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Kurzfassung

Galliumnitrid und seine Legierungen mit Aluminium und Indium sind direkte Halb-
leiter und weisen hohe Härte sowie hohe thermischer und mechanischer Stabilität
auf. Die Anwendungsgebiete dieser Halbleiter sind breit gefächert. Eine typische
Anwendung sind High-Electron-Mobility Transistoren welche die hohe Mobilität des
zweidimensionalen Elektronengas ausnützen. Durch die Anwendung von Galliumni-
tridlegierungen weisen sie hohe Durchbruchsspannungen auf und sind deswegen für die
Leistungselektronik von Interesse.

Durch das Fehlen von nativen Substraten mit passenden Gitterstrukturen werden
Bauelemente auf Galliumnitridbasis auf fremdartige Substrate aufgewachsen. Dabei
entsteht eine hohe Dichte von Defekten, welche die Leistungsfähigkeit diese elektro-
nischen Bauelemente negativ beeinträchtigen. Eine dieser Klassen von Defekten sind
Versetzungen, welche eine besonders negative Wirkung auf die Leistungsfähigkeit von
High-Electron-Mobility Transistoren habe. Um die Dichte dieser Defekte zu verringern
werden Mehrschichtstrukturen mit Schichten unterschiedlicher Dicken und Stoffzusam-
mensetzungen verwendet.

Das Ziel dieser Arbeit ist die Erarbeitung von Entwurfsregeln um die Kristallqualität
zu erhöhen oder mit anderen Worten die Defektdichte in Galliumnitrid basierten
Bauelementen zu senken. Unter Verwendung der Kontinuumsmechanik zur Model-
lierung der Defekte im Rahmen der linearen Elastizität und der Theorie der Ther-
modynamik wurde ein tieferes Verständnis über das Verhalten von Versetzungen in
diesen Strukturen erlangt.

Diese Arbeit ist in sechs Kapiteln gegliedert. Kapitel 1 begründet den weiten Anwen-
dungsbereich von Galliumnitrid und dessen Legierungen in der Elektronik und zeigt
das Versetzungen ein primärer Faktor für die Herabsetzung der Leistungsfähigkeit
von Bauteilen auf Galliumnitridbasis darstellen. Kapitel 2 handelt von der The-
orie der linearen Elastizität in der Modellierung von Versetzungen. In Kapitel 3
wird die allgemeine Elastizitätstheorie auf die Berechnung der Versetzungsenergie
und der Gleichgewichtskonfiguration angewendet. In Kapitel 4 wird die Theorie zur
Berechnung der kritischen Dicke auf Galliumnitridlegierungen erweitert. Dieser Ansatz
basierend auf den Reaktionen zwischen Versetzungen wird in Kapitel 5 auf verschiede-
nen Mehrschichtstrukturen angewendet um die Dichte der Versetzungen in diesen zu
bestimmen. Kapitel 6 fasst die Ergebnisse zusammen.
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Abstract

Gallium nitride and its alloys with aluminium and indium are hard, thermally and me-
chanically stable direct band gap semiconductors used for a wide range of applications.
A recent application is the high electron mobility transistor which is the result of the
high two-dimensional electron gas density and the large breakdown field exhibited by
using these materials.

Due to a lack of a suitable native lattice matched substrate, gallium nitride based
devices are grown upon a foreign substrate causing the development of a high density
of defects which damage the performance of the device. A particular class of defects
called dislocations has a deleterious effect on high electron mobility transistors. In
order to achieve desired specifications, it is necessary to reduce the dislocation density
by using multilayered structures with varying geometry and composition.

The goal of this work is to define design rules to improve the crystalline quality,
i.e., to reduce the dislocation density, of gallium nitrided based structures. Contin-
uum theory of dislocations treated within the linear elasticity theory and the laws
of thermodynamics are used for gaining understanding and modeling the dislocation
development in these structures.

This work is structured in six chapters. Chapter 1 describes the reasons why GaN
and its alloys are widely used in electronics, and further introduces the dislocations
as a primary factor for damage of the device performance. Chapter 2 introduces the
elements of linear elasticity theory useful to model dislocations. In Chapter 3, general
elasticity theory is applied to evaluate the dislocation energy and their equilibrium
configuration. In Chapter 4, theoretical studies of the critical thickness are extended
for GaN based alloys. Subsequently (Chapter 5) the reaction-kinetic approach is used
to evaluate the dislocation density in different multilayered structures. The main
results and conclusions are summarized in Chapter 6.
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1 Introduction

1.1 Introduction: gallium nitride and related alloys
(III-nitrides)

Gallium nitride (GaN) and its alloys with aluminum or indium are in their stable
form wurtzite direct band gap semiconductors which have become the most important
since silicon. The excitement over III-nitrides stems from their better material and
electronic properties compared to silicon and other III-V compounds, like GaAs. These
properties enable the use of GaN based devices in a broad range of applications in
various fields, including the automotive, military and space industries as well as in
high power amplifiers for wireless base stations, and high voltage electronics for power
transmission lines.
In this chapter the most used GaN based devices - light emitting diodes and high

electron mobility transistors - are briefly described (see Section 1.2) together with
the physical properties (see Section 1.3) that make them well suited for industrial
applications. A particular class of defects, the dislocations (see Paragraph 1.4.1),
greatly affects the electrical performance of GaN devices. In order to reduce their
impact, it is necessary to reduce their density. The goal of this work is therefore to
define some design rules for dislocation filtering in devices based on III-nitrides (see
Section 1.5).

1.2 GaN applications and characteristics

GaN and its alloys with aluminum or indium are usually grown at a high temperature
(approximately 1100◦C) by metal organic chemical vapor deposition or molecular beam
epitaxy techniques on foreign substrates [59]. These substrates include silicon carbide
for RF applications, silicon for power electronic applications, and sapphire for optical
devices [54,67,73]. GaN and its alloys have a wide range of optoelectronic uses because
the atoms are bonded by a very ionic gallium/aluminum/indium-nitrogen chemical
bond [53]. This has two important consequences.
Foremost, AlN, GaN and InN have respective direct band gap energies of 6.2 eV, 3.4

eV and 0.7 eV at room temperature [1,11], which cover the entire visible spectrum from
the ultraviolet to the infrared range (see Figure 1.2). This is in contrast to (Ga,Al)As
based light emitting diodes (1.5-2.2 eV) and (Al,Ga,In)P based light emitting diodes
(1.3-2.5 eV) which cover only the infrared to green region [25].

1



Eg

p-type region n-type region

GaN InGaN GaN

(a)

Buffer layer

Al2O3 substrate

active region InGaN
n-type GaN 

p-gate

n-gatep-type GaN 

(b)

Figure 1.1: Schematic of a GaN based LED structure. The energy of the photon is
equal to the energy gap Eg.

The second main consequence of the strong chemical bond is their stability and re-
sistance to degradation under high electric currents and high temperatures. Therefore,
III-nitrides are widely used in laser diodes and light emitting diodes [2, 56].
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Figure 1.2: The band gap is shown as function of the lattice parameters. The range
of visible spectrum is shown in colors.

GaN-based laser diodes enabled the development of Blu-ray technology which has
become the standard replacement of DVDs. The previous GaAs-based red laser diodes
(working at λ = 650 nm) have been replaced by GaN-based laser diodes emitting blue
light (λ = 405 nm) in order to store more data on every single disk due to the shorter
wavelength of the writing beam [25].
A second optoelectronic application of III-nitrides are the light emitting diodes.

Compared to a traditional light source, light emitting diodes have many prominent
advantages including their low energy usage, long lifetime and small size, making
such a light source a strong competitor in the domestic and business lighting market.
Because lighting accounts for about 20% of total electricity consumption, national
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Figure 1.3: Schema of GaN based HEMT structure. The bi-dimensional electron gas
(2DEG) is along the interface between the AlGaN and GaN layers.

programs promoting light emitting diodes for lighting are underway in the US, Japan,
and China. The main motivation is large-scale energy savings which would provide
the benefits of reduced oil imports and lower greenhouse gas emissions [25]. Apart
from optoelectronic applications, another important III-nitride-based device is the
high-electron mobility transistor. Power amplifiers based on high electron mobility
transistors have demonstrated high break-down voltage, high current density, and low
thermal resistance [35, 83, 86]. The combination of these attributes makes GaN tech-
nology attractive for continual development of high power products for applications
which include commercial and military radar, electronic warfare, radio communica-
tions, and data backhaul. The above mentioned characteristics are consequences of
some particular physical properties of III-nitrides [52].
An important property of III-nitrides is the strength of their chemical bond, which

implies a large energy band-gap. Therefore GaN-based devices have a high breakdown
field, which allows them to operate at much higher voltages than other semiconductor
devices. Under such conditions, the device is subjected to high enough electric fields
such that the electrons in the semiconductor can acquire enough kinetic energy to
break the chemical bond (a process called voltage breakdown). If impact ionization
is not controlled, it can degrade the device. Since the chemical bond is strong, III-
nitride-based devices can operate at higher voltages, which are typical of higher-power
applications [52].
A second consequence of the strong chemical bond is a high saturation velocity.

This is the velocity of electrons at very high electric fields. High saturation velocity
means that GaN devices can deliver much higher current density. The radio frequency
power output is the product of the voltage and the current swings, so a higher voltage
and current density can produce higher radio frequency power in a practically sized
transistor. Simply put, GaN devices can produce much higher power density [52].
Low thermal resistance arises in GaN devices grown upon SiC substrates. They

exhibit outstanding thermal properties, due to the high thermal conductivity of SiC.
In practical terms, this means that GaN-on-SiC devices do not get as hot as GaAs or
Si devices when dissipating the same power. A colder device is more reliable [52].
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Let us consider the structure of a high electron mobility transistor shown in Fig-
ure 1.3(b). The simple structure consists of a thin AlGaN layer which is deposited on
top of a thick GaN layer in order to achieve a bi-dimensional electron or hole gas at
the interface between the two materials [36,68]. One of the most interesting things in
GaN-based high electron mobility transistor is that a bidimensional electron or hole
gas forms at the AlGaN/GaN interface without modulation doping [52]. This happens
due to the spontaneous polarization and strain induced piezoelectric fields. GaN is
piezoelectric because the gallium-nitrogen bond is ionic and the successive planes of
gallium and nitrogen atoms are not at equal distance. When the atoms in a plane
are displaced from their original position (by a mechanical pressure, for example), the
planes of atoms above and below move to different positions, creating a net charge, an
electric field, and a voltage. This bends the energy bands in a way that a bidimensional
electron sheet is created at the interface of AlGaN/GaN or InGaN/GaN without the
necessity of doping, like in Si-based transistors. Normally, the bi-dimensional carrier
sheet density is around 1013/cm2 and the mobility is around 1600 cm/Vs at room
temperature [69], making GaN-based transistors fast and efficient.

1.3 Physical properties of III-nitrides

1.3.1 Crystal structure

Group III nitrides can have the following crystalline structures: the wurtzite and zinc
blende. Under ambient conditions, the thermodynamically stable structure is wurtzite
for bulk AlN, GaN, and InN. The zinc blende structure for GaN and InN has been
stabilized by epitaxial growth of thin films on {011} crystal planes of cubic substrates
such as Si, SiC, MgO, and GaAs. In these cases, the intrinsic tendency to form the
wurtzite structure is overcome by topological compatibility [53].
The wurtzite and zincblende structures are somewhat similar and yet different. In

both cases, each group of III atoms is coordinated by four nitrogen atoms. Conversely,
each nitrogen atom is coordinated by four group III atoms. The main difference
between these two structures lies in the stacking sequence of closest packed diatomic
planes. The wurtzite structure consists of alternating biatomic close-packed (0001)
planes of Ga and N pairs, thus the stacking sequence of the (0001) plane is AaBbAa in
the (0001) direction. Another way to understand the wurtzite structure is to consider
the anions (N3−) forming a hexagonal close-packed structure in which the cations
(Ga3+) occupy half of the tetrahedral sites [53].
The zincblende structure occurs when the hexagonal double-layers are stacked in

a periodic AaBbCcAaBbCc. For AlN, GaN and InN the zincblende structure is
metastable while the wurtzite variant is stable and easier to grow [25, 53]. There-
fore, scientific attention and industrial interest have been focused on the wurtzite
form. This work considers consequently III-nitrides in their wurtzite structure.
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Figure 1.4: Directions and planes in a hexagonal lattice.

The wurtzite group III nitrides lack an inversion plane perpendicular to the c-axis;
thus, nitride surfaces have either a group III element (Al, Ga, or In) polarity with a
designation of (0001)A plane or a N-polarity with a designation of (0001)B plane [53].
The distinction between these two directions is essential in nitrides because of their
implications for the polarity of the polarization charge.
Four surfaces are of special importance in nitrides: (0001), (112̄2), (11̄00), and

(11̄01) planes (see Figure 1.4(b)). Particular directions in hexagonal close-packed
structures are �0001�, �21̄1̄0�, and �11̄00� as shown in Figure 1.4(b). The (0001), or
the basal plane, is the most commonly used surface for growth. The three-dimensional
arrangement of wurtzite nitrides is shown in Figure 1.5 where the red color represents
nitrogen atoms while blue represents the group III atom sites (Al, Ga or In).
The wurtzite structure can be represented by lattice parameters a in the basal plane

and c in the perpendicular direction, and the internal parameter u. The basal plane
lattice parameter (the edge length of the basal plane hexagon) is universally depicted
by a and the axial lattice parameter, perpendicular to the basal plane, is universally
described by c. The c parameter depicts the unit cell height. The u parameter is
defined as the anion-cation bond length (also the nearest neighbor distance or the
interatomic distance) divided by the c lattice parameter. In an ideal wurtzite struc-
ture represented by four touching hard spheres, the values of the axial ratio and the
internal parameter are c/a =

�
8/3 = 1.633 and u = 8/3 = 0.375, respectively. The

crystallographic vectors of wurtzite are a1 = a(1/2,
√
3/2, 0), a2 = a(1/2,−√

3/2, 0),
c = a(0, 0, c/a). In Cartesian coordinates, the basis atoms are (0, 0, 0), (0, 0, u · c),
a(1/2,

√
3/6, c/2a), and a(1/2,

√
3/6, [u+ 1/2]c/a) [53].

The lattice parameters of the III-nitrides are summarized in Table 1.1. When-
ever a material property of the alloy is needed, for example, the lattice constant of
AlxGa1−xN, Vegard’s law [76] is used in the following form:

aAlxGa1−xN = x aAlN + (1− x) aGaN (1.1)
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Table 1.1: The lattice constants (in Å) for GaN, AlN, InN [53], and for Si and
Ge [19]. The lattice constants of AlxGa1−xN/GaN, InxGa1−xN/GaN and
Si1−xGex/Si are calculated using Vegard’s law with the data in the table.

GaN AlN InN Si(111) Ge(111)

a 3.22 3.11 3.54 5.43 5.65
c 5.19 4.98 5.96
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Figure 1.5: A 3D picture of the wurtzite structure together with some important pro-
jections [12].
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Vegard’s law is valid only under specific conditions [76]. First principle calculations
show [10] that Vegard’s law holds for AlGaN (both lattice constants) and the a-lattice
constant of InGaN and AlN. Some deviations from Vegard’s law are predicted [10] for
the c-lattice constant of the latter two alloys. However, since no better estimate of
lattice and elastic constants is available for the whole range of compositions, Vegard’s
law is used throughout this work wherever necessary [25].

1.3.2 Mechanical properties

The elastic constants of GaN, AlN, and InN are given in Table 1.2. Vegard’s law is
used to calculate the constants of the ternary compounds AlxGa1−xN and InxGa1−xN.
Epitaxial layers composing GaN-based devices are monocrystals. Therefore elastic
anisotropy must be considered in any attempt of modeling the mechanical behavior.
In order to show the importance of anisotropy, the standard deviation σY of the elastic
modulus Y is calculated as a function of the x fraction for the two systems AlxGa1−xN
and InxGa1−xN:

σY =
2

π

�� π
2

0

� π
2

0

(Yi(x)− �Y �)2 dι dς, (1.2)

where Yi is the elastic modulus function of x in a certain direction of the 3D space.
ι and ς are the angles of the polar spherical coordinate system. �Y � is the average
elastic modulus defined as follows:

�Y � = 4

π4

� π
2

0

� π
2

0

Yi(x)dι dς. (1.3)

The standard deviation of the elastic modulus quantifies the dispersion from the av-
erage value. For this reason, it is an index of the anisotropy of the compounds. The
comparison of σY for the three systems considered in this work is shown in Figure 1.6.

Table 1.2: The stiffness constants (in GPa) for GaN, AlN, InN [61], for Si [29],
for Ge [19] . The stiffness constants of the systems AlxGa1−xN/GaN,
InxGa1−xN/GaN and Si1−xGex/Si are calculated using Vegard’s law with
the data in the table.

c11 c12 c13 c33 c44 c66

GaN 374.2 141.4 98.1 388.6 98.3 (c11−c12)/2
AlN 410.5 148.5 98.9 388.5 124.6 (c11−c12)/2
InN 223 115 92 224 48 (c11−c12)/2

Si(111) 194.25 35.25 63.9 165.6 79.5 50.85
Ge(111) 155 21.6 48.2 128.4 66.7 40.1
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Figure 1.6: The standard deviation σY as function of the fraction x for the three
different systems.

Figure 1.6 shows that for all the systems the impact of the anisotropy decreases as
x increases, meaning that small amounts of Al/In atoms increase strongly the effect of
the anisotropy. For the wide range of composition, the standard deviation of the elastic
modulus is always higher for the AlxGa1−xN system with respect to the InxGa1−xN
system. As a consequence of the values of the standard deviation, elastic anisotropy
is considered in the subsequent modeling.

1.3.3 Hetero-epitaxial relations with substrates

Different types of substrates are used to grow III-nitrides depending on the application.
While sapphire is mainly used for optical devices and silicon carbide for military
application, silicon is preferred for civil use. A silicon substrate causes the creation
of a large amount of defects and thus the resulting performance of the final devices is
lower than when SiC is used. However, Si substrates are much cheaper than SiC, and
this is the main factor in requests for mass production for civil application.
For growth of III-nitrides on Si, one generally starts with an AlN buffer layer and

hence an AlN/Si interface. Direct growth of GaN on Si is prevented by the formation
of low-melting-point Ga-Si compounds and significant diffusion of Si to the film-vapor
interface resulting in the formation of SixNy therein [73]. The former results in the so-
called melt-back etching, whereas the latter results in a rough interface. The presence
of a defective SixNy layer has been reported at the AlN/Si interface as well. However,
it does not prevent epitaxy and it is still not quite clear if it forms prior to deposition
of the AlN buffer layer or during subsequent exposure of the AlN/Si interface to high
temperatures during growth [73].
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The (111) plane is the most commonly used surface of Si for growth of the III-
nitrides. The epitaxial relationship is {111}Si�11̄0�Si � {0001}GaN�112̄0�GaN. The
sixfold symmetry of arrangement of atoms on the unreconstructed {111} surface (see
Figure 1.7(b)) favors the growth of the wurtzite phase with hexagonal symmetry of
Ga-polarity (Ga face up). However, the mismatch, defined as (asubstrate − afilm) /afilm,
with a being the lattice parameter, is greater than 20% for both GaN and AlN, and
of a nature that would result in tensile (or positive) stress in the film when grown
directly on Si(111) [73]. Given the orientation relationship, it should be noted that
for Si(111), asubstrate should be the interatomic distance along [110̄] and not the often
quoted lattice parameter of Si, which is the interatomic distance along [100]. For
such highly mismatched systems, strain is very quickly relaxed by the formation of
islands, i.e., the Volmer-Weber growth mode takes place. A quick analysis of the
various energies involved in the system then provides a deeper insight into the possible
growth mode. Markov [48] determines the mechanism by which a thin film grows by
considering the chemical potentials µ of the first few n deposited layers. The chemical
potential is a function of the bond energies involved in the system. The island growth
mode, i.e., the Volmer-Weber mode, takes place when the variation of the chemical
potential within the first deposited layers dµ/dn is negative, which corresponds to the
situation when the bond energy among the atoms of the deposited material is higher
than the bond energy between the atoms of the deposited material and the atoms
of the substrate. The Si-N bond energy of 4.5 eV [78] is lower than the Ga-N and
Al-N bond energies of 9.12 and 1.17 eV, respectively [53]. Thus, there is no great
incentive for GaN/AlN to spread out along the substrate or, in other words, for the
two-dimensional growth mode. In addition, as discussed previously, III-nitride layers
are strained, which would raise the chemical potential of the first deposited layer with
respect to the layers composing the bulk even further.
In conclusion, the chemical potential of the first GaN/AlN monolayers is higher than

that of the subsequent layers. Thermodynamics indicates that in such situations III-
nitrides would prefer to form multilayer islands rather than spread out as a single layer
on the substrate and for that matter even on other III-nitride layers. The resultant
growth mode, based on observations at a thickness greater than a bilayer, is thus the
Volmer-Weber mode, involving nucleation of three-dimensional (3D) islands that then
grow laterally and coalesce. It is emphasized that this discussion has been on purely
thermodynamic grounds and the growth mode actually observed could be subject to
kinetic modifications.
After the coalescence, the islands become domains of the continuous film. Due

to different crystallographic orientation, the domains can be twisted or tilted with
respect to each other to varying extents (see Figure 1.8). The consequence is that
the domains are separated by low angle grain boundaries, which are composed by sets
of dislocations. The difference in tilt between two domains can be accommodated
by pure edge dislocations, whereas difference in twist can be accommodated by pure
screw dislocations [73]. When a combination of both a difference in twist and tilt
between domains exist, then all three types of dislocations (edge, screw, and mixed
dislocations) would be required. Dislocations created in this way during the growth
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of the first III-nitride layer on Si(111) propagate through the above grown layers,
reaching the active part of the device and damaging its performance. When Si is
used as substrate, an extremely high density of dislocations is detected in the active
part in the range between 1010-1014cm−2. X-ray diffraction (XRD) using a four-circle
diffractometer [51], TEM [51], and atomic force microscopy (AFM) [58] are the three
most commonly used techniques to characterize these dislocations.

