FAKULTAT
FUR INFORMATIK
Faculty of Informatics

Replication in Loosely Coupled
Systems

Simulation and Evaluation of Replication
Strategies for their use in Loosely Coupled IT
Systems

DIPLOMARBEIT

zur Erlangung des akademischen Grades
Diplom-Ingenieur
im Rahmen des Studiums
Business Informatics

eingereicht von

Alexander Schenk, BSc
Matrikelnummer 0825353

an der Fakultat fur Informatik

der Technischen Universitat Wien

Betreuung: Ao.Univ.Prof. Mag. Dr. Horst Eidenberger

Wien, 8. Mai 2018

Alexander Schenk Horst Eidenberger

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. 4+43-1-58801-0 - www.tuwien.ac.at

FAKULTAT
FUR INFORMATIK

Faculty of Informatics

Replication in Loosely Coupled
Systems

Simulation and Evaluation of Replication
Strategies for their use in Loosely Coupled IT
Systems

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of
Diplom-Ingenieur
in
Business Informatics
by

Alexander Schenk, BSc
Registration Number 0825353

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Mag. Dr. Horst Eidenberger

Vienna, 8" May, 2018

Alexander Schenk Horst Eidenberger

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 - www.tuwien.ac.at

Erklarung zur Verfassung der
Arbeit

Alexander Schenk, BSc
Reindorfgasse 35, 1150 Wien

Hiermit erklére ich, dass ich diese Arbeit selbstdndig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollstdndig angegeben habe und dass ich die Stellen der
Arbeit — einschliellich Tabellen, Karten und Abbildungen —, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 8. Mai 2018

Alexander Schenk

Danksagung

vii

Kurzfassung

Moderne IT-Systeme stellen oft lose gekoppelte verteilte Systeme dar, in denen einzelne
Applikationen unabhéngig voneinander erstellt, weiterentwickelt und ausgeliefert werden
konnen. Nachteilig an dieser Architektur ist der hohe Kommunikationsaufwand zwischen
den Applikationen. Dieser kann durch den Einsatz von Replikation verringert werden.
Der aktuelle Stand der Technik in diesem Bereich konzentriert sich auf die Daten-Ebene,
bei der enge Kopplung der Applikationen entsteht und der daher nicht fiir lose gekoppelte
Systeme angewandt werden kann.

In dieser Arbeit wurden Replikationsstrategien fiir lose gekoppelte IT-Systeme identifiziert
und auf Basis von qualitativen und quantitativen Kennzahlen bewertet. Die Auswahl
wurde mit einer bottom-up Ansatz durchgefiihrt, in der die allgemeinen Eigenschaften
von Replikationsmechanismen als Basis dienten. Die konkreten Implementierungen der
Replikationsstrategien bauten primér auf Event-Driven Architectures mit Messaging und
Atom-basierte Web Feeds auf.

Basis der Bewertung bildete eine analytische Betrachtung der Replikationsstrategien und
die Ergebnisse einer Simulation. Die qualitativen Kennzahlen wurden rein analytisch
auf Basis der ISO 25010 Software-Qualitdtseigenschaften ermittelt. Als quantitative
Kennzahlen wurden die client-seitige Latenz von Leseoperationen, die server-seitige
Latenz von Schreiboperationen, die Zeit bis alle Replikate konsistent sind und der
Bandbreitenverbrauch verwendet. Diese wurden sowohl analytisch ermittelt, als auch
im Zuge der Simulation in einer eigens dafiir erstellten Testumgebung gemessen. In der
Testumgebung wurden konkrete Implementierungen der Replikationsstrategien in Java
EE und Ruby on Rails mit mehreren synthetisch erstellten Workloads getestet.

Im Zuge der Arbeit wurde festgestellt, dass keine einzelne Replikationsstrategie optimal
fiir alle Anwendungsfille geeignet ist. Replikationsstrategien die Atom-basierte Web Feeds
verwenden werden grundsétzlich nicht empfohlen, da die verfiigbaren Bibliotheken in
diesem Bereich nicht ausgereift sind. Replikation {iber push-basierte Benachrichtigungen
des gesamten Zustands eines Datensatzes, iiber eine publish-subscribe message queue,
stellt sich als die beste Losung fiir die meisten Anwendungsfille dar.

ix

Abstract

Modern IT systems are often implemented as loosely coupled systems, consisting of
independently developed and deployed components. These systems require a high degree
of communication within and can be optimized by the replication of data. Actual research
on replication mainly focuses on the data layer, which leads to tight coupling and is
therefore not suitable for loosely coupled systems.

This thesis identified replication strategies which may be used for loosely coupled systems
by a bottom-up approach (based on general characteristics of replication mechanisms) and
evaluates their use in respect to qualitative and quantitative indicators. The considered
replication strategies mainly build on Event-Driven Architectures with Messaging and
Atom-based Web Feeds.

Data was gathered by an analytical evaluation and a simulation. Qualitative indicators
were solely examined analytically, in accordance with the quality indicators of ISO 25010.
Quantitative indicators are the latency of a client-side read operation, the latency of
a server-side update operation, the time until all replicas are in a consistent state and
the consumed bandwidth. These indicators were examined analytically and measured
during a simulation in a custom-built simulation environment with implementation of
the replication strategies in Java EE and Ruby on Rails. To emulate the behavior of
a real I'T system, the simulation uses several synthetic workloads which are based on
real-world observations and assumptions made in related research.

The evaluation concludes that there is no single best replication strategy for all cases of
applications. Replication strategies which use Atom-based Web Feeds are generally not
recommended because of the insufficient availability of tools in this area. The evaluation
indicates that replication by push-based notifications of the full state of a data item with
a publish-subscribe message queue can be used for most cases of applications.

X1

Contents

Kurzfassung ix
Abstract xi
Contents xiii
1 Introduction 1
1.1 Problem Statement| 1
1.2 Motivation 1
1.3 Aimof the Workl 2
1.4 Methodological Approach 4
1.5 Structure of the Workl 5
2 Related Work 7
2.1 Replication e 7
2.2 Consistency| 12
2.3 Implementation of Replication on different Layers 14
2.4 Evaluations and Benchmarks 16
3 Communication Paradigms 19
3.1 REST - Representative State Transfer| 19
3.2 WebFeeds e 23
3.3 Messaging| 27
4 Replication Strategies 33
4.1 Selection of Replication Strategies 34
4.2 Synchronous Requests|o 37
4.3 Cache Validation 39
4.4 FEvent-Driven Replication Strategies 44
4.5 Poll-Based Replication Stratgies 52
4.6 SUMMATY oo e e e e e e 58
5 Analytical Evaluation 61
5.1 Qualitative Indicators 61

xiii

5.2 Quantitative indicators|. Lo

6 Simulation

6.1 Implementation L
6.2 Scenarios and Workloads|.
6.3 Executionl e e e
6.4 Results. e e e e

7 Evaluation

7.1 Trade-offsl e
7.2 Evaluation based on Replication Characteristics|.
7.3 _Final Conclusions/.o

8 Summary
8.1 Results|. e
.2 Future Workl

List of Figures
List of Tables

Bibliography

115
116
117
118

121
121
122

123

125

127

CHAPTER

Introduction

1.1 Problem Statement

Modern IT systems are mostly implemented as distributed systems of isolated applications
that transfer data and operations over defined interfaces like RESTful webservices. The
distribution of applications also leads to a distribution of data and the challenge to
exchange it between the server, who has the data, and clients, who need the data for
operations. The transmission of data for each operation leads to bad runtime performance
and does not scale when the system evolves. A solution for this problem is replication
(mainly in form of caches), where data is stored for read-only access on the client-side
and transmissions are minimized.

A challenge of replication is to keep replicates 100% up-to-date at all times. This
constraint is often limited with optimistic replication or lazy replication that guarantees
only eventual consistency [Tan07] for the benefit of better runtime performance. To
ensure business gets actual data to perform their work and generate value, it is essential
to actualize or invalidate replicas in short time and ensure a high consistency of the
overall system.

Replica actualization and invalidation in eventually consistent systems increases the
complexity of introducing caching in IT systems. Companies planning to use replication
therefore need well-founded decision criteria to find an appropriate solution for the
respective requirements of their IT system.

1.2 Motivation

This work addresses business IT systems which are operating inside companies and
organizations to handle their business cases and operations. Business IT systems consist

1.

INTRODUCTION

of one or more individual applications that are typically implemented with standard
technologies like HTML, RESTful webservices and Messaging.

Over the last decades, there is a trend from monolithic architectures [Ric17] to smaller
applications that form a distributed system. Modern business IT systems follow this
trend and are therefore often implemented as distributed systems. These systems allow
individual applications to be developed and deployed independently, expecting to suite
business requirements more quickly, effectively and efficiently [Newl15] [Woll5]. Most
architectural trends in the last years like Service-Oriented Architecture (SOA) [SOA],
Event-Driven Architecture [EDA|, Microservices [Fowl4] and Self Contained Systems
(SCS) [SCY] share these characteristics.

These architectural styles propagate loose coupling [Hoh04] [Val09] to achieve the indepen-
dence of individual applications in the system. Replication also enhances loose coupling:
applications can operate without the need of communication and even if parts of the
systems are not available. Even though loose coupling has been an architectural and
design principle in monolithic architectures, there is greater need for it in a distributed
system. In a distributed system, tight coupling leads not only to problems in operations,
but also during development and deployment [CDA] [Wol15].

Current integration and replication techniques built primarily for monolithic architectures,
does not focus on loose coupling. Most of them are located on a data level, where data-
schemes are shared between individual applications. This leads to tight coupling: a
change in the data-scheme of a single application requires changes in other applications
too [Woll5].

There is little reliable research available which focuses on replication, replica actualization
and invalidation for loosely coupled business IT systems. Most information is published in
internet blogs, magazines and developer conference talks and is not founded on scientific
research methods. Moreover, these publications only deal with certain concepts or
technologies and do not cover critical comparison and evaluation. The absence of reliable
decision criteria increases the risk of applying an inappropriate solution which may cause
excessive costs or a situation where caching is simply not used.

Eventually, TU Wien is currently evaluating replication for the purpose of introducing
the concept into its I'T systems, which provides the practical application background for
this thesis.

1.3 Aim of the Work

The aim of this work is to evaluate concepts and technologies for replication for their use
in loosely coupled business IT systems, based on quantitative and qualitative criteria.
Under the assumption that there is no single best solution for the requirements of all I'T
systems, concepts and technologies are further evaluated for their use in different cases
of application. These evaluations should provide decision makers with the information
needed to implement replication in their IT systems.

1.3. Aim of the Work

The focus of this work is the use of replication to decrease latency for read operations on
the client. Other aspects like consistency of the client replicas, the size of transmitted
data and quality parameters (e.g. reliability and maintainability) are also considered.

1.3.1 Research Questions

The research questions shall address and cover the before mentioned topics and are
therefore formulated as follows:

1. Which concepts and technologies can be used for replication in modern business IT
systems?

2. How do concepts and technologies for replication perform in typical scenarios of
business IT systems?

3. What are the characteristics, advantages and disadvantages of concepts and tech-
nologies for replication and how do they relate to different cases of applications?

To answer question 1, replication is discussed from a theoretical perspective by its
characteristics and its use in modern loosely coupled business I'T systems. Based on this
discussion, concrete replication strategies are presented and implementations based on
modern technologies are composed.

To answer question 2, concepts and technologies are implemented and used in a simulation
where client-side requests and server-side updates, that are replicated from the server to
a client-side replica, are performed. Concepts are implemented for Java EFE (representing
enterprise platforms) and Ruby on Rails (representing more light-weight rapid-prototype
platforms) to take the heterogeneity of modern IT systems into account.

To answer question 3, an evaluation of qualitative and quantitative indicators is performed.
The qualitative indicators are evaluated based on an analysis of the ISO 25010 quality
characteristics. The quantitative analysis is based on the results of the simulation and on
a theoretical discussion of the characteristics and processes of the individual replication
strategies (based on the recommendation of [Jai9(] to validate results of a simulation by
an analytical approach).

1.3.2 Delimination

In order to set the focus of this thesis on loosely coupled IT systems and limit the scope,
the following constraints were defined:

e Evaluation of technologies: The aim of this work is to evaluate individual
concepts for replication. The thesis does not cover evaluations and benchmarks
of technologies and tools (e.g. Java EE in comparison to Ruby on Rails or a
comparison of different message brokers).

1.

INTRODUCTION

Writeable replicas: Write operations are only performed on the server. It is
assumed, that the clients send write requests to the server (e.g. over webservices)
for data updates. Replicas are read-only.

Strict consistency: The discussed replication strategies partially build on eventual
consistency and therefore inconsistencies in the replicas may occur. It is only
guaranteed that replicas are consistent at some point of time in the future. Since
write operations are only performed by the server and thus the server has a consistent
state, this does not lead to a fundamental problem. Areas of application where
strict consistency is crucial (like banking systems) are explicitly not covered by this
thesis.

Autonomous invalidation: Data items in replicas are invalidated by the server
only. Other invalidation techniques (e.g. invalidation by time-to-live) are not
examined but considered in course of the analysis of qualitative and quantitative
indicators.

Persistence technologies: The thesis focuses on replication. Technologies to
implement replicas (like relational databases) are not examined.

Initial data import: Some replication strategies need an initial data import to
fill the replica. This operation can be performed in the data-layer more efficiently
than on the application layer (e.g. with a direct import into the database). As
persistence technologies are not dealt with, this subject is not covered either.

Horizontal scaling: It is assumed, that every component exists only once. The
investigated replication strategies can also be used when components are running
redundantly multiple times. Specific requirements emerging through horizontal
scaling are not in the scope of this work.

1.4 Methodological Approach

The methodological approach consists of the following steps:

1. Analysis: In the first step, concepts and technologies are selected and parameters

to measure their performance are specified.

a) Selection of replication strategies: Concepts and technologies that are
used for caching and replication are examined. Starting point is a theoretical
discussion of replication and characteristics of replication methods. Based on
this discussion, concrete replication strategies for loosely coupled IT systems
are presented and implementations with modern technologies are composed.

b) Specification of quantitative indicators and metrics: Quantitative in-
dicators and metrics to measure them are determined. These indicators

1.5. Structure of the Work

are meant to examine characteristics of replication strategies like runtime
performance and consistency.

2. Implementation: In the second step, a simulation environment to measure the
performance of replication strategies is implemented.

a) Design and implementation of a simulation environment: Design of
a simulation environment where replication with the replication strategies
are simulated and quantitative indicators are measured. The simulation
environment must be capable to run different test objects, execute different
scenarios and measure the specified metrics. Further, it must be capable to run
test objects in Java EE and Ruby on Rails. Therefore, parts of the simulation
environment will be implemented two times, once for each platform.

b) Design and implementation of replication strategies: Replication strate-
gies are implemented two times, once in Java EE and once in Ruby on Rails.
Replication strategies are designed and implemented, including the selection
of suitable libraries and tools for the platform.

3. Simulation: In the third step, scenarios for the simulations are specified and the
simulation is executed.

a) Specification of scenarios: Scenarios for the simulation are specified. Sce-
narios differ in the number and characteristics of read and write operations.
It is important to find realistic scenarios that represent operations inside real
business IT systems. To achieve this, the specification is done in cooperation
with the representatives of the information system of TU Wien and based on
typical use cases of this system.

b) Execution: Specified scenarios are simulated for each replication strategy
while specified metrics are measured. The simulation must run in an isolated
environment where no other processes or network traffic influence the results.

4. Evaluation: In the last step, replication strategies are evaluated.

a) Analysis of qualitative indicators: Replication strategies are analyzed
based on the quality model of ISO 25010 considering findings in the course of
the implementation.

b) Evaluation of replication strategies: Replication strategies are evaluated
based on their performance in the simulation related to the specified use cases.
Results are further analyzed on their overall performance, including qualitative
indicators.

1.5 Structure of the Work

The following two chapters form the theoretical background of the work: Chapter 2
summarises current research in the area of replication including characteristic, consistency,

1.

INTRODUCTION

levels of application, related evaluations and related benchmarks. Chapter 8 describes
communication technologies and paradigms used in this work.

Based on the fundamental research, Chapter 4 discusses replication characteristics in
the area of loosely coupled business I'T systems and selects replication strategies for this
domain. Concrete implementations are composed based on current technologies and
discussed in detail.

Replication strategies and implementations are further analyzed in Chapter 5. It iden-
tifies and discusses quantitative indicators, metrics to measure them and analyses how
replication strategies meet these indicators. Furthermore, qualitative characteristics of
the replication strategies are addressed based on the quality model of ISO 25010.

After the theoretical analysis, Chapter 6 presents the simulation. This includes the
experimental setup, consisting of the selection of the used data and inspected use cases,
the description of the implemented simulation environment, the implementation of the
replication strategies in Java EE and Ruby on Rails and the simulation itself. The chapter
concludes with the presentation of the simulation results.

The final evaluation of the qualitative and quantitative analysis and the simulation is
done in Chapter 7. Chapter 8 summarises the results of the work and discusses possible
future work in this area.

CHAPTER

Related Work

Replication is a well-researched topic in computer science. This chapter summarises
fundamental knowledge of the subject and the current state of the art research. In
order to do so, Section 2.1 gives a brief overview over replication. Section 2.2 deals with
consistency in systems that implement replication, followed by a discussion of how to
implement replication on different layers of an application in Section |2.5. The chapter
ends with a survey on related evaluation methods and benchmarks in Section |2.4.

2.1 Replication

Replication is the “maintenance of copies of data at multiple computers” [Cou0]. It is
used in distributed system to distribute data on the components of which the system is
composed of. Data is stored in a data store that consists of individual data items. A
data item is characterized by individual attributes. Data items are usually clustered by
attributes to entity types. In a database system, an entity type represents a database
table and data items represent rows inside the table. Replication can be implemented on
the level of entity types. In this case, a component on which data is replicated holds a
replica where it stores copies of the data items in the data store.

The replication of data over multiple components is generally used to enhance perfor-
mance, improve availability and improve fault-tolerance [Cou05|] [Tan07]. The resulting
distribution of data leads to the problem to keep replicas consistent [Tan07]. To ensure
consistency, updates have to be propagated to all replicas to ensure that data items are
identical in the entire system [Tan07].

The following subsections describe replication in detail. Subsection |2.1.1 gives a general
overview over types of replication based on content replication and placement. Subsection
2.1.2 discusses caches and differentiates them as a special form of replicas. The last three
subsections contain characteristics of methods to ensure consistency, based on [Tan07].

7

2.

RELATED WORK

2.1.1 Content Replication and Placement

[Tan07] and [Pie02] give a general overview over types of replication by distinguishing
replicas based on where they are placed at and by whom they are initiated. There are
three different types, logically organized as shown in Figure 2.1}

s, —» Document-initiated replication

Document-initiated

i ---» Client-initiated replication
replicas /

Figure 2.1: The logical organization of different kinds of copies of a data store [Pie(2]

Permanent Replicas: These replicas form an initial set of replicas which consti-
tute a distributed data store. An example of permanent replicas is a distributed
database, where a database is distributed over a number of servers that form a
cluster. For website replication, it may be further distinguished based on the
geographical distribution of content: content can be placed on a limited number of
servers on a single location or can be spread geographically around the internet
(mirroring).

Document-Initiated Replicas: (also known as Server-Initiated Replicas) Are
copies of a data store which are created on the initiative of the (owner of the) data
store to enhance performance. These can be spread geographically and may be
only temporarily available in order to handle peak load over a limited period of
time (e.g. Content Delivery Networks).

Client-Initiated Replicas': Are local storage facilities which are used by a client
to store a copy of data temporarily. These replicas are primarily used to improve
data access times.

Permanent replicas form a distributed, joint data store. Write operations can be performed
on each replica and are replicated to other replicas in the background. To do so, it can
be distinguished betweenprimary-based protocols where one replica is responsible for the

state

of a data item and changes are forwarded to this node (in the background — this

communication is non-transparent to clients for which it looks like a local operation) and
replicated-write protocols where replicas coordinate the state of the overall system among
themselves (e.g. by a quorum based approach). Figure 2.2 illustrates permanent replicas
and their interactions. [Tan07]

[Tan07] also used the term “cache” for client-imitated replicas. In the terminology of this thesis, the

term “cache” is used in a narrower context (see Subsection |2.1.2).

2.1. Replication

read —> . . <+— read
N replica replica R
write —» <«— Wwrite

read —» . . <+— read
. replica replica R
write —» «— write

Figure 2.2: Permanent replicas and their interactions

Initiated replicas are typically read-only. Write operations are performed on a permanent
replica. In the context of this thesis, the permanent replica where write operations take
place is named server. Changes are distributed to the replicas (see Subsection 2.1.4 how
this distribution can be implemented). Figure 2.3 illustrates such a system. [Tan07]

replica <«— read
read —» .
write — server replica <«— read
replica <«— read

Figure 2.3: Read-only initiated replicas and their interactions

This thesis only considers read-only replicas where update operations are only performed
on the server (see Subsection |1.5.2). Such systems can be implemented with initiated
replicas. The further discussion will therefore focus on initiated replicas.

2.1.2 Caching and Replication

In general, a replica is a copy of a data set on another machine to improve performance,
availability and fault tolerance [Bae97] [Lou02] [Tan07]. A Cache is a special form of a
replica. In the words of [REC-7234], “a cache stores cacheable responses in order to reduce
the response time and network bandwidth consumption on future, equivalent requests.” A
cache is a client-initiated replica that contains only data that was requested before. It
can be held locally (e.g. in a web browser) or on another component of the system (e.g.
a proxy server) [Bae97] [Tan07].

In this thesis, Completeness of a replica is defined as the amount of the server-side
data that is contained in the client-side replica. From the point of view of completeness,
a replica always contains a data item X, a cache may contain it or not [Pie01]. Caching
therefore is a special case of replication, where a replica only holds parts of the data
[Lou02].

2.

RELATED WORK

10

In the context of this thesis, a Full Replica is the representation of all server-side data
and therefore all data items and a Cache stores only requested data items so that there
is no need to request them again.

Because caches hold only parts of the data, they cannot be used to improve availability and
fault tolerance. As [RFC-7234] outlines, they are primarily used to improve performance.

2.1.3 Change Distribution

[Pie02] defines change distribution as “how changes between replicas are distributed.” For
initiated replicas, it characterizes which information is distributed between the server
and the replicas in order to achieve consistency. [Pie02] and [Tan07] distinguish four
change distribution types:

e Notification (also known as invalidation protocols): Replicas are notified which
data item has changed and invalidate this data item locally. The new version
has to be loaded from the server separately. The main advantage of invalidation
protocols is that they use little network bandwidth. They are very efficient when
the read-to-write ratio is relatively low and so the probability that every update is
read from the replica (and has to be loaded from the server) is low as well [Tan07].

e Full state; The new version of the data item is propagated to the replicas. This
type is useful when the read-to-write ratio is relatively high [Tan07].

e State difference (only in [Pic02]): The delta between the old version and the new
version is propagated to the replicas. If changes are very small compared to the
whole data item, this approach leads to lower bandwidth consumption than the
propagation of the whole data item [Ban97].

e Operations: The operation that leads to the change in data is propagated to
the replicas. Replicas must be capable to perform the operations on their data
autonomously. The main benefit of this approach is that operations require very
little network bandwidth compared to the propagation of the whole data item
[Tan07].

2.1.4 Replica Reaction

[Pie02] defines replica reaction as “how an update is propagated to replicas.” For initiated
replicas, it characterizes how changes on the server-side data store are propagated to
client-side replicas. [Pie02], [Tan07] and [Yin99|] distinguish server-based / push-based
protocols, where updates are actively pushed to the replicas and client-based / pull-based
protocols, where a replica pulls the updates from the server. [Yin99] further distinguishes
client-based protocols, leading to the following three types:

e Server-driven (PUSH): Active notification of replicas when data changes. These
protocols are used when replicas need a high degree of consistency [Tan07].

2.1. Replication

e Polling on each read (PULL): Replicas are actively requesting the current state
of a data item when it is requested. These protocols supply strict consistency but
increase the load on the server and the latency of each read [Yin99]. They are
efficient when the read-to-write ratio is relatively low [Tan07].

e Periodic polling (PULL): Replicas are periodically requesting the server state.
Replicas are in an inconsistent state between the update on the server-side data
store and the next poll of the server state (leading to eventual consistency, see
Subsection 2.2.1) [Yin99].

Table [2.1] describes the types of replica reaction by distinguishing pull and push-based
approaches and the event that leads to the change:

Replica Reaction | PULL / PUSH | Event
server-driven PUSH change of data
polling on each read | PULL request of data
periodic polling PULL interval

Table 2.1: Types of Replica Reaction

2.1.5 Addressing Method

The addressing method determines how messages are sent to multiple receivers. For
initiated replicas, it characterizes how the server can propagate updates to multiple
replicas. [Tan07] distinguishes two addressing methods:

e Unicast If an update must be propagated to n replicas, n messages are sent.

e Multicast If an update must be propagated to n replicas, only one message is
sent. The system takes care of sending messages efficiently to multiple receivers
(e.g. with IP Multicast).

Recommendations for the addressing method used can be made based on the replica
reaction (Subsection 2.1.4). With a pull-based approach, a replica is directly commu-
nicating with the initial data set. Benefits of multicast cannot be used here because of
the one-to-one communication. [Tan07] notes that unicast ,,may be the most efficient
solution.“ With a pull-based approach, every client has to be notified. Multicast can
lead to a more efficient solution, where the server and the network can be relieved
of pressure because of the optimization of the used multicast implementation [Tan07]
[Yu99]. Furthermore, multicast can enable loose coupling when clients can independently
subscribe to multicast groups (depending on the multicast implementation).

As a consequence of these recommendations, push-based replication is implemented
by unicast and pull-based replication by multicast in the course of this work.

11

2.

RELATED WORK

12

2

2.2 Consistency

One of the major problems with replication is to maintain consistency [Tan(07]. Data
are stored in many places and updates must be propagated to all places viz. to all
replicas. This section discusses consistency in replicated, distributed systems. Subsection
2.2. 1 discusses consistency models for read-only replicas and Subsection |2.2.2 summarises
current research on trade-offs between consistency and other properties.

2.2.1 Consistency Models

Most consistency models in literature assume that data is written directly in the replicas
and thus are very complex (see [Tan07]). This thesis only considers read-only repli-
cas where update operations are only performed on the server (see Subsection 1.3.2).
Consistency models for writeable replicas are not considered in this section.

Since write operations are only performed by the server, the server always has a consistent
state. Only the client is affected by inconsistencies. From the client-side point of view,
there are three types of consistency [Vog09]:

e Strong consistency: After an update, all subsequent access to data will return
the updated value. Strong consistency can be implemented in a distributed system
by Two Phase Commits [Ami02].

e Eventual consistency: Guarantees that after an update, when no new updates
take place, access to data will eventually return the updated value. After a long
time without updates, all replicas will gradually become consistent [Tan07].

e Weak consistency: Does not guarantee that after an update a subsequent access
to data will return the updated value.

Strong consistency is widely used because it is implemented in modern database manage-
ment systems by the ACID? properties [Brel2]. [Flo09] argues, that Service Oriented
Architectures (SOA) and ACID constraints do not mix well, because ACID requires
full control of all data management activities (via transactions), whereas SOA implies
autonomy of services and their data. Techniques like Two Phase Commits help to support
ACID-style transactions in SOA, but are “painful” to use [Flo09]. The problems with
strong consistency arise from the distribution of data and the autonomy of components.
Therefore, this discussion is not solely valid for SOA but may be applied to distributed
and loosely coupled IT systems in general.

[Hel07] and [Vog07] argue that strong consistency and ACID transactions are rarely
needed. [Newl5] and [Woll5] are also discussing eventual consistency and transaction
and draw the conclusion that the use of eventual consistency depends on the use case. It
is assumed, that many use cases can be redesigned to fit to an eventual consistent model

ACID = atomicity (A), consistency (C), isolation (I), durability (D)

2.2. Consistency

[Woll5]. For the course of the work, it is assumed that eventual consistent models meet
the needs of loosely distributed I'T systems.

Eventual consistency can be further classified into four models® [Vog09]:

e Causal consistency: If a process is notified about a new version of a data item,
any subsequent access to the data item will return the new version.

e Read-your-writes consistency: If a process updates a data item to a new
version, any subsequent access to the data item will never return an older version.

e Monotonic read consistency: If a process reads a version of a data item, any
subsequent access to the data item will never return an older version.

e Monotonic write consistency: “The systems guarantees to serialize writes by
the same process.” [Vog09]

2.2.2 Trade-Offs
When designing distributed systems, there are three properties that are commonly desired

[Adal2] [Bre00] [Gil02]:

e Consistency (C): The system provides strong consistency.
e Availability (A): Data is highly available.

e Partition-Tolerance (P): When the system is distributed to several network par-
titions, it can handle the failure of partitions and messages lost between individual
partitions.

In 2000, Brewer [Bre00] conjectured that it is impossible to achieve all three properties.
This conjecture was formally proved by Gilbert and Lynch [Gil02] in 2002 and is known
as the CAP theorem. Based on the CAP theorem, there are three possible system types:

e CA systems: Consistent and highly available, but not partition-tolerant. Appli-
cations are e.g. relational database systems with ACID constraints.

e CP systems: Consistent and partition-tolerant, but not highly available. Applica-
tions are e.g. banking applications.

e AP systems: Highly available and partition-tolerant, but not consistent. Applica-
tions are e.g. the domain name system (DNS) and cloud computing.

3 [Vog09] also describes session consistency as a fifth variation, that is not considered in this work.

13

2.

RELATED WORK

14

5

Later discussions on the CAP theorem clarify that this decision is not binary [Brel2].
There is no exclusive choice for two of the three properties and no need to sacrifice the
third, but it is also possible to weaken one or two of the properties. Even though the
described systems are oversimplified, they help to understand the trade-offs.

Adabi [Adal2] defined the PACELC? theorem (not proofen) which extends CAP and also
considers replication. PACELC distinguishes between systems where network partitions
exist and systems with no partitions. In the case of network partitions, the conditions
apply according to the CAP theorem (choice between consistency and availability). When
partitions need not to be considered, Adabi argues that high availability can only be
provided by replication. Adabi described several cases and concludes that replication has
a trade-off between consistency and latency. Strong consistency needs communication
between the components, leading to higher latency. Lower consistency models need less
communication and therefore have lower latency.

