
Generating Knowledge Graphs
with Specified Ambiguities

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Business Informatics

by

Peter Kittenberger, BSc
Registration Number 01425768

to the Faculty of Informatics

at the TU Wien

Advisor: MSc PhD Marta Sabou, MSc PhD
Assistance: Ao. Univ.Prof. Dr. Stefan Biffl

Prof. Masaomi Kimura, PhD

Vienna, 12th June, 2021
Peter Kittenberger Marta Sabou

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Peter Kittenberger, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 12. Juni 2021
Peter Kittenberger

iii

Acknowledgements

I want to thank everyone who helped me over the course of not only this thesis, but also
during the years of education necessary to write it.

My family, who supported me with their knowledge, opinions, curiousness and ideas. I’m
especially grateful for my parents who allowed me to complete my university education
without too much time- or financial pressure.

My professors, advisors and tutors, all researchers whose knowledge, feedback and work I
was able to use and include in my work. Without the continuous feedback and insight
into genuine research my advisors were able to give me, my work would not be what it is
now.

My friends for the time and effort they put into my thesis, be it for answering question-
naires, correcting my writing or listening to my ideas and worries.

My university, for allowing me to organise my studies and thesis freely and not only
enabling me to go and study abroad, but also for contributing financially.

Thank you!

v

Abstract

Large scale knowledge graphs are commonly used in software products ranging from web
applications to the control software of self-driving vehicles. Due to their size, these graphs
are usually built by either employing a crowd of people to build them or by scraping
already existing information on the web. Both approaches require the collected data to
be validated and improved before being suitable to be used in production ready systems.
While much current research aims to explore and improve the algorithms required for this
task, it is hampered by the lack of annotated datasets containing typical human mistakes
(or ambiguities) such as those caused by ambiguous questions or answers. This problem
intensifies if graphs have to follow certain restrictions to be of value (eg. containing
specific relation types or classes of nodes as used by an existing system), and may even
be impossible to solve if specific expert-graphs are required whose contents non-experts
would struggle to comprehend. In addition to that, there is currently no existing solution
capable of leveraging the structure of a knowledge graph as basis for artificial generation
of mistakes.

To address this issue, in this thesis we propose an vector embedding based approach called
"AmbiVec" to enrich arbitrary graphs with generated, human-like mistakes similar to those
made by crowd workers or web scraping approaches. To this end, the adopted methodology
includes (1) relying on literature study to investigate the most prevalent sources of
ambiguities during crowdsourcing and categorise the mistakes that are caused by them;
(2) based on these findings, the design and implementation of an approach, "AmbiVec",
to generate configurable amounts of artificial mistakes, using vector embeddings and
leveraging similarity between elements in the graph, so mistakes can then easily be used
for research; (3) an evaluation of the approach using a crowd sourcing method.

Our evaluation shows that our approach works well for mistakes of a small severity that
are commonly caused by existing crowd based approaches. User ratings of the severity
correlate well with configured severity and workers categorised a portion of our generated
ambiguities as being human-like.

vii

Contents

Abstract vii

Contents ix

1 Introduction 1
1.1 Problem definition . 1
1.2 Research question . 2
1.3 Methodology and approach . 2
1.4 Main outputs . 3

2 Background and related work 7
2.1 Literature research . 7
2.2 Knowledge graphs . 8
2.3 Availability of datasets containing human-made mistakes 10
2.4 Embedding technologies as basis for semantic relation generation . . . 13
2.5 Crowdsourcing and human computation 14

3 Ambiguities 17
3.1 Ambiguity categories . 17
3.2 Ambiguity sources . 19
3.3 Ambiguity source categories . 23

4 Generating ambiguities with "AmbiVec" 25
4.1 Workflow . 25
4.2 Data structures . 31
4.3 Methods and their configuration . 43
4.4 Manual checks . 44
4.5 Metrics . 45

5 Reference implementation of "AmbiVec" 49
5.1 Design decisions . 49
5.2 Used libraries . 50
5.3 Methods and configuration . 50
5.4 Main functions . 51

ix

5.5 Performance . 53
5.6 Repository . 58

6 Evaluation 59
6.1 Purpose . 59
6.2 Users . 60
6.3 Tasks . 61
6.4 Setup . 62
6.5 Procedure . 64
6.6 Analysis . 65
6.7 Conclusion of the evaluation . 76

7 Conclusion and further work 77
7.1 Conclusion . 77
7.2 Limitations . 78
7.3 Further work . 79

List of Figures 83

List of Tables 85

Bibliography 87

CHAPTER 1
Introduction

In the introduction we will define the problems our thesis strives to solve and what research
questions we have to answer to achieve a solution. We then explain our methodology
and the main output we expect as a result of our work.

1.1 Problem definition
Large-scale knowledge graphs [EW16] are widely used in modern applications like semantic
search, question answering systems, recommender systems, expert systems and personal
assistants [GAS16] but their creation remains problematic for individual humans due
to their size. To work around this problem graphs are often generated with the help
of software. This software uses human knowledge as the basis for knowledge graph
construction, either through a crowd sourcing or web scraping approaches, or graphs may
be further refined using crowd algorithms [Pau17].

Since the knowledge comes from multiple persons with high likeliness of different answers
or different interpretations of the objects and concepts queried about [IHvH+17], some
low quality results are bound to be generated when merging their answers to one definitive
statement, even when using optimal aggregation algorithms for specific datasets [ZLL+17].
Additionally, there could be other sources for ambiguity or mistakes. These sources and
the resulting types of ambiguity in the knowledge graph are not yet well documented in
literature and hard to categorise by their nature.

It is possible to use algorithms to detect and correct such mistakes [d’A09], but in order
to develop and test these algorithms, knowledge graph based datasets containing relevant
mistakes and including a gold standard are required. While we found signs of their
existence, these datasets were not available due to various reasons (e.g., dead links,
inadequate internal and external references, paywalls), even less in the required quantity
and quality. In this master thesis, we address this general lack of knowledge graphs

1

1. Introduction

with human-like ambiguity mistakes and propose an algorithm for generating them, thus
supporting research on the development of algorithms for identifying such mistakes.

1.2 Research question
Our research question thus asks whether it is possible to generate datasets that fulfil
the following requirements: (i) the ambiguities should resemble human mistakes closely
enough to be of value for other algorithms and to not be easily recognisable as non-human
by other humans; (ii) it is important to be able to vary the severity of the ambiguities
to simulate everything from a small mistake to random answers; (iii) the generated
ambiguities have to follow the format of a knowledge graph and make sense in that highly
linked context; (iv) the introduced ambiguities also should be quantifiable in absolute
numbers and percentual in relation to the size of the knowledge graph.

To reiterate in one sentence, the main research question of this thesis is:
"How can one introduce a well defined, structured and measurable amount of adequately
human-like ambiguities as defined by our research into a pre-existing knowledge graph?".

Concretely, this overall research question was investigated through three more refined
research questions as follows:

• RQ1: Ambiguities and their sources How can ambiguities in the area of
crowdsourcing be defined and distinguished from similar concepts, what sources do
these ambiguities stem from and what characteristics are shared between them?

• RQ2: Creation of ambiguities How can we best generate ambiguities in an
efficient, robust and generalisable way for arbitrary knowledge graphs?

• RQ3: Evaluation of ambiguities How can we measure the quality of our
generated ambiguities? Do they resemble human-generated ambiguities enough for
use in practical applications and does our configuration work?

1.3 Methodology and approach
The thesis uses different methodologies for each research question, but basic literature
research is employed for all research questions. Our research will focus on solutions that
are at least partially similar to ours, with a focus on work simulating human mistakes,
sources of mistakes and their qualitative measurement as well as knowledge graphs
especially suited to demonstrate our approach. We will not include work that is purely
focused on psychology. In addition to the methodology used for all research questions we
will also focus on specific methodology for each research question.

• RQ1 - Literature research For our RQ1 additional literature research will define
the kinds of ambiguity we are considering for our approach and further focus on the

2

1.4. Main outputs

reasons and causes for ambiguity caused by humans to combine them into sources.
Based on those sources we then conclude what characteristics these ambiguities
share and how to best describe them.

• RQ2 - Algorithm design and implementation Using the knowledge acquired
in RQ1 we develop the "AmbiVec" workflow with the aim to emulate the found
characteristics of ambiguities. The methodology used for this will follow the design
science research as proposed by Hevner et al. [HMPR04].

• RQ3 - Experimental evaluation To ensure that our approach is able to achieve
its goals we design and conduct an experimental evaluation using human compu-
tation and crowdsourcing. The results are then evaluated and summarised in the
conclusion.

1.4 Main outputs
Our research will provide a number of outputs for each of our research questions.

• RQ1 - Literature research For this research question one output will be the
definition of what constitutes ambiguities and the distinction to similar concepts
(eg. bias). Another output will be the sources that lead to ambiguities, each named,
including a definition and some examples. The third output will be a classification
of the characteristics the individual ambiguities stemming from these sources show
and which are the basis for the work done to answer RQ2.

• RQ2 - Algorithm design and implementation Based on the outputs of RQ1
we then propose the "AmbiVec" workflow as output of RQ2. This workflow is able
to generate configurable, human-like ambiguities based an arbitrary knowledge
graphs. It can easily be extended or adapted for specific graphs and offers the
possibility to check and correct results of intermediate steps in order to improve
quality and reduce computation time.
For easier visualisation the workflow will also be shown by two diagrams, one
focused on the users and one focused on the code. Both diagrams are necessary
because required interactions vary depending on the view and both usage and
modification of the code are equally important.
To allow for easier modification, extension and configuration we also define the
structure of configuration. This way interoperability between various methods can
be ensured while keeping an intuitive interface for the user.
We will provide methods as required by our literature research on ambiguity sources
and additional methods we use for testing purposes. The methods will be easily
expandable and both existing methods and the process used for including additional
methods will be described in the thesis.

3

1. Introduction

We also include a knowledge graph that we use for demonstrations and testing.
This graph will contain all special cases we use for testing and some mock data
for manual tests. The size of this graph will be small enough to complete the
calculations required for the workflow almost instantly.

• RQ3 - Experimental evaluation As output of our RQ3 we propose the design
for an experimental evaluation using crowdsourcing. We also run it, evaluate its
results and conclude whether our outputs were able to satisfy the goals set by our
research questions. Due to the unavailability of similar datasets containing a gold
standard we also take care to preserve all of our outputs for future research.

In this chapter we stated that the availability of annotated knowledge graphs, while more
relevant than ever, is still an open problem. To alleviate this we defined three research
questions, the methodology necessary to answer them and what their outputs will be
composed of. The first research question asks what ambiguities and their sources look like
and what characteristics we can generate, the answers to this questions will be provided
by a literature study. The second research question concerns itself with the creation of
ambiguities and will be answered using the design science research methodology. The
third research question aims to provide a conclusion on the quality of our generated
ambiguities and will be answered using a questionnaire.

This thesis is further structured as follows. Chapter 2 introduces areas relevant to our
research starting with insights on how our literature research was planned (see section 2.1).
We then provide deeper insights into knowledge graphs (see section 2.2), the availability
of datasets required for our research (see section 2.3), embedding technologies (see section
2.4) and crowdsourcing & human computation (see section 2.5).

In chapter 3 we first define what we consider to be ambiguities in contrast to similar
concepts (see section 3.1) and then compile a list of sources these ambiguities can stem
from (see section 3.2). We can then deduce the common emulatable characteristics that
the individual ambiguities coming from those sources show (see section 3.3) and conclude
our first research question.

In chapter 4 we start by explaining how artificial ambiguities can be generated using the
"AmbiVec"-workflow (see section 4.1), the data structures required for it (see section 4.2)
and the methods we use for the generation (see section 4.3). As the workflow allows for
manual checks to recognise low quality output early in the process (see section 4.4) we
explain those as well as the metrics used to measure the quality of generated ambiguities
(see section 4.5).

In chapter 5 we introduce our reference implementation of the "AmbiVec"-workflow. We
explain design decisions (see section 5.1), what libraries we used (see section 5.2) and
how our methods can be extended (see section 5.3). We also briefly explain the main
functions used by our implementation (see section 5.4) and provide some performance
measurements (see section 5.5) as well as access to our repository (see section 5.6). At
the end of this chapter we can conclude our second research question.

4

1.4. Main outputs

In chapter 6 we evaluate the output of our approach using a crowdsourcing platform.
Starting with the purpose (see section 6.1) and users (see section 6.2), going over the tasks
(see section 6.3), setup (see section 6.4) and procedure (see section 6.5) and ending with
the analysis (see section 6.6) and conclusion (see section 6.7) all parts of our evaluation
are explained. In the conclusion we are able to answer our third research question.

In chapter 7 we can then draw a conclusion on the outcome of all our research questions
(see section 7.1). As we are subject to some limitations we expand on them (see section
7.2) and finally give some insight into further work that could improve our workflow in
various areas (see section 7.3). This chapter marks the end of our thesis.

5

CHAPTER 2
Background and related work

In this chapter we first define the selection-criteria for literature we investigate and then
explain the topics we identified as relevant (see section 2.1). Since these topics build upon
each other we will start with knowledge graphs (see section 2.2), explain why finding
a suitable graph was a challenge and list some graphs we investigated (see section 2.3).
Next we will explain what embedding technologies are and what kind we chose to use in
our thesis (see section 2.4). The last section will explain what crowdsourcing is and how
it is used in our thesis (see section 2.5).

2.1 Literature research
Through extensive literature research existing solutions in the area of knowledge extension
and the use of human computation are analysed and iterated on, this ensures a novel
and well engineered solution that brings improvements to the state of the art and that
provides a basis for further research. For each conference we investigated at least all works
listed in the most recent proceeding and for journals we investigated submissions going
back at least one year at the time of writing. Additional featured as well as unrelated
works were investigated as part of an explorative literature research.

Since our research mainly concerns itself with two research areas we will list proceedings
and journals grouped by those areas.

Human computation:

• HComp [CK18]

• CSCW [10.18]

• CHI [CHI19]

7

2. Background and related work

• IJHCS1

• JHC2

Semantic web:

• EKAW [ZGNT18]

• K-CAP [10.17]

• ISWC [VBSF+18a][VBSF+18b]

• ESWC [HFJ+19]

• BHCC3

• SWJ4, JWS5

2.2 Knowledge graphs
Knowledge graph [EW16] is the name of a specific data structure that was originally
coined by Google with the intention of modeling large, interwoven representations of real
world concepts. We use this data structure as the starting point of our approach and
make use of the highly interconnected structure to generate our ambiguities. Färber et
al. [FBMR17] uses the following definition:

"We define a Knowledge Graph as an RDF graph. An RDF graph consists of a set of
RDF triples where each RDF triple (s, p, o) is an ordered set of the following RDF terms:
a subject s ∈ U ∪ B, a predicate p ∈ U , and an object U ∪ B ∪ L. An RDF term is either
a URI u ∈ U , a blank node b ∈ B, or a literal l ∈ L."

An example of this structure is shown in Figure 2.1 where blue circles represent nodes
and arrows represent relations.

These graphs contain a network of information and can be queried and manipulated
using "SPARQL", a query language made for the RDF format the graphs are often saved
as. This format represents two nodes and one relation as a triple, one node is the subject
and the relation (called predicate in this context) connects it to the object, the second
node.

