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Kurzfassung

Die vorliegende Dissertation behandelt drei Themen aus der Beweistheorie nichtklassi-
scher Logiken.

Zuerst untersuchen wir Logiken die sich mittels analytischer Hypersequenzenkalküle
darstellen lassen. Wir beschreiben eine Projektion schnittfreier Hypersequenzbeweise
auf den zugrundeliegenden Sequenzenkalkül, aus der sich verschiedene Verschärfun-
gen des Deduktionstheorems ableiten lassen.

Im zweiten Teil betrachten wir einen spieltheoretisch motivierten Sequenzenkalkül, in
dem die Verwendung bestimmter Regeln mit Kosten verbunden ist. Die damit verbun-
dene erweiterte Ausdrucksstärke lässt sich durch eine Beschriftung der Kalkülregeln
charakterisieren. Über den so erhaltenen beschrifteten Sequenzenkalkül beweisen wir
einige syntaktische Ergebnisse.

Der abschließende dritte Teil behandelt eine deontische Modallogik, die wir mittels syn-
taktischer Übersetzungen ihrer Beweise untersuchen. Insbesondere zeigen wir, dass sich
ein wesentliches Fragment der Logik auf die ihr unterliegende klassische Modallogik
zurückführen lässt.
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Abstract

The present thesis deals with three different topics in the proof theory of nonclassical
logics.

We first investigate logics which are presented as analytic hypersequent calculi. Using a
projection of cutfree hypersequent proofs onto proofs in the sequent calculus, we obtain
various strengthenings of the deduction theorem.

In the second part we develop a sequent calculus with a game-theoretic underpinning.
By stipulating that the use of certain rules triggers costs, we gain expressivity which in
turn can be captured by a suitable labelling of the proof rules. We show some syntactic
results about the thus obtained labelled sequent calculus.

The concluding third part employs the method of provability-preserving syntactic trans-
lations to study a deontic modal logic which extends classical modal logic. Our main
result is that a substantial fragment of the deontic logic can be reduced to the underlying
classical modal logic.

xiii





Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Preliminaries 5
1.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Consequence and Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Axiomatic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Natural Deduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Logics as Sets of Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6 The Sequent Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.7 FL⊥

e and Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.8 Linear Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.9 The Hypersequent Calculus . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.10 What Has Been Left Out in These Preliminaries . . . . . . . . . . . . . . 23

2 Bounding Axiomatic Systems via Hypersequents 25
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Bounded Axiomatic Extensions . . . . . . . . . . . . . . . . . . . . . . . 29
2.3 Analytic Structural Hypersequent Rules and Disjunction Forms . . . . 33
2.4 Obtaining Multiset-Boundedness . . . . . . . . . . . . . . . . . . . . . . 37
2.5 How to Compute Disjunction Forms . . . . . . . . . . . . . . . . . . . . 41
2.6 Putting Everything Together . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.7 More on Boundedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.8 An Application in Modal Logic . . . . . . . . . . . . . . . . . . . . . . . 60
2.9 Open Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3 Provability Games and SELL 67
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.2 Two Perspectives on Proof Search . . . . . . . . . . . . . . . . . . . . . . 68
3.3 Subexponential Linear Logic . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.4 A Formal Task Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

xv



3.5 LaSELL(R+) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.6 Proof Theory of LaSELL(R+) . . . . . . . . . . . . . . . . . . . . . . . . 84
3.7 Open Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4 A Reduction in Violation Logic 99
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.3 The ⊥-Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.4 A Reduction Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.5 Applications of the Reduction Theorem . . . . . . . . . . . . . . . . . . 115
4.6 More on the Interpretation of ⊗-Chains . . . . . . . . . . . . . . . . . . 119
4.7 Open Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Bibliography 125



Introduction

This thesis combines three different streams of research which have been set forth in the
following publications:

1. Agata Ciabattoni, Timo Lang, and Revantha Ramanayake. Bounded sequent cal-
culi for non-classical logics via hypersequents. In International Conference on Auto-
mated Reasoning with Analytic Tableaux and Related Methods, pages 94–110. Springer,
2019

2. Timo Lang, Carlos Olarte, Elaine Pimentel, and Christian G Fermüller. A game
model for proofs with costs. In International Conference on Automated Reasoning with
Analytic Tableaux and Related Methods, pages 241–258. Springer, 2019

3. Timo Lang. A reduction in violation logic. In Fenrong Liu, Alessandra Marra, Paul
Portner, and Frederik Van De Putte, editors, Deontic Logic and Normative Systems:
15th International Conference (DEON2020/2021, Munich). College Publications, 2020

Although their content is quite different, they share an object of study—certain nonclas-
sical propositional logics—and the method by which it is studied. This is the method
of structural proof theory.

Let me say a few words about the origins of these works. When I started my PhD at
TU Wien in 2016, one of the projects my supervisor Chris Fermüller and I had in our
mind was the development of some sort of a systematic underpinning of substructural
logics with game-theoretic ideas. After some initial unpublished work on this, I got
the impression that a ‘perfect match’ between game-theoretic and semantic ideas and
the existing calculi was not achievable: Either one would have to compromise on the
perspicuousness of the semantics, or one would have to change the logics. The first
option did not interest me, and I found out that the second one had already been worked
out by others, most notably by Japaridze in his computability logic. Whether or not this
initial assessment of mine was correct, the project retreated into the background. Yet
it never completely disappeared, and when in 2018 Elaine Pimentel and Carlos Olarte
spent a sabbatical at TU Wien, a lot of ideas and questions about games resurfaced in the
course of our discussions on subexponential linear logic. Out of these sessions grew the
idea of having a labelled calculus for subexponential linear logic, where the labels should
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denote the costs of a proof as measured by the use of the dereliction rule. The task for
Chris and me in this was to provide an adequate game-theoretic formalization of costs
in proofs. Our findings where reported in the above TABLEAUX paper. Afterwards
I started working on an extended journal version of the material, but had to suspend
the writing at some point because the completion of this dissertation became more
important. Hopefully the journal version will see the light of day somewhen in 2021.

From 2018 on I started to work in parallel with Agata Ciabattoni and Revantha Ra-
manayake on the proof theory of hypersequents. Both Agata’s and Revantha’s work is
characterized by the aim of developing uniform methods in proof theory, that is, methods
which address not single problems in isolation but rather large classes of logics or calculi
in one swoop. This aim is set against the trend of the last decades to introduce more and
more specialized logics and proof systems, thus creating a vast and cluttered landscape
of proof-theoretic methods. One of the frameworks where such general methods have
been obtained is the hypersequent calculus. My idea was to investigate which kind of
cuts have to be introduced in order to translate a cutfree hypersequent proof back to
the sequent calculus. This idea was initially fleshed out for Gödel logic, but it was clear
from the start that there is a more general procedure behind it. We eventually managed
to generalize our results to any extension of the hypersequent calculus by so-called
structural analytic hypersequent rules. A journal version of this work (which is closer to
the presentation of the material in this thesis) has been submitted by the time of writing.

In the winter term of 2019 Guido Governatori came to Vienna and gave an introductory
course to deontic logic that I occasionally attended. I did not have much exposure to de-
ontic logic before then, although I was aware that some of my colleagues where working
in that area. The course had a strong emphasis on Governatori’s own work, and one of
the systems discussed involved a kind of ‘violation logic’ intended to model reasoning
in contrary-to-duty scenarios. While being rather oblivious to the philosophical content
of this logic and deontic logic in general (a situation which has changed since then), I
thought I had a useful proof-theoretic remark to make. Out of this remark, which is
about a translation of violation logic into a weaker underlying logic, grew a paper which
was then submitted to the DEON conference in deontic logic.

On the differences to publicated work. Concerning the relation between the work as
presented here on the one hand and published work on the other hand, the following
can be said. Chapter 4 is essentially the same as [36]. The only notable change is that
a semantic proof (Theorem 4.29) has been replaced by a syntactic proof. Chapter 2 is
very close to a journal submission which is not yet published. Its main difference to the
preceeding [18] is a broader perspective in which the results are presented and inter-
preted. The technical content however remained the same. Finally, Chapter 3 is quite
different from [37]: The game-theoretic semantics, which were still somewhat informal
in [37], have been completely formalized, therefore also requiring a new completeness
proof (Theorem 3.7). Furthermore, there is a completely new cut elimination theorem
(Theorem 3.19).
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How this thesis is structured. Chapter 1 of this thesis attempts to wrap up material
which is common to all of the subsequent chapters.

The chapters

Chapter 2 Bounding Axiomatic Systems via Hypersequents

Chapter 3 Games and SELL

Chapter 4 A Reduction in Violation Logic

constitute the main body of the thesis. Each chapter comes with its own introduction
and is concluded by a section on open questions, which is written in an informal style.
The chapters can be read independently. They are ordered (I believe) by decreasing
difficulty of content.
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CHAPTER 1
Preliminaries

This chapter sums up some of the background material which is required in all of the
main chapters of the thesis. It is therefore essentially an introduction to the proof theory
of various propositional logics with an emphasis on the three types of calculi which we
shall encounter repeatedly later on: Hilbert-style systems, the sequent calculus, and the
hypersequent calculus.

There is no original research in this chapter.

1.1 Syntax
This thesis deals with propositional logics. The syntax of these logics can be determined
by laying down a set L of logical connectives, each of which comes with an associated
non-negative integer arity. Connectives of arity 0 are termed logical constants. The setL
is called the signature of the logic.

Let us fix an infinite set V of variables, whose elements will typically be denoted by
lowercase latin letters (p,q, r, . . .). The notion of an L-formula is inductively defined by
the following two clauses:

1. Every variable in V and every constant in L is an L-formula;

2. If A1, . . . ,An are L-formulas and 
 ∈ L is a connective of arity n > 0, then
also (A1 
 . . . 
An) is an L-formula.

Henceforth we will often suppress the prefix ‘L-’ if the signature is clear from context.

For unary connectives we use infix notation 
A. Formulas will be denoted by uppercase
Latin letters (A,B,C, . . .). When writing down formulas, we often omit some of the
parentheses (,). The set of all subformulas of A is denoted subf(A).

5



1. Preliminaries

Assuming that L contains an implication connective →, the notion of positive and
negative subformula is defined as follows: An occurrence of a subformula A in F is
called positive if it occurs within the premise of an implicational subformula an even
number (including zero) of times; otherwise, the occurrence is called negative.

1.2 Consequence and Proof
We take the basic notion of logic to be that of consequence. A consequence relation in the
language L is a relation

Γ � A

between finite sets Γ of L-formulas (called assumptions) and single L-formulas A (called
conclusion).1 We read Γ � A as ‘A follows from Γ ’. If Γ = ∅, we write � A and say that A
is a theorem of � .

There are two principal ways of arriving at a consequence relation.

Deductively: By specifying a notion of proof from assumptions. The consequence relation
is then: ‘There is a proof of A from the assumptions in Γ .’

Semantically: By specifying a class of algebraic structures, and a notion of truth of a
formula in a structure. The consequence relation is then: ‘In every structure where
all formulas from Γ are true, it is also the case that A is true.’

We will almost exclusively deal with the deductive approach to logic.

A proof system (or calculus) establishes the rules for writing proofs. In the following
sections we present some proof systems that will be featured in the main chapters of the
thesis. Calculi for propositional intuitionistic and classical logic serve as main examples
throughout.

1.3 Axiomatic Systems
A traditional way of presenting a logic is by axiomatic systems, also called Hilbert-style
systems. Such a systemhIL for propositional intuitionistic logic is pictured in Figure 1.1.
The signature employed here contains the binary connectives →,∧ and ∨ as well as the
constant ⊥ (‘falsum’). Negation may be introduced as ¬A := A → ⊥.

Axiomatic systems consist of a long list of axioms and a short list of rules. Often the only
rule is Modus Ponens:

A → B A
B

(MP)

1In the context of algebraic logic, it is common to require further structural properties of a consequence
relation (substitution invariance, closure under cut, . . . ). But since we do not aim at general results about
consequence relations the given plain definition is sufficient.

6



1.3. Axiomatic Systems

Axioms:

A → (B → A) (1)
(A → (B → C)) → ((A → B) → (A → C)) (2)

A∧ B → A (3)
A∧ B → B (4)

A → (B → A∧ B) (5)
A → A∨ B (6)
B → A∨ B (7)

(A → C) → ((B → C) → (A∨ B → C)) (8)
⊥ → A (9)

Rules:
A A → B

B
(MP)

Figure 1.1: An axiomatic system for propositional intuitionistic logic.

The axioms and rules in a Hilbert-style system are to be read as schemas: Any substitu-
tion of A,B and C in Figure 1.1 by formulas in the aforementioned signature constitutes
an instance of the axiom or rule.

Formally a notion of proof from assumptions can then be defined as follows:2

Definition 1.1

Let Γ ∪ {A} be a set of formulas. An hIL-proof of A from Γ is a binary tree of formulas
rooted in A obeying the following conditions:

1. The leaves of the tree are formulas from Γ or instances of the axioms of hIL.

2. Every internal node, together with its two child3 nodes, forms an instance of
the rule (MP).

We write Γ �hIL A if there is an hIL-proof of A from Γ .

2It is also possible, and maybe more common, to define Hilbert-style proofs as sequences of formulas
instead of trees. The tree representation has the advantage that assumptions, being leaves of the tree, are
encoded explicitly into the proof structure. This will come in handy for the proof systems in Chapter 4.

3Trees grow from the root upwards, and child nodes are the nodes immediately above a node.

7
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Prelim

inaries

Example 1.2

The following is a hIL-proof of A∨ B → B from the assumption ¬A:

instance of axiom (8)
(A → B) → ((B → B) → (A∨ B → B))

.... δ

A → B

(B → B) → (A∨ B → B)

.... δ �

B → B

A∨ B → B

where δ is

instance of axiom (2)
(A → (⊥ → B)) → ((A → ⊥) → (A → B))

instance of axiom (1)
(⊥ → B) → (A → (⊥ → B))

instance of axiom (9)
(⊥ → B)

A → (⊥ → B)

(A → ⊥) → (A → B)
assumption
A → ⊥

A → B

and δ � is

instance of axiom (1)
B → ((B → B) → B)

instance of axiom (2)
(B → ((B → B) → B)) → ((B → (B → B)) → (B → B))

(B → (B → B)) → (B → B)
instance of axiom (1)

B → (B → B)

B → B

8



1.4. Natural Deduction

An important property of hIL is the deduction theorem:

Proposition 1.3 (deduction theorem for hIL)

Γ ∪ {A1, . . . ,An} �hIL B ⇐⇒ Γ �hIL A1 ∧ . . . ∧An → B.

The deduction theorem states that the logical connective → internally reflects the notion
of consequence �hIL , and moreover ∧ reflects the combination of assumptions. As a
special case, we have

{A1, . . . ,An} �hIL B ⇐⇒ �hIL A1 ∧ . . . ∧An → B

which implies that the whole consequence relation �hIL can be recovered from its
set of theorems. The deduction theorem also shows the admissibility of hypothetical
reasoning in hIL: In order to prove an implication A → B, we may temporarily assume
the truth of A and proceed by proving B.

A Hilbert-style system hCL for classical propositional logic is obtained by adding the
law of excluded middle A∨ ¬A to the axioms of hIL.

1.4 Natural Deduction
Natural Deduction was introduced by Gerhard Gentzen [21] in an attempt to model more
closely the reasoning task of mathematicians than axiomatic systems do. While Natural
Deduction does not play a role in the main part of this thesis, it is fundamental for the
understanding of the sequent calculus (see Section 1.6).

Unlike Hilbert-style systems, Natural Deduction prioritizes rules over axiom. In typical
Natural Deduction Systems, every logical connective 
 has an introduction rule (‘I-rule’),
describing how a formula with main connective 
 can be derived, and an elimination rule
(‘E-rule’), describing how a formula with main connective 
 can be used in a proof. For
example, here are the introduction and elimination rules for ∧:

A B
A∧ B

(∧I)
A∧ B
A

A∧ B
B

(∧E)

The main novelty of Natural Deduction however is the inclusion of hypothetical reason-
ing, as expressed in the introduction rule for →:

[A]....
B

A → B
(→I)

That is, in order to derive A → B we can temporarily assume the truth of A. Then, once
we have succeeded in deriving B, we can ‘close’ all occurrences of the assumption A

9



1. Preliminaries

A B
A∧ B

(∧I)
A∧ B
A

A∧ B
B

(∧E)

A
A∨ B

B
A∨ B

(∨I)
A∨ B

[A]....
C

[B]....
C

C
(∨E)

[A]....
B

A → B
(→I)

A → B A
B

(→E)

⊥
A

(⊥E)

Figure 1.2: The Natural Deduction calculus NI for intuitionistic logic

above B (as noted by the square brackets [·]) and conclude A → B. An assumption
which is not closed in a proof is called an open assumption.

By including the rule (→I), Natural Deduction makes explicit a reasoning step which is
featured only implicitly (as the deduction theorem) in Hilbert-style systems. Figure 1.2
pictures a complete Natural Deduction system NI for intuitionistic propositional logic.

We again define proofs from assumptions.

Definition 1.4

Let Γ ∪ {A} be a set of formulas. An NI-proof of A from Γ is a tree of formulas
rooted in A obeying the following:

1. Each open assumption at a leaf of the tree is contained in Γ .

2. Every internal node, together with its child node(s), forms an instance of a
rule of NI.

We write Γ �NI A if there is an NI-proof of A from Γ .

Due to the use of hypothetical reasoning, a Natural Deduction proof of a theorem will
typically contain formulas which are not theorems themselves. This is in contrast to
Hilbert-style systems, where proofs of theorems are composed of theorems only.

10



1.5. Logics as Sets of Theorems

Example 1.5

The following is an NI-proof of A∨ B → B from the assumption ¬A (= A → ⊥).

[A∨ B]

[A] A → ⊥
⊥ (→E)

B
(⊥E) [B]

B
(∨E)

A∨ B → B
(→E)

The corresponding Hilbert-style proof was presented in Example 1.2.

Proposition 1.6 (Gentzen 1935)

The consequence relations �hIL and �NI coincide.

A natural deduction system NK for classical logic is obtained by adding to NI the rule
of double negation elimination:

¬¬A
A

1.5 Logics as Sets of Theorems
Before proceeding with our presentation of proof systems, we now take a small detour
to establish some notions that will be useful later on.

In Section 1.2 we have introduced logics as consequence relations, but there is also
a fruitful definition of a logic as a set of formulas. In order to state this definition,
we first formalize the notion of a substitution, which is customarily done as follows.
An L-substitution is a mapping from variables to L-formulas. Any L-substitution σ can
be lifted to a mapping between L-formulas: For this one simultaneously replaces all
variables in a formula by their image under σ. This lifted mapping is also denoted by σ,
and any formula of the shape σ(A) is called a substitution instance of A. Similarly, σ can
be lifted to sets of formulas, rule instances and so on.

We will sometimes write a formula as A(p) to denote that it contains the variable p, and
then subsequently A(B) will denote the instance σ(A) where σ(p) = B and σ(q) = q

for q �= p. In plain English: A(B) arises from A(p) by replacing all occurrences of p in A

by the formula B.

Now let L be a signature containing the implication connective →. We say that a set L
of L-formulas is closed under Modus Ponens if whenever A ∈ L and A → B ∈ L, we
also have B ∈ L. The set L is closed under substitution if A ∈ L implies σ(A) ∈ L for
any L-substitution σ.

11



1. Preliminaries

A set of L-formulas is then called a logic if it is closed under Modus Ponens and
substitution. Furthermore it is called consistent if it is not the set of all L-formulas.

Introducing Thm(C) as a notation for the set of theorems of a consequence relation C,
we can now observe that Thm(hIL), Thm(NK) and so on are (consistent) logics in the
above sense. Closure under Modus Ponens is immediate, as Modus Ponens is explicitly
included as a rule of the caluli. Closure under substitution follows from the fact that
axioms and rules are presented in a schematic way: That is, substitution instances of
axioms and rules are again instances of the same axiom or rule, and this property carries
over to theorems.

We define

IL := Thm(hIL) intuitionistic logic
CL := Thm(hCL) classical logic

Every logic IL � L � CL is called an intermediate logic.

Let us say that C is a calculus for the logic L if Thm(C) = L. Hence hIL and LI are
calculi for intuitionistic logic, and hCL and LK are calculi for classical logic.

Given a logic L and an additional set A of L-formulas, the axiomatic extension L+A is the
smallest logic containing L∪ {A}. Similarly, C+X denotes the extension of the calculus C
by the axioms or rules in X. With the ‘+’-operator overloaded in that way, we can state
equations such as

Thm(hIL+A∨ ¬A) = CL = IL+ p∨ ¬p.

From now on, we will use the term ‘logic’ interchangeably for sets of theorems and for
consequence relations. This slight abuse of language will always be backed up by some
form of a deduction theorem, implying that the consequence relation can be recovered
from its set of theorems.

1.6 The Sequent Calculus
Informally speaking, an analytic proof of a theorem is a proof which contains only
concepts already expressed in the theorem itself.4 This chimes with the idea of an
analytic proposition in philosophy: A proposition which already contains the means of
establishing its own truth, and is therefore independent of external data [48].

The prosaic formulation of analyticity in proof theory is by means of the subformula
property: A proof of a theorem is analytic if all formulas occurring in it are subformulas

4This use of the term ‘analytic’ presumably goes back to Bernard Bolzano’s 1817 treatise [11] which
presented a proof of the intermediate value theorem that does not depend on geometric intuition. Herein
Bolzano was motivated by the idea of methodological purity: A result in pure analysis should not require
methods from geometry, which back then was considered a branch of applied mathematics.

12



1.6. The Sequent Calculus

of the theorem. A proof system is then called analytic if all of its theorems admit an
analytic proof.

It is not easy to judge at first sight whether a system like NI is analytic in this sense,
due to rules such as Modus Ponens

A → B A
B

which in principle allow to introduce completely unrelated formulas B into a proof of A.

In his landmark article [21], now considered the birth of structural proof theory, Ger-
hard Gentzen showed in 1935 how analyticity can obtained by proof-theoretic means.
Since the Natural Deduction calculus seemed inadequate for his endeavour, he first
invented the sequent calculus, which is essentially a meta-calculus for the notation and
manipulation of Natural Deduction proofs. Instead of formulas it builds on sequents

A1, . . . ,An ⇒ B.

The left hand side of such a sequent is called the antecedent and consists of a (possibly
empty) list of formulas. The right hand side, called the succedent, is either a single
formula or empty. The intended reading of a a sequent A1, . . . ,An ⇒ B is that B

follows from assumptions A1 through An. The sequent A1, . . . ,An ⇒ indicates that the
antecedent is contradictory.

Let us use uppercase greek letters Γ ,Δ,Σ to denote lists of formulas. The letter Π will
be reserved for such a list of size at most 1.

The axioms (0-ary rules) of the sequent calculus are called initial sequents. Among those
we always have the identity axiom A ⇒ A (‘A follows from the assumption A’).

The handling of assumptions is made explicit in the sequent calculus by means of the
structural rules

Γ ,A,B,Δ ⇒ Π

Γ ,B,A,Δ ⇒ Π
(el)

Γ ,A,A ⇒ Π

Γ ,A ⇒ Π
(cl)

Γ ⇒ Π
Γ ,A ⇒ Π

(wl)

called (left) exchange, contraction and weakening respectively. They state that it neither
matters in which order (el) or how often (cl) an assumption is used, nor whether it is
used at all (wl).

For each connective the sequent calculus has a left rule and a right rule, describing how
the connective can be introduced in the antecedent or succedent. Herein the right rules
are direct translations of Natural Deduction rule. For example,

Γ ,A ⇒ B

Γ ⇒ A → B
(→r) corresponds to

[A]....
B

A → B
(→I),

13



1. Preliminaries

Structural rules:

A ⇒ A
(id)

Γ ,A,B,Δ ⇒ Π

Γ ,B,A,Δ ⇒ Π
(el)

Γ ,A,A ⇒ Π

Γ ,A ⇒ Π
(cl)

Γ ⇒ Π
Γ ,A ⇒ Π

(wl)
Γ ⇒

Γ ⇒ A
(wr)

Γ ⇒ A Δ,A ⇒ Π

Γ ,Δ ⇒ Π
(cut)

Logical rules:

⊥ ⇒ Π
(⊥)

Γ ,A ⇒ Π

Γ ,A∧ B ⇒ Π

Γ ,B ⇒ Π

Γ ,A∧ B ⇒ Π
(∧l)

Γ ⇒ A Γ ⇒ B
Γ ⇒ A∧ B

(∧r)

Γ ,A ⇒ Π Γ ,B ⇒ Π

Γ ,A∨ B ⇒ Π
(∨l)

Γ ⇒ A
Γ ⇒ A∨ B

Γ ⇒ B
Γ ⇒ A∨ B

(∨r)

Γ ⇒ A Δ,B ⇒ Π

Γ ,Δ,A → B ⇒ Π
(→l)

Γ ,A ⇒ B

Γ ⇒ A → B
(→r)

Figure 1.3: The sequent calculus LI

which is the rule of inferring A → B from B and closing the assumption A (that is,
removing it from the antecedent). In a logical rule such as (→r), A → B is called the
principal formula and A,B the auxiliary formulas. Γ is called the context.

The left rules as well as the rule

Γ ⇒ A Δ,A ⇒ Π

Γ ,Δ ⇒ Π
(cut)

correspond to certain simple transformations of Natural Deduction proofs: In the case
of (cut), we have a Natural Deduction proof of Π from the assumptions Δ∪ {A} in which
all leaves A get replaced by their derivation from Γ .

The complete sequent calculus LI for intuitionistic logic is pictured in Figure 1.3.

Definition 1.7

Let G∪ {S} be a set of sequents. An LI-proof of S from G is a tree of sequents rooted
in S obeying the following properties:

1. Each leaf is either an initial sequent, or contained in G;

14



1.6. The Sequent Calculus

2. Every internal node, together with its child node(s), forms an instance of a
rule of LI.

We write G �LI S if there is an LI-proof of S from G. We say that a formula A is
provable in LI if the sequent ⇒ A is provable in LI, and the set Thm(LI) comprises
all such formulas A.

That Thm(LI) is closed under Modus Ponens is witnessed by the following derivation
of ⇒ B from ⇒ A and ⇒ A → B (which uses the cut rule twice):

⇒ A

⇒ A → B
A ⇒ A

(id)
B ⇒ B

(id)

A,A → B ⇒ B
(→l)

A ⇒ B
(cut)

⇒ B
(cut)

The relationship between sequents, proofs in NI and theorems of intuitionistic logic is
explained by the following proposition [21, 22]:

Proposition 1.8

The following are equivalent:

1. B is provable from assumptions A1, . . . ,An in NI.

2. The sequent A1, . . . ,An ⇒ B is provable in LI.

3. A1 ∧ . . . ∧An → B ∈ IL.

In light of this, the formulaA1∧. . .∧An → B is sometimes called the formula interpretation
of the sequent A1, . . . ,An ⇒ B.

Example 1.9

The following is a proof of the sequent ¬A ⇒ A∨ B → B in LI.

A ⇒ A
(id) ⊥ ⇒ B

(⊥)

¬A,A ⇒ B
(→l)

B ⇒ B
(id)

¬A,B ⇒ B
(wl)

¬A,A∨ B ⇒ B
(∨l)

¬A ⇒ A∨ B → B
(→r)

The Natural Deduction proof was presented in Example 1.5.

Crucially, all rules of the sequent calculus with the exception of (cut) are analytic in the
sense that their premises contain only subformulas of their conclusion. In other words,
in the sequent calculus all non-analytic proof steps have been pushed into the cut rule.

15



1. Preliminaries

Gentzen then famously showed the following cut elimination theorem [21]:

Theorem (cut elimination theorem, Gentzen 1935)

Every sequent provable in LI has a proof without the rule (cut).

See [21] or [53] for the proof. It comes in the form of a concrete cut reduction algorithm
which repeatedly replaces cuts in a proof by simpler cuts. Here a simpler cut is either
a cut on a less complex formula, or a cut on the same formula but higher up in the
proof. The reduction steps depend on how the cut appears in the proof and therefore
involve an extensive case distinction. It is shown that the algorithm terminates, and the
resulting elementary cuts can be removed directly.

From the cut elimination theorem it follows that every theorem A ∈ IL has an LI-proof
containing only subformulas of A, and hence, the calculus LI is analytic.

By the same method a cut elimination theorem can be established for numerous other
sequent calculi. In particular the theorem holds for the sequent calculus LK for classical
propositional logic (to be discussed below) as well as for the first-order versions of LI
and LK. Beyond its philosophical interest, the cut elimination theorem has manifold
applications, among which we only mention decision procedures for IL and CL and
proofs of the interpolation property (for these and other applications, see [53]).

Let us now discuss the sequent calculus LK for classical logic. Gentzen observed that
classical reasoning can be accommodated in the sequent calculus in a purely structural
manner by allowing lists of formulas in the succedent, which are then interpreted as
disjunctions.

A multi-conclusion sequent is of the form

A1, . . . ,An ⇒ B1, . . . ,Bm

and corresponds to the statement: ‘From A1 through An, B1 ∨ . . . ∨ Bm follows.’

The logical rules of the (multi-conclusion) sequent calculus LK for classical logic are just
the rules of LI, but with an additional list Σ of formulas in the succedent. For example
the rule (∧r) now reads

Γ ⇒ A,Σ Γ ⇒ B,Σ
Γ ⇒ A∧ B,Σ (∧r)

On top of that, LK has the structural rules of exchange and contraction in the succedent:

Γ ⇒ Λ,A,B,Σ
Γ ⇒ Λ,B,A,Σ (er)

Γ ⇒ A,A,Σ
Γ ⇒ A,Σ (cr)

The full system is pictured in Figure 1.4.
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Structural rules:

A ⇒ A
(id)

Γ ,A,B,Δ ⇒ Σ

Γ ,B,A,Δ ⇒ Σ
(el)

Γ ⇒ A,B,Σ
Γ ⇒ B,A,Σ (er)

Γ ,A,A ⇒ Σ

Γ ,A ⇒ Σ
(cl)

Γ ⇒ A,Σ
Γ ⇒ A,A,Σ (cr)

Γ ⇒ Σ
Γ ,A ⇒ Σ

(wl)
Γ ⇒ Σ

Γ ⇒ A,Σ (wr)

Γ ⇒ A,Σ Δ,A ⇒ Λ

Γ ,Δ ⇒ Σ,Λ (cut)

Logical rules:

⊥ ⇒ Σ
(⊥)

Γ ⇒ � (�)

Γ ,A ⇒ Σ

Γ ,A∧ B ⇒ Σ

Γ ,B ⇒ Σ

Γ ,A∧ B ⇒ Σ
(∧l)

Γ ⇒ A,Σ Γ ⇒ B,Σ
Γ ⇒ A∧ B,Σ (∧r)

Γ ,A ⇒ Σ Γ ,B ⇒ Σ

Γ ,A∨ B ⇒ Σ
(∨l)

Γ ⇒ A,Σ
Γ ⇒ A∨ B,Σ

Γ ⇒ B,Σ
Γ ⇒ A∨ B,Σ (∨r)

Γ ⇒ A,Σ Δ,B ⇒ Π

Γ ,Δ,A → B ⇒ Σ,Π (→l)
Γ ,A ⇒ B,Σ

Γ ⇒ A → B,Σ (→r)

Figure 1.4: The sequent calculus LK

The multi-succedent version of every rule of LI with the exception of (→r) remains sound
for intuitionistic logic if the succedent is interpreted disjunctively. Now as for (→r), its
multi-succedent instance

A ⇒ B,C
⇒ A → B,C (→r)

has the formula interpretation

X := (A → (B∨ C)) → ((A → B)∨ C)

which is not valid in intuitionistic logic; indeed, one can check that IL+ X = CL. From
this it follows that LK is a calculus for classical logic.

1.7 FL⊥
e and Extensions

To comprehend the effect of structural rules in the sequent calculus, it is useful to study
systems lacking some or all of these rules. The resulting logics are called substructural
logics.
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1. Preliminaries

A basic system is FL⊥
e (Full Lambek Calculus5 with exchange and additive constants) which

is, roughly speaking, obtained by dropping the weakening rules (wl), (wr) as well
as contraction (cl) from LI. FL⊥

ew is then obtained by reinstating both left and right
weakening, and FL⊥

ec by adding left contraction. In all three systems the cut elimination
theorem holds [46].

