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Preface 

Industrial Engineering (IE) as defined by the Institute of Industrial and Systems Engineers 

(IISE) is a field “concerned with the design, improvement and installation of integrated sys-

tems of people, materials, information, equipment and energy. It draws upon specialized 

knowledge and skill in the mathematical, physical, and social sciences together with the prin-

ciples and methods of engineering analysis and design, to specify, predict, and evaluate the 

results to be obtained from such systems”1,2.  The IE body of knowledge3 is represented by 14 

areas, namely: 1) Work Design & Measurement, 2) Operations Research & Analysis, 3) Engi-

neering Economic Analysis, 4) Facilities Engineering & Energy Management, 5) Quality & Reli-

ability Engineering, 6) Ergonomics & Human Factors, 7) Operations Engineering & Manage-

ment, 8) Supply Chain Management, 9) Engineering Management, 10) Safety, 11) Information 

Engineering, 12) Design & Manufacturing Engineering, 13) Product Design & Development, 

and 14) System Design & Engineering.  

Integral aspects of IE as an interdisciplinary field are i) to apply engineering and manage-

ment principles for effective planning, efficient operation, and productive management of a 

socio-technical system4, and ii) to ensure optimal performance dealing with complex decision-

making endeavors, i.e. making an optimal decision when confronted “uncertainty in achieving 

a desired set of functional requirements” 5.  

The emergence of data-driven processes and intelligent entities (artificial intelligence (AI) 

agents, collaborative robots, etc.) raises questions about “Bounded Rationality”, i.e. “a ra-

tional choice that takes into account the cognitive limitations of the decision-maker; limita-

tions of both knowledge and computational capacity”6. In the light of digitalization, Industry 

                                                                 
 
1 IISE, The Industrial Engineering, Body of Knowledge, Institute of Industrial and Systems Engineers, 2019, Available online at https://www.iise.org/De-

tails.aspx?id=43631 (Accessed on 16.07.2019). 
2 In engineering education in German-speaking countries, IE is the most commonly used translation of the term “Wirtschaftsingenieurwesen”. “Pro-

duction Engineering and Management”, “Industrial Engineering and Management” and “Engineering Management” are also interchangeably used 
to refer to IE. 

3 Cf. Footnote 1 
4 Baxter, G., & Sommerville, I. (2011). Socio-technical systems: From design methods to systems engineering. Interacting with computers, 23(1), 4-17. 
5 ElMaraghy, W., ElMaraghy, H., Tomiyama, T., & Monostori, L. (2012), Complexity in engineering design and manufacturing. CIRP annals, 61(2), pp. 

793-814. 
6 Simon, H. A. (1990). Bounded rationality, In Utility and probability. Palgrave Macmillan, London, pp. 15-18. 



 

4.0 and revival of AI, the concept of knowledge and knowledge actor (also referred to as deci-

sion-maker, problem-solver and learner) is evolved, i.e. intelligentization introduces new pos-

sibilities for creation, usage, sharing and preservation of knowledge through human and ma-

chine interaction and hybridization. In the context of smart and cognitive manufacturing, IE 

deals with optimization of cyber physical (systems of) systems in both design and operation 

phases, thereby its scope is extended to optimization of industrial management systems in-

corporating various modes of humans and intelligent machines communications, interactions 

and collaborations.    

This habilitation thesis consists in putting forward the concept of “Modeling and Manage-

ment of Human-Machine Collective Knowledge Intelligence” as a novel thematic area and an 

essential, future-oriented aspect of IE in both academic research and engineering education.  

At the Vienna University of Technology (TU Wien), research, teaching and learning are con-

ducted under the motto “Technology for People” (In German: Technik für Menschen) for over 

200 years. The portfolio of the Institute of Management Science (IMW) represents various 

aspects of management related to digitalized world of works as well as design and manage-

ment of socio-technical cyber-physical systems. The research landscape of IMW is comprised 

of five cluster topics (CT), namely: CT-1: Automation and Robotics, CT-2: Emerging Digital 

Technologies, CT-3: Leadership and Learning, CT-4: Sustainable Cyber Physical Systems, and 

CT-5: Technology Assessment. The aforementioned CTs cover 11 research themes including i) 

Production, Logistics and Maintenance Management, ii) Advanced Industrial Engineering, iii) 

AI and Knowledge Management in Cyber-Physical Production Systems, iv) New Ways of Work-

ing and Workspace Management, v) Human-Robot Collaboration, vi) IT-based Management, 

vii) Digital Assistance Systems, viii) Financial Enterprise Management, ix) Enterprise Risk Man-

agement, x) Gender in Science & Technology, and xi) Social and Societal Implications of Digi-

talization.  

Yet, the potentials of Knowledge Management (KM), AI-driven and Knowledge-Based Meth-

odologies for integrating intelligent functions into industrial value chain towards productive 

management of industrial systems of the future remains unexhausted. Hence, this habilitation 

thesis contributes into CT-1, CT-2 and CT-3 (Learning), and CT-4, and advances the IMW’s body 

of knowledge, i.e. research and teaching portfolios, primarily in the thematic areas of “AI and 

Knowledge Management in Cyber-Physical Production Systems”, “Production and Mainte-

nance Management”, “Human-Machine Collaboration”, and “Knowledge-Based Learning and 



 

Assistance Systems”.  

During postdoctoral time (since January 2015), the author has been undertaking efforts to 

establish his interdisciplinary research- and teaching portfolio on the boarder of IE, KM and 

AI. This habilitation thesis consolidates part of the outcomes and contributes to the field of IE 

by reconsidering and further developing the concept of managing human-machine collective 

knowledge intelligence, i.e. focusing on human and machine as a knowledge actor.  

In particular, several initiatives and collaborations have been established with international 

academic partners and scientists from diverse fields such as IE, mechanical engineering, com-

puter science, human resource management, labor organization and lifelong learning, which 

led to enriching the present habilitation thesis.  

Furthermore, this work gains benefit from several European- and domestic funded research 

projects that have been conducting at the University of Siegen (2014-2016) and TU Wien (since 

2017). Those are acknowledged in related publications.  

It is worth noting that, the core concepts and key findings presented in this habilitation the-

sis have laid the ground for establishing the lecture and associated exercise of “Knowledge 

Management in Cyber Physical Production Systems” at the TU Wien, and the specialization of 

“Production Information Management” as part of the Master's program of Mechanical Engi-

neering-Management at the Faculty of Mechanical and Industrial Engineering. In addition, a 

new chapter in the course of “Instandhaltungs- und Zuverlässigkeitsmanagement” (Mainte-

nance and Reliability Management) is introduced, namely Knowledge-Based Maintenance, 

since winter semester 2017. As a visiting lecturer at the school of economic disciplines of the 

University of Siegen, several aspects and key findings of this habilitation thesis have been also 

integrated in the master seminar of “Industry 4.0: From Vision to Reality”, since 2017.  

Despite all accomplishments, Avicenna said, “the knowledge of anything, since all things 

have causes, is not acquired or complete unless it is known by its causes”7. Hence, research 

and education remain everlasting!    

 

Dr.-Ing. Fazel Ansari       Vienna, April 2020 

  

                                                                 
 

7 Avicenna, On Medicine, c. 1020 CE 
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Introduction 

I. Management of Human-Machine Collective Knowledge Intelli-

gence: Foundation and Terminologies  

Since 1950, when Alan Turing proposed to consider the question “Can machines think?” 

(Turing, 1950), enormous efforts have been invested in understanding and providing “satis-

factory operational definition of intelligence”, i.e. artificial intelligence (AI). Scientific evi-

dences have been provided to support and validate the theory that machines can think and 

act humanly (Russell & Norvig, 2016). Given a satisfactory answer to the aforementioned 

question, intelligent functions are integrated in industrial value chain (Zhang et al., 2019). In 

the light of enhancing sensing and computational technology, intelligent connectivity, big data 

and knowledge intelligence as well as machine depth learning and cognitive computing, oper-

ation management strategies, production and business processes, manufacturing enterprises 

and service industry are undergoing substantial changes and transformations (aka Industry 

4.0).  