2.3 Implementation of Replication on different Layers

Communication between client and server is necessary to ensure consistency in the
replicas. This section discusses different layers of communication and the situation where
replication can be implemented. The discussion is based on the well-known three-layer
model for enterprise applications [Bor05] [Fow02]:

e Presentation: Integration with the end-user (e.g. HTML web interface)
e Application (or Domain): Business logic (e.g. Enterprise Java Beans’)

e Data: Persistence and access to data (e.g. database)

The individual layers and replication on these layers are discussed in the next subsections in
detail. It is concluded that replication in loosely coupled IT system must be implemented
on an application layer.

The discussion in this section partially bases on works in the area of Microservices.
A Microservice architecture is a distributed system formed of many small and loosely
coupled applications [Fowl4]. Because applications in a Microservice architecture are
very small, these systems need more individual applications to implement the same
number of use cases than a traditional system. More individual applications also lead
to more communication between applications and therefore research on Microservice
architectures focuses on the communication and integration of applications. Even though
not every distributed IT system follows a Microservice architecture, research done on
communication and integration can be used for loosely coupled IT system in general.

PACELEC can be read as: “if there is a partition (P), how does the system trade off between availability
and consistency (A and C); else (E), when the system is running normally in the absence of partitions,
how does the system trade off latency (L) and consistency (C)” [Adal2).

https://jcp.org/en/jsr/detail?id=345| (last checked 26.03.2018)

https://jcp.org/en/jsr/detail?id=345

2.3. Implementation of Replication on different Layers

2.3.1 Replication on the Data Layer

The easiest way to integrate applications on the data layer is by a shared database, where
all applications access the same database and database tables [Hoh04]. Replication can
be implemented by standard functionality like distributed databases, where replication is
realized by the database management system [Woll5].

Replication on the data layer leads to a shared data schema [Hoh04]. Even though these
techniques are often used in practice, they violate data encapsulation and lead to tight
coupling [RicI5]. Tight coupling results because a change in the data schema of a single
application requires changes in other applications too [Woll5]. Other problems with
shared databases are the difficulty to create a shared data schema that satisfies the
requirements of all applications and the risk of turning the database into a performance
bottleneck [Hoh04]. Integration on this layer is not recommended [Hoh04] [Ric17b]
[Wol15] and will not be done in this thesis.

2.3.2 Replication on the Application Layer

Replication on the application layer can be accomplished synchronously (e.g. with
RESTful webservices) or asynchronously (e.g. push-based with Messaging [Woll5| or
pull-based with Web Feeds [Kar(07] [Webl10]).

Research on the use of replication in modern IT systems showed that replication is
mostly implemented asynchronously on an application layer with Messaging or Web
Feeds. Examples are Apache Airavata [Dhal7] (Messaging), the ORACLE ATG Web
Commerce Platform [ATG] (Messaging) and the e-commerce system of the German online
retailer OTTO [Stel5] (Web Feeds).

Asynchronous integration of applications is highly related to Event Driven Architectures,
where interaction between systems is based on events. Events are used for changes in
data or state and transmitted to subscribed components by event notifications [EDA].
Event Driven Architectures can be implemented by a pull or push-based approach [San15]
[Giel5]. [Fowl17] distinguishes individual types of Event Driven Architectures and defines
a type specifically for replication: FEwvent-Carried State Transfer. The aim of Event-
Carried State Transfer is to decouple components in a distributed system. A client holds
a replica of the server-side data store and needs no server communication to read data
from the data store. Modification of data items in the server-side data store lead to
events that are communicated to the client to update the client-side replica.

The application layer is mostly implemented individually and not by standard software.
Individual implementations are necessary because the application layer technically imple-
ments the business logic that constitutes the unique selling proposition and generates the
actual product value. Therefore, it is assumed that replication (or parts of it) has to be
implemented individually in order to integrate to the individual parts of the application
layer. This assumption corresponds to the finding that there are no standard libraries
available that completely implement replication at the application layer.

15

2.

RELATED WORK

16

2.3.3 Replication on the Presentation Layer

It is not possible to implement replication on the presentation layer because data cannot
be replicated into the layers below (application and data layer).

2.4 Evaluations and Benchmarks

There is currently no comparable comprehensive scientific survey or evaluation for
replication specifically for loosely coupled systems. There are already surveys and
evaluations that cover parts of the topic and tools for benchmarking that can be used to
measure replications effects. This section gives an overview over these works.

2.4.1 Evaluations

Analytical surveys for replication in loosely coupled IT systems can mostly be found
in unstructured, non-academic form (e.g. blog posts). These will not be listed here.
However, there is standard literature in the area of Microservices and Self Contained
Systems (a special type of Microservices) where replication is covered [Newl5|] [SCS]
[Woll5|. Event Driven Architecture, Event-Carried State Transfer and the comparison of
pull and push-based concepts are discussed in the developer conference talks of [Sanl5]
and [Giel5]. These sources provide the basis for the requirements and as an indication
for the selection of the replication strategies and their implementation.

There are currently no simulations of replication on the application layer. A related area
of research, even if the used technologies differ, is replication of documents over several
webservers. The requirements are similar, there is also no need for strong consistency and
replicas are read-only. [Bae97], [Ca098], [Gwe96], [Pie01], [Siv07], [Yin99] and [Yu99]
discuss related replication strategies like the ones considered in this thesis and observed
their behavior using simulations. The results provided by these evaluations build the
basis of this thesis.

Simulations to measure consistency metrics in eventual consistent systems were especially
performed for NoSQL and cloud databases in [Berl3], [Berl4] and [Wadll]. Findings
of these simulations were specific for NoSQL and cloud databases and therefore results
could not be used in the context of this thesis. The setup of the simulations environment
provided an indicator for the simulation performed in this work.

Furthermore, there are many evaluations and simulations for replication on the data-layer
(e.g. distributed file systems and distributed databases). These cover another layer of
communication (see Subsection 2.3.1) and build on writeable replicas (see Subsection
1.5.2), which are excluded from the scope of this thesis. Therefore, they were not
considered.

© 0 N O

11
12

2.4. Evaluations and Benchmarks

2.4.2 Benchmarks

There is a wide range of benchmarks and tools available to measure web application
performance. Most insights into system and implementation behavior can be obtained
from benchmark applications that offer a server side web application and generate
workloads by emulating user sessions per HI'TP requests. They measure metrics from a
client and a server perspective. The most popular benchmark applications are:

e TPC-W° [Gar03] [Smi00]: Is an industry-standard e-commerce benchmark by
the Transaction Processing Performance Council that simulates an online store
where users browse and buy products from a website. TPC-W bases on a complex
infrastructure with many servers performing different functions (e.g. Web Servers,
Web Caches, Image Servers or a Database Server). The main metric is Web
Interactions Per Seconds (WIPS) that can be sustained by the system or individual
servers. Workloads are generated by independent shopping sessions following a
model-based sequence of interactions (like search, browse, add to shopping cart
and purchase).

e RUBBo0S’ [Amz02]: Is a bulletin board benchmark by the OW2 Consortium,
modeled after slashdot.org. Implementations are available for PHP and Java
Servlets. Users can browse stories, submit stories, comment stories, review stories
and rate comments. The workload exhibits a high locality to represent the properties
of a bulletin board where users are usually interested in the latest news [Siv07].

e RUBIS® [Amz02]: Is an auction site benchmark by the OW2 Consortium, modeled
after ebay.com. Implementations are available for PHP, Java Servlets and Enterprise
Java Beans (EJB). The auction site implements core functionality (selling, browsing
and bidding) by 26 interactions.

Another web benchmark is SPECweb99” [Nah02] by the Standard Performance Evaluation
Corporation. It includes no benchmark application but provides a standard workload
that can be executed on existing websites and applications. The primary metric used
by SPECWeb99 is the number of simultaneous conforming connections (unlike other
benchmarks measuring server throughput or response time).

There are also Load Testing Tools for web applications that simulate a large number of
clients by producing HT'TP request on an application or website. They can be scripted to
customize the workload to the individual needs. Because these tools are not integrated in
the application but act purely as HT'TP clients, they only provide metrics from the client
perspective. Popular examples are gatling'’, Apache Bench'!|and Apache JMeter'?.

http://www.tpc.org/tpcw/| (last checked 26.03.2018)
http://jmob.ow2.org/rubbos.html (last checked 26.03.2018)
http://rubis.ow2.org/| (last checked 26.03.2018)

https://www.spec.org/web99/| (last checked 26.03.2018)

https://gatling.io/| (last checked 26.03.2018)
https://httpd.apache.org/docs/2.4/programs/ab.html (last checked 26.03.2018)
https://jmeter.apache.org/| (last checked 26.03.2018)

17

http://www.tpc.org/tpcw/
http://jmob.ow2.org/rubbos.html
http://rubis.ow2.org/
https://www.spec.org/web99/
https://gatling.io/
https://httpd.apache.org/docs/2.4/programs/ab.html
https://jmeter.apache.org/

2.

RELATED WORK

18

13
14

All these benchmarks and tools implement a closed system model where new requests are
triggered by the completion of a previous request [Sch06]. A load testing tool that uses

an open system model, where new requests are independent of former requests, is hitperf
13

There are also benchmarks to measure the performance of eventually consistent systems.
The Yahoo! Cloud Serving Benchmark (YCSB) [Cool0] was created to analyze cloud
based databases (that provide online write/read access). Based on its open architecture
it can be extended to handle other databases or application as well. YCSB initially
measures only two tiers: Performance and Scaling. YCSB++, a set of extensions to
YCSB, includes eventual consistency measurement [Patil].

The survey in this chapter concludes that replication in loosely coupled IT systems is
preferable implemented on the application layer. Technologies to do so were mentioned
throughout the chapter. The next chapter describes these technologies and their features
needed to implement replication in detail.

https://github.com/httperf/httperf| (last checked 26.03.2018)
https://github.com/brianfrankcooper/YCSB| (last checked 26.03.2018)

https://github.com/httperf/httperf
https://github.com/brianfrankcooper/YCSB

CHAPTER

Communication Paradigms

This thesis uses existing technologies and communication paradigms to implement replica-
tion strategies. This chapter describes these technologies and paradigms. The description
includes a survey on libraries and tools to use the technologies. The focus of this survey
is on Java EE and Ruby on Rails because these platforms form the basis for the practical
part of this thesis.

3.1 REST - Representative State Transfer

Representative State Transfer (REST) was introduced by Roy Fielding in his dissertation
[F'ie00] in 2000 to condense the foundation of the world wide web in a general architectural
style. In practice, REST is implemented with HTTP. Other implementations are possible
as well, but “attempts to do so can be an expensive proposition” [All10]. REST has been
established as the standard for modern web Application Programming Interfaces (APIs).

Key elements are resources. A resource is any information that can named [Fie00] and
referenced as a thing itself [Ric07]. Resources can be anything from a text file, media file
(e.g. an image), a row in a database or a business process (e.g. a procedure) [Dail2].

HTTP and RESTful webservices are standard functionalities of modern web-based
application platforms. As an example, Java EE provides the Java API for RESTful
Webservices (JAX-RS)! standard to create RESTful servers and clients. The Ruby on
Rails framework entirely builds on the concept of RESTful webservices to provide web

pages and web services?.

The subsequent subsections describe architectural constraints of RESTful architecture,
provide examples of RESTful resources and explain how caching can be implemented
using HT'TP.

https://jcp.org/en/jsr/detail?id=339 (last checked 26.03.2018)
http://guides.rubyonrails.org/getting_started.html (last checked 26.03.2018)

19

https://jcp.org/en/jsr/detail?id=339
http://guides.rubyonrails.org/getting_started.html

3.

COMMUNICATION PARADIGMS

20

3

3.1.1 Architectural Constraints

[Fie00] defined a set of constraints a system must meet to be RESTful. The following
section describes the constraints including considerations on their use in HTTP:

e Client-Server: REST implements a client-server architecture.

e Stateless: Each request from the client to the server must contain all information
necessary to understand the request on the server-side. Session state is stored
entirely on the client and the server cannot take advantage of any stored context.
In the case of HTTP based web application, server-side sessions are not allowed.

Cache: Data within a request or response can explicitly be labeled as cacheable
or non-cacheable. The client can read cacheable responses from a cache and reuse
it for later, equivalent requests. HT'TP provides standard mechanisms which are
described in Subsection |3.1.5.

Uniform Interface: A uniform interface is used between all components. This
constraint is further subdivided into four interface constraints:

— Identification of Resources: Resources are identified by a unique uniform

resource identifier (URI). In the case of HTTP, this is the HTTP URI [Dail2].

Manipulation of Resources Through Representations: Resources are
represented in different formats to encapsulate the resource and its information
(e.g. encoded in a markup language such as XML or JSON). Manipulation
of resources is performed with representations of the resource. In HTTP, the
representation format can be defined via the Content-Type and Accept
headers of HT'TP requests and responses [AII10].

Self-Descriptive Messages: Messages must be self-descriptive. The uniform
interface provides all information needed to perform actions on resources and
no other, proprietary information is necessary. This constraint is implemented

in HTTP with the HTTP methods (e.g. GET, POST and DELETE) [Ric13].

Hypermedia as the Engine of Application State (HATEOAS): Hyper-
links are used in messages to guide clients through the application’s state
[Dail2]. This is similar to the world wide web, where users start at an en-
try point (e.g. a search engine) and navigate the web through hyperlinks.
HATEOAS allows clients and servers to evolve independently and enables
loose coupling.

Though HATEOAS is recommended in nearly every publication about RESTful
webservices (e.g. [AIL0], [Ric07], [Ric13] and [Web10]), it is hardly adopted
in public web APIs’ [Bull4] [Dail2] [Renl2]. HATEOAS has no specific
advantage for the examined case of replication and is therefore not further
considered in this work.

To the author’s knowledge, there are no surveys of the use of HATEOAS in private web APIs available.

3.1. REST - Representative State Transfer

e Layered System: [Fie(0] describes a layered system as “an architecture to be
composed of hierarchical layers by constraining component behavior such that each
component cannot "see" beyond the immediate layer with which they are interacting.”
In the case of HT'TP, it allows proxy servers and gateways to act intermediates
in the communication [RicI3|]. Adding this components into the system is nearly
transparent to the clients [Ric13].

e Code on Demand (optional): Code on demand allows “client functionality to
be extended by downloading and executing code in the form of applets or scripts”
[Fie00]. It is not recommended to use this functionality as a general solution [Ric13]
and is only considered as an optional constraint in [Fie00]. Therefore, it is not
considered in this work.

3.1.2 The use of HTTP Methods in REST

The practical use of RESTful webservices is illustrated by a web shop that manages
orders. A typical resource in such a system is an order. It can be represented by a unique
URI such as /orders/123. To access the order and perform actions on it, it can be
accessed using HTTP methods. Table 3.1] gives an overview of HTTP methods and their
effect on the order resource (the table shows only a subset of possible methods).

HTTP Action

method

GET returns the order

POST not supported in this context

PUT replaces the order with the representation of a single order in the
request body

DELETE deletes the order

Table 3.1: HTTP methods and their effect on the order resource

A resource can also represent a collection of resources. The URI /orders would represent
all orders in a web shop. Table 3.2| gives an overview of HTTP methods and their effect
on a collection of orders (the table shows only a subset of possible methods).

HTTP Action

method

GET returns all orders

POST adds a new order

PUT replaces all orders with the representations of a collection of orders
in the request body

DELETE deletes all orders

Table 3.2: HTTP methods and their effect on a collection of orders

21

3.

COMMUNICATION PARADIGMS

22

It is not required to provide all methods for any resource. The deletion of all orders in a
web shop is an unlikely use case of application and would presumably not be implemented.
Resources can also be organized hierarchically. All items in an order could be represented
by the URI /orders/123/items and accessed and manipulated via HT'TP methods
as described before.

3.1.3 Caching

Caching is a primary constraint in RESTful architectures. HI'TP supports caching on
multiple levels of the layered system (e.g. for client-side caches or for proxy servers that
serve multiple machines). This survey focuses on HTTP message headers for client caches
that can be applied for replication. For a detailed overview over caching mechanisms see
[Web10]. HTTP supports client caching by the following three headers [REC-7234]:

e Expires Header: A response can be equipped with a timestamp that defines its
validity (time to live) in the Expires header of the server response. Clients have
to invalidate data from their cache independently after the time to live has expired.
In practice, it is hard to assign a appropriate time to live for a data item [Cac98].
Too small values lead to lots of requests to the server and minimize the advantage
using a cache, too high values lead to high inconsistencies in the data [Cao9§].

e Last Modified Header: A response can be equipped with the timestamp of the
last modification in the Last-Modified header of the server response. Clients
can store this information and perform a conditional GET to the server including a
If-Modified-Since header, telling the server only to send data if it has changed
in the meantime. If data has not changed and the modification date is the same,
the data in the cache is still valid and can be used. Therefore, no data has to be
transmitted. In this case, the server returns an empty request body with the HTTP
status code 309 Not Modified to the client. Otherwise the server returns the
data and the new modification date. Figure |3.1 illustrates a scenario where data is
initially loaded (1) and requested two times: the first time without modifications
(2) and the second time after a modification on the server side (3).

e ETag Header: A response can be quipped with an unique identification key
(e.g. a hash) of the data in the ETag header of the server response. Clients can
store this information and perform a conditional GET to the server including a
If-None-Match header, telling the server only to send data if it differs from the
version identified by the identification key. If data has not changed and the ETag
is the same, the data in the cache is still valid and can be used. Therefore, no data
has to be transmitted.. In this case, the server returns a empty request body with
the HTTP status code 309 Not Modified to the client. Otherwise the server
returns the data and the new ETag. Figure 3.2 illustrates a scenario where data is
initially loaded (1) and requested two times: the first time without modifications
(2) and the second time after a modification on the server side (3).

3.2. Web Feeds

H GET /orders/123

1) initial request | |

HTTP 200 OK
Last Modified: Mo, 1 Jan 2018 10:00:00 GMT

GET /orders/123
If-Modified-Since: Mo, 1 Jan 2018 10:00:00 GMT

2) without modifications

HTTP 309 NOT MODIFIED

GET /orders/123
If-Modified-Since: Mo, 1 Jan 2018 10:00:00 GMT

3) after modifications I:l I:l
1
1
1

HTTP 200 OK
Last Modified: Tu, 2 Jan 2018 10:00:00 GMT

Figure 3.1: Example of the use of the Last-Modified HT'TP header

client server

H GET /orders/123 H
h

1) initial request |_| I:l

HTTP 200 OK
ETag: 22a08ec6e5f2b1d62023ac45368229¢1

GET /orders/123
If-None-Match: 22a08ec6e5f2b1d62023ac45368229%1

2) without modifications |_|

HTTP 309 NOT MODIFIED

GET /orders/123
If-None-Match: 22a@8ec6e5f2b1d62023ac45368229%1

3) after modifications | | | |

Le
I
I
I
I

HTTP 200 OK
ETag: 6484da8e57c3f2bee0@@dc64ecal3lbe8?

Figure 3.2: Example of the use of the ETag HTTP header

3.2 Web Feeds

Web feeds are traditionally used for publication of news and changes on websites such as
news-sites, blogs and wikis. Interested readers (e.g. human users) can regularly poll the
feed and are notified when additional or updated content is available. Web feeds can also
be used for publishing changes for machine-to-machine integration inside I'T systems,
containing changes in REST resources or database tables [Gield] [Kar07] [Web10]. In
this case, readers are not human users but other components and applications in the I'T
System.

23

3.

COMMUNICATION PARADIGMS

24

Technically, a web feed represents a structured list of items [Web10]. Items in a web feed
are called entries and associated document metadata with web content [Web10]. The
web feed is provided by a server via HT'TP. Clients regularly read (poll) the feed in order
to be notified when changes happen. Figure [3.3| shows the use of web feeds.

server

client

client

 ‘
L —=
N

client |

web feed

I~ entry

Figure 3.3: Example of the use of web feeds

The subsequent subsections describe web feed standards and one of the standards, the
Atom Syndication Protocol, in detail.

3.2.1 Standards

There are several standards for web feeds available. The most popular standards are:

¢ Really Simple Syndication, formerly Rich Site Summary (RSS)*: Is a XML-

based web content syndication format. RSS was developed at Netscape and got
popularity with the rise of web blogs.

Atom Syndication Protocol (Atom): Is a XML-based web content syndication
format, defined in [RFC-4287]. It was introduced as the successor of RSS.

Atom Publishing Protocol (AtomPub): Is an extension of Atom for publishing
timestamped lists of web content, defined in [RFC-5023|]. The RFC describes Atom-
Pub as “an application-level protocol for publishing and editing Web resources. The
protocol is based on HTTP transfer of Atom-formatted representations. AtomPub
defines rules for a client and a server to create and edit web resources by using
HTTP to implement a domain-specific application protocol [Webl0]. It can be
used for manipulating the contents of Atom feeds in a standardized way [Web10].
A AtomPub server (e.g. AtomHopper?) offers this functionality.

JSON Feed®: Is a JSON-based web content syndication format. JSON has
established itself as the de facto standard exchange format for web services [Ric13].

http://www.rssboard.org/rss—-specification (last checked 26.03.2018)
http://atomhopper.org/| (last checked 26.03.2018)
https://jsonfeed.org/| (last checked 26.03.2018)

http://www.rssboard.org/rss-specification
http://atomhopper.org/
https://jsonfeed.org/

3.2. Web Feeds

A problem with the presented XML-based standards is that they do not fit into
the existing JSON-based environment and are therefore hardly used |[Ric13]. The
motivation of JSON Feed was to supply a format similar to RSS and Atom in JSON.
JSON Feed was introduced in 2017. Due to the recent introduction, implementations
for supplying and reading feeds are not fully developed yet and not available for all
platforms (e.g. there is no implementation for Java)”.

The Atom Syndication Protocol is currently the most mature standard for providing web
feeds and is therefore used in this thesis.

3.2.2 Atom Syndication Protocol

The Atom Syndication Protocol provides a format for web feeds. The structure of the
web feed is defined by the Atom specification (RFC 4287). The content of the web feed is
customizable and depends on the domains requirements [Web10]. The following example
shows a simplified web feed that provides orders in a web shop.

<?xml version="1.0" encoding="UTF-8"?>
<feed xmlns="http://www.w3.0rg/2005/Atom">
<id>http://www.webshop.com/orders</id>
<title>orders</title>
<updated>2018-01-01T10:00:00Z</updated>
<link rel="self" href="http://wwww.webshop.com/orders" />
<entry>
<id>orders/2</id>
<title>order #2</title>
<updated>2018-01-01T10:00:00Z</updated>
<author>
<name>user 1256</name>
</author>
<link rel="self" href="http://www.webshop.com/orders/2" />
<category term="data" />
<content type="application/xml">
<order xmlns="http://schemas.webshop.com/orders">
<customer>
<user id="1256" />
</customer>
<article id="1001" />
<article id="2002" />
</order>
</content>
</entry>
</feed>

" |nttps://jsonfeed.org/code|(last checked 26.03.2018)

25

https://jsonfeed.org/code

3.

COMMUNICATION PARADIGMS

26

8

9

Atom feeds can be used for machine-to-machine communication. The presented web feed
is an example for such an use case. The meta-data in the Atom feed sets the context for
orders and includes the following elements (based on the description in [Web10]):

e <atom:id>: Is a permanent and unique identifier for the feed.
e <atom:title>: Is the human-readable name of the feed.
e <atom:updated>: Is the last date the feed changed.

e <atom:link>: Is a reference to related content. The self link contains “the
canonical URI for retrieving the feed” [Web10]. Other link types include previous
and next (to navigate through linked feeds) [Web10]. [Webl0] referenced IANAs
link registry®| for recognized links that are recommended to use.

The actual information is represented by the <atom:entry> elements. In this example,
there is just one order which is represented by a single entry. Each entry consists of
metadata and the actual content. The metadata includes the following elements (based
on the description in [Web10]):

e <atom:id>: Is a unique identifier for the entry.
e <atom:title>: Is the human-readable name of the entry.

e <atom:updated>: Is the last date the entry has changed. In this example, it is
the time the order was made.

e <atom:author>: Provides information about the author that created the entry.
In this example, it is the user who made the order.

e <atom:link>: Is a reference to related content. The self link contains “the
URI for addressing this entry as a standalone document” [Web10]. Other link types
include related (for a related document) and alternate (for an alternative
representation) [Webl10].

e <atom:category>: Is an specification to organize entries. The specification
explicitly assigns no meaning to the content of this element. Categories therefore
can be used for categorizing in the context of the particular use case [Webl10)].

The actual content is located in the <atom:content> element. In this example, the
order is mapped as XML in an arbitrary, foreign namespace. There are no restrictions on
the content and structure of the content. Content can be of any content type (e.g. XML,
JSON or images). This allows Atom feeds to be customized for a particular use case.

There exist several libraries to implement Atom feeds. Ruby supports the RSS library in
its core packages”, that supports reading and writing of RSS and Atom Feeds. Even if

https://www.iana.org/assignments/link-relations/link-relations.xhtml
(last checked 26.03.2018)
https://ruby-doc.org/stdlib-2.1.3/1libdoc/rss/rdoc/RSS/Atom/Feed.html
(last checked 26.03.2018)

https://www.iana.org/assignments/link-relations/link-relations.xhtml
https://ruby-doc.org/stdlib-2.1.3/libdoc/rss/rdoc/RSS/Atom/Feed.html

10

11
12
13

3.3. Messaging

the library is mature, the documentation is insufficient and incomplete, making it difficult
to use. There are other libraries for reading web feeds!'’ or writing them!! available for
Ruby as well. These are mostly private projects and often not maintained. Therefore, it
cannot be recommended to use these libraries in business I'T-Systems. For Java, there
are two popular libraries to read and write Atom feeds: ROME', an independent library
which is used by the spring framework and others and Apache Abderd'3, which was widely
used but retired in 2017. Because Atom is based on XML, it is also possible to parse it
with a standard XML parser.

3.3 Messaging

[Hoh04] describes messaging as ,a technology that enables high-speed, asynchronous,
program-to-program commumnication with reliable delivery.“

With Messaging, programs communicate by sending messages. These messages are
send through channels (also known as queues) that are the logical pathways to connect
programs among each other. A message is sent by a producer or sender by writing the
messaging into the channel. A consumer or reader receives the message by reading (and
deleting) it from the channel. Communication is asynchronous by design: producers send
messages through channel and proceed. They do not wait until the message is processed
by the consumers. Figure 3.4 illustrates communication via messaging. [Hoh04]

X

producer O D consumer

Figure 3.4: General structure of communication via messaging

Messages can be any sort of data structure, like a string, a byte array or an object.
Complex data types can be serialized (directly to byte code or in a markup language
such as XML or JSON) and transmitted to the consumers. A message usually consists of
two parts: a header, which contains meta-information and a body, which contains the
real payload. [Hoh04]

Messaging capabilities are typically implemented by a message broker (also Messaging
System or Message Oriented Middleware). It provides channels and moves the messages
from the consumer to the producer in a reliable fashion. Administrators manage channels
and thereby define paths of communication, as database administrators provide persistence
layers by populating a database schema. [Hoh04]

https://github.com/aasmith/feed-normalizer| (last checked 26.03.2018),
https://github.com/feedjira/feedjiral(last checked 26.03.2018),
https://github.com/feedparser/feedparser (last checked 26.03.2018),
https://github.com/cardmagic/simple-rss|(last checked 26.03.2018),
https://github.com/swanson/stringer (last checked 26.03.2018)
https://github.com/seangeo/ratom (last checked 26.03.2018)
https://rometools.github.io/rome/ (last checked 26.03.2018)
https://abdera.apache.org/| (last checked 26.03.2018)

https://github.com/aasmith/feed-normalizer
https://github.com/feedjira/feedjira
https://github.com/feedparser/feedparser
https://github.com/cardmagic/simple-rss
https://github.com/swanson/stringer
https://github.com/seangeo/ratom
https://rometools.github.io/rome/
https://abdera.apache.org/

3.

COMMUNICATION PARADIGMS

28

As mentioned before, messaging enables asynchronous communication. There is no need
for the producer and the consumer to work at the same time. When the consumer is not
available, messages are stored and subsequently delivered when the client is available
again. The message broker stores the messages and repeatedly tries to send the message
to the client. To ensure the delivery of a message, clients send notifications when they
have received the message. Messaging can also ensure guaranteed delivery by persisting
messages on the message broker and ensure delivery even if the message broker restarts
or fails. [Hoh04]

3.3.1 Message Channel Types

There are basically two approaches to send messages over a channel [Hoh04]:

e Point-to-Point Channel: Ensures that each message is sent to a single consumer.

e Publish-Subscribe Channel: Broadcasts a message to multiple “interested”
consumers.

Point-to-point channels implement a Remote Procedure Call (RPC) [Tan07] like type of
communication. Messages sent through channels are consumed by only one consumer. If
the channel only has one consumer, the channel ensures that the message is delivered to
this consumer. A channel can also have multiple consumers (e.g. for better scaling). In
this case, the message broker ensures that the message is delivered only to one of the
consumers and consumers do not have to manage coordination themselves. Figure 3.5
illustrates communication with point-to-point channels and multiple consumers. [Hoh04]

consumer
P

producer @)) — consumer

consumer

i

Figure 3.5: General structure of communication via a point-to-point channel

Publish-subscribe channels implement the Publisher-Subscriber Pattern [Bus96], a well-
established pattern for implementing broadcast. This pattern allows subjects (that is,
the source of an event) to decouple from its observers (who are interested in a subject).
Interested observers can independently subscribe to a subject and are notified on events.
With messaging, events can be packaged as messages and the message broker ensures
delivery to the interested subscribers. To do so, the publish-subscribe channel has
one input channel that is split into multiple output channels. When a message is sent
through channel, the publish-subscribe channel delivers copies of the message to all
output channels. Each output channel has a single subscriber that gets the message once.
As only interested consumers are addressed, publish-subscribe channels are an application

3.3. Messaging

level'| implementation of multicast [Eug03]. Figure 3.6 illustrates communication with
publish-subscribe channels. [Hoh04]

consumer

X

producer @)) — consumer

consumer

il

Figure 3.6: General structure of communication via a publish-subscribe channel

In modern message brokers, messages can be annotated by topics'®. A topic is a

categorization of a message. Consumers subscribe not only to a channel but also to
an individual topic. The producer assigns each message with a topic and messages are
delivered to consumers who subscribed to the channel and the respective topic. Topic
subscriptions can also implement wildcard characters. Topics and wildcards are described
based on RabbitMQ in more detail in Subsection 3.3.5. [Hoh04]

The next subsections describe messaging standards and the AMQP, respectively RabbitM @),
a message broker that uses this standard, in detail.