In LI it does not matter if the conjunction rule (∧r) is formulated as

Γ ⇒ A Γ ⇒ B
Γ ⇒ A∧ B or

Γ ⇒ A Δ ⇒ B
Γ ,Δ ⇒ A∧ B

since both versions are inter-derivable using contraction and weakening. The first
format, which we subscribed to in Figure 1.3, is called additive or context-sharing, and
the second one is called multiplicative or context-splitting. In FL⊥

e the inter-derivability of
both versions breaks down, or in other words, the additive rule for ∧ defines a different
connective than the multiplicative rule. It is common to study substructural logics in
an extended signature which accommodates both connectives with additive rules and
connectives with multiplicative rules.

We will keep the symbol ∧ for the additive rule. The ‘multiplicative conjunction’, also
called fusion, will be denoted6 by ∗ and its left and right rules are

Γ ,A,B ⇒ Π

Γ ,A ∗ B ⇒ Π
(∗l) and

Γ ⇒ A Δ ⇒ B
Γ ,Δ ⇒ A ∗ B (∗r).

Furthermore one has ‘context-free’ versions 0 and 1 of the logical constants:

0 ⇒ (0l) Γ ⇒
Γ ⇒ 0 (0r)

Γ ⇒ Π
Γ , 1 ⇒ Π

(1l) ⇒ 1 (1r)

The complete system FL⊥
e is presented in Figure 1.5. A consequence relation �FL⊥

e
is

defined as in Definition 1.7.

In FL⊥
ew we can prove 0 ≡ ⊥ and 1 ≡ �. It is therefore customary to investigate

extensions of FL⊥
ew in the reduced signature containing only ⊥ and � as constants.

Given a set A of formulas, the axiomatic extension FL⊥
e +A of FL⊥

e by A is the sequent cal-
culus obtained by adding the initial sequent ⇒ A for every substitution instance A of a
formula inA. Then FL⊥

e +A is a calculus for the logic Thm(FL⊥
e )+A, albeit it never satis-

fies the cut elimination theorem except in trivial cases. The following is the substructural
version of the deduction theorem, called the local deduction theorem [20]:

5FL⊥
e is named after Joachim Lambek, who introduced a basic calculus FL in the context of formal

grammar theory [35]. FL is similar to FL⊥
e but does not include additive constants � and ⊥ and has no

exchange rule. Furthermore, due to the lack of exchange, FL has two implication connectives \ and /.
6In the literature on linear logic (see Section 1.8) it is more common to write ⊗ for multiplicative and

& for additive conjunction.
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Structural rules:

A ⇒ A
(id)

Γ ,A,B,Δ ⇒ Π

Γ ,B,A,Δ ⇒ Π
(el)

Γ ⇒ A Δ,A ⇒ Π

Γ ,Δ ⇒ Π
(cut)

Logical rules:

⊥ ⇒ Π
(⊥)

Γ ⇒ � (�)

0 ⇒ (0l) Γ ⇒
Γ ⇒ 0 (0r) Γ ⇒ Π

Γ , 1 ⇒ Π
(1l) ⇒ 1 (1r)

Γ ,A ⇒ Π

Γ ,A∧ B ⇒ Π

Γ ,B ⇒ Π

Γ ,A∧ B ⇒ Π
(∧l)

Γ ⇒ A Γ ⇒ B
Γ ⇒ A∧ B

(∧r)

Γ ,A,B ⇒ Π

Γ ,A ∗ B ⇒ Π
(∗l) Γ ⇒ A Δ ⇒ B

Γ ,Δ ⇒ A ∗ B (∗r)
Γ ,A ⇒ Π Γ ,B ⇒ Π

Γ ,A∨ B ⇒ Π
(∨l)

Γ ⇒ A
Γ ⇒ A∨ B

Γ ⇒ B
Γ ⇒ A∨ B

(∨r)

Γ ⇒ A Δ,B ⇒ Π

Γ ,Δ,A → B ⇒ Π
(→l)

Γ ,A ⇒ B

Γ ⇒ A → B
(→r)

Figure 1.5: The sequent calculus FL⊥
e

Theorem 1.10 (local deduction theorem)

The following are equivalent:

1. �FL⊥
e+A �∪A F.

2. �FL⊥
e+A � (A1 ∧ 1) ∗ . . . ∗ (An ∧ 1) → F for some instances A1, . . . ,An of ax-

ioms in A.

In this thesis, the term substructural logic stands for every logic Thm(FL⊥
e ) ⊆ L � IL.7

We close this section with an important convention. All sequent systems occuring in
this thesis contain the exchange rule (el). It follows that we do not lose expressivity
when formalizing the antecedents of sequents as multisets instead of lists. For this we
only have to change the way we read an antecedent: In the multiset interpretation, the

7To make the second inclusion formally precise, IL can be considered as a logic in the signature of
substructural logic, where ∗, 0, 1,� conflate with ∧,⊥,¬⊥,¬⊥.
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1. Preliminaries

comma ‘,’ is interpreted as a multiset union. Likewise, uppercase Greek letters Γ ,Δ,Σ . . .
are interpreted as multisets instead of lists.

Henceforth we assume that all sequent calculi are formalized using multisets.

1.8 Linear Logic
Linear logic [23] was invented by Jean-Yves Girard in the late 80ies. It can be seen as a
hybrid system situated in between substructural and fully structural logic. We will focus
here on its single-conclusion variant with weakening, which is called affine intuitionistic
linear logic.

The basic idea is to start with a substructural system such as FL⊥
ew, and then reintroduce

contraction in a controlled way. For this the logical signature is augmented by a unary
operator ! called ‘bang’. Formulas prefixed with ! are called unbounded and it is stipulated
that contraction may only be applied to unbounded formulas. That is, we add to FL⊥

ew

the rule
Γ , !A, !A ⇒ Π

Γ , !A ⇒ Π
(!c).

To use an unbounded formula, we can simply strip off the bang. This is the dereliction
rule:

Γ ,A ⇒ Π

Γ , !A ⇒ Π
(dr)

Finally, there is a right rule for !
!Γ ⇒ A
!Γ ⇒!A (pr)

called promotion. Here !Γ denotes a multiset of unbounded formulas.

The extension of FL⊥
ew by the rules (!c), (dr) and (pr) is called aILL.

For our purposes, it will be more convenient to work with a simple variant of aILL,
which is discussed next.

The point of (!c) is that unbounded formulas do not vanish in a proof. We can achieve
the same effect by modifying the multiplicative rules, so that unbounded formulas in
the conclusion may be copied into both premises. For example we can take the following
variant of the (∗r) rule:

!Ω, Γ ⇒ A !Ω,Δ ⇒ B

!Ω, Γ ,Δ ⇒ A ∗ B

If we additionally change the dereliction rule to

Γ , !A,A ⇒ Π

Γ , !A ⇒ Π
(dr)
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then an explicit contraction becomes redundant. The full systemaILL∗, which underlies
the work in Chapter 3, is pictured in Figure 1.6. Our calculus aILL∗ is a minor variant
of Andreoli’s dyadic system for linear logic [3].

Proposition 1.11

There are proof translations between aILL and aILL∗ which preserve the endse-
quent and do not introduce cuts. In particular, aILL and aILL∗ derive the same
sequents.

Proof (outline). Derivations in aILL∗ can be simulated by aILL in a straightforward
manner, using (!c) in the simulation of multiplicative rules and the modified (dr) rule.
For the converse direction, call a sequent T a contraction of S if T arises from the sequent S
by removing some (including zero) but not all occurrences of an unbounded formula
from the antecedent. For example, !A,B ⇒ Π is a contraction of !A, !A, !A,B ⇒ Π.
Then by induction on the height of proofs, we can show that whenever aILL proves
a sequent S, then for all contractions T of S, aILL∗ proves T . Neither of the sketched
translations introduces cuts.

1.9 The Hypersequent Calculus

A generalization of the sequent calculus is the hypersequent calculus, introduced inde-
pendently by Avron [6], Mints [42] and Pottinger [47]. A hypersequent is a multiset of
sequents written

Γ1 ⇒ Π1 | . . . | Γn ⇒ Πn.

Each sequent Γi ⇒ Πi is called a component of the hypersequent. The symbol ‘|’ is
interpreted as a disjunction; This shows in the structural rules

G
G | Γ ⇒ Π

(ew) and
G | Γ ⇒ Π | Γ ⇒ Π

G | Γ ⇒ Π
(ec)

of external weakening and external contraction. Here G is a hypersequent-variable which
can be instantiated by a hypersequent. In (ew), G is required to be nonempty.

Let FL⊥
e∗ be one of the calculi FL⊥

e , FL⊥
ew, FL⊥

ec or FL⊥
ewc

∼= LI. Then a corresponding
hypersequent calculus HFL⊥

e∗ is obtained by adding the context variable G to all rules
and initial sequents of FL⊥

e∗, and moreover adding the rules (ew) and (ec). So far, the
logic has not changed:

Lemma 1.12

HFL⊥
e∗ proves the same sequents as FL⊥

e∗.
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Structural rules:

A ⇒ A
(id)

Γ ,A,B,Δ ⇒ Π

Γ ,B,A,Δ ⇒ Π
(e)

!Ω, Γ ⇒ A !Ω,Δ,A ⇒ Π

!Ω, Γ ,Δ ⇒ Π
(cut)

Γ ⇒ Π
Γ ,A ⇒ Π

(wl)
Γ ⇒

Γ ⇒ A
(wr)

Logical rules:

⊥ ⇒ Π
(⊥)

Γ ⇒ � (�)

Γ ,A ⇒ Π

Γ ,A∧ B ⇒ Π

Γ ,B ⇒ Π

Γ ,A∧ B ⇒ Π
(∧l)

Γ ⇒ A Γ ⇒ B
Γ ⇒ A∧ B

(∧r)

Γ ,A,B ⇒ Π

Γ ,A ∗ B ⇒ Π
(∗l) !Ω, Γ ⇒ A !Ω,Δ ⇒ B

!Ω, Γ ,Δ ⇒ A ∗ B (∗r)
Γ ,A ⇒ Π Γ ,B ⇒ Π

Γ ,A∨ B ⇒ Π
(∨l)

Γ ⇒ A
Γ ⇒ A∨ B

Γ ⇒ B
Γ ⇒ A∨ B

(∨r)

!Ω, Γ ⇒ A !Ω,Δ,B ⇒ Π

!Ω, Γ ,Δ,A → B ⇒ Π
(→l)

Γ ,A ⇒ B

Γ ⇒ A → B
(→r)

Γ , !A,A ⇒ Π

Γ , !A ⇒ Π
(dr) !Ω ⇒ A

!Ω ⇒!A (pr)

Figure 1.6: The sequent calculus aILL∗

Proof (Outline). Every FL⊥
e∗-proof is also a HFL⊥

e∗-proof. Conversely, by induction on
the height of proofs one can show the following: If HFL⊥

e∗ proves a hypersequent Γ1 ⇒
Π1 | . . . | Γn ⇒ Πn, then there exists i � n such that FL⊥

e∗ proves Γi ⇒ Πi. This implies
the claim.

By adding rules to a hypersequent calculus which take the extended structure into
account it is possible to capture logics analytically which do not have a cutfree sequent
calculus. For example, the extension of HLI (= HFLewc) by the communication rule

G | Σ1, Γ1 ⇒ Π1 G | Σ2, Γ2 ⇒ Π2
G | Σ1, Γ2 ⇒ Π1 | Σ2, Γ1 ⇒ Π2

(com)

yields a calculus for Gödel logic G := IL + (p → q) ∨ (q → p) in which the cut rule is
eliminable [5]. In a rule such as (com), the components not contained in the context
variable G are called the principal components of the rule.
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1.10. What Has Been Left Out in These Preliminaries

In Ciabattoni, Terui and Galatos [17] it was established that a large class of substructural
and intermediate logics can be captured analytically by hypersequent calculi, and more-
over that the necessary hypersequent calculus can be computed from the axiomatization
of the logic in question. This result will be heavily used in Chapter 2.

1.10 What Has Been Left Out in These Preliminaries
Arguments involving concepts from computational complexity will play a role here
and there (mostly in Chapter 2), although they are never central. For the necessary
background knowledge we refer the reader to [4].

23





CHAPTER 2
Bounding Axiomatic Systems via

Hypersequents

2.1 Introduction

The last decades have witnessed an explosion of new logics. Some of these logics come
into being in the ivory tower of formal logic, while others arise in fields as diverse as
verification and model checking, epistemology, and law.

For several of these new logics it is possible to give a satisfying proof-theoretic treatment
in variants of Gentzen’s sequent calculus. Yet for a substantial number of others,
no reasonable sequent calculus with the subformula property has been found, and
moreover there are results indicating that no such calculus exists.1

This led proof theorists to look out for more expressive frameworks. Following Gentzen’s
approach to classical and intuitionistic logic, the general strategy of this task can be sum-
marized as follows: One first tries to construct a proof system for the logic of interest
in which the only non-analytic rule is the cut rule (or a suitable generalization thereof).
Then in a second step one shows the admissibility of the cut rule, usually by means of a
syntactic elimination procedure. In doing so, one obtains the subformula property for
the calculus.

One early and successful example of said approach is the discovery of the hypersequent
calculus [5]. But the development did not stop there: Nowadays the proof-theoretic
landscape contains a multitude of extensions of the sequent calculus, such as labelled
sequent systems [31, 43], nested sequents [32, 12] and the display calculus [8, 24].

1For example, some limiting results on the use of sequent calculi in modal logics are contained in [39,
Chapter 3.4]. Note that the scope of this and related results is always limited to one particular definition
of ‘sequent calculus’.
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2. Bounding Axiomatic Systems via Hypersequents

It must be pointed out that cut elimination does not automatically yield useful metathe-
orems about a logic. Further constraints on the proof search space have been utilized
from the very beginnings of proof theory, for example the restriction to regular sequents
in Gentzen’s [21]. After all the cutfree fragment of a proof system may still be quite
complex, and this of course holds even more so in an expressive system such as the
hypersequent calculus. As a not completely serious but instructive example, one should
always keep in mind that for any logic L the calculus which has no rules and all theo-
rems of L as axioms is cutfree complete. Of course, this ‘calculus’ is useless because its
structure is just as complex as L itself.

For the reason hinted at in the previous paragraph it is adequate to ask for the meaning
of a cut elimination result in an exotic proof system such as the hypersequent calculus.
The material presented in this chapter contributes to this question by showing, roughly
speaking, the following: If a logic has a cutfree hypersequent calculus, then we can infer
a certain syntactic bound on the axioms that are needed to prove a given theorem of the
logic. This bound can also be expressed as a strengthening of the deduction theorem. It
is nontrivial in the sense that it is not clear how to obtain the bound without using the
cutfree hypersequent calculus.

We believe this result is interesting for two reasons. First, the boundedness property
presents the cut elimination result in a purely logical way that is independent of the
internal workings of a proof calculus. Second, we show that the boundedness property
is still strong enough to prove metatheoretic properties of the logic such as decidability;
moreover, in many cases it can be used to embed a logic into a simpler and well-studied
base logic such as IL.

Since the basic idea underlying our results is not complicated, we start by illustrating
it in the special case of Gödel logic G = IL + (A → B ∨ B → A). As mentioned in the
Preliminaries (Section 1.9) a hypersequent calculus for G is obtained by extending HLI

by the communication rule
G | Σ1, Γ1 ⇒ Π1 G | Σ2, Γ2 ⇒ Π2
G | Σ1, Γ2 ⇒ Π1 | Σ2, Γ1 ⇒ Π2

(com)

and the cut elimination theorem holds in HLI+ (com). Now let F be any theorem of G,
and let δ be a cutfree proof of ⇒ F in HLI + (com). For simplicity, let us assume that
there is only one instance of (com) in δ:

. . . τ
. . .

.... π1
G | Σ1, Γ1 ⇒ Π1

.... π2
G | Σ2, Γ2 ⇒ Π2

G | Σ1, Γ2 ⇒ Π1 | Σ2, Γ1 ⇒ Π2
(com)

. . .π
⇒ F

Intuitively, the denoted instance of (com) corresponds to the instance

lin(Γ1, Γ2) := (
�

Γ2 →
�

Γ1)∨ (
�

Γ1 →
�

Γ2)
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2.1. Introduction

of the axiom of linearity.2 We now show how to transform δ into a proof of lin(Γ1, Γ2) ⇒ F

in the sequent calculus LI.

First we create two modified copies of the proof. In each of these, the instance of (com)
is traded for an additional formula in the antecedent. The first modified copy looks like
this:

. . . τ. . .

....
G | Γ2 ⇒ �

Γ2

.... π1
G | Σ1, Γ1 ⇒ Π2
G | Σ1,

�
Γ1 ⇒ Π1

some (∧l)’s and (cl)’s

G | Σ1, Γ2,
�

Γ2 → �
Γ1 ⇒ Π1

(→l)

G | Σ1, Γ2,
�
Γ2 → �

Γ1 ⇒ Π1 | Σ2, Γ1 ⇒ Π2
(ew)

. . .π ��
Γ2 → �

Γ1 ⇒ F

Here π � is like the proof part π, only that the newly added formula
�
Γ2 → �

Γ1 has been
propagated downwards in the proof. Therefore the endsequent is now

�
Γ2 → �

Γ1 ⇒ F

rather than ⇒ F.

In a completely symmetric fashion we obtain the second copy:

. . . τ. . .

....
G | Γ1 ⇒ �

Γ1

.... π2
G | Σ2, Γ2 ⇒ Π2
G | Σ2,

�
Γ2 ⇒ Π2

some (∧l)’s and (cl)’s

G | Σ2, Γ1,
�

Γ1 → �
Γ2 ⇒ Π2

(→l)

G | Σ1, Γ2 ⇒ Π1 | Σ2, Γ1,
�

Γ1 → �
Γ2 ⇒ Π2

(ew)

. . .π ��
Γ1 → �

Γ2 ⇒ F

Again π �� is a variant of π where
�
Γ1 → �

Γ2 has been added appropriately.

Finally we combine both copies by an application of (∨l):
....

(
�

Γ2 → �
Γ1) ⇒ F

....
(
�
Γ1 → �

Γ2) ⇒ F

(
�

Γ2 → �
Γ1)∨ (

�
Γ1 → �

Γ2) ⇒ F
(∨l)

This proof does not contain (com) any more, and so it can be reduced to a proof in LI

(see Lemma 1.12).

The crucial observation is now this. Since the cut rule is eliminable in HLI + (com),
we could assume that the original hypersequent proof δ was analytic. Therefore the

2Here and henceforth,
�
{A1, . . . ,An} := A1 ∧ . . .∧An and

� ∅ := �. There is a slight abuse of notation
as the ordering of the formulas A1, . . . ,An in the set {A1, . . . ,An} is of course not fixed. However, this will
never lead to trouble.
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2. Bounding Axiomatic Systems via Hypersequents

multisets Γ1 and Γ2 consist of subformulas of F, and consequently the axiom instance
lin(Γ1, Γ2) is bounded by the theorem F as follows: It substitutes variables in the linearity
axiom by conjunctions of subformulas of F. Later on, we will call such an axiom instance
set-bounded with respect to F. A general result we aim at by the above methods will
be:

Theorem

F is provable in HLI + (com) if there are instances lin1, . . . , linn of the axiom of
linearity, all set-bounded wrt. F, such that lin1, . . . , linn ⇒ F is provable in LI.

An alternative calculus-independent reformulation:

Theorem

F is a theorem of Gödel logic if there exist instances lin1, . . . , linn of the axiom of
linearity, all set-bounded wrt. F, such that (

�n
i=1 lini) → F is a theorem of IL.

The novelty here is the restriction to set-bounded axiom instances: Without this restric-
tion the result stated above would just be a standard deduction theorem, which can be
proved by elementary means.

We will see that the sketched method works for a rather large class of logics, namely for
all extensions of HFL⊥

e by so-called analytic structural hypersequent rules.

Let us now lay out what has to be achieved for the generalization of the proof.

1. A typical hypersequent proof contains multiple instances of hypersequent rules,
and the naive method of iterating the rule elimination argument from the example
fails. To see this, consider the case that the proof part τ in the example contains
another instance of (com). Since we put together two copies of the proof, this
instance will be duplicated, and so termination of a step-by-step elimination of
(com)’s cannot be guaranteed. We overcome this problem by simultaneously
eliminating all lowermost hypersequent rules in a single step (Section 2.4).

2. For every analytic structural hypersequent rule (r), we have to find a formula
which bears the same relation to (r) as lin does to (com). We call these formulas
disjunction forms. The existence of disjunctive forms for all analytic structural
hypersequent rules will be established constructively in Section 2.5.

After addressing these issues and proving the main result in Section 2.6, we present a
variety of strengthenings and related results in Section 2.7. Here we also mention some
work on the ‘simple substitution property’ by various authors in the late 80ies and early
90ies which is akin to our investigation. Finally in Section 2.8 we show that our method
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2.2. Bounded Axiomatic Extensions

can be adjusted to give a new proof of Takano’s [52] result stating that the standard
sequent calculus for modal logic S5—although not cutfree—satisfies the subformula
property.

2.2 Bounded Axiomatic Extensions

A deduction theorem allows us to relate theorems of an axiomatic extension of a logic
L to theorems in the base logic L. For example, if L is Gödel logic IL+ lin where lin is
the axiom of linearity (A → B)∨ (B → A) of linearity, then we have

F ∈ IL+ lin ⇐⇒ (lin1 ∧ . . . ∧ linn → F) ∈ IL

for some substitution instances
lin1, . . . , linn of lin.

(♠)

This equivalence suggests the following. What is needed in order to comprehend the
axiomatic extension IL + lin is—beyond knowledge of IL—only an understanding of
which kind of axiom instances are relevant for the proof of a given formula F.

Unfortunately this ‘only’ is deceitful, as the problem of bounding the axiom instances
with respect to F is a hard one, and without such a bound the equivalence (♠) is of little
use: The space of all possible axiom instances is simply too large.

Let us widen our scope again at look at extensions of substructural logics. Here and
in the following, FL⊥

e∗ will denote an extension of FL⊥
e by some analytic structural

sequent rules.3 HFL⊥
e∗ then denotes the corresponding hypersequent calculus, that is,

the hypersequent rules which has all rules of FL⊥
e∗ and additionally (ew) and (ec).

In the following it will be useful to think of axioms as concrete formulas containing
some freely chosen propositional variables instead of the ‘schematic’ formula-variables
A,B etc. For example, lin can be the formula (p → q) ∨ (q → p) where p and q are
propositional variables. Every instance of the axiom of linearity then arises by replacing
p and q in lin by arbitrary formulas.

Call a bounding function any map ψ which takes as arguments a set of formulas A (the
axioms) and a formula F (the potential theorem to be proved), and returns a set ψ(A, F)
of instances of formulas in A. Here are some possible bounding functions, ordered by
decreasing specificity (concrete examples follow below):

1. The variable-analytic assignment ψv(A, F) contains all instances of formulas in A

obtained by substituting variables with variables occurring in F.
3Analytic structural sequent rules will be formally defined only in Definition 2.7. For now, it suffices

to think of FL⊥
e∗ as one of the calculi FL⊥

e , FL⊥
ew, FL⊥

ec or LI.
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2. Bounding Axiomatic Systems via Hypersequents

2. The formula-analytic assignment ψf(A, F) contains all instances of formulas in A

obtained by substituting variables with subformulas of F.

3. The set-analytic assignment ψs(A, F) contains all instances of formulas in A ob-
tained by substituting variables with non-repeating4 fusions of subformulas of F
(including 1 as the empty fusion).

4. The multiset-analytic assignment ψms(A, F) contains all instances of formulas in A

obtained by substituting variables with fusions of subformulas of F (including 1
as the empty fusion).

5. The weakly variable-analytic assignment ψwv(A, F) contains all instances of formulas
from A whose variables are among those of F.

6. The unrestricted assignment ψany(A, F) contains all instances of formulas from A.

Example 2.1

Let A = {p → 1} and F = r∧ q. Then

• ψv(A, F) = {r → 1,q → 1}

• ψf(A, F) = ψv(A, F) ∪ {r∧ q → 1}

• ψs(A, F) = ψf(A, F) ∪ {1 → 1, r ∗ q → 1, (r∧ q) ∗ r → 1, (r∧ q) ∗ q → 1}

• ψms(A, F) = ψs(A, F) ∪ {r ∗ r → 1,q ∗ q → 1, r ∗ r ∗ q → 1, r ∗ q ∗ r → 1, . . .}

• ψwv(A, F) = {B → 1 | The only variables in B are r and q}

• ψany(A, F) = {B → 1 | B is any formula}

Note that the substitution sets ψv(A, F), ψf(A, F) and ψs(A, F) are finite, whereas
ψms(A, F), ψwv(A, F) and ψany(A, F) are infinite.

The following definition is fundamental for the whole chapter.

Definition 2.2 (bounded axiomatic extensions)

Letψ be a bounding function andA a finite set of formulas. A logic L is aψ-bounded
extension of FL⊥

e∗ by A if L = Thm(FL⊥
e∗) +A and the following deduction theorem

4A fusion A1 ∗ . . . ∗An is non-repeating if the Ai’s are pairwise distinct.
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2.2. Bounded Axiomatic Extensions

holds: For every formula F,

F ∈ L ⇐⇒ ∃A1, . . . ,An ∈ ψ(A, F) such that
(A1 ∧ 1) ∗ . . . ∗ (An ∧ 1) → F ∈ Thm(FL⊥

e∗).

A logic L is called a ψ-bounded extension of Thm(FL⊥
e∗) if for some finite A, it is a ψ-

bounded extension of Thm(FL⊥
e∗)byA. For abbreviation, we also say ‘The extension

FL⊥
e∗ + A is ψ-bounded’ instead of ‘Thm(FL⊥

e∗) + A is a ψ-bounded extension of
FL⊥

e∗ by A’. Finally, ‘multiset-bounded’ (resp. ‘set-bounded’, ‘formula-bounded’,
‘variable-bounded’) means ψms-bounded (resp. ψs-bounded, ψf-bounded, ψv-
bounded).

We emphasize that in Definition 2.2 the same axiom instance may appear multiple times
in the fusion (A1 ∧1)∗ . . .∗ (An∧1). So ψ acts as a bound on the search space for axiom
instances, but not on their multiplicity. Note also that the direction ‘⇐’ of the stated
equivalence is always true.

We now present some simple observations on the notion of boundedness.

First, by inspecting definitions we observe that the local deduction theorem of substruc-
tural logics (Theorem 1.10) subsumes the statement that every extension FL⊥

e∗ + A is
bounded with respect to the unrestricted assignment. Hence:

Proposition 2.3

Every extension FL⊥
e∗ +A is ψany-bounded.

By plugging in bounding functions ψ in Definition 2.2 where ψ(A, F) ⊆ ψany(A, F), we
therefore obtain various strengthenings of the deduction theorem.

We can go one step further than ψany-boundedness without additional assumptions:

Proposition 2.4

Every extension FL⊥
e∗ +A is ψva-bounded.

Proof. If F is a theorem of FL⊥
e∗ + A, then by Proposition 2.3 there are axiom instances

A1, . . . ,An such that (A1 ∧1)∗ . . .∗ (An∧1) → F is a theorem of FL⊥
e∗. Since Thm(FL⊥

e∗)
is closed under substitution, we can replace every variable occurring in A1, . . . ,An but
not in F by a constant or by some variable which does occur in F. This yields a theorem
(A �

1 ∧ 1) ∗ . . . ∗ (A �
n ∧ 1) → F of FL⊥

e∗ which witnesses the ψva-boundedness.

The variable renaming trick in the proof of Proposition 2.4 comes up in various contexts
and seems to be folklore.
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2. Bounding Axiomatic Systems via Hypersequents

In the presence of contraction, boundedness gives rise to embeddings between logics:
Proposition 2.5

Assume that contraction is admissible in FL⊥
e∗.

(i) If L is a set-bounded extension of Thm(FL⊥
e∗), then the validity problem of L

can be reduced to the validity problem of Thm(FL⊥
e∗) in exponential time.

(ii) If L is a formula-bounded extension of Thm(FL⊥
e∗), then the validity problem

of L can be reduced to the validity problem of Thm(FL⊥
e∗) in polynomial time.

Proof. In both cases, let A be the set of axioms witnessing the boundedness property.

(i) Given a formula F, let A1(F), . . . ,An(F) be an enumeration of all axiom instances in
ψs(A, F) (without repetition). By set-boundedness and contraction, it follows that the
following equivalence holds:

F ∈ L ⇐⇒ (A1(F)∧ 1) ∗ . . . ∗ (An(F)∧ 1) → F ∈ Thm(FL⊥
e∗)

The function π mapping a formula F to the formula (A1(F)∧ 1) ∗ . . . ∗ (An(F)∧ 1) → F

is therefore a reduction of L to Thm(FL⊥
e∗), and the time it takes to compute π roughly

corresponds to the size of the set ψs(A, F), which in turn is polynomial in the number N
of sets of subformulas of F (regarding the set A as a constant parameter). Since N ≈ 2|F|,
we conclude that π is computable in exponential time.

(ii) is similar, but now we observe that the size of ψf(A, F)—and therefore the time it
takes to compute the reduction—is polynomial in |F|.

The mingle rule
Γ1,Σ ⇒ Π Γ2,Σ ⇒ Π

Γ1, Γ2,Σ ⇒ Π
(m)

is a generalization of the weakening rule. In the presence of contraction and mingle,
set-boundedness and multiset-boundedness are the same:

Proposition 2.6

Assume that contraction and mingle are admissible in FL⊥
e∗. Then any multiset-

bounded extension of Thm(FL⊥
e∗) is also set-bounded.

Proof. In the presence of contraction and mingle, we can prove B ≡ B ∗ B. By a simple
induction it follows that

�FL⊥
e∗ A(B ∗ B) ≡ A(B)

for every formula A(p). Hence in any occurrence of a fusion in a formula, multiple
occurrences of the same factor can be removed. It follows that any multiset-bounded
extension of FL⊥

e∗ is also set-bounded.
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2.3. Analytic Structural Hypersequent Rules and Disjunction Forms

2.3 Analytic Structural Hypersequent Rules and Disjunction
Forms

We now develop a formal notion of a disjunction form for an analytic structural hypersequent
rule. Loosely speaking, a disjunction form is a formula capturing the content of a
hypersequent rule, in the way that (

�
Γ2 → �

Γ1) ∨ (
�

Γ1 → �
Γ2) captures (com).

Disjunction forms are refinements of the generic interpretations of hypersequent rules
(see Definition 6 in [7]).

We first state a definition of analytic structural hypersequent rules (which have been
mentioned already a couple of times). The definition is essentially that of the completed
rules in [17] in a slightly adapted form. We now have to be rigorous about the difference
between the schematic presentation of a rule on the one hand, and concrete instances
of the rule on the other hand. When we write down a rule such as

G | Γ ,A ⇒ Π G | Γ ,B ⇒ Π

G | Γ ,A∨ B ⇒ Π
(∨l)

as part of a calculus, then the occurring symbols G, Γ ,A,B and Π are taken as structure
variables of different types. Here G is a hypersequent-variable, Γ is a multiset-variable, A
and B are formula-variables and Π is a variable for a multiset of size � 1. In an instance
σ(∨l) of the rule (which occurs in a proof), the variables are substituted by concrete
objects of the correct type: That is, σ(∨l) is of the form

σ(G) | σ(Γ),σ(A) ⇒ σ(Π) σ(G) | σ(Γ),σ(B) ⇒ σ(Π)

σ(G) | σ(Γ),σ(A)∨ σ(B) ⇒ σ(Π)
(∨l)

where σ(G) is a hypersequent, σ(Γ) is a multiset of formulas and so on.

Definition 2.7 (analytic structural (hyper)sequent rule)

An analytic structural hypersequent rule is a rule of the form

G | T1 . . . G | Tl

G | S1 | . . . | Sn
(r)

where the Si’s and Tj’s are sequents built from structure variables (called the active
or principal components of the rule),G is a hypersequent-variable, and the following
conditions are obeyed:

structurality The principal components contain only multiset-variables.

analyticity Each multiset-variable occurring in a premise component also appears
in the conclusion.

linear conclusion No multiset-variable occurs more than once in the conclusion.
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2. Bounding Axiomatic Systems via Hypersequents

separation No multiset-variable appears both in an antecedent and in a succedent.

coupling If someSi has a nonempty succedent, that is, Si is of the formS ⇒ Πi, then
there is a ‘coupled’ multiset-variable Σi ∈ S which appears exactly in those
premises which have Πi as their succedent, and therein with multiplicity 1.