In this era, the Latin aphorism “scientia potestas est” meaning “knowledge is power”, the 

famous equation coined by Francis Bacon in 1597, is still true. However, undeniable questions 

have been raised about the theoretical foundation (i.e. ontological and epistemological as-

pects) of knowledge and knowledge actor, and their influence on modeling “Bounded Ration-

ality”8 (cf. Simon, 1990) in (complex) decision-making. Furthermore, the well-founded theo-

retical principle of Knowledge Management (KM) to differentiate human-oriented KM (focus-

ing on individual and organizational knowledge) from technology-oriented KM (dealing with 

tools and platforms) (cf. Maier, 2007) cannot anymore explain and solve problems in dynamic, 

data-driven and hybrid human-machine working environments and enterprises.   

KM, briefly, is a productive series of iterative, life cyclic, dynamic and systematic exploitation 

and exploration activities and processes, which aim to make information actionable and reus-

able (Maier, 2007; Eppler, 2006). The term knowledge refers to a certain typology for distinc-

tion between explicit, tacit and latent knowledge. Explicit knowledge “is or could be expressed 

                                                                 
 
8 “Bounded Rationality” is concerned with a rational choice that takes into account the cognitive limitations of the decision-maker; limitations of both 

knowledge and computational capacity (cf. Simon, 1990).  



 

without attenuation” (Wijnhoven, 2006). Tacit knowledge is a person-dependent knowledge 

(personal knowledge). This type of knowledge is not and cannot be expressed. Latent 

knowledge “could be expressed but it is difficult to express it without attenuation” (Wijnho-

ven, 2006). In practice, knowledge is mostly seen as explicit or implicit. The iceberg metaphor9 

helps to describe the aforementioned categories by identifying whether or not knowledge is 

represented, documented and/or codified. In particular, undocumented or non-codified 

knowledge such as personal experience or soft skills are considered as implicit, i.e. tacit or 

latent that are not (fully) visible and needs to be extracted, documented or discovered using 

certain methodologies like experience management, observation, interview, etc. 

Besides, the term “Knowledge Based System” (KBS) is often used in the literature of AI and 

computer science as a technology to facilitate KM processes and enable knowledge exploita-

tion and exploration functions. KBS refers to an intelligent information system in which 

“Knowledge” is represented and made usable with methods of knowledge representation and 

modeling (Russell & Norvig, 2016; Beierle & Kern-Isberner, 2014). In other words, a KBS con-

sists of a set of methods to supply the systematic KM processes for representation, provision 

and application of knowledge in reasoning, prediction and prescriptive decision-making activ-

ities, where new knowledge is semantically linked to prior knowledge in a Knowledge-Base 

(KB). A KBS typically consists of four core components: (1) Knowledge acquisition, (2) 

Knowledge representation, (3) Knowledge modeling, and (4) Dialogue system (User interface), 

where the acquisitions, representation and modeling could be carried out by means of domain 

experts and knowledge engineers (manual), by means of intelligent algorithms (automatic), or 

combination of experts and algorithms (semi-automatic).  

“Knowledge acquisition is the extraction of knowledge from sources of expertise and its 

transfer” to the KB (Turban, Aronson & Liang, 2005). Knowledge acquisition methods are clas-

sified into three categories as: (1) Manual e.g. by means of interview, analysis of protocols, 

observation, case studies, brainstorming, etc., (2) Semi-automatic by direct support and influ-

ence of domain experts, and (3) Automatic by means of algorithms and thus minimizing or 

eliminating the role of experts or knowledge engineers. The so-called knowledge engineer is 

                                                                 
 

9 As an iceberg floats in the water, the huge mass of it remains below the surface. The part of the iceberg is immediately visible; part of it emerges 
and submerges with the tides, and its foundations go deep beneath the surface. 



 

responsible to construct the KBS. Using manual or semi-automatic methods, a knowledge en-

gineer has a considerable role to be in contact with domain experts to submit questions, data 

and problems and to receive knowledge, concepts and solutions to be delivered to KB. KB is a 

warehouse, which contains the required knowledge for formulating and solving problems with 

formalized structure (Russell & Norvig, 2016; Beierle & Kern-Isberner, 2014). It provides the 

means for collection, organization, and retrieval of knowledge by establishing semantics be-

tween entities.  

Knowledge representation includes two major forms, declarative or procedural (Russell & 

Norvig, 2016; Beierle & Kern-Isberner, 2014). In declarative representations, knowledge is 

stored as facts that must be interpreted, and it is accessible for a variety of purposes, while in 

procedural representations, knowledge is codified and stored as algorithms (program codes), 

thereby it is usable only within specialized problem-solving contexts (Russell & Norvig, 2016; 

Beierle & Kern-Isberner, 2014). In comparison, procedural representation is highly efficient in 

the correct context. Knowledge representation methods are e.g. predicate logic, rules, frames 

and scripts, ontologies, knowledge graphs or semantic networks.    

Knowledge modeling are procedures for working with the knowledge stored in the KB, and 

mapping of the knowledge to fulfill certain tasks. It supports the acquisition and structuring of 

knowledge, formalization of knowledge for building KB, processing for solving a problem, e.g. 

using inference engine, visualizing of the knowledge and so on (Russell & Norvig, 2016; Beierle 

& Kern-Isberner, 2014).  

Last but not least, a dialogue system utilizes a variety of knowledge sources and models. It 

is the main communication interface between users and KBS. The dialogue system is realized 

in the form of a graphical user interface, which encompasses a structure, mechanism, and 

procedures in the back-end for interpreting the entries of the user, matching them with the 

representation structure, and accordingly to provide an explainable output to the user.  

II. Thematic Areas and Structure of Habilitation Thesis  

In the age of rapid technological innovation and change, KM is a key enabler for value crea-

tion. Indeed, managing collective knowledge intelligence is of the utmost importance in 

achieving and sustaining business values especially increasing and maintaining (labor) produc-

tivity. Despite the efforts to reflect KM contributions to organizational learning, KM in the era 

of Industry 4.0 (aka KM 4.0) has not been widely and specifically studied, and is often limitedly 



 

interpreted in relation to four typical areas namely:  

i) data sources, data streams and data collection, i.e. which types of data can be col-

lected in (near real-time) e.g. by means of wireless- and sensory systems,  

ii) data management platforms, i.e. how the scalable data in heterogeneous structures 

should be stored, 

iii) data-driven methodologies, i.e. how to acquire knowledge (actionable information) 

from data, and 

iv) data-mining procedures, i.e. which methods of supervised, semi-/unsupervised data 

mining and machine learning are appropriate to precisely and accurately explore 

(new) knowledge.  

In all abovementioned areas, the common – but not comprehensively addressed- attribute 

is “Knowledge” required for reasoning, prediction (i.e. reasoning under uncertainty), and pre-

scriptive decision-making. The key to achieve reliable, quality and informed decisions is dis-

covering hidden patterns and semantic relations between knowledge attributes and itera-

tively linking new knowledge to prior (domain) knowledge stored in KBs. Furthermore, the 

human perspective on knowledge and KM cannot be ignored, especially with regard to the 

following societal challenges: 

 Learning, i.e. which forms of learning are emerging, e.g. reciprocal learning through 

interaction of humans and machines; and subsequently which type of learning assis-

tance systems are required,  

 Vocational Education and Staff qualification, i.e. which (digital) skills and compe-

tences are emerging and/or denying, and thus how the education systems support 

skilling, reskilling and upskilling of existing and future human workforces, especially 

white- and blue-collars, and 

 Job transformation and Job-Knowledge management, i.e. which tasks are assigned 

to humans and/or machines, what the shared tasks are, what the knowledge pre-

requisites are, and subsequently who is the responsible problem-solver and deci-

sion-maker.    

Reconsideration of the concept of KM in smart factories, therefore, is not limited to the four 

areas above. It should necessarily reexamine both human- and technology (data and ma-



 

chine)-oriented perspectives of KM and the diagonal line across them. Notable affecting fac-

tors are as follows:  

 proliferation of digital technologies,  

 expansion of data space,  

 emergence of human-centered cyber physical production systems (CPPS) 

 advancement of virtual, digital and physical assistance systems, and  

 deep integration of AI technologies and industrial processes, which introduce intel-

ligent functions (e.g. autonomy, self-learning, and self-control) and new concepts of 

human-machine partnership and team formation (e.g. by means of collaborative ro-

bots and digital or virtual assistance systems) (cf. (Porter & Heppelmann, 2014; Schu-

macher et al., 2016; Davenport & Kirby, 2016; Zhang et al., 2019)). 

