
https://blog.oureducation.in/wp-content/uploads/2014/06/Internet-Deniel.pdf (last visited
on 11/20/2020).

[40] P. Shedden et al., Asset Identification in Information Security Risk Assessment: A Business
Practice Approach, in „Communications of the Association for Information Systems“ 2016.
DOI: 10.17705/1CAIS.03915.

[41] S. E. Donaldson et al., Enterprise Cybersecurity Study Guide, Apress, 2018, ISBN: 978-1-
4842-3257-6.

[42] Joint Task Force Transformation Initiative, „Security and Privacy Controls for Federal
Information Systems and Organizations“ 2013. DOI: 10.6028/NIST.SP.800-53r4.

[43] I. Arce and G. McGraw, Guest Editors’ Introduction: Why Attacking Systems Is a Good
Idea, in „IEEE Security and Privacy Magazine“ Jul. 2004. DOI: 10.1109/MSP.2004.46.

[44] Y. Stefinko et al., Manual and Automated Penetration Testing. Benefits and Drawbacks.
Modern Tendency IEEE, Feb. 2016. DOI: 10.1109/TCSET.2016.7452095.

[45] K. Xynos and I. Sutherland, Penetration Testing and Vulnerability Assessments: A Profes-
sional Approach 2010. [Online]. Available: https://ro.ecu.edu.au/cgi/viewcontent.cgi?
referer=https://scholar.google.com/&httpsredir=1&article=1015&context=icr (last visited
on 02/26/2021).

[46] J. G. Oakley, Professional Red Teaming: Conducting Successful Cybersecurity Engage-
ments, Apress, 2019, ISBN: 978-1-4842-4308-4.

[47] G. Weidman, Penetration Testing: A Hands-on Introduction to Hacking, No Starch Press,
2014, ISBN: 978-1-59327-564-8.

[48] S.-P. Oriyano, Penetration Testing Essentials, John Wiley & Sons, Inc., 2018, ISBN: 978-
1-119-23530-9.

[50] R. Pompon, IT Security Risk Control Management: An Audit Preparation Plan, Apress,
2016, ISBN: 978-1-4842-2140-2.

[51] J. Rehberger, Cybersecurity Attacks - Red Team Strategies: A Practical Guide to Building
a Pentest Program Having Homefield Advantage. Packt Publishing Limited, 2020, ISBN:
978-1-83882-886-8.

[52] H. Susanto et al., Information Security Management System Standards: A Comparative
Study of the Big Five 2011. [Online]. Available: https://www.academia.edu/download/
30294093/113505-6969-ijecs-ijens.pdf (last visited on 11/20/2020).

[53] K. Haufe et al., Security Management Standards: A Mapping, in „Procedia Computer
Science“ 2016. DOI: 10.1016/j.procs.2016.09.221.

[56] W. Tounsi and H. Rais, A survey on technical threat intelligence in the age of sophisticated
cyber attacks, in „Computers & Security“ Jan. 2018. DOI: 10.1016/j.cose.2017.09.001.

[57] O. Santos, Developing Cybersecurity Programs and Policies, Pearson, 2019, ISBN: 978-0-
7897-5940-5.

[58] K. J. Knapp et al., Information security policy: An organizational-level process model, in
„Computers & Security“ Oct. 2009. DOI: 10.1016/j.cose.2009.07.001.

[59] A. Kohnke et al., The Complete Guide to Cybersecurity Risks and Controls, 2016, ISBN:
978-1-4987-4057-9.

[60] I. Yevseyeva et al., Selecting Optimal Subset of Security Controls, in „Procedia Computer
Science“ 2015. DOI: 10.1016/j.procs.2015.08.625.

Bug Bounties in Enterprise IT Security 101 / 106



Chapter 8. Conclusion and Further Work

[61] L. Almeida and A. Respício, Decision support for selecting information security controls,
in „Journal of Decision Systems“ May 15, 2018. DOI: 10.1080/12460125.2018.1468177.

[62] J. Breier and L. Hudec, On Selecting Critical Security Controls IEEE, Sep. 2013. DOI:
10.1109/ARES.2013.77.

[63] T. Schreider, Building an Effective Cybersecurity Program, Rothstein Publishing, 2019,
ISBN: 978-1-944480-53-0.

[64] C. J. P. Moschovitis, Cybersecurity Program Development for Business: The Essential
Planning Guide, Wiley, 2018, ISBN: 978-1-119-43000-1.

[66] J. H. P. Eloff and M. Eloff, Information Security Management: A New Paradigm, ser. SAIC-
SIT ’03 South African Institute for Computer Scientists and Information Technologists,
2003, ISBN: 1-58113-774-5.

[67] E. Humphreys, Information security management system standards, in „Datenschutz und
Datensicherheit - DuD“ Jan. 2011. DOI: 10.1007/s11623-011-0004-3.

[68] K. Dempsey et al., „Summary of NIST SP 800-53 Revision 4, Security and Privacy Controls
for Federal Information Systems and Organizations“ Feb. 2014. DOI: 10 . 6028 / NIST.
CSWP.02192014.

