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Abstract
Computer vision serves as the foundation for the automation of many processes and tasks
on agricultural fields. Camera-based applications can be used as assistance systems and
for the more efficient use of agricultural machines. From an environmental perspective,
erosion and nitrate pollution are major challenges in agriculture. Vision systems on
agricultural implements can guide tillage and fertilization in a more sustainable way
and are the foundation for full automation. This thesis presents soil cover and soil
roughness estimation methods from short distances by cameras, as well as, methods
for grassland yield and composition estimation. Soil cover decreases soil erosion by
reducing the kinetic energy of rain drops impacting the soil surface whereas a certain
level of soil roughness reduces erosion as soil wash-off is reduced. Both parameters
must be measurable in order to automatically manage them in agronomic processes like
tillage. On the other hand, yield estimation in grassland forms the basis for site-specific
fertilization, which in turn reduces nitrate pollution in the groundwater.

The proposed methods for soil cover estimation are based on so-called entangled
random forests as well as on a convolutional neural network (CNN). Both methods are
able to distinguish between soil, living organic matter, dead organic matter and stones
by semantic segmentation of RGB images. A stereo camera setup enables soil roughness
estimation in real time on a power harrow. The methods for soil cover estimation are
integrated for handling residues during the roughness estimation. The final RGB stereo
camera setup, equipped with AI inference hardware, is also able to estimate grassland
yields by plant height measurement and plant composition estimation using CNNs on a
mower. The camera mounted on a rake detects and measures grassland swaths. The
system opens various applications in grassland harvesting from machine steering and
yield estimation to real-time machine control and logistics optimization. The methods
for soil cover estimation exceed state of the art methods and are the basis for reliable
soil roughness measurement. The method for soil roughness measurement was compared
to the sieve analysis and was judged to be sufficiently accurate for the task of seeding
with a power harrow as secondary tillage. In this thesis, the first method is presented
to control a tillage machine in real time using soil roughness measurements. It has been
shown that the method for controlling a power harrow improves homogeneity of soil
roughness on the field during seeding. In the grassland, new methods are proposed for
measuring yield and composition directly on agricultural implements like the mower and
the rake. Additional sensors (radar, laser and ultrasound) were used during mowing to
investigate their suitability for yield estimation. The methods utilized in the grassland
are compared to weighed dry matter yield samples over three seasons. All methods were
developed in the context of extensive field trials to explore environmental influences.
The field trials were conducted across fields and across seasons to investigate and reduce
seasonal and regional biases.

I



Kurzzusammenfassung
Computer Vision ist die Basis für Automatisierung vieler Prozesse und Aufgaben in der
Landwirtschaft. Auf dem Weg zur Vollautomatisierung können Bildverarbeitungsan-
wendungen in einem ersten Schritt als Assistenzsysteme und zur effizienteren Nutzung
von Landmaschinen eingesetzt werden. Aus Umweltgesichtspunkten sind Erosion und
Nitratverschmutzung große Herausforderungen in der Landwirtschaft. Computer Vision
Systeme auf landwirtschaftlichen Maschinen können helfen, Bodenbearbeitung und
Düngung auf nachhaltigere Weise durchzuführen und den Weg zur Autonomisierung
öffnen. Ziel dieser Arbeit ist es, an Methoden zu forschen, mit denen Boden- und
Pflanzenparameter mit Kamerasystemen auf landwirtschaftlichen Maschinen erfasst
werden können. In dieser Arbeit werden Methoden zur Schätzung der Bodenbedeckung
und der Bodenrauheit aus kurzen Entfernungen mithilfe von Kameras, sowie Metho-
den zur Schätzung des Ertrags und der Zusammensetzung von Grünland vorgestellt.
Bodenbedeckung verringert die Bodenerosion, indem sie die kinetische Energie der
auf der Bodenoberfläche auftreffenden Regentropfen reduziert, während eine gewisse
Bodenrauheit die Erosion durch reduzierte Bodenabschwemmung verringert. Beide
Parameter müssen messbar sein, um sie im Zuge agronomischer Prozesse, wie der Boden-
bearbeitung, zu optimieren. Andererseits bildet die Ertragsabschätzung im Grünland
die Grundlage für eine teilflächenspezifische Düngung, welche wiederum das Potential
zur Reduktion der Nitratbelastung im Grundwassers hat.

Die beiden vorgeschlagenen Methoden zur Schätzung der Bodenbedeckung basieren
auf einem sogenannten Entangled Random Forest sowie auf einem Convolutional Neural
Network (CNN). Mithilfe von semantischer Segmentierung von RGB-Bildern ist es
möglich, zwischen Boden, lebendem organischem Material, totem organischem Material
und Steinen zu unterscheiden. Ein Stereokamera-Setup ermöglicht die Schätzung
der Bodenrauheit in Echtzeit auf einer Kreiselegge. Die Methode zur Schätzung der
Bodenbedeckung ermöglicht es Reststoffe wie Stroh während der Rauheitsschätzung zu
erkennen und zu filtern. Das RGB-Stereokamera-Setup, das mit AI-Inference-Hardware
ausgestattet ist, ist in der Lage, Grünlanderträge durch Messung der Pflanzenhöhe und
Schätzung der Pflanzenzusammensetzung durch CNNs auf einem Mähwerk zu schätzen.
Wird die Kamera auf einem Schwader montiert, werden Grünlandschwaden erkannt
und vermessen. Das System eröffnet dadurch verschiedene neue Anwendungen in der
Grünlandernte, von der Maschinensteuerung über die Ertragsschätzung bis hin zur
Echtzeit-Maschinensteuerung und Logistik-Optimierung.

Die Methoden zur Schätzung der Bodenbedeckung übertreffen den Stand der Technik
und sind die Grundlage für eine zuverlässige Bodenrauheitsmessung. Die Methode zur
Bodenrauheitsmessung wurde mit der Siebanalyse verglichen und für die Anwendung bei
der Aussat als ausreichend genau beurteilt. Darauf aufbauend wird die erste Methode zur
Steuerung einer Bodenbearbeitungsmaschine in Echtzeit durch Bodenrauheitsmessung
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vorgestellt. Es wurde gezeigt, dass die Methode zur Steuerung einer Kreiselegge
die Homogenität der Bodenrauheit innerhalb eines Feldes verbessert. Im Grünland
werden neue Methoden zur Messung von Ertrag und Zusammensetzung direkt auf
Grünlandgeräten wie Mäher und Schwader vorgeschlagen. Zusätzliche Sensoren (Radar,
Laser und Ultraschall) wurden während des Mähens eingesetzt, um ihre Eignung für
die Ertragsabschätzung zu untersuchen. Die Methoden im Grünland wurden mit
Trockenmasse-Ertragsproben über drei Saisonen validiert.

Alle vorgestellten Methoden wurden im Rahmen von umfangreichen Feldversuchen
entwickelt und ermöglichen es dadurch, Umwelteinflüsse zu erforschen. Die Feldver-
suche wurden feld- und saisonübergreifend durchgeführt, um saisonale und regionale
Verzerrungen zu untersuchen und zu reduzieren.
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1 Introduction
With a growing world population, the demand for food and the pressure to produce in
economically efficient and sustainable ways increases. The intensification of agricultural
production combined with wrong agronomic decisions may lead to nitrogen pollution
in groundwater or damage to the soil structure and consequently lead to soil erosion.
In addition, climate change intensifies heavy rain which is accompanied by strong soil
erosion [1].

Soil erosion can be influenced by agricultural techniques, such as direct drilling,
mulching or reduced tillage [2]. The goal of these techniques is to preserve soil structure
and to maintain a certain amount of soil cover. For conventional tillage and seeding
these goals can be achieved by reducing the tillage intensity and maintaining the soil
roughness.

Nitrogen pollution can be reduced by the targeted application of fertilizer based on
the potential yield. Being able to estimate and predict yield site-specific forms the
foundation for targeted application [3], as well as, optimized logistics and farm resource
panning.

Decisions in agriculture are traditionally based on gut feeling and the experience of
farmers. To base these decisions on measurable parameters and to be able to automate
processes, new methods and tools are needed. Cameras with state-of-the-art vision
algorithms are promising for measuring soil and plant parameters since farmers have
always based most of their decisions on visual information.

Due to automation and the trend towards autonomous robots and sensors systems,
cameras will also become ubiquitous in agriculture. With automation, not only the
driving process but also the agronomic process like implement control must become
automated. Currently, farmers use intuition and experience to carry out soil cultivation,
plant cultivation or harvesting in the best possible way. All these intuitive processes
including assessing the of work quality must be studied and mechanically replicated.
Cameras with modern algorithms offer a perfect solution to master these challenges.

This thesis investigates methods for measuring soil and plant parameters based on
state-of-the-art computer vision techniques, to solve different problems with one camera
system and similar technical methods, especially stereo cameras and convolutional
neural networks (CNN).

1.1 Problem Statement
The loss of topsoil erosion worldwide amounts to around 23 to 26 billion tons per
year (Figure 1.1). This amounts to an annual loss of about one percent of arable land.
Different agronomic measures, especially during tillage, help to combat this trend.

1
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Figure 1.1: Soil erosion on sunflower field (photo credit: Elmar Schmaltz, Bundesamt
für Wasserwirtschaft, Institut für Kulturtechnik und Bodenwasserhaushalt)

The main factors influencing soil erosion are soil aggregate stability and size, and
soil cover [4]. During rain, the impact of rain drops on the soil surface breaks up soil
clods and subsequently washes soil away. Additionally, bigger soil aggregates reduce
and decelerate this process. Soil cover absorbs the kinetic energy of the rain drop and
thereby reduces erosion. In general, bigger soil aggregates and soil cover are favourable
conditions. Soil cover improves infiltration and retention of soil moisture and therefore,
reduce crop water stress [4]. Additionally, soil cover regenerates soil and increases humus
formation, thereby binding carbon in the soil. These benefits have been reported many
times ([5], [6] [2]). The goal of tillage is to improve the soil conditions for plant growth
by reducing the soil aggregate sizes [7]. The aggregate size distribution can be influenced
by the type of tillage implement, the tillage intensity and the soil water content during
tillage (Adam and Erbach, 1992; Braunack and McPhee, 1991). This often stands in
contrast to the goal of erosion control, which favors bigger soil aggregates.

Most soil erosion models developed since the well-known USLE [8] model include soil
cover as factor for soil loss. Soil erosion is influenced by additional factors like slope,
rainfall and wind, but these are difficult or even impossible to change while the soil
parameters themselves can be improved. Agricultural methods and machines for soil
conservation management like direct drilling or soil mulching [9] have been developed.
The work in [10] found that overall soil conservation techniques may reduce soil erosion
by as much as 80%. National agricultural subsidy programmes often fund the soil
protection measures of farmers, for instance the Austrian OEPUL programme [11].
Repeatable measurement methods for the evaluation of the target soil parameters are
hardly used in these programs due to the lack of these methods.

The aspects mentioned above lead to a scientific as well as practical need for methods
to measure soil parameters, soil cover and roughness. These methods should be
repeatable, robust and reliable. The real-time capability and the motion insensitivity
of the methods is also of importance, especially when used on moving machines like
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tractors or tillage implements.
Soil cover demonstrates that not only soil parameters, also plant parameters are

of importance. Plant parameters are of greater short-term interest to the farmer.
The overall goal is to optimize yield in an environmentally friendly way. The basis
for this and of greatest importance are non-invasive methods to measure the yield,
but plant stress and biomass are of interest too. Especially in Austria, grassland is
widespread but there is little existing research. Yield estimation and plant classification
in heterogeneous grassland are the basis for automated machine control, site-specific
fertilizer applications, in-field-logistics and logistic optimization during harvest and
objective farm resource planning. From an environmental point of view, site-specific
fertilization (Figure 1.2) has the potential to reduce water pollution by nitrates.

Figure 1.2: Nitrogen fertilization on field (photo credit: Innovation Farm Wieselburg,
Josephinum Research)

The challenge for yield estimation lies mainly in the heterogeneity of grassland
which is why there is no robust method yet proposed. A data-driven machine learning
approach is therefore appropriate. In general, no reliable methods for the estimation of
site-specific yield and also for plant classification in grassland are available.

1.2 Goals
The overall agronomic goal is to reduce soil erosion and reduce nitrogen pollution while
maintaining good plant emergence and high yields. Soil erosion is influenced by weather,
soil type and texture, soil cover, soil roughness, root penetration, soil moisture and
many more. Not all of these parameters can be captured with a vision system, so we
target those that can be measured by cameras and influenced through tillage, these
are soil roughness and soil cover. Nitrogen pollution can be prevented by targeted and
site-specific fertilization. Plants should only be supplied with as much nitrogen as they
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really need, for this purpose their condition, in particular the expected yield, must be
determined to infer fertilization maps.

The goal of this thesis was to develop and evaluate a vision system for application
on moving agricultural implements that is able to measure the parameters mentioned
above, soil cover, soil roughness and grassland yield. The system should include different
use cases by using state-of-the-art computer vision methods that offer the potential to
reduce soil erosion and to optimize resource usage via precision farming. The three
main methods applied for this are described in detail below.

• Methods for measuring soil cover allow for estimating the protection against soil
erosion, as well as, for quantifying plant emergence. Soil cover reduces the kinetic
energy of rain drops impacting the soil surface and thereby decreases soil erosion.

• A method for soil roughness measurement evaluates the erosion protection of
the soil and enables online machine control for homogeneous plant emergence. A
certain level of soil roughness reduces soil wash-off which in turn also prevents
erosion.

• Methods to measure grassland yield and yield composition enable resource
optimized grassland management. Yield estimation in grassland forms the basis
for site-specific fertilization which reduces nitrate pollution in the groundwater.

All methods are designed to work on moving agricultural implements but can also be
used independently for plant and soil assessment in crop trials. The core technologies
used are semantic segmentation and 3-D imaging with stereo cameras.

1.3 Contributions
In this section, the contributions of this thesis are presented grouped by the three open
problems to be tackled by a camera system. The main contributions are new methods
for soil cover measurement, soil roughness measurement and grassland yield estimation.
The requirements of the methods are defined and implemented in a prototype vision
system. In detail the contributions are:
Soil cover measurement methods to classify images into the classes soil, living
organic matter (plants), dead organic matter (residues) and stone. Implementation and
evaluation of two methods based on an entangled random forest (published in [12] and
[13]) and an convolutional neural network (published in [14] and [15]).

• Validation of the two proposed methods with the grid method

• State-of-the-art comparison with the method proposed in [16]

• Estimation of the human evaluation error an experiment was conducted employing
10 persons, with each person evaluating identical images.
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In Figure 1.3 the process of capturing a soil cover image and the estimated results
are shown.

Figure 1.3: Left: Person capturing an image of the soil surface for soil cover estimation;
Middle: image of the soil surface; Right: classification of the soil cover
components in the image by a CNN

Online soil roughness measurement method and integration into an online ma-
chine control system (published in [17], [15], [18] and [19]).

• Integration into a closed loop control system for online machine control

• Statistical comparison of measured soil roughness and soil aggregate size on the
field

• Investigation of the effect of the controller

• Investigation of environmental influences on the measurement system and proposed
countermeasures

• Statistical comparison of measured soil roughness and resulting field emergence

Figure 1.4 (left) shows a tractor with a seed drill during seeding. The camera on the
seed drill captures stereo images Figure 1.4 (middle) and reconstructs the soil surface
Figure 1.4 (right) for roughness estimation.

Figure 1.4: Left: Tractor with seed drill combination during seeding; Middle: camera
view of the soil surface; Right: 3D stereo reconstruction of the soil surface
for roughness estimation

Methods for grassland yield and yield composition measurement and for
measuring yield during mowing and swathing (published in [20] and [14]).
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• Meadow height measurement system based on a stereo camera, with a new
approach to absolute height measurement at the cut-edge.

• Method for estimation of grass/legumes ratio based on a convolutional neural
network.

• Methods for segmentation of grassland swaths.

• Method for segmentation of areas of cut grass based on a CNN.

• Machine learning based regression model based on input parameters from the
camera system to estimate dry matter yield.

• Statistical comparison of different measurement parameters to grassland yield.

Figure 1.5 shows a tractor during mowing and images of a stereo camera mounted on
the mower facing backwards.

Figure 1.5: Left: Tractor and mower with cameras and sensors mounted; Middle:
Camera view on the cut edge; Right: top: classification of legumes and
grasses in the image, bottom: 3D stereo reconstruction of the scene for plant
height measurement.

1.3.1 Publications
The following list gives an overview of publications that were published in the course of
this thesis in chronological order starting with the most recent paper. The references
[17] and [12] are published papers in peer reviewed scientific journals. The papers[14],
[20], [15], and [21] are from peer reviewed conferences. The papers [22], [18], [19] and
[13] are in the proceeding of non peer reviewed conferences. At the beginning of each
chapter the respective papers are mentioned again.

• [22] P. Riegler-Nurscher, J. Prankl, M. Vincze, H. Prankl, "A review on plant
and soil properties estimation using ground-based computer vision techniques in
the visible spectrum.", Tagungsband LAND.TECHNIK 2020, VDI-Bericht 2374,
ISBN: 978-3-18-092374-1, p. 353-359, 2020.

• [14] P. Riegler-Nurscher, J. Prankl, M. Vincze, "Semantic Segmentation for the
Estimation of Plant and Soil Parameters on Agricultural Machines.", The Sixteenth
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International Conference on Autonomic and Autonomous Systems, September 27,
2020 to October 1, Lisbon, Portugal, ISBN: 978-1-61208-787-0, p. 87-90, 2020.

• [20] P. Riegler-Nurscher, J. Prankl, M. Hofinger M., M. Vincze, "Detektion
eines Grünlandschwades mit Stereo RGB Kamera", 40. GIL-Jahrestagung, Digi-
talisierung für Mensch, Umwelt und Tier, Bonn: Gesellschaft für Informatik e.V.,
p. 265-270, ISBN: 978-3-88579-693-0, 2020.

• [17] P. Riegler-Nurscher, G. Moitzi, J. Prankl, J. Huber, J. Karner, H. Wagen-
tristl, M. Vincze, "Machine vision for soil roughness measurement and control of
tillage machines during seedbed preparation", Soil and Tillage Research, Volume
196, 104351, ISSN 0167-1987, https://doi.org/10.1016/j.still.2019.104351, 2020.

• [15] P. Riegler-Nurscher, J. Prankl, M. Vincze, "Tillage machine control based
on a vision system for soil roughness and soil cover estimation", Proceedings of
the 12th International Conference on Computer Vision Systems (ICVS 2019),
Thessaloniki, Greece, 23-25 September, 2019, p. 201-210, 2019.

• [21] P. Riegler-Nurscher, J. Prankl, J. Karner, "Beurteilung der Schnittqual-
ität von Schneid- und Mähwerken mittels photogrammetrischer Methode", 39.
GIL-Jahrestagung, Digitalisierung für landwirtschaftliche Betriebe in kleinstruk-
turierten Regionen - ein Widerspruch in sich?, Bonn: Gesellschaft für Informatik
e.V., p. 189-192, 2019.

• [18] P. Riegler-Nurscher, H. Prankl, G. Moitzi, H. Wagentristl, "Robust online
soil roughness measurement using stereo vision", EurAgEng Conference 2018,
Wageningen, Netherland 08 - 12 July, 2018.