 

Figure 1. Boundary System for KM in the era of Industry 4.0: Hybridization of human and machine elements 

Figure 1 depicts the boundary system for KM 4.0 in the CPPS, for example in human-robot 

collaboration within cyber physical assembly systems. The hybridization of knowledge actors 

compounds i) elements of human and machine in knowledge acquisition and utilization, and 

ii) job performance determinants, i.e. factors which affect participating in doing the (shared) 

tasks, into a new boundary system. The new boundary system is indicated with demarcated 

but flexible boundaries, i.e. boundary dynamics. It, therefore, allows both groups of workforce 

to participate in shared tasks (as an extension of shared workplace) and consequently defines 



 

new relation and exchange modes, namely reciprocity.  

Yet, two interconnected aspects and thematic areas of KM are least discussed, has largely 

remained unexplored and even unnoticed within the production- and engineering manage-

ment community, namely:  

1) Thematic Area I – Knowledge Management in CPPS (aka KM 4.0): The emergence 

of “machine as a knowledge actor” beside human in CPPS (knowledge actors 4.0), 

i.e. complementarity and reciprocity of human- and technological entities (ma-

chines, robotic systems, Digital Twins, AI agents and algorithms) in smart factories.  

2) Thematic Area II – Knowledge-Based Methodologies and Approaches in CPPS: The 

essence of rethinking and reconsidering operation and production management 

strategies to deal with the “Bounded Rationality” in complex decision-making, i.e. 

to overcome cognitive limitations of humans in decision-making by deploying 

knowledge-based methodologies and approaches as well as assistance systems for 

comprehensive knowledge acquisition, representation and modeling, especially for 

protecting collective knowledge intelligence by “Linking New Knowledge” to “Prior 

Knowledge”.  

This habilitation thesis focuses on both basic and applied-oriented research methodologies 

and is, therefore, intended…  

I) to reconsider the concept of KM focusing on knowledge actors 4.0 and their interac-

tions, i.e. creating, sharing, using and managing collective knowledge intelligence in 

dynamic, data-driven and hybrid human-machine working environments in smart 

factories.   

II) to advance data-driven methodologies by applying knowledge-based methodologies 

(semantic modeling and analysis) and knowledge discovery from heterogeneous 

data sources (structured and unstructured knowledge) in particular by extracting 

hidden knowledge (e.g. from text) towards enriching knowledge repositories, facili-

tating integration of KM and production processes, and ultimately improving quality 

of decision-making.  

The comprehensive research questions of this habilitation thesis with respect to the afore-

mentioned objectives are:  



 

I) “Can semantic modeling and analysis of human-machine collective knowledge intel-

ligence in Cyber Physical Production Systems enhance to optimally identify jobholder 

profile (problem-solver, decision-maker) in maintenance and assembly systems by 

introducing qualitative and quantitative measures for characterizing job description, 

task and learning requirements, and thereby improve bidirectional matching of a 

jobholder to a job profile?” (Research Question I) 

II) “Can integration of knowledge-based methodologies and production processes, in 

particular maintenance planning and operations as an integral part of production 

system, enhance processing of multi-modal and heterogeneous data collected from 

multidimensional data sources, and thereby generate decision support measures 

and recommendations for improving and optimizing forthcoming maintenance 

plans?” (Research Question II) 

 
Figure 2. Methodical Focus of the papers according to four steps of knowledge-based methodology and the-

matic areas of the habilitation thesis 

To address the aforementioned objectives, this habilitation thesis is structured in two Chap-

ters, where in each chapter firstly a monograph is given, which portraits the author’s account 

on the thematic area. Secondly, selected publications appear which address segments of the 

guiding research questions of each thematic area, respectively. The portfolio matrix presented 

in Figure 2 identifies the methodical focus of each paper concerning four primary aspects of 

knowledge-based methodology (acquisition, representation, modeling and dialogue) as well 

as the contribution to the central research questions of the habilitation thesis. Furthermore, 



 

a deeper overview of selected publications is given below, including specific research ques-

tions and applied methods as well as in Table 1. 

Selected Publications of Thematic Area I (Chapter 1) 

 Paper I: Ansari, F., Khobreh, M., Seidenberg, U., & Sihn, W. (2018). A Problem-solving 

Ontology for Human-centered Cyber Physical Production Systems, CIRP Journal of 

Manufacturing Science and Technology, 22, pp. 91-106. 

o Research Question: Can cyber-physical-socio space be semantically linked to 

construct a holistic model for identifying human and CPPS complementary in 

problem-solving processes? 

o Methodology: Qualitative modeling, i.e. ontology modeling and engineering 

with first-order logic (FOL) notations. 

 Paper II: Ansari, F., Hold, P. & Khobreh, M., (2020). A Knowledge-Based Approach for 

Representing Jobholder Profile toward Optimal Human-Machine Collaboration in 

Cyber Physical Production Systems, CIRP Journal of Manufacturing Science and Tech-

nology, 28, PP. 87-106.  

o Research Question: How to establish a twofold qualitative and quantitative 

methodology for optimal selection of a competent jobholder(s) to perform a 

certain task by semantic modeling and analysis of jobholder (human and ma-

chine) profile corresponding to the task characteristics, required knowledge, 

skills and competences (KSCs) and learning requirements? 

o Methodology: Qualitative modeling with Ontology; Quantitative modeling by 

aggregating mathematical measures. 

 Paper III: Chala, S. A., Ansari, F., Fathi, M., & Tijdens, K. (2018). Semantic Matching of 

Job Seeker to Vacancy: A Bidirectional Approach, International Journal of Manpower, 

39(8), pp. 1047-1063. 

o Research Question: How to bi-directionally match a job seeker to vacancy by 

measuring the degree of semantic similarity of job-seeker qualifications and 

skills, against the vacancy advertisements provided by employers or job-

agents, and assess the trend of changes (emergence/decline) of on the selected 

IoT and Industry 4.0 jobs? 



 

o Methodology: Qualitative modeling of semantic similarity, mathematical mod-

eling, Bidirectional matching, experimental validation. 

Selected Publications of Thematic Area II (Chapter 2) 

 Paper IV: Ansari, F., Glawar, R. & Nemeth, T. (2019). PriMa: A Prescriptive Maintenance 

Model for Cyber-Physical Production Systems, International Journal of Computer Inte-

grated Manufacturing, Vol. 32, Issue 4-5: Smart Cyber-Physical System Applications in 

Production and Logistics, Taylor & Francis, pp. 482-503. 

o Research Questions:  

 From a conceptual and theoretical perspective: “How to discover and 

preserve maintenance knowledge in CPPS environment to enhance de-

cision-making processes?” 

 From a practical perspective: “How to apply such a conceptual model in 

industrial use-cases where several technological and non-technological 

barriers exist?” Methodology: Qualitative modeling of semantic similar-

ity, mathematical modeling, Bidirectional matching, experimental vali-

dation. 

o Methodology: Qualitative modeling, CRISP-DM, data-mining, text-mining, 

mathematical modeling, proof-of-concept with industrial use-case.  

 Paper V: Dienst, S., Ansari, F., & Fathi, M. (2015). Integrated System for Analyzing 

Maintenance Records in Product Improvement, International Journal of Advanced 

Manufacturing Technology, 76(1-4), pp. 545-564. 

o Research Question: Can Dynamic Bayesian Networks enhance knowledge-

based analysis of structured feedback data, including condition monitoring, 

service, and customer data, and predictive detection of improvement poten-

tials in maintenance management and product improvement phase of product 

design? 

o Methodology: Mathematical Modeling, Dynamic Bayesian Networks, use-case 

study and validation.  

 Paper VI: Ansari, F. (2020). Cost-Based Text Understanding to Improve Maintenance 

Knowledge Intelligence in Manufacturing Enterprises, Journal of Computers and Indus-

trial Engineering, Vol. 141.   



 

o Research Question: Can text mining support deeper understanding of mainte-

nance reports by investigating both syntax and semantic levels, represent the 

text reports as a numeric values, discover maintenance cost data from textual 

reports, and thus provide additional measures for improving maintenance 

planning? 

o Methodology: Qualitative and mathematical modeling, Text-Mining.  
 