An analytic structural sequent rule is defined similarly: We only remove the hypersequent-
variable G and set n = 1.

Example 2.8

The following are three examples of structural analytic hypersequent rules.

• First, we have already seen the communication rule

G | Σ1, Γ1 ⇒ Π1 G | Σ2, Γ2 ⇒ Π2
G | Σ1, Γ2 ⇒ Π1 | Σ2, Γ1 ⇒ Π2

(com)

which yields a calculus for G if added to HLI. The coupled pairs of variables
are (Σ1,Π1) and (Σ2,Π2).

• If added to HLI, the rule

G | Γ ,Δ ⇒
G | Γ ⇒| Δ ⇒ (lq)

yields a calculus for Jankov logic IL + ¬A ∨ ¬¬A [16]. There are no coupled
variables since both succedents of the conclusion are empty.

• For any integers k,m � 1,

{G | Γi1 , . . . , Γim ,Σ ⇒ Π}i1,...,im�n

G | Γ1, . . . , Γn,Σ ⇒ Π
(knotnm)

is a structural analytic hypersequent5 rule. If added to HFL⊥
e , it characterizes

the logic Thm(FL⊥
e ) + A ∗ . . . ∗A� �� �

n times

→ A ∗ . . . ∗A� �� �
m times

[28]. The variables Σ and Π

are coupled.

We have the following theorem of [17]:

5Here the hypersequent structure is not needed, that is, we might as well omit G | and add the resulting
analytic structural sequent rule to FL⊥

e .
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Theorem 2.9 (Ciabattoni, Galatos and Terui 2008)

Every extension of HFL⊥
e by analytic structural hypersequent rules satisfies the cut

elimination theorem.

Let us call a logic hyper-amenable if it is captured by a hypersequent calculus HFL⊥
e∗ +R

where R is a set of analytic structural hypersequent rules. [17] contains a syntactic crite-
rion for an axiomatic extension FL⊥

e∗+A to be hyper-amenable based on the substructural
hierarchy: Let P0 = N0 = V and inductively define classes of formulas as follows:

Pn+1 := 1 | ⊥ | Nn | Pn+1 ∨ Pn+1 | Pn+1 ∗ Pn+1

Nn+1 := 0 | � | Pn | Nn+1 ∧Nn+1 | Pn+1 → Nn+1

Then any axiomatic extension FL⊥
ew + A where A ⊆ P3 is hyper-amenable [17]. More-

over the analytic structural hypersequent rules witnessing hyper-amenability can be
computed from the set A. A similar statement holds for axiomatic extensions of FL⊥

e ,
but the hierarchy has to be slightly adapted. For our work the details of [17] do not
matter much, and the only thing which henceforth will be used is the definition of
analytic structural hypersequent rules and Theorem 2.9.

We can now formally state our main result, which will be proved in Section 2.6.

Theorem

Every hyper-amenable axiomatic extension of Thm(FL⊥
e∗) is multiset-bounded.

Next, we come to the definition of a disjunction form. We first assign to every multiset-
variable Γ a new propositional variable Γ̂ . Every instantiation σ of the rule (r) can then
be extended to a variable substitution σ̂ by setting

σ̂(Γ̂) := �σ(Γ)

where �{A1, . . . ,An} := A1 ∗ . . . ∗ An and �∅ := 1 (as in the case of the
�

notation, we
implicitly use the fact that ∗ is associative and commutative). Finally we will use the
following notation # for adding a formula to the antecedent of a sequent:

A#(Γ ⇒ Π) := (Γ ,A ⇒ Π)

Definition 2.10 (Disjunction form)

Let an analytic structural hypersequent rule (r) be given as in Definition 2.7, and
let {Γi | i ∈ I} be an enumeration of all multiset-variables occurring in the active
components of (r). The formula A1 ∨ . . . ∨ An containing only variables Γ̂i (i ∈ I)
is called a disjunction form of (r) over FL⊥

e∗ if the following are satisfied:
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(soundness) A1 ∨ . . . ∨An is a theorem of HFL⊥
e∗ + (r);

(splitting) For every instantiation σ of (r) and every i � n

{σ(T1), . . . ,σ(Tl)} �FL⊥
e∗ σ̂(Ai)#σ(Si);

(weakening) Each Ai is weakenable over FL⊥
e∗, that is, �FL⊥

e∗ A ⇒ 1.

The (weakening) property is a technicality. If FL⊥
e∗ contains the weakening rule, then

every formula is weakenable. Otherwise, examples of weakenable formulas are A ∧ 1
and (A∧ 1)∨ (B∧ 1). Note that in particular any disjunction form is weakenable.

The (splitting) property bears its name because it asserts that every instance of the
hypersequent rule (r) can be split into n sequent parts. This is best explained by a
picture:

σ(T1) . . . σ(Tl)

σ(S1) | . . . | σ(Sn)
(r) �


{σ(T1), . . . ,σ(Tl)}.... FL⊥

e∗
σ̂(A1)#σ(S1) , . . . ,

{σ(T1), . . . ,σ(Tl)}.... FL⊥
e∗

σ̂(An)#σ(Sn)


In fact, in all cases of rules that we consider later on it would be possible to also split the
set {σ(T1), . . . ,σ(Tl)} into n parts, some possibly empty, so that only the premises from
the i-the part are required in the FL⊥

e∗-derivation of σ(Si)#σ̂(Ai). However, we have no
use for this property and therefore omit it.

Example 2.11

The formula (Γ̂2 → Γ̂1)∨ (Γ̂1 → Γ̂2) is a disjunction form of

G | Σ1, Γ1 ⇒ Π1 G | Σ2, Γ2 ⇒ Π2
G | Σ1, Γ2 ⇒ Π1 | Σ2, Γ1 ⇒ Π2

(com)

over LI. (Soundness) is witnessed by the HLI+ (com)-derivation

Γ̂1 ⇒ Γ̂1 Γ̂2 ⇒ Γ̂2

Γ̂2 ⇒ Γ̂1 | Γ̂1 ⇒ Γ̂2
(com)

⇒ Γ̂2 → Γ̂1 |⇒ Γ̂1 → Γ̂2
(→r)

⇒ (Γ̂2 → Γ̂1)∨ (Γ̂1 → Γ̂2)
(ec), (∨r)
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while (splitting) is witnessed by the two LI-derivations

{A ⇒ A}A∈σ(Γ2)

σ(Γ2) ⇒ σ̂(Γ̂2)
(∗r)

σ(Σ1),σ(Γ1) ⇒ σ(Π1)

σ(Σ1), σ̂(Γ̂1) ⇒ σ(Π1)
(∗l)/(1l)6

σ(Σ1),σ(Γ2), σ̂(Γ̂2 → Γ̂1) ⇒ σ(Π1)
(→l)

and
{A ⇒ A}A∈σ(Γ1)

σ(Γ1) ⇒ σ̂(Γ̂1)
(∗r)

σ(Σ2),σ(Γ2) ⇒ σ(Π2)

σ(Σ2), σ̂(Γ̂2) ⇒ σ(Π2)
(∗l)/(1l)6

σ(Σ2),σ(Γ1), σ̂(Γ̂1 → Γ̂2) ⇒ σ(Π2).
(→l)

Finally (weakening) is trivial because the weakening rule is part of LI.

2.4 Obtaining Multiset-Boundedness
In this section we set out to prove the following: If HFL⊥

e∗ + R is an extension of
HFL⊥

e∗ by analytic structural hypersequent rules and every rule in R has a disjunction
form, then—letting A denote the set of disjunction forms—we have Thm(HFL⊥

e∗+R) =
Thm(FL⊥

e∗ + A) and FL⊥
e∗ + A is multiset-bounded. In the subsequent Section 2.5 we

will confirm that indeed all analytic structural rules have a disjunction form.

The argument for establishing multiset-boundedness follows the outline in Section 2.1.
We discuss two techniques beforehand, so that later on in the main proof we can better
focus on the essential ideas.

The first simple technique will be paraphrased by ‘adding a formula, and propagating
it downwards’. We start with an HFL⊥

e∗-proof from some assumption G | S of a sequent
T :

G | S.... δ

T

We now want to add a formula A to the antecedent of S in the assumption G | S as well
as in ‘the appropriate parts’ of δ to obtain a proof of A#T from the assumption G | A#S:

G | A#S.... δ �

A#T

To make this work, we will have to require that HFL⊥
e∗ contains the rule (wl), or if not,

that at least the formula A is weakenable over FL⊥
e∗. We sketch a formal presentation of

6If σ(Γi) = ∅, then by definition σ̂(Γ̂i) = 1 and therefore the rule (1l) must be used.
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2. Bounding Axiomatic Systems via Hypersequents

the method. First, one defines the notion of a successor component in an HFL⊥
e∗-proof as

follows: The successor component of a principal component in the premises of a rule
instance is the principal component in the conclusion, and the successor component of
a side component is the corresponding side component in the conclusion. A component
is a descendant of another component if they are related by the transitive reflexive closure
of the successor relation. Then as a first approximation δ � should be like δ, but with
A added into the antecedent of all successor components of S. There is an issue when
additive rules are encountered in δ, for example:

....
H | Γ ⇒ B

G | S.... δ1
H | Γ ⇒ C

H | Γ ⇒ B∧ C
(∧r)

.... δ2
T

where Γ ⇒ C is the successor component of S. If HFL⊥
e∗ contains the weakening rule,

we should proceed as follows:

....
H | Γ ⇒ B

H | Γ ,A ⇒ B
(wl)

G | A#S.... δ �
1

H | Γ ,A ⇒ C

H | Γ ,A ⇒ B∧ C
(∧r)

In absence of the weakening rule, weakenability of A permits a similar modification:

A ⇒ 1
H | Γ ⇒ B

H | Γ , 1 ⇒ B
(1l)

H | Γ ,A ⇒ B
(cut)

G | A#S.... δ �
1

H | Γ ,A ⇒ C

H | Γ ,A ⇒ B∧ C
(∧r)

Similar simple amendments have to be done when one encounters the rule (ec), and
when the successor component appears as the side component of a rule in δ.

Second, we need a generalization of the rule (∨l) which encompasses instances as the
following:

Γ ,A1
1,A2

1 ⇒ Π Γ ,A1
1,A2

2 ⇒ Π Γ ,A1
2,A2

1 ⇒ Π Γ ,A1
2,A2

2 ⇒ Π

Γ ,A1
1 ∨A1

2,A2
1 ∨A2

2 ⇒ Π

The general statement and proof goes as follows:
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2.4. Obtaining Multiset-Boundedness

Lemma 2.12

Let A1 = A1
1 ∨ . . .∨A1

n1
, . . . ,Ak = Ak

1 ∨ . . .∨Ak
nk

be a list of k disjunctive formulas,
and let Ω be the set of functions f : {1, . . . ,k} → {1, 2, . . .} satisfying f(i) � ni. Then
for any sequent S,

{{A1
f(1), . . . ,A

k
f(k)}#S | f ∈ Ω} �FL⊥

e
{A1, . . . ,Ak}#S.

Proof. By induction on k. The base case k = 1 is easy, so assume k > 1. For any fixed
f ∈ Ω we have

{{A1
p,A2

f(2) . . . ,Ak
f(k)}#S | 1 � p � n1} �FL⊥

e
{A1,A2

f(2) . . . ,Ak
f(k)}#S.

via n1-many applications of (∨l). Hence to show the Lemma, it suffices to establish that

{{A1,A2
f(2), . . . ,A

k
f(k)}#S | f ∈ Ω} �FL⊥

e
{A1,A2, . . . ,Ak}#S

and this holds by induction hypothesis.

As a side remark, the total number N of (∨l)’s used in the above proof is rather big. An
elementary calculation shows

N =

k�
j=1

j�
i=1

ni.

If all ni’s are a constant n �= 1, this is a geometric expressions with value N = nk+1−n
n−1 .

We now state and prove the main theorem of this chapter.

Theorem 2.13 (projection theorem)

Let HFL⊥
e∗ +R be an extension of HFL⊥

e∗ by analytic structural hypersequent rules
and suppose that every rule in R has a disjunction form over FL⊥

e∗. Denote this set
of disjunction forms by A. Then Thm(HFL⊥

e∗+R) = Thm(FL⊥
e∗)+A and FL⊥

e∗+A

is multiset-bounded.

Proof. We first argue that it suffices to show the following claim:

(♥) Every cutfree HFL⊥
e∗ + R-derivation δ of ⇒ F can be transformed into a

FL⊥
e∗-derivation of B1, . . . ,Bm ⇒ F where for all i � m, Bi ∈ ψms(A, F).

By Theorem 2.9 we know that every theorem of HFL⊥
e∗+R has a cutfree proof. Together

with (♥) this implies the inclusion Thm(HFL⊥
e∗ + R) ⊆ Thm(FL⊥

e∗ + A). On the other
hand, Thm(HFL⊥

e∗ + R) ⊇ Thm(FL⊥
e∗ + A) follows from the (soundness) property of

disjunction forms. Then knowing that Thm(HFL⊥
e∗+R) = Thm(FL⊥

e∗+A), (♥)describes
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2. Bounding Axiomatic Systems via Hypersequents

the property of multiset-boundedness for the extension FL⊥
e∗ +A (Definition 2.2). Here

we do not need the ∧1’s because by the definition of disjunction forms, all the Bi’s are
weakenable.

So let us prove (♥). The general strategy is to repeatedly replace instances ofR-rules in δ

by axioms in A, using the properties of disjunction forms. Since the elimination of each
R-rule will entail a duplication of parts of the derivation and hence might introduce
new instances of rules in R, we eliminate all lowermost R-rules in δ simultaneously. In
doing so, we ensure that after each reduction step, the maximal number of R-instances
on a branch in the proof—henceforth called the R-rank of the derivation—decreases,
and so the whole procedure terminates.

Let σ1(r1), . . . ,σk(rk) be the lowermost R-instances in δ. Assume σi(ri) is:

σi(G) | σi(T1) . . . σi(G) | σi(Tli)

σi(G) | σi(S1) | . . . | σ(Sni
)

σi(ri)

By assumption, there is a disjunction form Ai = Ai
1 ∨ . . . ∨ Ai

ni
∈ A for ri. Recall that

Ai is built from variables Γ̂ where Γ is a multiset-variable in the rule ri, and that the
substitution σ̂i is defined by setting σ̂i(Γ̂) := �σi(Γ).

From the subformula property of the derivation δ it follows that

(∗) every instance of an R-rule instantiates its multiset-variables with a multiset of
subformulas of F

and consequently, σ̂i(Ai) ∈ ψms(A, F). By the (splitting) property of the disjunction
form we can eliminate the instance σi(ri) by introducing a formula σ̂i(A

i
j) to the an-

tecedent of the jth principal component in the conclusion (j � ni). This gives us ni

ways of eliminating σi(ri).

Hence, in order to eliminate all lowermost instances σ1(r1), . . . ,σk(rk), we have to make
n1 · . . . · nk many choices. We may encode every such combined choice by a function in
the set

Ω := {f : {1, . . . , k} → N | ∀i (f(i) � ni)}.

We fix one f ∈ Ω and formally describe a transformation f(δ) of the original proof δ
which could be paraphrased by ‘for all i � k eliminate σi(ri) by adding σ̂i(A

i
f(i))’.

Indeed we simultaneously replace all instances σi(ri) in δ, for i � k, by

{σi(G) | σi(T1), . . . ,σi(G) | σi(Tli)}.... FL⊥
e∗

σi(G) | σ̂i(A
i
f(i))#σi(Sf(i))

σi(G) | σi(S1) | . . . | σ̂i(A
i
f(i))#σi(Sf(i)) | . . . | σ(Sni

)
(ew).

Here, the dotted line indicates theFL⊥
e∗-derivation guaranteed by the (splitting) property;

the side hypersequent σi(G) is simply appended to all sequents in this derivation. Next,
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2.5. How to Compute Disjunction Forms

the formula σ̂i(Ai,f(i)) is propagated downwards until the endsequent (for details of this
step, see the discussion preceding this proof). This propagation is done simultaneously
for all i < k. We obtain a derivation of

σ̂1(A
1
f(1)), . . . , σ̂k(A

k
f(k)) ⇒ F.

Call this derivation f(δ), and note that its R-rank is smaller than that of δ. Recall that
each disjunction form has the shape Ai = Ai

1 ∨ . . . ∨Ai
ni

To get the proof Ω(δ) of

σ̂1(A1), . . . , σ̂k(Ak) ⇒ F

we connect all the proofs f(δ) for every f ∈ Ω by repeatedly applying the (∨l)-rule to
their conclusion (see Lemma 2.12).

We already remarked that σ̂i(Ai) ∈ ψms(A, F). Furthermore, Ω(δ) still satisfies (∗)
because no new R-instances have been introduced and every R-instance of δ has either
been eliminated or left unchanged. Lastly, the R-rank of Ω(δ) equals the maximal R-
rank of one of the f(δ)’s, and therefore is smaller than the R-rank of δ. It follows that we
can repeat the above transformation to eventually obtain a R-free derivation Ω∗(δ) of

B1, . . . ,Bm ⇒ F

where each Bi ∈ ψms(A, F). By Lemma 1.12, Ω∗(δ) can be reduced to a proof in FL⊥
e∗.

This concludes the proof of (♥), and hence the proof of the projection theorem.

2.5 How to Compute Disjunction Forms
Given a hypersequent system HFL⊥

e∗ + (r) and a disjunction form for (r), the projection
theorem (Theorem 2.13) tells us that the corresponding axiomatic extension is multiset-
bounded. In this section we show that such a disjunction form can indeed always be
computed from an analytic structural hypersequent rule.

If one is interested only in one specific calculus, one can simply guess a disjunction
form instead of using the somewhat cumbersome algorithm presented here. In this
way, we have seen for example that (Γ̂2 → Γ̂1)∨ (Γ̂ → Γ̂2) is a disjunction form of (com)
(see Example 2.11), and thus we conclude by the projection theorem that LI + (lin) is
multiset-bounded.

We have already mentioned that [17] contains an algorithm turning a certain class of
axioms A into equivalent analytic structural rules RA. One can prove that A is indeed a
disjunctive form of its corresponding rule RA. However the proof of this requires quite
a thorough understanding of the algorithm A �→ RA (which is not easy to invert). We
will take a different route here and construct a disjunction form directly from RA, using
only the shape of the rule as input. Thereby we avoid going into the details of [17].
Nevertheless, what we are doing can be seen as an ‘inversion’ of the method presented
there.
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2. Bounding Axiomatic Systems via Hypersequents

The price we have to pay for this direct approach is that we cannot prove any more that
the disjunction form constructed from RA is indeed A. Instead, we may end up with a
syntactically different, but nevertheless equivalent formula A �.

In this section we occasionally write A∧1 for A∧ 1 for brevity. Let an analytic structural
hypersequent rule (r) be given.

As the first step, we select one multiset-variable occurrence in the antecedent of each
premise of (r). In a premise with non-empty succedent, we shall require that the selected
variable occurrence be the one which is coupled with the succedent variable. We call
any selected variable occurrence in the premises of (r), as well as the unique occurrence
of the same variable in the conclusion, a distinguished variable occurrence and write it in
boldface.

Define a context functionC(·)which assigns to each distinguished variable Γ the collection
C(Γ) of all multisets of variables which occur together with the highlighted occurrences
of Γ in the antecedent of a premise.

Example 2.14

Consider again the rules from Example 2.8.

• In the communication rule, we select the coupled variables in the antecedent
as distinguished:

G | Σ1, Γ1 ⇒ Π1 G | Σ2, Γ2 ⇒ Π2
G | Σ1, Γ2 ⇒ Π1 | Σ2, Γ1 ⇒ Π2

(com)

We have C(Σ1) = {{Γ1}} and C(Σ2) = {{Γ2}}.

• In the (lq) rule
G | Γ ,Δ ⇒

G | Γ ⇒| Δ ⇒ (lq)

we select Δ and have C(Δ) = {{Γ }}; Alternatively, we could also choose Γ as
distinguished.

• In the rule (knotnm)

{G | Γi1 , . . . , Γim ,Σ ⇒ Π}i1,...,im�n

G | Γ1, . . . , Γn,Σ ⇒ Π
(knotnm)

the coupled variable Σ is selected and we have

C(Σ) = {{Γi1 , . . . , Γim} | i1, . . . , im � n}.

We now switch to a rather dense notation for analytic structural hypersequent rules
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2.5. How to Compute Disjunction Forms

in which premises are grouped according to the type of distinguished variable they
contain:

1. Distinguished variable occurrences which are coupled will be denoted by the letter
Σ.

2. Distinguished variable occurrences which are associated to a conclusion compo-
nent with non-empty succedent will be denoted by the letter Ψ.

3. Distinguished variable occurrences which are associated to a conclusion compo-
nent with empty succedent will be denoted by the letter Δ.

(We already followed this convention in Example 2.14.) Furthermore, conclusion com-
ponents are grouped into those with non-empty and those with empty succedent. Writ-
ing [Si]i∈I for the hypersequent whose components are Si for each i ∈ I, the resulting
notation of an analytic structural hypersequent rule is:

G | [C,Σi ⇒ Πi]
i∈I
C∈C(Σi)

G | [C,Ψ ⇒]i∈I,Ψ∈�Ψi

C∈C(Ψ) G | [C,Δ ⇒]
j∈J,Δ∈�Δj

C∈C(Δ)

G | [Ci, �Ψi,Σi ⇒ Πi]i∈I | [Cj, �Δj ⇒]j∈J

We call this the association form. Some further words of explanation are required.

• I and J are disjoint index sets; I lists the principal conclusion components with
nonempty succedent, and J those with empty succedent. Each of I, Jmay be empty,
but not both at the same time.

• The symbols �Δj and �Ψi denote multisets of distinguished Ψ- and Δ-occurrences
respectively. Both can be empty; In particular, there might be a conclusion com-
ponent without any distinguished variable.

• Ci andCj are further multisets of non-distinguished variable occurrences (possibly
empty).

For a multiset S = {Γ1, . . . , Γn} of multiset-variables, let Ŝ denote the multiset {Γ̂1, . . . , Γ̂n}
of propositional variables.

Definition 2.15 (Form(i))
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2. Bounding Axiomatic Systems via Hypersequents

For a rule (r) in association form, let

Form(i) := �Ĉi ∗
�
Ψ∈�Ψi

Ψ̂∧ (¬
	

C∈C(Ψ)

� Ĉ)

 →
	

C∈C(Σi)

�Ĉ

Form(j) := ¬

�Ĉj ∗
�
Δ∈�Δj

Δ̂∧ (¬
	

C∈C(Δ)

� Ĉ)


Finally, let Form(r) :=



k∈I∪J Form(k)∧1.

We will shortly prove that Form(r) is a disjunction form of (r). Note that not all
multiset-variables of (r) appear as Γ̂ in Form(r). In particular, there are only antecedent
variables.

Example 2.16

We calculate Form(r) for the rules from Example 2.14.

• In the case of
G | Σ1, Γ1 ⇒ Π1 G | Σ2, Γ2 ⇒ Π2
G | Σ1, Γ2 ⇒ Π1 | Σ2, Γ1 ⇒ Π2

(com)

We have J = ∅ and |I| = 2, say I = {1, 2}. Moreover C1 = {Γ2} and C2 = {Γ1} and
�Ψ1 = �Ψ2 = ∅ and so we get

Form(1) = Γ̂2 → Γ̂1

Form(2) = Γ̂1 → Γ̂2

and therefore Form(com) = (Γ̂2 → Γ̂1)∧1 ∨ (Γ̂1 → Γ̂2)∧1.

• In the case of
G | Γ ,Δ ⇒

G | Γ ⇒| Δ ⇒ (lq)

we have I = ∅ and |J| = 2, say J = {1, 2}. Moreover C1 = {Γ }, �Δ1 = ∅, C2 = ∅
and �Δ2 = {Δ} which implies

Form(1) = ¬(Γ̂ ∗ 1)
Form(2) = ¬(1 ∗ (Δ̂∧ ¬Γ̂))

and therefore lq = (¬(Γ̂ ∗ 1))∧1 ∨ (¬(1 ∗ (Δ̂∧ ¬Γ̂)))∧1.
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• In the case of
{G | Γi1 , . . . , Γim ,Σ ⇒ Π}i1,...,im�n

G | Γ1, . . . , Γn,Σ ⇒ Π
(knotnm)

we have J = ∅ and |I| = 1, say I = {1}. Moreover C1 = {Γi1 , . . . , Γim} and �Ψ1 = ∅
from which we get

Form(1) = Γ̂i1 ∗ . . . ∗ Γ̂im ∗ 1 →
	

i1,...,im�n

Γ̂i1 ∗ . . . ∗ Γ̂im

and so Form(knotnm) = (Γ̂i1 ∗ . . . ∗ Γ̂im ∗ 1 → 

i1,...,im�n Γ̂i1 ∗ . . . ∗ Γ̂im)∧1.

Proposition 2.17

Form(r) is provable in HFL⊥
e .

Proof. We explicitly construct a proof of the sequent ⇒ Form(r) by applying rules
backwards (bottom-up). Start by applying (ec) and (∨r) to obtain the hypersequent

[⇒ Form(i)∧ 1]i∈I | [⇒ Form(j)∧ 1]j∈J

By applying (∧r) to each component in the above hypersequent, we obtain a number
of premises which contain a ‘trivial’ component ⇒ 1 and are therefore provable. What
remains is the premise

[⇒ Form(i)]i∈I | [⇒ Form(j)]j∈J.

Now using the rules (∨l), (→r) and (∗l), this premise is transformed intoĈi, {Ψ̂∧ (¬
	

C∈C(Ψ)

� Ĉ) | Ψ ∈ �Ψi} ⇒
	

C∈C(Σi)

�Ĉ


i∈I

(♠)

|

Ĉj, {Δ̂∧ (¬
	

C∈C(Δ)

� Ĉ) | Δ ∈ �Δj} ⇒

j∈J

.

(♠) is an instance of the conclusion

G | [Ci, �Ψi,Σi ⇒ Πi]i∈I | [Cj, �Δj ⇒]j∈J

of (r), as described by the below substitution σ:

• σ(G) := ∅
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• For i ∈ I: σ(Σi) := ∅ σ(Πi) :=



C∈C(Σi)
�Ĉ

• For i ∈ I,Λ ∈ Ci: σ(Λ) := Λ̂

• For i ∈ I, Ψ ∈ �Ψi: σ(Ψ) := Ψ̂∧ ¬



C∈C(Ψ)�Ĉ

• For j ∈ J, Λ ∈ Cj: σ(Λ) := Λ̂

• For j ∈ J, Δ ∈ �Δj: σ(Δ) := Δ̂∧ ¬



C∈C(Δ)�Ĉ

Note that σ is well-defined, as every variable occurs only once in the conclusion of (r).
We now apply σ(r) backwards to (♠). To conclude the proof, it suffices to derive each
premise of σ(r) in HFL⊥

e .

1. First, for i ∈ I and C ∈ C(Σi) consider the premise

C,Σi ⇒ Πi

of (r). Under σ this becomes

σ(C) ⇒
	

C∈C(Σi)

�Ĉ

Now apply (∨r) backwards to first obtain σ(C) ⇒ �Ĉ, and then apply (∗r) to
obtain, for every Λ ∈ C, the premise

σ(Λ) ⇒ Λ̂. (2.1)

We now make a case distinction on where the variable Λ occurs in the conclusion
of (r). That it does occur there, exactly once, is guaranteed by the properties
analyticity and linear conclusion of (r). By the coupling property, we can exclude
the case that Λ is one of the Σi’s. If Λ occurs in some Ci � or Cj, then by definition
of σ we have σ(Λ) = Λ̂. If on the other hand Λ occurs in �Ψi � or �Δj, then σ(Λ) =
Λ̂∧ ¬



C∈C(Λ)�Λ̂. Clearly in both cases (2.1) is provable.

2. For i ∈ I,Ψ ∈ �Ψi and C ∈ C(Ψ), the premise

C,Ψ ⇒
becomes

σ(C), Ψ̂∧ ¬
	

C∈C(Ψ)

�Ĉ ⇒

under σ, from which one obtains σ(C) ⇒ �Ĉ by applying backwards (∧l), (¬l)
and (∨r), and then by further application of (∗r) one obtains for every Λ ∈ C the
sequent

σ(Λ) ⇒ Λ̂.
By the same case distinction as in the first case, this sequent is provable.
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3. The provability of the premise C,Δ ⇒ where j ∈ J,Δ ∈ �Δj and C ∈ C(Δ) under σ
is shown as in the second case.

Proposition 2.18

Form(r) satisfies the (splitting) property of disjunction forms (Definition 2.10).

Proof. Let σ(r) be an instance of (r). We have to show that the σ-instance of any principal
conclusion component, appended with the appropriate σ̂-instance of formula Form(r)∧1
or Form(r)∧1, is provable from σ-instances of the principal premise components of (r).

For i ∈ I we first demonstrate the provability of the sequent

σ(Ci),σ(�Ψi),σ(Σi), σ̂(Form(r)∧1) ⇒ σ(Πi). (2.2)

Recall that for a multiset-variable Γ , the value σ(Γ̂) is defined as �σ(Γ). We therefore
have for i ∈ I

σ̂(Form(r)) = �σ(Ci) ∗
�
Ψ∈�Ψi

�σ(Ψ)∧ (¬
	

C∈C(Ψ)

� σ(C))

 →
	

C∈C(Σi)

�σ(C)

and for j ∈ J

σ̂(Form(r)) = ¬

�σ(Cj) ∗
�
Δ∈�Δj

�σ(Δ)∧ (¬
	

C∈C(Δ)

�σ(C))

 .

The derivations witnessing the splitting property are pictured in Figures 2.1 and 2.2.
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σ̂(Form(r)) = �σ(Ci) ∗
�

Ψ∈�Ψi

�
�σ(Ψ)∧ (¬



C∈C(Ψ) � σ(C))

�
→ 


C∈C(Σi)
�σ(C)

....
σ(Ci) ⇒ �σ(Ci)

....
{σ(Ψ) ⇒ �σ(Ψ)}Ψ∈�Ψi

premise component of σ(r)
{σ(Ψ),σ(C) ⇒}

Ψ∈�Ψi,C∈C(Ψ)

{σ(Ψ),�σ(C) ⇒}
Ψ∈�Ψi,C∈C(Ψ)

(∗l)�
σ(Ψ),



C∈C(Ψ)�σ(C) ⇒



Ψ∈�Ψi

(∨l)

�
σ(Ψ) ⇒ ¬



C∈C(Ψ)�σ(C)



Ψ∈�Ψi

(¬r)

�
σ(Ψ) ⇒ �σ(Ψ)∧ (¬



C∈C(Ψ)�σ(C))



Ψ∈�Ψi

(∧r)

σ(�Ψi) ⇒
�

Ψ∈�Ψi

�
�σ(Ψ)∧ (¬



C∈C(Ψ)�σ(C))

� (∗r)

σ(Ci),σ(�Ψi) ⇒ �σ(Ci) ∗
�

Ψ∈�Ψi

�
�σ(Ψ)∧ (¬



C∈C(Ψ) � σ(C))

� (∗r)

premise component of σ(r)
{σ(Σi),σ(C) ⇒ σ(Πi)}C∈C(Σi)

{σ(Σi),�σ(C) ⇒ σ(Πi)}C∈C(Σi)

(∗l)

σ(Σi),



C∈C(Σi)
�σ(C) ⇒ σ(Πi)

(∨l)

σ(Ci),σ(�Ψi),σ(Σi), σ̂(Form(r)) ⇒ σ(Πi)
(→l)

σ(Ci),σ(�Ψi),σ(Σi), σ̂(Form(r))∧ 1 ⇒ σ(Πi)
(∧l)

Figure 2.1: The (splitting) property for i ∈ I
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σ̂(Form(r)) = ¬
�
�σ(Cj) ∗

�
Δ∈�Δj

�
�σ(Δ)∧ (¬



C∈C(Δ)�σ(C))

��

....
σ(Cj) ⇒ �σ(Cj)

....
{σ(Δ) ⇒ �σ(Δ)}Δ∈�Δi

premise component of σ(r)
{σ(Δ),σ(C) ⇒}

Δ∈�Δi,C∈C(Δ)

{σ(Δ),�σ(C) ⇒}
Δ∈�Δi,C∈C(Δ)

(∗l)�
σ(Δ),



C∈C(Δ)�σ(C) ⇒



Δ∈�Δi

(∨l)

�
σ(Δ) ⇒ ¬



C∈C(Δ)�σ(C)



Δ∈�Δi

(¬r)

�
σ(Δ) ⇒ �σ(Δ)∧ (¬



C∈C(Δ)�σ(C))



Δ∈�Δi

(∧r)

σ(�Δi) ⇒
�

Δ∈�Δi

�
�σ(Δ)∧ (¬



C∈C(Δ)�σ(C))

� (∗r)

σ(Cj),σ(�Δj) ⇒ �σ(Cj) ∗
�

Δ∈�Δj

�
�σ(Δ)∧ (¬



C∈C(Δ)�σ(C))

� (∗r)

σ(Cj),σ(�Δj), σ̂(Form(r)) ⇒
(¬l)

σ(Cj),σ(�Δj), σ̂(Form(r))∧ 1 ⇒
(∧l)

Figure 2.2: The (splitting) property for j ∈ J
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2. Bounding Axiomatic Systems via Hypersequents

Theorem 2.19 (existence of disjunction forms)

For every analytic structural hypersequent rule (r), the formula Form(r) is a dis-
junction form of (r) over FL⊥

e .