• [12] P. Riegler-Nurscher, J. Prankl, T. Bauer, P. Strauss, H. Prankl, "A machine
learning approach for pixel wise classification of residue and vegetation cover under
field conditions", Biosystems Engineering, Volume 169, May 2018, p. 188-198,
https://doi.org/10.1016/j.biosystemseng.2018.02.011, 2018.

• [19] P. Riegler-Nurscher, J. Karner, J. Huber, G. Moitzi, H. Wagentristl,
M. Hofinger, H. Prankl, "A system for online control of a rotary harrow using
soil roughness detection based on stereo vision", Proceedings 75th Conference
LAND.TECHNIK - AgEng 2017, 10-11 November 2017, Hannover, VDI-Berichte
Nr. 2300, 2017, ISBN 978-3-18-092300-0, p. 559-565, 2017.

• [13] P. Riegler-Nurscher, J. Prankl, T. Bauer, P. Strauss, H. Prankl, "An
Integrated Image Analysis System for the Estimation of Soil Cover", International
Conference on Agricultural Engineering CIGR - AgEng 2016, Aarhus, Denmark,
26 - 29, 2016.

1.4 Results Preview and Outline
The most significant results of the thesis are presented below.
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Soil cover estimation is based on area ratios of semantic segmented RGB images.
The estimation method based on the entangled random forest achieved an R2 = 0.763
for soil, R2 = 0.981 for living organic matter and R2 = 0.722 for dead organic matter.
The method based on a CNN achieved an R2 = 0.809 for soil, R2 = 0.965 for living
organic matter and R2 = 0.747 for dead organic matter.

Soil roughness measured with the proposed stereo camera correlates with R2 =
0.283 to the mean weighed aggregate size measured by sieve analysis. A correlation
with R2 = 0.844 was found between measured soil roughness and working intensity of a
power harrow. When controlling a power harrow based on the measured roughness the
mean squared error (between RC roughness in mm) between targeted roughness and
actual roughness decreased from MSE = 2.16 to MSE 1.24 in the controlled case.

Grassland yield can be estimated with an R2 = 0.524 based on a Support Vector
Machine (SVM) model with features from the camera facing backwards onto the cut
edge. This thesis discovered that the most important features are plant height and
plant composition. Based on an estimation of the swath volume on a rake it is possible
to predict yield mass with an R2 = 0.412. An effect of the raking method on the
volume-mass ratio was found. The new segmentation method based on CNNs exceeds
depth based swath segmentation in terms of accuracy and IoU. It was also found that
the composition of the seed correlates less and less with the composition of the plant
over time.

Chapter 2, Related Work, gives an overview of agricultural RGB proximal sensing
methods followed by prior scholarship done in agricultural sensor technologies and
image analysis in our target applications. Lastly, recent developments in the field of
semantic segmentation are discussed. Chapter 3, Soil Cover Measurement, presents the
two implemented semantic segmentation approaches for soil cover estimation followed
by an evaluation of the methods with state of the art metrics. In Chapter 4, the method
for Soil Roughness Measurement is presented. The integration of the method into a
controller for automatic machine control is also presented and evaluated. The Chapter
5 is about Grassland Yield Measurement. It presents the method of yield estimation
and yield composition estimation during mowing and raking. The last Chapter 6 gives
an overall conclusion and outlook.



2 Related Work
This chapter gives an overview of prior literature in the area of vision systems for plant
and soil parameter estimation. The fields of soil cover and soil roughness measurement,
as well as, grassland yield estimation are presented in detail. Recent advancements in
semantic segmentation are presented as this computer vision task is very prevalent in
this thesis and in agriculture in general.

2.1 Vision Systems for Plant and Soil Parameters on
Agricultural Machines

The estimation of plant and soil properties is the basis for the sustainable cultivation of
arable land. The use of ground based measurement techniques has the potential of not
only mapping parameters but also controlling agricultural machines in real time. One
of the most common uses for computer vision on agricultural machines is plant species
classification [23], [24]. Various applications can be solved with plant classification. It
forms the basis for spot spraying, mechanical weeding, plant phenotyping and yield
estimation. The detection rates of the different approaches depend on the number of
classes to be differentiated. For weeding, it is common to detect two classes (crop and
weed). The estimation and classification of plant parts like leaves [25], stems, seeds
[26], ears [27], panicles [28] are used for phenotyping and special applications like yield
estimation. Plant row detection [29] is already widely-used in practice for inter-row
weeding and automated steering. In contrast, plant pest detection ([30], [31]) is still a
field of research and no widespread applications are known. Full-area real-time detection
of pests in the field is not yet practical due to the high image resolution requirements.
The same challenge concerns the detection of plant diseases ([32], [33]). RGB vision for
soil parameters is mostly limited to soil roughness and soil clod size estimation ([34],
[35]). Soil cover is composed of living organic matter like plants; dead organic matter
like residues; and, stones. Its estimation lies methodologically in between that of plant
and soil parameters.

2.2 Soil Cover Measurement
Soil cover is crucial for practising conservative agriculture, protecting soil and improving
plant growth. Measuring soil cover accurately is important for planning soil tillage
tasks, controlling agricultural implements, or evaluating effects of certain operations on
fields. Soil cover is also part of most, if not all, soil erosion models which are presented
in [36] and [37].

9
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Soil cover is usually estimated with on-site methods ([38], [39]) like the line-intercept
transect method or the lattice screen method. These methods try to achieve an objective
systematization of the estimation using regular pattern of sample points. These points
are classified manually by a human. These methods are very time consuming and lack
reproducibility.

Manual image analysis methods have been introduced to improve reproducibility
and usability ([40], [41], [42], [43]). With these methods, the classification task is
carried out remotely to the location where the image was captured. This reduces the
time on the field and enables a certain reproducibility of the estimation. However, all
manual methods are time consuming and very subjective depending on the skills of the
evaluator.

The obvious next step was to automate the image analysis. This allows for faster
processing and it can be executed easily compared to manual cover estimation [44].
However, the line point intercept method, also known as grid method, has become an
established method for validating automated image analysis methods.

Soil cover estimation can be done from satellites (remote sensing) or on the ground
(proximal sensing). We focus on proximal sensing with camera systems which utilise
color and texture information. Many studies in the field of proximal soil cover estimation
focus either only on dead ([45], [46], [47]) or on living soil cover ([48], [49], [50], [51],
[52], [53], [54]). There are hardly any methods known in the literature that combine
both types of cover like in [16]. Many of these methods are based on simple color
thresholding and often need color calibration (e.g. by color tiles)[49].

One way to reduce the effects of light and color variations is to select different color
spaces. The work in [55] showed, that color spaces which separate luminance from
chrominance work best for soil segmentation tasks.

Common object-based methods rely on sample-based analysis which is very time
consuming, because the user has to define meaningful samples for each soil cover
type. Object-based methods ([56], [44] and [57]) rely on defining thresholds and these
thresholds need sometimes to be adapted for each image [44].

The method proposed in [16] uses object based image analysis and a decision tree to
select parameters depending on manual preselected parameters. Although these show
promising results, manual parameter adjustment is required and it is often limited to a
certain application area like an upper limit of soil cover.

As in all areas of computer vision, machine learning also became popular for soil cover
estimation. The work in [58] showed that machine learning based methods outperform
classic threshold based methods in classification quality, especially in distinguishing soil
from dead organic matter. The main issue with threshold based methods is the manual
selection of the threshold and the resulting lack of generalization, especially under
different lighting conditions. Machine learning based methods for soil cover estimation
can be more illumination tolerant and generalize more when used with large datasets
[59].

Early machine learning methods for soil cover classification often use Support Vector
Machines (SVM) [60]. The method proposed in [59] uses a SVM for the segmentation
of living plants and soil. Methods based on neural networks in a deep architecture like
convolutional neural networks, as in [61], look very promising. They can also cope with
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Figure 2.1: Example soil cover segmentation of the method proposed in [16]: Stepwise
application of eCognition A) original RGB image B) segmented image
C)performed classification with different classes (brown - soil, green - living
vegetation, pink - residues, yellow- areas of uncertainty).

different lighting conditions and various soil cover types. However, the method in [61]
is in an early prototype stage and has not been sufficiently evaluated.

The main challenge in deep learning, with a large number of parameters in the model,
is the need for large datasets to get good generalization and to avoid converging into
local minima.

2.3 Soil Roughness Measurement
Soil roughness is an important parameter to quantify the erosivity of soil. Rough
soil reduces soil erosion [62] while fine soil and smaller soil aggregates improve plant
emergence. Tillage and seedbed preparations improve soil conditions by altering the
aggregate sizes [7]. Different studies have investigated the aggregate size distribution
and its effects in the seedbed ([62], [63], [64], [65], [66], [67], [68], [69]). The goal of
seedbed preparation is to get optimal soil roughness to avoid soil erosion and to get
good plant emergence. Soil conditions in fields are in general heterogeneous ([70], [71]).
To get homogeneous soil roughness during seedbed preparation, the tillage intensity has
to be adapted according to the site-specific conditions. The site specific adoptions of
the machine could be based on pre-processed maps or could be calculated in real time
based on sensor measurements. No matter which method is used to control the tillage
machine, a measurement system is needed. Different methods have been proposed for
measuring soil roughness ([72], [73], [74], [75], [76], [77] [78], [79], [80]). Initial attempts
to measure soil roughness used pin meters and chains [72]. These variants of contact
based methods can’t be used in motion and therefore cannot be mounted on moving
machines.

Lasers are used in academic settings for measuring soil roughness in-situ ([73], [75],
[74]). These laser scanners are very accurate for depth measuring [81], but these
sub-millimeter accuracies are not necessary for soil roughness measurements at tillage.
Furthermore, the laser scanners are very sensitive to mechanical vibrations and dust.

The Microsoft Kinect™ 3-D camera sensor was used for soil reconstruction in [77].
However, many active sensors like the Microsoft Kinect™ have difficulties operating in
bright daylight due to increased noise levels.

Methods for roughness measurements based on multiple views with unknown extrinsic
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Figure 2.2: Figure of the proposed work of [77]: Microsoft Kinect™ 3-D camera sensors
mounted on a tractor with a cultivator for soil roughness measurements

camera positions are used in [78] and [82]. These methods use additional reference
patterns on the soil to get an accurate scaling of the reconstructions. However, this
makes an application on a tillage machine difficult.

Stereo cameras have no need for reference patterns after calibration. Soil roughness
measurements based on stereo cameras have been proposed in [79] and [80]. Stereo
cameras have been proven suitable for outdoor applications in agriculture like the Claas
CultiCam [83], they work well under changing lighting conditions and fast motion. The
color information provided by RGB stereo cameras can be used to detect other soil
parameters like soil cover as discussed in the previous section.

Methods to detect clods directly from images, in contrast to those which just measure
roughness, have been proposed ([84], [76]). However, it is quite difficult to detect
clods directly after tillage and in motion due to the soil aggregates being hard to see.
Currently, there is no method known to be able to detect soil clods, of different soil
textures and soil colors, during tillage.

2.4 Measuring Grassland Yield
Previous studies tried to measure grassland yield during mowing. The work in [85] used
a belt weigher. The grass is loaded onto the conveyor belt which continuously measures
its weight. A problem with this setup is the difficulty of weighing while in motion and
the complexity of the mechanical system. Another proposed approach is to measure
the torque of a conveyor belt and derive the yield from it. In the research in [86], this
approach was tested in the lab with two conveyer belts, but led to a strong deviation
in the measurement of the torque, especially in their subsequent field tests. In [87], a
statistically significant correlation between the power of the conditioner on a mower and
mass flux of the grass was found. A similar methodological approach was published in
[88] which found a correlation between the conditioner power, force on the conditioner
baffle plate and the mass flux. A mixture of grass and lucerne was used and it was
shown that the mass flux is not only dependent on the torque of the conditioner but also
on grass species, moisture, grass maturity and conditioner intensity. These dependencies
did not manifest themselves on the force of the conditioner baffle plate. There are no
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Figure 2.3: Images of the method proposed in [94]. Left: on-the-go application as
a combined real time measurement of ultrasonic sward height and high
precision GPS in movement; Middle: experimental layout; Right: point
cloud of the sward height measurements with an ultrasonic sensor

production stage mass flux or yield measurement systems for mowers. Alternatively
to measuring torques, the work in [89] tested a pendulum meter to capture the mass
distribution on the field. Different plant distributions on the field correlate with different
pendulum deflections [90]. The pendulum meter could deliver mass distributions of the
plant on a field very cost efficiently by a non-destructive measurement. An integration
into existing machines would be possible [91]. This shows that there was research in the
field of yield measurement, but no product is currently available on the market. Issues
lie in the calibration of the measurement systems and the heterogeneity of grasslands.

Laser scanners enable the measurement of crop heights to estimate the yield. In
[92], laser measurements were compared with manual height measurements and geo-
referenced crop height maps were generated. Laser scanners are expensive and fragile
which limits the use on mobile mower implements. The research in [93] used ultrasonic
sensors with multi spectral sensors to measure yield mass in grasslands while stationary
and in motion. Their research suggests that it is possible to measure grassland yield
in heterogeneous fields by combining different sensor systems. It was shown that
measurement systems based on ultrasonic sensors reach their limit on high plants ([94],
[95], [93]). Combinations of leaf area index and vegetation indices could increase the
accuracy of the measurements for higher plant stand. Spectral information alone would
not be sufficient for estimation of grass yield [95]. The relation between biomass yield and
spectral information for selected legumes and clover grass mixtures was investigated in
[96]. The measurements showed that each legume species has its own spectral signature
which can be measured accurately ([97], [98]). However, vegetation indices alone did
not deliver satisfactory results [96]. The work in [98] showed correlations between
vegetation indices (NDVI) and grassland yield. Models based on a combination of
spectral information and grass height from ultrasonic sensor measurements [99] showed
promising results for yield estimation. The main issues with the approaches presented
lies in the difficulty of calibration, the expensive hardware and the susceptibility to
errors at high working speeds. These issues prevent the practical application of the
measurement systems mentioned in the literature.
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In order to improve yield estimation, the species composition in grasslands is also a
relevant parameter. Initial studies on the detection of grassland species composition
have been presented. Multi-spectral sensors [100] but also RGB imaging methods [101]
are used for species classification in grasslands. The most promising preliminary work
was presented in [101]. Their proposed method distinguishes clover and grasses in
RGB images by using semantic segmentation. Section 2.5 presents state of the art
methods for semantic segmentation. We continue to pursue this approach to enable
robust detection under real outdoor conditions during movement.

It is generally possible and useful to extend GNSS based yield mapping systems
from grain production and precision farming into grassland, because the applications
are similar [102]. But in order to help precision agriculture move from the field to
the grassland, it is necessary that these technologies are simple and inexpensive, yet
versatile [103].

In the field of swath detection, several approaches have been proposed. Current
methods use ultrasound, radar or laser sensors, or cameras for this task. Systems based
on Laser scanners are already commercially available [104] but expensive and thus
not common. These systems are used to steer a tractor or control the driving speed
depending on the swath volume, during harvesting with a loading wagon or a baler.
Camera-based swath detection enables the utilization of additional information such
as texture and color [105]. Especially at small volumes, methods based on 3-D data
from laser rangers or 3-D cameras have problems with the swath segmentation. The
method presented in [105] shows the potential for swath segmentation used on stereo
depth data and texture information.

2.5 Semantic Segmentation
Semantic segmentation involves getting a pixel-wise classification mask of an image. In
agricultural applications with strong illumination invariances and biological non-rigid
objects, simpler methods like thresholding, histogram-based methods, or clustering
methods do not achieve the desired classification and segmentation quality. In recent
years, machine learning based methods like support vector machines [106], random
forests [107] and especially convolutional neural networks (CNNs) are the methods of
choice for complex semantic segmentation problems. End to end learning methods like
CNNs circumvent the problem of manual feature design.

First CNNs for semantic segmentation were Fully Convolutional network (FCN).
There a classical CNN takes an input image and the label map is produced in an
additional fully connected layer. The convolutional and pooling layers of the CNN down
sample the input resulting in low resolution output label maps. Different approaches
like SegNet [108], UNet [109], DeepLab [110], Pyramid Scene Parsing Network (PSPNet)
and Dilated Convolutions have been proposed to circumvent this issue. A survey on
semantic segmentation based on deep learning methods was published in [111].

We utilized the entangled random forest method [107] and the ERFNet CNN [112]
for the task of soil cover estimation (see Chapter 3). For applications in grassland in
Chapter 5, we only use the ERFNet method because of its compromise between speed
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and accuracy as shown in [113].

2.6 Summary
Methods for soil roughness and soil cover estimation, as well as, for grassland yield
estimation have been proposed. However, all the proposed methods are tested under
laboratory conditions or to a certain extent under controlled conditions. This is sufficient,
among other things, for scientific application and agronomic trial activities. Additionally,
a method to control a tillage machine in real time based on soil roughness readings has
never been studied. The goal is to get these methods onto agricultural machines for the
real time mapping of soil and plant parameters or for the real time control of machines.
The robust real time application of computer vision on fields is the prerequisite for
broad use in agriculture and the advancement of the field robotics.



3 Soil Cover Measurement
Soil cover consists of living and dead organic matter and stones on the soil surface. A
certain amount of soil cover reduces the susceptibility of the soil to erosion. The cover
on the soil reduces the amount of soil washed away during rain falls [4]. Soil cover not
only increases the availability of plant nutrients, but also supports soil regeneration
and enhances humus formation (see [5], [6], [2]). In order to measure the soil cover,
an objective and easy to use method is needed. Many national subsidy programs like
OEPUL [11] in Austria promote soil cover protection against soil erosion. A camera
based method for soil cover estimation could be used to objectively assess the measures
taken by the farmer and distribute the subsidies in a more focused manner. It could
also be used as a tool to train the farmer to improve his subjective assessment of soil
cover during practical use.

Agronomic field trials are another important area of application. The proposed
method for measuring soil cover can be used for the quality assessment of tillage, as
already published in [114] and [115], or to measure plant emergence.

In order to widely extend the application of this method, the measurement should
work with different RGB camera systems, such as those of smart phones or industrial
cameras. In contrast to the methods presented in Chapter 4 and 5, only RGB image
data and no depth data is used for soil cover measurements. Two different machine
learning methods for semantic segmentation were implemented, trained and evaluated.
An entangled random forest, as proposed in [107], and a convolutional neural network
(CNN), the ERFNet [112] implemented in the bonnet framework [116]. We implemented
this method based on the entangled random forest available online at www.soilcover.at.

Parts of this chapter were published in Biosystems Engineering [12], at the ICVS
conference 2019 [15] and at the CIGR - AgEng Conference 2016 [13].

3.1 Hardware Setup
Soil cover is defined by its color and less so by its 3-D structure. Hence, the minimum
hardware requirements are a RGB camera which can read the soil surface with a
resolution of at least 1 mm. Due to the simple hardware requirements and the different
possible applications, the soil cover estimation algorithm should work for many different
cameras.

Different cameras were used to capture the training data. Images were captured with
DSLRs, smartphones and handheld digital cameras (Nikon D50; Nikon D5100; Casio
EXZ400, Nokia C700; Nikon D7000; LGD405; Panasonic DMCTZ61, Sony DSC-H9
and Sony DSC-H70).

Different RGB cameras can be used during inference. An Android application was

16
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implemented to simplify the use of the smartphones. The application captures an image
with the Android Camera API and sends it to a server which runs the inference and
sends the result back.