1International Journal of Human-Computer Studies. https://www.journals.elsevier.com/
international-journal-of-human-computer-studies

2Journal for Human Computation. http://hcjournal.org/ojs/index.php?journal=jhc
3Symposium on Biases in Human Computation and Crowdsourcing. https://sites.google.

com/sheffield.ac.uk/bhcc2019/home
4Semantic Web journal. http://www.semantic-web-journal.net/
5Journal of Web Semantics. https://www.journals.elsevier.com/

journal-of-web-semantics

8

https://www.journals.elsevier.com/international-journal-of-human-computer-studies
https://www.journals.elsevier.com/international-journal-of-human-computer-studies
http://hcjournal.org/ojs/index.php?journal=jhc
https://sites.google.com/sheffield.ac.uk/bhcc2019/home
https://sites.google.com/sheffield.ac.uk/bhcc2019/home
http://www.semantic-web-journal.net/
https://www.journals.elsevier.com/journal-of-web-semantics
https://www.journals.elsevier.com/journal-of-web-semantics

2.2. Knowledge graphs

Figure 2.1: Knowledge Graph Example

Knowledge graphs are used for a wide variety of services, for example recommender
systems, question answering systems, semantic search, expert systems, medical applica-
tions, education and personal assistants. There are multiple freely available large-scale
knowledge graphs, for example DBpedia which contains knowledge from Wikipedia,
YAGO, Freebase and Wikidata [HBC+20].

9

2. Background and related work

2.3 Availability of datasets containing human-made
mistakes

While there is a lot of research done on knowledge graph refinement and error detection
[d’A09] [JPJJ19], there is very little work on generating authentic erroneous datasets.
In addition, there were no relevant human-generated knowledge graph based datasets
including a gold-standard made available in any related papers. Finding such a dataset
is required to both research and evaluate the human-likeness of original and generated
mistakes. In our case the requirements for a dataset were the following:

• Between 1000 and 20000 triples in the graph

• At least 15 distinct nodes and 15 distinct relation types

• Enough similar nodes and similar relation types to allow for ambiguities that are
close to their correct answer (this was only required since we wanted to evaluate
how well our workflow works for close ambiguities of both nodes and relations in a
single run)

• Individual human answers and the respective correct answer are available

• The content is in the general area covered by Wikipedia so that enough nodes can
be resolved in the dictionary

Among the unusable datasets we found, most chose to not share their created gold
standards or links to the data were no longer functional. We list the most relevant
datasets and explain why we couldn’t use them.

Quality Assessment for Linked Data: A Survey

Description This paper [ZRM+15] does an extensive quality assessment of linked data
resulting in 18 quality dimensions and 69 metrics. Dataset selection according to various
quality metrics would’ve been possible.

Constraints The availability of a gold standard was not considered as criteria for dataset
quality. Correctness was considered on the syntactic and semantic level, but not in depth
on the content level. Only two of the investigated papers [SLA+13][ZKS+13] used crowd
sourcing as a means to check content correctness and are described in detail below.

Crowdsourcing DBpedia Quality Assessment

Description This paper [SLA+13] used DBpedia as knowledge graph and built a gold
standard for parts of it6. It also compared crowdsourcing using random and expert users’
answers.

6Website: http://people.aifb.kit.edu/mac/DBpediaQualityAssessment/
experiments.html

10

http://people.aifb.kit.edu/mac/DBpediaQualityAssessment/experiments.html
http://people.aifb.kit.edu/mac/DBpediaQualityAssessment/experiments.html

2.3. Availability of datasets containing human-made mistakes

Constraints While the gold standard was made available, it only contains the labels of
the respective nodes but neither unique identifiers nor the complete graphs that were
used. Re-linking this to the full DBpedia dataset is error-prone due to the possibility of
duplicate names and recent changes to the graph. The gold standard and user answers
are also spread across the whole graph which is too big for us to use.

User-driven quality evaluation of DBpedia

Description This paper [ZKS+13] created a gold standard using crowdsourcing with 58
users and assessed a total of 521 resources.

Constraints The created gold standard is not shared completely, only detected errors
are made available7.

SABINE: A Multi-purpose Dataset of Semantically-Annotated Social
Content

Description This paper [CFG+18] linked sentiment statements to DBpedia nodes.

Constraints This paper builds a gold standard only for sentiment but not for the
knowledge graph data itself.

BetterRelations: Detailed Evaluation of a Game to Rate Linked Data
Triples

Description This paper [DHRB+11] creates a gold standard for the order of items by
importance. This data could provide additional insights especially for the "subjective
ambiguity"-source.

Constraints The data is not made available and the correctness of content of the used
knowledge graph itself is not explicitly evaluated.

GuessWhat?! Human Intelligence for Mining Linked Data

Description This paper [MV10] used user answers from a game to build an ontology
which could be used as a gold standard. It also increases the available information users
have to decide on a node in multiple steps and could therefore provide insights in the "no
knowledge"-source.

Constraints The data was originally made available to download, but the provided link
was not accessible any more.

7Website: http://aksw.org/Projects/DBpediaDQ.html

11

http://aksw.org/Projects/DBpediaDQ.html

2. Background and related work

Probabilistic Error Detection Model for Knowledge Graph Refinement

Description This paper [JPJJ19] aimed to increase classification accuracy in knowledge
graphs using neural nets to simulate human judgements reinforced by a small crowdsourced
gold standard. The datasets used were subsets of NELL and YAGO.

Constraints The created gold standard as well as the used subsets of the knowledge
graphs were not made available.

Toward multiviewpoint ontology construction by collaboration of
non-experts and crowdsourcing: The case of the effect of diet on health

Description This paper [ZGEBI16] conducted a large-scale crowdsourcing experiment
about the effect of diet on health. It also compared the answers of subjective and objective
questions.

Constraints The data was originally made available to download, but the provided
link was not accessible any more. In addition to that, there was also no response to our
emails.

Truth Inference in Crowdsourcing: Is the Problem Solved?

Description This paper [ZLL+17] compares 17 algorithms on 5 datasets with the intent
to simplify algorithm selection for further work.

Constraints The data was originally made available to download, but the provided link
was not accessible any more. In addition to that, there was also no response to our emails.
We were later able to recover the broken link and download the data, but unfortunately
only relational datasets were used and conversion was not possible.

A Task-based Approach for Ontology Evaluation

Description This paper [PM04] compares answers from a task based system to a gold
standard to achieve incremental improvements of the knowledge graph.

Constraints The dataset and gold standard were not available for download.

Using the wisdom of the crowds to find critical errors in biomedical
ontologies: a study of SNOMED CT

Description This paper [MMJ+14] compared answers from experts and crowdsourcing
to find critical errors in a medical ontology. They made their generated gold standard
available as PDF.

Constraints The dataset that was used in the paper is locked behind a paywall and its
usability for our research remains unclear.

12

2.4. Embedding technologies as basis for semantic relation generation

2.4 Embedding technologies as basis for semantic relation
generation

Vector embedding allows us to represent an element (eg. a word in a sentence or a node
in a knowledge graph) as a vector. In our approach these vectors are used to select and
rank all candidates and choose the best suited ones for ambiguities. We will investigate
relevant approaches and explain the advantage of this representation.

2.4.1 word2vec
The word2vec word embeddings [Ris18] lie at the core of our approach. They are needed
to determine and quantify closeness between single words by substituting them with high
dimensional vectors. These representations are captured in dictionaries where they are
easily accessible.
The vectors in the dictionary are learned from a corpus of sentences. Any words not in
the corpus also can’t be present in the dictionary, so an extensive corpus is necessary
to generate an all-purpose dictionary. We chose a Wikipedia-based dictionary since it
provides a good balance of common and specialised vocabulary and is of adequate size.
As there are multiple techniques to train the dictionary, we focused on dictionaries built
using word2vec and GloVe, another way of creating the vector representation [PSM14].
The vectors encode the meaning of the words, their direction and length determine how
words are related to each other and by representing each word with a vector we can also
use arithmetic operations on them. Words that are similar in meaning also point in a
similar direction, but their length will vary depending on their significance. To determine
the closeness of two words the euclidean distance or cosine similarity is used.
For example, the similarity or distance between two vectors vA and vB can be calculated
using equation 2.1.

dist(vA, vB) = cos(θ) = vA · vB

vA · vB
(2.1)

The result is a value between -1 and 1, where 1 means the direction of the vectors is
identical and they point in the same direction, -1 means the direction is identical but
they point in the opposite direction and 0 means they are orthogonal to each other.
Even though this seems to allow us to determine the inverse of a word this is actually not
possible. For example we can’t determine the inverse of "white" to be "black" because this
would assume the context of the inverse still being a colour. Depending on the dictionary
the result is actually a word not even closely related.

2.4.2 RDF2Vec
RDF2Vec aims to vectorise a given knowledge graph without the need of additional
inputs by using random (and in subsequent versions also other) walks over the knowledge

13

2. Background and related work

graph [RRN+19]. It was originally inspired by the word2vec approach.

Since an additional dictionary is not required and the approach is generally content
agnostic RDF2Vec might be at an advantage over wordvec approaches for some datasets,
but it also has various downsides when compared to word2vec:

• Big graphs are often split into multiple files. While it is usually possible to combine
them beforehand word2vec can operate on split files with only a small decrease in
quality for some calculations, as the vectors have a global orientation. This is not
the case in RDF2Vec where the general vectors orientation can change with every
file.

• RDF2Vec has to be trained for every graph, depending on the size of the graph this
can take a lot of time. Some pre-built graph representations eg. for DBpedia are
available for download, but custom graphs always have to be trained. In word2vec
pre-built dictionaries can be quickly swapped and dictionary/graph compatibility is
defined by a shared vocabulary which is likely to be available even for most custom
graphs. The downside of word2vec is a less accurate representation for multi-word
nodes which can be mitigated.

• Word2vec also works on text-based literals like labels, descriptions or user-comments
and custom vector computation for special literals is possible more easily that it is
for RDF2Vec.

• Word2vec can have more accurate representations on very small or weakly linked
graphs due to the pre-trained dictionaries independence of the graph size.

2.5 Crowdsourcing and human computation
In contrast to classical digital computation including AI based approaches who rely
on predefined programs and models, human computation and crowdsourcing make use
of individual humans or a crowd of people (possibly distributed across the world and
connected over the internet) to solve tasks [LA18]. When using crowd algorithms such
as majority voting to combine individual answers coming from laymen into an accredited
final statement, the result becomes comparable to that of an expert [MMJ+14]. In our
thesis this is one of the main causes for ambiguities in datasets the we want to simulate
as well as our chosen way to evaluate the results of our approach. The concept of human
computation using crowds is shown in Figure 2.2.

14

2.5. Crowdsourcing and human computation

Figure 2.2: A blueprint of the HC process, adapted from Mao et al. (2017).

This offers vast possibilities, as areas that are still troubling for classical computation
can easily be solved by humans (eg. image classification, language understanding). As
even complicated work can be split into a number of simple tasks, this approach can be
used to create or validate massive amounts of data in short times. A crowd connected
over the internet can also act at a global scale unfazed by the time of day.

Amazon mechanical turk8 is a crowdsourcing website that allows users (requesters) to
create tasks that other users (workers or contributors) can then answer in exchange
for payment. These tasks can be used to answer surveys, do content moderation and
build, clean or validate datasets for machine learning and other automated computation.
Workers that do tasks usually get a small monetary compensation set by the task creator.

For our thesis especially the surveys are of interest. It is possible to let workers classify
generated data to custom classes. It is also possible to record data like the time it took
workers to complete the tasks. This allows us to let workers finely rate generated data
and correlate it with our input parameters.

In this chapter we provided insight into the literature research process (see section 2.1) and
explained relevant background areas like knowledge graphs (see section 2.2), embedding
technologies and crowdsourcing (see section 2.4) which are necessary for our research.
We also expanded on the challenges to availability of existing annotated datasets and
listed some papers who were almost able to fulfil our requirements (see section 2.3).

8Website: https://www.mturk.com/

15

https://www.mturk.com/

CHAPTER 3
Ambiguities

In this chapter we will research ambiguities with the goal of arriving at a definition
we can use for generation, as required to answer our first research question. We first
define the term of ambiguity in contrast to similar concepts (see section 3.1) to establish
the boundaries required for our next step, the investigation of sources of ambiguities
(see section 3.2). By exemplifying the different sources, giving general explanations and
concrete examples we are able to understand what characteristics individual ambiguities
coming from all of those sources show (see section 3.3). As these characteristics can
be mimicked and thus used as basis for generation we can conclude our first research
question at the end of the chapter.

3.1 Ambiguity categories
Before we can define the sources of ambiguity, we have to clarify what characteristics
cause the data in the knowledge graph to be considered as ambiguous. To achieve a
clear distinction of what data is relevant for our approach we define three categories that
nodes and relations can fall into: ambiguity, bias and garbage.

3.1.1 Ambiguity
Ambiguity is caused by user-decisions being made with either missing or low quality
information [Zel18] in regards to lexical or syntactical definitions. For knowledge graphs
this can happen at any point during the process of creation (eg. crowd-sourcing [AD17],
majority voting [DAW18]), merging of graphs [Kle01] or validation (eg. crowd validation).
The lack of information forces the users to assume the missing information to be able
to come to a decision, and therefore causes ambiguous results. While this can in some
cases affect multiple nodes or relations, it is in practice usually constrained to only one of
those elements. These ambiguities can be minimised during the mentioned processes but

17

3. Ambiguities

it is hard to identify and correct or remove them after the respective process is completed
and only the final knowledge graph is available.

Example:
(highway_A23 − increasesWorthOf → vienna) could be (highway_A23 − decreasesWorthOf
→ vienna) instead if it is affected by an ambiguity. In this example the ’incrasesWorthOf’
relation is the ambiguous part as it doesn’t obviously state what variables the worth
should be measured by. Concerning the people who have to live with the noise and
pollution in the immediate area it might decrease the worth of their living area, but for
the industry dependent on the highway it might increase the worth of the city as an
industrial location.

3.1.2 Bias

Bias is a systemic skewing of the results and can affect all or a relatively large, specific
part of the knowledge graph. It is created when the cause for the ambiguities affects all
or a portion of triples regardless of the contained nodes and relations. This could happen
when selecting users of specific groups (eg. only students) [NFG+20], when attempting
to run corrective algorithms (eg. crowd validation) [Dem19] on all or parts of the data or
it could already be embedded when using existing knowledge graphs [FPCM20]. Biases
can be minimised during the process of creation, merging or validating too, but just like
with ambiguities it is hard to identify and correct or remove them after the process is
completed and only the final knowledge graph is available.

Presumed biases that are spanning only a relatively small and interrelated proportion of
the knowledge graph therefore better fit the criteria for ambiguities rather than those for
biases, even though they might have been created by sources of biases.

Example:
(region_tibet − partOf → country_tibet) could be (region_tibet − partOf →
country_china) depending on the nationality of the workers answering the questions.

If the workers nationalities are not monitored and distributed with this in mind a bias
on this and also similarly motivated answers might be the result, the distinction to an
ambiguity being the influence of this effect on other, related answers as well as this one.

3.1.3 Garbage

Garbage is caused by triples that don’t follow any discernable underlying rules in how
they are created and therefore information restoring algorithms can’t achieve better
results using this data than if they were not using this data in the first place. Possible
sources for garbage include faulty data conversions, originally malformed data (eg. due to
web crawling), restored data (eg. merging multiple non-linked knowledge graphs together)
or if it is not possible to categorise data as either correct, ambiguous or a bias due to the
severity of misinformation or lack of context.

18

3.2. Ambiguity sources

Example:
(coffee − from → brazil) could be (coffee − from → 2020) instead if it is garbage.
In this example the relation is so highly ambiguous that it doesn’t restrict the possible
answers to either a place or a time (of harvest, production, sale, or any other) and the
result might be a mix of all possible interpretations. It is impossible to discern exactly
how the answer was chosen without additional information due to the high potential for
severity of this ambiguity.

3.2 Ambiguity sources

Using the ambiguity definitions from section 3.1 we create a list of the most prevalent
sources of ambiguity, based on reviewed literature. This list is meant to cover the most
common sources that are present in existing knowledge graphs created by crowdsourcing
or web scraping approaches. For every source we state a definition, we aim to create a
clear and understandable name for the source and give examples for situations that could
lead to these ambiguities.

3.2.1 Subjective ambiguity

Definition Statements where users commonly have different opinions or that can by
their nature only be viewed subjectively.