Proof. In Propositions 2.17 and 2.18 we have established the properties (soundness) and
(splitting) of Form(r). The remaining property (weakening) holds because each disjunct
of Form(r) is of the form A∧ 1. So Form(r) is a disjunction form of (r) over FL⊥

e .

2.6 Putting Everything Together

We now combine the results of Sections 2.4 and 2.5.
Theorem 2.20

Every hyper-amenable axiomatic extension of Thm(FL⊥
e∗) is multiset-bounded.

Proof. Let L be a hyper-amenable extension captured by HFL⊥
e∗ + R. By Theorem 2.19,

each (r) ∈ R possesses a disjunction form Form(r). Hence letting A be the set of all
formulas Form(r)where (r) ∈ R, the projection theorem tells us that L = Thm(FL⊥

e∗)+A

and that FL⊥
e∗ +A is multiset-bounded.

Theorem 2.21

Every hyper-amenable axiomatic extension of Thm(FL⊥
ecm) (FL⊥

ecm = FL⊥
ec plus

mingle) is set-bounded.

Proof. Follows from Theorem 2.20 and Proposition 2.6.

Theorem 2.22

Every hyper-amenable axiomatic extension of Thm(FL⊥
ecm) is decidable in doubly

exponential time.

Proof. By Theorem 2.21 and (the proof of) Proposition 2.5, every hyper-amenable exten-
sion L of Thm(FL⊥

ecm) can be reduced to Thm(FL⊥
ecm), where the reduction exponen-

tially increases the formula size. Since Thm(FL⊥
ecm) is itself decidable in exponential

time (Lemma 2.23 below), this yields the doubly exponential upper bound for L.
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2.7. More on Boundedness

We include below a proof sketch of the exponential time upper bound for FL⊥
ecm which

we could not find in the literature. The precise complexity of FL⊥
ecm we do not know;

But it must be at least PSPACE since intuitionistic logic can be reduced to it.7

Lemma 2.23

Thm(FL⊥
ecm) is decidable in exponential time.

Proof (outline). Due to the presence of contraction and mingle, sequents in FL⊥
ecm can

be seen as structures Γ ⇒ Π where Γ is a set of formulas, instead of a multiset. Now
given a formula F to be proved, the size of the collection Ω of set-based sequents Γ ⇒ Π

built from subformulas of F is exponential in the size of F. So starting from the initial
sequents in Ω, we can systematically apply rules of FL⊥

ecm to obtain new derivable
sequents in Ω. After at most |Ω| many steps, this process must halt, and then we can
check if ⇒ F is contained in the sequents constructed so far.

Similarly to Theorem 2.22 we can use the PSPACE-decidability of IL to obtain the
following:

Theorem 2.24

Every hyper-amenable intermediate logic is decidable in exponential space.

2.7 More on Boundedness
In this section we compile some further results related to the notion of boundedness in
loose order.

2.7.1 Sequent Calculi With Bounded Cuts

There is another proof-theoretic account of the projection theorem which is of conceptual
interest.

Recall that FL⊥
e∗+A is the sequent calculus obtained by adding⇒ A as an initial sequent

for every instance A of an axiom from A. We already remarked that FL⊥
e∗ + A never

satisfies the cut elimination theorem but in trivial cases. Let us call a cut in FL⊥
e∗ + A

multiset-bounded if it is of the form

⇒ A Γ ,A ⇒ Π

Γ ⇒ Π
(cut)

where A ∈ ψms(A, Γ ⇒ Π), that is, A arises by substituting variables in some axiom
from A with fusions of subformula occurring in Γ ⇒ Π. Furthermore, call FL⊥

e∗ + A a
7The reduction replaces every subformula A of a formula F by A∧ 1.
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2. Bounding Axiomatic Systems via Hypersequents

multiset-bounded sequent calculus if every theorem of FL⊥
e∗ + A has a proof in which all

cuts are multiset-bounded, and initial sequents ⇒ A from A occur only as left premises
of such cuts.

Theorem 2.25

Every hyper-amenable axiomatic extension of Thm(FL⊥
e∗) has a multiset-bounded

sequent calculus.

Proof. Let L be a hyper-amenable axiomatic extension of Thm(FL⊥
e∗), and let A be the

set of disjunction forms for the hypersequent rules capturing L. By the (proof of the)
projection theorem, a formula F is a theorem of L if and only if for some A1, . . . ,An ∈
ψms(A, F), the formula A1 ∗ . . . ∗An → F is a theorem of FL⊥

e∗. The latter is equivalent
to the provability of the sequent A1, . . . ,An ⇒ F in FL⊥

e∗. Now extend such a proof
using cuts on A1, . . . ,An to obtain ⇒ F. Since Ai ∈ ψms(A, F), each such cut is multiset-
bounded. From this it follows that FL⊥

e∗ + A is a multiset-bounded sequent calculus
for L.

In other words, while cut elimination fails in FL⊥
e∗ + A, often a reasonably strong cut

reduction is possible. We will come back to this point in the section on open questions.

2.7.2 A Polarity Restriction

In the proof of the projection theorem we have used the following fact: In a cutfree
derivation of⇒ F inHFL⊥

e∗+R the multiset-variables of everyR-instance are instantiated
by a multiset of subformulas of F. We can strengthen this statement by taking the polarity
of formulas into account as follows. By a simple induction, one sees that every cutfree
derivation of⇒ F inHFL⊥

e∗+R has the property that antecedents contain only negative8
subformulas of F, whereas succedents contain only positive subformulas of F.

It follows that in each analytic structural rule instance in such a proof multiset-variables
in the antecedent are instantiated with fusions of negative subformulas of F.

Let us introduce a new bounding function ψ−
ms which maps (A, F) to all instances of A-

axioms where variables are substituted by fusions of negative subformulas of F. Keeping
in mind the fact that the disjunction form Form(r) contains only multiset-variables Γ̂

where Γ occurs in the antecedents of (r), we may observe that the proof of the projection
theorem establishes the following slightly stronger claim:

Theorem 2.26

Every hyper-amenable extension of Thm(FL⊥
e∗) is ψ−

ms-bounded.

A similar strengthening of Theorem 2.21 holds as well.
8For the definition of negative and positive subformula occurrences, see Section 1.1.
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2.7. More on Boundedness

2.7.3 Formula Boundedness from Single-Formula Variants

Theorem 2.21 establishes set-boundedness for a large class of logics above FL⊥
ecm. We

now turn to the stronger property of formula-boundedness. The discussion in this
section is confined to extensions of FL⊥

ecw = LI, that is, to intermediate logics.

One way of obtaining formula-boundedness for hyper-amenable intermediate logics is
based on the observation that we can sometimes replace hypersequent rules by single-
formula variants thereof. Compare for example

G | Σ1, Γ1 ⇒ Π1 G | Σ2, Γ2 ⇒ Π2
G | Σ1, Γ2 ⇒ Π1 | Σ2, Γ1 ⇒ Π2

(com)

with
G | Σ1,A1 ⇒ Π1 G | Σ2,A2 ⇒ Π2
G | Σ1,A2 ⇒ Π1 | Σ2,A1 ⇒ Π2

(scom),

or
G | Δ, Γ ⇒

G | Δ ⇒| Γ ⇒ (lq) with
G | A, Γ ⇒

G | A ⇒| Γ ⇒ (slq).

The latter rule (lq) can be simulated by (slq) as follows (Δ = {A1, . . . ,An}):

G | A1, . . . ,An, Γ ⇒
G | A1 ⇒| A2, . . . ,An, Γ ⇒ (slq)

.... (slq)

G | A1 ⇒| . . . | An ⇒| Γ ⇒
G | A1, . . . ,An ⇒| . . . | A1 . . . ,An ⇒| Γ ⇒ (wl)

G | A1, . . . ,An ⇒| Γ ⇒ (ec)

Note that (cut) is not used. It follows that LI + (slq) and LI + (lq) prove the same
theorems, and that the cut rule is admissible in LI+ (slq).

Something similar (but more complicated) works for the rule (com):

Proposition 2.27

The rule
G | Σ1, Γ1 ⇒ Π1 G | Σ2, Γ2 ⇒ Π2
G | Σ1, Γ2 ⇒ Π1 | Σ2, Γ1 ⇒ Π2

(com)

is cutfree derivable in HLI+ (scom).

Proof. By induction on n := |Γ1| + |Γ2|. We will omit the context variable G since it does
not play a role. If Γ1 = ∅ or Γ2 = ∅, then the instance of (com) can be derived using
weakenings. Let us therefore assume that Γ1 and Γ2 are non-empty, that is, Γ1 = Γ �

1 ∪ {A1}
and Γ2 = Γ �

2 ∪ {A2}. For the induction step, we proceed as follows (principal formulas in
(com) and (scom) are underlined):
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2. Bounding Axiomatic Systems via Hypersequents

Σ1, Γ �
1 ,A1 ⇒ Π1 Σ2, Γ2 ⇒ Π2

Σ1, Γ2,A1 ⇒ Π1 | Σ2, Γ �
1 ⇒ Π2

I.H.
Σ2, Γ �

2 ,A2 ⇒ Π1 Σ1, Γ1 ⇒ Π1

Σ2, Γ1,A2 ⇒ Π2 | Σ1, Γ �
2 ⇒ Π1

I.H.

Σ1, Γ2,A2 ⇒ Π2 | Σ2, Γ �
1 ⇒ Π2 | Σ2, Γ1,A1 ⇒ Π2 | Σ1, Γ �

2 ⇒ Π1
(scom)

Σ1, Γ2 ⇒ Π2 | Σ2, Γ �
1 ⇒ Π2 | Σ2, Γ1 ⇒ Π2 | Σ1, Γ �

2 ⇒ Π1
(cl)

Σ1, Γ2 ⇒ Π1 | Σ2, Γ1 ⇒ Π2
(wl), (ec)

For the instance of (cl) in the proof above, note that A1 ∈ Γ1 and A2 ∈ Γ2.

As a side remark, the number of (scom)’s needed to simulate one (com) with the above
strategy is exponential in |Γ1|+ |Γ2|.

The point of all of this is the following: It is easy to see that the formula (A2 →
A1) ∨ (A1 → A2) can act as a disjunction form of (scom) in the same way that (Γ̂2 →
Γ̂1) ∨ (Γ̂1 → Γ̂2) acts as a disjunction form of (com). So if we run the argument in
Section 2.4 starting from cutfree proofs inHLI+(scom) instead of proofs inHLI+(com),
we obtain a procedure to transform hypersequent proofs of ⇒ F into LI-proofs of

(A1
2 → A1

1)∨ (A1
1 → A1

2), . . . , (An
2 → An

1 )∨ (An
1 → An

2 ) ⇒ F

where each Ai
j is now a subformula of F instead of a conjunction of subformulas of F.

Hence the method applied to single-formula variants yields formula-boundedness:

Proposition 2.28

The extensions LI+ (lin) and LI+ (lq) are formula-bounded.

Note that in both cases the single-formula variant still contains multiset-variables. What
is important is that we can associate a disjunction form which consists of formula-
variables only.

Unfortunately we do not know of any general criterion telling us when a structural
rule can be replaced by a single-formula version. We may observe that the analogue of
Proposition 2.27 fails in the substructural setting:

Proposition 2.29

The rule (com) is not admissible in the cutfree fragment of HFL⊥
ew + (scom).

Proof. It is easy to check that the formula F = (p → q ∗ r)∨ (q → (r → p)) is derivable
in HFL⊥

ew + (com). But there is no cutfree proof of F in HFL⊥
ew + (scom). Indeed,

let us assume towards a contradiction that such a cutfree proof δ exists, and assume
furthermore without loss of generality that the number of (∗r)’s is minimal in δ. There
must be at least one (∗r), because otherwise we could replace q ∗ r everywhere in δ by
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some new variable t, yielding a proof of the invalid (p → t)∨(q → (r → p)). Now focus
on the active conclusion component Γ ⇒ Π of one instance of (∗r) in δ. By analyticity,
we must have Π = {q ∗ r}. If we follow the path of the component Γ ⇒ Π down to
the endsequent ⇒ F, we can observe that we must encounter the component p ⇒ q ∗ r
at some point. Now the only rules which can be applied on this path are (wl), (ec),
(ew) and (scom). Crucially, due to analyticity the principal formulas in (scom) must
be negative subformulas of F, and those are only atoms: p,q, r. From this it follows
that Γ is either empty or consists of a single variable only. In any case, since (∗r) is a
multiplicative rule, one active premise component of the focused instance of (∗r) will
have an empty antecedent. Without loss of generality, let us assume it is the left premise.
Then the instance of (∗r) looks like this:

.... δ1
G |⇒ q

.... δ2
G | Γ ⇒ r

G | Γ ⇒ q ∗ r (∗r)
....

⇒ F

Since no rule is applicable to ⇒ q in δ1, the component must have been introduced by
(ew). But then we can remove it altogether from δ1, thus creating a proof with one less
(∗r): .... δ �

1
G

G | Γ ⇒ q ∗ r (ew)
....

⇒ F

This contradicts the minimality assumption on δ.

2.7.4 Formula Boundedness via Propagation Properties

Here we discuss another way of obtaining formula-boundedness from set-boundedness.

Let A(B/p) denote the formula obtained from A by substituting every occurrence of the
propositional variable p with the formula B.

Definition 2.30

A formula A has the Ω-propagation property for a set Ω of binary connectives if for
variables p,q, r and every 
 ∈ C,

�LI A(q/p),A(r/p) ⇒ A(q 
 r/p).

Note that this condition is trivially satisfied if p does not occur in A.

55



2. Bounding Axiomatic Systems via Hypersequents

Lemma 2.31

Let LI + A be a set-bounded extension. If every A ∈ A has the {∧}-propagation
property, then LI+A is formula-bounded.

Proof. Suppose that �LI+A F. By set-boundedness, there exist A1, . . . ,An such that
�LI A1, . . . ,An ⇒ F and each Ai is a set-bounded instance, that is, a substitution of
the propositional variables of some formula in A by conjunctions of subformulas of F.
By repeatedly using the {∧}-propagation property, some sequent �LI A �

1, . . . ,A �
m ⇒ F

is derivable such that each A �
i is a substitution of the propositional variables of some

formula in A by subformulas of F.

Showing that an axiom has the {∧}-propagation property can be tedious in practice, as
many checks need to be done. Consider for example the Bck axiom (Kripke models
with k world) p0 ∨ (p0 → p1) ∨ . . . ∨ (p0 ∧ . . . ∧ pk−1 → pk). In the remainder of this
section we introduce a sufficient criterion for {∧}-propagation which is easier to check.

LetUp denote the set of formulas that possess the {∧}-propagation property with respect
to the variable p:

Up = {A | ∀q, r ∈ V �LI A(q/p),A(r/p) ⇒ A(q∧ r/p)}

We then have the following.

Lemma 2.32

If A ∈ Up for every variable p occurring in A, then A has the {∧}-propagation
property.

We now fix one variable p ∈ V and write A(B) for A(B/p). Define the following sets of
formulas:

U∗
p ={A | ∀q, r ∈ V. �LI A(q) ⇒ A(q∧ r)}

Dp ={A | ∀q, r ∈ V. �LI A(q∧ r) ⇒ A(q)∧A(r)}

Np ={A | p occurs only negatively in A}

As a mnemonic, U stands for ‘upwards propagation’ (going from simple instances up to
conjunctive instances), U∗ for ‘strong upwards propagation’, D stands for ‘downwards
propagation’ (going from conjunctive instances down to simple instances), and of course
N stands for negative. For sets M,N of formulas and a binary connective 
, define M
N
to be the set {A 
 B | A ∈ M,B ∈ N}.
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Lemma 2.33

The following holds:

1. p ∈ Up

2. If p does not occur in A, then A ∈ U∗
p ∩Up ∩Dp

3. Np ⊆ U∗
p

4. Dp → Up ⊆ Up

5. U∗
p ∨Up ⊆ Up

Proof. (1) Since �LI q, r ⇒ q ∧ r. (2) holds trivially. (3) Let A ∈ Np, and let δ be the
standard proof ofA(q) ⇒ A(q). Start constructing a proof δ � ofA(q) ⇒ A(q∧r) bottom
up by imitating the proof steps in δ. Whenever the formula q∧ r appears isolated in δ �,
then this is in an antecedent because A ∈ Np. We can thus apply a cut with q∧ r ⇒ q

to (again, reading the proof bottom up) replace q∧ r with q. Then copy the remaining
steps of δ. (4) Let A ∈ Dp, B ∈ Up and consider the following derivation showing that
A → B ∈ Up:

since A ∈ Dp

A(q∧ r) ⇒ A(q)

since A ∈ Dp

A(q∧ r) ⇒ A(r)
since B ∈ Up

B(q),B(r) ⇒ B(q∧ r)

B(q), (A → B)(r),A(q∧ r) ⇒ B(q∧ r)
(→l)

(A → B)(q), (A → B)(r),A(q∧ r) ⇒ B(q∧ r)
(→l)

(A → B)(q), (A → B)(r) ⇒ (A → B)(q∧ r)
(→r)

(5) Let A ∈ U∗
p and B ∈ Up. Start constructing a proof of (A ∨ B)(q), (A ∨ B)(r) ⇒

(A ∨ B)(q ∧ r) by bottom-up applying the rule (∨l) twice. We then have to check
provability of the following four sequents:

(i) A(q),A(r) ⇒ (A∨ B)(q∧ r)

(ii) A(q),B(r) ⇒ (A∨ B)(q∧ r)

(iii) B(q),A(r) ⇒ (A∨ B)(q∧ r)

(iv) B(q),B(r) ⇒ (A∨ B)(q∧ r)

Now (i)–(iii) are provable since A ∈ U∗
p, and (iv) is provable since B ∈ Up.

Taken together, Lemmas 2.32 and 2.33 provide a convenient sufficient condition for the
{∧}-propagation property. Here are two examples.
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Example 2.34

The Bck axiom p0 ∨ (p0 → p1) ∨ . . . ∨ (p0 ∧ . . . ∧ pk−1 → pk) enjoys the {∧}-
propagation property: Let i � k and consider the disjunct (p0 ∧ . . . ∧ pi−1) → pi.
Its premise does not contain pi and so by Lemma 2.33(2) it belongs to Dp. Its
conclusion belongs to Up by Lemma 2.33(1). So by Lemma 2.33(4), the disjunct is
in Up. Since p occurs only negatively in the remainder of the axiom, this remainder
is in U∗

p by Lemma 2.33(3) and so the whole axiom Bck is in Up by Lemma 2.33(5).
By Lemma 2.32 we conclude that Bck satisfies ∧-propagation.

Example 2.35

Consider the linearity axiom lin = (p → q) ∨ (q → p). To show that lin ∈
Up, we observe that (p → q) ∈ U∗

p by Lemma 2.33(3) and (q → p) ∈ Up by
Lemmas 2.33(1,2,4). So lin ∈ Up by Lemma 2.33(5). By symmetry lin ∈ Uq, and so
by Lemma 2.32, lin has the {∧}-propagation property. From this and Lemma 2.31
we obtain that again the standard axiomatization for Gödel logic LI + (p → q) ∨
(q → p) is formula-bounded (we already established this by a different method in
Section 2.7.3).

2.7.5 Variable-Boundedness for Intermediate Logics

We finally come to variable-boundedness, the strongest boundedness condition on
axiomatic extensions that we considered. It became known to us during our research
that variable-boundedness for intermediate logics was investigated under the name
simple substitution property in [30] and subsequently in the series of papers [49, 50, 51].
In this short section we report on some of the results in the area (suitably adapted to
our notation). There are no results of our own.

We first remark that boundedness properties may depend on a specific axiomatisation:
Alternative axiomatisation of the same logic may not have the same property. For
example, as an extension of IL, Gödel logic G is not variable-bounded with respect
to the standard axiomatization (p → q) ∨ (q → p). A simple counterexample is the
formula ¬p ∨ ¬¬p which is a theorem of Gödel logic, but clearly LI does not prove
(p → p) ∨ (p → p) ⇒ ¬p ∨ ¬¬p. However, as shown in [49], a variable-bounded
axiomatisation of Gödel logic is LI+ (p → q)∨ ((p → q) → p) + (¬p∨ ¬¬p).

A simple sufficient criterion for variable-boundedness is presented in [30] using a prop-
agation property. We reformulate the proof there to our setting.

Lemma 2.36

The extension LI + A is variable-bounded if every A ∈ A has the {∧,∨,→}-
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propagation property.

Proof. If �LI+A (⇒ F) for some formula F, then �LI A1, . . . ,An ⇒ F for some instances
Ai of axioms in A. By repeatedly applying the {∧,∨,→}-propagation property of the
axioms, we can replace the list A1, . . . ,An of assumptions by a list of atomic instances
A �

1, . . . ,A �
m. If any variable occurring in some A �

i does not occur in F, we can uniformly
rename such a variable with one that does occur in F (this is the same argument as
in the proof of Proposition 2.4). We obtain a proof of A ��

1 , . . . ,A ��
m ⇒ F where each

A ��
i ∈ ψv(A, F).

Note that in contrast to Lemma 2.31, the proof of Lemma 2.36 does not need any
additional assumptions on LI + A such as set-boundedness. This is because of the
variable-renaming trick which does not have an analogue in the set-bounded setting.
Lemma 2.36 is used in [30] to show that CL = IL + (p ∨ ¬p) and the logic LQ =
LI+ (¬p∨ ¬¬p) are variable-bounded.

Let V(A) denote the set of variables occuring in A. A logic L has the Craig interpolation
property ifA → B ∈ L implies the existence of a formula Iwith (A → I)∧(I → B) ∈ L and
V(I) ⊆ V(A)∩V(B). It is well known that both IL and CL posess the Craig interpolation
property [53].

We reproduce below the elegant argument from [49, attributed to H. Ono] where the
Craig interpolation property for LQ is inferred from interpolation in LI using variable
boundedness.

Theorem 2.37

LQ has the Craig interpolation property.

Proof. For a formula X, let AX denote the conjunction of all formulas ¬q ∨ ¬¬q such
that q ∈ V(X). If �LQ B → C, then by variable-boundedness we know �LI AB→C →
(B → C). Since ¬q ∨ ¬¬q has only one variable, every conjunct in AB ∧ AC appears
inAB→C and vice versa. Thus�LI AB→C ↔ AB∧AC, and hence�LI (AB∧AC) → (B →
C). It follows that �LI (AB∧B) → (AC → C). By the interpolation property of LI, there
is a formula I such that V(I) ⊆ V(A) ∩ V(B) and �LI ((AB ∧ B) → I)∧ (I → (AC → C).
Then the latter formula is also provable in LQ. Since AB,AC ∈ LQ, it follows that
�LQ (B → I)∧ (I → C). Hence I is a Craig interpolant of A → B in LQ.

In [50] it is shown that classical logic and LQ are the only consistent variable-bounded
logics overLI that are axiomatisable by a single-variable formula. The same paper shows
that all finite-valued Gödel logics are variable-bounded. Using algebraic methods these
results have been generalized in [51] to establish necessary and sufficient criterion for
variable-boundedness for intermediate logics on a finite slice (see also [29]).
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2.8 An Application in Modal Logic

In this section we present a new proof of Takano’s result [52] that the standard se-
quent calculus for modal logic S5 is analytic. We derive this by translating cutfree
hypersequent proofs to sequent proofs, observing that the only cuts which need to be
introduced are analytic. The method is very similiar to the proof of the projection
theorem (Theorem 2.13).

2.8.1 Sequent Calculi for Some Modal Logics

In addition to the connectives of classical logic, the signature of modal logic contains
a unary connective � (called ‘box’). In defining modal logics as sets of formulas (see
Section 1.5), we not only require closure under substitution instances and Modus Ponens,
but also under the Neccessitation Rule

A
�A

(N).

The modal logics K, S4 and S5 are axiomatized as follows:

K = CL + �(A → B) → (�A → �B)

S4 = K + �A → A + �A → ��A

S5 = S4 + ¬�¬A → �¬�¬A

For more information on these systems see [15].

A sequent calculusSeqK for modal logicK is obtained by adding to the sequent calculus
LK for classical logic the rule

Γ ⇒ A
�Γ ⇒ �A

(K)

where �Γ := {�A | A ∈ Γ }.

To capture S4 one adds to LK the rules

Γ ,A ⇒ Δ

Γ ,�A ⇒ Δ
(T) and

�Γ ⇒ A
�Γ ⇒ �A

(4)

Let us call the resulting calculus seqS4. Finally, a sequent calculus seqS5 for S5 is
obtained by replacing the rule (4) in seqS4 with the more liberal

�Γ ⇒ A,�Δ

�Γ ⇒ �A,�Δ
(5).

While the cut rule is admissible in seqK and seqS4 [44], the same does not hold for
seqS5. As observed in [45], the cut in the following inference cannot be eliminated:
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�p ⇒ �p

⇒ �p,¬�p
(¬r)

⇒ �p,�¬�p
(5) p ⇒ p

�p ⇒ p
(T)

⇒ �¬�p,p (cut) (♠)

To the present day no cutfree ‘standard’ sequent system for S5 is known.9

If however one is willing to go beyond the sequent calculus, a number of cutfree
proof systems for S5 are on offer. We mention here a hypersequent calculus due to
Kurokawa [34] which will be useful for our purposes. This system, which shall be
called HS5 here, extends a hypersequent version of seqS4 with the rule

G | �Σ, Γ ⇒ Δ

G | �Σ ⇒| Γ ⇒ Δ
(ms)

(the ms stands for ‘modalized splitting’).

Theorem 2.38 (Kurokawa 2014)

HS5 is sound and complete for S5, and the cut rule is admissible in HS5.

As illustration we present a cutfree HS5-proof of the sequent ⇒ �¬�p,p which served
as the counterexample to cut elimination in seqS5.

p ⇒ p

�p ⇒ p
(T)

�p ⇒|⇒ p
(ms)

⇒ ¬�p |⇒ p
(¬r)

⇒ �¬�p |⇒ p
(4)

⇒ �¬�p,p |⇒ �¬�p,p (wl)

⇒ �¬�p,p (ec)

2.8.2 Analyticity of S5

Going back to the derivation (♠) of ⇒ �¬�p,p in seqS5, we see that the cut formula
�p is a subformula of the conclusion of the cut. Such a cut is called an analytic cut. If
all cuts in a derivation are analytic—as it is the case in (♠)—then all formulas in the
derivation are subformulas of the endsequent.

9This apparent intractability of S5 should not be over-interpreted: In terms of computational com-
plexity the coNP-complete S5 looks tame as compared to most other modal logics, which tend to be
PSPACE-complete.
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2. Bounding Axiomatic Systems via Hypersequents

In 1992 Takano proved that the sequent calculus seqS5, although lacking cut elimina-
tion, has the analytic cut property: Every theorem of S5 has a derivation in seqS5 con-
taining only analytic cuts, and therefore satisfying the subformula property. Takanano
established the analytic cut property by means of an intricate global transformation of
seqS5-proofs which replaces arbitrary cuts by analytic ones.

In Section 2.4, we have derived analyticity properties similar to the analytic cut property
from the existence of analytic hypersequent proofs. The question arises whether a
result such as Takano’s can also be inferred in a similar way. We answer this in the
affirmative: The analytic cut property of SeqS5 may also be derived from cut-freeness
of the hypersequent calculus HS5, using essentially the same method as in Section 2.4.
That is, we will start from an analytic hypersequent proof in HS5 and remove instances
of (ms) until a sequent derivation is obtained. Unlike before, instances of (ms) will now
be traded with analytic cuts instead of bounded axiom instances.

Theorem 2.39

seqS5 has the analytic cut property.

Proof. Let Γ0 ⇒ Δ0 be a sequent provable in seqS5. By Theorem 2.38, Γ0 ⇒ Δ0 has a
cutfree derivation δ in the hypersequent calculus HS5. We first observe that instances
of (ms) in δ can be replaced by single-formula instances (see also Section 2.7.3)

G | �B, Γ ⇒ Δ

G | �B ⇒| Γ ⇒ Δ
(sms),

following the idea exposed in the following derivation:
�B1,�B2, Γ ⇒ Δ

�B1 ⇒| �B2, Γ ⇒ Δ
(sms)

�B1 ⇒| �B2 ⇒| Γ ⇒ Δ
(sms)

�B1,�B2 ⇒| �B1,�B2 ⇒| Γ ⇒ Δ
(wl)

�B1,�B2 ⇒| Γ ⇒ Δ
(ec)

Let us therefore assume that all instances of (ms) in δ are of the form (sms). For
simplicity, we will furthermore assume that there is only one such instance of (sms).
The elimination of multiple hypersequent rules can be performed following the same
strategy as in the proof of Theorem 2.13. So let us picture the instance of (sms) in the
proof of Γ0 ⇒ Δ0 as follows:

. . . τ
. . .

.... ρ

G | �B, Γ ⇒ Δ

G | �B ⇒| Γ ⇒ Δ
(ms)

. . .η
Γ0 ⇒ Δ0
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We create two modified copies of the proof where (sms) is eliminated, namely

. . . τ
. . .

�B ⇒ �B
G | �B ⇒ �B | Γ ⇒ Δ

(ew)

. . .η �
Γ0 ⇒ �B,Δ0

and

. . . τ
. . .

.... ρ

G | �B, Γ ⇒ Δ

G | �B ⇒| �B, Γ ⇒ Δ
(ew)

. . .η ��
Γ0,�B ⇒ Δ0

Call the first and second copy δ1 and δ2 respectively. In δ1, the rule (sms) has been
eliminated by the addition of the formula�B into the succedent. The additional formula
in the succedent is then propagated downwards η �, so that we obtain a proof of Γ0 ⇒
�B,Δ0. Crucially, by this addition of �B instances of (4) in η become instances of (5) in
η �, that is,

G � | �Γ � ⇒ A

G � | �Γ � ⇒ �A
(4)

becomes
G � | �Γ � ⇒ A,�B

G � | �Γ � ⇒ �A,�B
(5).

Let us now turn to δ2. Here (sms) has been eliminated by the addition of �B into the
antecedent, and the additional formula is then propagated downwards η �� to obtain a
proof of Γ0,�B ⇒ Δ0. Note that instances of (4) in δ remain sound in η �� because the
formula that we add in the antecedent is boxed:

G � | �Γ � ⇒ A

G � | �Γ � ⇒ �A
(4)

becomes
G � | �Γ �,�B ⇒ A

G � | �Γ �,�B ⇒ �A
(4).

We can now combine δ1 and δ2 using a cut on �B:
.... δ1

Γ0 ⇒ �B,Δ0

.... δ2
Γ0,�B ⇒ Δ0

Γ0, Γ0 ⇒ Δ0,Δ0
(cut)

Γ0 ⇒ Δ0
(cl), (cr)

The resulting proof δ � does not contain the rule (sms) any more, and we may therefore
assume that δ contains only sequents (this is similar to Lemma 1.12). Hence δ � is a
proof in SeqS5. Furthermore, since the cut formula �B was taken from the analytic
hypersequent proof δ, it is a subformula of Γ0 ⇒ Π0, and therefore the cut in δ � is
analytic.

