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Abstract

To this day vast amounts of medical knowledge is still published in unstructured form e.g.,
case reports, clinical notes etc. The automated extraction of relations from unstructured
sources between symptoms, diseases and other patient related information plays an
important role in areas such as Evidence Based Medicine. For example, effective disease-
symptom relation extraction accelerates tasks such as reviewing large amounts of medical
literature to learn new disease characteristics.

In this work we present a relation extraction model based on BERT and MetaMap that
extracts disease-symptom relations from over 20,000 BMJ Case Reports. Case reports
are medical publications that contain clinically important information about the course
of patients with specific medical conditions. Our model exploits the fact that a case
report focuses on a single disease which is mentioned in the case report title. By doing so
we represent the problem of relation extraction as a named entity recognition problem,
which simplifies the model and the annotation of the training dataset.

We evaluate our model using the Disease Symptom Relation Collection (DSR). DSR is a
set of graded disease-symptom relations from 20 diseases which was curated by medical
doctors. We evaluate our model by measuring the relevance of the disease-symptom
relations it extracted from BMJ Case Reports. We measure relevance by calculating
the agreement with the ground truth provided by the medical doctors with the metrics
nDCG@k, precision@k and recall@k. Furthermore, we compare the relevance our model
achieved with the relevance of two baseline models: a word2vec model and a co-occurrence
model trained on 1.5 million PubMed Central articles.

Our results show that our approach outperforms baselines by up to 25% nDCG, 27%
precision and 10% recall. The agreement between our model and the ground truth is up
to 64% nDCG@5 and 66% precision@5. Furthermore, our results also show that case
reports are a high quality source of disease-symptom relations. Despite that, we find that
they are of limited use due to the small number of openly accessible case reports.
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CHAPTER 1
Introduction

Disease-Symptom relation extraction is the task of retrieving associations between diseases
and symptoms from natural language text. The goal is to find relations in text sources
and extract them using Natural Language Processing (NLP) models. A disease-symptom
relation is a pair of disease and symptom concepts, representing a specific form of
association e.g., causal relationship. Diseases and symptoms are often defined by concepts
from openly available ontologies or vocabularies. The purpose of using ontologies is to
be able to interface with the wider ecosystem of medical information processing tools
and to clearly distinguish between concepts.

Disease-Symptom relations are just one of many biomedical relations. Other common
biomedical relations are for example, drug-drug interaction (DDI) or drug-disease relations.
DDI relations state interactions between drugs when they are taken in the same timeframe.
Drug-Disease relations are statements about drugs and their relation to the cause of a
disease.

1.1 Motivation
Effective extraction of relations between diseases, symptoms and other relevant medical
information plays a crucial role in Evidence Based Medicine (EBM). EBM aims to
integrate healthcare of patients with the best and current medical research evidence. To
this day, vast amounts of medical evidence are published in unstructured form, such as
case reports, clinical notes or scientific literature. Staying informed about the current
research evidence becomes increasingly more difficult due to the rate at which new
evidence is published. Reading hundreds of articles in order to assess the relationship
between a disease and symptoms is very time-consuming. Disease-Symptom relation
extraction helps speed up the search and interpretation of medical knowledge, thereby
helping healthcare professionals to stay up-to-date. Search engines may be improved by
annotating medical text with relations, therefore allowing users to search for evidence
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1. Introduction

of a relation between diseases and symptoms. Interpretation becomes easier because
relations across many thousands of medical texts can be interpreted more quickly e.g.,
using aggregate statistics.

Another area which disease-symptom relation extraction models can positively impact is
automated diagnostics. Automated diagnostic tools can serve as a first point of contact
for patients in the healthcare system, thereby reducing the amount of resources needed
for guiding patients to receive appropriate treatment. One such tool was developed by
the healthcare startup XUND, who sponsored this thesis. The motivation is to enrich
their medical knowledge base with biomedical relations, in order to further develop their
automated diagnostic model.

1.2 Aim of the work
In recent years Deep Learning approaches provided major performance improvements
in many natural language comprehension tasks. We aim to leverage the performance
improvements of state-of-the-art NLP Deep Learning models for the problem of disease-
symptom relation extraction. To be specific, we aim to evaluate a disease-symptom
relation extraction model based on the Deep Learning model Bidirectional Encoder
Representations from Transformers (BERT) [DCLT19]. We evaluate the model by
measuring the relevance of the relations extracted from medical case reports, using the
Disease Symptom Relation Collection (DSR). Case reports are medical publications that
contain clinically important information about the course of patients with specific medical
conditions. They describe information in free text, such as patient information (e.g., age,
gender etc.), differential diagnoses and symptoms the patients reported. The source of the
case reports is BMJ Case Reports1. DSR [ZHRH20] is a collection of disease-symptom
relations created by medical doctors, and it serves as a ground truth for our evaluation.
We measure the relevance of the relations our model extracted by computing the nDCG,
precision and recall with respect to DSR. Lastly, we compare the relevance that our
model achieves with baselines provided using the DSR.

Due to special requirements from our sponsor, our model must also be designed to be
extensible to more complex relations. Thus, in addition to symptoms and diseases, the
model must be flexible enough such that it can be adapted to extract other patient
information, such as age and gender, as well.

The last goal of this work is to provide a review of biomedical extraction methods
and background necessary to understand our relation extraction model. The literature
on disease-symptom relation extraction methods is comparatively small, therefore we
widened our scope to biomedical relation extraction methods. However, all methods
reviewed can either be applied directly to disease-symptom relation extraction or adapted
straightforwardly with the background we provide.

Our work answers the following questions:
1BMJ Case Reports — https://casereports.bmj.com
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1.3. Structure of the work

1. How relevant are disease-symptom relations extracted from case reports by our
model compared to baselines?

2. What are the advantages and disadvantages of our model for disease-symptom
relation extraction?

3. What are the advantages and disadvantages of case reports for disease-symptom
relation extraction?

1.3 Structure of the work
Chapter 2 reviews biomedical extraction methods and background necessary to understand
our model. We focus on neural network based methods because we use techniques and
concepts from these methods for our model.

Chapter 3 describes the dataset we use to extract disease-symptom relations from. We
present the source and discuss the structure of the data. Additionally, we describe the
annotation process used to create the training dataset for our model.

Chapter 4 describes our relation extraction model. We describe the architecture of the
model, starting with the vocabulary used to represent medical concepts. Then we dissect
and explain the modules comprising our relation extraction model.

Chapter 5 describes the experiments we conduct to answer our first research question,
whether our approach outperforms baseline models. We also present the results of the
experiments and analyze them using hypothesis tests and visualizations.

Chapter 6 presents the conclusions we draw from the experiments. We discuss the
advantages and disadvantages of our approach, as well as case reports as a source for
relation extraction.

Chapter A contains information relevant to the thesis such as software versions used in
the implementation of the experiment.
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CHAPTER 2
Extraction methods

This chapter discusses biomedical relation extraction methods based on neural networks.
The purpose of this chapter is not to provide a complete and exhaustive literature
review. Instead, we aim to provide the reader with enough background to understand
the approach we have taken in this work. Alongside the background, we present related
work to understand how our approach compares to other biomedical relation extraction
approaches.

We widened our scope from disease-symptom relations to biomedical relations in general,
because the literature on disease-symptom relation extraction is comparatively small.
And methods devised for other biomedical relations can either be applied directly to
disease-symptom relations or straightforwardly adapted.

We only choose methods based on neural networks because our method is also based on
neural networks. Furthermore, instead of simply listing methods, we generalize them into
a framework/approach to highlight their modular nature. We do so because we find that
many methods reuse and combine parts of other methods. Therefore, integrating the
methods into a framework/approach gives a clearer picture on how these methods are
composed and enable the reader to adapt methods to disease-symptom relation extraction
if necessary. The Overview 2.1 describes the general approach of neural network based
methods.

2.1 Overview
In the past decade interest in neural networks has sparked again in the computer science
community. The resurgence of neural networks may be partly attributed to the large
increase in computational power. Despite their versatility, their computationally complex
design led to limited use prior to that. Another contributing factor is the massive increase
in availability of training data, due to but not exclusively, the growth of the internet.
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2. Extraction methods

The new abundance of data allowed for increasingly larger network architectures e.g.,
transformers to be trained. The field of NLP has been particularly uplifted by recent
advances in neural networks architecture, hardware and data availability.

Neural network based methods are designed in a modular way, thus allowing for many
possible combinations. Discussing all the conceivable combinations of architectures,
preprocessing steps and training procedures will be infeasible in this work. However,
given the fairly narrow context of biomedical relation extraction we found most neural
network based methods to follow similar design patterns. We have distilled them into an
approach which is shown in Figure 2.1.

We dedicate a section in this chapter for each step in Figure 2.1. The first section, Dataset
Annotation 2.2 describes what datasets are, how they can be annotated and evaluated.
Preprocessing 2.3 discusses common preprocessing steps used on the unstructured text.
Embedding 2.4 describes how unstructured text, as well as the additional information
generated in the preprocessing step, can be represented as vectors. The last section,
Classification 2.5 describes how neural networks are used to extract relations through
means of classification.

2.2 Dataset Annotation
Most approaches that incorporate neural networks in biomedical relation extraction are
based on some form of supervised learning. The goal of supervised learning is to fit
a machine learning model that maps between input and output pairs as accurately as
possible. The input in our case is usually natural language text. However, the input
may be enriched with linguistic information about the text e.g. POS-tags, or any other
type of information that can be derived from the input at prediction time. We present
common types of additional information in Section 2.3. Outputs tend to be relations
themselves or some intermediate output needed for subsequent models continuing the
relation extraction. The task of mapping between input text and output relations is a
classification task.

Creating your own dataset for biomedical relation extraction models based on neural
networks is costly. Neural networks need large amounts of labeled data for training
and evaluation. It can be very time-consuming to collect large amounts of data with
decent annotation quality. Depending on the relation, annotating biomedical text may
require domain specific knowledge, thus reducing the amount of potential annotators.
The problem of collecting large amounts of data is further aggravated by the fact that
data from the biomedical domain is often less likely to be shared due to privacy concerns.
Therefore, even if access to qualified annotators is not an issue, getting large amounts of
data for biomedical relation extraction can be.

Most of the research we present focuses solely on the extraction method. They evaluate
their models on benchmark datasets that have already been labeled by someone else.
However, when different type of relations need to be extracted or new instances of
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2.2. Dataset Annotation

Annotation

Preprocessing

Embedding

Classification

NER, Dependency Tree,
POS-Tags, ...

Additional Information

Unstructured text

Relation predicted in
original text

Figure 2.1: Most common steps of neural network based biomedical relation extraction
pipeline. (y1, y2) is a relation between the biomedical entities y1 and y2. (ŷ1, ŷ2) is the
relation predicted by the model.
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2. Extraction methods

existing relations appear e.g., new drugs or diseases, datasets may need to be labeled or
re-labeled. The remainder of this section discusses details that need to be considered
when annotating a dataset for biomedical relation extraction.