Explanation Subjective ambiguity is prevalent in areas where the answer to a question
depends on the opinion of the worker because there are multiple relevant and potentially
equally valid answers [DMA+18]. These ambiguities are created because the questions
wrongly assume there is a single correct answer regardless of context.

Examples

• Borders in war areas/conflicted regions
eg.: (region_tibet − partOf → country_tibet) and (region_tibet − partOf →
country_china)

• Artists who influenced each other

• Opinions of members of different political parties

• Beliefs of different religious groups

• Personal taste on food

• Ranking a list by importance

19

3. Ambiguities

3.2.2 Ambiguity of specialisation
Definition Statements are resulting from merging two graphs created for different
contexts.

Explanation These ambiguities are introduced when answers of different specialisation
levels are mixed. While a specialist and a normal user might also have different answers to
the same question due to differences in available information [SHHQ16] it is also possible
that the same person changes their mind between specialised and general answers while
answering.

Examples

• Created by professionals vs random crowd
eg.: (cpu − isCalculatingPartOf → computer) and (arithmethic_logic_unit −
isCalculatingPartOf → computer)

• Specific ontology vs universal ontology

• Statements in same area coming from multiple professional backgrounds

• Privileged information not generally available

• Unclean entity linking during merging

3.2.3 Inherited ambiguity
Definition The correct answer to the statement depends on the users interpretation of
either an ambiguous question or ambiguous answers.

Explanation Inherited ambiguity is not caused by the user but rather by an ambiguously
formulated or overloaded question or ambiguous answers [WDK17] [Alt98]. While the
user can minimise the severity of the ambiguity it’s impossible to give a completely
correct answer.

Examples

• Automatic generation of questions/answers
eg.: question asking the number of legs all kinds of animals have, (snail −
numberOfLegs → 0) and (snail − numberOfLegs → 1) could both be con-

sidered kind of correct if only numbers are allowed as answers, but both are most
likely missing the point of the original question

• Automatic translation of questions/answers [PHg14]

• Missing information in either question or answer

• Question asking more than one thing at the same time

• Constrained set of answers that don’t fit well enough

20

3.2. Ambiguity sources

3.2.4 No knowledge
Definition Users answer questions that are out of their area of expertise.

Explanation When workers answer questions they don’t know enough about, their
answers can become ambiguous. This can be reduced if workers are allowed to skip
questions but might still happen if the worker wrongly thinks he knows the answer. While
this source of ambiguity can be corrected with majority voting and other crowdsourcing
algorithms in small numbers, this doesn’t work if the majority of workers provide
unqualified answers. If the majority of the workers is wrong on a majority of questions,
the result is garbage rather than ambiguity.

Examples

• Pays good and doesn’t seem to hard, try to guess it
eg.: (videoDecoding − computedOn → GPU) and (videoDecoding − computedOn
→ CPU) might depend on the context of this specific question (eg. whether the
device in question has a dedicated GPU or only one integrated into the CPU) and
could therefore be misunderstood by a user without sufficient knowledge while
guessing either of them could still lead to the answer being accepted

• Answers with low confidence scores

3.2.5 Most common answers of other users
Definition Users don’t provide their own answer but provide the presumed answer of a
different group of people.

Explanation If users are asked for the presumed answers of another group of users this
can improve quality in some cases but might reduce it in others because the user overly
assumes the other groups standpoints. This would usually affect only single users (if the
user differs from the other users) or single answers.

Examples

• Unknown change of answering person
eg.: Two persons using a shared computer and account to answer questions on
AMT

• What would the average person answer

• What would another ideological group answer

3.2.6 Temporal changes
Definition Different answers for questions depending on time of the questioning.

21

3. Ambiguities

Explanation When asking an old set of questions and answers to another or the same
group of users months or years later their answers for some questions might differ
because of changed perspective, knowledge or vocabulary. In knowledge graphs that are
continually expanded this mix leads to ambiguities [LC18]. This effect can also occur
with changing time of day, season, day of the week and other cyclic timeframes.

Examples

• Changing information, perspective, knowledge, vocabulary of users
eg.: An user who answered (conference − hasVenue → conference_hall) before
the Corona virus might have changed their mind and answer with (conference −
hasVenue → homeoffice) now as they are not willing to accept large crowds any

longer

• Changing group of users

3.2.7 Failed attempts to correct data
Definition Effort to correct in assumption of some error but either under- or overachieve
in doing so.

Explanation There exist a lot of algorithms aimed to correct faulty knowledge graphs,
but these algorithms might just as well cause ambiguities if used incorrectly or in general
because of their nature.

Examples

• Effort to correct bias but over-/underachieve goal
eg.: A survey in France might result in the specific (white_wine − fitsToFood →
cheese_brie), but the researcher tries to remove this regional bias in favour of the

more general European answer of (white_wine − fitsToFood → cheese). During
this process other answers to specific variants of cheese might be changed to cheese
in general as well, even if the specific variant is required

• Overlooked irregular mistakes caused by algorithm

• Reduced multiple differing answers to one ambiguous answer [SSSF16]

3.2.8 Malicious behaviour
Definition Users might maliciously change or add answers that are not or only partially
correct.

Explanation Users may want to overly include their viewpoint into datasets regardless
of legality [OdV18] [CBD20]. This can take the form of intentionally wrong answers,
automated answering, flooding with fake users or exploits in the code.

Examples

22

3.3. Ambiguity source categories

• Answering more extreme than own belief to shift the result
eg.: Individual answers on a scale (eg. 1 for low agreement, 5 for high agreement)
might use the mean or median to come to a single conclusive answer. By answering
(artificial_intelligence − isSusceptibleToBias → 1) in sufficiently high numbers
this result could be tampered with

• Creating fake users

The material from this section is summarised and synthesised in the next section.

3.3 Ambiguity source categories
While there are a lot different of sources of ambiguities, most individual ambiguities
created by them show similar characteristics. Only when investigating multiple mistakes
in combination the sources start to be discernable by their distributions and total numbers.
This similarity enables us to define one or more methods to generate ambiguities for every
category, each mimicking one of those characteristics and thus allowing us to answer our
first research question. By combining multiple such methods we would then even be able
to simulate multiple sources if we knew their internal distributions. The ambiguities
generated by our identified sources fall into three categories in most cases.

Similar answers Often the users will pick the closest answer if the correct one is either
not an option or unknown to the user. These answers are very similar in meaning, but
usually no completely equivalent answers are given as options. This similarity can be
calculated using vector embeddings (see section 2.4).

Example:
If the question is "What colour does the sky have?" and the possible answers do not
include the obvious "blue" the given answers might be "dark blue", "grey", "white" and
"black", but answers like "rain clouds", "air plane" or "quantum computation" would be
to far off to be considered a viable answer. Seen on the scope of all possible answers
the graph allows the few acceptable answers are all very similar, as they are all colours
commonly seen in the (night-)sky just as "blue" would be.

Opposite answers It is also common that the user disagrees with the correct answer
and instead chooses a contradicting answer. These answers usually still are in the same
general area or context as the correct answers but opposite to it inside this areas.

Example:
The user might be asked to select the most intense colour and answer it with "black"
or "white" which are usually considered opposite colours, but he won’t answer it with
"bright" or "pepperoni" because these, while possibly intense, are not considered to be
close enough to the expected answer of a colour.

23

3. Ambiguities

Different viewpoints It is also possible that users have a different concept of how
close answers are to each other. While this still causes the same ambiguities as in the
similar answers category (this would best be represented by a different dictionary, but can
be adequately approximated trough similarity, see section 2.4) or the opposite answers
category from an objective standpoint, they will still differ form other users.

Example:
Continuing with the question of the most intense colour the reasoning behind why one
user chooses "black" or "white" might depend on their understanding of how these colours
are composed. If pigments are mixed to derive the colour black (as a mix of all pigments)
might be considered more intense, but if light is used white (as a mix of all coloured light
beams) might be preferred.

In this chapter we first defined what kinds of incorrect data qualify as ambiguities in
contrast to similar concepts (see section 3.1) and then compiled a list of eight sources that
are able to cause such ambiguities (see section 3.2). Based on the individual ambiguities
these sources can produce we then identified and described the mutual characteristics,
namely similar and opposite answers, as well as different viewpoints which result in both
of those characteristics (see section 3.3). Since this definition allows us to continue with
research question two we can conclude that we proficiently answered research question
one.

24

CHAPTER 4
Generating ambiguities with

"AmbiVec"

In this chapter we will present our "AmbiVec" workflow used to generate ambiguities
following the characteristics identified in the last chapter. We will first present the
workflow both from a user-perspective as well as a code-perspective and then dive deeper
into the most complex steps required for generation (see section 4.1). Data structures
required for this process will be explained next, including examples from our test-graph
(see section 4.2). Since each characteristic allows for at least one method to generate it
we will explain the three methods based on vector embeddings and similarity calculation
and the random method included in our thesis (see section 4.3). To allow researchers to
spot and prevent low quality output as soon as possible during the workflow we will also
provide a list of manual checks (see section 4.4) that can be performed and explain the
metrics (see section 4.5) required to do so.

4.1 Workflow
We created a workflow allowing human interaction at various stages to generate high
quality human-like ambiguities with our methods, using vector embeddings and similarity
calculations to identify suitable ambiguities. The diagrams use colours to mark elements
that have specific characteristics. Blue elements have to be provided by the user and
green elements are outputs of the workflow.

4.1.1 User workflow
The diagram shown in Figure 4.1 shows what parts of the workflow have to be performed
by the user and what parts are executed by the code. The user starts by providing the
original knowledge graph and the dictionary. The knowledge graph is then vectorised

25

4. Generating ambiguities with "AmbiVec"

Figure
4.1:

U
ser

W
orkflow

O
verview

26

4.1. Workflow

to calculate the node vectors and relation vectors (see section 4.1.3). For every distinct
node and relation these data structures contain the average vector that represents them
as well as additional information needed by the user to do manual checks (see section
4.4). At this point the total ambiguity of the original knowledge graph can be calculated
(called "ambiguity before") (see section 4.5.7). In the next step additional ambiguities are
generated according to the user-provided configuration using the respective methods (see
section 4.1.4). The ambiguity including these additions is called "ambiguity after" and
the additions can be saved alone or saved together with the original knowledge graph.

If any of the manual checks done by the user don’t yield the expected outcomes, the
workflow can be aborted at this point and changes to the knowledge graph or intermediate
data can be made to guarantee high quality outputs.

4.1.2 Code workflow
The code workflow shown in Figure 4.2 shows the workflow from a code-focused viewpoint.
It’s content is identical to the user workflow overview, but the split between user and
code is removed for ease of reading.

27

4. Generating ambiguities with "AmbiVec"

Figure 4.2: Code Workflow Overview

28

4.1. Workflow

4.1.3 Step: Vectorise KG
Figure 4.3 shows the inner workings of the "Vectorise KG"-step. Vecotrising the knowledge
graph starts with reading and converting the triples from the input file to a data structure
(see section 4.2.1), this is needed to easily access and modify the content later. For every
node the matching vector is looked up in the dictionary and the relation vector between
the nodes is calculated as shown in equation 4.1. If the node’s name or label consisted of
multiple words this information is saved, as well as how many of the words were found. If
both the object and subject are resolved to the same vector the resulting relation vector
consists of only zeroes and is marked as such.

vrel = vobj − vsub where ∀ v ∈ fullVector (4.1)

In the next step the relation vectors (see section 4.2.2) are calculated. This is done by
using the mean of all available relations of the same type as shown in equation 4.2. If a
relation can’t be calculated it is saved as a lost relation (see section 4.2.3) for analysis and
excluded from further calculations. The usable relations are saved with their resulting
vector, the total number of individual relations, the amounts that were lost or zero vectors
and the number and percentage of relations used for their calculation. Since there can
be a lot of variation depending on the relation, the minimum, maximum and mean of
the distance the individual vectors have to the mean vector, as shown in equations 4.3,
4.4 and 4.5, is included.

relationVectorrel, preT ype = mean
∀v∈fullVector: vpre=preT ype

(vrel) (4.2)

relationVectormeanDist, preT ype = mean
∀v∈fullVector: vpre=preT ype

(dist(relationVectorrel, preT ype, vrel))

(4.3)

relationVectorminDist, preT ype = min
∀v∈fullVector: vpre=preT ype

(dist(relationVectorrel, preT ype, vrel))

(4.4)

relationVectormaxDist, preT ype = max
∀v∈fullVector: vpre=preT ype

(dist(relationVectorrel, preT ype, vrel))

(4.5)

Using the relation vectors, an estimated position in the form of a vector is calculated for
every node. This is done by summing the node vectors and respective relation vectors of
all connected nodes and averaging the result as shown in equations 4.7, 4.8 and combined

29

4. Generating ambiguities with "AmbiVec"

Figure 4.3: Step: Vectorise KG
30

4.2. Data structures

in equation 4.6. The distance of this estimate to the original node is then calculated as
well.

nodeVectorest, nodeT ype = mean(nodeVectorobjEst, nodeT ype, nodeVectorsubjEst, nodeT ype)
(4.6)

nodeVectorobjEst, nodeT ype = mean
∀v∈fullVector: vobj=nodeT ype

(vsubj + vrel) (4.7)

nodeVectorsubjEst, nodeT ype = mean
∀v∈fullVector: vsubj=nodeT ype

(vobj − vrel) (4.8)

Since the node vectors and some additional data are already available in a data structure
they are combined into a new data structure (see section 4.2.4), containing one entry
per node. The average estimated position as well as the minimum, maximum and mean
distance to the average vector are saved as well. Unresolvable nodes are saved separately
for analysis (see section 4.2.5) and excluded from further calculations.

4.1.4 Step: Ambiguify according to method
Figure 4.4 shows the "Ambiguify according to method"-step. Ambiguification is done by
taking a number of random nodes or relations according to the configuration (see section
5.3). For each of those an ambiguified version is calculated using the configured methods
(see section 4.3). To form triples out of these ambiguified nodes and relations they are
randomly inserted into triples containing their original versions, but the original versions
also remain in their unchanged form. The new and ambiguified triples are then made
available as their own data structure for other parts of the workflow.

4.2 Data structures
The main data structures organise the data in a way that is easy to access and analyse.
There are six main data structures users can interact with during the manual checks (see
section 4.4). We will give an overview and explain the values they contain, as well as
selected example output from a small knowledge graph containing both regular data and
special cases. The example data will also contain the original index that we will use to
reference individual entries in the text. The numeric values of some fields are restricted
to an interval, these restrictions are given in mathematical notation. Vectors are always
identical in dimensions to the vectors retrieved from the dictionary.

4.2.1 "fullVectors" data structure
The "fullVectors" data structure shown in Table 4.1 contains the complete triples with
some additional information, but it is not needed for manual analysis. It is used to

31

4. Generating ambiguities with "AmbiVec"

Figure 4.4: Step: Ambiguify according to method

32

4.2. Data structures

read in the file containing the full knowledge graph, calculate the "nodeVectors" (see
section 4.2.4) and "relationVectors" (see section 4.2.2) data structures and to calculate
the ambiguity.

The data structure contains the identifiers of the elements as well as their vectors. For
the nodes information on whether they consisted of multiple parts, what percentage
of these parts was able to be resolved in the dictionary, the estimated vectors and the
distance between the vector and the estimate are also saved. In the case of relations it is
recorded whether the relation had a zero-vector or not.

fullVectors data structure
Name Type Description

s String The subject of the triple
p String The predicate of the triple
o String The object of the triple

s_vec Vector The vector of the subject
s_is_multipart Bool Whether the subject consists of multiple parts
s_multipart_% Float (0..1) Percentage of the subject found in the dictionary

o_vec Vector The vector of the object
o_is_multipart Bool Whether the object consists of multiple parts
o_multipart_% String Percentage of the object found in the dictionary

r_vec Vector The calculated vector of the relation
is_zero_vector_relation Bool Whether the r_vec is a zero-vector

s_est Vector The calculated estimated vector of the subject
s_est_dist Float (-1..1) The distance between s_vec and s_est

o_est Vector The calculated estimated vector of the object
o_est_dist Float (-1..1) The distance between o_vec and o_est

Table 4.1: fullVectors data structure

The example shown in Table 4.2 shows a zero-vector on index 0, there is also an
unresolvable object on index 15 and a complete entry on index 17.