Table 1. Summary of the applied methods and results of the papers presented in Chapter I and II 
 

Paper Methodology Results 

Ch
ap

te
r I

 

A Problem-solving Ontol-
ogy for Human-centered 
CPPS 

Ontology modeling and 
engineering with first-or-
der logic (FOL) notations 

PSP Ontology (Problem, Solution, Problem-
Solver Ontology) formalized by introducing 
(i) contingency vector, (ii) vector of compe-
tence and autonomy, and (iii) solution ma-
turity index 

A Knowledge-Based Ap-
proach for Representing 
Jobholder Profile toward 
Optimal Human-Machine 
Collaboration in CPPS 

Ontology modeling; 
Quantitative modeling by 
aggregating mathematical 
measures 

A twofold qualitative and quantitative 
methodology for optimal selection of a 
competent jobholder 

Semantic Matching of Job 
Seeker to Vacancy: A Bidi-
rectional Approach 

Qualitative modeling of 
semantic similarity, math-
ematical modeling, Bidi-
rectional matching, exper-
imental validation 

A framework of an automatic bidirectional 
matching that measures the degree of se-
mantic similarity of job-seeker qualifica-
tions and skills, against the vacancy pro-
vided by employers or job-agents. 

Ch
ap

te
r I

I 

PriMa: A Prescriptive 
Maintenance Model for 
CPPS 

Qualitative modeling, 
CRISP-DM, data-mining, 
text-mining, mathemati-
cal modeling, proof-of-
concept with industrial 
use-case 

A Prescriptive Maintenance model (PriMa) 
comprising of four layers, i.e. data manage-
ment, predictive data analytic toolbox, rec-
ommender and decision support dashboard 
as well as an overarching layer for seman-
tic-based learning and reasoning. 

Integrated System for Ana-
lyzing Maintenance Rec-
ords in Product Improve-
ment 

Mathematical Modeling, 
Dynamic Bayesian Net-
works, use-case study and 
validation 

Dynamic Bayesian Network for K-Modeling  
linked to cost model for analyzing mainte-
nance data and decision-making as well as 
a mobile App for maintenance engineers 

Cost-Based Text Under-
standing to Improve 
Maintenance Knowledge 
Intelligence in Manufactur-
ing Enterprises 

 

Qualitative and mathe-
matical modeling, Text-
Mining 

A compositional framework for text under-
standing incl. Association Measuring Index 
(AMI), Opinion Index (OI) and Cost Vector 
(CV). 

The remainder of this habilitation thesis is structured as follows: Chapter 1 and 2 provide 

detailed account of the author and selected publications on “Human and Machine as 

Knowledge Actor and Labor Force in CPPS” and “Knowledge-Based Maintenance”, respec-

tively. Chapter 2 advances the scope of integrating knowledge-based methodologies in 

maintenance planning and operations.   
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Chapter 1: Human and Machine as Knowledge 
Actor and Labor Force in CPPS 

1.1 Theoretical and Practical Considerations of Knowledge 
Management 4.0: Overview & Outlook10 

1.1.1 Strategic and Operational Aspects  

KM, concisely, is “the management function responsible for the regular selection, imple-

mentation and evaluation of goal-oriented knowledge strategies that aim at improving an or-

ganization’s way of handling knowledge internal and external to the organization in order to 

improve organizational performance” (Maier, 2007). With this in mind, the question is:  What 

are the strategic and operational tasks of KM in the age of digital transformation?  

Recently, the concept of “Knowledge 4.0” and the model of “Knowledge Ladder 4.0” have 

been introduced by (North & Maier, 2018). They assume enhancing value creation in the dig-

ital knowledge economy is achieved through utilizing digital technologies for knowledge cre-

ation and sharing (North & Maier, 2018). The digital society and digitally enabled knowledge 

economy are, therefore, characterized by digitalization and intelligentization of everyday life 

and value creation (North & Maier, 2018), where smart and connected products, cognitive 

and networked systems, and AI are transforming the competition, professions and education 

(Porter & Heppelmann, 2014). The model of Knowledge Ladder 4.0 is based on the premise 

that digitalization and intelligentization extend the scope of knowledge from a set of discrete 

facts internalized by a receiver to ability, competence and competitive skills, i.e. Knowledge 

4.0 (North & Maier, 2018). In particular, the job-knowledge consists of knowledge, skills, abil-

ities and competences (KSACs) (cf. (Khboreh et al., 2016)) that an Industry 4.0 jobholder 

should be able to demonstrate.  

Recent studies propose different types of taxonomy for classification of KSACs taking into 

account various roles of human in manufacturing environment (D’Antonio & Chiabert, 2018). 

Notable taxonomies are provided e.g. by (Hecklau et al., 2016; Piñol et al., 2017). The former 

identifies four necessary competence categories namely, technical, methodological, social and 

                                                                 
 
10 The majority of Section 1.1 has been published in the following article: Ansari, F. (2019). Knowledge Management 4.0: Theoretical and Practical 

Considerations in Cyber Physical Production Systems, IFAC-PapersOnLine, Vol. 52, Issue: 13, pp. 1597-1602. (Link)   

https://doi.org/10.1016/j.ifacol.2019.11.428


 

personal competences. The latter identifies skills required by Industry 4.0 employee, namely 

technological skills, skill techniques and soft skills.  

From a strategic point of view, KM 4.0 can be envisaged as a “Dynamizer” to i) identify crit-

ical knowledge required e.g. for building new business models, acquiring future-oriented in-

tellectual capitals and knowledge assets , ii) enable the creation of meaning and common un-

demanding as a basis for action, i.e. decision-making or problem-solving, iii) encourage inno-

vation, active learning and reflections, and iv) build platforms for engaging internal and exter-

nal stakeholders.  

From an operational point of view, KM 4.0 is a “Stabilizer” to i) ensure ubiquitous and orga-

nized information and knowledge flows, ii) enable cross-sector cooperation, and iii) reconcile 

and harmonize human learning and machine learning as well as human-machine reciprocal 

learning, i.e. co-creation of collective intelligence (Ansari, Erol & Sihn, 2018).      

1.1.2 Proposed Definition of KM in the context of Industry 4.0  

The aforementioned definition of KM should be reconsidered in the light of digitalization 

and intelligentization of manufacturing industry (Zhou, 2013). KM in the era of Industry 4.0 

(KM 4.0) either as a dynamizer or as a stabilizer should be approached from two distinct but 

interrelated perspectives, i.e. human- and technology-oriented perspectives.  

From the author’s point of view, KM 4.0 is a strategic and operational function comprising 

exploration and exploitation processes. KM 4.0 is responsible to accomplish the following 

tasks, namely i) continuously support value generation through enhancing and balancing 

need- or opportunity-driven knowledge generation and knowledge utilization capacities, and 

ii) persistently facilitate developing and protecting human-machine collective intelligence 

across manufacturing enterprises and in particular smart factories. The latter is demonstrated 

by advanced optimization, prediction, adaptation, and ideally self-learning capabilities em-

bedded in knowledge-intensive processes, systems, tools and platforms. Hence, KM 4.0 is an 

enabler to maximize competitive advantages and derive business values in the manufacturing 

enterprises. 

Figure 3 presents a portfolio matrix, where KM 4.0 is classified according to the correlative 

degree to which knowledge generation and knowledge utilization, including knowledge shar-

ing, is accomplished by means of exploiting existing knowledge and exploring new knowledge. 

According to the exploitation and exploration degree, one may say that a KM function in a 



 

manufacturing enterprise is ideal when the Balance Point (BP) is achieved, i.e. maximum de-

gree of knowledge generation and knowledge utilization. In real-world settings, BP is either 

shifted into shortage of exploitation or exploration processes. The former makes the KM more 

dynamic and the latter more stable. Radically shifting the BP triggers undesirable situations, 

where one may say that a KM function is a worse or imperfect. Worse KM occurs when both 

knowledge exploitation and exploration across an enterprise are inefficient and ineffective. 

Imperfect KM occurs when either knowledge exploitation or exploration is ineffective, i.e. fo-

cusing only on explorative learning or exploitative learning.   

 
Figure 3. Portfolio Matrix for KM 4.0 

1.1.3 Ontological and Epistemological Considerations  

Imitating human capabilities, thinking or acting activities, by machines introduces the con-

cept of “machine as a workforce” and subsequently “machine as a knowledge actor”. What 

are the key considerations in human-machine settings?  

Notably, machine in this context refers to a wide range of intelligent, autonomous, robotic 

and AI systems, which are able to reproduce human manual or cognitive capabilities partially 

or fully.    

