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Abstract

The bias temperature instability (BTI) is one of the most serious reliability concerns in state-
of-the-art metal-oxide-semiconductor (MOS) field-effect transistors. It is observed when a large
voltage is applied to the gate contact of the MOS transistor at elevated temperatures while
all other terminals are grounded. The strongest effect is seen when a negative bias voltage is
applied to a p-channel MOS transistor, the corresponding degradation is commonly termed neg-
ative bias temperature instability (NBTI). Bias-temperature degradation is generally ascribed to
electrochemical reactions at point-defects in the oxide and at the semiconductor-oxide interface.
Concerning the physical details of the degradation process, however, no general consensus has
been found yet and a lively debate has been going on for several years.

For almost four decades, the reaction diffusion model has been the standard interpretation for
NBTI. This model assumes the observed degradation to be primarily due to the depassivation
of silicon dangling bonds at the Si-SiO2 interface. These dangling bonds originate from the
inherent lattice mismatch between the silicon substrate and the oxide layer and are passivated
during the manufacturing process using hydrogen. The reaction diffusion model assumes that
during NBT stress the hydrogen atoms leave the dangling bonds and diffuse into the oxide and
that this diffusion process determines the transient behavior of the degradation.

As the reaction diffusion model is unable to give the experimentally observed recovery behav-
ior, an alternative description has been developed by Grasser and coworkers. This multi-state
multi-phonon model ascribes the BT degradation primarily to the capture and emission of holes
at point defects inside the oxide. In this model, each point-defect can undergo a charge tran-
sition, which is understood as a non-radiative multi-phonon transition, or a structural recon-
figuration, which is understood as a barrier hopping process. The multi-state multi-phonon
model is able to explain complex BT experiments with very high accuracy and also links BTI to
other oxide-defect-related effects. Unfortunately, the model has a large set of parameters that
need to be calibrated and the atomic nature of the defect is still unknown.

The present work applies atomistic modeling techniques to both BTI models. The reaction-
diffusion mechanism is studied at the stochastic chemistry level. Our results clearly show that
the commonly employed mathematical description using rate equations is inappropriate for the
reaction-diffusion mechanism. However, the physically more reasonable model developed in
the present work fails to give both the experimentally observed degradation and recovery. This
suggests that the reaction-diffusion model requires a revision at the microscopic level and that
especially the diffusion-limitation of NBTI degradation is not a reasonable assumption.

For the multi-state multi-phonon model it is shown how the number of free parameters can
be reduced using an atomistic representation of a point defect and an electronic structure
method. For this purpose, the broad literature of multi-phonon transition theory is briefly
reviewed. Methods are developed to extract line shape functions, which describe the non-
radiative multi-phonon capture and emission of charge carriers, at different levels of physical
detail from an atomistic model of a point defect. The oxygen vacancy and the hydrogen bridge in
crystalline silicon dioxide are studied for their BTI behavior both as examples and as references
for future defect studies.

ii



Kurzfassung

Bei der Bias Temperature Instabilität (BTI) handelt es sich um einen Degradationseffekt in MOS-
Feldeffekttransistoren, der stark thermisch aktiviert ist und bei hohen elektrischen Feldern im
Oxid auftritt. BTI-Degradation wird meist erzeugt indem dem Gatekontakt des Transistors eine
überhöhte Spannung zugeführt wird, während alle anderen Anschlüsse auf dem Massepoten-
tial liegen. Obwohl in allen Kombinationen von Spannungs- und Kanalpolaritäten beobachtbar,
wird die mit Abstand stärkste Schädigung mit negativer Stressspannung in p-Kanal MOSFETs
verursacht. Diese Situation wird als Negative Bias Temperature Instabilität (NBTI) bezeichnet.
Näch gängiger Meinung liegt die Ursache der beobachteten Zerstörung in elektrochemischen
Reaktionen an Punktdefekten die sowohl an der Oxid-Halbleiter-Grenzschicht wie auch im
Oxid lokalisiert sind. Über den genauen physikalischen Vorgang der Schädigung konnte je-
doch bisher keine Einigkeit erzielt werden.

Im Reaktions-Diffusions-Modell (RD-Modell) der NBTI ist die Degradation durch die fortschre-
itende Depassivierung von Siliziumatomen an der Oxid-Halbleiter Grenzfläche bestimmt. In
dieser Region entstehen im Herstellungsprozess unabgesättigte Bindungen, die von den un-
terschiedlichen Strukturen im Oxid und im Substrat herrühren. In der Halbleiterbauteilferti-
gung werden diese offenen Bindungen durch Wasserstoffatome abgesättigt. Die Modellannah-
men bestehen nun darin, dass die Anwesenheit von Defektelektronen in Kombination mit der
erhöhten Temperatur die Si-H Bindungen brechen lässt und die Wasserstoffatome ins Oxid
diffundieren, und dass diese Diffusion das zeitliche Verhalten der NBTI bestimmt.

Trotz seiner Beliebtheit ist weder das RD-Modell noch eine seine zahlreichen Erweiterungen
in der Lage, alle experimentellen Beobachtungen konsistent zu erklären. So versagt dieser
Ansatz beispielsweise völlig bei der Vorhersage der Ausheilung, die stattfindet sobald die Gate-
spannung reduziert wird. Das alternative Mehrzustands-Multiphonon-Modell von Grasser et al.
versteht die BTI als dominiert vom Ladungsträgereinfang an Punktdefekten im Oxid. Der
Ladungsaustausch mit dem Substrat wird in dem Modell als nicht strahlender vibronischer
Übergang beschrieben. Zusätzlich zum Ladungsträgereinfang ist der Defekt in der Lage, zwi-
schen zwei stabilen Konfigurationen zu wechseln, die durch eine thermische Barriere getrennt
sind. Das Mehrzustands-Multiphonon-Modell ist in der Lage, das Verhalten von Bauteilen in
einer Reihe von Komplexen BTI-Experimenten akkurat wiederzugeben. Aufgrund des großen
Parametersatzes ist die Kalibrierung des Modells jedoch sehr aufwändig und oftmals unein-
deutig. Weiters ist noch völlig unklar, welcher Punktdefekt für BTI verantwortlich ist.

In der vorliegenden Arbeit wurden beide Modelle mittels atomistischer Simulationstechniken
näher untersucht. Der Reaktions-Diffusionsmechanismus wird hierbei auf Basis der Mas-
tergleichung der stochastischen Chemie modelliert. Dabei wird deutlich, dass die übliche
Beschreibung dieses Prozesses mittels Reaktionsgleichungen grob unzureichend ist. Mit dem
hier präsentierten, physikalisch sinnvolleren Modell sind jedoch weder die experimentell be-
obachtete Degradation noch der Ausheilvorgang vorhersagbar. Dieser Umstand legt nahe,
dass das RD-Modell auf physikalisch nicht haltbaren Annahmen basiert und dieses Konzept
— im Speziellen die Annahme der diffusionslimitierten Degradation — einer Überprüfung auf
mikroskopischer Ebene bedarf.

Mit Bezug auf das Mehrzustands-Multiphonon-Modell wird gezeigt wie einzelne Modellpa-
rameter auf Basis eines atomistischen Defektmodells mittels quantenchemischer Methoden
berechnet werden können. Energieabhängige Übergangsquerschnitte werden mit unterschied-

iii



lichen Näherungen extrahiert, und die Ergebnisse gegenübergestellt. Die gewählten Defekt-
strukturen, die Sauerstoffvakanz und die Wasserstoffbrücke in kristallinem SiO2, dienen dabei
als Anwendungsbeispiel und als Referenzdefekte für zukünftige Studien. Die Anwendung der
berechneten Querschnitte in einer makroskopischen Bauteilsimulation wird demonstriert.
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Man sollte sich mit Halbleitern
nicht beschäftigen, das sind
Dreckeffekte.
Wer weiß, ob sie wirklich existieren.

(Wolfgang Pauli)

1 Introduction

Point defects in solids have been in the focus of scientific interest since the very beginnings of
solid state theory due to their large influence on the macroscopic mechanical, electrical, and
optical properties of the host material. In semiconductor technology, which is itself largely
based on the intentional introduction of impurities into a host material, defects affect the
motion of the electrons and the holes by scattering, carrier trapping, or as recombination
centers. Under certain operational or environmental conditions, or just over time, point defects
in a given semiconductor device might be created, destroyed, repositioned, or modified in
their ability to interact with the carriers. As these changes usually alter the characteristics
of the device in an undesired manner, detailed knowledge of the defect physics is of utmost
importance in the field of semiconductor device reliability, within which the present work has
been carried out.

1.1 The Bias Temperature Instability

The main focus of interest for this thesis lies in the bias temperature instability (BTI) of metal-
oxide-semiconductor (MOS) transistors. This instability is usually encountered during burn-in
tests or high-performance operation of MOS devices [1,2] at temperatures in the 100oC–250oC
range, when a large voltage is supplied to the gate contact (≈ 7–10MV/cm oxide field) while all
other terminals are grounded, see Fig. 1.1. BTI degradation shows as a shift of the threshold
voltage and a degradation of the channel mobility. Bias temperature instabilities have been
known for forty years [3,4] and, due to their minor influence on early semiconductor technol-
ogy, were mainly of academic interest. With the aggressive shrinking of feature sizes down to
the nanometer regime, oxide fields need to be increased with every new technology generation,
to keep the sub-threshold leakage of the transistors at reasonable values [5]. Additionally,
the increasing concentration of currents during device operation into smaller and smaller vol-
umes leads to an increase in the thermal power density due to Joule heating and thus raises
the operating temperature of the MOS transistor. These effects brought bias temperature in-
stabilities to the industrial agenda in the early 2000s. As the problem is getting worse with
every new technology node, partially also because of the introduction of new materials to the

Figure 1.1: Schematic of a typical BTI mea-
surement. During stress, a large negative
gate voltage Vg is applied. The degradation is
monitored through the drain current which
is driven by applying a small voltage along
the channel.

Vg Vd ≈ 50mV
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semiconductor process, BTI has evolved to a major reliability issue in modern, highly scaled
MOS transistors [2]. Although present in both n- and p-channel devices with both polarities
of the bias voltage, the most pronounced BTI is observed when negative bias stress is applied
to p-channel MOS (pMOS) transistors. The corresponding instability is termed negative bias
temperature instability (NBTI).

1.2 BTI Modeling

Lifetime predictions for BT instabilities are usually made based on accelerated (so-called burn-
in) tests, where the devices are operated at temperatures and voltages that are beyond their
specifications, aiming at the amplification of one specific degradation mechanism as much as
possible without damaging the device otherwise. The degradation observed in these tests is then
extrapolated to the normal operation conditions by using empirical acceleration factors [6] to
predict the lifetime of the devices under these conditions. As the acceleration factors are purely
empirical expressions, they bear large uncertainties, requiring equivalently large reliability
margins, and tend to be overly pessimistic. An accurate and physics-based model could help
to reduce reliability margins thus making more efficient circuit designs possible.

In order to obtain accurate long-term (ten years or more) predictions for the amount of degra-
dation induced by a certain mechanism, a detailed physical understanding of this degradation
process is required. The identification of the relevant physics, however, proves to be difficult in
practice due to the limited experimental observability. These limitations arise from the small
structural dimensions of the microelectronic devices together with the low density of defects
present in the materials. The resulting number of defects generated during stress in a com-
mercial device is below the detection limit of most measurement methods that give hints to the
atomic structure involved, like electron spin resonance (ESR, also known as electron param-
agnetic resonance EPR) or optical absorption. Additionally, the defects generated during BT
stress recover fast, so any delay between the removal of the stress and the measurement of
the generated defects influences the outcome of this measurement. As a consequence, BTI
degradation models are quantitatively evaluated solely against electrical measurements. Other
experimental data is considered only in a qualitative fashion.

1.3 The Reaction-Diffusion Model for NBTI

Because of its impact, most modeling has been done on the negative bias temperature insta-
bility. The first model for NBTI was put forward by Jeppson and Svensson in 1977 [7]. Their
model was based on the following ideas, which are illustrated in Fig. 1.2. Due to the lattice
mismatch between silicon and silicon dioxide, some of the silicon atoms do not have an oxy-
gen neighbor. A silicon atom in this situation has one unpaired valence electron, which is
called a dangling bond. This dangling bond is visible in electronic measurements as it gives
rise to states within the band-gap [2]. During the manufacturing process the wafer is exposed
to a hydrogen-rich atmosphere so that hydrogen atoms can penetrate through the oxide and
passivate the silicon dangling bonds, leading to a removal of the band-gap states.

During stress, the presence of holes at the interface and the increased temperature leads to
a liberation of the hydrogen atoms. The remaining silicon dangling bonds become electrically
active carrier traps. According to the model, the depassivation and repassivation of dangling
bonds at the interface reaches an equilibrium in a very short time [8,9], and it is the constant
flux of hydrogen atoms (or some hydrogenic species) away from the interface that determines

2



Figure 1.2: The basic concept behind the reaction-
diffusion model for NBTI. (a) Silicon dangling bonds
at the Si-SiO2 interface are initially passivated by hy-
drogen atoms. (b) During stress, hydrogen atoms are
liberated leaving behind the unpassivated silicon dan-
gling bonds which degrade the device properties. (c)
The time evolution is determined by the depopulation
of the interface due to the flux of hydrogen into the
oxide.

a

b

c

. . . silicon . . . oxygen
. . . hydrogen

the temporal evolution of the degradation. Because of the two proposed stages — the electro-
chemical reaction at the interface and the subsequent diffusion of the hydrogenic species —
this model bears the name reaction-diffusion (RD) model.

The mathematical framework the of model is based on a macroscopic description using a
rate equation for the interface reaction and a Fickian diffusion equation for the motion of the
hydrogen in the oxide. Central actors are the density of depassivated silicon dangling bonds
at the interface Nit = [Si∗], and the concentration of hydrogen in the oxide H = [H](x, t) and
at the interface Hit = [H](0, t). During degradation, a fraction Nit of the initially passivated
silicon dangling bonds N0 = [SiH]0 is depassivated according to

∂Nit

∂t
= kf(N0 −Nit)− krNitHit, (1.1)

with the depassivation (forward) rate kf and the repassivation (reverse) rate kr. The hydrogen
liberated at the interface then diffuses into the oxide as

∂H

∂t
= −D

∂2H

∂x2
(1.2)

with the diffusion coefficient D. The RD model became popular amongst reliability engineers
as it features a simple mathematical description and a small set of parameters which have a
sound physical interpretation. Most importantly, as shown in Fig. 1.3, this model predicts a
constant-stress degradation that initially grows linearly with time and then follows a power-law
of the form [8,9]

Nit(t) =

�
kfN0

2kr
(Dt)1/4. (1.3)

This power-law degradation corresponded well with experimental results of the seventies.
In later experiments, power-law exponents were found that differed from the 1/4 prediction

of the model. These findings led to a modification of the original RD model to account for
different diffusing species such as H2 [10]. For almost four decades, the reaction-diffusion
idea was the unquestioned standard interpretation for NBTI until around 2005 NBT recovery
moved into the focus of the scientific attention. The experiments showed that NBTI recovery

3



Figure 1.3: Basic features of the degradation pre-
dicted by the RD model for NBTI. In the initial
phase, the depassivation reaction with rate kf dom-
inates, giving rise to a degradation that increases
linearly with time. After the depassivation and
repassivation reactions have reached an equilib-
rium, the degradation is determined by the flux of
hydrogen away from the interface, which gives rise
to a power-law with an exponent of 1/4.
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starts immediately (even before a microsecond) after the removal of stress and extended over
several decades, continuing even after more than 105 s [11,12]. This behavior stands in strong
contrast to the predictions of the RD model, which predicts a recovery that proceeds within four
decades, centering around the duration of the preceding stress phase [13,14]. A comparison
of a typical experimental NBT recovery trace and the corresponding prediction of the RD model
is shown in Fig. 1.4. Several extensions to the RD model have been put forward, such as
dispersive transport of the hydrogenic species [9,11], but none could give the observed experi-
mental behavior. The current state-of-the-art RD-based modeling supplements the RD theory
with empirical hole-trapping expressions. It is assumed that short-time (1 s) degradation and
recovery is dominated by hole trapping into oxide and interface defects, while the long-term
degradation and recovery are determined by the RD mechanism [15–18]. The RD theory em-
ployed in these modeling efforts is the modified RD model [19–21] that has been developed as
an extension of the classical RD models and explicitly considers diffusion of H and H2 and their
interconversion reactions. Classical models assume an instantaneous transition between the
liberated interfacial hydrogen and the diffusing species, usually H2 [10]. The reactions present
in the modified RD model are the interface reaction SiH � Si∗ + H, the dimerization reaction
2H � H2, and the diffusion of both species. The mathematical framework is an extension of
(1.1) and (1.2) [20,21],

∂Nit

∂t
= kf(N0 −Nit)− krNitHit, (1.4)

∂H

∂t
= −D

∂2H

∂x2
− kHH2 + kH2H2, (1.5)

∂H2

∂t
= −D2

∂2H2

∂x2
+

kH
2
H2 − kH2

2
H2, (1.6)

with the additional parameters kH and kH2 which are the reaction rates for dimerization and
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atomization, respectively. Again the motion of H and H2 is described by a simple diffusion law
with the corresponding diffusion coefficients D and D2 [22].

The combination of this modified reaction-diffusion model with empirical hole-trapping some-
what improves the match with experimental DC and AC stress data. The failure of the RD model
to properly describe NBT recovery is shifted out of the time window of some experiments, but
essentially remains.

Most recently, it has been argued that the shortcoming of the reaction-diffusion based model
concerning the prediction of NBTI recovery comes from the one-dimensional description of the
H and H2 diffusion and that a proper description of the three-dimensional atomic motion would
lead to the experimentally observed long recovery tails [16,17]. Additionally, some groups are
working towards a microscopic formulation of the reaction-diffusion model which would then
be applicable to small-scale effects like random telegraph noise (RTN) and nano-scale devices
in general [23].

We have also derived and implemented a microscopic formulation of the RD model [24,25], in
order to study the behavior of the RD mechanism on the atomic scale. Our calculations, which
are more deeply explained in Chap. 3, have disproved the claims in [16, 17] and raise strong
doubts of the validity of the proposed RD mechanism and its modeling using rate equations.

1.4 Defect-Centered Models

The obvious inability of the reaction-diffusion model and its variants to accurately predict
NBTI recovery as well as other properties, such as the universal scaling of BTI degradation
[27], led to increased interest in alternative descriptions. A promising approach was found
in 2008 in BTI models based on dispersive reactions between two or three states [27, 28],
termed double-well or triple-well models. Although the central actors were still believed to be
hydrogen atoms, these models brought a fundamental reinterpretation of the physical process
behind the BTI. The collective diffusion process that determines the degradation and recovery
in the RD models was replaced with a dispersive hopping of isolated particles. Even better
accordance with experimental data was found later that year with a model that coupled a
two-state description of the ‘hydrogen atom’ with an also statistically distributed thermally
activated hole capture process [29]. The introduction of more complex experimental techniques
such as rapid gate voltage and device temperature switches created new testing-grounds for
BTI modeling. Early 2009 a refined model could be devised that was also able to explain
the more complex experimental data with striking accuracy [26]. This model brought along a
complete reinterpretation of the degradation process that no longer assumes the hole capture
to happen at the Si-SiO2 interface, but instead at defects within the gate-oxide. Upon hole
capture, these defects would undergo complicated reconfiguration, as explained in Fig. 1.5,
and eventually offer a bonding state to a hydrogen atom. Interfacial hydrogen atoms would
be thermodynamically more stable at this defect site than at the interfacial silicon dangling
bond, thus creating an interface defect. In contrary to its predecessors this model is based on a
concrete microphysical picture, where the structural reorganization is described as a transition
over a barrier and the hole capture is understood as a field-accelerated multi-phonon process.
This behavior was inspired by models for irradiation damage, which assume the oxygen vacancy
defect in SiO2 as the central actor [30]. In its neutral state, the oxygen vacancy is assumed to
exist in a dimer position, where the silicon atoms adjacent to the vacancy form a bond. The
positively charged variant of this defect structure is usually identified with the E


δ paramagnetic
center, which is visible in electron spin resonance (ESR) measurements of amorphous silica.
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Figure 1.5: In the neutral oxygen va-
cancy, a strong bond is formed be-
tween the two silicon atoms adjacent
to the vacancy. Upon hole capture,
this bond is weakened and the defect
eventually relaxes to the energetically
more favorable ‘puckered’ configura-
tion. The charged dimer position is
usually identified with the E


δ defect
and the puckered position with the E


γ

defect visible in ESR measurements.
The original two-stage model does not
consider the charged dimer state of the
oxygen vacancy and has an additional
hydrogen component [26].

Oxygen Vacancy

Ideal SiO2

+

E

δ

+

E

γ

Hole
exchange

Structural
relaxation

Hole exchange

Structural
relaxation

Not in Two
Stage Model

Oxygen
Silicon

Upon hole capture the bond of the dimer is weakened and one of the silicon atoms eventually
relaxes through the plane of its oxygen neighbors and forms a weak bond with a nearby oxygen
atom, which is then threefold coordinated. The resulting position is called the ‘puckered’ state,
which is also paramagnetic and usually identified with the E


γ center.
While the microscopic picture behind the two-stage model was based on a broad and rigorous

literature study, the mathematical description was formulated in a way that only captures the
basic behavior arising from the microscopic theories but that did not fully implement the
physical details of those theories.

1.5 A Multi-State Multi-Phonon Model for BTI and RTN

A further advance of the defect model was stimulated by experiments taken on small-area
devices, where the recovery in response to NBT stress proceeds in discrete steps instead of
a continuous curve [31]. The careful analysis of these steps led to the development of the
time-dependent defect spectroscopy (TDDS) method [31–33], which makes a detailed investi-
gation of the charging and discharging of single defects possible [32]. A typical TDDS spectral
map is given in Fig. 1.6. The results of the TDDS experiments served as a testing ground
of unprecedented detail for BTI models and allowed for the refinement of the physics in the
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Figure 1.6: (left) In small-area devices, NBT recovery proceeds in discrete steps which is ac-
counted to the discharge of single defects. The careful analysis of the step-curves has led to
the development of the time-dependent defect spectroscopy (TDDS) method [31,32]. In TDDS
experiments a number of stress-recovery cycles are measured and the steps are detected. The
times and magnitudes of those steps are binned into a two-dimensional histogram which is
called the TDDS spectral map (right). In these spectra, defects show up as isolated clus-
ters. The variation of the stress and recovery conditions makes the experimental study of the
trapping behavior of single defects possible.

two-stage model. The resulting multi-state defect model not only fits experimental data from
BTI and TDDS experiments very well, it also links these phenomena to other phenomena such
as random telegraph noise (RTN) and flicker noise [32,34–37].

As an extension to the original two-stage model, the multi-state NMP model considers four
states of the oxygen vacancy, as illustrated in Figures 1.5 and 1.7, and rests upon a more
detailed physical theory for the hole capture and emission rates, which will be more deeply
discussed later.

The mathematical formulation of the defect based model assigns a probability pα(t) to every
state α of a defect with

�
α pα(t) = 1. The dynamics of the defect state is then described using

rate equations of the form
∂pα
∂t

=
�
β �=α

kβαpβ(t)− kαβpα(t). (1.7)

The transient behavior of a defect arises from the potential energy surfaces in its various
charge states. The potential energy surface Ei(=R) corresponding to a certain charge state α of
the defect assigns a total energy to each atomic configuration =R. In our model, the defect is
assumed to have two relevant potential energy surfaces, corresponding to the neutral and the
positive charge state of the defect. Fig. 1.7 shows the gradual change of the total energies as
the system moves in configuration space and the resulting energetic minima which give rise to
the states of the defect (denoted 1, 1
, 2, and 2
). The model knows two types of transitions:
the transitions between the structural configurations (1 ↔ 1
 and 2 ↔ 2
) and the transitions
between the charge states of the defect (1 ↔ 2
, 2 ↔ 1
). The former are treated as adiabatic
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Figure 1.7: (left) Our model for BTI is based on potential energy surfaces for a defect in
its neutral (dashed blue lines) and positive (solid red lines) charge state [32]. As explained
in Chap. 2, the minima of the potential energy surfaces correspond to the stable and meta-
stable states of the defect structure. The effects of stress and different reservoir energies are
indicated [32]. (right) State-representation of the defect in our model for NBTI. The defect can
exist in two different structural states, where each again can be either neutral or positively
charged. The charged states affect the device characteristics of the MOS transistor, the neutral
states are invisible to electrical measurements.

barrier-hopping transitions of the form

kαα� = ναe
−Eαα�

kBT , (1.8)

where να is the attempt frequency and Eαα� is the activation energy associated with the tran-
sition. The charge state transitions are understood as non-radiative multi-phonon transitions
and are modeled as

kαβ� = σvthpe
−Eαβ�

kBT , (1.9)

where σ is the capture cross section of the defect, vth is the thermal velocity of the carriers, p
is the hole density at the defect site, and Eαβ� is the energy barrier defined by the crossing of
the potential energy surfaces.

In our model, the defect is initially in state 1, which is electrically neutral. During normal
device operation, the defect will remain there due to the large energetic barriers separating state
1 from all other states. When large negative bias is applied, the relative energetic shift of the
neutral potential energy surface to the positive ones changes as indicated in Fig. 1.7, resulting
in a decrease of the transition barrier for hole capture from the silicon valence band. After the
transition to the positive state (1 → 2
), the defect undergoes structural relaxation and moves to
state 2 by overcoming a small energetic barrier. In its new (secondary) structural configuration,
even after the bias is removed, the defect can change its charge state much easier, due to the
smaller barriers for interaction with the silicon. From the neutral secondary state 1
, the defect
can return to the initial configuration 1 by again overcoming a thermal barrier.

In electrical measurements of large area transistors one observes an ensemble of the de-
scribed defects and, due to the amorphous nature of the gate oxide, every defect moves on a
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different energetic landscape. This means that all the state energies and barrier energies are
statistically distributed and thus each defect shows a different transient behavior. The macro-
scopically observed degradation is the superposition of a large number of defects changing their
state from 1 to 2, e.g. due to electrical stress, as the charged state of these defects influence the
charge carriers in the silicon substrate. Similarly, if an increased number of defects undergo
the transition 1
 → 1 or 2 → 2
 → 1, a recovery of the device characteristics will be observed
macroscopically.

1.6 The Search for the BTI Defect

Although the central defect for BTI has been illustrated as an oxygen vacancy up to now, to date
there is no direct experimental evidence of the actual microscopic nature of this defect. Defects
in SiO2 have been predominantly studied with electron spin resonance (ESR) measurements
[38]. From these studies, two types of defects have been identified in the MOS system: Pb- and
E
-centers [38–42].

Judging from the properties of their ESR-spectra the Pb-centers are located at the Si-SiO2-
interface. They have been identified with fast amphoteric interface states [2,39,43–46]. Their
connection to NBTI is still actively debated, but the experimental evidence suggests that the
Pb-centers are only generated after long-term bias-temperature stress [26], although the gen-
eration process is still unclear. A complete picture of BTI degradation will certainly involve the
Pb-center dynamics in some form, most likely as a slowly recovering, or permanent damage
component. The present work, however, concentrates on the defects that are dominant for
BTI, which are described using the multi-state NMP model and show strong recovery. These
defects have often been suggested to be E
-centers, which are paramagnetic centers inside
the SiO2. Several centers of this class have been detected in MOS structures, especially in
experiments involving irradiation damage [40, 43, 46–53]. Atomistic models for many of the
E
-centers have been put forward [50,51,54–62]. The best agreement between theory and ex-
periment has been found between oxygen vacancy (VO) models and the E


γ-center, which is the
most abundant dangling bond center in amorphous SiO2 [40]. For this reason, a huge amount
of literature exists that deals with oxygen vacancies in SiO2 [50,54–56,58,59,62–72] spanning
four decades of research. Apart from radiation damage, oxygen vacancies have been linked
to 1/f-noise [73], high-field stress response [74], leakage currents [75], and time-dependent
dielectric breakdown [76] in the context of MOS reliability. The most interesting property for
our BTI modeling efforts, however, is the bistability of the oxygen vacancy [57–59,63,65,77],
which can be identified with the two structural states of our BTI defect. In the so-called dimer
configuration, the two silicon atoms adjacent to the oxygen vacancy relax towards each other
and form a strong bond. This configuration has been identified with the E


δ-center by some
authors [40,59,65]. The second stable configuration is the ‘‘puckered’’ position, where one of
the oxygen atoms relaxes through the plane of its oxygen neighbors and bonds to a close oxygen
atom. The puckered position has been associated with the important E


γ-center in amorphous
SiO2 and to its crystalline counterpart, the E


1-center in α-quartz [57, 59, 68, 78]. Due to its
involvement in different types of degradation effects and its well-studied bistability, the oxygen
vacancy has been viewed as a likely candidate for the BTI defect [26,32].