33

4. Generating ambiguities with "AmbiVec"

fullVectors
exam

ple
index

s
p

o
0

http://exam
ple.org/countries/France

http://...#
prefLabel

France
15

http://exam
ple.org/countries/A

ustria
http://exam

ple.org/r/undefinable
http://exam

ple.org/languages/R
andom

17
http://exam

ple.org/countries/France
http://exam

ple.org/r/speaks
http://exam

ple.org/languages/French

fullVectors
exam

ple
index

s_
vec

s_
is_

m
ultipart

s_
m

ultipart_
%

o_
vec

o_
is_

m
ultipart

o_
m

ultipart_
%

0
[0.4359,...

False
False

[0.4359,...
False

False
15

[0.2758,...
False

False
N

one
False

False
17

[0.4359,...
False

False
[0.027048,...

False
False

fullVectors
exam

ple
index

r_
vec

is_
zero_

vector_
relation

s_
est

s_
est_

dist
o_

est
o_

est_
dist

0
[0.0,0.0,0.0,...

True
N

one
N

one
N

one
N

one
15

N
one

False
N

one
N

one
N

one
N

one
17

[-0.408852,...
False

[0.20744851,...
0.931187

[0.25549948,...
0.936883

Table
4.2:

fullVectors
exam

ple

34

4.2. Data structures

4.2.2 "relationVectors" data structure
The "relationVectors" data structure shown in Table 4.3 contains the relations, their
vectors and some additional information. This data structure is used to calculate the
node estimates, to calculate the ambiguity in the whole graph and for manual analysis.

The data structure contains the identifier and vector of the relation. It also contains the
number of all relations of this type, how many were lost or zero-vectors, the percentage of
usable triples and the minimum, maximum and mean distance of the individual relation
vectors to the average vector.

relationVectors data structure
Name Type Description

relation String The name of the relation
vec Vector The calculated vector of the relation

total Int The total number of occurrences of this relation in the
knowledge graph

lost Int The number of lost triples using this relation
zero_vector Int The number of zero-vector triples using this relation

quality Float (0..1) Percentage of usable triples using this relation
min_dist Float (-1..1) The minimum distance-value between the individual vec-

tor and the mean vector of any triple using this relation
max_dist Float (-1..1) The maximum distance-value between the individual vec-

tor and the mean vector of any triple using this relation
mean_dist Float (-1..1) The mean distance-value between the individual vector

and the mean vector of any triple using this relation

Table 4.3: relationVectors data structure

The example shown in Table 4.4 shows a zero-vector on index 1, a lost vector on index
2 and a full entry on index 0. Both relations were still resolvable, but have a reduced
quality.

35

4. Generating ambiguities with "AmbiVec"

relationVectors
exam

ple
index

relation
vec

total
lost

zero_
vector

quality
m

in_
dist

m
ax_

dist
m

ean_
dist

0
http://.../isCapitalO

f[-0.077693306,...
6

0
0

1.000000
0.438275

0.851050
0.735537

1
http://.../isO

n
[-0.18347017,..

6
0

1
0.833333

0.527029
0.849935

0.688621
2

http://.../speaks
[-0.1804005,...

8
1

0
0.875000

0.498719
0.876127

0.760343

Table
4.4:

relationVectors
exam

ple

36

4.2. Data structures

4.2.3 "lostRelations" data structure

The "lostRelations" data structure shown in Table 4.5 contains the relations for which no
vector could be calculated and some additional information. This data structure is used
for manual analysis. It contains all relations that couldn’t be resolved.

This data structure contains the identifier of the relation as well as the amounts of total,
lost and zero-vector triples of this relation.

lostRelations data structure
Name Type Description

relation String The name of the relation
total Int The total number of occurrences of this relation in the knowl-

edge graph
lost Int The number of lost triples using this relation

zero_vector Int The number of zero-vector triples using this relation

Table 4.5: lostRelations data structure

The example shown in Table 4.6 shows two intentionally lost relations in index 0 and 1,
one due to lost vectors and one due to zero-vectors. Index 2 shows the label which was
lost due to both, but mainly due to the identical name and label of the nodes.

lostRelations example
index relation total lost zero_vector

0 http://example.org/r/undefinable 1 1 0
1 http://example.org/r/zerovec 1 0 1
2 http://www.w3.org/2004/02/skos/core#prefLabel 22 1 21

Table 4.6: lostRelations example

4.2.4 "nodeVectors" data structure

The "nodeVectors" data structure shown in Table 4.7 contains the nodes, their vectors
and estimated vectors and some additional information. This data structure is used for
calculating the ambiguity and for manual analysis.

This data structure contains the identifier of the nodes, their vector, whether they consist
of multiple parts and the percentage of parts that could be resolved in the dictionary, their
estimated vector and the distance between the estimated vector and the dictionary-vector
as well as the mean, minimum and maximum distances. It also contains the total amount
of nodes of this type.

37

4. Generating ambiguities with "AmbiVec"

nodeVectors data structure
Name Type Description
node String The name of the node
vec Vector The dictionary vector of the node

is_multipart Bool Whether the nodes name consists of multiple parts
multipart_% Float (0..1) Percentage of the nodes name that was found in the

dictionary
est Vector The calculated estimated vector of the node

est_dist Float (-1..1) The distance between vec and est
total Int The total number off occurrences of this node in the

knowledge graph
mean_est_dist Float (-1..1) The mean distance-value between the nodes vector

and the individual estimated vectors of any triple
using this node

min_est_dist Float (-1..1) The minimum distance-value between the individual
estimated node vector and the mean estimated vector
of any triple using this node

max_est_dist Float (-1..1) The maximum distance-value between the individual
estimated node vector and the mean estimated vector
of any triple using this node

Table 4.7: nodeVectors data structure

The example in Table 4.8 shows a node consisting of multiple parts on index 6. Please
note that while the identifier doesn’t use a whitespace in it’s name the label does, and is
used instead of the identifier if present. On index 0 a full example is shown.

38

4.2. Data structures

no
de

Ve
ct

or
s

ex
am

pl
e

in
de

x
no

de
ve

c
is_

m
ul

tip
ar

t
m

ul
tip

ar
t_

%
es

t
0

ht
tp

:/
/e

xa
m

pl
e.

or
g/

co
un

tr
ie

s/
Fr

an
ce

[0
.4

35
9,

...
Fa

lse
Fa

lse
[0

.6
98

58
33

,.
..

12
ht

tp
:/

/e
xa

m
pl

e.
or

g/
co

nt
in

en
ts

/E
ur

op
e

[0
.1

71
6,

...
Fa

lse
Fa

lse
[0

.5
54

30
91

,.
..

no
de

Ve
ct

or
s

ex
am

pl
e

in
de

x
es

t_
di

st
to

ta
l

m
ea

n_
es

t_
di

st
m

in
_

es
t_

di
st

m
ax

_
es

t_
di

st
0

0.
58

74
61

2
0.

91
71

51
0.

91
71

51
0.

91
71

51
12

0.
77

25
06

4
0.

93
80

34
0.

92
77

03
0.

94
94

44

Ta
bl

e
4.

8:
no

de
Ve

ct
or

s
ex

am
pl

e

39

4. Generating ambiguities with "AmbiVec"

4.2.5 "lostNodes" data structure
The "lostNodes" data structure shown in Table 4.9 contains the nodes for which no vector
could be found in the dictionary, their estimated vector (if it was possible to calculate
it) and some additional information. This data structure is used for manual analysis. It
contains all nodes that couldn’t be resolved.

This data structure contains the nodes identifier, whether it consists of multiple parts and
the percentage of parts that could be resolved in the dictionary as well as the estimated
vector and the total number of nodes of this type.

lostNodes data structure
Name Type Description
node String The name of the node

is_multipart Bool Whether the nodes name consists of multiple parts
multipart_% Float (0..1) Percentage of the nodes name that was found in the

dictionary
est Vector The calculated estimated vector of the node

total Int The total number off occurrences of this node in the
knowledge graph

Table 4.9: lostNodes data structure

The example in Table 4.10 shows two lost nodes, one in index 0 for which an estimated
position could be calculated and one in index 1 where this wasn’t possible.

lostNodes example
index node is_multipart multipart_% est total

0 http://.../Random False False [-0.20528017, ... 2
1 RandomTndsfkjnebkjabd False False None 1

Table 4.10: lostNodes example

4.2.6 "changes" data structure
The "changes" data structure shown in Table 4.11 contains the triples that were selected
to generate the ambiguities, the method and configuration used (see section 4.3), the
type (whether it is a node or relation) and both the current and new value of the element
that will be substituted. This data structure is used for manual analysis.

This data structure contains the name of the method used for generation as well as the
relevant configuration. The configuration is saved in a machine-readable object, but can
also be read by humans. The type of the source (whether it was a node or a relation),

40

4.2. Data structures

the element that is replaced (both before and after) and the full triple are also contained
in this data structure.

changes data structure
Name Type Description

method String The method that was used
config Object The configuration that was used

source_type String The type of the element (whether it is a node or relation)
source String The original element that was replaced
target String The element used as replacement
s_orig String The original subject of the triple
p_orig String The original predicate of the triple
o_orig String The original object of the triple

Table 4.11: changes data structure

The example in Table 4.12 shows a set of generated ambiguities. The configuration
featured two methods, random (index 0 for nodes) and distance (index 40 for relations).

41

4. Generating ambiguities with "AmbiVec"

changes
exam

ple
index

m
ethod

config
source_

type
source

target
0

random
{’am

ount’:
{’num

’:
5}}

node
http://.../Europe

http://.../H
alfR

andom
40

dist
{’am

ount’:
{’num

’:
5},’param

’:
{’dist’:

1}}
relation

http://.../speaks
http://.../isO

n

changes
exam

ple
index

s_
orig

p_
orig

o_
orig

0
http://.../France

http://.../isO
n

http://.../Europe
40

http://e.../France
http://.../speaks

http://.../French

Table
4.12:

changes
exam

ple

42

4.3. Methods and their configuration

4.3 Methods and their configuration
The functions that we use to calculate ambiguities are called methods. There are four
default methods described in this thesis: random, distance, closeness and negative. They
are further explained in sections 4.3.1 to 4.3.4.

The methods are configured by the "config" object (see section 5.3) which is internally
split into nodes and relations. Methods can be individually configured for the addition of
ambiguities to both nodes and relations. The method-configuration includes the amount
which can set as number or percentage and depending on the method also additional
method-specific parameters.

4.3.1 Distance method

The distance method selects the replacement based on the number of elements that are
closer to the original element. A distance of zero always returns the original element, a
distance of one the element closest to it, a distance of two the 2nd-closest element and so
on. The maximum distance is the length of the dataset minus one. This approach is able
to generate ambiguities because it can simulate one of the ambiguity source categories
(see section 3.3).

This method has to calculate the distance (see section 2.4) between the original element
and all other elements for every replacement and generating a large number of replacements
or using a large dataset can slow down the selection significantly.

For this method the distance can be passed as parameter.

config = {
’nodes’: {

’dist’: [{
’amount’: {’num’: 5},
’param’: {’dist’: 1}

}]
}

}

4.3.2 Closeness method

The closeness method selects the replacement based on the specific distance (see section
2.4) it has to the original element. It selects the element closest to the set distance, no
matter how far off this element is. The minimum value that can be configured is 0 (which
is equal to the input element) and the maximum is 2 (which is the element most different
from the input element). This approach is able to generate ambiguities because it can
simulate one of the ambiguity source categories (see section 3.3).

43

4. Generating ambiguities with "AmbiVec"

This method has to calculate the distance between the original element and all other
elements for every replacement and generating a large number of replacements or using a
large dataset can slow down the selection significantly.

For this method the closeness can be passed as parameter.

config = {
’nodes’: {

’closeness’: [{
’amount’: {’num’: 5},
’param’: {’closeness’: 0.2}

}]
}

}

4.3.3 Random method
The random method selects a replacement randomly from the source with no consideration
to any distances. The possible replacements include the original element and can result
in the same element being chosen multiple times as a replacement.

There are no additional configuration-parameters available for this method.

4.3.4 Negative method
The negative method inverts the vector and then selects the nearest element. This usually
produces seemingly random results and not what would be considered a logical opposite
of an element.

There are no additional configuration-parameters available for this method.

4.4 Manual checks
Manual checks can be performed at some points in the "AmbiVec" workflow to ensure
the processed data meets the quality requirements. Since quality requirements can vary
widely depending on their intended use, we will state what cases can cause quality to
be reduced but not define a universal breaking point. For small knowledge graphs the
checks can be done after generating the ambiguities, but for big graphs it is suggested to
perform the checks as early as possible to not waste processing time on low quality data.
Please note that it is not possible to set concrete values for all metrics to check against
as they are dependent on the used knowledge graph and dictionary.

In case the expected quality is not achieved users can choose to drop individual nodes or
relations from their data structures (see section 4.2)before generating the ambiguities to
prevent them from being used.

44

4.5. Metrics

4.4.1 Quality of the dictionary

For our proposed implementation we chose to use a pre-trained dictionary, but in case
of a custom dictionary the quality has to be ensured. Even though our approach is
able to mitigate this, a low quality dictionary will decrease the quality of the generated
ambiguities, especially of nodes. There are multiple ways to validate a dictionaries’ quality,
for example confusion matrices, analogy sets or other methods to measure perplexity.

4.4.2 Relation metrics

The relation metrics of the "relationVectors" data structure (see section 4.2.2) provide
insight into the quality of their respective relation. How many relations were lost due
to insufficient data? Were they relevant for the structure of the graph? Are any of the
distances for any resolved relation unusually high?

4.4.3 Node metrics

When assessing the "nodeVectors" data structure (see section 4.2.4) we have to check if
enough nodes could be resolved from the dictionary and why the other nodes were lost.
Are they words not contained in the dictionary or do they contain special characters?
For the resolved nodes the percentage of resolved words in multi-part names can show
low quality vectors. How far are the nodes distanced from their estimated positions?

4.4.4 Output triples

This is the final check, do the ambiguified triples fulfil the requirements for their intended
application? Are there any triples that used irrelevant relations or nodes or elements
that were of significantly lower quality than the other ones?

4.5 Metrics

Metrics are calculated values that can be used to understand the quality of certain
elements. Since they depend on the knowledge graph and the dictionary the concrete
values that cause low quality output can’t be predefined.

4.5.1 Knowledge graph size

Knowledge graph size (the number of triples in the graph) and composition (the number
of unique nodes and relation types) is the first important metric. Especially very small
graphs might not contain enough distinguished nodes or relation types to generate
ambiguities of adequate quality from them. If that is the case the distances of elements
to their mean or estimated position will be relatively high on average.

45

4. Generating ambiguities with "AmbiVec"

4.5.2 Percentage of resolved words
The next metric is the percentage of resolved words in multipart node names. Since
these nodes already need calculations instead of a dictionary lookup to arrive at their
vector, they are more sensitive to unresolvable words but will also remain usable if at
least a single resolvable word remains. One example of this could be a node with the
name ’chocolate cake’. For this example we’ll assume that ’chocolate’ could be resolved
but ’cake’ couldn’t (a reason for this could be a small or incomplete dictionary, or one in
a different language). This node would then use the vector of ’chocolate’, which is still
acceptable in most cases, but also not really correct since the influence of ’cake’ would be
missing. Low quality entries like this will still be partially corrected by the calculations
averaging across all occurrences, but if most linked node names of a relation consist of
multiple parts the relation vector can still degrade in quality.