3.3.2 Standards

There are several standards for message brokers and the exchange of messages available.
The most popular standards are:

e Advanced Message Queuing Protocol (AMQP)!°: AMQP is an open network-
ing standard. It is used by many message brokers (e.g. RabbitMQ, ActiveMQ and
the Microsoft Azure Service Bus) and in many critical systems in Telecommuni-
cations, Defense, Manufacturing, Internet and Cloud Computing (e.g. Deutsche
Bérse and NASA)Y.

e Message Queuing Telemetry Protocol (MQTT)': MQTT is a lightweight and
open networking standard which is used by many message brokers (e.g. RabbitMQ
and ActiveMQ)'. It was designed for constrained devices and low-bandwidth,

14 Publish-subscribe is not necessarily implemented with network multicasting (like IP multicast).
Depending on the implementation, messages may be sent to each client independently. Therefore, it
implements multicast only on the application layer.

15 https://www.rabbitmg.com/tutorials/tutorial-five-java.html

(last checked 26.03.2018)

6 |https://www.amgp.org/|(last checked 26.03.2018)

17 https://www.amgp.org/about/examples| (last checked 26.03.2018)

8 https://mgtt.org/| (last checked 26.03.2018)

9 |https://github.com/mgtt/mgtt.github.io/wiki/servers| (last checked 26.03.2018)

29

https://www.rabbitmq.com/tutorials/tutorial-five-java.html
https://www.amqp.org/
https://www.amqp.org/about/examples
https://mqtt.org/
https://github.com/mqtt/mqtt.github.io/wiki/servers

3.

COMMUNICATION PARADIGMS

30

20
21

22
23
24
25

high-latency or unreliable networks and often used for machine-to-machine commu-
nication®’. Based on the resources published by MQTT itself %!, it is mostly used
in the Internet of Things (IoT) and for integration of low level devices.

e Simple Text Oriented Messaging Protocol (STOMP)*%: STOMP is a simple
protocol, similar to HT'TP. Because of its simplicity, clients can also be implemented
with light-weight tools like telnet and web-sockets. It is applied by many message
brokers (e.g. RabbitMQ, ActiveMQ and HornetMQ)?%. There is no information on
projects that use STOMP published by the project itself.

There are also other messaging-like technologies available, which support parts of the
features of messaging. An example is Redis Pub/Sub**, which also implements the
Publisher-Subscriber Pattern but does not guarantee delivery.

For Java EE exists the Java Message Service (JMS) standard®’. This standard generalizes
the access from a Java application to a message broker. Where standards like AMQP
and MQTT allows different message brokers to interact, JMS only provides a general
Java API. The main benefit of a general API is the opportunity to change the message
broker behind the API without changing the code.

Table [3.3| gives and overview over the standards and their support of the previously
described features of messaging:

AMQP MQTT STOMP | Redis
Pub/Sub
Point-to-Point Channels X X
Publish-Subscribe Channels X X X X
Topics X X X X
Wildcards X X X X
Guranteed Delivery X X X

Table 3.3: Supported features of messaging standards

Based on the available information on areas of application and projects respectively
organizations that use individual standards, it is assumed that AMQP suits best for the
use in business I'T systems. Therefore, it is used in the thesis for implementing replication
strategies with web feeds

https://mgtt.org/faq (last checked 26.03.2018)

https://mgtt.org/projects| (last checked 26.03.2018),
https://github.com/mgtt/mgtt.github.io/wiki/things| (last checked 26.03.2018)
https://stomp.github.io/| (last checked 26.03.2018)
https://stomp.github.io/implementations.html (last checked 26.03.2018)
https://redis.io/topics/pubsubl(last checked 26.03.2018)
https://www.Jjcp.org/en/jsr/detail?id=914 (last checked 26.03.2018)

https://mqtt.org/faq
https://mqtt.org/projects
https://github.com/mqtt/mqtt.github.io/wiki/things
https://stomp.github.io/
https://stomp.github.io/implementations.html
https://redis.io/topics/pubsub
https://www.jcp.org/en/jsr/detail?id=914

3.3. Messaging

3.3.3 AMQP and RabbitMQ

The use of AMQP will be described in detail based on RabbitMQ, a popular message
broker that used AMQP as the underlying network protocol for message delivery.

RabbitMQ uses exchanges, bindings and queues to implement channels. An exchange
represents the input of a channel, where messages are sent to. A queue represents the
output of a channel. Queues can also be persistent to provide guaranteed delivery. The
integration of exchanges and queues is implemented by a binding.

Messages in RabbitMQ are equipped with a routing key - representing the topic (sent in
the header of the message). A binding can be assigned with a binding key. Messages
equipped with a particular binding key are delivery to queues that are bonded with the
matching binding key. Binding keys can also be implemented as wildcards. Figure 3.7
illustrates this structure.

1
:
| i e/l —
!
1
!
1
1
!
1

consumer A

type = topic

*.cancel

consumer C

i
I
1
I
I
I
I
|
1
|
|
1
! : 1
producer — ! exchange | — H consumer B
i H I
I
1
I
I
I
1
I
I
1
I
I

Figure 3.7: Example of messaging with RabbitMQ

A message is sent directly from the producer to an exchange. The exchange must be
assigned with the type topic to provide support for topic-based delivery (simple publish-
subscribe and one-to-one channels are supported as well). Consumers are bound to a
queue. Bindings (illustrated as arrows) connect queues and exchanges. Binding keys
(illustrated as bubbles) manage the topic subscription for an individual binding.

To further explain the procedure, imagine the following scenarios based on Figure 3.7:

e When a message with the routing key order.create is sent from the producer,
it is delivered to consumer A (who subscribed exactly this topic) and consumer B
(who subscribed all topics regarding orders).

e When a message with the routing key order.cancel is send from the producer,
it is delivered to consumer B (who subscribed all topics regarding cancellations)
and consumer C (who subscribed all topics regarding orders).

e Messages with any other cancellation would only be send to consumer C (because
he is the only one who is not solely subscribing topics regarding orders).

Advanced topics like error-handling and monitoring are not covered in this survey. A
detailed overview over system designs in these areas can be found in [Hoh04].

31

3.

COMMUNICATION PARADIGMS

32

26
27
28

Several libraries exist for communication with a RabbitMQ message broker and use
messaging in an application. An official Java client is available at the RabbitMQ
homepage?®. This client can be used for AMQP based messaging in general. AMQP can
be used in Ruby with bunny?’, a library that is recommended in the official RabbitMQ
homepage. Libraries for other platforms are either available direct from RabbitMQ (e.g.
for Erlang and .Net) or recommended there (e.g. for Python, PHP, JavaScript and Go).

In principle, these libraries can be used for consuming messages as well. An examination
of exiting libraries showed that they block the current process while listening. Therefore,
the process must be implemented independently from other processes, especially the user
interaction. For example, a Java based implementation could start a separate thread that
listens to the queue. Messaging in Java EE and JMS outsource the communication to
the message broker to the Java EE container that takes care of the listening threads that
are blocked. In Ruby on Rails it is necessary to start an independent job. A widely-used
library to consume message queues in Ruby is Sneakers>®, which implements the process
based on the standardized Active Job interface.

The last two chapters formed the theoretical foundation of this thesis. Based on these
surveys, the next chapter composes concrete replication strategies to implement replication
in an IT system.

https://www.rabbitmg.com/java-client.html (last checked 26.03.2018)
https://github.com/ruby—amgp/bunny (last checked 26.03.2018)
https://github.com/jondot/sneakers| (last checked 26.03.2018)

https://www.rabbitmq.com/java-client.html
https://github.com/ruby-amqp/bunny
https://github.com/jondot/sneakers

CHAPTER

Replication Strategies

This chapter provides a definition of concrete replication strategies for the use in loosely
coupled IT systems. Based on the definition of the aim of this work in Section 1.5 and
the findings in Chapter 2, requirements for the use of replication strategies in this context
can be summarized as followed:

1. The main objective is to improve performance for client-side read operations.
2. Components are loosely coupled.

3. Client-side replicas are read-only. Write operations are performed only in the
server-side data store. Therefore, consistency has to be ensured for client-side
replicas only.

4. Strict consistency is not crucial. It is sufficient to provide eventual consistency.

5. To achieve loose coupling between components, replication is performed on the
application level.

Even though implementations which fulfill these requirements exist and are already used
in existing I'T systems, there is no general catalogue available. Implementations are often
used as parts of a more general architectural style (e.g. Event-Driven Architecture or
Microservices) or specialized local optimizations of individual procedures (e.g. caching
of HTTP requests). It is assumed that previous research focused particularly on the
individual characteristics of technologies used and not on the aspects of replication in
general. Furthermore, replication on the application layer is an applied topic, specific for
a particular use case. As a result, a catalogue of replication strategies has to be composed
in the course of this thesis.

The composition of replication strategies is described in Subsection |4.1. The following
sections describe replication strategies and their concrete implementations in detail.

33

4.

REPLICATION STRATEGIES

34

Replication strategies are examined individually for client-side access and server-side
updates of data items. The examination bases on the following simplified use case with
one server and one client (see also Figure 4.1):

e The server provides data items in a local data store. The data store is accessible
via a REST interface. External components update the server-side data store on
the server-side.

e External components request data items in the server-side data store through the
client. The client provides an interface to do so. Based on the replication strategy,
data is read from the server, a cache or a replica.

e Data items consist of two attributes: data0 and datal. Updates only modify the
attribute data0. Each data item is identified by a unique ID.

request update
@ id data0 | datal @

) 1 XXX yyy
client 5 - 000 server
optiona °

REST

1

1

I

1

1| cache or
1L replica
1

@ @

response response

Figure 4.1: Structure of the use case

4.1 Selection of Replication Strategies

This section provides a selection of replication strategies with a bottom-up approach,
based on the characteristics described in Section 2.1 The use of a top-down approach
based on existing implementations was rejected. Documentation of existing IT systems
hardly focuses on replication and does not cover the topic specifically. Therefore, it is hard
to extract relevant information that can be used as a basis for an analysis. Furthermore,
only few organizations publish insights to their I'T systems, making it even harder to
gather a representative number of high-quality sources.

The following subchapters are based on the individual characteristics discussed in Section
2.1 and examine which options can be used for the requirements described below. Each
chapter builds on the results of the previous chapter. Subsection |4.1.4 presents concrete
replication strategies as composed combinations of fundmental options.

4.1. Selection of Replication Strategies

4.1.1 Change Distribution

Change distribution defines which information is distributed between the server and the
client (see Subsection 2.1.5). To meet the previously defined requirements, changes can
be distributed by invalidation notifications, full state and state difference.

Distribution of changes by sending operations leads to tight coupling and therefore does
not meet the requirements. Clients must be capable of performing operations on their
data autonomously. Therefore, operations must be implemented on the server-side and
on the client-side. Changes of operations must be coordinated between server and client
which leads to tight coupling in development and especially deployment.

4.1.2 Replica Reaction

Replica reaction defines how server-side changes are propagated to the replicas (see
Subsection 2.1.4). Basically, all methods are appropriate but not all combinations. Table
4.1 shows appropriate combinations of replica reaction methods and change distribution
methods determined below. Marked combinations are considered below.

Invalidation Full State State Difference
server-driven X X X
polling on each request | X
periodic polling X X X

Table 4.1: Appropriate combinations of change distribution and replica reaction

The other combinations are not appropriate because:

e The combination of polling on each request and full state leads to the transmission
of an entire data item on each request. This is equivalent to no replication.

e Polling the state difference on each request is as an optimization of the proposed
implementation for Cache Validation. It is discussion at the end of Subsection 4.3.1.

4.1.3 Replica and Cache

It can be distinguished between full replicas that hold all server-side data and caches
that hold only parts of the data (see Subsection |2.1.2). An examination of all combi-
nations showed full replicas are appropriate for propagation with full state and state
differences, caches are appropriate for invalidation notifications. Other combinations are
not considered because:

e Invalidation of caches with notifications leads to a state where the full replica does
not contain all data items. This contradicts the definition in Subsection 2.1.2.

e Propagation of full state or state differences can be used with caching, but is not
efficient. Caches only hold parts of the data. Nevertheless, all updates are sent
over the network. This leads to potentially unnecessary network traffic.

35

4.

REPLICATION STRATEGIES

Tables 4.2 and 4.3 show which combinations determined in Subsection |4.1.2 are suitable

for caches and full replicas.

Invalidation Full State State Difference
server-driven X
polling on each request | X
periodic polling X

Table 4.2: Caches: appropriate combinations of change distribution and replica reaction

Invalidation Full State State Difference
server-driven X X
polling on each request
periodic polling X X

Table 4.3: Full replica: appropriate combinations of change distribution and replica
reaction

4.1.4 Results

Based on the analysis in the last chapters, seven replication strategies are chosen for the
evaluation. Table |4.4 shows these replication strategies and their characteristics.

Name Change Replica PULL / | Cache /
Distribution | Reaction PUSH Full Replica
RS1| Cache Validation | invalidation polling on PULL cache
each request

RS2 | Event-Driven invalidation server-driven | PUSH cache
Cache Invalidation

RS3 | Event-Driven full state server-driven | PUSH full replica
Replication

RS4 | Fvent-Driven state difference | server-driven | PUSH full replica
Delta Replication

RS5 | Poll-Based invalidation periodic PULL cache
Cache Invalidation polling

RS6 | Poll-Based full state periodic PULL full replica
Replication polling

RS7| Poll-Based state difference | periodic PULL full replica
Delta Replication polling

Table 4.4: Replication strategies and their characteristics

In addition, synchronous communication without replication will also be examined (RS0).
This replication strategy is described in the next chapter.

36

4.2. Synchronous Requests

4.2 Synchronous Requests

In a system without caching and replication, the client has to request data from the server
whenever it is needed. Each access on a data item requires a synchronous request to the
server respectively its data store. This approach is often used in IT systems because
it offers integration of a client and a server without any optimization like caches and
replication. To enable this type of integration, the server has to provide an interface to
read data from its data store. Usually the server will also provide interfaces to modify
data for typical CRUD (Create, Read, Update, Delete) operations.

4.2.1 Solution Design

Synchronous communication in modern distributed IT systems is mostly implemented
with RESTful webservices. For the described scenario, a resource /data is used. The
CRUD functionality can be implemented as described in Section [3.1. The resource /data
has to provide at least the methods described in Table 4.5.

URI HTTP Description

method
/data/{id} GET Returns the data item with the id {id}
/data/{id} PUT Replaces the data item with the id {id} with the

representation in the request body
/data/{id} DELETE Deletes the data item with the id {id}
/data POST Inserts a new data item in the data store

Table 4.5: HTTP methods needed for synchronous requests

Communication between the client and the server uses the GET method. Other methods
are used to enable modifications of data only.

4.2.2 RSO0 — No Replication

RS0 - No Replication implements synchronous requests with RESTful webservices,
without a cache or replica. It is used as the baseline for further observations. Figure 4.2
illustrates the structure of the implementation.

client server

]

REST

HTTP client

Figure 4.2: Structure of RS0

37

4. REPLICATION STRATEGIES

The implementation consists of the following components:

o A server-side REST interface to access data items. For communication with the
client, only read access to the resource (with HTTP GET) must be provided.

e A client-side HTTP client library to access the REST resource.

Request

When a data item is requested on the client-side, the client passes the request to the
server. The server reads the data item from its local data store and returns it to the
client. Figure 4.3 illustrates the procedure.

request

U

client server
|
1
! ——
1
S 1) request data s
5]
a
o
N El.
T
! 3) response data
I
1
1
T | I

response

Figure 4.3: Procedure of a request with RS0

Requesting a data item on the client-side leads to the following operations:

1. The client receives a request and fetches the requested data item from the server.
A HTTP GET on the resource /data/{id} is performed.

2. The server reads the data item from its local data store.

3. The server returns the data item to the client.

There are no additional operations necessary on the client-side.

When the server-side data store does not contain the requested data item, the server
responds with an empty message body and the HTTP status code 404 NOT FOUND.
The client has to respond to his request correspondingly.

Update

Data items are updated in the server-side data store. No additional operations are
necessary. Figure 4.4 illustrates the procedure.

38

4.3. Cache Validation

update

U

client server

response

Figure 4.4: Procedure of an update with RSO

4.3 Cache Validation

Cache Validation introduces a client-side cache which contains data items which were
requested before. Data items are validated each time they are read. The validation is
performed by the comparison of the data item (respectively its version) in the client-side
cache and in the server-side data store. Cache Validation is widely used in the internet
because it decreases the required bandwidth in comparison to the use of no replication
and no caching.

4.3.1 Solution Design

RESTful webservices, respectively HT'TP provides functionality to implement Cache

Validation with conditional GET and the HTTP Modified or HI'TP ETag header.
Existing RESTful webservices can easily be extended to support these technologies.

Implementation on the client-side is more expensive because the client needs an additional
cache to store data items.

Conditional GET is an extension of the HTTP GET method on the /data resource

described in Subsection |4.2.1. Other methods of the /data resource (PUT, DELETE,
POST) need no modification to implement this replication strategy.

In practice, the HI'TP ETag header is preferred over the HT'TP Modified header,
because it allows arbitrary validation strings where the HT'TP Modified header only
allows the date of the last modification [Webl10]. It is even possible to use the date of
the last modification with the HT'TP ETag header, making it a more general solution of
the HT'TP Modified header.

The cache can be implemented by any persistence technology. Specialized implementations
offer an advantage when concurrent requests on the same data item occur: a general
solution would validate the data on each request, leading to multiple similar requests to

39

4.

REPLICATION STRATEGIES

40

the server. A specialized implementation can condense the requests, send only a single
request to the server and stress the network respectively the server less. Technologies to
implement caches are not covered by this thesis (see delimitations in Subsection 1.3.2).

Based on the discussion in Section 4.1, Cache Validation represents invalidation of data
on each request. Methods like conditional GET and ETags optimize the process so that
there is no need for a separate request that fetches the new version of a data item. The
process could be optimized further by sending only the state difference of the current
client-side version and the version on the server-side. This optimization is not used in
practice respectively not implemented in the widely used HTTP standard and therefore
not considered in this thesis.

4.3.2 RS1 — Cache Validation

RS1 - Cache Validation implements synchronous requests with validation by ETags and
a client-side cache. It is an extension of RS0. Figure [4.5 illustrates the structure of the
implementation.

client server

]

HTTP

HTTP client
REST

Figure 4.5: Structure of RS1

The implementation consists of the following components:

o A client-side cache

e A server-side REST interface to access data items. For the purpose of replication,
only read access to the resource (with HTTP GET) must be provided.

e A client-side HT'TP client library to access the REST resource.

Request

The processing of client-side requests depends on 1) the existence of the data item in the
cache and when the data item exists in the cache 2) the validity of the data item in the
cache and 3) the existence of the data item in the server-side data store. This leads to
five possible scenarios:

1. The cache does not contain the data item.

2. The cache contains the data item but versions of the data item in the cache and in
the server-side data store differ.

4.3. Cache Validation

3. The cache contains the data item and it has the same version as in the server-side
data store.

4. The cache contains the data item but the server does not. This practically means
that it was deleted from the server-side data store.

5. Neither the cache nor the-server-side data store contain the data item.
These scenarios will be discussed in more detail in the next paragraphs.

Scenario 1: When the cache does not contain a data item, it has to be loaded from the
server. No additional headers must be sent. Figure |4.6| illustrates the procedure.

request
client server
2) request data
ig
g —
N i
I = &
5) insertinto [E e
cache 4) response data
1 ETag: xxx
1
1
I T— T

response

Figure 4.6: Procedure of a request with RS1 in Scenario 1

In this scenario, requesting a data item on the client-side leads to the following operations:

1. The client searches the cache for the data item. The cache does not contain the
data item.

2. The client requests the data item from the server. A HTTP GET on the resource
/data/{id} is performed. No additional HTTP headers are added.

3. The server reads the data item from its local data store.

4. The server returns the data item to the client. A ETag header with the ETag of
the data item is added.

5. The client saves the data item and the ETag in its cache.

Scenario 2: When a requested data item exists in the client-side cache, it is validated
on the server-side. In this scenario, it is assumed that the data item changed since it was
read for the first time and therefore the data item differs in the client-side cache and the

server-side data store. Therefore, the server returns the new version of the data item.

Figure 4.7| illustrates the procedure.

41

4.

REPLICATION STRATEGIES

42

request

server

2) request data >
If-None-Match: xxx
3) read

6) update cache < 4) compare ETags,
| 5) response data

i ETag: yyy
1

_@_T | B

HTTP client
REST

response

Figure 4.7: Procedure of a request with RS1 in Scenario 2

In this scenario, requesting a data item on the client-side leads to the following operations:

1. The client searches the cache for the data item. The cache contains the data item.

2. The client validates the data item at the server. A HTTP GET on the resource
/data/{id} is performed, including the If-None-Match header with the ETag
of the cached data item.

3. The server reads the data item from its local data store.

4. The server compares the ETag in the request with the ETag of his data item. This
may require the calculation of the ETag based on the contents of the data item in
the server-side data store.

5. Because ETags differ, the server returns the new version of the data item to the
client including an ETag header with the ETag of the new version.

6. The client updates the data item and the ETag in its cache.

Scenario 3: When a requested data item exists in the client-side cache, it is validated
on the server-side. In this scenario, it is assumed that the data item in the server-side
data store is equal to the data item in the cache. Therefore, there is no need to transmit
the data item from the server to the client. Figure 4.8 illustrates the procedure.

In this scenario, requesting a data item on the client-side leads to the following operations:

1. The client searches the cache for the data item. The cache contains the data item.

2. The client validates the data item at the server. A HTTP GET on the resource
/data/{id} is performed, including the If-None-Match header with the ETag
of the cached data item.

3. The server reads the data item from its local data store.

4.3. Cache Validation

request

server
2) request data >
If-None-Match: xxx
ig
2 -
< %)
& «
fm———— Ele 4) compare ETags
! 5) response no data
. HTTP 304 - NOT MODIFIED
1
v T |

response

Figure 4.8: Procedure of a request with RS1 in Scenario 3

4. The server compares the ETag in the request with the ETag of his data item. This
may require the calculation of the ETag based on the contents of the data item in
the server-side data store.

5. Because the ETags are the same, the server returns an empty message body and
sets the HT'TP status Code to 304 NOT MODIFIED.

No updates in the cache are necessary.

Scenario 4: When a requested data item exists in the client-side cache, it is validated
on the server-side. In this scenario, it is assumed that the data item was deleted in the
server-side data store. Figure 4.9 illustrates the procedure.

request
client server
2) request data P
If-None-Match: xxx
ig > d
£ =
> a
= o
5) delete from '::: <
cache 4) Response no data
1 HTTP 404 Not Found
I
1
L v T T]

response

Figure 4.9: Procedure of a request with RS1 in Scenario 4

43

4.

REPLICATION STRATEGIES

44

In this scenario, requesting a data item on the client-side leads to the following operations:

1. The client searches the cache for the data item. The cache contains the data item.

2. The client validates the data item at the server. A HTTP GET on the resource
/data/{id} is performed, including the If-None-Match header with the ETag
of the cached data item.

3. The server searches its local data store for the data item. The data store does not
contain the data item.

4. The server returns an empty message body and sets the HI'TP status code of the
response to 404 NOT FOUND.

5. The client deletes the data item from its cache and returns a corresponding response.

Scenario 5: In the case that the client requests a data item which does neither exist in
the client-side cache nor in the server-side data store, the process is similar to Scenario 4.
The client requests the data item from the server, gets a response with 404 NOT FOUND
and returns a corresponding response. The client accesses the cache once but no other
access of the cache is performed.

Update

The process on updates is the same as in Subsection [4.2.2l

4.4 Event-Driven Replication Strategies

FEvent-Driven replication strategies comprise replication strategies where the server
actively notifies the client (by push) when changes in the server-side data store take
place. Based on the type of change distribution (see Subsection |4.1.4), these replication
strategies can be distinguished into:

e Event-Driven Cache Invalidation (RS2): The server sends notifications to the
client to invalidate a client-side cache.

e Event-Driven Replication (RS3): The server sends the full state of a new data
item version to the client. The client updates its full replica to the new version
independently.

e Event-Driven Delta Replication (RS4): The server sends the state difference
between the old and the new version of a data item to the client. The client updates
its full replica to the new version independently.

These replication strategies can be implemented by an event-based approach, leading to a
system similar to Event-Driven Architectures (see Subsection |2.3.2). In an Event-Driven
Architecture, replication strategies RS3 and RS4 would implement Event-Carried State
Transfer (see Subsection 2.3.2).

4.4. FEvent-Driven Replication Strategies

4.4.1 Solution Design

The Event-Driven replication strategies presented in this work are implemented with
publish-subscribe based messaging. Publish-subscribe based messaging was chosen over
other technologies because it is mainly used for push-based multicast communication
in the highly related area of Event-Driven Systems. Messaging standards and message
brokers have to meet the following requirements to implement these replication strategies:

o Publish-Subscribe: The publish-subscribe pattern implements multicast for messag-
ing (see Subsection |3.3.1).

e Guaranteed delivery: Consistency of a cache or replica can only be achieved when
every change in the server-side data store is propagated to the clients. Guaranteed
delivery ensures that every message is delivered to the clients (see Subsection 3.5).

This thesis proposes RabbitMQ and AMQP because of their wide and proven usage
(see Subsection |3.5.2). The presented implementation uses topic-based publish-subscribe
channels (see Subsection 3.5.1). Figure |4.10 illustrates the general structure.

server client

i :,_____‘_V_‘f?_i_t_‘?i’_‘f____ @

1
|
1
1
1
|
1
i
1
exchange ;-—»q -4 -~
1
1
|
1
1
|
1
1
|
1

[V E—

AMQP client
AMQP client

Figure 4.10: Event-Driven replication with RabbitMQ

RabbitMQ provides a topic-based publish-subscribe exchange. The server sends messages
with an AMQP client to the RabbitM(Q message broker whenever data items in the data
store are changed. A client can subscribe to the queue and get messages and notifications
on changes in the server-side data store. The queue is implemented as a persistent queue
to guarantee message delivery.

Routing keys are used to provide support for different replication events over a single
queue. Table [4.6| gives describes routing keys that can be used for replication.

routing key event

data.insert data item was created
data.modification | data item was modified
data.deletion data item was deleted

Table 4.6: Routing keys for Event-Driven replication

The client in Figure 4.10 subscribed all events for changes of the data entity type. For
the use case of replication, three routing keys and the binding key data. « are sufficient.

45

4.

REPLICATION STRATEGIES

46

Routing keys and binding keys can be extended to implement complex Event-Driven
Systems. Because the focus of this work is on replication, these options are not considered.

4.4.2 RS2 — Event-Driven Cache Invalidation

RS2 - Event-Driven Cache Invalidation uses a client-side cache that holds data items that
were requested before. Data items in the cache are invalidated (and thus deleted from
the cache) when data items on the server-side data store are updated or deleted. Newly
inserted data items are loaded on the first access. Cache Invalidation is implemented
asynchronously by push notifications over a publish-subscribe channel as described in
Subsection [4.4.1. Figure 4.11]illustrates the structure of the implementation.

client server

€
D 5 i -

cache o e
= message broker
2]]
3 AMQP K
- 02
S >
< <

. — |

Figure 4.11: Structure of RS2

The implementation consists of the following components:

o A client-side cache

e A server-side REST interface to access data items. For the purpose of replication,
only read access to the resource (with HTTP GET) must be provided.

e A client-side HTTP client library to access the REST resource.
e An AMQP message broker which provides a persisted publish-subscribe channel.

e Client Libraries for AMQP to access the message broker on client and server.

Request

The process of client-side requests depends on the existence of the data item in the cache.
Therefore, there are two possible scenarios:

1. The cache does not contain the data item and has to request it from the server.

2. The cache contains the data item and it can be loaded directly from the cache.

These scenarios will be discussed in more detail in the next paragraphs. Scenarios where
the server-side-data store does not contain the data item follow the same process as
Scenario 5 in Subsection 4.3.2.

Scenario 1: When the data item does not exist in the cache, it has to be loaded from
the server via the REST interface. Figure 4.12]illustrates the procedure.

4.4. FEvent-Driven Replication Strategies

request

server

2) request data
- 3) read
f=s
g2 -
N i
R = &
5) insertinto [k e
cache 4) response data
|
1
1
I T T

response

Figure 4.12: Procedure of a request with RS2 in Scenario 1
In this scenario, requesting a data item on the client-side leads to the following operations:
1. The client searches the cache for the data item. The cache does not contain the

data item.

2. The client requests the data item from the server. A HTTP GET on the resource
/data/{id} is performed. No additional HTTP headers are added.

3. The server reads the data item from its local data store.
4. The server returns the data item to the client.

5. The client saves the data item in its cache.

Scenario 2: When the data item exists in the cache it is directly loaded. There are no
additional operations necessary. Figure 4.13|illustrates the procedure.

request

U

client server

read
cache

response

Figure 4.13: Procedure of a request with RS2 in Scenario 2

47

4.

REPLICATION STRATEGIES

48

Update

After an update is executed in the server-side data store, the server sends a notification
to the clients to invalidate the data item in their caches. Notifications are sent on update
and delete operations. There is no need to notify a client on an insert, because the
client-side cache does not hold the data item and therefore nothing has to be invalidated.
Insert operations are only performed in the server-side data store without any other
operations needed. Routing keys can be used but are not crucial: data items are removed
from the cache on updates as they are on deletions. Figure |4.14] illustrates the procedure
of an update of a data item.

update

U

client server

message broker

2) send
notification |

J4

3) invalidate data
item in cache

response

Figure 4.14: Procedure of an update with RS2

Updating a data item on the server-side leads to the following operations:

1. The server updates the data item in its local data store.

2. The server sends a notification to the publish-subscribe channel on the message
broker with the topic data.modification and the ID of the modified data item.
The message broker takes care of the delivery and the server finishes the response.

3. The client asynchronously receives the messages and invalidates the data item in
its cache. To do so, the client removes the data item from the cache. When the
cache does not contain the data item, no operations are performed.

4.4.3 RS3 — Event-Driven Replication

RS3 - Fvent-Driven Replication uses a client-side replica that holds all data items of
the server-side data store. Changes on the server-side are propagated asynchronously by
push notifications over a topic-based publish-subscribe channel. Notifications include the
whole content of the data item. The client-side replica is initially loaded by a manual
data import. Figure 4.15 illustrates the structure of the implementation.

4.4. FEvent-Driven Replication Strategies

client server

initial data import
replica | [€° """ TTTTTTTTTTTT T TT oI T T T T
message broker

AMQP

Figure 4.15: Structure of RS3

The implementation consists of the following components:

e A client-side replica
e An AMQP message broker which provides a persistent publish-subscribe channel.

e Client Libraries for AMQP to access the message broker on client and server.