In addition to oxygen vacancies, also defects involving silicon dangling bonds and hydrogen
have received some attention. Studies showed that atomic hydrogen is produced in quartz un-
der heavy irradiation conditions [79,80]. Although hydrogen is routinely used in the production
process of MOS structures to passivate dangling bonds, it has been shown that exposure to
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Figure 1.8: Schematic illustration of the defects investigated in the present work. (left) The
ideal SiO2-structure is a network of alternating silicon and oxygen atoms. (center) The oxygen
vacancy has been associated with the paramagnetic centers E


δ and E

γ in ESR experiments and

has been proposed as candidate defect for several degradation effects in MOS structures. (right)
The hydrogen bridge has been less-intensely studied but is associated with the E


2 and the E

4

center in α-Quartz and has been proposed to play a role in SILC and hot-carrier degradation.

hydrogen can also induce degradation [80–82]. Particularly interesting for the present work
is the hydrogen-complexed oxygen vacancy, which has been identified with the E


2 and the E

4

center in α-quartz [56,59]. This defect, which is also sometimes called hydrogen bridge, has
been linked to hot-carrier degradation [83] as well as stress-induced leakage currents [59,84].
The hydrogen bridge is also the only hydrogen-containing defect described so far that has two
stable structural configurations, which correspond to the two configurations of the oxygen va-
cancy [56,59]. In the following, the states corresponding to the dimer and the puckered oxygen
vacancy will be called closed and broken hydrogen bridge, respectively [85,86]. Both the oxygen
vacancy and the hydrogen bridge are illustrated in Fig. 1.8.

Unfortunately, electron spin resonance measurements can only give hints on the atomic
structure of the defect and electrical measurements can only show the capture and emission
behavior of the defects under different operation conditions. Thus from the experimental find-
ings up to this point no conclusion can be drawn regarding the microscopic origin of the BTI. On
the modeling side, the great success of the multi-state NMP model for BTI in the explanation of
experimental data is somewhat spoiled by the large set of parameters and the unknown defect
structure. The model parameters are usually determined by calibration to measurement data.
Especially for the modeling of BTI and RTN, however, this method is somewhat unsatisfactory
as the measurements show a broad spread in transition rates [31,34,87], which requires as-
sumptions on the statistical distribution of the defect parameters. Some insight in the behavior
of single defects is gained from the TDDS [31]. However, the measurement of TDDS spectral
maps is a quite demanding task and few devices have been analyzed using this technique up
to now. Thus, there is not yet enough data available to give an estimate about the statistics of
the observed defects.

The goal of the present work is to extend our modeling efforts to the atomic scale, in order
to make the prediction of the BTI-related parameters from an atomistic model of a point defect
possible. The methods developed and described in this work can be used to evaluate atomistic
models of defect candidates against parameters obtained from calibrations to experimental
data. In order to find an atomistic model of the BTI defect, different defect candidates can then
be evaluated against the available parameter sets. A suitably designed atomistic model of the
amorphous MOS oxide could then be used to study the statistics of the BTI defect and make
predictions on its stability and its dependence on processing conditions.

At first, we study the foundation of our BTI model in the framework of physical chemistry
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to get a detailed understanding of the microscopic processes behind the states and transitions
described above. This includes an attempt to shed some light on the huge amount of literature
available for multi-phonon transitions. In Chap. 4, the microscopic description of the point-
defect is put into the context of a semiconductor device and a multi-scale modeling method
is developed, which combines the description of the defect at the microscopic level with a
macroscopic model of the MOS structure. At the time this document is written, the search for
a defect candidate that explains the behavior seen in BTI experiments is still ongoing. For the
reasons stated above, we study the behavior of atomistic models of the oxygen vacancy and
the hydrogen bridge in crystalline SiO2 as an example. The discrepancies arising from these
models with respect to BTI experiments are pointed out and possible directions for a future
search of the BTI defect are given.
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Erwin with his ‘psi’ can do
calculations quite a few.
But one thing has not been seen:
what does psi really mean?

(Erich Hückel)

2 Theory of States and Reactions

The degradation mechanisms discussed in this text proceed via chemical or electrochemical re-
actions at defects in the oxide or at the semiconductor-oxide interface. This chapter reviews the
theories of theoretical and physical chemistry that are relevant for the applications presented
in the later chapters, starting from the highest level of detail and moving to the less detailed
but computationally more efficient macroscopic descriptions. Most of the concepts presented
in this chapter are much more generally applicable than just to describe the dynamics of oxide
defects. Examples are given to link those concepts to the context of the present application.

2.1 Problem Statement: The Molecular Hamiltonian

The theory employed in the present work rests upon the fundament of physical chemistry,
sometimes also referred to as ‘‘low energy physics’’, which is applicable to the processes dom-
inating our everyday experience like the dynamics of fluids and gases, electrical and thermal
conduction, and chemical reactions. In contrast to high energy physics, where subatomic par-
ticles and at least three of the four fundamental interactions have to be considered, the central
actors in physical chemistry are electrons and nuclei which only interact through electrostatic
forces. The theoretical foundation of quantum chemistry thus lies in the Schrödinger equation
of the system of electrons and nuclei. In the following, =R and =r denote the position vector of
all nuclei and all electrons, respectively. For a system containing n electrons and N nuclei, =r
will be 3n dimensional and =R will have 3N dimensions. The positions of the individual par-
ticles will be denoted =ra and =RA and the associated masses are me for the electrons (which
is a fundamental constant) and MA for the nuclei (which is different for each species). In the
following, the term ‘‘vibrational’’ will be used for the nuclear degrees of freedom. This refers to
the nature of the nuclear motion, which is usually oscillatory and confined to a potential well
of some sort, as will be explained later. Especially in older works [88] and generally in works on
molecules the nuclear degrees of freedom are split into vibrational and rotational parts, where
the latter mean a total rotation of the molecule. As this thesis is concerned with phenomena
in a solid-state context, the internal degrees of freedom (center-of-mass position and rotation)
present in theories on molecules are omitted [89].

The Schrödinger equation for the system of electrons and nuclei is [88,90,91]

ĤΨ(=r, =R) = EΨ(=r, =R), (2.1)

where Ψ(=r, =R) is called the vibronic wave function as it expands over the electronic and the
nuclear (vibrational) degrees of freedom, and

Ĥ = T̂e + T̂N + V̂ee + V̂NN + V̂eN (2.2)
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is the Hamiltonian of the system, which is sometimes also termed the molecular Hamiltonian.
It consists of

T̂e = −
n�

a=1

�2

2me

=∇a kinetic energy operator for electrons (2.3)

T̂N = −
N�

A=1

�2

2MA

=∇A kinetic energy operator for nuclei (2.4)

V̂ee =
q0

4π�0

�
a<b

1

|=ra − =rb| electron-electron repulsion (2.5)

V̂NN =
q0

4π�0

�
A<B

ZAZB

|=RA − =RB|
nucleus-nucleus repulsion (2.6)

V̂eN = − q0
4π�0

N�
a=1

M�
A=1

ZA

|=ra − =RA|
electron-nucleus attraction. (2.7)

Despite the striking elegance of this equation, it is unsolvable in its pure form for all but the
simplest molecules. However, a profound simplification can be drawn from a separation of the
total Schrödinger equation into separate problems for the electronic and the nuclear degrees
of freedom. The first theoretically well-founded approximation of this type was put forward by
Max Born and Robert Oppenheimer in 1927.

2.2 The Born-Oppenheimer Approximation

The Born-Oppenheimer approximation relies on the fact that the mass of even the lightest nuclei
exceeds the electron mass by orders of magnitude. In order to make use of this property, Born
and Oppenheimer rewrote the molecular Hamiltonian as

Ĥ = Ĥ0 + κ4Ĥ1 (2.8)

with

κ = 4

�
me/M̄ (2.9)

Ĥ0 = T̂e + V̂ee + V̂eN + V̂NN (2.10)

Ĥ1 = − �2

2me

N�
A=1

=∇A, (2.11)

where M is the average ionic mass. The solution of the molecular Schrödinger equation is then
expanded in powers of κ [88,90]. The zero-order term of this expansion became known as the
‘clamped nuclei’ Hamiltonian. In this case, the problem reduces to the Schrödinger equation
for the electrons with the nuclei fixed in their respective positions

Ĥ0ϕi(=r; =R) = Ei(=R)ϕi(=r; =R). (2.12)

Although this is an eigenproblem in the electronic degrees of freedom, the results depend
parametrically on the position of the nuclei. The higher order elements of the series expansion
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Figure 2.1: Illustration of the dependence of
different electronic states on the nuclear con-
figuration. The adiabatically adjusting energies
of the electronic states act as potential for the
nuclei. Different electronic states may give rise
to drastically different potentials. For exam-
ple, while the potentials E0 and E1 in the figure
show only a shift of the optimum position and a
change of the curvature, E2 does not show any
optimum position in the shown configuration
range. In a molecule, E0 and E1 correspond to
bonding states, while E2 leads to an antibond-
ing (repulsive) behavior.
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show that the expectation value of the energy Ei(=R) associated with the electronic state ϕi(=r; =R)
will act as a potential energy on the nuclei. Thus, the molecular wave function is obtained as

ΨiI(=r, =R) = ϕi(=r; =R)ηiI(=R), (2.13)

where ϕi(=r; =R) is one of the solutions of (2.12) and ηiI(=R) is determined from

(T̂N + Ei(=R))ηiI(=R) = EiIηiI(=R). (2.14)

This approximation implicitly assumes that the electronic quantum number is not affected
by the momentum of the nuclei, which means that the nuclei are assumed to move slowly
enough that the electrons can adjust adiabatically, i.e. without any transfer of momentum from
or to the nuclei. This approximation is consequently called the adiabatic Born-Oppenheimer
approximation. The potential Ei(=R) is the potential energy surface of the molecule which is a
central concept of chemistry and plays a significant role in the theory of chemical states and
reactions. It is important to realize that different electronic states will give rise to different
potential energy surfaces, as illustrated in Fig. 2.1. This difference between the potentials is at
the heart of the electrochemical reactions discussed in this document. Especial importance is
assigned to the potential energy surface E0(=R) of the lowest electronic state ϕ0(=r; =R), which is
the dominant state in thermal equilibrium.

The original derivation of Born and Oppenheimer [88,90] was restricted to molecules in which
the potential energy surface was essentially a quadratic function with the nuclei moving around
the minimum. Interestingly, it also gives very accurate results for situations where these
conditions are not even approximately fulfilled [90,92]. This behavior and also the breakdown
of the approximation can be understood using an improved approach that is discussed later in
Sec. 2.9.1.

In summary, the essence of the Born-Oppenheimer approximation is that due to the large
difference in masses, the heavy nuclei are standing still from the perspective of the electrons.
The electrons will thus adjust their orbit instantaneously to the motion of the nuclei and the
energy of this orbit acts back as a potential on the nuclei. The resulting separation of the
electronic and the nuclear degrees of freedom is, however, only a slight improvement from the
perspective of solubility, as a typical solid or molecule still contains too many electrons and
ions for an exact solution of (2.12) and (2.14). However, both the electronic as well as the
nuclear problem can be greatly simplified by the exploitation of inherent symmetries and some
well-defined approximations.

14



Figure 2.2: An intuitive picture of the self-consistent field approach. Instead of considering all
the interactions between all particles (left), the problem is reformulated as a system of isolated
particles moving in a mean field (right).

2.3 Electronic Structure Methods

The solution of the electronic many-particle problem arising from the Born-Oppenheimer ap-
proximation is a classic topic of quantum chemistry, and a multitude of approaches exist using
different approximations. Depending on the size of the system and the available computational
resources, different levels of sophistication can be employed to calculate the potential energy
surface of a molecule or a solid. While the simplest approaches employ analytic potentials
which try to mimic the shape of the electronic energy, the more sophisticated approaches actu-
ally attempt to solve the electronic Schrödinger equation (2.12) for its ground (and sometimes
also for an excited) state. The latter methods are referred to as electronic structure methods
or quantum chemistry methods. The term ‘quantum chemistry method’ may sometimes be a
source of confusion, as especially in the materials science community this term is used for
wave function based methods to distinguish them from density functional methods. However,
in this document the term quantum chemistry method and electronic structure method are
both used interchangeably for methods that calculate the potential energy surface based on a
solution of the electronic Schrödinger equation.

2.3.1 Self-Consistent Field Methods: Hartree-Fock

For all but the smallest systems, an exact solution of the electronic Schrödinger equation is
computationally unfeasible, as the dimensionality of the problem increases linearly with the
number of particles, leading to an exponential increase in computational complexity. The
first approach to the solution of the many-electron problem for isolated atoms was reported
by Hartree in three papers in 1928 [93–95]. His approach, described in the second part of
the series, was termed ‘self-consistent field method’ as it approximates the electron-electron
interaction through an effective potential VH, calculated from the total charge density less
the charge density of the electron under consideration in order to avoid self-interaction (see
Fig. 2.2).

ĤH = T̂e + V̂eN + V̂H(ϕ) (2.15)
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The formulation of Hartree’s method initially followed physical intuition rather than a mathe-
matical derivation. Its connection to the many-body Schrödinger equation was clarified later
as a variational determination of the ground state using a product-wave function ansatz.

ϕ(=r1, =r2, . . .) = ϕ1(=r1)ϕ2(=r2) . . . (2.16)

A central problem of this ansatz is that it does not have the required fermionic symmetries
upon particle exchange [96–98]. An improved description was found by Fock using a properly
symmetrized ansatz, which can be written in a compact form as determinant in which the
single-particle wave function is the same along a column and the particle coordinate is the
same along a row.

ϕ(=r1, =r2, . . .) =

�������
ϕ1(=r1) ϕ2(=r1) . . .
ϕ1(=r2) ϕ2(=r2) . . .

...
... . . .

������� (2.17)

Following the same basic steps as in the Hartree-method again leads to an effective single-
particle problem, with an additional self-consistent non-local potential V̂F.

ĤHF = T̂e + V̂eN + (V̂H(ϕ)− V̂F(ϕ)) (2.18)

The resulting method was named Hartree-Fock self-consistent field method, the new term in the
equation is usually called exchange- or Fock-operator1. The Hartree-Fock self-consistent field
method gives good results in many situations and is a standard method of quantum chemistry.
The wave function resulting from the method as well as the total (ground state) energy are
physically relevant within the bounds of the approximation, in contrary to the density functional
approach which is discussed below. Although it is considered a reasonable starting point, the
accuracy of the theory is limited due to the neglect of electronic correlation [96,97]. A popular
method that improves on this situation is the Møller-Plesset perturbation series, which brings
correlation into the Hartree-Fock-Hamiltonian using a perturbation approach that dramatically
improves the accuracy for some systems [97,99].

Despite their sound theoretical foundation and the good accuracy of the perturbation ap-
proach, Hartree-Fock based methods are rarely used for large molecules or solid-state prob-
lems due to the large computational effort arising from the non-local exchange operator (O(N4),
where N is the number of basis functions). The sharp rise in computational demand for increas-
ing number of basis functions results in the need for highly efficient basis sets for practical
Hartree-Fock-type calculations. The employed basis sets are usually linear combinations of
atomic orbitals (LCAO), most typically constructed using Gaussian functions for computational
reasons [96,99]. These basis sets themselves require an appreciable amount of fine-tuning and
are not to be considered general-purpose tools. For the study of defects, Hartree-Fock methods
are sometimes used in embedded [66,77] or isolated [54,57] cluster models.

2.3.2 Self-Consistent Field Methods: Density Functional Theory

Density functional theory is a more mathematical approach to the many-body problem. It is
based on the findings by Hohenberg and Kohn, which state that

1Interestingly, the Hartree potential in the Hartree-Fock-method is slightly different from the Hartree method as it
arises from the charge density of all electrons, which would lead to self-interaction in the original method, but
is compensated for by the Fock operator.
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1. for a given external potential Vext which acts equally on all of the electrons, there is a
ground state electron density n0. This density is unique to the external potential apart
from a trivial constant energy.

2. there is a functional E[n] of the electron density which, when minimized in n for a given
Vext, gives the ground state energy E0 and the ground state electron density n0 of the
many-body system.

From these two findings it follows that the exact ground state energy of the (3N -dimensional)
electronic system, i.e. the ground state potential energy surface, could be found by minimizing
the Hohenberg-Kohn functional of the (three-dimensional) electron density, if this functional
was known exactly [96, 100]. However, as the exact functional itself depends on the wave
functions of the many-body system [96], additional approximations are necessary. To make
the problem solvable, Kohn and Sham made the assumption that a non-interacting auxiliary
system can be defined

ĤKS = T̂e + V̂eN + V̂H + V̂xc (2.19)

that has the same ground state density and energy as the interacting system. All exchange
and correlation effects of the interacting system are represented in the auxiliary system through
the effective local potential V̂xc that itself depends on the ground state electron density. Due
to its favorable scaling properties (O(N3)) compared to the Hartree-Fock approach, and the
remarkable accuracy of the method for a broad set of problems, DFT has become the standard
approach in many fields of physical chemistry. The exchange-correlation potential has been
a focus of active research for decades, yielding a manifold of different local and non-local
potentials for different specific applications. A standard general-purpose functional that is
also used extensively in the present work is the first-principles gradient-corrected functional
by Perdew, Burke and Ernzerhof [101]. It is evident from the explanation above that, in
contrary to the HF method, the wave functions in Kohn-Sham DFT do not have any physical
relevance. Rather, the wave functions and eigenlevels are features of an auxiliary system that
is only introduced as part of an approximation to the many-body problem. Nevertheless, it
is common to draw conclusions from the Kohn-Sham eigenlevels, e.g. when calculating band
structures [96] or defect levels [102]. Problems of the Kohn-Sham eigenspectrum, such as the
underestimation of band-gaps, as well as errors in total energies are sometimes reduced by
the application of so-called Hybrid-functionals. These functionals combine the original (semi-)
local density functional of standard DFT approaches with a fraction of Hartree-Fock exchange.
Hybrid functionals significantly improve the description of semiconductors and insulators, at
the expense of increased computational complexity.

2.3.3 Explicit Many-Body Methods

The most accurate methods available today are the diffusion and variational quantum Monte
Carlo methods, and the configuration-interaction (CI) or coupled-cluster (CC) methods [96,97].
These methods are able to appropriately handle correlation effects and are often used as a
high-accuracy reference to benchmark self-consistent field methods. However, due to their
vast computational demand those methods are usually limited to very small molecules or
require massively parallel computers with thousands of CPUs. For the present work, these
methods are way too expensive and also more accurate than necessary, considering the various
approximations that have to be made.
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2.3.4 Empirical Methods

The broad class of empirical electronic structure methods offers inexpensive, yet accurate
solutions to various problems, especially in the field of microelectronics research. The level
of physical accuracy here ranges from the classic semi-empirical quantum chemistry methods
(CNDO, MNDO, PM3, . . . ) [97] over tight-binding methods, which use a Hamiltonian that is
built from analytic expressions [96], to the simplest empirical molecular dynamics potentials,
which are based on analytical functions of the positions of the nuclei.

Semi-empirical quantum chemistry methods use a Hartree-Fock-based Hamiltonian, which
replaces some of the more expensive integrals with parametrizable expressions. These methods
have been under active development for decades, and are especially popular in the field of
organic chemistry. The parameters for these methods are usually calibrated to small molecules,
and the standard parametrizations have been shown to fail in the solid-state context [103,104].
A comparison of semi-empirical methods for the calculation of the oxygen vacancy defect in α-
quartz is given in [105], which shows a strong dependence of the predicted defect levels on the
employed method.

Empirical tight-binding methods are often used for the study of the electronic structure of
ideal bulk or surface structures [96]. They have also been employed in defect studies, primarily
for defects in crystalline and amorphous silicon [106–108], but also for defects in SiO2 [55].
Compared to semiempirical methods, the tight-binding Hamiltonians rely on even stronger
simplifications which makes the parametrizations of this method even less transferable. Thus,
when employing tight-binding methods one cannot rely on standard parametrizations as is
usually done in semiempirical methods.

A review of different empirical molecular dynamics potentials applied to silicon or SiO2 sys-
tems is found in [109]. Although empirical potentials are computationally very efficient and
make calculations with millions of atoms possible [78], they have too little predictive power for
defect calculations as those involve unpaired spins and charged states which are difficult to
include in this formalism in a physically meaningful way. However, empirical potentials are
used extensively for the generation of amorphous structures that are subsequently used for
defect calculations [78,110,111].

The advantage of semiempirical methods is the inclusion of experimental input, to account
efficiently for the physics neglected in the approximations. For the study of defects in SiO2,
the calibration of all discussed empirical methods requires an extensive training set. Unfor-
tunately there is no reliable experimental data available that can be used as a reference for
parametrization, so for the present work we are bound to ab-inito methods.

2.4 The Nuclear Problem: Chemical Microstates

For electronic structure problems it is reasonable to treat the correlated motion of the electrons
as a second-order effect, which does not influence the basic behavior for most practical cases.
For the motion of the nuclei, an approximation like this is not possible. Vibrational states are
usually heavily correlated motions of nuclei like stretching or bending modes in molecules or
phonons in a solid. A fully quantum-mechanical treatment is again impossible due to the large
number of degrees of freedom and even a quantum Monte-Carlo-like treatment is unfeasible
due to the computational effort required to calculate the potential energy surface. It is thus
necessary to either approximate the quantum mechanical nuclear problem as a classical one or
to approximate the potential energy surface as an essentially quadratic function of the position
of the nuclei so that the atomic motion can be separated into uncoupled harmonic oscillations.
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The former method is broadly applied throughout theoretical chemistry for molecules and solids
and is well suited for situations where temperatures are high enough so that quantization
effects may be neglected and where the adiabatic Born-Oppenheimer approximation holds.
With respect to the BTI model introduced in Sec. 1.5, this concerns the structural transitions
1 ↔ 1
 and 2 ↔ 2
. For situations where the electronic state changes non-adiabatically, as in
the charge transition reactions 1 ↔ 2
 and 2 ↔ 1
, or at very low temperatures the quantum-
mechanical nature of the nuclei must be considered and the harmonic approximation, or a
similar simplification, is necessary [91].

Once the potential energy surface for a given atomic system is known and a sufficiently accu-
rate description of the nuclear dynamics has been found, it is possible to calculate observable
quantities and predict the evolution of that system over time. The state of the atomic system
under consideration is fully described by the state of the electronic system, which is usually
identified by its potential energy surface, and the nuclear state, which is ηiI(=R) in a quantum-
mechanical description and the instantaneous position in phase-space (=R, =P ) — =P denoting
the momenta of all particles — in a classical description. In the following, these combinations
of electronic and nuclear states will be called microstates in accord with the theory of statistical
physics [112]. As will be explained in more detail in Sec. 2.9.1, the adiabatic Born-Oppenheimer
approximation can be assumed to be valid for all regions of the nuclear configuration space in
which the potential energy surfaces are sufficiently separated. The systems of interest for the
present document spend most of their time inside these regions and the electronic transitions
happen either through radiative transitions or non-radiatively in the vicinity of potential energy
surface crossings. Both of these transitions are sufficiently described as occurring instanta-
neously. Consequently, the transitions between the microstates are governed by the dynamics
of the nuclei and the transitions between different potential energy surfaces. Although in prin-
ciple the dynamics of any molecule or solid can be described in this way, in practice it is usually
tedious to describe the long-term evolution of even the simplest chemical system from the tra-
jectories of its nuclei and transitions between electronic states. Fortunately, the time-evolution
of chemical systems usually consists of longer time-periods of thermal quasi-equilibrium which
are interrupted by transitional motions of very short duration. This behavior is exploited and
formalized in the theory of chemical states and reactions.

2.5 Chemical States and Reactions

In order to understand chemical kinetics, it is first necessary to define in a physically mean-
ingful way the chemical states, which are the central actors of chemistry, and the chemical
reactions, which change the system under consideration from one chemical state to another.
Quite generally, chemical states are groups of microstates. The microstates that belong to
a certain chemical state could in principle be selected completely arbitrarily, but usually a
chemical state is defined and receives its meaning from a certain observable2. In the case of
a defect within a semiconductor device the corresponding observable may be for example its
charge state, which is observed through its effects on the device characteristics, or its bonding
state, which will give rise to different capture and emission times. The microstates belonging
to a chemical state are consequently those which are indistinguishable from the viewpoint of
the associated observable. It is the nature of these observables that they need to be stable for
a sufficient amount of time, so that they can be measured by a human-made apparatus. As

2To avoid confusion, it has to be mentioned that the observables here are not the principal quantum-mechanical
operators, but are elements of statistical mechanics, i.e. measurable properties.
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Figure 2.3: The potential energy surface of
an atomic system typically has several min-
ima which are separated by energetic bar-
riers. The nuclei will spend a significant
amount of time oscillating randomly around
those minima and will eventually pass the
barriers at time scales that are too short to
be observable. Along the barriers, the con-
figuration space can be separated into chem-
ical states, illustrated as grey/white region.
The potential energy surface could for exam-
ple arise from two different bonding states
of a defect, as schematically shown in the
boxes.

for the microstates, the electronic subsystem often defines its own chemical states as it tends
to establish a stationary state on a very short time scale (femtoseconds) and this state is then
quite stable in the absence of potential energy surface crossings or radiative transitions. For the
vibrational subsystem, the requirement on stability over a certain time-range means that states
are defined as the neighborhood of minima in the potential energy surface. This follows from
the nature of the atomic motion, which is essentially random due to the permanent interaction
with the environment. Usually within picoseconds after a change in state the momenta of the
nuclei will assume the thermal equilibrium distribution induced by the heat-bath. Thus the
momentum, or in the quantum mechanical view the vibrational quantum state, of the nuclei is
not relevant in the definition of chemical states and the only relevant information comes from
the shape of the region of the configuration space in which they are moving, which is defined
by the energetic barriers of the potential energy surface, as illustrated in Fig. 2.3.

Once a chemical state is defined in terms of microstates, the measurable observables are
obtained from thermal averages over those microstates belonging to this chemical state. If the
nuclei are treated as classical particles, those thermal averages consist of integrals over a cer-
tain potential energy surface and over the momentum-space of the nuclei, which is commonly
assumed to follow the behavior of the ideal gas [112].

As mentioned above, in practical calculations it is assumed that transitions between chem-
ical states occur instantaneously and the thermal equilibrium of the microstates in the new
chemical state is established immediately. This assumption is obviously justified for transi-
tions of the electronic subsystem, as mentioned above. Transitions between the minima of a
potential energy surface or between two different electronic states are usually followed by an
equilibration phase where the momentum distribution of the nuclei returns to the ideal gas
distribution. This equilibration usually proceeds at time-scales of picoseconds, which is also
reasonably instantaneous for most observables. However, especially for the case of hydrogen-
passivated dangling bonds at the silicon surface, long-term stable vibrational modes have been
reported which lead to a considerably prolonged equilibration [113]. Thus, regarding the nu-
clear subsystem the assumption of instantaneous transitions needs to be applied cautiously.

For the sake of completeness it is mentioned here that, as chemical states may be arbitrarily
defined, it is possible that certain microstates are part of more than one chemical state. Ad-
ditionally, a chemical state may consist of an arbitrary number of lower-level chemical states.

20



To avoid confusion, in the following all chemical states and reactions are elementary, i.e. they
are not further separable into long-term stable chemical states.

2.6 The Chemical Master Equation

Once the chemical states and reactions that comprise the chemical system under consideration
are defined, their dynamics can be described as a random process that switches between
states [114,115]. For this purpose, the state of the chemical system is described as a vector
=x. Additionally, a set of reaction channels is established, which cause the transitions between
the discrete states of this vector. Due to the unpredictable nature of the dynamics of the
microstates, the time at which a reaction takes place is not a deterministic quantity. Instead,
if the chemical system is in a given state =xα at time t, for every reaction channel γ a reaction
rate cγ can be defined, so that cγdt is the probability of the reaction taking place between t
and t + dt [115]. Due to the assumed instantaneous equilibration of the microstates, cγ is
a constant in time. Different chemical states have different reaction rate constants for their
reaction channels. Again due to the assumed instantaneous equilibration, these reaction rate
constants depend only on the current state of the chemical system irrespective of the previous
states of the system. In this case a function can be defined for every reaction channel that
assigns a specific rate to a specific state cγ = aγ(=xα). These functions are called the propensity
functions [115]. The change induced by the reaction channel γ is described using the state
change vector =νγ . The thus formulated model describes a memory-less random process with
discrete states, which is usually called a Markov process [37]. The removal of memory from the
system occurs through the thermal equilibration, which is assumed to happen much faster than
the chemical reactions. Examples for non-markovian behavior are correlated reactions as in
the recombination-enhanced defect reaction (REDR) theory [116] or time-dependent propensity
functions as suggested for reemission after the multi-phonon capture of carriers [117]. In
the context of BTI, non-markovian behavior has been used to explain accelerated recovery
observed in charge-pumping measurements [118]. Interestingly, in standard BTI experiments
with constant or AC stress, even up to 5MHz, no memory-related behavior has been found
yet. We thus assume that the accelerated recovery is a specific effect of the charge-pumping
measurements, which requires deeper experimental investigation, and ignore non-markovian
behavior in this work.

According to the theory of stochastic chemical kinetics [114,115], the evolution of this system
over time can then be described by a chemical master equation

∂P (=x, t)

∂t
=

Γ�
γ=1

[aγ(=x− =νγ)P (=x− =νγ , t)− aγ(=x)P (=x, t)], (2.20)

where P (=x, t) = P ( =X = =x, t|=x0, t0) is the probability that the stochastic process =X(t) equals =x
at time t, given that =X(t0) = =x0.

The master equation approach can be illustrated using the simple example of a system with
two states =x1 and =x2 [37], see Fig. 2.4. The system has two reaction channels 1 and 2, which
connect the two states through the state change vectors =ν1 and =ν2 as

=x1 + =ν1 = =x2 and =x2 + =ν2 = =x1 (2.21)
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Figure 2.4: Illustration of the example system discussed in the text.
The system exists in one of the two states =x1 and =x2. Transitions
between these states are caused by two reaction channels with the
state-change vectors =ν1 and =ν2, and the associated rates k12 and k21.