2.2.1 Annotation level
The annotation level refers to the scope of the annotation. For example, one can create
annotations per sentence, paragraph or document. Most of the methods reviewed in
this work predict relation labels per sentence, thus requiring sentence level annotation.
Annotation at a sentence level trades off relation coverage and accuracy for speed of
annotation. On one hand, the speed at which annotations are generated increases because
annotators do not have to read entire paragraphs or even documents before assigning
annotations. On the other hand, the removal of context from the sentences may introduce
ambiguities or even make inferring relations impossible altogether. Thus, some relations
will be missed that were potentially discoverable given the more complete text.

As an example, we present a sentence from a medical case report1.

The condition improved markedly after a few days’ treatment with non-steroid
anti-inflammatory drugs and prednisolone.

This sentence implies the existence of a causal relation between a drug treatment and the
recovery of a patient. An annotator with the goal of labeling drug-disease relations would
have to skip this sentence if it were seen in isolation. But given some context, in this case
the preceding sentence, the annotator would have been able to discover the drug-disease
relation i.e., the relation between reactive arthritis and non-steroid anti-inflammatory
drugs and prednisolone.

Thus, the condition was compatible with reactive arthritis. The condi-
tion improved markedly after a few days’ treatment with non-steroid anti-
inflammatory drugs and prednisolone.

The most appropriate annotation level depends on the type of text, resources available
for annotation and the neural network architecture used. If the documents are long form
texts where single statements can easily span more than one sentence, then a paragraph
or document level approach may be more appropriate. Another situation in which to
prefer paragraph or document level annotations is when more resources can be dedicated
to the dataset annotation i.e. more people or annotators with more extensive domain
knowledge. Doing so will make the labeling more accurate and complete. Lastly, none of
the above matters if the neural network architecture is not equipped to deal with long
sequences of text. The task of learning long range dependencies between parts of texts
e.g., relating words that are far apart, is still a big challenge for NLP models. Section 2.5
discusses this challenge and how it is handled by various neural network architectures.

1Reactive arthritis after COVID-19 — http://dx.doi.org/10.1136/bcr-2020-241375
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2.2. Dataset Annotation

2.2.2 Manual labeling

The most straightforward way to build a dataset suitable for supervised learning of
biomedical relations is to label relations manually. The manual approach has been
successfully used many times before. This section reviews the approaches taken for two
biomedical relation datasets in more detail.

The BioCreative V CDR task corpus [LSJ+16] was created for the purpose of advancing
chemical-disease relation research. The team behind the work manually annotated
1500 biomedical articles with chemical entities, disease entities and chemical-disease
relations. The labels corresponded to Medical Subject Headings (MeSH). To speed up
the process of annotation they used software specialized for biomedical data curation
[WKL13] (Figure 2.2). PubTator speeds up the annotation process by allowing the user to
annotate using a graphical user interface, instead to editing large text files manually. The
corpus’ annotations are built on top of an already annotated corpus from Comparative
Toxicogenomics Database (CTD) and Pfizer. As a consequence some of their work
consisted of modifying or deleting existing annotations. Instead of annotating sentences
they chose to annotate entire abstracts. The annotation process was undertaken by 4
people, each with a medical training background and curation experience. Each sample
was annotated by two individuals. In the case of conflicting annotations, the other two
people were tasked to resolve the conflict. The inter-annotator agreement was above 85%
for all splits of the dataset.

Figure 2.2: Screenshot of an annotation example in PubTator [WKL13] taken from
[LSJ+16].

The Drug-Drug-Interaction (DDI) corpus [HSMD13] was created for the purpose of
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2. Extraction methods

furthering research about interactions between drugs. The corpus consists of 1025
randomly selected documents from the DDI-Drugbank database and MedLine abstracts.
The annotations were performed at the sentence level, resulting in 8942 sentences.
They used the tool MetaMap [Aro01] to pre-annotate drugs in the text using MeSH
concepts. Before the actual annotation they defined strict guidelines for the annotation
process. Focus was laid on the problem that drugs often have multiple names e.g., name
brand, chemical substance name etc. The annotations were then performed by two
pharmacologists with substantial background in pharmacovigilance. They were assisted
by a text miner in all technical aspects. They did not make use of any graphical annotation
tools, instead they curated annotations using an XML Editor2. The inter-annotator
agreement was 80% and above for all parts of the dataset.

To finish this section, we highlight common challenges encountered by the works discussed
above. This approach relies on human annotators familiar enough with the domain to
inspect and label each sample individually. It is not uncommon for neural networks to
be trained on thousands of samples. Assuming that labeling a sentence relation pair
takes on average 30 seconds, annotating 5000 sentences will take more than 41 hours.
When taking into account that each sentence should be annotated by more than one
person, the number of hours increases even more. Employing experts for this many
hours may become infeasible. Another challenge encountered by the works discussed
above is ambiguity or the existence of multiple plausible annotations. The authors of
the DDI-corpus tackled this problem by developing strict guidelines for the annotation
process. Increasing the number of annotators for each sample is also way to reduce
uncertainty, albeit an expensive one.

2.2.3 Distant Supervision
Traditional supervised relation extraction suffers from the problem that labeled datasets
are time-consuming to create. This problem is aggravated when the domain of the text
is highly technical and can therefore only be reliably labeled by experts in the field.
Distant supervision aims to circumvent this problem by programmatically generating
input output pairs for the machine learning model. Distant supervision has already been
used in relation extraction before [MBSJ09]. In this work the authors used relations
found in the semantic database Freebase to label large text corpora such as Wikipedia.
The assumption of their method is that if two entities form a relation in the semantic
database they are likely to exhibit that relationship as well when both entities can be
found in the same sentence. They were able to extract 10,000 instances of 102 relations
with distantly labeled dataset at a precision of 67.6%. But the method suffers from the
strength of its assumption. For example the following two sentences contain both of the
two entities headache and concussion.

1. A patient suffered from chronic headaches as a result of a concussion.
2XML Notepad https://microsoft.github.io/XmlNotepad/
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2.3. Preprocessing

2. The patient reports headaches but showed no sign of a concussion.

If the relation we are interested in is a causal relation then the method will fail. The first
sentence states a causal relation between headache and concussion, but not the second
one. The method will potentially introduce a high number of false positive instances.
One way to reduce the number of false positives is to make use of syntactical or lexical
features [BZKA20]. The methods described by the work are based on heuristics. They
are very similar to the methods described in the section about linguistics- and rule based
methods. The problem of false positive labels generated by this type of method can also
be tackled by during training of the machine learning model. For example, Tran and
Kavuluru [TK19] implemented a loss function that is more resistant to label noise.

2.2.4 Annotation Quality
Once the dataset is annotated, it is desirable to measure the quality of the annotation.
One indicator of quality is whether the dataset was manually annotated by experts.
Datasets annotated this way are considered gold standard. Experts are people with
considerable experience in the domain e.g., a medical doctor.

A practical way to increase annotation quality is to increase the number of annotators
for each sample. Having multiple annotations per sample allows us to pick the final
annotation by majority voting, thus reducing noise of the labels. Another advantage
of having multiple annotations per sample is that we can quantify the quality of the
labels. The inter-annotator agreement quantifies the agreement of labels from multiple
annotators. For this to be a measure of annotation quality we need to assume that when
more people agree on a label, the label is more likely to be correct.

A popular way to assess the inter-annotator agreement is Fleiss’ Kappa. Fleiss’ Kappa
[Fle71] is a statistical measure to compute the agreement of more than two annotators.
The measure requires the number of annotators to be fixed and annotations to be on
nominal scale.

2.3 Preprocessing
This section describes the most common preprocessing methods used by biomedical
relation extraction methods based on neural networks.

2.3.1 Dependency Parsing
Dependency parsing is a common task in NLP pipelines. The goal of dependency parsing
is to enrich plain text with its grammatical structure. The result of dependency parsing
is a graph structure called dependency parse tree (Figure 2.3).

Definition 2.3.1 (Dependency Parse Tree). A dependency parse tree is a directed graph
G = (V, E) where words are represented by vertices V and grammatical relations between
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2. Extraction methods

words by edges E. Punctuation marks may be part of V . All vertices apart from the
root have incoming edges.

Figure 2.3: The sentence “The patient developed subacute thyroiditis.” transformed into
a dependency tree by spaCy with en_core_web_sm pipeline. The root of the tree is
the word “developed”.

Parsing of natural languages proves to be difficult due to ambiguous or complex rules.
State-of-the-art models for dependency parsing are therefore deep neural networks instead
of handcrafted rules. The current state-of-the-art model for dependency parsing is based
on transformers and recurrent neural networks, as is the case with many natural language
tasks. The model based on XLNet [MDT+20] achieved 96.26 LAS3 on the Penn TreeBank
benchmark dataset [MSM93]. Biomedical dependency parsing benchmarks show a similar
picture. The state-of-the-art for the biomedical benchmark corpus GENIA [KOTT03]
was achieved by Bi-LSTM CRF [NV19] and SciBERT [BLC19].

2.3.2 Part-Of-Speech Tagging (POS)

Part-of-speech tagging or POS-tagging is the process of assigning grammatical descriptors
to words. The choice of tags is dependent on the context the word e.g., work may be a
noun or a verb depending on its usage. Since natural languages differ in their complexity
and usage, the sets of tags may also differ. However, a common set of tags may still be
useful (Table 2.1).

As with dependency parsing, the state-of-the-art in POS-tagging is also dominated by
deep neural networks ([BMS+18], [CZ19]).

2.3.3 Named-entity Recognition (NER)

Named-entity recognition (NER) is the task of classifying entities in unstructured or
natural language text. The goal is to assign words or entire parts of the text into a known
set of classes. In the case of biomedical relation extraction, the classes will likely include
the entities in question e.g., symptom-disease relation extraction will include the classes
symptom and disease.

3Labeled Attachment Score (LAS) is the ratio between number of correctly predicted dependen-
cies/relations and the number of possibilities
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2.4. Embedding

Symbol Description
ADJ adjective
ADP adposition
ADV adverb
AUX auxiliary verb
CONJ coordinating conjunction
DET determiner
INTJ interjection
NOUN noun
NUM numeral
PART particle
PRON pronoun
PROPN proper noun
PUNCT punctuation
SCONJ subordinating conjunction
SYM symbol
VERB verb
X other

Table 2.1: List of universal POS-tags from Python NLP library spaCy.

As with most language understanding tasks, regardless of domain, the current state-of-
the-art for NER tasks is also deep neural networks. Nooralahzadeh et al. achieved 89.93
F1-score [NLØ19] in NER on the chemical-disease relation extraction dataset BC5CDR
[LSJ+16]. Their approach was based on distant supervision, described in Section 2.2.3,
to tackle the problem of scarcity of high quality labeled datasets in the medical domain,
as well as neural reinforcement learning for denoising. Lee et al. trained the transformer
based model BERT on biomedical text corpora and achieved state-of-the-art with 89.72
F1-score [LYK+19] on the biomedical NER benchmark NCBI Disease [DLL14].