Island A
Island B

ζ
z

(a)

Island A
Island B

χ

z
z'

(b)

Figure 1.8: The islands A and B separated by (a) a pure tilt boundary represented by
the angle ζ and (b) a pure twist boundary represented by the angle χ.

1.4 Defects in III-nitrides

III-nitride films on Si are host to all major defect types including point defects, line
defects or dislocations, plane defects, such as stacking faults, inversion domains and
cracks, and 3D defects, such as V-shaped pits and pipes [53]. Despite defects affecting
both device performance and lifetimes, III-nitride-on-Si devices have been commercial-
ized in the last decade [73]. Extensive research has thus been devoted to understanding
the origin, structure, and evolution of defects during growth.
Of the defects mentioned above, III-nitride devices stand apart because of their high

density of dislocations. Dislocations propagate through the bulk of the heterostructure
and reach the core part of the device. There they form new energy levels inside the
energy band. Electrons can be trapped in these energy levels by reaching a lower
energy state and thus damaging the electrical performance of the device. In addition,
the evolution of dislocation configuration during growth alters the strain-stress fields
of the structure. This is a second cause for the modification of the band structure.
The dislocation density in 1µm thick GaN layers grown on Si(111) is typically

1010cm−2 at the surface of the film, and the corresponding number for films grown
on sapphire and SiC is 108cm−2. It is important to note the role of film thickness, as
dislocation density is not a constant but varies across the film. Considering a struc-
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ture composed by a GaN film grown upon an AlN layer on a Si(111) substrate, at
the GaN/AlN interface the dislocation density can be in excess of 1014cm−2 and its
reduction with thickness depends on the process type and the device structure. A
particular type of growth technique called lateral growth technique reduces the dislo-
cation density to about 106cm−2 [21] but this is still about two orders of magnitude
higher than the value found in GaAs-based devices.

1.4.1 Dislocations

A dislocation is a line defect in a crystal, which can greatly affect its material prop-
erties. A dislocation is usually represented by an oriented dislocation line, l, and
characterized by its Burgers vector, b, describing displacements introduced in the
crystal by the dislocation [25].
A dislocation can not end within a crystal and it is contained within a crystal only

as a complete loop. Otherwise, the dislocation line can end at the material surface.
Based on the relationship of l and b, three dislocation types are distinguished (see

Figure 1.9): an edge-type dislocation with l ⊥ b, a screw-type dislocation with l � b,
and a mixed-type dislocation (b ∦ l �⊥ b). The dislocation type can change as the
dislocation line changes its direction in the crystal. This is because the Burgers vector
b is a constant characteristic of a dislocation which remains unchanged along the
whole single dislocation line. It is worth noting that the orientation of b in the
standard definition (Burgers-Frank or a continuous elasticity definition [9]) depends
on the actual orientation of the dislocation line l: an opposite dislocation line direction
−l yields an opposite orientation of the Burgers vector −b. However, the uncertainty
in sign of b and l does not affect their mutual relation in terms of defining an edge,
screw or mixed type dislocation.

A

C
b

b

l

A

B
C

l

b

b

b

Figure 1.9: Changing dislocation type along a single dislocation line with Burgers vec-
tor b: screw-type (A), mixed-type (B) and edge-type (C) [80].
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The Burgers vector of a perfect dislocation is a lattice vector. As such, there are
three basic types of dislocations in III-nitrides according to the Burgers vector: a-type
dislocations with b = 1/3�112̄0�, c-type dislocations with b = �0001�, and (a + c)-
type dislocations with l = 1/3�21̄13�. It is important to distinguish between these
two nomenclatures: an a-type dislocation can be either an edge, screw or mixed dis-
location depending on the actual dislocation line direction. Since the Burgers vector
cannot change along the dislocation line, the latter terminology is used in this text for
describing dislocation types.

1.5 Outline of the thesis

The goal of this work is to establish some design rules for dislocation filters in III-nitride
based devices in order to improve their crystalline quality, i.e., their electrical perfor-
mance. Linear elastic theory, thermodynamics and the reaction–kinetics approach [49]
have been used to gain understanding and to develop models of the dislocation density
in GaN based heterostructures.
This dissertation is divided into six chapters, including the current introductory

chapter. Chapter 2 introduces the elements of linear elasticity theory useful to model
dislocations. In Chapter 3 general elasticity theory is applied to evaluate the dis-
location energy in hexagonal thin layers. In addition, dislocation energy is used to
evaluate the equilibrium configuration of dislocations in III-nitrides. In Chapter 4,
the previous results regarding the dislocation energy are used to extend the theoreti-
cal studies of the critical thickness for III-nitrides film. Subsequently (in Chapter 5)
the reaction-kinetic approach is used to model the dislocation density in III-nitride
bulk and multilayers with different geometries. Chapter 6 summarizes the work with
the main achievements and presents an outlook for further studies.
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2 Elements of elasticity theory

2.1 Introduction

The presence of one dislocation displaces the atoms in the crystal from their perfect
lattice sites and the resulting distortion produces a stress field in the crystal around
the dislocation. The dislocation is therefore a source of internal strain and stress
fields which increase the internal energy of the crystal. For example, consider the
edge dislocation in Figure 2.1. The region above the slip plane contains the extra
half-plane forced between the normal lattice planes. Consequently, the region above
the slip plane is in compression, while the region below is in tension. The stresses and
strains produced by dislocations in the bulk of the crystal are sufficiently small for
linear elasticity theory to be applied to quantify them. An understanding of elasticity
theory is a necessary prerequisite for the development of a quantitative theory for
dislocations.

Figure 2.1: Edge dislocation in a cubic crystal.

In this chapter the parts of elasticity theory which are essential for later derivations
are reviewed. Section 2.2 is mainly based on the second chapter of the book of Hirth
and Lothe [23] and it is integrated with parts from the book of Hull and Bacon [32].
For the complete description of linear elasticity, the reader is referred to the text by
Love [45] on which much of the reviews in the above mentioned books are based. The
texts of Landau and Lifshitz [40], and Sokolnikoff [70] are useful for supplementary
study. A good discussion of the limitations of linear elasticity is found in a review
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article by Eshelby [13]. In addition, the reader is referred to the text by Balluffi [4]
for the application of elasticity theory to lattice defects. The procedure to rotate the
stiffness and compliance tensors reported in Section 2.3 is derived from the text by
Ting [74].

σzz
σyzσxz

σzx
σyxσxx

σzy
σyyσxy

z

x

y

Figure 2.2: Stress distribution on an infinitesimal volume element.

2.2 Fundamental equations

In elasticity theory, an element of volume experiences forces via stresses applied to its
surfaces by the surrounding material. Stress is the force per unit area of surface. A
complete description of the acting stresses therefore requires not only specification of
the magnitude and direction of the force but also of the orientation of the surface, for as
the orientation changes so, in general, does the force. Consequently, nine components
must be defined to specify the state of stress. They are shown with reference to an
elemental cube aligned with the x, y, z axes in Figure 2.2. The component σij, where i
and j can be x, y or z, is defined as the force per unit area exerted in the +i direction
on a face with outward normal in the +j direction by the material outside upon the
material inside. For a face with outward normal in the −j direction, σij is the force
per unit area exerted in the −i direction. For example, σyz acts in the positive y
direction on the top face and the negative y direction on the bottom face.
Each point in a strained body is displaced from its original position in the unstrained

state. The point displacement is represented by the vector

u = (ux, uy, uz) . (2.1)

Let us consider the body in the condition of mechanical equilibrium. In such situation,
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no net torques taken about x, y and z axes placed through the center of the cube are
present in the element, so that

σij = σji. (2.2)

Thus, the order in which subscripts i and j are written is immaterial. The three
components σxx, σyy, σzz are the normal components. From the definition given above,
a positive normal stress results in tension and a negative one in compression. The
effective pressure acting on a volume element is therefore

p = −1

3
(σxx + σyy + σzz) . (2.3)

The six components with i �= j are the shear stresses.
As a consequence of equilibrium, no net force can act on the element, so that

∂σxi

∂x
+

∂σyi

∂y
+

∂σzi

∂z
= 0, i = x, y, z, (2.4)

equations (2.4) are the so-called equilibrium equations of classic elasticity.
When acted upon by stresses, the body deforms. The displacement u has the

components ux, uy, uz representing its projections on the x, y, z axes, as shown in
Figure 2.3.

z

x

y

uz

ux

uyP

P’u

Figure 2.3: Displacement of P to P’ by the displacement vector u.

Let us consider now the response to stress. In linear elasticity, the strains are defined
in terms of the first derivatives of the displacement components

εij =
1

2

�
∂ui

∂j
+

∂uj

∂i

�
. (2.5)
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The nine components of strain are therefore

εxx =
∂ux

∂x
, εyz = εzy =

1

2

�
∂uy

∂z
+

∂uz

∂y

�
,

εyy =
∂uy

∂y
, εzx = εxz =

1

2

�
∂uz

∂x
+

∂ux

∂z

�
,

εzz =
∂uz

∂z
, εxy = εyx =

1

2

�
∂ux

∂y
+

∂uy

∂x

�
. (2.6)

Partial differentials are used because in general each displacement component is a
function of position (x, y, z).
The strains εxx, εyy, εzz defined in (2.6) are the normal strains. They represent the

fractional change in length of elements parallel to the x, y and z axes, respectively,
e.g. the length lx of an element in the x direction is changed to lx (1 + εxx).
The volume V of a small volume element is changed by strain to (V + ΔV ) =

V (1 + εxx) (1 + εyy) (1 + εzz). In the linear approximation, the fractional change in
volume Δ, known as the dilatation, is therefore

Δ = ΔV/V = (εxx + εyy + εzz) . (2.7)

Δ is independent of the orientation of the axes x, y, z.
Each component for i �= j is half of the shear strain ηij , which is usually defined in

engineering as

ηij = 2εij, i �= j. (2.8)

The six components εyz, εzy, εxz, εzx, εxy, and εyx have a simple physical meaning.
This is demonstrated by εxy in Figure 2.4, in which a small area element ABCD in
the xy plane has been strained to the shape AB

�
C

�
D

�
without change of area. The

angle between the sides AB and AD that was initially parallel to x and y, respectively,
has decreased by 2εxy. By rotating, but not deforming the element as in Figure 2.4,
it is seen that the element has undergone a simple shear.

x

y

BA

B’

D C

C’
D’

B’A

C’D’
ζ1

ζ2

ηxy

x

y
(a) (b)

Figure 2.4: (a) Pure shear and (b) simple shear of an area element in the xy plane.
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The shear strain ηxy is related to the angles of shear by the relation

ηxy = ζx + ζy =
∂ux

∂y
+

∂uy

∂x
. (2.9)

The above expressions contain only first-order terms in derivatives of stress and dis-
placement and are exact only in the limit that the stress and displacement approach
zero, i.e, the magnitude of these components is �1. This procedure results in the lin-
ear theory of elasticity, which is a good approximation for small displacements. The
inclusion of second-order terms makes the theory much more complicated, thus such
second-order corrections are not considered here.
For small distortions (∂ui/∂xj � 1), each stress component is linearly proportional

to each strain. The relationship between stresses and strains in linear approximation
is called Hooke’s law. Thus, the stresses depend only on the strains

σij = cijkl εkl. (2.10)

The coefficients cijkl are the elastic constants, also called stiffness constants. From (2.2)
and the relation εkl = εlk, it follows directly that

cijkl = cjikl = cjilk = cjilk. (2.11)

The combination of the last two relations yields the expression

σij = cijkl
∂uk

∂xl

. (2.12)

The further combination of the last equation with (2.4) gives

cijkl
∂2uk

∂xj∂xl

= 0. (2.13)

When a unit volume element deforms reversibly by differential strain increments dεij,
the stresses work on the element by an amount

dw = σij dεij = cijkl εij d εij. (2.14)

If the deformation is reversible and isothermal, and if the work is restricted to that
of elastic deformation, the differential work dw is equal to the differential change in
Helmholtz free energy dF of the element

dF = dw = cijkl εkl d εij. (2.15)

Thus
∂2F

∂εij ∂εkl
= cijkl. (2.16)
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The free energy is a state function and dF is an exact differential, so that the order
of differentiation in the previous equation is immaterial. As a consequence it follows

cijkl = cklij. (2.17)

The strain-energy-density function (the strain energy per unit of volume) is determined
by the integration of (2.15)

w =
1

2
cijkl εij εkl. (2.18)

A typical solution to an elasticity problem involves the determination of the displace-
ments uk from (2.13), given a set of boundary conditions. Stresses and strains then
follow from (2.5) and (2.12), and the strain energy follows from (2.18).

2.2.1 Matrix notation

Hooke’s law (2.10) written as an equation between matrices becomes

{σij} = {cijkl}{εkl}. (2.19)

The matrix cijkl is relating the nine elements σij to the nine elements εkl. According
to (2.17), the matrix {cijkl} is symmetric. The elastic coefficients are often written in
a contracted matrix notation as cmn where m and n are each indices corresponding to
a pair of indices ij or kl, according to the following reduction:

ij or kl 11 22 33 23 31 12 32 13 21,

m or kl 1 2 3 4 5 6 7 8 9. (2.20)

Thus, by definition,

c11 = c1111 c12 = c1122

c44 = c2323 c46 = c2312

... ... (2.21)

(2.11) and (2.17) indicate that due to symmetry there are only 21 independent elastic
constants among the 81 in cmn. Thus (2.19) reduces to������������

σxx

σyy

σzz

σyz

σzx

σxy

σzy

σxz

σyx

������������
=

����������

c11 c12 c13 c14 c15 c16 c14 c15 c16
c12 c22 c23 c24 c25 c26 c24 c25 c26
c13 c23 c33 c34 c35 c36 c34 c35 c36
c14 c24 c34 c44 c45 c46 c44 c45 c46
c15 c25 c35 c45 c55 c56 c45 c55 c56
c16 c26 c36 c46 c56 c66 c46 c56 c66
c14 c24 c34 c44 c45 c46 c44 c45 c46
c15 c25 c35 c45 c55 c56 c45 c55 c56

����������

������������

εxx
εyy
εzz
εyz
εzx
εxy
εzy
εxz
εyx

������������
. (2.22)
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Because of the symmetry the previous relation is reduced to the following 6×6 repre-
sentation ������

σxx

σyy

σzz

σyz

σzx

σxy

������ =

������
c11 c12 c13 c14 c15 c16
c12 c22 c23 c24 c25 c26
c13 c23 c33 c34 c35 c36
c14 c24 c34 c44 c45 c46
c15 c25 c35 c45 c55 c56
c16 c26 c36 c46 c56 c66

������

������
�xx
�yy
�zz
2�yz
2�xz
2�xy

������ . (2.23)

The cmn in the 6×6 matrix are the same as the cmn occurring in the 9×9 matrix.
The 6×6 matrix is also symmetric. When the axes of reference are rotated, stresses,
strains, and elastic constants must be transformed accordingly. Transformations are
performed most conveniently in the complete 9×9 scheme. This procedure is described
in Section 2.3. For most crystals, the number of independent elastic constants is re-
duced further from 21 because of crystal symmetry. As an example, only five constants
are independent for hexagonal crystals:������

c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66

������ . (2.24)

For cubic crystals, the independent constants are three:������
c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44

������ . (2.25)

For isotropic solids only two material properties – λ and µ, called Lamé constants –
are required:

σxx = 2µεxx + λ (εxx + εyy + εzz) ,

σyy = 2µεyy + λ (εxx + εyy + εzz) ,

σzz = 2µεzz + λ (εxx + εyy + εzz) ,

σxy = 2µεxy , σyz = 2µεyz , σzx = 2µεzx . (2.26)

The shear modulus µ is calculated as [57]:

µ =
1

2(s11 − s12)
. (2.27)
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Other elastic constants are frequently used, the most useful being Young’s modulus
Y, Poisson’s ratio ν, and the bulk modulus H. Under uniaxial, normal loading in the
longitudinal direction, Y is the ratio of longitudinal stress to longitudinal strain [57],
and ν is minus the ratio of lateral strain to longitudinal strain [57], H is a function
of the fractional change in volume Δ and the effective pressure p (see equations (2.3)
and (2.7)):

Y = 1/s11,

ν = −s11/s12,

H = 2p/Δ. (2.28)

Since only two material parameters are required in Hooke’s law, these constants are
interrelated [57]. For example,

Y = 2µ(1 + ν)ν = λ/2(λ+ µ)H =
Y

1− 2ν
. (2.29)

2.3 Transformations

The material constants cij or sij for a particular material are usually specified in a basis
with coordinate axes aligned with particular symmetry planes (if any) in the material.
When solving problems involving anisotropic materials it is frequently necessary to
transform these values to a coordinate system that is oriented in some convenient
way relative to the boundaries of the solid. The basis transformation formulas are
listed below and are used for the calculation of the dislocation energy in Chapter 3.
To this end, let’s suppose that the components of the stiffness tensor are given in
a basis, {e1, e2, e3}, and we wish to determine its components in a second basis,
{m1,m2,m3}. We define the transformation tensor Ω with components Ωij = mj ·ej,
or in matrix form

Ω =

m1 · e1 m1 · e2 m1 · e3
m2 · e1 m2 · e2 m2 · e3
m3 · e1 m3 · e2 m3 · e3

 . (2.30)

This is a symmetric tensor satisfying ΩΩT = ΩTΩ = I. In practice, the transforma-
tion tensor can be computed in terms of the angles between the basis vectors. It is
straightforward to show that stress, strain and elasticity tensors transform as

σ
(m)
ij = Ωik σ

(e)
kl Ωjl,

s
(m)
ij = Ωik σ

(e)
kl σjl,

c
(m)
ijkl = Ωip Ωjq c

(e)
pqrs Ωkr Ωls. (2.31)

The basis transformation formula for the stiffness tensor C is more conveniently ex-
pressed in matrix form as

C(m) = KC(e) KT, (2.32)
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where the rotation matrix K is computed as

K =

�
K1 2K2

K3 K4

�
, (2.33)

and

K1
ij =Ω2

ij,

K2
ij =Ωimod(j+1,3)Ωimod(j+2,3),

K3
ij =Ωmod(i+1,3) jΩmod(i+2,3) j,

K4
ij =Ωmod(i+1,3)mod(j+1,3)Ωmod(j+2,3)mod(j+2,3)+

Ωmod(i+1,3)mod(j+2,3)Ωmod(i+2,3)mod(j+1,3),

with i, j = 1, 2, 3. (2.34)

The modulo function satisfies

mod(i, 3) =

�
i i ≤ 3

i− 3 i > 3
. (2.35)

The basis change for the compliance tensor (the inverse of the stiffness tensor) follows
as

S(m) = K−T S(e) K−1, (2.36)

where

K−T =

�
K1 K2

2K3 K4

�
. (2.37)

The proof of these expressions is given in Ting [74]. For the particular case of rotation
around an angle θ in a counterclockwise sense about the x, y, z axes, the rotation
matrix reduces, respectively, to������

1 0 0 0 0 0
0 c2 s2 2cs 0 0
0 s2 c2 −2cs 0 0
0 −cs cs c2 − s2 0 0
0 0 0 0 c −s
0 0 0 0 −s c

������

������
c2 0 s2 0 2cs 0
0 1 0 0 0 0
s2 0 c2 0 −2cs 0
0 0 0 c 0 −s

−cs 0 cs 0 c2 − s2 0
0 0 0 s 0 c

������

������
c2 s2 0 0 0 2cs
s2 c2 0 0 0 −2cs
0 0 1 0 0 0
0 0 0 c s 0
0 0 0 −s c 0

−cs cs 0 0 0 c2 − s2

������ ,

(2.38)

where c = cos θ and s = sin θ. The inverse matrix K−1 can be obtained simply by
changing the sign of the angle θ in each rotation matrix. Clearly, applying the three
rotations successively can produce an arbitrary orientation change.
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3 Dislocation energy

3.1 Introduction

The linear elasticity theory reviewed in Chapter 2 is applied here for the calculation of
the dislocation energy within an isotropic (Section 3.3) and anisotropic (Section 3.4)
framework. Both treatments are applied to calculate the pre-logarithmic coefficients
(see Sections 3.5 and 3.6), both of which are important parameters used to evaluate
the geometrical configurations of dislocations inside AlN, GaN and InN (Section 3.7).
The importance of the dislocation configuration is made evident in the modeling of
the dislocation density, as described in Chapter 5.