=x1 =x2

k12, =ν1

k21, =ν2

The propensity functions a1 and a2 assume the form

a1(=x1) = k12, a1(=x2) = 0, (2.22)
a2(=x1) = 0, and a2(=x2) = k21. (2.23)

The master equation for this system consequently reads

∂P (=x1, t)

∂t
= k21P (=x2, t)− k12P (=x1, t) (2.24)

∂P (=x2, t)

∂t
= k12P (=x1, t)− k21P (=x2, t) (2.25)

As the system can only exist in one of the two states at a time, it follows that

P (=x1, t) = 1− P (=x2, t) = p(t), (2.26)

which reduces the master equation of the two-state system to

∂p(t)

∂t
= k21(1− p(t))− k12p(t). (2.27)

This is the rate-equation of the two-state system, which is equivalent to the master equation
for this simple example.

Within the theoretical frame work of the chemical master equation, all the microphysical
details elaborated in the previous section are now contained in the propensity functions aγ
and the state-change vectors =νγ for the Γ reaction channels. These can be either obtained
from experiment, or calculated from microphysical theories, some of which are explained in the
following.

2.7 The Calculation of Rates

The assumptions introduced above lay the foundation for the development of theoretical meth-
ods to calculate rates between chemical states. As mentioned in Sec. 2.4, the description of
the nuclear state can either be classical with the full potential energy surface or quantum-
mechanical with a highly idealized potential. Both approaches contain specific approximations
and thus need to be cautiously applied to real-world situations. Quite generally, for reactions
occurring at low temperatures the quantum-mechanical approach will be the most suitable as
the effects of quantization and tunnelling may be pronounced, yet the nuclear system will be
close to a minimum of the potential energy surface where idealizations are quite accurate. For
reactions at higher temperatures, quantum mechanical effects will be less pronounced but the
system will occupy states that are further away from the potential minima which are poorly
described by the usually harmonic model Hamiltonians.
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Figure 2.5: Illustrative example of a po-
tential energy surface along a reaction
path. The reaction path itself is the op-
timal path on the 3N -dimensional poten-
tial energy surface between two minima.
The point of maximum energy, which is a
saddle-point of the potential energy sur-
face, is sometimes called the transition
state. Its energy with respect to the en-
ergetic minimum of the initial state is the
activation energy Ea. The transition point
is also the border which separates the
initial and the final state in a classical
picture. Reaction Coordinate
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2.8 Barrier Hopping Transitions

Barrier hopping transitions such as the structural transitions in the BTI model are reactions
which the electronic system follows adiabatically and thus only change the state of the nuclear
system. For the temperature ranges relevant to this document these transitions are sufficiently
described using classical nuclei. This is a common working-hypothesis in practical calculations
[112, 119, 120] and is sometimes supplemented with quantum mechanical corrections [112]
where necessary. The microstates consist of the electronic state, which is unchanged except
for the adiabatic adjustment of the electronic wave functions, and the position of the nuclear
system in phase-space [119], which follows classical mechanics.

As mentioned above, for a given defect model the barrier hopping processes can in principle
be described by a propagation of the microstates, i.e. the phase-space position of the nuclei.
Calculations of this type are called molecular dynamics simulations [119]. However, the time
range that can be treated with molecular dynamics is in the picosecond regime and can only
be extended to nanoseconds for classical molecular dynamics potentials, which are not usable
in defect calculations. Usual defect reactions in BTI occur in and above the microsecond
regime [26,37], which makes them rare events from a microstate perspective.

The theory employed for the calculation of rates in this picture is the transition state theory.
This theory is the mathematical formulation of the assumptions of Sec. 2.5. As in Fig. 2.3,
the chemical states in the transition state theory are defined by regions Rα ⊂ R3N in the
configuration space of the N nuclei. These regions are non-overlapping and defined by the
barriers of the potential energy surface. The transition from a region R1 to an adjacent region
R2 is assumed to proceed as a flux F(∂R12) through the boundary surface R12, which is called
the transition state [121].

In practice, one is usually only interested in the temperature activation for a certain transi-
tion. Also, the thermal integrals necessary to calculate the flux through the transition state,
are quite tedious to calculate. Due to the assumption of thermal equilibrium, in which the
system preferably occupies states of lower energy, the transition will be dominated by the point
of lowest energy of the transition state. In practical calculations it is thus usually sufficient to
find the energetically optimal path between the energetic minimum point of R1 and the ener-
getic minimum point of R2, as illustrated in Fig. 2.5. This path is usually termed the reaction
path. The maximum energy along this path is called the activation energy. Macroscopic the-
ories usually model the temperature activation of hopping transitions using an Arrhenius law
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that has the activation energy as parameter. However, one has to be aware that this neglects
entropic properties which are only sufficiently described in the full transition state theory.

2.9 Multi-Phonon Transitions

The charge-state transitions in the multi-state multi-phonon transition model for BTI involve
the trapping of holes from the silicon valence band. These trapping events are understood
as non-radiative multi-phonon (NMP) transitions. Multi-phonon, or vibronic, transitions are
transitions involving a change of the electronic and the vibrational state. They play significant
roles in many domains of molecular and solid state physics and have been studied exten-
sively from both the experimental and theoretical side [91,122–125] especially for transitions
at point-defects. The development of the theory of vibronic transitions is tightly linked to the
development of the quantum mechanical theory of solids and molecules. As multi-phonon
transitions at defects are inherently quantum-mechanical processes that are significantly in-
fluenced by a chaotic perturbation (i.e. the heat-bath), their theoretical description is a quite
demanding task and usually involves strong idealizations.

2.9.1 Vibronic Coupling

The first theory capable of explaining the behavior of molecules on a well-founded quantum-
mechanical level was the adiabatic Born-Oppenheimer approximation. This approximation,
which is based on a power-series expansion with respect to the ratio of the electronic and nucleic
masses, see Sec. 2.2, has some drawbacks that in principle limit its applicability to chemical
processes. The first problem is that the potential energy surfaces arising from the power-series
expansion are essentially harmonic functions with the equilibrium positions fixed at a certain
configuration. In this form, the theory is unable to describe the adiabatic reactions discussed
in the previous section. Nevertheless, the comparison with experimental studies showed that
‘‘the adiabatic model has a wider application than predicted by this theory’’ ( [90], Appendix VII).
Secondly, within the series expansion formulation there will always be an adiabatic adjustment
of the electronic state to the vibrational degrees of freedom, i.e. there will be no transfer of
kinetic energy from the nuclei to the electrons and thus no change in the electronic state can
be induced from the vibrations of the molecule or solid.

A second approach to the derivation of a molecular wave function was presented by Born
more than two decades later [92] (see also [90], Appendix VIII). Instead of a series expansion of
the molecular Hamiltonian, this derivation starts with an ansatz-wave function of the form

Ψ(=r, =R) =
�
i

ϕi(=r; =R)ηi(=R), (2.28)

where the ϕi(=r; =R) are the solutions of the electronic Hamiltonian Ĥ0 = T̂e + V̂ee + V̂NN + V̂eN

in (2.12), which are assumed to be known, and ηi(=R) can be seen as a weighting-factor for the
electronic wave function i. In a way, this ansatz expands the molecular wave function using
the adiabatic Born-Oppenheimer wave functions as a basis set. This expansion considers the
correlation of the electronic motion to the motion of the nuclei, but neglects the effects on the
nuclei induced by the instantaneous positions of the electrons. Thus, it is not exact although
stated otherwise sometimes.

Before the ansatz is inserted into the molecular Schrödinger equation (2.1), it is useful to
apply it to the constituent operators of the associated Hamiltonian (2.2) separately. The po-
tential operators, which are mere functions of the degrees of freedom, are summed up as
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V̂ = V̂ee + V̂NN + V̂eN = V (=r, =R) and are applied as

V̂Ψ(=r, =R) =
�
i

V (=r, =R)ϕi(=r; =R)ηi(=R). (2.29)

The electronic kinetic energy operator (2.3) acts only on the ϕi(=r; =R)

T̂eΨ(=r, =R) =
�
i

ηi(=R)T̂eϕi(=r; =R). (2.30)

The application of the electronic Hamiltonian to Ψ(=r, =R) thus gives

Ĥ0Ψ(=r, =R) = (T̂e + V̂ )Ψ(=r, =R) (2.31)

=
�
i

ηi(=R)T̂eϕi(=r; =R) + V (=r, =R)ϕi(=r; =R)ηi(=R) (2.32)

=
�
i

ηi(=R)
�
T̂eϕi(=r; =R) + V (=r, =R)ϕi(=r; =R)

�
(2.33)

=
�
i

ηi(=R)
�
Ĥ0ϕi(=r; =R)

�
=

�
i

ηi(=R)
�
Ei(=R)ϕi(=r; =R)

�
(2.34)

where Ei(=R) is again the eigenvalue for ϕi(=r; =R) with respect to Ĥ0. The nuclear kinetic energy
operator (2.4) acts on both the ϕi(=r; =R) and the ηi(=R). Using the definition

T̂N =
N�

A=1

P̂A · P̂A

2MA
(2.35)

with
P̂A = −i�=∇A, (2.36)

and the product rules for the gradient and the divergence, it is trivial to show that

T̂NΨ =
�
i

ϕiT̂Nηi + ηiT̂Nϕi +

N�
A=1

1

MA

�
P̂Aϕi

�
·
�
P̂Aηi

�
. (2.37)

Applying the Hamilton operator

ĤΨ(=r, =R) = (Ĥ0 + T̂N)Ψ(=r, =R), (2.38)

one arrives at

ĤΨ(=r, =R) =�
i

ηiEiϕi + ϕiT̂Nηi + ηiT̂Nϕi +

N�
A=1

1

MA

�
P̂Aϕi

�
·
�
P̂Aηi

�
= E

�
i

ϕiηi. (2.39)

Finally, the equation is expanded in the electronic basis set. Therefore we multiply with ϕ∗
j from

the left and integrate over the electronic degrees of freedom =r, yielding the system of equations�
T̂N + Ej(=R)

�
ηj(=R)+

�
i

��
ϕ∗
j (=r;

=R)T̂Nϕi(=r; =R)d=r +

N�
A=1

1

MA

�
ϕ∗
j (=r;

=R)P̂Aϕi(=r; =R)d=r · P̂A

�
ηi(=R)

= Eηj(=R) (2.40)
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for i running over all eigenstates of Ĥ0. This system of equations is conveniently rewritten into
matrix form as

H=η(=R) = E=η(=R) (2.41)

with

=η(=R) =

			
η1(=R)

η2(=R)

η3(=R)
...

��� (2.42)

and

H = HA +HNA (2.43)

HA =

			
T̂N + E1(=R) 0 0 · · ·

0 T̂N + E2(=R) 0 · · ·
0 0 T̂N + E3(=R) · · ·
...

...
... . . .

��� (2.44)

HNA =

			
L̂11 L̂12 L̂13 · · ·
L̂21 L̂22 L̂23 · · ·
L̂31 L̂32 L̂33 · · ·

...
...

... . . .

��� (2.45)

L̂ij =

�
ϕ∗
j (=r;

=R)T̂Nϕi(=r; =R)d=r +

N�
A=1

1

MA

�
ϕ∗
j (=r;

=R)P̂Aϕi(=r; =R)d=r · P̂A. (2.46)

HA is now again the adiabatic Hamiltonian known from the Born-Oppenheimer approximation,
the transfer of kinetic energy from the vibrational to the electronic system is described by the
non-adiabatic part of the Hamiltonian HNA. As one would expect, the adiabatic Hamiltonian is
diagonal in the matrix representation and the coupling between the potential-energy surfaces
Ei(=R) is solely due to HNA, more specifically the off-diagonal matrix elements L̂ij .

If HNA is neglected, the original Born-Oppenheimer approximation is retained and the re-
sulting eigenstates will be of the form (2.13)

ΨiI(=r, =R) = ϕi(=r; =R)ηiI(=R), (2.47)

i.e. the state of the system can be identified by a separate quantum number for the electronic
and the vibrational state, respectively. In the more general case where the non-adiabatic part
of the Hamiltonian cannot be neglected, the electronic and vibrational quantum numbers are
not generally separable and the eigenstates will expand over several electronic states.

There seems to be no established name for the presented approach to the molecular Schrö-
dinger equation. It is sometimes also refered to as Born-Oppenheimer approximation (which
is misleading as it is using a completely different derivation), Born-Huang approximation, or
Born-ansatz. The non-adiabatic theory not only makes it possible to describe vibronic coupling,
but also gives an idea of the conditions under which the adiabatic approximation is reasonable.
Following the expressions in [126] and Sec. 3.1.3 of [91], the adiabatic approximation is valid for
systems with a large separation between the potential energy surfaces and a weak dependence
of the electronic wave functions on the position of the nuclei.
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For the derivations in the following sections it is convenient to use a Dirac notation for the
Born-Oppenheimer states as ��ΨiI

�
=

��i(=R)
���iI��. (2.48)

Although one may be tempted to view this wave function as a simple tensor product of wave
functions and employ the usual algebra, this is not possible here due to the parametric de-
pendence of the electronic state on the vibrational coordinate =R. Nevertheless, this notation
is often found in literature and will also be applied in this document where ever it may serve
to improve readability. However, the reader is advised to handle vectors of the form (2.48)
with care. To improve readability somewhat further this document uses a notation that distin-
guishes between integrals over the electronic degrees of freedom

� · | · � and over the nuclear
degrees of freedom

�� · | · ��.
2.9.2 Quantum Mechanical Theory of Vibronic Transitions

Although in principle a diagonalization of the non-adiabatic Hamiltonian is possible, the re-
sulting stationary states are not of interest for this work, as we assume transitions between
well-defined electronic states. Indeed, in real-world situations the stationary states corre-
sponding to the eigenstates of the non-adiabatic Hamiltonian will never be established due to
the constant perturbation from the environment. The influence of the environment is a very
complex random process in nature that cannot be treated, or even formulated, exactly. The the-
ory of vibronic transitions therefore has to rely on physical intuition and defines the initial and
final states of the transition somewhat heuristically as the initial and final Born-Oppenheimer
states (2.13). It is assumed that initially the electronic subsystem is in a defined state, which
is called

��i(=R)
�

in the following. The transition rate to a specific final state
��f(=R)

�
is to be calcu-

lated. The vibrational degrees of freedom assumingly have established an equilibrium with the
surrounding lattice, i.e. the probability p of finding the vibrational subsystem in a state

��iI��,
given that the electronic system is in state i depends on the energy EiI as

piI = Z−1e
− EiI

kBT , (2.49)

where Z is the canonical partition function

Z =
�
I

e
− EiI

kBT . (2.50)

The Born-Oppenheimer states, however, do not diagonalize the non-adiabatic Hamiltonian and
thus will not give rise to stationary states but will decay over time and thus the system will
move between different electronic states. As the off-diagonals in the non-adiabatic Hamiltonian
are usually assumed to be small compared to the diagonal part, the transitions between the
electronic states is treated using first-order time-dependent perturbation theory [98]. Thus,
the rate of transition from

��ΨiI

�
to

��ΨjJ

�
reads

WiI→jJ =
2π

�

����ΨiI

��L̂��ΨjJ

����2 δ(EjJ − EiI), (2.51)

where the perturbation L̂ is the non-adiabacity operator (2.46).
The total rate from

��i(=R)
�

to
��f(=R)

�
is obtained by averaging (2.51) over all possible initial

states
��iI�� and summing over all possible final states

��fF��
Wi→f =

2π

�
avg
I

�
F

�����fF ���f(=R)
��L̂��i(=R)

���iI�����2 δ(EfF − EiI). (2.52)
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where avgI is just a shorthand for an averaging over all states I, using (2.49) as the weighting
factors.

2.9.3 Model Matrix Elements

Now that the basic theory of vibronic transitions is laid out, the next important step is the
calculation of the matrix element

��
fF
���f(=R)

��L̂��i(=R)
���iI��. The integration for this matrix ele-

ment runs over all electronic and vibrational degrees of freedom and requires the quantum
mechanical states of the electronic and the vibrational system to be known. Especially the
latter requirement is impossible to fulfill exactly for real-world systems, so additional assump-
tions have to be made. These assumptions must lead to a model description that captures
enough of the basic behavior of the real-world system to give accurate results yet include only
so much complexity that a quantum-mechanical treatment is still feasible.

The published models for vibronic transitions [91,127–130] contain several approximations
that simplify the molecular Hamiltonian (2.2) and the corresponding Born-Oppenheimer states.
These approximations are described in the following.

Unaffected Electrons

As stated above, the molecular Hamiltonian includes the interactions of all electrons and all
nuclei. However, a vibronic transition will usually leave most of the electrons in their respective
state thus it is not necessary to consider them explicitly in the calculation. What has to be
considered is their interactions with the nuclei and with the explicitly treated electrons (usually
only one). The former interactions together with the Coulomb repulsion V̂NN will give rise
to a potential for the nuclei, the latter interactions are considered in the effective electronic
Hamiltonian Ĥe. The resulting Hamiltonian is

Ĥ = Ĥe + ĤN + ĤeN, (2.53)

where Ĥe only acts on the (considered) electronic degrees of freedom and

ĤN = T̂N + V̂N (2.54)

acts only on the nuclei. The details of Ĥe and ĤeN depend heavily on the system under
consideration and cannot be given in a general form.

Phonon Modes

Another important approximation concerns the potentials V̂N and ĤeN. It is usually assumed
that they are smooth enough so that a Taylor series expansion is suitable and this expansion
is usually canceled after the second order for V̂N. For a parabolic potential

V (=R) = V0 + =V1 · =R+ =RTṼ2
=R (2.55)

it is always possible to define a coordinate system =R
 which is shifted so that the linear part
of the potential is zero. On top of this, a coordinate system =Q =

�
S

QS=eS is obtained from the

diagonalization of the quadratic part as

Ṽ2=eS = ΛS=eS . (2.56)
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The eigenvalue ΛS is conveniently written as

ΛS =
MSω

2
S

2
(2.57)

using the mass
MS =

�
A

(e2SAx + e2SAy + e2SAz)MA, (2.58)

as in a classical picture this leads to a nuclear motion that is composed of uncoupled harmonic
modes with the frequencies ωS. The resulting coordinate system is called modal system, MS

is the modal mass, and the coordinates QS are called modal coordinates. The vibrational
Hamiltonian thus assumes the form

ĤN =
�
S

− �2

2MS

∂2

∂Q2
S

+
MSω

2
S

2
Q2

S . (2.59)

An additional assumption that is always employed but rarely stated explicitly is that the
electron-phonon interaction ĤeN does not change the modal structure, i.e. it is also diago-
nal in =Q [129,131]. In this case the interaction Hamiltonian can be written as

ĤeN =
�
S

ÛSFS(QS), (2.60)

where ÛS is a potential for the electrons which is coupled to the instantaneous nuclear position
by FS(QS).

The transition rate is now determined from (2.52), with the wave functions in the modal
coordinate system

ΨiI(=x, =Q) = ϕi(=x; =Q)ηiI( =Q) =
��i( =Q)

���iI�� (2.61)

and the non-adiabacity operator

L̂ij =
�
S

L̂ijS (2.62)

L̂ijS = − �2

2MS

�
j( =Q)

�� ∂2

∂Q2
S

��i( =Q)
�− �2

MS

�
j( =Q)

�� ∂

∂QS

��i( =Q)
� ∂

∂QS
. (2.63)

The
��i( =Q)

�
are the solutions of the equation

(Ĥe + ĤeN)
��i( =Q)

�
= Ei( =Q)

��i( =Q)
�
, (2.64)

Perturbation Theory

In addition to the time dependent perturbation theory employed to calculate the transition
rates, nearly all published model matrix elements treat the dependence of the electronic wave
functions and energies on =Q using a perturbation expansion based on the ( =Q-independent)
solutions of the electronic Hamiltonian

Ĥe

��i� = Ei

��i�. (2.65)
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An exception is the work of Kubo [128], which uses a highly idealized defect wave function.
In the Condon approximation or adiabatic approximation (not to be confused with the adia-
batic Born-Oppenheimer approximation), the =Q-dependence of the electronic wave functions is
obtained from first-order perturbation theory, i.e.

��i( =Q)
�
=

��i�+�
k �=i

�
k
��ĤeN

��i�
Ei − Ek

��k�
=

��i�+�
k �=i

�
S

�
k
��ÛS

��i�FS(QS)

Ei − Ek

��k� (2.66)

Ei( =Q) = Ei +
�
i
��ĤeN

��i�
= Ei +

�
S

�
i
��ÛS

��i�FS(QS). (2.67)

This approximation was used initially by Huang and Rhys [127, 132] and was subsequently
employed in many publications. The matrix element for a general operator Ô is�
j( =Q)

��Ô��i( =Q)
�
=

�
j
��Ô��i�

+
�
S

��
k �=i

�
j
��ÔFS(QS)

��k��k�� ÛS

Ei − Ek

��i�+ �
k� �=j

�
j
�� ÛS

Ej − Ek

��k
��k
��F ∗
S(QS)Ô

��i��
+ second order terms. (2.68)

Unfortunately, the matrix elements for non-radiative transition rates calculated using the
Condon approximation were too small by orders of magnitude [132,133] and so different ap-
proximations were developed. The most popular approaches are the static coupling scheme
[89,132,134,135] and the non-Condon approximations [130], which were based on an ‘‘infinite
order’’ perturbation expansion. Both methods give transition rates closer to experiment and
the relative advantages of each of the approximations have been discussed for more than two
decades. In the early 1980s it was conclusively shown by several authors that in principle all
three approximations are equivalent and that significant differences arise from the employed
wave functions, which makes this part of the theory slightly arbitrary [132,136–138]. In the re-
maining part of this document the standard Condon approximation is applied for its simplicity.
The electronic matrix elements employed contain parameters that are calibrated to experimen-
tal data, which is assumed to properly account for the shortcomings of the approximation.

The perturbation expansion of the energy has an important consequence for the vibrational
system, as in the employed Born-Oppenheimer approximation the energy levels act as a poten-
tial for the nuclei. The vibrational part of the problem now reads

(ĤN + Ei( =Q))
��iI�� = �

Ei +
�
S

− �2

2MS

∂2

∂Q2
S

+
MSω

2
S

2
Q2

S +
�
i
��ÛS

��i�FS(QS)

���iI�� = EiI

��iI��.
(2.69)

This Hamiltonian is a sum of independent operators for every phonon mode which is solved by
the wave function [98] ��iI�� =

��iI1��⊗ ��iI2��⊗ ��iI3��⊗ · · · ��iIS�� · · · (2.70)

with the corresponding energy
EiI = Ei +

�
S

EiIS (2.71)
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and the constituents
��iIS�� and EiIS are obtained from�

− �2

2MS

∂2

∂Q2
S

+
MSω

2
S

2
Q2

S +
�
i
��ÛS

��i�FS(QS)

� ��iIS�� = EiIS

��iIS��. (2.72)

In essence, this result makes the true separation of the phonons possible, which is of impor-
tance for the following considerations. The quantum state of the vibrational system I that
belongs to the electronic state i now consists of the independent states of all phonon modes IS.

Electron-Phonon-Coupling

In most publications, the coupling function F ( =Q) is a linear expression in the modal coordinates
[130]

ĤeN =
�
S

ÛSaSQS , (2.73)

where aS is a normalization factor that is sometimes absorbed into the coupling potential. This
approximation is known as the linear coupling approximation and is widely used throughout
literature [127,130,132].

Inserting the linear relation for FS(QS) into (2.72) gives�
− �2

2MS

∂2

∂Q2
S

+
MSω

2
S

2
(QS +QSi)

2 − E

Si

� ��iIS�� = EiIS

��iIS�� (2.74)

with

QSi =

�
i
��ÛS

��i�aS
MSω2

S

and E

Si =

�
i
��ÛS

��i�2a2S
2MSω2

S

. (2.75)

The resulting modal wave functions are harmonic oscillator wave functions [139]��iIS�� = hISλS
(QS −QSi) (2.76)

λS = MSωS (2.77)

hnλ(Q) =
1√
2nn!

Hn(Q)h0λ(Q) (2.78)

h0λ(Q) =

�
λ

π�

�1/4

e−
Q2λ
2� , (2.79)

where Hn(Q) are the Hermite polynomials [139]. Each mode S has an associated vibrational
center QSi that is determined by the electronic state i. Upon a transition to a different electronic
state, the vibrational wave functions are shifted to the new potential minimum as illustrated
in Fig. 2.6.

In addition to the linear coupling approximation, some works also investigate systems with
purely quadratic coupling which has the form [128,129]

ĤeN =
�
S

ÛSbSQ
2
S . (2.80)

As shown in Fig. 2.7, contrary to the linear coupling, the quadratic coupling does not change
the equilibrium coordinate of the mode but the oscillation frequency, leading to a vibrational
Schrödinger equation of the form�

− �2

2MS

∂2

∂Q2
S

+
MSω

2
Si

2
Q2

S

� ��iIS�� = EiIS

��iIS�� (2.81)
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Figure 2.6: Potential energy surfaces and the corresponding vibrational wave functions for
one mode in the linear coupling approximation. (left) Different electronic states give rise to
harmonic potential energy surfaces that differ only in the energetic and spatial position of
the minimum. The corresponding set of vibrational wave functions is shifted accordingly but
remains unchanged otherwise. (right) The vibronic transition theory (2.51) describes the tran-
sition between two specific vibrational sub-states as indicated by the arrow. The total rate is
computed by thermally averaging over all possible transitions.

with
ω2
Si = ω2

S +
2bS
MS

�
i
��ÛS

��i�. (2.82)

The vibrational wave functions thus assume the form��iaS�� = haSλSi
(QS) (2.83)

λSi = MSωSi. (2.84)

Both the linear coupling approximation and the quadratic approximation have been studied in
numerous papers. As is shown in Chap. 4 and also described in our publications [86,140], the
defects that are considered relevant for MOS reliability need a combination of both couplings
to even capture the basic features of the potential energy surfaces calculated from density
functional theory. Thus we are dealing with an interaction of the form

ĤeN =
�
S

ÛS(aSQS + bSQ
2
S) (2.85)

and upon a transition between two electronic states both the equilibrium position and the os-
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Figure 2.7: Potential energy surfaces and vibrational wave functions for a transition in the
quadratic coupling (left) and in the combined linear and quadratic coupling approximation
(right). In the purely quadratic coupling approximation, there is no shift in the equilibrium po-
sition but a change in the oscillation frequency. In the combined version, both the equilibrium
position and the oscillation frequency change.

cillation frequency of the phonon modes change, yielding the vibrational Schrödinger equation�
− �2

2MS

∂2

∂Q2
S

+
MSω

2
Si

2
(QS −QSi)

2 + E

Si

� ��iIS�� = EiIS

��iIS�� (2.86)

with

QSi =
aS

2bS +
MSω

2
S�

i
��ÛS

��i� , (2.87)

E

Si = − a2S

�
i
��ÛS

��i�2
4bS

�
i
��ÛS

��i�+ 2MSωS

, and (2.88)

ωSi =
√
2

�
2bS

�
i
��ÛS

��i�
MS

+ ω2
S (2.89)

2.9.4 The Line Shape Function

Line shapes are a concept originating from the field of optical spectroscopy. As an introduction
to the concept, we take a look at the first quantitative theory for the multi-phonon transitions of
a point-defect derived by Huang and Rhys [127] in 1952 for the F-Center in potassium bromide.
The first part of that work is dedicated to a transition induced by incident radiation. In these
transitions, the dominant perturbation arises from the polarization operator M̂ and not from
the non-adiabacity operator L̂ in (2.52). It is safe to assume that M̂ acts only on the electrons,
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again due to the comparably large mass of the nuclei. In the Condon approximation (2.68) the
corresponding matrix element reads�

j( =Q)
��M̂ ��i( =Q)

�
=
�
j
��M̂ ��i�

+
�
S

�
FS(QS)

�
k �=i

�
j
��M̂ ��k��k�� ÛS

Ei − Ek

��i�
+ F ∗

S(QS)
�
k� �=j

�
j
�� ÛS

Ej − Ek

��k
��k
��M̂ ��i�� (2.90)

where the first term represents the direct transition between the two electronic states due to
the incident radiation, and the other two terms account for transitions mediated by electron-
phonon interactions. It is commonly assumed that the indirect transitions are negligible com-
pared to the direct matrix element

�
j
��M̂ ��i�. Consequently the sums in (2.90) can be neglected

and the electronic matrix element is approximately independent of the position of the nuclei.�
j( =Q)

��M̂ ��i( =Q)
� ≈ �

j
��M̂ ��i� (2.91)

This is known as the quantum mechanical Franck-Condon principle [91,127]. It is important
to stress that the =Q-independence only concerns the matrix element but not its constituents.
In this case, the electronic matrix element in (2.51) can be taken out of the integration over =Q,
yielding �

ΨjJ

��M̂ ��ΨiI

�
=

��
jJ

���j( =Q)
��M̂ ��i( =Q)

���iI�� ≈ �
j
��M̂ ��i���jJ |iI��. (2.92)

In essence, this describes the transition as an electronic matrix element with vibrational se-
lection rules. The factors

����jJ |iI����2 arising from the quantum-mechanical Franck-Condon
principle are usually called Franck-Condon factors.