Figure 3.1: Android App for capturing images on smartphones. The applications
communicates via a web-service to an inference server.

In order to gather large datasets of soil images, a camera setup with a single board
computer was implemented. Figure 3.2 shows the camera setup developed for capturing
soil cover images in motion with an IDS RGB UI-3251LE-C-HQ camera (1/1.8" e2v
EV76C570 CMOS sensor) and a NVIDIA Jetson Nano single board computer. The
camera has an imaging resolution of 1600 x 1200 pixels. A Lensation 5.5 mm lens was
used to capture a surface area of 70 x 60 cm from of about 70 cm mounting height
above the soil surface. The system runs a gpsd daemon from libgps to label each image
with its GNSS position and to read a velocity relative to the soil surface for optimizing
the camera exposure time. The handling of the exposure time, dependent on machine
velocity, works as described in Section 4.2.4. The Jetson Nano SBC also allows for real
time inference of CNNs depending on the image resolution and the network size.

Figure 3.2: Hardware for capturing RGB images on a mobile machine. The system
includes a DS RGB UI-3251LE-C-HQ camera and a NVIDIA Jetson Nano
for inference of CNN models.
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Figure 3.3: Semi-automatic segmentation for ground-truth annotation. A simple in-
terface enables the adjustment of super-pixel size and a color threshold.
Finally, the user needs to set labels to pre-segmented areas. From left to
right different settings of the pre-segmentation are shown. The right image
depicts a semi-transparent overlay of a partially annotated image.

3.2 Dataset

The supervised machine learning approaches utilized in this work are dependent on
labelled training images. Training images were captured on the field and a pixel wise
class label mask was manually created.

In order to capture a certain range of natural scenarios, images of different residue
and vegetation covers were taken. The images were taken from about a height of 1.4 m
horizontally to the ground which resulted in a resolution of 1 to 10 pixel/mm. First, the
conditions were restricted to diffuse (cloudy) light conditions. The image acquisition
was done between May 2015 and October 2016 for crops, catch crops and spontaneous
vegetation with diverse plant residues. Finally, a dataset of about 200 different images
was created.

3.2.1 Data labelling

We implemented a labelling tool with semi-automatic pre-segmentation to ensure efficient
and accurate labelling of the images. The pre-segmentation is based on super-pixel
segmentation Simple Linear Iterative Clustering (SLIC), as proposed by [117], and
a recursive clustering of nearby super-pixels depending on the color similarity. The
user can modify two different parameters: the first parameter specifies the size of the
super-pixels and the second one defines the color similarity for recursive nearest neighbor
clustering. The tool has an additional option for free drawing with different pencil sizes
and flood filling within the label mask. Temporal brightness changes can be controlled
with gamma correction to increase visibility in dark or very bright image regions during
labelling. With this tool, representative image regions of about 500 x 500 pixel of the
200 training images were labelled.
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3.2.2 Public datasets

The method based on the CNN can be pre-trained on similar datasets. Afterwards, the
soil cover dataset is used to fine-tune the weights of the model. The ERFNet CNN was
pre-trained on the sugar beets dataset [118], which is publicly available. It consists of
12,714 RGB images of sugar beets. The images from the sugar beet dataset have a
ground resolution of approximately 3 pixel/mm and capture an area of 24 x 31 cm.

3.3 Entangled Random Forest

The first method implemented is a variant of a Random Forest proposed by [107] and
known as entangled random forest. This variant uses entangled features to model the
context of individual pixels. These features allow for modelling such that neighboring
pixels are more likely to be from the same class. Like all supervised machine learning
methods, it uses annotated training data to fit a model of the data by minimizing
the error to the training data. During inference, the learned model is applied on new
images.

3.3.1 Random Forest

A random forest generally consists of several decision trees. These binary trees make
decisions in each node based on a feature and its learned threshold. The trees are
built during the training stage by optimizing the information gain in each node. The
training of each tree is shown in Figure 3.4. The training method is principally based
on the method published in [119]. First, a random sample of images is selected from all
training images in a process known as bagging. Starting from the root node down, each
node’s parameters (feature and threshold) is selected based on random drawings from
the range of features and thresholds. The combination of feature and threshold with
the best information gain, i.e., which separates the training set best based on the class
memberships of all pixels, is selected. Through this process, the tree is gradually built
node by node and layer by layer downwards. If a certain information gain is reached in
a node, it remains as a leaf node and receives no further child nodes. Furthermore, the
training is also stopped if a limiting depth is reached which prevents overfitting of the
tree, i.e. the model does fit the training data but fails by classifying new test samples.
A sketch of a random tree is shown in Figure 3.5. The building of a tree is repeated N
times to generate N trees.

During inference of new test samples, each pixel of the image is sent through each
tree downwards and ends up in a leaf node. The leaf node holds a class distribution
calculated during training. All class distributions from the trees are combined to vote
for a class. The class with the strongest probability is selected and entered into the
class mask of the image.
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Figure 3.4: Workflow within the training stage of the random forest.

Figure 3.5: Random Forest, consisting of a set of decision trees which provide a leaf
node distribution for the learned classes, e.g. soil, organic and inorganic
material. The node index array holds the current classification for each
pixel and is updated every layer. The initial training samples and the splits
within the nodes are selected randomly (symbolized by the dices).
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3.3.2 Image features
Each of the nodes splits the data depending on a feature and a threshold of the feature
value. We use simple features in contrast to commonly used complex features, for
example Textons [120], to reduce computation time.

The aforementioned entangled random forest uses two different types of decision
functions: Features that model the color of individual pixels and color differences in the
local neighborhood. Hence, these decision functions are able to learn the appearance,
the structure and the shape of the soil cover. The second type of feature is the entangled
feature; these maximum a posteriori features model class probabilities based on local
neighboring pixel classes.

All color features are calculated in the LAB CIE 94 color space. The color channels
are separated from brightness, therefore the influence of brightness changes can be
reduced or completely skipped.

The simplest feature used is the absolute color feature fcolor,{A,B}, where A and B
stand for the corresponding channels in the LAB color space. In a region R1 at an
offset Δ1 from the pixel x, the mean color value is computed. The rectangular region
R1 and the offset Δ1 are selected randomly during training. The feature for the pixel x
is calculated as in the following Equation 3.1.

fcolor,{A,B}(x; Δ1,R1) = I{A,B}(R1(x + Δ1)) (3.1)

Image gradients between two image regions are formalized by pairwise features
fcolorDiff,{L,A,B}. The difference between two randomly selected regions R1 and R2
at the position Δ1 and Δ2 is calculated relative to the pixel x. Color differences
are inherently brightness invariant, therefore pairwise features are calculated on all
LAB channels. The shape of the regions is arbitrary, so the features are able to
reflect any geometric properties in a supporting area. Figure 3.6 shows the pairwise
feature calculation between two points P1 and P2 on an image and the corresponding
classification result. Pairwise features are calculated by the following Equation 3.2.

fcolorDiff,{L,A,B}(x; Δ1,R1,Δ2,R2) = I{L,A,B}(R1(x+Δ1))−I{L,A,B}(R2(x+Δ2)) (3.2)

Δ Δ

Figure 3.6: Pairwise color comparison (pairwise feature) for a pixel X.
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The smoothness of a region R1 can be described by variance features fvar,{L,A,B}.
Variance is also brightness independent and is calculated on all LAB channels. Variance
features can be formalized as presented in Equation 3.3.

fvar,{L,A,B}(x; Δ1,R1) = V AR{L,A,B}(R1(x + Δ1)) (3.3)

Image gradients g can be used to formalize the pointness or the linearness of a region
R around a pixel x. Small values of flt,{L} indicate linear structures like plant stems.
The value of fg,{L} gives a measure for the reliability of the value. flt,{L} and fg,{L} are
formalized by Equation 3.4 and 3.5

flt,{L} = V AR
R

arctan
gy

gx

(3.4)

fg,{L} = MEAN
R

( gx + gy ) (3.5)

The concept of entangled features fMAP Class{A,B} is shown in Figure 3.5. The idea
behind these features is that neighboring pixels come from the same soil cover type,
hence they have the same label with a high probability. This enables the modelling
of the context of individual pixels. During testing, the intermediate classification of
the layer above is utilized in the current node. We extend the MAPClass entangled
features of [107] by a color constraint to get Col-MAPClass features. These features
test if the maximum a posteriori (MAP) class of a pixel P1 is equals to a class C. The
posterior class distribution p(c; nP1) of a node P1 can be accessed because the tree
is trained in a breadth first manner. The association between pixel and tree node is
maintained in a node index array, as depicted in Figure 3.5. Equation 3.6 formalizes
the entangled features. The color term enables a comparison between the mean color
in a region R1 at an offset Δ1 to a trained threshold color value TC . This enables a
certain smoothing while the additional color term prevents smoothing across object
boundaries. The threshold T is selected during training. This value determines whether
the classical smoothing, as proposed in [107], or the color constraint option, in the case
of a small T value, should be activated.

fMAP Class{A,B}(x,Δ1,P1,C,TC) =
argmax

c
p(c; nP1) = C ∧ I{A,B}(R1(x + Δ1)) − TC < T 1

otherwise 0
(3.6)

3.3.3 Image pre-processing and parameter settings
Some pre-processing steps are taken before the training and inference of the images.
First, the RGB images are converted to the LAB CIE 94 color space. The corresponding
gray scale image gradient angle and amplitudes are calculated. From all channels
and gradient maps, integral images are calculated. Integral images allow for the fast
computation of the features independent of the supporting region size R. Bagging is
applied to select 50% randomly sampled images for the training of each tree. This
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bagging approach reduces the correlation between the trees. To counteract the unequal
distribution of the classes, the random selection of images is guided towards, the equal
selection of each class.

The number of trees is limited to 10 and the building of each tree stops at level 25.
Experiments showed that after a depth level of 25 the error rate does not improve, see
Figure 3.7. Figure 3.7 shows the F1-Score of a 5 fold cross validation for different feature
combinations. The upper bound is the F1-Score for validation where the test-set equals
the training-set. Growing is stopped at each node reaching an information gain below
0.01 or if less than 5 points are left in the current node. The features and thresholds are
selected in a two step process. First, features and parameters are selected with equal
probability. Afterwards, this prior distribution is used to guide the feature selection.
This leads to a higher probability of selecting complex features with more parameters
and consequently to a higher learning accuracy.
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Figure 3.7: Effect of tree depth on F1 score; The curve PF (dashdotted line) is the forest
variant with pairwise features, PF + EF (double line) denotes the variant
with additional entangled features and PF + EF-col (dashed line) is a forest
variant with a color constraint for the entangled features. The variant PF +
EF-col + texture (solid line) includes linearness/pointness features. The
curve upper bound (dotted line) shows the F1-Score for validation where
the test-set equals the training-set.

3.4 Convolutional neural network
A convolutional neural network is a machine learning method using convolutions in the
network graph. These convolutions enable the modelling of spatial relations in data
and are shift invariant, as required for images. A CNN usually consisting of convolution
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layers and pooling to reduce resolution and to extract features and fully connected layers.
The weights and biases between the nodes of the network and the convolution kernels
are parameters that are adapted during training of the network. Parameters which
are manually set are so called hyperparameters, such as layer numbers and structure,
learning rate, batch size, etc.

3.4.1 Convolutional neural networks for semantic segmentation
CNNs were initially designed for classification of images and objects in images, but
recent methods also focus on segmentation, such as those proposed by Lang et al. [121]
and ResNet [122]. The main focus of current research is to reduce the degradation
problem of deep architectures and to achieve high resolution pixel outputs. CNNs for
semantic segmentation consist of an encoder network followed by a decoder network.
The encoder is often based on a CNN for classification to extract semantic information
from the image in low resolution discriminative features. On the other hand, the
decoder reconstructs a high resolution pixel map as output of the network. Detailed
spatial information is lost through the encoder, but deeper semantic information is
gained. Several approaches have been proposed to pass detailed information past the
encoder to get fine grained label maps, like Pyramid Scene Parsing Network (PSPNet),
Full-Resolution Residual Networks or U-nets [109].

CNNs for semantic segmentation are supervised machine learning methods. Labelled
training data serves as the basis for training, as for the method presented in Section 3.3.
In contrast to our implementation of random forests, dense annotations are necessary
for training the CNN.

We selected the proposed ERFNet [112] for our task of segmenting soil cover classes
because it provides a compromise between speed and accuracy.

3.4.2 ERFNet
ERFNet follows an Encoder-Decoder architecture, also referred to as U-nets named after
the study in [123]. The encoder reduces the spatial dimensions step by step by pooling
and the decoder gradually recovers details and spatial resolution. Skip connections
forward information directly from each encoder layer to the same level in the decoder.
This spatial information in early layers, which are not fed directly through the encoder,
help to restore details in the decoder. The information from the previous layer and from
the skip connection are concatenated. This enables the network to extract abstract
features and reduce computation while preserving fine localization. However, ERFNet
does not use long-range skip connections as no empirical benefit was observed [112].

The main element of ERFNet are residual connections with factorized convolutions.
Residual connections have limitations in terms of their efficiency and learning capacity.
ERFNet introduces so called non-bottleneck-1D (non-bt-1D) layers which combine the
benefits of bottleneck and non-bottleneck layers. They are utilized to split 2D filters
into a combination of two 1D filters. Figure 3.8 shows these non-bottleneck-1D layers,
where two 2D filters are split up into four 1D filters, as implemented in [116]. Non-bt-1D
have fewer parameters and are faster than bottleneck layer while the accuracy is the
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Table 3.1: Layers of implementation of ERFNet [112] in bonnet framework [116]. The
number of output features and resolution are for input images of 512x384.

Layer Type # output features output resolution
En

co
de

r

1 Downsampler block 8 256x192
2-3 2 x Non-bt-1D 8 256x192
4 Downsampler block 16 128x96
5-8 4 x Non-bt-1D 16 128x96
9 Downsampler block 64 64x48
10-13 4 x Non-bt-1D 64 64x48
14 Downsampler block 64 64x48
15-18 4 x Non-bt-1D 64 64x48

D
ec

od
er

19 Deconvolution (upsampling) 32 128x96
20-23 4 x Non-bt-1D 32 128x96
24 Deconvolution (upsampling) 16 256x192
25-28 4 x Non-bt-1D 16 256x192
29 Deconvolution (upsampling) 8 512x384
30-31 2 x Non-bt-1D 8 512x384

same as non-bottleneck layers. For up-sampling, ERFNet uses deconvolution layers
with stride 2 to reduce memory and computation requirements.

3x1

1x3

3x1

1x3

+

ReLU

ReLU

Batch Norm.

Figure 3.8: Non-bottleneck-1D layer as implemented in the bonnet framework [116].

Table 3.1 shows the layer structure of the ERFNet implemented in the bonnet
framework [116].
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The implementation uses leaky ReLU as ReLU function. Down-sampling is done by
concatenation of max-pooling and 5x5 convolutions of stride 2, like the initial block
shown in [124].

Image augmentation extends the training dataset by applying basic image manip-
ulation techniques [125], especially geometric image transformations to improve the
generalization of crop images [126]. Deep learning based approaches like Generative
Adversarial Networks (GANs) have been frequently used lately. For the training, we
applied image flip, gamma functions and gaussian blurring randomly on the image.

3.5 Evaluation
As a result of both methods, we receive a classification mask as well as the percentage
of classes in the image which is the agronomically interesting value. Figure 3.9 and
Figure 3.10 show example test images of different soil cover scenarios.
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Figure 3.9: Examples of different soils surface covers (top) and the classification results
(bottom). living plant , residue , soil , stone .
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Currently, the evaluation of soil cover estimates can only be compared with manual
annotation. The common grid method, as presented in [127], was used to reduce
subjectivity. The classical grid method is used directly on the field. Using this method,
a human classifies the soil cover at marked points. To select these points systematically,
strings with knots at defined intervals are laid down onto the soil surface. The annotator
writes down the soil cover class below each knot.

We used this method and adapted it for images, as presented in [16], to evaluate our
methods.
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Figure 3.10: Examples of different soils surface covers (top) and the classification results
(bottom). living plant , residue , soil , stone .

3.5.1 Validation with the Grid Method
Soil cover is usually estimated using the grid method. A grid is laid out on the ground
and the soil cover is manually classified at grid points [127]. Therefore, a pixel grid
is used on an image of soil. A grid of 160 x 160 pixels is overlaid on a test image
resulting in 432 crossing points for a 4000 x 3000 pixel image. Each of the points is
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manually labelled. For validation, each of these points is also classified by both of the
soil cover estimation methods presented. The following graphs show the percentage
of soil cover from the manual classification and from the image analysis methods.
Figure 3.11 shows the results (percentage of soil cover) of the Entangled Random Forest
classification compared to the manual labelling from the grid method. Figure 3.12 shows
the classification results from the ERF classification, classification with the ERFNet
and the OBIA method proposed in [16].
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Figure 3.11: Comparison between reference annotations and entangled random forest
results using the grid method (•) for (a) soil, (b) living organic matter
and (c) dead organic matter (N = 99). The regression equation and the
coefficient of determination are shown at the bottom of each graph in
orange.
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Figure 3.12: Comparison between reference annotations, entangled random forest results
(•), ERFNet (•) and the method proposed in [16] (•), for (a) soil, (b) living
organic matter and (c) dead organic matter. The regression equations and
the coefficients of determination are shown in color for all three methods.
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3.5.2 Validation including Human Error
Comparing the soil cover estimation methods with human labels involves a degree of
uncertainty. The work in [127] observed strong variations between different evaluators.
To quantify the variation between the different annotators, different individuals were
asked to label 10 different soil cover images. Each person annotated the same 10 images
resulting in 10 soil cover values for each class and image. Table 3.2 shows the standard
deviation of percentages of soil cover within the 10 annotators.

Table 3.2: Standard deviation between soil cover estimates of 10 different people.
soil living organic matter dead organic matter stone mean value
5.5% 4.2% 3.5% 0.7% 3.47%

The variations of the entangled random forest method, as well as, the CNN based
method are within the standard deviation of the test persons for living organic matter.
The higher variance for the classes soil and dead organic matter can be observed at
the human annotators as well as for both algorithms. Challenging images for both
methods are images which show a larger amount of direct sunlight (not diffuse). Images
with direct sunlight are under-represented in our data set. Direct sunlight produces
small shadows around small soil particles. The algorithms recognize these shadows
as coverage with residuals. Future research should focus on increasing the number of
images with direct sunlight within the training dataset.

3.5.3 Inference Speeds
The inference speeds of the methods are important for real time application. We
compared the inference speeds of the CNN ERFNet using different hardware. The
results are shown in Table 3.3

Table 3.3: Inference speeds of ERFNet on different devices with an image resolution of
512x384 px.

Hardware Inference time
UP AI Core X Myriad™ X 2485 268 ms
Intel® Core™ i7-3630QM CPU 190 ms
NVIDIA® Jetson Nano™ 166 ms
NVIDIA® GeForce RTX 2080 Ti 6.1 ms

Depending on the application, different inference times must be achieved, especially
machine control applications requiring real time inference speeds. We investigated the
inference times of four different devices. It should be noted that the NVIDIA® GeForce
RTX 2080 Ti was used to train the models and is not well suited for application on
agricultural implements.
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The NVIDIA® Jetson Nano™ is the most promising inference device for our applica-
tions, in terms of its power consumption and its inference speeds. Based on these tests,
it was also integrated into the reference implementations of our camera systems.