2.4 Embedding

Neural networks cannot use the characters directly in the text as input. Neural networks
only accept numerical input in the form of vectors, matrices or more generally tensors.
We must therefore convert sequences of characters into numerical form.

Definition 2.4.1 (Embedding). The process and the result of transforming text into a
numerical structure is called embedding. Embeddings are also commonly referred to as
vector representations. An embedding function f transforms a sequence of characters
s ∈ S and (learnable) model parameters θ ∈ Θ into a vector in Rn, where n is the
dimensionality of the embedding.

13



2. Extraction methods

f : (S, Θ) → Rn

There are a plethora of ways to embed text into vector spaces, with new ones being
developed regularly. This means we will only be able to cover popular methods. We will
group them by the characteristics they exhibit and discuss how newer methods improved
upon older ones.

2.4.1 Context independent embedding
The defining feature of this class of embeddings is that tokens, usually words, will be
transformed without taking into account their context. For example, the word tree will
have the exact same vector representation whether it is used in a computer science
textbook or in a biology text book.

One-hot encoding is one of the simplest methods to embed text. Even though this method
is now rarely used in NLP — why will become apparent after this paragraph — it helps
to appreciate the details of more complex methods being discussed later. In one-hot
encoding each dimension in the vector representation corresponds to a distinct word in
the text corpus. The representation of a word is a sparse vector of mostly zeros and a
single one in the dimension that represents the word. The advantage of this method is
that embeddings can be generated efficiently. However, as the text corpus grows, the
number of distinct words will grow as well, causing the dimensionality of the vector
embedding to increase linearly with the number of distinct words. The result will be
a vector space with possibly thousands of dimensions, and the model will likely suffer
from the curse of dimensionality [VF05]. Another disadvantage is that each embedding
is orthogonal and of equal magnitude. This is, each word is equally similar to all other
words. Machine learning models relying on distance will therefore not be able to exploit
similarities between words in their modeling.

Word2Vec [MSC+] does not suffer from the two problems discussed before. The dimen-
sionality of the word embeddings can be predefined and is independent of the distinct
number of words in the corpus. The second problem is overcome by learning how to
position semantically similar words closer together in the vector space. In order to achieve
this Word2Vec exploits the fact that semantically similar words tend to be used in similar
contexts. For example, due to the semantic similarity of the words dog and cat, both words
tend to be used in similar sentences e.g., “I fed my cat.” and “He fed the dog.” Word2Vec
fits the embedding function by learning to either predict surrounding words from the
current word (skip-gram) or the current word given surrounding words (continuous bag
of words). Similarity of the embeddings may then be quantified with geometric functions
such as cosine similarity or Euclidean distance. The embedding function itself is a shallow
two-layer neural network. While neural networks often require specialized hardware such
as GPUs, Word2Vec is able to learn efficiently on the CPU. Later on, models such as
GloVe and FastText were developed to improve on the approach that Word2Vec took.
One shortcoming of Word2Vec is that previously unseen words cannot be embedded.
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FastText tries to solve this problem by learning vector representations of n-grams or
subwords [BGJM17] instead of full words. GloVe aims to improve on similarity tasks by
leveraging statistical information about the global co-occurrence between words [PSM14].
This is in contrast to the local approach that Word2Vec uses.

2.4.2 Context dependent embedding
While Word2Vec and similar models led to better performance for many NLP tasks
they were held back by the fact that each word had a single vector representation. The
problem is that words often have multiple meanings and can be reused in different
situations. For example, the word cell clearly has multiple meanings. It can refer to
biological cells, prison cells or cell phones. In this case, Word2Vec must find a single
vector representation that can be used all these scenarios. ELMo [PNI+18] and BERT
[DCLT19] solve this problem by taking word order into account and generating word
embeddings from not only the current word but also its surrounding words. This type
of embedding is referred to as contextualized word embedding. In contrast, the family
of context independent embedding models, which Word2Vec, GloVe and FastText are
a part of, only takes surrounding words into account when training. ELMo achieves
contextualization with deep bi-directional LSTM models (Figure 2.4). BERT does so
through the help of deep bi-directional transformers. Both models require specialized
hardware such as GPUs or TPUs in order to train efficiently on large corpora such as
Wikipedia. Even though ELMo and BERT achieved state-of-the-art performance in many
NLP tasks, they might not always be preferable to context independent embeddings.
Context independent embeddings make sharing of embeddings easier as they are just
vectors. There is no need to share the trained model (usually large and computationally
complex) since embeddings do not need to be contextualized.

2.4.3 Subword and character-level embeddings
A common way to transform text into vector representations is to embed each word
into a separate vector. This is the way Word2Vec or GloVe work. Word embedding
algorithms consider words to be atomic units. Both of these models are still used today
and provide acceptable performance for many NLP tasks. However, one major drawback
of these methods is that they are not able to handle out of vocabulary words (OOV).
These are words that are not part of the model vocabulary. Reasons that words are
not included in a vocabulary are e.g., they were not encountered during training, or we
imposed a limit on the size of the vocabulary. The consequence is that OOV words must
be handled separately e.g., by removing them from the text, since the model does not
handle them. Another less obvious shortcoming of word-level embedding models is that
they are not able to take advantage of the internal structure of words. Words found in
natural languages such as English or German are rarely understood as atomic tokens.
Many words share parts of themselves with other words. This is often an indicator that
the words are related in some way. This is especially the case in scientific domains where
new words are needed regularly e.g., for a new process, new concept etc. A commonly
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The cell membrane lipids...

Figure 2.4: This diagram shows how a Bi-LSTM contextualizes the word cell. The
initial word embedding for cell "w2 will be endowed with information from words to the
left and right of it. The result are two vectors "hr

2 and "hl
2 which will be concatenated.

The information propagation and aggregation happens sequentially due to the design of
Bi-LSTMs. The new embedding "h2 will contain information from membrane and lipids,
thus moving the meaning of cell into the biological domain.

used way to generate new words is to compound already existing words e.g., Coronavirus
from the words corona and virus.

FastText has shown that enriching text embeddings with subword information improves
performance [BGJM17]. FastText has also been successfully used in the biomedical
domain where it outperformed word-level embeddings such as Word2Vec on a variety
of biomedical information extraction tasks [ZCY+19]. To overcome the shortcomings
mentioned in this paragraph, newer models such as ELMo [PNI+18] and BERT [DCLT19]
also operate on the subword-level. All three of these models achieved state-of-the-art
performance in many NLP tasks at the time of their release.

The smallest possible subwords are the characters themselves. Character-level embeddings
also have shown to improve performance over word-level embeddings. Akbik et. al
[ABV19] achieved state-of-the-art performance in a range of sequence labeling tasks such
as CoNLL-03.

2.4.4 Embedding of linguistic information

A great strength of neural networks is their ability to process multiple types of data at
once. We can take advantage of this by not only embedding the text but also additional
linguistic information. This section reviews a few additional sources of information
successfully used in biomedical relation extraction.
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Shortest Dependency Paths (SDP) were found to improve performance for relation
classification tasks when combined with word embeddings [LWL+15]. A SDP is the
shortest path between two entities in a dependency graph. Dependency graphs are usually
constructed with a dependency tree parser model, separate from the neural network
relation classification model. The two entities connected by the SDP are defined by the
relation we want to extract e.g., symptom and disease. While it would be technically
possible to add other SDPs to the input, it is not obvious which ones the model would
benefit from more than the two entities that are part of the relation. The SDP can be
represented in vector form in various ways. A simple way to represent the SDP is to
embed each word of the SDP with the same text embedding model that is used for the
full sentence. Another way to embed an SDP is to embed the edges of the SDP graph
[ZLY+18] e.g., nsubj, prep etc.

POS-tagging information can be added in a straightforward manner through concatenation
with the word vectors ([ZZL+18], [LZFJ17]). This is because each word in the input
sentence has a one-to-one correspondence with a POS-tag. Note that this way of including
POS-tags makes the use of subword tokens more difficult, as POS-tags only exist for
words. We can include POS-tagging information independently like we did with SDPs.

Figure 2.5 shows a general framework of how to combine syntactic and lexical information
with word embeddings in a neural relation classification model.

2.4.5 Pretrained embeddings
In order to gain more natural language understanding, NLP models often use pretrained
text embeddings generated during training of neural network models on very large text
corpora. A popular text corpus to generate text embeddings from is Wikipedia. At the
time of writing English Wikipedia contains more than 3000 million words or 6 million
articles4. Generating text embeddings from large text corpora such as this is very time-
consuming and computationally expensive. For this reason it is common to generate the
embeddings once and then share them with the NLP community. Widely used libraries
such as spaCy5 and huggingface transformers6 provide embeddings trained on various
text corpora.

While using text embeddings created from large general purpose text corpora like Google
News can be beneficial, it is preferred that text embeddings stem from a domain that
is closely related with the domain the final model will be used in. This makes sense
intuitively since the language and words used in any given text can differ significantly
among domains. For example, Wang et al. [WLA+18] found that text embeddings from
biomedical corpora capture the semantics of medical terms better than from general
language corpora such as Google News. Text embeddings from the biomedical domain
performed better in a variety of information retrieval tasks than ones from general purpose

4https://en.wikipedia.org/wiki/Wikipedia:Size_in_volumes
5https://spacy.io
6https://huggingface.co
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Neural Net Neural Net Neural Net

Classification
e.g. MLP

Word
Embedding

POS,
position etc.

The fever was caused
by a COVID-19 infection. fever caused by

COVID-19

nsubj obl

Sentence word
sequence SDP word sequence SDP relation sequence

Aggregation

Dependency
relation

embedding

Figure 2.5: This graphic shows how to combine additional linguistic information with
text embeddings such as SDP, POS-tags etc. The architecture is based on work done by
[ZLY+18], [ZZL+18] and [LZFJ17]. The processing steps are laid out very generally e.g.,
Neural Net and Aggregation instead of Bi-LSTM and Max-Pooling. The reason is that
there are many viable options to choose from.
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domains. For this reason, widely used models such as Word2Vec or FastText often offer
text embeddings for various domains like biology, medicine or law.

The type of pretrained embeddings discussed so far are context independent or global.
Every word or subword will be transformed into the same vector, regardless of where
in the text it happens to be. Consequently, embeddings can be assigned to each word
or subword directly. No model is necessary to embed the text. But, as mentioned in
Section 2.4.2, contextualized or context dependent embeddings are preferred due to their
superior performance for many NLP tasks. These types of embeddings must be generated
by the machine learning model that was pretrained. This is because every word will be
assigned multiple different vector representations throughout the text, each assignment
dependent on its surrounding words. The most popular models to produce contextualized
text embeddings are based on deep neural networks.

2.5 Classification
In this section we review major concepts and ideas of neural network models used to
extract biomedical relations. We describe what they are, why they are important and how
they are used in biomedical relation extraction. By doing so we acquire the background
needed to understand the model we present in Chapter 4 and extend it to more complex
relations. Extensibility is a side objective we introduced in Section 1.2.