Inserting this matrix element into (2.52) results in the expression [117]

Wi→f(hν) =
2π

�

����f��M̂ ��i����2 f(hν), (2.93)

where hν is the energy of the radiation and

f(hν) = avg
I

�
F

����fF |iI����2 δ(EfF − EiI − hν) (2.94)

is the line shape function. In optical spectroscopy line shape functions describe the thermal
broadening of absorption peaks [91,117,127], but the concept is also applicable to non-radiative
carrier capture at defects in semiconductors, as shown below.

2.9.5 Line Shapes for Non-Radiative Transitions

While the Franck-Condon principle is easy to justify for optical matrix elements using the Con-
don approximation, the above argument completely fails for the non-adiabacity operator (2.63)
which contains the electronic matrix elements

�
j(QS)

�� ∂
∂QS

��i(QS)
�

and
�
j(QS)

�� ∂2

∂Q2
S

��i(QS)
�

that
do not induce a direct transition. Using the interaction (2.85), the Condon approximation for
these matrix elements gives with (2.66)

�
j( =Q)

�� ∂

∂QS

��i( =Q)
�
= (aS + 2bSQS)

�
j
�� ÛS

Ei − Ej

��i� (2.95)
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and �
j( =Q)

�� ∂2

∂Q2
S

��i( =Q)
�
= 2bS

�
j
�� ÛS

Ei − Ej

��i�, (2.96)

and the transition matrix element reads with (2.63)��
jJ

���j( =Q)
��L̂��i( =Q)

���iI�� =
�
S

��
jJ

��L̂ijS

��iI�� (2.97)��
jJ

��L̂ijS

��iI�� = −UijSSIJS (2.98)

UijS =
�2

MS

�
j
�� ÛS

Ei − Ef

��i� (2.99)

SIJS = bS
��
jJ |iI��+ aS

��
jJ

�� ∂

∂QS

��iI��+ 2bS
��
jJ

��QS
∂

∂QS

��iI��. (2.100)

The matrix elements of the separate modal non-adiabacity operators again resemble the ra-
diative matrix elements obtained from the Franck-Condon principle above as the expression
consists of an electronic part and a vibrational part. Unlike the Frank-Condon expression
above, however, this vibrational part contains both a dependence on the vibrational coordi-
nates themselves as well as a dependence on their derivative.

Inserting (2.70) for the vibrational wave functions gives

SIJS =
� �

S� �=S

��
jJS� |iIS�

����
bS
��
jJS |iIS

��
+ aS

��
jJS

�� ∂

∂QS

��iIS��+ 2bS
��
jJS

��QS
∂

∂QS

��iIS���.
(2.101)

This result is interesting as it shows that each mode contributes a Frank-Condon factor to
the matrix element of every other mode. The vibrational part is determined by the change
of the potential energy surface between the states, which is caused by the diagonal part of
the electron-phonon coupling Hamiltonian

�
i
��ÛS

��i�, see (2.67). The electronic matrix element,
on the other hand, arises from the off-diagonal elements

�
j
��ÛS

��i�. As the diagonals and the
off-diagonals of the coupling operator need not be related to each other, there is no direct link
between the contribution of a mode to the electronic matrix element and its contribution to
the vibrational part. In the literature, modes contributing to the electronic matrix element
are called promoting modes and those contributing to the vibrational part are called accepting
modes [131]. Usually, every mode of a defect system will fall into both categories to some
degree.

The target of the present work is to extract relevant parameters for the non-radiative transi-
tions from atomistic calculations. Although the parameters aS and bS of the above expression
can be extracted from a suitably designed atomistic model, as will be shown later in this docu-
ment, this parameter extraction bears some ambiguity due to the anharmonicity of the potential
energy surface from the electronic structure method. Also, the complicated structure of the
investigated defects and the strong distortion of the host lattice around them makes the as-
sumption of a constant mode-spectrum quite unlikely. Finally, there is no method available for
the estimation of the cross-terms

�
j
��ÛS

��i� required for the promoting contribution due to the
ill-defined or inaccurate wave functions in the available electronic structure methods. Under
this viewpoint, an approach to calculate the non-radiative transition rate using the accurate
operator (2.98) appears unreasonable due to the inaccuracy of the underlying model system.
We therefore assume that all modes in our system are purely accepting modes, which enter
the transition rate only through the Franck-Condon factors

��
jJS� |iIS�

��
and the conservation

of energy. We assume a perturbation operator L̂
 that contains the promoting contributions of
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Figure 2.8: A schematic configuration-coordinate diagram illustrating vibronic transitions in
a classical and a quantum mechanical picture. In the classical picture (left), radiative as well
as non-radiative electronic transitions occur with the nuclei fixed in their respective position
(Franck-Condon principle). Thus, optical transitions occur vertically in this diagram and non-
radiative transitions happen at the crossing-points of the potential energy surfaces. As the
system most dominantly resides at the minima of the potential energy surfaces, different wave-
lengths are observed for absorption and emission of radiation. In the quantum-mechanical
picture (right), the transitions happen between the vibrational sub-states arising from the
different potential energy surfaces.

the modal spectrum but acts like an optical matrix element M̂ . Just as L̂, L̂
 is assumed to
couple the initial and final state elastically, i.e. it does not contribute to the conservation of
energy. As L̂
 is not known exactly, it will be approximated by a parametrizable expression.
The resulting non-radiative transition rate can thus be based on the radiative transition rates
(2.93) as the limit [86,117,123,141]

Wi→f = lim
hν→0

Wi→f(hν) =
2π

�

����f��L̂
��i����2 f(0). (2.102)

This approach is well compatible with published works which either apply the Frank-Condon
principle directly to the non-adiabacity operator [117,127,131,142] or where the perturbation
does not arise from the non-adiabacity operator but instead from an applied field [143,144].
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2.10 Vibronic Transitions with Classical Nuclei

As for the barrier hopping transitions in Sec. 2.8, it is also possible to formulate a theory for
vibronic transitions that treats the nuclei as classical particles [117,129]. Several semi-classical
approaches have been published over the years, especially for the estimation of reemission
probabilities [117] or correlated hopping [116]. In the present work, non-Markovian behavior
is not assumed to be relevant, so the theory is again derived using the assumption of thermal
equilibrium.

As above, we derive the non-radiative transition from an optical transition by letting the
optical energy approach zero. In this approach, the transition between the electronic Born-
Oppenheimer wave functions

��i(=R)
�

and
��f(=R)

�
proceeds via the optical matrix element M̂ . For

any position =R of the nuclei, one can now again employ time-dependent perturbation theory to
calculate the transition rate as

Wi→f(hν, =R) =
2π

�

����f(=R)
��M̂ ��i(=R)

����2 δ �hν − Ef(=R)− Ei(=R)
�
. (2.103)

Again following just the same considerations as before, we assume that the nuclear degrees
of freedom are in thermal equilibrium and can be described by classical statistical physics. The
probability to find the system in electronic state

��i� at a certain configuration =R is hence given
by

P (=R) = Z−1e
−Ei(

�R)

kBT (2.104)

Z =

�
)R

e
−Ei(

�R�)
kBT d=R
 (2.105)

and thus the total transition rate for a given optical energy can be computed from

Wi→f(hν) =

�
RN

P (=R
)Wi→f(hν, =R

)d=R
 =

�
RN

Z−1e
−Ei(

�R�)
kBT Wi→f(hν, =R


)d=R
 (2.106)

=

�
RN

Z−1e
−Ei(

�R�)
kBT

2π

�

����f(=R
)
��M̂ ��i(=R
)

����2 δ �hν − Ef(=R

)− Ei(=R


)
�
d=R
 (2.107)

Again assuming the electronic matrix element to be independent of the nuclear configuration
one obtains

Wi→f(hν) =
2π

�

����f��M̂ ��i����2 f(hν) (2.108)

f(hν) =

�
RN

Z−1e
−Ei(

�R�)
kBT δ

�
hν − Ef(=R


)− Ei(=R

)
�
d=R
. (2.109)

This time the line shape function is only determined from the probability to find the system
in a configuration that fulfills the conservation of energy for the optical energy hν. For the
non-radiative transitions we again replace the optical matrix element by the quasi-optical non-
adiabacity operator L̂
 and let the optical energy go to zero as illustrated in Fig. 2.8. In summary,
when calculating vibronic transitions with classical nuclei, we again employ (2.102), but use
(2.109) as the line shape function. This classical line shape is determined from a transition-
state theory like expression, where the transition state is defined by the conservation of energy.
In comparison to (2.94), the classical line shape has the advantage that it can in principle use
the potential energy surfaces from electronic structure methods in their full glory, i.e. without
the necessity of a harmonic approximation.
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Figure 2.9: Sketch of the stochastic simulation algorithm (SSA) [114]. The algorithm generates
a realization of the stochastic process described by the chemical master equation (2.20).

2.11 Solution of the Master Equation

Now that the chemical states and reactions are defined and we have obtained rates for the
reactions from the explained microscopic theories, we can calculate the time evolution of the
chemical system from the chemical master equation (2.20). As explained above, this equation
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is a stochastic differential equation which assigns a probability to any state vector =x, given
that =X = =x0 at t = t0. For a system with a small set of states {=x1, . . . , =xΩ}, a direct solution
can be attempted, which results in a coupled system of Ω differential equations [37]. However,
in many situations the number of states will be quite big or even infinite, rendering a direct
solution of the master equation unfeasible or even impossible. A feasible alternative is the
stochastic simulation algorithm (SSA) [114] explained in Fig. 2.9, which is also known as the
kinetic Monte Carlo method. Instead of solving the differential equation (2.20), a realization of
the stochastic process =X is generated using pseudo-random numbers. The SSA does not have
any algorithmic parameters and is a mathematically exact description of the system defined by
the states and reaction channels [114]. The moments of the probability distribution P (=x, t) are
trivially calculated by averaging over several simulation runs, although care has to be taken to
ensure the randomness of the pseudo-random numbers between two runs to avoid correlation
effects.

2.11.1 Subsystems, Well-Stirredness, and Diffusion

Most chemical systems are constructed of a large number Θ of similar sub-systems with a
small number of states Ω, for example a number Θ of well-separated doping atoms within a
semiconductor device which can exist in a number Ω of different charge states. The chemical
state of the total system can in principle be constructed from all the states of the subsystems,
i.e.

=x =

					
=x1
=x2
=x3
...
=xΘ

����� , =xδ ∈ {=s1, =s2, . . . , =sΩ} , Θ � Ω. (2.110)

For every subsystem δ there is now a number Γ of reaction channels with associated state
change vectors =νδ1 . . . =νδΓ and propensity functions aδ1(=sδ) . . . aδΓ(=sδ).

In a situation like this a given observable will usually be unable to separate these sub-
systems. For instance for the transport characteristics of a semiconductor device it is irrelevant
which dopant has contributed a carrier but only how many of them have. As the sub-systems
are similar enough that their propensity functions are the same

aδiγ = aδjγ = aγ , (2.111)

the chemical state of the total system can be reformulated, considering only the numbers of
subsystems nω in a given state =sω. The new total state vector will be

=x
 =

					
n1

n2

n3
...
nΩ

����� , (2.112)

the state change vectors will only operate on the numbers n1, . . . , nΩ, and the corresponding
propensity functions will take the form

a
ωγ = nωaγ , (2.113)
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corresponding to the probability per unit time that any of the subsystems in state ω will take
reaction channel γ. In theoretical chemistry these reactions in which an isolated sub-system
undergoes a transition are termed unimolecular reactions [115]. Especially if the chemical
system under consideration consists of diffusing species, such as atoms or molecules in a
solvent, two of these subsystems may also interact and form new species, for example 2H2 +
O2 → 2H2O. In those reactions, the corresponding reaction channel changes two or more
numbers of =x
 at the same time and the associated propensity function takes the form

a
ω1ω2γ = nω1nω2aγ , (2.114)

which is the probability per unit time that any two of the nω1 specimens of species ω1 and nω2

specimens of species ω2 will undergo the reaction γ, where different species in the above context
may refer to different types of sub-systems (e.g. different molecules) or different sub-systems
of the same type in a different state. Reactions of this type are called bimolecular reactions.
For bimolecular reactions which involve two specimens of the same species, the propensity
function is

a
ωγ =
nω(nω − 1)

2
aγ , (2.115)

which corresponds to the probability that any pair of specimens of type ω will undergo the reac-
tion γ. Any higher order reactions can be reduced to a series of bimolecular and unimolecular
reactions [115].

Bimolecular reactions usually emerge in situations when at least one of the specimens is
able to move, giving it access to different reaction partners. A mathematical description of
the form (2.114) or (2.115) implies, that the reaction probability is the same for every pair
of reactants, i.e. a homogeneous distribution of the reacting specimens within the volume
associated with the chemical system. This condition is commonly referred to as the system
being well-stirred. Different approaches exist for chemical systems where the intermixing is not
fast enough, which are called reactive-diffusive systems. These approaches and their relevance
for the reaction-diffusion model for NBTI will be discussed in Chap. 3.

2.12 Reaction Rate Equations

As stated above, it is quite common that observables only determine how many constituents
of a chemical system have assumed a certain state, or equivalently how many specimens of
a certain species exist in that system. Usually the most interesting quantities for a chemical
system in number representation is thus the development of the average numbers of (2.112)
over time. These averages are obtained as

�=n� (t) =
�
)n

=nP (=n, t|=n0, t0), (2.116)

which corresponds to the first moment of the probability distribution P .
To obtain these averages from the SSA one has to take the average of several simulation

runs, which is usually a quite time-consuming task. Especially if there are very fast reactions
or a large number of particles in the system, the simulation of longer time-ranges quickly
becomes unfeasible using this approach. A computationally more efficient approach is to
directly calculate the dynamics of the average values. For convenience we introduce the average
number vector =N = �=n�. The time evolution of =N is calculated from

∂ =N

∂t
=

∂

∂t

�
)n

=nP (=n, t|=n0, t0) =
�
)n

=n
∂

∂t
P (=n, t|=n0, t0). (2.117)
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The substitution of the right side of (2.20) for the derivative of P and a few trivial transformations
yield [115]

∂ =N

∂t
=

�
γ

=νγ �aγ� . (2.118)

For the case of unimolecular reactions (2.113), whose propensity functions are linear in =n, it
is trivial to show that �aγ� = =aγ · =N , which leads to the popular description using reaction rate
equations

∂ =N

∂t
=

�
γ

=νγ(=aγ · =N). (2.119)

Due to their efficiency and simplicity, reaction rate equations are a popular method to describe
reactive systems. However, one has to be aware that this description is only exact if all the
reactions in the system are unimolecular. Nevertheless, reaction rate equations are also com-
monly used for systems with bimolecular reactions and even reactive-diffusive systems, as in
the reaction-diffusion model for NBTI. The consequences and inadequacies of this approach
are discussed in Chap. 3.

As a final remark, it is common not to use the number-representation of =N . Instead, the
number of particles is usually normalized to the volume of the system, leading to a formulation
based on concentrations instead. In this formulation, the particles within the system are
understood as a continuum of a certain density. A formulation like this is usually termed a
macroscale formulation.
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Bevor ich auf ein Wunder hoff’
versuch ich es mit Wasserstoff.

(Rainhard Fendrich)

3 A Microscopic Reaction-Diffusion Model for NBTI

As mentioned in Chap. 1, the reaction diffusion model has been mainly used for the interpreta-
tion of BTI experiments for almost four decades. Its apparent inability to explain NBTI recovery
has led to several modifications of the concept, including trapping of the diffusing species and
different types of diffusors [9,11].

Quite recently it was claimed that the misprediction of recovery is due to the one-dimensional
description of the diffusing species in the macroscopic model (1.5)–(1.6). As illustrated in
Fig. 3.1, it was suggested that this formulation makes it too easy for the hydrogen atom to find
a dangling bond to passivate because the one-dimensional diffusion considers only two options
of motion: forward and backward jumping. In a higher-dimensional description the diffusion
and reaction kinetics are much richer:

1. The atoms can move in all three dimensions equally likely, leading to a distribution of
arrival times at the interface during recovery.

2. H2-molecules dissociate at a dangling bond, creating a passivated dangling bond and a
free hydrogen atom that does not immediately find another dangling bond to passivate.

3. Hydrogen atoms arriving later have to hover along the interface to find an unoccupied
dangling bond.

A simple estimate of the recovery in the hypothetical three-dimensional model is given in [16].
This estimate mimics the different repassivation kinetics arising in the atomic description
within the framework of the usual macroscopic RD model. To account for the longer ‘‘effective’’
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Figure 3.1: (left) According to Mahapatra et al. [16], the inability of the macroscopic reaction-
diffusion model (1.4)–(1.6) to predict the experimentally observed NBTI recovery is due to the
one-dimensional description of the diffusive motion which makes it too easy for the hydrogen
to find its dangling bond. (right) A correct description of the three-dimensional atomic motion,
so the argument, leads to much richer repassivation kinetics and thus to a distribution of
repassivation times.
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Figure 3.2: According to [16], the distribu-
tion of repassivation times arising from an
accurate three-dimensional microscopic de-
scription can be approximately modeled by
varying the diffusion coefficient during recov-
ery in the macroscopic model. The plot shows
the numerically calculated recovery traces for
different diffusion coefficients during recovery
and the average of these traces. Indeed, this
average shows a recovery that proceeds over
more time-scales.
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Figure 3.3: A random distribution of 10 dan-
gling bonds on a silicon (100) surface corre-
sponding to a dangling bond density of 5 ×
1012 cm−2, which is a common assumption
for the number of bonding defects at the Si-
SiO2 interface [20,23,45]. The surface silicon
atoms are shown in blue, the dangling bonds
in red. At this density the average distance
between two dangling bonds is ∼ 4.5 nm. 13.8nm

3nm

recovery paths, the diffusion coefficients in the macroscopic model are reduced by different
factors during recovery and the resulting recovery traces are averaged. Although this approach
gives a recovery that proceeds over more time scales, as shown in Fig. 3.2, no derivation for the
quasi-three-dimensional description is given and its physical validity is at least questionable.
One of our targets is to test the claims of [16] within a firm theoretical framework.

Another motivation for the study of the microscopic limit of the reaction-diffusion model for
NBTI is based on general issues with the rate-equation-based description. As a literature study
reveals, reaction-diffusion systems have been studied in numerous scientific communities from
both the theoretical and the experimental side for more than a century [145–151]. Although
the mathematical framework of the RD model (1.4)–(1.6) seems physically sound and the de-
scription using densities and rate equations is commonly considered adequate, it is a well
known and experimentally confirmed result of theoretical chemistry that the partial differential
equation based description of chemical kinetics breaks down for low concentrations [145]. Ad-
ditionally, in reaction-diffusion systems bimolecular reactions, such as the passivation and the
dimerization reaction, require a certain proximity of the reactant species, termed reaction ra-
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Figure 3.4: An idealized atomic
model of an MOS structure and
the average dangling bond dis-
tance of 4.5 nm, which spans sev-
eral interstitial positions. It is in-
tuitively clear that an elementary
reaction between particles sepa-
rated by this distance is strongly
influenced by diffusion.

SiO
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Si
poly

1.2nm
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dius [146,151]. Usually the elementary bimolecular reactions happen almost instantaneously
and it is the required collision, i.e. the reduction of the distance between two reactants below
the reaction radius, which is the rate limiting step [145]. In chemical kinetics, these reactions
are called diffusion-limited or diffusion-controlled reactions [147].

It is easy to show that diffusion must play a dominant role in the bimolecular reactions in the
RD model for NBTI. Fig. 3.3 schematically shows a uniform random distribution of dangling
bonds on a silicon (100) surface that corresponds to a density of 5 × 1012 cm−2, which is a
usual assumption for N0 [20,23,45] in (1.1) or (1.4). The average distance between two nearest
neighbors at this density is d = N

−1/2
0 ≈ 4.5 nm. An atomic model of the Si-SiO2 interface as

in Fig. 3.4 shows that two points separated by this distance have a large number of atoms in
between. The assumption of an elementary reaction over this distance is clearly inappropriate,
so any reaction between particles of this separation must involve a diffusive step.

Once established by the atomic viewpoint above, the diffusive influence on the bimolecular
reactions leads to contradictions in the RD model and its physical interpretation. The predicted
degradation of the RD model that is compatible with experimental data is only obtained if the
hydrogen atoms that are liberated during stress compete for the available dangling bonds and
dimerize at a certain rate. Both requirements involve diffusion over distances much larger
than the nearest neighbor distance, which takes about two seconds at a commonly assumed
diffusion coefficient of D = 10−13 cm2/s [20, 23]. The reaction radius ρH of the dimerization
reaction can be estimated from the Smoluchowski theory for irreversible bimolecular reactions
[146,148,149]

ρH =
kH
4πD

. (3.1)

While a reasonable reaction radius is in the regime of the average radius of the oxide inter-
stitials, which is about 4Å [152], the application of (3.1) to published dimerization rates gives
values ranging from 70µm for the parametrization of [23] to thousands of kilometers for other
parametrizations [20]. Although both values for ρH seem quite unreasonable, they only indicate
a limited physical validity of the selected parametrization. An evaluation of the physical valid-
ity of the reaction-diffusion model itself requires a more detailed study using a computational
model that properly treats the stochastic chemical kinetics involved.

For the present study of the microscopic properties of the RD mechanism we have developed
our own atomistic reaction-diffusion simulator based on the considerations of the previous
chapter. The microscopic reaction-diffusion picture developed for this purpose also serves as a
framework to assess whether a description based on rate-equations is applicable to the physical
mechanism behind the RD model.
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Figure 3.5: Schematic illustration of the stochastic modeling approaches to reaction-diffusion
systems. (left) In grid-less methods, a molecular trajectory is generated from the transient
solution of Newton’s equations of motion as in molecular dynamics simulation. The interaction
with the solvent is modeled by a random force that acts on the diffusors. Bimolecular reactions
occur when two particles approach closer than the reaction radius (indicated as circles around
the particles) (right) In grid-based methods diffusion proceeds as jumps between the sub-
domains defined by the grid. Bimolecular reactions occur when two particles occupy the same
grid-point.

3.1 The Microscopic RD Model

Our microscopic RD model attempts to mimic the proposed mechanisms of the reaction-
diffusion model at a microscopic level. The basic actors are H-atoms, H2-molecules and the
silicon dangling bonds at the interface. The level of physical detail in our model is chosen so
that the single-particle effects are captured in a physically meaningful way while still keeping
the computational effort manageable even for long-term simulations. Atomic vibrations, i.e.
the microstate dynamics, are certainly not of interest here. The present study concerns the
RD-process itself and the conclusions therefore do not depend on the microscopic details of
the reactions at its basis. The microscopic investigations are thus carried out at the stochastic
chemistry level (see Chap. 2).

Several algorithms have been used in the chemical literature for the stochastic simulation
of reaction-diffusion systems [148,149]. The most difficult task in the modeling of these sys-
tems is the diffusion of the reactants and several different approaches are available which can
roughly be categorized as grid-based methods or grid-less methods [149], see Fig. 3.5. Grid-
less methods propagate the coordinates of the diffusing species quite similarly to molecular
dynamics methods. Instead of explicitly treating all atoms of the solvent and their effect on
the trajectory of the diffusors, the motion of the diffusing particles is perturbed by an empirical
random force to generate a Brownian motion. Bimolecular reactions happen at a certain rate
as soon as two reaction partners approach closer than a given radius. Although this technique
suffers from its sensitivity to the time-step and the specific choice of the random force, it is a
popular choice for the simulation of reaction-diffusion processes in liquid solutions where real
molecular-dynamics simulations are not feasible [148,149]. In grid-based methods the simu-
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Figure 3.6: Schematic microstate trajectory (blue) of an inert inter-
stitial atom diffusing in a solid-state host material. The potential
energy barriers of the host material are indicated as black grid.
The diffusion itself proceeds via jumps between the interstitial po-
sitions. In between the jumps, the atom vibrates randomly around
an energetic minimum.

lated volume is divided into small domains and each diffusing particle is assigned to a specific
domain. The motion of the diffusors proceeds as hopping between the grid-points. In these
models the bimolecular reactions happen at a certain rate as soon as two reactants occupy the
same sub-volume. The advantage of this approach is that it can be formulated on top of the
chemical master equation (2.20). The master equation can then be solved using the stochas-
tic simulation algorithm (see Sec. 2.11), which does not depend on artificial time-stepping. A
problem of the grid-based method that is repeatedly discussed in chemical literature is the
choice of the spacial grid as it induces a more or less unphysical motion in liquid solutions.
Additionally, the probability to find two particles in the same grid point and in consequence
the rate of bimolecular reactions are quite sensitive to the volume of the sub-domains [149].

In the reaction-diffusion model for NBTI, the diffusion of the particles proceeds inside a
solid-state solvent. Contrary to diffusion in gases or liquids, the motion of an impurity in
a solid-state host material proceeds via jumps between metastable states as illustrated in
Fig. 3.6. This hopping diffusion is understood as a barrier-hopping process as explained in
Sec. 2.8. In the case of H or H2, which do not react with the host atoms, the barriers arise
from the repelling Coulomb-interaction between the electron clouds of the host lattice and the
diffusor. The minima of the potential energy surface are thus the interstitial positions of the
host lattice [59, 153]. In between the jumps, the motion of the atom is randomly vibrational
rather than diffusive or, in terms of Chap. 2, a microstate trajectory. This discreteness of motion
not only strongly suggests the use of a grid-based method, where the grid points are interstitial
positions of the host lattice, it also induces a natural discretization into the reaction-diffusion
equations. As a consequence, the description based on macroscopic diffusion equations in the
RD model (1.5)–(1.6) are only valid at distances that are much larger than the interstitial radius
and it has to be assumed that at very short distances a description using hopping diffusion is
more accurate.

We conclude that the most appropriate description of the physics considered in the present
work is obtained from the reaction-diffusion master equation approach [148–151]. Within the
natural lattice of interstitial positions the actors of our RD system exist in well-defined and
discrete states. In accord with the considerations of Sec. 2.6, it is now possible to define a state
vector =x that contains the interstitial positions and bonding states of all actors as well as a set
of reaction channels which cause transitions between the states of this vector. The RD system
then becomes a time-dependent stochastic process =X(t) that exists in one of a countable set of
states =sω and whose evolution over time can then be described by the chemical master equation
(2.20). As explained in Sec. 2.6, the physics behind the reaction channels are contained in the
propensity functions aγ and the state-change vectors =νγ , which are given in Fig. 3.7. The
reactions employed in our simulations are the hopping transport between interstitial sites, the
passivation/depassivation reaction and the dimerization/atomization reaction. The stochastic
chemical model is solved using the stochastic simulation algorithm (SSA) explained in Sec. 2.11.

46



Reaction Macroscopic Microscopic Illustration

a. Si∗ +H→ SiH krNitHit
kr
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nDBinHi

b. SiH →Si∗ +H kf(N0 −Nit) kfnp,i

c. H: I1 → I2 −D
∂2H

∂x2
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d. H2 : I1 → I2 −D2
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nHi(nHi − 1)

f. H2 → 2H kH2H2 kH2nH2i

. . . Dangling bond . . .H . . .H2

Figure 3.7: Reaction channels and propensities in the microscopic RD model along with their
macroscopic counterpart. (a) The dangling bonds are represented by special sites at the bottom
of the simulation box. Empty dangling bond sites can be passivated by a free hydrogen atom.
(b) Occupied dangling bond sites do not offer a bonding reaction channel, they can only emit
their hydrogen atom. (c, d) Within the bulk SiO2, the atoms or molecules are allowed to jump
from an interstitial I1 to any neighboring site I2. (e) When two hydrogen atoms occupy the
same interstitial position, they can undergo a dimerization at rate kH and form H2. (f) Each
hydrogen molecule dissociates at a rate kH2 back into two hydrogen atoms. For interstitial
site i, nDBi is the number of (depassivated) dangling bonds, np,i is the number of passivating
hydrogen atoms, nHi is the number of free hydrogen atoms, and nH2i is the number of hydrogen
molecules. h denotes the step size of the spatial grid.

In the microscopic RD model employed in this work the interstitial sites form a regular and
orthogonal three-dimensional grid and the hopping rates for the diffusors are assumed to be
constant in accord with the isotropic and non-dispersive diffusion underlying the conventional
macroscopic RD model [9]. In a real SiO2 of a MOS transistor the amorphous structure will
of course lead to a random network of interstitial sites [152] with a variety of hopping rates
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Figure 3.8: The simulation structure for the micro-
scopic RD model employed in this work is a bounded
region of width W and length L and infinite extension in
z-direction, i.e. normal to the interface. The silicon dan-
gling bonds are connected to special interstitial positions
in the Si-SiO2 interface region at the bottom of the simu-
lation box (blue). The interstitial positions are assumed
to form an orthogonal lattice with constant jump-width
and constant diffusion coefficients. W

L

h

and a more complex topology. However, as the power-law degradation predicted by the macro-
scopic RD model requires a constant diffusion coefficient, these variations must be assumed
unimportant [22] in order to obtain agreement with the established model. As illustrated in
Fig. 3.8, the simulation region in our calculations is a rectangular box which extends to infinity
normal to the Si-SiO2 interface and has closed lateral boundaries. The Si-SiO2 interface itself
is represented by a special region at the bottom of the simulation box where selected interface
sites have the ability to bond or release a diffusing hydrogen atom, see Fig. 3.7 and Fig. 3.8.
The positions of the dangling bond sites in the interface region are picked randomly, similar to
Fig. 3.3.

As mentioned above, the choice of the grid size requires special attention as it determines
the probability of the bimolecular reactions. The interstitial size of amorphous silica has been
calculated for molecular-dynamics generated atomic structures and is about 4Å [152]. We take
this value as the physically most reasonable grid size.