3.6 Discussion
Soil cover is crucial for sustainable cultivation of arable land. It improves the infiltration
and the retention of soil moisture, and increases humus formation. Different national
and international subsidy programs focus on sustainable farming and encourage reaching
certain soil cover levels on fields. However, the precise and robust measurement of soil
cover is the prerequisite for implementing ideas and methods. Currently, no method
is known that measures soil cover satisfactorily. Our proposed methods for soil cover
measurement focuses on a generic approach to support different camera types while
still getting robust results. Both proposed machine learning methods, the entangled
random forest, as well as, the method based on the ERFNet CNN are able to distinguish
between soil cover types. Both methods are developed with a manageable amount of
training data. The method based on CNN uses pre-training on a related dataset to
reduce the number of training images needed. However, special cases present a challenge
to the methods, especially during strong sunlight, because small soil aggregates cast
shadows which can be confused with dead organic matter. One way to solve this problem
would be to increase the number of training samples in this corner cases. Additionally,
expanding the dataset with new scenarios (e.g. different lighting and soil colors) could
further improve the robustness of the system. Using additional data from the near
infra-red spectrum could also reduce this problem. The new camera system, for the
grassland use case, shown in Section 5.2.2 could be used for this.

The methods were tested under field conditions and validated against manual classifi-
cations. Initial tests with low altitude flying unmanned aerial vehicles (UAVs) showed
similar results to the ground based images. However, future studies could focus on
investigating the limits of the methods when used on UAVs in higher altitudes.

The entangled random forest based method can be accessed at no cost via a web-
service at https://soilcover.josephinum.at.



4 Soil Roughness Measurement

Soil Roughness is an important factor for managing soils and plants because it influences
soil erosion and plant emergence. During seeding and tillage, the goal is to break apart
soil so that it is fine enough for strong plant emergence, but not too fine as to protect
against capping and erosion. The type of tillage implement, the tillage intensity, the
working depth, the soil type and the soil water content during the tillage process can all
influence the aggregate size distribution in the seedbed (see [7] and [68]). Soil conditions
might change in spatially and temporally significant ways in a field [70]. New methods
for measuring soil roughness in motion while controlling a tillage machine are needed in
order to be able to control the soil roughness and to get a more uniform roughness at
changing soil conditions.

Such methods relieve the driver, especially those without agronomic knowledge,
of the strenuous task of changing the machine parameters manually during tillage.
Using headlights on the camera system enables farmers to operate tractors at night
which is very challenging during regular manual operation. The ongoing trend of
automation is leading to soil roughness control serving as the basis for seeding with
robots. Additionally, such a system can be used for documentation of the soil roughness,
for example mapping for subsequent precision farming applications. A roughness
measurement system also provides metrics to evaluate the work quality of different
tillage machines.

The measurement system is integrated into an ISOBUS Class III application to
control a tractor’s PTO speed and driving speed in order to vary tillage intensity.

Parts of this chapter were published in Soil and Tillage Research [17] and presented
at the ICVS conference 2019 [15], at the EurAgEng Conference 2018 [18] and at the
VDI Land.Technik conference 2017 [19].

4.1 Hardware Setup

Depth information is needed in order to measure soil roughness and there is currently no
method for measuring the aggregate size from a single image in motion. The difficulty
lies in the rich random texture which makes it difficult to recognize individual aggregates.
Laser based systems are quite expensive and not as mechanically robust as cameras.
Due to the rich texture of soil and plants, passive stereo camera systems are a good
choice to perform this method. Stereo matching is computationally intensive and time
consuming if calculated on a CPU. Therefore, the computation hardware requirements
are quite high.

31
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4.1.1 Hardware Requirements

The measurement system will be mounted on a tillage machine and therefore has a
short ground clearance of about 25 cm to 50 cm. Based on findings in [128], differences
in height of about 3 mm should be detectable. The depth resolution can be calculated
by Equation 4.1. The observed area should be as big as possible, which requires a short
focal length, to capture a representative area. This method should enable additional
night-time operation.

The depth resolution Δz of a stereo camera setup can be calculated by

Δz = z2

f · b
Δd (4.1)

f ... focal length
b ... the baseline
d ... disparity

4.1.2 Test Setup

For the roughness measurements two different cameras are used: a LI-OV580-STEREO
RGB stereo camera and a LI-USB30-V024STEREO stereo camera, which are both
from Leopard Imaging Inc. The RGB camera LI-OV580-STEREO has two OmniVision
color CMOS 4M image sensors with a resolution of 2688 x 1520 and an optical format
of 1/3". The lenses have a focal length f of 2.8 mm. The baseline b of the stereo
camera is 80 mm. In order to achieve real-time calculation with the color camera, a
reduced resolution of 640x480 are used for stereo processing. The grayscale camera,
LI-USB30-V024STEREO, uses Aptina MT9V024 Global Shutter WVGA sensors with
a resolution of 640 x 480. The lenses have a focal length f of 2.35 mm. The baseline b
of the stereo camera is 50 mm.

The computations were done on an ODROID XU4 single board computer with
Samsung Exynos5422 Cortex™-A15 2Ghz and Cortex™-A7 Octa core CPUs with
2Gbyte LPDDR3 RAM.

Figure 4.1: LI-OV580-STEREO (left), LI-USB30-V024STEREO (right)
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Figure 4.2: Depth resolution Δz depending on z for LI-USB30-V024STEREO and LI-
OV580-STEREO cameras with full resolution of 2688 pixel and reduced
resolution of 640 pixel (assuming no sub-pixel accuracy).

Using Equation 4.1 (z = 270 mm, assuming no sub-pixel accuracy), a Δz of 0.65 mm
was estimated for the LI-OV580-STEREO camera (2 µm pixel size) and a Δz of 3.72
mm for the LI-USB30-V024STEREO camera (6 µm pixel size). For additional empirical
validation of the height measurement, ten reference heights from a plane surface were
measured using a height gauge. Ten heights between 140 and 270 mm were selected. A
mean error, between height gauge readings and camera depth measurements, of 1.55
mm was estimated.

4.2 Roughness Estimation
The goal of the roughness estimation process is to calculate the roughness indices of
a surface. After initially calibrating the stereo camera, the processing is done in a
roughness estimation pipeline. The rich texture of soil surfaces allow for a simple and
efficient block matching algorithm. External influences on the roughness estimation are
taken into account during processing. Details of the stereo processing can be found in
[129].

4.2.1 Camera Calibration
The stereo camera must first be calibrated in order to perform stereo matching. This is
done once initially for the stereo camera. Afterwards, the parameters of the camera
set up should remain the same. Therefore, there are special requirements for the
mechanical connection of the two cameras in order to avoid changes in the position and
the orientation of the cameras over time.

The camera calibration is done by the calibration method implemented in OpenCV
[130]. First, the intrinsic parameters of each of the two cameras are calibrated and
afterwards the extrinsic stereo parameters are also calibrated. Due to the strong positive
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Figure 4.3: Estimation process from the camera images to the final roughness value.

distortion of the lenses, the radial distortion parameters were only calibrated up to the
3rd coefficient to receive converging results.

4.2.2 Roughness Estimation Pipeline
The estimation process consists of several consecutive steps. The necessary steps
performed by the roughness estimation pipeline are shown in Figure 4.3. The individual
steps are explained in detail below.

First, the lighting conditions are evaluated to adapt exposure time, further details
on how to handle the lighting conditions are described in Section 4.2.4. After image
rectification based on the parameters of the camera calibration, the stereo matching is
performed by the block matching algorithm implemented in OpenCV [130]. The block
matching delivers a disparity map as output. The density of the disparity map q = [0,1]
is used as an quality parameter. Missing parts in the disparity map are interpolated
by a multi-scale pyramid based approach. Each interpolated pixel is filled by the local
average corresponding to a lower level of the pyramid. This efficient interpolation
process is necessary to get a dense representation in order to calculate the surface
normals.

Using the camera parameters, it is possible to generate a 3-D point cloud based on
the results of the disparity map. Speckles and residues are removed during the point
cloud processing step. Parameters of the point cloud like height measurements and
surface normals are used to calculate the roughness indices. Finally, a weighted mean
combines several roughness measurements to smooth the roughness values.

4.2.3 Roughness Indices
Several roughness indices have been proposed over the years. Studies in [79] have shown
that the RC index and the average angle of normals (AoN) are suitable for describing
soil after tillage. Figure 4.4 illustrates the underlying concepts of these two indices.
The RC index is based on the standard deviation of height measurements:

RC = (z(x,y) − z(x,y) X,Y )2
X,Y (4.2)
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Figure 4.4: Height measurements for calculation of the RC indices, b) angles of the
surface normals for calculation of the average angle of normals (AoN).

In order to accommodate directed roughness patterns like furrows, directed roughness
indices were introduced in [80]. The index RCX , see Equation 4.3, and RCY represent
the roughness in the X and Y directions separately which makes it possible to exclude
directed patterns from the measurement. A perfectly flat surface would have a RC index
of 0 mm. For a drawn tillage machine, this results in a higher roughness transversal to
the driving direction RCY compared to the roughness along the driving direction RCX .

RCX = (z(x,y) − z(x,y) X)2
X Y (4.3)

The AoN index is based on the surface normals of the point cloud. The average
surface normal of the overall surface is calculated as presented in the following equation:

AoN = 1
N

N

i=1
acos Si,Z

Si

(4.4)

A perfectly flat surface would have an AoN of 0◦.

4.2.4 Handling of External Influences
Two important parameters for cameras in motion are the exposure time and the resulting
motion blur. To avoid motion blurring at faster speeds, the exposure time has to be
controlled. Many modern agricultural implements are connected to the tractor via
ISOBUS. The ISOBUS provides the tractor’s drive and operating data to the implement,
including the driving speed vmachine. Equation 4.5 shows the the maximum possible
exposure time ts,max for a given vmachine.

ts,max is influenced by the vertical spatial image resolution of resvertical = 480 and
svertical = 0.5 m. The tolerance factor η = [1,n] in Equation 4.5 gives the overlap of
pixels exposed to the same area. In order to avoid motion blur, η should be kept low at
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Figure 4.5: Maximum exposure time ts,max for different driving speeds vmachine and
overlapping factors η.

a value of 1. Figure 4.5 shows the maximum exposure time ts,max at increasing driving
speeds vmachine for different overlapping factors η.

ts,max =
svertical

resvertical

vmachine

· η (4.5)

The brightness of the image, its mean intensity, is the basis for calculating the actual
exposure time ts under the limiting ts,max. Additionally, the peak value of the image
histogram is considered to avoid over- and under-exposure.

The exposure time ts is selected to keep both values brightness and peak value of
the image histogram within a certain range. In order to increase the range of lighting,
additional LED- headlights are mounted next to the camera to illuminate the soil. The
headlights allow for light independent operation even during nighttime. In general, less
motion blur should be favored over brighter images in order to detect enough image
correspondences by the stereo matching algorithm.

In order to detect deposits on the camera glass, the left and right camera image
are compared. Deposits on the camera are usually asymmetric between the left and
right images. Both images are taken with the same parameters, so strong differences in
the images, estimated by the mean gray value, are attributed to deposits on the glass.
Furthermore, the density of the disparity map q also decreases by the covered image
area. Therefore, a distinction must be made between deposits on the glass and general
matching problems (e.g., by dust in the atmosphere etc.). A low q value indicates dust
in the atmosphere between the camera and the soil surface if other causes, such as
residues, exposure or deposits on the glass can be excluded.

One major influence on the roughness measurement are residues like straws on the soil
and, in general, soil cover. In order to avoid the influence of residues at the roughness
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measurement, we exclude pixels containing soil cover from the roughness estimation.
These pixels are masked as invalid and excluded from the calculation for the RC and
AoN indices. As presented in Chapter 3, soil cover can be detected from RGB images.
When using the RGB stereo camera, we can use the labels living organic matter (plants),
dead organic matter (residues) and stone to mask invalid points on the disparity map.

If a gray-scale stereo camera is used, an approach based on geometric filtering is used.
In this process, the 3-D point cloud is filtered to detect unexpected spikes which differ
in their geometric properties from soil aggregates. The geometric properties are defined
by height in proportion to their cross-sections. The simple metric for the geometric
filtering can be implemented very efficiently and is favored for real-time application.

A status message is sent to the user if any of the influences mentioned above exceeds
a certain threshold.

4.3 Online Machine Control

The goal of controlling tillage machines, in this case power harrows, is to achieve a
desired roughness over the entire field. The operator selects the desired roughness
Rref based on his agronomic knowledge in order to till the soil at a roughness which is
sufficient for good field emergence, yet not too fine as to protect against capping and
erosion. The control algorithm tries to achieve a uniform roughness of Rref at changing
soil conditions over the entire field.

Stereo Camera
captures soil
roughness

Controlling: driving speed, PTO speed

Figure 4.6: Concept of the tillage machine control.

The operator inputs the desired roughness Rref into the system. During tillage, the
camera system continuously estimates the current roughness Ract and adapts the tractor
driving speed v and the PTO speed nP T O accordingly. Figure 4.6 shows a concept of
the overall control system. In Figure 4.7, the control loop is shown.
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Figure 4.7: Closed loop controller.

The control algorithm is implemented in the ECU of the power harrow. The camera
systems sends the current roughness Ract and status information via CAN bus to the
ECU. The ECU calculates the desired speeds (v and nP T O) and sends them to the
tractor via ISOBUS Class III. Using ISOBUS Class III, it is now possible for the first
time to control the tractor with an implement. An additional hysteresis avoids speed
changes for only small soil roughness changes.

In order to get a functioning system a headland management system is implemented.
After lowering the linkage of the tractor on the headland, the roughness estimation is
stopped for 1 meter to measure only the tilled soil.

Figure 4.8 shows the final camera set up with additional headlights mounted on the
power harrow.

Figure 4.8: Camera mounted on the power harrow (left). Detailed view of stereo camera
with Odroid XU4 and headlights (right)
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4.4 Field Trials
The field trials of the roughness measurement camera system took place during the 2016
and 2017 farming seasons. The goal of the trials was to estimate the relation between
the mean clod diameter of the soil and the stereo vision roughness. An additional
goal was to evaluate the working intensity of the power harrow and the controller
effect. External influences were also evaluated in order to determine if they had any
practicability effects.

The main field trials were carried out in three experiments in Lower Austria with
different soil conditions (silty loam, loamy silt and clay loam). Table 4.1 shows an
overview of the experiments.

4.4.1 Soil sampling and sieve analysis
We validated the camera system by comparing the estimated roughness to the mean-
weight diameter of the soil aggregates. Estimating the mean aggregate size was based
on soil sampling and a subsequent sieve analysis.

The soil samples were taken to the same location where the camera images were taken
before. Before taking soil samples, stereo images were captured from the corresponding
location.

The soil samples were carefully taken with a spade from an area of 25 x 25 cm from
the seedbed horizon (0-6 cm +/- 1 cm) and air-dried afterwards. This was done by the
people from the Versuchswirtschaft Gross Enzersdorf (VWG) of BOKU.

A vibratory sieve shaker (Retsch AS 200, Haan, Germany) was used for the sieve
analysis. The mesh sizes of the different sieves were 40 mm, 20 mm, 10 mm, 5 mm, 2.5
mm, 1.25 mm and < 1.25 mm. The amplitude of the shaker was set to 1.3 mm with an
acceleration of gravity of 18.75 g. The different fractions were weighted with a precision
scale with an accuracy of 0.1 grams.

The mean-weight diameter (MWD) is the standard method for comparing seedbed
and soil aggregate composition. The MWD is calculated with the Equation 4.6 by
weighting each diameter by its gravimetric proportion.

MWD = i ni · di

ni

(4.6)

MWD ... mean-weight diameter (mm)
ni ... weight of the sieving fraction in the mesh size i (g)
di ... mean of the mesh size i (mm)

4.4.2 Experimental Design
Three main field experiments were carried out to test the roughness measurements and
the controller system. The first experiment focused on getting different seedbed aggre-
gate compositions. This was done by using three different primary tillage implements
with different working intensities. Different driving speeds during seeding resulted in
an additional gradation of the aggregate sizes. A seeding combination based on a seed
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drill (Pöttinger Vitasem 302 ADD) and a power harrow (Pöttinger Lion 303.12 Classic,
Grieskirchen, Austria) were used for all the experiments. During the first and second
experiments, the soil roughness measured by the camera was compared to the results of
the sieve analysis.

Experiment 1 was designed as a randomized block trial with three repetitions for
each variant. The plots had a length of 140 m and a width of 6 m (two working widths).
During seeding, the PTO speed of the power harrow was set to a constant 540 1 min−1.
The variants differed in their primary mode of tillage operation and the driving speeds
during seeding. Details are shown in Table 4.1.

In contrast to experiment 1, the PTO speed was varied for experiment 2. As in
experiment 1, different primary tillage machines were used in experiment 2. It was
expected that due to the varying PTO speed and primary mode of tillage the range
of soil aggregate sizes would increase. The randomized block trial in experiment 2
consisted of three repetitions for each variant. Each plot had a length of 200 m and a
width of 6 m. The PTO speed was changed between 300, 540 and 1000 1 min−1 during
seeding. The moisture conditions at experiment 2 during November were nearly at field
capacity.

The controller was tested during the third experiment. The soil roughness estimation
from the stereo camera system served as the basis to control the PTO speed of the
tractor. The tractor was a New Holland T7.270 (United Kingdom) which is capable of
executing ISOBUS Class III commands from the implement and in our case the ECU of
the power harrow. Two variants were compared in experiment 3: Seedbed preparation
with controlled PTO speed based on estimated soil roughness and seedbed preparation
with constant PTO speed (550 1 min−1 uncontrolled). During the experiment, the
controller tries to generate a requested soil roughness, in this case RC = 14, by varying
the PTO speed between 550 and 1000 1 min−1. Primary tillage was done with a
mouldboard plough in experiment 3. The two variants were alternated side by side in
tracks of about 400 m. The controlled and constant variants were placed adjacent to
each other and can be compared based on the assumption that they have very similar
soil locally. The effect of the controlled variant is measured by calculating the mean
squared error between the requested soil roughness RRef and the actual measured soil
roughness Ract at n points along all tracks (see Equation 4.7).

MSE = 1
n

(Rref − Ract)2 (4.7)
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Table 4.1: Field Experiments design
Experiment 1 Experiment 2 Experiment 3

Primary tillage
Mouldboard plough
Cultivator shallow
Cultivator deep

Mouldboard plough
Cultivator
Short disc harrow

Mouldboard plough

Seedbeed preparation
Power harrow
PTO:
540 (285) rpm

Power harrow
PTO:
300 (158) rpm,
540 (285) rpm,
1000 (527) rpm

Power harrow
PTO:
between 550 (290) rpm
and 1000 (527) rpm
Field-test of the
control-approach

Forward driving speed
1.1 m s−1,
1.7 m s−1,
2.2 m s−1

1.4 m s−1 1.3 m s−1

The characteristics of the soils at all three trial sites are shown in Table 4.2.