[69] T. Walshe and A. Simpson, An Empirical Study of Bug Bounty Programs IEEE, Feb. 2020.
DOI: 10.1109/IBF50092.2020.9034828.

[72] L. Bell et al., Agile Application Security: Enabling Security in a Continuous Delivery
Pipeline, O’Reilly Media, 2017, ISBN: 978-1-4919-3884-3.

[73] A. Laszka et al., The Rules of Engagement for Bug Bounty Programs, ser. Lecture Notes in
Computer Science Springer Berlin Heidelberg, 2018. DOI: 10.1007/978-3-662-58387-6_8.

[75] A. Laszka et al., Banishing Misaligned Incentives for Validating Reports in Bug-Bounty
Platforms, ser. Lecture Notes in Computer Science Springer International Publishing,
2016. DOI: 10.1007/978-3-319-45741-3_9.

[76] S. Patil et al., Design of Efficient Web Vulnerability Scanner IEEE, Aug. 2016, ISBN:
978-1-5090-1285-5. DOI: 10.1109/INVENTIVE.2016.7824873.

[77] T. Zimmermann et al., What Makes a Good Bug Report?, in „IEEE Transactions on Soft-
ware Engineering“ Sep. 2010. DOI: 10.1109/TSE.2010.63.

[78] J. Großmann and F. Seehusen, Combining Security Risk Assessment and Security Test-
ing Based on Standards, ser. Lecture Notes in Computer Science Springer International
Publishing, 2015. DOI: 10.1007/978-3-319-26416-5_2.

[80] M. Weulen Kranenbarg et al., Don’t shoot the messenger! A criminological and computer
science perspective on coordinated vulnerability disclosure, in „Crime Science“ Dec. 2018.
DOI: 10.1186/s40163-018-0090-8.

[81] S. L. Garfinkel et al., How to make secure email easier to use ACM Press, 2005. DOI:
10.1145/1054972.1055069.

[82] J. Erbes et al., The Future of Enterprise IT in the Cloud, in „Computer“ May 2012. DOI:
10.1109/MC.2012.73.

[83] Y. Makino and V. Klyuev, Evaluation of Web Vulnerability Scanners IEEE, Sep. 2015.
DOI: 10.1109/IDAACS.2015.7340766.

[84] C. Hadnagy, Social Engineering: The Art of Human Hacking, Wiley, 2011, ISBN: 978-0-
470-63953-5.

Bug Bounties in Enterprise IT Security 102 / 106



Chapter 8. Conclusion and Further Work

[85] S. F. Dizaji and M. R. Farzanegan, „Do sanctions reduce the military spending in Iran?“
2018. [Online]. Available: https://www.econstor.eu/handle/10419/200687 (last visited on
11/20/2020).

[86] N. de Guzman Chorny et al., The state of child labor protections in 193 countries: Are coun-
tries living up to their international commitments?, in „International Journal of Sociology
and Social Policy“ Aug. 22, 2019. DOI: 10.1108/IJSSP-12-2018-0229.

[87] A. T. Chatfield and C. G. Reddick, Cybersecurity Innovation in Government: A Case Study
of U.S. Pentagon’s Vulnerability Reward Program ACM, Jun. 7, 2017. DOI: 10 .1145 /
3085228.3085233.

[88] J. F. Ransome et al., Core Software Security: Security at the Source, CRC Press, an Auer-
bach book, 2014, ISBN: 978-1-4665-6096-3 978-1-4665-6095-6.

[89] C. Schanes et al., Problem Space and Special Characteristics of Security Testing in Live and
Operational Environments of Large Systems Exemplified by a Nationwide IT Infrastructure
IEEE, Sep. 2009. DOI: 10.1109/VALID.2009.24.

[90] A. Poller et al., Can Security Become a Routine?: A Study of Organizational Change in an
Agile Software Development Group ACM, Feb. 25, 2017. DOI: 10.1145/2998181.2998191.

[91] A. Bogner et al., Introduction: Expert Interviews — An Introduction to a New Methodolog-
ical Debate Palgrave Macmillan UK, 2009. DOI: 10.1057/9780230244276_1.

[92] K. E. Newcomer et al., Handbook of Practical Program Evaluation, Jossey-Bass & Pfeiffer
Imprints, Wiley, 2015, ISBN: 978-1-118-89361-6 978-1-118-89369-2.

[93] S. Bouajaja and N. Dridi, A survey on human resource allocation problem and its applica-
tions, in „Operational Research“ Jul. 2017. DOI: 10.1007/s12351-016-0247-8.

[94] J. Radianti and J. Gonzalez, Understanding Hidden Information Security Threats: The
Vulnerability Black Market IEEE, 2007. DOI: 10.1109/HICSS.2007.583.

Online References

[2] 2019-Data-Breach-Investigations-Report.Pdf, [Online]. Available: https://enterprise.verizon.
com / resources / reports / 2019 - data - breach - investigations - report . pdf (last visited on
05/24/2021).