Once the microscopic model is defined, the relation to the macroscopic RD model (1.4)–(1.6)
has to be established. Using the number of dangling bonds in the simulation box nDB, the
number of hydrogen atoms passivating a dangling bond np and the numbers nHi of H and nH2i

of H2 at interstitial i, this relation is obtained from the discretization induced by the grid [23]
as

N0 =
nDB

WL
, (3.2)

Nit =
nDB − np

WL
, (3.3)

H(xi) =
nHi

Vi
, (3.4)

H2(xi) =
nH2i

Vi
, (3.5)

where W , L and h are illustrated in Fig. 3.8 and Vi is the volume of interstitial i which is Vi = h3

in this work. The relation between the rates of the macroscopic model and the microscopic
propensity functions are given in Fig. 3.7. Initially, all hydrogen atoms are passivating silicon
dangling bonds

np(t = 0) = nDB, (3.6)
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Table 3.1: Parameters of the model system. The parameters
have been selected to enable a study of the different regimes
of the microscopic RD model at moderate computational ex-
pense. The rates are given in terms of the microscopic model
as in Fig. 3.7.

Reaction Propensity

Depassivation 0.5s−1

Passivation 4× 104s−1

Dimerization 2× 105s−1

Atomization 5s−1

H-hopping 100s−1

H2-hopping 100s−1

in accordance with the assumptions of the macroscopic RD model.

3.2 Results and Discussion

Two different systems have been studied in detail: a model system and a ‘‘real-world-example’’.
The model system is used to study the general features of the microscopic reaction-diffusion
process. It is parametrized in order to clearly show all relevant features at a moderate computa-
tional effort. The parametrization of the real-world system is based on a published parametriza-
tion of the modified reaction-diffusion model. This system is used to relate our microscopic
model to published data.

3.2.1 General Behavior of the Microscopic RD Model

The parametrization that is used to study the general behavior is given in Tab. 3.1. The number
of diffusing particles is a trade-off between accuracy and computational speed. Due to the large
computational demand1 , different regimes of the degradation curve have to be calculated with
different numbers of diffusing particles.

The earliest degradation times are dominated by the depassivation of the silicon dangling
bonds leading to a linear increase of the degradation, which is equivalent to the initial ‘‘reaction
limited’’ degradation of the macroscopic RD model [8]. However, the degradation predicted by
the microscopic RD model quickly saturates as an equilibrium forms between depassivation
and repassivation for each dangling bond separately. In absence of any diffusion the time
evolution of the number of hydrogen atoms passivating a silicon dangling bond is given by

∂np

∂t
(t) = −kfnp(t) +

kr
h3

(nDB − np(t)) (3.7)

np(t = 0) = nDB. (3.8)

with the solution
np(t) = nDB − nDBkf

kf +
kr
h3

(1− e−(kf+
kr
h3

)t). (3.9)

The main difficulty in the calculation of the early degradation times in the microscopic RD
model is the very low degradation level in this regime, which requires a high accuracy, i.e.
a large number of particles to obtain smooth results. Fortunately, as reactions between the
hydrogen atoms or between hydrogen atoms and neighboring dangling bonds are not happening
in this regime, a good parallelization can be obtained by averaging over separate simulation
runs, see Fig. 3.9. A comparison of the microscopic RD model and (3.9) is shown in Fig. 3.10.

1The computational effort of the SSA scales roughly linearly with the simulated time, which means exponential
scaling for the logarithmic abscissa that is used for BTI degradation curves. The scaling in the number of
particles is also linear.
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Figure 3.9: As the interaction between the
diffusing particles is small at early degrada-
tion times, the computation can be paral-
lelized by averaging over several simulation
runs. The figure shows that a calculation
with 105 particles is equivalent to the aver-
age of 100 calculation runs with 103 parti-
cles. The result of a single 103 particle run is
shown for comparison. kf was increased by
a factor of 100 for this calculation, in order
to obtain smooth curves from the 105 particle
run.
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Figure 3.10: Comparison of the microscopic
RD model with 25000 particles averaged over
50000 runs to its macroscopic counterpart,
the single-particle expressions (3.10)–(3.11)
and the isolated dangling-bond equilibration
(3.9). The earliest degradation times are dom-
inated by the equilibration between the de-
passivation and passivation reaction at every
dangling bond. Around 1ms, the departure of
the hydrogen atoms from the dangling bond
site begins but the interaction between the
diffusors is still negligible.
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The initial behavior of the microscopic RD model stands in stark contrast to the degradation in
the macroscopic model where the linear regime continues until a global equilibrium has formed
at the interface.

As this initial behavior takes a central position in our further discussion, it requires a deeper
analysis. According to Sec. 2.12 the microscopic single-particle regime can be accurately
described using rate equations, as it does not contain any second-order reactions. The required
equations are basically those of the RD model, but as every hydrogen atom can be assumed
to act independently, the expressions for the hydrogen bonding as well as the competition for
dangling bonds are neglected. As the kinetic behavior in this regime is strongly determined
by the first diffusive steps of the hydrogen atoms, the diffusion part of this approximation
must have the same interstitial topology as the microscopic model. As all hydrogen atoms act
independently, only one atom and one dangling bond need to be considered. The interface
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Figure 3.11: Long-term simulations can be
executed with lower accuracy due to the
increased level of degradation. Three mi-
croscopic calculations are compared to the
macroscopic result. The 25000 particle simu-
lation nicely shows the transition between the
single-particle and the macroscopic diffusion-
limited regime. The 1000 particle calculation
captures the transition region but becomes
quite noisy for earlier degradation times. The
90 particle run still captures the macroscopic
regime with reasonable accuracy.
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reaction and the diffusion of the hydrogen atom is thus described as
∂np

∂t
= −kfnp +

kr
h3

nDBnH0 and (3.10)

∂nHi

∂t
=

�
j∈N (i)

D

h2
(nHj − nHi), (3.11)

respectively, where N denotes the set of neighboring interstitials to i. Fig. 3.10 compares the
microscopic RD calculation with the approximations for the different regimes at early degra-
dation times, which shows that the single-particle model perfectly matches the behavior of the
atomic model in the initial phase.

After the atoms have traveled sufficiently long distances, the interaction between the particles
becomes relevant and the single-particle approximation becomes invalid. In Fig. 3.11 this is
visible as a transition away from the single-particle behavior towards the macroscopic solution
between 1 s and 1 ks. Due to the relatively large level of degradation, the long-term simulations
do not require as much accuracy as the short-term simulations. Consequently the number of
particles can be reduced for longer simulation times, which makes the prediction of long-term
degradation possible.

Finally, Fig. 3.12 compares the microscopic RD model to the macroscopic version over the
course of one complete stress cycle, where the microscopic curve was obtained by combining
calculations of different accuracy, as explained above. Instead of the three regions which arise
from the macroscopic RD model — reaction-limited, equilibration and diffusion-limited — the
H-H2 microscopic description has four to five regimes depending on the particular parametriza-
tion.

• The earliest degradation times (t < 20µs in this case) are dominated by the depassivation
of dangling bonds. In this regime, the microscopic and the macroscopic model give
identical degradation behavior.

• After the passivation and depassivation have reached an equilibrium between kf and
kr separately for each Si-H bond, the fraction of depassivated dangling bonds remains
constant until the diffusion of the hydrogen atoms becomes dominant. This regime only
shows when the individual hydrogen atoms are considered and consequently is not ob-
tained from any model based on rate equations.
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Figure 3.12: Comparison of all regimes of
the microscopic RD model to the degrada-
tion predicted by the macroscopic RD model.
Obviously there is a large discrepancy be-
tween the two descriptions and the behav-
ior of the physically more reasonable micro-
scopic model is not experimentally observed.
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• As more and more hydrogen atoms leave their initial position, the degradation is deter-
mined by the buildup of a diffusion front along the Si-SiO2 interface and the equilibration
between the dangling bonds. This regime has a very large power-law exponent of almost
one2 that is not experimentally observed. The stress time range in which this regime
is observed depends on the average distance between two dangling bonds, the diffusion
coefficient and the interstitial size.

• As the bimolecular reactions become relevant, the macroscopic diffusion-limited regime
begins to emerge. For some parametrizations we have observed a time window in which a
sufficient amount of H2 has not formed yet, and thus the initial diffusion-limited regime
has the typical t1/4-form that arises from the classical RD model without H2 [25].

The initial single-particle phase of the degradation is a remarkable feature of the microscopic
model. As it is incompatible with experimental data and very sensitive to the parametrization,
its relevance for real-world reliability projections has to be investigated. For this purpose we
have run calculations based on a published parametrization of the reaction-diffusion model for
NBTI, see Sec. 3.2.4.

3.2.2 Recovery

In agreement with our investigations on two-dimensional systems [24, 25], the three-dimen-
sional stochastic motion of the hydrogen atoms does not influence the recovery behavior of
the system after long-term stress, which contradicts the suggestions of [16]. As shown in
Fig. 3.13, a longer relaxation transient is only obtained if the foregoing stress phase does
not show a power-law regime. As the system comes closer to the macroscopic degradation
behavior, the recovery in the microscopic model also approaches the macroscopic version,
which is incompatible with experimental data [12, 13, 154]. This behavior is to be expected
as the t1/6 degradation regime requires an equilibration and thus a quasi-one-dimensional
behavior. The recovery proceeds on a timescale that is at least two orders of magnitude longer
than the stress time. The lateral search of hydrogen atoms for unoccupied dangling bonds was
suggested to dominate at the end of the recovery. However, due to the logarithmic time scale on

2In our earlier studies on two-dimensional systems this exponent was around 0.8 [25], owing to the topology
dependence of this regime.
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Figure 3.13: Recovery transients for
different stress times. As the degrada-
tion transient approaches the macro-
scopic diffusion limited regime (see in-
set), the recovery comes closer to the
macroscopic recovery, leading to a per-
fect match as soon as the degrada-
tion assumes the experimentally rele-
vant t1/6 form.
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which recovery is monitored, the equilibration along the interface has negligible impact at the
end of the recovery trace if this equilibration proceeds about two orders of magnitude faster.
Thus, the hovering of hydrogen atoms along the interface does not influence the shape of the
recovery transient.

3.2.3 Approximations in the Macroscopic Model

After the microscopic RD theory Fig. 3.7 has been established and its general behavior has
been investigated, one can use this framework to analyze the assumptions that are implicit
to the macroscopic RD model (1.4)–(1.6), which is still widely considered to be an adequate
approximation.

The most obvious approximation in the macroscopic RD model is the one-dimensional de-
scription of diffusion. While this may seem to be appropriate as boundary effects in the diffusion
of both H and H2 are negligible, it tacitly introduces the assumption of lateral homogeneity along
the interface. This homogeneity includes the following assumptions:

• All the liberated hydrogen atoms at the interface (Hit in (1.1) and (1.4)) compete instan-
taneously with all the other free interfacial hydrogen atoms for all the available dangling
bonds.

• All the pairs of hydrogen atoms at a certain distance from the Si-SiO2 interface are equally
likely to undergo dimerization and form H2, independently of their spatial separation.

As was shown above, a hydrogen atom liberated during stress initially stays in the vicinity of
its original dangling bond and thus the lateral homogeneity has to be considered a long-term
approximation. It is accurate when the diffusion of hydrogen has led to enough intermixing so
that there is no significant variability in the concentration of free hydrogen along the interface.
Following [115] and the discussion in Sec. 2.12, this condition can be called ‘‘lateral well-
stirredness’’ of the system.

The second and more delicate approximation in the macroscopic RD model is the mathemat-
ical description using rate- and diffusion-equations. In the microscopic RD model, the rate at
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Table 3.2: The parameters employed in the real-world simu-
lations. The parameter set is based on the values published
in [20] but was slightly modified to give the same degradation
behavior with physically more reasonable kr and kH .

kf 3 s−1

kr 6× 10−13 cm3s−1

kH 5.6× 10−11 cm3s−1

kH2 95.4 s−1

D 10−13 cm2s−1

D2 1.8126× 10−14 cm2s−1

N0 5× 1012 cm−2

which an atom at the interface passivates a dangling bond depends not only on the rate kr
but also on the probability of finding this atom at the position of the dangling bond. In the
macroscopic model the precondition of having an unoccupied dangling bond at the interface is
described multiplicatively as krNitHit. At early times during degradation, when each hydrogen
atom still resides near its dangling bond, this term introduces an unphysical self-interaction
where each hydrogen atom competes with itself for its dangling bond. As the root of this prob-
lem lies in the assumptions implicit to a formulation based on rate-equations, the error is also
present in a macroscopic model with three-dimensional diffusion. As explained in [25], this
means that a rate-equation based RD model will not accurately describe the degradation at
early times even if higher-dimensional diffusion and discrete dangling bonds are considered.

Similar to the passivation rate, the rate at which H2 is formed in the microscopic RD model
depends on both the dimerization rate kH and the probability of finding two hydrogen atoms
which occupy the same interstitial position. In the macroscopic RD model, this dimerization
reaction is modeled as kHH2. As thoroughly explained in [145], this approximation is only valid
for large numbers of particles, as the number of pairs of hydrogen atoms in an interstitial goes
as N(N − 1) which can only be approximated as N2 if N is sufficiently large.

All in all, the macroscopic RD model can only be considered a valid approximation of the
microscopic RD model for very long stress times and a sufficient amount of liberated hydrogen
atoms. The time it takes for the macroscopic approximation to become valid, however, may
exceed the time range in which it is usually applied, depending on the parametrization.

3.2.4 A Real-World Example

To study the behavior of the atomistic model for a real-world example, we compare to the
measurements of Reisinger et al. [12] using the parametrization of Islam et al. [20] in a modified
form, see Tab. 3.2. Fig. 3.14 shows the results of our calculations for several interstitial sizes.
While the macroscopic one-dimensional RD model fits the data very well, the kinetic Monte
Carlo data shows a completely different behavior. Again, the single-particle regime is clearly
present. However, due to the low density of dangling bonds at the interface, the single-particle
regime dominates the degradation for a large part of the stress time. For a realistic interstitial
size of 4Å [152,155], the onset of the t1/6 regime lies far beyond the experimental window of
105s. When the interstitial size is increased, the onset of the t1/6 regime moves to earlier times,
which is due to the increase of the reaction radius for the bimolecular reactions as explained
above. For the given parameter set, an interstitial size of h = 2nm, which is the total thickness
of the oxide of the device under consideration [12], is required to at least have the t1/6 regime
touch the experimental window.

A shift of the onset of the experimentally observed regime to earlier times at a realistic
interstitial size requires a dramatic increase of either the hydrogen diffusion coefficient or the
availability of free hydrogen near the interface. An increase of the hydrogen diffusion coefficient,
however, breaks the dominance of H2 flux over the flux of atomic hydrogen and changes the
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Figure 3.14: The degradation transient pre-
dicted by the microscopic RD model for four
interstitial sizes compared to the macro-
scopic one-dimensional model and experi-
mental data. Using the parameters Tab. 3.2,
the prediction of the microscopic RD model
is completely incompatible with the experi-
mental data as the onset of the t1/6 regime is
delayed beyond 108 s (about three years) for
a reasonable interstitial size of 4Å. Increas-
ing the interstitial size reduces the effect as
it increases the effective reaction radius for
the bimolecular reactions. However, even
for unphysically large interstitial sizes, the
onset of the t1/6 regime is delayed to 104 s
(h = 40Å) or 105 s (h = 20Å).

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

10
8

N
it
 /
 N

0

Stress time / s

Experimental window

S
in

g
le

−
p
a
rt
ic

le
 r
e
g
im

e

Experiment

1D RD model

microscopic h=4Å

microscopic h=20Å

microscopic h=40Å

predicted degradation away from the experimentally observed t1/6 towards t1/4. Increasing the
availability of hydrogen at the interface by adjusting the ratio kf/kr causes similar problems,
as the H2 diffusion coefficient has to be lowered in order to give the same overall degradation.

This indicates that in the given microscopic model it is impossible to obtain the experimentally
observed t1/6 degradation within the experimental window at a reasonable interstitial size.

3.2.5 Increased Interface Diffusion

The behavior predicted by the microscopic model is completely incompatible with any experi-
mental data, while the description is much closer to the physical reality than the macroscopic
RD model. Only two interpretations are possible to resolve this dilemma. Either the ability of
the macroscopic RD model to fit degradation measurements has to be regarded as a mathe-
matical artifact without physical meaning, or the structure of the Si/SiO2 interface somehow
accelerates the lateral equilibration considerably. We investigated the second option more
closely by considering first-principles calculations that have shown a lowering of diffusion bar-
riers for hydrogen (molecules) along the Si/SiO2-interface as compared to the bulk SiO2 [156].
These findings indicate that the motion of hydrogen might proceed at a much higher rate at the
interface. As a higher diffusivity at the interface aids the lateral equilibration, it might be the
sought process that makes the one-dimensional RD model physically meaningful. To account
for it in our microscopic model, we applied different diffusion coefficients DI and DB in the
interface region and in the bulk, respectively.

As can be seen in Fig. 3.15, the increase of the interface diffusion coefficient accelerates the
degradation during the initial phase as it increases the transport of hydrogen atoms away from
their dangling bonds. Interestingly, even if the interface diffusion coefficient is increased by
four orders of magnitude there is no t1/6 behavior visible, but instead the degradation takes
on the typical t1/4 behavior of a hydrogen-only reaction-diffusion model. While the competition
for dangling bonds sets in earlier for increased interface diffusion coefficients, the formation
of H2 is not accelerated in the same way. Inspection of the atomic diffusion shows that the
acceleration of the dimerization is much less pronounced as the liberated hydrogen atoms
constantly leave the interface region into the bulk where the diffusion proceeds slower and
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Figure 3.15: For increasing DI, the depar-
ture of hydrogen atoms from their dangling
bond sites starts earlier, leading to an in-
creased degradation at earlier times. Com-
parison to the classical RD model without
H2 formation shows that competition for dan-
gling bonds sets in after about 100 s, leading
to a t1/4 degradation. The formation of H2 is
slowly accelerated by the increased DI and
only for DI → ∞, the macroscopic behavior
is obtained.
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the collision rate is reduced. Only in the limit of DI → ∞ will the microscopic RD model
match the experimentally observed behavior. Although these extremely high interface diffusion
coefficients lack any physical justification, this is still closer to the physical reality than the
assumption of immediate equilibration along the Si-SiO2-interface at any depth that is inherent
to the usually employed one-dimensional macroscopic RD model.

As a side note we remark that in a real wafer, a nearly infinite diffusion coefficient along the
Si/SiO2-interface would make the hydrogen spread out through the waver during stress. This
would again alter the degradation slope and give rise to cross-talk between neighboring devices
that would be measurable, but has never been reported.

3.3 Related Work

Three other scientific groups have put forward microscopic RD models recently [23,157,158]
and interestingly those investigations find a reasonable agreement between their microscopic
description and the macroscopic RD model. In the work of Islam et al. [23] the atomic descrip-
tion is basically equivalent to the work presented here but is built upon a one-dimensional
foundation which carries the same implicit assumptions as the macroscopic model. Clearly
this model cannot capture the effects discussed in this chapter as those are solely due to
higher-dimensional effects. From a physical point of view, however, the one-dimensional ap-
proximation lacks justification considering the results presented above.

The work of Choi et al. considers the three-dimensional diffusion of the particles based on a
grid-less stochastic formulation [158]. Although the degradation in that work seems to match
the macroscopic RD model quite well at first sight, also strong discrepancies arise between the
two for longer stress times. Interestingly, for situations where the approach presented above
predicts a degradation far below the prediction of the macroscopic model, the degradation
predicted by Choi et al. overshoots the macroscopic model considerably. Only for an enormous
density of dangling bonds or a very large reaction radius the macroscopic behavior is obtained,
in accord with our results. The degradation behavior in [158] initially follows Nit(t) = kft,
which suggests that the depassivated hydrogen atoms instantly leave the reaction radius of
their respective dangling bond. The following excessively high power-law exponent suggests
that the repassivation of the silicon dangling bonds is somehow inhibited in this formulation.
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The most likely explanation for this behavior is a too low resolution of the time-stepping, in
combination with the physically unjustifiable description of the diffusive motion.

The work of Panagopoulos et al. uses a grid-based stochastic RD model that seems to be
compatible with our description. The surprisingly good agreement between their results and
the macroscopic RD model may be an artifact of the employed method which is based on an
adaptive time-stepping [157]. Also, the paper states that the passivation reaction occurs if a
hydrogen atom is ‘‘close’’ to a dangling bond. This indicates an artificial capture radius, but
this is not explicitly stated. Also, the grid spacing is not given in the paper and its physical
relevance is not discussed. However, as shown by our calculations, an unphysically large grid
spacing strongly promotes bimolecular reactions and thus induces a degradation behavior that
is (falsely) compatible with the macroscopic RD model.
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With four parameters
I can fit an elephant,
and with five
I can make him wiggle his trunk.

(John von Neumann (attributed))

4 Atomistic Modeling and the BTI Defect

The defect in the multi-state multi-phonon model for BTI has (at least) two structural and (at
least) two electronic configurations, as explained in Sec. 1.5. The structural reorganization of
the defect goes largely unnoticed by the rest of the system and it is only the charge state of
the defect that acts on the rest of the device via coulombic interaction. The barrier hopping
transitions 1 � 1
 and 2 � 2
 appear to proceed independently of the current state of the device.
Only the NMP transitions 1 � 2
 and 2 � 1
 need to consider the availability of electrons and
holes. All the states and transitions of the BTI defect can be understood within the framework
laid out in Chap. 2. The present chapter shows how these transitions can be described using
an atomistic model of the defect and a macroscopic model of the device.

4.1 Atomistic Defect Models

An overview of atomistic defect models employed for the calculation of E
 defects in the literature
is given in Tab. 4.1, including the electronic structure method and the atomic representation
employed. The design of the atomic arrangement used to represent the defect directly influences
the predictive power of the calculations. Three approaches are widely used in the literature
[102], which are illustrated in Fig. 4.1:

• In isolated cluster calculations, the defect and its surrounding atoms are represented as
an isolated molecule. This method is often used in combination with highly sophisticated
quantum chemistry programs which offer highly accurate electronic structure methods.

• Embedded cluster methods embed the pseudo-molecules into an atomic host structure
which is treated using empirical potentials.

• In supercell calculations, the defect is introduced into a periodic cell.

All three approaches have their own benefits and drawbacks. Isolated cluster models are
relatively easy to set up and one can choose from the rich pool of quantum chemistry programs
for the electronic structure calculation. Isolated clusters offer a simple way to treat defects that
are hard to integrate into a full atomic host structure. However, they suffer from the inherent
neglect of electrostatic and mechanical long range interactions.

Embedded cluster methods are an approach to improve on these drawbacks. In an em-
bedded cluster calculation the atomistic defect model is split into three nested regions. The
inner region surrounds the defect and is treated using a quantum-chemistry method. This
quantum region is surrounded by the so-called classical region, which contains a large num-
ber of atoms whose interactions are described using empirical potentials [66]. Finally, the
quantum-mechanical and classical regions are embedded in an infinite continuum model of
the host material. Electrostatic interactions between the quantum region and the classical
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region are considered using the shell model for polarization on the classical atoms. In struc-
tural optimizations an inner sphere of atoms, containing the quantum region and a fraction
of the classical region, is moved while the outer shell is held fixed. The atoms at the interface
between the quantum region and the classical region need to be included both in the electronic
structure part and in the empirical potential part of the calculation. The representation of
the interface atoms in the electronic structure method is especially problematic as at least
one valence electron of these atoms needs to be replaced by an interaction with the empirical
potential. To account for the missing valence electron, the interface atoms are equipped with
a parametrizable pseudo-potential that acts on the electrons of the quantum region. Embed-
ded cluster methods improve upon the shortcomings of the isolated cluster calculations at the
expense of a dramatically increased complexity. The set-up of an atomistic defect model using
the embedded cluster approach requires a lot of fine-tuning of both the empirical potential and
the pseudo-potential for the interface atom. For this reason, the embedded cluster approach
is not suitable for the original study of defect parameters, but is more appropriate for refining
investigations on defects for which reference calculations exist.

Supercell defect calculations have become quite popular in the solid state community. This
popularity comes in part from the existence of conduction and valence levels in the calculation,
and the increasing availability of plane wave based general purpose codes [102]. In the present
work, we employ a supercell approach for exactly these reasons. Issues of the supercell ap-
proach include the treatment of charged cells, which will be discussed later, and interactions
between the periodic images.

The host materials used in the studies of E
-centers are mostly α-quartz and amorphous
SiO2. Due to its similar density, α-quartz is usually considered a reference system for amor-
phous silica [57,59,163]. Atomistic amorphous silica models are continuous random network
structures generated by molecular dynamics melting and quenching [166,167]. Although an
amorphous host structure is closer to the physical reality of the oxide in an MOS transistor,
the result of the molecular dynamics generation depends strongly on the parameters of the
processing, especially the cooling rate [110]. As the defect parameters strongly depend on the
surrounding atoms, the accuracy of a defect study depends on a host structure that accu-
rately represents the material under study. The generation of an amorphous host structure
thus requires careful testing of the dependence of the structural properties on the creation
process and their evaluation against experimental data. The present work, however, calculates
quantities that have not been investigated before. Therefore, it is reasonable to create our
defect models upon an α-quartz host structure, in order to build a reference for later studies
of defects in amorphous host structures. Due to the vast amount of literature available for
this system, α-quartz seems to be best suited for these reference calculations. Our work fol-
lows Blöchl [59,84] and uses an orthogonal 72 atom α-quartz supercell [168]. The employed
functional is the gradient-corrected functional of Perdew, Burke, and Ernzerhof [101], the core
electrons are represented using the projector augmented wave method as implemented in the
Vienna ab-initio simulation program (VASP) [169, 170]. The electronic structure is expanded
using a plane-wave basis set, employing periodic boundary conditions for the simulation cell.

4.1.1 Parameters of the DFT Calculations

To be compatible with the work of Blöchl [59], we have constructed an orthogonalized α-quartz
supercell for our defect calculations. We use the coordinates given in [168], which reflect the
hexagonal symmetry of the α-quartz as a non-orthogonal unit cell, see Fig. 4.2. As two angles
of the cell are already 90◦, the orthogonalization of the cell concerns only the plane of the γ
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Reference Electronic Structure Boundary Condition Host Structure
[54] LCLO-MO isolated cluster α-quartz
[55] Tight-Binding isolated cluster α-quartz
[56,57] MINDO/3, MOPN isolated cluster α-quartz
[58] LSDA supercell α-quartz, amorphous
[159] HF, MP2 isolated cluster α-quartz
[59] PBE supercell α-quartz
[160,161] B3LYP isolated cluster α-quartz
[162] HF, MP2 isolated cluster Free relaxation
[77] HF embedded cluster α-quartz
[60] B3LYP isolated cluster amorphous
[63,163] HF embedded cluster α-quartz
[61] PBE supercell amorphous
[64] LSDA supercell α-quartz, amorphous
[65] PBE supercell amorphous
[62] DFT supercell α-quartz
[68,78] HF embedded cluster amorphous
[69,164] B3LYP embedded cluster amorphous
[165] PBE+HF supercell α-quartz

Table 4.1: An overview of electronic structure methods and atomistic representations employed
in published defect studies. The electronic structure methods are MINDO (modified interme-
diate neglect of differential overlap), HF (Hartree-Fock), MP2 (second order Møller-Plesset per-
turbation theory), PBE (DFT with gradient-corrected functional due to Perdew and coworkers),
B3LYP (hybrid DFT with gradient-corrected functional due to Becke and coworkers with HF
exchange), and PBE+HF (hybrid DFT with PBE functional and HF exchange).

angle. The procedure is described in Fig. 4.3. After the construction the atoms in the cell were
relaxed keeping the cell shape and volume constant. The resulting structure is the basis for
all following defect calculations and is shown in Fig. 4.4. The energy cut-off for the plane wave
expansion is 800 eV for all calculations in this work. VASP’s real space projection is disabled
to improve the accuracy. The k space is only sampled at the Γ point. Structures are optimized
using the quasi-Newton algorithm [96,171] until the forces are below 10−2eV/Å. Optimizations
starting far from the optimum were pre-optimized using the more robust conjugate gradient
algorithm.

4.1.2 Defect Structures

As explained in Sec. 1.6, the defect structures investigated in this work are the oxygen vacancy
and the hydrogen bridge. The oxygen vacancy defect was created by removing one oxygen
atom from the cell, the hydrogen bridge by replacing an oxygen atom with a hydrogen atom.
Subsequent optimizations led to the dimer configuration for the oxygen vacancy and the closed
configuration for the hydrogen bridge, see Fig. 4.6 and Fig. 4.7. The puckered oxygen vacancy
and the broken hydrogen bridge were constructed by manual rearrangement of the defects.

Both defects give rise to one occupied state in the SiO2 band gap. This state is the highest
occupied state of the Kohn-Sham spectrum. As the eigenstates of the auxiliary system are
occupied from the bottom up, the positively charged defects are easily created by removing an
electron from the calculation. Charged defects, however, are problematic in supercell calcula-
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Figure 4.1: Atomistic defect models usually employed in calculations of point defects. All
these models attempt to describe a point defect in an otherwise ideal, infinite host structure
(top left). In isolated cluster calculations (top right), the defect and its surrounding atoms
are represented as a pseudo-molecule (green). The bonds at the boundary of this pseudo-
molecule are usually saturated using hydrogen or pseudo-hydrogen atoms (blue). Embedded
cluster methods (bottom left) surround the pseudo-molecule with atoms that are treated using
empirical potentials. These atoms are partially fixed (white) and partially included in structural
relaxations (yellow). Supercell methods (bottom right) take the defect and its surrounding host
atoms and apply periodic boundary conditions.