4.5.3 Zero-vector relations
Zero-vector relations are a special case of lost relations and the result of a relation between
nodes with an identical vector. This usually happens in multipart node names where
the identifying word can’t be resolved and they will not be used when calculating the
relation vector for all relations of this type. If a relation mostly consists of these vectors
be aware that the relation vector might degrade in quality because of the low number of
remaining relations.

4.5.4 Distances
The given mean, minimum and maximum distances can help to estimate the quality of
an element. High distances can be a sign of low quality elements either caused by the
graph structure itself or by the calculations using low quality elements. For nodes this is
calculated as the distance of each individual estimated position to the average estimated
position and for relations it is calculated as the distance of each individual relation to
the average relation. Comparing to the average positions of all elements reduces the
influence of low quality elements or outliers.

4.5.5 Lost nodes and relations
The number of resolved nodes and relations in comparison to the number of lost nodes
and relations can give insights on how well the vectorisation worked. While usually most
relations should be resolvable this might not be the case for most nodes as they are
directly looked up in the dictionary.

4.5.6 Relation quality
The quality metric is calculated as the percentage of individual relations that were used
to calculate the mean and can be used to quickly identify potential low quality relations.

46

4.5. Metrics

4.5.7 Ambiguity before & after
An ambiguity score is calculated for the whole knowledge graph before and after the
ambiguous triples were calculated and added to the graph. While the value of the original
graph can be used to estimate its quality the increase in this score after generation can
be used to estimate the additional impact of ambiguities on the graph.

In this chapter we presented our "AmbiVec"-workflow for generating ambiguities. We
started by explaining the workflow including complex steps (see section 4.1), continued
with the data structures (see section 4.2), the methods and their configuration possibilities
(see section 4.3) and ended with the manual checks (see section 4.4) and the metrics they
use (see section 4.5). To be able to conclude our research question two and three we need
a reference implementation which we will be describing in the next chapter.

47

CHAPTER 5
Reference implementation of

"AmbiVec"

To test and evaluate our research we developed a reference-implementation of the
"AmbiVec"-workflow in python using jupyter as both are widely used in related re-
search. We first explain what design decisions we had to take as well as the reasoning
behind them (see section 5.1) and continue with the libraries we chose to use (see section
5.2). As our thesis is meant to be a basis for further research including modifications to
our workflow we also explain how the methods can be configured and extended (see section
5.3), what the main functions of our implementation are as well as their purposes and
where in the workflow-graphs they are positioned (see section 5.4). To ensure proficient
computation speed we also measure the performance of our implementation (see section
5.5) and provide future researchers with access to the full repository (see section 5.6).
The chapter concludes with the answer to our second research question.

5.1 Design decisions
The code features some areas which handle specific behaviour depending on the context.
They are listed here and the reasoning behind decisions is explained.

The main data structures are saved as pandas dataframes as these allow for easy access
and manipulation of the content as well as the use of integrated graphical functions for
the evaluation.

The vector length in the dictionary is not restricted by the code, it can handle vector
lengths of any size compatible with the gensim library. Please note that especially large
vectors may cause increased computation time and memory usage.

If the graph contains labeled nodes the English label will be used where present. Special
characters (’_’ and ’,’) will be ignored and handled like spaces. If multiple words are

49

5. Reference implementation of "AmbiVec"

present in the label the mean of the resolvable vectors is used. The ’getPreferredTitle(..)’
and ’toVector(..)’ function are responsible for handling these cases and can be adapted
as needed.

Instead of using the mean of resolvable vectors for every node other strategies like using
the estimated position or dropping them completely are possible, but since these options
either require more computation or have the potential to greatly reduce the quality we
decided against them.

5.2 Used libraries
While we tried to not use libraries unnecessarily we also had to rely on the functionality
of some of them. here we give a short overview of the most important used libraries and
what we use them for.

Pandas is a library made for data manipulation and analysis, which is also what we use
it for. All our dataframes are created and transformed using pandas.

Numpy is a library providing us with basic mathematical operations and various tools
for arrays and is also required by pandas.

Scipy, while quite extensive, is only used to calculate the p-values of the correlation.

Gensim is a library made for natural language processing. We use it to fetch the
dictionary and for all calculations regarding the vectors. This library enables the
vectorisation and most methods in a performant way.

Rdflib is a library made for working with RDF. It allows us to read and write ttl files
and to convert the triples contained in them to pandas dataframes.

Tqdm, Logging, and Tempfile are used only in a few instances or for minor functions
and self-explanatory. Tqdm allows us to show progress bars for calculations, logging is
used for easier debugging and tempfile enables us to save pandas dataframes instead of
re-calculating them on every startup.

5.3 Methods and configuration
The configuration provides an uniform interface to the methods. While some methods
allow for additional, method-specific configuration the amount is saved in the same way
for all methods. A combined example configuration for all methods in our implementation
is given here.

config = {
’nodes’: {

’random’: [{’amount’: {’perc’: 0.2}}],
’dist’: [{

50

5.4. Main functions

’amount’: {’num’: 5},
’param’: {’dist’: 1}

}],
’closeness’: [{

’amount’: {’num’: 5},
’param’: {’closeness’: 0.2}

}]
},
’relations’: {

’random’: [{’amount’: {’num’: 5}}],
’dist’: [{

’amount’: {’num’: 5},
’param’: {’dist’: 1}

}],
’negative’: [{’amount’: {’perc’: 0.2}}]

}
}

The shown default methods (see section 4.3) can also be extended with custom functions
by adding function callbacks to the "methods"-object. The original triple, the source from
which it will take the replacement and the configuration parameters will be automatically
forwarded to the function. It is also possible to use different functions for nodes and
relations, but the default methods work for both types.

methods = {
’nodes’:{

’random’: rand,
’dist’: dist,
’closeness’: closeness,
’negative’: negative

},
’relations’: {

’random’: rand,
’dist’: dist,
’closeness’: closeness,
’negative’: negative

}
}

5.4 Main functions
In case users want to extend the code and methods or want to repurpose parts of it we
give a brief overview of the most important functions, their parameters and outputs.

51

5. Reference implementation of "AmbiVec"

5.4.1 convertedGraph = convertGraph(g)
This function is shown in Figure 4.3 as "Convert graph" and converts the graph ’g’ created
by reading the ttl file using rdflib to a pandas dataframe ’convertedGraph’ containing
the identifiers of subject, predicate and object.

5.4.2 fullVectors = vectorifyGraph(convertedGraph)
This function is shown in Figure 4.3 as "Vectorise graph" and reads in the ’convertedGraph’
dataframe, calculates ’s_vec’, ’s_is_multipart’, ’s_multipart_%’ and the equivalent
columns for the object and resolves any multiword-nodes and labeled nodes in the process.
It then calculates ’r_vec’ and ’is_zero_vector_relation’ using the vectors and returns
the ’fullVectors’ dataframe containing all these columns.

5.4.3 relationVectors, lostRelations =
generateRelationVectors(fullVectors)

This function is shown in Figure 4.3 as "Calculate relation vectors" and calculates the
complete ’relationVectors’ and ’lostRelations’ dataframes using the ’fullVectors’ dataframe.

5.4.4 fullVectors = calculateNodeEstimates(fullVectors,
relationVectors)

This function is shown in Figure 4.3 as "Calculate node estimates" and adds the ’s_est’,
’s_est_dist’ and the equivalent columns for the object to the given ’fullVectors’ dataframe
using the ’relationVectors’ dataframe and returns the changed ’fullVectors’.

5.4.5 nodeVectors, lostNodes = generateNodeVectors(fullVectors)
This function is shown in Figure 4.3 as "Calculate node vectors" and calculates the
complete ’nodeVectors’ and ’lostNodes’ using the ’fullVectors’ dataframe. Please note
that the fields added by the ’calculateNodeEstimates(..)’ function are required for this.

5.4.6 ambiguity = calculateAmbiguity(nodeVectors, relationVectors)
This function is shown in Figure 4.1 as "Calculate ambiguity after" and "Calculate
ambiguity before" and calculates the ambiguity as percent of the maximum ambiguity in
the graph using the ’nodeVectors’ and ’relationVectors’ dataframes.

5.4.7 res = ambiguify(config, nodeVectors, relationVectors)
This functionis shown in Figure 4.1 as "Ambiguify according to method" and creates a
temporary dataframe called ’res’ according to the ’config’ object using the ’nodeVectors’
and ’relationVectors’ dataframes. It contains the columns ’method’ (the name of the
method used to generate this triple), ’config’ (the configuration used for the method

52

5.5. Performance

generating this triple), ’source_type’ (whether a node or the relation from the original
triple was changed), ’source’ (the original node or relation) and ’target’ (the ambiguified
node or relation).

5.5 Performance
While a reasonable performance is required by our research question for our workflow to
be usable in practice it was not a focus of our research. While our workflow performs well
enough for our purposes we also proposed multiple improvements that could substantially
speed up computation (see section 7.3.1). In this section we will measure how performant
the workflow is currently.

To measure the performance we first have to define what part of the workflow is measured
and what performance-relevant variables are varied. We decided to split the workflow
into two parts for this purpose. The first part encompasses the preparations of the data
structures (see section 4.2) for the generation while the second part will continue with
the generation. For each investigated combination of inputs we will run the measurement
three times to minimise the influence of factors we could not control (eg. background
processes) and the resulting runtimes will be recorded.

The measurements will be taken on a personal computer equipped with an Intel i9-9900K
processor running at 3.6GHz and 32GB of RAM. The PC is running Windows 10 in
the 64bit version and the workflow will only use a single core and none of the available
graphic cards. During measurement all other software was stopped if possible.

We use two dictionaries for our tests, the "glove-wiki-gigaword-100" dictionary and the
"glove-wiki-gigaword-300" dictionary1. We also created 6 graphs in different sizes using
the LIMIT-functionality of SPARQL (see section 6.3 for more information on this query)
as well as example configurations to generate a specific number of nodes and relations.
The parameters used are described for each measurement.

The query we used for the selection of the graphs:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX dbpedia: <http://dbpedia.org/resource/>
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dbr: <http://dbpedia.org/resource/>

construct {
?s ?p ?o .

}
WHERE {

1Website: https://github.com/RaRe-Technologies/gensim-data

53

https://github.com/RaRe-Technologies/gensim-data

5. Reference implementation of "AmbiVec"

?s (dbo:starring |
dbo:writer |
dbo:musicComposer |
dbo:director |
dbo:producer) ?o .

?s ?p ?o
}
LIMIT <varying per measurement>

For the preparation we will start with pre-loaded graphs and dictionaries, meaning the
measured computations start with the "convertGraph(g)"-function and ends with the
"generateNodeVectors(fullVectors)"-function. We will run two tests in this scope, in one
we will test the "glove-wiki-gigaword-100" and "glove-wiki-gigaword-300" dictionaries with
multiple graph sizes to investigate the influence different dictionaries have and in the
other we will only vary the graph size with the "glove-wiki-gigaword-100" dictionary to
investigate what influence the graph size has.

For the generation we will start after completing the preparation and measure the
starting with the "ambiguify(config, nodeVectors, relationVectors)"-function and ending
with the "populateAdditions(changes, g2)"-function. We will run one test to investigate
the influence the number of generated nodes and relations has on the runtime.

5.5.1 Influence of different dictionaries on preparation
To investigate the influence different dictionaries have we will compare the two dictionaries
on multiple differently sized graphs. The individual measurements will be shown in Table
5.1 and visualised in Figure 5.1.

numFullVectors numDimensionsOfDictionary timesMedian
2000 100 4.634643
2000 300 4.639974
5000 100 11.593553
5000 300 11.593975
7000 100 16.203833
7000 300 16.206599

Table 5.1: Runtime of preparation with different dictionaries

As expected we can observe a linear increase of the runtime in regard to the graph size
and almost no variation between individual runs. The impact the dictionary has on the
runtime is irrelevant in all investigated graphs.

54

5.5. Performance

Figure 5.1: Runtime per dictionary and graph size

5.5.2 Influence of different graph sizes on preparation
To investigate the influence graph size has we will compare multiple differently sized
graphs using the "glove-wiki-gigaword-100" dictionary. The individual measurements will
be shown in Table 5.2 and visualised in Figure 5.2. The datasets are characterised by
the number of full vectors (or triples) they contain.

numFullVectors numNodeVectors numRelationVectors timesMedian
2000 545 26 4.814626
3000 773 29 6.978133
4000 1008 32 9.268512
5000 1233 34 11.588389
7000 1663 38 16.129400
10000 2348 45 23.190552

Table 5.2: Runtime per graph size

55

5. Reference implementation of "AmbiVec"

Figure 5.2: Runtime per graph size

We can observe the same expected linear increase of the runtime as when inspecting the
influence of different dictionaries, and again almost no variation between individual runs.
We can also observe that neither the number of distinct nodes or distinct relations had
any noteworthy digressions in their relation to the total number of triples. The runtime
of even the largest graph easily fulfils the requirements for practical research.

5.5.3 Influence of the number of generated nodes and relations on
generation

To investigate the influence the number of generated nodes and relations have we will
compare multiple configurations on a graph with 2000 triples and the "glove-wiki-gigaword-
100" dictionary. The individual measurements will be shown in Table 5.3 and visualised
in Figure 5.3.

56

5.5. Performance

numGeneratedNodes numGeneratedRelations timesMedian
5 5 4.086421
10 10 7.533231
15 15 10.977045
20 20 14.290249
25 25 17.731888

Table 5.3: Runtime per generated nodes and relations

Figure 5.3: Runtime per generated nodes and relations

As expected we can observe a linear increase of the runtime with increasing number of
generated nodes and relations. While there is a bit of variation between individual runs
the median is not influenced by them. Even generating a total of 50 nodes and relations
fulfils our requirements for practical research.

57

5. Reference implementation of "AmbiVec"

5.6 Repository
Since we noticed many issues with the availability of data and code used in papers during
our literature research (see section 2.3), we decided to take care and prevent similar
issues for our thesis. Our code is made available together with all our used and created
data in a github repository2.

The complete graphs of user- and code-workflow (see section 4.1) are also provided in
the repository, but were too large to include in the thesis directly.

In this chapter we described our reference implementation written in python. We
explained design decisions and their reasoning (see section 5.1), used libraries (see section
5.2), how to extend the exiting methods (see section 5.3), the main functions the code
is comprised of (see section 5.4), the performance measurements (see section 5.5) and
finally share the repository (see section 5.6) containing all software artefacts that allow
us to conclude our second research question. As we are able to generate configurable
amounts and severities of ambiguities in almost arbitrary knowledge graphs (see section
7.2 for limitations) we can conclude that we were able to adequately answer the second
research question.

2Repository: https://github.com/Malspherus/AmbiVec

58

https://github.com/Malspherus/AmbiVec

CHAPTER 6
Evaluation

In this chapter we evaluate the output of our "AmbiVec"-workflow. For this purpose we
chose to do a questionnaire on Amazon Mechanical Turk (see section 2.5). The evaluation
is structured following the guidelines discussed in Pesquitas’ "A Framework to Conduct
and Report on Empirical User Studies in Semantic Web Contexts" [PILL18] starting
with the purpose (see section 6.1) and users (see section 6.2), going over the tasks (see
section 6.3), setup (see section 6.4) and procedure (see section 6.5) and ending with the
analysis (see section 6.6) and conclusion (see section 6.7). In the conclusion we are able
to answer our third research question.

6.1 Purpose
Pesquitas’ paper distinguishes between four non-exclusive categories in regards to the
purpose of empirical user studies, namely: "exploration" (search for information not clearly
defined from the start), "search" (data examination with focus on specific information),
"creation" (the data itself is the output that was required) and "management" (data
validation, assessment or modification of existing data). Our questionnaire best matches
with the "search" category of the paper as we specifically want to answer our third research
question but also includes some aspects of the "exploration" category as additional
interesting insights might be found.

