
INSTITUT FÜR
MECHANIK UND

MECHATRONIK
Mechanics & Mechatronics

TECHNISCHE
UNIVERSITÄT
WIEN
Vienna University of Technology

 m

Diplomarbeit

Model Predictive Control for Power Control of
a Fluidized Bed Furnace

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines Diplom-Ingenieurs
unter der Leitung von

Ao.Univ.Prof. Dr Martin Kozek und
Univ.Prof. Dr. Stefan Jakubek

Institut für Mechanik und Mechatronik
Abteilung für Regelungstechnik und Prozessautomatisierung

eingereicht an der Technischen Universität Wien

Fakultät für Maschinenwesen und Betriebswissenschaften

von

Lukas Stanger

Wien, am 15. Juni 2021 Lukas Stanger

Eidesstattliche Erklärung i

Eidesstattliche Erklärung

Ich erkläre eidesstattlich, dass ich die Arbeit selbständig angefertigt, keine anderen als die
angegebenen Hilfsmittel benutzt und alle aus ungedruckten Quellen, gedruckter Literatur
oder aus dem Internet im Wortlaut oder im wesentlichen Inhalt übernommenen Formulierun-
gen und Konzepte gemäß den Richtlinien wissenschaftlicher Arbeiten zitiert, durch Fußnoten
gekennzeichnet bzw. mit genauer Quellenangabe kenntlich gemacht habe.

Wien, am 15. Juni 2021 Lukas Stanger

Danksagung ii

Danksagung

Ganz besonders bedanken möchte ich mich bei Herrn Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Mar-
tin Kozek und Herrn Dipl.-Ing. Alexander Lukas Gratzer für die Betreuung meiner Diplom-
arbeit. Die vielen Besprechungen, in denen wir Probleme und Lösungsansätze diskutierten
und ich Feedback von euch erhalten habe, haben nicht nur maßgeblich zum Erfolg meiner
Arbeit beigetragen, sie haben mir auch viel Freude bereitet und die Motivation für meine Ar-
beit aufrecht erhalten. Herzlichen Dank auch an Herrn Univ.Prof. Dipl.-Ing. Dr.techn. Stefan
Jakubek für die vielen hilfreichen Inputs zur Arbeit.

Außerdem möchte ich mich bei der Wien Energie für die Zusammenarbeit und die Bereitstel-
lung der Messdaten bedanken.

Vielen lieben Dank auch an meine Mitstudenten, die durch gemeinsames Lernen, Mittagessen
und Kaffeepausen ganz besonders für Spaß und Motivation im Studium gesorgt haben. Be-
sonderen Dank an dich, lieber Michael Lehner, für die unzähligen Unitage, die wir gemeinsam
verbracht haben.

Abschließend möchte ich mich noch ganz herzlich bei meiner Familie für die Unterstützung
in der Zeit meines Studiums bedanken. Außerdem vielen Dank an dich, liebe Sophia, für’s
Korrekturlesen meiner Arbeit.

Kurzfassung iii

Kurzfassung

Wirbelschichtöfen werden unter anderem in Müllverbrennungsanlagen eingesetzt, da sie eine
effiziente und gleichmäßige Verbrennung verschiedenster Müllzusammensetzungen ermögli-
chen. Diese Arbeit befasst sich mit der Entwicklung einer modellprädiktiven Regelung (engl.
Model Predictive Control, MPC) für einen Wirbelschichtofen. Zur Identifikation des dafür
benötigten Modells wird eine physikalische Modellierung mit experimentellen Identifikati-
onsmethoden kombiniert: Energie- und Massenbilanzen liefern eine initiale Modellstruktur.
Diese wird um den Betriebspunkt linearisiert und diskretisiert, die erhaltenen Gleichungen
werden als Zustandsraummodell formuliert. Anschließend wird ein evolutionärer Algorithmus
vorgestellt, der die auf physikalischen Gleichungen basierende Modellstruktur optimiert: Zu-
sätzliche Kopplungen zwischen Eingängen, Zuständen und Ausgängen werden freigegeben,
sofern dies physikalisch plausibel erscheint. Die im Modell enthaltenen Parameter werden in
weiterer Folge mittels Messdaten geschätzt. Zur Validierung der Leistungsfähigkeit der linea-
ren Zustandsraummodelle wird ein künstliches neuronales Netz trainiert, mit dem diese dann
verglichen werden. Ein MPC wird entworfen, der ein lineares Zustandsraummodell zur Prä-
diktion verwendet. Das Modell wird um zusätzliche Störgrößenzustände erweitert, was eine
Regelung ohne stationären Regelfehler erlaubt. Ein Kalman-Filter wird zur Zustandsschät-
zung der originalen und der erweiterten Zustände verwendet. Der MPC wird in zwei ver-
schiedenen Zeitskalen betrieben, da sich die Zeitkonstanten des zu regelnden Prozesses stark
unterscheiden. Simulationen werden durchgeführt, um die Funktionsfähigkeit des Reglers zu
validieren.

Abstract iv

Abstract

Fluidized bed furnaces are used in waste incineration plants for efficient and uniformly com-
bustion of different waste compositions. The aim of this work is the development of an model
predictive control (MPC) scheme for a fluidized bed furnace. In order to obtain a dynamic
model suitable for MPC, first-principle equations are combined with experimental identifi-
cation methods: Physical equations in terms of energy and mass balances give an initial
structure for the model. These equations are linearized with respect to the operating point
and discritized. An evolutionary-based algorithm is presented that optimizes the resulting
model structure. This algorithm extends the model with additional coupling between inputs,
states and outputs, whereby only physically plausible couplings are allowed to be added by the
algorithm. The parameters in the model are estimated using measurement data. To validate
the performance of the linear state-space models, an artificial neural network is developed as
a benchmark model. A MPC is designed that uses the linear state-space model. The model
is extended with additional disturbance states, which allows offset-free tracking of stationary
set points. A Kalman filter is designed as an observer to estimate the system’s original states
and the additional disturbance states. The MPC operates in two different time scales in order
to handle strongly different time constants in the process under consideration. Simulations
are carried out to validate the effectiveness of the controller.

Contents v

Contents

1 Introduction 1

2 Fluidized Bed Furnace 3
2.1 Introduction . 3
2.2 Physical Modelling . 3

2.2.1 Bed Temperature . 5
2.2.2 Furnace Head Temperature . 7
2.2.3 Oxygen Concentration in the Furnace Head 7
2.2.4 Flue Gas Mass Flow . 8
2.2.5 Mass Flow for Fluidization . 8

3 System Identification 9
3.1 Introduction . 9
3.2 Data Preprocessing . 10

3.2.1 Normalizing Data . 10
3.2.2 Filtering and Resampling . 11
3.2.3 Data Division . 11

3.3 Definition of Input and Output Variables . 12
3.4 From Physical Equations to Polynomial Models 13

3.4.1 Flue Gas Mass Flow . 14
3.4.2 Furnace Head Temperature . 14
3.4.3 Fluidized Bed Temperature . 15
3.4.4 Oxygen Concentration Furnace Head . 16
3.4.5 Mass Flow for Fluidization . 16

3.5 Identification of Linear State-Space Models . 17
3.5.1 Model Structure . 17
3.5.2 Parameter Estimation . 19

3.6 Identification of Artificial Neural Networks . 21
3.6.1 Network Architecture . 21
3.6.2 Network Training . 22

3.7 Model Validation . 23
3.7.1 Simulations Using Measurement Data 23
3.7.2 Physical Interpretation . 27

Contents vi

4 Model Structure Optimization 28
4.1 Introduction . 28
4.2 Structure Optimization Using Evolutionary Algorithm 29

4.2.1 Fitness . 30
4.2.2 Crossover . 31
4.2.3 Mutation . 32

4.3 Results . 33

5 Model Predictive Control 39
5.1 Introduction . 39
5.2 Process Description for Predictive Control . 40

5.2.1 Linear State-Space Model . 41
5.2.2 Constraints . 43

5.3 Offset-Free MPC . 44
5.3.1 Observer Design . 45
5.3.2 Cost Function . 46

5.4 Extended Prediction Horizon . 46
5.5 Results . 47

6 Conclusion 49

A Appendix 50
A.1 Linear State-Space Models . 50

A.1.1 Initial Structure . 50
A.1.2 Improved Structure . 51

Bibliography 53

Chapter 1

Introduction

Waste incineration is a common treatment for the disposal of high volumes of waste in modern
countries. It offers the possibility both for efficient disposal of waste and the usage of energy
from combustion for conversion to electrical energy and for district-heating. In the European
Union, 28 % of the municipal solid waste (MSW) is incinerated in 492 waste-to-energy plants.
However, there are big differences between European countries regarding waste handling. In
Austria, 39 % of the MSW is treated in waste-to-energy plants [1][2].

The most common waste incineration procedures are grate firing and fluidized bed combus-
tion (FBC). Although grate firing is more common, fluidized bed combustion offers several
advantages: Fluidized bed furnaces are better in handling the combustion of varying waste
compositions. Moreover, the air supply in grate firing is more difficult as the air supply needs
to fit the fuel conditions on the grate. The main differences between grate firing and fluidized
bed combustion are discussed in [3].

The control of waste incineration plants is quite challenging due to coupling between the
controlled variables, non-linearities, largely differing time constants and model parameters
that are hard to be identified. Different control strategies for waste incineration plants have
been applied in [7][8][9].

Model predictive control enables efficient control of multiple-input multiple-output systems.
Moreover, constraints on control variables, output variables and inner states of the system
can be taken into account explicitly. The aim of this work is to develop a model predic-
tive controller that ensures process control at the desired operating point while minimizing
fluctuations regarding temperatures and oxygen concentrations in the flue gas.

The work is structured into four parts: The first chapter gives a physical description of
fluidized bed furnace, including mathematical equations modelling the process. In the second
chapter, a linear model structure is derived from the physical equations and parameters are
estimated using measurement data. In the third chapter, an algorithm is presented to optimize
the model structure in order to get a better mathematical description of the fluidized bed
furnace. The forth chapter deals with the model predictive control architecture that utilizes
the identified models to control the process under consideration.

1 Introduction 2

Research Questions

In this thesis, the following research questions are covered:

• Which model gives the best mathematical description of the fluidized bed furnace and
can then be used to implement a linear model predictive control scheme?

• What is an effective model predictive control algorithm that can handle the process
dynamics of the fluidized bed furnace?

Chapter 2

Fluidized Bed Furnace

This chapter is about the process of a fluidized bed furnace. After a brief introduction,
physical equations are developed in order to get an analytical description of the furnace.