Figure 4.2: The α-quartz unit cell given in [168]. The cell con-
tains nine atoms and the cell angles are α = β = 90◦ and
γ = 120◦

O

O

O

Si

O

O

O

Si

Si

tions, as it is not possible to define a meaningful energy for a periodic cell with a net charge.
Thus, when an electron is removed from the DFT calculation a compensating background
charge is automatically added by VASP [102,171]. The interaction of the charged defect with
this artificial charge background has to be accounted for. In the present work we employ the
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(i)

=a

=b

(ii)

(iii) (iv)

Figure 4.3: Construction of an orthogonalized α-quartz supercell. The unit cell (i) is repeated
along axes =a and =b to give a 2 × 2 supercell (ii). Due to the geometry of the cell it is possible
to change the cell shape as indicated by the red rectangle (iii). Finally, the internals of the cell
are adjusted to fit the new shape (iv).

Figure 4.4: The orthogonalized 72 atom α-quartz
supercell used in our calculations.
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correction used by Blöchl [59], which simply increases the energy for charged cells by 0.48 eV,
see the reference for details.

In the neutral state, the dimer configuration of the oxygen vacancy is more stable than the
puckered configuration by 2.966 eV. In the positive state, the situation is reversed with the
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Figure 4.5: The Kohn-Sham eigenvalue spectrum
of the α-quartz host cell. Just as the LDA, the GGA
underestimates band gaps. The band gap in the
present work amounts to 5.9 eV.
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Figure 4.6: Structures of the dimer (left) and the puckered (right) configuration of the oxygen
vacancy as obtained from our DFT calculations. The neutral (top) as well as the positive
(bottom) charge state are shown.

puckered configuration being slightly lower in energy than the dimer configuration by 88meV.
For the neutral hydrogen bridge, the DFT predicts the closed configuration to be 21meV more
stable than the broken configuration. Similar to the oxygen vacancy, the positive hydrogen
bridge is 185meV more stable in the broken configuration than in the closed configuration.

The optimized structures for the oxygen vacancy and the hydrogen bridge are shown in
Fig. 4.6 and Fig. 4.7, respectively. The geometries obtained from our calculations are in excel-
lent agreement with the literature as shown in Tab. 4.2 and Tab. 4.3.

It is common in defect studies to calculate the ‘‘formation energy’’ of a defect. This energy
is an indicator for the abundance of the defect in thermal equilibrium. The structure of the

dimer puckered
Si-Si distance Si-Si distance Si-O(3) distance

neutral positive neutral positive neutral positive
present work 2.437 Å 2.964 Å 4.026 Å 4.358 Å 1.887 Å 1.841 Å
Blöchl [59] 2.445 Å 3.011 Å 4.052 Å 4.358 Å 1.907 Å 1.852 Å
Boero [58] 2.520 Å 3.050 Å ≈ 4.37† Å 4.46 Å 1.82 Å
Pacchioni [159] 2.530 Å 3.024 Å

†. . . sampled from fig. 1

Table 4.2: Comparison of selected structural parameters of the oxygen vacancy defect in our
calculations with values from the literature.
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Figure 4.7: Structures of the closed (left) and the broken (right) hydrogen bridge as obtained
from our DFT calculations. The neutral (top) as well as the positive (bottom) charge state are
shown.

neutral positive
present work Blöchl [59] present work Blöchl [59]

closed
Si-Si distance 3.351 Å 3.368 Å 3.206 Å 3.225 Å
Si1-H distance 1.522 Å 1.534 Å 1.641 Å 1.646 Å
Si2-H distance 1.985 Å 1.953 Å 1.689 Å 1.710 Å

broken
Si-Si distance 3.948 Å 4.011 Å 4.389 Å 4.394 Å
Si1-H distance 1.460 Å 1.460 Å 1.471 Å 1.477 Å
Si2-H distance 2.698 Å 2.742 Å 3.171 Å 3.088 Å

Table 4.3: Comparison of selected structural parameters of the hydrogen bridge defect in our
calculations with values from the literature.

oxide of an MOS transistor arises from the growth kinetics of the oxidation process. Although
the vibrational state of the atoms is in thermal equilibrium with the environment, the bonding
structure is not a thermal equilibrium arrangement. Thus, the significance of the formation
energies calculated here for the abundance of oxygen vacancies and hydrogen bridges in MOS
oxides is limited. We calculate the formation energies here for the purpose of comparison
with published work. For the calculation of the formation energies it is necessary to define a
‘‘reservoir energy’’ for each atomic species. The reservoir energy of the atoms is usually defined
as the gas phase energy, i.e. an isolated atom calculation [66, 159]. The formation energy of
the oxygen vacancy EfOV and the hydrogen bridge EfHB have been calculated with respect to
the energies of the isolated oxygen atom EO and the isolated hydrogen atom EH as

EfOV = EOV − EαQ + EO (4.1)
EfHB = EHB − EαQ + EO − EH (4.2)

where EOV−EαQ and EHB−EαQ are the optimized total energies differences between the DFT
calculations with the defect and the ideal crystalline host. The formation energy for the oxygen
vacancy in our calculations is EfOV = 8.468 eV, in agreement with earlier works [59, 159].
Considerably lower formation energies of about 4.6 eV have been obtained using the embedded
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cluster method [66]. This difference partially arises from the neglect of correlation in the
Hartree-Fock method used for the quantum region in [66], but also comes from the larger
number of relaxing atoms in the embedded cluster approach. This indicates that some strain
may remain in the employed supercell and the results of this work should be compared against
calculations involving larger supercells at some point. However, this check is not part of
the present work. The formation energy of the hydrogen bridge defect in our calculations is
EfHB = 7.802 eV, in agreement with [59].

4.2 Barrier Hopping Transitions

In terms of Chap. 2, the structural reorganization of the defects, i.e. the transitions 1 � 1


and 2 � 2
 are barrier hopping transitions. A detailed study of these transitions requires the
solution of the thermal integrals of the transition state theory, which gives the barrier hopping
transition rates. However, as discussed in Sec. 2.8, one can already gain some insight by just
calculating the activation energy for the process, which we consider sufficient for the evaluation
of a candidate BTI defect. The calculation of the activation energy requires to find the path
of minimum energy between the two potential energy surface minima that correspond to the
start- and endpoint of the transition. A popular method to find the reaction path is the nudged
elastic band (NEB) method [171,172], which is also applied in the present work. In the NEB
approach, configurations along the reaction path are connected via virtual spring potentials.
Then the system of all configurations is optimized with respect to the total energy consisting of
the energies of the individual configurations plus the spring potential.

Our NEB calculations use ten points to sample the reaction path. The path is pre-optimized
using the conjugate gradient algorithm until forces are below 1 eV/Å. The final optimization
to reduce the forces below 0.1 eV/Å is done using the quasi-Newton algorithm. The resulting
energies on the optimized reaction paths for both defects are shown in Fig. 4.8.

4.3 Macroscopic Device Simulation

The charge state transitions 1 � 2
 and 2 � 1
 arise from the interaction of the defect with
the semiconductor device. Their theory consequently needs to encompass both the atomistic
model of the defect and the macroscopic device model. The atomistic level is the main focus of
this thesis and has been described extensively in this document. An in-depth discussion of the
fine art of macroscopic device simulation goes beyond the scope of this document and so this
topic is only discussed to the extent that is absolutely necessary for the following calculations.

The methods of semiconductor device simulation are used to model the occupation dynamics
of the extended electronic states

��k� inside a semiconductor [173]. In the ground state some of
these states are occupied, and some are unoccupied. The occupied extended states

��kv� form
the valence band of the semiconductor, the unoccupied states

��kc� form the conduction band.
Their occupation is described by the occupation probability fe(k) as

fe(kv) = 1 and fe(kc) = 0. (4.3)

The time evolution of the electronic system of the semiconductor is described by the time evolu-
tion of the occupancy function fe(k). On the energy scale, the valence band and the conduction
band of a semiconductor are separated by an energy range that has no stationary states, which
is called the band gap. In its ground state, the electronic system of the semiconductor is unable
to carry electric currents. Only when an electron is removed from the valence band (fe(kv) < 1),
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Figure 4.8: Reaction paths calculated using the nudged elastic band method for the oxygen
vacancy (left) and the hydrogen bridge (right) in their neutral (top) and positive (bottom)
charge state. In the positive state, the puckered configuration of the oxygen vacancy is slightly
more stable than the dimer configuration. In the neutral state, the situation is reversed with
the puckered configuration of the oxygen vacancy being almost 3 eV higher in energy than
the dimer configuration. The two structural configurations of the hydrogen bridge are almost
isoenergetic in the neutral state. In the positive state, the broken configuration is more stable
than the closed configuration.

Figure 4.9: In a band diagram, the local val-
ues of the conduction and valence band edges
are drawn as a function of position. At a
material boundary, the band edges abruptly
change giving rise to energetic barriers or
wells. The shown band diagram corresponds
to the situation in an MOS structure.
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or added to the conduction band (fe(kc) > 0), a transport of charge becomes possible. These
electronic configurations are inherently many body excitations, which include not only the
non-ground-state occupancy but also the response of the electronic system to this occupancy.
In the theory of semiconductors, these many body excitations are described as quasi parti-
cles [174], where additional electrons in the conduction band are called ‘‘excess electrons’’, or
electrons for short, and the unoccupied states are called ‘‘holes’’, or defect electrons. For the
excess electrons, the quasi particle states {��wn

�} are defined, which correspond to occupied
conduction band states

��kc�. For the holes, the quasi particle states {��wp

�} correspond to un-
occupied conduction band states

��kv�. The occupancies for the excess electron and hole states
are then fn and fp, respectively. The physics of the states {��wn

�} and {��wp

�} is determined by
the band structure. This band structure defines the total energy of each quasi particle state as
a function of its crystal momentum =k. At material interfaces such as the semiconductor-oxide
interface in MOS devices, the band structure abruptly changes, leading to energetic barriers for
the carrier gas. It is common to draw the local band edges Ec0(=r) (conduction band edge) and
Ev0(=r) (valence band edge) as a function of position. These graphs are called band diagrams
and are a popular tool to illustrate processes in semiconductor devices, see Fig. 4.9.

In semiconductor device modeling, the materials that constitute the semiconductor device
are described using their macroscopic properties, e.g. the permittivity [175]. The coulombic
interactions in the device are accounted for in a mean field fashion by the potential Φ(=r), which
is obtained from the Poisson equation

∇2Φ(=r) = −q0
�

�
p(=r)− n(=r) +ND(=r)−NA(=r)



(4.4)

that accounts for the charge arising from the mean density of holes

p(=r) =

�
wp

fp(w


p)
���=r|w


p

���2 dw

p, (4.5)

the mean density of electrons

n(=r) =

�
wn

fn(w


n)

���=r|w

n

���2 dw

n, (4.6)

and the ionized dopants ND(=r) and NA(=r) [175]. This potential contributes to the energy of the
particles, which can be accounted for in the band diagram by replacing the band energies by

Ec(=r) = Ec0(=r)− q0Φ(=r) and Ev(=r) = Ev0(=r)− q0Φ(=r). (4.7)

The dependence of the local band structure on the electric potential is usually termed ‘‘band
bending’’. The band bending as obtained from a device simulation is shown in Fig. 4.10

The quasi particle states
��wn

�
and

��wp

�
as well as their occupancies are determined by the

carrier model. Depending on the complexity of the device structure, the dynamics of the excess
electrons and holes can be described at different levels of physical accuracy. The most common
carrier models, which are also employed in state-of-the-art TCAD simulators, are based on
semi-classical electrons and holes. These semi-classical particles are pictured as wave packets
of Bloch wave functions moving on classical trajectories determined by the local band structure.
The time evolution of the carriers is described using the Boltzmann transport equation [176]
in various approximations [177, 178]. The state of the carrier gas in this description is fully
characterized by the distribution fn(=r,=k) of the electrons and the distribution fp(=r,=k) of the
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Figure 4.10: The mean potential Φ(=r), which models the coulomb interactions within the semi-
conductor device, can be described as a bending of the band structure. The band bending as
obtained from device simulation is shown for three different gate voltages (from left to right 0V,
−1V, −2V). The bending at zero gate voltage arises from the work function difference between
the gate and the substrate.

holes in the phase space (=r,=k). The current transport in most semiconductor devices can be
described very accurately using classical carrier models. For our purposes, however, their
applicability is somewhat limited by the inherent neglect of quantum mechanical effects such
as the quantization in the inversion channel and the penetration of carriers into the oxide
through tunneling. While this quantization has only little effect on the prediction of transport
properties, it has a profound effect on the energetics of the carrier system, which strongly
influences the carrier trapping, as will be discussed in the next section.

Quantum mechanical carrier models can be loosely categorized into closed and open bound-
ary models. In the former, the Schrödinger equation for the {��wn

�} and {��wp

�} is solved with
Dirichlet boundary conditions. The occupancies of the excess electron and hole states are de-
rived from thermal equilibrium. As before, the carrier model has to be solved self-consistently
with the Poisson equation [179], hence these carrier models are sometimes called Schrödinger-
Poisson models. Due to the assumed equilibrium occupancy of the particle states these models
give good results for non-conducting situations. In bias temperature stress experiments, apart
from the switches between stress and recovery voltage, the only currents flowing are the gate
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current and the monitoring drain current. As these currents have negligible impact on the
states and their occupancies the carriers are typically in thermal equilibrium with the con-
tacts, so a closed boundary description is justified in principle. Schrödinger-Poisson models
have been employed in calculations of defect-device interactions to model the quantization in
the inversion region of the MOS structure and the penetration of the quasi particle states into
the oxide [180–182]. The boundary conditions of the closed boundary quantum mechanical
carrier models are of special importance for the calculation of carrier trapping at defects in
MOS oxides. As is more deeply discussed below, carrier trapping depends on the ability of
the carriers to penetrate into the oxide via quantum mechanical tunneling. The boundaries
in Schrödinger-Poisson calculations have to be placed either at the oxide-gate or the oxide-
substrate interface and thus potentially influence the tunneling behavior of the carriers and
consequently the predicted trapping rates.

Open boundary quantum mechanical carrier models are the most accurate description of the
carriers in the device. These models treat the device essentially as a scattering problem. The
most popular open boundary transport models are based on the framework of non-equilibrium
Green’s functions (NEGF) [176]. The biggest advantage of open boundary over closed boundary
models is the absence of artificial boundaries inside the device.

Independent of the physical details of the carrier model, the quantities in a semiconductor
device simulation are the average potential Φ(=r), the excess electron and hole states {��wn

�}
and {��wp

�} as well as their occupancies fn(wn) and fp(wp). As for many applications the most
interesting property of an electronic state is its energy, the excess electron and hole states are
usually replaced by the corresponding densities of states [176]

Dn(x,E) =

�
wn

���=r|w

n

���2 δ(E − Ew�
n
)dw


n (4.8)

Dp(x,E) =

�
wp

���=r|w

p

���2 δ(E − Ew�
p
)dw


n (4.9)

and the corresponding occupation densities fn(=r,E) and fp(=r,E). These quantities are also of
central importance for the calculations of the following section.

4.4 Non-Radiative Transitions in the Device-Defect System

For the calculation of non-radiative transitions between the defect and the device we start
from the considerations in Sec. 2.9.2, where the general theory of NMP transitions has been
laid out. The transition rates are calculated using (2.102), which requires the determination
of the electronic matrix element and the line shape function, where the latter can either be
described in the quantum mechanical (2.94) or the classical form (2.109). To describe the
phonon mediated capture and emission of electrons and holes, it is necessary to specify the
initial electronic state

��i� and the final electronic state
��f� for the device-defect system. The

electronic structure of this system is essentially a quantum mechanical many body problem,
which we will formulate upon a basis of single particle states. In the following,

��d� is the
localized orbit at the defect site, and

��k� are the electron states in the semiconductor device,
which act as a reservoir for the transition. The defect state as well as the reservoir states can
be either unoccupied or occupied by an electron.

The mathematical framework for this is the second quantization formalism [183]. In the
following, the creation operators ĉ†, the destruction operators ĉ†, and the number operators
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n̂ = ĉ†ĉ† are used1.
In accord with the derivations in Sec. 2.9.2, the electronic basis states for the vibronic tran-

sition are Born-Oppenheimer states, which are mixed by the effective non-adiabacity operator
L̂
. The adiabatic Hamiltonian of the system Ĥ consists of the Hamiltonian of the defect Ĥd

and of the device ĤD

Ĥ(=R) = ĤD + Ĥd(=R). (4.10)

The energy of the device is determined by the occupancy of the free states
��k� in the valence

band and the conduction band. The energy Ek of these states comes from the employed carrier
model and can be understood as a functional of the mean field of the carrier gas, yielding

ĤD =
�
k

Ek[Φ(=r)]n̂k. (4.11)

The energy contribution from the electronic structure of the defect is the potential energy
surface that we obtain from our atomistic model. In the neutral (occupied) state, the potential
energy surface of the defect is E0

d(
=R) and in the positive (unoccupied) state it is E+

d (
=R). In

addition, we have to consider the interaction of the defect with the mean potential Φ(=r). As we
approximate the defect as a point charge at the position =rd, this interaction is just q0Φ(=rd) in
the positive state and zero in the neutral state. The resulting defect Hamiltonian reads

Ĥd = E+
d (

=R) +
�
E0

d(
=R)− E+

d (
=R)

�
n̂d + q0Φ(=rd)(1− n̂d). (4.12)

The effective non-adiabacity operator mixes the electronic states. In the device-defect system,
it annihilates an electron in a reservoir state and creates an electron at the defect state. The
corresponding single electron operators are denoted by L̂

. The non-adiabacity operator thus
reads

L̂
 =
�
k

�
d
��L̂

��k�ĉ†dĉ†k + �

k
��L̂

��d�ĉ†k ĉ†d. (4.13)

Now that all the operators are defined, one can calculate the rates for the capture and
emission of electrons from the reservoir. At first we consider the capture transition from a
reservoir state

��k
�, which corresponds to the removal of an excess electron from the conduction
band or emission of a hole into the valence band of the device. Initially,

��d� is unoccupied,��k
� is occupied, and the occupancy of the other reservoir states is given by fk. In the second
quantization formalism, the wave functions are constructed by applying the creation operators
to the vacuum state

��∅�
. The electronic system changes from the initial state��i� = (ĉ†k� +

�
k �=k�

fk ĉ
†
k)
��∅�

(4.14)

to a state ��f� = (ĉ†d +
�
k �=k�

fk ĉ
†
k)
��∅�

. (4.15)

The energies of the initial and final state read

Ei(=R) =
�
i
��Ĥ��i� =

�
k �=k�

fkEk[Φ] + E+
d (

=R) + Ek� [Φ] + q0Φ(=rd) (4.16)

1As we do not consider direct interactions between the particles, the second quantization formalism is used here
only as a bookkeeping method for the energies and matrix elements of the electronic part of the problem.
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Figure 4.11: The energy of the reser-
voir state from which the electron is
captured as well as the mean potential
in the device simulation contribute to
the energetic shift between the poten-
tial energy surface of the initial and the
final state. Thus, every reservoir state
has a different configuration of the po-
tential energy surfaces as indicated by
the different red curves. Additionally, a
change in the mean potential from the
device also leads to an energetic shift,
which is indicated as the blue dashed
curve.
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and
Ef(=R) =

�
f
��Ĥ��f� = �

k �=k�
fkEk[Φ] + E0

d(
=R), (4.17)

respectively. Interestingly, the energy of the captured particle as well as the mean potential at
the defect enter as an energetic shift between the potential energy surfaces before and after the
capture transition. Thus, for every reservoir state, a different configuration of the potentials
is obtained leading to a different NMP transition rate, see Fig. 4.11. The dependence of the
energy shift on the mean potential is responsible for the large bias dependence of the BTI
defect [32,85] as mentioned briefly in Sec. 1.5. The dependence of the energetic shift between
the potential energy surfaces on the potential is a general feature of NMP transitions that is
also present at defects within semiconductors [144,184]. However, for defects in the oxide this
effect dominates the field dependence of the transition as the oxide due to the large tunneling
distance between the free state and the defect. The shift induced by the oxide field in the
limit of a nearly uncharged oxide can be estimated by a simple model [185]. In this case, the
potential grows or falls linearly with the distance d from the substrate-oxide interface and with
the field F . Neglecting the dependence of the free states Ek on the potential, the shift induced
by the oxide field is just q0dF . This estimate is of course only accurate to first-order. When
considering real devices, the potential at the defect site and the dependence of the Ek on the
potential have to be taken from a self-consistent calculation.

The capture rate is now calculated from (2.102) as

Wk�→d =
2π

�

����f��L̂
��i����2 f, (4.18)

with ����f��L̂
��i����2 = ����d��L̂

��k
����2 . (4.19)

As mentioned in Sec. 2.9.5, L̂

 is not accurately known, and so this term has to be estimated.
Different approaches for the estimation of the matrix element exist in the literature, ranging
from simple tunneling expressions to model defect wave functions [26, 144, 180]. Due to the
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large extent of the free states of the reservoir compared to the extent of the localized state, we
approximate the electronic matrix element as [186]

2π

�

����d��L̂

��k
����2 ≈ λ
���=rd|k
���2 , (4.20)

where λ is a parameter that needs to be calibrated to experimental data. In essence, this
compresses the electronic state of the defect into a Dirac peak and reduces the electronic
matrix element to a tunneling expression, which is assumed to be a reasonable approximation.
The use of a more natural wave function as is sometimes employed in the literature enables the
modeling of crystal momentum dependent coupling to the free states, which is not considered
at the moment.

The quantum mechanical line shape is defined as (2.94)

f(hν) = avg
I

�
F

����fF |iI����2 δ(EfF − EiI − hν) (4.21)

The energies EfF and EiI are obtained from the solutions of the vibrational Schrödinger equa-
tion using the electronic energies Ef(=R) and Ei(=R) as potentials,

(T̂N +
�
k �=k�

fkEk[Φ] + E+
d (

=R) + Ek� [Φ] + q0Φ(=rd))
��iI�� = EiI

��iI��, (4.22)

(T̂N +
�
k �=k�

fkEk[Φ] + E0
d(

=R))
��fF��

= EfF

��fF��
. (4.23)

In these potentials, the device level quantities only enter as a constant shift of the energies. This
shift has no influence on the eigenvectors

��iI�� and
��fF��

, and trivially adds to the eigenvalues.
We can thus define the eigensystems

(T̂N + E+
d (

=R))
��+I

��
= E+I

��+I
��

(4.24)

and
(T̂N + E0

d(
=R))

��0I�� = E0I

��0I��, (4.25)

which only depend on the quantities of the atomistic model. For electron capture EiI and EfF

can then be written as

EiI = E+I +
�
k �=k�

fkEk[Φ] + Ek� [Φ] + q0Φ(=rd) (4.26)

EfF = E0F +
�
k �=k�

fkEk[Φ], (4.27)

and the vibrational wave functions are��iI�� =
��+I

��
and

��fF��
=

��0F��
. (4.28)

Inserting these expressions into (4.21) gives

f = f (+/0)(Ek� [Φ] + q0Φ(=rd)), (4.29)

with
f (+/0)(E) = avg

I

�
F

����0F |+I
����2 δ(E0F − E+I − E). (4.30)
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Figure 4.12: The line shape is referen-
ced to the local band edges. The fig-
ure shows the position of a line shape
(yellow) relative to the valence band
edge (red) and the conduction band
edge (blue). Different gate bias volt-
ages lead to different band bendings
and different positions of the capture
line shape relative to the free quasi-
particle states. In the example, the
negative bias shifts the line shape max-
imum closer to the states near the sil-
icon valence band edge, which is the
typical NBTI situation.
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The line shape as a function of energy is determined by the Frank-Condon factors
��
0F |+I

��
as

well as E0F − E+I . All those quantities are local to the defect and can be extracted from the
selected electronic structure method, as shown in Sec. 4.6. The energy conservation expression
provides that the energy of the captured particle is counterbalanced by an equivalent increase
or decrease of the vibrational energy. The energy of the captured or emitted carrier in non-
radiative transitions thus plays the same role as the optical energy in (2.94). For the use of
the line shape in a device simulation, it is favorable to reference the energy scale of (4.30) to
the carrier energy scale present in the macroscopic device model. We choose the local valence
band edge Ev0(=rd) of the host material of the defect, which is SiO2 in our case, for this purpose

f (+/0)
v (E) = avg

I

�
F

����0F |+I
����2 δ(E0F − E+I − Ev0(=rd)− E). (4.31)

In this case (4.29) becomes

f = f (+/0)
v (Ek� [Φ]− Ev0(=rd) + q0Φ(=rd)) = f 
(Ek� [Φ]− Ev(=rd)), (4.32)

where Ev(=rd) accounts for the band bending as described above. In essence this means that
the line shape follows its local energetic environment and can be referenced to the local band
edges at the defect site, as illustrated in Fig. 4.12.

An analogous derivation can be done for the emission of an electron. In this case the elec-
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tronic states are ��i� = (ĉ†d +
�
k �=k�

fk ĉ
†
k)
��∅�

(4.33)

��f� = (ĉ†k� +
�
k �=k�

fk ĉ
†
k)
��∅�

. (4.34)

The relations of the initial and final energies and vibrational wave functions to the defect
eigensystem become

EiI = E0I +
�
k �=k�

fkEk[Φ] and (4.35)

EfF = E+F +
�
k �=k�

fkEk[Φ] + Ek� [Φ] + q0Φ(=rd), (4.36)

and ��iI�� =
��0I�� and

��fF��
=

��+F
��
. (4.37)

The resulting expressions for the electron trapping and detrapping rates with respect to a state
k
 are

Wk�→d = λ
���=rd|k
���2 f (+/0)

v (Ek� [Φ]− Ev(=rd)), (4.38)

Wd→k� = λ
���=rd|k
���2 f (0/+)

v (Ek� [Φ]− Ev(=rd)), (4.39)

with
f (0/+)
v = avg

I

�
F

����+F |0I����2 δ(E0I − E+F − Ev0(=rd)− E). (4.40)

The prerequisite for an electron capture from the state k
 is that this state is occupied. On
the other hand The prerequisite for electron emission into a state k
 is that this state is empty.
In a semiconductor device at finite temperature, the occupancy of the quasi-particle states
fluctuates randomly due to the motion of the particles and the various scattering processes.
Therefore, for a real device one has to consider the probability fe(k


) of k
 being occupied for
electron capture and the probability 1 − fe(k


) of k
 being unoccupied for emission. Following
the explanations of the previous section, these probabilities, along with the probability

���=r|k
���2
to find the extended state k
 at the defect site, is obtained from the device simulation. The rates
for the capture and emission of holes and electrons are then given as

kn→d = λ

∞�
−∞

n(=rd, E)f (+/0)
v (E − Ev(=rd))dE, (4.41)

kp→d = λ

∞�
−∞

p(=rd, E)f (0/+)
v (E − Ev(=rd))dE, (4.42)

kd→n = λ

∞�
−∞

(Dn(=rd, E)− n(=rd, E))f (0/+)
v (E − Ev(=rd))dE, (4.43)

kd→p = λ

∞�
−∞

(Dp(=rd, E)− p(=rd, E))f (+/0)
v (E − Ev(=rd))dE, (4.44)
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where the particle densities relate to the density of states as

n(=r,E) = fn(=r,E)Dn(=r,E) and p(=r,E) = fp(=r,E)Dp(=r,E). (4.45)

Our approach to the calculation of NMP capture or emission rates using both a macroscopic
model of the device and an atomic electronic structure model of the defect thus contains the
following steps:

1. Calculation of the line shape functions f (+/0) and f (0/+) from the atomistic model.

2. Calculation of Ev(=r), n(=r,E), Dn(=r,E), p(=r,E), and Dp(=r,E) form the macroscopic device
model.

3. Combining the two using the expressions above.

4.5 Energy Levels

Before we can calculate the line shapes (4.67) and (4.68), it is necessary to establish a relation
between the potential energy surfaces of the atomistic model and the energy scale of the device
model. This is related to the task of energy level calculation from an electronic structure
method. As it turns out, there are several ways to define an energy level for a given atomistic
defect model, which can be a magnificent source of confusion for the communication between
theorists working on atomistic modeling and those working on device modeling. Therefore, we
make an attempt here to clarify the relations of the defect levels usually given in publications
to each other and to our NMP-transition based approach.