RS3 requires an initial, one-time data import. Replication in RS3 only notifies clients
about changes. Notification does not start until a client is put into operation and therefore
changes before this point are not visible to the client. To establish a full replica of the
server-side data store, the client-side replica needs an initial set-up. It is assumed that
the set-up is done as a manual data import with methods on the persistence layer (like
export / import of a database dump). Methods to perform the data import are not part
of this thesis (see Delimitations in Subsection 1.3.2).

Request

The client-side full replica contains all data items. When a data item is requested on the
client-side, it is directly read from the replica. Figure 4.16|illustrates the procedure.

request

o

client server

read
replica

1
1
1
1
1
1
1
1
:

A 4

L

response

Figure 4.16: Procedure of a request with RS3

49

4.

REPLICATION STRATEGIES

50

Update

After an update was executed in the server-side data store, the server notifies clients by
sending a message to the publish-subscribe channel. The client independently updates
its full replica, based on the message. The routing key of the message provides the
information if a data item has to be inserted, updated or deleted. All messages include
the ID of the data item. Insert and update operations also include the full state of the
data item (in the assumed scenario data0 and datal). Delete operations do not contain
any other information than the ID. Figure 4.17 illustrates the procedure of the update of
a data item.

update
client { server
"id": 1
"data@": "abc",
-—— dataLs "y -

replica

3) update data
itemin replica

message broker

2) send
full state

response

Figure 4.17: Procedure of an update with RS3

Updating a data item on the server-side leads to the following operations:

1. The server updates the data item in its local data store.

2. The server sends a notification to the publish-subscribe channel on the message
broker with the topic data.modification. The message contains the ID and
the full state of the new version of the data item, encoded in JSON. The message
broker takes care of the delivery and the server finishes the response.

3. The client asynchronously receives the message and updates the data item in the
replica with the contents of the message.

4.4.4 RS4 — Event-Driven Delta Replication

RS4 - Event-Driven Delta Replication uses a client-side replica that holds all data items
of the server-side data store. Changes on the server-side are propagated asynchronously
by push notifications over a topic-based publish-subscribe channel. Notifications include
only the state difference (e.g. delta of the old version to the new version). The client-side
replica is initially loaded by a manual data import operation (see Subsection 4.4.5).

The structure is the same as for RS3, described in Subsection|.4.5. RS4 is an optimization
of RS3 to reduce bandwidth consumption. Because only state differences and not the

4.4. FEvent-Driven Replication Strategies

whole state of a data item have to be transmitted, message size decreases and so does
bandwidth consumption.

Request

The client-side full replica contains all data items. When a data item is requested on the
client-side, it is read from the replica. The process is the same as in Subsection |4.4.5.

Update

After an update was executed in the server-side data store, the server notifies the clients
by sending a message to the publish-subscribe channel. The client independently updates
its full replica, based on the message. The routing key of the message provides the
information if a data item has to be inserted, updated or deleted. All messages include
the ID of the data item. Insert operations also include the full state of the data item
(as in RS3). Update operations only include the changed data (in the assumed scenario
data0). Delete operations do not contain any other information than the ID. Figure
4.18 illustrates the procedure of the update of a data item.

update
client server
{
"id: 1,
"data@": “abc" D

replica

3) update data
item in replica

message broker

2) send state
difference

L

response

Figure 4.18: Procedure of an update with RS4

Updating a data item on the server-side leads to the following operations:

1. The server updates the data item in its local data store.

2. The server sends a notification to the publish-subscribe channel on the message
broker with the topic data.modification. The message contains the ID and
the delta of the old version to the new version of the data item (in the assumed
scenario data0), encoded in JSON. The message broker takes care of the delivery
and the server finishes the response.

3. The client asynchronously receives the messages and updates the data item in the
replica according to the delta in the message.

51

4.

REPLICATION STRATEGIES

52

4.5 Poll-Based Replication Stratgies

Poll-Based replication strategies comprise replication strategies where the client actively
requests the server to be notified about changes in the data store (by pull). Responsibility
for consistency of the cache is therefore solely on the client-side.

A simple implementation of polling is the extraction of the whole server-side data store
and the import of all data on the client-side. An example of this approach is the File
Transfer integration pattern [Hoh04], in which the server provides dumps of its data
store on the file systems. Clients read the dump and import it into their own data
store. This approach can also be implemented with direct communication (like RESTful
webservices), in which the client would request all data directly from the server. [HohO4]
stated that it requires a lot of effort to export and import data. Therefore, these tasks are
usually performed infrequently (e.g. during the night or on a weekly basis) which leads
to long times of inconsistency. Better consistency can be achieved with an Event-Driven
approach.

An Event-Driven Architecture can also be used for Poll-Based replication. To do so, the
server files each change as an event in a repository (e.g. as a file on a file system, a row
in a database or as an entry in a web feed). This repository must be accessible to clients.
Clients regularly read the repository for new events and process them by actualizing
their replicas or caches. Replication therefore needs less effort: The server has to file a
single event for each change and the client has to import only modifications and not all
data items. As a result, replication can be performed more often which leads to better
consistency.

Based on the type of change distribution (see Subsection 4.1.4), Poll-Based replication
strategies can be distinguished into:

1. Poll-Based Cache Invalidation (RS5): The server files notifications on every
change in an accessible repository. The client regularly reads the repository and
processes events to invalidate its cache.

2. Poll-Based Replication (RS6): The server files the full state of the new version
of the data item in an accessible repository. The client regularly reads the repository
and processes events to update its replica.

3. Poll-Based Delta Replication (RS7): The server files state differences be-
tween the old and the new version of a data item in an accessible repository. The
client regularly reads the repository and processes events to update its replica.

With the Event-Driven approach as described above, replication strategies RS6 and RS7
implement Event-Carried State Transfer (see Subsection 2.53.2).

4.5.1 Solution Design

The implementation used in this thesis bases on the Event-Driven replication approach
described in [Web10Q]. This approach uses a linked list of Atom web feeds.

4.5. Poll-Based Replication Stratgies

The basic element is a working feed that includes all events between the present moment
and a cutoff point in the past. Archive feeds contain all events that happened before the
cutoff point. Every event is written to the working feed. The working feed is regularly
archived and a new working feed is created. The archived working feed gets immutable
at that point. In addition to these feeds, there is the “feed of recent events”. It contains
the same events as the working feed and is always up-to-date. When a working feed is
archived, the recent feed shows the contents of the new working feed.

The solution in [Web10] groups feeds and events by their date of occurrence. The working
feed contains today’s events, the archive feeds contain events of individual days in the
past. For the implementation in this thesis, a more general approach was chosen which

is independent of the date of occurrence: Every feed has a defined length of n entries.

When the working feed has reached the maximum size, it is archived.

Feeds are linked using hypermedia controls, concretely with the Atom <1ink> element.

Its rel attribute defines the link relation and semantic context for the link. The relations

prev—archive and next-archive are used to implement linking between web feeds.

Figure |4.19 shows the structure and linking of feeds. It includes only linking information
and no other content or meta-information.

self: /events/recent self: /events/3
via: /events/3
prev-archive: /events/2
prev-archive: /events/2
recent working
next-archive prev-archive

self: /events/2
prev-archive

next-archive: /events/3
prev-archive: /events/1

archive

next-archive prev-archive

self: /events/1

next-archive: /events/2

archive

Figure 4.19: Structure of linked web feeds

Clients always access the recent feed. Feeds are generally ordered descending by the
time an event occurred. The client reads the contents of the feed until it reaches an
event that has already been processed before. Because every entry in a feed has a unique
ID, comparison of events is easy to establish. When the client finds an event it has
processed before, it stops reading and processes all events in a reverse order (the oldest
first). When the client processed none of the events in a feed before, it has to read the
previous archive feed and searches it for unprocessed events as well. The same procedure

53

4. REPLICATION STRATEGIES

applies to the archive feeds: if the client processed none of the events before, it has to
read the previous archive feed. Events are processed at the very end. The oldest event of
all feeds (including the recent feed and all read archive feeds) is processed first.

4.5.2 RS5 — Poll-Based Cache Invalidation

RS5 - Poll-Based Cache Invalidation uses a client-side cache to hold data items that
were requested before. The server files an event in the web feed for each change of a
data item. Clients read the web feed in intervals and invalidate data items based on the
events in the web feed. The client-side cache is therefore updated asynchronously. Newly
inserted data items are loaded on the first access on the client-side. Modified data items
respectively their IDs are written to a web feed that is polled by clients. Figure [4.20
illustrates the structure of the implementation.

client server
o |B
M~ |2 HTTP =
cache o gl
o
E
— |z
@ [}
= c
8 HTTP
2 o3| | WebFeed
E a
sync job S =
- T
I — T 00 |

Figure 4.20: Structure of RS5

The implementation consists of the following components:

A client-side cache

A server-side REST interface to access data items. For the purpose of replication,
only read access to the resource (with HTTP GET) must be provided.

A client-side HTTP client library to access the REST resource.
A server-side web feed, provided by a HTTP server.

A client-side Atom reader to request the Atom feed over HTTP and parse it.

A client-side synchronization job to update the cache. The job runs the synchro-
nization process in intervals.

Request

The process is the same as in Subsection |4.4.2.

Update

After an update was executed in the server-side data store, the server adds a new entry
to the web feed. Figure 4.21]illustrates the procedure of an update of a data item.

54

4.5. Poll-Based Replication Stratgies

update

U

client server

2) Insert
entry into
Web Feed

response

Figure 4.21: Procedure of an update with RS5

The web feed entry contains the ID of the data item that has been updated or deleted.
The following listing shows a web feed containing a single event of an update operation
in the server-side data store.

<?xml version="1.0" encoding="UTF-8"7?>
<feed xmlns="http://www.w3.0rg/2005/Atom">
<id>http://www.application.com/events</id>
<title>events</title>
<updated>2018-01-01T10:00:00z2</updated>
<link rel="self" href="/events" />
<entry>
<id>events/1</id>
<updated>2018-01-01T10:00:00Z</updated>
<author>
<name>user</name>
</author>
<link rel="self" href="/events/1" />
<link rel="related" href="/data/10" />
<category term="data" />
<category term="update" />
<content type="application/xml">
<invalidation>
<id>10</id>
</invalidation>
</content>
</entry>
</feed>

55

4.

REPLICATION STRATEGIES

56

4.5.3 RS6 — Poll-Based Replication

RS6 - Poll-Based Replication uses a client-side replica that holds all data items of the
server-side data store. The server files the new state of data items (after the update)
as events to the web feed. Clients read the web feed in intervals and update their
replicas based on the events in the web feed. The client-side replica is therefore updated
asynchronously. Figure 4.22]illustrates the structure of the implementation.

client server

Web Feed

Y
(—]

replica

N~

HTTP

HTTP server

sync job

Atom reader

Figure 4.22: Structure of RS6
The implementation consists of the following components:

e A client-side replica
e A server-side web feed, provided by a HTTP server.
e A client-side Atom reader to request the Atom feed over HTTP and parse it.

e A client-side synchronization job to update the full replica. The job runs the
synchronization process in intervals.

Provided that events are not deleted after time, Poll-Based Replication can be used
without a manual initial data import. Each operation in the data store is filed as an
event. The current state of the data store can therefore be merged as the results of all
events. To establish the current state of the data store, the client needs to process all
events from the start on.

Request

The client-side full replica contains all data items. When a data item is requested on the
client-side, it is read from the replica. The process is the same as in Subsection |4.4.5.

Update
The process of an update in the server-side data store is illustrated in Subsection 4.5.2.

Each web feed entry includes the ID of the data item. Entries of insert and update
operations also include the full state of the data item (in the assumed scenario dataO0
and datal). Delete operations do not contain any other information than the ID. The
following listing shows a web feed containing a single event of an update operation in the
server-side data store.

4.5. Poll-Based Replication Stratgies

<?xml version="1.0" encoding="UTF-8"7?>
<feed xmlns="http://www.w3.0rg/2005/Atom">
<id>http://www.application.com/events</id>
<title>events</title>
<updated>2018-01-01T10:00:00Z</updated>
<link rel="self" href="/events" />
<entry>
<id>»events/2</id>
<updated>2018-01-01T10:00:00Z</updated>
<author>
<name>user</name>
</author>
<link rel="self" href="/events/2" />
<link rel="related" href="/data/10" />
<category term="data" />
<category term="update" />
<content type="application/xml">
<data>
<id>10</id>
<dataO>abc</data0>
<datal>xyz</datal>
</invalidation>
</data>
</entry>
</feed>

4.5.4 RST — Poll-Based Delta Replication

RS7 - Poll-Based Delta Replication uses a client-side replica that holds all data items of
the server-side data store. The server files state differences (e.g. delta of the old version
to the new version) as events to the web feed. Clients read the web feed in intervals
and update their replicas based on the events in the web feed. Client-side replica are
therefore updated asynchronously. The structure is the same as for RS6, described in
Subsection 4.5.5.

RS7 is an optimization of RS6 to reduce bandwidth consumption. Because only state
differences and not the whole state of a data item have to be transmitted, message size
decreases and so does bandwidth consumption.

Request

The client-side full replica contains all data items. When a data item is requested on the
client-side, it is read from the replica. The process is the same as in Subsection |4.4.5.

o7

4.

REPLICATION STRATEGIES

58

Update
The process of an update in the server-side data store is illustrated in Subsection |4.5.2.

Each web feed entry includes the ID of the data item. Insert operations also include the
full state of the data item (as in RS6). Update operations only include the changed data
(in the assumed scenario data0). Delete operations do not contain any other information
than the ID. The following listing shows a web feed containing a single event of an update
operation in the server-side data store.

<?xml version="1.0" encoding="UTF-8"7?>
<feed xmlns="http://www.w3.0rg/2005/Atom">
<id>http://www.application.com/events</id>
<title>events</title>
<updated>2018-01-01T10:00:00Z</updated>
<link rel="self" href="/events" />
<entry>
<id>events/2</id>
<updated>2018-01-01T10:00:00Z</updated>
<author>
<name>user</name>
</author>
<link rel="self" href="/events/2" />
<link rel="related" href="/data/10" />
<category term="data" />
<category term="update" />
<content type="application/xml">
<delta>
<id>10</id>
<data0O>abc</data0>
</delta>
</content>
</entry>
</feed>

4.6 Summary

Table |4.7 summarizes the described replication strategies.

The next chapter investigates the presented replication strategies and their use in IT
systems in more detail by examining qualitative and quantitative indicators of individual
replication strategies.

4.6. Summary

Name

Description

RS0

No Replication

Clients directly and synchronously request data items from
the server. No replicas or caches are used.

RS1

Cache Validation

Clients directly and synchronously request data items from
the server. Requested data items are stored in a client-side
cache which is validated with conditional get and HTTP
ETags.

RS2

Fuvent-Driven
Cache Invalidation

Clients directly and synchronously request data items from
the server. Requested data items are stored in a client-side
cache which is invalidated asynchronously by the server by
sending push notifications over a publish-subscribe messaging
channel.

RS3

FEvent-Driven
Replication

Clients use a full replica of the server-side data store. Changes
on the server-side are propagated asynchronously by push
notifications over a publish-subscribe messaging channel. No-
tifications include the full state of the new version of a data
item.

RS4

FEvent-Driven
Delta Replication

Clients use a full replica of the server-side data store. Changes
on the server-side are propagated asynchronously by push
notifications over a publish-subscribe messaging channel. No-
tifications include state differences (e.g. delta of the old
version to the new version).

RS5

Poll-Based
Cache Invalidation

Clients directly and synchronously request data items from
the server. Requested data items are stored in a client-side
cache. The server files data items which have changed as
events to a web feed. Clients read the web feed in intervals
and invalidate data items in their caches based on the events
in the web feed.

RS6

Poll-Based
Replication

Clients use a full replica of the server-side data store. The
server files the full states of the new versions of data items
as an events to a web feed. Clients read the web feed in
intervals and update their full replicas based on the events
in the web feed.

RS7

Poll-Based
Delta Replication

Clients use a full replica of the server-side data store. The
server files state differences (e.g. delta of the old version to
the new version) as events to a web feed. Clients read the
web feed in intervals and update their full replicas based on
the events in the web feed.

Table 4.7: Concrete implementations of the replication strategies

59

CHAPTER

Analytical Evaluation

This chapter provides an analytical evaluation of the replication strategies presented in
Chapter|4. The evaluation bases on qualitative and quantitative indicators. It uses a
simple scale to grade replication strategies related to the indicators. The scale uses the
grades ++, +, -, -- where ++ represents the best grading possible while -- represents the
worst. Empty grading represents a neutral grade between + and -.

5.1 Qualitative Indicators

Qualitative indicators are chosen based on the characteristics of the product quality’
model in [ISO-25010] "Systems and software engineering — Systems and software Quality
Requirements and Evaluation (SQuaRE) — System and software quality models.” These
characteristics “relate to static properties of software and dynamic properties of the
computer system.” [[SO-25010] distinguishes the following eight characteristics:

Functional suitability
Performance efficiency
Compatibility
Usability

Reliability

Security
Maintainability
Portability

NSO WD

Functional suitability und usability are not considered in the analysis of qualitative
indicators, because this thesis provides a general examination, independent of a particular

! The norm is chosen because it describes important properties of software systems. The occurrence of

“quality” in its name is a coincidence and does not relate to qualitative indicators.

61

d.

ANALYTICAL EVALUATION

62

use case and its functionality (which excludes functional suitability) and replication
can be used even in systems without a user interface (which excludes usability). The
following sections examine how replication strategies perform related to the six remaining
characteristics of [ISO-25010].

5.1.1 Performance efficiency

[ISO-25010] defines Performance Efficiency as the “performance relative to the amount
of resources used under stated conditions”. It further defines three sub-characteristics:

e Time Behavior: The efficiency related towards response and processing time.
e Resource Utilization: The efficiency towards the amount of resource usage.

e Capacity: The maximum limits of the system.

The next paragraphs examine how replication strategies perform related to the sub-
characteristics.

Resource Initialization

The examination on resource utilization is based on the following questions?:
e How are client-side read operations (requests) processed?
e How are server-side write operations (updates) processed?

e On which places is data stored and how much data is stored?

Requests require operations on the client-side and in some replication strategies on the
server-side as well. Client-side processes can be distinguished between simple redirections
to the server (Redirect - R) and client-side read operations in the cache or full replica
(Client Read - CR). With some replication strategies, the client has to request data from
the server. It can be distinguished between cases in which the server receives no request,
cases in which the server receives a partial request when a data item was not found in
the client-side cache (Partially Server Read - PSR) and cases in which the server receives
a request on every client request (Server Read - SR). Based on the description in Chapter
4, Table [5.1 shows which operations are performed on client and server.

RSO | RS1 | RS2 | RS3 | RS4 | RS5 | RS6 | RS7

client R CR CR CR CR CR CR CR

server SR SR PSR PSR

Table 5.1: Description of operations performed on client-side requests on client and server

The utilization on client and server was estimated under the assumption that R < CR
and PSR < SR. The results are presented in Table [5.2

Additionally, the network utilization must be considered. To do so, bandwidth consumption is examined
during the analysis of quantitative indicators in Section |5.2.

5.1. Qualitative Indicators

RSO | RS1 | RS2 | RS3 | RS4 | RS5 | RS6 | RS7

client - — - - — — - -

server - - - -

Table 5.2: Grading of Resource Utilization of client-side requests

Table 5.2 shows that with the use of full replicas (RS3, RS4, RS6, RS7) only the client is
utilized. In environments where many clients use the same data, replication with full

replicas therefore may decrease load on the server and distributes it over the clients.

Cache Validation (RS2, RS4) has the same benefit as long as data items exist in the
cache. RS0 and RS1 utilize the server on every request and therefore the server may
become a bottleneck when data is requested very frequently.

Updates are performed on the server. Some replication strategies perform additional
operations to notify clients about changes. Operations for notification are performed
on the server-side, the message broker and the client. The server updates its local data
store (Update - U) and optionally writes data into its local web feed (Web feed - W) or
sends a message to the message broker (Message - M). When sending a message, the
message broker has to process and deliver the message. In those cases, in which the client
is notified, it has to process the received notification. Based on the replication strategy,
the client has to invalidate a data item in the cache (Invalidation - I) or to update the
full replica (Update - U). Based on the description in Chapter 4, Table 5.3 shows which
operations are performed on the client, server and message broker.

RSO | RS1 | RS2 | RS3 | RS4 | RS5 | RS6 | RS7
client 1 U U I U U
server U U U+M | U+M | U+M | U+W | U+W | U+W
message broker M M M

Table 5.3: Description of operations performed on server-side updates on client and server

Under the assumption that I < U and M < W the following estimation of utilization of
the client, server and message broker was made.

RSO | RS1 | RS2 | RS3 | RS4 | RS5 | RS6 | RS7

client - - - - _ —

server - - - - -- -

message broker - - -

Table 5.4: Grading of Resource Utilization of server-side updates

Table 5.4 shows that RSO and RS1 do not include any operations on the client and
therefore do not utilize the client. Notifications lead to additional operations and therefore
increase load on the client and server.

63

d.

ANALYTICAL EVALUATION

64

For the calculation of storage usage, the following variables are used:

n as the number of data items

m as the number of changes

s as the mean size of a data item

t as the mean size of the delta of a change
7 as the mean size of the ID of a data item

Table 5.5 shows the storage usage of individual replication strategies. The client can
store no data items (RS0), parts of the data items in a non-complete cache (RS1, RS2,
RS5) or all data items in a full replica (RS3, RS4, RS6, RS7). The server saves all data
items in its data store and saves events, containing the full state (RS6), state differences
(RS7) or the ID (RS5) in a web feed.

RSO | RS1 | RS2 | RS3 | RS4 | RS5 | RS6 | RS7
client 0 <n*s | <n*s n*s n*s <n*s n*s n*s
server
- for data items n*s n*s n*s n*s n*s n*s n*s n*s
- for changes m*i m*s m*t

Table 5.5: Calculation of storage utilized on client and server

Under the assumption that n < m and ¢ < t < s the following estimation of storage
utilization on client and server was made.

RSO | RS1 | RS2 | RS3 | RS4 | RS5 | RS6 | RS7

client - - - - - _ _

server - - -

Table 5.6: Grading of Resource Utilization of storage on client and server

Capacity

The limits of the system where not examined. It is assumed that business logic and
processes on the presentation layer mainly utilize a system. Therefore, capacity planning
mainly focuses on these areas and replication plays only a subordinate role in this context.

5.1.2 Compatibility

[ISO-25010] defines Compatibility as the degree to which a system can share an environ-
ment with other systems and exchange information with them. It further defines two
sub-characteristics:

e Co-Existence: Indicates if a system affects other systems when they share the
same environment.

e Interoperability: Indicates the degree to which a system can exchange information
with other systems.

5.1. Qualitative Indicators

Co-Existence

Replication strategies described in this thesis can be implemented with standard software
and libraries. Chapter |4| described the technologies used. It is assumed that these
software and libraries provide a high degree of co-existence. Replication only impacts the
utilization of shared resources which was described in the course of the examination of
Resource Utilization in Subsection |5.1.1.

Interoperability

It is assumed that interoperability can be ensured by the use of public standards. Repli-
cation strategies described in this thesis can be implemented based on such standards.
Direct communication can be fully implemented by the public and widely used HTTP
Standard, based on the de-facto standard of RESTful webservices. Standards for messag-
ing and web feeds are described in Chapter|5. The concrete implementations presented
in Chapter|4 build on public standards. Interoperability should therefore be provided.

5.1.3 Reliability

[ISO-25010] defines Reliability as the ability of a system to perform its functionality
“under specified conditions for a specified period of time”. It further defines four sub-
characteristics:

e Maturity: Indicates how a system “meets needs for reliability under normal
operations”.

e Availability: Indicates to which degree a system is available.

e Fault Tolerance: Indicates how a system behaves in the case of hardware or
software faults.

e Recoverability: Indicates if a system recovers to a valid state after a fault is fixed.

The next paragraphs examine how replication strategies perform related to the sub-
characteristics.

Maturity

It is assumed that maturity of a system can be determined by the complexity of the
implementation of the system and the maturity of technologies and libraries used. Based
on the description of replication strategies in Chapter |4 the implementation of replication
processes may consist of a client-side storage (cache or full replica), libraries to establish
different types of communication (with RESTful webservices, messaging or web feeds)
and the replication process itself.

Replicas can be implemented with standard persistence technologies such as relational
databases. There exist widely used and mature technologies in this area.

65

d.

ANALYTICAL EVALUATION

66

3

Caches can be implemented with any persistence technology including relational databases
or in-memory storage systems (e.g. HashMaps in Java). Furthermore, there are spe-
cialized cache solutions available that offer additional optimizations (e.g. to minimize
requests to the server when a single data item is requested concurrently or to remove
unused data items independently). For both cases, there exist widely used and mature
technologies.

Communication between client and server with HI'TP and REST can be established
with standard functionalities of modern platforms, including advanced caching methods
like ETags (see Section 3.1).

Software in the area of messaging, can be distinguished in message brokers and libraries
which enable the use of messaging inside an application. There exist mature message
brokers that are widely used. Popular examples are RabbitMQ and ActiveM Q. These
message brokers support different messaging protocols to communicate with other message
brokers and clients. In the course of this thesis, AMQP was used a messaging protocol.
Subsection|3.3.2 gives an overview of libraries that can be used for AMQP based messaging
inside an application. These libraries are not part of the standard functionalities of
modern platforms but are mostly provided by the vendors of the message brokers. Because
of their origin and their widespread use, these libraries may also be considered mature.

This thesis focuses on Atom-based web feeds and therefore this examination also focuses
on this standard. Subsection|3.2.2 gives an overview of libraries that can be used to create
and read Atom feeds in Java and Ruby. The survey concludes that there is just a single
mature and maintained library available for Java. Ruby comes with an insufficiently
documented RSS library in the standard extent. Other libraries are either retired or just
private projects, not suitable for business projects. It is assumed that there are hardly
any mature libraries available for other platforms as well.

The libraries presented in Subsection |3.2.2 provide basic functionality to create and read
web feeds but do not implement functionality to read new events so that they can be
processed like the Event-Driven replication process described in [Web10]. A library that
implements this process is available for Java®. This library is just a private project and
was hardly maintained over the last years. To the knowledge of the author, other libraries
are not available. The process has therefore to be implemented independently when RS5,
RS6 or RS7 are used in an IT system. The process was implemented for Java and Ruby
for the use in the simulation environment. It showed that an independent implementation
is complex and error-prone.

There are only few mature libraries available for writing and reading of Atom feeds and
no mature and maintained libraries that implement an actualization process like the
process described by [Webl10]. It is assumed that companies which use web feed inside
their systems build and maintain proprietary solutions that are kept inside the company.
An online survey based on publicly available information gave no further results. As

https://github.com/ICT4H/atomfeed (last checked 26.03.2018)

https://github.com/ICT4H/atomfeed

5.1. Qualitative Indicators

an example, the German online retailer OTTO uses a AtomPub-based Event-Driven
Architecture [Stel5]. OTTO provides several public repositories® and lots of information
on their architecture and tooling, but no information on their usage of Atom or AtomPub
was found. It can be concluded that libraries for Atom and Atom-based replication
cannot be considered mature.

Replication is implemented by server-side processes for notification (filing changes into
a web feed or sending messages) and client-side processes to actualize the cache or replica.

Server-side processes have to be embedded into the existing application layer and
cannot be completely provided by standard functionality. The libraries described below
offer technical functionality to support these processes. From the view of complexity,
there are hardly any differences in the implementations of individual replication strategies.

Technical functionality of client-side processes is also covered for the most part by the
libraries described below. Replication logic itself mainly consists of simple insert, update
and delete operations. Replication strategies which distribute only state differences (RS4,
RS7) need additional but simple programming code to update the state of an object.
Therefore, the use of these replication strategies is more complex.

The examination results in the following grading:

RSO | RS1 | RS2 | RS3 | RS4 | RS5 | RS6 | RS7
Maturity + + + + - - - -

Table 5.7: Grading of Maturity of the replication strategies

Availability

Replication improves availability because data items can be read locally. Otherwise,
communication over the network is required. Because it must be assumed that the network
is not reliable and communication over the network may fail even in normal operation
mode (e.g. packages are lost), communication over the network reduces availability
[Tan07]. Effects when an entire communication channel fails are considered during the
examination of Fault Tolerance.

With replication, data items are stored locally and therefore network communication
is not required. Replication strategies that use a client-side full replica (RS3, RS4,
RS6, RS7) provide the highest level of availability because data items can be read
without any communication to the server. Replication strategies which use a client-
side cache (RS2, RS5) provide a lower level of availability. Server communication is
required every time a data item is requested that is not contained in the cache. From the
perspective of availability, they are advantageous over replication strategies that need
server communication on each access on a data item (RS0, RS1).

Y |nttps://github.com/otto-de| (last checked 26.03.2018)

67

https://github.com/otto-de

d.

ANALYTICAL EVALUATION

68

The examination results in the following grading:

RSO | RS1 | RS2 | RS3 | RS4 | RS5 | RS6 | RS7

Availability - - + + + +

Table 5.8: Grading of Awvailability of the replication strategies

Fault Tolerance

The examination on fault tolerance bases on an analysis of the consequences of failure of
individual communication channels. Figure 5.1 shows communication channels between
the components based on the description in Chapter 4.

client server

client to server

message broker

message broker server to
to client message broker

Figure 5.1: Communication channels between the components

Communication channels from and to the message broker are only used in Event-Driven
replication strategies (RS2, RS3, RS4). Therefore, the examination of communication
channels concerning the message broker only considers these replication strategies. The
following paragraphs examine the effects of failure of individual communication channels
in detail:

e Client to server: If a client cannot access the server (e.g. if the server is down),

the client is limited. When data items are solely requested from the server without
any form of replicas (RS0), fault tolerance is not given. These systems implement
a CP system according to the CAP theorem. When the server is not available, the
client is not available as well. Replication improves fault tolerance because data
items or at least parts of them are stored on the clients. For further examination
of fault tolerance in systems using replication, it is distinguished between effects
when data items are accessed on the client-side and effects on replication processes.

Access on data items on the client-side is only affected when caches are used
(RS2, RS5). Data items which are not contained in the cache have to be loaded
from the server. When the server is not available, it is not possible to load them.
Fault tolerance is therefore given only partially (for the extent in which data items

There is no direct communication from the server to the client and therefore this communication
channel is not considered.