Table 4.2: Characteristics of the soils on the trial sites.
Experiment 1 Experiment 2 Experiment 3
Gross Enzersdorf
(48◦12 1.79 N ,
16◦33 33.75 E)

Krummnussbaum
(48◦12 4.22 N ,
15◦9 31.29 E)

St. Leonhard am Forst
(48◦7 32.95 N ,
15◦17 29.37 E)

Sand (g kg−1) 36 10 25
Silt (g kg−1) 44 70 40
Clay (g kg−1) 20 20 35
Organic matter (g kg−1) 13.3 12.8 12.0
Volumetric water
content (m3 m−3)
0-5 cm 0.24 0.34 0.37
5-10 cm 0.22 0.38 0.41
Soil type (FAO, 2006) Calcaric Chernozem Cambisol Stagnosol

The moisture data was estimated using meteorological and soil property data with
the method proposed in [131].

Among others, the work in [62] and [132] investigated the relation between soil
aggregate sizes and plant emergence. In general, finer soil aggregates lead to better
plant emergence. We have conducted an additional experiment to assess this idea.
During the seeding of winter wheat, the roughness was recorded on a field in Wieselburg
(48◦8 36.19 N , 15◦8 38.75 E). The soil characteristics of this experiment are shown in
Table 4.3. When plant emergence started, the method for soil cover estimation based on
the entangled random forest presented in Chapter 3 was used to develop geo-referenced
mapping of the living plant cover. A GoPro HERO5 Black camera was used to capture
images for the soil cover estimation.
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Table 4.3: Characteristics of the soils from the additional experiment to observe plant
emergence.

Sand Silt Clay
Minimum 7.1 52.6 13.5
Maximum 15.4 78.2 32
Mean 10.39 68.97 20.65
Median 9.6 69.3 20.6

4.5 Evaluation

In order to be able to evaluate the system, different parameters were recorded and
compared. First, the aggregate size distribution in the seedbed was measured with
the sieve analysis to get insights into the soil aggregate composition and the effects of
tillage. The roughness measurement system was evaluated by investigating the relation
between MWD and the roughness estimated with the stereo vision system. To evaluate
the overall system, the effect of the controller was shown. External influences on the
roughness measurement system were investigated. A first attempt to demonstrate
the relation between soil roughness and field emergence was made by comparing the
roughness measurement results with the soil cover measurements from Chapter 3.

4.5.1 Aggregate Size Distribution in the Seedbed

Besides the mean weighted diameter, the fractions obtained from the sieve analysis give
a more detailed understanding of the aggregate size distribution, as shown in Tables 4.4
and 4.5. The results show that the primary tillage influences the aggregate size even
after seeding (see Table 4.4). Tilling with a mouldboard plough resulted in a coarser
seedbed compared to tilling with a cultivator after the seedbed was prepared with a
power harrow.

The variant using a plough for primary tilling resulted in 34.4 % of aggregate sizes
> 20 mm after the seedbed preparation. The weight of the fraction > 20 mm was
statistically higher for the ploughing rather than the cultivator treatment. The fraction
of aggregates < 2.5 mm was 24.2 % after ploughing and statistically significantly lower
than for the variants using a cultivator during primary tilling. In experiment 2, the disc
harrow resulted in a finer seedbed compared to the mouldboard plough and cultivator
treatments. Table 4.5 shows the effect of the PTO speed which resulted in finer seedbeds
with higher PTO speeds. This difference is clearly visible in the MWDs in the last row
of Table 4.5.

In order to obtain a better subjective assessment of the aggregate sizes and their
corresponding roughness measurements, Figure 4.9 shows sample images with RC and
AoN values in ascending order.
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Table 4.4: Soil aggregate fractions (%) and mean-weight diameter in the seedbed horizon,
different tillage operations (n=36), experiment 1.

Plough Cultivator deep Cultivator shallow
>40 mm 18.3c 10.3b 4.9a

20 - 40 mm 16.1b 12.3a 12.6a

10 - 20 mm 15.9a 15.9a 16.3a

5 - 10 mm 14.4a 15.4a 15.8a

2.5 - 5 mm 11.3a 13.5b 15.0c

1.25 - 2.5 mm 9.1a 11.9b 12.3b

<1.25 mm 15.1a 20.6b 22.1b

MWD (mm) 19.9c 14.3b 11.3a

Table 4.5: Soil aggregate fractions (%) and mean-weight diameter in the seedbed horizon,
different primary tillage operations (plough, cultivator and disc harrow) and
PTO speed of the power harrow (300, 540, 1000 1 min−1), n=3, experiment
2.

Plough Cultivator Short disc harrow
300.0 540.0 1000.0 300.0 540.0 1000.0 300.0 540.0 1000.0

>40mm 57.8b 23.2a 19.4a 37.6b 23.3b 5.9a 19.8 21.3 8.8
20 - 40 mm 13.6a 27.7b 23.7b 29.3a 29.7a 36.5a 26.0 27.9 26.4
10 - 20 mm 13.0a 22.0b 21.3b 17.5a 23.3b 27.4b 22.2 21.3 24.1
5 - 10 mm 7.3a 12.9b 15.6b 8.6a 12.4ab 16.3b 15.1 14.2 17.3
2.5 - 5 mm 4.2a 7.3b 9.9b 3.7a 6.1b 7.8b 8.4 8.1 10.8
1.25 - 2.5 mm 2.2a 3.7ab 5.5b 1.5a 2.6ab 3.2b 4.5a 3.9a 6.7b

<1.25 mm 2.0a 3.1ab 4.5b 1.9a 2.6a 2.9a 3.9a 3.4a 6.0b

MWD (mm) 41.5b 26.9a 23.6a 34.8c 27.6b 20.2a 24.6 25.8 18.7
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Figure 4.9: Sample images with corresponding RC and AoN values in ascending order.

4.5.2 Relations between Mean Clod Diameter and Stereo Vision
Roughness

The correlation between the mean-weight diameter and the estimated roughness was
calculated in order to validate the roughness measurement system. Figure 4.10 empha-
sises the difference between the soil roughness and the soil aggregate size estimation
(MWD). The roughness only considers the soil surface, whereas the MWD is calculated
from the soil volume leading to a certain discrepancy between the two measurements.
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(a) (b)
Figure 4.10: (a) Estimation of the mean weighted diameter of the soil aggregates. (b)

Estimation of the soil surface roughness.
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Figure 4.11: Measured results of MWD (x-axis) and RC roughness from the stereo
camera (y-axis) for experiment 1 (top) and experiment 2 (bottom).

The Pearson correlation between RC and MWD was 0.55 in experiment 1 and 0.66 in
experiment 2. The Pearson correlation between AoN and MWD was 0.455 in experiment
1 and 0.449 in experiment 2. The RC index resulted in a better correlation to the MWD
than the AoN index, therefore the RC index was used to develop the controller. 52
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samples were used for experiment 1 and 30 samples were used for experiment 2. The
relationship between RC and MWD for experiment 1 was RC = 0.14 · MWD + 7.90
with R2 = 0.30. Experiment 2 resulted in a relationship of RC = 0.12 · MWD + 6.35
with R2 = 0.43. Figure 4.11 shows the relationship between the measurements for the
MWD and the soil roughness estimation for all the sieve-analysis sample points.

4.5.3 Working Intensity and Controller Effect

The working intensity of a power harrow is influenced by the working depth, the tool
geometry, the driving speed and the PTO speed. The working depth should be kept
constant depending on soil and seeding requirements. The driving speed and the PTO
speed can be influenced during the preparation of the seedbed. In order to further
examine the results of experiment 2, the relationship between the working intensity,
manifested by tine loops per meter, and the roughness RC is investigated.

The tine loops per meter ltine in (1/s) are defined by the following equations. The
power harrow, using the same configuration from the experiments, translates the
rotations of the PTO nP T O to tine rotations ntine by a factor of 1.89474. In order to
better understand this concept, the tine loops per meter are depicted in Figure 4.12 on
the right.

ltine = ntine

60 · vmachine

(4.8)

ntine = nP T O/1.89474 (4.9)

vmachine ... Driving speed of the power harrow in m/s
nP T O ... PTO rotation speed in RPM

Figure 4.12 shows the RC values for different tine loop per meter values ltine from
experiment 2. The driving speed vmachine was recorded with a GNSS receiver. A higher
number of tine loops per meter increases the work intensity which produces a finer
seedbed (Roughness RC) as observed by the stereo camera system. The driving speed
was targeted at 1.4 m s−1 and varied from 1.1 m s−1 to 2.8 m s−1. The PTO speed
nP T O was intentionally varied between 300 rpm and 1000 rpm, as depicted in Table 4.1,
resulting in 1 to 7 tine loops per meter.
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Figure 4.12: Roughness RC results at different working intensities (tine loops per m).
Each point equals the mean value of one track. N = 24.

The third experiment focused on quantifying the controller effect. The controller
changes the tillage intensity by changing the PTO speed nP T O to achieve a desired soil
roughness Rref on the entire field. Initial tests on the field in experiment 3 showed that
a roughness value of RC = 14 would be appropriate for the conditions and the seeds.
It was also observed that the roughness varied greatly across the field. As mentioned
in Section 4.4.2, the mean squared error between the desired roughness Rref and the
actual roughness Ract is appropriate to describe the homogeneity of the roughness on
the field and is a good variable to validate the controller. The tracks with constant
PTO speeds of nP T O = 550 resulted in an error of MSE = 2.16 deviating from desired
roughness of RC = 14. On the other hand, the tracks with PTO controller resulted in
an lower error of MSE = 1.24. This clearly indicates that the controller better achieves
the targeted value of RC = 14.
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Figure 4.13: Controller effect: The diagram shows three tracks side by side, with the
controlled track in the middle (blue line), and two tracks with constant
PTO speeds (gray line). The PTO speed of the controlled track is shown
by a black line. The target value for the controller was RC = 14.

In order to investigate the controller in more detail, Figure 4.13 shows three example
tracks of experiment 3. In this figure, you can see the RC values for a controlled track
in blue and the neighboring tracks with a constant PTO speed in gray. The black line
shows the PTO speed nP T O of the controlled track and its corresponding y-axis is on
the right side of the figure. The PTO speed nP T O was recorded from the ISOBUS.
The hysteresis area (between RC = 13.2 and 14.8) is shown as the rectangle with
grey shading around the target RC value Rref = 14. The control range of nP T O is
depicted by the rectangle with grey shading on the right y-axis. In general, the field is
rougher at the beginning and reaches its maximum roughness at about 150 m along the
track. After the maximum point of roughness, the roughness decreases rapidly as finer
soils are reached. This is especially visible in the tracks with a constant PTO speed
where the power harrow decreases the soil roughness by a constant value and the soil
heterogeneities are clearly visible. The controller starts by gradually increasing the
PTO speed to the maximum speed of 1000 rpm at 80 m within the track. At the point
where the soil gets finer (about 150 m), the PTO speed decreases again. The changes
to the PTO speed are always visible when the RC value of the controlled track Ract

leaves the hysteresis area.

In general, the RC value for the controlled track moves closer to around Rref =
14, which also manifests itself in the lower MSE for the controlled tracks in general.
Additionally, the RC reaches its maximum at 52.2 m when the RC = 16.6 which is
much lower than the maximum roughness of the constant tracks which reach an RC of
19.4 at 154 m.
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4.5.4 Effects of External Influences
During roughness measurement environmental influences are especially prevalent. Figure
4.14 shows several images with external influences and includes the corresponding
disparity map with the resulting quality value q. In general, dust formation completely
covering the soil did not occur during the field trials because most dust is generated
by the tines. The tines are separated from the camera by the packer roller, so almost
no dust is drawn into the camera’s field of view. An additional air drag removes dust
during driving. The camera is mounted roughly 30 cm above the soil surface resulting
in a very low air volume between the soil and the camera where dust can form. Stronger
dust formation occurred when the machine was stationary and the PTO was activated,
as shown in Figure 4.14 b. Roughness measurements were weighted inverse to the
quality parameter q. Dust formation is the main factor, in addition to residues, which
influences this parameter. If the quality parameter falls below a certain value, a message
is sent to the user.

Motion blurring was avoided by using the Equation 4.5 in Section 4.2.4.
The residue handling methods of Section 4.2.4 were not investigated separately,

therefore they are integrated in the results of Section 4.5.2.

Figure 4.14: Effects of external influences on the image and the corresponding q values.
a) shows a regular example with good stereo detection quality during
motion. b) is an example on the same field where dust was created
deliberately by stopping the tractor turning the tines on the stand. No
drafts remove the dust atmosphere. c) shows a scenario with residues in
which peaks are removed from the disparity map to reduce their influence.
d) is an image taken during night without lighting. This scenario is also
detected by image parameter mean brightness.

4.5.5 Soil Roughness and Plant Emergence on a Field
As the investigations in [62] and [132] showed, increased soil roughness decreases plant
emergence, so an additional experiment was carried out to assess this claim further.
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Figure 4.15 shows the soil roughness recorded and geo-referenced on the left and
the plant emergence mapped on the right. The plant emergence was mapped using
the random forest method for soil cover estimation in Chapter 3. A correlation
between increasing roughness and decreasing plant emergence is visible. This additional
experiment was done only to confirm the connection already known from the literature
between soil roughness and plant emergence. The research was not further deepened.

Figure 4.15: Soil roughness (left) and soil cover (right) estimated on a field in Wieselburg
(AT). Soil cover is estimated with the entangled random forest method
presented in Chapter 3.

4.6 Discussion
The relationship between RC and MWD was RC = 0.14 · MWD + 7.90 with R2 = 0.30
for experiment 1 and RC = 0.12 · MWD + 6.35 with R2 = 0.43 for experiment 2.

The work published in [76] used a laser profile meter to estimate the height standard
deviation of soil surfaces (SD) which is very similar to the RC roughness. They estimated
a linear relationship of SD = 1.88 · MWD − 4.02 and R2 = 0.63 between the MWD
and their roughness measurement SD. There are some possible explanations as to why
our results do not show strong correlations between MWD and roughness.

First, the different offsets between the first and second experiment might be explained
by different moisture contents and different soil types. This assumption was supported
by the work in [132] which also observed influence of soil moisture and soil type on MWD,
especially with high tool speeds. This work further explains that the re-compaction
and levelling after the packer roller of the power harrow pushes larger soil aggregates
into the soil which results in a weak influence on the soil roughness. The range of soil
roughness is reduced and leads to lower slopes in the MWD-RC plot which reduces
the coefficient of determination R2 at higher variances. The mounting position of the
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camera directly behind the packer roller is not the optimal position, but other mounting
positions are difficult to implement due to structural and practical constraints.

An additional effect influencing the measurement mentioned in [133] is sorting whereby
larger soil aggregates are brought to the surface. This, in turn, is not nearly as a strong
effect at moisture conditions observed in experiment 2 but also in experiment 1. However,
it would describe the offset of the MWD-RC relationship between experiment 1 and
2 and should be investigated in further studies. An increasing moisture content in
experiment 2 also led to a certain kneading effect which causes no reduction in soil
roughness despite an increased tillage intensity.

From a geometric perspective, two additional factors influence the relation between
MWD and roughness. The first factor is the observed area. Soil roughness is defined
by the observed area and the resolution of the height measurements. The work in [80]
proposes observing a minimum length of 841 mm of soil surface. Due to the limited
number of mounting positions on the power harrow and the limitations of the camera
optics, the observed soil area is only about 500 mm in length for our camera system. A
sliding mean window was used, as described in Section 4.2.2, to increase the observed
area. The 3-D point clouds were not matched due to limited processing resources. Each
recording is considered separately and only the roughness values are averaged by the
mean window. Future research could focus on reconstructing a closed recording of the
soil surface by matching the individual point clouds at high frame rates. The second
factor concerns the considerable curvature of the soil surface independent of the soil
aggregates. In turn, this effect is not so influential due to a small observed soil surface
area.

We observed that increased tillage intensity, defined by the number of power harrow
tine loops per length, decreases soil roughness (see Figure 4.12) and vice versa. A
correlation between tillage intensity and MWD was observed in the previous works
[132] and [134]. This supports the claim that tillage intensity can be controlled by an
estimated roughness to achieve a homogeneous seedbed in terms of MWD.

Tests with the controller showed promising results, as presented in Section 4.5.3. A
homogenization of the soil roughness was observable. Additionally, it was possible to
reach the desired RC roughness index within the hysteresis area. A clear effect was also
visible subjectively and confirmed the assumption of the farmer on-site.

Therefore, the correlation between tillage intensity and roughness, and the results of
the controller tests show that the stereo camera based roughness estimation works with
sufficient accuracy to control the power harrow.

Remaining issues concern the controller overshooting the desired roughness by a
certain degree which can be attributed to a large window (n = 11) of the sliding
window averaging. In addition, this leads to the controller neglecting small-scale soil
heterogeneities on a field. The controller is also delayed by computational delays and
the inertia of the tractor. The next generation of camera systems, used for the use case
in Chapter 5, use a different single board computer to reduce the computation time.

The relationship between the plant emergence and soil aggregate sizes has already
been investigated in [132] and [62]. Smaller soil aggregate sizes improve plant emergence
while increasing soil erosion [82]. We can also observe the effect of roughness on plant
emergence, as shown in Figure 4.15.
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The last topic to discuss is how to select the reference roughness Rref of the controller.
The optimal seedbed roughness is dependent on different parameters like soil moisture,
soil type, plant species (kernel size), expected rain, etc. A simple way of operating the
system could be to prepare a small area of the field manually by an experienced driver
who tries to achieve the optimal seedbed based on his own experience. The observed
mean roughness in this area can then be used as a target by the controller for the entire
field. The remaining field will then be prepared according to the selected Rref .



5 Grassland Yield Measurement
Currently, precision farming is mostly limited to arable farming due to the economic
advantages of market crops and the optimal production conditions which are less
common in permanent grassland. Precision farming technology is hardly used in
grassland although it occupies large areas domestically and internationally. Across
Austria, permanent grassland occupies more than 1.3 million hectares or 48% of the total
agricultural land. With an area of 3.44 billion hectares, the proportion of permanent
pasture land worldwide is roughly twice the size of arable land. Grassland is mostly
found where agriculture is not possible due to technical challenges or an unsuitable
climate. Arable precision farming methods have an enormous potential to be used for
site-specific management of grassland. Biomass sensors for mowers are advantageous
because they can detect yields directly before the biomass is harvested or at any point
during the vegetation period [102]. On the other hand, estimating grassland parameters
in a non-destructive fashion is challenging because of the heterogeneous composition
of grassland. The variability of grassland ranges from favorable locations that are
intensively used to alpine pastures with many different plant families, genera and
species. The latest trends and developments in agriculture, especially in precision dairy
farming, demand the precise measurement of grassland parameters.

Figure 5.1: Tractor and mower with cameras and sensors mounted, and people taking
yield samples in the background.

The approaches for yield estimation and family or genus classification presented
in this chapter serve as the foundation for automated machine control, site-specific
applications, in-field-logistics and logistic optimization during harvest, and objective

53
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farm resource planning. Automated machine control applications can involve steering
along swath or controlling the tractor’s driving speeds during harvesting with baller or
silage trailers depending on the yield values. Applying nutrients at specific sites could
reduce the negative environmental impacts and reduce the expenditures. Site-specific
grass seeding has already been partially tested and applied in practice.