The models we describe in this section all follow the same steps:

1. Generate candidate pairs

2. Encode candidate pairs

3. Classify candidate pairs to extract relation

Relations between biomedical entities are not extracted in the literal sense, instead they
are extracted implicitly through classification. Given a piece of text, a neural network
based relation extraction model will output the relation type present in the text e.g.,
disease-symptom or no disease-symptom. However, just detecting whether a relation is
present in the text does not qualify as extraction. Therefore, the model also generates
relation candidates or candidate pairs. A candidate pair is a potential relation present in
the text. To illustrate what candidate pairs are, we find candidate pairs in the following
sentence:

The patient reported chest pain and nausea before being diagnosed with a
heart attack.

This sentence has two candidate pairs: (heart attack, chest pain) and (heart attack,
nausea). We can find these candidate pairs using NER models. The next step is to encode
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candidate pairs. There are multiple approaches to this problem. For example, after
detecting entities with the NER model, we can substitute diseases and symptoms in the
text with dummy names e.g., replace “heart attack” with “DISEASE”. By encoding the
candidate pair in the sentence we are no longer classifying the sentence but the candidate
pair. This is because during training the model learns to map sentences containing our
dummy names to relation classes. Another way to encode the candidate pair is to extract
the SDP of the pair and include it in the input.

2.5.1 Recurrent Neural Network
Recurrent Neural Networks (RNN) are a class of neural networks designed to process
variable length sequences using an internal state. RNNs are a natural choice for biomedical
relation extraction because text is a variable sequence of characters and words. The
most common variants of RNNs in biomedical relation extraction are Long Short-Term
Memory (LSTM) [HS97] and Gated Recurrent Unit (GRU) [DS17].

LSTMs and GRUs were developed to alleviate the vanishing gradient problem [Hoc98],
which previous types of RNNs were known to suffer from. The problem describes the
phenomenon of gradients becoming vanishingly small during gradient based training of
very deep neural networks, and therefore preventing the update of network weights. RNNs
are more prone to this problem because the effective depth7 of the network depends on
the length of the input sequence. Therefore, long sequences e.g., text paragraphs, result
in very deep networks. The vanishing gradient problem prevents RNNs from learning
long range dependencies in the sequence i.e., relating words further apart in the text.
LSTMs and GRUs are capable of learning longer range dependencies and achieve higher
performance on sequence modeling tasks compared to standard RNNs [CGCB14].

Further improvement of LSTMs and GRUs is achieved by introducing bidirectional
processing. To signal that sequences are processed in both direction the prefix “bi”
is used e.g., Bi-LSTM. Normally, the model transforms each element (e.g. word or
subword) from the sequence into a vector by processing the sequence from left-to-right
or right-to-left. This way, previous elements in the sequence affect the output vector
of future elements. On the other hand, bidirectional RNNs process the sequence in
both directions and output two vectors for each element. In order to obtain the same
number of vectors as before, both vectors are aggregated e.g., concatenation. We already
discussed the motivation behind this approach in Section 2.4.2. To summarize, processing
in both directions allows us to take into account context from the entire text instead of
just one side. The remainder of this section discusses literature that utilized Bi-LSTMs
or Bi-GRUs for biomedical relation extraction.

Galvan et. al [GOMI18] uses Bi-LSTMs to extract temporal relations from clinical text
in an end-to-end fashion. As a consequence, a single model captures all steps after
annotation in our framework (Figure 2.1). They adapted the LSTM model from Miwa
et. al [MB16] in order to evaluate it on 2016 Clinical TempEval. The model consists of

7Depth of the directed acyclic graph representing the RNN after it is unrolled.
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two Bi-LSTMs stacked on top of each other which we call M1 and M2. M1 generates
candidate pairs (i.e. candidate relations) by classifying each word in the input text. If
two words from the input text are classified with the entities we are interested in e.g.,
disease and symptom, they are considered a candidate pair. M2 classifies each candidate
pair among possible relation types e.g., disease-symptom relation or no relation. However,
it does not directly classify the candidate pairs from M1. Instead, an SDP between the
pair elements is generated, embedded and classified. For example, let us consider the
candidate pair (wordx, wordy). We generate an SDP between wordx and wordy with
elements wordi ∈ SDP (wordx, wordy). Then we represent each element wordi in the
SDP as a concatenation of the M1 output of wordi, M1 hidden state of wordi, and a
dependency graph arc embedding going out of wordi.

2.5.2 Hybrid models
Hybrid models are models which use more than one type of neural network. Li et al.
[LZFJ17] uses a Convolutional Neural Network (CNN) in combination with a Bi-LSTM
for various biomedical relation extraction tasks. The purpose of the CNN is to generate
word embeddings from character-level embeddings. The advantage of character-level
processing is that the CNN can extract morphological information from characters of the
words. As a motivational example they provided the prevalence of common prefixes and
suffixes in the biomedical domain. For example, the suffix “bacter” is a strong indicator
that the word concerns itself with bacteria e.g., “campylobacter”, “helicobacter”. If we
were to treat words as atoms instead of sequences of characters, we would not be able to
access morphological information.

Zhang et al. [ZLY+18] also uses CNNs in combination with Bi-LSTMs. The model they
propose is an ensemble of three models: Bi-LSTM which processes the full text, CNN
which processes the SDP of the full text and a CNN which processes the dependency
relations from the SDP. The outputs of the three neural networks are then reduced in size
with Max-Pooling operations, before they are aggregated and classified in the final MLP8

layer of the network. Zhang et al. motivates the usage of CNNs over RNNs because they
are better at processing short sequences e.g., SDP.

2.5.3 Attention
Attention is a method to encode elements of a sequence which resolves a serious drawback
of RNN-based models. RNNs process elements sequentially and need to “remember”
information over many steps to form long range dependencies between elements. In-
formation from very early elements may be overwritten in the “memory” of the RNN
by the time later elements are processed. This can be problematic when encountering
long sentences where the meaning of a word is dependent on far away sections of the
sentence. Attention resolves this problem by accessing elements in parallel, instead of
sequentially. Therefore, information does not need to be “remembered” anymore. The

8Multi Layer Perceptron
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encoded elements are weighted combinations of other elements or themselves. There
are various ways to compute the weights of the combination such as e.g., dot product
between the to be encoded word and other words [Hu20].

Zheng et al. [ZLL+17] use self-attention in combination with Bi-LSTMs to extract
interactions between drugs in the biomedical literature. They only use attention in
the embedding layer to re-encode the word embeddings of input sentences. Each word
becomes a weighted combination of all words in the input. The rest of the model is
similar to RNN-based models discussed in Section 2.5.1. Zheng et al. found that input
self-attention improved relation extraction performance for long range relations (50 or
more words apart), while performing similarly for close range relations.

Zhang et al. [ZZL+18] also use self-attention to re-encode the input embeddings. However,
their approach only attends to the candidate pair instead of all words in the input sequence.
Word embeddings are scaled with weights that are derived from the dot product between
the word embedding and the candidate pairs. Thus, words that are not similar i.e., small
dot product, to the candidate pairs are scaled down compared to those that are.

2.5.4 Transformer
All the biomedical relation extraction models discussed so far in this section are based
on RNNs. Introducing bidirectional processing in form of Bi-LSTMs or Bi-GRUs, as
well as introducing attention mechanisms to these models greatly improved performance.
Transformers [VSP+17] further improve on these models by forgoing recurrence and
relying entirely on attention mechanisms. The result is that transformers are easier to
parallelize and learn longer range dependencies in sequence modeling tasks than RNNs.

Transformer based neural networks are currently state-of-the-art for many NLP related
tasks. Models such as GPT-3 [BMR+20] and XLNet [YDY+19] show never before seen
natural language understanding in many NLP tasks, such as question answering and
reading comprehension. Models based on BERT [DCLT19], such as SciBERT [BLC19]
and BioBERT [LYK+19] showed state-of-the-art performance in a variety of biomedical
NLP tasks.

Aside from being transformer based, state-of-the-art NLP models also use transfer
learning. Transfer learning is a type of machine learning where a model is pretrained on
a related task before it is adapted to the actual task. NLP models such as BERT can be
pretrained on large text corpora e.g., PubMed Central articles on language modeling tasks.
After pretraining BERT the model is trained again on the actual task e.g., biomedical
relation extraction. Pretraining large models such as BERT on large text corpora is very
expensive. Training BioBERT takes 23 days on eight NVIDIA V100 GPUs [LYK+19].

Peng et al. [PYL19] evaluated transfer learning models on ten biomedical language
understanding tasks. The tasks included named entity recognition, relation extraction
and document classification. They found that transfer learning in combination with
transformer models outperformed transfer learning with RNN-based models. BERT

22



2.5. Classification

pretrained with the biomedical text corpora PMC and MIMIC [JPS+16] performed best
on the ten biomedical language understanding tasks.
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CHAPTER 3
Dataset

This chapter discusses how we created a dataset for the task of disease-symptom relation
extraction. Section 2.2.2 already describes how to create datasets using manual labeling
for various biomedical relation extraction tasks. As will later become apparent, our model
architecture is designed with the structure of its input data in mind. For this reason we
describe the process of annotating the dataset as well as the data itself.

We distinguish between two datasets in this chapter. First, a dataset used for model
training which we call finetuning dataset. This dataset was manually annotated by us.
Second, a dataset that we refer to as the case report dataset. The case report dataset is
used for relation extraction using our model.

To illustrate the purpose of the two datasets we describe our relation extraction approach:

1. Annotate finetuning dataset, which is a small sample of case report dataset sentences

2. Teach model how to extract relations from finetuning dataset

3. Use model to extract relations from case report dataset

In the past, PubMed Central (PMC) articles were successfully annotated for various
biomedical relation extraction tasks ([LSJ+16], [DLL14]). We decided to use case reports
for disease-symptom relation extraction because they predominantly describe the relation
between diseases and symptoms in real life patients. To avoid unnecessary domain adap-
tation, we also decided to sample the training dataset from the case reports themselves,
instead of other sources.

25



3. Dataset

3.1 Case Reports
Case reports are publications from healthcare professionals in the medical domain and
serve as an educational resource for other healthcare professionals. Topics of case reports
are, but are not limited to, the course of a pathology in one or more patients, clinical
guidelines or aspects of differential diagnoses. Due to the goal of this work, we are most
interested in case reports that describe the course of a pathology in a patient, along with
diagnoses made by medical doctors that treated the patient.

These types of case reports often contain the following information:

• Age

• Gender

• Symptoms reported by the patient

• Observations made by the healthcare professional

• Medical history such as prior treatments, pre-existing medical conditions etc.

• Conducted laboratory tests

• Differential diagnosis

This information is available as free form text partitioned into sections such as abstract,
background, differential diagnosis etc. The free text may be mixed with other forms of
media such as images e.g., x-ray image, photo of the medical condition etc. Furthermore,
each case report is accompanied by a title describing the topic of the report. The title
usually contains the diagnosis or the name of the pathology.