2.1 Introduction

A fluidized bed furnace consists of a bed and a freeboard. The bed contains a high amount
of inert material, typically sand. This material is fluidized by upstreaming air. Fluidization
means that the particles in the bed are kept in suspension by an upstreaming gas and the
bed therefore gets properties similar to a fluid: objects with a higher density than the bed
material sink, whereas those with a lower density float. The fluidized bed furnace allows a
good heat transfer and a uniformly mixing of the bed material, the fluidization gas and the
fuel. Depending on the velocity of the fluidization gas, it is distinguished between different
types of fluidized bed combustors. At waste incineration plants, typically three different
types are used: the bubbling fluidized bed (BFBC), the rotating fluidized bed (RFBC) and
the circulating fluidized bed [4]. In bubbling fluidized beds, the velocity of the fludization
gas is rather low, leading to a well-defined surface of the bed. The same applies to the
rotating fluidized bed, however, the fluidization gas is not even distributed, what leads to an
internal rotation of the bed. In circulating fluidized beds, the velocity of the fluidization gas
is higher. Particles of the bed are carried upwards to the freeboard and need to be separated
using a cyclone, so that they can be fed back to the bed. In the fluidized bed furnace under
consideration, a BFBC is used and a mix of air and recirulated gas is taken as a fluidization
gas. More detailed insights on fluidized beds can be found in [4][5][6].

2.2 Physical Modelling

The main parts of the waste incineration plant are the furnace, the heat recovery boiler and
the exhaust after-treatment systems like filters and catalysts. The furnace itself consists of

2.2 Physical Modelling 4

V̇f FilterTf

cO2

V̇s V̇re,s

Tb

V̇p
V̇fluid

V̇re,p

nmsw

V̇bf

Furnace Heat Recovery
Unit

Exhaust Gas
Aftertreatment

nmsw waste feed screw conveyor rotational speed
V̇p primary air volume flow
V̇re,p primary recirculated gas volume flow
V̇s secondary air volume flow
V̇re,s secondary recirculated gas volume flow
V̇fluid gas for fluidization volume flow
V̇bf Volume flow from bed to freeboard
V̇f flue gas volume flow
Tb fluidized bed temperature
Tf furnace head temperature
cO2 furnace head oxygen concentration

Figure 2.1: Fluidized bed furnace.

2.2 Physical Modelling 5

the fluidized bed at the bottom and the freeboard at the top. Figure 2.1 gives a schematic
drawing of the plant.

There can be different types of fuels fed into the furnace. The most important task of the plant
is to incinerate municipal solid waste. However, also sewage sludge can be burned. Moreover,
auxiliary fuels, like oil, can be fed into the furnace if necessary. Air and recirculated gas
are blown into the furnace at different heights. Fans and valves are used to control the gas
flows.

Primary air and a proportion of the recirculated gas are blown into the fluidizied bed from
below. This gas flow is called the gas flow for fluidization. It always needs to be constant at
a certain level in order to achieve the fluidization. Within the fluidized bed the majority of
the fuel is gasified, the rest remains as ash. The part remaining as ash is neglected later when
writing energy- and mass balances for the furnace. Some of the gasified fuel is already burnt
within the fluidized bed. However, there is not enough oxygen available in the bed in order
to burn the whole amount of gasified fuel in here. The proportion that is not burned in the
bed is burned at the freeboard later, where additional air (secondary air) and recirculated gas
are blown into the furnace. At the freeboard, there is more oxygen inside the furnace than
needed for combustion. The oxygen left at the top of the furnace is measured and desired to
be at a certain level, which is necessary for the exhaust aftertreatment.

To get a mathematical description of the fluidized bed furnace, physical equations are used
to describe the process. Energy balances for the fluidized bed and the whole furnace are used
to model the temperature in the bed and at the top of the furnace, respectively. In order to
get a description for the oxygen concentration, for flue gas mass flow and for fluidization gas
mass flow, mass balances are used.

Although different kinds of fuel can be burned in the furnace, like waste, sewage sludge, coke
or oil, the following equations are modelling waste incineration only.

2.2.1 Bed Temperature

The temperature of the fluidized bed can be modelled as

Cb
dTb
dt

= Ḣp + Ḣre,p + Ḣmsw − Ḣbf + Pcb , (2.1)

where Cb indicates the heat capacity of the fluidized bed. The enthalpy flow of the primary
air Ḣp, the enthalpy flow of the primary recirculated gas Ḣre,p, the enthalpy flow of the waste
Ḣmsw, the enthalpy flow of the gas leaving the bed Ḣbf and the power released by combustion

2.2 Physical Modelling 6

Pcb are

Ḣp = cp,airρairV̇pTp, (2.2)
Ḣre,p = cp,reρreV̇re,pTre, (2.3)
Ḣmsw = cp,mswṁmswTmsw, (2.4)

Ḣbf = cp,bfρbf V̇bfTb, (2.5)
Pcb = xcHcṁmsw, (2.6)

with the specific heat capacities cp, the temperatures T , the densities ρ, the proportion of
waste burnt in the bed xc and the net calorific value Hc. The volume flow rates V̇ are
shown in Figure 2.1 and are always given as standard volume flow rates at 1.013 25 bar and
0 ◦C according to DIN 1343. Therefore, the densities ρ refer to the density at standard
temperatures and pressures.

The mass flow of waste into the bed ṁmsw can be written as a function of the waste feed
screw conveyor rotational speed nmsw

ṁmsw = kmswnmsw, (2.7)

where kmsw is just a constant describing the relation between ṁmsw and nmsw. If the mass of
the fluidized bed is assumed to be constant, the mass flow leaving the bed is

ρbf V̇bf = ṁmsw + ρairV̇p + ρreV̇re,p. (2.8)

The proportion of the waste burned in the fluidized bed can be stated as

xc = ρairV̇pcO2,m,air + ρreV̇re,pcO2,m,re
kfṁmsw

, (2.9)

where kf denotes the specific oxygen demand of the fuel and cO2,m are the oxygen concen-
trations as a mass fraction. As mentioned above, a substoichiometric combustion is assumed
for the fluidized bed. Note that it is assumed that there is never enough oxygen available so
that the whole fuel can be combusted in the fluidized bed. Another assumption is that the
temperature in the bed is always high enough in order that all the oxygen in the bed can be
used for combustion.

With (2.9) the power released by combustion in (2.6) can be written as

Pcb = Hc
kf

(ρairV̇pcO2,m,air + ρreV̇re,pcO2,m,re). (2.10)

2.2 Physical Modelling 7

2.2.2 Furnace Head Temperature

For head of the furnace, an energy balance equation can be written as

Cf
dTf
dt

= Ḣbf + Ḣs + Ḣre,s − Ḣf + Pcf , (2.11)

with the heat capacity Cf . The enthalpy flow from the fluidized bed to the head of the furnace
Ḣbf , the enthalpy flow of the secondary air Ḣs, the enthalpy flow of the secondary recirculated
gas Ḣre,s, the enthalpy flow of the flue gas Ḣf and the power released by combustion in the
furnace head Pcf can be specified as

Ḣbf = cp,bfρbf V̇bfTb, (2.12)
Ḣs = cp,airρairV̇sTs, (2.13)

Ḣre,s = cp,reρreV̇re,sTre, (2.14)
Ḣf = cp,fρf V̇fTf , (2.15)
Pcf = (1 − xc)Hcṁmsw, (2.16)

with the heat capacities cp and temperatures T . Again, the volume flow rates are shown in
Figure 2.1 and are given as standard volume flow rates. Inserting xc from (2.9) the power Pcf
can be written as

Pcf = Hcṁmsw − Hc
kf

(ρairV̇pcO2,m,air + ρreV̇re,pcO2,m,re). (2.17)

2.2.3 Oxygen Concentration in the Furnace Head

In order to model the oxygen concentration at furnace head, a mass balance can be written
for the oxygen:

Mf
dcO2,m

dt
= ρairV̇scO2,m,air + ρreV̇re,scO2,m,re − ρf V̇fcO2,m − ṁO2,m,comb, (2.18)

with the gas mass in the freeboard Mf , the oxygen concentration of air cO2,m,air, the oxygen
concentration in the recirculated gas cO2,m,re and the oxygen concentration cO2,m in furnace
head that is assumed to be the oxygen concentration in the flue gas as well. Note that these
oxygen concentrations are mass fractions. The amount of oxygen needed for combustion
ṁO2,comb is specified as

ṁO2,comb = kfṁmsw(1 − xc). (2.19)

Inserting xc from 2.9 leads to

ṁO2,comb = kfṁmsw − ρairV̇pcO2,m,air − ρreV̇re,pcO2,m,re. (2.20)

2.2 Physical Modelling 8

On the plant, the oxygen concentrations are measured as percentage of volume. Therefore,
the relationship between mass fraction and volume fraction is needed:

cO2 = VO2

Vf
, (2.21)

cO2,m = mO2

mf
= VO2ρO2

Vfρf
. (2.22)

The index m denotes a mass fraction. As most of the time the volume fraction is of interest,
no index is used for the volume fraction. Now, the density ρ is described using the ideal gas
law

ρ = p

RT
. (2.23)

This leads to

cO2,m = VO2

Vf

pO2
RO2 TO2

pf
RfTf

. (2.24)

Temperature and pressure must be the same for oxygen and total gas. Hence, the oxygen
mass fraction can be described using the oxygen volume fraction and the gas constants R:

cO2,m = VO2

Vf

Rf
RO2

= cO2
Rf

RO2
. (2.25)

2.2.4 Flue Gas Mass Flow

The flue gas mass flow leaving the furnace can be modeled as the sum of the mass flows
entering the furnace, which leads to the mass balance

ρf V̇f = ṁmsw + ρairV̇p + ρreV̇re,p + ρairV̇s + ρreV̇re,s. (2.26)

Note that the remaining ash is neglected. Moreover, there is sand taken out from the bed,
cleaned from the ash and brought back to the furnace. However, the amount of sand in the
fluidized bed should stay constant. Therefore, the sand circuit is not taken into account.

2.2.5 Mass Flow for Fluidization

The mass flow that is fluidizing the bed is the sum of the primary air and the primary
recirculated gas and can therefore be written as

ρfluidV̇fluid = ρairV̇p + ρreV̇re,p. (2.27)

Chapter 3

System Identification

For the control algorithm, which will be discussed in Chapter 5, a model of the process under
consideration is needed. This chapter is about finding this model in terms of a mathematical
description, using both physical knowledge and measurement data of the process.

3.1 Introduction

The aim of this work is to develop an efficient, robust and real time capable model predictive
controller that keeps temperatures, oxygen levels and flow rates at a desired level. In order
to do that, the controller needs to know how these outputs are influenced by the inputs, e.g.
air flow rates into the furnace or the waste feed. Therefore, a plant model is developed which
gives a mathematical description of the relations between inputs and outputs.