5.1. Qualitative Indicators

are available in the cache). Full Replicas (RS3, RS4, RS6, RS7) contain all data
items and need no server communication. They are therefore also not affected when
communication with the server fails.

Replication processes are only affected when Poll-Based replication strategies
(RS5, RS6, RS7) are used. These replication strategies require access to the server-
side web feed to get notified about changes. When the server is not available,
changes are not delivered to the client. Event-Driven replication strategies (RS2,
RS3, RS4) need no direct server communication and are therefore not affected.

RS1 was not considered so far. It uses a cache but validates data items on each
access. When the client cannot access the server, the client can choose one of
two options based on its business requirements. The client can prohibit access to
all data items. This behavior is an implementation of a CP system according to
the CAP theorem. The other option is to read data items solely from the cache
without any validation. The state of the client-side cache may differ from the
server-side state and this therefore weakens the strict consistency constraint in
favor of availability. Therefore, this behavior is an implementation of an AP system
according to the CAP theorem.

Message broker to client: If the message broker cannot access a client (e.g. if
the client is down), the particular client is not notified about changes. The server is
still able to process updates in its data store and still sends messages intended for
this client to the message broker. The message broker cannot deliver messages to
the unreachable client but persists them inside the message queue (see Subsection
4.4.1). These messages are delivered when the client is reachable again. The client
therefore still works in an eventually consistent mode.

Server to message broker: If the server cannot access the message broker (e.g.
when the message broker is down), replication is not possible. Clients are still able
to read data items from their cache or full replica and to request data from the
server. To ensure eventual consistency even if the message broker is not available,
the server has two options: It can prohibit updates or it has to store all changes
locally and sends them to the message broker when it is available again (e.g. with
a local persistent queue similar to the queue on the message broker).

The examination results in the following grading:

RSO | RS1 | RS2 | RS3 | RS4 | RS5 | RS6 | RS7

Fault Tolerance - - + ++ ++ + I+ S+

Table 5.9: Grading of Fault Tolerance of the replication strategies

69

d.

ANALYTICAL EVALUATION

70

Recoverability

In the case of replication, it is assumed that recoverability is the recovery of a consistent
system state after the failure of one of the three communication channels described below.
It is guaranteed by all replication strategies. The following examination of individual
replication strategies builds on the discussion on fault tolerance above:

Synchronous Requests (RS0) RS0 cannot lead to an inconsistent system state,
because data items are stored on the server only.

Cache Validation (RS1): Inconsistencies can only occur when the client weakens
the strict consistency constraint. In this mode, data items can be validated as soon
as the server is accessible again. At this juncture, strict consistency is recovered

Event-Driven replication strategies (RS2, RS3, RS4): Notifications are
persistent on the server or message broker when communication channels from or
to the message broker failed. As soon as the communication channels are working
again, notifications are delivered and the system recovers to a consistent state. If
the server decides to prohibit updates no inconsistencies can occur and there is no
need for recovery.

Poll-Based replication strategies (RS5, RS6, RS7): Updates are always filed
as events in the web feed, independently of the availability of the communication
channels. Clients read the web feed when the channel is available again and a
consistent system state is recovered.

The examination results in the following grading:

RSO | RS1 | RS2 | RS3 | RS4 | RS5 | RS6 | RS7

Recoverability ++ ++ ++ ++ ++ ++ ++ ++

Table 5.10: Grading of Authenticity of the replication strategies

5.1.4 Security

[ISO-25010] defines Security as the degree to which a system protects information and

data.

It further defines five sub-characteristics:

Confidentiality: Indicates if data is only accessible to the ones who are authorized.
Integrity: Indicates that unauthorized access and modifications are prevented.
Non-repudiation: Indicates that events can be proven to have taken place.

Accountability: Indicates that actions can be uniquely traced to the one who
performed the action.

Authenticity: Indicates that a subject or resources can uniquely be identified as
the one it claims to be.

5.1. Qualitative Indicators

The next paragraphs examine how replication strategies perform related to the sub-
characteristics. The characteristics Confidentiality and Integrity, Non-repudiation and
Accountability share many attributes in their definition and will be examined together as
in [Xul3].

Confidentiality and Integrity

[Xul3| distinguishes confidentiality and integrity into five system properties: secure data
transport, secure data storage, authorized data access, secure authorization and input and
output verification.

Secure Data Transport can be established with Transport Layer Security (TLS)
[REC-5246]. Secure HTTP based communication (used for RESTful webservices and
web feeds) can be ensured via HTTPS which uses TLS [RFC-2818]. Messaging protocols
also support mechanisms to secure data transfer. As an example, AMQP also supports
TLS as a security layer®.

HTTP and AMQP are network protocols and do not provide mechanisms for Authorized
Data Access out of the box. Since HTTP is widely used, many solutions exist for
authorization. It can be implemented directly on a webserver or web application server
with technologies like the Java Authentication and Authorization Service (JAAS) [Oral in
Java EE or provided by a distributed solution like OAuth 7. For messaging, authorization
has to be implemented on the message broker. As an example, RabbitMQ supports
authorization on the level of a virtual host (a logical group of entities a set of resources
belongs to), resources (e.g. exchanges and queues) and topics®. The described methods are
widely used in industry, several of which are industry standards. Secure Authorization
can therefore be assumed as well.

Secure Data Storage and Input and Output Verification are important security

concerns, but not special for the case of replication and the presented replication strategies.

These system properties are therefore not further examined.

The examination results in the following grading:

RSO | RS1 | RS2 | RS3 | RS4 | RS5 | RS6 | RS7

Confidentiality

. ++ ++ ++ ++ ++ ++ ++ ++
and Integrity

Table 5.11: Grading of Confidentiality and Integrity of the replication strategies

https://docs.ocasis—open.org/amgp/core/vl.0/amgp-core-security—-v1.0.html
(last checked 26.03.2018)

https://oauth.net/2/| (last checked 26.03.2018)
https://www.rabbitmg.com/access—control.html| (last checked 26.03.2018)

71

https://docs.oasis-open.org/amqp/core/v1.0/amqp-core-security-v1.0.html
https://oauth.net/2/
https://www.rabbitmq.com/access-control.html

d.

ANALYTICAL EVALUATION

72

10
11

Non-Repudiation and Accountability

Most concerns in this area are independent of replication: The server has to trace read
and update operations in his data store as the client for read operations. Specific concerns
in the area of replication are tracing of data items and their versions that are read by
the clients and the proof that events are successfully delivered.

Clients read data items from the server via RESTful webservices (for RS0, RS1, RS2,
RS5). Communication can only be retraced on an HTTP level (e.g. with HTTP access
logs). The content of HTTP requests and therefore the version of a data item is not
visible. It can only be reproduced based on internal timestamps (e.g. the data of the last
change of a data item). This information can be corrupted and is therefore not reliable.

Reception of events can be distinguished between messaging (RS2, RS3, RS4) and web
feeds (RS5, RS6, RS7). Messaging with AMQP and RabbitMQ provides an acknowl-
edgement mechanism”. Clients confirm that they received a message and therefore also
confirm that they received an event notification. Historical web feed contents can only
be traced based on timestamps (e.g. the create date of a web feed entry) that can be
corrupted. Reception of individual events can therefore not be ensured.

The examination of these two characteristics result in the following grading:

RSO | RS1 | RS2 | RS3 | RS4 | RS5 | RS6 | RS7

Non-Repudiation
and - - ++ ++ - - -
Accountability

Table 5.12: Grading of Non-Repudiation and Accountability of the replication strategies

Authenticity

The HTTP standard provides authentication mechanisms out of the box [REC-7235]. In
addition to the standard there are other products available. A widely used alternative is
OpenID', a decentralized authentication protocol. Authentication for messaging depends
on the protocol used. AMQP supports the public Simple Authentication and Security
Layer (SASL) [REC-4422] standard!!. All these standards are widely used in industry
and can be considered secure.

RSO | RS1 | RS2 | RS3 | RS4 | RS5 | RS6 | RS7

Authenticity + | 4+ [+ |+ |+ | | |

Table 5.13: Grading of Authenticity of the replication strategies

https://www.rabbitmg.com/confirms.html|(last checked 26.03.2018)
https://openid.net/| (last checked 26.03.2018)
https://docs.oasis—open.org/amgp/core/vl.0/amgp—core—security-v1.0.html
(last checked 26.03.2018)

https://www.rabbitmq.com/confirms.html
https://openid.net/
https://docs.oasis-open.org/amqp/core/v1.0/amqp-core-security-v1.0.html

5.1. Qualitative Indicators

5.1.5 Maintainability

[ISO-25010] defines Maintainability as the degree to which a system can be changed and
extended. It distinguishes five sub-characteristics:

e Modularity: Indicates the degree to which a system is composed of discrete and
independent components.

e Reusability: Indicates to which degree assets can be used in other systems.

e Analysability: Indicates if changes and failures in the system can be localized
and identified.

e Modifiability: Indicates how difficult it is to modify the system and how likely
defects are introduced with modifications.

e Testability: Indicates to which degree the system supports testing in a given test
context.

The next paragraphs examine how replication strategies perform related to the sub-
characteristics.

Modularity

Replication strategies do not require modularity of components or the overall system.
From a system perspective, each application can be considered an independent module
of the overall system. Replication enables loose coupling and enforces modularity on
this level. From the internal perspective of an application, the structure and modularity
inside an application is independent of the replication strategy used.

Reusability

Individual replication strategies do not differ in their level of reusability. From a system
perspective, all replication strategies are designed to replicate data items to an arbitrary
number of clients. The replication service itself is therefore reusable. From the perspective
of a single application, the implementation of a replication strategy can build on existing
assets. Libraries and technologies that can be used for this purpose are described in the
course of the examination of Maturity in Subsection [5.1.5.

Analyzability

Analyzability decreases with asynchronous and indirect communication. Synchronous
processes and direct communication that fails or behaves strangely can easily be monitored.
Asynchronous and indirect communication cannot be monitored by a single application
but must be monitored from a system perspective. Replication strategies use asynchrony
and indirect communication with messaging (RS2, RS3, RS4) and web feeds (RS5, RS6,
RS7).

73

d.

ANALYTICAL EVALUATION

74

Message-based systems are hard to monitor. Communication is asynchronous by nature
and completely handled by the message broker. The flow of messages over the network is
hard to trace. There are patterns like Invalid Message Channel and Dead Letter Channel
in this area. [Hoh04] examines this topic and describes further patterns in this area.
These solutions are complex and need expert knowledge.

The main problem with replication based on web feeds occurs if the server does not
file a change into the web feed. The absence of the change is not visible to the client
and the client cannot react and report a problem. Other processes are easy to monitor
because they are synchronous: the client synchronously reads the web feed and the server
synchronously writes changes to it.

Additionally, most concerns that where examined during the examination of Non-
Repudiation and Accountability in Subsection |5.1.4 also apply here. They are not
as critical as the concerns described below and not considered in the grading. The
examination results in the following grading:

RSO | RS1 | RS2 | RS3 | RS4 | RS5 | RS6 | RS7

Analysability - - - - - -

Table 5.14: Grading of Analyzability of the replication strategies

Modifiability

Defects are most likely introduced with breaking changes in the signature of a data item.
Processes for replication inside an application are not complex (see the examination of
Maturity in Subsection 5.1.5). Therefore, modifications made are not likely to introduce
defects into the application. Furthermore, modifications inside an application can easily be
tested with unit tests. On the system level, replication integrates individual applications
and client and server must therefore share a common definition of the structure of data
items. Whenever the server changes the signature of data items (like the data type of an
attribute), clients may fail when they do not support the new signature.

This problem is not unique to replication but an integration problem in general. Integra-
tion on the data layer (e.g. with a shared database) which uses a shared data schema is
affected even more. Changes on the data schema need a coordinated deployment of all
applications that share the data schema. Integration on the application layer provides
several techniques to bypass the problem and enable independent deployments.

A widely used pattern in distributed IT systems is the Data Transfer Object (DTOs)
[Dail2]. A DTO is a representation of internal data for the communication with other
applications. DTOs are used to hide the internal data structure which can even be changed
without affecting other applications. Webservices may use DTOs in combination with
versioning [AIl10] of an API to provide old and new schemas of data items simultaneously.
Another widely used pattern is Tolerant Reader|[Fowll]. It bases on Postel’s Law “be
conservative in what you do, be liberal in what you accept from others” [Fowll]. The

5.1. Qualitative Indicators

pattern recommends that clients only read the attributes needed and to make minimum
assumptions about the schema. This minimizes the chance that the client is affected
by a change of the signature of a data item. Beside these patterns, there are testing
strategies and tools for avoiding integration problems in general. These are described in
this subsection in the course of the examination of Testing.

Poll-Based replication strategies with a full replica (RS6, RS7) are more vulnerable to
breaking changes than other replication strategies. These replication strategies read the
whole web feed including all archive feeds for the initial set-up (see Subsection 4.5.5).
When the schema changes over time, clients must be aware of all historical schemas to
import historical data. The exchange of historical schema information is a complex task.
A solution to this problem is not examined in this thesis. To bypass the problem, the
initial data import can be done manually (see Subsection |4.4.5).

Most problems concerning modifiability can be avoided or bypassed using modern software
engineering techniques. The fundamental problem of breaking changes in the common
signature of shared data items exists in systems without replication (RS0) and systems
with integration on the data layer as well. The only problem found in this examination
which is unique to replication is when initializing Poll-Based replication strategies with
full replicas. The examination therefore results in the following grading:

RSO | RS1 | RS2 | RS3 | RS4 | RS5 | RS6 | RS7

Modifiability - -

Table 5.15: Grading of Modifiability of the replication strategies

Testability

Replication integrates individual applications and therefore testing mainly relates to inte-
gration testing. Given an appropriate software design, business logic and the invocation
of replication processes can be tested within an application with unit tests. Communi-
cation from the client to the server and from client and server to the message broker
requires integration testing. [Fow18] describes three types of automated integration tests:
broad tests (including all applications), narrow tests (by using test doubles) and contract
tests (where tests are executed against pre-defined contracts). Replication strategies are
examined concerning these types:

e Broad tests: Broad integration tests require a production-like test environment.
All components used in a test case are executed in this environment. In a system
that uses replication, this may include a server, a client and a message broker for
Event-Driven replication strategies. Tests are run against concrete applications.
These tests are very similar to system tests [Fowl8]. Based on the test pyramid
[Fow12] [Newl15], system tests should only be a small part of all tests, because they
are very costly and likely to change. Therefore, the exclusive use of broad tests
cannot be recommended.

75

d.

ANALYTICAL EVALUATION

76

12
13

Broad integration tests can be executed in a test environment without any additional
requirements on applications. Therefore, all replication strategies can be tested
with these tests.

Test doubles: Test doubles simulate the behavior of an external component
[Fow08] like an application [Fowl1§]. An application can therefore be tested in
isolation without the need to run other applications [Newl5| [Woll5]. These tests
would not necessarily require a dedicated test environment and may therefore also
be executed on local developer machines. The use of test doubles is favored against
broad tests, because individual applications can be tested individually and are
not affected by changes in other applications [New15|]. This may lead to problems
because changes in other applications are not explicitly tested [New15].

Test doubles can be used for HTTP based replication strategies (RS0, RS1, RS5,
RS6, RS7 and parts of RS2). There exist frameworks to create test doubles for
HTTP servers (e.g. MockServer'?) that can be used for this purpose. Test doubles
for Poll-Based replication strategies need a repository where web feeds are statically
filed (which leads to a high maintenance effort when the structure of the web feed
changes) or a proprietary test framework that creates corresponding web feeds
(which needs a high initial implementation effort and continually maintenance
effort). To the author’s knowledge, there are no frameworks to create test doubles
for messaging and message brokers available. Test doubles for testing Event-
Driven replication strategies (RS3, RS4 and parts of RS2) can therefore only be
implemented on the level of local unit tests and not at the level of integration tests.

Contract tests: With contract tests, contracts are defined to specify interfaces
between client and server. Tests can be run against the contracts respectively test
doubles that are created based on the contracts. Contract tests therefore further
decouple applications in the test phase. Consumer-Driven Contracts (CDC') [Dail2]
[Rob06] are a popular pattern in this area. With CDC, clients define contracts
that represent their requirements on a server-side service. The server can execute
contract tests to test its implementation against all client requirements.

CDC frameworks support contract tests for communication based on HT'TP and
messaging protocols'. Contract tests can therefore be implemented for all replica-
tion strategies.

The examination therefore results in the following grading:

RSO | RS1 | RS2 | RS3 | RS4 | RS5 | RS6 | RS7

Testability -- - — - - -

Table 5.16: Grading of Testability of the replication strategies

http://www.mock-server.com/| (last checked 26.03.2018)
https://cloud.spring.io/spring-cloud-contract/|(last checked 26.03.2018)

http://www.mock-server.com/
https://cloud.spring.io/spring-cloud-contract/

5.1. Qualitative Indicators

5.1.6 Portability

[ISO-25010] defines Portability as the degree to which a system can be ported to another
environment (e.g. with different hardware or software). It further defines three sub-
characteristics:

e Adaptability: Indicates if the system can be ported in a different environment
and how difficult it is to port it.

e Installability: Indicates how difficult it is to install or uninstall the system.

e Replaceability: Indicates if the system can be replicated with another system for
the same purpose in the same environment and how difficult it is to replace it.

The next paragraphs examine how replication strategies perform related to the sub-
characteristics.

Adaptability

Replication strategies described in this thesis can be implemented with standard software
and libraries. These software is widely used in IT systems and therefore there are no
specific requirements for hardware, operation system or environment.

RSO | RS1 | RS2 | RS3 | RS4 | RS5 | RS6 | RS7

Adaptability ++ | 4+ | ++ | ++ |+ |+ |+ | 4+

Table 5.17: Grading of Adaptability of the replication strategies

Installability

Replication processes are directly implemented in the application layer of existing applica-
tions. Therefore, there are no additional installation tasks necessary - code for replication
is deployed with the application that uses it.

Replication strategies using messaging require a message broker. The message broker
must be provided within the IT system and configured properly. One message broker,
respectively one installation can be used for several clients and servers. Configuration
(especially the configuration of persistent queues and authorization on queues and topics)
must be performed for every server and client separately. RS3 and RS4 require an
additional initial data import which has to be performed once for every client.

Table 15.18 shows an examination of the installation effort needed for the individual
replication strategies. The examination does not consider additional security configuration
(e.g. for firewalls, OAuth or OpenID) and installation and configuration of additional
components (e.g. a OAuth infrastructure or an AtomPub server).

7

d.

ANALYTICAL EVALUATION

78

RSO | RS1 | RS2 | RS3 | RS4 | RS5 | RS6 | RS7

message broker - - -

inital data import - -

sum - - -

Table 5.18: Grading of Installability of the replication strategies

Replaceability

It is assumed that replicability can be achieved by the use of standards. When all
components support the same public or propriety standards, individual components can
be replaced with new components that support the same standards. Public standards
were examined during Interoperability in Subsection |5.1.2. Propriety standards for
replication where defined in the description of replication strategies in Chapter|/. The
requirement for replicability should therefore be fullfilled.

RSO | RS1 | RS2 | RS3 | RS4 | RS5 | RS6 | RS7

Replaceability ++ | 4+ | A A]

Table 5.19: Grading of Replaceability of the replication strategies

5.2 Quantitative indicators

This section provides a definition of quantitative indicators used in this thesis and
examines them analytically. The selection of quantitative indicators focuses on areas that
are not covered by the qualitative analysis in Section |5.1. It bases on differences between
individual replication strategies and differences to systems that do not use replication at
all (like RS0). It is assumed that this approach leads to the most informative results.
Based on the description in Chapter |4, it can be concluded that request and update
operations of individual replication strategies mainly differ in the following areas:

1. Individual replication strategies use different processes to access data on the client-
side. Some replication strategies directly read data items locally, others require
more time-consuming requests to the server. As a consequence, Client-Side Data
Access Latency differs.

2. Individual replication strategies use different processes to notify clients about
server-side updates. Depending on how and if client notifications are performed
and processed, Server-Side Data Update Latency differs.

3. Because processes for client-side read operations and server-side notifications differ
and use different types of communication, differences in Bandwidth Consump-
tion occur.

4. Because the client may read data items from a local replica that is not updated
immediately, the time of inconsistency and the implemented Consistency models
vary between the replication strategies.

5.2. Quantitative indicators

The concrete quantitative indicators are composed based on these areas in Subsection|5.2. 1.

The indicators highly depend on request behavior and data characteristics. Subsection
5.2.2 describes parameters in these areas. The last four subsections examine the indicators
for individual replication strategies analytically and provide approximations based on
the grading presented in the introduction of this chapter. Specific values are retrieved in
the simulation. This approach bases on the recommendation of [Jai90] to validate results
of a simulation by an analytical examination.

5.2.1 Definition of Quantitative Indicators

Quantitative indicators are defined for the four areas described above. To find appropriate
indicators and metrics, each area is viewed separately. These surveys result in the
definition of a main indicator for each area which is a discrete value that can easily
be compared. These indicators are also measured in the simulation and described in
Chapter|6. During the simulation, additional metrics (e.g. distribution functions) are
collected as well but are only presented in cases of particular importance.

Client-Side Data Access Latency

[Siv07] defines end-to-end client latency as the sum of network latency (which is the
time needed to send a request over the network and the time to send the corresponding

response) and internal latency (which is the time to process the request on the client).

Internal latency includes possibly necessary communication with the server as well.

Client-side Data Access Latency can be measured from the perspective of the client
(which corresponds to the internal latency) or from the perspective of the component
which requests a data item from the client (which corresponds to the end-to-end client
latency). All evaluations presented in Subsection 2.4.1 measured the end-to-end client
latency. These evaluations tested existing systems as a black box, where it is difficult or
impossible to measure internal latency. Even though internal latency is not measured in
these surveys, it must be assumed that internal latency is more accurate because it is
independent of network behavior (see Pitfalls of distributed system design in [Tan07])
and therefore of fluctuations of transfer times. To ensure accurate results, the internal
latency is used.

Client-side Data Access Latency is measured in milliseconds for every request. The
main indicator is the mean of all measured data points.

Server-Side Data Update Latency

Data Update Latency is the latency of a server-side change of a data item. It can be
measured from the perspective of the server (which corresponds to the internal latency)
or from the perspective of the component which sends the update to the server (which
corresponds to the end-to-end client latency). Internal latency includes processes which

79

d.

ANALYTICAL EVALUATION

80

are necessary to notify clients (send a message to the message broker or file a change
in the web feed). The same applies as for client-side Data Access Latency: it must be
assumed that internal latency is more accurate and therefore internal latency is used.

Server-side Data Update Latency is measured in milliseconds for every update. The
main indicator is the mean of all measured data points.

Bandwidth Consumption

The presented replication strategies use the three communication channels which are
described during the examination of Fault Tolerance in Subsection |5.1.53. During the
simulation, data transferred over each of these communication channels is measured
independently. The measurement includes not only application data viz. data items and
replication overhead (e.g. Atom metadata and message headers) but also overhead of the
network communication (e.g. overhead of TCP/IP communication).

Bandwidth consumption is measured in Kilo-Bytes transferred over the network.
The main indicator is the sum of the transferred data through all three communication
channels.

Consistency

There are two popular metrics to measure consistency [Bail2] [Ber13b] [Berld]:

o t-visibility: Defines the time it takes from an update to the point where all replicas
are in a consistent state.

e k-staleness: Based on individual requests, it measures the number of versions
between the version read by a request on a replica and the most recent version.

These metrics are not measured as discrete values but as probabilistic functions. This
enables assumptions for the consistency of an individual request [Bail2].

T-visibility is independent of individual requests and therefore provides general validity.
It is also used by the YCSB++ benchmark [Patll]. Because k-staleness is only measured
when a request accesses a data item, it highly depends on the access pattern [Ber14b].
Therefore, results have no general validity.

Consistency is measured by the time it takes for a server-side update to be available in
the client-side replica for every update in milliseconds. These data also build the basis
of the t-visibility metric. K-staleness is not measured because it has no general validity.
The main indicator is the mean of the measured data points.

5.2. Quantitative indicators

5.2.2 Parameters

Quantitative parameters depend on request behavior and data characteristics. The
following areas can be distinguished:

e Data: Characteristics of the data items that are replicated from the server-side to

the client-side.

e Requests: Characteristics of read operations on the client-side.

e Updates: Characteristics of write operations on the server-side.

Table |5.20| shows the parameters that are determined in these areas:

Area Parameter Description
data number the number of elements of a single entity type
that are stored in the server-side data store
size the mean size of data items
size distribution the statistical distribution of the size over all
data items
request request distribution the statistical distribution of read operations
over all data items
interval the number of read operations per time
time distribution the statistical distribution of read operations
over a time period
update update distribution the statistical distribution of write operations

over all data items

interval

the number of write operations per time

time distribution

the statistical distribution of write operations
over a time period

size of change

the percentage of the content that is changed
with a write operation

size distribution

the statistical distribution of the size of
changes over all write operations

These parameters are considered in the analytical evaluation and are also used in the

Table 5.20: Description of parameters

simulation which is described in Chapter 6.

81

d.

ANALYTICAL EVALUATION

82

5.2.3 Client-Side Data Access Latency

Data Access Latency defines the time needed to read a data item on the client-side and
depends on whether data items are stored on the client-side (in a cache or a full replica)
or have to be requested from the server. Local read operations take less time than
communication over the network. Based on the description in Chapter 4, the following
cases can be distinguished:

e Server: Data items are requested from the server only. Communication to the
server is therefore mandatory. Data items are read in the server-side data store
only. (RS0)

e (lient and server: Data items are read from the client-side cache and additionally
validated at the server-side. Communication to the server is therefore mandatory.
Data items are read in the client-side cache and the server-side data store. (RS1)

o (lient and possibly server: Data items are read from the client-side cache and if the
cache does not contain a data item, it is loaded from the server. Communication
to the server may be necessary but is not mandatory. Data items are read in the
client-side cache and potentially in the server-side data store too. (RS2, RS5)

e (lient: Data items are only read from the client-side full replica. No communication
to the server is necessary. (RS3, RS4, RS6, RS7)

It is assumed that read operations in the server-side data store, the client-side full replica
and the client-side cache need the same amount of time, provided that these stores are
fully optimized. Data Access Latency therefore depends on the number of places where
data items have to be read and on the condition if server communication is necessary.
This results in the following grading:

RSO | RS1 | RS2 | RS3 | RS4 | RS5 | RS6 | RS7

Data Access

L - - + ++ ++ + ++ ++
atency

Table 5.21: Grading of Client-Side Data Access Latency

Data Access Latency depends on the load on server and client (depending where read
operations take place). It must be assumed that high load leads to higher latency, because
the data storage and the machines where client and server are operated are highly utilized
or blocked.

The number of data items and their size can also have a negative effect on latency.
Read operations are slower when the size of a data storage increases. Optimizations to
counteract these effects exist (e.g. database indices in relational databases). Persistence
technologies and their optimizations are not covered by this thesis (see delimitations in
Subsection 1.3.2) and this optimizations are therefore not examined.

5.2. Quantitative indicators

5.2.4 Server-Side Data Update Latency

Update latency defines the time needed for a write operation on the server-side, including
replication processes. Data items are updated in the server-side data store only. In
addition, the server notifies clients about changes. The update in the server-side data
store does not differ for individual replication strategies. Therefore, time differences for
updates mainly depend on the notification process. It can be distinguished between the
following cases:

e No Notification: The client requests or invalidates data items on each client-side
access. There is no need for notifications. (RS0, RS1)

e Direct Notification: The client is notified directly via messaging. To do so, the
server sends a message to the message broker. The server is blocked until the
message is successfully sent to the message broker. The message broker delivers
the message independently to all clients. (RS2, RS3, RS4)

e Indirect Notification: The server files changes as events in a web feed. The server
is blocked until the entry in the web feed is created. The client reads the web feed
independently. (RS5, RS6, RS7)

It is assumed that No Notification < Indirect Notification < Direct Notification because
communication over the network is expected to take more time than a local update of
the web feed. This results in the following grading:

RSO | RS1 | RS2 | RS3 | RS4 | RS5 | RS6 | RS7

Data Update

Latency + + N N -) i i

Table 5.22: Grading of Server-Side Data Update Latency

Update latency depends on the load on the server-side and the number of data items
and their size. A detailed description can be found in Subsection |5.2.3 below.

5.2.5 Bandwidth Consumption

Bandwidth consumption defines the size of data that must be transmitted through
the network. Replication strategies require communication between server and client
to exchange data items and notifications. As described in Chapter |4, each replication
strategy uses different processes for requests and updates and therefore bandwidth
consumption differs.

To compare bandwidth consumption, it will be calculated based on different scenarios
of client-side read operations and server-side update operations (including bandwidth
consumed by notifications) for a single data item. Four scenarios are distinguished: 1) a
single server-side update, 2) a single client-side data access, 3) low read to write ratio
(one client-side data access and n > 1 updates) and 4) high read to write ratio (n > 1
client-side data accesses and one update).

83

d.

ANALYTICAL EVALUATION

84

14

The scenarios use the following parameters'*:

d: size of a single data item

c: size of the change in a data item

i: size of the ID of a data item

o: overhead of communication with empty message body but including headers
0: no communication which means no bandwidth consumption

The following applies: d > ¢ > i > 0> 0

The calculation uses simplified scenarios for Poll-Based replication strategies (RS5, RS6,
RS7). It is preconditioned that the web feed is empty at the beginning and accessed
only once. In general, the bandwidth consumption of Poll-Based replication strategies
depends on how often the web feed is read, the number of entries in the web feed, the
number of feeds that have to be read (recent feed plus zero or more archive feeds) and
the size of an entry (depending on the replication strategy this could be d, ¢ or 7).

Feeds have to be transmitted completely. The number of feeds that have to be read
depends on the number of changes since they were last read (see Section 4.4). Other
variables are fixed by the server (number of web feed entries) or the client (interval). The
number of archive feeds that have to be read can be calculated as follows:

number feeds = ceil (number of changes / web feed length)

Because of the complexity of the calculation and the lack of realistic values, a simplified
calculation is used. A general and realistic estimation is performed in the simulation.

RSO0 | RS1 RS2 RS3 | RS4 | RS5 RS6 | RS7
0 request . .
| update 0 0 i d c i d ¢
1 request
0 update d d d 0 0 d 0 0
1 request d d d+n*i | n*d n*c d+n*i | n*d n*c
n updates
n requests * Y . .
| update n*d d+(n-1)*o | d+i d c d-+i d c

Table 5.23: Calculation of Bandwidth Consumption

Table 5.23 illustrates the simplified calculation. It shows that bandwidth consumption
mainly depends on the size of a data item or the size of a change. The benefit of
replication strategies where only state differences are transmitted depends on the relation
of the size of a change to the size of the data item itself.