3.2 Dislocation energy

Dislocations are line imperfections in an otherwise perfect crystal. The atoms around
a dislocation are displaced from their perfect lattice sites and the resulting distortion
produces stress and strain fields around the dislocation line. Therefore, the dislocation
is a source of internal stress in the crystal. The Burgers vector b represents the
magnitude and the direction of the distortion in the crystal lattice. The stresses and
the strains in the bulk of the crystal are sufficiently small to use the theory of linear
elasticity to calculate them. This theory ceases to be valid around the dislocation
line, where the stresses and the strains are infinite, and here non-linear theory should
be applied. Consequently, it is necessary to exclude from the description a cylinder
whose axis coincides with the dislocation line. The cylinder where linear elasticity
breaks down is called core of the dislocation. The core is the plastic region of the
system and the region around is the elastic one. The radius rc of the dislocation core
is called inner cut-off radius and its order of magnitude is b. In this work, rc is taken
to be b/2 [19].
It is also necessary to limit externally the continuum under analysis with a second

cylindrical surface having the dislocation line as the axis. The radius R of this second
cylinder is called outer cut-off radius and its purpose is to keep expressions for the
energy of the dislocation and the displacement field finite.
Linear elasticity is applied in the case of a straight infinite long dislocation to cal-

culate its energy and the related stress and strain fields, which will be used in the
next chapters. The subsequent treatment is developed for the geometry shown in
Figure. 3.1. The energy per unit length of the dislocation dE/dy (for simplicity often
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called just the dislocation energy) may be divided into two parts:

dE
dy

=
dEcore
dy

+
dEd
dy

, (3.1)

where dEcore/dy and dEd/dy account for the energy inside and outside the dislocation
core region, respectively. For large film thickness h (see Figure. 3.1), the core en-
ergy constitutes only a minor contribution to the total dislocation energy and is thus
neglected in the following calculation. Let σd be the stress tensor associated with
the strain field εd caused by the straight dislocation. Then the strain energy of the
dislocation is given by

dEd = 1
2

�
V

"
ij

σd
ij�

d
ij dV = 1

2

"
ij

�
V

1
2

�
∂ui

∂xj

+
∂uj

∂xi

�
σd
ij dV (3.2)

and using the symmetry of the stress tensor σd
ij = σd

ji we get

1
2

"
ij

�
V

∂ui

∂xj

σd
ij dV = 1

2

"
ij

�
V

∂

∂xj

�
uiσ

d
ij

�
dV − 1

2

"
ij

�
V

ui

∂σd
ij

∂xj

dV. (3.3)

Recalling the equilibrium conditions for elastic media,"
j

∂σd
ij

∂xj

= 0, (3.4)

one obtains

dEd = 1
2

"
ij

�
V

∂

∂xj

�
uiσ

d
ij

�
dV. (3.5)

Using the Gauss-Ostrogradsky theorem to transform the volume integral into a surface
integral over the surface S enclosing the volume V , we get:

1
2

"
ij

�
V

∂

∂xj

�
uiσ

d
ij

�
dV = 1

2

"
ij

�
S

uiσ
d
ijnj dS. (3.6)

The surface S can be divided into four parts (see Figure. 3.1) and the last term can
be rewritten as

1
2

4"
k=1

�"
ij

�
Sk

uiσ
d
ijnj dSk

�
. (3.7)

Since S1 is supposed to be infinitely far from the dislocation, the displacements vanish
and the contribution of the surface is zero. The surface S3 is a cylindrical surface
whose axis is aligned along the y-axis. Since the dislocation is infinite along the y
direction, n = (nx, 0, nz):

1
2

"
ij

�
S3

uiσ
d
ijnj dS3 =

1
2

"
i

�
S3

�
uiσ

d
ixnx + uiσ

d
iznz

�
dS3. (3.8)
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Figure 3.1: The dislocation is formed by an offset (defined by the Burgers vector b) of
one side S4 of the slip plane δ with respect to the other side S2. The surface
S3 encloses the dislocation core region. h denotes the film thickness.
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Figure 3.2: The core surface S3 in a cylindrical coordinate system.
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To simplify the integration, it is convenient to transform the Cartesian coordinates
into cylindrical polar coordinates (see Figure 3.2) as

x = rc cosϕ,

y = t, (3.9)

z = rc sinϕ.

Consequently,
dS3 = dldy = rcdϕdy. (3.10)

Considering that n = (cosϕ, 0, sinϕ), the dislocation energy expressed in (3.8) becomes

1
2

� 2π

0

"
i

ui

�
σd
ix cosϕ+ σd

iz sinϕ
�
rc dϕ, i = x, y, z. (3.11)

Expanding the last equation yields

1
2
rc

� 2π

0

�ux

�
σd
xx cosϕ+ σd

xz sinϕ
�� �� �

edge

+uy

�
σd
yx cosϕ+ σd

yz sinϕ
�� �� �

screw

+

uz

�
σd
zx cosϕ+ σd

zz sinϕ
�� �� �

edge

� dϕ. (3.12)

The substitution of the displacements and the stress components expressed in cylin-
drical polar coordinates allow for the evaluation of the impact of the core surface on
the dislocation energy.

dz

dy

z
y

x

S4 S2

dislocation line

Figure 3.3: The dislocation lies along the y-axis.
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When the impact of the core integral along S3 is negligible, only the integrals along
the surfaces S2 and S4 (see Figure. 3.1) have to be considered:

dEd = 1
2

"
ij

��
S2

uiσ
d
ijnj dS2 +

�
S4

uiσ
d
ijnj dS4

�
. (3.13)

Considering Figure 4.2, dS2 = dS4 = dzdy the energy per unit length of dislocation
is

dEd
dy

= 1
2

"
ij

�� R

rc

ui(x → 0+)σd
ij dz +

� rc

R

ui(x → 0−)σd
ij dz

�
. (3.14)

If the extremes of the second integral are inverted, one obtains

dEd
dy

= 1
2

"
i

� R

rc

biσ
d
ij dz, (3.15)

where ui(x → 0+)− ui(x → 0−) = bi.

3.3 Dislocation in an isotropic continuum

When the impact of the core integral along S3 is negligible, only the integrals along
the surfaces S2 and S4 have to be considered. The evaluation of these two integrals
for a straight dislocation inside an infinite isotropic medium yields the classic formula
for the dislocation energy [19, 23, 32]:

dEd
dy

=
µb2 (1− νcos2θ)

4π (1− ν)
ln

�
R

rc

�
, (3.16)

where µ and ν are the shear modulus and the Poisson ratio, respectively, θ is the
angle between the Burgers vector b and the dislocation line, and R is the outer cut-off
radius.

3.4 Dislocation in an anisotropic continuum

Steeds [72] developed a treatment to derive the dislocation energy within the anisotropic
elasticity. According to this treatment, the dislocation is considered straight and ex-
tended to infinity along the z-axis. This assumption simplifies the problem to a plane
strain problem where no quantity depends on the z-coordinate, so

∂

∂z
= 0. (3.17)

The Burgers vector of the dislocation is b. Displacements are given by the functions
ux, uy and uz. The displacements ux and uy correspond to the edge component of the
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considered dislocation whereas uz corresponds to the screw component. The strain
components are

εxx =
∂ux

∂x
, εxz =

1

2

∂uz

∂x
,

εzz = 0, εxy =
1

2

�
∂ux

∂y
+

∂uy

∂x

�
, (3.18)

εyy =
∂uy

∂y
, εyz =

1

2

∂uz

∂y
.

The previous equations relate the six strain components to the three components of
the lattice displacement and this implies that relations exist between the various εij.
These relations are known as the compatibility equations [45]:

∂2εxx
∂y2

+
∂2εyy
∂x2

= 2
∂2εxy
∂x∂y

, (3.19a)

∂εyz
∂x

− ∂εxz
∂y

= 0. (3.19b)

Hooke’s law for an anisotropic material is written as:������
εxx
εyy
εzz
2εyz
2εxz
2εxy

������ =

������
s11 s12 s13 s15 s15 s16
s21 s22 s23 s24 s25 s26
s31 s32 s33 s34 s35 s36
s41 s42 s43 s44 s45 s46
s51 s52 s53 s54 s55 s56
s61 s62 s63 s64 s65 s66

������

������
σxx

σyy

σzz

σyz

σxz

σxy

������ . (3.20)

The infinite straight dislocation lies along the z-axis and therefore εzz = 0. This last
relation yields an additional condition:

0 = εzz = s21σxx + s22σzz + s23σyy + s24σyz + s25σxy + s26σxz,

σzz = (−s21σxx − s23σyy − s24σyz − s25σxy − s26σxz) /s22. (3.21)

Steeds [72] expressed the stresses as a function of the Airy functions, F and φ

σxx =
∂2F

∂y2
, σxz = −∂φ

∂y
,

σxy = − ∂2F

∂x∂y
, σyz = −∂φ

∂x
,

σyy =
∂2F

∂x2
. (3.22)
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Substituting the expressions (3.21) and (3.22) into the compatibility equations (3.19)
yields

(s11 + s22)
∂4F

∂x2∂y2
+ s12

∂4F

∂y4
+ s21

∂4F

∂x4
+

s63
s33

�
s31

∂4F

∂x3∂y
+ s32

∂4F

∂x∂y3
− s36

∂4F

∂x2∂y2
− s34

∂4φ

∂x2∂y1
+ s35

∂4φ

∂x∂y3
+

�
+

s66
∂4F

∂x2∂y2
+ s15

∂4φ

∂y4
+ s25

∂4φ

∂x2∂y2
+ s64

∂4φ

∂x2∂y1
=

s13
s33

�
s31

∂4F

∂x2∂y2
+ s32

∂4F

∂y4
− s36

∂4F

∂x∂y3
− s34

∂3φ

∂x∂y2
+ s35

∂4φ

∂y4

�
s23
s33

�
s31

∂4F

∂x4
+ s32

∂4F

∂x2∂y2
− s36

∂4F

∂x3∂y
− s34

∂3φ

∂x3
+ s35

∂4φ

∂x2∂y2

�
+

s16
∂4F

∂x∂y3
+ s26

∂4F

∂x3∂y
+ s61

∂4F

∂x3∂y
+ s62

∂4F

∂x∂y
+

s14
∂3φ

∂x∂y2
+ s24

∂3φ

∂x3
+ s65

∂4φ

∂x∂y3
, (3.23a)

s11
∂4F

∂x2∂y2
+ s12

∂4F

∂y4
+ s21

∂4F

∂x4
+ s22

∂2F

∂y2
+

s63
s33

�
s31

∂4F

∂x3∂y
+ s32

∂4F

∂x1∂y3
− s36

∂4F

∂x2∂y2
− s34

∂3φ

∂x2∂y1
+ s35

∂4φ

∂x∂y3

�
+

s66
∂4φ

∂x2∂y2
+ s15

∂4φ

∂y4
+ s25

∂4φ

∂x2∂y2
+ s64

∂3φ

∂x2∂y
=

s13
s33

�
s31

∂4F

∂x2∂y2
+ s32

∂4F

∂y4
− s36

∂3F

∂x∂y3
− s34

∂3φ

∂x∂y2
+ s35

∂4φ

∂y4

�
+

s16
∂4F

∂x∂y3
+

s23
s33

�
s31

∂4F

∂x4
+ s32

∂4F

∂x2∂y2
− s36

∂4F

∂x3∂y
− s34

∂3φ

∂x3
+ s35

∂4φ

∂x2∂y2
+

�
+

s26
∂4F

∂x3∂y
+ s61

∂4F

∂x3∂y
+ s62

∂4F

∂x∂y3
+ s14

∂3φ

∂x∂y2
+ s24

∂3φ

∂x3
+ s65

∂3φ

∂x∂y3
. (3.23b)

Solutions for the previous equations with cylindrical symmetry have the following
form [72]:

F = B g (x+ p y) , φ = C f (x+ p y) , (3.24)

where g and f are functions of a linear combination of the coordinates x and y.
Substituting (3.24) into (3.23) and eliminating B and C yields a sextic equation for
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the parameter p:

p6
�
S11S55 − S2

15

�−
2p5 (S11S45 − S15 (S14 + S56) + S16S55)+

p4
�
S11S44 + S55 (2S12 + S66)− (S14 + S56)

2 − 2S15 (S25 + S46) + 4S16S45

�−
2p3 (S45 (2S12 + S66)− (S14 + S56) (S25 + S46)− S15S24 + S16S44 + S26S55)+

p2
�
S44 (2S12 + S66)− 2S24 (S14 + S56) + S22S55 − (S25 + S46)

2 + 4S26S45

�−
2p (S22S45 − S24 (S25 + S46) + S26S44)+

S22S44 − S2
24 = 0 (3.25)

where Slm = slm − ((s3ls3m) /s33). Roots of this equation occur as pairs of complex
conjugates p1 and p∗1, p2 and p∗2, and p3 and p∗3. Therefore the most general solution
for the functions F and φ are

F =
3"

n=1

(Bn gn (ζn) +B∗
n gn (ζ

∗
n)) , (3.26a)

φ =
3"

n=1

(Cn fn (ζn) + C∗
n fn (ζ

∗
n)) , (3.26b)

where n = 1, 2, 3, ζn = x + pn y, and gn and fn denote, respectively, the functions g
and f belonging to the root pn. In order to satisfy the physical expectations that the
stress field decays as 1/r, it is required that

∂fn
∂ζn

=
∂2gn
∂ζ2n

=
1

ζ
. (3.27)

Substituting (3.26) and (3.27) into (3.22) causes the stress components to become

σxx =
3"

n=1

�
p2nBn

ζn
+

p∗2n B∗
n

ζ∗n

�
,

σxy = −
3"

n=1

�
pnBn

ζn
+

p∗nB
∗
n

ζ∗n

�
,

σyy =
3"

n=1

�
Bn

ζn
+

B∗
n

ζ∗n

�
,

σxz =
3"

n=1

�
pnCn

ζn
+

p∗nC
∗
n

ζ∗n

�
,

σyz = −
3"

n=1

�
Cn

ζn
+

C∗
n

ζ∗n

�
, (3.28)
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The displacement components are obtained combining (3.18) and (3.26):

ux =

�
εxx dx =

3"
n=1

�	�
S11p

2
n − S16pn + S12

�
Bn + (S15pn − S14)Cn

�
ln ζn	�

S11p
∗2
n − S16p

∗
n + S12

�
B∗

n + (S15p
∗
n − S14)C

∗
n

�
ln ζ∗n

�
, (3.29a)

uy =

�
εyy dz =

3"
n=1

�	�
S12p

2
n − S26pn + S22

�
Bn + (S25pn − S24)Cn

�
ln ζn	�

S12p
∗2
n − S26p

∗
n + S22

�
B∗

n + (S25p
∗
n − S24)C

∗
n

�
ln ζ∗n

�
, (3.29b)

uz =

�
εxz dx =

3"
n=1

�	�
S15p

2
n − S56pn + S25

�
Bn + (S55pn − S45)Cn

�
ln ζn��

S15p
∗2
n − S56pn + S25

�
B∗

n + (S55p
∗
n − S45)C

∗
n

�
ln ζ∗n

�
. (3.29c)

In order to evaluate the quantities Bn and Cn and their complex conjugates, six
relationships are required.
The first set of boundary conditions is derived from the force equilibrium state of

the media, i.e., the condition of zero net force on the dislocation [72], expressed as��
S

"
j

σijnj dS = 0, (3.30)

for an arbitrary cylindrical surface S enclosing the dislocation line. nj denotes com-
ponents of the outer normal to the integration surface S. For an infinite straight
dislocation along the z-axis, the previous equation becomes��

S

"
j

σijnj dS = 0, (j = 1, 2) . (3.31)

It is assumed that the cylinder S has a height L with a circular base C on the xy-plane.
Based on these assumptions, the previous equation yields for i = x

0 =

��
S

(σxxnx + σxyny) dS = L
�
C

d

�
∂F

∂y

�
= L



∂F

∂y



, (3.32)
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and when substituting the expression for F from (3.26) and using (3.27) one gets [72]�
3"

n=1

(Bnpn ln ζn +B∗
np

∗
n ln ζ

∗
n)

�
C
= 0 . (3.33)

The start and the end point of the closed integration loop C differ by the argument
Δθn = 2π. Since the logarithm of a complex argument can be written as

ln ζn = ln rn + iθn , (3.34a)

ln ζ∗n = ln r∗n − iθn , (3.34b)

equation (3.33) becomes

3"
n=1

[Bnpn (ln rn + i2π − ln r) +B∗
np

∗
n (ln r

∗
n − i2π − ln r∗n)] = 0. (3.35)

Simplifying, one gets
3"

n=1

(Bnpn −B∗
np

∗
n) = 0. (3.36)

Analogously, another two conditions are obtained from equation (3.33) for i = y

3"
n=1

(Bn −B∗
n) = 0, (3.37)

and for i = z
3"

n=1

(Cn − C∗
n) = 0. (3.38)

The second set of boundary equations is provided by the displacement relations. The
integral of the displacement acquisitions along the Burgers circuit encircling the dis-
location line must be equal to the Burgers vector b:�

du = b. (3.39)

Substituting equations (3.29) for the displacements components into the last relation
yields a set of three equations of the form bi/2πi = QniBn − Q∗

niB
∗
n. More explicitly

the last three equations become

bx =2πi
3"

n=1

	
S11

�
Bnp

2
n −B∗

np
∗2
n

�
+ S15 (Cnpn − C∗

np
∗
n)
�
, (3.40a)

by =2πi
3"

n=1

	
2S16

�
Bnp

2
n − B∗

np
∗2
n

�− S11

�
Bnp

3
n − B∗

np
∗3
n

�
+(S56 + S14) (Cnpn − C∗

np
∗
n)− S15

�
Cnp

2
n − C∗

np
∗2
n

��
, (3.40b)

bz =2πi
3"

n=1

	
S15

�
Bnp

2
n −B∗

np
∗2
n

�
+ S55 (Cnpn − C∗

np
∗
n)
�
. (3.40c)
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The stress field of the dislocation is fully described by equations (3.28) where constants
pn are the roots of equation (3.25) and constants Bn are the solution of the system of
linear equations (3.36), (3.37), (3.38) and (3.40).
The calculation of the dislocation energy is performed by substituting the stress

components in equation (3.15) along the cut surface described by the coordinate r
such that x = r sinϕ and y = r cosϕ. The components of the outer normal n are
nx = cosϕ, nz = 0 and ny = sinϕ. The inner and outer cut-off radii are rc and R,
respectively. Then one obtains

dEd
dy

=
1

2

� R

rc

3"
n=1



(bxBnpn + byCn − bzBn) pn sinϕ + (−bxBnpn − byCn + bzBn) cosϕ

cosϕ+ pn sinϕ
+

+
(bxB

∗
np

∗
n + byC

∗
n − bzB

∗
n) p

∗
n sinϕ + (−bxB

∗
np

∗
n − byC

∗
n + bzB

∗
n) cosϕ

cosϕ+ p∗n sinϕ



dr

r
=

=
1

2

3"
n=1

[Bn (−bxpn + bz)− Cnby +B∗
n (−bxp

∗
n + bz)− C∗

nby] ln
R

rc
=

= K ln
R

rc
, (3.41)

where K is the so called pre-logarithmic coefficient of the dislocation energy. K
depends on the elastic constants, the Burgers vector b and the particular direction of
the dislocation line with respect to the crystallographic axes.

3.5 Pre-logarithmic coefficients

Here the theory described in the last section is used to calculate the pre-logarithmic
coefficient K for dislocations in AlN, GaN and InN bulk. The procedure has been
introduced by Holec [24] to evaluate the dislocation configuration in GaN bulk.
Three different types of dislocations are present in hexagonal structures: c -type

dislocation with Burgers vector b = [0001], a -type with Burgers vector b = 1/3 [2̄110],
and (a+ c)-type with Burgers vector b = 1/3 [2̄113]. The coefficients K of these three
types of dislocations are calculated for different directions of the dislocation line using
the Steeds treatment [72]. This is done by rotating the elastic tensor according to the
direction line. The calculations are performed numerically using the software Wolfram
Mathematica. Hexagonal symmetry requires two angles, α and β, for the description
of the direction of the dislocation line (see Figure. 3.4). As a consequence, the pre-
logarithmic coefficient for one particular direction of the dislocation line is a function
of the two angles α and β. The coefficients are shown in Figure 3.5 for AlN, GaN, and
InN.
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z // [0001]

x // [2110]

y // [0110]

dislocation line

β

α

Figure 3.4: In the hexagonal (and more generally, in non-isotropic crystal) two angles,
α and β, are needed for description of the dislocation line direction.

3.6 Comparison of pre-logarithmic terms based on a
continuum and atomistic approach

In Section 3.5 the pre-logarithmic coefficient K was calculated as a function of the
geometrical parameters α and β using an anisotropic elasticity. In this section, K is
calculated using the anisotropic framework for a dislocation lying in the basal plane of
AlxGa1−xN and InxGa1−xN, and for a 60◦-dislocation in Si1−xGex (see Figure 3.6). The
K calculation is performed numerically according to equation (3.41) (dislocation in
an infinitely large anisotropic medium, Steeds model [72]) using the software Wolfram
Mathematica. Next the results are compared with values obtained with isotropic
elasticity (dislocation in an infinitely large isotropic medium) and an atomistic scale
computer simulation. The data obtained with atomistic simulations are taken from
literature [5, 37, 42,63]. Table 3.1 shows the comparison of results.

Table 3.1: Pre-logarithmic coefficients for some alloys according to the isotropic and
anisotropic models. Data from atomistic simulations are included whenever
available.

material Si Si0.5Ge0.5 In0.2Ga0.8N Al0.2Ga0.8N GaN
unit of measure ×10−9 J/m ×10−9 J/m ×10−9 J/m ×10−9 J/m ×10−9 J/m

dislocation 60◦ dislocation 60◦ dislocation �112̄3�{11̄01} �112̄3�{11̄01} (a+c)-type

Isotropic elasticity 1.7 1.7 5.55 5.44 5.51
Anisotropic elasticity 0.56 0.52 3.53 3.95 3.94
Atomistic simulation 0.64 [63] 3.44 [5]
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.5: Pre-logarithmic coefficientK calculated as a function of the angles α and β
for c -type dislocations (Burgers vector b = [0001]) in AlN (a), in GaN (d),
in InN (g), for a -type dislocations (Burgers vector b = 1/3 [112̄0]) in
AlN (b), in GaN (e), in InN (h), for (a + c) -type dislocations (Burgers
vector b = 1/3 [21̄13]) in AlN (c), in GaN (f), in InN (i).
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z x

yy

z x

dislocation line dislocation line

Figure 3.6: The z-axis is perpendicular to the c-plane for the hexagonal symmetry and
to the closed packed plane for the cubic one. The dislocation line lies along
the y-axis in both cases.