From an ontological point of view, human resources and machine workforces are comple-



 

mentary, especially by considering one’s capabilities are superior or inferior to the other. Nev-

ertheless, they are epistemologically distinct. Given the division of labor between humans and 

machines, KM 4.0 has to deal with two distinct groups of knowledge actors and five related 

instances or roles (where K refers to Knowledge), namely: 

1) k-holder for explicating and storing knowledge,  

2) k-producer for completing existing knowledge and creating new knowledge,  

3) k-user for transforming knowledge to skills and testing knowledge in practice, e.g. 

by on-the-job training,  

4) k-receiver for selecting and accepting knowledge before stored by k-holder; and fi-

nally  

5) k-eraser for unlearning knowledge (cf. Section 1.1.6).  

Each of the aforementioned roles is a part of learning. Thus, "learner" is the superordinate 

term involving learning, re-learning and unlearning.  

Considering the participation of human and machine workforces in performing manual or 

cognitive tasks, especially in shared tasks, three fundamental issues should be considered:  

I) How is the concept of knowledge actor in human-machine settings theorized?,  

II) What are the possible relations between human and machine in hybrid settings?, 

and  

III) How do human and machine acquire knowledge and develop the collective intelli-

gence of a manufacturing enterprise? 

1.1.4 Theoretical Implications  

The hybridization may significantly affect the nature of knowledge acquisition, utilizations 

and in fact offers new division of tasks and labor as well as new symmetric or asymmetric 

associations between human and machine knowledge actors (cf. Figure 1 and 4). The concept 

of KM 4.0 encompasses two theoretical standpoints as follows:  

1) Complementarity in knowledge creation and/or utilization whereby human and ma-

chine jointly participate in knowledge exploitation and exploration processes. Hence, 

human-machine reciprocal relation, mutual dependency, exchange and action may oc-

cur. In this setting, overlapping and shared tasks can be envisaged, thereby human and 

machine together accomplish a task. 



 

2) Substitutability in knowledge creation and/or utilization whereby only human or ma-

chine participate in knowledge exploitation and exploration processes. Therefore, the 

dominant workforce is assigned to perform a (manual or cognitive) task11.  

 
Figure 4. Hybridization of Human & Machine Elements and Emergence of Physical & Cognitive Dependencies  

In real-world hybrid settings, assignment of tasks to human and/or machine is based upon 

the premise that each group of worker is capable of performing certain types of tasks, i.e. 

having the capabilities that are suitable for the specific task and purpose. Various task alloca-

tion approaches  

I) identify human and machine capabilities,  

II) classify the tasks according to required manual and cognitive capabilities, i.e. de-

mand list,  

III) divide the tasks into sub-tasks, i.e. assignments, and  

IV) allocate assignments to suitable individual workers, i.e. human or machine.  

The so-called function allocation, therefore, “provides a rational means of determining 

which system-level functions should be carried out by humans and which by machines” (Brad-

shaw et al., 2012). The most notable example for such demand-capability approaches is the 

model of HABA-MABA (humans-are-better-at/machines-are-better-at) originally introduced 

by (Fitts, 1951).  

                                                                 
 

11 Notably, various aspects (economic, ethical, ergonomic, etc.) of superordination and/or subordination of human or machine should be further 
investigated, especially when the self-image of human is affected, which is out of the scope of this habilitation thesis. 



 

Moreover, the complementary of human and machines in CPPS environment can be exam-

ined considering their characteristics with regard to five criteria, namely: 1) cost, 2) flexibility 

with regard to fulfilment of various tasks and temporal availability, 3) capacity with regard to 

mechanical (physical) job, information processing and problem-solving, 4) performance varia-

tion, and finally 5) quality variation with regard to mechanical job and decision-making (cf. 

(Ansari et al.,  2018b)). It seems that the term capability should be understood as an umbrella 

for human and machine representing all aforementioned characteristics, which help to find a 

common ground.   

 
Figure 5. Meta-model for representing the concept of Knowledge Actor 4.0 

Referring to the aforementioned distinction between two theoretical standpoints, comple-

mentarity versus substitutability of humans and machines, two different approaches can be 

identified, namely i) capability automatization and ii) adaptive function allocation. The former 

denotes AI-based approaches aim to reproduce human capabilities and maximize automation 

by means of algorithms; thereby machines can take over today’s human jobs (cf. (Ansari, Erol 

& Sihn, 2018)). For instance, self-supervised deep learning approaches to robot learning are 



 

employed, which enable robots to grasp objects without involving human supervision (cf. 

(Sermanet et al., 2017; Levine & Sermanet, 2017)). In contrast, the latter, adaptive function 

allocation, aims to identify the adjustable and variable task assignments, where overlapping 

capabilities could help to define shared task (cf. (Michalos et al., 2018)) and ultimately increase 

(labor) productivity (cf. (Blohm et al., 2016; Khobreh, Ansari & Seidenberg, 2019)).  

Focusing on the complementarity of the knowledge actors, Figure 5 depicts the meta-model 

for representing the concept of “Knowledge Actor 4.0” and related instances, namely human 

and machine.  

Based on this assumption, knowledge base of a manufacturing enterprise should consist of 

a set of  Digital Knowledge Profiles (DKPs) whose members are Human Digital Knowledge Pro-

file (𝐻𝐷𝐾𝑃) and Machine Digital Knowledge Profile (𝑀𝐷𝐾𝑃). The DKPs specify the level of 

KSACs of each knowledge actor and are used to reveal the trajectory of learning over the time. 

Matching the DKP instances to the tasked sorted and labelled per expertise level (Expert, In-

termediate and novice) by domain expert, identifies the role of human and/or machine as well 

as the extent of their participation in doing a (shared) task.  

As an example, Figure 6 illustrates the schematic representation of the knowledge base of 

a smart factory and related matching function. In the knowledge base, the DKPs are repre-

sented and described as a vector form consisting supplied KSACik as in  dkp⃗⃗⃗⃗⃗⃗  ⃗Supply = (KSACi0, … , KSACik)                                                                                                   (1) 

Likewise, tasks classified and labelled per expertise levels of the workforces in the smart 

factory are described as a vector form consisting demanded 𝐾𝑆𝐴𝐶𝑗𝑘  as in dkp⃗⃗⃗⃗⃗⃗  ⃗Demand = (KSACj0, … , KSACjk)                                                                                                (2) 

where 𝑖, 𝑗 ∈ [0, 𝑘] indicating the number of KSACs that should be supplied by human or ma-

chine workforce in response to a demand inquiry provided by a planner. The matching func-

tion therefore measures the similarity between the supply and demand vectors using Cosine 

Similarity (Rahutomo et al., 2012), as in:  Sim (dkp⃗⃗⃗⃗⃗⃗  ⃗Demand, dkp⃗⃗⃗⃗⃗⃗  ⃗Supply) = dkp⃗⃗⃗⃗ ⃗⃗ ⃗⃗  Demand .  dkp⃗⃗⃗⃗ ⃗⃗ ⃗⃗  Supply|dkp⃗⃗⃗⃗ ⃗⃗ ⃗⃗  Demand|.|dkp⃗⃗⃗⃗ ⃗⃗ ⃗⃗  Supply|= ∑ KSACik×KSACjktk=0√∑ (KSACik)2tk=0 .√∑ (KSACjk)2tk=0             (3) 

Values assigned to KSACs may range [0, 1], where 0 and 1 refers to poor and excellent level 

of representing a KSAC element such as a mechanical or analytical KSACs, respectively.  



 

 
Figure 6. Knowledge Base of a Smart Factory 

1.1.5 Practical Considerations 

The following example illustrates how the previously mentioned matching function (cf. Sec-

tion 1.1.4) supports a planner to assign a task to human or machine workforce in practice. 

Assume a task allocation problem for assembly of a product in a human-robot system. Task A 

(Assembly of product X) can be divided into sub-tasks, such as mechanical assembly (fastening, 

handling, calibrating), collecting data and quality control (checking). The sub-tasks should be 

accomplished in various sequences and may require various manual or cognitive capabilities. 

According to the classification of tasks per expertise level of the workforce, the demand vector 

is instantiated, which represents the required KSACs for fulfilling the assembly tasks. Either 

human and/or machine workforce according to predefined and labelled individual KSACs 

should supply the demanded KSACs. As illustrated in Figure 7 and 8, let us consider two op-

tions for assigning sub-tasks to human or machine workforces, without or with identification 

of shared tasks, respectively. In the first scenario, the planner makes an inquiry of all those 

human and machine workforces who provide KSACs including mechanical and analytical KSACs 

for fastening, handling, calibrating, checking and collecting data. Retrieving DKPs ordered 

based on the demand-supply matching, i.e. degree of similarity between demanded and sup-

plied KSACs, the planner may select the best-fit human and machine profiles and distribute 

the sub-tasks.  