3.1.1 Source
A quick internet search will reveal that there are dozens of medical case report journals
to choose from. We decided to build our dataset from case reports found in the case
report journal BMJ Case Reports. BMJ Case Reports1 is a collection of clinical case
reports.

There are numerous reasons why we build our dataset from BMJ Case Reports. First
and foremost, BMJ Case Reports is one of the largest case report journals, allowing us to
gather a large amount of case reports from a single source. The journal offers descriptions
of real world cases from a wide variety of medical areas such as Oncology, Neurology
and Infections Diseases. Furthermore, case reports published in BMJ Case Reports are
peer reviewed and copy edited before publication. BMJ Case Reports is therefore a great
source of medical information for our purposes.

1BMJ Case Reports — https://casereports.bmj.com
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3.1.2 Advantages for Finetuning
There are a few reasons why we preferred to manually annotate case reports, instead
of other biomedical text. One reason is that case reports have consistent structure due
to the fact they are a specific type of biomedical literature. In contrast, sources like
PMC are less homogenous, because they include more types of biomedical literature.
Case reports often contain the same sections such as clinical representation or differential
diagnosis. This gave us the option to remove sections with non-relevant information.

Furthermore, we expect that training on text from sources other than case reports will
degrade the performance of the relation extraction model, because the goal of the relation
extraction model is to extract relations from case reports. Machine learning models often
assume that the training data has the same distribution as the test data. If we train
the model on other sources e.g., PMC articles, we break this assumption and require
domain adaptation. Domain adaptation [SSW15] is a subfield of machine learning that
is concerned with accounting for changes in distributions between the source and the
target data. By keeping the distribution of the training data and test data the same, we
avoid the need for domain adaptation. Our expectation is reinforced by a preliminary
inspection which showed that most case reports exhibit a similar writing style. For
example, sentences of the following form

We report a [age] year old [person] with [symptom].

appear frequently in case reports. It is therefore important that the finetuning dataset
includes this type of writing.

3.1.3 Advantages for Disease-Symptom Relation Extraction
The reason why case reports are a good source of disease-symptom relations is that a
large proportion of them aim to convey associations between diseases and symptoms to
other healthcare professionals. Case reports are often documentation of treatments and
observations made by medical doctors about a specific patient encounter. This type of
documentation must necessarily emphasize diagnoses and symptoms. Additionally, the
fact that case reports are peer reviewed and stem from consultations with healthcare
professionals ensures a certain degree of quality.

Another advantage of case reports for disease-symptom relation extraction is that most,
if not all, case reports mention the disease in the title. Thus, case reports convey the
relation between diseases and symptoms not entirely through free text form. We take
advantage of this fact in our model to simplify the relation extraction task.

3.1.4 Disadvantages for Disease-Symptom Relation Extraction
Due to the dynamics of scientific publishing, case reports tend to be about topics that
are worthy of discussion to healthcare professionals. The consequence is that common
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medical conditions are less likely to be published. In other words, we are more likely
to find a case report about a rare form of cancer treatment than the treatment of an
uneventful case of the common cold.

Another disadvantage of case reports is that they are only available in small numbers,
compared to less specific biomedical literature sources such as PMC. The PMC Open
Access Subset contains more than a million documents. On the other side, as of writing,
the BMJ Case Reports Journal provided about 20,000 reports.

3.2 Annotation
The structure of case reports implies the disease-symptom relation i.e., title mentions
the disease and the report body describes the symptoms. Extracting disease-symptom
relations from case reports can therefore be simplified from a relation extraction task to
a NER task. In other words, instead of mapping text to disease-symptom pairs, we map
the title to diseases and the report body to symptoms separately.

Case report titles often consist of a short single phrase. We expected existing information
retrieval tools such as MetaMap to achieve acceptable performance for extracting diseases
from titles. We therefore did not annotate case report titles with diseases. In contrast,
symptoms are described in paragraphs and may be scattered over the entire report.
In order to extract symptoms we annotated case report text with symptoms. Our
definition of symptom also includes descriptions of severity, duration and localization of
the symptom. We also annotated age and gender due to project requirements from our
sponsor. However, age and gender were removed for the purposes of this work.

We decided to annotate at the sentence level to be able to distribute the workload more
evenly among annotators and thus more fairly. The length of case reports can vary from
100 words to multiple hundreds of words. Sentences were selected randomly for annotation
for a fixed set of diseases. The sentences were sampled from abstracts from over 20,000
BMJ case reports. To improve efficiency of the annotation process, the labeling was done
using a web-interface, developed specifically for the Amazon Mechanical Turk platform
(Figure 3.1).

The steps involved to annotate a sentence are

1. Select one of the three available entities for Age, Gender or Symptoms

2. Highlight the words in the sentence to assign an annotation with the currently
selected entity label

3. Submit the annotation
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Figure 3.1: The annotation web interface used to annotate the dataset

3.2.1 Annotators

In order to ensure an acceptable quality, we recruited Amazon Mechanical Turk (MTurk)
workers with the following qualifications

• Worker needs at least 500 accepted HITs2

• Worker needs at least an acceptance rate of 95% on previous tasks

Furthermore, before the workers were allowed to annotate the full dataset they had to
pass a small test run. The MTurk workers had to annotate 10 sentences with a 50%
inter-annotator agreement or more to pass the test. The inter-annotator agreement was
measured using Fleiss’ Kappa. The agreement was derived from sentences annotated
by two medical experts. The expert annotators were medical doctors familiar with the
jargon used in case report journals. In total, 27 workers qualified for the annotation of
the finetuning dataset. To further increase accuracy of the annotations, each sentence
was labeled by five workers, followed by a majority-voting. Labels were only accepted if
the majority of the five annotators were in agreement about them.

3.3 Results

In this section we describe the two datasets we created. The role of the two datasets is
described in the beginning of this chapter.

2HIT is a Human Intelligence Task
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3.3.1 Finetuning Dataset
In total, 2,447 sentences were annotated by the MTurk workers. The inter-annotator
agreement (Fleiss’ Kappa) between the expert annotators and the crowd-worker annota-
tions was 0.82 for labeling symptoms. The most common annotation disagreements were
due to different views on what symptoms are. For example, concepts such as chronic
coughing could be interpreted as symptoms or diseases. Other disagreements resulted
from our definition of symptoms. We expected workers to include severity, duration and
localization of the symptoms in the symptom annotation as well. Complex symptoms
such as “Intermittent sharp pain on the back of the head over the last two weeks” were
less agreed upon.

3.3.2 Case Report Dataset
We also gathered 20,414 case reports from BMJ Case Reports for the purpose of extracting
relations from them. Since we are only interested in symptom descriptions, we omitted all
paragraphs with headings other than “abstract”, “description” and “case representation”
from the case reports. The result is a set of case report titles associated with their
contents. The titles are often just a single sentence mentioning the disease the case report
discusses. The length of the case reports themselves ranges from a single sentence to 181
sentences. The average number of sentences in a case report is 15, excluding the title.
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CHAPTER 4
Model

This chapter discusses the model architecture and the vocabulary used to represent
symptoms and diseases. The final section in this chapter summarizes the model and
discusses differences between our model and models discussed in Chapter 2.

4.1 Medical vocabulary
So far in this work we referred to symptoms, diseases and other medical concepts using the
English language. However, the medical terminology is complex and different terms can
refer to the same concepts e.g., abdominal pain and stomachache refer to the same concept.
To address this problem, standardized language, thesauri, ontologies or vocabularies
may be used. A medical vocabulary allows us to communicate medical concepts clearly
and distinctly between humans and computer systems alike. There are a number of
vocabularies suited to the task of relation extraction.

We chose the MeSH thesaurus for this work. But, because MeSH is a subset of UMLS
and parts of the processing pipeline involve UMLS, we describe UMLS as well.

4.1.1 Unified Medical Language System (UMLS)
UMLS is a set of files and software that integrate many health and biomedical vocabularies.
The biggest part of UMLS is the metathesaurus [SHTS93]. The UMLS metathesaurus is
organized by concepts and aggregates nearly 200 biomedical vocabularies. In total, there
are over a million biomedical concepts in the metathesaurus. Concepts are identified by
a Concept Unique Identifier (CUI). Since the vocabularies within UMLS provide their
own identifiers, UMLS also provides a mapping from each concept to CUIs. Aside from
a CUI, each UMLS concept has attributes specifying its meaning, as well as relations
to other concepts. Among its relations are isa and ispartof, which are used to create a
hierarchy of concepts. The meaning of a UMLS concept is defined by its semantic type.
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A semantic type is a broad entity category such as “Chemical”, “Temporal Concept” or
“Pathologic Function”. UMLS defines more than 100 semantic types and integrates them
in a shallow entity hierarchy.

4.1.2 Medical Subject Headings (MeSH)
MeSH is a thesaurus and hierarchically organized vocabulary produced by the National
Library of Medicine in the United States of America [Lip00]. Its concepts are a subset of
UMLS. Similar to UMLS each MeSH concept has a unique identifier code. Furthermore,
concepts are taxonomically and hierarchically organized as a tree. The location of a
concept in the tree is defined by an alphanumerical code with dots, called tree number.
To illustrate how tree numbers are constructed, we show in Figure 4.1 the concept
Appendicitis with tree number C01.463.099 in the MeSH tree hierarchy. Note that a
concept may appear multiple times in the hierarchy because it has multiple uses e.g., as
a symptom and a disease.

Diseases (C)

Infections (C01)

Intraabdominal Infections (C01.463)

Appendicitis (C01.463.099)

Figure 4.1: Path of one tree number for the concept Appendicitis in the MeSH tree

The smaller size of MeSH is a disadvantage over UMLS, as more specific diseases and
symptoms are missing. In our experience, this occurred frequently when symptoms are
compounded with qualifiers such as sudden chest pain compared to regular chest pain.
But the smaller size is also an advantage because it leads to less fragmentation of concepts
e.g., UMLS has multiple concepts of fever such as fever (C0015967) and fever symptom
(C0424755). Ultimately, the level of granularity necessary depends on the application.

Ultimately, we preferred MeSH over UMLS in our work for the following reasons. Concepts
in MeSH are part of a deep tree hierarchy which future applications may take advantage
of e.g., generalization of concepts via the hierarchy. Furthermore, the thesaurus can
be downloaded in its entirety in a standard format such as RDF without the need of a
verification step. The official website provides an easy and accessible way to browse the
thesaurus1. The coverage of the vocabulary was sufficient for our task, as it contained
the most common diseases and symptoms.

4.2 Architecture
Our approach is dependent on the fact that we are extracting relations from case reports.
Chapter 3 went into detail how case reports are structured. The structure of case reports

1MeSH Browser — https://meshb.nlm.nih.gov/search
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4.2. Architecture

allows us to treat the task of relation extraction as a NER task.