Besides using a model for controller design, there are many other cases where models are
useful: Models are used to simulate a system’s behavior and to get a better understanding of
how a process works [10]

There are different ways to obtain models. One way is to build first-principle models. These
models are built by the usage of physical principles, e.g. Newton’s law or laws of thermody-
namics. Another approach is to build the model by using input and output data from the
process under consideration (Figure 3.1). This kind of modelling is called system identification
[10]. There are basically two types of models that can be build using measurement data: Grey
box models and black box models. Grey box models have a certain structure that is recieved
from physical equations. However, there are unknown parameters in these equations that are
then identified using measurement data. A black box model is a model where the structure is
not based on physical equations. An artificial neural network is an expamle for a black box
model [11][12][13].

To get measurement data to find the parameters in the model, experiments need to be done.
These experiments can include choosing the input signals to excite the system under consid-
eration. The input signals should be chosen appropriate to the process in terms of amplitudes

3.2 Data Preprocessing 10

System
Inputs Outputs

Figure 3.1: The aim of system identification is to find a model of a dynamical system
using measured input and output data.

and frequencies. As the input signal should contain a wide frequency range, pseudorandom
binary sequence (PRBS) signals or swept sinusoid signals are a popular choice [10].

Yet, there are cases where the input signal cannot be freely chosen. If the system is unstable,
a controller is needed to stabilize the system while carrying out the experiments. Moreover,
it can be too expensive to carry out experiments, what is often the case in industrial applica-
tions. Then the measurement data are collected under regular operations, where the system
is operating in closed-loop. However, problems can appear when using closed-loop data for
system identification. This is because in closed-loop data, the disturbances acting on the sys-
tem are correlated with the input signals applied by the controller. Research on closed-loop
identification have been done in [14][15]. When identifying systems operating in closed-loop,
it can be helpful if some signal (e.g. white noise or impulses) is added to the control signal in
order to additionally excite the system.

For this work, historical data form a plant operating in closed-loop is taken to identify the
system. No additional experiments could have been done to generate data for system identi-
fication.

3.2 Data Preprocessing

Before the data collected on the plant can be used for system identification, some data pre-
processing is necessary. This includes removing outliers, filtering, resampling and normalizing
the data. Furthermore, the data set is divided into identification data, validation data and
test data. In Section 3.2.3 it is described, why different data sets are needed.

3.2.1 Normalizing Data

The data collected are measured in different units. Hence, the signals are of very different
scales. However, performing computations with data lying in very different ranges can lead to

3.2 Data Preprocessing 11

higher numerical errors. Therefore, the data are normalized by subtracting the mean µ and
dividing by the standard deviation σ:

Yi = Yi − µi

σi
, (3.1)

with

µi = 1
N

N

k=1
yi(k)

σ2
i = 1

N − 1

N

k=1
(yi(k) − µ)2,

(3.2)

where yi(k) is the output number i at the time step k and N is the number of data points
collected. The whole signal of one output stored in a vector is denoted as Yi.

3.2.2 Filtering and Resampling

The data collected at the plant is not sampled uniformly. In many cases, a new data point
is only stored if the measured signal changes within a certain range. As long as changes in
the signal are very small, no new data points are stored. Thus, the data points are collected
at different times for different signals. However, for the system identification procedure, the
data needs to be uniformly sampled.

Before the signals are resampled, an anti-aliasing filter is applied. This is necessary because
signals can have been collected with higher sampling frequencies than used for system iden-
tification later. Hence, the signals can contain high-frequency components, what leads to
aliasing when downsampling the signals.

After filtering the signal, the data points are interpolated using piecewise cubic Hermite
interpolating polynomials (pchip). This interpolation method is used because the signals
under consideration are physical signals and change smoothly, not abruptly.

Filtering and resampling is carried out using the Matlab function resample. Figure 3.2
shows two signals before and after filtering and resampling.

3.2.3 Data Division

The data used in this work have been collected from April 6, 2020 at 10 p.m to April 12, 2020
at 8 a.m. This data set is divided into three parts:

3.3 Definition of Input and Output Variables 12

0 1 2 3 4 5
Time in Minutes

-1.5

-1

-0.5

0

0.5

1

1.5

c O
2

Original Data
Resampled Data

0 1 2 3 4 5
Time in Minutes

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

T
f

Original Data
Resampled Data

Figure 3.2: Data Preprocessing: The original data is sampled fast for cO2 and slow
for Tf . After resampling, the data sequences are uniformly sampled.

• Identification data (50 %)

• Validation data (25 %)

• Test data (25 %)
The identification data is used for parameter estimation as described in Section 3.5.2. For
model validation, it is important to use a data set that has not been used for parameter
estimation. Therefore, the validation data is used for model validation as described in Section
3.7. In Chapter 4, a third data set is needed for the computation of the fitness value. Therefore,
the test data is used.

3.3 Definition of Input and Output Variables

In Chapter 2, both differential and algebraic equations have been developed to describe the
fluidized bed furnace. These equations contain constants and variables. The variables are
separated into input variables u and output variables y: Output variables are desired to be
controlled and lie as close as possible to a certain reference value or trajectory. These variables
are influenced by the input variables.

Note that usually inputs are only variables that can be manipulated. Variables, that cannot
be manipulated, but also have an influence on the outputs, are called disturbances. However,

3.4 From Physical Equations to Polynomial Models 13

for the purpose of identification it does not matter if variables can be manipulated or not, as
long as the variables can be measured.

The input and output variables are defined as follows:

u1 : waste feed screw conveyor rotational speed (nmsw)
u2 : primary air volume flow (V̇p)
u3 : primary recirculated gas volume flow (V̇re,p)
u4 : secondary air volume flow (V̇s)
u5 : secondary recirculated gas volume flow (V̇s,re)
u6 : primary air enthalpy flow (V̇pTfluid)
u7 : primary recirculated gas enthalpy flow (V̇re,pTre)
u8 : secondary air enthalpy flow (V̇sTs)
u9 : secondary recirculated gas enthalpy flow (V̇re,sTre)

y1: flue gas volume flow (V̇f)
y2: furnace head temperature (Tf)
y3: fluidized bed temperature (Tb)
y4: oxygen concentration furnace head (cO2)
y5: gas for fluidization volume flow (V̇fluid)

The inputs u6 to u9 are the products of a volume flow (as a standard volume flow) with
its temperature. These products are proportional to the corresponding enthalpy flows. This
allows formulating equations that are linear in inputs, even though the original equations are
non-linear because of the product of mass flow and temperature.

3.4 From Physical Equations to Polynomial Models

The equations developed in Chapter 2 are now reformulated, linearized and discretized before
estimating the parameters.

The aim of this section is to find a description for each output using a first-order polynomial
model in discrete-time:

yi(k + 1) = ai1y1(k) + . . . + ai5y5(k) + bi1u1(k) + . . . + bi9u9(k), (3.3)

that is now a function of the sample number k, not of the time t.

For more convenience, this can be written using a matrix formulation:

yi(k + 1) = aiy(k) + biu(k). (3.4)

3.4 From Physical Equations to Polynomial Models 14

3.4.1 Flue Gas Mass Flow

The flue gas mass flow can be written as

ρf V̇f = kmswnmsw + ρairV̇p + ρreV̇re,p + ρairV̇s + ρreV̇re,s − ṁash. (3.5)

Equation (3.5) is then written using the inputs and outputs from Section 3.3. The parameters
are combined in new parameters b11 to b15:

y1(k) = b11u1(k) + b12u2(k) + b13u3(k) + b14u4(k) + b15u5(k), (3.6)

what is an algebraic equation now. However, a better model of the flue gas mass flow can be
achieved using a first-order difference equation:

y1(k + 1) = a11 0 0 0 0 y(k) + b11 b12 b13 b14 b15 0 0 0 0 u(k). (3.7)

3.4.2 Furnace Head Temperature

The energy balance for the furnace head led to the following differential equation:

Cf
dTf
dt

= cp,bf(kmswnmsw + ρairV̇p + ρreV̇re,p)Tb

+ cp,airρairV̇sTs

+ cp,reρreṁre,sTre

− cp,fρf V̇fTf

+ Hckmswnmsw − Hc
kf

(ρairV̇pcO2,m,air + ρreV̇re,pcO2,m,re).

(3.8)

Now, this equation is rewritten using the input and output notation:

Cf
dy2
dt

= cp,bf(kmswu1 + ρairu2 + ρreu3)y3

+ cp,airρairu8

+ cp,reρreu9

− cp,fρfy1y2

+ Hckmswu1 − Hc
kf

(ρairu2cO2,m,air + ρreu3cO2,m,re).

(3.9)

The first and fourth term on the right-hand side are non-linear, because of the product of
input and output or output and output. These products are linearized with respect to the
operating point:

uiyj ≈ uiyj,0 + ui,0yj , (3.10)

3.4 From Physical Equations to Polynomial Models 15

where ui,0 and yj,0 are input and output at the operating point. This is done for all of the
products in (3.9).

The next step is to discretize the equation. Although methods exist to estimate parameters
for continuous-time models, it seems more convenient in this case to estimate parameter for
a discretized model, because measurement data are discrete anyway and the model used for
control should be a discrete-time model as well. Therefore, the derivative is approximated
using a first-order divided difference:

dy2(t)
dt

≈ y2(t) − y2(t − Ts)
Ts

, (3.11)

with the sampling time Ts. All measured signals are given in discrete time and sampled
uniformly, therefore y(t) = y(kTs).

After linearization and discretization, Equation (3.9) can be written as a function of k:

y2(k + 1) = a21 a22 a23 0 0 y(k) + b21 b22 b23 0 0 0 0 b28 b29 u(k), (3.12)

where all the constants in (3.9), the operating points and the sampling time Ts are combined
in new parameters a2j and b2j .

3.4.3 Fluidized Bed Temperature

The differential equation for the fluidized bed temperature

Cb
dTb
dt

= cp,airρairV̇pTp

+ cp,reρreV̇re,pTre

+ cp,mswkmswnmswTmsw

− cp,bf(kmswnmsw + ρairV̇p + ρreV̇re,p)Tb

+ Hc
kf

(ρairV̇pcO2,m,air + ρreV̇re,pcO2,m,re)

(3.13)

is again written using inputs and outputs:

Cb
dy3
dt

= cp,airρairu6

+ cp,reρreu7

+ cp,mswkmswu1Tmsw

− cp,bf(kmswu1 + ρairu2 + ρreu3)y3

+ Hc
kf

(ρairu2cO2,m,air + ρreu3cO2,m,re).