The most commonly published type of energy level calculated from atomistic defect models
is the thermodynamic trap level. It is also known as thermodynamic transition level in
solid state theory and is equivalent to the electron affinity (for reduction) and the ionization
potential (for oxidation) in theoretical chemistry [99]. The thermodynamic transition level is an
equilibrium property of a defect and comes from viewing the point defect as a thermodynamic
system coupled to a reservoir of electrons with a chemical potential µe. Neglecting the effects
of pressure and entropy and identifying the thermodynamic internal energy with the Born-
Oppenheimer energy Eq

d(
=R0
q) at the optimum configuration of the defect =R0

q for the charge state
q of the system2, one can define the formation energy [102]

Eq
d(µe) = Eq(=R0

q) + µeq. (4.46)

This formation energy accounts for the average work necessary to exchange an electron with
the reservoir. At a certain µe, the charge state with the lowest Eq

d is the dominant charge state
in thermal equilibrium. As can be seen from (4.46), the charge state formation energy depends
linearly on the electronic chemical potential and different charge states have a different slope
q and a different shift. The situation for a hypothetical defect is illustrated in Fig. 4.13. For
different intervals of the chemical potential a different charge state has the lowest formation
energy, i.e. it dominates in thermal equilibrium. The crossing points of the formation energy
lines are the values of the chemical potential where the dominant charge state changes. These
are the thermodynamic transition levels. The thermodynamic transition level from charge state
q1 to charge state q2 is calculated as

E
q1/q2
th =

Eq1(=R0
q1)− Eq2(=R0

q2)

q2 − q1
. (4.47)

2We use the symbol q here to be compatible with the literature. The charge state here does not denote the excess
charge of the system in units of Ampere seconds, but in integral values {. . . ,−2,−1, 0,+1,+2, . . .}.
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Figure 4.13: Charge state formation ener-
gies versus electron chemical potential for a
hypothetical defect that has five charge states
++,+,0,−, and −−. The crossing points
of the formation energy lines corresponding
to different charge states are the thermody-
namic transition levels.
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Figure 4.14: The thermodynamic transition level de-
fines the charge state of the defect in thermal equilib-
rium. If the thermodynamic transition level of a de-
fect is above the chemical potential the defect is more
positive, otherwise it is more negative. Shown are dif-
ferent examples of possible defect states relative to a
chemical potential µe. Position
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In thermal equilibrium, the thermodynamic transition level determines the dominant charge
state of a defect, see Fig. 4.14. In semiconductor defect modeling, the chemical potential is
commonly replaced by the electronic Fermi level. For defects with vibrational internal states, as
considered in the present work, different potential energy surfaces for the various charge states
lead to different vibrational spectra. In this case, a change from one charge state to another
leads to a difference in the vibrational entropy of the defect [187] and thus the thermodynamic
transition level of the defect becomes a Gibbs free energy [188]

G
q1/q2
th = ΔEq1/q2 −ΔSq1/q2T. (4.48)

The change in the vibrational entropy of the defect thus induces a temperature dependence
of the transition level. As usually the entropy change between two charge states is small, the
transition level calculated from (4.47) is commonly considered a reasonable approximation.
In the present work, we follow the standard approach to neglect entropy for the calculation
of transition levels. A special property of the thermodynamic transition levels amongst the
defect levels discussed here is that they can describe transitions that involve the exchange
of more than one electron with the reservoir. This behavior is found in negative-U defects
as illustrated in Fig. 4.15. In SiO2, a negative-U behavior has been found for the interstitial
hydrogen atom [59], which is also of significance for the present work, as discussed below.
Chadi [62] has predicted a negative-U behavior with a thermodynamically unstable positive

76



Figure 4.15: Illustration of a hypothetical nega-
tive-U defect. The neutral state of the defect is
less stable than the charged states for all values of
the chemical potential. At µe = 0 eV, the negative
charge state becomes more stable than the positive
charge state, which gives rise to a E+/− transition
level.
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Figure 4.16: The switching trap level describes the
energy balance in an elastic capture process. It can
be seen as a zero temperature limit of the NMP line
shape. Postition

En
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gy

(+/0)

state for the oxygen vacancy. In BTI experiments the thermal equilibrium is only relevant for
the initial condition and this equilibrium is broken by the stress. Thus, the thermal instability
of the positive state of the oxygen vacancy is not part of the following considerations, as these
are concerned with the non-equilibrium behavior of the defect.

In addition to the thermodynamic transition level, which describes the thermal equilibrium of
the defect, a so called switching trap level or optical trap level can be defined. This trap level
describes the elastic exchange of an electron between the orbit of the defect and a different state.
In accord with the classical Franck-Condon principle these transitions are assumed to take
place with the nuclear coordinates fixed [59,185,189–191]. Before the transition, the nuclear
system is assumed to be in thermal equilibrium, and thus the most dominant configuration is
the optimal configuration for the initial charge state. Contrary to the thermodynamic transition
level, the switching trap level can only be meaningfully defined for transitions involving the
exchange of exactly one electron as it refers to an elementary reaction. Again, the energy of the
defect plus the target state have to be considered. However, contrary to the derivation of the
thermodynamic transition level the energies here are the actual electronic Born-Oppenheimer
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energies instead of thermodynamic potentials. For an elastic transition the total energy before
and after the electron exchange are the same. Energy balance gives

Eq(=Rq) = Eq+1(=Rq) + Ek� (4.49)

for q/q + 1 transitions and
Eq(=Rq) = Eq−1(=Rq−1)− Ek� (4.50)

for q/q−1 transitions involving a state with energy Ek� . Defining the switching trap level Eq1/q2

from the condition E
q1/q2
sw = Ek� , one obtains

Eq/q+1
sw = Eq(=Rq)− Eq+1(=Rq) (4.51)

for q/q + 1 transitions and
Eq/q−1

sw = Eq(=Rq)− Eq−1(=Rq−1) (4.52)

for q/q − 1 transitions. The switching trap level is a special case of a vibronic transition for
negligible phonon energy, i.e. T → 0, as can be easily seen from the considerations in Sec. 2.10.
As the temperature decreases, the probability density P (=R0

q) in (2.104) for the nuclei to reside
at the minimum of the potential energy surface Eq

d grows without bounds while integral of
the probability density is normalized due to the partition function (2.105). Thus, in the zero
temperature limit we find

lim
T→0

P (=R) = δ(=R− =R0
q). (4.53)

In this case, the classical line shape function (2.109) becomes

f(hν) = δ
�
hν − Ef(=R

0
q)− Ei(=R

0
q)
�

(4.54)

and via the capture and emission line shapes (4.67) and (4.68), the energy conservation ex-
pressions (4.52) and (4.51) are obtained.

The relation of the discussed transition levels to the potential energy surfaces calculated
from an atomistic defect model are illustrated in Fig. 4.17. Just as the line shapes, the ther-
modynamic and the switching levels require the definition of a reference energy in order to set
them into relation with the properties of the host material. The density functional calculations
in different charge states implicitly contain their own reference level for the electrons. In the
calculation of isolated molecules, the removal of an electron from the calculation corresponds
to taking the electron infinitely far away from the molecule [99]. Thus, in isolated molecule
calculations the reference level is the vacuum level. While this referencing is reasonable for
isolated molecules, in an infinite periodic lattice the vacuum level is not a well-defined quantity
and it is usually favorable to select as reference energy one of the band edges or the midgap
energy. All these energies, however, are absent in the atomic defect models. There are different
approaches to obtain reasonable relations between the total energies of the electronic structure
method and the band edges. In principle one can use the valence or conduction level from
the density functional calculation [189,192] as the reference. Unfortunately these levels come
from the auxiliary system and suffer from the band gap problem. A very popular method for
the alignment of the defect levels with the band edges is the so-called marker method [59,102].
For this approach it is necessary to have a defect with a thermodynamic transition state Eth

that is known from experiment relative to a reference level, for instance the valence band edge
Ev

Eexp = Eth − Eexp
v . (4.55)
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Figure 4.17: The relation of the switching
and thermodynamic defect levels to the Born-
Oppenheimer potential energy surfaces of an
atomic model of a point defect. It is assumed
that the defect structure is neutral with N
electrons.
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Oxygen vacancy Hydrogen bridge
Dimer Puckered Closed Broken

(+/0) thermodynamic level 1.761eV 4.814eV 5.161eV 5.366eV
(0/+) switching trap level 1.109eV 3.399eV 3.980eV 3.354eV

Table 4.4: Thermodynamic and switching defect levels for the oxygen vacancy and the hydro-
gen bridge in both structural configurations, referenced to the SiO2 valence level.

This defect is called the marker. The same thermodynamic transition level of the marker defect
is calculated from the density functional calculation using (4.47). This level will be relative to
the DFT zero level

EDFT = Eth − EDFT
0 . (4.56)

Assuming that the transition level was measured and calculated accurately, the experimental
valence level in the DFT energy scale is then obtained by subtracting the two expressions as

Eexp
v − EDFT

0 = EDFT − Eexp. (4.57)

In our work we follow Blöchl, who uses the thermodynamic (+/−) transition level of the hy-
drogen interstitial in SiO2 as the marker. This level has been experimentally determined to be
0.2 eV above the silicon midgap [59]. Using the Si band gap of 1.14 eV and the Si-SiO2 valence
band offset of 4.4 eV, the SiO2 valence level is placed 0.2 eV + 1.14/2 eV + 4.4 eV = 5.17 eV
below the hydrogen interstitial (+/−) transition level.

Tab. 4.4 shows the thermodynamic and switching defect levels in our defect calculations
using Blöchl’s energy scale alignment scheme. The calculated values are in agreement with
results from the literature [59,65,190,193].

As a final remark, it is worthwhile to discuss one further defect level that is sometimes given
in the literature. This defect level is the eigenenergy, which results from the solution of the
Schrödinger equation in the electronic structure model of the defect. For the Hartree-Fock mean
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Figure 4.18: Kohn-Sham spectra as obtained from our defect calculations. Comparing the
spectra of the defect cells to the spectrum of the ideal α-quartz supercell, two things can be
observed. First, both occupied (black) and unoccupied (red) states are introduced into the band
gap. Second, the conduction and valence level of the defective cell are perturbed.

field theory, Koopman’s theorem [96] states that the orbital energies are an approximation to the
change in the total electronic energy upon addition or removal of an electron to an unoccupied
state or from an occupied state, respectively. The values are approximate in the sense that they
do not consider orbital relaxation. Although Koopman’s theorem is specific to the Hartree-Fock
theory, similar theorems exist for density functional theory, so the orbital energies can be taken
as an approximation to the switching levels described above. Fig. 4.18 shows the Kohn-Sham
spectra for the defect structures studied in the present work. Indeed these spectra show the
same trends as the calculated switching (0/+) defect levels. The Kohn-Sham eigenlevel of the
oxygen vacancy in its dimer state is very close to the valence band edge, all other occupied
defect levels are deep in the band gap.

4.6 Extraction of the Quantum Mechanical Line Shape Functions

Once an atomistic defect model and an energy alignment method is selected it is possible to
calculate line shape functions f

(+/0)
v and f

(0/+)
v for NMP transitions between the charge states

of the defect. In order to calculate the NMP line shape of a defect using (4.31), we need to
find the vibrational wave functions

��0I�� and
��+J

��
and the associated energies. As discussed

in Sec. 2.9.2, for a quantum mechanical treatment of the vibronic transitions it is necessary
to approximate the potential energy surfaces of the different electronic states as parabolas,
see (2.85), which leads to a system of normal modes {Q1, Q2, Q3, . . .}. To extract quantum
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mechanical line shapes from the density functional calculation we have to approximate the
DFT potential energy surfaces E0

d(
=R) and E+

d (
=R) as quadratic functions. Due to the inher-

ent anharmonicity of these potential energy surfaces, different harmonic parametrizations can
be defined for the same defect, depending on which properties are to be reproduced as accu-
rately as possible [131]. In the present work, we have chosen a parametrization that gives
the same thermodynamic and switching defect levels as in the full density functional calcu-
lation [85, 86]. Additionally, we assume here that only one mode couples to the transition.
While (2.102) is formulated upon an arbitrarily large set of coupling modes, the exact modal
spectrum obtained from the electronic structure method will generally include some degree
of mode mixing [131, 194], which requires a generalization of the theories this work is based
on. The single mode approach must be considered only a first order approximation [144,195].
However, the application of single effective modes is quite common in the literature [131,196],
and it was shown quite recently that the approximation obtained from our extraction scheme
compares well to line shapes including multiple modes [194].

In the following, we denote the nuclear optimum configuration of the neutral charge state
with =R0 and the nuclear optimum configuration of the positive charge state with =R+. Our
single mode approximation defines the direction vector from =R0 to =R+ as mode vector of the
coupling mode. Based on (2.56), we define

=e =
=R+ − =R0

|=R+ − =R0|
. (4.58)

Consequently, the mass M associated with this mode is given by (2.58). For reasons of conve-
nience, we set the modal shift of the neutral state to zero, Q0 = 0, and define

Q+ = Q
 = |=R+ − =R0|. (4.59)

The approximate potentials for the coupling mode read

E0
a(Q) = E0

d(
=R0) +

Mω2
0

2
Q2 and (4.60)

E+
a (Q) = E+

d (
=R+) +

Mω2
+

2
(Q−Q
)2. (4.61)

The switching trap levels are defined by the difference between potential energies at the opti-
mum positions. Thus, the parameters ω0 and ω+ are obtained from the conditions

E0
a(Q


) = E0
d(

=R+) and E+
a (0) = E+

d (
=R0), (4.62)

which gives the oscillation frequencies as

ω0 =

�
2
E0

d(
=R+)− E0

d(
=R0)

MQ
2 and (4.63)

ω+ =

�
2
E+

d (
=R0)− E+

d (
=R+)

MQ
2 . (4.64)

The resulting vibrational wave functions are harmonic oscillator wave functions (2.78)��0I�� = ��I,Mω0, 0
��

and
��+J

��
=

��J,Mω+, Q

��, (4.65)
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M/amu ω0/s
−1 ω+/s

−1 Q
/Å
Oxygen vacancy dimer 24.662 7.018× 1013 4.476× 1013(−36%) 0.504
Oxygen vacancy puckered 25.644 5.974× 1013 7.931× 1013(+33%) 0.411
Hydrogen bridge closed 16.329 3.884× 1013 4.043× 1013(+4%) 0.923
Hydrogen bridge broken 17.928 2.227× 1013 2.736× 1013(+23%) 1.700

Table 4.5: Parameters of the extracted potential energy surfaces.

where
��I, λ,Q��

is the I-th eigenvector of the harmonic oscillator of normalized frequency λ,
displaced by Q, see (2.78). The associated energies are

E0I = �ω0

�
I +

1

2

�
and E+J = �ω+

�
J +

1

2

�
. (4.66)

The line shapes of the defect are now calculated by inserting (4.65) and (4.66) into (4.31) as

f (+/0)
v (E) = avg

I

�
F

����F,Mω0, 0|I,Mω+, Q

����2

δ
�
�ω0(F + 1/2)− �ω+(I + 1/2) + E

(+/0)
th − E



, (4.67)

f (0/+)
v (E) = avg

I

�
F

����F,Mω+, Q

|I,Mω0, 0

����2
δ
�
�ω0(I + 1/2)− �ω+(F + 1/2) + E

(+/0)
th − E



, (4.68)

with the thermodynamic transition level

E
(+/0)
th = E0

d(
=R0)− E+

d (
=R+)− ESiO2

v (4.69)

as defined in Sec. 4.5. The Franck-Condon factors
��
F,Mω0, 0|I,Mω+, Q


�� and��
F,Mω+, Q


|I,Mω0, 0
��

are overlaps of harmonic oscillator wave functions [127]

��
F,Mω0, 0|I,Mω+, Q


�� =

∞�
−∞

hFMω0
(Q)hIMω+

(Q−Q
)dQ (4.70)

��
F,Mω+, Q


|I,Mω0, 0
��
=

∞�
−∞

hFMω+
(Q−Q
)hIMω0

(Q)dQ. (4.71)

Several analytic solutions for this integral can be found in the literature [197–200]. In our
defect studies, we have compared several different methods. Our initial calculations employed
the expressions of Zapol [198], which give a direct solution for any combination of oscillation
frequencies and for any quantum numbers. However, for quantum numbers I and F larger
than about 80, the factorials in the overlap expressions are numerically problematic as they lead
to overflow and roundoff errors. Numerical integration of the harmonic oscillator wave functions
allows the calculation of overlaps at higher quantum numbers. However for quantum numbers
larger than about 120 this method suffers from the large roundoff errors in the summation. The
best results were obtained using the recurrence relations published recently by Schmidt [200],
which are computationally efficient and numerically stable up to very high quantum numbers
[201], see Fig. 4.19.

Fig. 4.20 illustrates the approximate potential energy surfaces for our atomistic models of the
oxygen vacancy and the hydrogen bridge. The parameters with respect to (4.60) and (4.61) are
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Figure 4.19: Comparison of the har-
monic oscillator overlaps calculated by
numerical integration to the recurrence
relations of Schmidt [200]. For large
quantum numbers the roundoff errors
in the numerical integration become
dominant, while the recurrence rela-
tions are numerically stable.  0
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given in Tab. 4.5. As explained in Sec. 4.4, the relative energetic position of these potentials
depends on the reservoir state Ek which is involved in the transition. The reservoir state for
the potentials in Fig. 4.20 is the silicon valence band edge, which corresponds to the energetic
situation for hole capture and emission at zero oxide field. A general feature of the extracted
potentials is the difference in oscillator frequency between the neutral and the positive state.
This is an important finding, as the expressions that are usually used to fit experimental data
are derived assuming linear coupling modes, i.e. ωi = ωf [180,181,202].

To check the validity of our line shape calculation method, we compare our numerically
calculated line shapes to the popular formula of Huang and Rhys [127]. The Huang-Rhys line
shape is derived for linear coupling, which means that the oscillation frequency before and
after the transition are the same, ω+ = ω0 = ω, see Sec. 2.9.2. The electron emission line
shape for this case reads [117]

f (0/+)
v (E) =

∞�
p=−∞

Wpδ(E
(+/0)
th − �ωp− E), (4.72)

with

Wp = e−S(2n̄+1) n̄+ 1

n̄

p/2

Ip(2S
�
n̄(n̄+ 1),

n̄ =
1

e�ω/kBT − 1
, S =

Q
Mω

2�
.

Two results of this comparison are shown in Fig. 4.21 for the parameters extracted for the
oxygen vacancy dimer and the closed hydrogen bridge. Due to the limitation of the Huang-
Rhys formula, we have set ω+ = ω0 for both defects, to make a direct comparison possible. Both
methods give identical results, which we take as an indication of the validity of our approach.
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Figure 4.20: Potentials for the oxygen vacancy and the hydrogen bridge (reservoir state is the
silicon valence band edge). Symbols indicate the actual DFT calculations which are used to
parametrize the parabolas. All defect configurations show a shift in the oscillator frequency
between the two charge states, see also Tab. 4.5.

For the calculation of the line shapes we have considered 200 neutral and 200 positive states.
The line shape functions as calculated by (4.67) and (4.68) are a series of weighted Dirac
impulses, see Fig. 4.22. These Dirac peaks, however, are artifacts of the time dependent
perturbation theory that is used to calculate the rates. This approach assumes that at t = 0
the perturbation operator is ‘‘switched on’’ and then the system evolves freely for very long
time. This clearly is not the case here, as one can expect that the time range during which the
defect evolves without perturbation from the environment is rather short. For shorter times
the Dirac peaks are widened [98] leading to smoother resonances. Additional spreading of the
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Figure 4.21: Comparison of our line shape calculation method that is based on harmonic
oscillator overlaps and the formula of Huang and Rhys (4.72). The energy scale is referenced
to the silicon midgap energy. The Huang-Rhys formula is limited to linear coupling, i.e. the
oscillation frequencies before and after the transition are the same. In this example we use ω0

for both parabolas.

peaks arises from the non-orthogonality of the selected coupling mode, the neglect of other
coupling modes and the neglect of the energetic contribution of the perturbation operator.
Unfortunately, all these effects are impossible to model rigorously. In the literature, it is
common to account for this ‘‘life time broadening’’ by moving from integral phonon numbers
to fractional ones [117, 127]. Our results are corrected to give continuous line shapes by
smearing with a normal distribution of standard deviation kBT , see Fig. 4.22. As long as the
distributions drop sharper than the weights of the Dirac peaks, the results are not very sensitive
on the smearing parameter. The application of a temperature dependent smearing parameter
is also disputable, Alkauskas et al. have used a fixed smearing value of 10meV [194]. A more
rigorous description of the smearing requires experimental input, possibly from transitions at
low temperatures, that is not available at the moment.

The line shape functions for all transitions are shown in Fig. 4.23, which shows that stronger
bonds in the initial state lead to sharper line shape peaks. The bond of the oxygen vacancy
dimer is weakened by hole capture, so the f

(+/0)
v line shape is wider than the f

(0/+)
v line

shape. The electron in the occupied defect state of the hydrogen bridge has a fraction of anti-
binding [59], so the bond that forms over the hydrogen atom is stronger when this electron is
removed and the f

(+/0)
v line shape is slightly sharper than the f

(0/+)
v line shape.

Fig. 4.24 shows the temperature behavior of the (0/+) and the (+/0) line shape of the
oxygen vacancy dimer, both before and after the smearing. An increase in the temperature
increases the weight of the peaks that correspond to higher energy initial states. Especially
in the unsmeared line shape of the oxygen vacancy dimer, one can see a main comb of Dirac
peaks that is only weakly temperature dependent, which corresponds to the initial vibrational
states of lower energy. The gaps between the peaks of the main comb are filled by smaller peaks
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Figure 4.22: Line shapes f
(0/+)
v and f

(+/0)
v for the oxygen vacancy in the dimer configuration.

The plain solution of (4.67) and (4.68) is a series of weighted Dirac-peaks, indicated in the
figure as impulses whose length corresponds to the weight. To obtain smooth line shapes, we
smear these peaks with a Gaussian distribution of width kBT .

at higher temperatures. The oscillations in the smeared line shapes for 100K are partly due
to the gaps of the main comb not being filled up and partly due to the temperature dependent
smearing parameter used in this work.

4.7 Extraction of the Classical Line Shapes

As discussed in Sec. 2.10, line shapes can also be calculated based on classical statistical
physics. In the defect-device system, the shift induced by the mean field and the free state
enters directly into the energy conservation expression. Again we can define the defect line
shapes

f (+/0)
v (E) =

�
RN

Z−1
0 e

−E+
d

(�R)

kBT δ
�
E0

d(
=R)− E+

d (
=R)− ESiO2

v0 − E
�
d=R, (4.73)

f (0/+)
v (E) =

�
RN

Z−1
+ e

−E0
d(�R)

kBT δ
�
E0

d(
=R)− E+

d (
=R)− ESiO2

v0 − E
�
d=R, (4.74)

with the partition functions

Z0 =

�
RN

e
−E0

d(�R)

kBT d=R, (4.75)

Z+ =

�
RN

e
−E+

d
(�R)

kBT d=R. (4.76)
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Figure 4.23: Emission and capture line shape functions at 300K for the oxygen vacancy and
the hydrogen bridge. Two hundred eigenstates in both the neutral and the positive defect state
have been considered for the calculation of the line shapes. The energy scale is referenced to
the SiO2 valence band edge.

In these expressions, the integration runs over all nuclear degrees of freedom. For our 72 atom
defect structures, the direct numerical solution would require the evaluation of an integral in
216 dimensions, which is clearly beyond our computational capacity. Nevertheless, there are
atomistic modeling methods for the evaluation of thermal integrals and we will come back to
this below. At first, it is interesting to see how strong the nuclear quantum effects are for the
defects under investigation. For this purpose, we calculate the classical line shapes for the
approximate one-dimensional potential energy surfaces.

Inserting the one dimensional potentials (4.60) and (4.61) into (4.73) and (4.74) yields

f (+/0)
v (E) =

∞�
−∞

Z−1
+ e

−Mω2
+(Q−Q�)2
2kBT δ

�
E

(+/0)
th +

Mω2
0

2
Q2 − Mω2

+

2
(Q−Q
)2 − E

�
dQ
 (4.77)

f (0/+)
v (E) =

∞�
−∞

Z−1
0 e

−Mω2
0Q

2

2kBT δ

�
E

(+/0)
th +

Mω2
0

2
Q2 − Mω2

+

2
(Q−Q
)2 − E

�
dQ, (4.78)
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Figure 4.24: Quantum mechanical line shapes of the oxygen vacancy dimer both before (top)
and after (bottom) smearing for different temperatures. With increasing temperature, the
probability of finding the vibrational system in energetically higher states increases, increasing
the weight of the corresponding Dirac-peaks. In the smeared line shape this shows as a
broadening. For low temperatures, the smeared line shapes show oscillations.

with the partition functions

Z+ =

∞�
−∞

e
−Mω2

+(Q−Q�)2
2kBT dQ =

�
2πkBT

Mω2
+

(4.79)

Z0 =

∞�
−∞

e
−Mω2

0Q
2

2kBT dQ =

�
2πkBT

Mω2
0

. (4.80)

For the solution of the integrals above we use

∞�
−∞

F (Q)δ(G(Q))dQ =
�
i

F (Qi)���∂G(Qi)
∂Q

��� , (4.81)
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where the Qi are the zeros of G(Q). The Dirac distributions thus reduce the line shape integrals
to a summation over the two points

Q1,2(E) =
ω2
+Q


 ±
�

ω2
0ω

2
+Q


 + 2
ω2
0−ω2

+

M (E − (E
(+/0)
th − ESiO2

v0 ))

ω2
+ − ω2

0

, (4.82)

which are exactly the crossing points of the two parabolas defined by (4.60) and (4.61). The
final expressions for the line shapes read

f (0/+)
v (E) = Z−1

0

� e
−Mω0Q1(E)2

kBT

|Mω2
0Q1(E) +Mω2

+(Q1(E)−Q
)| +
e
−Mω0Q2(E)2

kBT

|Mω2
0Q2(E) +Mω2

+(Q2(E)−Q
)|
�

(4.83)

f (+/0)
v (E) = Z−1

+

� e
−Mω+(Q1(E)−Q�)2

kBT

|Mω2
0Q1(E) +Mω2

+(Q1(E)−Q
)| +
e
−Mω+(Q2(E)−Q�)2

kBT

|Mω2
0Q2(E) +Mω2

+(Q2(E)−Q
)|
�

(4.84)

These line shapes have the typical Arrhenius form of a thermally activated process. The ac-
tivation energies in this case are the crossing points of the potential energy surfaces [123].
The classical line shapes are simple analytic expressions, which can be easily implemented
into a device simulator. Due to the Boltzmann terms in the classical line shapes, the crossing
point that is lower in energy dominates the transition. As discussed before, the crossing points
themselves depend on the energy of the free state.

The classical f
(+/0)
v line shapes are compared to their quantum mechanically calculated

counterparts in Fig. 4.25 for the oxygen vacancy dimer and the closed hydrogen bridge. The
classical formula underestimates the transition rate at low temperatures and for energies that
are below the maximum of the line shape. This energy range corresponds to the weak coupling
regime of the defect [37]. These underestimations are due to the neglect of tunneling in the
classical model. For strong coupling, which is especially relevant for the exchange of holes with
the silicon valence band, good agreement between the classical and the quantum mechanical
version is already given at room temperature. We take this result as an indication that the
quantum mechanical nature of the nuclei does not have a strong influence on the line shapes
in the temperature ranges that are of interest to BTI.

When quantum effects are negligible, however, it is also possible to calculate line shapes with
the full potential energy surfaces from the density functional calculations. Quite generally, the
integrals of a function X(=R) of the form�

RN

Z−1e
−E(�R)

kBT X(=R)d=R (4.85)

are called ‘‘thermal averages’’ of the canconical (N, V, T ) ensemble and are written as �X�. As
the potential E(=R) that determines the weighting factor for the averaging is usually a function
of low symmetry in RN , these integrals are impossible to evaluate from a simple numerical
integration based on discretization. The calculation methods that are applied to this type of
problems are Metropolis Monte Carlo and molecular dynamics. The Metropolis Monte Carlo
method moves through the configuration space on a random trajectory. This trajectory is
steered such that the regions with the highest occupation probability are most densely sampled.
Denoting the trajectory of the Metropolis Monte Carlo algorithm as =R1, =R2, =R3, . . . , =RI , the
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Figure 4.25: Comparison of the classical line shapes from (4.84) to their quantum mechanical
counterparts that were calculated numerically from (4.68) at the indicated temperatures for the
dimer configuration of the oxygen vacancy and the closed hydrogen bridge. Deviations between
the two versions arise at low temperatures and in the weak coupling regime (energies below the
peak of the line shape) due to the absence of tunneling in the classical version.
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average of the function X(=R) over the set of sample points will approach the true average of
the canonical ensemble

lim
I→∞

1

I

I�
K=1

X(=RK) = �X� (4.86)

The Metropolis Monte Carlo algorithm is broadly applied in atomistic modeling to calculate
thermally influenced properties as bond lengths, free energies, etc. and its general formulation
makes it possible to include a particle reservoir and pressure in addition to a thermal reservoir
[112,120,203].

The molecular dynamics method on the other hand tries to describe the dynamics of the
molecular system by propagating the positions of the nuclei according to Newton’s equations
of motion [119,120]. In its pure form, the method just generates the constant energy trajectory
of an atomic system from a given starting point in phase space [119], which corresponds to the
microcanonical (N,V,E) ensemble of statistical physics [112]. As this ensemble has very limited
practical relevance, there are extensions to the method for the coupling to a heat bath, which
results in a canonical (N, V, T ) ensemble, and the inclusion of pressure, which results in an
isothermal-isobaric (N, p, T ) ensemble [112,120]. These extensions are sometimes referred to
as thermostats and barostats, respectively. Similar to the Monte Carlo Method, the temperature
and pressure control are designed so as to give the correct thermal averages in the long time
limit,

lim
t→∞

1

t

t�
0

X(=R(t
))dt
 = �X� . (4.87)

(N,V, T ) and (N, p, T ) molecular dynamics simulations are routinely used to compute the dy-
namics of frequent events such as the hopping of fast diffusors or reactions at high temper-
atures [153]. However, it has to be mentioned here that strictly speaking the trajectories
generated in those runs are not ‘physical’ trajectories, as the thermostats and barostats are
only designed to give the right averages, rather than nuclear dynamics.