Human-likeness
The first purpose of the evaluation is to find out whether our generated ambiguities
match human-like ambiguities closely enough for real-world applications as asked by
research question 3. Since we don’t have access to human-made ambiguities usable as a
baseline we are only able to investigate whether our approach is in principle capable of
generating ambiguities that are perceived to be human-like, but not compare them to
the baseline. For this we can formulate two hypotheses:

59

6. Evaluation

H0: we are unable to generate any ambiguities that are perceived to be human-like
H1: we are able to generate at least some ambiguities that are perceived to be human-like

Correlation
The second purpose is to ensure that the severity parameter of our configuration (see
section 5.3) (which is based on the calculated similarity between the original element
and the ambiguified element) is able to influence the perceived amount of ambiguity as
asked by our third research question. For this we can formulate two hypotheses:
H0: the configured severity has no influence on the perceived severity
H1: the configured severity has some influence on the perceived severity

Our third research question can be proficiently answered by those two hypotheses. During
this evaluation the findings of research question 1 ("What do human ambiguities look
like?") and research question 2 ("Can we artificially generate such ambiguities?") will also
be tested indirectly. Should our findings for one of those questions prove faulty it will be
reflected in the findings of the evaluation as well.

6.2 Users

Our users (usually called workers in the context of crowdsourcing) are not chosen directly
by us, but instead we can restrict the population of all available workers by introducing
restrictions. In our case we chose to only use one restriction, namely that workers should
be "masters" according to AMT. This is meant to filter out new and inexperienced workers
or workers known to produce untrustworthy results, but the exact rules are not disclosed
by Amazon.

Apart from our restriction the workers choose which questionnaires they want to answer
and can stop doing so at any moment. In return the requester is able to accept or reject
individual answers if they decide the workers did not answer them honestly or correctly.
In general the answers received from AMT come from a paid layman population without
restrictions of gender, age, background and other criteria if done with a high enough
number of workers. This would match exactly with our intended population.

For our tasks we choose to collect 5 answers from different workers per question and
paid 0.25$ per accepted answer. Collecting answers from significantly more users was not
possible due to budget restrictions. We dropped the "master"-restriction after we got 213
of the 300 answers, as we weren’t able to get any more responses, but even after that no
additional responses were submitted.

To summarise, we commissioned a total of 300 answers which could be given by a
minimum of 5 distinct workers if they answered all 60 questions. In actuality we
received 213 individual answers from 11 workers. Our workers were recruited by
self-selection over AMT and while we didn’t require specific expertise content-wise,
we did require the workers to have the "master" qualification.

60

6.3. Tasks

6.3 Tasks

Our tasks’ content was generated using the "AmbiVec" workflow (see section 4.1) but with
a slight modification. We made sure that the same triples were selected for ambiguification
(one set for all nodes and one set for all relations) to be able to compare the influence
different amounts of severity have. Usually every configured method would select a new
group of triples.

For the dataset we had the choice to either use existing datasets or to select a subset of
a big, publicly available knowledge graph using SPARQL. We inspected various datasets
with the goal to select one that is both roughly considered to be within general knowledge
and features a high number of close nodes and relations in the dataset to be able to
generate close ambiguities. Since most pre-made datasets couldn’t be considered to be
within general knowledge or didn’t feature enough similar relation types to be of value
for the evaluation we chose to select a subset of DBpedia. We investigated the areas of
music and associated people, food and ingredients, countries and entities within them
and movies and the people making them. We chose the movies subset as it featured the
most amount of similar relation types. The query selects all triples where the relation
matches one of the types dbo:starring, dbo:writer, dbo:musicComposer, dbo:director
or dbo:producer. The subset was limited to 5000 entries and is saved under the name
"KGmovies.ttl".

The query we used for the selection of the DBpedia subset was:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX dbpedia: <http://dbpedia.org/resource/>
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dbr: <http://dbpedia.org/resource/>

construct {
?s ?p ?o .

}
WHERE {

?s (dbo:starring |
dbo:writer |
dbo:musicComposer |
dbo:director |
dbo:producer) ?o .

?s ?p ?o
}
LIMIT 5000

61

6. Evaluation

As dictionary we chose to use the "glove-wiki-gigaword-100"1 provided via the gensim
API. This dictionary is built using the data provided by Wikipedia and is a good fit for
our dataset because our dataset was originally built from the same data.

For the evaluation we also chose to use the distance-method (see section 4.3.1) as it is
the most straight-forward method to generate the minimal amount of ambiguity. We
generated 5 triples for every distance between and including 0 and 4 for both nodes and
relations. We also generated 5 triples for nodes and relations using the random-method
(see section 4.3.3) with the intention of using them as a baseline.

After generating the ambiguities we transformed the data to the necessary format for
AMT and added the code required by the questionnaire. The resulting file was given the
name "amt.csv". Some examples of this output are shown in Table 6.1 where the original
subject, predicate and object are compared to the same triple with one generated subject,
predicate or object.

index orig. s orig. p orig o.
12 The Hills Have Eyes 2 director Martin Weisz
32 Way of the Warrior (video game) gameArtist Jason Rubin

index new s new p new o
12 The Hills Have Eyes (1977 film) director Martin Weisz
32 Way of the Warrior (video game) backgroundArtist Jason Rubin

Table 6.1: Examples of generated ambiguities

6.4 Setup
We chose to create our own questionnaire layout on AMT as none of the available AMT
task templates fit our requirements well enough. This questionnaire was refined in two
pilot studies with three and one selected workers respectively.

The questions were all requested via the default AMT interface, but as we don’t have
any influence or insight into the environment in which users answer our questions we
can’t know any details. The design of the instructions is shown in Figure 6.1 and one
example question is shown in Figure 6.2.

Workers had to answer four non-optional question and could answer one optional question
for every ambiguity. They first were shown the correct statement as well as the ambiguified
statement they should investigate. In the first question they had to quantify how close
the correct statement is to the ambiguified statement on a scale from 1 to 5 with 10
steps, which translates to the commonly used 5-star scale with half stars. In the second

1Website: https://github.com/RaRe-Technologies/gensim-data

62

https://github.com/RaRe-Technologies/gensim-data

6.4. Setup

question they had to state whether they think the shown ambiguity was caused by a
human mistake or artificially generated. For cases in which both correct statement and
ambiguified version were identical there also was the option to answer this question as
"correct answer". In the third question workers had to briefly explain why they made
this choice in text form. These answers were only used to identify problems with the
questionnaire and not further investigated once no such problems were found. In the last
mandatory question they had to build the correct code according to the shown numbers.
The optional question allowed workers to enter a textual comment, but no feedback was
given.

Figure 6.1: AMT instructions

63

6. Evaluation

Figure 6.2: AMT questionnaire

6.5 Procedure
As with the environment AMT already mostly defines the procedure. Workers log in
to the site, select which questionnaires they want to answer and then work their way
through the tasks.

In our task they are first instructed to read the instructions carefully. To ensure that
users actually do this and don’t just click on random answers we introduced a changing
code that has to be answered in addition to every question. While this can’t guarantee
the correctness of answers it will quickly discourage workers that don’t plan on answering
questions earnestly.

Workers are then shown two statements, one is the original data from the graph and the

64

6.6. Analysis

other one is the ambiguified version. The entities are linked to their DBpedia pages to
provide further information to the workers should they require it.

Workers are then queried about their views on how close the two statements are to each
other, whether the difference was caused by a human, artificially or (in case there is no
difference) if it was actually correct. They also are asked to describe the reason for their
decision on the source in a few words, but not about their decision regarding the rating.
In case something is unclear or not working correctly we also allowed them to enter a
comment.

6.6 Analysis
As stated before (see section 6.1) our main goals are to establish whether our ambiguities
are human-like and whether their perceived severity follows our configured severity.

To check if answers are actually perceived as human-like by workers we usually would
compare their answers to a human-generated baseline and analyse whether we are able to
achieve similar values. Since we don’t have access to any baseline, this question can’t be
answered definitely at this point in time. Instead we will investigate our hypothesis that
we are able to generate at least some ambiguities that are perceived to be human-like.
To check our hypothesis that a higher severity in the configuration also causes a higher
perceived severity for workers we can compute the correlation of these two values.

To ensure our data is not subject to any faults we also investigate some other values and
only use data for our analysis that came from accepted answers. We set three criteria to
decide if an answer was accepted or rejected.

• Code requirement The first requirement was for workers to have entered the
correct code. Four users with a combined total of 12 answers seemingly didn’t
read the instructions and only entered wrong codes, but some users only made
small mistakes in the code and would probably have provided a valid answer. Since
recognising these near-misses isn’t trivial we also filtered them out.

• Correctness requirement The second criteria was whether the answer was
obviously wrong. For this we only checked if a completely correct question was
answered with a rating of 5 and the source had the value "correct" selected, otherwise
the answer was rejected. All questions that were not completely correct in the first
place were not rejected due to this requirement.

• Worktime requirement The third criteria was an irregular worktime. To decide
if any given worktime was irregular we calculated the inter-quantile-ratio between
the 25%- and the 75%-quantile and permitted worktimes as long as they didn’t
exceed trice the ratio. This also causes the first answer of every user to be filtered
if they don’t read the instructions before accepting.

65

6. Evaluation

We also added two metrics to be able to investigate the distances between the vectors as
used in the configuration. These values were also calculated for elements generated using
other methods to compare them properly.

• Severity The first metric is called severity and is equivalent to the configured
distance of the distance-method (see section 4.3.1). The original element has a
distance of 0, the next closest element has a distance of 1 and so on.

• Closeness The second metric is called closeness and is almost equivalent to the
configured closeness as used by the closeness-method (see section 4.3.2), but with a
slight variation for the sake of data analysis. The original element has a closeness
of 1, all other elements have a closeness depending on the absolute cosine similarity
between their vector and the original elements vector. The inverse of the original
element would have the furthest possible distance with a value of 0 if it existed in
the knowledge graph.

In further analysis (starting with section 6.6.2) only the data filtered by the criteria as
described will be used.

6.6.1 Analysis of entire collected data
We will briefly investigate the results of the entire, unfiltered data in Table 6.2 and
Table 6.3, but since this data includes obviously wrong answers we will only do the
in-depth-analysis on the filtered data.

In the unfiltered data shown in Table 6.2 we can observe that some answers are perceived
as human-like, but in general answers are considered to be artificially generated at a
higher rate.

method mistakeSource count
dist artificial 89
dist correct 51
dist human 35

random artificial 28
random correct 2
random human 8

Table 6.2: Unfiltered count per method and source

In Table 6.3 we can observe the correlation between different variables. We can observe
the correlation of rating and the worktime to be slightly negative (meaning the higher
the rating the faster users were able to answer it). The correlation between rating and
severity is more negative (meaning that higher severities caused lower ratings) than in

66

6.6. Analysis

the case of the filtered data, but not as much as the filtered data without the randomly
generated elements. The correlation between rating and closeness is positive (meaning a
higher closeness tends to cause a higher rating) and close to the filtered data.

rating WorkTimeInSeconds severity closeness
rating 1.000000 -0.091471 -0.174340 0.450930

WorkTimeInSeconds -0.091471 1.000000 -0.029612 0.000701
severity -0.174340 -0.029612 1.000000 -0.501202
closeness 0.450930 0.000701 -0.501202 1.000000

Table 6.3: Overview of correlation of unfiltered data

6.6.2 General analysis

We will briefly investigate some general characteristics of the data to get a better
understanding of the kind of answers we received and to detect possible irregularities.

Figure 6.3 depicts the amount of answers per rating of individual workers (named after
their WorkerId on AMT) and the mean value. The total amount of answers per rating is
also shown in Table 6.4. There is a noticeably higher amount of answers with a rating of
1, 3 and 5 which seem to happen because workers don’t use the full scale of the rating
but instead tend to answer mostly in absolutes (ie. correct, incorrect or in the middle).
This behaviour was more extreme for some workers, especially those that also failed to
answer the codes correctly.

rating count
1.0 96
1.5 5
2.0 3
2.5 3
3.0 13
3.5 3
4.0 4
4.5 4
5.0 31

Table 6.4: Total answers per rating

In Figure 6.4 a scatterplot of the severities per rating is shown. The four combinations
of method (dist and random) and type (node and relation) are colour-coded and the
random method is additionally plotted as ’x’ instead of ’o’ like the distance method.

67

6. Evaluation

Figure 6.3: Answers per rating

The random relations can be easily identified in the scatterplot by their higher severity,
but the rating doesn’t reflect this as clearly, especially when compared with the nodes.
This may be caused by the relatively smaller number of possible relation types and their
relatively higher similarity when compared to the nodes. It simply is not possible to
select a relation with a severity as high as the random nodes that, as a consequence, were
also easily identified by most workers and received a low rating.

68

6.6. Analysis

Figure 6.4: Scatterplot of severity per rating

6.6.3 Human-likeness
Table 6.5 shows the number of answers per method and source. While we can’t compare
the numbers against a human baseline we can still compare it against the randomly
generated elements to some extent. When comparing the distribution we can observe
that there is only a marginal difference between the distance method (23.08% human-like,
76.92% artificial) and the random method (21.17% human-like, 78.26% artificial) before
investigating further.

69

6. Evaluation

method mistakeSource count
dist artificial 80
dist correct 34
dist human 24

random artificial 18
random correct 1
random human 5

Table 6.5: Count per method and source

Doing further analysis of the distributions per rating in Table 6.6 and Figure 6.5 we can
observe that users generally consider statements more human-like the higher the rating
was and also that a vast majority of the ’artificial’-answers was given to the lowest rating.

rating mistakeSource count
1.0 artificial 85
1.0 human 11
1.5 artificial 5
2.0 human 3
2.5 artificial 3
3.0 artificial 3
3.0 human 10
3.5 artificial 1
3.5 human 2
4.0 artificial 1
4.0 correct 2
4.0 human 1
4.5 correct 2
4.5 human 2
5.0 correct 31

Table 6.6: Count per rating and source

70

6.6. Analysis

Figure 6.5: Source distribution by rating

In Table 6.7 we investigate the the number of answers each source got, split by severity.
Here the distribution is more complex, even small severities tend to be considered artificial
whereas higher severities are more evenly distributed.

We can therefore conclude, that while the human-likeness of the distance-method didn’t
result in much better results than randomly generated elements, it was able to trick
23.08% of workers. This means we can reject our hypothesis H0 in favour of our alternative
hypothesis H1 saying that we are able to generate some ambiguities that are perceived
to be human-like.

71

6. Evaluation

severity mistakeSource count
0 correct 28
1 artificial 16
1 correct 3
1 human 12
2 artificial 22
2 human 5
3 artificial 20
3 correct 3
3 human 5
4 artificial 24
4 human 3
11 artificial 3
19 artificial 1
19 human 2
31 correct 1
31 human 1
36 artificial 3

1165 artificial 2
1165 human 1
2361 artificial 5
2808 artificial 2

Table 6.7: Count per severity and source

6.6.4 Correlation of configured and perceived severity
In Figure 6.6 we depict a boxplot of severity and rating. We can see that the lower
half of the ratings has a lot more spread than the higher half and features most of the
high severity answers. This means that workers agreed more on higher ratings with
low severity (as generated by the distance method) than they did on lower ratings with
high severity (as generated by the random method) or low severity (as generated by our
approach). This relation is further investigated using the correlation.

Table 6.8 shows the overview of correlation without any regard to method or whether
nodes or relations were viewed. The relevant p-values are rounded to three digits
after the comma and displayed in addition to the correlation. As intended there is a
negative correlation between rating and severity (meaning a lower severity will cause a
higher rating) and rating and worktime (meaning a lower worktime tends to result in
a higher rating) and a positive correlation between rating and closeness (meaning that
replacements closer to the correct element tend to get a higher rating). This means that
our configuration causes the rating to be influenced correctly by our approach, although
the presence of the randomly generated elements with high severity included in this

72

6.6. Analysis

Figure 6.6: Boxplot of severity per rating

correlation influences the values negatively. This effect is investigated more closely in the
next paragraphs.

rating WorkTimeInSeconds severity closeness
rating 1.000000 (-0.224183, 0.004) (-0.155466, 0.049) (0.471142, 0)

WorkTimeInSeconds -0.224183 1.000000 0.010070 -0.098724
severity -0.155466 0.010070 1.000000 -0.521641
closeness 0.471142 -0.098724 -0.521641 1.000000

Table 6.8: Correlation overview

In Table 6.9 we do an in-depth analysis of the correlation matrix and further split it by
method and element type. The relevant p-values are rounded to three digits after the
comma and displayed in addition to the correlation.