(3.14)

3.4 From Physical Equations to Polynomial Models 16

Now, the equation is linearized according to (3.10) and discretized according to (3.11). This
leads to the following polynomial model:

y3(k + 1) = 0 0 a33 0 0 y(k) + b31 b32 b33 0 0 b36 b37 0 0 u(k). (3.15)

3.4.4 Oxygen Concentration Furnace Head

A description for the oxygen concentration at the furnace head has been received by writing
a mass balance for the furnace head as

Mf
dcO2,m

dt
= ρairV̇scO2,m,air + ρreV̇re,scO2,m,re − ρf V̇fcO2

Rf
RO2

− (kfkmswnmsw − cO2,m,airρairV̇p − cO2,m,reρreV̇re,p).
(3.16)

Again, the equation is written using inputs and outputs:

Mf
dy4
dt

= ρairu4cO2,m,air + ρreu5cO2,m,re − ρfy1y4
Rf

RO2

− (kfkmswu1 − cO2,m,airρairu2 − cO2,m,reρreu3).
(3.17)

After linearization, discretization and combining parameters, the equation can be written as

y4(k + 1) = a41 0 0 a44 0 y(k) + b41 b42 b43 b44 b45 0 0 0 0 u(k). (3.18)

3.4.5 Mass Flow for Fluidization

The mass flow for fluidization can be written as the following sum:

ρfluidV̇fluid = ρairV̇p + ρreV̇re,p. (3.19)

However, due to inertia and time delays in the system, a polynomial model better describes
the mass flow for fluidization:

y5(k + 1) = 0 0 0 0 a55 y(k) + 0 b42 b43 0 0 0 0 0 0 u(k). (3.20)

3.5 Identification of Linear State-Space Models 17

3.5 Identification of Linear State-Space Models

For multiple-input and multiple-output (MIMO) systems, a state-space model is a convenient
way to describe the physical processes. Therefore, the parameter estimation procedure is
done in the state-space. State-space representation uses first-order differential or difference
equations to describe a continuous-time or discrete-time system, respectively. In discrete time,
a state-space model has the following form:

x(k + 1) = Ax(k) + Bu(k),
y(k) = Cx(k) + Du(k),

(3.21)

with the variables
A ∈ Rn×n state matrix, x ∈ Rn state vector,
B ∈ Rn×r input matrix, u ∈ Rr input vector,
C ∈ Rm×n output matrix, y ∈ Rm output vector,
D ∈ Rm×r feedthrough matrix,

where n indicates the order of the model (the number of the states), r indicates the number of
inputs and m indicates the number of outputs. Note that a state-space representation is not
unique, whereas other forms, like transfer functions, give a unique description of a dynamical
system.

For the identification procedure the system is assumed to be time-invariant. This means the
matrices A, B, C and D are constant. The matrix D is assumed to be the zero matrix: The
input u cannot influence the output y within the same sample k, what is the case for almost
all physical systems.

The aim of system identification is now to determine the matrices in (3.21).

3.5.1 Model Structure

In Section 3.4, polynomial models have been developed for every single output yi to describe
the input-output behavior. These polynomial models are now combined to get a closed-form
representation for the whole MIMO system. As these polynomial models are already first-
order difference equations, they can easily be written in state-space form with the state vector
x equal to the output vector y:

3.5 Identification of Linear State-Space Models 18

x(k + 1) =

a11 0 0 0 0
a21 a22 a23 0 0
0 0 a33 0 0

a41 0 0 a44 0
0 0 0 0 a55

 x(k)

+

b11 b12 b13 b14 b15 0 0 0 0
b21 b22 b23 0 0 0 0 b28 b29
b31 b32 b33 0 0 b36 b37 0 0
b41 b42 b43 b44 b45 0 0 0 0
0 b52 b53 0 0 0 0 0 0

 u(k),

(3.22)

with the input vector

u = nmsw, ṁp, ṁp,re, ṁs, ṁs,re, ṁpTre ṁp,reTp, ṁsTs, ṁs,reTre,
T

and the output vector

y = Cx = I ṁf , Tf , Tb, cO2, ṁfluid
T

.

The output matrix C is the identity matrix in this case, since state vector and output vector
contain the same variables.

Additionally to the model developed so far, a higher-order model is developed now. These two
models are later compared to each other. So far, first-order difference equations have been
used to describe the input-output behavior. However, a higher order model could possibly
perform better at modeling the system’s behavior. Thus, the first-order difference equations
with the form

yi(k + 1) = aiy(k) + biu(k), (3.23)

with the parameter vectors ai and bi are extended to second-order difference equations:

yi(k + 1) = ã1i ã2i
y(k)

y(k − 1) + b̃1i b̃2i
u(k)

u(k − 1) . (3.24)

This equation is now also a function of y(k − 1) and u(k − 1). The non-zero elements in the
parameter vectors ã1i and ã2i are the same as in ai. The same applies for b̃1i, b̃2i and bi.
This means that the dependencies of the outputs yii on the other outputs and on the inputs
did not change when increasing the model order.

To get a state-space representation of the increased-order model, each second-order differ-
ence equation needs to be written as two first-order difference equations. This is done by

3.5 Identification of Linear State-Space Models 19

introducing a new state

yi(k + 1) = ã1iy(k) + b̃1iu(k) + x̃i(k),
x̃i(k + 1) = ã2iy(k) + b̃2iu(k)

(3.25)

for every output yi. The increased-order model can be written in state-space representation:

y1(k + 1)
y2(k + 1)
y3(k + 1)
y4(k + 1)
y5(k + 1)
x̃1(k + 1)
x̃2(k + 1)
x̃3(k + 1)
x̃4(k + 1)
x̃5(k + 1)

=

a11 0 0 0 0 1 0 0 0 0
a21 a22 a23 0 0 0 1 0 0 0
0 0 a33 0 0 0 0 1 0 0

a41 0 0 a44 0 0 0 0 1 0
0 0 0 0 a55 0 0 0 0 1

a66 0 0 0 0 0 0 0 0 0
a76 a77 a78 0 0 0 0 0 0 0
0 0 a88 0 0 0 0 0 0 0

a96 0 0 a99 0 0 0 0 0 0
0 0 0 0 a1010 0 0 0 0 0

y1(k)
y2(k)
y3(k)
y4(k)
y5(k)
x̃1(k)
x̃2(k)
x̃3(k)
x̃4(k)
x̃5(k)

+

b11 b12 b13 b14 b15 0 0 0 0
b21 b22 b23 0 0 0 0 b28 b29
b31 b32 b33 0 0 b36 b37 0 0
b41 b42 b43 b44 b45 0 0 0 0
0 b52 b53 0 0 0 0 0 0

b11 b12 b13 b14 b15 0 0 0 0
b21 b22 b23 0 0 0 0 b28 b29
b31 b32 b33 0 0 b36 b37 0 0
b41 b42 b43 b44 b45 0 0 0 0
0 b52 b53 0 0 0 0 0 0

u1(k)
u2(k)
u3(k)
u4(k)
u5(k)
u6(k)
u7(k)
u8(k)
u9(k)

(3.26)

with a state vector x containing the five outputs y followed by five additional states as
mentioned in (3.25). Thus, the output matrix becomes

C = I5×5 05×5 . (3.27)

3.5.2 Parameter Estimation

The next step is to estimate the unknown parameters in the state-space matrices in (3.22)
and (3.26) using measurement data.

There are data points collected for the input u and output y. The parameters in the model
should be identified in a way that the output ŷ, that is generated by the model, fits the
measured output as good as possible. The error of the model output ŷ is defined for every

3.5 Identification of Linear State-Space Models 20

sample point k as
e(k) = y(k) − ŷ(k). (3.28)

To evaluate the goodness of the fit, the mean squared error over N samples is defined as a
cost function:

V (θ) = 1
N

N

k=1
e(k)T e(k), (3.29)

where θ is the parameter vector, containing all the unknown parameters in the model. To
choose a quadratic cost function like in (3.29) is a common choice for a cost function [10].

The parameters are estimated by minimizing the cost function

θ̂ = arg min
θ∈D

V (θ). (3.30)

Computation of the Model Output

The model output ŷ can be computed in different ways: one way is to use only the measured
input signal u. This input signal is fed into the model and the model output ŷ is computed.
This is like simulating the response using the model and the measured input, what works for
both polynomial models and state-space models.

Another way of calculating ŷ is to use both the measured input signal u and the measured
output signal y. For a polynomial model like (3.23) or (3.24) this can easily be done by using
measurement signals y on the right-hand side of the equation to compute ŷ:

ŷi(k + 1) = aiy(k) + biu(k). (3.31)

When computing ŷ this way, the one-step-ahead prediction error is going to be minimized
when minimizing the cost function V (θ).

For state-space models, this cannot be done that easily, because the state vector x cannot be
measured in general. However, the measured output y can be used to correct the calculated
state vector x̂:

x̂(k + 1) = Ax̂(k) + Bu(k) + K(y(k) − Cx̂(k)),
ŷ(k) = Cx̂(k),

(3.32)

where K can be interpreted as a Kalman-Filter gain matrix. The parameters in K can be
estimated using measurement data as well. If this is done, this model structure is called
directly parametrized innovations form [10].

If ŷ is calculated using a one-step-ahead prediction, the sampling time of the model must be
chosen very appropriate to the dynamics of the system under consideration. If the model is

3.6 Identification of Artificial Neural Networks 21

sampled very fast, the current output y(k) would always be a good prediction for the next
output ŷ(k + 1). For the fluidized bed furnace, the dynamics are very different for each
output: The furnace bed temperature changes very slow compared to the other outputs, due
to the high heat capacity of the bed. Therefore, it is impossible to choose a sampling time
appropriate for all outputs. Thus, a simulation is used to compute ŷ, using only the measured
input signal u, not the measured output signal y.

Minimization of the Cost Function

For some cases, e.g. if a polynomial model is used and the model response is computed using a
one-step-ahead prediction, there are analytical solutions to minimize the cost function V (θ).
However, in this case a numerical, iterative technique must be applied to find a minimum
because the model output ŷ(k + 1) is a function of a previous model output ŷ(k) and cannot
be given explicit in terms of measurement data. An iterative approach also needs to be
applied when parameters of nonlinear models are estimated, since the parameter estimation
problem is then a nonlinear least-squares problem (if a quadratic cost function as in (3.29) is
defined). For this work, the Matlab System Identification Toolbox [16] is used for parameter
estimation. This toolbox uses different numerical algorithms for minimizing the cost function,
such as the Levenberg-Marquardt algorithm :

θ̂i+1 = θ̂i + 1
N

N

k=1
J(k, θ̂)JT (k, θ̂) + λI

−1

− 1
N

N

k=1
J(k, θ̂)e(k, θ) , (3.33)

with the parameter estimate θ̂i at the ith-iteration step, the Jacobi matrix J(k, θ̂) ∈ Rnθ×m

of the model output ŷ(k, θ̂), a scalar parameter λ and the error e(k, θ̂) as specified in (3.28).
Also the Gauss-Newton algorithm is used by the System Identification Toolbox, where λ = 0.
More detailed information and other search schemes can be found in [10].