The classical line shapes can also be written as thermal averages

f (+/0)(E) =
�
δ(Esw(=R)− E)

�
+

(4.88)

f (0/+)(E) =
�
δ(Esw(=R)− E)

�
0
, (4.89)

with
Esw(=R) = E+

d (
=R)− E0

d(
=R)− ESiO2

v0 (4.90)

As mentioned in Sec. 2.10, these averages give the probability that for a given carrier energy
E an elastic capture or emission transition is possible. In the terminology of Sec. 4.5, the line
shape can be seen as a thermally broadened switching trap level E+

d (
=R) − E0

d(
=R) − ESiO2

v0 . In
a numerical calculation, we can approximate this distribution as a normalized histogram over
the sample points drawn from a Metropolis Monte Carlo or molecular dynamics trajectory.

We have tested this calculation method for the closed hydrogen bridge. For the generation
of the trajectory, we use the molecular dynamics implementation of VASP, which implements
a Nosé thermostat [112]. Due to the large computational demand of the molecular dynamics
calculation, the accuracy of the density functional calculation is reduced here, using a plane
wave cut-off of 500 eV and the real space projection feature of VASP. We calculate the f

(0/+)
v line

shape from the molecular dynamics trajectory in the neutral state of the defect as a histogram
of the switching trap levels of all configurations in the trajectory. The structure is equilibrated
for 3 ps, then the line shape is extracted from a 10 ps simulation.
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Figure 4.26: Comparison of the line shapes for the
closed hydrogen bridge as calculated from the ap-
proximate harmonic potential energy surface in the
classical and quantum mechanical form to the line
shapes calculated from molecular dynamics. Ex-
cellent agreement between the different calculation
methods is found around the maximum of the line
shape.
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The result is shown in Fig. 4.26. Excellent agreement is found between the line shapes calcu-
lated from molecular dynamics and from the approximate potentials around the maximum and
above. We take this result as an indication for the validity of the harmonic approximation. The
calculation of line shapes from molecular dynamics or Metropolis Monte Carlo is undoubtedly
an appealing approach as it includes all features of the density functional potential energy
surfaces. Its applicability to the calculation of line shapes for BTI, however, is limited by the
long trajectories that have to be calculated in order to get smooth line shapes further away from
the maximum. The line shape in Fig. 4.26 is only smooth to about 0.7 eV above the maximum.
As shown below, the hole capture in BTI happens at about 1.2 eV above the maximum, which
due to the squared-exponential drop of the line shape we estimate to require about a billion
molecular dynamics steps. Unfortunately, this is again far beyond our patience. As for the
barrier hopping transitions, however, an approach similar to the nudged elastic band method
could be developed to find the lowest energy crossing point of the two potential energy surface,
in order to estimate the activation energy of the transition process.

4.8 Density Functional Dependence

The PBE gradient corrected functional we employ in our work is quite popular in solid state the-
ory. However, adding a fraction of Hartree-Fock exchange to the density functional calculation
improves the description of band gaps and other properties of many atomic systems [99,192].
We have checked the dependence of the calculated line shapes on the employed functional by
comparing our PBE results with calculations using the PBE0 hybrid functional. Due to the high
computational effort that is required with hybrid functionals, we only investigated the primary
states of our model defects, i.e. the oxygen vacancy in its dimer configuration and the closed
hydrogen bridge. A comparison between the PBE and PBE0 prediction of the defect levels for
the model defects considered here has been done by Alkauskas et al. [204]. This comparison
found that the defect levels were largely shifted by about 1.45 eV, but the relative positions were
almost the same. The findings of Alkauskas and coworkers agree well with our results shown
in Fig. 4.27, except for the strong shift which is absent in our work due to the marker based
alignment.
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Figure 4.27: Comparison of the line shapes extracted from density functional theory based on
the PBE functional and the PBE0 functional. Except for the (0/+) line shape of the oxygen
vacancy in the dimer configuration, the line shapes calculated using PBE0 agree well with the
PBE results.

4.9 Energy Alignment

The biggest uncertainty in our calculations comes from the alignment of the energy scales
between the atomistic defect model and the free charge carrier states in the semiconductor
device. Although the marker method performs well for defects that are sufficiently similar
to the marker defect [102], the accuracy of the alignment depends heavily on the accuracy
of the experimental reference values. Blöchl’s placement of the (+/−) transition level 0.2 eV
above the silicon midgap is based on CV measurements of MOS structures after hydrogen
exposure [59, 81]. However, the distribution of the states which have been measured in [81]
spans from 0.1 eV below silicon midgap to 0.3 eV above, and the assignment of this transition
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1 → 1
 1
 → 1 2 → 2
 2
 → 2

Oxygen vacancy 3.00 eV 36.0meV 0.43 eV 0.34 eV
Hydrogen bridge 1.18 eV 1.16 eV 0.46 eV 0.18 eV
BTI defect [206] ≈ 1.00 eV ≈ 1.2 eV ≈ 0.7 eV ≈ 0.3 eV

Table 4.6: Activation energies for the structural reconfigurations as calculated from the atom-
istic defect models using the nudged elastic band method.

level to the hydrogen interstitial is debatable. As an alternative one can take the band edges of
the Kohn-Sham system as reference levels. This leads to large differences in our calculations
as the SiO2 valence band edge of the Kohn-Sham system lies 1.53 eV above the level estimated
from Blöchl’s alignment scheme. Interestingly, this difference is reduced to 149meV for the
PBE0 functional. Another uncertainty concerns the Si-SiO2 valence band offset. Different
values have been given in the literature, ranging from 4.2 eV to 4.8 eV [205]. Considering all
these uncertainties, in a future comparison of model defects to experimental data it may thus
be favorable to leave some freedom to optimize the energy alignment between the energy scale
of the line shapes and the device.

4.10 Discussion of the DFT Results in the Context of BTI

In the multi-state multi-phonon model for BTI, the more stable configurations in the neu-
tral state and the positive state are 1 and 2, the metastable configurations are 1
 and 2
,
respectively. Based on the energy differences of the configurations given in Sec. 4.1.2, the
configurations 1 and 2
 correspond to the neutral and positive state of the dimer configuration
for the oxygen bridge and the closed configuration of the hydrogen bridge. Consequently, the
puckered/broken configurations are assigned 1
 in the neutral state and 2 in the positive state.

The reaction paths for the 1 � 1
 and 2 � 2
 transitions are shown in Fig. 4.8, the extracted
barriers are compared to estimates for the BTI defect in Tab. 4.6. The hydrogen bridge shows
reasonable agreement with the BTI defect values both in the neutral and the positive state. For
the oxygen vacancy, the 2 � 2
 barriers are also close to the experimental estimates, but a
strong discrepancy arises for the 1 � 1
 barriers. The barrier of about 36meV for the transition
from the puckered to the dimer configuration is much too small for BTI, as the experiments
show defects that can be switched several times between the positive and the neutral state in
the secondary configuration [37]. A 1
 → 1 barrier as small as the oxygen vacancy value would
be overcome instantaneously after neutralization of the defect. However, this issue may be
a feature of the crystalline host structure, as higher barriers have been reported [64] for the
oxygen vacancy in amorphous silica.

For the discussion of the charging and discharging reactions 1 � 2
 and 2 � 1
, we first
take a look at the f

(0/+)
v and f

(+/0)
v line shapes in Fig. 4.23. One can see a striking difference

in the hole capture (electron emission, f (0/+)
v ) behavior of the dimer and the puckered state of

the oxygen vacancy, while this difference is much less pronounced for the closed and broken
hydrogen bridge. The position of the f

(0/+)
v maximum of the oxygen vacancy dimer is close

to the SiO2 valence level, in agreement with the switching trap level for that transition given
in Tab. 4.4. A f

(0/+)
v line shape at this energetic position makes a hole capture from the Si

valence level very unlikely, even under large bias. Gös et al. have calculated switching trap
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levels for oxygen vacancies in amorphous silica [193] and have found a very small spread in
the distribution of these levels for the investigated samples. One can thus assume that the low
position of the hole capture line shape is only weakly influenced by the surrounding atoms.
This makes the oxygen vacancy dimer position a very unlikely candidate for the state 1 of the
BTI defect.

The maximum of the hole capture line shape of the closed hydrogen bridge on the other
hand is too close to the silicon valence band to show the BTI behavior. The widening due
to an increase in the temperature as well as the bias dependence are stronger for carriers
further away from the line shape maximum. In the shown configuration, both the bias and
the temperature dependence are weak, which unfortunately does not match the properties of
the BTI defect. However, the calculations in [193] showed a spread for the (0/+) switching
trap level of the hydrogen bridge in amorphous silica that is larger compared to the same level
of the oxygen vacancy. Thus, there may be hydrogen bridges which match the hole capture
properties of the BTI defect in amorphous silica.

While the line shape of a defect includes the quantum mechanical effects, and the dependence
on the reservoir state energy and the band bending, it does not give any information about
the temperature behavior. However, as mentioned in Sec. 4.7, the activation barrier for the
charge state transition can be estimated from the intersection of the potential energy surfaces.
The parabolic approximations extracted from our density functional calculations are shown in
Fig. 4.20, where the energy of the involved free state is placed at the silicon valence level. This
corresponds to the most dominant energetic configuration for hole capture with no field in the
oxide. It can be seen that in the primary (dimer) state, the oxygen vacancy has to overcome a
large thermal barrier to capture a hole from the silicon valence band edge, which corresponds
to the small value of the line shape at this energy. The temperature activation of the 1 → 2


transition determines the temperature activation of the BTI degradation, which is in the 0.2
– 0.3 eV regime. The initial hole capture barrier of the oxygen vacancy is ≈ 2.7 eV at zero
bias, and a reduction to the experimental BTI activation energy requires a field induced shift of
≈ 2.6 eV. At a typical NBTI field of 7MV/cm, this requires a distance of about 3.7 nm between
the defect and the interface, which is beyond the thickness of most state-of-the-art MOS oxides.
The hydrogen bridge on the other hand shows a transition barrier of ≈ 35meV for the initial
hole capture. This value is too low compared to experimental BTI data, considering that this
value is without any applied field.

Only minor changes to the line shapes are observed when moving from the PBE to the PBE0
functional, except for the (0/+) line shape of the oxygen vacancy in the dimer configuration.
This line shape is moved further down on the energy scale, which makes a hole capture from
the silicon valence band even more unlikely. The predicted charge transition properties depend
strongly on the selected alignment scheme. Using the Kohn-Sham valence level of our density
functional calculations as a reference instead of the (+/−) transition level of the hydrogen
interstitial shifts all trap levels and line shapes down by more than 1.5 eV. The line shape of
the oxygen vacancy in this case is moved into the SiO2 valence band, making its hole capture
behavior even less compatible with the BTI defect. The hydrogen bridge, on the other hand,
assumes an energetic configuration that corresponds well with the BTI experiments. Judging
from the good agreement between the SiO2 valence level in Blöchl’s marker method and the
prediction of the PBE0 functional, the PBE valence level does not seem to be a reasonable ref-
erence. Nevertheless, in the next section we take the line shapes referenced to the PBE valence
level as they give better results for the hole capture rate in this case. The rate calculations
presented here thus have to be considered a proof-of-concept of the calculation method rather
than a presentation of rigorously calculated results.
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Figure 4.28: The spatially and energetically distributed hole density as calculated using the
NEGF method. Thermal equilibrium in the gate and the silicon bulk is induced via an optical
potential. The quantization of the hole states and their penetration into the oxide can be clearly
seen.

4.11 Hole Capture Rates

Once the line shapes are calculated and an accurate device simulation method is selected, one
can proceed to calculate capture and emission rates using (4.41)–(4.44). In the present work,
the carrier concentration of the MOS structure has been calculated self-consistently using
the non-equilibrium Green’s function method [207]. The densities n(=r,E), p(=r,E), Dn(=r,E)
and Dp(=r,E) are readily obtained from the non-equilibrium Green’s functions [208]3. The
formalism assumes thermal equilibrium in the gate and bulk region where level broadening
due to scattering is modeled using an optical potential [207]. The oxide is treated as a non-
equilibrium domain with ballistic quantum transport. Fig. 4.28 shows the hole density in the
band diagram as obtained from the NEGF method. The device calculations are done by the
Vienna Schrödinger-Poisson software package (VSP2) [179]. The device structure consists of a
poly-Si gate and an n-doped bulk separated by a 2 nm SiO2 layer. For electrons the unprimed
and primed valleys with 0.19me and 0.91me electron mass are included. Holes were considered
with 0.49me effective mass.

We have implemented the rate calculation directly into the VSP2 simulator. The calculation
of the NMP hole capture rates proceeds in a two step process. First, the band bending is
calculated by solving the Poisson- and the NEGF equations self-consistently. Secondly, the
NEGF problem is again solved non-self-consistently on a different energy grid that accounts for
high energy holes as these contribute considerably to the NMP transitions. The integration is
implemented as a post-processing step using the numerical NEGF and line shape data.

3The densities n(	r, E), p(	r, E), Dn(	r, E) and Dp(	r, E) can also be obtained from a classical device simulation.
In this case, the penetration of the free states into the oxide is commonly modeled using a Wentzel-Kramers-
Brillouin (WKB) expression [26].

96



Figure 4.29: Illustration of the bias in-
duced shift of the relative position of
the line shape and the free hole states.
The f

(0/+)
v line shape of the closed hy-

drogen bridge is used, the defect posi-
tion is 2Å from the Si-SiO2 interface.
With more negative gate voltage, the
overlap between f

(0/+)
v (E−Ev(=rd)) and

h(=rd, E), and in consequence the tran-
sition rate, strongly increase.
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At the time this thesis is written, the transition rate calculations involving unoccupied states
in the device, corresponding to hole emission and excess electron emission, is still work in
progress. Of the transitions involving occupied states, corresponding to carrier capture, the
hole capture transition is most important for the present work. For this reason we concentrate
on the calculation of hole capture rates using (4.42). Due to the empirical factor λ in (4.42), all
capture rates can be calculated up to a constant factor, therefore all computed time constants
in this section are given in arbitrary units.

First, we investigate the effect of the bias induced shift of the relative positions of the line
shape and the hole states. As mentioned in Sec. 4.4, this shift is especially relevant for the
trapping behavior of oxide defects. Application of a gate voltage induces the largest electric
field, and in consequence the largest band bending, in the oxide due to the absence of native
carriers there. As illustrated in Fig. 4.29, the dependence of the line shape on the value of the
reference energy at the defect site plays a crucial role for the transition kinetics, as the band
bending energetically shifts the relative position of the line shape and the spectrum of the hole
states, leading to large changes in the capture rate.

In semiconductor device modeling, defects are primarily considered as recombination centers
and described using the Shockley-Read-Hall (SRH) theory [209], which characterizes a defect
via the capture cross section σ and the (thermodynamic) trap level ET. The capture of particles
is modeled as a flux through the cross section at the speed vth, which is the ‘‘thermal velocity’’

kn→d = σvthn(=rd). (4.91)

The emission of an electron into a state of energy E is calculated based on the occupancy in
thermal equilibrium as

kd→E = kn→de
−ET−E

kBT . (4.92)

The temperature and bias dependence of the capture transition in the classic SRH model comes
solely from the density of carriers at the defect site. NMP capture can be modeled within the
framework of the SRH theory as an energy dependent capture cross section σ(E) [117]. We
compare the capture rates calculated from the NMP line shapes to SRH-type rates that only
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Figure 4.30: (left) Gate voltage dependence of the hole capture time constant for the hydrogen
bridge and the puckered oxygen vacancy. The calculated time constants are in arbitrary units
to account for the empirical factor λ from (4.42). The NMP capture rates are compared to a
Shockley-Read-Hall like capture model, which shows much weaker gate voltage dependence in
deep inversion. The calculation temperature is 400K and the defect position is 2Å (no symbols),
4Å (medium sized symbols) and 6Å (large symbols) from the silicon bulk. (right) Capture time
constants extracted using the TDDS technique [32] are compared with the inverse of the drain
current, which is proportional to what would be seen for Shockley-Read-Hall-like defects.

depend on the density of holes at the defect site to illustrate the impact of the vibrational
influence on the transition rate.

Fig. 4.30 left shows the gate voltage dependence of the NMP hole capture time constants for
the two model defects. The gate voltage dependence predicted from the NMP theory is much
stronger than the prediction of th SRH-like model. Further, the gate voltage dependence in-
creases with the distance of the defect from the silicon bulk. Both of these strong dependencies
are caused primarily by the energetic shift of the line shape functions relative to the holes in
the inversion layer, as illustrated in Fig. 4.29. This behavior is in qualitative agreement with
the capture rates observed in TDDS measurements. As explained in the previous section, the
agreement would not be as good in the originally selected energy alignment scheme.

The temperature dependence of the hole capture is shown in Fig. 4.31. The calculation of NMP
hole capture rates for the given defects becomes numerically challenging for low temperatures.
As the temperature decreases, the line shapes become increasingly narrow, thus making high
energy holes the dominantly captured particles. Accurate representation of high energy holes
in the NEGF algorithm requires an improved refinement strategy for the energy grid, which is
currently under development. To overcome this limitation, the hole distribution over energy
was calculated from a classical density of states for the Arrhenius plot, taking only the total
hole concentration at the defect site from the NEGF calculation.

NMP defects show a strong temperature activation, in contrast to capture rates whose tem-
perature dependence comes from the total carrier density alone, as in the SRH description. The
calculated activation energies for the hole capture are in excellent agreement with the activa-
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Figure 4.31: Arrhenius plots of the cap-
ture rates for the defect types compar-
ing the quantum mechanical NMP capture
rates (4.68) for the puckered oxygen va-
cancy and the closed hydrogen bridge to
the capture rates calculated using classi-
cal atoms (4.84) and to a SRH like model.
The indicated activation energies are ob-
tained by fitting to an Arrhenius law.
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tion energies obtained from TDDS experiments in [32], which is again strongly influenced by
the selected alignment scheme. The difference in temperature activation between line shapes
calculated using the quantum mechanical formula of (4.68) and those calculated based on
classical statistical physics (4.84) are also compared in Fig. 4.31. For the closed hydrogen
bridge, this difference becomes visible only below 140K. For the puckered oxygen vacancy, the
classical formula reproduces the quantum mechanical behavior over the complete temperature
range investigated. Again, we take this as an indication that the quantum mechanical effects
of the nuclei are negligible for the calculation of rates of typical BTI experiments.

4.12 Related Work

NMP theory has been used by several authors in the context of semiconductor devices [32,144,
180–182, 202]. The transition rate formulas employed are usually based on linear electron-
phonon coupling. As shown in Fig. 4.20, this assumption is not fulfilled for our density
functional based defect models. Purely quadratic coupling has been investigated in the lit-
erature [128,129], but a linear-quadratic coupling that changes both the equilibrium position
and the frequency of the coupling mode has not been considered up to now.

With respect to the modal spectrum, it is either assumed that the transition couples to an
infinite number of phonon modes — all having the same oscillator strength — where each can
contribute only one phonon [127,181,202], or that the transition couples to only one effective
mode which receives or emits an arbitrary number of phonons [117,131,144]. Interestingly, for
linear coupling modes both assumptions lead to essentially the same expression for the capture
rates. For the situation we find in the bias temperature instability, in our opinion it is more
reasonable to assume that the NMP kinetics are determined by a small number of local modes at
the defect site. A coupling to a large number of modes does not seem reasonable for the defects
involved in BTI and RTN considering the large variations in transition rates between the defects
that are observed in measurements. These variations can only be explained by differences in
the local environment of the defect structure which can only hold a small number of vibrational
modes.
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Abschied nimmt die bunte Welt,
die so lieb mir ward.
Hab ich auch das Ziel verfehlt,
kühn war doch die Fahrt.

(Hermann Hesse)

5 Conclusion and Outlook

This chapter summarizes the main results of the previous chapters and gives an outlook on
our future plans to refine those results.

5.1 The Microscopic Limit of the RD model for NBTI

The work presented in Chap. 3 shows that the reaction-diffusion model for the negative bias
temperature instability, which has been used for nearly forty years to interpret experimental
data, has a number of inherent assumptions on the underlying physics that lack any physical
justification. Those are:

1. Continuous diffusion in the sub-nm regime. Diffusion of neutral hydrogen atoms and
H2 proceeds via jumps between the interstitial sites of the host material. Positional
changes that are smaller than about 4Å are atomic vibrations around an equilibrium
position and thus not diffusive in nature. This is especially relevant as in the macro-
scopic modified H-H2 RD model, the onset of the power-law regime is quite discretization
dependent.

2. Instantaneous well-stirredness along the interface. The one-dimensional macroscopic
RD model, which gives the experimentally relevant t1/6 behavior inherently assumes that
all hydrogen atoms that are liberated during stress instantaneously compete with other
hydrogen atoms at the interface for available dangling bonds or dimerize with each other.
However, at typically assumed dangling bond densities of 5 × 1012 cm−2, the distance
between two dangling bonds will be about 4.5 nm. At a depassivation level of 1% this
means that the average initial distance between two hydrogen atoms is even in the range
of 45 nm. The reduction of this distance to the typical H2 bonding distance of 0.7Å [59]
needs to be overcome by a diffusion step, which takes about 200 s at a diffusion coefficient
of 10−13 cm2/s.

3. Rate-equation-based description. It is well established in chemical literature that bi-
molecular reactions are not sufficiently described by reaction rate equations if the particle
numbers are small. In a reaction rate equation system it is for instance possible for 0.5 H
atoms to form 0.25 H2, which is physically meaningless. An accurate description in the
limit of small particle numbers is only obtained from an atomistic description.

We have implemented a stochastic three-dimensional modified reaction-diffusion model for
NBTI to study the degree to which a more realistic description changes the predicted behavior.
The model is theoretically well-founded on the theory of stochastic chemical kinetics and is
understood as a consequent realization of the physical picture behind the reaction-diffusion
theory.
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The degradation predicted by the microscopic model features a unique new initial regime
in which the motion of each hydrogen atom is completely independent from the others. This
regime features a strongly increased power-law exponent that is not observed experimentally,
yet it is a necessary consequence of the liberation of hydrogen during stress. Application of the
atomic RD model to a real-world example shows that for a realistic jump width it is impossible
to obtain the experimentally observed behavior due to the apparent diffusion limitation of the
dimerization and passivation rates. The match of the microscopic model with the macroscopic
version and experimental data can be improved by using an increased diffusion coefficient
at the interface. However, the required diffusion coefficients are many orders of magnitude
above 10−9 cm2/s which leads to diffusion lengths way beyond the dimensions of individual
microelectronic devices during stress. Consequently, interface diffusion coefficients of this
magnitude would lead to cross-talk and a dramatically increased degradation due to the loss
of hydrogen.

The recovery predicted by the microscopic model matches the macroscopic counterpart as
soon as the previous degradation has entered the classical diffusion-limited regime. This be-
havior is due to the prerequisite that the system has to be equilibrated along the interface
before the t1/6 regime can emerge. As the recovery happens on much larger time-scales than
the stress duration, lateral equilibration effects are invisible in recovery traces. A distribution
of arrival times as predicted by the simple estimate using different diffusion coefficients during
recovery as in [16] could not be found.

In summary, our study of the microscopic limit points out severe problems in the traditional
mathematical formulation of the reaction diffusion model for NBTI, rendering all variants that
are based on partial differential equations physically meaningless. In a physically meaning-
ful microscopic version of the model, no experimental feature remains that can be accurately
predicted. The apparent match of the RD models with experimental data must therefore be
considered a mathematical artifact without any physical background. In the author’s opinion,
the only way to add physical meaning to the reaction-diffusion model is to abandon the as-
sumption that the power-law arises from the out-flux of the diffusing particles and move to a
dispersive-hopping formulation. This path was taken by our group years ago and led us to the
multi-state multi-phonon models we use today.

5.2 Atomistic Modeling and the BTI Defect

The work presented in Chap. 4 shows how the number of free parameters of the multi-state
multi-phonon model for BTI can be reduced using a density functional theory based atomistic
defect model. As examples, we investigate two well studied model defect structures, the hy-
drogen bridge and the oxygen vacancy in α-quartz. Both of these defects feature two stable
structural configurations both in the neutral and the positive state, which are called dimer and
puckered state for the oxygen bridge, and closed and broken state for the hydrogen bridge.

The activation barriers for the structural reconfiguration of the defect are calculated using the
nudged elastic band method. The reconfiguration barrier of the hydrogen bridge is in agreement
with the extracted parameters of the BTI defect. The predicted reconfiguration barrier of the
oxygen vacancy for the 1
 → 1 transition is about 36meV, which is to too low for the BTI defect
as it would be overcome instantaneously in the typical temperature range of BTI experiments.

The charging and discharging rates are calculated using the non-radiative multi-phonon
theory. We have developed a method to calculate the NMP transition rates for the charging and
discharging of a defect from an atomistic defect model and a macroscopic device simulation. For
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this purpose, we model the non-radiative transitions as quasi-optical transitions with negligible
photonic energy. The derived expressions for carrier capture and emission rates consist of a
tunneling expression, a line shape, and an empirical factor. For the rate calculation, the
tunneling probability is taken from a macroscopic device simulation and the line shape is
calculated from the atomistic model of the defect. Three approaches for the calculation of line
shapes from the atomistic model are presented:

1. A quantum mechanical line shape based on Franck-Condon factors for approximate one
dimensional parabolic potential energy surfaces in the different charge states. These
line shapes are taken as the quantum mechanical reference calculations. They include
nuclear quantization and tunneling. To get smooth lines it is necessary to introduce
an empirical spread of the Dirac peaks. Our Franck-Condon-factor-based line shapes
compare well with published analytic expressions. However, our method goes beyond
previously published calculation methods as it allows to include a frequency change of
the coupling mode. As our potential energy surface extractions show, this frequency
change is a relevant feature of the atomistic defect models.

2. A line shape derived from classical statistical mechanics based on the same approximate
potential energy surfaces. These line shapes are simple analytic expressions that can be
easily implemented into a device simulator. For the temperature range in which typical
BTI experiments are executed, these classical line shapes are a good approximation to
the quantum mechanical line shapes.

3. A classical line shape based on molecular dynamics simulation. These line shapes con-
sider the full potential energy surfaces obtained from the density functional calculations.
Unfortunately, reasonably smooth line shapes require long molecular dynamics runs.
For regions that are far (>1 eV) away from the line shape maximum, this method quickly
becomes unfeasible. For the region around the maximum, however, good agreement
is found between the line shapes based on molecular dynamics and the approximate
potentials.

For the evaluation of our model defects as candidates for the BTI, we concentrate on the initial
hole capture transition. The calculated line shapes for this transition are energetically too low
for the oxygen vacancy and too high for the hydrogen bridge. This leads to a much too high
initial charging barrier for the oxygen vacancy and a too weak temperature dependence for
the hydrogen bridge. However, these results heavily depend on the selected energy alignment
scheme, which itself bears large uncertainties.

To illustrate how the line shapes obtained from the atomistic models can be employed to
calculate rates, we calculate the hole capture rate using the density functional line shapes
and an open boundary non-equilibrium Green’s functions device simulation. The presented
results are meant as a proof-of-concept for extracting NMP parameters for device modeling from
DFT and also serve as a benchmark for computationally less expensive approximations. The
calculations have been compared qualitatively to experimental data obtained using the time
dependent defect spectroscopy method on small area MOSFETs. The gate voltage dependence
of the calculated capture time constants shows good qualitative agreement with experiment.
Also, the reported strong temperature activation can be explained by the NMP model and good
agreement is found for the temperature activation of hole capture rates based on classical and
quantum mechanical line shapes down to very low temperatures.

The good agreement between the predicted and measured hole capture rates, however, is only
made possible by a modification to the alignment scheme and is therefore of limited significance
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for the evaluation of the defects as candidates for the BTI. A method for the definitive alignment
of the energy scales of the defect line shapes and the states in the device is not in sight at the
time this document is written. However, for the search of the BTI defect it is expected that if
both charging and discharging kinetics are taken into consideration, this will compensate the
uncertainty in the energy alignment. Judging from the results presented here, the hydrogen
bridge seems to be the more promising candidate for the BTI defect.

The work presented here is the fundament for future efforts to find the defect responsible for
the bias temperature instability. The next steps on this path are the study of the reconfiguration
barriers and line shapes of oxygen vacancies and hydrogen bridges in more realistic host
structures, such as amorphous silica and Si-SiO2 interface structures. Different approaches to
this target are tested at the moment as part of the EU project ‘‘Modelling of the reliability and
degradation of next generation nanoelectronic devices’’ (MORDRED). The results of our α-quartz
based calculations will also serve as a reference for these studies. For this purpose, however,
our results have to be checked against larger supercells or embedded cluster calculations, to
exclude artificial strain effects.

The inclusion of the calculation of emission rates into the device simulator VSP2 is being
worked on heavily at the moment and first results are expected to be published soon. For a
future inclusion of the non-radiative capture and emission model into standard TCAD sim-
ulation, it is necessary to find a compromise between physical accuracy and computational
efficiency. Therefore, different levels of approximations will be compared for the NMP capture
and emission rates, concerning both the tunneling expression and the line shape functions. In
this context, the good agreement between the capture rates computed from the classical and
the quantum mechanical line shapes provides a quite promising result.
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