Table 3.1 shows a good agreement between Steeds’ model [72] and atomistic sim-
ulations whenever the data are available in literature. This result is understandable
as the atomistic simulations consider a dislocation in an infinite anisotropic structure,
which is the same assumption as in Steeds’ model.
The calculations in Section 4.6 require the total energy of the dislocation. To ex-

press the total energy of a dislocation, the dislocation core energy needs to be added
to the continuum formula for the bulk energy (see equation (3.1)). Based on the
above comparison, the continuum approach, including the elastic anisotropy, seems
to be compatible with the atomistic evaluation of the dislocation core energy and ra-
dius. Consequently, the values of the dislocation core energy obtained with atomistic
simulations (listed in Table 3.2) are used to calculate the total dislocation energy in
Section 4.6.
Since the core energy values are available only for certain compositions, the dis-

Table 3.2: Parameters of the dislocation cores from atomistic simulations. 0.43 eV/Å
is equal to 0.64 nJ/m.

material dislocation dEcore/dy Pre-logarithmic term Reference
[eV/Å] [eV/Å]

Si 60◦ 0.43 [42]
Si0.5Ge0.5 60◦ 0.59 0.43 [63]
GaN (a+c)-type 3.12 2.15 [5]
GaN a-type 1.61 0.81 [37]
AlN a-type 1.71 0.90 [37]
InN a-type 1.66 0.41 [37]
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location core energy for each composition of the alloys considered in Section 4.6 is
calculated through line interpolation (Vegard-like behavior) of the values summarized
in Table 3.2. For example, in the case of Si1−xGex, one gets

Ecore
$$$
Si1−xGex

= x Ecore
$$$
Ge

+ (1− x) Ecore
$$$
Si
. (3.42)

The core energy Ecore for Ge is calculated by linearly extrapolating the core energies of
Si and Si0.5Ge0.5. Analogous expressions are also used for AlxGa1−xN and InxGa1−xN.

3.7 Dislocation configurations

The geometrical configuration of dislocations in real hexagonal single crystals depends
on thermodynamic and kinetic factors. The theory described in the previous sections
is used here to find the geometrical arrangement assumed by dislocations in the crystal
structure in order to minimize their energy.
Sections 3.3 and 3.4 describe the procedures for the calculation of the dislocation

energy in isotropic and hexagonal materials, respectively. This section shows the
energetically most favorable configurations of dislocations in AlN, GaN and InN single
crystals, using the above calculated pre-logarithmic coefficients (see Section 3.5). The
dislocation disposition in three-dimensional space is given in terms of α and β, as
shown in Figure 3.4. The dislocation arrangement is at first evaluated (Section 3.7.1)
far from the free surface of the material and then (Section 3.7.2) close to it. The
results are compared with those obtained within the isotropic approximation.

z // [0001]
α

b
θ

l

Basal plane

Figure 3.7: Dislocation geometry in a hexagonal crystal.
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3.7.1 Dislocation types in the bulk

Assuming dislocations in the bulk means neglecting the effect of the material free
surface. In the bulk, dislocations are supposed to be inside an infinite medium, and
the dislocation energy per unit length of dislocation needs to be minimized in order
to find the most favorable configuration. dE/dy calculated within the anisotropic
approximation is directly proportional to the pre-logarithmic coefficient K. As a
consequence, the most favorable configuration corresponds to the angles α and β
which minimize K and dE/dy.

Isotropic approximation

Holec [25] has already shown that in an infinite isotropic continuum the dislocation
energy is minimized when the dislocation line is aligned with the direction of the
Burgers vector (see equation (3.16)). Therefore the screw-type dislocation always has
the lowest energy within the isotropic approximation.

Anisotropic approximation

In order to understand how anisotropy affects the energetically most favorable dis-
location configuration, it is sufficient to evaluate the pre-logarithmic coefficient of
Section 3.5. The pre-logarithmic coefficient of the c -type dislocation (b = [0001]) as
a function of the two angles α and β is plotted in Figures 3.5(a), 3.5(d) and 3.5(g)
for monocrystalline AlN, GaN and InN, respectively. In all cases, the coefficient does
not depend on the angle β because the hexagonal c -plane is isotropic. Therefore
all dislocation lines with different angles β are equivalent. It follows that the low-
est energy configuration is obtained for α = 0◦ or α = 180◦. The Burgers vector
b = 1/3 [0001] is characterized by α = 0◦ and consequently its direction is coincident
with the energetically most favorable dislocation line. It follows that the c-dislocation
is a screw-dislocation. The situation is different for the a-type (b = 1/3 [2̄110]) and
the (a+ c)-type (b = 1/3 [2̄113]) dislocations.

Directions of the a-type dislocations with the lowest K and energy have β = 180◦

and α ≈ 130◦ for AlN, β = 0◦ or β = 180◦ and α ≈ 65◦ or α ≈ 115◦ for GaN
(like [25]), β = 0◦ or β = 180◦ and α ≈ 70◦ or α ≈ 115◦ for InN. As the Burgers
vector b = 1/3 [2̄110] is characterized by β = 0◦ and α = 90◦, the Burgers vector and
the dislocation line are coplanar but not orthogonal nor coincident. Therefore, the
energetically most favorable configuration for the a-type dislocation is a mixed-type
dislocation, unlike the screw-type dislocation predicted by the isotropic approximation.

Directions of the (a+ c)-type dislocations with the lowest K and energy are β = 0◦

and α = 0◦ or β = 180◦ and α = 180◦ for AlN, α = 0◦ or α = 180◦ for GaN
(like [24]), and α = 0◦ or α = 180◦ for InN. As the Burgers vector b = 1/3 [2̄113]
is characterized by β = 0◦ and α ≈ 31.6◦, the Burgers vector and the dislocation
line are coplanar but not orthogonal nor coincident. Therefore, the energetically most
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favorable configuration for the a-type dislocation is a mixed-type dislocation, which is
again different from the prediction of the isotropic theory.

3.7.2 Dislocation types near the free surface

In real finite crystals, dislocations which are not closed loops have to terminate at the
free surface of the crystal and, consequently, they must have a finite length. Therefore,
the energetically most favorable dislocation direction is not only a function of K but
also of the actual length of the dislocation. As a consequence, during the growth of a
monocrystalline layer over a surface where one dislocation terminates, the dislocation
elongates following the shortest path to the new free surface. This is possible because
the distance between the dislocation and the newly forming free surface is so small
that it can not be neglected like it is assumed for dislocations in the bulk, which are
far from the free surface.
In order to consider the effect of the free surface on the dislocation configuration,

γ is defined as the angle between the dislocation line and direction orthogonal to the
free surface. If the film thickness grows by Δh, then the dislocation length increases
by Δh/ cosα. The formulas for the dislocation energy that must be used within the
isotropic and the anisotropic approximation are, respectively,

dEd
dy

=
µb2 (1− νcos2θ)

4π (1− ν)

Δh

cos γ
ln

�
R

rc

�
, (3.43)

and

dEd
dy

= K
Δh

cos γ
ln

�
R

rc

�
. (3.44)

Isotropic approximation

The angle α associated to the lowest dislocation energy is calculated minimizing the
expression (3.43) for the dislocation energy with respect to α. θ depends on the
position of the Burgers vector of each kind of dislocation (see Figure 3.7). The re-
sults for the angle α are summarized in Table 3.3 for monocrystalline AlN, GaN and
InN. Regarding GaN, the calculated angles match with the results of Mathis [49] and
Holec [25].

Table 3.3: Angle α minimizing the dislocation energy for each kind of dislocation
within isotropic elasticity.

b AlN GaN InN
c 0◦ 0◦ 0◦

a 0◦ 0◦ 0◦

(a+ c) 14.5◦ 14◦ 10◦
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Anisotropic approximation

The angle α associated to the lowest dislocation energy is calculated minimizing the
expression (3.44) for the dislocation energy with respect to α. This has been done for
(0001)-oriented monocrystalline AlN, GaN, and InN. Different crystallographic planes
have been considered as free surface.

When the monocrystal is grown in the planar growth mode (Frank-van der Merwe
growth), the free surface is the (0001) plane (the polar plane). In this case the angle α
between the dislocation line and the [0001] direction, which minimizes the dislocation
energy, is shown in Table 3.4. The calculation reveals that for the (0001) surface,
dislocation lines along the [0001] direction constitute the lowest energy configuration
for all three dislocation types (a-, (a+c)- and c-type) in AlN and GaN. This contradicts
the results obtained within the isotropic approximation. Regarding InN, both a- and
(a+ c)-type dislocations are inclined with respect to the [0001] direction with different
angles with respect to what is predicted with the isotropic approximation.

When the monocrystal is grown with the island growth mode (Volmer-Weber growth),
the free surface of an island can be the 1st order pyramidal plane (the (11̄00) plane) or
the 2nd order pyramidal plane (the (112̄2) plane, also called the semipolar plane). For
the first case, the angle α minimizing Ed is shown in Table 3.5, while for the second
case it is shown in Table 3.6. Regarding GaN, the calculated angles matches with the
results of Holec [25].

{1122}
{1101}

c-plane
{0001}

m-plane
{1100}

Figure 3.8: Some important crystallographic planes of the hexagonal system.
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Table 3.4: Angle α minimizing the dislocation energy for each kind of dislocation
in monocrystals (0001) oriented with (0001) free surface (planar growth
mode).

b AlN GaN InN
c 0◦ 0◦ 0◦

a 0◦ 0◦ 69◦

(a+ c) 0◦ 0◦ 24◦

Table 3.5: Angle α minimizing the dislocation energy for each kind of dislocation in
monocrystals (0001) oriented with (11̄00) free surface (island growth mode).

b AlN GaN InN
c 0◦ 24◦ 0◦

a 0◦ 65◦ 67◦

(a+ c) 0◦ 35◦ 0◦

Table 3.6: Angle α minimizing the dislocation energy for each kind of dislocation in
monocrystals (0001) oriented with (112̄2) free surface (island growth mode).

b AlN GaN InN
c 0◦ 23◦ 0◦

a 0◦ 64◦ 67◦

(a+ c) 0◦ 34◦ 0◦

Experimental TEM observations in III-nitrides regarding the dislocation inclination
with respect to [0001], i.e., the angle α, are quite contradictory. Regarding GaN,
Mathis [49] reports an inclination of 12◦, while Holec [25] suggests that dislocations
are usually vertical rather than inclined straight lines. Other authors [22,42] mention
an effective inclination of the dislocations with respect to [0001] direction without
giving quantitative details.
It must be remarked that the inclination angles α here calculated are equilibrium

values, i.e. they are obtained minimizing the dislocation energy. The real dislocation
inclination could be affected by many kinetic factors, such as temperature and growth
rate, which are not considered in this work.
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3.8 Summary

The derivation of the dislocation energy is described in this chapter assuming an
isotropic and anisotropic elasticity. In order to show the different results of the two
models, they were used to calculate the equilibrium configuration for dislocations in
AlN, GaN and InN compounds, all [0001] oriented. Two cases were considered.
At first, dislocations were supposed to be in bulk, far from the free surface of the

material. In this case, the two theories give different results: in monocrystals the a
and (a+ c) dislocations are not screw type - as predicted in the isotropic framework -
but instead mixed type dislocations.
Secondly, dislocations were supposed to be close to the free surface, i.e., the actual

length of the dislocation must be considered. Different crystallographic planes were
considered as free surface.
When the free surface is the (0001) plane, elastic anisotropic theory predicts that

the dislocation line along the [0001] direction possesses the lowest energy configura-
tion regardless of the dislocation type in both AlN and GaN. In InN only the c-type
dislocations are screw dislocations, while the other two types are mixed dislocations.
In the the case of the inclined facets {1122} and {1101}, the results differ depending

on the compound. Regarding AlN, the preferred dislocation line is the [0001] direction
independent from the dislocation type and crystallographic plane as free surface. The
a-type dislocations in GaN and InN propagate almost perpendicular to the {1122}
and {1101} facets. Regarding the other types, in GaN the dislocations are inclined by
20◦- 30◦, while in InN they are aligned along the [0001] direction.
The inclined facets {1122} and {1101} are free surfaces when the island-growth

mode is favored during the deposition of the compounds. The conclusion is that the
island-growth mode favors the inclination of the dislocations. The importance of the
inclination angle of dislocations will be shown in more detail in Chapter 5 in relation
to the reduction of the dislocation density in real heterostructures.
In order to include the dislocation core energy in the evaluation of the equilib-

rium critical thickness (see Chapter 4), the pre-logarithmic terms of the analytical
models are compared with the corresponding values obtained by atomistic simula-
tions. Table 3.1 shows a good agreement between the continuum predictions based on
anisotropic elasticity.
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4 Critical Thickness

4.1 Introduction

A serious issue for the reliability and performance of heterostructure devices is the
deteriorating impact of dislocations, mostly originating from epitaxy, when a thin layer
is grown on a substrate with significantly different lattice parameters. Below a certain
layer thickness, called the critical thickness, the layer is grown pseudomorphically on
a substrate, i.e., the layer is grown with the same lattice parameter as the substrate.
Consequently, the layer is strained, leading to large strain energy. When the critical
thickness is reached, a relaxation of the strain occurs via plastic flow. The most
common mechanism of plastic relaxation is an introduction of misfit dislocations along
the interface between the film and the substrate.
Several models have been proposed to calculate the critical thickness. In 1974

Matthews and Blakeslee [50] compared the force exerted by strain on the extension
of the misfit dislocation line with the tension in the dislocation line acting against its
elongation. Their model assumes that both the film and the substrate have the same
isotropic elastic properties, the film has a finite thickness (however, neglecting free
surface effects) and the substrate is semi-infinite. Starting from the same hypotheses,
Freund [17,19] compared the energy necessary to create a misfit dislocations with the
energy inside the fully strained thin film. He arrived at the same critical thickness
formula as Matthews and Blakeslee. However, the two models differ conceptually:
Matthews and Blakeslee assumed a pre-existing dislocation in the substrate which
creates an misfit dislocation segment along the heteroepitaxial interface due to the
action of the misfit stress; Freund assumed a freshly generated dislocation at the film
surface which glides into the interface between the film and the substrate. The impact
of the free surface of the film and the difference between the elastic constants of the
film and the substrate on the critical thickness was discussed by Willis, Jain and
Bullough [82], yet they still worked in the framework of isotropic elasticity.
The anisotropy of the heterostructure can be considered in the critical thickness

calculation using the methodology developed by Steeds [72] for the energy of an in-
finitely long straight dislocation inside an anisotropic medium. This has been done in
the works by Holec et al. [26–28], however, the free surfaces and differences in elastic
response of the film and the substrate were ignored.
Here, the gap is closed by evaluating the impact of different effects – elastic anisotropy

(Section 4.3), difference between the elastic constants of the film and the substrate and
the free surface of the film (Section 4.4) – on the critical thickness values. After re-
viewing the methodology in Sections 4.2-4.4, this method is applied to several material

43



systems, namely, AlxGa1−xN/GaN, InxGa1−xN/GaN, and Si1−xGex/Si, in Section 4.5,
and compared to available experimental data from literature in Section 4.6.

4.2 The critical thickness criterion

The system shown in Figure 4.1 is composed of a thin film with a finite thickness
in the region 0 < z < h, and a semi-infinite substrate filling the half space z < 0.
The dislocation is along the interface z = 0 aligned along the y-axis. The critical
thickness criterion compares the dislocation energy per unit length, dE/dy, with the
work, dW/dy, done by the misfit stress, σm

ij , in forming the unit length of a dislocation
along the film–substrate interface. As a consequence, the critical thickness criterion is
given by

dW
dy

=
dE
dy

. (4.1)

4.2.1 Work done by the misfit strain

substrate

film
h

slip plane

y

z

x

free surface

n

φ

Figure 4.1: The straight infinitely long dislocation at the film–substrate interface. The
film thickness is h, the slip plane is tilted by an angle φ from the normal
to the interface.

Since the film is much thinner than the semi-infinite substrate, the strain in the sub-
strate is assumed to be zero while the complete lattice mismatch is accommodated
in the film (i.e., any mismatch strain relaxation by substrate bending is neglected).
According to the geometry shown in Figure 4.1, the top surface z = h of the film is
traction free and therefore σm

xz(x, h) = σm
zz(x, h) = σm

yz(x, h) = 0. Assuming all direc-
tions within the xy-plane (the hexagonal plane) are equivalent, a planar stress state
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is obtained and thus the mismatch strain components are εmxx = εmyy = εm, where εm
is the misfit strain, defined as

εm =
a∗ − a

a
, (4.2)

considering that the thin film’s in-plane lattice constant a adjusts to the rigid sub-
strate’s lattice constant a∗.
Hooke’s law (2.10) for isotropic structures reads������

σxx

σyy

σzz

σyz

σxz

σxy

������ =

������
c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44

������

������
εxx
εyy
εzz
2εyz
2εxz
2εxy

������ , (4.3)

where c44 = (c11 − c12) /2. In the case of cubic and hexagonal symmetries, the shape
of the stiffness matrix cij changes to������

c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44

������ , and

������
c11 c12 c13 0 0 0
c12 c11 c13 0 0 0
c13 c13 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c66

������ , (4.4)

respectively, where c66 = (c11 − c12)/2 for the hexagonal symmetry (the right matrix
above).
Considering for example the hexagonal symmetry, Hooke’s law gives

0 = σm
zz = c13ε

m
xx + c13ε

m
yy + c33ε

m
zz (4.5)

which results in
εmzz = −2

c13
c33

εm. (4.6)

Finally, Hooke’s law yields for the mismatch stress

σm = σm
xx = σm

yy =
(c11 + c12)c33 − 2c213

c33
εm. (4.7)

In the chosen Cartesian coordinate system, the Burgers vector b, the tensor of the
misfit stress σm, and the outer normal to the cut surface Γ = S2 +S4 (see Figure 3.1)
denoted by n take the forms

b =

−b sin θ sinφ
b cos θ

b sin θ cosφ

 , σm =

σm 0 0
0 σm 0
0 0 0

 , n =

− cosφ
0

sinφ

 , (4.8)
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where θ is the angle between the dislocation line and the Burgers vector, and φ the
angle between the slip plane and the normal to the film-substrate interface (see Fig-
ure 4.1). The work per unit length of the dislocation, dW/dy, done by the misfit stress
is calculated according to [19]

dW
dy

=

� h/cosφ

0

"
i,j

biσ
m
ij nj dz =

� h/cosφ

0

"
i

(biσixnx + biσiznz) dz

= bσmh sin θ sinφ. (4.9)

In a straightforward manner, analogous expressions for the other symmetries of the
stiffness tensor (isotropic or cubic) can also be obtained.

4.2.2 Dislocation energy

The formula for the dislocation energy dEd/dy for a straight dislocation inside an
infinite isotropic medium reads [19,23,32]:

dEd
dy

=
µb2 (1− νcos2ϕ)

4π (1− ν)
ln

�
R

rc

�
, (4.10)

where µ and ν are the shear modulus and the Poisson ratio, respectively, ϕ is the
angle between the Burgers vector b and the dislocation line, and R is the outer cut-off
radius. Here it is taken to be equal to the film thickness.
Chapter 3.2 describes how to calculate the dislocation energy dEd/dy inside an

infinite anisotropic medium according to the procedure developed by Steeds [72] and
described in Section 3.4:

dEd
dy

= K ln

�
R

rc

�
, (4.11)

where K is the pre-logarithmic factor and it is a function of the crystal structure and
the elastic properties (see Section 3.4). Holec [25] derived a simplified expression of
K from the Steeds procedure specifically for a dislocation along the y-axis inside a
hexagonal crystal. The expression is easily adapted to the cubic symmetry by simply
modifying the stiffness tensor.
If we want to calculate the dislocation energy at the interface between the film and

the substrate of a heteroepitaxial structure, it is necessary to evaluate the effect of the
free surface of the film and the different elastic properties of the two materials. Willis,
Jain and Bullough [82] have evaluated both effects on the dislocation energy within
isotropic elasticity.
The adaptation of the Willis, Jain and Bullough model to the hexagonal symmetry

can be found in the works of Holec [24] and Coppeta [8]. This procedure is reported in
details in the next Paragraph 4.2.3 for a straight dislocation at the interface between
a finite hexagonal film and a semi-infinite hexagonal substrate with different elastic
constants.
In conclusion, four approaches (summarized in Table 4.1) for calculating the disloca-

tion energy were defined above, which will be used to evaluate the impact of different
approximations.
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4.2.3 A straight dislocation at the interface of anisotropic
materials

The evaluation of the integrals along the surfaces S2 and S4 (see Figure 3.1) deals
with a straight dislocation at the interface between a finite anisotropic film and a
semi-infinite anisotropic substrate with different elastic properties:

dEd = 1
2

"
ij

��
S2

uiσ
d
ijnj dS2 +

�
S4

uiσ
d
ijnj dS4

�
. (4.12)

Considering Figure 4.2, the previous equation becomes

1
2

"
i

�� h

rc

ui(x → 0+)σd
ix dz +

� rc

h

ui(x → 0−)σd
ix dz

�
. (4.13)

If the extremes of the second integral are inverted, one obtains

dEd
dy

= 1
2

"
i

� h

rc

biσ
d
ix dz (4.14)

where ui(x → 0+)− ui(x → 0−) = bi.
The evaluation of the stress components in (4.14) is performed through the treat-
ment suggested by the Willis, Jain and Bullough model [82] for hexagonal and cubic
symmetries following the Steeds procedure [72].

dz

dy

z
y

x

S4 S2

dislocation line

Figure 4.2: The z-axis is perpendicular to the c-plane for the hexagonal symmetry and
to the closed packed plane for the cubic one. The dislocation line lies along
the y-axis in both cases.
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z x

yy

z x

dislocation line dislocation line

Figure 4.3: The z-axis is perpendicular to the c-plane for the hexagonal symmetry and
to the closed packed plane for the cubic one. The dislocation line lies along
the y-axis in both cases.