3.6 Identification of Artificial Neural Networks

In order to evaluate the performance of the linear state-space models, an artificial neural
network (ANN) is designed and trained. The performance of the ANN is then compared to
those of the linear state-space modes. The same measurement data are used to train the
ANN.

3.6.1 Network Architecture

The Matlab Deep Learning Toolbox [17] is used to design and train the ANN. Figure 3.3
shows the architecture of the network. The input and output vectors are those that are

3.6 Identification of Artificial Neural Networks 22

specified in Section 3.3. The ANN is designed as a recurrent radial basis function network.
This means, not only the acctual inputs u are inputs to the network, but the network’s outputs
ŷ are fed back as inputs to the network as well [12], and a radial basis function is used as an
activation function.

The network uses inputs u and the network outputs ŷ from two prior periods as network
inputs. These network inputs are now called a0.

Before the network inputs reach the neurons in the hidden layer, they are weighted. In the
hidden layer, a constant bias term is added and a non-linear function ϕ is applied. This leads
to the output of the hidden layer

a1 = ϕ(b1 + W10a0), (3.34)

with the network inputs a0 ∈ R28, the weighting matrix W10 ∈ R10×28, the bias vector
b1 ∈ R10 and the output of the hidden layer a1 ∈ R10. The elements in the bias vector b1
determine the centers of the radial basis functions.

The non-linear function applied in the neurons is call activation function. In this work, a
radial basis function is used as an activation function:

ϕ(x) = e−x2

n
i=1 xi

. (3.35)

The output ŷ(k) is then computed as a linear combination of a1. Again, a bias term is
added:

ŷ = b2 + W21a1, (3.36)

where W21 ∈ R5×10 is again a weighting matrix and b2 ∈ R5 is a bias vector.

3.6.2 Network Training

The aim of network training is to use measurement data to estimate the weights and biases
in the network. This is a similar task to the parameter estimation described in Section 3.5.2.
Again, the mean-squared-error is used as a cost function as defined in (3.29).

For the minimization of the cost function, a Levenberg–Marquardt algorithm is used (see
(3.33)). The calculation of the Jacobian is done by backpropagation. A deeper insight on the
training of ANNs using a Levenberg-Marquardt algorithm and backpropagation is given in
[13].

3.7 Model Validation 23

u(k − 1)

u(k)

ŷ(k − 1)

ŷ(k)

ŷ(k + 1)

Hidden Layer
10 Neurons

Output LayerInput Layer

z−1

z−1

Σ

N1

N2

N10
W10

W21

b1

b2

Figure 3.3: Artificial Neural Network Architecture.

3.7 Model Validation

So far, two state-space models of different orders and an artificial neural network have been
identified to describe the fluidized bed furnace. The next step is to validate these models. On
the one hand, this means to compare these different models and have a look on what model
gives the best description of the plant. On the other hand, it should be evaluated, if the
models are appropriate to use them for model predictive control. Simulations are done using
measurement data and the model outputs are compared to the measured outputs. Moreover,
the physical plausibility of the models is validated.

3.7.1 Simulations Using Measurement Data

In this section, the models are validated using crossvalidation. This means to take a data set
that was not used for parameter estimation and feed the input to the model. Then the output
generated by the model is compared to the measured output. This corresponds to calculate
a simulation as described in Section 3.5.2. Of course, also a one-step-ahead prediction or a
k-step-ahead prediction can be used to validate the model.

3.7 Model Validation 24

Table 3.1: Model performance on validation data.

Output 1st order model 2nd order model ANN

V̇f 36.4 % 44.0 % 45.4 %
Tf 36.5 % 46.0 % 20.0 %
Tb 15.2 % 32.5 % 17.0 %
cO2 47.7 % 51.0 % 60.2 %
V̇fluid 43.9 % 45.6 % 35.0 %

There are different metrics to evaluate the goodness of the model output compared to the
measured output. A cost function as defined in (3.29) can be taken. However, a more intuitive
number that describes the goodness of one model output is to compute the following fit in
percent:

fiti = 100 1 − Yi − Ŷi

Ŷi − Ŷi

, (3.37)

where · 2 indicates the Euclidean norm of a vector, Yi is vector containing the N measure-
ment points of one output yi, Ŷi is a vector with the corresponding model output and Ŷi its
mean. This fit gets 100 % if the model output fits the measured output perfectly and can be
negative as well.

The results of the simulations are shown in Table 3.1 and in the Figures 3.4 and 3.5. The
model denoted as 1st-Order Model is the state-space model in (3.22) that is build up from first-
order polynomial models. The model denoted as 2nd-Order Model is the state-space model
in (3.26). ANN refers to the artificial neural network with the structure described in Section
3.6.1. The state-space matrices of the identified models can be found in the Appendix.

3.7.2 Physical Interpretation

Another important step of validation is to check the physical plausibility of the model. This
can be done by taking a look on the estimated parameters, if they allow a physical interpre-
tation. Here, the model’s step responses are analyzed. Figure 3.6 shows the first output y1
(flue gas, V̇f). It can be seen that according to the both models, the amount of flue gas is
decreasing if the amount of recirculated secondary air increases. Obviously, this is not describ-
ing the correct physical behavior in this case. Moreover, according to the 1st-order model, a
higher amount of waste fed into the furnace is decreasing the amount of flue gas leaving the
furnace, what is not making sense either. Note that the step responses are computed for the
normalized models.

In this work, the measurement data used for parameter estimation has been collected in closed-
loop. As stated in Section 3.1, this can lead to parameter estimates. In [14] the problems of

3.7 Model Validation 25

-2

0

2

4

V
f

Simulation Using Identification Data

Measurements

1st-Order Model 32.8 %

2nd-Order Model 44.4 %
ANN: 43.9 %

-2

0

2

4

T
f

Measurements

1st-Order Model 43.7 %

2nd-Order Model 50.7 %
ANN: 27.8 %

0 500 1000 1500 2000 2500 3000 3500
Time (Minutes)

-4

-2

0

T
b

Measurements

1st-Order Model 44.2 %

2nd-Order Model 49.3 %
ANN: 35.5 %

-4

-2

0

2

c O
2

Measurements

1st-Order Model 15.2 %

2nd-Order Model 34.9 %
ANN: 25.9 %

700 710 720 730 740 750 760 770 780 790 800

-2

0

2

4

V
flu

id

Measurements

1st-Order Model 51.7 %

2nd-Order Model 54.3 %
ANN: 61.1 %

Figure 3.4: The Model outputs are computed using data that have been used for
parameter identification (identification data). The Model outputs are
compared to measured outputs. The plot of the bed temperature (Tb)
shows the whole data set, the other outputs are plotted for a shorter time
period. Note that the data is normalized.

3.7 Model Validation 26

-5

0

5

V
f

Simulation Using Validation Data

Measurements

1st-Order Model 36.4 %

2nd-Order Model 44 %
ANN: 45.4 %

-2

0

2

T
f

Measurements

1st-Order Model 36.5 %

2nd-Order Model 46 %
ANN: 20 %

0 200 400 600 800 1000 1200 1400 1600 1800
Time (Minutes)

-4

-2

0

2

T
b

Measurements

1st-Order Model 43.9 %

2nd-Order Model 45.6 %
ANN: 35 %

-4

-2

0

2

c O
2

Measurements

1st-Order Model 15.2 %

2nd-Order Model 32.5 %
ANN: 17 %

700 710 720 730 740 750 760 770 780 790 800
-2

0

2

V
flu

id

Measurements

1st-Order Model 47.7 %

2nd-Order Model 51 %
ANN: 60.2 %

Figure 3.5: Crossvalidation. The Model outputs are computed using data that have
not been used for parameter identification (validation data). The Model
outputs are compared to measured outputs. The plot of the bed temper-
ature (Tb) shows the whole data set, the other outputs are plotted for a
shorter time period. Note that the data is normalized.

3.7 Model Validation 27

0 2 4 6 8 10
Time (min)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Vf Step Response (2nd-Order Model)

Response to u1

Response to u2

Response to u3

Response to u4

Response to u5

0 2 4 6 8 10
Time (min)

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Vf Step Response (1st-Order Model)

Response to u1

Response to u2

Response to u3

Response to u4

Response to u5

Figure 3.6: The left figure shows the response of the first output (V̇f) when unit steps
in the inputs are fed into the 1st-Order Model. The left figure shows the
step response of the 2nd-Order Model.

closed-loop identification and stated and the biases in parameter estimates depending on the
model structure and the estimation procedure are presented.

Chapter 4

Model Structure Optimization

In this chapter an algorithm is presented that improves the structure of a state-space model
using measurement data. The approach is based on a genetic algorithm.

4.1 Introduction

The state-space models in Chapter 3 have been developed based on physical equations. These
equations led to a certain model structure, characterized by the zero and non-zero elements
in the state-space matrices A and B. This structure can be described using the structure
matrices A and B, with zeros for zero elements and ones for elements that are estimated
using measurement data. These structure matrices have the following form for the model in
(3.22):

A =

1 0 0 0 0
1 1 1 0 0
0 0 1 0 0
1 0 0 1 0
0 0 0 0 1

 , B =

1 1 1 1 1 0 0 0 0
1 1 1 0 0 0 0 1 1
1 1 1 0 0 1 1 0 0
1 1 1 1 1 0 0 0 0
0 1 1 0 0 0 0 0 0

 . (4.1)

The physical equations, that have been used to get a certain model structure, are based on
simplifications of the fluidized bed furnace. This brings up the question if another model
structure can give a better mathematical description of the process under consideration.

The work flow so far was to determine a model structure, characterized by A and B, and
then estimate the parameters using measurement data. The parameter estimation is done
using a numerical, iterative algorithm and takes several seconds. This makes it impossible
to estimate the parameters for every possible model structure and compare these models,
since the amount of possible model structures is extremely high (for the 1st-order model,
there are 225 ≈ 3.4 × 107 possible combinations, when taking into account the elements that
are allowed to be changed according to Section 4.3. For the 2nd-order model there are even
2100 ≈ 1.2 × 1030 possible combinations). Hence, a genetic algorithm based approach is tried.

4.2 Structure Optimization Using Evolutionary Algorithm 29

This algorithm iteratively changes the structure matrices A and B in order to find an optimal
model structure.