 

For instance, assume that the domain expert initializes demand vector for representing the 

maximum KSACs required for an assembly task including mechanical sub-tasks (fastening, han-

dling and calibrating) as well as data collection and quality control tasks as in dkp⃗⃗⃗⃗⃗⃗  ⃗Demand = (0.6, 0.7, 0.8) , (under 𝑘 = 3).  The planner may employ the matching function to retrieve 

two workforce DKPs, representing a human and machine DKP supplying the demanded KSACs 

with similarity degree of 96% and 85%, as 𝑑𝑘𝑝⃗⃗ ⃗⃗ ⃗⃗  ⃗1 = (0.5, 0.3, 0.4) and 𝑑𝑘𝑝⃗⃗ ⃗⃗ ⃗⃗  ⃗2 = (0.3, 0.2, 0.4), 

respectively. 

 
Figure 7. Assigning distinct tasks to Knowledge Actors 4.0  

In the second scenario, the planner may repeat the matching processes e.g. by restricting 

the boundary conditions such as safety in which human and machine together can fulfil certain 

sub-tasks.  

 

Figure 8. Assigning shared tasks to Knowledge Actors 4.0 

Considering the above discussion, the planner requires a knowledge-based assistance sys-

tem, which provides following components: i) knowledge-base consisting of DKPs and the sup-

ply-demand matching function, ii) decision engine including features to adaptively generate 

selection rules, and iii) recommender engine to identify measures and strategies to various 

production and business-oriented goals of a smart factory.  

As illustrated in Figure 9, the goals are briefly defined as short-term goals for optimization 

of existing tasks and processes, mid-term for achieving new division of works between human 

and machine workforce, and long-term for enabling the smart factory, as a system of systems, 



 

to think and innovate new products and services. Such a learning recommender system should 

provide a kind of target function, which correlates labor productivity and learning effective-

ness as a measure to identify knowledge imbalance, i.e. gaps and surplus, across the smart 

factory.    

 
Figure 9. A Knowledge-Based Assistance System for selection of best-fit Knowledge Actor 4.0 – Adopted from (Ansari, et 

al., 2018a)  

1.1.6 Critical Consideration: Learning vs. Unlearning of Knowledge  

Looking again at the portfolio matrix for KM 4.0 (cf. Figure 3); one could argue that KM 4.0 

focuses only on exploitative and explorative learning. This raises the critical question how to 

deal with “unlearning of knowledge”. In other words, organizational, community and individ-

ual KSCAs, which has been previously learned should not be necessarily considered or utilized 

for forthcoming activities, especially in a changeable manufacturing settings.  

In Figure 3, the classification of KM into worse, imperfect and imbalance is according to 

degree of effectiveness and efficiency of knowledge exploitation and exploration activities, 

i.e. whether the BP is achieved or knowledge imbalance, gaps or shortage is avoided. From 

the author’s point of view, re-learning and unlearning of knowledge naturally occurs through 

explorative and exploitative learning. Furthermore, a recent literature review reveals the lack 

of “robust conceptual and empirical evidence to advance the field of unlearning and forget-

ting” across enterprises, even though it has gained increased attentions in the literature 

(Klammer & Gueldenberg, 2018). Thus, KM 4.0 encompasses the processes of identifying and 

discarding outdated (obsolescence) knowledge as undeniable part of continuous learning.   

 



 

1.1.7 Outlook 

Figure 10 summarizes future avenues for further research by providing determinants and 

factors, which affect implementation of KM 4.0. In particular, four research directions can be 

identified as: 

I) Job-Knowledge Management should be investigated by focusing on job transformation, 

new divisions of labor, transformation of human jobs (including emergence of new human 

jobs) and introduction of automatable/automated jobs performed by machines and algo-

rithms. The impact of job transformation and dynamics of jobs on KM 4.0 directly or indi-

rectly affects creation of new types of knowledge and introduces new knowledge actors. 

Yet, empirical evidences are required to precisely identify cause-effect relations and to 

provide a valid list of controllable and uncontrollable factors.  

 
Figure 10. Factors potentially affecting implementation of KM 4.0 

II) Job-Knowledge-Education matches and mismatches should be examined through sys-

tematic consideration of the emerging ontologies of Knowledge 4.0 and Knowledge Actors 

4.0. The educational targets, types of education and learning materials should be recon-

sidered in relation to requirements for new jobs, demanded job-knowledge as well as hu-

man-machine hybrid workplace settings. Notably, the concept of learning factory helps to 

overcome mismatches.   

III) Reciprocal Learning and Mutual Dependencies between humans and machines in 

knowledge creation and utilization require measures and tangible experimental analyses, 



 

which turn on the light into the direct/indirect relations between workforce productivity 

and learning effectiveness. In particular, it should be investigated whether the degree to 

which learning outcomes have been achieved correlates with productivity. This requires 

building a valid assessment model, which identifies all correlated factors and their degree 

of dependencies and significances.    

IV) Adaptive and Knowledge-Based Assistance Systems should be established and imple-

mented for managing collective intelligence of manufacturing enterprises. Human and ma-

chine DKPs, therefore, should be semantically represented with a functional linkage to the 

aforementioned model for assessing the correlation between productivity and learning 

effectiveness under various constraints in real-world manufacturing systems such as 

safety and data privacy as well as smart factory objectives such as variability and scalability 

of products, flexibility of processes and adaptivity to changes.    
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Chapter 2: Knowledge-Based Maintenance  

2.1 Transformation of Maintenance Strategies, Operation 

and Planning in Industry 4.0: Overview and Outlook 

2.1.1 Rubik’s Cube-Inspired Maintenance Problem-Solving  

Solving a Rubik´s Cube seems always the same way. However, human brain may gain bene-

fits more if it discovers how to solve the cube by recognizing patterns, improving spatial 

awareness and dexterity proactively, rather than learning by trial and error reactively. Solving 

maintenance problems is similar to a Rubik’s Cube, while each cell of the cube is a data-driven, 

dynamic and changeable structural and functional unit, which can influence the problem-solv-

ing process (cf. Figure 11).   

 

Figure 11. Maintenance Rubik’s Cube – Reprinted from (Ansari & Glawar, 2018) 

Reliable knowledge, enhanced logic skills and boosted problem identification and solving 

solutions are, therefore, required to take appropriate actions with respect to this multilateral 

complexity (cf. Figure 11). Solving maintenance problems deals with complexities due to (cf. 

(Ansari, Glawar & Nemeth, 2019)):    



 

1) Multi-dimensionality of maintenance organization, actors and IT systems: A mainte-

nance organization consists of operational, tactical and strategic levels, in which dif-

ferent actors ranging from operators, (chief maintenance) engineers, project manag-

ers; chief maintenance officer and top management, including production manager 

and CEO, play a certain role. In addition, maintenance IT-landscape consists of several 

systems, which provide data about machines, processes, resources (personnel, ma-

terial, etc.), plans, quality control, costs as well as operational, tactical and strategic 

measures and key performance indicators (KPIs), such as overall equipment efficiency 

(OEE), availability, productivity, etc.    

2) Multiple Maintenance Strategies and approaches: Maintenance strategies can be 

classified into three major groups as follows:  

 Management strategies like total productive maintenance (TPM), total lifecycle 

cost strategy (TLC) or reliability-centered maintenance (RCM), which provide cer-

tain recommendations and standard measures for goal-setting and proper defi-

nition and implementation of maintenance activities, including division of tasks, 

cost monitoring and controlling strategies, quality and performance manage-

ment, organizational learning, documentation and content management, 

knowledge transfer, etc.   

 Maintenance strategies and approaches without sensing and computing tech-

nologies, which can be categorized into three approaches, namely:  

 Reactive Maintenance (Run-to-failure-strategy), which aims at low routine 

maintenance costs but may lead to high costs in case of equipment failure 

and increase risk of long downtimes.  

 Preventive Maintenance, which aims at planning and performing mainte-

nance activities in regular intervals. Hence, time or a usage triggers are used 

to schedule maintenance. Preventive approaches results in reducing likeli-

hood of failure, while an ongoing-effort is necessary.  