For nodes ambiguified with the distance-method this shows more significant correlation

73

6. Evaluation

of rating to closeness and severity, but a slight decrease of the correlation between rating
and worktime.

For relations ambiguified with the distance-method the correlation between rating and
worktime is almost the same, also for rating and closeness with only a minimal decrease.
The correlation between rating and severity is even more significant than before and is
actually the most significant correlation the rating has.

The nodes ambiguified with the random-method show a slightly increased negative
correlation between rating and worktime (meaning a higher worktime causes a lower
rating) but a low, positive correlation between rating and severity (meaning a higher
severity tended to get higher ratings) and the correlation between rating and closeness
now being negative (meaning a higher closeness tended to get a lower rating) but close
to zero.

The relations ambiguified with the random method show the highest negative correlation
between rating and worktime (meaning a higher worktime tended to result in a lower
rating), but also shows a low, positive correlation between rating and severity (meaning
a higher severity tended to get higher ratings). The correlation between rating and
closeness is slightly negative (meaning a lower closeness tended to get higher ratings).

Due to the low p-values calculated for the distance method we can conclude that the
hypothesis H0 can be rejected in favour of the alternative hypothesis H1, meaning that
we are indeed able to linearly influence the perceived severity with our configured severity.

74

6.6. Analysis

m
et

ho
d

ty
pe

ra
tin

g
W

or
kT

im
eI

nS
ec

on
ds

se
ve

rit
y

cl
os

en
es

s

di
st

no
de

ra
tin

g
1.

00
00

00
(-

0.
20

26
58

,0
.1

14
)

(-
0.

58
01

55
,0

)
(0

.7
88

69
1,

0)
W

or
kT

im
eI

nS
ec

on
ds

-0
.2

02
65

8
1.

00
00

00
0.

14
66

14
-0

.0
47

18
4

se
ve

rit
y

-0
.5

80
15

5
0.

14
66

14
1.

00
00

00
-0

.4
57

77
6

cl
os

en
es

s
0.

78
86

91
-0

.0
47

18
4

-0
.4

57
77

6
1.

00
00

00

re
la

tio
n

ra
tin

g
1.

00
00

00
(-

0.
22

17
88

,0
.0

54
)

(-
0.

72
89

48
,0

)
(0

.4
44

61
6,

0)
W

or
kT

im
eI

nS
ec

on
ds

-0
.2

21
78

8
1.

00
00

00
0.

12
39

02
-0

.2
52

23
3

se
ve

rit
y

-0
.7

28
94

8
0.

12
39

02
1.

00
00

00
-0

.3
30

34
6

cl
os

en
es

s
0.

44
46

16
-0

.2
52

23
3

-0
.3

30
34

6
1.

00
00

00

ra
nd

om

no
de

ra
tin

g
1.

00
00

00
(-

0.
38

37
38

,0
.2

74
)

(0
.1

42
61

0,
0.

69
3)

(-
0.

05
78

25
,0

.8
74

)
W

or
kT

im
eI

nS
ec

on
ds

-0
.3

83
73

8
1.

00
00

00
0.

00
84

33
-0

.0
28

10
7

se
ve

rit
y

0.
14

26
10

0.
00

84
33

1.
00

00
00

0.
81

59
37

cl
os

en
es

s
-0

.0
57

82
5

-0
.0

28
10

7
0.

81
59

37
1.

00
00

00

re
la

tio
n

ra
tin

g
1.

00
00

00
(-

0.
52

33
81

,0
.0

55
)

(0
.0

91
82

8,
0.

75
5)

(-
0.

15
51

85
,0

.5
96

)
W

or
kT

im
eI

nS
ec

on
ds

-0
.5

23
38

1
1.

00
00

00
0.

12
52

10
-0

.0
61

03
7

se
ve

rit
y

0.
09

18
28

0.
12

52
10

1.
00

00
00

-0
.9

30
26

8
cl

os
en

es
s

-0
.1

55
18

5
-0

.0
61

03
7

-0
.9

30
26

8
1.

00
00

00

Ta
bl

e
6.

9:
C

or
re

la
tio

n
an

d
re

le
va

nt
p-

va
lu

es
pe

r
m

et
ho

d
an

d
pe

r
ty

pe

75

6. Evaluation

6.7 Conclusion of the evaluation
The first purpose of our evaluation was to evaluate whether generated ambiguities match
human created ones close enough for real-world applications. While we weren’t able to
show how human-like the generated ambiguities are due to a lack of a suitable baseline
we were able to show that workers tend to consider higher rated ambiguities to be more
human-like. We were also able to show that this is not the case for low severities, where
we suspect that a mismatch of classes (eg. a movie being replaced with a person) could be
the cause for this. Even under these circumstances, 23.08% of workers thought artificial
ambiguities to be human made, allowing us to reject our hypothesis H0 in favour of our
alternative hypothesis H1.

The second purpose of the evaluation was to evaluate how well the configuration used to
generate ambiguities influences the perception of the workers when rating the ambiguities.
Regarding the impact of our configuration on the perceived severity we were able to
show that our configuration does indeed work well for small severities. Whether this also
holds for higher severities wasn’t clear from the small amount of randomly generated
ambiguities in this range, as ratings generally get more inconsistent the higher the severity
becomes. We suspect this may be caused by the lack of reference data in this area, causing
workers to only see a few high-severity-questions over the course of the questionnaire
with no option to go back once more experienced and reevaluate their earlier answers
after they completed them. The low p-values calculated for our correlation allow us to
reject our hypothesis H0 in favour of our alternative hypothesis H1.

Seeing that we were able to reject both hypotheses H0 in favour of the alternative
hypotheses H1 we can conclude that our third research question is as sufficiently answered
as possible.

76

CHAPTER 7
Conclusion and further work

This chapter concludes the outcome of all of our research questions and their results (see
section 7.1). We also expand on the limitations our work is experiencing (see section 7.2)
and give insight in further work that could improve our workflow in various areas (see
section 7.3).

7.1 Conclusion
In this section we summarise and conclude the outcome of our research structured by
our research questions.

• RQ1: Ambiguities and sources We defined what we consider to be an ambiguity
in the context of crowdsourcing in contrast to similar concepts, and based on that
knowledge we identified 8 sources of ambiguities, namely "Subjective ambiguity",
"Ambiguity of specialisation", "Inherited ambiguity", "No knowledge", "Most common
answers of other users", "Temporal changes", "Failed attempts to correct data"
and "Malicious behaviour". We also grouped the output of the 8 sources into 3
uniform characteristics that can be artificially generated, namely "Similar answers",
"Opposite answers", and "Different viewpoints".

• RQ2: Creation of ambiguities We developed the "AmbiVec" workflow and a
reference implementation in python that allow for robust and performant generation
of ambiguities in arbitrary knowledge graphs as well as the detection and prevention
of low quality early in the process. This generation is done by our methods,
which leverage vector embeddings to calculate the similarity between the elements
of the graph. These similarity values can then be used to rank all appropriate
candidates for specific ambiguities and select the mot fitting one according to the
given configuration.

77

7. Conclusion and further work

• RQ3: Evaluation of ambiguities We designed and ran an experimental ques-
tionnaire using crowdsourcing and analysed the results. Our evaluation shows
that while the configuration of severity in our approach translates to predictable
perception of severity, we can’t draw a definitive conclusion on the human-likeness
of generated ambiguities due to the lack of a baseline for comparison, but we were
able to show that, in principle, workers consider the generated ambiguities to be
human-made.

We can therefore conclude that our research question "How can one introduce a well
defined, structured and measurable amount of adequately human-like ambiguities as
defined by our research into a pre-existing knowledge graph?" was mostly achieved by
our "AmbiVec" approach, although a final conclusion on the human-likeness of generated
ambiguities, while promising, will require further research once suitable datasets become
available.

7.2 Limitations
Our work is subject to some limitations that were caused by external factors, the restricted
scope of a master thesis or monetary restrictions. While we unfortunately can’t alleviate
these limitations we will clarify where the boundary of our work lies in as much detail as
necessary.

7.2.1 Input data restrictions
To use our workflow a knowledge graph and a dictionary are required. Both of these
underlie some restrictions to ensure results that do not degrade in quality. For the
knowledge graph it is required that a high enough number of distinct node and relation
types is present. The exact number depends on the structure of the graph and the
required output quality. The dictionary has to be able to resolve enough node names to
prevent a degrading of output quality, but as before the exact number depends on the
structure of the knowledge graph. The detection of low quality output is described in
section 4.4.

7.2.2 Internal validity
Since we were unable to retrieve any datasets containing authentic, annotated human
mistakes (see section 2.3) we are not able to use them in our evaluation. This means that
while we can evaluate our approach intrinsically, we are unable to compare the results
with a human baseline. For intrinsic evaluation we investigated the correlation between
our configured and worker-perceived severity and the possibility of workers perceiving
generated ambiguities to be human-made, but we are not able to investigate the correlation
of the closeness and severity of human made mistakes with their worker-perception or
to compare the human-likeness of generated ambiguities to human-made ambiguities.
Therefore, we also are unable to answer our third research question completely.

78

7.3. Further work

7.2.3 External validity

Due to time and budgetary restrictions we were only able run a single questionnaire
with a scope of 300 individual answers set in a single domain. We therefore can’t yet
generalise that our approach will achieve comparable output quality in other domains,
with datasets containing other characteristics or for severities outside of the area we
investigated. As our planned scope of 300 answers would correspond to a minimum of 5
distinct workers answering the whole questionnaire a larger experiment, both in content
and number of participants would help to ensure the feasibility of our approach further.

7.2.4 Conclusion validity

A downside of using AMT for our questionnaire was the inability to control participants
surroundings while answering. While there were incentives for workers to follow the
instructions and answer truthfully in the form of the monetary compensation and
the rating we gave them, we can’t guarantee their intent or a proper context for the
questionnaire. We tried to alleviate this by using a content-dependent code and by
filtering out obviously inconsistent answers (see section ??).

7.3 Further work

During the creation of this thesis we found some areas that could profit from improvements
and new ideas. They are structured by the area they improve the most, but might also
be beneficial for other applications.

7.3.1 Improvements to runtime-performance

While performance was satisfying for our proof-of-concept other projects especially with
larger graphs might profit from additional improvements to reduce runtime requirements.

One such improvement would be to not compare every vector to ever other vector in the
graph when generating ambiguities. One way to implement this is the Annoy-library1

as it allows us to first find the approximate k-nearest-neighbours and only do exact
calculations on this neighbours. While this will cause a small decrease in quality, at some
point the reduction in computation time will outweight this downside.

Most calculations done can also be adapted to make better use of parallel computation
and for example run on a cluster instead of a single machine. While this would not reduce
the computational requirements, it could decrease the waiting time significantly due to
parallelisation. In addition to that all cores of a CPU as well as graphic cards could be
used which are also generally more optimised for this kind of calculations.

1Website: https://github.com/spotify/annoy

79

https://github.com/spotify/annoy

7. Conclusion and further work

7.3.2 Improvements to quality

For graphs where the quality of generated ambiguities starts to decrease some additional
adaptions might improve the output. While graphs that don’t have quality problems will
also benefit from those changes in most cases they will not require these improvements.

We currently only use one dictionary for vectorisation, but since a dictionary holds
the values and worldviews of its source multiple dictionaries that are used for different
runs of the calculations could simulate different individual persons or groups having
alternative views of the content of the knowledge graph. Since complete dictionaries
can be dynamically and easily created out of some of the big knowledge graphs even a
crowd of people could potentially be simulated to be able to generate datasets for crowd
decision algorithms. It would also be possible to mix or compare general dictionaries to
expert dictionaries for experiments.

If users mix general dictionaries and expert knowledge graphs or the other way around it
will will cause low quality results due to unresolvable elements and inaccurate vectors,
ideally the dictionary should be trained specifically for the knowledge graph and cover the
same area and words. While detection of this problem via the metrics (see section 4.5)
is already possible the caused decrease in quality can’t be corrected. By implementing
dynamic dictionary generation there should be improvement with this problem in those
situations.

Multi-word nodes currently use a adequate, but not perfect technique to resolve them
(see section 5.1). More sophisticated approaches can be implemented for higher quality
results. While easier solutions involve interchanging median and mean or using the
estimated positions more complex approaches like generating a dictionary also containing
those specific names should provide better results.

The negative-method (see section 4.3.4) currently does not provide what humans would
describe as a logical opposite. Word2vec-dictionaries in general can’t provide bidirectional
antonyms (eg. black and white, good and bad, ...) due to their structure. Implementing
inaccurate estimates might be satisfying for some graphs, but a robust, general solution
will require additional approaches like the use of WordNet [Fel98].

The current approach also ignores all structural properties of knowledge graphs except
for the label. While this was an intentional design decision for the sake of generalisability,
future development could also make use of these properties. Especially the class could be
used to improve the output quality by restricting replacement selection to elements with
similar classes or by using distances between classes. Some nodes might have similar
classes and be easily mistaken like ’danube’ and ’danube delta’. Both are bodies of water
and the delta is arguably just another part of the river, but some might be hard to swap
but still have close vectors like ’french’ and ’france’. Similar constraints could improve
vectors too.

80

7.3. Further work

7.3.3 Improvements to analysis
Improving the analysis functionality used to interpret dataframes during the process and
the generated outputs afterwards could yield more insights to increase quality, prevent
unnecessary computation and understand the generated data better.

More research into human mistakes and sources using a real dataset accompanied by a
gold standard to compare against could lead to improved or novel generation methods
that can be included into the workflow. Using datasets as reference the configuration can
more closely follow human distributions, maybe even individual sources of ambiguity if
the datasets provide these insights.

A quality metric like already used for the relations could be implemented for the nodes
too. In addition to the percentage of usable elements it could also include the distance of
the individual element to its types mean. The overall ambiguity of the graph could use
this percentage to provide more accurate estimates.

If the calculated vectors are of low quality the output quality will also degrade. In
some cases it might be preferable to only use vectors with a high enough quality and in
exchange ignore parts of the graph for this goal. This would also cause the output quality
to be more predictable than with the currently used random selection. The quality of
the vectors can already be estimated by their abbreviation from its types mean, but the
configuration and selection processes would need to be added.

The current distance to the mean are only available as minimum, maximum and average
off all elements of a type, but this data could also be presented as a boxplot. The benefit
would not only lie in presentation but also in the added outlier detection.

The node- & relation-vectors could also be compared visually in a 2D-graph with their
mean, min and max deviated elements and the estimated position of the element. This
would provide quick insights for single elements and could enable manual selection
approaches instead of random or quality-based selection.

Additional evaluation approaches for complete graphs might provide interesting insights.
For this purpose one or more full graphs could be modified and compared against
their original versions using multiple detection or correction algorithms, performance in
question answering or other related systems. The already implemented measurement of
the graph ambiguity could be compared to the amount of detected ambiguities.