Genetic algorithms have been widely used to solve optimization problems [18][19]. They are
biologically-inspired and based on the principle of evolution. At the beginning, an initial gen-
eration is created. A generation is a set of solutions which are called individuals. The initial
generation can be created randomly or manually. The next step is to create an offspring gen-
eration: This is done by combining two individuals from the parental generation (crossover)
or modifying one individual randomly (mutation). Then the fitness value is computed for
the individuals in the offspring generation. The fitness value is a numerical value evaluating
the goodness of one solution. The individuals with the highest fitness are then selected for
a new generation. This procedure is repeated for several generations until the fitness of one
individual is sufficient high or the number of generations reaches a predefined limit. There
are different approaches for the genetic algorithm procedure, e.g. crossover and mutation can
be carried out parallel or one after another.

Evolutionary-based algorithms have been used for modelling as well. Genetic programming
is an algorithm, that tries out different non-linear model structures by combining different
features (e.g. non-linear functions) [20][21].

In this chapter an algorithm for the optimization of the model structure is presented. After-
wards, the results are shown for the fluidized bed furnace model.

4.2 Structure Optimization Using Evolutionary Algorithm

The structure optimization is carried out for the state-space models (3.22) and (3.26). The
original structure is taken to create an initial generation with a population size of npop indi-
viduals. This is done by mutating the original structure as described later in Section 4.2.3.
Afterwards, the fitness value is calculated for each model according to Section 4.2.1. This
procedure is shown in Algorithm 1.

Algorithm 1: Create the first generation of models using an initial model
Input: Initial Model Σinit
Output: First Generation G = {Σ1, Σ2 . . . Σnpop}
for i = 1 to npop do

Σi = Mutation(Σinit);
Σi = ParameterEstimation(Σi);
fi = FitnessCalculation(Σi)

end
G = {Σ1, Σ2 . . . Σnpop}

4.2 Structure Optimization Using Evolutionary Algorithm 30

This first Generation G is now used to create an offspring generation G̃. This is done by
selecting two individuals from G, combining these two individuals (crossover) and modifying
the resulting model (mutation). Then, the model parameters are estimated and the fitness
value is computed. This is done several times, what leads to an offspring generation G̃.
Additionally, the best models nsurv from the parental generation are added to the offspring
generation. This should prevent good models to get lost. The population size of the offspring
generation G̃ is greater than the population size of the parental generation G. The best
individuals from the offspring generation are selected to create the next parental generation
(survival of the fittest). This procedure is repeated for a predefined number of generations
nG and is described in Algorithm 2.

Algorithm 2: Create further generations
Input: First Generation G

Output: Final Generation Gbest
for i = 2 to nG do

for j = 1 to noff do
Σa = SelectIndividual(G);
Σb = SelectIndividual(G);
Σco = Crossover(Σa,Σb);
Σmut = Mutation(Σco);
Σ̃j = ParameterEstimation(Σmut);
f̃j = FitnessCalculation(Σj)

end
G̃ = {Σ̃1, Σ̃2 . . . Σ̃noff , Σ1, Σ2, . . . , Σnsurv};
G = SurvivalOfTheFittest(G̃)

end
Gbest = G

4.2.1 Fitness

To evaluate the fitness of an individual Σj , a fitness function is defined. The fit of each model
output ŷi is computed for a test data set (a data set that has been used neither for parameter
estimation nor for crossvalidation) as described in Section 3.7:

fiti = 100 1 − Yi − Ŷi

Ŷi − Ŷi

, (4.2)

with again the Euclidean norm of a vector · 2, the vector containing the N measurement
points of one output Yi, a vector with the corresponding model output Ŷi and its mean Ŷi.

4.2 Structure Optimization Using Evolutionary Algorithm 31

× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

A of Σa A of ΣbA of Σco

Figure 4.1: Crossover of Σa and Σb for the A matrix. Example for Σa having higher
fits for the outputs y1, y2 and y5 whereas Σb has higher fits for y3 and
y4.

The fitness value fj of an individual Σj is then computed as the average fit plus a term that
penalizes a high number of parameters in the model:

fj = 1
r

r

i=1
fiti − λ(np,j − np,init), (4.3)

where r is the number of outputs, np,j is the number of parameters in the model Σj , np,init is
the number of parameters in the initial model Σinit and λ is a tuning parameter.

4.2.2 Crossover

Crossover means the combination of two models Σa and Σb by combining their structure
matrices A and B.

A crossover is usually carried out by randomly combining two solutions. In this work, two
models are combined according to their ability to describe one output yi. For each output, a
fit is computed according to (3.37) using the test data set. If one model performs better in
describing one output yi, the part of this model responsible for this output is taken to create
the new model Σco. For example, if Σa has a higher fit for the first output, the first lines of
A and B are taken from Σa to create Σco.

Figure 4.1 illustrates the crossover procedure for the A matrix. In this example, the fits of
Σa are higher for the outputs y1, y2 and y5. The same thing is done for the matrix B. For the
second-order model (3.26), the corresponding augmented states need to be selected as well.

Selection

For the crossover operation, two individuals need to be selected. There are different methods
how individuals can be selected from a population, such as tournament selection, proportional

4.2 Structure Optimization Using Evolutionary Algorithm 32

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4.2: Models with a higher fitness value have a higher probability to be se-
lected for the crossover operation. Here, Σ1 has the highest chance to be
selected.

roulette wheel selection or rank-based roulette wheel selection. In [22], these three selection
methods are compared for solving an optimization problem. All methods have in common
that they use randomness for individual selection.

In tournament selection, some (commonly two) individuals are randomly selected from the
parental generation. The one with the higher fitness value is chosen.

If proportional roulette wheel selection is applied, the probability for an individual to be
selected is proportional to its fitness value.

In this work, rank-based roulette wheel selection is applied. The individuals within one
generation are sorted according to their fitness values. The higher they are ranked, the higher
their probability to be selected. The probability for one individual to be selected is specified
as

Pi = posi
npop
j=1 posj

, (4.4)

whereby the individual with the highest fitness value has pos = 1 and the individual with
the lowest fitness value has pos = npop. Figure 4.2 illustrates the selection method: Every
individual has its segment on an interval between 0 and 1. The higher a model is ranked,
the larger its field on this interval. A uniformly distributed random number between 0 and 1
is created. An individual is selected, if the random number is lying in its segment. One can
imagine this as a roulette wheel, where the fields of the numbers are differently-sized, so that
the chance for the ball to fall on a field is different for every number.

4.2.3 Mutation

The mutation of the model structure is about changing the structure of the state-space ma-
trices A and B randomly. Mutation is now done by changing elements in A and B from one
to zero or from zero two one. However, not all elements are allowed to be changed.

The changes in the structure matrices are carried out by changing the elements in a random
way: Each zero-element has a probability of p+ to be flipped to one and each one has a

4.3 Results 33

Table 4.1: Hyperparameter in the model optimization algorithm.

Parameter Description Value

nG Number of generations 50
npop Number of individuals in a parental generation 15
noff Number of individuals in an offspring generation 25
nsurv Number of best models survive additionally to the offspring generation 3
p+,0 Probability for a parameter be released (starting value) 0.5
p−,0 Probability for a parameter to be locked and set to 0 (starting value) 0.5
λp Probability decreasing rate 0.95
λ Penalty weight for number of parameters in the model 0.2

probability of p− to be flipped to zero. The values of p+ and p− are hyperparameters of the
structure optimization algorithm.

The search process can be improved, if the values for p+ and p− are higher in the first
generations and decrease with the number of generations. Therefore, p+ is defined as

p+ = p+,0λi
p, (4.5)

where p+,0 is a starting value, λp is the decreasing rate and i is the i-th generation. The same
applies for p−.

If elements in A are flipped from zero to one, the corresponding value in the matrix A is set
to zero as well.

4.3 Results

The algorithm is now applied to the state space models (3.22) and (3.26) and the results are
presented. There are some hyperparameters in the algorithm that can be tuned. The values
of these parameters influence the success of the genetic algorithm. In [18], techniques are
presented to find and tune these parameters. Table 4.1 shows how the parameters appearing
in the algorithm have been chosen in this work.

The A and the B matrix of the first-order model have the following structure after applying
the genetic algorithm:

4.3 Results 34

A =

a11 a12 0 a13 0
a21 a22 a23 a24 0
0 0 a33 a34 a35

a41 a42 a43 a44 0
0 0 0 0 a55

, B =

b11 b12 b13 b14 b15 0 0 0 0
b21 b22 b23 0 0 0 0 b28 b29

b31 b32 b33 0 0 b36 b37 0 0
b41 b42 b43 b44 b45 0 0 0 b49

0 b52 b53 0 0 0 0 0 0

.

The elements with the green background are elements that are allowed to be changed by the
algorithm. Elements, that are framed in green are elements, that have been changed. These
elements have been zeros in the original structure. For y5 (ṁfluid) the algorithm is not allowed
to make any changes, since it is physically not possible that this output depends on other
outputs or inputs except of ṁp and ṁre,p. Moreover, y3 (Tb) cannot depend on any secondary
gas flows. Thus, these parameters are not allowed to be changed either.

For the second-order model, the algorithm is allowed to set parameters to zero. This is done
because it may be beneficial, if a future output depends only on a current input, not on the
previous one. The resulting state-space matrices of the second-order model have the following
form:

A =

a11 0 0 a14 0 1 0 0 0 0
0 a22 0 0 0 0 1 0 0 0
0 a32 a33 0 0 0 0 1 0 0
0 a42 0 a44 0 0 0 0 1 0
0 0 0 0 a55 0 0 0 0 1

a61 0 0 a64 0 0 0 0 0 0
a71 0 0 a74 0 0 0 0 0 0
0 a82 0 0 a85 0 0 0 0 0

a91 0 0 a94 0 0 0 0 0 0
0 0 0 0 a10,5 0 0 0 0 0

,

4.3 Results 35

B =

b11 b12 0 b14 0 b16 0 0 b19

b21 0 0 b24 0 0 0 b28 b29

b31 0 b33 0 0 b36 0 0 0
b41 0 0 0 0 b46 0 0 b49

0 b52 b53 0 0 0 0 0 0
b61 0 0 b64 b65 0 0 0 0
b71 0 0 0 0 0 0 0 b79

b81 0 0 0 0 b86 0 0 0
b91 0 0 0 0 b96 0 0 b99

0 b10,2 b10,3 0 0 0 0 0 0

.

Again elements with a green background are elements that are allowed to be changed and
green-framed elements are elements that have been unlocked by the algorithm. Now, there
are also elements that have been set to zero. These elements are framed in red.

The results of the crossvalidation for the first-order model are shown in Figure 4.3, the results
of the crossvalidation for the second-order model are shown in Figure 4.4. For the first-
order model, significant improvements could be achieved for the outputs y1, y2 and y5. The
numbers of parameters in the model changed from 30 to 38. For the second order model,
the performance increased for y1 and y5, for the three other outputs it stayed constant or
decreased by some percent points. However, the number of parameters decreased from 60 to
46.