Inspecting the proof, we can say a little bit more about the cut formulas which might
be needed in a seqS5-proof: They are boxed subformulas and occur negatively in the
endsequent.
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2. Bounding Axiomatic Systems via Hypersequents

2.9 Open Questions

Separating various forms of boundedness. So far we have no results establishing that
a certain logic or calculus lacks a boundedness property, and so in particular, we have not
separated the various forms of boundedness. Such results could potentially be obtained
using complexity considerations, building on the results in Sections 2.2 and 2.6. For
example, it follows from Proposition 2.5 that an intermediate logic with computational
complexity worse than PSPACE cannot be formula-bounded (since a formula-bounded
intermediate logic has a polynomial reduction to IL, which is itself PSPACE-complete).

Finding a direct argument for boundedness. The boundedness result we have estab-
lished for various axiomatic extensions crucially depend on the existence of an analytic
hypersequent calculus for the logic in question. Adopting the proof-theoretic view of
Section 2.7.1, the whole strategy can be described by the following diagram:

sequent calculus
FL⊥

e∗ +A

with arbitrary cuts

hypersequent calculus
HFL⊥

e∗ + R

with arbitrary cuts

cutfree
hypersequent calculus

HFL⊥
e∗ + R

multiset-bounded
sequent calculus

FL⊥
e∗ +A �

rule computation [17]

cut elimination [17]

projection theorem
(Theorem 2.13)

?

The dotted arrow in the diagram tells us that we have found a way to reduce arbitrary
cuts in FL⊥

e∗ + A to multiset-bounded cuts. Is there a direct method of obtaining
this result? It seems clear that such a direct method still needs to incorporate a cut
elimination-style argument, so one should not expect a simplistic answer. It would be
interesting to know in particular which arguments a direct method uses that go beyond
the cut elimination theorem of FL⊥

e∗.

As an illustration of what could be such a direct method, let us sketch how a single
arbitrary cut on a linearity axiom can be reduced to a multiset-bounded cut, using the
cut elimination theorem of LI. This is not yet a complete method, as among other things
we have to assume that there is only a single cut (further restrictions will be state in the
course of the outline). Anyway, assume that a proof ends like this:

⇒ (A → B)∨ (B → A)

.... δ

(A → B)∨ (B → A) ⇒ F

⇒ F
(cut)
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where δ is an LI-proof and neither the formula A nor B is necessarily composed of
subformulas of F. We want to replace the cut on (A → B) ∨ (B → A) by a multiset-
bounded cut and proceed as follows. First, we can assume without loss of generality
that the lowermost inference in δ is (∨l), so that the proof is of the form

⇒ (A → B)∨ (B → A)

.... δ1
A → B ⇒ F

.... δ2
B → A ⇒ F

(A → B)∨ (B → A) ⇒ F
(∨l)

⇒ F
(cut)

We now trace back the formula A → B in δ1 until it is principal. For simplicity, assume
that this happens exactly once, and write δ1 as

.... ρ1
Γ1 ⇒ A

.... ν1
Δ1,B ⇒ Π1

Γ1,Δ1,A → B ⇒ Π1
(→l)

.... θ1
A → B ⇒ F

Let us furthermore assume that no contraction is applied to A → B in θ1. Then by
analyticity of δ1, Γ1 and Δ1 contain only subformulas of F. Find a similar representation
of δ2 as .... ρ2

Γ2 ⇒ B

.... ν2
Δ2,A ⇒ Π2

Γ2,Δ2,B → A ⇒ Π2
(→l)

.... θ2
B → A ⇒ F

Observe now that it is possible to perform a cut between the pairs of proofs (ρ1,ν2) and
(ρ2,ν1). By cut admissibility in LI we therefore obtain proofs ρ1 ×ν2 of Δ2, Γ1 ⇒ Π1 and
ρ2 × ν1 of Δ1, Γ2 ⇒ Π2. From this we can transform δ1 into the following proof δ �

1:

Γ1 ⇒ �
Γ1

.... ρ2 × ν1
Δ1, Γ2 ⇒ Π1
Δ1,

�
Γ2 ⇒ Π1

(∧l)

Γ1,Δ1,
�
Γ1 → �

Γ2 ⇒ Π1
(→l)

.... θ1�
Γ1 → �

Γ2 ⇒ F

In a similar way we obtain a proof δ �
2 of

�
Γ2 → �

Γ1 ⇒ F, and then we arrive at the
desired proof with a multiset-bounded cut:

⇒ (
�
Γ1 → �

Γ2)∨ (
�

Γ2 → �
Γ1)

.... δ �
1�

Γ1 → �
Γ2 ⇒ F

.... δ �
2�

Γ2 → �
Γ1 ⇒ F

(
�

Γ1 → �
Γ2)∨ (

�
Γ2 → �

Γ1) ⇒ F
(∨l)

⇒ F
(cut)
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Other calculi. The diagram above suggests a correspondence

cut elimination in
hypersequent calculus ∼=

reduction to
multiset-bounded cuts
in sequent calculus

An obvious way to proceed from the results presented here is to investigate more
expressive proof systems. Take for example the nested sequent calculus. How can
we translate cutfree proofs in the nested sequent calculus to the sequent calculus, and
which kind of cuts have to be introduced?

cut elimination in
nested sequent calculus ∼=

reduction to
?
in sequent calculus

One can speculate that the necessary cuts are more complicated than the multiset-
bounded cuts introduced in exchange for the hypersequent structure. Even more spec-
ulatively, it might be possible to introduce a hierarchy of proof systems, where the
calculi are compared by the cuts which are ‘hidden’ in their structure.

Proof complexity. The proof transformation involved in the projection theorem leads
to an exponential blow-up in proof size. We do not know if this blow-up is necessary,
or if it can be avoided by a better method. More generally, it would be interesting to
know the difference between a cutfree hypersequent system and a sequent system with
bounded cuts in terms of their proof size.

As a concrete example consider the standard hypersequent system HLI + (com) for
Gödel logic G and compare it to a sequent system seqG extending LI with the rule

Γ ,A → B ⇒ Π Γ ,B → A ⇒ Π

Γ ⇒ Π
(com) �

where both A and B are subformulas of Γ ⇒ Π. Using the resuls of this chapter, it can
be seen that seqG is complete for G. Are there polynomial simulations between the
proofs in seqG and cutfree proofs in HLI+ (com)?10

10One reason to believe that seqG is more efficient is that the rule (com) � allows for a form of deep
inference, as A and B need not be immediate subformulas of the lower sequent. This shows in proofs of
theorems such as

((A → B)∧ . . . ∧ (A → B)� �� �
n

)∨ ((B → A)∧ . . . ∧ (B → A)� �� �
n

).

Here a seqG-proof takes about 2n inferences, whereas HLI+(com) needs roughly n2 steps. The problem
in HLI + (com) is that the (redundant) ∧’s have to be decomposed before the communication rule can be
applied.
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CHAPTER 3
Provability Games and SELL

3.1 Introduction

In this chapter we describe a game semantics for proof search in subexponential linear
logic. This is not to be seen as a fully-fledged semantics for linear logic as in [10] or [2],
but rather as an extension of the game-theoretic view on proof search: The view that
there is a player (the proponent) who tries to demonstrate provability of a sequent by
cleverly applying rules of the calculus. According to this view a proof is nothing but a
winning strategy for proponent in the ‘provability game’.

Our semantics extends the game-theoretic view by two ingredients.

First, the various subtasks which arise in the course of proof search are combined in two
different ways. Premises of multiplicative rules simply aggregate tasks. Premises of
additive rules on the other hand will be taken as alternative conjunctions of tasks: Another
element of the game (which can be seen as an opponent, or nature, or even chance)
decides which task is to be executed, but the proponent has no control over this choice.
So to accomplish an alternative conjunction of tasks, one must be prepared to accomplish
each individual task in principle; factually however, only one task will be executed. This
distinction between two types of conjunctions pays homage to the motivation between
the additive/multiplicative distinction in linear logic already expressed in Girard’s
seminal article [23].

Second, we will stipulate that the use of the dereliction rule will result in costs for
proponent, as indicated by the label of the exponent of the principal formula. This
allows us to not only talk about the existence of proofs (that is, winning strategies), but
also their associated costs.

The interplay of both features gives rise to a rather expressive framework. After laying
down the game-theoretic foundations, we show how this framework can be syntactically
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captured by using labelled sequents. We then conclude with some proof-theoretic
results on the labelled sequent system, including a restricted cut elimination theorem.

3.2 Two Perspectives on Proof Search
Let us discuss informally the notion of a task. A task can be pretty much everything, from
reading a book over buying groceries to constructing a proof in the sequent calculus.

We employ the notion of a stage as an abstract representation of an environment in
which tasks are carried out. Tasks are accomplished by extending the current stage to
some possibly different successor stage. For example, in buying groceries I transition to
a stage in which I am richer in groceries, but also slightly poorer and a bit older than in
the initial stage.

Sets of tasks can be joined into a single combined task in various ways. We are interested
in the following two combinations of tasks, which are best described by the conditions
under which they can be accomplished.

• The cumulative conjunction of t1 and t2 can be accomplished at a stage s if s can be
extended to a stage s � where both t1 and t2 are accomplished.

• The alternative conjunction of t1 and t2 can be accomplished at a stage s if s can be
extended both to a stage s � where t1 is accomplished, and to a stage s �� where t2 is
accomplished.

Expressed as a task, the cumulative conjunction is simply ‘doing both t1 and t2’. The
alternative conjunction is slightly more complex: We may think of it as the task of
tossing a coin and then doing t1 if the result is heads, and doing t2 if the result is tails.
So in order to accomplish the alternative conjunction of t1 and t2 at some stage we must
be prepared to accomplish both t1 and t2, even though only one task will be executed
in the end.

Consider now the aforementioned task of proving a sequent in the sequent calculus. In
this context, the presence of a rule such as

Γ ⇒ A Γ ⇒ B
Γ ⇒ A∧ B

(∧r)

tells us that the task of proving Γ ⇒ A ∧ B can be reduced to the combination of two
tasks: Proving Γ ⇒ A, and proving Γ ⇒ B. This combination of provability is, in
its most natural interpretation, a cumulative conjunction: We really write down both
subproofs of Γ ⇒ A and Γ ⇒ B to get a complete proof.

From these considerations we can arrive at a dynamic, or game-theoretic, view of proof
search. The ‘game’ is just the game a student of proof theory plays when she is trying
to prove a sequent Γ ⇒ Π. She has a given choice of rules, and needs to apply the rules
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(bottom-up) strategically to arrive at the axioms. Whenever a binary rule is invoked, a
new task is created. The student might try to first prove the left premise of the rule and
then work on the right premise, or do it the other way round, or even jump between
the proofs of the left and the right premise at will. In this way, provability tasks keep
accumulating. If the student eventually manages to solve all open tasks – that is, reduce
them to initial sequents – she has completed the proof (and won the provability game).

Can we also interpret the two premises Γ ⇒ A and Γ ⇒ B as an alternative conjunction
of tasks? The answer is yes, and a good corresponding picture is this: The student is
challenged to prove Γ ⇒ Π in an exam, but now for time constraints she does not have
to write down the complete proof. Instead, every time she wants to apply a binary rule,
the examiner will tell her which of the premises she should provide a proof for (and
the other premise will be discarded). The combination of the premise tasks is now an
alternative conjunction, where the role of the coin is taken by the examiner. Speaking in
the language of proof search, only one branch of the proof search tree is expanded in
the examination scenario, but crucially, the student does not know in advance which
branch it is.

It is clear that by sheer luck (or incompetence of the examiner), the student might be
able to ‘prove’ sequents in the examination scenario which are not actually valid. But
there is no way to always win this game—that is, to have a winning strategy—unless
the sequent is valid.

Thus, as long as we are only interested in the accomplishability of a provability task, it
does not matter whether the branching in rules is interpreted as alternative or cumula-
tive conjunction of tasks. In fact, we may even interpret some branchings in proofs as
alternative and others as cumulative combinations.

This conflation of concepts will always appear when considering only tasks which do
not bring about a change of the state, that is, tasks without side effects. There is simply
no difference between being theoretically able to accomplish a task and actually doing
it if the task has no effect.

For a change of scenario, assume now that the student is given the task to prove the
sequent (A ∧ C), (B ∧ C) ⇒ A ∧ B in LI with the additional constraint that she may
use the rule (∧l) only once. Now the provability task has side effects: Using (∧l) once
prevents the student from using (∧l) again. In this scenario, the proof

A, (B∧ C) ⇒ A

(A∧ C), (B∧ C) ⇒ A
(∧l)

(A∧ C),B ⇒ B

(A∧ C), (B∧ C) ⇒ B
(∧l)

(A∧ C), (B∧ C) ⇒ A∧ B
(∧r)

denotes a valid strategy for the student only if the branching is interpreted as the
alternative conjunction of tasks – in the cumulative interpretation, (∧l) will inevitably
be used twice. In the examination scenario the student is fine because only one of the
two branches will be expanded, and therefore only one (∧l) will be used.
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It is not always possible in the examination scenario to tell how often the student will
use a certain rule, even if her strategy is fixed in advance. For example, if she proves the
sequent

(A∧ C), ((B∧D)∧ C) ⇒ A∧ B

according to the strategy

A, ((B∧D)∧ C) ⇒ A

(A∧ C), ((B∧D)∧ C) ⇒ A
(∧l)

(A∧ C),B ⇒ B

(A∧ C), (B∧D) ⇒ B
(∧l)

(A∧ C), ((B∧D)∧ C) ⇒ B
(∧l)

(A∧ C), ((B∧D)∧ C) ⇒ A∧ B
(∧r)

she might have to use (∧l) either once or twice, depending on whether the examinor
demands to see the left or the right branch to be expanded. What can be stated with
certainty is the upper bound on the uses of (∧l) (here 2).

We thus see that it is the presence of side effects which fills the cumulative/alternative
distinction with life. In the present chapter, we want to investigate the task of proof
search in a sequent calculus where some branchings are interpreted as alternative and
others as cumulative conjunctions of tasks; and furthermore, the application of certain
rules has side effects.

The sequent calculus we base our investigation on is a variant of linear logic which
goes by the name affine intuitionistic subexponential linear logic [19]. This calculus has
a dereliction rule (drγ) which is parametric over a ‘subexponential’ γ, which will be a
non-negative real number in our case. The side effect we want to model is then: Every
time the rule (drγ) is used, costs of γ have to be paid.

3.3 Subexponential Linear Logic
Affine intuitionistic subexponential linear logic is an extension of aILL (see Section 1.8)
by subexponentials. In subexponential linear logic the exponential ‘!’ is replaced by
a family of labelled exponentials ‘!γ’ where the label γ is taken from some partially
ordered set. We will limit ourselves to the case γ ∈ R+, where R+ is the set of non-
negative real numbers together with their natural ordering. Furthermore we will build
our calculus on top of the variant aILL∗ of aILL (see Section 1.8).

The calculus aSELL(R+) has a standard dereliction rule

Γ , !γA,A ⇒ Π

Γ , !γA ⇒ Π
(drγ)

for each labelled exponential, while the promotion rule in aSELL(R+) becomes

Ω�γ ⇒ A

Ω�γ ⇒!γA
(pr)
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where Ω�γ := {!δB ∈ Ω | γ � δ}. All other logical rules are as in aILL∗, and the
complete system is pictured in Figure 3.1. Here the schematic variable !Ω denotes any
multiset of unbounded formulas, irrespective of their labelling. Γ , Δ and Π may contain
bounded and unbounded formulas alike.

Note two deviations from the presentation of aILL∗ in Section 1.8: First, we admit
only p ⇒ p as an initial sequent where p is a variable, instead of the more generalA ⇒ A

for arbitrary formulas A. Second, we do not include the cut rule.

Initial sequents:

p ⇒ p (id) ⊥ ⇒ Π
(⊥)

Γ ⇒ � (�)

Structural rules:

Γ ,A,B,Δ ⇒ Π

Γ ,B,A,Δ ⇒ Π
(e) Γ ⇒ Π

Γ ,A ⇒ Π
Γ ⇒

Γ ⇒ Π
(w)

Propositional rules:

Γ ,A ⇒ Π Γ ,B ⇒ Π

Γ ,A∨ B ⇒ Π
(∨l)

Γ ⇒ Ai

Γ ⇒ A1 ∨A2
(∨r) (i = 1, 2)

Γ ,Ai ⇒ Π

Γ ,A1 ∧A2 ⇒ Π
(∧l) (i = 1, 2) Γ ⇒ A Γ ⇒ B

Γ ⇒ A∧ B
(∧r)

Γ ,A,B ⇒ Π

Γ ,A ∗ B ⇒ Π
(∗l) !Ω, Γ ⇒ A !Ω,Δ ⇒ B

!Ω, Γ ,Δ ⇒ A ∗ B (∗r)

!Ω, Γ ⇒ A !Ω,Δ,B ⇒ Π

!Ω, Γ ,Δ,A → B ⇒ Π
(→l)

Γ ,A ⇒ B

Γ ⇒ A → B
(→r)

Exponential rules:

Γ , !γA,A ⇒ Π

Γ , !γA ⇒ Π
(drγ)

!�γΩ ⇒ A

!�γΩ ⇒!γA
(pr)

Figure 3.1: The calculus aSELL(R+)

Theorem 3.1

The cut rule
!Ω, Γ ⇒ A !Ω,Δ,A ⇒ Π

!Ω, Γ ,Δ ⇒ Π
(cut)

is admissible in aSELL(R+).
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Proof. Follows from the cut elimination theorem in [19] and Proposition 1.11.

3.4 A Formal Task Semantics
As mentioned before, we want to extend proof search in aSELL(R+) by the following:
A distinction between cumulative and alternative conjunction of provability tasks, and
a notion of side effects.

Let us first speak about the side effects. Inspecting the rules of aSELL(R+), we see that
the structure of R+ is only referred to in the right rule (promotion) for the subexponen-
tials, but not in the left rule

Γ , !γA,A ⇒ Π

Γ , !γA ⇒ Π
(drγ).

To add a layer of expressivity, we will stipulate that an application of dereliction (drγ)
comes with a side effect, namely the paying of ‘costs’ γ. More intuitively, we think of
an application of (drγ) as the ‘unboxing’ of the formula A (for further use), where the
subexponential index γ indicates the costs of this unboxing.

Concerning the difference between cumulative and alternative tasks, we split the branch-
ing rules of aSELL(R+) into two groups:

alternative : (∧r), (∨l)

cumulative : (∗r), (→l)

The choice is not random: it follows the distinction between additive and multiplicative
rules and their intuitive resource interpretation in linear logic. In a well-known example,
Girard [23] described two possible meanings of being able to ‘buy a pack of Marlboros
and buy a pack of Camels’: In one meaning, both packs have to be bought, while in
the other either pack has to be bought (but not both). Corresponding to this distinction
Girard motivated two different format of rules for logical conjunction. Writing ∗ for the
first and ∧ for the second interpretation of ‘both’, they are:

Γ ⇒ A Δ ⇒ B
Γ ,Δ ⇒ A ∗ B (∗)r and

Γ ⇒ A Γ ⇒ B
Γ ⇒ A∧ B

(∧)r

The multiplicative format in (∗)r demands a splitting of the context Γ ∪ Δ into two parts
as intuitively both A and B have to be obtained, and so a decision must be made which
premise is used for which formula. No such splitting is necessary in the additive format
of the rule (∧)r, as both A and B have to be obtainable only in principle, but not at the
same time. Closing the circle and coming back to our notation, the two premises of (∗)r
are seen as a cumulative conjunction of tasks, whereas the two premises of (∧)r are
seen as an alternative conjunction of tasks.

We are now in a position to state a formal semantics for proof search in aSELL(R+)
with the aforementioned extensions.
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Definition 3.2 (multitask semantics)

A multitask is a non-empty multiset of aSELL(R+)-sequents, interpreted as a cu-
mulative conjunction of provability tasks. A sequent Γ ⇒ Π is identified with the
multitask {Γ ⇒ Π}. A multitask is solved if all sequents in it are initial sequents. A
reduction step on a multitask Σ involves the following moves by two players Prop

and Opp, after which a successor multitask Σ � is reached:

1. Prop chooses a sequent occurrenceS ∈ Σand a rule instance (r)ofaSELL(R+)
such that S is the conclusion of (r). If (r) = (drγ), then Prop has to pay γ.

2. Writing Σ = {S} ∪ Π, the successor multitask Σ � is determined as follows:

• If (r) is a unary rule with premise S �, then Σ � = {S �} ∪ Π.
• If (r) is a cumulative rule with premises S1 and S2, then Σ � = {S1,S2}∪Π.
• If (r) is an alternative rule with premises S1 and S2, then player Opp

chooses whether Σ � = {S1} ∪ Π or Σ � = {S2} ∪ Π.

3. Unless Σ � is solved, the steps (1)-(3) are repeated.

Given α ∈ R+ and a multitask Σ, we let |=α Σ denote the fact that Prop can move
in the reduction steps so that no matter how Opp plays a solved multitask will be
obtained eventually, and Prop’s total costs never exceed α. A strategy witnessing
this will be called anα-bounded winning strategy. Write |= Σ if |=α Σ for someα ∈ R+.

For example, the following equivalences are easy to check:

|=α (!γp ⇒ p ∗ p) ⇐⇒ α � 2 · γ
|=α (!γp ⇒ p∧ p) ⇐⇒ α � γ

Forgetting about the label in |=α, it is not difficult to show the following correspon-
dence:

Theorem 3.3 (unlabelled completeness)

For any aSELL(R+)-sequent S,

�aSELL(R+) S ⇐⇒ |= S.

Since a stronger correspondence will be established later on (Theorem 3.4 Theorem 3.7),
we omit the proof at this point.
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3.5 LaSELL(R+)

We now want to extend Theorem 3.3 to the notion |=α, which calls for a syntactic coun-
terpart to the |=α-relation. In the present section we develop a calculus LaSELL(R+)
of labelled sequents

α 
 Γ ⇒ Π

where α ∈ R+. The rules of LaSELL(R+) will be chosen such that

|=α S ⇐⇒ �LaSELL(R+) α 
 S.

The first rule of LaSELL(R+) is label weakening

α 
 Γ ⇒ Π

β 
 Γ ⇒ Π
(l-weak)

which has the side condition α � β. (l-weak) expresses the upwards monotonicity
of |=α.

All further rules of LaSELL(R+) are now obtained by a suitable labelling of the corre-
sponding rules of aSELL(R+).

For an initial sequent S of aSELL(R+), the task S can be immediately accomplished and
no costs are paid. Consequently we admit α 
 S as initial sequents of LaSELL(R+)
where α ∈ R+ is arbitrary.1

The labelled version of (dr)

α 
 Γ , !γA,A ⇒ Π

α+ γ 
 Γ , !γA ⇒ Π
(dr)

expresses that whenever the task Γ , !γA,A ⇒ Π can be accomplished with costs not
exceedingα, then the task Γ ,A ⇒ Π can be accomplished with costs not exceedingα+γ.
This is undoubtedly true, as the latter task can be reduced to the former one by a single
application of (drγ), which costs γ.

Let us turn now to branching rules. Assume first that the labelled sequents

α 
 !Ω, Γ ⇒ A and β 
 !Ω,Δ ⇒ B

are valid, which means that the task !Ω, Γ ⇒ A can be accomplished with costs not
exceeding α, and !Ω,Δ ⇒ B can be accomplished with costs not exceeding β. Doing
both tasks after another, the costs do not exceed α+ β. Thus our labelling of (∗r) is the
following:

α 
 !Ω, Γ ⇒ A β 
 !Ω,Δ ⇒ B

α+ β 
 !Ω, Γ ,Δ ⇒ A ∗ B (∗r)

1Recall that α is only supposed to denote an upper bound on the costs.
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Assume now that the labelled sequents

α 
 Γ ⇒ A and β 
 Γ ⇒ B

are valid. For which γ do we then know that γ 
 Γ ⇒ A∧B is valid? By applying (∧r),
we know that the task Γ ⇒ A ∧ B can be reduced to the additive conjunction of the
tasks Γ ⇒ A and Γ ⇒ B. Since only one of these tasks is to be executed, any γ which
is an upper bound to the costs in both tasks will be an upper bound for the additive
combination. Therefore the labelling of (∧r) is as follows:

α 
 Γ ⇒ A β 
 Γ ⇒ B

max{α,β} 
 Γ ⇒ A∧ B
(∧r)

In all unary rules different from dereliction, no costs are paid and no additional tasks
are created. Hence any upper bound for the cost of the premise also serves as an upper
bound for the costs of the conclusion. For example, the labelling of (→r) is:

α 
 Γ ,A ⇒ B

α 
 Γ ⇒ A → B
(→R)

To sum up, the labelling of aSELL(R+)-rules goes about as follows:

rule premise(s) label(s) conclusion label
initial sequent - α (any)

unary rule �= (dr) α α

(dr) with principal formula !γA α α+ γ

binary, multiplicative α,β α+ β

binary, additive α,β max{α,β}

The complete labelled system, to which we will refer to as LaSELL(R+), is pictured in
Figure 3.2.

From the preceding discussion, the soundness of LaSELL(R+) with respect to the task
semantics is clear.

Theorem 3.4 (soundness of LaSELL(R+))

If �LaSELL(R+) α 
 Γ ⇒ Π, then |=α Γ ⇒ Π.

The Completeness Theorem

Since the task semantics is by definition very close to LaSELL(R+), the completeness
proof for LaSELL(R+) is easier than comparable proofs for other logics. Nevertheless
one complication arises, and this complication is of conceptual interest.
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Initial sequents:

α 
 p ⇒ p
(id)

α 
 ⊥ ⇒ Π
(⊥)

α 
 Γ ⇒ � (�)

Structural rules:

α 
 Γ ,A,B,Δ ⇒ Π

α 
 Γ ,B,A,Δ ⇒ Π
(e)

α 
 Γ ⇒ Π

α 
 Γ ,A ⇒ Π

α 
 Γ ⇒
α 
 Γ ⇒ Π

(w)

Label weakening:

α 
 Γ ⇒ Π

β 
 Γ ⇒ Π
(l-weak), where α � β

Propositional rules:

α 
 Γ ,A ⇒ Π β 
 Γ ,B ⇒ Π

max{α,β} 
 Γ ,A∨ B ⇒ Π
(∨l)

α 
 Γ ⇒ Ai

α 
 Γ ⇒ A1 ∨A2
(∨r) (i = 1, 2)

α 
 Γ ,Ai ⇒ Π

α 
 Γ ,A1 ∧A2 ⇒ Π
(∧l) (i = 1, 2)

α 
 Γ ⇒ A β 
 Γ ⇒ B

max{α+ β} 
 Γ ⇒ A∧ B
(∧r)

α 
 Γ ,A,B ⇒ Π

α 
 Γ ,A ∗ B ⇒ Π
(∗l)

α 
 !Ω, Γ ⇒ A β 
 !Ω,Δ ⇒ B

α+ β 
 !Ω, Γ ,Δ ⇒ A ∗ B (∗r)

α 
 !Ω, Γ ⇒ A β 
 !Ω,Δ,B ⇒ Π

α+ β 
 !Ω, Γ ,Δ,A → B ⇒ Π
(→l)

α 
 Γ ,A ⇒ B

α 
 Γ ⇒ A → B
(→r)

Exponential rules:

α 
 Γ , !γA,A ⇒ Π

α+ γ 
 Γ , !γA ⇒ Π
(drγ)

α 
 !�γΩ ⇒ A

α 
 !�γΩ ⇒!γA
(pr)

Figure 3.2: The labelled calculus LaSELL(R+)

As one would expect, the completeness proof proceeds by induction on the maximal
number of steps (the height) of anα-bounded winning strategy σ forProp. In particular,
we will have to consider the case that the task is ⇒ A ∗B and that Prop’s first step is to
choose the rule (∗r). In the task semantics, the successor multitask is then {⇒ A, ⇒ B}.
For this multitask, σ must therefore contain a ‘substrategy’ σ �, and this strategy will still
be α-bounded. In order to apply the induction hypothesis we need the establish the
following:
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3.5. LaSELL(R+)

1. There is a pair σ1,σ2 of winning strategies for ⇒ A and ⇒ B respectively.

2. The height of σ1,σ2 is smaller than the height of σ.

3. The sum of the cost bounds for σ1,σ2 does not exceed the bound for σ.

Given (1)-(3), we obtain by induction hypothesis proofs of α1 
⇒ A and α2 
⇒ B

for some numbers α1,α2 ∈ R+ satisfying α1 + α2 � α. Then by applying the labelled
rule (∗r) we obtain α1 + α2 
⇒ A ∗ B, and from a further (l-weak), we arrive at the
desired sequent α 
⇒ A ∗ B.

Concerning (1), the problem is that in general there is no reason to believe thatσ � encodes
in an obvious way a pair of strategies in ⇒ A and ⇒ B respectively: Since we have left it
completely open how Prop organizes her strategies in multitasks, the moves she makes
in one subtask may depend on the moves in the other subtask. These naturally arising
interdependencies impede a trivial extraction of the desired substrategies σ1,σ2.

This complication could have been altogether avoided by postulating that Prop’s strate-
gies in different subtasks have to be independent. But this solution is somewhat artificial,
and apart from that, it is unnecessary. Instead we will prove below that it is indeed
possible to extract independent substrategies for ⇒ A and ⇒ B from any strategy
in {⇒ A,⇒ B} by using a slightly more involved argument. Furthermore, we show that
such strategies can be extracted in a way that the sum of their cost bounds does not
exceed the cost bound on the strategy for {⇒ A,⇒ B}.

The key observation is this. Given a strategy σ � for Prop in {⇒ A,⇒ B}, every strat-
egy πB for Opp in ⇒ B induces a Prop-strategy σ(πB) in ⇒ A as follows: Prop starts
moving according toσ � as if she were solving {⇒ A,⇒ B} instead of⇒ A. However, only
the moves in ⇒ A are recorded. Whenever a move of Opp in ⇒ B is required, Prop
simulates this move herself using the fixed strategy πB. In a similar manner, we can get
a Prop-strategy σ(πA) in ⇒ B from any Opp-strategy πA in ⇒ A.2

The last thing we will have to check concerns the costs. We will see that by choos-
ing the Opp-strategies πB and πA so that the bounds α1,α2 of the induced Prop-
strategies σ(πB) and σ(πA) are minimal, their sum α1 + α2 does not exceed α.

To make the argument in the preceding paragraphs precise, we introduce a formal
representation of aProp-strategy σ as a finite tree. The root of this tree is the (multi)task
to be solved, and its edges denote moves by either player. A branching node corresponds
to a choice of Opp, and its child nodes are the outcomes of all possible choices of Opp.
No branching occurs at points where Prop is to make a decision, since such a decision
is fixed by the strategy σ. The height of σ can then be defined as the height of its
associated tree (which is the length of a longest branch in it). In what follows, we will
tacitly identify σ with its tree representation.

2A similar idea appears in the ‘parallel composition and hiding’ interpretation of the cut rule in game
semantics, see [1].
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As an example, Figure 3.3 pictures the tree representation of a strategy σ0 for the
multitask {(!1p, !2p ⇒ p), (r∧s ⇒ r∧s)}. We will refer to {!1p, !2p ⇒ p} and {r∧s ⇒ r∧s}

as the first and second subtask respectively.

{(!1p, !2p ⇒ p), (r∧ s ⇒ r∧ s)}

{(!1p, !2p ⇒ p), (r∧ s ⇒ r)}

{(!1p, !2p ⇒ p), (r ⇒ r)}

{(!1p,p, !2p ⇒ p), (r ⇒ r)}

{(!1p, !2p ⇒ p), (r∧ s ⇒ s)}

{(!1p, !2p ⇒ p), (s ⇒ s)}

{(!1p, !2p,p ⇒ q), (s ⇒ s)}

Prop chooses (∧r)
in second subtask

Opp chooses
left premise
in second subtask

Opp chooses
right premise
in second subtask

Prop chooses (∧l)
in second subtask

Prop chooses (dr1)
in first subtask

Prop chooses (∧l)
in second subtask

Prop chooses (dr2)
in first subtask

Figure 3.3: A winning strategy for Prop in the multitask {(!1p, !2p ⇒ p), (r∧s ⇒ r∧s)}.