This chapter demonstrates how the RGB stereo camera system can be used to measure
grassland. Different parameters have to be measured to estimate yields in heterogeneous
grasslands. This chapter also focuses on the RGB stereo camera systems and builds on
the methods presented in the previous chapters, but other sensors were used for the
sake of comparison, including a near infra-red camera (850 nm), a laser scanner, an
ultrasonic sensor and a pendulum-meter. The cameras and sensors were mounted on
a mower and on a rake. The standing plants can be measured and classified on the
mower while the the volume of the plant swath can be estimated on the rake.

Parts of this Chapter are published in [14] and in [20].

5.1 Grassland harvesting

Harvesting grassland consists of several steps also known as a harvesting chain. Different
machines can carry out the harvesting, for example a diagram of silage harvesting is
shown in Figure 5.2. Here, the mower (Figure 5.2 (a)) is followed by the rake (Figure
5.2 (b)) to form swaths which are then removed by a baler ((Figure 5.2 (c))), forage
harvester or loader wagon. In order to produce hay, the grass is tedded several times
after mowing (a) to reduce the water content. Silage harvesting also often involves
tedding to reduce the water content of the grass.

Harvesting results in the grass having four different types: Grass stock (uncut plants),
mown grass, swath and grass turf. Estimating the yield of mown grass is difficult due
to the small volume of the spread grass. The grass stock can only be observed during
mowing. The swath can be observed during raking and removal with a baler, forage
harvester or loader wagon. The grass turf is visible during all steps.

Keeping these different grass types in mind, we decided to mount the camera system
on the mower and on the rake. The camera attached to the rake can also be used on
balers, forage harvesters or loader wagons to capture the swath with the same viewing
angle but in the reverse viewing direction.
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(a) (b) (c)
Figure 5.2: Typical tasks during harvesting grassland. Grass is mown (a), followed by

raking after drying (b) and removal by a baler (c). Grass sward , mown
grass and swath and grass turf

5.2 Hardware Setup
The aim is to find hardware that can fulfil the tasks from Chapter 3 and 4, as well
as, the grassland tasks. The additional hardware requirements for the grassland tasks
are presented below, followed by the actually built and used camera setup. Additional
sensors, already used for grassland and new to be used in grassland, were tested. The
tractor’s 12-V on-board voltage powered the camera system and all the sensors which
required an external power supply.

5.2.1 Hardware Requirements
The hardware requirements are nearly identical to those used for the roughness mea-
surements. There is more flexibility surrounding the mounting position of the stereo
camera for plant measurement. However, an additional mounting structure is generally
necessary on the mower. Mounting the camera on the rake is less complex. For both
applications, the sensors and cameras can be mounted about 1.5 m above the ground.
The geometries given in the Chapter 4 are sufficient for the field of view required for
the swath measurement. A wider field of view on the mower would provide larger
measurement area, but is hard to implement due to the strong parallax.

Classifying the family and the genus of plants requires a higher camera resolution
than for the roughness estimation, because the fine structures of the plants must be
recognizable. The image resolution is within the ranges of the required ranges for the
soil cover estimation utilized in Chapter 3.

Mowing is usually done in daylight, so the use of additional lighting was not required
but can be investigated in future research. The tractor’s driving speeds are often quite
high during mowing, but the optical flow is not much higher because of the camera’s
increased distance from ground unlike during the roughness measurement. As a result,
the quantum efficiency and the shutter time are within similar ranges.

An additional near-infrared (NIR) camera is not required but is interesting to include
for scientific purposes.
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Figure 5.3: Cameras setup with two RGB cameras, a NIR camera and a NVIDIA Jetson
Nano for inference of CNN models.

5.2.2 Test Setup
The following paragraphs describe the camera setup that was built based on the require-
ments. In order to, add the additional NIR sensor, all cameras must be synchronized.
The cameras used for the roughness measurement from Leopard Imaging Inc. do not
support external triggering. Therefore, a new camera system, shown in Figure 5.3, was
set up which is backwards compatible enabling it to run the roughness and soil cover
estimations. The camera system consists of two IDS RGB UI-3251LE-C-HQ cameras
(1/1.8" e2v EV76C570 CMOS sensor with 1600 x 1200 pixel), an IDS UI-3241LE-NIR-
GL camera (1/1.8" e2v EV76C661 CMOS monochrome sensor with enhanced NIR
sensitivity and 1280 x 1024 pixel) mounted between the RGB cameras and a NVIDIA
Jetson Nano single board computer. The cameras used 4.5 mm lenses for a wide field
of view required on agronomic machines. The housing was 3-D printed with plugs for
connecting USB 3.0 and Ethernet devices as well as a power supply of 12 V. The camera
was controlled using a ssh connection based on the Ethernet or WIFI connection. The
images were stored on the system with additional GPS tagging in the image capturing
mode. Depending on the accuracy requirements, a GPS receiver or a RTK based
precision GPS system can be connected to the system.

5.2.3 Additional Sensors
Additional sensors mentioned in the literature for use in grassland were integrated.

Three different sensors were integrated to measure sward height:

• Ultrasonic Sensor HC-SR04 (40 kHz sound waves)

• Radar Evaluation Board SiRad Easy® from Silicon Radar GmbH(122 GHz radar)

• SICK Mid range distance laser sensor DT35-B15851 (850 nm near-infra-red)

These three sensors each provided a distance value but with a different measurement
principle. All sensors were mounted at the same height above the ground. The distance
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readings of the sensors were averaged over one second so they could be synchronized
with the camera images which are stored at 1 FPS.

Ultrasonic sensors have already been used for sward height measurements [99]. The
ultrasound-based sensor is relatively inexpensive. The sensor measures the transmission
time of an ultrasonic signal reflected from an object. The roughness of the object and
the sensor frequency determine if an object reflects or defuses the signal [99]. The
ultrasonic Sensor HC-SR04 is connected to an Arduino micro-controller to convert the
analog voltage output of the sensor and to transfer it via USB to a computer. The
sensor has a field of view of about 15°.

Radar from satellites is already used to measure plant height. Radar from short
distances (proximal sensing) has rarely been used to measure plants heights. A method
for height determination in cereals is commercially available [135]. We used a 122
GHz FMCW / CW radar sensor, commonly used in the automotive sector, to measure
sward height in in grasslands. When mounted, the sensor with the radar lens has an
opening angle of about 8°. Electromagnetic waves of about 120 GHz are reflected by
water. The grass sward mostly consists of water and can be read as a water volume by
the radar sensor. The sensor integrated into the evaluation board returns a distance
spectrum.The first bump is extracted from the signal after a certain threshold in the
distance spectrum is reached. The internal housing of the sensor also reflects the signal,
but can easily be filtered by calibrating it or reaching the minimum distance threshold.
The distance of the first strong reflection (first bump) is stored as the sward height.
The sensor is connected via a serial connection over USB. The protocol for reading the
data was implemented in the C++ application.

The last sensor tested to measure sward height was a single point laser sensor in the
850 nm near-infra-red band. The sensor returns distance measurements at a very fast
rate. The laser signal is reflected on the surface of the plants. Only the first target of
the sensor is stored and processed for the purposes of this study. The laser sensor has
an opening angle of 0.43°and therefore has the smallest field of view of all the distance
sensors, which often results in the soil being detected in thin plant swards.

Drawing on the concept discussed in [89], we integrated a pendulum-meter into
the mower protection sleeve, as shown in Figure 5.4. The pendulum-meter is utilized
because in denser and higher plants the protection sleeve of the mower is deflected
more strongly when the driving speed is also taken into account. The pendulum-meter
consists of a rod which is attached to a ball bearing and is also connect to the mower
protection sleeve. The deflection of the rod is measured at the pivot point of the ball
bearing with a potentiometer. The angle of deflection is digitized and passed on to the
logging computer with an Arduino micro-controller. The driving speed is logged with
the GNSS RTK receiver mounted on the mower.
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Figure 5.4: Pendulum-meter on the mower for measuring the deflection angle of the
mower cloth.

The NIR image and the red channel of the RGB image can be used to calculate the
Normalized Differential Vegetation Index (NDVI) of different image areas. The NDVI
usually captures the biomass of an area very well. The camera system individually
changes the exposure times for the RGB sensor and for the NIR sensor. In order to
eliminate the influence of the different exposure times, the NIR channel is divided by
the exposure time of the NIR sensor texpNIR, and the Red channel is divided by the
exposure time of the RGB sensor texpRGB. A more detailed investigation of the spectral
reflection in the IR band was deliberately omitted from this project. The equation for
calculation of the NDVI is as follows:

NDV I =
NIR

texpNIR
− Red

texpRGB

NIR
texpNIR

+ Red
texpRGB

(5.1)

The mower was equipped with the two camera systems described in Section 5.2.2
and one of each of the additional sensors mentioned above in Section 5.2.3. One of
the cameras was facing forwards towards the grass sward and one camera was facing
backwards on the cut edge between the grass sward, the grass turf and the mown grass.
Figure 5.5 depicts the mounting positions of the sensors and both camera systems.
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Front-camera

Ultrasonic

RTK-GNSS

Radar
Rear-camera

Laser

Figure 5.5: Sensors on the mower: one camera setup is facing forwards towards the
grass sward and one backwards on the cut edge. The sensors are mounted
on the front facing downwards into the grass sward.

Additionally, a single plane LiDAR sensor SICK LMS111 estimates the volume of
swaths on the rake. The LiDAR sensor measures distances point-wise with a 905 nm
near-infra-red light. The rotation of the scanner provides planar sampling. The LMS111
was configured configured with a 25 Hz and 0.25°angular resolution. The sensor’s field
of view is -45°to 225°and has a working range of 0.5 m to 20 m. The laser scanner is
connected through Ethernet to a recording computer.

5.3 Volume Estimation during Mowing
Sward volume is one important factor in order to estimate yields in grasslands. Due
to the given geometries of the camera’s field of view, it is not possible to observe the
entire mowing area with the stereo camera system, therefore the mean volume per area
is a more tangible feature. This involves measuring the mean sward height which is
then multiplied over the observed area.

The sensors were mounted on a disc mower NOVADISC 350 from Pöttinger. As
mentioned above, one camera is facing forwards and one camera is facing backwards.
Figure5.6 illustrates a bird’s eye view of the mower and tractor.

Each image and sensor reading is stored with a time-stamp and a GNSS location.
The entire system is integrated into a Linux application written in C++ which records
all image (Section 5.2.2) and sensor data (Section 5.2.3) and synchronizes it with the
GNSS RTK readings.

The sward height measurement is based on the same calibration procedure and stereo
pipeline as described in Section 4.2.1 and Section 4.2.2. Additional handling of the
exposure time is based on method in Section 4.2.4. The 3-D point cloud, which is
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returned from the stereo pipeline estimates the mean and median height of the forward
facing camera. The median height appears to be more robust towards outliers in the
3-D reconstruction of the grass sward surface. The front facing camera and all the
distance sensors (ultrasonic, radar and laser sensor) run into the same issue of only
measuring the distance between the sensor and the top of the grass sward. The known
ground distance serves as the basis to calculate the plant height. When changing the
mounting height, the sensors must be calibrated on a flat surface to measure the ground
distance again. Additionally, accelerations from driving disturb the sensor mounting
arms resulting in an error which a distance measurement to the top of the grass sward
cannot compensate for.

Figure 5.7 shows sample images captured from the front facing camera. The left or
right image of the stereo camera can be directly used to classify a plant’s family or
genus as discussed in Section 5.4. The yellow protective cloth of the mower is often
also visible in the image, so it must be recognized and masked. This issue is discussed
later on in this section.

In summary, the processing pipeline starts with segmenting the image into regions
followed by stereo processing, height estimation and family and genus classification.
Finally, the yield is estimated by a machine learning method based on the features
mentioned in the previous step.

Figure 5.6: Cameras on the mower. One camera is facing forwards towards the grass
sward and one camera is facing backwards on the edge between the grass
sward , the grass turf and the mown grass
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Figure 5.7: Front camera view on the mower. Left RGB Image, NIR image (850 nm)
and Right RGB image.

The backwards facing camera observes different areas, such as the grass sward, the
grass turf, and the mown grass. This setup offers additional viewing angles unlike the
front facing camera.

First, it is possible to investigate the grass turf’s condition and density. The NDVI of
the grass turf area is a simple metric making it easy to calculate. Future research should
focus on how to measure the the grass turf area in more detail using more complex
algorithms like semantic segmentation.

The absolute height of the grass can be calculated by viewing the grass turf and
measuring the distance between the top of the grass sward and the cut height which is
represented by the top of the grass turf. By calculating the absolute height, the sensor
height calibration becomes obsolete. Additionally, the errors from the acceleration of
the mounting arm are eliminated, because the height difference between the grass turf
and the grass sward can be calculated from each recording. The visible area of the
grass sward can be used to classify the family or the genus of plants as discussed in the
Section 5.4. Figure 5.8 shows an example image of the backwards facing camera.

Figure 5.8: Rearview camera on the mower with grass sward (uncut plants), the grass
turf, the mower cloth and the mown grass visible. Left RGB image, NIR
image (850 nm) and right RGB image.

In order to take advantage of the rearview, the individual areas must be distinguished.
First, a static mapping of the different image areas was configured, but this setup is
error-prone when measuring different grass heights, measuring on the headland, or
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driving in a curve. The mower cloth must be segmented independently of the static
mapping due to its dynamic movement. By adding the mower cloth class to the semantic
segmentation, it can be filtered in the same step from the images. The class mower
cloth is excluded from all calculations (grass turf height, family and genus classification
and NDVI estimation).

To be able to deal with all these situations, we decided to train a CNN which can
detect and segment areas of the grass sward, the grass turf, the mower cloth and the
mown grass within the image. The segmentation CNN is based on the bonnet framework
[116] as presented in Section 3.4.2. 382 train images captured during the field trials
between 2018 and 2020 were annotated. The data annotation tool described in Section
3.2.1 in the free drawing mode was used. The images were rescaled to a resolution of
512 x 384 pixels. It has been observed that a higher resolution is not necessary for
this task. Example images are shown in Figure 5.9. The segmentation distinguishes
between the classes grass sward (uncut plants), the grass turf, the mower cloth and
the mown grass. A rectangular sub-area of the first class, grass sward, is segmented to
estimate family and genus composition (see Section 5.4).

A train/test set split was performed to evaluate the accuracy of the method. The
results depending on the pre-training are shown in Section 5.8.5. The rearview camera
also implicity integrates the full image segmentation into the yield estimation results
(Section 5.8.1 and 5.8.3).

Figure 5.9: Results of the rearview mower segmentation: four examples of images
captured on the mower and their corresponding segmentation results below.
grass sward (uncut plants) , grass turf , mower cloth , mown grass .

5.4 Family and Genus Classification
The composition of a plant’s family and genus in grasslands is an additional parameter to
measure yield. Additionally, it can be used for targeted livestock feeding. At feeding, the
legume portion can be controlled when dosing the amount of protein. A geo-referenced
map of legumes can provide information about the nutrient supply and the general
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condition of the soil. From an agronomic point of view, the proportion of grasses and
legumes is interesting. Additionally, rumex is also an issue in grasslands, because it
is considered a weed and must be removed with herbicides or mechanically. It is also
interesting to distinguish clover from other legumes.

The information summarized above results in the following classes: soil, grasses,
legumes, clover, rumex and other. Later on, this chapter will also demonstrate the
challenges in differentiating legumes, clover and rumex due to limited data and the
similarities between the classes.

The same method utilized for the soil cover estimation was applied to semantically
segment the grassland images. The segmentation is based on the implementation of
ERFNet [112] in bonnet framework [116] which is further described in Section 3.4.2.
3.4.2.

5.4.1 Dataset
A grass clover dataset is publicly available and consists of artificially created images
[136]. The images are random mosaics of single cut out plants (grass and clover). An
example image is shown in Figure 5.10 (right). We tested the effect of pre-training with
this dataset on the ERFNet.

The sugar beet dataset [118] was the second dataset for pre-training the ERFNet. It
consists of images of sugar beets and weeds on different soils (see Figure 5.10 on the
left).

Figure 5.10: Example images of the sugar Beet dataset [118] (left) and the grass clover
image dataset [136] (right).

Manually annotated images were utilized to fine tune the family and genus classifi-
cation model. The training images were recorded during the field trials, as shown in
Table 5.1. Figure 5.11 shows two example images which were challenging to classify
due to motion blurring and strong sunlight. In general, our dataset was created while
the mower was in motion, under varied lighting conditions, and under other everyday
conditions. Rumex hardly occurred in the trials and is therefore not represented in
the dataset. In order for an application to detect rumex, the dataset would have to be
expanded for the specific plant.
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1030 training images with a resolution of 512 x 384 pixels were cropped from the
randomly selected high resolution images (1600 x 1200 pixels). In contrast to the full
image segmentation of the sample images in Figure 5.9, the full geometric resolution
was used to detect the fine details of the plants. The same tool for data annotation
described in Section 3.2.1 was used.

Figure 5.11: Two challenging examples from our grass legumes dataset with motion
blurring (top) and high dynamic range by direct sunlight (bottom). Grass

and legumes

5.5 Yield Modelling from Sensors on the Mower
The cameras on the mower estimate several parameters which serve as a basis to model
the dry matter yield. The main parameters estimated by the camera are the median
and mean sward height, the grass-legumes ratio and the NDVI of the grass sward.
These parameters are the features used for simple machine learning models. Regression
machine learning methods try to model the dry yield as an output variable. Four
different machine learning methods, implemented in the scikit-learn library [137], were
tested.

One of the methods was the support vector regression (SVR) with an RBF kernel.
The epsilon value of the epsilon-SVR model was set to 0.2. The regularization parameter
C was set to 0.3 and is inversely proportional to the regularization. The implementation
in scikit-learn is based on libsvm and works well for a low number of trainings samples
[137], as is the case for our purposes.

An ordinary least squares Linear Regression with normalization was also tested.
Non-linearities cannot be mapped, but over-fitting can be prevented.
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The multi-layer perceptron regression was tested with one hidden layer with three
units and a tanh activation function. An Adam [138] solver with a constant learning
rate of 0.01 was used to optimize the weight. The other parameters like momentum
and beta of the Adam solver were all set to the default values in scikit-learn.

The last method tested was the K-Nearest neighbors regression from scikit-learn.
The regression was used with k = 2 meaning that the two nearest neighbors in the
feature space were uniformly applied to calculate the regression value.

The evaluation results of the different machine learning methods are presented in
Section 5.8.3.

5.6 Swath Measurement

Automatic guidance along swaths, yield estimation, machine control and logistics opti-
mization in hay and silage harvesting all require the precise location and measurement
of grassland swaths. Current methods use ultrasonic, radar, laser sensors, or cameras
for this task. The central delivery rake Top 652 C from Pöttinger was used for all trials.
We mounted the camera presented in Section 5.2.2 on the back of the rake backwards
facing, as shown in Figure 5.12, to record sensor data.

Figure 5.12: Cameras on the rake facing towards the swath.

The swath and the grass turf are in the camera and laser scanner’s fields of view. The
camera is tilted approximately 45° towards the swath in the direction of the travel so
that a longer swath section can be captured. This allows for the swath to be recorded in
a closed stream up to a certain speed. Figure 5.13 shows the camera, the laser scanner
and the RTK GNSS receiver mounted on the back of the rake.

When recording the swath, it should be noted that the entire working width is not
always used due to driving which is either imprecise or near boundary areas. This leads
to smaller swath volumes and does not reflect the characteristics of the local plants.
This is important to note when plant-related conclusions are to be drawn. However, an
accurate GNSS can reduce this error.
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Figure 5.13: Cameras and sensors mounted on the rake facing backwards on the swath.