The changes in the fitness value over the generations are shown in Figure 4.5. It can be seen
that for the first-order model, the solution converges within a few iteration almost to the final
solution. For the second-order model it takes more generations. This is because there are far
more possibilities for changes in the model structure for the second-order model.

4.3 Results 36

-5

0

5

V
f

Crossvalidation 1st-Order Model

Measurements
Initial Structure 36.4 %
Improved Structure 47.2 %
ANN: 45.4 %

-2

0

2

T
f

Measurements
Initial Structure 36.5 %
Improved Structure 41 %
ANN: 20 %

0 200 400 600 800 1000 1200 1400 1600 1800
Time (Minutes)

-4

-2

0

2

T
b

Measurements
Initial Structure 43.9 %
Improved Structure 51.3 %
ANN: 35 %

-4

-2

0

2

c O
2

Measurements
Initial Structure 15.2 %
Improved Structure 15.6 %
ANN: 17 %

700 710 720 730 740 750 760 770 780 790 800
-2

0

2

V
flu

id

Measurements
Initial Structure 47.7 %
Improved Structure 47 %
ANN: 60.2 %

Figure 4.3: Crossvalidation for the original model and the model with the improved
structure. Again with the ANN for comparison.

4.3 Results 37

-5

0

5

V
f

Crossvalidation 2nd-Order Model

Measurements
Initial Structure 44 %
Improved Structure 52.2 %
ANN: 45.4 %

-2

0

2

T
f

Measurements
Initial Structure 46 %
Improved Structure 44.4 %
ANN: 20 %

0 200 400 600 800 1000 1200 1400 1600 1800
Time (Minutes)

-2

0

2

T
b

Measurements
Initial Structure 45.6 %
Improved Structure 55.6 %
ANN: 35 %

-4

-2

0

2

c O
2

Measurements
Initial Structure 32.5 %
Improved Structure 27.6 %
ANN: 17 %

700 710 720 730 740 750 760 770 780 790 800
-2

0

2

V
flu

id

Measurements
Initial Structure 51 %
Improved Structure 50.5 %
ANN: 60.2 %

Figure 4.4: Crossvalidation for the original model and the model with the improved
structure. Again with the ANN for comparison.

4.3 Results 38

5 10 15 20 25 30 35 40 45 50
Number of Generations

26

28

30

32

34

36

38

40

42

44

46

Fi
tn

es
s

V
al

ue

Original 1st Order Model

Original 2nd Order Model

Best in Generation, 1st Order Model

Generation Average, 1st Order Model

Best in Generation, 2nd Order Model

Generation Average, 2nd Order Model

Figure 4.5: Change of the fitness value over generations.

Chapter 5

Model Predictive Control

In this chapter, a model predictive control (MPC) algorithm is proposed to control the system
described in Chapter 2. The MPC algorithm uses the model which was identified in Chapter 3.
To achieve offset-free control, this model is augmented with disturbance states. An observer is
designed to estimate both the original model’s states and the augmented disturbance states.
In the last part, the controller’s performance is validated by simulation studies.

5.1 Introduction

The idea of model predictive control is to derive the optimal control input to the plant for
every time step (e.g. every second, the sampling time of how often this optimization problem
needs to be solved is determined by the time constants of the process under consideration).
In order to implement a model predictive control scheme, the requirements are as follows:
Firstly, a model of the process is necessary that contains the information how the inputs to
the system influence the outputs to be controlled. Secondly, in order to make clear what is
optimal, a cost function needs to be defined. This cost function can penalize e.g. a difference
between the system’s output to its reference in the future. Thirdly, constraints are formulated,
for example for control inputs due to physical limitations. These constraints are later taken
into account when solving the optimization problem.

As mentioned above, the cost function evaluates the system’s behavior in the future. However,
this is done for a finite period of time. The length of this time period is called the prediction
horizon Np and chosen appropriately. A model is used to compute the system’s behavior,
depending on the control input, within this prediction horizon. The control input within the
prediction horizon is chosen in a way that the costs are getting minimized. The control input
needs to satisfy the constraints both in absolute value and in rate of change. Although the
control input can be chosen different for every time step within the prediction horizon, it is
normally held constant after an amount of time shorter than the prediction horizon. This
shorter time span is called the control horizon Nc. Setting the control horizon shorter than
the prediction horizon decreases the size of the optimization problem and therefore requires

5.2 Process Description for Predictive Control 40

Figure 5.1: Principle of model predictive control. The future control input is com-
puted to get a optimal system behavior.

less computational effort. Figure 5.1 illustrates the principle of model predictive control with
the reference, the output and the input within the prediction horizon.

Since the optimization problem is solved every time step, a new sequence of control inputs
for the whole prediction horizon is computed every time. Only the first control input is
implemented to the plant. At the next time step, a new sequence of control inputs is computed,
and again, only the first one is implemented to the plant. This procedure is known as receding
horizon control, because the time frame, for which the optimal control input is computed, is
shifted with every time step.

A deeper insight into the design and implementation of model predictive controllers is given
in [23][24].

5.2 Process Description for Predictive Control

This section is about the model that is used for MPC and the constraints implemented in the
MPC algorithm.

5.2 Process Description for Predictive Control 41

5.2.1 Linear State-Space Model

In Chapter 3, a linear discrete-time state-space model of the following structure was identified
that will now be used for model predictive control:

x(k + 1) = Ax(k) + Bu(k),
y(k) = Cx(k) + Du(k),

(5.1)

with the variables
A ∈ Rn×n system matrix, x ∈ Rn state vector,
B ∈ Rn×r input matrix, u ∈ Rr input vector,
C ∈ Rm×n output matrix, y ∈ Rm output vector,
D ∈ Rm×r feedthrough matrix

and the dimensions
n = 5 state space dimension,
r = 9 input space dimension,
m = 5 output space dimension.

Model denormalization

The parameters in the state-space matrices have been estimated using measurement data.
These measurement data have been normalized before the parameter estimation (see Section
3.2.1). To get the relationship between the real inputs u and the real outputs y, the model is
now denormalized.

The measurement data have been normalized by division through its standard deviations:

u = Σu
−1u,

y = Σy
−1y,

(5.2)

where u and y are the normalized input and output vector, respectively, and Σu and Σy
are the standard deviation matrices containing the standard deviations of u and y that had
been used to normalize the measurement data in its diagonals.

Using these vectors for parameter estimation leaded to a normalized state-space system:

x (k + 1) = A x (k) + B u (k),
y (k) = Cx (k).

(5.3)

5.2 Process Description for Predictive Control 42

For the case that C = I, (5.2) can be substituted into (5.3):

Σy
−1x(k + 1) = A Σy

−1x(k) + B Σu
−1u(k),

Σy
−1y(k) = CΣy

−1x(k).
(5.4)

Multiplying Σy from the left leads to a system with the real inputs and outputs:

x(k + 1) = ΣyA Σy
−1x(k) + ΣyB Σu

−1u(k),
y(k) = Cx(k).

(5.5)

This results in the relationship between the the normalized model matrices and the real input-
output model matrices:

A = ΣyA Σy
−1,

B = ΣyB Σu
−1,

(5.6)

with the system matrix of the normalized model A , the input matrix of the normalized model
B and the standard deviation matrices Σu and Σy, containing the standard deviations of u

and y that had been used to normalize the measurement data in its diagonals.

Input vector reduction

The input vector u in (5.1) was defined as

u = nmsw, V̇p, V̇p,re, V̇s, V̇s,re, V̇pTfluid V̇p,reTfluid, V̇sTs, V̇s,reTs,re,
T

.

A description of the inputs is given in Section 3.3. The input vector consists of the waste input,
volume flow rates and enthalpy flow rates. This is because the identification procedure led to
better results with an input vector containing both volume flow rates and enthalpy flow rates.
However, it can be seen that not all of the 9 inputs can be chosen by the MPC independently.
The inputs 6-9 are product of the inputs 2-5 with the corresponding temperatures, so the
volume flow rates in the inputs 2-5 must be the same as in the inputs 6-9, obviously. The
temperatures in the inputs 6-9 cannot be influenced at all and change slowly over time.
Therefore, they are assumed to be constant within the prediction horizon.

5.2 Process Description for Predictive Control 43

This allows a reduction of the input vector from 9 to 5 inputs:

Bu =

b11 b12 b13 b14 b15 b16 b17 b18 b19
b21 b22 b23 b24 b25 b26 b27 b28 b29
b31 b32 b33 b34 b35 b36 b37 b38 b39
b41 b42 b43 b44 b45 b46 b47 b48 b49
b51 b52 b53 b54 b55 b56 b57 b58 b59

nmsw
V̇p

V̇p,re
V̇s

V̇s,re
V̇pTfluid

V̇p,reTfluid
V̇sTs

V̇s,reTs,re

=

b11 b12 + Tfluidb16 b13 + Tfluidb17 b14 + Tsb18 b15 + Ts,reb19
b21 b22 + Tfluidb26 b23 + Tfluidb27 b24 + Tsb28 b25 + Ts,reb29
b31 b32 + Tfluidb36 b33 + Tfluidb37 b34 + Tsb38 b35 + Ts,reb39
b41 b42 + Tfluidb46 b43 + Tfluidb47 b44 + Tsb48 b45 + Ts,reb49
b51 b52 + Tfluidb56 b53 + Tfluidb57 b54 + Tsb58 b55 + Ts,reb59

nmsw
V̇p

V̇p,re
V̇s

V̇s,re

= B̃ũ.

(5.7)

The matrix B̃ now contains the temperatures that are varying over time and is therefore a
function of k. As a result, the matrix B̃ needs to be updated every time step with the latest
temperature measurements.

Note that the input reduction was now presented for a general matrix B. In the model
identified in Chapter 3, some of the entries of the B-matrix are zero.

In the following sections, the model with the reduced input vector will be used for model
predictive control, even though the input vector will be described with u(k) instead of ũ(k).

5.2.2 Constraints

As mentioned in the previous sections, the model predictive controller needs to find an input
sequence in order to optimize the plant’s behavior within the prediction horizon. However,
these inputs cannot be arbitrary high, since the actors cannot accomplish any inputs. There-
fore, constraints are formulated. These constraints are taken into account when solving the
optimization problem later. Constraints are formulated both for the absolute values and for
the rate of change. Furthermore, constraints are formulated for the output vector, since there
are restrictions how high or low these variables are allowed to be. Output constraints are
necessary in order to not violate emission regulations or to cause damages to the plant due
to too high temperatures.

5.3 Offset-Free MPC 44

Constraints on the rate of change are received from measurement data by computing a central
difference quotient and taking the maximum value of an observation period. This leads to the
maximum value for Δu.