The dislocation of interest is a misfit dislocation along the c-plane of the wurtzite
structure or the closed packed plane of the diamond structure. The z-axis is perpen-
dicular to the c-plane or to the closed packed plane, respectively (See Figure 4.3). The
dislocation is considered straight and extended to infinity along the y-axis. This as-
sumption simplifies the problem to a plane strain problem where no quantity depends
on the y-coordinate, so

∂

∂y
= 0, (4.15)

The Burgers vector of the dislocation is b. Displacements are given by the functions
ux, uy and uz. The displacements ux and uz correspond to the edge component of the
considered dislocation whereas uy corresponds to the screw component. The strain
components are

εxx =
∂ux

∂x
, εxy =

1

2

∂uy

∂x
,

εyy = 0, εxz =
1

2

�
∂ux

∂z
+

∂uz

∂x

�
, (4.16)

εzz =
∂uz

∂z
, εyz =

1

2

∂uy

∂z
.

The compatibility equations [72] provide two relations:

∂2εxx
∂z2

+
∂2εzz
∂x2

= 2
∂εxz
∂x∂z

, (4.17a)

∂εyz
∂x

− ∂εxy
∂z

= 0. (4.17b)

The fact that εyy = 0 yields a relation between particular stress components:

0 = εyy = s12σxx + s11σyy + s13σzz ⇒ σyy = −s12
s11

σxx − s13
s11

σzz. (4.18)
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The compliances reflecting the proper hexagonal symmetry have been used to obtain:������
εxx
εyy
εzz
2εyz
2εxz
2εxy

������ =

������
s11 s12 s13 0 0 0
s12 s11 s13 0 0 0
s13 s13 s33 0 0 0
0 0 0 s44 0 0
0 0 0 0 s44 0
0 0 0 0 0 s66

������

������
σxx

σyy

σzz

σyz

σxz

σxy

������ , (4.19)

where
s66 = 2 (s11 − s12) . (4.20)

The shape of the tensor for cubic symmetry (in both Si(100) and Si(110)) is the same
as for the hexagonal one. The subsequent treatment is valid for the cubic symmetry
with s66 = s44 and s13 = s12.
According to the Willis, Jain and Bullough model, it is useful now to have the

jumps in displacements occur over a surface which is perpendicular to the free surface
instead of across the slip plane. All quantities in the substrate have a ∗ superscript to
distinguish them from quantities related to the thin film. The Fourier transform of a
function f is denoted by #f . It is possible to split the problem into two independent
parts, resolving the edge and the screw components separately.

Edge component

The displacement field in the thin film can be decomposed into

u =
1

2
besgn(x) + v, (4.21)

where be = (bx, 0, bz) and the function v is continuous for all x. The strain field (and
thus also the stress field) inside the thin layer is determined only by the v part as
(except at the cut surface x = 0) the derivatives of the sgn(x) function are equal to
zero everywhere. To solve this problem, Fourier-transformed variables are employed:

#f(ξ, z) = 1√
2π

� ∞

−∞
eiξxf(x, z)dx. (4.22)

The Fourier transform of the ∂/∂x operator is −iξ. Using (4.21) and (4.16), the
Fourier components of the strain tensor are:

#�xx(ξ, z) = −iξ#vx(ξ, z), (4.23a)

#�zz(ξ, z) = ∂#vz
∂z

(ξ, z), (4.23b)

#�xz(ξ, z) = 1

2

�
∂#vx
∂z

(ξ, z)− iξ#vz(ξ, z)� . (4.23c)
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The equilibrium conditions [72] take the form

∂σxx

∂x
+

∂σxz

∂z
= 0, (4.24a)

∂σxz

∂x
+

∂σzz

∂z
= 0. (4.24b)

Transforming these equations into their Fourier equivalents and using Hooke’s law
with the stiffness tensor gives the following system of partial differential equations for
the Fourier-transformed components of the displacements #vx and #vz:����

−c11ξ
2 + c44

∂2

∂z2
−iξ (c13 + c44)

∂

∂z

−iξ (c13 + c44)
∂

∂z
−c44ξ

2 + c33
∂2

∂z2

����
����
#vx
#vz

���� =

����
0

0

���� . (4.25)

In order to simplify the notation, the quantities A = −c11 , B = c44, C = −i(c13+c44),
D = −c44, E = c33 are introduced. From the second equation of the system one obtains

ξC
∂#vx
∂z

= −Dξ2#vz − E
∂2#vz
∂z2

. (4.26)

Using this equation and its twice differentiated form with respect to z and substituting
them into the first equation of the system (4.25), which is once differentiated with
respect to z, yields

EB
∂4#vz
∂z4

+
�
EA+DB − C2

�
ξ2
∂2#vz
∂z2

+ ADξ4#vz = 0. (4.27)

The solution has the exponential form eλ|ξ|z. The corresponding proper λs are solutions
of the characteristic equation

EBλ4 +
�
EA+DB − C2

�
λ2 + AD = 0. (4.28)

The solutions are λ1 = κ1, λ2 = −κ1, λ3 = κ2 and λ4 = κ2, where

κ1,2 =

 !!�− (EA+DB − C2)±
�
(EA+DB − C2)2 − 4ABDE

2EB
. (4.29)

Therefore, the general solution to (4.27) has the form [72]

#vz = 4"
i=1

Aiλi |ξ| eλi|ξ|z, (4.30)

where Ai are functions of ξ to be determined. The component #vx can then be obtained
from (4.26). Its general solution is

#vx = −
4"

i=1

Aiξ
D + Eλ2

i

C
eλi|ξ|z. (4.31)
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Evidently
D + Eλ2

i

C
= −i

c44 − c33λ
2
i

c13 + c44
. (4.32)

The Fourier-transformed components of the strain tensor are now easy to obtain from
combining Equations (4.30), (4.31), and (4.23):

#εxx =
4"

i=1

Aiξ
2 c44 − c33λ

2
i

c13 + c44
eλi|ξ|z, (4.33a)

#εxz = −1

2

4"
i=1

iAi |ξ| ξλi
c13 + c33λ

2
i

c13 + c44
eλi|ξ|z, (4.33b)

#εzz = 4"
i=1

Aiξ
2λ2

i e
λi|ξ|z. (4.33c)

Using Hooke’s law, which has the same form when Fourier transformed, one obtains:

#σxx = c11#εxx + c13#εzz = −
4"

i=1

Aiξ
2λ2

i c44
c13 + c33λ

2
i

c13 + c44
eλi|ξ|z, (4.34a)

#σxz = 2c44#εxz = −
4"

i=1

iAi |ξ| ξλic44
c13 + c33λ

2
i

c13 + c44
eλi|ξ|z, (4.34b)

#σzz = c13#εxx + c33#εzz = 4"
i=1

Aiξ
2c44

c13 + c33λ
2
i

c13 + c44
eλi|ξ|z, (4.34c)

where the identity c11c44 + (c213 + 2c13c44 − c11c33)λ
2
i + c44c33λ

4
i = 0 was used in the

expression for #σxx.
The general solution for the substrate region takes the same form (except that all

variables have a star superscript). It is assumed that the substrate is not influenced
by the thin layer as z → −∞. To fulfill this condition, the constants A∗

2 and A∗
4 must

be identically zero. Boundary conditions must be employed now in order to determine
the constants A1, A2, A3, A4, A

∗
1, and A∗

3.
The Fourier transform of 1/2 sgn(x) is i/

�√
2πξ

�
. The continuity of displacements

across the interface z = 0 is expressed by the following equations:

#vx (ξ, 0) + ibx√
2πξ

= #v∗x (ξ, 0) , (4.35a)

#vz (ξ, 0) + ibz√
2πξ

= #v∗z (ξ, 0) , (4.35b)

which result in the equations

(A1 + A2) Γ1 + (A3 + A4) Γ2 +
bx√
2πξ2

= A∗
1Γ

∗
1 + A∗

3Γ
∗
2, (4.36a)

(A1 − A2)κ1 + (A3 − A4)κ2 +
i bz√
2π |ξ| ξ = A∗

1κ
∗
1 + A∗

3κ
∗
2, (4.36b)
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where the notation

Γi =
c44 − c33κ

2
i

c13 + c44
, Γ∗

i =
c∗44 − c∗33κ

∗2
i

c∗13 + c∗44
, i = 1, 2. (4.37)

has been introduced.
The second set of equations is obtained from the requirement that tractions must

be continuous across the interface z = 0:

#σxz (ξ, 0) = #σ∗
xz (ξ, 0) , (4.38a)#σzz (ξ, 0) = #σ∗
zz (ξ, 0) . (4.38b)

Combining Equations (4.34) and (4.38) gives

(A1 − A2)κ1Λ1 + (A3 − A4)κ2Λ2 = A∗
1κ

∗
1Λ

∗
1 + A∗

3κ
∗
2Λ

∗
2 (4.39a)

(A1 + A2) Λ1 + (A3 + A4) Λ2 = A∗
1Λ

∗
1 + A∗

3Λ
∗
2, (4.39b)

where the simplifying notation

Λi =
c44 (c13 + c33κ

2
i )

c13 + c44
, Λ∗

i =
c∗44 (c

∗
13 + c∗33κ

2
i )

c∗13 + c∗44
, i = 1, 2, (4.40)

has been introduced. The last set of equations arises from the requirement that the
free surface is at z = h.
The condition #σxz (ξ, h) = 0 is expressed as�

A1e
κ1|ξ|h − A2e

−κ1|ξ|h�κ1Λ1 +
�
A3e

κ2|ξ|h − A4e
−κ2|ξ|h�κ2Λ2 = 0 (4.41)

and the requirements #σzz (ξ, h) = 0 yields�
A1e

κ1|ξ|h + A2e
−κ1|ξ|h�Λ1 +

�
A3e

κ2|ξ|h − A4e
−κ2|ξ|h�Λ2 = 0. (4.42)

Equations (4.36), (4.39), (4.41) and (4.42) constitute a linear system of equations
for the unknown variables A1, ..., A

∗
3. Obviously, the solution of this system provides

A1, ..., A
∗
3 as functions of ξ. To obtain the stress components σxx, σxz and σzz, it is

necessary to perform the inverse Fourier transforms of #σxx, #σxz and #σzz, respectively,
with the substituted resolved constants A1, ..., A4.
An attempt to obtain an analytical formula for the stress components and energy for
the edge type dislocation would be unreasonably complicated. Therefore the calcula-
tions were performed numerically.

Screw component

The procedure for the screw component is similar but simpler. The Burgers vector of
a screw dislocation has only one non-zero component, by, and thus the only non-zero
component of the displacement is uy. Moreover, it is again a plane strain problem,
i.e., ∂/∂y = 0. As a consequence, the only non-zero strain components are εxy and
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εyz. Similarly to the case of the edge dislocation, it is more convenient to deal with the
Fourier-transformed component #uy rather than with uy itself. The Fourier-transformed
components of the strain are

#εxy = −1

2
iξ#vy, (4.43a)

#εyz = 1

2

∂#vy
∂z

, (4.43b)

and the FT stress components obtained from Hooke’s law are#σxy = 2c66#εxy = −iξc66#vy, (4.44a)

#σyz = 2c44#εyz = c44
∂#vy
∂z

. (4.44b)

The equilibrium condition [72]

∂σxy

∂x
+

∂σyz

∂z
= 0 (4.45)

provides the second-order differential equation for #vy:
−ξ2c66#vy (ξ, z) + c44

∂2#vy
∂z2

(ξ, z) = 0, (4.46)

the general solution of which is

#vy = A1e

�
c66
c44

|ξ|z
+ A2e

−
�

c66
C44

|ξ|z
. (4.47)

The general solution in the substrate has exactly the same form except for the fact that
all variables have a superscript. Since the substrate is assumed to be semi-infinite, one
requires all quantities to vanish as z → −∞ and therefore A∗

2 = 0. Applying the same
boundary conditions as in the case of the edge dislocation (continuity of displacements
and tractions over the interface z = 0 and the free surface at z = h) yields

A1 + A2 +
iby√
2πξ

= A∗
1, (4.48a)

(A1 − A2)
√
c66c44 = A∗

1

�
c∗66c

∗
44, (4.48b)

A1e

�
c66
c44

|ξ|h − A2e
−
�

c66
c44

|ξ|h
= 0. (4.48c)

Values of A1 and A2 fulfilling these equations are

A1 =
iby√
2πξ

√
c∗66c

∗
44e

−2
�

c66
c44

|ξ|h

e
−2

�
c66
c44

|ξ|h �√
c66c44 −√

c∗66c
∗
44

�− �√
c66c44 +

√
c∗66c

∗
44

� , (4.49a)

A2 =
iby√
2πξ

√
c∗66c

∗
44

e
−2

�
c66
c44

|ξ|h �√
c66c44 −√

c∗66c
∗
44

�− �√
c66c44 +

√
c∗66c

∗
44

� . (4.49b)

The stress components can be obtained by the inverse Fourier transform of #σxy and#σxz with the substituted A1 and A2 from the last two equations.
After that, the components of the stress and the Burgers vector can be substituted

in (4.14) to calculate the dislocation energy.
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4.2.4 The critical thickness models

According to equation (4.1), equating the work done by the misfit strain with each
of the four formulas for dislocation energy yields four different models with which to
calculate the equilibrium critical thickness . These models are summarized with the
respective hypotheses in Table 4.1 and their results are discussed in the subsequent
Paragraphs. In particular, the critical thickness model developed by Freund [17], which
neglects the differences between film and substrate, considers only isotropic elasticity,
and in its simplified (often used) formula also neglects the effect of the free surface.
The Freund model is corrected for the elastic anisotropy using the Steeds treatment
for the dislocation energy [72]. The fully isotropic model, but with the free surface
and different elastic constants in the film and the substrate, employs the Willis, Jain
and Bullough formula [82]. Finally, a model addressing all effects [8,24] is reported in
Paragraph 4.2.3.

Table 4.1: An overview of different assumptions for evaluating misfit dislocation en-
ergy, and equilibrium critical thickness .

Freund Steeds Willis et al. Steeds + Willis et al.
[17, 19] [72] [82] [8, 24]

Anisotropy no yes no yes
Different elastic properties of
the film and the substrate no no yes yes
Free surface of the film no no yes yes

4.3 Impact of the anisotropy on the critical thickness
criterion

Steeds developed a procedure to calculate the energy of one infinite straight dislocation
in the bulk of an infinite material [72], which is considered anisotropic with a certain
crystallographic symmetry. The result for the hexagonal symmetry is briefly described
in [28].
Here, this treatment is adopted in order to calculate the energy (with and without

the contribution of the dislocation core, see Chapter 3.2) for a dislocation whose
slip system is 1/3�112̄3�{112̄2} or 1/3�112̄3�{11̄01} in Al0.2Ga0.8N and in In0.2Ga0.8N
(see Figure 4.4). The same treatment with the appropriate elastic constants is used
to calculate the energy for the so called 60◦ dislocation slip system �110�{111} in
Si0.8Ge0.2 (see Figure 4.5).
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Figure 4.4: The two most favorable slip systems in the systems AlxGa1−xN/GaN
and InxGa1−xN/GaN: a) �112̄3�{112̄2} observed by Srinivasan [71] and
b) �112̄3�{11̄01} determined by Jahnen [33].
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Figure 4.5: The slip system �110�{111} of the 60◦ dislocation shown in the FCC struc-
ture.

In the following, the difference between the dislocation energy dEd/dy and the work
dW/dy done by the misfit stress field for each alloy is discussed. When the resulting
value is positive, fully coherent accommodation of the misfit strain is energetically
preferred, while for negative values introduction of misfit dislocations becomes favored.
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The highest film thickness yielding the difference of 0 indicates the equilibrium critical
thickness . The resulting values for the three different alloys as a function of the
film thickness are plotted in Figures 4.6, 4.7, and 4.8. Each figure has two sets of
curves, one for the Freund,(isotropic elasticity) and one for the Steeds (anisotropic
elasticity) procedure. For all systems investigated here, the anisotropy lowers the
critical thickness . Additionally, it turns out that the inclusion of the integral along
the core surface S3 (values labelled “with Ecs” in the figures. For the description of
Ecs see Section 3.2) has in all cases only a negligible impact (or at least on order of
magnitude smaller effect than the correct crystal symmetry) on the predicted critical
thickness (see Table 4.2).

Al0.2 Ga0.8 N film on GaN substrate
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Figure 4.6: dEd/dy − dW/dy as function of the Al0.2Ga0.8N film thickness. dEd/dy is
calculated assuming isotropic (Freund model (F)) and anisotropic (Steeds
model (S)) elasticity, with or without the evaluation of the integral along
the core surface Ecs. dW/dy is calculated according to equation (4.9). The
critical thickness values of an Al0.2Ga0.8N film grown on a GaN substrate
are indicated by a circle.
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In0.2 Ga0.8 N film on GaN substrate
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Figure 4.7: Same as in Figure 4.6 but for an In0.2Ga0.8N film grown on a GaN substrate.

Si0.8 Ge0.2 film on Si substrate
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Figure 4.8: Same as in Figure 4.6 but for a Si0.8Ge0.2N film grown on a Si substrate.
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4.4 The critical thickness according to Willis, Jain and
Bullough

Willis, Jain, and Bullough [82] derived a procedure to calculate the energy dEd/dy
of a misfit dislocation at the interface between a film with a finite thickness and a
semi-infinite substrate. The film and the substrate are both supposed to be isotropic
but with different elastic properties.
Figure 4.9 shows two sets of curves representing dEd/dy as a function of the film

thickness for three different systems: Al0.2Ga0.8N film on a GaN substrate, In0.2Ga0.8N
on GaN, and a GaN film grown on a GaN substrate. One set of the dEd/dy curves is
calculated with the Willis et al. model, while the second uses the Freund treatment.
Therefore, the difference stems from including (Willis et al.) or neglecting (F) the free
surface effects and the difference in the elastic constants of the film and the substrate.
In both cases the isotropic elasticity framework is used. The curves within each set
are very close to each other, meaning that the impact of different elastic properties of
the film and the substrate is negligible for these material systems. Therefore it can
be concluded that the difference between the two sets originates predominantly from
the impact of free surface. This factor significantly increases the dEd/dy term and, as
a consequence, also the critical thickness value.
Figure 4.10 shows a similar analysis for two different systems: a Si0.2Ge0.8 film on a

Si substrate and a Si film grown on a Si substrate. As in the case of the III-nitrides,
the variation caused by the different elastic properties of the film and the substrate
is negligible. On the other hand, the difference between the Willis et al. and Freund
formalism, which is now related predominantly to the inclusion of the free surface, is
significant. Therefore, also for silicon as a substrate the free surface increases dEd/dy
and, as a consequence, the critical thickness value.
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Figure 4.9: dEd/dy is a function of the film thickness for the material systems
AlxGa1−xN/GaN and InxGa1−xN/GaN. The �112̄3�{11̄01} slip system is
considered. The two sets of curves are calculated through the Willis et al.
(WJB) and Freund (F) procedures, respectively.
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Figure 4.10: dEd/dy is a function of the film thickness for Si1−xGex/Si. The �110�{111}
slip system of a 60◦ dislocation is considered. The two sets of curves are
calculated through the Willis et al. (WJB) and Freund (F) procedures,
respectively.
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4.5 Overall comparison of various effects on the
predicted critical thickness

In order to consider the anisotropy, the difference between the elastic properties of
the film and the substrate as well as the impact of the free surface, the Steeds and
the Willis et al. approaches are combined. Based on the conclusions of Section 4.3,
in the following the contribution of the integral along the core surface S3 is neglected.
The detailed mathematical derivation of this treatment (indicated with Steeds+Willis
et al.) is given in 4.2.3. The model Steeds+Willis et al. is used to compute dEd/dy
as a function of the film thickness for three different alloys: an Al0.2Ga0.8N film on
a GaN substrate, In0.2Ga0.8N on GaN and a Si0.8Ge0.2 film on a Si substrate. The
results are shown and compared with corresponding Freund, Steeds, and Willis et al.
results in Figures 4.11, 4.12, and 4.13. The critical thickness values of the systems are
listed in Table 4.2. Considering all the three systems, the Willis et al. model increases
the critical thickness by ≈ 300% with respect to the Freund model. The critical
thickness value of the theoretically most complete scheme, Steeds+Willis et al., is
always between the Steeds and the Freund values. In particular, the Steeds+Willis
et al. critical thickness is lower by ≈ 50% relative to the Freund critical thickness for
Al0.2Ga0.8N and In0.2Ga0.8N, while it is the same in the case of Si0.8Ge0.2.

Al0.2 Ga0.8 N film on GaN substrate
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Figure 4.11: dEd/dy− dW/dy is a function of the film thickness. dEd/dy is calculated
according to the Freund, Steeds, Willis et al., and Steeds+Willis et al.
approaches. dW/dy is calculated according to equation (4.9). The crit-
ical thickness values an Al0.2Ga0.8N film grown on a GaN substrate are
indicated by a circle.
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In0.2 Ga0.8 N film on GaN substrate
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Figure 4.12: Same as in Figure 4.11 but for an In0.2Ga0.8N film grown on a GaN
substrate.

Si0.8 Ge0.2 film on Si substrate

d
d

d
y
�

d d
y
��

1
0
�

9
J�

m
�

20 40 60 80

�15

�10

�5

5

Freund

Steeds

Willis et al.

Steeds	Willis et al.

Film thickness�nm�

Figure 4.13: Same as in Figure 4.11 but for a Si0.8Ge0.2 film grown on a Si substrate

Table 4.2: Critical thickness values (in nm) of the studied systems.