We will now define some additional notions specific to strategies σ in multitasks {S1,S2}
with two components, and use the strategy σ0 of Figure 3.3 as a running example
throughout.

For i ∈ {1, 2}, the set idet(σ) of i-determinations is the set of all subtrees of σ which arise
by pruning one outgoing branch from each branching node in σ where the outgoing
edges are moves of Opp in Si. Intuitively, a tree T ∈ idet(σ) arises from σ by fixing a
strategy of Opp in Si. Note that higher up in the strategy tree, the subtask Si may again
be subdivided into several new tasks. We count moves in all these subtasks as moves
in Si.

In the example of σ0, there is no splitting pertaining to a move of Opp in S1, and so σ0
has only one 1-determination which is σ0 itself. But σ0 has two 2-determinations:
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{(!1p, !2p ⇒ p), (r∧ s ⇒ r∧ s)}

{(!1p, !2p ⇒ p), (r∧ s ⇒ r)}

{(!1p, !2p ⇒ p), (r ⇒ r)}

{(!1p,p, !2p ⇒ p), (r ⇒ r)}

Prop chooses (∧r)
in second subtask

Opp chooses
left premise
in second subtask

Prop chooses (∧l)
in second subtask

Prop chooses (dr1)
in first subtask

and

{(!1p, !2p ⇒ p), (r∧ s ⇒ r∧ s)}

{(!1p, !2p ⇒ p), (r∧ s ⇒ s)}

{(!1p, !2p ⇒ p), (s ⇒ s)}

{(!1p, !2p,p ⇒ p), (s ⇒ s)}

Prop chooses (∧r)
in second subtask

Opp chooses
right premise
in second subtask

Prop chooses (∧l)
in second subtask

Prop chooses (dr2)
in first subtask

For i ∈ {0, 1} let ī be the unique element of {0, 1} \ {i}. If we define an i-reduct ired(T)
of a determination T ∈ īdet(σ) by removing each edge corresponding to a move in the
subtask Sī (and glueing together the remaining parts appropriately), we obtain a tree
representation of a strategy for Prop in Si.

For σ0, the 1-reducts of the two 2-determinations are

!1p, !2p ⇒ p

!1p,p, !2p ⇒ p

Prop chooses (dr1)

and !1p, !2p ⇒ p

!1p, !2p,p ⇒ p

Prop chooses (dr2)

which are both Prop-strategies in the first subtask !1p, !2p ⇒ p. The 2-reduct of (the 1-
determination of) σ0 is

r∧ s ⇒ r∧ s

r∧ s ⇒ r

r ⇒ r

r∧ s ⇒ s

s ⇒ s

Prop chooses (∧r)

Opp chooses
left premise

Opp chooses
right premise

Prop chooses (∧l) Prop chooses (∧l)

which is a Prop-strategy in the second subtask r∧ s ⇒ r∧ s.
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Let cost(σ) denote the maximal sum of costs (in any subgame) arising in a branch of σ.
In other words, cost(σ) is the smallest α ∈ R+ such that σ is α-bounded. Define

ci(σ) = min
T∈īdet(σ)

cost(ired(T)).

An optimal σ-induced i-strategy is then a strategy ired(T) where T ∈ īdet(σ) witnesses
the value of ci(σ), that is, cost(ired(T)) = ci(σ).

In our example, the optimal σ0-induced 1-strategy is

!1p, !2p ⇒ p

!1p,p, !2p ⇒ p

Prop chooses (dr1)

and therefore c1(σ) = 1. The optimal σ0-induced 2-strategy is the 2-reduct of σ0 (see
above), and since no derelictions occur, c2(σ) = 0.

Lemma 3.5

For every Prop-strategy σ in a multitask {S1,S2},

c1(σ) + c2(σ) � cost(σ).

Before coming to the proof of this lemma, let us first state a corollary which will be key
to the completeness proof.

Corollary 3.6 (splitting lemma)

Let σ be anα-bounded strategy forProp in the multitask {S1,S2}. Then for i ∈ {1, 2}
there is a strategy σi and αi ∈ R+ satisfying the following:

1. σi is an αi-bounded strategy for Prop in Si.

2. h(σi) � h(σ)

3. α1 + α2 � α

Proof of the corollary. For σi we take any optimal σ-induced i-strategy, and then set αi :=
c(σi) = ci(σ). By Lemma 3.5 we haveα1+α2 � α. Finally the statement about the height
of σ1 and σ2 follows from the fact that both strategies arise by pruning the tree σ.
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Proof of Lemma 3.5. We show the inequality by induction on the number of branchings
in the tree representation of σ. If there is none, then 1det(σ) = 2det(σ) = {σ} and the
statement becomes

cost(1red(σ)) + cost(2red(σ)) � cost(σ)

which is true because σ is a branch, and thus we actually have equality. Otherwise,
let b be the branch of σ connecting the root to the first branching node, and let U and V

the two subtrees stemming from that node. Both subtrees have lesser height than σ.
Assume furthermore, without loss of generality, that the branching corresponds to a
choice of Opp in S1. So σ looks like this:

choice of Opp in S1

U V

b

We make the following observations: Every 1-determination of T is of the form

U �

b

or

V �

b

where U � ∈ 1det(U) and V � ∈ 1det(V), and every 2-determination of T is of the form

choice of Opp in Sl

U � V �

b

where U � ∈ 2det(U) and V � ∈ 2det(V). Consequently we have:

c1(T) = min{c1(U), c1(V)}+ cost(1red(b))
c2(T) = max{c2(U), c2(V)}+ cost(2red(b))
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Assume, again without loss of generality, that c2(T) = c2(U) + cost(2red(b)). Then we
have

c1(T) + c2(T) = min{c1(U), c1(V)}+ c2(U) + cost(1red(b)) + cost(2red(b))
= min{c1(U), c1(V)}+ c2(U) + cost(b)
� c1(U) + c2(U) + cost(b)
I.H.
� c(U) + cost(b)
� cost(T).

We now have all necessary tools to prove the completeness theorem.

Theorem 3.7 (completeness of LaSELL(R+))

For any sequent S, |=α S implies �LaSELL(R+) α 
 S.

Proof. By induction on the height of an α-bounded Prop-strategy σ for S.

The base case is that the task S is immediately accomplished, which holds only if S is an
initial sequent of LaSELL(R+). But then α 
 S is an initial sequent of LaSELL(R+),
an so we have �LaSELL(R+) α 
 S.

For the other cases, let us proceed by case distinction on the first move of Prop in S

according to σ.

1. If Prop’s first move is to pick a unary rule instance (r) �= (drγ) of aSELL(R+)
with premise S �, then σ must contain a strategy for the subtask S �. This strategy
has lesser height and must also be α-bounded because no costs arise by the choice
of (r). By induction hypothesis, we obtain �LaSELL(R+) α 
 S �, and then by
applying (r) we obtain �LaSELL(R+) α 
 S.

2. If Prop’s first move is to pick the rule (drγ) with premise S �, σ must contain a
strategy for the subtask S �. This strategy will be of lesser height and (α − γ)-
bounded because of the cost γ arising by the choice of (drγ). By induction
hypothesis, we obtain �LaSELL(R+) (α− γ) 
 S � and then �LaSELL(R+) α 
 S

by applying (drγ).

3. AssumeProp’s first move is to pick a binary additive rule instance (r)ofaSELL(R+)
with premises S1 and S2. By the definition of the task semantics, Prop’s task
switches to either S1 or S2 in the subsequent round (as chosen by Opp). Since σ

is α-bounded, neither task can result in costs > α for Prop if she follows the

82



3.5. LaSELL(R+)

strategy σ in the subtasks. So we have |=α S1 and |=α S2, and so by induc-
tion hypothesis �LaSELL(R+) α 
 S1 and �LaSELL(R+) α 
 S2. Finally we ob-
tain �LaSELL(R+) max{α,α} 
 S by applying (r), and of course max{α,α} = α.3

4. AssumeProp’s first move is to pick a binary additive rule instance (r)ofaSELL(R+)
with premises S1 and S2. Then σ must contain a strategy σ � of lesser height for the
subsequent multitask {S1,S2}, which is still α-bounded. By the splitting lemma
(Corollary 3.6), for i ∈ {1, 2} there exists an αi-bounded strategy σi for Si such
that h(αi) � h(σ �) < h(σ) and such that α1 + α2 � α. By the induction hypothe-
sis, we obtain proofs of α1 
 S1 and α2 
 S2, which can then be combined into a
proof of α1 + α2 
 S using (r), and then by applying (l-weak) (if necessary) we
obtain α 
 S.

We close this section by presenting two example applications of the labelled system.

Example 3.8

Consider the following well-known riddle:

You have white and black socks in a drawer in a completely dark room. How
many socks do you have to take out blindly to be sure of having a matching pair?

We can model the matching pair by the disjunction M := (w ∗w)∨ (b ∗ b), and the
act of drawing a random sock by the formula !1(w ∨ b). The above question then
becomes: For which n is

n 
 !1(w∨ b) ⇒ (w ∗w)∨ (b ∗ b)

provable in LaSELL(R+)?

The following LaSELL(R+)-proof sketch shows that n = 3 drawings suffice:

3This part of the completeness proof suggests that instead of computing max, we could have required
equality of the labels in the premises of additive rule, i.e., employ a rule format like

α 
 Γ ⇒ A α 
 Δ ⇒ B

α 
 Γ ⇒ A∧ B
(∧r)

for additive rules. This is indeed possible, as both formats are equivalent in the presence of (l-weak).
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....
0 
 !1(w∨ b),w,w ⇒ w ∗w

0 
 !1(w∨ b),w,w ⇒ M
(∨r)

....
0 
 !1(w∨ b),w,b,w ⇒ w ∗w

0 
 !1(w∨ b),w,b,w ⇒ M
(∨r)

....
0 
 !1(w∨ b),b,b,w ⇒ b ∗ b
0 
 !1(w∨ b),b,b,w ⇒ M

(∨r)

0 
 !1(w∨ b),w∨ b,b,w ⇒ M
(∨l)

1 
 !1(w∨ b),b,w ⇒ M
(dr1)

1 
 !1(w∨ b),w∨ b,w ⇒ M
(∨l)

2 
 !1(w∨ b),w ⇒ M
(dr1)

....
2 
 !1(w∨ b),w∨ b ⇒ M

(∨l)

3 
 !1(w∨ b) ⇒ M
(dr1)

Example 3.9 (labelled transition systems)

An R+-labelled transition system T = (S, T) is a set S of states together with a set T of
transitions

s
γ

=⇒ t

where s, t ∈ S and γ ∈ R+. We interpret γ as the time it takes the system to move
from state s to state t. Identifying each s ∈ S with a propositional variable, we can
assign to T the set of formulas

Ω(T) := {!γ(s → t) | (s
γ

=⇒ t) ∈ T }

Then the timed reachability problem in T is naturally encoded in LaSELL(R+) in
the following way:

t is reachable from s in time � α ⇐⇒ �LaSELL(R+) α 
 Ω(T) ∪ {s} ⇒ t

In fact the proof of α 
 Ω(T) ∪ {s} ⇒ t is nothing but a description of the path
from s to t. This correspondence can be extended to transition systems containing
more complicated transitions. For example,

!γ(s → t1 ∨ t2)

is a transition which takes time γ and leads non-deterministically either to state t1
or t2.

3.6 Proof Theory of LaSELL(R+)

We now turn to some syntactical observations on LaSELL(R+).

Define the skeleton of a LaSELL(R+)-proof δ as the result of removing all labels and all
instances of (l-weak). Then the skeleton of δ is an aSELL(R+)-proof. Conversely, given
a aSELL(R+)-proof δ of the sequent S we define its frugal labelling as follows: Add the
label 0 to all initial sequents in δ and then propagate the labels downward in the proof
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according to the labelling rules of LaSELL(R+). This yields a LaSELL(R+)-proof
of α 
 S for some α ∈ R+.

Hence:
Proposition 3.10

�aSELL(R+) S ⇐⇒ ∃α ∈ R+ �LaSELL(R+) α 
 S.

By the completeness theorem, Proposition 3.10 is equivalent to

�aSELL(R+) S ⇐⇒ ∃α ∈ R+ |=α {S}

which by definition of |= means

�aSELL(R+) S ⇐⇒ |= {S}

and this is exactly the ‘unlabelled completeness theorem’ that we already mentioned,
but did not prove (Theorem 3.3).

Lemma 3.11

For any sequent S such that �aSELL(R+) S, the set {α | �LaSELL(R+) α 
 S} has a
minimum.

Proof. By Proposition 3.10, the setΛ := {α | �LaSELL(R+) α 
 S} is non-empty. But since
there are usually infinitely many different proofs of S, it may not be immediately obvious
that Λ takes a minimum. But we can argue as follows. Given any LaSELL(R+)-proof δ
of α 
 S, the frugal labelling of the skeleton of δ is an LaSELL(R+)-proof of α � 
 S,
and it is clear that α � � α. So in order to calculate the infimum of Λ, it suffices to
consider proofs which arise as frugal labellings of aSELL(R+)-proofs. All such proofs
have the property that the label of their endsequent is a linear combination with integer
coefficients of the finitely many reals γ which appear as supexponentials !γA in S. It is
not difficult to see that the set of all such linear combinations is nowhere dense in the
reals, and therefore Λ, being a subset of it, must take a minimal value.

We are thus justified in stating the following definition.

Definition 3.12

For any sequent S such that �aSELL(R+) S, we let

cost(S) := min{α | �LaSELL(R+) α 
 S}.
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Note however that we have not described a way to compute the function S �→ cost(S),
and in fact we do not know how to achieve this. This problem will be included in the
section on open questions.

Proposition 3.13

The rule (l-weak) is admissible in LaSELL(R+).

Proof. By a simple induction on the height of LaSELL(R+)-proofs. Let us just consider
one case for illustration: Assume that a proof ends with

.... δ

α 
 Γ , !γA,A ⇒ Π

α+ γ 
 Γ , !γA ⇒ Π
(drγ)

We want to show that for a given β � α + γ, the sequent β 
 Γ , !γA ⇒ Π is
derivable. Indeed, we have β − γ � α, and from applying the induction hypoth-
esis to the subderivation δ with endsequent α 
 Γ , !γA,A ⇒ Π we can conclude
that (β − γ) 
 Γ , !γA,A ⇒ Π is derivable. Then by applying (dr) with principle
formula !γA, the sequent β 
 Γ , !γA ⇒ Π follows.

By Theorem 3.1 the cut rule

!Ω, Γ ⇒ A !Ω,Δ,A ⇒ Π

!Ω, Γ ,Δ ⇒ Π
(cut)

is admissible inaSELL(R+). In the remainder of this section we try to prove admissibil-
ity of labelled versions of (cut) inLaSELL(R+). To start with, note that ifLaSELL(R+)
proves

α 
 !Ω, Γ ,Δ ⇒ Π and β 
 !Ω,Δ,A ⇒ Π,

then (by Proposition 3.10) aSELL(R+) proves !Ω, Γ ,Δ ⇒ Π and !Ω,Δ,A ⇒ Π, and so
by cut admissibility aSELL(R+) also proves the sequent !Ω, Γ ,Δ ⇒ Π. This in turns
implies, again by Proposition 3.10, thatLaSELL(R+)provesα 
 !Ω, Γ ,Δ ⇒ Π for someα,
for example α = cost(!Ω, Γ ,Δ ⇒ Π). For this reason the following labelled cut rule

α 
 !Ω, Γ ⇒ A β 
 !Ω,Δ,A ⇒ Π

cost(!Ω, Γ ,Δ ⇒ Π) 
 !Ω, Γ ,Δ ⇒ Π
(cut)

is admissible in LaSELL(R+). But this is only of limited interested because we do not
know how to calculate cost(!Ω, Γ ,Δ ⇒ Π). A more informative result for a restricted
class of cuts is the following:
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Theorem 3.14 (simple cut elimination)

For any A not containing !, the following cut rule is admissible in LaSELL(R+):

α 
 !Ω, Γ ⇒ A β 
 !Ω,Δ,A ⇒ Π

α+ β 
 !Ω, Γ ,Δ ⇒ Π
(cut)

Proof. We follow a standard cut-reduction and observe that it is compatible with the
proposed labelling. In fact, since A does not contain !, the cut-reduction strategy is
essentially that of FL⊥

ew.

To reduce the number of cases we have to consider, we introduce the notion of a maximal
instance of a multiplicative rule: This is an instance where all unbounded formulas in
the antecedent of the conclusion are copied to both premises. For example, an instance
of (cut) as in the statement of the theorem is maximal if no further unbounded formula
occurs in Γ ∪ Δ. This restriction is harmless in the presence of (wl), and we will
henceforth assume that all multiplicative rule instances are maximal.

Define as usual the degree of a cut as the number of connectives in the cut formula, and
its rank as the sum of the heights of its subproofs. For technical reasons related to the
use of maximal instances, we do not count (wl)’s in the computation of the rank.

It suffices to eliminate a single cut. If the cut is on a variable p and its left premise is
the initial sequent α 
 p ⇒ p, then the cut can be replaced by (l-weak). In all other
cases, at least one of the reduction steps below is applicable, and after the reduction
all occuring cuts are simpler in the following sense: They either have a lower degree
than the original cut, or the same degree but a lower rank. It follows that the reduction
methods terminates.

1. Consider first the case where the cut formula is principal in both premises. Here
the cut can be replaced by one or two cuts of lower degree, depending on the
principal connective of the cut formula.

a) If A = A1 ∧A2, the proof looks like this:
....

α1 
 !Ω, Γ ⇒ A1

....
α2 
 !Ω, Γ ⇒ A2

max{α1,α2} 
 !Ω, Γ ⇒ A1 ∧A2
(∧r)

....
β 
 !Ω,Δ,A1 ⇒ Π

β 
 !Ω,Δ,A1 ∧A2 ⇒ Π
(∧l)

max{α1,α2}+ β 
 !Ω, Γ ,Δ ⇒ Π
(cut)

This cut is reduced as follows:
....

α1 
 !Ω, Γ ⇒ A1

....
β 
 !Ω,Δ,A1 ⇒ Π

α1 + β 
 !Ω, Γ ,Δ ⇒ Π
(cut)

max{α1,α2}+ β 
 !Ω, Γ ,Δ ⇒ Π
(l-weak)
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b) If A = A1 ∗A2, the proof looks like this:
....

α1 
 !Ω, Γ1 ⇒ A1

....
α2 
 !Ω, Γ2 ⇒ A2

α1 + α2 
 !Ω, Γ1, Γ2 ⇒ A1 ∗A2
(∗r)

....
β 
 !Ω,Δ,A1,A2 ⇒ Π

β 
 !Ω,Δ,A1 ∗A2 ⇒ Π
(∗l)

α1 + α2 + β 
 !Ω, Γ1, Γ2,Δ ⇒ Π
(cut)

Here we use the assumption on maximality of multiplicative rules: Oth-
erwise, we would not know that the multiset !Ω which is copied to both
premises of (cut) is the same multiset which is copied to both premises
of (∗r). That being said, the cut can be reduced as follows:

....
α2 
 !Ω, Γ2 ⇒ A2

....
α1 
 !Ω, Γ1[,A2] ⇒ A1

....
β 
 !Ω,Δ,A1,A2 ⇒ Π

α1 + β 
 !Ω, Γ1,A2,Δ ⇒ Π
(cut)

α1 + α2 + β 
 !Ω, Γ1, Γ2,Δ ⇒ Π
(cut)

If A2 is unbounded, it must be copied to the left premise of the upper cut to
retain maximality. In this case, A2 should be introduced immediately above
by (wl). This optional introduction of an unbounded formula via weakening
will be indicated by the notation [A2] here and in the following reduction
steps.

The remaining principal cases are similar.

2. Assume now that A is not principal in the left premise of (cut).

a) If the lowermost rule in the left premise of (cut) is (drγ), then the proof looks
like this:

....
α � 
 !Ω, !γB,B, Γ ⇒ A

α � + γ 
 !Ω, !γB, Γ ⇒ A
(drγ)

....
β 
 !Ω, !γB,Δ,A ⇒ Π

α � + γ+ β 
 !Ω, !γB, Γ ,Δ ⇒ Π
(cut)

The cut reduction is as follows:
....

α � 
 !Ω, !γB,B, Γ ⇒ A

....
β 
 !Ω, !γB, [B, ]Δ,A ⇒ Π

α � + β 
 !Ω, !γB,B, Γ ,Δ ⇒ Π
(cut)

α � + γ+ β 
 !Ω, !γB, Γ ,Δ ⇒ Π
(drγ)

Here it is important that we do not count (wl)’s in the computation of the
rank, as otherwise the above proof might not be smaller in case B has to be
introduced by weakening above the upper right premise.
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b) If the lowermost inference in the left premise of (cut) is (∨l), then the proof
looks like this:

....
α1 
 !Ω, Γ ,B1 ⇒ A

....
α2 
 !Ω, Γ ,B2 ⇒ A

max{α1,α2} 
 !Ω, Γ ,B1 ∨ B2 ⇒ A
(∧r)

....
β 
 !Ω,Δ,A ⇒ Π

max{α1,α2}+ β 
 !Ω, Γ ,B1 ∨ B2,Δ ⇒ Π
(cut)

The cut can be reduced as follows:
....

α1 
 !Ω, Γ ,B1 ⇒ A

....
β 
 !Ω,Δ, [B1, ]A ⇒ Π

α1 + β 
 !Ω, Γ ,B1,Δ ⇒ Π
(cut)

....
α2 
 !Ω, Γ ,B2 ⇒ A

....
β 
 !Ω,Δ, [B2, ]A ⇒ Π

α2 + β 
 !Ω, Γ ,B2,Δ ⇒ Π
(cut)

max{α1 + β,α2 + β} 
 !Ω, Γ ,B1 ∨ B2,Δ ⇒ Π
(∨l)

Note that max{α1 + β,α2 + β} = max{α1,α2}+ β.

c) If the lowermost inference in the left premise is (→l), then the proof looks
like this:

....
α1 
 !Ω, Γ1 ⇒ B1

....
α2 
 !Ω, Γ2,B2 ⇒ A

α1 + α2 
 !Ω, Γ1, Γ2,B1 → B2 ⇒ A
(→l)

....
β 
 !Ω,Δ,A ⇒ Π

α1 + α2 + β 
 !Ω, Γ1, Γ2,B1 → B2,Δ ⇒ Π
(cut)

The cut can be reduced as follows:

....
α1 
 !Ω, Γ1 ⇒ B1

....
α2 
 !Ω, Γ2,B2 ⇒ A

....
β 
 !Ω,Δ, [B2, ]A ⇒ Π

α2 + β 
 !Ω, Γ2,B2 ⇒ Π
(cut)

α1 + α2 + β 
 !Ω, Γ1, Γ2,B1 → B2,Δ ⇒ Π
(→l)

The other cases are similar. Note that when we shift the cut above (wl), due to our
way of counting the rank we must actually shift the cut above a maximal sequence
of (wl)’s and do one further reduction step in order to obtain a smaller cut.

3. Assume now that A is not principal in the right premise of (cut).

a) Assume that the lowermost inference in the right subproof of (cut) is (∗r).
Since A is bounded, it will appear only in one premise of (∗r). Assume it is
in the left premise. Then the proof looks like this:

....
α 
 !Ω, Γ ⇒ A

....
β1 
 !Ω,A,Δ1 ⇒ B1

....
β2 
 !Ω,Δ2 ⇒ B2

β1 + β2 
 !Ω,Δ1,Δ2,A ⇒ B1 ∗ B2
(∗r)

α+ β1 + β2 
 !Ω, Γ ,Δ1,Δ2 ⇒ B1 ∗ B2
(cut)
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The cut is reduced as follows:
....

α 
 !Ω, Γ ⇒ A

....
β1 
 !Ω,A,Δ1 ⇒ B1

α+ β1 
 !Ω, Γ ,Δ1 ⇒ B1
(cut)

....
β2 
 !Ω,Δ2 ⇒ B2

α+ β1 + β2 
 !Ω, Γ ,Δ1,Δ2 ⇒ B1 ∗ B2
(∗r)

The other cases are similar. Note that there is no subcase where the lowermost
inference in the right subproof of (cut) is (pr), as this is ruled out by the bound-
edness of A.

One reason that the proof of Theorem 3.14 goes through is that the labels behave in a way
similar to the contexts. This can be seen as an a posteriori justification for identifying
multiplicative rules with cumulative tasks and additive rules with alternative tasks. To
be a bit more formal, define operations on multisets of formulas as follows:

Γ1 ! Γ2 := multiset union of Γ1 and Γ2

Γ1 " Γ2 := the smallest multiset containing Γ1 and Γ2 as submultisets

Noting first that in the presence of (wl), (∧r) can be replaced by its variant
Γ ⇒ A Δ ⇒ B
Γ " Δ ⇒ A∧ B

(∧ �
r)

we have the following labelled versions of the multiplicative (∗r) and the additive (∧ �
r):

α1 
 Γ ⇒ A α2 
 Δ ⇒ B

α1 + α2 
 Γ ! Δ ⇒ A ∗ B (∗r) and
α1 
 Γ ⇒ A α2 
 Δ ⇒ B

max{α1,α2} 
 Γ " Δ ⇒ A∧ B
(∧ �

r)

Hence there is an analogy in the pairs +/!, and max /". Similarly, the fact that the cut
rule in LaSELL(R+) is labelled α+β (as opposed to max{α,β}) corresponds to the fact
that (cut) is a multiplicative rule.

The labelling of (cut) proposed in Theorem 3.14 is minimal. This we can observe from
the following example: LaSELL(R+) proves

γ 
 !γp ⇒ p and δ 
 p, !δ(p → q) ⇒ q

and letting S denote their cut conclusion !γp, !δ(p → q) ⇒ q we have

cost(S) = γ+ δ.

Example 3.15 (labelled transition systems, part 2)

Consider again the encoding of labelled transition systems from Example 3.9. By
Theorem 3.14, the rule

α 
 Ω(T), s ⇒ t β 
 Ω(T), t ⇒ u

α+ β 
 Ω(T), s ⇒ u
(cut)
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is admissible in LaSELL(R+). In the semantics of labelled transition systems,
Theorem 3.14 expresses a transitivity property: If t is reachable from s in time � α

(as witnessed by some path ρ1) and u is reachable from t in time � β (as witnessed
by some path ρ2), then u is reachable from s in time � α+ β. By inspecting the cut
elimination procedure, one can observe that the cutfree proof ofα+β 
 Ω(T), s ⇒ u

will describe the concatenation of the paths ρ1 and ρ2.

If A contained negative occurrences of !, there would be another principal case to be
taken care of in the cut reduction. Consider for example the cut

....
α 
⇒ B

α 
⇒!γB (pr)

....
β 
 Δ, !γB,B ⇒ Π

β+ γ 
 Δ, !γB ⇒ Π
(dr)

α+ β+ γ 
 Δ ⇒ Π
(cut).

This is usually reduced to

....
α 
⇒ B

....
α 
⇒!γB

....
β 
 Δ, !γB,B ⇒ Π

α+ β 
 Δ,B ⇒ Π
(cut)

2α+ β 
 Δ ⇒ Π
(cut)

where the upper cut has smaller rank, and the lower cut has smaller degree than the
original cut. But this does not work in the labelled setting, since the label 2α+ β is not
necessarily smaller than the original label α+ β+ γ. As it turns out, this problem goes
deeper than the particular choice of labelling:

Theorem 3.16 (No simple cut labelling)

There is no function f : R+ × R+ → R+ such that the cut rule

α 
 !Ω, Γ ⇒ A β 
 !Ω,Δ,A ⇒ Π

f(α,β) 
 !Ω, Γ ,Δ ⇒ Π
(cut)

is admissible in LaSELL(R+) for arbitrary A.

Proof. Let p,q be different variables and let A∗n denote the n-fold multiplicative con-
junction of A. Consider the sequents

!
1
kp ⇒!

1
kp∗(k·α) and !

1
kp∗(k·α) ⇒ p∗(k·k·α·β).

where k,α and β are non-zero natural numbers. They have costs α and β respectively.
Their cut conclusion S is the sequent

!
1
kp ⇒ p∗(k·k·α·β),
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and cost(S) = k ·α ·β. Since every function f in α,β (the labels of the premises of cut) is
dominated by k ·α ·β when choosing k large enough, there cannot be a sound labelling
of the cut rule which depends only on α and β.

Theorem 3.16 tells us that in order to find an admissible labelled cut rule, we must either

1. restrict the shape of the cut formula, and/or

2. allow the labelling function f to take more information of the premises into account
than just their labels.

Theorem 3.14 is an instance of the first approach, where the cut formula was required
to be !-free. We will now consider another, and less limiting, syntactic restriction on the
cut formula.

Definition 3.17 (simply exp-labelled)

A formula of the form !γA is simply exp-labelled if γ �= 0 and no further ! appears
in A.

The cut formula used as a counterexample in the proof of Theorem 3.16 is simply exp-
labelled, and therefore we cannot expect to find an admissible cut rule for all simply
exp-labelled cut formulas where the labelling only takes the labels of the premises into
account. If we however lift the second requirement and also use the information of the
label γ in the simply ex-labelled formula !γA, we do succeed.

First, one preliminary lemma.

Lemma 3.18

If �LaSELL(R+) α 
 Γ , !γA ⇒ Π for some α < γ, then �LaSELL(R+) � α 
 Γ ⇒ Π.

Proof. Let δ be a LaSELL(R+)-proof of α 
 Γ , !γA ⇒ Π where α < γ. Then every label
in δ is smaller than γ, and so !γA can never be principal in an application of (drγ).
Furthermore, since !γA is not atomic, it cannot appear in an initial sequent.4 It follows
that we can simply remove the denoted occurrence of !γA, as well as all its ancestors
and applications of (wl) stemming from them, from the proof δ.

Theorem 3.19

For any simply exp-labelled formula !γA, the following cut rule is admissible

4Recall that the initial sequents of LaSELL(R+) are α 
 p ⇒ p.
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in LaSELL(R+):

α 
 !Ω, Γ ⇒!γA β 
 !Ω,Δ, !γA ⇒ Π

f(α,β,γ) 
 !Ω, Γ ,Δ ⇒ Π
(cut)

where f(α,β,γ) = β+ �β/γ� · α.

Here �ξ� denotes the largest integer smaller or equal than ξ ∈ R+. The intuition for
this labelling is as follows. Assume for simplicity that all rules in the right subproof
of (cut) are multiplicative. Since the costs of this subproof are bounded by β, the cut
formula !γA can be principal in an instance of (drγ) at most �β/γ� many times in it.
Each of these times, the usual cut reduction will create a cut on A with the left subproof.
Since A does not contain ! by assumption, each of these � �β/γ� cuts can be eliminated
resulting in additional costs ofα by Theorem 3.14, and so the total cost of the elimination
is no more than �β/γ� ·α. These costs are then added to the cost β of the original proof.

Note also that the proposed labelling of cut is consistent with the counterexample used
in the proof of Theorem 3.16: For non-zero natural numbers α,β and k we have

α 
 ! 1
kp ⇒! 1

kp∗(k·α) β 
 ! 1
kp∗(k·α) ⇒ p∗(k·k·α·β)

β+ �β/( 1
k)� · α 
 ! 1

kp ⇒ p∗(k·k·α·β)
(cut)

and
β+ �β/(1

k
)� · α = β+ k · β · α � k · α · β = cost(!

1
kp ⇒ p∗(k·k·α·β)).

Proof of Theorem 3.19. It suffices to consider proofs which contain only one such cut. As
in the proof of Theorem 3.14, we assume that all multiplicative rules are maximal. The
proof proceeds by induction on the rank of the cut , that is the sum of the heights of its
subproofs. As in Theorem 3.14, we do not count (wl)’s in the computation of the rank.

We first isolate two cases in which the cut can be removed immediately. If the cut
formula was introduced via (wl) immediately above the right premise of cut

....
α 
 !Ω, Γ ⇒!γA

....
β 
 !Ω,Δ ⇒ Π

β 
 !Ω,Δ, !γA ⇒ Π
(wl)

f(α,β,γ) 
 !Ω, Γ ,Δ ⇒ Π
(cut)

then the cut can be removed as follows:
....