 Proactive Maintenance, which aims at determining the roots causes for ma-

chine failure through taking measures or corrective actions to avoid equip-

ment failure altogether, e.g. give workers training on best-practice machine 

operation to be able to avoid reasons for equipment failure.  



 

 Maintenance strategies and approaches with sensing and computing technolo-

gies, which can be categorized into three approaches: 

 Condition-based Maintenance (CBM), in which maintenance is performed 

only when equipment problems have been registered by means of condition 

monitoring via sensors. Employing CBM approaches and technologies (Hand-

held or mobile devices or retrofitted or integrated sensors) leads to identify-

ing and resolving anomalies prior to functional failure.   

 Predictive Maintenance, which aims at enhancing CBM by means of On-Prem-

ise and/or Cloud-based analytic software and solutions (e.g. static rule-based 

analytics or dynamic model-based analytics), which allow making predictions 

on when equipment will fail and accordingly taking preventive actions timely.  

 Prescriptive Maintenance, which aims at recommending optimal mainte-

nance measures and strategies for improving maintenance workflow and de-

cision-making processes towards fully automated workflow management 

and self-healing.  

3) Multi-modality of data: Linking single data elements collected, e.g. from machine’s 

PLC or maintenance processes may provide independent information about different 

aspects of maintenance. For instance, while machine failure signal can reflect mal-

function of one of its subsystem; it can also indicate inappropriate planning, which 

causes subsystem degradation and affects its remaining useful lifetime.  

2.1.2 CRISP-DM Methodology for Discovering Knowledge from Big 

Data 

The emergence of CPPS and (Industrial) Internet of Things (IoT) as well as data-driven tech-

nologies brings the attention of maintenance professionals to “Data”, in particular “Big Data”. 

From practical point of view, maintenance may gain benefits from using Big Data to boost the 

(business) value creation, especially for increasing the ability to predict and react to failure 

timely, appropriately and resource efficiently, decreasing maintenance costs, and most im-

portantly retaining and increasing availability of facilities over time. As shown in Figure 12, 

generating competitive advantages (Business Values) from Big Data depends on several char-

acteristics credited as 10Vs, Value plus 9Vs (cf. (Chen, Chiang & Storey, 2012; Tian, & Liu, 

2017)), namely:  



 

 Volume of data sources,  

 Velocity of data flow (data generation, creation, refreshing, etc.),  

 Variety of data structures such as log data, machine data, sensor data, audio, text, im-

ages, video files, web data, etc.,  

 Variability of data with regard to inconsistencies in the data (anomalies or outliers), data 

dimensions (types and resources), or inconsistent speed on loading data into databases,  

 Veracity i.e. reliability of the data source (in its context) and its meaningfulness to the 

purpose of analysis,  

 Validity i.e. accuracy and correctness of the data for its intended use,  

 Vulnerability dealing with sophisticated (cyber-)security and data privacy problems,  

 Volatility referring to the rate of change in the values of stored data over a period of 

time (considered to be irrelevant, historic or not useful any longer), and last but not least  

 Visualization of data which is challenging due to limitations of in-memory technology 

and poor scalability, functionality, response time, etc. 

 

Figure 12. 10Vs for characterizing Big Data  

Discovering knowledge from Big Data can be simply interpreted as building and learning a 

model, e.g. based on historical or real-time machine data, and exposing the model to new 



 

input data to make predictions. In other words, predictive data analytics refers to “building 

and using models that make predictions based on the patterns extracted from historical or 

real-time data” (Kelleher, et al., 2015). As depicted in Figure 13, The six key phases of a pre-

dictive data analytics project lifecycle are defined by the Cross Industry Standard Process for 

Data Mining (CRISP-DM) (Chapman, et al., 2000), namely i) potential analysis and business 

understanding, ii) data understanding, iii) data preparation and integration, iv) modeling and 

visualization, v) evaluation, and vi) deployment.  

 

Figure 13. CRISP-DM – Adopted from (Chapman, et al., 2000) 

The fourth phase, modeling, is where machine learning (ML) algorithms are employed to 

build prediction models (Kelleher, et al., 2015; Fürnkranz, et al., 2012). The best model which 

fits for the purpose of prediction, for instance down time prediction, will be evaluated and 

proved for deployment e.g. in manufacturing execution systems (MES). In particular, ML is 

“defined as an automated process that extracts patterns from given data” (Kelleher, et al., 

2015). To this end, one may distinguish between two main approaches: 1) Supervised ML 

which “assumes that training examples are classified (labeled)”, i.e. learning relationship be-

tween a set of descriptive features and a target feature, and 2) Unsupervised ML which “con-

cerns the analysis of unclassified examples” (Kelleher, et al., 2015; Fürnkranz, et al., 2012). 



 

Other types of ML include semi-supervised and reinforcement learning. Depending on the 

purpose of analysis and related parameters, four families of ML approaches are foreseeable 

namely, information-based, similarity-based, probability-based, and error-based learning (cf. 

Table 2).  

Table 2. Four Main Families of ML Algorithms - Adopted from (Kelleher et al., 2015; Ansari, Erol & Sihn, 2018) 

 Learning Approach Description Example of algorithm 

M
ac

hi
ne

 Le
ar

ni
ng

 Fa
m

ili
es

 

Information-based 

Learning 

Employing concepts from information theory 

to build models. 
Decision Trees 

Similarity-based 

Learning 

Building a model based on comparing fea-

tures of known and unknown objects, or 

measuring similarity between past and forth-

coming occurrences. 

k nearest neighbor (k-NN), 

Case-Based Learning 

Probability-based 

Learning 

Building a model based on measuring how 

likely it is that some event will occur. 
Dynamic Bayesian Network 

Error-based Learning 
Building a model based on minimizing the to-

tal error through a set of training instances. 

Multivariable linear regres-

sion 

2.1.3 Evolution of Knowledge-Based Maintenance 

Despite the massive technological enhancement and introducing sensory and data-driven 

systems in the age of Industry 4.0, maintenance management and organization still suffer sev-

eral problems, which significantly affect value creation process, such as:   

 Missing linkage of process, machine and environmental data  

 Missing knowledge about influencing factors that lead to malfunctions of compo-

nents 

 Incomplete and redundant data acquisition that leads to limited and not significant 

data stocks 

 Unexhausted data recording and analysis through condition monitoring due to the 

lack of operation and selection systematics 

 An inaccurate prediction of moments when components fail leads to  

- Premature change of components or tools and hence underutilization  

- Delayed maintenance operations and thus to a variety of unscheduled 

downtimes  

From the author’s point of view, data generation and collection in large scale, and applying 



 

data mining procedures are not only optimal ways towards achieving the ideal portrait of 

maintenance, characterized by optimal time to react, low costs and high availability. There-

fore, certain aspects of CRISP-DM methodology should be further developed and integrated 

into maintenance processes, namely:  

 identifying the purpose of analysis (competence question to be answered) tailored 

not only to availability but also to quality, consistency, validity, completeness and 

comprehensiveness of data,  

 selecting and employing appropriate semantic modeling and analytical approaches, 

methods and tools, and  

 linking explorative learning (of new knowledge) and exploitative learning (from prior 

knowledge, i.e. solution, cases, etc. stored in the maintenance knowledge-base).   

Furthermore, the common ground for characterizing maintenance in the context of smart 

factories may refer to its organization’s ability to:  

 predict hidden patterns and events, i.e. prediction capability,  

 optimize current and forthcoming plans, i.e. optimization capability,  

 adapt with work-order changes and reconfigurations, i.e. adaptation capability,   

 continuously learn from failure events and former decision-making instances, i.e. 

learnability,  

and finally  

 (completely) automatize maintenance workflow and decision-support systems, i.e. ca-

pability of intelligent actions and self-direction.  

Following this line of research, the term “Knowledge-Based Maintenance” (KBM) is intro-

duced to denote the aforementioned functional capabilities and features. KBS overarches 

multiple maintenance concepts and approaches including descriptive, diagnostic, predictive 

and prescriptive maintenance in various maturity and complexity levels (cf. Figure 14).  