F F+Ecs S S+Ecs WJB S+WJB

Al0.2Ga0.8N film on GaN substrate 30 30 16 12 93 17
In0.2Ga0.8N film on GaN substrate 8 8 3 0 26 5

Si0.2Ge0.8 film on Si substrate 18 18 8 6 74 16
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4.6 Comparison between theoretical and experimental
critical thicknesses

After illustrating the differences among various treatments of dislocation energy and
their impact on the equilibrium critical thickness , the Freund and Steeds+Willis et
al. models, including the dislocation core energies estimated in Section 3.6, are used
to calculate the equilibrium critical thickness as a function of composition, x, for the
three different alloys. The two models, Freund and Steeds+Willis et al., are chosen
as they are based on opposite hypotheses (see Table 4.1).
The 1/3�112̄3�{11̄01} and 1/3�112̄3�{112̄2} slip systems for AlxGa1−xN film on GaN

substrate and InxGa1−xN film on GaN substrate, and the 60◦ misfit dislocation with
the �110�{111} slip system for Si1−xGex film on Si substrate are considered. The
calculated critical thickness results obtained from the Freund and Steeds+Willis et al.
models are compared with experimental observations and data available in literature
(Figures 4.14, 4.15, and 4.16). The difference between the Freund and Steeds+Willis
et al. results is small, with the Steeds+Willis et al. model yielding lower values as
compared to F. In all cases the experimental data are close to the theoretical curves,
suggesting that the experimental critical thickness values were obtained from epitaxial
depositions close to the thermodynamical equilibrium.
Regarding the AlxGa1−xN/GaN and InxGa1−xN/GaN systems, the Steeds+Willis

et al. model provides a more severe condition for the onset of the misfit dislocation
at the interface than the Freund model. It is important to realize that the critical
thickness reported here is the so-called equilibrium critical thickness . That means that
it corresponds to the configuration where it for the first time becomes energetically
favorable to relieve the misfit strain by introducing misfit dislocations. However, any
mechanism for the creation of the misfit dislocations, which may require certain extra
activation energy, is not considered in the model. Similarly, parameters influencing
the kinetics of the epitaxial deposition, such as temperature and deposition rate, are
also not considered by the equilibrium critical thickness models. Finally, the current
experimental techniques are unable to detect the exact onset of the appearance of
misfit dislocations. It therefore follows that no misfit dislocations are expected below
the predicted critical thickness values, however, the detection of misfit dislocations
may be (sometimes significantly) higher than the theoretical critical thickness.
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Figure 4.14: The equilibrium critical thickness hc as a function of the AlN mole fraction
x calculated through Freund and Steeds+Willis et al. (S+WJB) models
including the core energy for two different slip systems. The theoretical
curves are compared to experimental data, 1- [41], 2- [77], 3- [6], 4- [20],
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misfit dislocations respectively. Crosses indicate the experimental value
of the critical thickness hc.
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Figure 4.15: The equilibrium critical thickness hc as a function of the InN fraction
x calculated through Freund and Steeds+Willis et al. (S+WJB) models
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and the presence of misfit dislocations respectively. Crosses indicate the
experimental value of the critical thickness hc.
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A closer inspection of Figures 4.14-4.16 reveals that the here refined Steeds+Willis
et al. model fulfills this criterion (unlike the Freund model). Indeed for all the studied
systems, the misfit dislocations are always experimentally detected above the critical
thickness values predicted by the model Steeds+Willis et al. unlike the values given
by the Freund model.

4.7 Summary

In this chapter, the different continuum-based approaches for calculating the energy
of a straight infinitely long dislocation in an elastic medium has been revisited. Moti-
vated by the misfit dislocations in a heteroepitaxial interface, the influence of (i) the
free surface, (ii) different elastic constants in the film and substrate, and (iii) elastic
anisotropy have been evaluated separately. The results suggest that starting from a
homogeneous infinite isotropic medium, the inclusion of a free surface increases the
dislocation energy, and the difference in elastic constants of the film and substrate does
not play any significant role (because it is typically an order of magnitude smaller than
the impact of, e.g., the free surface), while the inclusion of elastic anisotropy decreases
the dislocation energy.
Finally, the equilibrium critical thickness was calculated for three important het-

eroepitaxial material systems, namely an AlxGa1−xN film on a GaN substrate, an
InxGa1−xN film on a GaN substrate, and a Si1−xGex film on a Si substrate. The mod-
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els for the equilibrium critical thickness, described in Section 4.2, provide a condition
when it first becomes energetically favorable to start the relaxation of the mismatch
strain via plastic flow. The results suggest that the model [8, 24], reported in Para-
graph 4.2.3, including the elastic anisotropy of the film and the substrate, the difference
of their elastic constants and the impact of the film free surface, yields an excellent
agreement with the available experimental data in the sense that no misfit dislocations
are detected below the here predicted threshold.
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5 Reduction of the threading
dislocation density

5.1 Introduction

A serious issue for the reliability and performance of heterostructure devices is the
deteriorating influence of dislocations, which originate during the crystal growth of
the epitaxial layers composing the heterostructure. For a film grown by the Volmer-
Weber mechanism (island growth mode), dislocations may result from surface half-loop
generation or from island coalescence. These dislocations are called threading dislo-
cations. The dislocation line can either be straight and perpendicular or inclined to
the interface. As a consequence, heterostructures have lines which propagate through
their thickness, reaching the active part of the device and degrading its performance.
It is important to note that the threading dislocation density is not constant along
the film thickness. Growth techniques and dislocation configuration can reduce the
density of threading dislocations. In particular, the density is reduced by reactions
among dislocations when they, by some process, come in contact with each other.
The driving force for this process is the minimization of the internal energy of the
system. Reactions among inclined threading dislocations in bulk GaN were modeled
by Mathis et al. [49]. The model supposes the inclination of threading dislocations as
the only possible source for their reactions. An application of this model to semipolar
GaN is given in Paragraph 5.2.1. The limit of Mathis’ model is that reactions among
dislocations happen only if they are inclined with respect to the growth direction.
Real devices are based on heterostructures composed of many lattice mismatched

layers. For such structures, regardless of the growth mechanisms – such as those
by Frank-van der Merwe (layer-by-layer), Stranski-Krastanov (initial wetting followed
by islanding), or Volmer-Weber (incoherent islanding) – increasing film thickness ulti-
mately leads to the glide of the threading dislocations with the concomitant generation
of so called misfit dislocations. In particular, below a certain layer thickness, called the
critical thickness (CT), each film is grown pseudomorphically on the lower one, i.e.,
the film is grown with the same lattice parameter as the substrate. Consequently, the
layer is strained, leading to large strain energy. When the critical thickness is reached,
a relaxation of the strain occurs via plastic flow. The most common mechanism of
plastic relaxation is the glide of the threading dislocations with the introduction of
misfit dislocations along the interface between the two materials [17, 28, 82]. Gliding
dislocations are called glissile dislocations, instead they are defined sessile when they
can not glide below the critical thickness. Misfit dislocations change the stress gradi-
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ent in the structure, causing its relaxation. The threading dislocation glide along the
interface increases the probability of contact among dislocations. As a consequence,
the probability of reactions increases in the presence of a glide, i.e., in presence of
an interface between two mismatched materials. threading dislocation reactions and
their density decrease due to dislocation glide along a bilayer interface, as modeled by
Romanov et al. [66]. Romanov calculated the threading dislocation density in mul-
tilayered structures but his model differs from Mathis’ because threading dislocation
glide is the only possible source for threading dislocation reactions. Threading dislo-
cation inclination with respect to the growth direction, which is the source of reactions
in Mathis model, is not considered. In addition, the different threading dislocation
types present in hexagonal symmetry are neglected in Romanov’s work. Mathis and
Romanov’s models can be considered complementary to each other, since each is based
on a hypothesis not consider by the other.
In 2014 Ward and co-authors [79] evaluated the threading dislocation density reduc-

tion as a function of the misfit stress associated with two mismatched layers and the
threading dislocation inclination together, using simple numerical modeling. Their
result was that the key to significantly reduce threading dislocation density is the
movement of threading dislocations resulting from misfit stress. The most important
parameter affecting threading dislocation reduction is the amount of strain relaxed by
misfit dislocations in the structure. The simple numerical model developed by Ward
and coauthors can roughy describe the behavior of dislocations on average, since the
different threading dislocation types and their specific reactions are not considered.
Real heterostructures are instead composed of many lattice mismatched film mate-

rials, where the reactions of the several threading dislocation types are simultaneously
affected by their inclination and their glide along the interfaces. All these phenomena
are not evaluated together by any of the above mentioned models. In this chapter,
this gap is closed by proposing a new description of threading dislocation density in
GaN-based multilayers considering the different threading dislocation types with their
specific reactions and inclinations. Further, to go beyond Mathis’ efforts, the effect
of the dislocation glide on the threading dislocation density is also evaluated. The
new formulation also considers the impact of the hexagonal symmetry on threading
dislocation glide, using the treatments proposed by Steeds [72] and Holec [24] (see
Section 5.3). After the description of Mathis’ model in Section 5.2, the new treat-
ment is described in Section 5.4. It is then applied to a simple case, the AlN/GaN
bilayer, in order to separately evaluate the impact of the model parameters (see Para-
graph 5.4.5). After that, the model is used to calculate the threading dislocation
density in an Al1−xGaxN step-graded layer and in an (AlN/GaN)10 superlattice. The
results are compared with experimental data from literature in Paragraph 5.4.6. Gen-
eral rules to decrease threading dislocation density in heterostructures are deduced
and listed at the end of this chapter, including a proposal for further improvement of
the model.
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5.2 Mathis Model

Mathis [49] described the threading dislocation density in GaN bulk using a series of
previous models developed by Romanov and co-workers in 1996 [64,65]. These models
are based on reactions of inclined dislocations which change the threading dislocation
density. The reactions among threading dislocations are caused by the minimization
of the internal energy of the system. The energy per unit length of a dislocation with
the Burgers vector b is within the isotropic approximation given by

dEd
dy

=
µ |b|2 (1− νcos2θ)

4π (1− ν)
ln

�
R

rc

�
. (5.1)

Since the energy of a dislocation is proportional to b2, the above expression can be
written as

dEd
dy

= const · |b|2 . (5.2)

If two dislocations with Burgers vectors b1 and b2 become contiguous by some process,
a reaction between them happens only if the reaction product is a new dislocation
with Burgers vector b3 whose energy is lower than the sum of the previous dislocation
energies (see Figure 5.3), i.e., in terms of the respective Burgers vector:

|b1|2 + |b2|2 > |b3|2 (Frank�s rule) . (5.3)

The above formula is called Frank�s rule [55]. Different reactions occur dependent
upon the dislocation geometry. If b1 = −b2, i.e., two dislocations with opposite
Burgers vectors meet, they annihilate. Other possible reactions are fusion (b1+b2 →
b3) and scattering (b1 + b2 → b3 + b4, Frank’s rule in this case is analogous to 5.3),
or no reaction at all.

b2

b1

b3

l2 b2

b1

b3
l3

l1

Figure 5.1: An example of a dislocation reaction (fusion) b1 + b2 → b3. Vectors b1,
b2 and b3 are the respective dislocation line directions.

Twenty different types of threading dislocations exist in a crystal with hexagonal
symmetry (see Figure 5.2): two different types of screw dislocations with b = ±c, six
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different types of edge dislocations with the Burgers vectors b = ±ai (i = 1, 2, 3), and
12 different mixed threading dislocations with b = ±c± ai (i = 1, 2, 3). Table 5.2
shows the products of reaction among these threading dislocations according to Frank’s
rule.

c

a1

a2
a3

a2+c

Figure 5.2: Hexagonal lattice. Burgers vectors of the type 1/3�112̄0� are blue. Burgers
vector of the type �0001� is green. Burgers vector of the type 1/3�112̄3� is
red.

In Romanov’s [64, 65] and Mathis’ [49] models, threading dislocations do not move
physically (i.e. do not glide or climb), instead movements result from growth. Suppose
the situation sketched in Figure 5.3.

h1
h2 TD TD

Figure 5.3: Relative motion of inclined TDs as a result of film growth.

The threading dislocation segments are inclined with respect to the growth direction
and as a consequence the terminating points at the upper surface move laterally and
can eventually come in contact with each other. The threading dislocation intersec-
tions with the free surface will move until the point where they come within a distance
r such that the interaction forces are sufficient to initiate an additional motion of dis-
locations. At this point they start to react among each other. The growth surface is
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assumed to be planar, which corresponds to a Frank-van der Merwe’s layer-by-layer
growth mode. Mathis considered threading dislocations in bulk GaN, supposing the
dislocations are lying on planes which are inclined with respect to the [0001] growth
direction and thus during the growth may become close enough to react. The inclina-
tion of (some) dislocations was obtained by considering the dislocation energy within
the isotropic theory. In Chapter 3, the optimal dislocation line direction for c- and
a-type dislocations in elastically isotropic GaN is vertical whereas for (a+ c)-type dis-
locations it is approximately 14.5◦ inclined from the vertical direction, which is similar
to Mathis’ result of 15.6◦. Mathis also presented TEM evidence for some dislocations
being inclined and claimed agreement with the above mentioned inclination angle.
Section 3 shows that within the anisotropic theory all dislocations are parallel to the
[0001] direction. In an absence of factors which can incline the dislocations, such as the
island growth mode or impurities, the vertical threading dislocations are not able to
come close enough to react, so the model can not be applied. A simple application of
Mathis’ model is given in the next Paragraph, where the threading dislocation density
is calculated in a GaN film and where the growth direction is the [112̄2] direction (see
Figure 5.4). In this situation, Mathis’ treatment is used to calculate the threading
dislocation density because all threading dislocation types are inclined with respect to
the [112̄2] direction, as shown in Table 3.6. The discussion of the results will provide
a first general idea about which model parameters affect the threading dislocation
density more.

[1122]

[0001]

GaN

Figure 5.4: Perspective view schematic of a semipolar GaN film with growth direction
[112̄2].

5.2.1 Application to semipolar GaN

Chapter 3 shows that in GaN all dislocations close to the (112̄2) facet are inclined
with respect to the [0001] direction. The related angles α of inclination are listed
in Table 3.6. Mathis’ model is used to calculate the threading dislocation density in
semipolar GaN since all dislocations are inclined with respect to the [112̄2] growth
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Table 5.1: Reaction table [49] for threading dislocations (TDs) in GaN with hexago-
nal symmetry. Reactions which are not possible either due to the Frank’s
criterion or for geometric reasons are indicated with a “—” while reactions
which are possible are indicated with their designated number. Reactions
producing two dislocations are denoted with two numbers corresponding to
their products. Annihilation reactions are denoted by “A”.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

a1 −a1 a2 −a2 a3 −a3
a1
+c

a1
−c

−a1
+c

−a1
−c

a2
+c

a2
-c

−a2
+c

−a2
−c

a3
+c

a3
−c

−a3
+c

−a3
−c

c −c

1 a1 –
— — — — — — —

19 20 17 18
— —

13 14
— — — —

2 −a1
— — — — — —

19 20
— — — —

15 16
— —

11 12
— —

3 a2
— — — — — —

17 18
— — — —

19 20 9 10
— — — —

4 −a2
— — — — — — — —

15 16 19 20
— — — —

7 8
— —

5 a3
— — — — — —

13 14
— —

9 10
— — — —

19 20
— —

6 −a3
— — — — — — — —

11 12
— —

7 8 19 20
— — — —

7 a1+c
—

19 17
—

13
— —

1&1
—

A
—

6
—

1&4
—

4
—

1&6
— —

8 a1−c
—

20 18
—

14
—

1&1
—

A
—

6
—

1&4
—

4
—

1&6
—

1
—

9 −a1+c 19
— —

15
—

11
—

A
—

2&2
—

2&3
—

5
—

2&5
—

3
— 2

10 −a1−c 20
— —

16
—

12 A
—

2&2
—

2&3
—

5
—

2&5
—

3
—

2
—

11 a2+c 17
— —

19 9
— —

6
—

2&3
—

3&3
—

A
—

2
—

3&6
— 3

12 a2−c 18
— —

20 10
—

6
—

2&3
—

3&3
—

A
—

2
—

3&6
—

3
—

13 −a2+c
—

15 19
— —

7
—

1&4
—

5
—

A
—

4&4
—

4&5
—

1
— 4

14 −a2−c
—

16 20
— —

8 1&4
—

5
—

A
—

4&4
—

4&5
—

1
—

4
—

15 a3+c 13
—

9
— —

19
—

4
—

2&5
—

2
—

4&5
—

5&5
—

A
— 5

16 a3−c 14
—

10
— —

20 4
—

2&5
—

2
—

4&5
—

5&5
—

A
—

5
—

17 −a3+c
—

11
—

7 19
— —

1&6
—

3
—

3&6
—

1
—

A
—

6&6
— 6

18 −a3−c
—

12
—

8 20
—

1&6
—

3
—

3&6
—

1
—

A
—

6&6
—

6
—

19 c
— — — — — — —

1
—

2
—

3
—

4
—

5
—

6
— —

20 −c
— — — — — —

1
—

2
—

3
—

4
—

5
—

6
— — —
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direction. The inclination angle with respect to the [112̄2] direction is denoted γ in
Figures 5.5.

c

[0001]

a

γ

[1122]
α

(1122)

[0001]

a

c

Figure 5.5: Geometry of the hexagonal lattice with the (112̄2) plane indicated in blue.

The angle γ for the three threading dislocation types are calculated using the incli-
nation angle θ listed in Table 5.2 and the GaN lattice parameters a and c.

Table 5.2: Inclination angle γ of threading dislocations (TDs) with respect to the [112̄2]
direction.

TD type α γ
c 23◦ 35◦

a 64◦ 6◦

(a+ c) 34◦ 24◦

Using these values within Mathis’ model allows for the calculation of the threading
dislocation density in semipolar GaN. The equations of Mathis’ model are solved
supposing that all types of dislocations can react with each other and be produced by
reactions between other dislocation pairs. Eight different initial conditions are defined
changing the proportion among the dislocation families (see Table 5.3).
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Table 5.3: Ratios of the three threading dislocation (TD) types (in %) used as initial
conditions.

c-type TD a-type TD (a+c)-type TD
1 0 70 30
2 0 30 70
3 10 70 20
4 10 20 70
5 20 70 10
6 20 10 70
7 30 70 0
8 30 0 70

The interaction radius is set to 40 nm [79]. The initial value for threading dislocation
density is set to 1010cm−2, which is a typical value for III-nitride grown upon non native
substrates [38, 56, 81].

Ρ
�c

m
�

2
�

10 100 1000 104 105 106

2� 109

4� 109

6� 109

8� 109

1� 1010

70� a�type TD, 30� a	c�type TD, 0� c�type TD

30� a�type TD, 70� a	c�type TD, 0� c�type TD

70� a�type TD, 20� a	c�type TD, 10� c�type TD

20� a�type TD, 70� a	c�type TD, 10� c�type TD

70� a�type TD, 10� a	c�type TD, 20� c�type TD

10� a�type TD, 70� a	c�type TD, 20� c�type TD

70� a�type TD, 0� a	c�type TD, 30� c�type TD

0� a�type TD, 70� a	c�type TD, 30� c�type TD

h �nm�

Figure 5.6: The total threading dislocation density, called ρ, as a function of the GaN
thickness h for different initial conditions.

Figure 5.6 shows the total threading dislocation density (i.e., the sum of the densities
of the twenty dislocation families) as a function of the film thickness for the different
initial conditions listed in Table 5.3. For all cases, the general behavior can be di-
vided into three stages. The first stage covers the initial 100nm of the film thickness,
where the density is almost constant, i.e., the number of occurring reactions is small
because the inclination angle is small. In the second stage, between 100nm and 10µm,
the density decreases from the initial value until a saturation point. The reduction is
caused by reactions among dislocations. After 10µm, the density becomes constant,
meaning that reactions are no longer taking place. The saturation of the threading
dislocation density was observed experimentally by several authors [3,34,47]. Consider

73



now the different curves of Figure 5.6. Keeping constant the starting value of c-type
threading dislocations, an initial amount of (a+ c)-type threading dislocations, which
is bigger than a-type threading dislocations, implies a lower final asymptotical value of
the density. This is explained by the fact that (a+ c)-type threading dislocations have
an inclination angle γ bigger than the corresponding one for a-type threading disloca-
tions. Despite the influence of the inclination angle, it is not always straightforward
to predict the results only based on considerations of the inclination angle.
For example, increasing the initial amount of c-type threading dislocations when

the initial amount of a-type threading dislocations is bigger than the initial amount
of (a+ c)-type threading dislocations, causes the final threading dislocation density to
increase. This is explained considering the particular case where there are no initial
(a + c)-type threading dislocations (see the red solid line in Figure 5.6). Here, the
threading dislocation density does not change from the initial value because no reac-
tions can take place among a-type threading dislocations themselves, among c-type
threading dislocations themselves, and between a-type threading dislocations and c-
type threading dislocations, as shown by Table 5.2. Instead, increasing the initial
amount of c-type threading dislocations when the initial amount of a-type threading
dislocations is lower than the initial amount of (a + c)-type threading dislocations,
causes the final value of threading dislocation density to decrease. In all cases, after
10µm, the overall decrease from the initial density is less than one order of magni-
tude, independently of the initial conditions. This decrease is not enough to improve
the performance of real devices. Therefore, a better method to reduce the threading
dislocation density is the use of multilayered structures. In this situation, Mathis’
model [49] is no longer sufficient to calculate the threading dislocation density due to
the presence of interfaces among lattice-mismatched films. Under such circumstances,
a threading dislocation glide along the interface must be considered as an additional
source of reactions. In the next Paragraph, a threading dislocation glide along the
interface is evaluated together with the evolution of the misfit dislocation density.
The model of misfit dislocation density will be incorporated into an improved treat-
ment capable of evaluating the threading dislocation density in heterostructures (see
Section 5.4).