Figure 4.2 gives a high level overview of the model. The input of the model is a case
report and the output is a set of disease-symptom relations. The model consists of three
modules which will be discussed in detail in the remainder of this section. The first two
modules, concept annotation and symptom detection can work in parallel. The final
module aggregates the results from both modules to extract the relations. The result is
a set of disease-symptom relations.

Case Report

Concept Annotation Symptom detection

Relation extraction

(Disease, Symptom)

(Disease, Symptom)

(Disease, Symptom)

Figure 4.2: Full disease-symptom relation extraction model

4.2.1 Concept annotation module

This part of the model recognizes and labels medical concepts in the title and body of
the case report. The purpose of this part is similar to the generation of candidate pairs
discussed in Section 2.5. We preprocess the text by annotating it with medical concepts
to generate entities that may be part of a disease-symptom relation i.e., candidates for a
disease-symptom relation.

We decided to use the well established biomedical information retrieval and data mining
software MetaMap [Aro01]. MetaMap is developed by the National Library of Medicine
(NLM) in the United States. It is capable of mapping natural language text to concepts
of the UMLS metathesaurus.

33



4. Model

MetaMap has been available for more than a decade, and has been gradually improved over
the years. Its approach to processing text is based on symbolic, NLP and computational-
linguistic techniques. Discussing the inner workings of MetaMap in detail is out of
the scope of this thesis. The most relevant steps in the NLP pipeline for our usage of
MetaMap are shown in Figure 4.3.

Tokenization
Sentence Boundary

AA identification
POS Tagging Lexical Lookup Syntactic Analysis

Variant Generation Candidate
Identification

Mapping
Construction

Word Sense
Disambiguation

Lexical and Syntactic Analysis

Concept
Concept

Concept

UMLS Concepts

Concept

Text

Figure 4.3: MetaMap processing pipeline from text to UMLS concepts [AL10]

The rest of this section discusses the hyperparameters we used for MetaMap.

Semantic Types

By default, MetaMap annotates texts with all the concepts in the UMLS metathesaurus.
In order reduce the chance of annotating text with incorrect or irrelevant labels, we only
used concept types that are related to symptoms. As discussed in Section 4.1.1, semantic
types are used to categorize concepts based on their meaning. We selected the semantic
types shown in Table 4.1 to cover concepts relevant to symptoms and diseases.
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4.2. Architecture

Abbreviation ID Full Name
sosy T184 Sign or Symptom
dsyn T047 Disease or Syndrome
inpo T037 Injury or Poisoning
mobd T048 Mental or Behavioral Dysfunction
fndg T033 Finding
inpr T170 Intellectual Product
anab T190 Anatomical Abnormality
cgab T019 Congenital Abnormality
neop T191 Neoplastic Process
patf T046 Pathologic Function
irda T130 Indicator, Reagent, or Diagnostic Aid
lbtr T034 Laboratory or Test Result
socb T054 Social Behavior
menp T041 Mental Process
bsoj T030 Body Space or Junction
bpoc T023 Body Part, Organ, or Organ Component
blor T029 Body Location or Region
spco T082 Spatial Concept

Table 4.1: Subset of UMLS semantic types used for concept annotation

UMLS subsets

We were only interested in concepts from the MeSH thesaurus therefore we restricted
MetaMap to only use UMLS concepts also found in MeSH.

MetaMap Dataset

The number of diseases increases every year. In order to detect as many diseases as
possible the vocabulary used by MetaMap needs to be up to date. We used the updated
MetaMap dataset 2020AB. Most notably, this version includes COVID-19.

Word Sense Disambiguation

In order to resolve ambiguity when mapping from text to concepts we enabled Word
Sense Disambiguation. Ambiguity occurs when two or more concepts share a common
synonym e.g., “cold” could be mapped to the concepts cold temperature or common cold.

Negation detection

In case reports, it is common to not only discuss the existence of symptoms but also
the non-existence. For example, a case report can explicitly state that a symptom is
not present in the patient. Thus, a relation between disease and said missing symptom
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should not be formed. For this reason, we used the default negation detection algorithm
from MetaMap called NegEx.

Term processing

MetaMap was originally created to process full articles in the biomedical literature and
chunks its input into phrases e.g., noun phrases, prepositional phrases etc. All phrases
are analyzed separately. Term processing on the other hand disables this behavior, and
the text will be processed as a single phrase. This is desirable when the inputs are short
text snippets, e.g., “recurrent headaches”. Case reports, however, may contain long and
complex sentences. Therefore, we disabled term processing.

4.2.2 Symptom detection module
The purpose of this module is to detect where in the text symptoms experienced by a
patient are mentioned. We represented this problem as a NER problem. This module
of the model is a neural network based on the transformer architecture. As presented
in Section 2.5.4, transformer based neural network architectures achieve state-of-the-art
performance on many NLP related problems.
Figure 4.4 shows the architecture of the module and how it processes a sentence. The
model receives a sentence as input. The sentence is then tokenized into subwords. The
tokenization is based on a vocabulary that is learned during pretraining of the BERT
model. If the word is not part of the vocabulary, it will be split into subwords that are
part of the vocabulary. Each subword is then embedded and contextualized through the
transformer encoder and decoder network. The last hidden state for each subword from
the transformer network is "hi, where i ∈ {1, . . . , n} and n is the number of subwords
the input sentence was split into. The number of dimensions of "hi is chosen to be 768
based on the original BERT paper. The last hidden state "hi is then transformed by the
classification module. The classification layer contains a dropout layer with a dropout
rate of 10%, as well as a linear combination layer. Just like the hidden state size, the
dropout rate is based on the BERT paper. The output of the classification layer is the
activation for each subword "yi. The number of dimensions of the activations are 2: one
dimension for the existence of symptoms and the other dimension for the non-existence.
It is possible to use a single dimension as well, as the activation of one class implies the
opposite for the other class. However, the current design can be easily extended to more
than just two opposite classes e.g., adding age and gender classes. Finally, the class the
subword belongs to is defined by the dimension with the maximum activation.
The symptom detection module is a neural network, thus it requires training to set model
parameters. The following subsections discuss how the neural network is trained.

Pretraining

Instead of training the large transformer neural network BERT ourselves, we used
the pretrained SciBERT [BLC19]. As the name implies, SciBERT is based on BERT
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Embedding

Transformer Encoder

Transformer Decoder

Dropout (10%)

Linear

Sentence

BERT

Last hidden
state

Classification

Activation

Tokenization

A 52-year-old man reported fever and
a sore throat.

Figure 4.4: Neural network architecture of symptom detection module

[DCLT19]. The crucial difference between SciBERT and BERT is that it is pretrained
with scientific literature to improve performance for downstream tasks in the scientific
domain. Furthermore, we chose the uncased version of SciBERT instead of the version
with a capitalized vocabulary.

Tokenization, collation and batch size

Neural networks based on BERT expect text to be tokenized into subwords. The dataset
we use for training the neural network is labeled on a word level. This introduces a
problem, since there are multiple ways to convert word level labels to subword level labels.
To solve this problem we can assign labels corresponding to a word to all its subwords
i.e., repeating the label. Another possible solution is to split each label into head and tail
labels. For example, if the word “headache” was labeled with symptom and split into
“head” and “ache”, then the new labels could be symptom_head and symptom_tail.
We chose the former solution to the problem because it requires fewer labels, and we
found no evidence that one is preferable over the other.

BERT is not able to process text of arbitrary length. We chose to truncate sentences
with more than 512 subwords or tokens. This is in line with the experiments from the
original BERT paper. If sentences have less than 512 subwords, their representation will
be padded with zeros. Furthermore, we chose to omit the sentence token [CLS], as we
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are only interested in making token level predictions and not sentence level predictions.
We therefore have no use for a contextualized [CLS] token.

Due to the large size of BERT it quickly becomes computationally challenging to train
with large batch sizes. One of the main purposes of larger batch sizes is to decrease
training time. Given that our training dataset is relatively small we were able to achieve
acceptable training times with a small batch size of 16.

Finetuning

This section describes how we train the symptom detection module.

The training of the model is often called finetuning because we are modifying already
learned neural network parameters for our specific task. In line with the experiments
from the authors of BERT and SciBERT we used the Adam optimizer [KB17] to optimize
network parameters. To be exact, we used AdamW which decouples weight decay from
the gradient update. This improves generalization performance and reinstates the original
definition of weight decay regularization [LH18]. The loss function used for training is
Cross-Entropy Loss.

The authors of BERT experimented with smaller learning rates for finetuning in the
range of [1e−5, 1e−4]. Due to the rather small size of our training dataset a learning rate
this small had no negative effect on training time. Furthermore, our initial experiments
showed that larger learning rates e.g., 1e−3, prevented the model to learn at all.

Due to the small size of the dataset we were able to train models for multiple epochs.
We use an early stopping mechanism to determine the number of training epochs. If the
validation performance of the model drops then the training is stopped and the second to
last model is picked as the final model. The split between training and validation data is
80% and 20%. This training method was used to prevent the model from overfitting to
the dataset, and generalize better to unseen data.

4.2.3 Relation extraction module
This module of the relation extraction model processes the results from the concept
annotation module and the symptom detection module to extract relations. The main
steps are shown in Algorithm 4.1.

The first step of this module is to remove concepts that are not symptoms or diseases. If
a concept annotation from MetaMap appears in the title and is not in one of the MeSH
disease subtrees then it is removed. If a concept annotation appears in the case report
body, and it is not in one of the MeSH symptom subtrees, then it is removed. Table
4.2 shows which subtrees were used to determine whether a concept was a disease or a
symptom.

Furthermore, if concepts are reported to be negated by MetaMap’s NegEx algorithm,
they are also removed. Finally, the remaining symptom concepts are matched against
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Disease Patterns Description
F03 Mental Disorders
C(?!22|23.888) Diseases without Animal Diseases, Signs and Symptoms
Symptom Patterns Description
C23.888 Signs and Symptoms
F01.145(?!.209.113) Behavior without Communication, Animal Behavior
F01.470 Emotion

Table 4.2: RegEx patterns to match disease and symptom concepts based on their MeSH
tree number

the symptom detection labels. If 50% or more of a concept overlaps with the symptom
detection labels from the neural network, then they are considered to be symptoms. The
overlap is the intersection of the character sequence from the concept annotation and
the character sequence from the symptom labels. Finally, the cross product between
remaining symptom and disease concepts are the disease-symptom relations. In other
words, each remaining disease is paired with each remaining symptom. The set of all pairs
are the disease-symptom relations we extracted. The reason we use the cross product, is
because the title may contain more than one disease in some cases.
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Algorithm 4.1: Extract relations from case report
Input:

• T itleConcepts found in case report by concept annotation module

• BodyConcepts found in case report by concept annotation module

• SymptomLabels from symptom detection module

Output: Disease-Symptom Relations from case report

1 Symptoms, Diseases, SymptomCandidates = ∅, ∅, ∅
2 forall concept ∈ T itleConcepts do
3 if concept ∈ MeSH disease subtrees ∧ concept not negated then
4 add concept to Diseases

5 end

6 end

7 forall concept ∈ BodyConcepts do
8 if concept ∈ MeSH symptom subtrees ∧ concept not negated then
9 add concept to SymptomCandidates

10 end

11 end

12 forall candidate ∈ SymptomCandidates do
13 if characterSequenceOverlap(candidate,SymptomLabels) > 50% then
14 add candidate to Symptoms

15 end

16 end

17 Relations = Diseases × Symptoms

18 return Relations

4.3 Summary

Our model consists of three main parts: concept annotation, symptom detection and
relation extraction. The concept annotation module annotates case reports with MeSH
concepts. The symptom detection module detects which parts of the text describe
symptoms experienced by patients. The relation extraction module filters out all concepts
from the case report body that are not symptoms experienced by patients, and all concepts
from the title that are not diseases. We use the MeSH tree hierarchy to determine the
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type of concept i.e., whether the concept is a symptom or another medical concept.
Finally, all symptom and disease concepts that are left are connected as pairs to form
disease-symptom relations.