β 
 !Ω,Δ ⇒ Π

β 
 !Ω, Γ ,Δ ⇒ Π
(wl)

f(α,β,γ) 
 !Ω, Γ ,Δ ⇒ Π
(l-weak)
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Here we use β � f(α,β,γ). A similar argument applies if the cut formula is introduced
above the left premise of cut via (wr).

Second, we can remove any cut where the labelling obeys β < γ using Lemma 3.18:
....

α 
 !Ω, Γ ⇒!γA

....
β 
 !Ω,Δ, !γA ⇒ Π

f(α,β,γ) 
 !Ω, Γ ,Δ ⇒ Π
(cut)

is replaced by ....
β 
 !Ω,Δ ⇒ Π

β 
 !Ω, Γ ,Δ ⇒ Π
(wl)

f(α,β,γ) 
 !Ω, Γ ,Δ ⇒ Π
(l-weak)

Hence we can from now on assume that β � γ, and therefore �β/γ� � 1. In all other
cases we now show how a cut can be replaced by one or two cuts of lower rank. Any
sequence of such reduction steps eventually leads to one of the two cases above where
the cut is finally removed. The reduction steps are all standard, but additionally we
always have to make sure that the label is not increased after the reduction.

1. First consider the main case in which the cut formula is principal in both premises.
We show how this cut can be shifted upwards in the proof and thereby decreased
in rank. So assume the cut looks like this:

....
α 
 !�γΩ ⇒ A

α 
 !�γΩ ⇒!γA
(pr)

....
β � 
 !�γΩ,Δ, !γA,A,⇒ Π

β � + γ 
 !�γΩ,Δ, !γA ⇒ Π
(dr)

f(α,β � + γ,γ) 
 !�γΩ,Δ ⇒ Π
(cut)

We transform this cut to

....
α 
 !�γΩ ⇒ A

....
α 
 !�γΩ ⇒ A

α 
 !�γΩ ⇒!γA
(pr)

....
β � 
 !�γΩ,Δ, !γA,A ⇒ Π

f(α,β �,γ) 
 !�γΩ,Δ,A ⇒ Π
(cut)

f(α,β �,γ) + α 
 !�γΩ,Δ ⇒ Π
(cut)

f(α,β � + γ,γ) 
 !�γΩ,Δ ⇒ Π
(l−weak)

Note that the upper cut has decreased rank and is therefore admissible by induc-
tion hypothesis. The lower cut is admissible by Theorem 3.14, as A is !-free. We
also have to check the soundness of the rule (l−weak): For this, we first observe
that �(β � + γ)/γ� = �β �/γ+ 1� = �β �/γ�+ 1. Then:

f(α,β �,γ) + α = β � + �β �/γ� · α+ α = β � + (�β �/γ�+ 1) · α
� β � + γ+ �(β � + γ)/γ� · α = f(α,β � + γ,γ)
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3.6. Proof Theory of LaSELL(R+)

2. Next we argue that a cut can be shifted above the left premise of cut as long as the
cut formula is not principal in the left premise.

a) Lifting cut above (drξ) in left premise The cut then looks like this:
....

α � 
 !Ω, Γ , !ξB,B ⇒!γA
α � + ξ 
 !Ω, Γ , !ξB ⇒!γA

(drξ)

....
β 
 !Ω, !ξB,Δ, !γA ⇒ Π

f(α � + ξ,β,γ) 
 !Ω, Γ , !ξB,Δ ⇒ Π
(cut)

We transform this cut to:
....

α � 
 !Ω, Γ , !ξB,B ⇒!γA

....
β 
 !Ω, !ξB,Δ, !γA ⇒ Π

f(α �,β,γ) 
 !Ω, Γ , !ξB,B,Δ ⇒ Π
(cut)

f(α �,β,γ) + ξ 
 !Ω, Γ , !ξB,Δ ⇒ Π
(drξ)

f(α � + ξ,β,γ) 
 !Ω, Γ , !ξB,Δ ⇒ Π
(l-weak)

Note that

f(α �,β,γ)+ξ = β+�β/γ� ·α �+ξ � β+�β/γ� · (α �+ξ) = f(α �+ξ,β,γ).

Here we use the assumption that β � γ.
b) Shifting cut above (→l) in the left premise The cut then looks like this:

α � 
 !Ω, Γ1 ⇒ B1 α �� 
 !Ω, Γ2,B2 ⇒!γA
α � + α �� 
 !Ω, Γ1, Γ2,B1 → B2 ⇒!γA

(→l)
β 
 !Ω,Δ, !γA ⇒ Π

f(α � + α ��,β,γ) 
 !Ω, Γ1, Γ2,B1 → B2,Δ ⇒ Π
(cut)

We can lift this cut upwards as follows:5

α � 
 !Ω, Γ1 ⇒ B1

α �� 
 !Ω, Γ2,B2 ⇒!γA β 
 !Ω, [B2, ]Δ, !γA ⇒ Π

f(α ��,β,γ) 
 !Ω, Γ2,B2,Δ ⇒ Π
(cut)

α � + f(α ��,β,γ) 
 !Ω, Γ1, Γ2,B1 → B2,Δ ⇒ Π
(→l)

f(α � + α ��,β,γ) 
 !Ω, Γ1, Γ2,B1 → B2,Δ ⇒ Π
(l-weak)

For the soundness of the lowermost inference (l-weak), we calculate

α � + f(α ��,β,γ) = α � + β+ �β/γ� · α ��

� β+ �β/γ� · (α � + α ��)
= f(α � + α ��,β,γ)

using �β/γ� � 1 in the second line.
5For the [ ]-notation, see the proof of Theorem 3.14.
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As mentioned before, reduction steps as in (a) and (b) are standard and the only
new thing is the computation of the labelling. We therefore switch now to a more
economic notation of the argument which abstracts away from the logical structure
of the sequents and focuses only on the labels. In this notation, the argument in
(b) above will be written as:

α � α ��
α � + α �� (→l)

β

f(α � + α ��,β,γ)
(cut) �

α �
α �� β

f(α ��,β,γ)
(cut)

α � + f(α ��,β,γ)
(→l)

α � + f(α ��,β,γ) = α � + β+ �β/γ� · α ��

� β+ �β/γ� · (α � + α ��)
= f(α � + α ��,β,γ)

So the figure is a schematic representation of the cut reduction, and it is followed
by a computation in which the label after and before the reduction are compared.
We now discuss the remaining cases using this new notation.

a) Shifting cut above (∨l) in the left premise

α α ��
max{α �,α ��}

(∨l)
β

f(max{α �,α ��},β,γ)
(cut) �

α � β

f(α �,β,γ)
(cut)

α �� β

f(α ��,β,γ)
(cut)

max{f(α �,β,γ), f(α ��,β,γ)}
(∨l)

max{f(α �,β,γ), f(α ��,β,γ)} = max{β+ �β/γ� · α �,β+ �β/γ� · α ��}
= β+ �β/γ� · max{α �,α ��}
= f(max{α �,α ��},β,γ)

b) Shifting the cut above (r) ∈ {(∧l), (∗l), (wl)} in the left premise

α
α (r) β

f(α,β,γ) (cut) �

α β

f(α,β,γ) (cut)

f(α,β,γ) (r)

Note that as in the proof of Theorem 3.14, we have to shift a cut above a
whole sequence of (wl)

�s and one further rule in order to obtain a reduction
in rank.

3. We may now assume that the cut rule is principal in the left premise. Recall
that the case where the cut rule is principal in an instance of (wr) was treated
in the very beginning. So, in the only remaining case, the cut formula must be
principal in an instance of (pr), which implies in particular that the antecedent of
the left premise of cut consists of unbounded formulas. If the cut formula is also
principal in the right premise, we are in the main case which was discussed above.
Otherwise, one of the following reductions applies:

96



3.6. Proof Theory of LaSELL(R+)

a) Shifting the cut above (drξ) in the right premise

α

β �

β � + ξ
(drξ)

f(α,β � + ξ,γ)
(cut) �

α β �

f(α,β �,γ)
(cut)

f(α,β �,γ) + ξ
(drξ)

f(α,β �,γ) + ξ = β � + �β �/γ� · α+ ξ

� β � + �(β � + ξ)/γ� · α+ ξ

= f(α,β � + ξ,γ)

b) Shifting the cut above r ∈ {(∗r), (→l)} in the right premise

α

β � β ��

β � + β �� (r)

f(α,β � + β ��,γ)
(cut) �

α β �

f(α,β �,γ)
(cut)

α β ��

f(α,β ��,γ)
(cut)

f(α,β �,γ) + f(α,β ��,γ)
(r)

f(α,β �,γ) + f(α,β ��,γ) = β � + �β �/γ� · α+ β �� + �β ��/γ� · α
= β � + β �� + (�β �/γ�+ �β ��/γ�) · α
� β � + β �� + �(β � + β ��)/γ� · α
= f(α,β � + β ��,γ)

c) Shifting the cut above r ∈ {(∨l), (∧r)} in the right premise

α

β � β ��

max{β �,β ��}
(r)

f(α, max{β �,β ��},γ)
(cut) �

α β �

f(α,β �,γ)
(cut)

α β ��

f(α,β ��,γ)
(cut)

max{f(α,β �,γ), f(α,β ��,γ)}
(r)

max{f(α,β �,γ), f(α,β ��,γ)} = max{β � + �β �/γ� · α,β �� + �β ��/γ� · α}
= max{β �,β ��}+ �max{β �,β ��}/γ� · α
= f(α, max{β �,β ��},γ)

d) Shifting the cut above (r) ∈ {(∗l), (→r), (∨r), (∧l), (pr), (wl), (wr)} (all unary
rule different from dereliction) in the right premise

α

β

β
(r)

f(α,β,γ) (cut) �

α β

f(α,β,γ) (cut)

f(α,β,γ) (r)
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3.7 Open Questions
Decidability and complexity. We have not discussed any issues related to the decid-
ability and computational complexity of LaSELL(R+). If we restrict our attention to
labelled sequents in which no exponent 0 occurs, then the label of the sequent puts a
bound on the uses of contractions which may occur in a proof. Since in this context
the contraction rule is the only obstruction to a ‘brute-force’ proof search, the decision
problem can be solved by exhaustively generating all possible proofs. If on the other
hand we allow the exponent 0, we do have unlimited contraction and so matters are
more complicated. A reason to believe in the decidability of LaSELL(R+) is the fact
that its underlying logic aILL is decidable [33] (unlike intuitionistic linear logic without
weakening [40]).

Embeddings. Another question is that of embeddings between LaSELL(R+) and
aSELL(R+). By Proposition 3.10 we have the non-constructive equivalence

�aSELL(R+) S ⇐⇒ ∃α ∈ R+ �LaSELL(R+) α 
 S.

If it is possible to find a computable upper bound F(S) for the cost of a sequent S, then
this equivalence can be extended to a partial computable reduction:

�aSELL(R+) S ⇐⇒ �LaSELL(R+) F(S) 
 S

(The reduction is partial because not every possible label occurs on the right.) Such
an upper bound function would already follow from a computable upper bound to the
length of cutfree aSELL(R+)-proofs. Given the latter upper bound, we obtain a very
rough estimate for cost(S) by assuming that every step in a maximal-length proof is
dereliction with the highest exponential occurring in S.

Extending the cut elimination theorem. It is conceivable that Theorem 3.19 can be
extended to cover cuts on arbitrary formulas by a suitable ‘iteration’ of the ideas involved
there. Assign a degree to LaSELL(R+)-formulas by counting their maximal nesting
of subexponentials. Then Theorem 3.14 is the cut elimination theorem for formulas of
degree 0, which tells us that a correct labelling of the cut rule in this case is f0(α,β,γ) =
α + β. From this we inferred the cut elimination theorem for formulas of degree 1
(Theorem 3.19) by estimating how many degree 0 cuts are involved in eliminating a
degree 1 cut, and this estimate led us to the labelling function

f1(α,β,γ) = f0(α, f0(α, . . . f0(α,β,γ) . . . ,γ),γ) (�β/γ�-many iterations)
= β+ �β/γ� · α.

In a nutshell, f1 is a (β,γ)-bounded iteration of f0. By the same argument, the labelling
function f2 for cuts on degree 2 formulas should be a bounded iteration of f1, and con-
tinuing like this we might obtain a whole hierarchy of labelling functions f0, f1, f2, f3, . . .
for cuts on formulas of degree 1, 2, 3 and so on. The danger of course is that the fk’s
become so difficult to describe that they are of little use.
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CHAPTER 4
A Reduction in Violation Logic

4.1 Introduction
This chapter contains a collection of proof-theoretic remarks on a family of deontic
logics called violation logic as introduced by Governatori, Rotolo et. al [27, 13, 25, 26, 14].

Deontic logic is the formal study of expressions such as

‘It is obligatory that A’ and ‘It is permitted that A’.

Starting with the seminal work of von Wright [55], various authors have modelled obli-
gations and permissions by extending a suitable base logic, often classical propositional
logic, using modal operators. The above sentences are then formulated as OA and PA;
Furthermore permission is often considered a derived connective PA := ¬O¬A. This
makes deontic logic a sub-branch of modal logic. The question of course is which axioms
to postulate for O.

One logic derived from von Wright’s work rose to prominence as standard deontic
logic SDL. A Hilbert-style system is pictured in Figure 4.1. Seen as a modal logic, SDL

coincides with KD, the logic of serial Kripke frames [15]. The seriality axiom OA →
¬O¬A is interpreted deontically as the absence of conflicting obligations.

It was soon observed thatSDL and related systems allow for the derivation of seemingly
counter-intuitive statements when provided with a set of ‘real world’ deontic assump-
tions. Examples of such failures have become known under the name deontic paradoxes,
and they have been a driving force in the development of new deontic logics ever since.
A list of some famous paradoxes can be found in [41].

What is important for our purpose are the problems arising when modelling contrary-to-
duty (CTD) reasoning, that is, reasoning in the presence of contradicting obligations. An
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4. A Reduction in Violation Logic

Axioms:

All theorems of CL (CL)
O(A → B) → (OA → OB) (O-K)

OA → ¬O¬A (O-D)

Rules:
A A → B

B
(MP)

A
OA

(O-NEC)

Figure 4.1: The standard deontic logic SDL.

appropriate handling of CTD is nowadays considered a benchmark of a useful deontic
logic. SDL fails here in the strongest possible sense, as contradictory obligations always
lead to a logical contradiction by virtue of the (O-D) axiom.

It is a common approach for deontic conflict resolution to assign different precedence
levels to obligations. A system in this spirit are the violation logics introduced by Gov-
ernatori, Rotolo et al. in a series of papers. These logics extend classical modal logic E
(which features the operator O, for ‘obligation’) by an additional operator ⊗ with the
intended meaning that [25, p.1]

‘[t]he interpretation of a chain like a⊗b⊗c is that a is obligatory, but if it
is violated (i.e., ¬a holds), then b is the new obligation (and b compensates
for the violation of a); again, if the obligation of b is violated as well, then c

is obligatory [. . .]’

For these so-called ⊗-chains a variety of rules and axioms are proposed, resulting
in a number of different systems of violation logic. One therefore has two levels of
obligations, one stemming from the ⊗-chains, and the other one from the O modality
of the underlying logic E. As the authors put it in [25, p.2] regarding their semantics for
the ⊗-operator,

‘We [. . .] split the treatment of ⊗-chains and obligations; the intuition is
that chains are the generators of obligations and permissions [. . .]’

This mirrors a common distinction between descriptive norms and prescriptive norms.
While the descriptive norms simply describe which norms are active according to some
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code of law, the prescriptive norms subsume all obligations which arise from them for
an agent.

In this chapter we investigate the role of ⊗-chains as generators of obligations using
proof theoretic methods. Our main result is that ⊗-chains can be replaced by formulas
in the underlying logic E which generate exactly the same obligations. This yields a
reduction of a large fragment of violation logic to the base logic E. As a consequence,
tools available for E – such as neighbourhood semantics on the model theoretic side,
or cutfree Gentzen systems on the proof theoretic side – can be used to study violation
logics. We establish coNP-completeness of the ‘translatable’ fragment of violation logic
and close with some remarks on the choice of axioms for ⊗-chains. While the chief part
of our results is of a technical nature, we occasionally hint at philosophical ramifications.

Our arguments take place exclusively in the original Hilbert-style presentation of vio-
lation logic, which gives this chapter quite a different flavour than the work in the other
chapters (which is more in the spirit of Gentzen-style proof theory). The method we
use is that of provability-preserving translations.

4.2 Preliminaries

Classical Modal Logic

The deontic logic underlying the treatment of ⊗-chains is given by axiomatic extensions
of the classical non-normal modal logic E [15]. The signature of E contains the following
connectives:

⊥ (constant), ∧,→ (binary) and O (unary)

Any formula in this signature will be called a basic deontic formula, and a basic deon-
tic formula without O will be called classical. Additional connectives are defined as
abbreviations: ¬A := A → ⊥, � := ¬⊥ and A ≡ B := (A → B)∧ (B → A).

The logic E is defined to be the smallest logic of deontic formulas containing CL and
closed under the rules

A A → B
B

(MP) and
A ≡ B

OA ≡ OB
(O-RE).

To be more precise, we define the following notion of proofs from assumptions in an
axiomatic extension of E. Here a set Γ will play the role of local assumptions, whereas
a set Δ plays the role of additional axioms.

Definition 4.1

Let Δ ∪ Γ ∪ {A} be a set of basic deontic formulas. An (E + Δ)-proof of A from Γ is a
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tree of basic deontic formulas rooted in A which obeys the following properties:

1. Every leaf of the tree is either a formula from Γ or a substitution instance of
formulas from CL∪Δ. Leaves of the former type are called local assumptions.1

2. Every internal node of the tree together with its child node(s) forms an instance
of (MP) or (O-RE).

3. (locality condition) No instance of (O-RE) appears below a local assumption.

We write Γ �E+Δ A, and say that A is derivable from Γ in E+Δ, if there is a (E+Δ)-
proof of A from Γ .

The locality condition reflects the well-known fact that modal rules such as (O-RE)
should not be applied to local assumptions in modal logic, see the chapter on proof
theory in [9]. With proofs from assumptions defined in this way, the deduction theorem
holds in its usual formulation:

Proposition 4.2 (deduction theorem)

Γ ∪ {B} �E+Δ A ⇐⇒ Γ �E+Δ B → A.

Proof. See [9].

We will also use the following generalization of (O-RE):

Proposition 4.3 (uniform substitution)

For any formula C(p), the following rule is admissible in E + Δ:

A ≡ B
C(A) ≡ C(B)

(O-RE’)

Proof. See [9].

We now review the notion of neighbourhood models, which form the standard seman-
tics of classical modal logics. A neighbourhood model W = �W,N,V� is composed of the
following elements:

• A nonempty set W of worlds
1More precisely, we call local assumptions only those leaves which are not at the same time instances

of formulas from CL ∪ Δ or classical theorems.
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• A neighbourhood function N : W → P(P(W))

• A valuation function V : V → P(W)

Given a neighbourhood model W, we can define the notion �W,w� |= A of truth at
a world w ∈ W by induction on the formula A: �W,w� � ⊥, �W,w� |= a :⇔ w ∈
V(a), �W,w� |= A ∧ B :⇔ �W,w� |= A and �W,w� |= B, �W,w� |= A → B :⇔ �W,w� �
A or �W,w� |= B, and finally

�W,w� |= OA : ⇐⇒ [A]W ∈ N(w)

where [A]W := {w ∈ W | �W,w� |= A}. The part FW = �W,N� of a neighbourhood
model W is called a neighbourhood frame, and conversely �W,N,V� is called a neighbour-
hood model based onF. Truth on a frame is defined as follows:F |= A iff for all modelsW
based on F and all worlds w ∈ W, �W,w� |= A. For a set Γ ∪ Δ ∪ {A} of basic deontic
formulas, we define the semantic consequence relation Γ |=Δ A as follows:

Γ |=Δ A : ⇐⇒ for all neighbourhood models W and w ∈
W, if FW |=

�
Δ and �W,w� |=

�
Γ ,

then �W,w� |= A.

Proposition 4.4 (soundness and completeness)

Γ |=Δ A ⇐⇒ Γ �E+Δ A.

Proof. This follows from the strong completeness theorem for E with respect to neigh-
bourhood models (see [15]) and the deduction theorem (Proposition 4.2).

Local assumptions in E + Δ therefore correspond to truths at a certain world.

Violation Logics

We now review our main object of study, the violation logics of Governatori, Rotolo et
al. They were originally introduced in [27] and then developed in a series of subsequent
articles. On the syntactic level, they extend axiomatic extensions of E by an operator ⊗,
which comes in any2 arity n > 0. A formula

A1 ⊗A2 ⊗A3 ⊗ . . . ⊗An

2A pedantic way to handle the indefinite arity of ⊗ is to consider a family ⊗n of n-ary connectives, for
each n; or to consider a unary and a binary connective, declaring all longer chains to be nestings thereof
(although this makes the subsequent definition of the nesting condition cumbersome). But there is also
nothing wrong with allowing connectives of indefinite arity.
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is meant to model a chain of obligations and corresponding compensations: A1 is oblig-
atory, but if A1 is violated, then the new (secondary) obligation is A2; the fullfillment
of A2 compensates the violation of A1; if however A2 is violated as well, then there is a
new (ternary) obligation A3, and so on.

Example 4.5

Consider three propositional variables w,p and f with meaning w=‘it is the week-
end’, p=‘parking downtown’ and f=‘paying a fine’. Then the intended meaning of
the formula

AEx = w → (¬p)⊗ f

taken from [26] is: On weekends it is forbidden to park downtown; but if one does so, one
has to pay a fine. The formula AEx will serve as a running example throughout this
chapter.

A formula of violation logic (henceforth just called a formula) is any formula built
from the above signature subject to the following nesting condition: No pair of operators
from {O,⊗} appears nested in A.3 For example, ¬(Oa ∧ (b ⊗ c ⊗ d)) is a formula
of violation logic, whereas ¬O(a ∧ (b ⊗ c)) is not. For any n > 0 a formula of the
form A1 ⊗ . . . ⊗An is called a ⊗-chain. Due to the nesting condition, every formula Ai

occurring in a ⊗-chain is classical. Chains of length 1 are written in prefix notation ⊗A.

Concerning rules and axioms for ⊗, the aforementioned articles follow a modular
approach and present numerous possible choices instead of a designated ‘standard
system’. For the sake of our investigation, it is however more convenient to fix a
framework. We remark already here that our results apply to different systems as well,
an observation which will be made precise later on (Corollary 4.24).

That being said, we will have the following two rules for ⊗:

A ≡ B
ν⊗A⊗ ν � ≡ ν⊗ B⊗ ν � (⊗-RE)

A ≡ B
ν⊗A⊗ ν � ⊗ B⊗ ν �� ≡ ν⊗A⊗ ν � ⊗ ν �� (⊗-contraction)

Here, a string such as ν ⊗ A ⊗ ν � stands symbolically for a ⊗-chain containing the
(classical) formula A at some position. It is allowed that ν or ν � are empty, so that A
is the first or last element of the chain. The rule (⊗-RE) is the generalization of (O-RE)
to the language of violation logic, and (⊗-contraction) is a principle of redundancy
elimination.

3The problem of nested formulas is not technical, but rather the lack of a satisfactory interpretation of
such expressions. See the discussion preceding Definition 2.1 in [25].
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As standard set of axioms, we take the following set Σ of formulas:

A1 ⊗ . . . ⊗An ∧

k�
i=1

¬Ai → OAk+1 (O-detachment)

A1 ⊗ . . . ⊗An ⊗An+1 → A1 ⊗ . . . ⊗An (⊗-shortening)
A1 ⊗ . . . ⊗An+1 ∧ ¬A1 → A2 ⊗ . . . ⊗An+1 (⊗-detachment)

In these axioms we have n � 1 and 0 � k < n.4 The axiom (O-detachment) captures
the intended meaning of ⊗-chains as descriptions of compensatory obligations: If the
first k obligations expressed in a ⊗-chain A1 ⊗ . . . ⊗ Ak ⊗ Ak+1 ⊗ . . . ⊗ an have been
violated, then the next obligation Ak+1 comes into effect.

On top of these axioms and rules, we allow a background theory Δ of basic deontic
axioms. We refer the reader to [25] for an extensive discussion of this and related
systems.

All in all, a (standard) violation logic therefore consists of the following parts:

1. The set Σ of all previously discussed rules and axioms for the ⊗-chains: (⊗-RE),
(⊗-contraction), (O-detachment), (⊗-shortening) and (⊗-detachment).

2. An additional set of basic deontic axioms Δ. Of this, we only require that E +Δ is
consistent.

The resulting Hilbert system is pictured in Figure 4.2. The term ‘standard’ shall refer to
the set Σ, which is fixed. As an example, the logic D⊗ from [25] is the standard violation
logic with Δ = {OA → ¬O¬A}.

We again define a notion of derivations from assumptions.5

Definition 4.6

Let Δ be a set of basic deontic formulas, and Γ ∪ {A} a set of arbitrary formulas.
A (VΣ+Δ)-proof of A from Γ is a tree of formulas rooted in A obeying the following:

1. Every leave is either a substitution instance of formulas from

CL ∪ Δ ∪ {(O-detachment),(⊗-shortening),(⊗-detachment)},

or if not, a formula from Γ . The latter type of leaves are called local assumptions.

4By the usual convention
� ∅ := � on empty conjunctions, it follows that A1 ⊗ . . . ⊗An ∧� → OA1 is

an instance of (O-detachment).
5The literature on violation logic leaves this definition implicit.
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Axioms:

All theorems of CL (CL)
All theorems of Δ (Δ)

A1 ⊗ . . . ⊗An ∧

k�
i=1

¬Ai → OAk+1 (O-detachment)

A1 ⊗ . . . ⊗An ⊗An+1 → A1 ⊗ . . . ⊗An (⊗-shortening)
A1 ⊗ . . . ⊗An+1 ∧ ¬A1 → A2 ⊗ . . . ⊗An+1 (⊗-detachment)

Rules:

A → B A
B

(MP)

A ≡ B
OA ≡ OB

(O-RE)

A ≡ B
ν⊗A⊗ ν � ≡ ν⊗ B⊗ ν � (⊗-RE)

A ≡ B
ν⊗A⊗ ν � ⊗ B⊗ ν �� ≡ ν⊗A⊗ ν � ⊗ ν �� (⊗-contraction)

Figure 4.2: Violation logic VΣ + Δ

2. Every internal node, together with its child node(s), forms an instance of (MP),
(O-RE), (⊗-RE) or (⊗-contraction)

3. (locality condition) No instance of (O-RE), (⊗-RE) or (⊗-contraction) appears
below a local assumption.

We write Γ �VΣ+Δ A, and say that A is derivable from Γ in VΣ + Δ, if there is
a (VΣ + Δ)-proof of A from Γ .

Proposition 4.7 (deduction theorem)

Γ ∪ {B} �VΣ+Δ A ⇐⇒ Γ �VΣ+Δ B → A.

Proof. By induction on the height of proofs.
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The deduction theorem equips us with the following mode of inference in violation
logic: If we can prove A from assumption B without using rules (O-RE), (⊗-RE) or (⊗-
contraction) below the assumption B, then we can infer B → A.

Example 4.8

We look again at the formula AEx from Example 4.5. The following proof shows
that {AEx,w,p} �VΣ

Of, which means in plain English: Parking downtown on a
weekend leads to the obligation of paying a fine.

(local assumption)
w

(local assumption)
w → (¬p)⊗ f

(¬p)⊗ f
(MP)

(local assumption)
p

¬¬p

¬¬p∧ ((¬p)⊗ f)
(instance of O-detachment)

¬¬p∧ ((¬p)⊗ f) → Of

Of
(MP)

A double line abbreviates some steps of ‘classical reasoning’, that is, the use
of classical theorems and (MP). Since none of the rules (O-RE), (⊗-RE) or (⊗-
contraction) are applied in the proof above, we may for example also conclude
that {AEx,w} �VΣ

p → Of.

The article [25] contains a completeness proof of violation logic with respect to sequence
semantics which are a straightforward generalization of neighbourhood semantics. We
include the definitions for illustration only, as we are not going to use sequence se-
mantics at all – in fact, we uphold the thesis that the proof-theoretic approach is more
perspicuous than the semantic account here.

A sequence model extends a neighbourhood model W = �W,N,V� by a function C

which maps each world w to a set Cw of finite non-empty sequences �X1, . . . ,Xn� of sets
of worlds. Cw obeys the following closure conditions:

1. If �X1, . . . ,Xn� ∈ Cw and w /∈ X1 ∪ . . . ∪ Xk for some 0 � k < n, then Xk+1 ∈ N(w)
and �Xk+1, . . . ,Xn� ∈ Cw.

2. If �X1, . . . ,Xn� ∈ Cw and n > 1, then �X1, . . . ,Xn−1� ∈ Cw.

3. Let L ∈ Cw be a list in which a set of worlds X occurs at a certain position. Then Cw

must contain also all lists arising from removing or introducing copies of X at a
later position in L.

Note how these closure conditions mimic (O/⊗-detachment), (⊗-shortening) and (⊗-
contraction). The satisfaction clauses of the standard neighbourhood semantics are then
extended by setting �W,C,w� |= A1 ⊗ . . . ⊗ An :⇔ �[A1]W, . . . , [An]W� ∈ Cw. Finally a
notion of semantic validity is defined as follows:

|=Δ A : ⇐⇒ for all sequence model models �W,C� and w ∈ W,
if FW |=

�
Δ, then �W,C,w� |= A.
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4. A Reduction in Violation Logic

Theorem 4.9 (Governatori, Olivieri, Calardo and Rotolo 2016)

|=Δ A ⇐⇒ �VΣ+Δ A.

Proof. See [25].

4.3 The ⊥-Translation

Let us fix some standard violation logic VΣ + Δ.

We start our proof-theoretic investigation with a simple but effective observation. If
we take the rules and axioms for ⊗-chains in Σ and replace all occurring chains by the
logical constant ⊥, we obtain the following schemata. Note that the premises of (⊗-
RE) and (⊗-contraction) are classical formulas due to the nesting condition, and hence
they are left unchanged by the ⊥-translation; the same holds for formulas occurring
within ⊗-chains.

A ≡ B
⊥ ≡ ⊥ (⊗-RE)⊥

A ≡ B
⊥ ≡ ⊥ (⊗-contraction)⊥

⊥∧
�k

i=1 ¬Ai → OAk+1 (O-detachment)⊥

⊥ → ⊥ (⊗-shortening)⊥

⊥∧ ¬A1 → ⊥ (⊗-detachment)⊥

Clearly these rules and axioms are all sound in E (in fact, in classical logic). This means
that it is possible to interpret ⊗-chains as logical contradictions, or in other words: It
is not possible to prove in violation logic anything which depends on the soundness
of ⊗-chains.

To be more formal, let us denote by (.)⊥ the syntactic translation which replaces all ⊗-
chains in a formula or rule instance by the constant⊥. Then from the above observation,
we obtain the following:

Theorem 4.10

If �VΣ+Δ A, then �E+Δ A⊥.
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Proof. Let δ be a proof witnessing �VΣ+Δ A, and let δ⊥ be the tree of formulas aris-
ing from δ by applying the ⊥-translation everywhere. We will see that up to minor
modifications, δ⊥ is proof of A⊥.

Consider the various nodes B in δ. If a leaf node B is an instance of a classical theorem
or an axiom of Δ, then B⊥ is, albeit not necessarily the same formula, still an instance
of the same theorem or axiom. If a leaf node B is an instance of one of the axioms in Σ

for ⊗-chains, then B⊥ is an instance of a classical theorem – see the translated schemes
above. If an internal nodeB is the conclusion of an instance of (⊗-RE) or (⊗-contraction),
then B⊥ is the formula ⊥ ≡ ⊥ (see above) which is a classical theorem; in this case,
we can cut the proof tree above B⊥. If B appears in δ as an instance C/B of (O-RE),
then also C⊥/B⊥ is an instance of (O-RE), as (.)⊥ commutes with O and ≡. Finally, if B
appears as an instance C,C → B/B of (MP), then also C⊥, (C → B)⊥/B⊥ is an instance
of (MP) because (C → B)⊥ = C⊥ → B⊥.