81

List of Figures

2.1 Knowledge Graph Example . 9
2.2 A blueprint of the HC process, adapted from Mao et al. (2017). 15

4.1 User Workflow Overview . 26
4.2 Code Workflow Overview . 28
4.3 Step: Vectorise KG . 30
4.4 Step: Ambiguify according to method . 32

5.1 Runtime per dictionary and graph size . 55
5.2 Runtime per graph size . 56
5.3 Runtime per generated nodes and relations 57

6.1 AMT instructions . 63
6.2 AMT questionnaire . 64
6.3 Answers per rating . 68
6.4 Scatterplot of severity per rating . 69
6.5 Source distribution by rating . 71
6.6 Boxplot of severity per rating . 73

83

List of Tables

4.1 fullVectors data structure . 33
4.2 fullVectors example . 34
4.3 relationVectors data structure . 35
4.4 relationVectors example . 36
4.5 lostRelations data structure . 37
4.6 lostRelations example . 37
4.7 nodeVectors data structure . 38
4.8 nodeVectors example . 39
4.9 lostNodes data structure . 40
4.10 lostNodes example . 40
4.11 changes data structure . 41
4.12 changes example . 42

5.1 Runtime of preparation with different dictionaries 54
5.2 Runtime per graph size . 55
5.3 Runtime per generated nodes and relations 57

6.1 Examples of generated ambiguities . 62
6.2 Unfiltered count per method and source 66
6.3 Overview of correlation of unfiltered data 67
6.4 Total answers per rating . 67
6.5 Count per method and source . 70
6.6 Count per rating and source . 70
6.7 Count per severity and source . 72
6.8 Correlation overview . 73
6.9 Correlation and relevant p-values per method and per type 75

85

Bibliography

[10.17] K-CAP 2017: Proceedings of the Knowledge Capture Conference, New York,
NY, USA, 2017. Association for Computing Machinery.

[10.18] CSCW ’18: Companion of the 2018 ACM Conference on Computer Sup-
ported Cooperative Work and Social Computing, New York, NY, USA, 2018.
Association for Computing Machinery.

[AD17] BENJAMIN TIMMERMANS LORA AROYO ANCA DUMITRACHE,
OANA INEL. Crowdsourcing ambiguity-aware ground truth. Collective
Intelligence 2017, 2017.

[Alt98] Gerry T.M Altmann. Ambiguity in sentence processing. Journal: Trends
in Cognitive Sciences, 2(4):146 – 152, 1998.

[CBD20] Alessandro Checco, Jo Bates, and Gianluca Demartini. Adversarial attacks
on crowdsourcing quality control. J. Artif. Intell. Res., 67:375–408, 2020.

[CFG+18] Silvana Castano, Alfio Ferrara, Enrico Gallinucci, Matteo Golfarelli, Stefano
Montanelli, Lorenzo Mosca, Stefano Rizzi, and Cristian Vaccari. Sabine: A
multi-purpose dataset of semantically-annotated social content. In Denny
Vrandečić, Kalina Bontcheva, Mari Carmen Suárez-Figueroa, Valentina
Presutti, Irene Celino, Marta Sabou, Lucie-Aimée Kaffee, and Elena Sim-
perl, editors, The Semantic Web – ISWC 2018, pages 70–85, Cham, 2018.
Springer International Publishing.

[CHI19] CHI ’19: Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems, New York, NY, USA, 2019. Association for Computing
Machinery.

[CK18] Yiling Chen and Gabriella Kazai, editors. Proceedings of the Sixth AAAI
Conference on Human Computation and Crowdsourcing, HCOMP 2018,
Zürich, Switzerland, July 5-8, 2018. AAAI Press, 2018.

[d’A09] Mathieu d’Aquin. Formally measuring agreement and disagreement in
ontologies. In Yolanda Gil and Natasha Fridman Noy, editors, Proceedings
of the 5th International Conference on Knowledge Capture (K-CAP 2009),

87

September 1-4, 2009, Redondo Beach, California, USA, pages 145–152.
ACM, 2009.

[DAW18] Anca Dumitrache, Lora Aroyo, and Chris Welty. Capturing ambiguity in
crowdsourcing frame disambiguation. in publication at the sixth AAAI
Conference on Human Computation and Crowdsourcing (HCOMP) 2018,
2018.

[Dem19] Gianluca Demartini. Implicit bias in crowdsourced knowledge graphs. In
Companion Proceedings of The 2019 World Wide Web Conference, WWW
’19, page 624–630, New York, NY, USA, 2019. Association for Computing
Machinery.

[DHRB+11] Andreas Dengel, J. Hees, Thomas Roth-Berghofer, R. Biedert, and Benjamin
Adrian. Betterrelations: Detailed evaluation of a game to rate linked data
triples. In: Bach J., Edelkamp S. (eds) KI 2011: Advances in Artificial
Intelligence. KI 2011. Lecture Notes in Computer Science, vol 7006. Springer,
Berlin, Heidelberg, 10 2011.

[DMA+18] Markus De Jong, Panagiotis Mavridis, Lora Aroyo, Alessandro Bozzon,
Jesse De Vos, Johan Oomen, Antoaneta Dimitrova, and Alec Badenoch.
Capturebias: Supporting media scholars with ambiguity-aware bias repre-
sentation for news videos. In Lora Aroyo and Anca Dumitrache , editors,
Joint Proceedings SAD 2018 and CrowdBias 2018, CEUR Workshop Pro-
ceedings, pages 32–40. CEUR-WS, 2018.

[EW16] Lisa Ehrlinger and Wolfram Wöß. Towards a definition of knowledge
graphs. Conference: Joint Proceedings of the Posters and Demos Track of
12th International Conference on Semantic Systems - SEMANTiCS2016
and 1st International Workshop on Semantic Change Evolving Semantics
(SuCCESS16)At: Leipzig, GermanyVolume: 1695, 09 2016.

[FBMR17] Michael Färber, Frederic Bartscherer, Carsten Menne, and Achim Rettinger.
Linked data quality of dbpedia, freebase, opencyc, wikidata, and yago.
Semantic Web, 9:1–53, 03 2017.

[Fel98] Christiane Fellbaum, editor. WordNet: An Electronic Lexical Database.
Language, Speech, and Communication. MIT Press, Cambridge, MA, 1998.

[FPCM20] Joseph Fisher, Dave Palfrey, Christos Christodoulopoulos, and Arpit Mittal.
Measuring social bias in knowledge graph embeddings. Amazon @ AKBC
Workshop on Bias in Automatic Knowledge Graph Construction 2020, 2020.

[GAS16] M. Galkin, S. Auer, and S. Scerri. Enterprise knowledge graphs: A back-
bone of linked enterprise data. pages 497–502. 2016 IEEE/WIC/ACM
International Conference on Web Intelligence (WI), 2016.

88

[HBC+20] Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d’Amato, Gerard
de Melo, Claudio Gutierrez, José Emilio Labra Gayo, Sabrina Kirrane,
Sebastian Neumaier, Axel Polleres, Roberto Navigli, Axel-Cyrille Ngonga
Ngomo, Sabbir M. Rashid, Anisa Rula, Lukas Schmelzeisen, Juan Sequeda,
Steffen Staab, and Antoine Zimmermann. Knowledge graphs. ACM-CSUR-
crc20210122 - Accepted Manuscript, 2020.

[HFJ+19] Pascal Hitzler, Miriam Fernández, Krzysztof Janowicz, Amrapali Zaveri,
Alasdair J.G. Gray, Vanessa Lopez, Armin Haller, and Karl Hammar,
editors. The Semantic Web. Springer International Publishing, 2019.

[HMPR04] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. Design
science in information systems research. MIS Q., 28(1):75–105, March 2004.

[IHvH+17] Al Koudous Idrissou, Rinke Hoekstra, Frank van Harmelen, Ali Khalili, and
Peter van den Besselaar. Is my:sameas the same as your:sameas? lenticular
lenses for context-specific identity. In Proceedings of the Knowledge Capture
Conference, K-CAP 2017, New York, NY, USA, 2017. Association for
Computing Machinery.

[JPJJ19] Manuela Jeyaraj, Srinath Perera, Malith Jayasinghe, and Nadheesh Jihan.
Probabilistic error detection model for knowledge graph refinement. Con-
ference: 20th International Conference on Computational Linguistics and
Intelligent Text Processing (CiCLing 2019), 04 2019.

[Kle01] Michel Klein. Combining and relating ontologies: An analysis of problems
and solutions. Ontologies and Information Sharing, 47, 05 2001.

[LA18] Matthew Lease and Omar Alonso. Crowdsourcing and Human Computation:
Introduction, pages 499–510. Springer New York, New York, NY, 2018.

[LC18] Julien Leblay and Melisachew Wudage Chekol. Deriving validity time in
knowledge graph. In Companion Proceedings of the The Web Conference
2018, WWW ’18, page 1771–1776, Republic and Canton of Geneva, CHE,
2018. International World Wide Web Conferences Steering Committee.

[MMJ+14] Jonathan Mortensen, Evan Minty, Michael Januszyk, Timothy Sweeney,
Alan Rector, Natalya Noy, and Mark Musen. Using the wisdom of the
crowds to find critical errors in biomedical ontologies: a study of snomed
ct. Journal of the American Medical Informatics Association : JAMIA, 22,
10 2014.

[MV10] Thomas Markotschi and Johanna Völker. Guesswhat?! human intelligence
for mining linked data. In Valentina Presutti, editor, KIELD 2010 :
Proceedings of the 1st Workshop on Knowledge Injection into and Extraction
from Linked Data; Lisbon, Portugal, October 15, 2010, volume 631, pages
28–39, Aachen, 2010. RWTH.

89

[NFG+20] Eirini Ntoutsi, Pavlos Fafalios, Ujwal Gadiraju, Vasileios Iosifidis, Wolfgang
Nejdl, Maria-Esther Vidal, Salvatore Ruggieri, Franco Turini, Symeon
Papadopoulos, Emmanouil Krasanakis, Ioannis Kompatsiaris, Katharina
Kinder-Kurlanda, Claudia Wagner, Fariba Karimi, Miriam Fernandez,
Harith Alani, Bettina Berendt, Tina Kruegel, Christian Heinze, Klaus
Broelemann, Gjergji Kasneci, Thanassis Tiropanis, and Steffen Staab.
Bias in data-driven artificial intelligence systems—an introductory survey.
WIREs Data Mining and Knowledge Discovery, 10(3):e1356, 2020.

[OdV18] Agnieszka Onuchowska and Gert-Jan de Vreede. Disruption and deception
in crowdsourcing: Towards a crowdsourcing risk framework. Conference:
Hawaii International Conference on System Sciences, 01 2018.

[Pau17] Heiko Paulheim. Knowledge graph refinement: A survey of approaches and
evaluation methods. Semantic Web, 8(3):489–508, 2017.

[PHg14] Barbara Plank, Dirk Hovy, and Anders gaard. Linguistically debatable or
just plain wrong? 52nd Annual Meeting of the Association for Computa-
tional Linguistics, ACL 2014 - Proceedings of the Conference, 2:507–511,
06 2014.

[PILL18] Catia Pesquita, Valentina Ivanova, Steffen Lohmann, and Patrick Lambrix.
A framework to conduct and report on empirical user studies in semantic
web contexts. In Catherine Faron Zucker, Chiara Ghidini, Amedeo Napoli,
and Yannick Toussaint, editors, Knowledge Engineering and Knowledge
Management, pages 567–583, Cham, 2018. Springer International Publish-
ing.

[PM04] Robert Porzel and Rainer Malaka. A task-based approach for ontology
evaluation. ECAI Workshop on Ontology Learning and Population, Valencia,
Spain, 01 2004.

[PSM14] Jeffrey Pennington, Richard Socher, and Christopher Manning. GloVe:
Global vectors for word representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Processing (EMNLP), pages
1532–1543, Doha, Qatar, October 2014. Association for Computational
Linguistics.

[Ris18] Petar Ristoski. Exploiting semantic web knowledge graphs in data mining.
Mannheim, 2018. Published in Studies on the Semantic Web 2019.

[RRN+19] Petar Ristoski, Jessica Rosati, Tommaso Di Noia, Renato De Leone, and
Heiko Paulheim. Rdf2vec: Rdf graph embeddings and their applications.
Semantic Web, 10(4):721–752, 2019.

[SHHQ16] V. Sharmanska, D. Hernández-Lobato, J. M. Hernández-Lobato, and
N. Quadrianto. Ambiguity helps: Classification with disagreements in

90

crowdsourced annotations. pages 2194–2202. 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016.

[SLA+13] Elena Simperl, Jens Lehmann, Maribel Acosta, Amrapali Zaveri, Dimitris
Kontokostas, and Sören Auer. Crowdsourcing linked data quality assessment.
In The Semantic Web ? ISWC 2013, pages 260–276. International Semantic
Web Conference, Springer, Oktober 2013.

[SSSF16] Carl Salk, Tobias Sturn, Linda See, and Steffen Fritz. Limitations of
majority agreement in crowdsourced image interpretation. Transactions in
GIS, 21:n/a–n/a, 03 2016.

[VBSF+18a] Denny Vrandečić, Kalina Bontcheva, Mari Carmen Suárez-Figueroa,
Valentina Presutti, Irene Celino, Marta Sabou, Lucie-Aimée Kaffee, and
Elena Simperl, editors. The Semantic Web – ISWC 2018 - Part I. Springer
International Publishing, 2018.

[VBSF+18b] Denny Vrandečić, Kalina Bontcheva, Mari Carmen Suárez-Figueroa,
Valentina Presutti, Irene Celino, Marta Sabou, Lucie-Aimée Kaffee, and
Elena Simperl, editors. The Semantic Web – ISWC 2018 - Part II. Springer
International Publishing, 2018.

[WDK17] Michael White, Manjuan Duan, and David L. King. A simple method
for clarifying sentences with coordination ambiguities. In Proceedings of
the 1st Workshop on Explainable Computational Intelligence (XCI 2017),
Dundee, United Kingdom, September 2017. Association for Computational
Linguistics.

[Zel18] T. Zeller. Detecting ambiguity in statutory texts. Universität Stuttgart,
Abschlussarbeit (Bachelor), 2018.

[ZGEBI16] Maayan Zhitomirsky-Geffet, Eden Erez, and Judit Bar-Ilan. Toward mul-
tiviewpoint ontology construction by collaboration of non-experts and
crowdsourcing: The case of the effect of diet on health. Journal of the
Association for Information Science and Technology, 68, 04 2016.

[ZGNT18] Catherine Faron Zucker, Chiara Ghidini, Amedeo Napoli, and Yannick
Toussaint, editors. Knowledge Engineering and Knowledge Management.
Springer International Publishing, 2018.

[ZKS+13] Amrapali Zaveri, Dimitris Kontokostas, Mohamed A. Sherif, Lorenz Büh-
mann, Mohamed Morsey, Sören Auer, and Jens Lehmann. User-driven
quality evaluation of dbpedia. In Proceedings of the 9th International Con-
ference on Semantic Systems, I-SEMANTICS ’13, page 97–104, New York,
NY, USA, 2013. Association for Computing Machinery.

91

[ZLL+17] Yudian Zheng, Guoliang Li, Yuanbing Li, Caihua Shan, and Reynold Cheng.
Truth inference in crowdsourcing: Is the problem solved? Proc. VLDB
Endow., 10(5):541–552, January 2017.

[ZRM+15] Amrapali Zaveri, Anisa Rula, Andrea Maurino, Ricardo Pietrobon, Jens
Lehmann, and Sören Auer. Quality assessment for linked data: A survey.
Semantic Web, 7:63–93, 03 2015.

92

	Abstract
	Contents
	Introduction
	Problem definition
	Research question
	Methodology and approach
	Main outputs

	Background and related work
	Literature research
	Knowledge graphs
	Availability of datasets containing human-made mistakes
	Embedding technologies as basis for semantic relation generation
	Crowdsourcing and human computation

	Ambiguities
	Ambiguity categories
	Ambiguity sources
	Ambiguity source categories

	Generating ambiguities with "AmbiVec"
	Workflow
	Data structures
	Methods and their configuration
	Manual checks
	Metrics

	Reference implementation of "AmbiVec"
	Design decisions
	Used libraries
	Methods and configuration
	Main functions
	Performance
	Repository

	Evaluation
	Purpose
	Users
	Tasks
	Setup
	Procedure
	Analysis
	Conclusion of the evaluation

	Conclusion and further work
	Conclusion
	Limitations
	Further work

	List of Figures
	List of Tables
	Bibliography