Figure 5.14 shows the left RGB Image, the NIR image (850 nm) and the right RGB
image of a swath.

The NIR image and the red channel of the RGB image can be used, as with the
grass images, to calculate the NDVI (Equation 5.1). In this case, the NDVI can only
be calculated on the grass turf next to the swath.

Figure 5.14: Captured images of a swath. Left RGB image, NIR image (850 nm) and
right RGB image.

The swath volume estimation is based on the same calibration procedure and stereo
pipeline described in Sections 4.2.1 and 4.2.2. However, the swath must first be
segmented to calculate the volume. Two different methods have been utilized to
complete this task. The first method, described in Section 5.6.1, segments based on
depth information. The second method, mentioned in Section 5.6.2, segments using
the left RGB image and a CNN. In both cases, the images are rescaled to 1/3 of the
original image size before stereo processing. Preliminary tests have shown that a 1/3
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image resolution is sufficiently accurate to measure swaths. Higher resolution images
of the swath do not depict the relevant structures. After segmenting the point cloud,
the swath’s points are used to estimate the volume against the plane. The volume is
calculated by triangulating the points based on the PCLs OrganizedFastMesh method
[139]. The ground plane estimation uses the PCL SAC segmentation [139] in which the
swath area is left out.

5.6.1 Swath Segmentation based on Depth Information
The 3-D point cloud of the stereo camera can be used to segment the swath. During
calculations, it is assumed that in most cases the swath is in the middle of the image
and the area next to the swath is flat. The various steps needed to perform this process,
from image acquisition to swath segmentation, are shown in Figure 5.16.

The first step involves removing the center region from the point cloud where the
swath is expected to be located. The remaining points are used to estimate a plane
which approximates the ground surface and is estimated using the Point Cloud Library
(PCL) SAC segmentation [139]. Then, the point cloud is rotated so that the ground
surface lies in the XY plane. Finally, all points above the plane are marked in the
original point cloud. If needed, the marked 3-D points can be projected back onto the
image using the extrinsic and intrinsic camera parameters.

Stereo camera image capturingand point matching 3D point cloud reconstruction Plane estimation of side areas Select point above plane
Figure 5.15: Swath segmentation based on depth data

5.6.2 Swath Segmentation based on RGB Image
Methods based on 3-D data from laser scanners or 3-D cameras have problems segmenting
the swath, especially for small swath volumes. The second method is based on the
assumption that the swath can also be segmented by the left RGB color image of the
stereo camera. The advantage here is that it produces a higher resolution of more
distant areas. The depth resolution declines quadratically with the distance, and the
resolution of the color image declines linearly.

For this purpose, 189 training images were annotated into the classes swath and no
swath. The tool for data annotation described in Section 3.2.1 was used. The most



68 5 Grassland Yield Measurement

efficient way of annotating the images was to use the free draw feature with flood filling.
The images were resized to 512 x 384 pixels for training.

For the semantic segmentation of the swath images, the same method from the other
semantic segmentation tasks was applied. Section 3.4.2 presents further details about
this method. The network was pre-trained again in two versions of the sugar beet
dataset [118] and of the grass clover dataset [136]. The effect of using different datasets
for pre-training is presented in Section 5.8.5.

5.6.3 Swath Volume Estimation based on Laser Scanner Data

The laser scanner SICK LMS111 returns data in an array of points described by their
angle, distance and reflectance. Based on the angle and distance, the points can be
located relative to the sensor’s center. Figure 5.16 shows a plot of the points in gray. In
order to estimate the swath cross-sectional area, a similar approach to the 3-D volume
determination from Section 5.6.1 was implemented in 2-D.

The ground line was estimated using a Hough Transformation for lines implemented
in OpenCV [130]. During this process, the middle area, where the swath is expected, is
left out. This step corresponds with the plane determination in the 3-D case.

The points are approximated using Catmull-Rom splines implemented in the Boost
Libraries [140]. Spline approximations are used for simple estimation of the area under
the swath contour. This is similar to the triangulation method applied in the 3-D case.

In the final steps, the area under the contour is summed up starting from the center
outwards until the contour intersects the ground line. This step is represented by the
black lines and the red dots in Figure 5.16.

The measured data can be mapped using the GNSS data to get a swath thickness
map. In order to get the entire yield volume, the swath cross-sections have to be
integrated over the distance travelled from the GNSS data.

Figure 5.16: The swath cross-sectional area estimation from the laser scanner data.
Points from the LMS111 are shown in gray. The approximated ground
plane is shown in green and all points above the plane after the first
intersection are marked in red.
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5.7 Field Trials

Yield samples were taken continuously over three seasons at harvesting. The mower was
equipped with different sensors which captured data continuously. Afterwards, random
samples were taken to measure the yield per m2. A tarpaulin and the suspension scale
Kern CH 15K20 with a weight range of 15 kg and a readability of 20 g were used as
shown in Figure 5.17. A mowing width was weighed over a length of 1 m or 2 m in
the case of the lower yields. Additional moisture samples were taken to estimate the
gravimetric moisture content using the Darr method (gravimetric moisture measuring
method). About four moisture samples were taken at different points in time during
one field trial. The interpolated gravimetric moisture contents were used to calculate
the dry matter yield of each sample point. These sample points were combined with
the sensor and the camera data to form the training data for the yield model which is
described in Section 5.5.

Figure 5.17: Manual weighing at random sample points during mowing and raking with
the suspension scale and a tarpaulin.

In order to eliminate inaccuracies caused by the human rather than automatic driving,
a tractor with RTK was used during the 2020 season. Table 5.1 shows the harvest times
and locations where yield samples were taken after mowing. The dry matter content
of the harvest shown in Table 5.1 is based on moisture samples taken during weighing
with the suspension scale. The amount of moisture in the harvested grass is mainly
determined by the time elapsed after cutting and less so by the heterogeneities of the
field. It is assumed that the volume measured by the camera is more dependent on the
plant’s dry matter content than its moisture content. If standing grass were dried, the
measured height would hardly change. The situation is different for swaths because
dried grasses have a smaller masses, so they are less compressed by their own mass, as
a result dry swaths have a greater volume. Therefore, the moisture content must be
known to estimate the mass of swaths.
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Table 5.1: Field trials mower
Date Location Number of Family/Genus Dry matter

Sample Points composition content of
harvest (%)

2018-08-22 Wieselburg 5 grass-clover silage 0.326
2018-09-18 St. Leonhard 41 lucerne and 0.252

am Forst grass-clover hay
2018-10-10 Wieselburg 44 lucerne and 0.254

grass-clover silage
2019-05-07 Wieselburg 38 grass-clover silage 0.200
2019-06-12 St. Leonhard 26 grass-clover hay 0.300

am Forst
2019-06-15 Wieselburg 15 grass-clover silage 0.267
2019-07-23 Wieselburg 35 lucerne and 0.380

grass-clover silage
2019-08-28 Wieselburg 26 lucerne silage 0.285
2020-05-07 Wieselburg 25 grass-clover silage 0.187
2020-06-11 Wieselburg 38 lucerne and 0.229

grass-clover silage
2020-07-20 Wieselburg 26 grass-clover silage 0.271
2020-08-26 Wieselburg 31 grass-clover silage 0.291
2020-10-06 Wieselburg 32 grass-clover silage 0.177
Number of Sample Points 382

Trials with the rake were conducted during the 2018 and 2019 seasons. Most of the
trials were conducted directly after a mower trial (2018-08-22, 2018-09-20, 2019-05-08,
2019-06-15 and 2019-07-23). The rake trials were similar to the mower trials. The rake
equipped with the sensors captures sensor and GNSS data when raking occurs behind
the machine. Afterwards, the random sample points were selected. The tarpaulin and
the suspension scale Kern CH 15K20 were used again to weigh one or two meters of
the swath depending on its overall expected yield. Additional dry matter samples were
taken to calculate the dry matter yield. Table 5.2 shows the harvest times and locations
where yield samples were taken after raking.

The driving path during raking produces certain inaccuracies just like during mowing.
In principle, it is best to drive into fully mowed areas, but this was unfortunately not
possible due to logistical conditions during harvesting. Instead, lane to lane driving
was carried out potentially resulting in a smaller swath due to inaccurate driving and
a distortion of the actual yield measured. However, accurate GNSS measurements
can factor out these tracking inaccuracies, which may also occur in later practical
applications.
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Table 5.2: Field trials rake
Date Location Number of Family/Genus Dry matter

Sample Points composition content of
harvest (%)

2018-07-31 St. Leonhard am Forst 23 grass-clover hay 0.9142
2018-08-22 Wieselburg 9 grass-clover silage 0.5010
2018-09-20 St. Leonhard am Forst 35 lucerne and 0.8735

grass-clover hay
2019-05-08 Wieselburg 22 grass-clover silage 0.3518
2019-06-05 St. Leonhard am Forst 28 grass-clover hay 0.8938
2019-06-15 Wieselburg 11 grass-clover silage
2019-07-23 Wieselburg 15 grass-clover silage 0.5049
Total Number of Sample Points 143

5.7.1 Outdoor Laboratory Test for Swath Measurement

An additional test was conducted to evaluate the accuracy of the swath volume estima-
tion in a controlled environment. A flat and mown grass area was used for this purpose.
The camera was mounted on a stand to obtain the same point of view as on the rake.
Hay was manually applied step by step to the area to form a swath. The hay was taken
from pressed square bales. Each time hay was added, the mass was weighed with the
suspension scale which made it possible to eliminate the error caused by the ground
plane detection and to only focus on the volume measurement. Additionally, multiple
repetitions make it possible to determine the random noise in the measurement. Figure
5.18 shows the camera mounted on the stand with a swath in front.
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Figure 5.18: Outdoor laboratory trial to validate the swath measurement system under
controlled conditions.

5.7.2 Comparison of different Raking Concepts
In 2019, students compared the ability of a star-wheel rake (Sitrex 7.10 m), a band-rake
(Zagroda 2.20 m) and a side delivery rotary rake (Pöttinger 3.00 m) to swathe grasslands.
The purpose of this experiment was to find out if the raking system influences the ability
of the camera to estimate mass. They used the camera system proposed in this thesis
to measure the swaths. The trials took place in St. Leonhard am Hornerwald (AT)
at two fields (48◦36 3.2328 N, 15◦32 41.5104 E and 48◦36 8.3592 N, 15◦32 56.4648 E)
on the 21st September 2019. The fields were planted with rye and red clover, which
served as the nurse crop and were subsequently mown. Camera images of the swaths
were taken with the stand shown in Figure 5.18. In all trials, the masses of the swath
at N=24 random sample points were measured with the Kern CH 15K20 suspension
scale. The dry mass samples were taken as a subset of the sample sites. The results of
the trial are shown in Section 5.8.4 and in Figure 5.33.

5.7.3 Targeted Trial for Grassland Family and Genus Classification
In 2020, a plot trial with different clover-grass mixtures was conducted. During the
trial, eight different variants in 3 m strip plots were seeded. 32 measurement points,
four for each variant, were selected. The 8 clover-grass mixtures from SAATBAU LINZ
eGen are shown in Table 5.3. The plots were mown three times with a hedge trimmer
at the measurement points, on 2020-05-27, 2020-08-12 and 2020-10-06. An area of 60 x
50 cm was mown for each sample point which corresponds to the field of view of the
camera. The yield per square meter can be calculated from the sample area.



5.8 Evaluation 73

Table 5.3: Clover-grass mixtures seeded for the targeted family and genus classification
trial.

Mixture Legumes (%) Grasses (%)
FUTTERPROFI EI 50 50
(Triple N - Schaumann instead of EI)
GRÜNLANDPROFI B 14 86
GRÜNLANDPROFI EB 10 90
FUTTERPROFI WM 26 74
FUTTERPROFI KM 33 67
Lucerne 100 0
FUTTERPROFI LR 50 50
Red clover 100 0

The measurements were taken weekly in 2020 with the camera system presented in
Section 5.2.2 at the 32 measurement points. The camera was mounted on the stand
shown in Figure 5.18 but also with a perpendicular point of view as on the mower.

In order to evaluate the experiment, the mass fractions of legumes, grasses and others
were weighed directly after mowing. Correlations between camera-predicted ratios of
grasses and legumes and the weighted ratios were calculated, as well as, the correlation
between the camera-predicted ratios and the ratios of the seeds of the mixtures as
presented in Table 5.3.

5.8 Evaluation
The evaluation of the measurement systems is based on weighing yield or the yield
fractions (for estimation of grass/legumes ratio). The yield of the dry matter served
as the basis for all the evaluations. As described, the dry matter samples were taken
during weighing and packed into air tight freezer bags. The correlations between the
weighed yields and the sensor or model data are described by the Pearson correlation
coefficient or by the R2, which equals the squared Pearson correlation coefficient for
linear models.

First, the separate evaluation of the different features captured by the camera and
other sensors is presented. The second section examines the evaluation results of the
family and genus composition classification. This is followed by an evaluation of the
combination of the features into an overall yield model. The fourth section deals with
the evaluation of the swath’s segmentation and yield estimation. Finally, the effect of
pre-training on the different applications of semantic segmentation is examined.

5.8.1 Volume Estimation and other Sensor Measurements during
Mowing

The evaluation of the method for plant height measurement described in Section 5.3 is
based on data from the field trials. During the field trials listed in Table 5.1, the camera
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and sensor data was recorded and the yield was measured at random sample points.
The following Figure 5.19 shows the features estimated by the camera mounted on the

front of the mower and facing downward. Each field trial is color-coded which reveals
the field trial biases. The R2 value for each feature is calculated from the difference of
the feature and the dry matter yield from all field trials combined.

The first figure in the top left corner shows the median height grass sward estimated
by the camera. The value was manually calibrated by measuring the camera height on
the field. In contrast, the mean height grass sward, shown in the top right corner, is
more prone to outliers. The NDVI (Equation 5.1) of the grass sward in the bottom
left corner is calculated from the entire image excluding the mower cloth. The legumes
portion in the bottom right corner is estimated based on the method from Section 5.4.
Additionally, the trials on the lucerne fields with a high portion of legumes are visible
on the right side of the figure.

Figure 5.19: Data from the forwards facing camera. The individual field trials are color
coded.

Figure 5.20 shows the estimated features of the backwards facing camera on the cut
edge.

The figure on the top left and the top right show the mean and median distances to
the grass sward from the camera. Both values are calculated from the area classified as
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grass sward. Unlike the front facing camera, they are not manually height calibrated.
The median and mean sward heights shown in the middle left and right, respectively,

are calculated as the height difference between the areas classified as grass sward and
grass turf. As expected, these two features correlate best to the dry matter yield
compared to the others.

The legumes portion is estimated by cropping a patch from the region classified as
grass sward. The NDVI of the grass sward is estimated from the region classified as
grass sward. Neither the legumes portion nor the NDVI correlate to the yield.

Figure 5.20: Data from the backwards facing camera. The individual field trials are
color coded.

The additional sensors, which were not integrated into a yield model, barely resulted
in a more accurate yield prediction. The measurements of the sensors described in
Section 5.2.3 were compared by applying the Pearson correlation to the dry matter
yield measured during the trials. The Pearson correlation between the angle of mower
cloth and the weighed mass was 0.1611 during the trial on 2019-08-28 and 0.5162 on
2020-05-07.

The Pearson correlation of the distance sensors radar, ultrasound and laser are
presented in Table 5.4. The laser sensor achieved the best correlation with the dry
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matter yield followed by the radar sensor.

Table 5.4: Correlation between sensor readings and the weight of the dry matter yield
(DMY) for the sensors on the mower.

Date Pearson Pearson Pearson
Correlation of DMY Correlation of DMY Correlation of DMY

to Radar to Ultrasound to Laser
2020-05-07 0.5490 0.1615 0.7210
2020-06-11 0.0835 0.0879 0.0434
2020-07-20 0.1073 0.4118 0.0822
2020-08-26 0.8128 0.2455 0.7833
2020-10-06 0.1026 0.4162 0.4254

5.8.2 Grassland Family and Genus Classification
The method for estimating the family and genus composition presented in Section
5.4 enables color images to be segmented into grasses and legumes. The quality of
the grass/legume ratio predictor is evaluated in different ways. One way is to split
the annotated images into training and test sets. An example image of grass/legume
segmentation is shown in Figure 5.21. The figure shows the RGB image, the prediction
and the ground truth labels of the test image.

The accuracy of the prediction on the test set was 0.8522 and the intersection over
union (IoU) was 0.5374.

Figure 5.21: Example image (left), prediction (middle) and ground truth labels (right).
Grass and legumes

The second method to evaluate the segmentation of grasses and legumes was the
targeted trial for grassland family and genus classification described in Section 5.7.3.
The images were taken in weekly intervals until the grassland was cut. The grasses and
legumes portions were weighed at the sample points.

Figure 5.22 shows the correlation of the grasses/legumes ratio with the weighed
ratio in the seeds. It can be observed that the correlation decreases with the temporal
distance to sowing.
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Figure 5.22: The Pearson correlation between the legumes-grass ratios at seeding and

at the weekly measurements.

Figure 5.23 shows the correlation of the CNN estimated 2D grasses/legumes ratio
to the weighted dry matter mass ratios during harvesting. As one would expect the
correlation increases the closer the harvest date comes. Just before harvesting, the best
correlation is expected as it is the measurement of the ratio from the image closest to
the reference measurement by weighing the ratios.
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Figure 5.23: The Pearson correlation between the legumes-grass ratios at harvest and
at the preceding weekly measurements.
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Figure 5.24: An example plot of the weighed and the predicted legumes portions for
2020-07-22.

The plot shown in Figure 5.24 is from one prediction day (2020-07-22) and allows
for a deeper investigation of the prediction quality. Pure variants with only grasses or
only legumes can be detected well. In-between values tend to be overestimated in the
direction the more frequent plant type. For example, the proportion of legumes will be
overestimated if they are more common during testing.

5.8.3 A yield estimation model

The different features estimated by the camera system are integrated into simple machine
learning models. Details about the models are presented in Section 5.5. The models
were evaluated with different train and test set splits and different feature combinations.
Careful consideration should be taken as to whether the NDVI data is useful because it
requires an additional NIR camera and should be left out if possible.

Figure 5.25 shows the results of the dry matter yield predictions based on the different
machine learning models. The features used in the models are from the front camera.
The machine learning methods include the support vector regression in the top left, the
linear regression in the top right, the multi-layer perceptron regression in the bottom
left and the k-nearest-neighbor regression in the bottom right. The x-axis shows the
yield measured by the weighing scale (ground truth) and the y-axis displays the value
predicted by the model. Training was repeated 100 times and during each trial five
samples were randomly shifted to the test set. The SVM regression consistently achieved
the best results.
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Figure 5.25: The predicted dry matter yields from the features estimated by the front
facing camera. The ground truth points are listed on the x-axis and the
predicted points are listed on the y-axis.

In Figure 5.26 the results of the SVM-Regression model without the feature NDVI
are visible. The evaluation shows, that the model predicts the yield almost as well as
in the previous model with NDVI (Figure 5.25).
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Figure 5.26: The predicted dry matter yields from the features estimated by the front
facing camera without the NDVI. The ground truth points are listed on
the x-axis and the predicted points are listed on the y-axis.