5.3 Misfit dislocation density

After the critical thickness, threading dislocations glide along the interface of a lattice
mismatched bilayer with the concomitant formation of misfit segments. The misfit
segment is called misfit dislocation because its formation is caused by the relaxation
of the misfit strain associated with the lattice mismatch. At the critical thickness,
the formation of misfit dislocations is energetically favorable as they relax the internal
energy. Increasing the film thickness after the critical value, the evolution of the
misfit dislocation density was modeled by Hu [31]. The model is based on balancing
the elastic energy from a partially relaxed misfit strain and the energy of the non-
interacting misfit dislocation arrays. The main hypothesis is that all misfit dislocations
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appear suddenly when the film thickness reaches the critical value. There is no reason
to assume that this happens but this assumption is retained to keep the equations
simple, thus avoiding the inclusion of any kinetic parameter into the treatment. Hu’s
expression [31] for the misfit dislocation density ρMD after the critical thickness reads
as follows:

ρMD =
�m

b sin θ sinφ

�
1− hc

h

�
. (5.4)

The elongation of the misfit dislocations causes the relaxation of the initial misfit
strain �m. Therefore the partially relaxed strain � is [66]

|�| = ||�m| − ρ b sin θ sinφ|, (5.5)

where θ is the angle between the dislocation line and the Burgers vector, and φ is
the angle between the slip plane and the interface. The expression has been deduced
within the elastically isotropic framework.
A similar formula of misfit dislocation density was derived by Holec [24] for the

hexagonal symmetry:

ρMD =
2

3

�m
b sin θ sinφ

�
1− hc

h

ln h
rc

ln hc

rc

�
. (5.6)

The relaxation of the misfit strain as a consequence of misfit dislocation elongation is
calculated as [24]

|�| = ||�m| − |3
2
ρ b sin θ sinφ||. (5.7)

The models of both Hu [31] and Holec [24] are used to calculate the misfit dislocation
density and the strain relaxation after the critical thickness for a GaN film grown
upon an AlN substrate. The critical thickness is calculated according to Steeds [72]
when Holec’s model [24] is used. Otherwise, when Hu’s model [31] is used, the critical
thickness is calculated following the Freund procedure [17].
Figure 5.7 shows that the dislocation density approaches the limit for an infinitely

thick layer quite rapidly, indicated by the dashed lines. The figure also shows the
difference between the two models. The misfit dislocation density increases faster
when Hu’s model [31] is used. The difference between the final values of the density
after the saturation point is around 25%.
Regarding the stress relaxation, Hu’s model [31] predicts a slightly lower residual

strain compared to Holec’s model [24], but the difference between the two is negligible.
The two models have the same asymptotical value corresponding to the same in-plane
strain, i.e., the complete relaxation.
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Figure 5.7: The misfit dislocation density ρMD, calculated within the isotropic and
anisotropic frameworks, as function of the film thickness h.
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Figure 5.8: The in-plane strain ε, calculated within the isotropic and anisotropic
frameworks, as function of the film thickness h.

5.3.1 Application to AlGaN film on AlN substrate

Holec model [24] is used to calculate the misfit dislocation density and the strain re-
laxation in Al1−xGaxN film grown upon an AlN substrate for x=25%, 50%, 75%, and
100%. The critical thickness is evaluated according to Steeds [72]. Figure 5.9 shows
that in increasing the lattice mismatch between film and substrate, the misfit disloca-
tion density increases as well as the corresponding asymptotical value. In particular,
in increasing the lattice mismatch, the increase of the misfit dislocation density is
faster in the early stage of the growth and then slows down.
Figure 5.9 shows also that the saturation of the misfit dislocation density is almost

reached at 50nm. Temperature can delay the development of the misfit dislocation
density. Kinetic parameters are not considered in this work but the delay of the
misfit dislocation elongation is negligible at typical processing temperatures of III-
nitrides, which is around 1000◦C [11]. A relaxation of the misfit stress results from
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Figure 5.9: The misfit dislocation density ρMD, calculated within the anisotropic
framework, as a function of the film thickness h for different chemical
compositions of the film alloy.

the elongation of the misfit dislocations. The stress relaxation has been evaluated for
an Al1−xGaxN film grown upon an AlN substrate for x=25%, 50%, 75%, and 100%.
The results are shown in Figure 5.10, where the strain decrease is a function of the
film thickness. In particular, the decrease is faster for a high lattice mismatched film
than for low ones. Another observation of Figure 5.10 is that the curves overlap after
a certain point and they have the same asymptotical value which corresponds to the
complete relaxation of the structure. It is important to observe that the in-plane strain
is still not relaxed after 40nm. In particular, it is still 1/2 and 1/6 of the initial misfit
strain for Al0.75Ga0.25N and GaN films respectively.

Al1�x Gax N film on AlN substrate
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Figure 5.10: The in-plane strain as a function of the film thickness h for different initial
conditions.
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5.4 Threading dislocation density in heterostructures

In this section a model for the evolution of threading dislocations in GaN-based mul-
tilayers is derived by integrating Mathis’ model [49] with the model of Romanov [66].
The impact of the hexagonal symmetry is considered with an appropriate expression
for the misfit dislocation density [24, 31]. In the first Paragraph 5.4.1 of this section,
appropriate equations describing the motion of one isolated dislocation are derived.
Then in Paragraph 5.4.2, the reaction-kinetic approach introduced by Romanov [64]
is used to quantify the probability that two threading dislocations come in contact
with each other. A model describing the threading dislocation density with increasing
film thickness in multilayers is described through a set of differential equations (see
Paragraph 5.4.3). These are then applied to a bilayer (Paragraph 5.4.5) in order to
evaluate which parameters have the strongest impact on the results. After this, the
threading dislocation density is calculated in a step-graded layer and superlattice to
understand which structure is better for minimizing the threading dislocation popu-
lation (Paragraph 5.4.6). Concluding the section, various design rules for dislocation
filter are deduced and listed.

h < hc

b

substrate

(a)

h > hc

bTD

bTD 

bMD substratedλ

(b)

Figure 5.11: Basic processes of threading dislocation motion in a strained epitaxial
film. 5.11(a) An isolated threading dislocation for h < hc for which no
motion is possible. 5.11(b) Threading dislocation – misfit dislocation
system for h > hc: increasing film thickness leads to an increasing con-
figurational force on the threading dislocation which leads to threading
dislocation motion and generation of additional misfit dislocation segment
length.
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5.4.1 Motion of an isolated TD

An isolated threading dislocation is depicted in Figure 5.12.

bTD

lnf

f
TD

α

ω

θ

h

mbMD MD

k
ψ

Figure 5.12: Geometry of an isolated dislocation composed of a threading arm (TD)
and a misfit segment (MD).

An uniformly strained layer of thickness hf is epitaxially bonded to a substrate of
relatively larger thickness. The normal to the film-substrate interface is denoted by nf .
The equibiaxial mismatch strain until critical thickness is denoted by �m. A threading
dislocation is assumed to exist along a particular glide plane in the presence of the
background mismatch strain field. The threading dislocation line extends from the free
surface of the film to the substrate. The tangent vector of the threading dislocation
is denoted l. During the film growth, it is assumed that the threading dislocation
geometry remains self-similar. This means that the threading dislocation remains in
the position of minimum energy with constant line direction l. The Burgers vector
of the threading dislocation is denoted by b. The slip plane of the dislocation (the
plane containing the dislocation line and the Burgers vector) is defined by its normal
ng. The angle α between the dislocation line l and the normal nf of the free surface
is calculated according to the minimization of the dislocation energy in Chapter 3.
Therefore l can be derived from the relation:

cosα = l · nf . (5.8)

ψ is defined as the angle between k and the projection of k to the film/substrate
interface [65]:

ψ = cos−1 (ng · nf) , (5.9)

where k is defined as [65]

k =
ng × (nf × ng)

sinψ
. (5.10)

79



The angle ω is defined as [65]

ω = cos−1

�
b · nf

|b| sinψ
�
. (5.11)

After the vector k and the angle ω are calculated using the previous relations, the
angle between b and the threading dislocation line l is denoted as θ, and can derived
by [65]

l =
sin (ω − θ)

sin ω

b

|b| +
sin θ

sin ω
k. (5.12)

During film growth, if film thickness is below the critical value, the threading disloca-
tion is sessile, i.e., it is not able to glide. As a consequence, the threading dislocation
does not move physically but the threading dislocation upper point moves along the
free surface due to the inclination of the threading dislocation with respect to the
growth direction. According to Figure 5.12, the point of intersection of the threading
dislocation with the free surface of the film moves with direction f along the free sur-
face. The velocity vS of the upper point of one sessile threading dislocation along the
free surface is calculated as [65]:

vS = tanα
dh

dt
f . (5.13)

As the film thickness increases after the critical thickness, the relaxation of the misfit
stress occurs via the glide of the threading dislocation, which leaves behind one misfit
segment along the interface. This misfit segment is generally called misfit dislocation
and its length is denoted λ in this work. The misfit dislocation elongates until the
complete relaxation of the misfit strain and the direction m of the elongation is the
direction of the gliding threading dislocation [65]:

m =
l− (l · nf)nf

|l− (l · nf)nf | . (5.14)

In this work, the portion of the dislocation spanning the film thickness is still called the
threading dislocation segment, or simply the threading dislocation. During the film
growth after the critical thickness, λ increases as a result of relaxation of the initial
misfit strain εm, causing a further glide of the threading segment. Concurrently, the
threading dislocation length increases due to the increase of the film thickness. Thus
after the critical thickness is reached, the threading dislocation intersection with the
free surface will move not only due to the (eventual) inclination with respect to the
free surface but also as a result of the threading dislocation glide, i.e., the misfit
dislocation elongation along the interface. In other words, the upper point of the
threading dislocation moves due to the inclination of the threading dislocation with
respect to the free surface but also moves physically as a result of the threading
dislocation glide along the interface. Therefore, the upper point of a glissile threading
dislocation (i.e., a dislocation able to glide) has a velocity defined of

vG = tanα
dh

dt
f +

dλ

dt
m, (5.15)
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where the first term takes the motion due to the inclination with respect to the film
free surface into account, and the second term the motion due to the elongation of the
misfit segment.
The elongation of the misfit segment is related to the relaxation of the structure

caused by the film growth after the critical value. In order to establish a relation
between the misfit dislocation elongation dλ and the increase of the film thickness dh,
it is necessary to consider the expression for the misfit dislocation density (denoted as
ρMD) reported in Section 5.3.
For the isotropic system, the differentiated form of expression (5.4) with respect to

h is

dρMD =
�mhc csc θ cscφ

b

1

h2
dh = Ciso

dh

h2
. (5.16)

For the hexagonal system, the differentiated form of expression (5.6) with respect to
h is

dρMD =
2�mhc csc θ cscφ

3b ln hc

rc

ln hc

rc
− 1

h2
dh = Chex

dh

h2
. (5.17)

Misfit dislocations are generated through the motion of glissile threading dislocations,
so it is possible to give a second definition of ρMD as a function of the total density ρG
of the glissile threading dislocations:

dρMD = 1
3
ρGdλ, (5.18)

where the factor 1/3 accounts for the use of a linear misfit dislocation density in
a hexagonal grid array of misfit dislocations. When combining expression (5.16)
or expression (5.17) with expression (5.18), and solving for dλ, the result is that
dλ = Cdh/(h2ρG), with C = 3Ciso or C = 3Chex. Substituting the last relation in
expression (5.15), the velocity of the glissile threading dislocation is expressed as

vG =

�
tanα f +

C

h2ρG
m

�
dh

dt
. (5.19)

5.4.2 Reactions among dislocations

Two threading dislocations with different Burgers vectors bi and bj and line directions
li and lj are considered. The two threading dislocations can be either glissile or
sessile. Supposing that the film thickness is increasing, the upper points of the two
threading dislocations move along the film free surface until the point they come within
a distance r such that the interaction forces are sufficient to initiate additional motion
of dislocations. They can now start to react with each other. The driving force for
the interaction between dislocations is the minimization of the internal energy. Three
possible reactions (annihilation, fusion, and scattering) can occur depending on Frank’s
criterion (see equation (5.3)). The interaction radius r within which all these reactions
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occur is intended to be the same value in this work [49]. The probability of reaction
between these threading dislocations at any point on the free surface is supposed to
be uniform and occur with a reaction rate of Vij. This is defined as a function of the
difference between the velocities vi and vj of the threading dislocations [49]:

Vij = 2r |vi − vj| . (5.20)

The velocities are calculated properly for sessile and glissile threading dislocations
through expressions (5.13) and (5.19), respectively.
Using 5.20 as well as the reaction kinetic approach introduced by Romanov [64], it

is possible to describe how the threading dislocation density changes during epitaxial
growth. The densities of the i-th and j-th threading dislocation families are indicated
with ρi and ρj respectively. If annihilation or fusion occur between dislocations of i-th
and j-th kinds, then the diminishing density for the i-th kind can be calculated by [49]

dρi
dt

= −Vijρiρj. (5.21)

and a similar expression can be written for the density of the j-th kind threading
dislocations. When multiplying both the members of the previous equation by dt and
combining with expressions (5.19) and (5.20), (5.21) becomes

dρi
dh

= −Rijρiρj. (5.22)

where

Rij = 2r

$$$$�tanαi mi +
C

ρGh2
fi

�
−
�
tanαj mj +

C

ρGh2
fj

�$$$$ . (5.23)

Fusion reactions between the i-th and j-th threading dislocations also have the effect
of producing a new threading dislocation of the k-family; therefore a production term
is taken into account for each kind of threading dislocation:

dρk
dh

= Rijρiρj. (5.24)

Scattering reactions between the i-th and j-th threading dislocations can produce
two k-th threading dislocations (see the reaction Table 5.1); therefore the previous
equation is corrected as

dρk
dh

= 2Rijρiρj. (5.25)

In general, the evolution of density ρk of dislocations belonging to the k-th family with
the film thickness is described by

dρk
dh

= Mk
ijRijρiρj = Kk

ijρiρj, (5.26)

where Mk
ij = 0 in case of annihilation, Mk

ij = 1 (k �= i and k �= j) for fusion and
scattering reactions, and Mk

ij = 2 (k �= i and k �= j) for scattering reactions that
produce two threading dislocations belonging to the same ρk family (see the reaction
Table 5.1).
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5.4.3 Sessile and glissile dislocations

Until now, the evolution of the dislocation density was described independently from
the ability of the dislocation to glide or not. As discussed previously, when the film
thickness is lower than its critical thickness, all threading dislocations are unable to
glide along the substrate-film interface. Therefore, all threading dislocations are sessile
before reaching the critical thickness. In hexagonal structures there are 20 threading
dislocation families (see Section 5.2). Since each threading dislocation can be glissile
or sessile above the critical thickness depending on the above mentioned conditions,
there are 20 families of glissile threading dislocations and 20 families of sessile thread-
ing dislocations. The densities of these two groups are evaluated separately in the
subsequent treatment. In particular, the rate Rij is denoted RG,ij in the case where
threading dislocations are glissile, RS,ij both the threading dislocations are sessile or
RGS,ij when one threading dislocation is glissile and the other sessile. Similarly, Kk

ij

is denoted Kk
G,ij in the case where both threading dislocations are glissile, Kk

S,ij when
both threading dislocations are sessile or Kk

GS,ij when one threading dislocation is
glissile and the other sessile.
The total density of threading dislocations, i.e., the number of threading disloca-

tions per unit area of the free surface, is indicated with ρTD, the total density of
sessile threading dislocations and the total density of glissile threading dislocations
are indicated with ρS and ρG respectively. Therefore, below the critical thickness we
have

ρTD = ρS =
20"
k=1

ρS,k. (5.27)

Above the critical thickness, it is assumed that each threading dislocation can glide,
becoming glissile and leaving a misfit segment behind. Consequently, the total den-
sity of threading dislocations is the sum of sessile and glissile threading dislocation
densities. If ρG indicates the total density of glissile threading dislocations, above the
critical thickness this results in

ρTD = ρG + ρS =
20"
k=1

ρG,k +
20"
k=1

ρS,k. (5.28)

Changing the film thickness by dh, the previous expression becomes

dρTD

dh
=

20"
k=1

dρG,k

dh
+

20"
k=1

dρS,k
dh

. (5.29)

The complete relaxation of the structure stops the threading dislocation glide, and
glissile threading dislocations become sessile again. Considering equation (5.19), the
complete relaxation is reached when vG reduces to vS for h → ∞.
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(a) Initial configuration with two glissile
threading dislocations in strained film
of thickness hf > hc.

h > hc

bTD 
 

bTD 

bMD substrate

(b) Blocking of threading dislocation mo-
tion by a misfit dislocation in the slip
path of the threading dislocation.

h > hc

bTD
bMD substrate

bTD 

bMD 

(c) Intermediate configuration with thread-
ing dislocations at the distance of the
annihilation radius r.

h > hc

bMD substrate
bMD 

(d) Annihilation of the two threading dislo-
cations: final configuration with misfit
dislocations only (the threading dislo-
cations are annihilated).

h > hc
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bMD substrate
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bMD 

bTD 

(e) Fusion of the two threading disloca-
tions: final configuration with one new
threading dislocation.
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bTD 
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bTD bTD 

(f) Scattering of the two threading disloca-
tions: final configuration with two new
threading dislocations.

Figure 5.13: Movement and reactions of the threading dislocations
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In parallel, other factors can stop the dislocation glide above the critical thickness
and before the saturation point. During the motion, one glissile threading dislocation
may be blocked by a misfit segment lying in the path of another moving threading
dislocation, as shown schematically in Figure 5.13(b). The problem of threading dis-
location blocking was treated in detail by Freund [18]. In the present treatment, once
a threading dislocation has been blocked by a crossing misfit dislocation, its motion
will be considered arrested for all further film growth. The chance of intersection of
a randomly located glissile threading dislocation with a misfit dislocation is supposed
to be ρG,kρMDdh. The result is a decrease of the density of k-type glissile threading
dislocations by

dρG,k = −ρG,kρMDdh, (5.30)

and consequently the density of the k-type sessile threading dislocations increases by

dρS,k = ρG,kρMDdh. (5.31)

Also the reactions among threading dislocations can affect the ratio between glissile
and sessile dislocations. The number of glissile dislocations decreases when two glissile
threading dislocations annihilate each other and therefore the density of k-type glissile
threading dislocations is decreased by the following:

dρG,k = −
�"

j

RG,kjρG,kρG,j +
"
j

RGS,kjρG,kρS,j

�
dh. (5.32)

Annihilation is not the only reaction which decreases the density of glissile disloca-
tions. Few experimental observations of the interaction between a glissile and a sessile
dislocations are available in literature. Thus it is assumed in this work that the mo-
tion of one glissile dislocation ends when it encounters another threading dislocation
(either glissile or sessile). At this point, the two threading dislocations react with each
other by fusion or scattering and the resulting dislocation/dislocations remains/remain
sessile. The density decreases by

dρG,k = −
�"

ij

Kk
G,ijρG,iρG,j +

"
ij

Kk
GS,ijρG,iρS,j

�
dh. (5.33)

In parallel, the density of k-type sessile threading dislocations increases by

dρS,k =

�"
ij

Kk
G,ijρG,iρG,j +

"
ij

Kk
GS,ijρG,iρS,j

�
dh. (5.34)

Based on equations (5.30), (5.32), and (5.33), by increasing the film thickness by dh,
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the total variation of the density of k-type glissile threading dislocations is

dρG,k

dh
=− ρG,k ρMD

−
"
j

RG,kj ρG,k ρG,j −
"
j

RGS,kj ρG,k ρS,j

−
"
ij

Kk
G,ij ρG,i ρG,j −

"
ij

Kk
GS,ij ρG,i ρS,j. (5.35)

The number of sessile threading dislocations is increased by the decrease of the glis-
sile threading dislocation density (see equations (5.31) and (5.34)). In addition the
reactions among sessile threading dislocations affect the density of the k-type sessile
threading dislocation:

dρS,k =

�"
ij

Kk
S,ijρS,iρS,j −

"
j

RS,kjρS,kρS,j

�
dh. (5.36)

The k-type sessile threading dislocations can annihilate with glissile dislocations of an
another family, therefore

dρS,k = −
�"

j

RGS,kjρS,kρG,j

�
dh. (5.37)

Based on equations (5.31), (5.34), (5.36), and (5.37), by increasing the film thickness
by dh, the total variation of the density of k-type sessile threading dislocations is

dρS,k
dh

= + ρG,k ρMD

+
"
ij

Kk
G,ij ρG,i ρG,j +

"
ij

Kk
GS,ij ρG,i ρS,j

+
"
ij

Kk
S,ij ρS,i ρS,j −

"
j

RS,kj ρS,k ρS,j

−
"
j

RGS,kj ρS,k ρG,j. (5.38)

The variation of ρTD with the film thickness dh is obtained by combining expres-
sion (5.29) with expressions (5.17), (5.35) and (5.38):

dρTD

dh
=

20"
k=1

dρG,k

dh
+

20"
k=1

dρS,k
dh

, (5.39)

dρG,k

dh
=− ρG,k ρMD

−
"
j

RG,kj ρG,k ρG,j −
"
j

RGS,kj ρG,k ρS,j

−
"
ij

Kk
G,ij ρG,i ρG,j −

"
ij

Kk
GS,ij ρG,i ρS,j, (5.40)
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dρS,k
dh

=+ ρG,k ρMD

+
"
ij

Kk
G,ij ρG,i ρG,j +

"
ij

Kk
GS,ij ρG,i ρS,j

+
"
ij

Kk
S,ij ρS,i ρS,j −

"
j

RS,kj ρS,k ρS,j

−
"
j

RGS,kj ρS,k ρG,j, (5.41)

dρMD

dh
=
2�mhc csc θ cscφ

3b ln hc

rc

ln hc

rc
− 1

h2
dh =

Chex

h2
. (5.42)

The calculation of the total density of the threading dislocation is performed with
the software Wolfram Mathematica for the heterostructures considered in the next
Paragraphs.