Our model differs from the models we reviewed in Chapter 2 in the following ways. First,
our model only requires a training dataset annotated with symptoms. Other approaches
require symptoms and diseases to be annotated, as well as which pairs form a relation.
The reason for this difference lies in the format of case reports. Case reports discuss single
diseases which are often mentioned in the title. Thus, when the case report describes
patients and their symptoms, they are related to the disease mentioned in the title.

Finally, our model goes further by also mapping relations to concepts in the medical
vocabulary MeSH. The approaches we reviewed in Chapter 2 only concern themselves
with detecting the type of relation and the position of the relation in the text. By
outputting relations that are mapped to a shared medical vocabulary (e.g. MeSH),
we can more easily integrate the relations into other medical information processing
applications e.g., knowledge databases.
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CHAPTER 5
Evaluation

This chapter evaluates the performance of our disease-symptom relation extraction model
described in Chapter 4. We extract disease-symptom relations from more than 20,000
case reports (Section 3.3.2) using our model and compare the extracted relations with a
ground truth created by human medical professionals. Furthermore, we also evaluate
the hyperparameters of the symptom detection module. Both of these evaluations are
described as experiments in Section 5.1.

5.1 Experiment design
We conduct two experiments for the evaluation in the following order

1. Symptom detection experiment

2. Relation extraction experiment

The first experiment’s purpose to select model hyperparameters for the symptom detection
module. The second experiment evaluates performance of the relation extraction model.
The second experiment depends on the model hyperparameters selected in the first
experiment, because the symptom detection module is part of the relation extraction
model.

5.1.1 Symptom detection experiment
The goal of this experiment is to find the best performing hyperparameters for the model
that will become the symptom detection module. While this experiment does not optimize
for disease-symptom relation extraction directly, we expect that good performance in
this experiment will translate to good performance in relation extraction or the second
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experiment. The reason why the symptom detection module is evaluated separately
in the first experiment, is because of the combinatorial explosion of hyperparameters
combinations. Evaluating the entire model on the relation extraction experiment for each
hyperparameter combination is computationally infeasible for this work.

In order to find the best performing hyperparameters, we train and test the model with
different hyperparameter combinations on the finetuning dataset described in Section
3.3.1. The dataset consists of 2,447 sentences where words are labeled whether they
describe symptoms experience by a patient or not. The task for the model in this
experiment is to accurately detect which parts of the sentences describe symptoms. This
task falls under the category of NER. To summarize, this experiment evaluates multiple
hyperparameter combinations of the symptom detection model on a symptom detection
task, in order to find the best set of hyperparameters.

Model hyperparameters & Experiment parameters

This section presents the model hyperparameters and experiment parameters we used
in this experiment. All parameters are shown in Table 5.1 and evaluated as a grid
search. The remainder of this section describes all the hyperparameters and experiment
parameters.

We evaluate two domain specific pretrained models, SciBERT [BLC19] and ClinicalBERT
[AMB+19], as well as the base BERT model [DCLT19]. Section 2.4.5 discusses the
rationale of domain specific pretrained models.

The classification layer of the neural network can be either a linear layer or a Conditional
Random Field (CRF). The neural network does not change otherwise, except for the
loss function. The CRF layer uses a Negative Log-Likelihood loss function, instead of a
Cross-Entropy loss function. This is due to implementation details.

We varied learning rate and bias correction for the gradient descent optimization with
the AdamW algorithm. We only evaluate small learning rates like the authors of BERT
[DCLT19]. The learning rates are 1e−5 and 3e−5. Furthermore, we evaluate training
with enabled bias correction and without it. Adam uses the moving average of the
gradients during training. Moving averages introduce a bias at the beginning of training
which bias correction removes.

We evaluate each hyperparameter combination for three random train/test splits1 (80%
training, 20% testing) and three random seeds for the random generator2 used in the neural
network parameter optimization process. Therefore, each hyperparameter combination
is evaluated 3 ∗ 3 = 9 times. The seeds are shown in Table 5.1. This approach reduces
the chance of skewed test datasets or unfavorable optimization algorithm initialization,
because we evaluate a distribution instead of a point estimate of the performance.
Furthermore, we note that we use random subsets instead of k-fold cross-validation

1We use the random_split function from the PyTorch Python package torch.utils.data
2We use the torch.manual_seed function from the PyTorch Python library
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because of the lower computational requirements. Due to the low amount of finetuning
data we want to reserve more training data (80%) for the neural network. Cross-validation
requires five instead of three evaluations if the training split is supposed to be 80%, thus
more computation.

Lastly, the neural network receives the input in small batches of size 16. Larger batch
sizes require more GPU memory than what is available to us.

Model Hyperparameter Values
Pretrained model BERT Base (uncased),

SciBERT (uncased),
ClinicalBERT (uncased)

Classification layer Linear, CRF
Learning rate 1e−5, 3e−5
Bias correction false, true
Experiment Parameter Values
Dataset train/test split seed 3044, 21563, 11995
PyTorch seed 47026, 7206, 32277
Batch size 16
Dataset split 80% training and 20% test

Table 5.1: Hyperparameters of model and parameters of symptom detection experiment.
The experiment is a grid search over all the parameters in this table. Some parameters
have multiple values (e.g. learning rate), which are separated by commas.

Evaluation

This section describes how we evaluate the results of the experiment.

Since we represent the problem of symptom detection as a NER problem, we measure
performance with classification metrics. We use the f1-score metric, because it provides
a balanced measure of precision and recall. Also, we use macro averaging of the f1-score
for the two classes, symptom and no symptom.

Finally, we evaluate the hyperparameters pretrained model, classification layer, learning
rate and bias correction, to find the best values for the final symptom detection model.
The experiment evaluates 24 hyperparameter combinations, along with 3 train/test splits
and 3 model seeds. Thus, the experiment results are 24 ∗ 3 ∗ 3 = 216 f1-scores achieved on
the test splits of the finetuning dataset. To find the best value of each hyperparameter
we compare the conditional distributions of f1-scores for each hyperparameter value.

To exemplify what this means, we explain how we find the best value for the hyperpa-
rameter bias correction. Bias correction has two possible values, true or false. Therefore,
half of the 216 f1-scores stem from model runs with bias correction set to true, and
the other half stems from model runs with bias correction set to false. The two sets
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of f1-scores are conditional performance distributions, because bias correction is fixed
while other parameters are variable. In order to find out whether true or false results in
higher performance, we compare medians of both conditional performance distributions.
We compare the two distributions using a box plot and a median hypothesis test. Box
plots show us the median f1-score as well other quantiles of the performance distribution.
Even though a box plot is sufficient to determine which sample median is higher, we
also use the one-sided Wilcoxon signed-rank test to determine whether the median
difference is significant. We consider a p-value less than 5% to be significant. If two
hyperparameter values do not significantly differ in their median f1-score, we choose the
value with the higher box plot upper fence. The upper box plot fence is computed using
Q3 + 1.5(Q3 − Q1), where Q1 and Q3 are the first and third quartiles. The reason why
we use the Wilcoxon signed-rank test is because we compare two dependent samples
i.e., the two models we compare are trained on the same dataset. Lastly, we empirically
analyze errors made by the model on the test sets.

To summarize, the final symptom detection model uses the hyperparameters that achieved
the highest median f1-score on the test data splits in the experiment. If no significant
difference is present, we choose the value with the higher box plot upper fence.

5.1.2 Relation extraction experiment

This experiment evaluates the performance of the relation extraction model described in
Chapter 4. We extract disease-symptom relations from over 20,000 case reports described
in Section 3.3.2. Then extracted relations are grouped per disease d. The result is that
each disease d corresponds to a list of symptoms Sd. The order of the symptoms s ∈ Sd

is defined by how many case reports have the relation (d, s). In other words, each disease
corresponds to list of symptoms ordered by often the symptoms co-occurred with the
disease. We then measure the relevance of the symptoms recommended by our model
i.e., the ranked list, by comparing it to a ground truth curated by medical doctors.

5.1.3 Evaluation

The ground truth is a Disease Symptom Relations Collection (DSR-collection) created
by two physicians [ZHRH20]. The medical doctors collected disease-symptom relations
for 20 diseases and graded them by relevance. Primary symptoms receive the grade 2
and the other symptoms receive the grade 1. This allows us to partially order symptoms
by relevance for all 20 diseases. The 20 diseases are shown in Table 5.2.

We measure the agreement between the model generated disease-symptom relations and
the DSR-collection using nDCG@k, precision@k and recall@k, where k is the length of the
ranked list. The ranked list contains the k most relevant disease-symptom relations. In
order to be able to compare our model with the baselines provided with the DSR-collection,
we set the constraint k ∈ 5, 10.
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DSR-collection diseases
Anorexia Nervosa Appendicitis
Asthma Bronchitis
Cholecystitis COPD
Diabetes Mellitus Epididymitis
Erysipelas GERD
Influenza Measles
Mental Depression Migraine Disorders
Myocardial Infarction Periodontitis
Pulmonary Embolism Sleep Apnea Syndromes
Tonsillitis Trigeminal Neuralgia

Table 5.2: List of 20 diseases from the DSR-collection [ZHRH20]

Baselines

The first baseline is a method proposed by Shah et al. [SLK+18] which we call Embedding.
The method starts by replacing all occurrences of diseases and symptoms in the text
corpus with unique names. The text corpus consists of 1.5 million full text PMC articles.
They use MetaMap [Aro01] to detect the diseases and symptoms in the text. The next
step is to train a word2vec model [MSC+] on the text corpus, such that each disease and
symptom is mapped to a vector representation. The replacement in the first step ensures
that synonyms of diseases and symptoms share the same embedding. The word2vec model
uses a window size of 15 and 300 dimensions for the vector representation. Finally, ranked
lists of symptoms are created for each disease. The order of the symptoms is defined
by the cosine similarity between the disease embedding and the symptom embedding.
Symptoms that are more similar rank higher in the list.