Another insight of the calculation is the dependence on the number and distribution
of requests and updates. Replication strategies that require clients to request the

To simplify the calculation, the overhead of communication for d, ¢ and ¢ is not considered.

5.2. Quantitative indicators

server on each client-side request (RS0, RS1) depend on the number of requests, others
that use a full replica (RS3, RS4, RS6, RS7) depend on the number of updates.

The distribution of requests and updates affects replication strategies that use a cache
(RS1, RS2, RS5), even if it is not visible in the examination. A data item is transmitted,
the first time it is accessed after an update. It can be assumed that these replication
strategies are most efficient when a part A of the data items is updated, and another
part B of the data items is requested and least efficient when a data item is updated each
time before it is read.

Table 5.24 summarizes the dependencies between replication strategies and parameters. It
shows that bandwidth consumption between requests and updates correlates negatively.

RSO | RS1 | RS2 | RS3 | RS4 | RS5 | RS6 | RS7

request - - + [+ [++ [+ | ++ | ++

update ++ ++ + -- - + -- -

Table 5.24: Grading of Bandwidth Consumption

5.2.6 Consistency

Consistency in respect of this analysis is defined by the time of inconsistency in the system,
based on the consistency model implemented by individual replication strategies. [Adal2)
state that consistency in a system is assured by communication between the components
and the level of communication depends on the intensity of communication. Based on
this statement, consistency will be examined in relation to the types of communication.
The following cases can be distinguished:

e Direct Server Requests (S): The client requests or invalidates data on each client-side
access. Data is therefore always consistent. These replication strategies implement
strict consistency (S). (RS0, RS1)

e Direct Notification (D): The client is notified directly via messaging. To do so,
the server sends a message to the message broker. The server is blocked until the
message is delivered to the message broker. Because new data can be read at the
server immediately after the notification is sent but before notifications arrive at
the client, data is inconsistent until the notification arrives at the client. These
replication strategies implement eventual consistency (E). (RS2, RS3, RS4)

e [ndirect Notification (I): The server files changes as events in a web feed. The server
is blocked until the entry in the web feed is created. The client reads the web feed
independently in intervals to update its cache or full replica. Because new data
can be read at the server immediatly after the web feed entry is created but before
the client reads the web feed, data is inconsistent until the next time the client
reads the interval. Therefore, the interval defines duration of inconsistency. These
replication strategies implement eventual consistency (E). (RS5, RS6, RS7)

85

5. ANALYTICAL EVALUATION

It must be assumed that the time needed to deliver a message is shorter than the
interval the web feed is read. It follows that the duration of inconsistencies for indirect
notifications is higher than for direct notifications.

Replication strategies with direct and indirect notifications guarantee causal consistency
only. Other eventual consistency models depend on the specific implementation. As an
example, Read-your-writes consistency can be achieved with RS2 if the client directly

invalidates its local cache after it sends an update operation to the server®.

The following table concludes findings and shows the final grading:

RSO | RS1 | RS2 | RS3 | RS4 | RS5 | RS6 | RS7
Consistency
Model S S E E E E E E
Duration of S S D D D I I I
Inconsistency
Grading ++ ++ + + + - - -

Table 5.25: Grading of Consistency

After the analytical examination, replication strategies are further examined in a simula-
tion. The simulation and its results are described in the next chapter.

15 It is not sufficient for the client to directly update its cache to the new version, because the server

could alter parts of the data item, depending on its business logic.

86

CHAPTER

Simulation

The performance of the replication strategies is measured in a simulation environment
that emulates an IT system. The simulation environment contains prototypes of a client
and a server which implement the replication strategies. Aim of the simulation is to
examine characteristics that cannot be covered sufficiently by an exclusively analytical
approach. In order to do so, the simulation focuses on the following questions:

1.

How do replication strategies perform under realistic conditions? The analytical
examination of quantitative indicators was simplified: client-side requests and
server-side updates are observed in isolation or based on simple access patterns.
The simulation uses complex access patterns to emulate realistic behavior.

. How does the distribution of requests and updates affect results? These distributions

mainly affect replication strategies which use caches (RS1, RS2, RS5) because their
behavior varies depending whether the cache contains a data item or if it has to be
requested from the server.

How does the read/write ratio affect results? The analytical examination indicates
that replication strategies are either optimized for client-side read or server-side
update operations. Simulations with different read/write ratios provide further
insights into this trade-off.

. In which order of magnitude are the measured metrics? The result of the analytical

examination was a simple scale which indicates which replication strategies perform
better or worse. The simulation provides concrete values that can be compared.

. How does the percentage of changed content affect the update results? The imple-

mentation of replication strategies which distribute only state differences (RS4,
RS7) are more complex than replication strategies that distribute the full state
(RS3, RS6). The effect on the behavior of quantitative indicators is measured to
conclude if there is a benefit of introducing this complexity into the IT system.

87

6.

SIMULATION

88

It is not observed how replication strategies perform related to the number of requests
and updates per time. This behavior, especially the behavior of replication strategies
under high load, is highly influenced by the configuration of the application server (e.g.
when the server reaches its maximum capacity because a Thread Pool is fully utilized).
It is a complex and application-specific task to find an optimal configuration which is
therefore out of the scope of this thesis. It must also be assumed that applications are
mainly utilized by other processes than replication and the utilization of the replication
strategies is therefore a minor concern.

The simulation implements the use case presented in Chapter 4. It includes replication
of a single entity type and no other functionality. All requests are handled by the client
and all updates are handled by the server. The client itself provides no functionality
to change data items and replicas are therefore read-only. Only the size of a data item
differs from the description in Chapter|j: Where the previously defined use case uses two
attributes (data0 and datal), the simulation uses ten attributes (data0 to data?9)
to enable changes of data items in steps of 10% of their total size.

The simulation performed only update operations. Insert and delete operations were not
included to limit the scope and the time needed for the simulation and the evaluation of
its results. Procedures for those operations are similar to update operations. The focus
on update operations should therefore not influence the significance of the results.

Each replication strategy is used with different, exactly predefined scenarios inside a single
simulation run. The scenarios mainly differ in the access patterns of request and update
operations. The execution of particular request and update operations was performed
with an open system model because it guarantees the execution of these operations at an
exact point of time, independent of other requests [Sch06]. This guarantees reproducibility
and validity of the results as well. The workloads viz. the access patterns are predefined
and executed the exactly same way for each replication strategy.

The remainder of this chapter describes the simulation itself. In order to do so, its
structure bases on the methodological approach presented in Section |1.4. The concrete
implementation of the simulation environment and the prototypes of client, server and the
replication strategies are described in Section |6.1. The workloads which constitute the
basis of individual test runs are composed in Section |6.2. They base on the parameters
defined in Subsection|5.2.2 and are selected based on a survey on realistic access behavior.
Section 6.5 gives an overview over the execution of the simulation. It describes the
concrete procedure that was used to run individual simulation runs, the environment in
which the simulation was performed and how the validity was ensured. The chapter ends
with the presentation of the measured values and their evaluation in Section 6.4k

6.1 Implementation

The simulation used a custom build simulation environment where requests and updates
are executed with a custom build workload executer. The use of the existing benchmarking

1

6.1. Implementation

tools (presented in Subsection 2.4.2) was examined but rejected because they do not
support the required platforms (Java EE and Ruby on Rails) and are not able to execute
a predefined workload in an open system model.

The presented simulation environment represents a specific environment for this thesis,
the presented replication strategies and the specific use case. It is no goal to define a
standard benchmark for replication or to meet the requirements for such benchmarks'
defined by [Gra92].

The remainder of the section describes the implementation of the custom simulation
environment in detail.

6.1.1 Architecture

The simulation environment consists of several independent components that run inside
Docker containers. Docker was used to enable porting of the simulation environment
into different platforms and environments. Figure 6.1 illustrates the structure of the
simulation environment.

4 controller F---

R

REST Interface for
data initialization
configuration

REST Interface for
data initialization
configuration

P

i
|
|
|
I
|
1
I
|
|
i
|
log retrieval log retrieval !
I
i
H - 1
V:::. read data items and web feed ‘.-===- !
1
HTTP H
|
| start
client i server E execution
-* 1 and transfer
notifications message notifications ! workload
|
AMQP broker AMQP !
i
|
x T |
| : .
\ 1
! requests update ! i
i : :
h ! |
ol |
..... ;
w workload executer -1

Figure 6.1: Structure of the simulation environment

The process is controlled by the controller component. All controlling communication
is implemented by RESTful webservices over HT'TP. Controlling communication is
represented in the figure with dotted lines. Solid lines represent communication needed
for replication which is performed with RESTful webservices and AMQP.

These requirements are Relevance, Portability, Scalability and Simplicity.

89

6.

SIMULATION

90

Client-side requests and server-side updates are performed by the workload executer.
The workload is stored at the controller and transferred to the workload executer when
the execution is started. The workload executer independently performs all requests and
updates. Client and server are implemented for Java EE and Ruby on Rails. Each of
these two implementations is provided in a Docker container. A simulation run can use
ether the Java implementation of a component or the Ruby implementation.

The next subsection describes the individual components in detail.

6.1.2 Components

The simulation environment consists of several independent components. Most compo-
nents are presented in Figure 6.1. Additionally, the simulation environment includes a user
interface for simple evaluation of the results and an NTP server for clock synchronization.
The detailed description of the components is provided below:

Controller

The controller is the central component of the simulation environment and implemented
as an independent Java EE application. It controls the procedure of a single simulation
run (see Subsection 6.1.5) and gathers all metrics. The controller provides an interface to
start a simulation run with a given configuration by a RESTful webservice. Additionally,
it uses a MariaDB? database to store the definition of the available datasets and the
results of the simulation runs. These data are accessible via RESTful webservices.

Workload Executer

The workload executer performs client-side requests and server-side updates based on a
pre-defined workload. It provides a RESTful webservice by which the controller transfers
a workload, starts the execution and retrieves information about the execution. The work-
load executer is implemented in golang® for performance reasons®. The implementation
of the workload executer bases on a busy wait loop [Bli03] that checks for operations every
0.1ms and executes them concurrently®. Tests with different implementations showed
that this approach ensures the execution of operations most accurately (the deviations
are presented in Subsection |6.3.5).

https://mariadb.org/| (last checked 26.03.2018)

https://golang.org/ (last checked 26.03.2018)

A first implementation in Java was discarded because the planned time of the execution of a request or
update highly deviated from the point in time when the execution really took place. After a detailed
analysis, the behavior was attributed to garbage collector time-outs of the Java Virtual Machine.

In IT systems, busy waiting is bad practice because of its high resource utilization [BIi03]. The workload
executer runs only in the simulation environment where it runs on an isolated machine (see Subsection
6.3.1) as well. Therefore, utilization is not a concern.

https://mariadb.org/
https://golang.org/

6.1. Implementation

Client

The client handles requests sent from the workload executer. In order to do so, it
implements the client-side processes presented in Chapter|4. It uses a cache and a full
replica to store server-side data locally. The client also implements a synchronization job
which reads a server-side web feed asynchronously and is able to subscribe to a queue
on the message broker. These two mechanisms can be disabled independently so none
of them interferes with other replication strategies. Additionally, the client provides
RESTful webservices which the controller uses to control the simulation run (e.g. to set
the configuration and reset the client).

The client is implemented in Java EE and Ruby on Rails. Subsection |6.1.5 presents the
technologies and libraries used for the particular implementations.

Server

The server handles updates sent from the workload executer. In order to do so, it
implements the server-side processes presented in Chapter 4. It stores data in a data
store which is accessible for the client via RESTful webservices. The server also provides
a web feed via a HT'TP interface and is able to send notifications over the message broker.
These two mechanisms can be disabled independently so none of them interferes with
other replication strategies. Additionally, the client provides RESTful webservices which
the controller uses to control the simulation run (e.g. to set the configuration and reset
the server).

The server is implemented in Java EE and Ruby on Rails. Subsection |6.1.5 presents the
technologies and libraries used for the particular implementations.
Message Broker

The simulation used RabbitMQ with its default configuration. The configuration was
extended to provide a topic-based exchange, a persisted queue, a binding between the
exchange and the queue and a user that can access them.

User Interface

The controller can be accessed by a simple Angular JS° application. This application visu-
alizes the results of a simulation runs in tabular overviews and in diagrams implemented
with plotly.js”. It can also be used to compare several simulations runs.

NTP Server

The simulation environment provides a Network Time Protocol (NTP) [REC-5905] server
for clock synchronization. The synchronization of the client-side and server-side clock

5 |nttps://angularjs.org/| (last checked 26.03.2018)
7 nttps://plot.ly/javascript/| (last checked 26.03.2018)

91

https://angularjs.org/
https://plot.ly/javascript/

6.

SIMULATION

92

9

is required for the calculation of the consistency indicator (see Subsection 6.1.4)°. Tt is
provided in a independent Docker container and configured as an Undisciplined Local

Clock? to run in an environment isolated from other time servers.

6.1.3 Procedure of a single Simulation Run

Each simulation run is executed in seven steps. The whole process is controlled by the
controller component by the execution of RESTful webservices on the client, the server
and the workload executer. Table |6.1] presents the individual steps of a simulation run.
Operations that are only performed for particular replication strategies are annotated

with the particular replication strategies.

1. Configure: The controller sets the configuration of the simulation run on the

client and the server.

2. Init: The controller initializes the server-side data storage, based on the definition
of the scenario in its database. For Event-Driven replication strategies with full
replicas (RS3, RS4), data items are also created on the client-side to represent the
initial data setup (see Subsection |4.4.5). For Poll-Based replication strategies, the

server files each creation of a data item in a web feed as well.

3. Start: Depending on the used replication strategy, the client subscribes to the
queue on the message broker or starts the synchronization job to read the server-side
web feed. For Poll-Based replication strategies with a full replica, the client reads

the events for the creation of data items and sets up its replica.

4. Execution: The controller starts the execution of the workload on the workload
executer, based on the definition of the workload in its database. The workload
executer processes the workload independently. Client and server perform the
replication processes described in Chapter |4, depending on the used replication

strategy.

5. Stop: Depending on the used replication strategy, the client unsubscribes from the

message queue or stops the synchronization job which reads the web feed.

6. Log: The controller collects the results of the simulation run from client and server.
Subsection |6.1.4 describes which data points are gathered on the client-side and

server-side. It saves these data in its local database.

7. Reset: At the end of the simulation run, client and server are reset. Therefore, all

data items and logs are deleted locally.

Whenever an error occurs in one of the steps, client and server are stopped and reset.

It is just required that the clocks are synchronized. The correctness of the time is not necessary.
https://support.ntp.org/bin/view/Support/UndisciplinedLocalClock
(last checked 26.03.2018)

https://support.ntp.org/bin/view/Support/UndisciplinedLocalClock

6.1. Implementation

Controller Executer Client Server
set configuration set configuration
Configure
for simulation run for simulation run
create data items
Init read data sets R53, RS4: . RS5, RS6, RST:
create data items file creation events
in web feed
RS2, RS3, RS/:
subscribe to
Start message queue
RS5, RS6, RS7:
start sync. job
Execution read workload execute workload do requests do updates
RS2, RS3, RS:
unsubscribe from
Stop message queue
RS5, RS6, RS7T:
stop sync. job
Log persist logs hand out logs hand out logs
truncate cache, full truncate data
Reset

replica and logs

storage and logs

Table 6.1: Procedure of a single simulation run

6.1.4 Measurement and Calculation of Quantitative Indicators

To retrieve the quantitative indicators which are defined in Subsection |5.2.1, client and
server log the time of particular events. Five timestamps are logged:

(a) Start of request: The timestamp of the start of the processing of a client-side
request but after the request is interpreted and parsed by the application server.

(b) End of request: The timestamp of the end of the processing of a client-side
request but before the response is transmitted over the network.

(c) Start of update: The timestamp of the start of the processing of a server-side
update but after the request is interpreted and parsed by the application server.

(d) End of update: The timestamp of the end of the processing of a server-side
update but before the response is transmitted over the network.

(e) Time of notification: The timestamp when a client is notified about a server-side

update.

93

6.

SIMULATION

94

10
11

client server

read data items and web feed

HTTP

(e) time of message broker
notification
notifications notifications
AMQP AMQP
1
(a) start of request ! requests update ! (c) start of update

(b) end of request |
1

| (d) end of update
1

workload executer

Figure 6.2: Points at which events are logged

Figure 6.2 illustrates where these data are logged. For each of these events, the time
of occurrence with an accuracy of milliseconds is filed. The quantitative indicators are
calculated based on these data. The calculation bases on the following methodology:

Client-Side Data Access Latency

The Client-Side Data Access Latency is calculated as the difference between the start (a)
and the end (b) of the processing of a client-side request.

Server-Side Data Update Latency

The Server-Side Data Update Latency is calculated as the difference between the start
(c) and the end (d) of the processing of a server-side update.

Bandwidth Consumption

Data transferred over the network is monitored on the client-side and the server-side for
particular communication channels (see the examination of Fault Tolerance in Subsection
5.1.9) with tepdumg'. In order to do so, tepdump is configured to monitor only packets
for a particular IP-address and port. The monitored data is interpreted and exported
with capinfos'!. Figure 6.3 illustrates where communication data is monitored.

The total bandwidth consumption is calculated as the sum of the data received from the
client (at the server-side), the data sent to the message broker (on the server-side) and
the data received from the message broker (at the client-side).

Consistency

The time until the replica is in a consistent state is calculate as the time between the
start of a server-side update (¢) and the time the client is notified about a server-side
update (e).

https://www.tcpdump.org/| (last checked 26.03.2018)
https://www.wireshark.org/docs/man-pages/capinfos.html (last checked 26.03.2018)

https://www.tcpdump.org/
https://www.wireshark.org/docs/man-pages/capinfos.html

6.1. Implementation

client

read data items and web feed

server

data sent | |

data received I::l

notifications

AMQP

HTTP

message broker

notifications

4—[] data sent

AMQP

L data received

Figure 6.3: Points at which data transfer is monitored

The data items on the client-side are only updated when the client uses a full replica
(RS3, RS4, RS6, RS7). For replication strategies that use invalidation (RS2, RS5), the
time until the replica is in a consistent state is defined as the time in which a data item
is removed from the cache. This indicator is not measured for replication strategies that
provide strict consistency (RS0, RS1).

Because the calculation bases on times measured on the client-side and the server-side and
these times need to be comparable, clock synchronization with a high level of accuracy is
required. The verification of the accuracy of the clocks is described in Subsection 6.3.5.

6.1.5 Technologies

Table 6.2 shows which technologies and particular versions were used for the implementa-
tion of client and server and Table 6.3 shows these information for the simulation.

Java Ruby

Platform OpenJDK 1.8.0 Ruby 2.4.2
Framework Java Enterprise Edition 7 Rails 5.1.4
Server Wildfly 10.1.0.Final Puma 3.10.0
REST

Server JAX-RS with Resteasy 3.0.19.Final -

Client JAX-RS with Resteasy 3.0.19.Final rest-client 2.0.2
Messaging

Server RabbitMQ AMQP client 4.2.0 bunny 2.7.1

Client RabbitMQ AMQP client 4.2.0 sneakers 2.6.0

Job Scheduler

ManagedExecutorService

ActiveJob 5.1.4

Persistence

ConcurrentHashMap

MariaDb 10.2.11

Table 6.2: Technologies used for the implementation of client and server

95

6.

SIMULATION

96

Java
Ezecuter Golang 1.9
Message Broker rabbitmg-server-3.6.11-1.el7
NTP (client and server) ntp 4.2.6p5
Operating System Centos 7.4.1708 Mini
Container Docker 17.12.0-ce
Network Monitor tcpdump

Table 6.3: Technologies used for the implementation of the simulation environment

6.1.6 Limitations

There are some known limitations in the implementation of client and server:

e (Cache: A custom implementation is used for the client-side cache. It provides no
optimizations for concurrent access (see Subsection 4.3.1). It is assumed that the
use of existing cache solutions would improve the behavior of RS1, RS2 and RS5.

e No usage of JMS: To ensure that the communication to the message broker is only
enabled for particular replication strategies, the Java implementation of client and
server use the native AMQP client provided by RabbitMQ. It is assumed that the
use of JMS would improve the behavior of Event-Driven replication strategies.

o Caching of web feeds: [Webl0|] proposes the use of caching headers for web feeds.
It must be assumed that the use of these headers would not affect the results of
the simulation because web feeds change on every access of the client.

o Use of different storage technologies in Java and Ruby implementations: The Java
implementation stores data items, logged timestamps and the configuration of the
simulation run inside the main memory (in a Java ConcurrentHashMap) whereas
the Ruby implementation uses a relational database. Access of the main memory is
faster than access on the database whereby the Java implementation is generally
faster. This is evident in the results of the simulation (see Section 6.4).

6.2 Scenarios and Workloads

The individual client-side requests and server-side updates constitute the workload. It
can be varied to emulate different use cases. Together with the characteristics of the
data items, the workload constitutes the variable part of the simulation which can be
changed to obtain characteristics of the replication strategies.

Because the simulation implements a custom use case that was defined in the course of
this thesis there are no real traces available and a synthetic workload [Feil5] [Jai90] has
to be built. There exist two approaches to build a synthetic workload [Feil5|: empirically
(based on real traces) and analytically (based on a mathematical model). Even though

6.2. Scenarios and Workloads

empirical workloads are more realistic [Feild], it is hard to port them into another
environment [Feil5] and to change particular parameters [Bahll] [Bus02]. Additionally,
these workloads build on traces of specific applications or use cases and are therefore only
valid inside this environment [Feil5|. This contradicts the aim of the simulation which is
to examine general characteristics. The simulation therefore uses an analytical approach
to build synthetic workloads which provides a high flexibility to change parameters in
order to constitute workloads with different characteristics [Bahl1] [Bus02]. The model
to build the workloads bases on the parameters described in Subsection |5.2.2.

The analytical creation generally introduces the risk that the workload is not representative
[Feil5]. The correctness of the simulation results and their application in real systems
therefore depends mainly on the values chosen for the parameters. The simulation follows
the approach to find realistic values and maps these values on realistic use cases afterwards.
It is assumed that this approach, ensures a realistic representation of real systems on
the one hand and provides most insights into the characteristics of particular replication
strategies on the other hand. To do so, Subsection |6.2.1| surveys the parameters and
chooses realistic values based on a literature survey and a set of general assumptions.
Subsection 6.2.2 composes realistic use cases from these values.

6.2.1 Values

Concrete values for the parameters presented in Subsection |5.2.2 were selected based on
a literature research and a set of general assumptions. Each parameter was examined
independently. Additional to the defined parameters in Subsection |5.2.2, specific parame-
ters for Poll-Based replication strategies and the duration of particular simulation runs
are examined and selected in this subsection.

Number of data items

Often, IT systems contain millions of data items. A high number of data items therefore
leads to more realistic results. Because replication affects only a single data item,
observations on a single data item are independent of their total number. On the other
hand, fewer data items enable more operations for a single data item in the same amount
of time. It can therefore be assumed that a lower number leads to more significant results.

Even though a high number of data items is more realistic, the number of data items
mainly affects latency for read operations on the persistence layer (see Subsection |5.2.2),
which are explicitly not covered by this thesis (see Subsection 1.3.2). Varying the total
number therefore leads to no insights into the replication strategies themselves. A smaller
number of data items was chosen in favor for more significant simulation results. After
several manual tests with different quantities, a value of 100 data items was chosen.

Data size distribution

The simulation uses the same, fixed size for all data items. The size of a data item mainly
influences the consumed bandwidth. The impact of the size of a single data item on the

97

6.

SIMULATION

98

overall bandwidth consumption is relative to the overhead of communication itself and
the protocol used (e.g. TCP/IP, HTTP, AMQP, Atom metadata). A variation of the
data size therefore mainly provides insights into the overhead of the network protocols in
general (REST over HTTP versus AMQP versus Atom over HTTP) which constitutes its
own field of research. Therefore, a fixed data size was chosen because it enables better
comparison of the results.

Size of a data item

The size of a data item depends on the data it represents. An assumption which is valid
for all cases of applications is therefore impossible. The mean size was set in consultation
with the representatives of the IT system of TU Wien to 1000 alphanumerical ASCII
characters. With the use of UTF-8, this corresponds to 1000 Bytes [RFC-3629]. This
size is also used by the YCSB benchmark [Cool0)].

Distribution of Requests over Data Items

Several surveys showed that the access patterns on websites follow a Zipf or Zipf-like
distribution [Ada02] [Bre99] [Call6] [Lev01] [Men00] [Wil05]. It is therefore mainly used
to build synthetic workloads for IT systems (e.g. YCSB [Co010] and TCP-W [Gar03]).

The Zipf-distribution [Feil5] was originally observed in the distribution of words in natural
language [Zip32] [Zip49]. It proposes that the frequency of one word is proportional to
the power inverse of its rank. In general, the Zipf-distribution describes a distribution
in which high-ranked elements occur proportionally more frequently than low-ranked
elements. The highest ranked element will occur twice as often as the second highest
ranked element and three times as often as the third highest ranked element. Figure 6.4
illustrates a example of a Zipf-distribution.

0.3

probability
o
n

0.1

1 2 3 4 5 6 7 8 9 10
element (by rank)

Figure 6.4: Probability density function of a Zipf-distribution with exponent s = 1

6.2. Scenarios and Workloads

The default value for the distribution of requests is chosen as a Zipf-distribution with an
exponent s = 1. Additionally, a uniform distribution is used. This distribution does not
represent a widely used access pattern but it is assumed that this simple distribution is
easy to evaluate and provides further insights into the behavior of particular replication
strategies.

Distribution of Requests over Time

Requests are equally distributed over time. This does not represent realistic behavior
because real systems are facing a changing number of requests over time and also face peak
loads. Equal distribution of requests simplifies the evaluation of results and was therefore
chosen to ensure the correctness of the evaluation. Furthermore, the examination of the
behavior of replication strategies referring to the number of requests per time was already
rejected in the introduction of this chapter.

Request interval

Based on the discussion above, each simulation run uses a fixed request interval. The
concrete number of requests per time differs in real IT systems between individual
applications and inside a particular application between individual use cases and entity
types. A general assumption is therefore impossible.

Based on the examination in Subsection |5.2.35, the request interval mainly effects read
operations on the persistence layer. These effects must not be considered because the
persistence layer is explicitly not covered by this thesis (see Subsection |1.3.2). Therefore,
it is assumed that the validity of the simulation results is not affected even if a fixed
interval is used for all simulation runs. This is beneficial because it enables a better
comparison of the results.

After several manual tests with different request intervals, an interval of 10 requests per
second was chosen because it provided a high number of measurement points and can be
handled by the standard configuration of the application servers.

Distribution of Updates over Data Items

For the distribution of updates, the Zipf-distribution and the uniform distribution are
used. This choice bases on the same assumption as the distribution of requests over data
items described above.

Update interval

The simulation uses different update intervals to observe the behavior of replication
strategies with respect to the read/write ratio. In order to do so, update intervals are
calculated using the fixed read interval (10 requests per second) and different read/write
ratios. Ratios are selected based on values used in existing benchmarks (presented in
Table 6.4) and data published for existing websites (presented in Table 6.5).

99

6. SIMULATION

Benchmark Mode Read (%) Write (%) Ratio
TPC-W [Car03] browsing 95.00 5.00 19/1
shopping 80.00 20.00 4/1
ordering 50.00 50.00 1/1
YCSB [YCSB] update heavy 50.00 50.00 1/1
read heavy 95.00 5.00 19/1
ready only 100.00 0.00 -
RUBBos [Amz02] 85.00 15.00 5,66/1
RUBis [Amz02] browsing 100.00 0.00 -
bidding 85.00 15.00 5,66/1
SPECWeb99 [Nah02] 95.06 4.92 19.32/1

Table 6.4: Read/write ratios of the benchmarks presented in 2.4.2

Website Year GET (%) POST (%) Ratio
Slashdot [Amz02) 2001 99.50 0.50 199/1
Small Research Institute

[Call0) 2006-2009 90.00 10.00 9/1
Youtube [Gil07] 2007 99.87 0.12 83.191/1
South Korean Blog Hosting 92012 97 35 955 3.817/1

Site [Jeo12]

Table 6.5: Read/write ratios published for existing websites (used under the assumption
that every GET request represents a read operation and every POST requests represents
a write operation)

The ratios presented in the tables above show that ratios measured in real applications
are more read-intensive than the ratios used in benchmarks. This assumption corresponds
to the experience of the representatives of the I'T system of TU Wien. The simulation
therefore uses more read-intensive ratios in order to correspond to real access behavior.
Table 6.6 shows the chosen ratios and the resulting update intervals.

Read (%) Write (%) Read/Write Ratio Update Interval

80.00 20.00 4/1 400ms
95.00 5.00 19/1 1,900ms
99.50 0.50 199/1 19,900ms

Table 6.6: Read/write ratios used in the simulation

100

6.2. Scenarios and Workloads

The representatives of the I'T system of TU Wien observed even more read-intensive
ratios. Tests showed that more read-intensive ratios lead to the same results as 1/199 and
therefore provide no additional information. As a consequence, the most read-intensive
ratio used was 1/199.

Distribution of Updates over Time

Updates are equally distributed over time. This choice bases on the same assumption as
the distribution of requests over time described above.

Update size distribution

The size of an update is equal to the percentage of the content of a data item that was
changed by an update operation. A data item in the simulation environment consists
of 10 attributes, each with the same size. Each update changes the same percentage
of the data in a data item. This does not represent realistic behavior but simplifies
the evaluation of the results and was therefore chosen to ensure the correctness of the
evaluation. To observe the behavior with different change rates, the percentage is changed
for particular simulation runs (see below).

Update size of change

No examinations in this area were found in the course of the literature research. The
percentage was therefore chosen in consultation with the representatives of the I'T system
of TU Wien which lead to the following values:

e 10%: Represents a small change. This percentage is also used in the YCSB
benchmark [Cool(]. With the previously chosen data size of 1000 Bytes, a change
of 10% = 100 Bytes = 100 Chars may represent the change of the billing address
of an order.

e 50%: Represents a freely chosen percentage between 10% and 100%.

e 100%: Is a change of the whole data item. This may represent the change of a
blog post if the whole text is replaced.

Poll-Based Parameters

Poll-Based replication strategies need two additional configuration parameters (see Section
4.5): The client has to define the interval in which it reads the web feed and the server
has to define the length of the recent web feed. These parameters highly influence the
consistency and the bandwidth consumption.