The model’s predictive ability decreases significantly when only using the height
values without the grass/legumes ratio information as shown in Figure 5.27.

Figure 5.27: The predicted dry matter yields based soley on the height measurements of
the front facing camera. The ground truth points are listed on the x-axis
and the predicted points are listed on the y-axis.

The grass sward area visible in the rear facing camera is smaller. The predicted
dry matter yields from the features estimated by the rear facing camera are visible in
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Figure 5.28. The R2 of the prediction equals 0.5241 for the SVM. This supports the
assumption that a less visible sward area does not affect the results.
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Figure 5.28: The predicted dry matter yields from the features estimated by the rear
facing camera. The ground truth points are listed on the x-axis and the
predicted points are listed on the y-axis.

The training was repeated 100 times for all the results shown above and during each
trial 5 samples were randomly shifted to the test set. As a result, the field bias is not
taken into account. As shown in Figure 5.20 there is a certain field bias in the data
of the different trials (Table 5.1). Therefore, the training was repeated with randomly
shifting entire field trials, from which all sample points were included, to the test set.
This results in the prediction quality decreasing significantly, as shown in Figure 5.29
and the R2 value decreasing towards 0.2933.
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Figure 5.29: The predicted dry matter yields from the features estimated by the rear
facing camera after shifting an entire field trials from the training set to
the test set. The ground truth points are listed on the x-axis and the
predicted points are listed on the y-axis.

Figure 5.30 shows the prediction results when only using the height values without
the grass/legumes ratio information and without the NDVI data. These results were
again based on a test set of randomly selected fields from which all sample points were
included. The randomly selected fields were drawn from the entire field trial dataset.
In this case R2 drops in that case to 0.1771.
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Figure 5.30: The predicted dry matter yields only based on height measurements es-
timated by the rear facing camera after shifting entire field trials from
the training set to the test set. The ground truth points are listed on the
x-axis and the predicted points are listed on the y-axis.

5.8.4 Swath Segmentation and Volume Estimation

For the evaluation of the swath segmentation, 39 test samples from different scenarios
were evaluated based on their accuracy. The accuracy enables a comparison between
the number of correctly classified pixels to the total number of pixels. The test samples
are not included in the training data of the CNN segmentation.

This evaluation resulted in an accuracy of 0.965 for the segmentation based on the
ERFNet CNN and an accuracy of 0.820 for the segmentation based on the depth data.
Figure 5.31 shows some sample images from the test data. For swaths with low volume
or a low height, as in example images 4 and 5, segmentations based on the depth data
resulted in a larger error.
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Figure 5.31: The swath segmentation results: the sample images followed by the man-
ual labels, the segmentation results based on the depth data and the
segmentation results based on the CNN

The aforementioned swath segmentation was integrated into the swath volume
estimation. The results demonstrated that CNN was the superior segmentation method
which led to it being adopted for all subsequent volume estimations. To evaluate the
volume estimation method, the data from the field trials, listed in Table 5.2, was used.
Random samples were taken on the field, weighed and their dry matter content was
estimated. There is no efficient and accurate method to measure the swath volume
besides methods involving cameras and lasers, therefore the estimated swath volume
of the camera is compared to the yield mass. The results of the Pearson correlations
between the estimated dry matter yield and the measured volumes of the swath are
shown in Table 5.5. The swath mass can be predicted relatively consistently with a
mean Pearson correlation of 0.6420.
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Table 5.5: The correlation between the estimated volume by the camera and the weight
yield mass for the rake field trials.

Date Location Pearson correlation Family/Genus
between composition

camera volume
and weighed mass

2018-07-31 St. Leonhard am Forst 0.5679 grass-clover hay
2018-08-22 Wieselburg 0.6475 grass-clover silage
2018-09-20 St. Leonhard am Forst 0.7845 lucerne and grass-clover hay
2019-05-08 Wieselburg 0.5873 grass-clover silage
2019-06-05 St. Leonhard am Forst 0.5746 grass-clover hay
2019-06-15 Wieselburg 0.6679 grass-clover silage
2019-07-23 Wieselburg 0.6640 grass-clover silage

Due to technical difficulties, the laser data from the LMS111 was only collected on
2018-07-31 and on 2018-09-20. The Pearson correlation between the mass and the
volume measured by the laser was 0.7348 on 2018-07-31 and 0.7173 on 2018-09-20.

To test the accuracy of the swath volume estimation method, an outdoor laboratory
test was conducted which is described in Section 5.7.1. A hay swath was manually
placed on an area of mown grass, weighed and the volume was estimated with the
camera system. Figure 5.32 illustrates the relationship between the volume and mass of
the swath. The influence of the camera resolution was also investigated. Figure 5.32 (a)
shows the volume estimation compared to mass based on a third of the original image
resolution and Figure 5.32 (b) does the same based on a half of the original image
resolution. These figures indicate that the error of the volume estimation increases
as the resolution decreases. The linear relation between the volume estimated by the
camera Vcamera and the mass weighted m was m = 19.06 · Vcamera + 0.25 with R2 = 0.89
for one third of the original resolution (533 x 400 pixels) and m = 19.03 · Vcamera + 0.30
with R2 = 0.95 for the half resolution (800 x 600 pixels).
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Figure 5.32: Results of the outdoor laboratory test for the swath volume measurement.

The estimation with a third of the original image resolution (a) and the
estimation with half of the original image resolution (b).

The swathing concept can influence the relationship between the swath volume and
the swath mass. The experiment described in Section 5.7.2 was conducted to investigate
this aspect. Figure 5.33 presents the results of 24 sample points of the experiment
with a central delivery rake, a sun-wheel and a band-rake. The correlation between the
estimated volume and the weighed swath mass was especially strong for the sun-wheel
with an R2 of 0.95. The measurements of the swath after the central delivery rake, as
used in all other experiments, resulted in the lowest correlation of only R2 = 0.51.

y = 6.72x + 0.79R² = 0.77y = 4.62x + 1.10R² = 0.51y = 7.92x + 0.62R² = 0.95y = 5.03x + 1.00R² = 0.55
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Figure 5.33: The relationship between the estimated swath volume and the weighed
swath mass for the different rake concepts

5.8.5 Pre-training for Semantic Segmentation
During the pre-training of the ERFNet CNN, the encoder weights were transferred
to the new model as initial weights. It is expected that the information stored in the
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encoder features can be transferred to a new model to perform similar tasks. The CNN
for the semantic segmentation is integrated into the grass/clover segmentation (Section
5.4), the swath segmentation (Section 5.6) and into the cut area segmentation (Section
5.3).

All three tasks were trained with different initial encoder weights. They were initialized
with the weights of the semi-artificial grass clover image dataset [136], the sugar beet
dataset [118] and with random weights (none).

The quality of the segmentation in Table 5.6 is defined by its accuracy and its IoU.
The results show that pretraining improves the segmentation quality. The clover grass
dataset especially improves the accuracy and the IoU.

Table 5.6: Model accuracy and IoU, with and without pre-training on the test datasets
Application Pre-training Accuracy IoU

(grass/legumes ratio estimation
sugar beet dataset 0.8522 0.5374
clover grass dataset 0.8859 0.4480
none 0.8462 0.5288

swath detection
sugar beet dataset 0.9653 0.9313
clover grass dataset 0.9734 0.9470
none 0.9604 0.9221

cut segmentation
sugar beet dataset 0.9106 0.7903
clover grass dataset 0.9340 0.8312
none 0.9286 0.8241

The inference time of all the models are stated in Table 3.3 of Chapter 3 for the soil
cover estimation.

5.9 Discussion
In the following section the technical, environmental and agronomic aspects influencing
the different measurements are discussed. The first subsection discusses the volume and
yield estimation of the mower followed by the family and genus classification. Lastly,
the swath segmentation and the swath volume estimation and the technical aspect of
the pre-training on semantic segmentation are discussed.

5.9.1 Volume Estimation during Mowing and Yield Modelling
The yield estimation on the mower can only be evaluated using yield samples. Many dif-
ferent external influences can affect measuring from the grass sward height measurement
to the grass/legumes ratio to the yield.

Yield sampling is one source of error which is influenced by the mowing width and
sampling area, the GNSS Accuracy, the error of the weighing scale, wind forces on
the grass bag hanging on the weighing scale and incorrect moisture samples. The
mowing width and the sampling area error were reduced in the 2020 field trials by
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using RTK based tractor steering and a hedge trimmer to cut the grass swath more
precisely. However, it is believed that this still has the greatest influence on sampling.
GNSS Accuracy hardly plays a role under the assumption that the local grassland
is homogenous. The error of the weighing scale can be neglected by a mean sample
size of 7 kg and a readable resolution of 20 g (0.29 %). The influence of the moisture
samples is also considered to be low. A yield sample naturally dries over time. The
moisture samples are taken less frequently than the yield samples and therefore are
interpolated. The drying effect must be represented in the interpolation between the
moisture samples.

Depending on the sensor type, there different errors affect the plant height measure-
ment. Besides the known height measurement accuracies of the sensors, plant height
measurement causes additional errors that must be taken into account. One difficulty
is the geometry of grasses. Grasses are tall and narrow and are therefore difficult to
capture by stereo matching from a short distance. This geometry also makes measuring
distances with radar and ultrasound difficult due to the wide measuring lobes. The
laser distance measurement is barely affected by this. The fundamental question of
how many measurement points must be recorded on the surface of the stand remains
unanswered and must be investigated in more precise laboratory tests.

Lodging is one of the main issues that influences the height measurements of all
distance sensors (camera, radar, laser and ultrasonic). When the plants reach a certain
height, they are pushed down by their own mass or by the wind and the rain. This
distorts the plant height measurement very strongly and leads to outliers. Future
work could introduce lodging as an additional class in cut segmentation. However, the
difficulty lies in distinguishing between lodging and cut grass.

There are also features which cannot be captured by the sensors like plant and stem
density and mass differences under the visible leaf surface. It was expected that the
pendulum sensor could cover these aspects. However, this does not work robustly
enough and needs to be investigated in more detail in the future.

The NDVI, which can be calculated by the data from our camera setup, saturates
at higher soil cover values. The literature points out that the NDVI is not good at
predicting grassland yields. Calculating different indices would require a more complex
camera setup. However, the 850 nm NIR camera can be used for other applications in
future.

Overall, we were able to predict yield during mowing with R2 = 0.5241 with field
bias and R2 = 0.2933 over several fields. The work in [99] was able to predict dry
matter yield with R2 = 0.75 by using ultrasonic sensors and R2 = 0.82 by combining
ultrasonic sensors with data from a FieldSpec spectrometer (350 to 2500 nm). However,
their field trial took place on one field where no field bias can occur and they increased
yield variance by using different N-fertilizer applications. In general, higher differences
in yields lead to a better ability to predict. The method in [141] predicted the biomass
in homogeneous Italian ryegrass meadows with R2 = 0.56. They calculated a multiple
linear regression of two visible color indices. The work in [142] used hyper-spectral data
in the range of 350-900 nm to predict grassland yield with R2 = 0.62. The work in
[142] used partial least squares regression (PLS) models.
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5.9.2 Family and Genus Classification
The classification of the grass and the legumes in the grassland images resulted in an
accuracy of 0.8522 and an IoU of 0.5374 for pre-training with the sugar beet dataset on
the ERFNet.

As observed in the evaluation, the class values tend to be overestimated in the
direction of the more prevalent plant type. This can be explained in part by the
labelling process. Typically, the labelling begins with the less prevalent portion, e.g.
with grasses in a lucerne field image. Afterwards, the image labelling is completed by
filling the rest of the image with the class legumes. In that case, some grasses or darker
regions get labelled as legumes. This results in a certain bias towards the more present
class in the image and an S-curve in the prediction-ground truth plot.

This research confirmed the expected trend of a higher correlation of the harvest
dry-mass to the images captured closer in time to the harvest. However, it was surprising
that the correlation with the grass/legume content during seeding dropped so quickly.

Our work on grass/legumes segmentation can be most closely compared with the
work in [101]. It achieved a prediction of the clover dry matter fraction with a standard
deviation of 7.8%. This surpasses our results, although it should be noted that we
do not have access to such homogeneous grasslands and our images were taken under
strongly fluctuating light conditions. The effect of the different light conditions is visible
in the images taken under low exposure times. Areas deeper in the grass sward are not
exposed to enough light and appear black, especially with small clover plants. This
effect could only be reduced to a limited extent by a gamma function in the image
augmentation. The under-exposed areas (pixel value = 0) no longer carry any texture
information. Therefore, the clover mass is still underestimated in the underexposed
images.

5.9.3 Swath Segmentation and Volume Estimation
The segmentation of swaths with a CNN from an RGB image achieves an accuracy
of 0.9734 and an IoU of 0.9470. Swaths with a low volume or a low height, as in the
example images 4 and 5 in Figure 5.31, result in a larger error by segmentation based on
the depth data. This can be explained by the lower depth resolution of the stereo setup
compared to the image resolution. In general, the lower accuracy of the segmentation
using the depth data can be explained by the lower depth resolution, the unevenness
of the ground and errors in the plane estimation. Overall, it has been shown that
the swath segmentation based on the depth data does not work as accurately as the
segmentation based on the RGB image data.

When applying the CNN based segmentation on the point cloud to estimate the
volume, a mean Pearson correlation of 0.6420 to the weighed swath mass was achieved.
This indicates that either errors occur in the volume measurement or that the swath
mass cannot be directly deduced from the volume. Uneven ground has a strong influence
on the volume measurement because it can result in an inaccurate calculation of the
ground plane.

The outdoor swath measurement laboratory test showed that the volume measurement
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of the swath delivers strong correlations with the weighed mass. For these tests, the
swath was formed by hand from pre-pressed hay balls which enabled for excluding the
inaccuracies caused by raking. An even ground plane was used to avoid errors during
ground plane estimation.

The tests to compare the different raking concepts showed similar correlations for
central delivery rake and the band-rake. The sun-wheel produced strong volume-mass
correlations which indicates that the volume-mass ratio is strongly influenced by the
type of rake used. Future research should examine the effect of the different rakes in
more detail with the specific aim of predicting the mass accurately even when using
central delivery rakes.

Additionally, the swath volume estimation method was tested for the straw and
oil pumpkin swath. However, the results were not shown in this thesis since they
are thematically different. For the straw swath, image data was integrated into the
existing grassland swath dataset. A strong generalization could be observed. Separate
segmentation models were trained for oil pumpkins.

5.9.4 Pre-training for the Semantic Segmentation
The pre-training tests on the ERFNet showed that, in general, pre-training improves
the accuracy of the model. The cover grass dataset generally led to better prediction
accuracy compared to the sugar beet dataset. This can be attributed to the fact that
the structures are very similar to grassland use cases. Pre-training utilizing the grass
clover dataset was expected to improve the grass/legumes ratio estimation. However,
the pre-training using the sugar beet dataset resulted in a better IoU.

Pre-training using the sugar beet dataset worsens the classification results for the
cut segmentation. This might be attributed to ill-fitting features from the sugar beet
dataset.

The linear and circular structures seem to be more similar to the clover grass dataset
than to the sugar beet dataset for the swath segmentation and the cut segmentation.
In general, both the swath segmentation and the cut segmentation resulted in higher
accuracy and IoU. This can be explained by the fact that these applications are applied
to the downscaled images and not to the image sections as with the grass/legumes
segmentation. The annotations are not very accurate for the fine resolution images of
the grass/legumes segmentation.

In general, all training image sets need to be extended to get more robust detections
for the corner cases.



6 Conclusion and Outlook
Computer vision technologies offer a wide range of possibilities in agriculture. Farmers
can gain many insights to make better decisions based on visual impressions. As
agricultural machines become more and more automatized, they must be able to
capture and interpret visual information. Key areas of importance include soil and
plant parameters, soil cover, soil roughness, and yield estimation.

6.1 Summary
This thesis presents methods using a stereo camera system to measure soil cover and
roughness, and to estimate the yield of grasslands. It demonstrates that these methods
can be implemented in the field using a camera system with an integrated computing
unit. The ERFNet CNN soil cover estimation method was more accurate in detecting
dead organic matter than state of the art methods. An experiment with 10 people
showed the large variance when manually labelling soil cover.

The method utilized to measure the soil roughness enables a tillage machine to be
controlled in real time in order to produce a more homogeneous soil roughness during
seeding on heterogeneous fields. A statistical comparison between the soil roughness
and soil aggregate size showed that agronomic decisions can be inferred. As expected,
the initial tests of plant emergence showed correlations with soil roughness.

The same camera systems can measure meadow height and estimate the grass/legumes
ratio using a convolutional neural network. Additionally, a CNN based segmentation
allows for the segmentation of grassland swaths and areas of cut grass. An investigation
of the different parameters observed during mowing showed that the plant height and
the plant composition serve as the basis to model dry matter yield in grasslands.

6.2 Outlook
In general, future research should focus on improving the real world datasets to gain
insights into corner cases. This is true for all use cases, especially for those that use
CNNs. Public datasets should also be adapted to represent the uncontrolled conditions
of conventional fields like irregular lighting. Potential further steps are described in
detail below.

6.2.1 Soil Cover Measurement
The soil cover measurement dataset could be expanded using automation. For this
purpose, the NIR camera utilized in the grassland use case will be utilized to distinguish

91
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automatically between the dead organic matter and the soil. This can reduce confusion
between the dead organic matter and the soil, especially under direct sunlight.

In the future, the soil cover measurements could also be used to control a machine, as
soil roughness based machine control on the power harrow. For example, information
about soil cover could be used to control the ground pressure of tine harrows. It could
also be investigated whether this method could be applied to an UAV. In particular,
the UAV recording parameters like resolution and flight altitude must be investigated
and the dataset must potentially be expanded.

Recent developments in the field of generative adversarial networks (GANs) have
demonstrated their potential to augment images in agriculture [143]. All semantic
segmentation applications in this thesis could benefit from this type of image augmen-
tation.

6.2.2 Soil Roughness Measurement
In addition to measuring soil roughness, future research could also focus on measuring
soil aggregates. This would enhance the direct agronomic benefit of the measurement
as the aggregate size is a parameter more commonly used in agronomics. However, it is
not entirely clear whether there is an actual benefit for the machine control system.

Further investigations could also examine the soil roughness and the plant emergence
under different seeding rates. This line of research has hardly been investigated in the
literature, but it certainly offers agronomic potential.

Finally, the algorithm could be integrated into cameras that do stereo matching
independently. This will reduce hardware requirements by increasing the frame rate.
It is expected that this will increase the agility and the precision of the power harrow
control. The same is true, of course, for grassland methods that use stereo cameras.

6.2.3 Grassland Yield Measurement
Grassland composition estimation could be further improved by more extensive datasets,
including new classes like rumex or thistle. This would not only increase the robustness,
but also broaden the range of applications. When segmenting the cutting edge, an
additional class lodging could be introduced. This would make the height measurement
more robust. Additionally, future research should examine the density of grass swards
because this may be a significant factor influencing the yield measurement.

Further research could also examine integrated applications besides yield mapping
and grassland composition. For example, real time machine control could be used for
swath forming, conditioner control or site-specific grassland reseeding.

This use case would especially benefit from an extended training set to improve the
predictive quality for the grassland yields. Conditions vary depending on location,
soil, weather, fertilization and species composition and can only be mapped through
extensive field trials. Previous research has barely covered this heterogeneity in field
trials.
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