The second baseline is a method proposed by Zhou et al. [ZMBS14] and adapted by
Zlabinger et al. [ZHRH20]. Zlabinger et al. named the baseline CoOccur-FullText
which we refer to as CoOccur in this work. Using MetaMap, this method identifies all
diseases and symptoms in 1.5 million PMC articles. Similarly to the first baseline, a list
of symptoms is generated for each disease. Symptoms that co-occur more often with the
disease rank higher in the list. A disease and a symptom co-occur if the disease appears
in the title and the symptom appears in the body of a PMC article. Thus, co-occurrence
is defined by the number of articles a disease and a symptom occur in together.

5.2 Symptom detection experiment results
This section presents the results of the symptom detection experiment. We present which
hyperparameters outperformed others and which ones showed no significant difference.
Using these insights, we select hyperparameters for our symptom detection module.
Lastly, we empirically analyze errors made in the experiment by the model with the
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selected hyperparameters.

5.2.1 Hyperparameter evaluation

The distributions of f1-scores for the test split per hyperparameter are shown in Figure
5.1.

The upper left box plot shows that SciBERT outperforms the other two pretrained BERT
models. The median f1-score for models with SciBERT is 87%, whereas both BERT
Base and ClinicalBERT models resulted in a f1-score of 85%. Furthermore, the box plot
also suggests that the performance variance is largest for the Base BERT model, as the
box plot whiskers cover almost 10%. The Wilcoxon signed-rank test statistic also shows
significant median difference between SciBERT and the other two models, with p-values
smaller than 1e−6. Bias correction also improves the test performance of the model
significantly with a p-value of 2.5%.

The difference between using a linear and a CRF classification layer is insignificant.
Neither the box plot nor the hypothesis test with a p-value of 69%, show a difference in
the median. We also find no significant difference between the two learning rates with a
p-value of 5%.
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Figure 5.1: Conditional distributions of f1-scores per hyperparameter from the symptom
detection experiment. Each of the four box plots contains the same 216 f1-scores.

5.2.2 Model selection

Using the results described in the previous section we select a model with SciBERT,
linear classification layer, learning rate of 1e−5 and bias correction. We prefer the
linear classification layer over the CRF layer because the upper fence of the performance
distribution is higher. For the same reason, we choose the smaller learning rate 1e−5.
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5.2. Symptom detection experiment results

The average test performance in this experiment for the selected model is shown in Table
5.3.

Precision Recall F1-Score Training Epochs
0.882 0.876 0.879 4

Table 5.3: Median performance of the best model in the symptom detection experiment
from 3 ∗ 3 = 9 runs (3 dataset splits and 3 initial random seeds). The best model uses
the hyperparameters SciBERT, linear classification layer, learning rate 1e−5 and bias
correction.

5.2.3 Error analysis
The selected model misclassified 9.4% of the sentences from the test dataset fully i.e.,
none of the symptoms were found or the sentences did not contain any symptoms despite
the model suggesting so. 16.3% of the sentences were partially misclassified i.e., at least
one word was misclassified.
Our empirical analysis shows three main types of errors, which we describe in the following
paragraphs

1. Inconsistent labeling of symptom qualifiers

2. Mistaking diseases for symptoms

3. Not finding any symptoms at all

Many symptom descriptions contain qualifiers such as duration, location or severity. For
example sudden pain instead of simply pain. Failing to correctly label such qualifiers was
a common type of error. However, we also find that the dataset was inconsistently labeled
by the annotators. Figure 5.2 shows two errors the model made on the test dataset. The
first error is due to a misclassification, the second is due to inconsistent labeling by the
annotators.
Another source of errors was classifying diseases as symptoms. For example, the model
predicted “acute renal failure” or “early onset of dementia” as symptoms in the test
dataset. But, similar to the previous error type, this error was also found in the ground
truth. The annotators were inconsistent with their distinction of symptoms and diseases.
The last type of error we noticed was failing to find any symptoms at all. We found that
the model was very conservative or cautious with its predictions. This is reflected in
the confusion matrix of the test classifications. Only 4% of words that do not describe
symptoms, according to the ground truth, were labeled to be symptoms. In contrast,
10% of words that describe symptoms were predicted to not describe symptoms. In other
words, the model failed to find symptoms more often than it predicted symptoms where
there were none.
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5. Evaluation

A 19-year old woman presented with repeated episodes of haemoptysis and shortness of breath.

A 45-year old man was presented with 3 weeks of fever, chills, headache, myalgia and sweats ...

ground truth annotation model prediction

Figure 5.2: The first sentence shows a misclassification error on the model side, and the
second sentence shows incorrect labeling of the ground truth on the annotators side.

5.3 Relation extraction experiment results
Our model improves upon the baselines in all metrics but recall@10 and precision@10,
and the metrics that do not improve are close to the best baseline. The performance
metrics for this experiment are shown in Table 5.4.

We noticed that our model extracted only very few relations for some diseases of the
DSR collection. After searching for some of these diseases using the official BMJ Case
Reports website, we concluded that some diseases have far few case reports about them.
For example, there are only two case reports in BMJ Case Reports where erysipelas is
declared as the diagnosis in the title. Thus, only very few relations can be extracted about
these diseases. This skews the performance evaluation, as we evaluate the dataset more
than the model. To mitigate this issue, we also measure the agreement for a subset of the
20 diseases. We select only diseases with relations from 10 or more case reports, which
leaves us with 7 out of the 20 diseases. The performance of our model on this subset
increases for all metrics. We observe the largest increase in the metrics precision@5,
precision@10 and nDCG@5. Precision@5 increased by 24%, while precision@10 and
nDCG@5 increased by 19%.

Model nDCG@5 P@5 R@5 nDCG@10 P@10 R@10
Embedding 0.20 0.18 0.08 0.19 0.15 0.13
CoOccur 0.41 0.39 0.17 0.36 0.28 0.25
Our model 0.45 0.42 0.18 0.47 0.28 0.23
Our model (subset) 0.64 0.66 0.27 0.57 0.47 0.38

Table 5.4: Performance on the DSR-collection for baselines Embedding, CoOccur and
our model. We also present performance of our model for a subset of diseases described
in Section 5.3.
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CHAPTER 6
Conclusion

This chapter presents conclusions we draw from the experiments we conducted and how
to adapt our relation extraction model to sources other than case reports.

6.1 Conclusions

6.1.1 Disease-Symptom relations extracted by our model are more
relevant

Our model outperforms the baselines in the relation extraction experiment in almost
all metrics. If we restrict the evaluation to diseases with 10 or more case reports in our
dataset, the agreement with the ground truth provided by the medical doctors further
increases. We achieve up to 64% nDCG@5 and 66% precision@5. We conclude that our
approach is an effective way to extract disease-symptom relations from case reports.

6.1.2 Our model requires only symptom annotations
An advantage of our approach is that it only requires symptom annotations for training.
Other biomedical relation extraction models require disease, symptom and relation
annotations. On the other hand, our model is not capable of extracting relations from
sources other than case reports, at least not without modification. We discuss how to
adapt our model for other types of text data in Section 6.2.

6.1.3 Our model values precision more than recall
The relation extraction experiment resulted in 42% precision@5, which is more than
double the 18% recall@5 our model achieved. One of the motivations we presented in the
beginning of this work was evidence based medicine. We believe that biomedical relation
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6. Conclusion

extraction tools are more valuable in these types of tasks if they reduce the number of
false positives. For this reason we believe that this model behavior is desirable.

6.1.4 MeSH vocabulary is too small for disease-symptom relation
extraction

Upon further inspection of the DSR-collection we noticed that 36% of the symptoms
were not part of MeSH. Consequently, 36% of the symptoms were impossible to predict
for our model, as we are using MeSH to represent symptoms.

We also inspected which symptoms were part of DSR but not part of MeSH. Examples,
are sleep disturbance, testicular pain, dry cough and unable to concentrate. We believe an
effective disease-symptom relation extraction model should be able to represent these
symptoms. Some of these symptoms can be represented using multiple MeSH concepts.
However, doing so would require a change in the model architecture. Even after the
change, not all symptoms can be represented. Therefore, we conclude that MeSH is too
small for disease-symptom relation extraction.

6.1.5 Number of case reports has large impact on model performance

The fact that removing diseases with low number of case reports improves the performance
in the relation extraction experiment, highlights the influence of the dataset. BMJ Case
Reports, one of the largest case reports journals, provided slightly more than 20,000 case
reports. Considering the vast number of different diseases, we cannot expect to have
more than just a few case reports per disease.

6.1.6 Adding more case reports is not an easy way to improve model
performance

We also considered collecting case reports from other journals. In 2015, at least 160
case report journals existed [Ake16]. However, most case report journals are smaller
than BMJ Case Reports. Thus, increasing the number of sources does not increase the
number of case reports proportionally. Furthermore, automating the collection of case
reports is time-consuming, as access and licensing is handled differently by each journal.
Therefore, we conclude that collecting more case reports is not an easy way to further
increase performance of our model.

6.2 Future work
While our model is designed to extract disease-symptom relations from case reports, it
can be easily adapted to other kinds of medical text, or even other types of relations
e.g., drug-drug. The current limitation stems from the fact that we only have a training
dataset with symptom annotations, but no disease annotations. Additionally, case reports
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6.2. Future work

often mention the disease in the title, reducing the need for more complex models which
are capable of extracting relations from a single body of text.

In its current state the symptom detection module is responsible for detecting symptom
descriptions. However, the neural network that is the symptom detection module can
be easily adapted to predict more than symptoms and diseases. We can achieve this
by simply adding another dimension to the output of the neural network, because the
symptom detection module solves a classification task.

In addition to the new disease dimension of the neural network output, we also need
a new dataset. The new dataset must be annotated with the relations in mind. This
means that annotators must annotate symptoms and diseases in the text only if the text
states a relation. For example, the following sentence must not contain any symptom or
disease labels:

The woman, previously diagnosed with COVID-19, reported that her child
showed fever symptoms.

Even though fever is a symptom of COVID-19, the meaning of the sentence does not
imply this relation. Furthermore, it might be necessary to annotate at a paragraph level
to accommodate for disease-symptom relation statements spanning multiple sentences.
The current dataset is annotated at a sentence level.

The concept annotation module does not need to be modified, as it is already capable
of annotating diseases. The relation extraction module, however, must be adapted to
match diseases and symptoms together instead of separately from title and report body.
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APPENDIX A
Appendix

A.1 Implementation
In this section we list major dependencies and implementation details of the model and
the experiment. Table A.1 lists the software and data dependencies of the model. Table
A.2 lists the hardware used to perform the experiments.

Name Version
Python 3.8
Java 1.8
CUDA 10.2
MetaMap 2020
PyTorch 1.8
huggingface transformers 4.4
MetaMap Dataset Base (2020AB)
MeSH thesaurus 2021

Table A.1: Most relevant software and data versions for the implementation of the relation
extraction model

Component Name
CPU Intel i7 4790k
RAM 16GB
GPU NVIDIA RTX 2060 Super (8GB VRAM)

Table A.2: Hardware used to perform the experiments
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