The client-side interval is set to one minute. This ensures that the maximum time of
inconsistencies on the client-side is not more than one minute, which is assumed to be a
realistic value for most I'T systems.

The server-side web feed length was optimized for least bandwidth consumption.

The optimal value depends on the number of events filed in the web feed between two

101

6.

SIMULATION

102

client accesses of the web feed. It therefore depends on the client-side interval and the
update interval. After a number of tests with different settings, the values presented in
Table 6.7 were selected.

Update Updates per Web Feed
Interval Minute Length
400ms 150.00 180
1,900ms 31.57 40
19,900ms 3.02 5

Table 6.7: Web feed lengths used in the simulation

Duration of a Simulation Run

Another adjustable value is the duration of a simulation run itself. It is a compromise
between the number of measured values (and therefore the quality of the results) and the
feasibility of a high number of simulation runs (because there is only a limited amount
of time to run the simulation). After several manual tests, a duration of 30 minutes
was chosen. This time guarantees that all tests can be executed and ensures meaningful
results. A simulation run of 30 minutes consists of 18,000 requests and (depending on
the read/write ratio) 4,500, 947 or 90 updates.

6.2.2 Definition of Workloads and Use Cases

The survey in the last subsection provides realistic values for the parameters. These
values are used to compose concrete workloads in this subsection. The workloads are
optimized to emphasize different behaviors of replication strategies under a number
of conditions (e.g. with different read/write ratios and different distribution of access
patterns). Table 6.8 presents the composed workloads.

Read/ Wri?e Change % Distribution Used W.ith Replication
Ratio Strategies
W1 80.0/20.0 100% zipf RS0-7
W2 95.0/5.0 100% zipf RS0-7
W3 99.5/0.5 100% zipf RS0-7
W4 95.0/5.0 100% uniform RS0-7
W5 95.0/5.0 10% zipf RS3, RS4, RS6, RS7
W6 95.0/5.0 50% zipf RS3, RS4, RS6, RS7

Table 6.8: Workloads used in the simulation

6.2. Scenarios and Workloads

Workload W2 was chosen as the baseline for the evaluation. For the other workloads,
there was only a single parameter varied to the definition of W2. Because only replication
strategies that distribute state differences (RS4, RS7) are affected by the percentage of
content changed within an update operation, these are mainly used for workloads where
the parameter varies. Replication strategies that distribute the full state (RS3, RS6) are
used as a reference.

The workloads can be mapped to real data and use cases in IT systems:

W1 Represents uses case were data is read daily and updated once per week'?, e.g.
tours in a logistic company that change in average once per week and are read once
every day to calculate the tour and output the tour plans for the drivers.

W2 Represents the personal user information (containing a personal text, interests,
etc.) in an online application. These data are read very infrequently and changed
even more infrequently.

W3 Represents the contact information (containing a telephone number, e-mail address,
etc.) inside a company portal (e.g. TISS for TU Wien). These data are read
infrequently and rarely changed.

W4 Represents the personal information of an employee (containing a description of
experience, interests, etc.) inside the IT system of a company. These data are used
by the human resources department to regularly create promotional material.

W5 Represents the user information of a customer in an e-commerce platform where
the ordering address changes for every 19th order.

W6 Represents the personal user information (containing a personal text, interests,
etc.) in an online application. These data are read very infrequently and changed
even more infrequently. Data is stored in structural form and a change of 50%
represents the change of the personal text.

Most real use cases are more read-intensive than the ratio of 99.5/0.5 and are therefore
not covered by these workloads (e.g. personal data like the name of a lecturer in the IT
system of TU Wien is read very frequently but rarely changed). Because the read/write
ratio of 99.5/0.5 only leads to 90 updates per simulation run (while leading to 19.000
requests), a more read-intensive ratio would lead to hardly any write operations (which
decreases the significance of the results) or would extend the time for a simulation run
enormously. Test showed that the results of simulation runs with a more read-intensive
ratio behave similar®. The read/write ratio of 99.5/0.5 can therefore be considered as
“read/write ratio of 99.5/0.5 or higher”.

12" Data that changes weekly and is read daily would actually having a read /write ratio of 1/5. Considering

holidays and other exceptional cases, a read/write ratio of 1/4 is assumed.

13 The results are more significant but follow the same trend.

103

6.

SIMULATION

104

6.3 Execution

The final simulation was executed once with 40 independent simulation runs. In con-
sultation with the representatives of the IT system of TU Wien, the Java EE client
implementation and the Ruby on Rails server implementation were used because this
setting provides most information to them.

This section provide insights in the execution of the simulation runs. Subsection 6.3.1
describes the environment where the simulation was executed, Subsection |6.3.2 presents
the concrete process how individual simulation runs where executed and Subsection |6.5.3
describes which verification processes were performed to ensure the correctness of the
results.

6.3.1 Environment

The simulation was performed in an isolated environment with no access to the internet
or other WANs. The setup consisted of four HP DL380 servers of the sixth generation
with two XEON CPUs and 72 GByte of RAM each and a single MacBook Pro (Retina,
13-inch, Early 2015) which are connected over Gigabit Ethernet. Figure 6.5 illustrates
how the components viz. the Docker containers were distributed over the machines.

server 1 server 2 server 3 server 4 MacBook
client server executer message controller

broker

N

Me—
NTP
server

N~

Figure 6.5: Structure of the environment where the simulation was performed

Client and server represent the system under test and therefore run on independent
machines. To ensure accuracy of the execution of client-side requests and server-side
updates, the executer also runs on an independent machine. Because the NTP server
utilizes only few resources it was executed on the same machine as the message broker.
The controller manages the process but implements no time-critical operations. Therefore,
it was executed on the MacBook which has the lowest performance of all machines. The
execution of the controller on a desktop machine also enabled better monitoring of the
simulation progress. The MacBook also stored the database which persists the results of
the simulation runs.

6.3. Execution

6.3.2 Procedure of the Simulation

To ensure the isolation and reproducibility of particular simulation runs, the whole
simulation environment was reset after each simulation run. In order to do so, each
simulation run consisted of the following four steps:

1.

Restart: Restart of all components by restarting the Docker containers (including
a wait phase until all components are started). This includes the client, server and
message broker.

. Warm-up for push-based replication: Execution of a test set with 250 reads

and 50 writes with RS3.

. Warm-up for pull-based replication: Execution of a test set with 250 reads

and 50 writes with RS6.

Execution: Execution of the real workload with a particular replication strategy
by the procedure described in Subsection |6.1.5.

The procedure was scripted with shell-scripts that access the RESTful webservices of the
controller and directly restarted the Docker containers on the remote machines.

6.3.3 Verification

To ensure the correctness of the implemented replication processes and the measured
values, several verification processes were performed before and during the simulation:

Manuel observations: The behavior of the replication strategies was observed
prior to the final simulation runs based on detailed logging of all processes with
simple test sets. These observations provide deep insights in the internal processes
and their correct behavior.

System tests: The simulation environment provides a test suite with approxi-
mately 100 system tests for the server and another approximately 100 system tests
for the client which cover all replication processes and all processes performed by the
controller. It ensures the correctness of the implementations and the compatibility
of the Java and of the Ruby version.

Analytical examination: The analytical examination in Section |5.2 provided an
estimation of the expected values. To ensure the correctness of the implementation,
results of the simulation were compared with these estimated values.

Influence of network monitoring: The simulation environment includes a toggle
to disable the monitoring of bandwidth consumption. Prior to the final simulation
runs, the simulation environment was tested with and without network monitoring
to ensure that the monitoring mechanism has no influence on the measurement of
latencies.

Warm-up phases: The warm-up phases of the application servers and the message
broker were observed within prior test runs. The results of these tests provided the
basis for the warm-up phases described in Subsection [6.3.2.

105

6. SIMULATION

e Clock deviation: The accuracy of clock synchronization was ensured during the
simulation by logging of the deviation of the client-side clock and the server-side
clock during all simulation runs. The results are presented in Figure 6.6. The
absolute value of the mean deviation was 0.128ms.

10000 10000

1000 1000
€] €
3 3

8 100 8 100

10 10

0 1000 2000 3000 4000 0 500 1000 1500 2000
deviation deviation
(a) client-side clock (b) server-side clock

Figure 6.6: Deviation of clock synchronization in logarithmic scale (in microseconds)

[Watlh)] stated that NTP provides only an accuracy of 1 to 100 milliseconds. It
must be assumed that the better performance measured during the simulation is
caused by the use of NTP in a local and isolated environment with short paths
from the NTP server to the other components.

e Delay of workload execution: The deviation of the planned execution of opera-
tions to the real execution (delay) was logged during the final simulation. Figure 6.7
illustrates the deviation. It shows that the mean deviation was 0.16ms.

°
°
0.6

< o
IS 3
[)

delay in ms
o
w

<
)

o

request update
operation

Figure 6.7: Delay of the execution of operation

106

6.4. Results

6.4 Results

The data measured during the simulation was evaluated inside the database, the Angular-
based user interface and further processed with R4, This chapter presents the results of
the evaluation and their interpretation based on the quantitative indicators.

6.4.1 Client-Side Data Access Latency

Client-Side Data Access Latency was measured on the client (see Subsection 6.1.4). Table
6.9 shows the results of all simulation runs (in milliseconds).

RSO RS1 RS2 RS3 RS4 RS5 RS6 RS7

W1 25.04 24.77 5.50 0.01 0.01 2.43 0.01 0.01
W2 25.36 23.51 1.57 0.02 0.01 1.05 0.00 0.01
W3 23.70 22.82 0.38 0.01 0.01 0.36 0.00 0.00
W4 24.34 23.43 1.58 0.00 0.01 1.55 0.01 0.00
W5 - - - 0.01 0.02 - 0.01 0.00
W6 - - - 0.01 0.01 - 0.00 0.01

Table 6.9: Client-Side Data Access Latency

The data show that Client-Side Data Access Latency performed as examined in the
analytical examination in Subsection |5.2.5. It also shows that this latency highly depends
on weather data is read locally or has to be requested from the server. Different to what
was expected during the analytical examination, there is less read latency for RS1 than
for RSO. It was assumed that the access to the cache needs more time than the transfer
of the contents of a data item. In reality, the results showed that read operations in the
cache are faster than the data transfer.

Furthermore, the data show that latencies for replication strategies that access the server
on every request (RS0, RS1) and the ones that use a full replica (RS3, RS4, RS6, RS7)
are independent of the read/write ratio and the size of a change!. It is assumed that
these latencies are always the same, independent of the workload.

The latency of replication strategies which use cache validation (RS2, RS5) depends
on the existence of a data item in the cache. This dependency was already described
in the analytical examination. Table 6.9 shows that read latency increases when data
are changed more often and therefore must be requested more often from the server
as well. Figure 6.8 illustrates how read latency is distributed for RS2 and RS5 and a
Zipf-distributed request access pattern (W2).

4 https://www.r-project.org/| (last checked 26.03.2018)

The deviation of the measured values for RSO and RS1 is attributed to fluctuations in network latency
between client and server.

15

107

https://www.r-project.org/

6. SIMULATION

10000

10000

1000 1000
g g

o 100 Q 100
o o

10 10

loaded from cache requested from server loaded from cache requested from server
(... 1 ms) (>1ms) (... 1 ms) (>1ms)
latency latency
(a) RS2 (b) RS5

Figure 6.8: Distribution of read latency for a Zipf-distributed request access pattern

The better performance of RS5 compared to RS2 can be attributed to the worse level
of consistency of RS5: the cache is invalidated less often and therefore data has to
be requested less often as well. RS2 invalidates its cache for every new version and
(depending on the access pattern) has to request each version from the server as well. RS5
invalidates only once per minute and therefore only has to request the most recent version
after the invalidation. This difference is particularly pronounced with a Zipf-distributed
access pattern, because a small part of the data items changes very often. Figure
shows the latencies for a uniform distributed request access pattern where the difference
is less pronounced.

10000 10000

1000 1000
5 5

o 100 o 100
o o

10 10

loaded from cache requested from server loaded from cache requested from server
(... 1 ms) (>1ms) (... T ms) (>1ms)
latency latency
(a) RS2 (b) RS5

Figure 6.9: Distribution of read latency for a uniformly-distributed request access pattern

108

6.4. Results

6.4.2 Server-Side Data Update Latency

Server-Side Data Update Latency was measured on the server (see Subsection |6.1.4).
Table 6.10 shows the results of all simulation runs (in milliseconds).

RSO RS1 RS2 RS3 RS4 RS5 RS6 RS7
W1 16.12 15.92 21.15 20.48 20.88 26.04 25.10 26.66
W2 15.55 15.43 20.29 21.13 20.83 22.43 23.31 23.86
W3 15.14 14.26 23.66 24.88 23.42 23.59 27.81 27.36

W4 15.65 15.46 20.55 21.09 20.98 22.45 22.88 24.19
W5 - - - 20.82 20.76 - 23.42 21.95
W6 - - - 20.70 21.04 - 23.46 23.15

Table 6.10: Server-Side Data Update Latency

Replications strategies that use no notification mechanism (RS0, RS1) perform updates
with the smallest latency. These replication strategies only perform local write operations
and it was therefore already expected in the analytical examination in Subsection |5.2.4
that they will out-perform the others. Notifications over messaging (RS2, RS3, RS4)
and the filing of changes in a web feed (RS5, RS6, RS7) increase latency. Different to
the results of the analytical examination, updates for Poll-Based replication strategies
take a little longer than for Event-Driven replication strategies. It was expected that the
communication to the message broker for client notifications takes longer than filing a
change as an event in the web feed. In reality, it turned out the other way around.

6.4.3 Bandwidth Consumption

Bandwidth consumption was monitored at four independent points. The particular points
of monitoring and the calculation of total bandwidth consumption were presented in
Subsection 6.1.4. Table 6.11 shows the results of all simulation runs (in KB).

RSO RS1 RS2 RS3 RS4 RS5 RS6 RS7
W1 41,281 26,376 20,124 21,424 21,424 7,855 12,367 12,338
W2 41,280 23,248 4,784 4,517 4,517 2,645 2,972 2,908

W3 41277 22275 671 441 441 807 591 593
W4 41,298 23294 4829 4517 4517 3449 2976 2909
W5 - - - 4517 2670 - 2908 1,337
W6 - - - 4517 3491 - 2905 2,020

Table 6.11: Bandwidth Consumption

109

6. SIMULATION

Table 6.11 shows that most data is transferred when no replication is used (RSO0). It
also shows that bandwidth consumption for Event-Driven and Poll-Based replication
strategies highly depend on the number of server-side update operations. A detailed
evaluation is done based on the characteristics of the replications strategies.

Event-Driven versus Poll-Based

Event-Driven replication strategies transfer more data than Poll-Based replication strate-
gies. This is due to the implementation of Event-Driven replication strategies with
messaging for which data is transmitted two times: from the server to the message broker
and from the message broker to the client. Table |6.12]illustrates the data transferred
over particular communication channels (in KB)!°.

RS3 RS4
RSO RS1 RS2 RS3 RS4 RS5
W1 6,181 15242 21424 6,181 15242 21,424
W2 1,307 3210 4517 1307 3210 4517

W3 132 309 441 132 309 441
W4 1,307 3,210 4,517 1,307 3,210 4,517
W5 1,307 3,210 4,517 383 2,286 2,670
W6 1,307 3,210 4,517 794 2,697 3,491

Table 6.12: Comparison of bandwidth consumption for Event-Driven and Poll-Based
replication strategies

The table indicates that the messages sent from the message broker to the client are
larger than the messages sent from the server to the message broker on which they are
based on. This observation is attributed the specific behavior of the AMQP protocol and
was not further analyzed.

The observation that Poll-Based replication strategies transfer less data than Event-Driven
replication strategies can be considered a special case of this simulation and the chosen
parameters. Poll-Based replication strategies were optimized for minimal bandwidth
consumption and a comparison is therefore not representative. It is assumed that Poll-
Based replication strategies would transfer as much data as Event-Driven replication
strategies (by whom the consumed bandwidth is independent of other parameters) or
even more.

16 The data are results of twelve independent simulation runs. It is conspicuous that the data transfer of

simulation runs that use the same number of updates is constant.

110

6.4. Results

Full State versus State Difference

The transmission of state differences decreases the transferred data compared to the
transmission of the full state. The decrease is proportionally lower than the change
of content within a data item. This observation is attributed to the overhead of the
used communication protocols and the metadata of the replication process (e.g. from
AMQP and Atom) which is independent of the size of the content. Table shows the
percentage of change in data and the changes in the transferred data (in KB).

Changes RS3 RS4 % RS3 RS4 %
W2 100% 4,517 4,517 100.00 2,972 2,908 97.85
W6 50% 4,517 3,491 77.29 2,905 2,020 69.54
W5 10% 4,517 2,670 59.11 2,908 1,337 45.98

Table 6.13: Comparison of bandwidth consumption for change distribution by full state
or state differences

Cache Validation

Cache Validation (RS1) requires a request to the server on every client-side data access.
The response contains only data when the data item changes in the server-side data
store. This leads to a decrease of the consumed bandwidth compared to the use of RSO
from approximately 41MB to approximately 25MB. Figure shows the relation of the
transferred data when RS0 and RS1 are used with W1 and W3.

40,000 40,000

30,000

30,000

20,000 20,000

bandwidth consumption (in KB)
bandwidth consumption (in KB)

10,000 10,000
0 0
RSO RSH1 RSO RS1
replication strategy replication strategy
(a) write-intensive workload (W1) (b) write-intensive workload (W2)

Figure 6.10: Impact of the use of a cache on bandwidth consumption

Figure shows that the bandwidth consumption varies for particular read /write ratios
from approximately 22MB to approximately 26MB. It was assumed that the variation of
the read/write ratio from 1/4 to 1/199 would influence bandwidth consumption even more.

111

6.

SIMULATION

112

Therefore, it must be concluded that most bandwidth is consumed by the fundamental
communication and the content of the data item viz. the “real” data (1000 Bytes) only
represents a small part of the total bandwidth consumption.

DS1 DSs2 DS3 DS4

data set

25,000

20,000

15,000

10,000

5,000

bandwidth consumption (in KB)

Figure 6.11: Bandwidth consumption of RS1 with different workloads

6.4.4 Consistency

Consistency was measured as the time it takes from a server-side change until the
notification of the client (see Subsection 6.1.4). Table 6.14 shows the results of all
simulation runs (in milliseconds).

RSO RS1 RS2 RS3 RS4 RS5 RS6 RS7

W1 - - 16 16 16 31,709 31,705 31,697
W2 - - 16 16 16 30,633 30,525 30,379
W3 - - 19 20 18 26,009 27,032 26,504
W4 - - 16 17 17 30,469 30,479 30,351
W5 - - - 16 16 - 30,403 30,440
W6 - - - 16 16 - 30,400 30,405

Table 6.14: Time until a client was notified about a server-side change

The data shows that the duration of inconsistencies mainly depends on the used no-
tification mechanism, which corresponds to the results of the analytical examination.
Event-Driven replication strategies notify the client on average in less than 20ms whereas
the notification for Poll-Based replication strategies takes on average about 30 seconds.
This timespan depends on the interval in which the client reads the web feed (which was
set to one minute in the simulation). The time until a client is notified with Poll-Based

6.4. Results

replication strategies takes between some milliseconds (if the change was performed
directly before the web feed is read) and 60 seconds (if the change was performed directly
after the last time the web feed was read). Figure 6.12/ shows the times measured for
each update operation for RS6 and W1.

60,000
50,000
40,000

30,000

time in ms

20,000

10,000

0 1000 2000 3000 4000
update

Figure 6.12: Consistency per update operation for RS6 (with W1)

Furthermore, Table 6.14 also shows that the measured times are independent of the
read/write ratio and the size of a change. It is therefore assumed that these times are
always the same, independent of the scenario. The deviation for RS3 is attributed to
the small number of change and the small number of data points. This is also evident in

Figure 6.13| which shows the times measured for each update operation for RS6 and W3.

60,000

50,000

40,000

30,000

time in ms

20,000

10,000

0 25 50 75
update

Figure 6.13: Consistency per update operation for RS6 with a workload with few update
operations (W3)

113

6.

SIMULATION

114

Figure |6.13| also shows a gap in the curve. This is attributed to the fact that a little
more than three update operations were executed per synchronization and the point
in time were an update operation was performed changed. Update operations were
executed approximately, but less than every 20 seconds whereas the synchronization job
ran every 60 seconds. Before the gap, update operations were performed directly before
the synchronization. After the gap, update operations were performed directly after the
synchronization.

6.4.5 Summary

A final grading of the simulation results is presented in Table [6.15.

RSO | RS1 | RS2 | RS3 | RS4 | RS5 | RS6 | RS7

Client-Side Data
Access Latency

- + ++ | ++ |+ ++ | ++

Server-Side Data

Update Latency T o) B } - } -
Bandwidth

Consumption a B T + + (++) (+) (+)
Consistency ++ ++ + + + - - -

Table 6.15: Grading of the replication strategies based on the results of the simulation

Although efforts were made to find realistic values for the parameters to base the
simulation on realistic assumptions, it must be assumed that the validity of the grading
is limited to the described assumptions and the chosen parameter values. This applies
in particular for the grading of the bandwidth consumption for Poll-Based replication
strategies (RS5, RS6, RS7) because they were optimized for the given workload.

The next chapter contains the final evaluation of the replication strategies. It also
provides an evaluation of the dependencies and trade-offs between the measured values
of particular quantitative indicators.

CHAPTER

Evaluation

The simulation shows that each replication strategy is advantageous for particular
quantitative indicators, independent of the workload used. Results for different workloads
show that the measured values vary within certain parameters but the overall ranking
remains constant. Figure 7.1 presents the results of the simulation'. The size of a bubble
indicates the transferred data. The color of a bubble the implemented consistency model.

30
. strict consistency
25 RS6 eventual consistency with direct notifications via messaging
RS5
RS7) I I .
RS4 I:' eventual consistency with indirect notifications via web feeds
> 2 RS2
= RS3
>
(&)
3 15
©
2
3 10
5
0
-5 0 5 10 15 20 25 30 35

read latency (ms)

Figure 7.1: Results of the simulation

! Results of simulation runs with workload W5 are illustrated in the figure. Because RS0, RS1, RS2 and

RS5 were not executed with this workload, the results of W1 are used. The workloads differ only in the
percentage of content changed which does not affect the results for these replication strategies.

115

7. EVALUATION

116

Figure 7.2 considers only eventually consistent replication strategies to highlight their
behavior.

24

236 ﬂ eventual consistency with direct notifications via messaging
@ |:| eventual consistency with indirect notifications via web feeds

23

225
(2]
£
P 22
c
2
o 21,5
2
= 21
20
19,5
0,5 0 0,5 1 1,5 2

read latency (ms)

Figure 7.2: Results of the simulation for eventually consistent replication strategies

The figures indicate that there exist trade-offs between particular quantitative parameters.
These trade-offs are described in detail in Section |7.1. In addition to the quantitative
indicators, the analytical evaluation examined qualitative indicators based on [ISO-25010].
Section |7.2 summarizes the findings for quantitative and qualitative indicators based on
the general characteristics of replication processes. The concluding section summarizes
all findings and presents an evaluation of the replication strategies.

7.1 Trade-offs

The results of the simulation indicate three trade-offs between the quantitative parameters.
These trade-offs are discussed in the subsequent subsections.

7.1.1 Read Latency to Write Latency

There is a trade-off between read latency and write latency. The simulation showed that
strictly consistent replication strategies have a high read latency and a low write latency
while eventually consistent replication strategies have a low read latency and a high write
latency. This is attributed to the implementation of the replication strategies: strictly
consistent strategies include a request to the server on every access of a data item (which
takes a lot of time) while eventually consistent strategies use an asynchronous approach.
It is assumed that replication with synchronous notifications would also ensure a low read
latency with an even higher write latency (because the server has to wait until all clients

7.2. Evaluation based on Replication Characteristics

are successfully notified) while ensuring strict consistency. It can be concluded that
there is a trade-off between read latency and write latency, depending on the notification
mechanism used and independent of the implemented consistency model.

7.1.2 Consistency to Read Latency

[Adal2] proposes that there is a trade-off between consistency and latency in IT systems
without network partitioning. The simulation indicates the same. Replication strategies
that provide strict consistency (RS0, RS1) have a higher read latency.

7.1.3 Consistency to Bandwidth Consumption

The results of the simulation indicate a trade-off between consistency and the consumed
bandwidth (strict latency leads to a higher bandwidth consumption). This trade-off is
conspicuous for Poll-Based replication strategies where the time of inconsistencies can be
controlled by the read interval of the client. Shorter read intervals therefore directly lead
to more bandwidth consumption.

7.2 Evaluation based on Replication Characteristics

The start of the thesis was the description of universal characteristics of replication
processes, described in Section |2.1. These characteristics formed the basis for the
selection of the concrete replication strategies. The findings of the analytical evaluation
and the simulation can be attributed to these characteristics. The following subsections
summarize findings for specific characteristics. Additionally, the use of synchronous and
asynchronous notification mechanisms is discussed in Subsection |7.2.4.

7.2.1 Change Distribution

Replication strategies which distribute changes by state differences transfer less data than
replication strategies that distribute the full state. The amount of saved transfer data is
less than the actual change within the data item. The disadvantage of these replication
strategies is the increased complexity of the implementation. They are therefore mainly
advantageous in environments in which the network bandwidth is limited or if data items
are very large.

The use of invalidation notifications was only examined in combination with caches. The
evaluation of replication strategies that use caches is performed in Subsection |7.2.35.

7.2.2 Replica Reaction

Server-driven notifications (used for Event-Driven replication strategies) and periodic

polling (used for Poll-Based replication strategies) ensure only eventual consistency.

Server-driven notifications with messaging provide a better degree of consistency. The
simulation showed that clients are notified in less than 20ms. Poll-Based replication

117

7. EVALUATION

118

2

strategies are advantageous from a software architectural point of view because they need
no central component and allow clients to act independently. However, the Atom-based
implementation of Poll-Based replication strategies presented in this thesis cannot be
recommended because of the insufficient availability of tools in the area of Atom-based
web feeds. Therefore, the use of Event-Driven replication strategies is proposed over the
use of Poll-Based replication strategies.

Polling on each request (used for Cache Invalidation) ensures strict consistency. As
described in Section |7.1, strict consistency increases the latency of read operations on the
client-side and of bandwidth consumption. The implementation of Cache Invalidation
with RESTful webservices and ETags can easily be implemented in environments that
already use RESTful webservices. It is therefore advantageous regarding implementation
costs compared to the other replication strategies which require the introduction of
complex technologies and tools.

7.2.3 Cache versus Full Replica

Replication strategies which use a full replica ensure faster read operations on the client-
side because data is stored locally. This increases fault-tolerance and enables clients
to perform queries over all data items locally as well. Replication strategies that use
caches need less space on the local data storage’. The disadvantage of these replication
strategies is the increased read latency when a data item has to be requested from the
server which depends on the read /write ratio and the data access pattern. The simulation
showed no differences in consistency of these two types of replication strategies. Caches
are therefore mainly advantageous for environments where the client-side data storage is
limited, or the total size of data is very large.

7.2.4 Synchronous versus Asynchronous

The use of asynchronous notification mechanisms enables loose coupling and was therefore
used for replication strategies which use server-driven notifications and periodic polling.
It also increases the fault-tolerance of the clients. Asynchronous communication generally
decreases analyzability and tracing because the system state cannot be monitored by a
single application but must be monitored from a system perspective.

7.3 Final Conclusions

The evaluation indicates that particular replication strategies are suited for the following
cases of application:

1. RSO - No Replication is easy to implement and therefore often used in I'T systems.
When there are no issues related to read latency or bandwidth consumption, it

Especially when they use local invalidation processes (e.g. based on time-to-live) as well.

7.3. Final Conclusions

represents a sufficient solution and there is no need to introduce replication processes
into the IT system.

2. RS1 - Cache Validation is an optimization of RSO to decrease read latency and
bandwidth consumption.

3. RS2 - Event-Driven Cache Invalidation is advantageous if the storage space
on the client is limited?.

4. RS3 - Event-Driven Replication seems to be the most suitable replication
strategy for most loosely coupled IT systems if there are no specific requirements.

5. RS4 - Event-Driven Delta Replication is advantageous if the network band-
width is limited.

RS5, RS6 and RS7 cannot be recommended because of the insufficient availability of
tools in the area of Atom-based web feeds. Generally, RS5 behaves similar to RS2, RS6
behaves similar to RS3 and RS7 behaves similar to RS4. Therefore, they are suitable for
the same cases of applications.

Figure|7.3|illustrates a process that can be used to find the appropriate replication strategy
for a single application and use case. Because replication affects multiple components of
an IT system, it must be assumed that replication processes are introduced for an entire
system on the level of the system-wide architecture rather than for a single application.
Changes in the system-wide architecture have to be aligned with all components in the
system and their specific requirements. Furthermore, organizational aspects (like the
know-how of the employees) have to be considered as well. Therefore, it is not possible to
make a general recommendation. The evaluation presented in this thesis may be used as
a supportive guideline to determine how replication can be implemented in an IT system.

preferably in combination with local cache invalidation mechanisms

119

7. EVALUATION

Figure 7.3: Process suggested to find the appropriate replication strategy for a single

choose replication strategy

is latency or bandwidth
consumption a concern?

is strict consistency
crucial?

does the client
provide enough storage
space to saveall
dataitems?

is the network
limited or are the data items
very large?

use RS3
Event-Driven Replication

application and use case

120

yes

use RSO
No Replication

use RS1
Cache Validation

use RS2
Event-Driven Cache Invalidation

use RS4
Event-Driven Delta Replication

CHAPTER

Summary

This thesis provided an evaluation of how replication can be performed in loosely coupled
systems and described concrete processes to implement it. These processes and their
general characteristics were examined in an analytical evaluation and in a simulation.
To the authors knowledge, there is no comparable evaluation of replication in loosely
coupled systems available. Thus, a general approach was used to cover a wide scope.
Compared to a more specific and detailed approach for particular replication strategies or
use cases, the chosen approach provides less precision in favor of an extensive overview.

8.1 Results

This thesis proposes the use of an Event-Driven Architecture to implement replication.
It presented concrete implementations of replication strategies based on messaging (push-
based) and Atom-based web feeds (pull-based). Furthermore, Cache Validation with
RESTful webservices and ETags was used.

Concrete characteristics, benefits and downsides of the replications strategies was ex-
amined by the quality characteristics of the ISO 25010 standard and in a simulation
with different workloads which represent typical scenarios. The simulation indicates
that performance characteristics of the replication strategies (e.g. low read latency) are
independent of the replication scenario.