[9] HackerOne. The Hacker-Powered Security Report 2019, [Online]. Available: https://www.
hackerone.com/resources/reporting/the-hacker-powered-security-report-2019 (last visited
on 05/24/2021).

[25] 2019 Cost of a Data Breach Report, [Online]. Available: https : / / databreachcalculator.
mybluemix.net/executive-summary (last visited on 05/24/2021).

[49] ISO/IEC 27001 Information security management, ISO, [Online]. Available: https://www.
iso.org/isoiec-27001-information-security.html (last visited on 05/24/2021).

[54] TIBER-EU FRAMEWORK – How to implement the European framework for Threat Intelligence-
based Ethical Red Teaming, [Online]. Available: https://www.ecb.europa.eu/paym/cyber-
resilience/tiber-eu/html/index.en.html (last visited on 05/24/2021).

[55] Österreichisches Informationssicherheitshandbuch, [Online]. Available: https : / / www .
sicherheitshandbuch.gv.at/index.php (last visited on 05/24/2021).

[65] ISO/IEC 29147:2018, ISO, [Online]. Available: http://www.iso.org/cms/render/live/en/
sites/isoorg/contents/data/standard/07/23/72311.html (last visited on 05/24/2021).

Bug Bounties in Enterprise IT Security 103 / 106



Chapter 8. Conclusion and Further Work

[70] Bugcrowd. Bugcrowd’s Priority One Report 2019, Bugcrowd, [Online]. Available: https:
//static.carahsoft.com/concrete/files/2215/7296/5388/Bugcrowd_Priority_One_Report_
2019.pdf (last visited on 05/24/2021).

[71] Bugcrowd. 2020 Inside the Mind of a Hacker Report, [Online]. Available: https://itmoah.
bugcrowd.com (last visited on 05/24/2021).

[74] 2018 State of Bug Bounty, Bugcrowd, [Online]. Available: https://www.bugcrowd.com/
resources/reports/state-of-bug-bounty-2018 (last visited on 05/24/2021).

[79] HackerOne. The 2020 Hacker Report, [Online]. Available: https://www.hackerone.com/
resources/reporting/the-2020-hacker-report (last visited on 05/24/2021).

Bug Bounties in Enterprise IT Security 104 / 106



A Appendix

A.1 Expert Interviews

This section describes the interview process and lists the questions used during the expert inter-
views performed in section 7.3 of this thesis. The interview is structured with categories. Each
category holds a number of questions, which are asked after a brief introduction to the category
topic.

Category 1 Introductions.
Introduction: Interviewer introduces himself and presents the approach, course and outcomes of
the case study. Then the following questions are asked:

1. What is your current role and experience?

2. Do you have experience with offensive security and bug bounties?

3. Do you have experience with e-health products?

4. What is your opinion in using offensive security for e-health products?

Category 2 General questions about the case study.
Introduction: Interviewer presents the case study and decision to run a bug bounty program. Then
the following questions are asked:

1. Do you think crowdsourced offensive security is a useful measure for this product?

2. Can bug bounties contribute if other offensive security measures have been applied?

3. What challenges or problems do you anticipate for running a bug bounty program against
this product?

Category 3 Integration approach.
Introduction: Interviewer presents the integration options provided by this thesis, and the chosen
approach for the case study. Interviewer also shows the example rules of engagement provided in
this thesis. Then the following questions are asked:

1. Do you think choosing an institutional bug bounty program was the correct approach for
this use case?

2. Would you consider using a services provider for this type of product?

3. Are the rules of engagement clear and easy to understand?

4. Is it clear which targets and actions are in-scope for this bug bounty program?

5. Is the process for reporting vulnerabilities clear and easy to understand?

105



Appendix A. Appendix

Category 4 Project architecture.
Introduction: Interviewer presents how the concepts of this thesis are applied in creating the inter-
nal processes and roles required for running the bug bounty program. Then the following questions
are asked:

1. Are the roles clear and easy to understand?

2. Do you consider the bug bounty coordinator role necessary?

3. Do you see anything missing or improvement opportunities?

Category 5 Operational processes.
Introduction: Interviewer presents how the concepts of this thesis are applied in operating the bug
bounty program. Then the following questions are asked:

1. Is the processing of vulnerability reports clear and easy to understand?

2. Are the instructions sufficient for getting started if a security engineer has had no prior
experience with bug bounty programs?

3. Do you consider using a ticketing system to be the right approach? What other software
could be used for managing the workload?

4. Would you prefer to reward after an issue has been fixed or does it suffice to approve it?

Category 6 Conclusion.
Introduction: Interviewer concludes the interview with the following questions:

1. Is there anything missing that you would consider adding to this work?

2. After having gone through the use case, what are your thoughts on crowdsourced offensive
security as a security measure?

3. How do you expect offensive security to evolve in the future, and how do bug bounties fit in
this picture?

Bug Bounties in Enterprise IT Security 106 / 106