From all of this, it follows that δ⊥ is a valid proof after possibly pruning some branches;
in fact, it is an E + Δ proof as all ⊗-chains have been eliminated. Since the root of δ⊥
is A⊥, the statement follows.

Corollary 4.11

VΣ+Δ is conservative over E+Δ (that is, it proves the same basic deontic formulas).
In particular, VΣ + Δ is consistent.

Proof. If VΣ + Δ proves A, then E + Δ proves A⊥ by Theorem 4.10, and A = A⊥ if A
does not contain ⊗-chains.

Corollary 4.12

Let C be a ⊗-chain. Then

(i) �VΣ+Δ C

(ii) For no satisfiable basic deontic formula D, �VΣ+Δ D → C.

Proof. (i) If �VΣ+Δ C, then �E+Δ ⊥ by Theorem 4.10, contradicting the consistency
of E + Δ. (ii) If �VΣ+Δ D → C, then by Theorem 4.10 �E+Δ D → ⊥, so D cannot be
satisfiable.

4.4 A Reduction Theorem
The technical results we are going to present in this section apply to a fragment of
violation logic that we will call the chain negative fragment.
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4. A Reduction in Violation Logic

Definition 4.13 (chain negative fragment)

We call a formula chain negative (resp. chain positive) if all occurrences of ⊗-chains
in it are negative (resp. positive).

The notion of positive and negative subformulas has been defined in Section 1.1. For
example, the chain A ⊗ B appears positively in the formulas A ⊗ B, ¬¬(C ∧ A ⊗ B)
and C → A ⊗ B, and negatively in ¬(A ⊗ B), (A ⊗ B) → OC and (A ⊗ B) ∧ C → OD.6
The simplest non-trivial example of a chain positive formula is a ⊗-chain. Intuitively, a
chain negative formula is a formula in which ⊗-chains appear only as assumptions, but
not as conclusions.

As our main result, we will now show that questions about the chain negative fragment
of violation logic can be answered without using the machinery of violation logic, but
with a suitable reduction to the underlying deontic logic E +Δ instead. To this end, we
first give a meaning to ⊗-chains as basic deontic formulas.

Definition 4.14 (π-translation)

The translation π from ⊗-chains to basic deontic formulas is defined inductively on
the length of chains as follows:

(⊗A)π := OA

(A1 ⊗ . . . ⊗An ⊗An+1)
π := (A1 ⊗ . . . ⊗An)

π ∧

�
(

n�
i=1

¬Ai) → OAn+1

�

As an example, we have (a ⊗ b ⊗ c)π = Oa ∧ (¬a → Ob) ∧ (¬a ∧ ¬b → Oc). In the
following we will write π in closed form as

(A1 ⊗ . . . ⊗An)
π =

n�
i=1

(

i−1�
j=1

¬Aj) → OAi

 ,

where by a harmless abuse of notation, we identify the conjunct� → OA1 corresponding
to the index i = 1 with the formula OA1. We extend π to arbitrary formulas by letting
it commute with ∧,→ and O, so that for example

(AEx)
π = (w → (¬p)⊗ f)π = w → O(¬p)∧ (¬¬p → Of).

Given a set Γ of formulas, π(Γ) denotes {Aπ | A ∈ Γ }.

We point out that the meaning given to ⊗-chains by the translation π is quite close
to the intuitive interpretation of ⊗-chain from [25], which was already quoted in the
introduction and is repeated here for convenience:

6Recall that ¬A = A → ⊥ by definition.
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4.4. A Reduction Theorem

‘[t]he interpretation of a chain like a⊗b⊗c is that a is obligatory, but if it
is violated (i.e., ¬a holds), then b is the new obligation (and b compensates
for the violation of a); again, if the obligation of b is violated as well, then c

is obligatory [. . .]’

As a first observation, the axioms for ⊗-chains remain true if translated via π:

Lemma 4.15 (axiom soundness)

For any axiom A ∈ Σ, �E Aπ.

Proof. Let us write down the three axioms schemes with their respective π-translations
below:

(O-detachment) A1 ⊗ . . . ⊗An ∧
�k

i=1 ¬Ai → OAk+1�n
i=1

�
(
�i−1

j=1 ¬Aj) → OAi

�
∧ (

�k
i=1 ¬Ai) → OAk+1

(⊗-shortening) A1 ⊗ . . . ⊗An ⊗An+1 → A1 ⊗ . . . ⊗An�n+1
i=1

�
(
�i−1

j=1 ¬Aj) → OAi

�
→ �n

i=1

�
(
�i−1

j=1 ¬Aj) → OAi

�
(⊗-detachment) A1 ⊗ . . . ⊗An+1 ∧ ¬A1 → A2 ⊗ . . . ⊗An+1�n+1

i=1

�
(
�i−1

j=1 ¬Aj) → OAi

�
∧ ¬A1 → �n+1

i=2

�
(
�i−1

j=2 ¬Aj) → OAi

�
By inspection the π-translations are provable in E; in fact, they are all valid in classical
logic.

We now want to argue that, in some way,A1⊗. . .⊗An and its translation (A1⊗. . .⊗An)
π

are equivalent. One half of this claim holds in the literal sense:

Lemma 4.16 (chain soundness)

�VΣ
A1 ⊗ . . . ⊗An → (A1 ⊗ . . . ⊗An)

π.

Proof. Let 1 � i � n. From the assumptions A1 ⊗ . . . ⊗ An and
�i−1

j=1 ¬Aj, we can
infer OAi using the axiom (O-detachment). So by the deduction theorem, we can infer
(
�i−1

j=1 ¬Aj) → OAi. From this and classical reasoning we obtain
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4. A Reduction in Violation Logic

n�
i=1

(

i−1�
j=1

¬Aj) → OAi


which is precisely (A1 ⊗ . . . ⊗An)

π.

Corollary 4.17

For every chain negative formula N, �VΣ
Nπ → N.

Proof. By induction on the structure of N. Simultaneously, one has to prove that

�VΣ
P → Pπ

for chain positive P. Both statements are trivially true if the formula does not contain ⊗.
Furthermore if P is a ⊗-chain, we can use the chain soundness lemma.

As an example for the inductive step, assume that a chain negative formula N is of the
form A → B. Then A is chain positive and B is chain negative. By induction hypothesis,
we therefore have �VΣ

A → Aπ and �VΣ
Bπ → B. From this and classical reasoning, we

obtain
�VΣ

(Aπ → Bπ) → (A → B),

which is what we need since (A → B)π = Aπ → Bπ.

The other cases are similar. We note that the induction step for formulas beginning
with O is trivial since, by the nesting condition, such formulas do not contain the ⊗-
operator.

The converse to Lemma 4.16 does not hold in general, see Corollary 4.12. Nevertheless,
we will see that the deontic formula (A1 ⊗ . . . ⊗ An)

π is as strong as the ⊗-chain A1 ⊗
. . . ⊗ An when it comes to the derivation of basic deontic formulas: In particular, the
obligations arising from A1 ⊗ . . . ⊗ An are exactly the obligations arising from (A1 ⊗
. . . ⊗An)

π.

This follows from the reduction theorem below, which is our main technical result.
We first state and prove the theorem and then discuss its technical and conceptual
consequences.

Theorem 4.18 (reduction theorem for the chain negative fragment)

For any chain negative formula N,

�VΣ+Δ N ⇐⇒ �E+Δ Nπ.
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4.4. A Reduction Theorem

Proof. The direction from right to left is easy: If �E+Δ Nπ, then also �VΣ+Δ Nπ since
violation logic has all the axioms and rules of E. But then �VΣ+Δ N follows from
Corollary 4.17, since N is chain negative.
For the direction from left to right, we argue by induction on the height of a proof δ
witnessing �VΣ+Δ N.

1. Assume first that δ has height 1, which means that N is an axiom of VΣ + Δ.

a) If N is a substitution instance of a classical theorem, then Nπ is again a
substitution instance of the the same classical theorem as π commutes with
boolean connectives. Hence �E+Δ Nπ.

b) Similarly, if N is a substitution instance of a basic deontic axiom in Δ, then Nπ

is again a substitution instance of the the same axiom in Δ since π commutes
with boolean connectives and O. Hence �E+Δ Nπ.

c) If N is a substitution instance of an axiom in Σ, then �E+Δ Nπ by the axiom
soundness lemma (Lemma 4.15).

2. If the last step in δ is an instance of (MP) A,A → B/B, then by induction hypoth-
esis �E+Δ Bπ and �E+Δ (A → B)π. Since (A → B)π equals Aπ → Bπ, we can
conclude �E+Δ Bπ by applying (MP) in E.

3. If the last step in δ is an instance of (O-RE) A ≡ B/OA ≡ OB, then by induction
hypothesis �E+Δ (A ≡ B)π. By the nesting condition, A and B must be basic
deontic formulas and so (A ≡ B)π equalsA ≡ B. We can conclude�E+Δ OA ≡ OB

by applying (O-RE) in E, and this equals (OA ≡ OB)π.

4. Assume that the last step in δ is an inference

A ≡ B
ν⊗A⊗ ν � ≡ ν⊗ B⊗ ν � (⊗-RE).

By induction hypothesis �E+Δ (A ≡ B)π. Since A and B occur in a ⊗-chain, they
must be classical formulas by the nesting condition, and so the premise (A ≡ B)π

equals A ≡ B. Now the deontic formula (ν⊗A⊗ν �)π arises from replacing some
occurrences of B in (ν⊗ B⊗ ν �)π by the formula A. Hence

A ≡ B
(ν⊗A⊗ ν �)π ≡ (ν⊗ B⊗ ν �)π

is an instance of uniform substitution (O-RE’) (see Lemma 4.3), and so �E+Δ

(ν⊗A⊗ ν � ≡ ν⊗ B⊗ ν �)π as desired.

5. Assume that the last step in δ is an inference (⊗-contraction). We only consider a
characteristic case (the general case is similar):

A ≡ B
X⊗A⊗ Y ⊗ B⊗ Z ≡ X⊗A⊗ Y ⊗ Z

(⊗-contraction)
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Again A and B must be classical, and so we have �E+Δ A ≡ B by induction
hypothesis. Now arguing in E + Δ, we can use (O-RE’) to derive from A ≡ B the
equivalence

(X⊗A⊗ Y ⊗ B⊗ Z)π ≡ (X⊗A⊗ Y ⊗A⊗ Z)π

Written verbosely, the formula (X⊗A⊗ Y ⊗A⊗ Z)π equals

OX∧ (¬X → OA)∧ (¬X∧ ¬A → OY)∧ (¬X∧ ¬A∧ ¬Y → OA)

∧ (¬X∧ ¬A∧ ¬Y ∧ ¬A → OZ).

By using classical reasoning we see that the fourth conjunct can be omitted since it
is implied by the second conjunct. Furthermore, the second¬A in the last conjunct
can be removed. The above formula is therefore equivalent to

OX∧ (¬X → OA)∧ (¬X∧ ¬A → OY)∧ (¬X∧ ¬A∧ ¬Y → OZ)

which is precisely (X⊗A⊗ Y ⊗ Z)π. Hence we have �E+Δ (X⊗A⊗ Y ⊗ B⊗ Z ≡
X⊗A⊗ Y ⊗ Z)π as desired.

This concludes the proof of the reduction theorem.

It is instructive to single out a special case of Theorem 4.18.

Theorem 4.19 (reduction theorem, special case)

Let Γ ∪ {D} be a set of basic deontic formulas. Then for any chain positive formula P,
the following are equivalent:

(i) Γ ∪ {P} �VΣ+Δ D

(ii) Γ ∪ {Pπ} �E+Δ D

(iii) Γ ∪ {Pπ} �VΣ+Δ D

In particular, the equivalence holds if P is a ⊗-chain.

Proof. Γ∪{P} �VΣ+Δ D is equivalent to�VΣ+Δ

�
(Γ∪{P}) → D by the deduction theorem.

Since
�
(Γ∪{P}) → D is chain negative, its provability is equivalent to�E+Δ (

�
(Γ∪{P}) →

D)π by the reduction theorem. Now (
�
(Γ ∪ {P}) → D)π equals

�
(Γ ∪ {Pπ}) → D)

since neither Γ nor D contain ⊗-chains by assumption. So by another application of
the deduction theorem, we obtain equivalence with Γ ∪ {Pπ} �E+Δ D. We have thus
established (i)↔(ii), and applying (i)↔(ii) to Pπ instead of P yields (ii)↔(iii).
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Example 4.20

Recall the formula AEx = w → (¬p) ⊗ f from Example 4.5. For any set Γ of basic
deontic formulas, we may ask whether

{AEx} ∪ Γ �VΣ+Δ Of

holds, that is, whether under the assumption of AEx the deontic circumstances
expressed in Γ lead to the obligation of paying a fine. By the special case of the
reduction theorem, this question is equivalent to asking whether

{Aπ
Ex} ∪ Γ �E+Δ Of

holds, where Aπ
Ex = w → (O(¬p)∧ (¬¬p → Of)).

Conceptually, of most interest in Theorem 4.19 is the equivalence (i)↔(iii) in the case
that P is a ⊗-chain C, and its meaning can then be described as follows:

Within a context of basic deontic formulas, using a ⊗-chain C as an assumption has
exactly the same effect as using its translation Cπ.

In other words, as long as we are only interested in the role ⊗-chains as generators of
obligations (under some circumstances described by basic deontic formulas), then we
may as well replace all chains by their π-translations.

The questions which are not covered by the reduction theorem are those about the
relation between different ⊗-chains, such as the question when one ⊗-chain implies
another one. We will come back to this in Section 4.6.

An easy example demonstrating that the reduction theorem does not hold for the full
language of violation logic is the following. Consider the (chain positive!) formula P =
(a⊗ b)π → a⊗ b. P is not provable in VΣ; otherwise so would be

P⊥ = (a⊗ b)π → ⊥ = ¬(Oa∧ (¬a → Ob))

by virtue of Theorem 4.10. But this formula is easily seen to be falsifiable on a neigh-
bourhood model. On the other hand, Pπ = (a⊗ b)π → (a⊗ b)π is obviously a theorem
of E.

4.5 Applications of the Reduction Theorem
We can combine the reduction theorem and Theorem 4.10 to demonstrate the undefin-
ability of ⊗-chains. More specifically, the following corollary tells us that a chain only
has a basic deontic definition in the absurd case:
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Corollary 4.21

For any ⊗-chain C, the following are equivalent:

(i) There exists a basic deontic formula D such that �VΣ+Δ C ≡ D.

(ii) �VΣ+Δ C ≡ ⊥.

(iii) �E+Δ Cπ ≡ ⊥.

Proof. If �VΣ+Δ C ≡ D for a basic deontic formula D, then by Theorem 4.10 also �VΣ+Δ

(D → C)⊥, that is, �VΣ+Δ D → ⊥. By the equivalence of C and D this entails
�VΣ+Δ C → ⊥ and therefore �VΣ+Δ C ≡ ⊥. Hence (i)→(ii). Assuming (ii) we can

take D := ⊥ and also get the other direction. Therefore (i)↔(ii).

On the other hand, (ii) and (iii) are equivalent to �VΣ+Δ C → ⊥ and �E+Δ Cπ → ⊥
respectively, and since C → ⊥ is chain negative, both statements are equivalent by the
reduction theorem. So (ii)↔(iii).

It depends on the axiomatization E + Δ how many chains have a sound π-translation,
and are therefore undefinable. Over the basic logic E every π-translations is satisfiable7
and consequently no chain is definable. Over E+¬O⊥, the chain ⊗⊥ is equivalent to ⊥.

The main point of a reduction as expressed in Theorem 4.18 is that the logic E + Δ

one reduces to is well studied, and one can transfer results about it back to the ‘new’
logic VΣ + Δ. Let us see some examples.

Corollary 4.22

The validity problem for the chain negative fragment of the violation logic VΣ is
coNP-complete.

Proof. By the reduction theorem, �VΣ
D is equivalent to �E Dπ for a chain negative D,

and the mapping D �→ Dπ is computable in polynomial (in fact, quadratic) time. Since
theoremhood in E is coNP-decidable ([54], Theorem 3.3), the same therefore holds
for VΣ. On the other hand, the chain negative fragment of VΣ is a conservative extension
of CL, which is coNP-hard.

By the same argument, complexity (or just decidability) results can be obtained for other
violation logics VΣ+Δ: We only have to know the complexity of the underlying deontic

7This follows from the existence of neighbourhood models where all formulas of the form OA are true
everywhere.
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logic E + Δ. As far as we know, no decidability results for violation logics have been
established so far.

It also follows from the reduction theorem that the neighbourhood semantics of clas-
sical modal logics provides a complete semantics for the chain negative fragment
of violation logic. This semantics is simpler than the sequence semantics proposed
in [25, 26].

Corollary 4.23

Let Γ ∪ {D} be a set of deontic formulas. Then for any chain positive formula P,
Γ ∪ {P} �VΣ+Δ D if and only if for every neighbourhood model W with AW |= Δ

the following is true: For any world w ∈ W, if �W,w� |=
�

Γ and �W,w� |= Pπ,
then �W,w� |= D.

Proof. By the reduction theorem, Γ ∪ {P} �VΣ+Δ D is equivalent to Γ ∪ {Pπ} �E+Δ D,
which in turn is equivalent to Γ ∪ {Pπ} |=Δ D by Proposition 4.4.

So within a context of deontic formulas, having a ⊗-chain C = a ⊗ b ⊗ c as a local
assumption amounts to assuming the truth of

(a⊗ b⊗ c)π = Oa∧ (¬a → Ob)∧ (¬a∧ ¬b → Oc)

at a world of a neighbourhood model W.

The reduction theorem is formulated relative to violation logics VΣ + Δ with a fixed
axiomatization

Σ = {(⊗-RE), (⊗-contraction), (O-detachment), (⊗-shortening), (⊗-detachment)}

of ⊗-chains (whereas the basic deontic axioms Δ can be anything). Nevertheless, the
proof is modular and can be adapted to ‘non-standard’ violation logics VΠ+Δ where Σ

is replaced by another set Π of axioms and rules for ⊗-chains: We only have to check
that the π-translation of all axioms and rules in Π is sound in E + Δ and that the chain
soundness lemma holds; that is, we must have �VΠ+Δ C → π(C). Then the proof of the
reduction theorem goes through. Note in particular that the chain soundness lemma
holds for any Π which contains (O-detachment).

A consequence of all this is the following observation.

Corollary 4.24

Let Π �= Σ be any alternative axiomatization of ⊗-chains containing at least
(O-detachment), and such that the π-translation of every axiom and rule of Π is
sound in E+Δ. Then the chain negative fragments of VΣ +Δ and VΠ +Δ coincide.
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Proof. By the above discussion, the proof of the reduction theorem goes through
for VΠ + Δ under the given assumptions. But then VΣ + Δ and VΠ + Δ have the
same characterization of their chain negative fragment (which does not depend on Σ

or Π), namely
�VΣ+Δ N ⇐⇒ �E+Δ Nπ ⇐⇒ �VΠ+Δ N.

An immediate consequence of Corollary 4.24 is that the axioms and rules

(⊗-RE), (⊗-contraction), (⊗-detachment), (⊗-shortening)

are all redundant in the chain negative fragment of VΣ + Δ. As another consequence,
consider the axiom (⊗-I)�

a1 ⊗ . . . ⊗ an ∧

�
(

n�
i=1

¬ai) → b1 ⊗ . . . ⊗ bm

��
→ a1 ⊗ . . . ⊗ an ⊗ b1 ⊗ . . . ⊗ bm

for creating ⊗-chains which is considered in [27, 14] but not in [25, 26]. It is easy to
see that its π-translation is a theorem of E, and so by Corollary 4.24 its inclusion as an
additional axiom has no effect on the chain negative fragment.

The simplest non-standard axiomatization of violation logic extends E + Δ with the
axiom

C → π(C)

for every⊗-chainC. The resulting logic has the same chain negative fragment as VΣ+Δ.

An axiomatization of ⊗-chains to which the reduction theorem does not apply is the one
given in [13], where axioms such as a⊗(¬a) ≡ � are included. Indeed, the π-translation
of the latter axiom is Oa∧ (¬a → O¬a) ≡ �, which does not hold in E.

Another consequence of the reduction theorem is that questions in violation logic can be
approached using the proof theory of classical modal logics. For example, [38] presents
cutfree Gentzen systems for the logics

E, EC = E + OA∧ OB → O(A∧ B) and M = E + O(A∧ B) → OA∧ OB

which are called Eseq, ECseq and Mseq, respectively. All three calculi build on LK

and then add rules for O as follows.

Eseq:
A ⇒ B B ⇒ A

OA ⇒ OB

ECseq:
A1, . . . ,An ⇒ B B ⇒ A1 . . . B ⇒ An

OA1, . . . , OAn ⇒ OB
(for every n � 1)

Mseq:
A ⇒ B

OA ⇒ OB
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Corollary 4.25

Let Δ be ∅, {Oa ∧ Ob → O(a ∧ b)} or {O(a ∧ b) → Oa ∧ Ob}. Then for any chain
negative formula N, �VΣ+Δ N if and only if there is a cutfree proof of Nπ in Eseq,
ECseq or Mseq, respectively.

Example 4.26

Here is a Gentzen-style proof establishing {AEx,w,p} �VΣ
Of by means of the π-

translation (compare this to the Hilbert-style proof in Example 4.8):

w ⇒ w

p ⇒ p
p,¬p ⇒ (¬l)

p ⇒ ¬¬p (¬r) Of ⇒ Of

¬¬p → Of,p ⇒ Of
(→l)

O(¬p)∧ (¬¬p → Of),p ⇒ Of
(∧l)

w → (O(¬p)∧ (¬¬p → Of)),w,p ⇒ Of
(→l)

4.6 More on the Interpretation of ⊗-Chains
Arguably, the formalization of many contrary-to-duty reasoning scenarios in the frame-
work of violation logic remains in the chain negative fragment, and therefore in the
scope of the reduction theorem. In particular all questions of the form

Given some situation described by basic deontic formulas, which obligations arise
from a collection of ⊗-chains?

can be written down as a chain negative formula

S∧ C1 ∧ . . . ∧ Cn → OA.

The reduction theorem then suggests that in the chain negative fragment, the meaning
of a ⊗-chain can be identified with its π-translation (assuming, of course, one believes
that the meaning of ⊗-chains is given by their proof-theoretic behaviour). Furthermore,
we have seen (Corollary 4.24) that this identification is to some extent independent of
the exact axiomatization Σ of ⊗-chains.

If we move beyond the chain negative fragment, the axiomatization of ⊗-chains matters
more. So let us now consider an arbitrary violation logic VΠ + Δ where Π is another
axiomatization of ⊗-chains satisfying the premises of Corollary 4.24 and for which
therefore the reduction theorem holds (Δ is again any set of basic deontic axioms). The
pivotal question outside the chain negative fragment is: When are two chains C1 and C2
considered equal, that is, when does �VΠ+Δ C1 ≡ C2 hold? A good axiomatization Π
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should give a tangible meaning to the notion of equality between chains. Hence, the
question we have to ask is:

When should two ⊗-chains be equal?

Here is one possible proposal. We say that a pair C1 and C2 of chains is deontically
equivalent over VΠ + Δ if for every deontic formula D,

�VΠ+Δ C1 → D ⇐⇒ �VΠ+Δ C2 → D.

An intuitive interpretation of deontic equivalence might be this: ‘No matter whether C1
or C2 are employed as a law, the arising obligations are the same.’

Definition 4.27

The violation logic VΠ +Δ is faithful if it proves C1 ≡ C2 for every pair C1 and C2 of
deontically equivalent chains.

So in a faithful violation logic, the meaning of equality between chains is that of deontic
equivalence. From the reduction theorem arises a simple characterization of deontic
equivalence:

Lemma 4.28

C1 and C2 are deontically equivalent over VΠ + Δ iff �E+Δ Cπ
1 ≡ Cπ

2 .

Proof. Assume that C1 and C2 are deontically equivalent. Since �VΠ+Δ C2 → Cπ
2 by

assumption on Π, we also have �VΠ+Δ C1 → Cπ
2 by deontic equivalence. But then �E+Δ

Cπ
1 → Cπ

2 by the reduction theorem. By a symmetric argument, �E+Δ Cπ
2 → Cπ

1 and
so Cπ

1 and Cπ
2 are provably equivalent.

Conversely, if �E+Δ Cπ
1 ≡ Cπ

2 and D is a deontic formula implied by C2, then �E+Δ

Cπ
2 → D by the reduction theorem, and so �E+Δ Cπ

1 → D by assumption. Then by
another application of the reduction theorem, �VΠ+Δ C1 → D follows.

As a simple example, it is easy to see that every violation logic in which ⊗-chains are
definable by basic deontic formulas is faithful. But it is possible to have faithfulness
without having definability of ⊗-chains: Artificially, such a logic is obtained by adding
to VΣ the rule

Cπ
1 → Cπ

2
C1 → C2 .

The argument for the undefinability of ⊗-chains in the resulting logic goes through as
in Corollary 4.21.

We can show that the standard axiomatization is not faithful.
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Theorem 4.29

Assume8 OA → ¬A is not a theorem of E + Δ. Then VΣ + Δ is not faithful.

Proof. Let a,b be two distinct variables. The counterexample will be the two chains

C1 = a⊗ (¬a) and C2 = a⊗ (¬a)⊗ b.

They have the π-translations Cπ
1 = Oa ∧ (¬a → O(¬a)) and Cπ

2 = Oa ∧ (¬a →
O(¬a)) ∧ (¬a ∧ ¬¬a → Ob). Since both formulas are equivalent, we conclude by
Lemma 4.28 that C1 and C2 are deontically equivalent.

However, while C2 → C1 is an instance of (⊗-shortening), VΠ + Δ fails to prove the
converse C1 → C2. We show this by employing yet another syntactic translation.
Given a chain C, let d(C) be the number of all formulas occurring in the chain up to
logical equivalence. For example, we have d((a ∨ b) ⊗ (¬a → b) ⊗ b) = 2, d(C1) = 2
and d(C2) = 3. Now define a translation ρ as follows:

Cρ =

�
C if d(C) � 2;
⊥ if d(C) > 2.

In words, ρ declares all chains containing more than two non-equivalent formulas as
contradictory. Now lift ρ to arbitrary formulas, and consider the ρ-translations of the
axioms and rules in Σ:

(A1 ⊗ . . . ⊗An)
ρ ∧

�k
i=1 ¬Ai → OAk+1 (O-detachment)ρ

(A1 ⊗ . . . ⊗An ⊗An+1)
ρ → (A1 ⊗ . . . ⊗An)

ρ (⊗-shortening)ρ

(A1 ⊗ . . . ⊗An+1)
ρ ∧ ¬A1 → (A2 ⊗ . . . ⊗An+1)

ρ (⊗-detachment)ρ

A ≡ B
(ν⊗A⊗ ν �)ρ ≡ (ν⊗ B⊗ ν �)ρ (⊗-RE)ρ

A ≡ B
(ν⊗A⊗ ν � ⊗ B⊗ ν ��)ρ ≡ (ν⊗A⊗ ν � ⊗ ν ��)ρ (⊗-contraction)ρ

One can check that they are all sound in VΠ + Δ. We consider only two cases in detail:

First, look at(⊗-shortening)ρ. We make a case distinction on the values of d1 := d(A1 ⊗
. . . ⊗An) and d2 := d(A1 ⊗ . . . ⊗An ⊗An+1). Clearly if d1 > 2, then (⊗-shortening)ρ is
the tautology ⊥ = ⊥. If both d1 � 2 and d2 � 2, then ρ is the identity on both chains

8This assumption is harmless, as there is no reasonable deontic logic containing OA → ¬A (‘Obligations
are never satisfied.’).
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and so (⊗-shortening)ρ is just (⊗-shortening). In the last remaining case that d1 = 2
and d2 = 3, the instance (⊗-shortening)ρ translates to ⊥ → A1 ⊗ . . . ⊗ An which is a
classical theorem.

Second we consider (⊗-contraction)ρ. Under the assumption A ≡ B we have d :=
d(ν ⊗ A ⊗ ν � ⊗ B ⊗ ν ��) = d(ν ⊗ A ⊗ ν � ⊗ ν ��), and so (⊗-contraction)ρ is either (⊗-
contraction) if d � 2 or the trivially sound rule

A ≡ B
⊥ ≡ ⊥

if d > 2.

The other cases are similar. By a similar proof as for Theorem 4.10, one can then
show that for any formula A, �VΠ+Δ A implies �VΠ+Δ Aρ. It is thus consistent with
the standard axiomatization that all chains containing more than two non-equivalent
formulas are unsatisfiable.

Assume now towards a contradiction that �VΣ+Δ C1 → C2. Then also (C1 → C2)
ρ =

(C1 → ⊥) is derivable in VΣ + Δ. By the reduction theorem, this implies that ¬Cπ
1 =

¬(Oa∧(¬a → O¬a)) is derivable in E+Δ. The latter formula is equivalent to Oa → ¬a,
which we assumed E + Δ does not derive.

Theorem 4.29 extends to axiomatisations VΠ + Δ given that the ρ-translations of all
axioms and rules in Π are sound in VΠ + Δ.

Earlier on, we already mentioned the axiom (⊗-I)�
a1 ⊗ . . . ⊗ an ∧

�
(

n�
i=1

¬ai) → b1 ⊗ . . . ⊗ bm

��
→ a1 ⊗ . . . ⊗ an ⊗ b1 ⊗ . . . ⊗ bm.

From (⊗-I) we can prove a⊗ (¬a) → a⊗ (¬a)⊗ b, the implication which was used as
a counterexample to faithfulness in Theorem 4.29 (and consequently the ρ-translation
of (⊗-I) must be unsound, which can easily be checked as well). This suggests the
following question, to which we do not know the answer:

Is the extension of VΣ by (⊗-I) a faithful violation logic?

Finally, let us comment on the definability of ⊗-chains. We have seen that ⊗-chains are
undefinable over the standard axiomatization (Corollary 4.21). Nevertheless, given the
similarity of chains to their π-translation, it might be of interest to see how large the gap
to definability is. As it turns out, the missing link are the axioms

(⊗-I) and (O⊗) : Oa → ⊗a.

Indeed, given a violation logic VΠ + Δ let us denote by VΠ∗ + Δ the system which
additionally has the axioms (⊗-I) and (O⊗). Then we have the following:
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Theorem 4.30

The violation logics VΠ+Δ and VΠ∗ +Δ coincide on their chain negative fragment,
and in VΠ∗+Δ every⊗-chain is equivalent to its π-translation. In particular, VΠ∗+Δ

is faithful.

Proof. The chain negative fragments of both logics coincide since the π-translation of
(⊗-I) and (O⊗) is sound and so the reduction theorem applies to the logic VΠ∗ +Δ. For
definability claim, it suffices to show by induction on n that

�VΠ∗+Δ (A1 ⊗ . . . ⊗An)
π → A1 ⊗ . . . ⊗An.

The base case n = 1 is precisely the axiom (O⊗). For the induction step, we first note
that the assumption (A1 ⊗ . . . ⊗An ⊗An+1)

π equals

(A1 ⊗ . . . ⊗An)
π ∧

�
(

n�
i=1

¬Ai) → OAn+1

�

by the definition of π. By the induction hypothesis and (O⊗) we can infer

A1 ⊗ . . . ⊗An ∧

�
(

n�
i=1

¬Ai) → ⊗An+1

�

and then the axiom (⊗-I) yields A1 ⊗ . . . ⊗An ⊗An+1 as desired.

It is also possible to prove a converse: Every violation logic in which chains are definable
by their π-translation validates (⊗-I) and (O⊗). Note however that (O⊗) is to be rejected
if one wants to syntactically separate descriptive norms (as generators of obligations)
and prescriptive norms, which was one of the aims of the inventors of violation logic;
see the short discussion in the introductory section.

4.7 Open Questions
Here we mention only one. We think the main challenge for violation logic is to develop
an intuition about ⊗-chains which is firm enough to answer the question when two
chains are the same. The results in this chapter show that such an intuition can not be
established by looking at chains only as generators of obligations, as this role is to some
extent independent of the axiomatization of chains (Corollary 4.24), whereas equality
between chains is not (see Theorem 4.29 and the remark below). We have proposed
one possible precise notion of equality between chains (‘faithfulness’). It would be of
interest to find further mathematical or philosophical arguments which either attack or
support this notion, or to come up with completely new notions of equality.
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