5.4.4 Initial and boundary conditions

[0001] l b
θ

Basal plane

Film Free Surface

hf

MD

TD

m

α

Figure 5.14: Geometry of a mixed dislocation in GaN.

In this section the initial and boundary conditions used to solve the system of
equations defined by equations (5.29), (5.17), (5.35) and (5.38) are listed.

• A single-crystal structure of Al1−xGaxN oriented along the [0001] direction is con-
sidered. The values of the lattice parameters of GaN and AlN are aGaN=3.22Å,
cGaN=5.19Å, aAlN=3.11Å, and cAlN=4.98Å respectively. The values for the
Al1−xGaxN alloy are calculated using Vegard’s law [76].

• The core radius of each threading dislocation is supposed to be half of its Burgers
vector.
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• Anisotropic elasticity is used to calculate the critical thickness and the misfit
dislocation density; consequently, C=Chex (see equation (5.17)).

• The interaction radius is 40nm [79].

• The importance of the inclination angle for the calculation of the dislocation
density was discussed in Section 5.2.1. The equilibrium values for the inclination
angle were calculated in Section 3.7. According to this calculation, in [0001] GaN
all types of threading dislocation are parallel to the [0001] direction. In reality,
experimental observations show that this angle is influenced by many factors not
considered in this work, such as temperature, island growth, doping, masking,
and misfit stress relaxation. Mathis [49] and other authors [22] observed that
a- and c-type threading dislocations are parallel to the [0001] direction but the
(a + c) type threading dislocations are inclined by 12◦. Holec [25] showed how
the island-growth mode can bend threading dislocations in the proximity of
inclined facets. Cantu [7] grew Si doped Al0.49Ga0.51N films upon Al0.62Ga0.38N
and observed inclined dislocations in the film. The inclination was suggested to
be caused by the Si doping. Li [43] arrived at the same conclusion by doping a
GaN-based film with Mg. In contrast to their explanations, Follstaedt [16] and
coauthors realized that in similar structures, dislocations are bent before the
introduction of any dopant. According to him, the relaxation of the misfit stress
causes the bending. In this work, the screw and edge threading dislocations in
GaN are supposed to be aligned with the [0001] direction, and the (a + c)-type
threading dislocations inclined with respect to it (like assumed by Mathis [49]).
Based on these experimental findings, the inclination angle is assumed to be very
small (5◦). The reason for this comes from evaluating the threading dislocation
density in an unfavorable condition, i.e., the reaction probability is minimum.

• It is also assumed that the planar growth mode prevents threading dislocation
inclination due to the vicinity with the inclined facets.

• The initial amount of threading dislocations is set at 1010cm−2 as reported by
different authors [38,56,81]. The initial threading dislocation density is composed
of 70% a-type threading dislocation and 30% (a+ c)-type threading dislocation.
Different ratios are evaluated in Section 5.4.5.

• Several authors [39, 49] show that c-type dislocations are not very mobile and
not capable of reacting with other dislocations. Different explanations for this
behavior have been proposed. The c-type dislocation oriented along the [0001]
direction is a screw dislocation. It might happen, for example, that screw dislo-
cations exist at the center of a growth hillock or at the center of a nanopipe. In
the case of a growth hillock, mixed dislocations must elongate and move across
the hillock to reach the screw dislocation, making reactions less likely.

• A major assumption of the present model is a simplification of the geometry of
the dislocation glide. It is assumed that a misfit segment and the upper point of
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a threading dislocation have the same direction, i.e., they have the same velocity
f = m (see Figure 5.14), and equation (5.19) for glissile dislocations reduces to

vG =

�
tanα +

C

h2ρG

�
dh

dt
m. (5.43)

As a consequence, it is assumed that only the (a+c)-type threading dislocations
have the possibility to move, being that they are the only ones tilted with respect
to the growth direction, the only ones to execute lateral motion toward each other
and the only ones to react with an increase in the layer thickness. Despite this
simplification, the model brings some insight and, although not quantitatively,
at least qualitatively accounts for the contribution of glide to the threading
dislocation density reduction.

5.4.5 GaN/AlN bilayer

The model described in Section 5.4 is used to calculate the threading dislocation
density as a function of the film thickness hf in a [0001] GaN film grown upon a AlN
substrate. The results (red line in Figure 5.15) are compared with those from Mathis’
model [49] (blue line in Figure 5.15). The initial and boundary conditions are listed
in Paragraph 5.4.4.
The development of the threading dislocation density according to Mathis can be

divided into three stages, like as with semipolar bulk GaN (see Section 5.2.1). Initially,
the density remains quite constant because no reactions occur due to the big distance
among dislocations. After 1µm, the density decreases due to threading dislocation
reactions. When all dislocations having reacted, their density assumes an asymptotical
value, reaching the saturation point at 1mm.
The threading dislocation density according to the model proposed in this work is

represented by the red solid line in Figure 5.15. This can be divided into five stages.

1. Initially the density remains constant because dislocations are too far from each
other to react.

2. After the critical thickness is reached, which is 3µm according to Steeds [72],
dislocations glide along the interface and this causes the reactions. Therefore, the
threading dislocation density decreases in the 10nm above the critical thickness.
As a result of the threading dislocation glide, the density is 15% less with respect
to what was predicted by Mathis.

3. After hf = 15nm, the density is quite constant because dislocations not longer
glide (since the misfit stress is totally relaxed) but reactions driven by threading
dislocation inclination do not take place until 1µm.

4. After hf = 1µm, reactions caused by threading dislocation inclination occur,
which decreases the density until the point the model reduces to the Mathis
model at hf = 10µm.
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5. For hf > 10µm, the behavior is equal to that of the Mathis model.

Experimental observations (from private discussions with Dr. Baumgartl) confirm that
the presence of the interface and the subsequent glide of the dislocations decreases the
threading dislocation density. Therefore, the improved model agrees better with the
experimental observations respect to the Mathis’ model.
The red dotted line in Figure 5.15 represents the threading dislocation density –

according to the model described in this work – without threading dislocation blocking
caused by the presence of misfit dislocations along the interface. The red solid and
dotted lines are close to each other meaning that threading dislocation blocking is
negligible. This means that the first term from the left sides of both equations (5.35)
and (5.38) is negligible. In the following, the threading dislocation density for the same
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Figure 5.15: The red solid line shows the threading dislocation density, calculated ac-
cording to the model described in Section 5.4, as a function of the GaN
film thickness h. The GaN film is grown upon an AlN thicker layer.
The green and orange lines show the sessile and glissile threading dislo-
cation densities, respectively. The red dotted line shows the threading
dislocation density, according to the same model, without threading dis-
location blocking. The blue line shows the threading dislocation density,
calculated according to Mathis’ model [49], as a function of the GaN film
thickness h.

bilayer – GaN film upon AlN substrate – is calculated, thus the initial conditions are
changed.
One assumption is that only (a+c)-type threading dislocations are capable of gliding.

In order to increase the impact of the glide, the initial amount of (a+c)-type threading
dislocations is raised from 30% up to 60% and 90%. The related results are shown
in Figure 5.16. When the initial threading dislocation density is composed of 90% of
(a+c)-type threading dislocations, the final density is reduced by 30% with respect to
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the value given by Mathis’ model for hf < 2µm. Instead, for hf > 2µm, the variation
of the initial amount of (a+ c)-type threading dislocations has a negligible impact.
The effect of the inclination angle α is evaluated keeping the other initial and bound-

ary conditions equal to those reported in Section 5.4.4. Both Mathis’ model and the
improved one are used to calculate the threading dislocation density for different val-
ues of α. Figure 5.17 shows that the variation of α becomes remarkable in both models
at higher thicknesses. At hf = 1µm, the threading dislocation density with α = 60◦

is halved with respect to the case with α = 5◦. The models confirm that increasing
the inclination angle – by island growth, doping, and strain relaxation – drastically
improves the quality of the crystalline structure.
In conclusion, the crystalline quality of GaN film grown upon an AlN thicker layer is

improved by increasing the inclination angle rather than other factors. The dislocation
glide decreases the threading dislocation density only by 15% with respect to what
was predicted by Mathis’ model for bulk structures. The presence of one interface is
ineffective in reducing the dislocation density. The main goal now is to evaluate the
impact of the glide in a more complex heterostructure, with many interfaces along
which threading dislocation glide occurs.
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Figure 5.16: Threading dislocation density as function of the GaN film thickness h
calculated according to the Mathis model [49] and the treatment described
in Section 5.4 with different initial amounts of (a + c)-type threading
dislocations.

5.4.6 GaN-based multilayer

The improved model described in Section 5.4 is used to calculate the threading dislo-
cation density as a function of the multilayer thickness grown upon an AlN substrate.
Two types of multilayer are considered. The first is a step-graded layer composed of
Al0.75Ga0.25N (200nm) / Al0.5Ga0.5N (200nm) / Al0.25Ga0.75N (200nm) / GaN. The
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Figure 5.17: Threading dislocation density as a function of the GaN film thickness h
calculated according to the Mathis model [49] and the treatment described
in Section 5.4 using different values for the inclination angle of the (a+c)-
type threading dislocations.

results are shown in Figure 5.18. The second structure is a (AlN/GaN)10 superlattice,
and the related evolution of the threading dislocation density is shown in Figure 5.19.
In both cases the initial and boundary conditions are the same as reported in Para-
graph 5.4.4.
Considering the red line in Figure 5.18, the threading dislocation density after four

interfaces at 1µm is 25% less than the initial value. A decrease of the threading dislo-
cation density of technological relevance should be at least of one order of magnitude.
Therefore this step graded layer seems to not be effective for improving the crystalline
quality of the device.
As can be observed in Figure 5.18, the threading dislocation density quickly de-

creases suddenly after the critical thickness associated with each interface. This
decrease is caused by threading dislocation glide and is proportional to the lattice
mismatch associated with each interface.
The other curves of Figure 5.18 are related to multilayers with a lower number of

layers with respect to the one which is represented by the red line. The results indicate
that a lower number of layers decreases the threading dislocation density less.
Figure 5.19 shows the development of threading dislocation density in a (AlN/GaN)10

superlattice. This is composed of 10 periods of AlN/GaN. Each layer is 20nm thick.
The superlattice is grown upon the AlN substrate and is h = 400nm high. A GaN
layer extends for h > 400nm.
The red line shows the threading dislocation density, calculated with the model of

Section 5.4, across the superlattice. Other lines show the threading dislocation density
with a lower number of layers in the superlattice. The black line corresponds to the
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threading dislocation density according to Mathis [49] for a GaN layer grown upon
an AlN substrate. All curves have the same behavior at high thickness, h > 105nm.
However, differences among the cases are evident in the first 400nm. In particular,
the superlattice reduces the threading dislocation density by 70% with respect to the
initial value, resulting in a more efficient method than the step-graded layer to decrease
the dislocation density. Again, a lower number of layers corresponds to a lower value
of the final threading dislocation density. A quick decrease of the threading dislocation
density is visible after the critical thickness of each interface is reached. This is caused
by threading dislocation glide. However, the density decreases more at interfaces
placed at lower thicknesses than at higher thicknesses. For example, the threading
dislocation density decreases by 15% at the first interface while it decreases by 1%
at the last one. This is caused by the incomplete relaxation of the misfit stress of
each interface. The smaller the layer thickness, the smaller the relaxation of the misfit
stress. This implies that in the last layers of a superlattice, the lattice parameter
tends to be constant through the thickness and equal to a value between the AlN
and GaN lattice parameters. The consequence it that a negligible lattice mismatch is
present at high thicknesses, i.e., the misfit stress is small, i.e., the glide is negligible.
Therefore, increasing the number of layers after this threshold does not improve the
crystalline quality. One possible method to complete the stress relaxation is growth
of a thick layer, GaN or AlN, to recover the intrinsic value of the lattice parameter.
Then a new superlattice can be grown to further reduce the threading dislocation
density. This has been observed by several authors [14, 85]. Their experimental data
(points 3 and 4 in Figure 5.19) show a threading dislocation density which is slightly
smaller than the values predicted by the improved model because the experimental
structures are composed of several superlattices separated by thick layers. Other
experimental data [75, 84] tend to confirm the prediction of the threading dislocation
density calculated according to the model proposed in this work (see Section 5.4).
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Figure 5.18: The red line shows the threading dislocation density, calculated using the
model of Section 5.4, as a function of the thickness h of the Al1−GafN
step-graded layer grown upon an AlN substrate. Dashed lines show the
threading dislocation density for structures with a lower number of layers.
The black dotted line shows the threading dislocation density according
to Mathis [49] for a GaN film grown upon the AlN substrate.
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Figure 5.19: The red line shows the threading dislocation density, calculated using the
model of Section 5.4, as a function of the thickness h of the (AlN/GaN)10
superlattice grown upon an AlN substrate. The dashed lines show the
threading dislocation density using a superlattice with a lower number
of layers. The black dotted line shows the threading dislocation density
according to Mathis’ model for a GaN film grown upon an AlN substrate.
The theoretical results are compared to experimental data, 1- [85], 2- [14],
3- [75], 4- [84].
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5.5 Summary

In this chapter Mathis’ model [49] is improved with regard to the dislocation glide
along interfaces and its effect on the dislocation density. The new treatment assumes
a simplified bidimensional geometry of the dislocation. Several kinetic factors affecting
the dislocation movement, like temperature and speed of growth, are neglected. The
results of the calculations show the following

1. The glide of the dislocations alone one interface happen in a short range on tens
of nanometer after the critical thickness. The glide increases the probability of
reactions among dislocations, reducing their density. The reduction is generally
small for a bilayer structure but can be magnified in multilayer structures;

2. The effect of the inclination angle on the dislocation density is evident at a
thickness much higher (on the order of hundreds of nanometers) than the crit-
ical thickness. The higher the inclination angle, the lower the final dislocation
density. In particular, the island-growth mode seems to favor the inclination of
the dislocations (see Chapter 3 and [25]);

3. Superlattice structures reduce the dislocation density more efficiently than the
step-graded layer. In the last case, the glide of the dislocations can be neglected;

4. Superlattice structures reduce the dislocation density by nearly one order of
magnitude when the thickness of the structure is half µm, hence yielding good
agreement with experimental data. This also demonstrates that the improved
model better predicts the final density with respect to Mathis’ model. The
efficiency of the superlattice is due to the high lattice mismatch between layers.
The higher the lattice mismatch, the more intense the dislocation glide.

The model presented in this chapter can be improved by the following:

1. Consideration of the real 3D geometry of the dislocation;

2. Consideration of the actual dislocation-dislocation interactions. This would in-
volve calculation of dislocation stress fields and, in fact, the employment of some
methods of dislocation dynamics;

3. Evaluation of the impact of the growth mode. Considering the island-growth
mode would mean considering the different facets of each island and the different
growth rates of the facets;

4. Choosing of the inclination angle in relation to the growth mode (see Chapter 3
and [25]). This would involve the calculation of the stochastic distribution of
the angles – which dislocations assume during the layer growth – and in fact,
the use of some statistical methods.
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6 Conclusions and outlook

Gallium nitride (GaN) and its alloys with aluminum or indium are the most important
semiconductors because they have better material and electronic properties compared
to silicon and other III-V compounds, like GaAs. These properties enable the use of
III-nitride based devices in a broad range of applications, from electronic to optical
devices.
Mass production of III-nitrides is already a reality, but despite this, many efforts

are still placed on the further development of their technology and the overcoming
of challenges posed by the lack of a native substrate, such as the large amount of
dislocations.
This thesis provides a theoretical contribution to the definition of design rules for

improving the crystalline quality of III-nitrides, in particular, the reduction of the dis-
location density. Continuum theory of dislocations treated within the linear elasticity
theory and the laws of thermodynamics are used to gain understanding and model the
dislocation development in these materials.

Chapter 3 summarizes the calculation of the dislocation energy within the isotropic
and anisotropic elasticity. The models were used to calculate the equilibrium configu-
ration for dislocations in AlN, GaN, and InN compounds, all oriented along the [0001]
direction.
In the first part of this work, dislocations were assumed to be in bulk, far from the

free surface of the material. In this case, the two theories give different results: in
monocrystals the a and (a + c) dislocations are not of the screw type – as predicted
in the isotropic framework – but instead mixed type dislocations.
Secondly, dislocations were assumed to be close to the free surface. When the free

surface is the (0001) plane, elastic anisotropic theory predicts that the dislocation line
along the [0001] direction possesses the lowest energy configuration regardless of the
dislocation type in both AlN and GaN. In InN only the c-type dislocations are screw
dislocations, while the other two types are mixed dislocations.
When the free surfaces are inclined facets {1122} and {1101}, elastic anisotropic

theory predicts different results depending on the compound. Regarding AlN, the
preferred dislocation line is along the [0001] direction independent from the dislocation
type and crystallographic plane as a free surface. The a-type dislocations in GaN and
InN propagate almost perpendicular to the {1122} and {1101} facets. Regarding the
other types, in GaN the dislocations are inclined by 20◦- 30◦, while in InN they are
aligned along the [0001] direction.
The inclined facets {1122} and {1101} are the free surfaces when the island-growth

mode is favored during the deposition of the compounds. The conclusion is that the
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island-growth mode increases in general the inclination of the dislocations with respect
to the growth direction. The same theoretical result was obtained by Holec [25] for
dislocations in GaN single crystals. However, Mathis [49] and other authors [22] mea-
sured experimentally other values of the inclination angle. In addition, experimental
observations show that the inclination angle is influenced not only by the anisotropic
structure of the crystal but also by factors not evaluated in this work. For example,
Cantu [7] and Li [43] demonstrated experimentally that the doping of the crystal can
influence the inclination angle. The wide scatter of the experimental data of the in-
clination angle suggests also that an important source of the dislocation inclination
is the stress/strain gradient of the structure, as shown by Follstaedt [16]. In order to
calculate the stress/strain gradient, it would be necessary to evaluate the numerous
factors which influence the mechanical stability of the epilayers. This would address
primarily the thermal behavior of the III-nitrides.
The pre-logarithmic terms of the analytical models have been compared with the

corresponding values obtained by atomistic simulations. Good agreement has been
found with the continuum predictions based on anisotropic elasticity. Therefore both
approaches have been combined into a kind of a multiscale approach for predicting
the onset of misfit dislocations in thin film, as shown in Section 4.6.

In Chapter 4, different continuum-based approaches for calculating the energy of a
straight infinitely long dislocation in an elastic medium have been evaluated. Moti-
vated by the misfit dislocations in a heteroepitaxial interface, we evaluated separately
the influence of (i) free surface, (ii) different elastic constants in the film and substrate,
and (iii) elastic anisotropy. The results suggest that starting from a homogeneous infi-
nite isotropic medium, the inclusion of a free surface increases the dislocation energy,
and the difference in elastic constants of the film and substrate does not play any sig-
nificant role (because it is typically an order of magnitude smaller than the impact of,
e.g., the free surface), while the inclusion of elastic anisotropy decreases the dislocation
energy.
Finally, the equilibrium critical thickness was calculated for three important het-

eroepitaxial material systems, namely, an AlxGa1−xN film on a GaN substrate, an
InxGa1−xN film on a GaN substrate, and a Si1−xGex film on a Si substrate. A new
model including elastic anisotropy of the film and the substrate, the difference of their
elastic constants and the impact of the film free surface has been proposed. Recalling
that this is a model for the equilibrium critical thickness, i.e., it provides a condition
when it first becomes energetically favorable to start the relaxation of the mismatch
strain via plastic flow, the refined model yields excellent agreement with the available
experimental data in the sense that no misfit dislocations are detected below the here
predicted threshold.
The calculations of the critical thickness are of a great interest for technologists. The

wide scatter of experimental data of the critical thickness suggests that an important
role for the generation of the misfit dislocations is played by the growth technique.
Evaluating the impact of the growth technique would be helpful to explain the scat-
ter of the experimental data, nevertheless, the theory of dislocations would not be
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sufficient alone to reach this goal.
Another possible way to improve the current models is by accounting for the dislo-

cation generation mechanism(s) and thus providing a theory which goes beyond the
equilibrium critical thickness as presented in this chapter.

In Chapter 5, a new treatment assuming a simplified 2D geometry of the dislocation
describes the dislocation density in heterostructures based on III-nitrides. The new
model considers both different threading dislocation types with their specific reactions
and inclinations and also their glide along the interfaces. The results of the calcula-
tions show that (i) the glide increases the probability of reactions among dislocations,
reducing their density; (ii) the glide of the dislocations along one interface happen in
the first ten nanometers after the critical thickness while the effect of the inclination
angle is more evident after hundreds of nanometers after the critical thickness; and
(iii) (AlN/GaN)x superlattice structures reduce the dislocation density more efficiently
than the Al1−xGaxN step-graded layer because the first ones reduce the dislocation
density by nearly one order of magnitude when the thickness of the structure is half
µm high, yielding a good agreement with experimental data.
The model of the dislocation density can be improved in several ways. In order

to have a model capable of better quantitative prediction of the experimental data
of the dislocation density, it would be necessary to consider the real 3D geometry of
the threading dislocations. This would imply the assumption that the direction of the
misfit dislocation is different from the direction of the upper point of the threading
dislocation, i.e. f �= m (see Paragraph 5.4.1).
Another significant improvement toward realism would be to consider dislocation-

dislocation interactions. This would involve calculation of dislocation stress fields and,
in fact, employing some methods of dislocation dynamics.
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