The results are summarized and graded by the means of a comparison of the benefits and
downsides of the replication strategies. A process to identify an appropriate replication
strategy for a single use case was suggested during the evaluation. The work indicates
that replication by push-based notification of the full state of a data item with a publish-
subscribe message queue can be used for most use cases.

121

8.

SUMMARY

122

1

8.2 Future Work

In the course of the work, it turned out that there is little difference between the presented
replication strategies and Event-Driven Architectures. Most replication strategies actually
base on concepts of Event-Driven Architectures. The replication strategies proposed in this
thesis use events from a technical perspective like order.create and order.modify.
Event-Driven Architectures mostly focus on a business perspective [Fow06] and therefore
use business events like order or cancellation which are able to implement the same
processes. The replication strategies presented in this thesis can therefore be considered a
special case of Event-Driven Architectures for the specific case of replication. The concept
of an Event-Driven Architecture does not require the use of replication but it is assumed
that many systems that implement this concept use replication as well. Research on the
use of replication in loosely coupled systems and its use in Event-Driven Architectures
is only briefly addressed in recent literature about Microservices [New15| [Woll5]. To
the authors knowledge, there is no examination in this area available as well. Further
research how replication is used in existing systems that implement an Event-Driven
Architectures would therefore be desirable.

Our selection of replication strategies bases on a bottom-up approach which focuses
on general characteristics of replication processes. The bottom-up approach did not
consider technologies which use a totally different paradigm (e.g. Apache Kafka' which
uses Event-Sourcing [Fow17]). An evaluation based on a top-down approach would fill
the gap. This requires a detailed survey of how replication is currently used in existing
loosely coupled IT systems as well.

The general approach used in this thesis required the use of a custom simulation envi-
ronment which lead to several general assumptions on the concrete implementation of
replication strategies and the workload used in the simulation. Therefore, this thesis
provides only an indication of the behavior of the presented replication strategies in real
systems. Additionally, long-time analysis and indicators in the area of maintainability
could not be covered or were only examined analytically. Evaluations of the use of the
presented replication strategies or similar replication processes in real IT systems under
real workload would provide further insides into the topic.

https://kafka.apache.org/| (last checked 26.03.2018)

https://kafka.apache.org/

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21

List of Figures

The logical organization of different kinds of copies of a data store |[Pie(2] 8
Permanent replicas and their interactions 9
Read-only initiated replicas and their interactions 9
Example of the use of the Last-Modified HI'TP header/. 23
Example of the use of the ETag HT'T'P header, 23
Example of the use of web feeds| 24
General structure of communication via messaging) 27
General structure of communication via a point-to-point channel 28
General structure of communication via a publish-subscribe channel . . . 29
Example of messaging with RabbitMQ|. 31
Structure of the use casel Lo 34
Structure of RSO 37
Procedure of a request with RSO} 38
Procedure of an update with RSO|. 39
Structure of RS1! 40
Procedure of a request with RS1 in Scenario 1, 41
Procedure of a request with RS1 in Scenario 2. 42
Procedure of a request with RS1 in Scenario 3, 43
Procedure of a request with RS1 in Scenario 4 43
Event-Driven replication with RabbitMQ 45
Structure of RS2 46
Procedure of a request with RS2 in Scenario 1| 47
Procedure of a request with RS2 in Scenario 2. 47
Procedure of an update with RS2 48
Structure of RS3l 49
Procedure of a request with RS3 49
Procedure of an update with RS3/. 50
Procedure of an update with RS4/ 51
Structure of linked web feeds L. 53
Structure of RSH 54
Procedure of an update with RS5. 55

4.22

0.1

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13

7.1
7.2
7.3

124

Structure of RS6
Communication channels between the components

Structure of the simulation environment!
Points at which events are logged 0oL
Points at which data transfer is monitored
Probability density function of a Zipf-distribution with exponent s = 1. .
Structure of the environment where the simulation was performed
Deviation of clock synchronization in logarithmic scale (in microseconds)
Delay of the execution of operation|
Distribution of read latency for a Zipt-distributed request access pattern .
Distribution of read latency for a uniformly-distributed request access pattern
Impact of the use of a cache on bandwidth consumption
Bandwidth consumption of RS1 with different workloads
Consistency per update operation for RS6 (with W1)
Consistency per update operation for RS6 with a workload with few update
operations (W3)| L

Results of the simulation.
Results of the simulation for eventually consistent replication strategies
Process suggested to find the appropriate replication strategy for a single
application and use case

o6

68

89
94
95
98
104
106
106
108
108
111
112
113

113

115
116

120

2.1

3.1
3.2
3.3

4.1
4.2
4.3

4.4
4.5
4.6
4.7

5.1
0.2
9.3

0.4
9.9
5.6
0.7
9.8
9.9
0.10
5.11
0.12
5.13
0.14
5.15
0.16
5.17
0.18

List of Tables

Types of Replica Reaction|

HTTP methods and their effect on the order resource
HTTP methods and their effect on a collection of orders
Supported features of messaging standards

Appropriate combinations of change distribution and replica reaction| . . .
Caches: appropriate combinations of change distribution and replica reaction
Full replica: appropriate combinations of change distribution and replica
reaction! L L L e e e e
Replication strategies and their characteristics
HTTP methods needed for synchronous requests|
Routing keys for Event-Driven replication
Concrete implementations of the replication strategies|

Description of operations performed on client-side requests on client and server
Grading of Resource Utilization of client-side requests
Description of operations performed on server-side updates on client and
SEIVErl . ..o
Grading of Resource Utilization of server-side updates
Calculation of storage utilized on client and server|
Grading of Resource Utilization of storage on client and server|
Grading of Maturity of the replication strategies|
Grading of Awvailability of the replication strategies|
Grading of Fault Tolerance of the replication strategies/.
Grading of Authenticity of the replication strategies|
Grading of Confidentiality and Integrity of the replication strategies
Grading of Non-Repudiation and Accountability of the replication strategies
Grading of Authenticity of the replication strategies
Grading of Analyzability of the replication strategies
Grading of Modifiability of the replication strategies
Grading of Testability of the replication strategies
Grading of Adaptability of the replication strategies.
Grading of Installability of the replication strategies

11

21
21
30

35
36

36
36
37
45
99

62
63

63
63
64
64
67
68
69
70
71
72
72
74
75
76
77
78

0.19
5.20
0.21
0.22
0.23
0.24
9.25

6.1
6.2
6.3
6.4
6.5

6.6
6.7
6.8
6.9
6.10
6.11
6.12

6.13

6.14
6.1

126

Grading of Replaceability of the replication strategies/.
Description of parameters
Grading of Client-Sitde Data Access Latency
Grading of Server-Side Data Update Latency
Calculation of Bandwidth Consumption,
Grading of Bandwidth Consumption|
Grading of Consistency|

Procedure of a single simulation run|
Technologies used for the implementation of client and server,
Technologies used for the implementation of the simulation environment| .
Read/write ratios of the benchmarks presented in2.4.2
Read /write ratios published for existing websites (used under the assumption
that every GET request represents a read operation and every POST requests
represents a write operation)
Read/write ratios used in the simulation
Web feed lengths used in the simulation
Workloads used in the simulation
Client-Side Data Access Latency|
Server-Side Data Update Latencyl.
Bandwidth Consumption|
Comparison of bandwidth consumption for Event-Driven and Poll-Based
replication strategies o
Comparison of bandwidth consumption for change distribution by full state
or state differences o
Time until a client was notified about a server-side change
Grading of the replication strategies based on the results of the simulation

78
81
82
83
84
85
86

93
95
96
100

100
100
102
102
107
109
109

110
111

112
114

[ATG]

[Ada02]

[Adal2]

[A1110]

[Ami02]

[Amz02]

[Bae97]

[Bahl1]

[Bail2]

Bibliography

Oracle. Repository guide - cache invalidation ser-
vice. https://docs.oracle.com/cd/E41069 |
Ol/Platform.11-0/ATGRepositoryGuide/html/
sl0l8cacheinvalidationservice0l.html, [last checked 26.03.2018],
2014.

Lada A Adamic and Bernardo A Huberman. Zipf’s law and the internet.
Glottometrics, 3(1):143-150, 2002.

Daniel Abadi. Consistency tradeoffs in modern distributed database system
design: Cap is only part of the story. Computer, 45(2):37-42, 2012.

Subbu Allamaraju. Restful web services cookbook: solutions for improving
scalability and simplicity. " O’Reilly Media, Inc.", 2010.

Yair Amir and Ciprian Tutu. From total order to database replication.
In Distributed Computing Systems, 2002. Proceedings. 22nd International
Conference on, pages 494-503. IEEE, 2002.

Cristiana Amza, Emmanuel Cecchet, Anupam Chanda, Alan L Cox, Sameh
Elnikety, Romer Gil, Julie Marguerite, Karthick Rajamani, and Willy
Zwaenepoel. Specification and implementation of dynamic web site bench-
marks. In 5th Workshop on Workload Characterization, number LABOS-
CONF-2005-016, 2002.

Michael Baentsch, Lothar Baum, Georg Molter, Steffen Rothkugel, and Peter
Sturm. Enhancing the web’s infrastructure: From caching to replication.
IEEE Internet Computing, 1(2):18-27, 1997.

Arshdeep Bahga and Vijay Krishna Madisetti. Synthetic workload generation
for cloud computing applications. Journal of Software Engineering and
Applications, 4(07):396, 2011.

Peter Bailis, Shivaram Venkataraman, Michael J Franklin, Joseph M Heller-
stein, and Ton Stoica. Probabilistically bounded staleness for practical partial
quorums. Proceedings of the VLDB Endowment, 5(8):776-787, 2012.

127

https://docs.oracle.com/cd/E41069_01/Platform.11-0/ATGRepositoryGuide/html/s1018cacheinvalidationservice01.html
https://docs.oracle.com/cd/E41069_01/Platform.11-0/ATGRepositoryGuide/html/s1018cacheinvalidationservice01.html
https://docs.oracle.com/cd/E41069_01/Platform.11-0/ATGRepositoryGuide/html/s1018cacheinvalidationservice01.html

[Ban97]

[Ber13]

[Ber13b]

[Ber14]

[Ber14b]

[Bli03]

[Bor05]

[Bre00]
[Brel2]

[Bre99]

[Bull4]

[Bus02]

[Bus96]

128

Gaurav Banga, Fred Douglis, Michael Rabinovich, et al. Optimistic deltas
for www latency reduction. In Proc. 1997 USENIX Technical Conference,
Anaheim, CA, pages 289-303, 1997.

David Bermbach, Liang Zhao, and Sherif Sakr. Towards comprehensive
measurement of consistency guarantees for cloud-hosted data storage services.
In TPCTC, pages 32-47. Springer, 2013.

David Bermbach and Jorn Kuhlenkamp. Consistency in distributed storage
systems. In Networked Systems, pages 175-189. Springer, 2013.

David Bermbach and Stefan Tai. Benchmarking eventual consistency: Lessons
learned from long-term experimental studies. In Cloud Engineering (IC2E),
2014 IEEE International Conference on, pages 47-56. IEEE, 2014.

D. Bermbach. Benchmarking, Consistency, Distributed Database Manage-
ment Systems, Distributed Systems, Eventual Consistency:. KIT Scientific
Publishing, 2014.

Johann Blieberger, Bernd Burgstaller, and Bernhard Scholz. Busy wait
analysis. In International Conference on Reliable Software Technologies,
pages 142-152. Springer, 2003.

Behzad Bordbar and Kyriakos Anastasakis. Mda and analysis of web appli-
cations. In International Conference on Trends in Enterprise Application
Architecture, pages 44-55. Springer, 2005.

Eric Brewer. Towards robust distributed systems. In PODC, volume 7, 2000.

Eric Brewer. Cap twelve years later: How the "rules" have changed. Computer,
45(2):23-29, 2012.

Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker. Web
caching and zipf-like distributions: Evidence and implications. In INFO-
COM’99. FEighteenth Annual Joint Conference of the IEEE Computer and

Communications Societies. Proceedings. IEEE, volume 1, pages 126-134.
IEEE, 1999.

Frederik Biilthoff and Maria Maleshkova. Restful or restless—current state of
today’s top web apis. In European Semantic Web Conference, pages 64—74.
Springer, 2014.

Mudashiru Busari and Carey Williamson. Prowgen: a synthetic workload
generation tool for simulation evaluation of web proxy caches. Computer
Networks, 38(6):779-794, 2002.

Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and
Michael Stal. Pattern-oriented software architecture volume 1. 1996.

[CDA]

[Call0]

[Call6]

[Cao98]

[Coo010]

[Cou05]

[Dail2]

[Dhal7]

[EDA]

[Eug03]

[Feil5]

[Fie00]

[Flo09]

Jez Humble. Continous delivery architecture. https://
continuousdelivery.com/implementing/architecture/, [last
checked 26.03.2018].

Tom Callahan, Mark Allman, and Vern Paxson. A longitudinal view of
http traffic. In International Conference on Passive and Active Network
Measurement, pages 222-231. Springer, 2010.

Maria Carla Calzarossa, Luisa Massari, and Daniele Tessera. Workload
characterization: A survey revisited. ACM Computing Surveys (CSUR),
48(3):48, 2016.

Pei Cao and Chengjie Liu. Maintaining strong cache consistency in the world
wide web. IEEFE Transactions on Computers, 47(4):445-457, 1998.

Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and
Russell Sears. Benchmarking cloud serving systems with ycsb. In Proceedings
of the 1st ACM symposium on Cloud computing, pages 143-154. ACM, 2010.

George F Coulouris, Jean Dollimore, and Tim Kindberg. Distributed systems:
concepts and design. pearson education, 2005.

Robert Daigneau. Service Design Patterns: fundamental design solutions
for SOAP/WSDL and restful Web Services. Addison-Wesley, 2011.

Ajinkya Dhamnaskar. Rabbitmq und events. https:
//ajinkya-dhamnaskar.github.10/2017/04/06/
event-based-replication.html, [last checked 26.03.2018], 2017.

Inc. Gartner. Event-driven architecture (eda) in the gart-
ner it glossary. https://www.gartner.com/it-glossary/
eda-event-driven—-architecture, [last checked 26.03.2018].

Patrick Th Eugster, Pascal A Felber, Rachid Guerraoui, and Anne-Marie
Kermarrec. The many faces of publish/subscribe. ACM computing surveys
(CSUR), 35(2):114-131, 2003.

Dror G Feitelson. Workload modeling for computer systems performance
evaluation. Cambridge University Press, 2015.

Roy T Fielding and Richard N Taylor. Architectural styles and the design
of network-based software architectures, volume 7. University of California,
Irvine Doctoral dissertation, 2000.

Daniela Florescu and Donald Kossmann. Rethinking cost and performance
of database systems. ACM Sigmod Record, 38(1):43-48, 2009.

129

https://continuousdelivery.com/implementing/architecture/
https://continuousdelivery.com/implementing/architecture/
https://ajinkya-dhamnaskar.github.io/2017/04/06/event-based-replication.html
https://ajinkya-dhamnaskar.github.io/2017/04/06/event-based-replication.html
https://ajinkya-dhamnaskar.github.io/2017/04/06/event-based-replication.html
https://www.gartner.com/it-glossary/eda-event-driven-architecture
https://www.gartner.com/it-glossary/eda-event-driven-architecture

[Fow02]

[Fow06]

[Fow08]

[Fow11]

[Fow12]

[Fow14]

[Fow17]

[Fow18]

[Gar03]

[Giel5]

[Gil02]

[Gil07]

[Gra92]

[Gwe96]

130

Martin Fowler. Patterns of enterprise application architecture. Addison-
Wesley Longman Publishing Co., Inc., 2002.

Martin Fowler. Focusing on events. https://martinfowler.com/
eaaDev/EventNarrative.html, [last checked 26.03.2018], 2006.

Martin Fowler. Test double. https://martinfowler.com/bliki/
TestDouble.html|, [last checked 26.03.2018], 2008.

Martin Fowler. Tolerant reader. https://martinfowler.com/bliki/
TolerantReader.html, [last checked 26.03.2018], 2011.

Martin Fowler. Test pyramid. https://martinfowler.com/bliki/
TestPyramid.html, [last checked 26.03.2018], 2012.

Martin Fowler. Microservices - a definition of this new architectural
term. https://martinfowler.com/articles/microservices.
html|, [last checked 26.03.2018], 2014.

Martin Fowler. What do you mean by "event-driven"? https://
martinfowler.com/articles/201701-event—driven.html, [last

checked 26.03.2018], 2017.

Martin Fowler. Integration test. https://martinfowler.com/bliki/
IntegrationTest.html, [last checked 26.05.2018], 2018.

Daniel F Garcia and Javier Garcia. Tpc-w e-commerce benchmark evaluation.
Computer, 36(2):42-48, 2003.

Oliver Gierke and Eberhard Wolff. Integration von mi-
croservices — rest Vvs. messaging. https://jaxenter.de/
microservices—-rest-vs—-messaging—-29875, [last checked

26.03.2018], 2015.

Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility
of consistent, available, partition-tolerant web services. Acm Sigact News,
33(2):51-59, 2002.

Phillipa Gill, Martin Arlitt, Zongpeng Li, and Anirban Mahanti. Youtube
traffic characterization: a view from the edge. In Proceedings of the 7th ACM
SIGCOMM conference on Internet measurement, pages 15-28. ACM, 2007.

Jim Gray. Benchmark handbook: for database and transaction processing
systems. Morgan Kaufmann Publishers Inc., 1992.

James Gwertzman and Margo I Seltzer. World wide web cache consistency.
In USENIX annual technical conference, pages 141-152, 1996.

https://martinfowler.com/eaaDev/EventNarrative.html
https://martinfowler.com/eaaDev/EventNarrative.html
https://martinfowler.com/bliki/TestDouble.html
https://martinfowler.com/bliki/TestDouble.html
https://martinfowler.com/bliki/TolerantReader.html
https://martinfowler.com/bliki/TolerantReader.html
https://martinfowler.com/bliki/TestPyramid.html
https://martinfowler.com/bliki/TestPyramid.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/201701-event-driven.html
https://martinfowler.com/articles/201701-event-driven.html
https://martinfowler.com/bliki/IntegrationTest.html
https://martinfowler.com/bliki/IntegrationTest.html
https://jaxenter.de/microservices-rest-vs-messaging-29875
https://jaxenter.de/microservices-rest-vs-messaging-29875

[Hel07]

[Hoh04]

Pat Helland. Life beyond distributed transactions: an apostate’s opinion. In
CIDR, volume 2007, pages 132-141, 2007.

Gregor Hohpe and Bobby Woolf. Enterprise integration patterns: Designing,
building, and deploying messaging solutions. Addison-Wesley Professional,
2004.

[ISO-25010] Systems and software engineering — Systems and software Quality Require-

[Jaio0)

[Jeol2]

[Kar(7]

[Lev01]

[Lou02]

[Men00]

[Nah02]

[New15]

[Ora]

ments and Evaluation (SQuaRE) — System and software quality models. Stan-
dard, International Organization for Standardization, Geneva, CH, March
2011.

Raj Jain. The art of computer systems performance analysis: techniques for
experimental design, measurement, simulation, and modeling. John Wiley &
Sons, 1990.

Myeongjae Jeon, Youngjae Kim, Jeaho Hwang, Joonwon Lee, and Euiseong
Seo. Workload characterization and performance implications of large-scale
blog servers. ACM Transactions on the Web (TWEB), 6(4):16, 2012.

Firat Kart, Louise E Moser, and P Michael Melliar-Smith. Reliable data
distribution and consistent data replication using the atom syndication
technology. In International Conference on Internet Computing, pages 124—
132, 2007.

Mark Levene, José Borges, and George Loizou. Zipf’s law for web surfers.
Knowledge and Information Systems, 3(1):120-129, 2001.

Thanasis Loukopoulos, Ishfaq Ahmad, and Dimitris Papadias. An overview
of data replication on the internet. In Parallel Architectures, Algorithms
and Networks, 2002. I-SPAN’02. Proceedings. International Symposium on,
pages 31-36. IEEE, 2002.

Daniel Menascé, Virgilio Almeida, Rudolf Riedi, Flavia Ribeiro, Rodrigo
Fonseca, and Wagner Meira Jr. In search of invariants for e-business work-
loads. In Proceedings of the 2nd ACM conference on Electronic commerce,
pages 56—65. ACM, 2000.

Eric Nahum. Deconstructing specweb99. In Proceedings of 7th International
Workshop on Web Content Caching and Distribution, 2002.

Sam Newman. Building microservices: designing fine-grained systems.
"O’Reilly Media, Inc.", 2015.

Oracle. Java authentication and authorization service (jaas) ref-
erence guide. https://docs.oracle.com/javase/7/docs/
technotes/guides/security/jaas/JAASRefGuide.html| [last
checked 26.03.2018].

131

https://docs.oracle.com/javase/7/docs/technotes/guides/security/jaas/JAASRefGuide.html
https://docs.oracle.com/javase/7/docs/technotes/guides/security/jaas/JAASRefGuide.html

[Pat11]

[Pie01]

[Pie02]

[RFC-2818]

[RFC-3629)

[RFC-4287]

[RFC-4422]

[RFC-5023)

[RFC-5246]

[RFC-5905]

[RFC-7234]

[RFC-7235]

[Ren12]

[Ric07]

132

Swapnil Patil, Milo Polte, Kai Ren, Wittawat Tantisiriroj, Lin Xiao, Julio
Lépez, Garth Gibson, Adam Fuchs, and Billie Rinaldi. Ycsb++: benchmark-
ing and performance debugging advanced features in scalable table stores.
In Proceedings of the 2nd ACM Symposium on Cloud Computing, page 9.
ACM, 2011.

Guillaume Pierre, Thor Kuz, Maarten Van Steen, and Andrew S. Tanen-
baum. Differentiated strategies for replicating web documents. Computer
Communications, 24(2):232-240, 2001.

Guillaume Pierre, Maarten Van Steen, and Andrew S Tanenbaum. Dynam-
ically selecting optimal distribution strategies for web documents. IEFE
Transactions on Computers, 51(6):637-651, 2002.

E. Rescorla. HTTP Over TLS. RFC 2818, RFC Editor, May 2000.

F. Yergeau. UTF-8, a transformation format of ISO 10646. RFC 3629, RFC
Editor, November 2003.

M. Nottingham and R. Sayre. The Atom Syndication Format. RFC 4287,
RFC Editor, December 2005.

A. Melnikov and K. Zeilenga. Simple Authentication and Security Layer
(SASL). RFC 4422, RFC Editor, June 2006.

J. Gregorio and B. de hOra. The Atom Publishing Protocol. RFC 5023,
RFC Editor, October 2007.

T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol
Version 1.2. RFC 5246, RFC Editor, August 2008.

D. Mills, U. Delaware, J. Martin, J. Burbank, and W. Kasch. Network Time
Protocol Version 4: Protocol and Algorithms Specification. RFC 5905, RFC
Editor, June 2010.

R. Fielding, M. Nottingham, and J. Reschke. Hypertext Transfer Protocol
(HTTP/1.1): Caching. RFC 7234, RFC Editor, June 2014.

R. Fielding and J. Reschke. Hypertext Transfer Protocol (HTTP/1.1):
Authentication. RFC 7235, RFC Editor, June 2014.

Dominik Renzel, Patrick Schlebusch, and Ralf Klamma. Today’s top “restful”
services and why they are not restful. Web Information Systems Engineering-
WISE 2012, pages 354-367, 2012.

Leonard Richardson and Sam Ruby. RESTful web services. "O’Reilly Media,
Inc.", 2007.

[Ric13]

[Ric15]

[Ricl7]

[Ricl7b]

[Rob06]

[SCS]

[SOA]

[San15]

[Scho6]

[Siv07]

[Smi00]

[Stel5]

[Tan07]

Leonard Richardson, Mike Amundsen, and Sam Ruby. RESTful Web APIs:
Services for a Changing World. " O’Reilly Media, Inc.", 2013.

Chris Richardson. Event-driven data management
for microservices. https://www.nginx.com/blog/|
event-driven—-data-management—-microservices/, [last checked

26.03.2018].

Chris Richardson. Pattern: Monolithic architecture. http:
//microservices.io/patterns/monolithic.html, [last checked

26.05.2018].

Chris Richardson. Pattern: Shared database. |http://microservices.

io/patterns/data/shared-database.html) [last checked
26.05.2018].

Tan Robinson. Consumer-driven contracts: A service evo-
lution pattern. https://martinfowler.com/articles/

consumerDrivenContracts.html, [last checked 26.03.2018], 2006.

Self contained systems. |http://scs-architecture.org/index.
html, [last checked 26.03.2018].

Inc. Gartner. Service-oriented architecture (soa) in the gart-
ner it glossary. https://www.gartner.com/it-glossary/
service-oriented-architecture-soa/, [last checked 26.03.2018].

Yamen Sader. Events & microservices. |https://de.slideshare.net/
YamenSader/events-microservices, [last checked 26.03.2018], 2015.

Bianca Schroeder, Adam Wierman, and Mor Harchol-Balter. Open versus
closed: A cautionary tale. In Nsdi, volume 6, pages 1818, 2006.

Swaminathan Sivasubramanian, Guillaume Pierre, Maarten Van Steen, and
Gustavo Alonso. Analysis of caching and replication strategies for web
applications. IEEE Internet Computing, 11(1), 2007.

Wayne D Smith. Tpc-w: Benchmarking an ecommerce solution, 2000.
Guido Steinacker. On monoliths and microservices. https://dev.
otto.de/2015/09/30/on-monoliths—and-microservices/, [last

checked 26.03.2018], 2015.

Andrew S Tanenbaum and Maarten Van Steen. Distributed systems: princi-
ples and paradigms. Prentice-Hall, 2007.

133

https://www.nginx.com/blog/event-driven-data-management-microservices/
https://www.nginx.com/blog/event-driven-data-management-microservices/
http://microservices.io/patterns/monolithic.html
http://microservices.io/patterns/monolithic.html
http://microservices.io/patterns/data/shared-database.html
http://microservices.io/patterns/data/shared-database.html
https://martinfowler.com/articles/consumerDrivenContracts.html
https://martinfowler.com/articles/consumerDrivenContracts.html
http://scs-architecture.org/index.html
http://scs-architecture.org/index.html
https://www.gartner.com/it-glossary/service-oriented-architecture-soa/
https://www.gartner.com/it-glossary/service-oriented-architecture-soa/
https://de.slideshare.net/YamenSader/events-microservices
https://de.slideshare.net/YamenSader/events-microservices
https://dev.otto.de/2015/09/30/on-monoliths-and-microservices/
https://dev.otto.de/2015/09/30/on-monoliths-and-microservices/

[Val09]

[Vog07]

[Vog09]

[Wadll]

[Wat15]

[Web10]

[Wil05]

[Woll5]

[Xul3]

[YCSB]

[Yin99]

[Yu99)

134

Mohammad Hadi Valipour, Bavar AmirZafari, Khashayar Niki Maleki, and
Negin Daneshpour. A brief survey of software architecture concepts and ser-
vice oriented architecture. In Computer Science and Information Technology,
2009. ICCSIT 2009. 2nd IEEE International Conference on, pages 34-38.
IEEE, 2009.

Werner Vogels. Data access patterns in the amazon. com technology platform.
In Proceedings of the 33rd international conference on Very large data bases,
pages 1-1. VLDB Endowment, 2007.

Werner Vogels. Eventually consistent. Communications of the ACM, 52(1):40—
44, 2009.

Hiroshi Wada, Alan Fekete, Liang Zhao, Kevin Lee, and Anna Liu. Data
consistency properties and the trade-offs in commercial cloud storage: the
consumers’ perspective. In CIDR, volume 11, pages 134-143, 2011.

Steve T Watt, Shankar Achanta, Hamza Abubakari, Eric Sagen, Zafer
Korkmaz, and Husam Ahmed. Understanding and applying precision time
protocol. In Smart Grid (SASG), 2015 Saudi Arabia, pages 1-7. IEEE, 2015.

Jim Webber, Savas Parastatidis, and Ian Robinson. REST in practice:
Hypermedia and systems architecture. " O’Reilly Media, Inc.", 2010.

Adepele Williams, Martin Arlitt, Carey Williamson, and Ken Barker. Web
workload characterization: Ten years later. In Web content delivery, pages
3-21. Springer, 2005.

Eberhard Wolff. Microservices: Grundlagen flexibler Softwarearchitekturen.
Dpunkt. verlag, 2015.

Haiyun Xu, Jeroen Heijmans, and Joost Visser. A practical model for rating
software security. In Software Security and Reliability-Companion (SERE-C),
2013 IEEE 7Tth International Conference on, pages 231-232. IEEE, 2013.

Oracle. Yesb wiki: Core workloads. https://github.com/
brianfrankcooper/YCSB/wiki/Core-Workloads, [last checked
26.03.2018].

Jian Yin, Lorenzo Alvisi, Mike Dahlin, and Calvin Lin. Hierarchicalcachecons
istency ina wa n. In Proceedings of the 1999 Usenix Symposium on Internet
Technologies and Systems (USITS’99), 1999.

Haobo Yu, Lee Breslau, and Scott Shenker. A scalable web cache consis-
tency architecture. In ACM SIGCOMM Computer Communication Review,
volume 29, pages 163-174. ACM, 1999.

https://github.com/brianfrankcooper/YCSB/wiki/Core-Workloads
https://github.com/brianfrankcooper/YCSB/wiki/Core-Workloads

[Zip32] George Kingsley Zipf. Selected studies of the principle of relative frequency
in language. 1932.

[Zip49] G.K. Zipf. Human behaviour and the principle of least effort. 1949.

135

	Kurzfassung
	Abstract
	Contents
	Introduction
	Problem Statement
	Motivation
	Aim of the Work
	Methodological Approach
	Structure of the Work

	Related Work
	Replication
	Consistency
	Implementation of Replication on different Layers
	Evaluations and Benchmarks

	Communication Paradigms
	REST - Representative State Transfer
	Web Feeds
	Messaging

	Replication Strategies
	Selection of Replication Strategies
	Synchronous Requests
	Cache Validation
	Event-Driven Replication Strategies
	Poll-Based Replication Stratgies
	Summary

	Analytical Evaluation
	Qualitative Indicators
	Quantitative indicators

	Simulation
	Implementation
	Scenarios and Workloads
	Execution
	Results

	Evaluation
	Trade-offs
	Evaluation based on Replication Characteristics
	Final Conclusions

	Summary
	Results
	Future Work

	List of Figures
	List of Tables
	Bibliography