The term KBM has been discussed in the literature of maintenance and assets management, 

where the main assumption is that competitive advantages for reducing maintenance cost are 

achieved through holistic consideration, rather than atomistic, of all influential components 

and gaining knowledge of maintenance (cf. (Sturm, 2001; Reiner, et al., 2005; Pawellek, 2013; 

Biedermann, 2014)). According to the conceptual model proposed by (Pawellek, 2013), KBM 



 

takes into account long-term effects of maintenance policies and decisions on economic 

terms, as a non-isolated sub-domain of production systems, which influences on organiza-

tional value creation. From this point of view, maintenance should be considered as a learna-

ble organization (Biedermann, 2014). In the learnable organization, knowledge is created in 

different organizational levels (strategic, tactical and operational levels) through comprehen-

sive consideration of maintenance consequences, system conditions, and processes 

(Pawellek, 2013). KBM collects machine (systems), process, and products data, which are then 

transmitted to three areas that provide overall strategies of maintenance, namely i) risk-based 

maintenance, ii) condition- or time-based maintenance, and iii) Total Productive Maintenance 

(TPM) and lean maintenance (Pawellek, 2013). KBM is responsible for unified consideration of 

outcomes collected from the three areas (Pawellek, 2013).  

From critical point of view, although the aforementioned concept of KBM proposed by 

Pawellek (2013) is comprehensive, it only aims at establishing a linkage between multiple 

maintenance management strategies without indicating the logics of the relation, and the ex-

tent of deploying or producing knowledge. Moreover, i) methods for knowledge acquisition, 

modeling and representation, ii) the types, structures and heterogeneity of knowledge assets 

as well as iii) multi-dimensionality of maintenance organization, (knowledge) actors and IT 

systems have not been discussed.  

Yet, several aspects of the KBM in relation to the Rubik’s Cube (cf. Figure 11) have remained 

unexplored. Notably, the concept of KBM in the context of CPPS should integrate intelligent 

functions into maintenance processes and comply with knowledge-based methodologies 

(Russell & Norvig, 2016; Beierle & Kern-Isberner, 2014), which has not been exclusively con-

sidered in the literature of production and operation management.  

Over the past years, the author has been striving to extend the definition of KBM particularly 

from the perspective of semantic modeling and representation as well as static rule-based or 

dynamic model-based analytics. The main goal is to enrich the KBM concept, underlying meth-

odologies and procedures by introducing different instances of KBM in relation to their com-

plexity and maturity levels and to achieve both holistic and atomistic consideration of all in-

fluential components for gaining and protecting the knowledge of maintenance (cf. Figure 14). 

As elaborated in (Ansari, Glawar & Nemeth, 2019), KBM is defined as “a functional unit re-

sponsible to i) continuously support value generation and ii) facilitate developing and protect-

ing maintenance collective knowledge across smart factories, which is enhanced by need- or 



 

opportunity-driven knowledge detection, discovery, modeling and representation ap-

proaches”. Hence, KBM may employ a variety of methods, depending on the intended purpose 

of modeling and analysis, including advanced statistics, stochastics, real-time computing12 and 

analytics, ML algorithms, static rule-based or dynamic model-based analytics, and sematic 

modeling and representations. In the context of CPPS, KBM is demonstrated by its advanced 

functional capabilities, namely, knowledge discovery, prediction, optimization, adaptation, 

(self-)learning and ideally self-direction. 

As depicted in Figure 14, the proposed concept of KBM is categorized into four instances 

depending on the maturity and complexity of its functional capabilities. Each type of KBM can 

answer a certain competence question as follows (cf. (Ansari, Glawar & Nemeth, 2019)): 

 Descriptive maintenance (Type I, Low Complexity, Low Maturity) answers the ques-

tion “What happened?” by providing information about previous maintenance opera-

tions. Thus, it supports information collection and analysis and increases the level of 

information visibility.    

 

Figure 14. Evolution of KBM: Maturity & Complexity Levels – Reprinted from (Ansari, Glawar & Nemeth, 2019)   

 Diagnostic maintenance (Type II, Medium Complexity, Low Maturity) answers the 

question “Why did it happen?” by analyzing cause-effect relations, reasoning, and 

                                                                 
 

12 Cf. (Lee, 2017) 



 

providing further technical details about former maintenance operations. Therefore, 

it supports knowledge generation and increases the level of knowledge transparency.   

 Predictive maintenance (Type III, High Complexity, Medium Maturity) answers the 

question “What will happen when?” by learning from historical maintenance data, 

possibly in real-time, and predicting future events. Thus, it supports knowledge discov-

ery and enhances the level of (semi-)supervised or unsupervised prognostic capabili-

ties. Notably, this is often referred to as “Smart Maintenance”, “Data-Driven Mainte-

nance” and “Maintenance 4.0”, not only in scientific but also in commercial contexts.   

 Prescriptive maintenance (Type IV, High Complexity, High Maturity) answers the 

question “How can we control the occurrence of a specific event?” (How should a spe-

cific event happen?) by providing actionable recommendations for decision-making 

and improving and/or optimizing forthcoming maintenance processes. It also refers to 

the recent advances in enhancing self-organization and self-direction capabilities of 

CPPS, which ideally aim at machine self-diagnosis and scheduled maintenance. Hence, 

prescriptive maintenance may reach the highest degree of maturity, which involves 

complex methods to produce and reinforce adaptation and optimization capabilities.   

2.1.4 Outlook 

Introducing the concept of KBM leads to consolidating several aspects of maintenance man-

agement, KM, data analytics and AI into a new research group at the TU Wien, namely “Smart 

and Knowledge-Based Maintenance (SKBM)”, which aims to establish an interdisciplinary re-

search portfolio and innovative model focusing on maintenance thinking, design and opera-

tion as a mediator between both academia and industry stakeholders. Figure 15 illustrates the 

overall portfolio of the SKBM.  

Future research directions in SKBM are outlined by three Topic Areas (TAs) (cf. Figure 16), 

namely:  

 TA-I - KBM focusing on application of AI and semantic technology in maintenance,  

 TA-II - Human-centered CPPS and maintenance dealing with the emergence of hu-

man-machine knowledge actors in maintenance operation and planning, and  

 TA-III - Future-oriented maintenance strategies and approaches.  

In the TA-I, the main challenge is to establish prescriptive maintenance operation and plan-

ning, i.e. developing autonomous (self-learning and self-directing) maintenance workflow 



 

management and decision support and its integration into production control models. The 

meta-question here is “Can a machine maintenance its health score?”.  

 

Figure 15. TU Wien’s Research Group of Smart and Knowledge-Based Maintenance 

In TA-II, the role of human and machine as a knowledge actor in maintenance (decision-

making and problem-solving) processes is investigated (cf. (Ansari, Hold, & Sihn, 2018; Ansari 

et al., 2018b)), as extensively discussed in Chapter 1. The evolution of maintenance jobs (tasks) 

and jobholder profiles is examined considering new division of tasks between human and ma-

chine workforce and developing new learning strategies, models, approaches and novel di-

dactical concepts for optimal collaboration of humans and machines (i.e. AI agents, cobots, 

etc.) on performing maintenance tasks. In particular, the focus is on modeling and measuring 

human-machine reciprocal learning (cf. (Ansari, Erol & Sihn, 2018)) in maintenance and iden-

tifying the impact of learning on labor and machine productivity (cf. (Ansari, et al., 2018a)).  

In TA-III, novel concepts are investigated to provide new methods and tools for TA-I and TA-

II. In particular, three sub-topics are foreseen:    

 Digital Twin for maintenance: Integrating real-time data streams into simulation-

based and digital models of machines for real-time (re-)configuration and online di-

recting of machines, especially by focusing on automatic and agile ontology learning 

and (case-base) reasoning rather than relying on simulation-based models.    

 Maintenance Analytics with Strong Security: Dealing with (cyber-)security, perform-

ing data analysis on encrypted data, and making analytics platform more secured and 

efficient e.g. by means of Blockchain. The goal is to provide a new Digital Twin for 



 

remote monitoring and controlling platform and related business model for involving 

multiple stakeholders, namely original equipment manufacturers (OEMs), machine 

operators and suppliers as well as industrial insurance companies to predict and en-

sure moment of failure dynamically.  

 Biological transformation in maintenance: Employing, adopting or developing biolog-

ical and bio-inspired principles, functions, and approaches for KBM with the aim of 

achieving its full potential. This is inspired by the emerging subject area of Biological 

Transformation in Manufacturing (cf. (Byrne, et al., 2018)).  

 

Figure 16. SKBM’s Topic Areas for conducting research in Maintenance Management 
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