5.3 Offset-Free MPC

In general, model predictive control does not lead to offset-free control. This means, there
can be an offset between the outputs and its reference values for t → ∞. In [25], a strategy
for linear model predictive control is presented that leads to offset-free control. A method
for offset-free control applied for non-linear MPC can be found in [26]. In this section, it
is shown, how this offset-free control strategy is implemented based on [25]. Note that this
control strategy can be used for constant reference values only.

Consider the following discrete linear state-space system:

x(k + 1) = Ax(k) + Bu(k) + w(k),
y(k) = Cx(k) + v(k),

(5.8)

with the process noise w(k) ∈ Rn and the output noise v(k) ∈ Rm.

In order to receive offset-free control, the model needs to be augmented with disturbance
states. In general, the number of disturbance states nd added to the model is equal to the
number of outputs desired to be offset-free. Here, the model is augmented with m states, so
all outputs are going to be offset-free.

This leads to the augmented model

x(k + 1)
d(k + 1) = A Bd

0 I

x(k)
d(k) + B

0 u(k) + w̃(k),

y(k) = Cx(k) + Cdd(k) + v(k),
(5.9)

with the disturbance states d(k) ∈ Rnd , the process noise acting on the augmented system
w̃(k) ∈ Rn+nd and the output noise v(k) ∈ Rm. These equations include now the new
matrices Bd and Cd. These matrices need to be chosen in a way that the augmented model
is observable. This is the case, if

A − I Bd

C Cd
has full rank. (5.10)

A proof can be found in [25]. Now Cd can be chosen to be the identity matrix I. As mentioned
above, in this case nd = m. Therefore, the matrix in condition (5.10) is a square matrix and

5.3 Offset-Free MPC 45

the condition leads to

det A − I Bd

C Cd
= det(A − I − BdC) = 0. (5.11)

If the plant has no integrator poles, what is the case in this application, det(A − I) = 0.
Therefore, Bd can be chosen to be a zero matrix (Bd = 0) and the condition (5.11) still
holds.

For the usage of the augmented model, the original and the augmented states need to be
estimated. To do so, an observer will be designed in the next section.

5.3.1 Observer Design

The observer for the augmented model (5.9) is now designed to estimate both the original
states and the augmented disturbance states:

x̂(k + 1)
d̂(k + 1) = A Bd

0 I

x̂(k)
d̂(k) + B

0 u(k) + Lx

Ld
(−ym(k) + Cx̂(k) + Cdd̂(k)), (5.12)

where ym(k) is the measured output vector at time step k and Bd = 0 and Cd = I as
mentioned above. Lx and Ld need to be chosen so that the observer is stable.

In this work, Lx and Ld are found by designing the observer as a Kalman filter for the
augmented model. This is done in [27] for offset-free MPC as well. Let’s therefore introduce
the augmented matrices

Ã = A Bd

0 I
, C̃ = C Cd , L̃ = Lx

Ld
.

The observer gain L̃ is then

L̃ = ÃΣC̃
T (C̃ΣC̃

T + Rv)−1, (5.13)

where Rv ∈ Rm×m is the covariance matrix of the output noise v(k) and the matrix Σ ∈
R(n+nd)×(n+nd) is the solution to the discrete algebraic Riccati equation

Σ = ÃΣÃ
T + Qw − ÃΣC̃

T (C̃ΣC̃
T + Rv)−1C̃ΣÃ

T
. (5.14)

The matrix Qw ∈ R(n+nd)×(n+nd) is the covariance matrix of the process noise w̃ acting on
the augmented system. The discrete algebraic Riccati equation is solved in Matlab with the
command idare.

For this application, the covariance matrix Rv is chosen to be the identity matrix I and Qw

is chosen to be 103 · I.

5.4 Extended Prediction Horizon 46

5.3.2 Cost Function

For the offset-free MPC, the cost function that is going to be minimized at each time step k

is specified as

J =
Np

i=0
(x(i) − x̄t)T Q(x(i) − x̄t) +

Nc

j=0
(u(j) − ūt)T R(u(j) − ūt), (5.15)

with the matrices Q and R, weighting deviations from the target values of the state vector
and the input vector, respectively.

Note that the state vector x(i) in (5.15) is the state vector of the augmented system (5.9).
At the initial time step i = 0, the estimated state vector is used: x(i = 0) = x̂(k). The state
equations of the augmented system (5.9) are used to compute the future states within the
prediction horizon.

x̄t and ūt are the target values for the state vector and the control input, respectively. These
target values are computed by solving the system of equations

A − I B

C 0
x̄t

ūt
= −Bdd̂(k)

r(k) − HCdd̂(k) . (5.16)

The matrix H selects the outputs to be tracked among all outputs. Since in this case all
outputs are desired to be tracked, H is chosen to be the identity matrix (H = I).

Note that for this application the system of equations (5.16) specifies x̄t and ūt uniquely. If
this is not the case, this can be seen as an optimization problem and it can be solved e.g. by
minimizing ūt 2, where · 2 indicates the Euclidean norm of a vector.

5.4 Extended Prediction Horizon

If we take a look on the model of the fluidized bed furnace, we can see that the time constants
strongly differ. This is because of the high heat capacity of the fluidized bed, due to the
tons of sand in the bed. Therefore, its temperature Tb changes very slow compared to the
other output variables. The sampling time of the MPC algorithm is set to 10 s what seems
appropriate for the outputs V̇f , Tf , cO2 and V̇fluid. Nevertheless, this is a very short time
period for the dynamics of the fluidized bed temperature Tb. If the reference for Tb should
be tracked successfully, the prediction horizon Np needs to be extended for the MPC to "see"
the slow dynamic of Tb within the prediction horizon. However, a long prediction increases
the size of the optimization problem what leads to high computational effort. Therefore, two
different sampling times are used for the MPC algorithm: a coarse sampling time, in order
to track the slowly changing bed temperature Tb and a fine one for the other four output
variables.

5.5 Results 47

k Np,short Np,long

short
prediction horizon

long
prediction horizon

Figure 5.2: Extended prediction horizon principle. The first predictions are com-
puted using a fast sampled model, whereas for predictions beyond Np,short
a slow sampled model is used.

Imagine that at any time step k we want to predict the system’s future behavior. A fast
sampled model with Ts = 10 s is used to predict the outputs within a prediction sufficient
for the fast outputs (Np,short). Afterwards, a slow sampled model with Ts = 300 s is used
to predict the outputs for the time period between Np,short and Np,long. Figure 5.2 gives an
illustration of the extended prediction horizon principle.

5.5 Results

To show the performance of the model predictive controller, simulations are carried out. For
the simulations, the 1st-order model with the improved model structure is used (the state-
space matrices can be found in the Appendix). The length of the short prediction horizon
Np,short, the length of the long prediction horizon Np,long as well as the length of the control
horizon Nc are set to 10. The matrices Q and R in the cost function (5.15) are chosen as

Q = diag 1 102 103 109 1 , R = 10−3 · I. (5.17)

The model predictive controller is implemented using the YALMIP Matlab toolbox [28].
This toolbox uses different solvers, depending on the type of the optimization problem. In
this case, the QUADPROG solver is used, which is part of the Matlab Optimization toolbox
[29].

In the simulation, a step in the reference is applied for each output. The results are shown
in Figure 5.3. The second output (Tf) cannot reach the reference value due to constraints,
The other four outputs can follow their reference values. As expected, the third output (Tb)
is slower than the other outputs, due to the high inertia of the fluidized bed.

5.5 Results 48

0 50 100 150 200 250 300
Time (Minutes)

0.96

0.98

1

1.02

1.04

1.06 Vf

Vf (ref)

Tf

Tf (ref)

Tb

Tb (ref)

cO2

cO2 (ref)

Vfluid

Vfluid (ref)

0 50 100 150 200 250 300
Time (Minutes)

0

0.5

1

1.5

2

2.5

3
nmsw

Vp

Vre,p

Vs

Vre,s

Figure 5.3: Simulation of the system’s response to steps in the references for the 5
outputs with the corresponding inputs. Note the normalized representa-
tion.

Chapter 6

Conclusion

The research questions defined in the Chapter 1 can be answered as follows:

Which model gives the best mathematical description of the fluidized bed furnace and can then
be used to implement a linear model predictive control scheme?

State-space models allow a convenient description of multiple-input multiple-output systems.
Furthermore, MPC algorithms are most often designed for state-space models. If the model
used for control is linear, the optimization problem in the MPC algorithm can be solved
analytically. Therefore, a linear state-space model is used to describe the process of the
fluidized bed furnace. However, nonlinearities of the process are taken into account by adding
time-varying properties to the input matrix. The models with the structure improved by an
evolutionary-based algorithm give an even better fit on the crossvalidation data. Thus, this
model is used for the MPC.

For the parameter estimation, measurement data from the waste incineration plant is used.
The data is preprocessed in terms of filtering, resampling and normalization. The data has
been collected while the plant was operating in closed-loop. Drawbacks of the models identified
with this data can be seen by looking on the step responses of the models: In some cases, the
models behave not as physically expected.

What is an effective model predictive control algorithm that can handle the process dynamics
of the fluidized bed furnace?

The standard linear MPC scheme has been extended with two features: To address the
problem, that the time constants of the process are strongly different, the MPC uses two
different sampled models and operates therefore in two different time scales. Moreover, the
linear-state space model has been extended with additional disturbance states, what allows
offset-free tracking of stationary set points. The developed MPC algorithm is then able to
control the fluidized bed furnace in simulations successfully.

Before the MPC is implemented at the plant, more simulations can be carried out for different
scenarios, like different kinds of disturbances acting on the plant.

Appendix A

Appendix

A.1 Linear State-Space Models

Sampling Time for all models Ts = 10 s.

A.1.1 Initial Structure

These models are developed in Chapter 3 based on energy and mass balances for the furnace.

1st-Order Model

A =

0.8396 0 0 0 0

−0.6069 0.7391 0.0032 0 0
0 0 0.9967 0 0

0.6632 0 0 0.2959 0
0 0 0 0 0.8164

B =

−0.018 0.0552 0.0009 0.1156 −0.0246 0 0 0 0
−0.1201 0.1104 −0.0155 0 0 0 0 0.42 −0.0666
0.0008 0.0294 −0.275 0 0 −0.0308 0.2773 0 0
0.1403 0.0007 0.0225 −0.0274 0.1819 0 0 0 0

0 0.2548 0.1492 0 0 0 0 0 0

A.1 Linear State-Space Models 51

2nd-Order Model

0.3846 0 0 0 0 1.0 0 0 0 0
0.3512 1.584 −0.2267 0 0 0 1.0 0 0 0

0 0 0.4908 0 0 0 0 1.0 0 0
2.6853 0 0 1.5999 0 0 0 0 1.0 0

0 0 0 0 0.0056 0 0 0 0 1.0
0.2593 0 0 0 0 0 0 0 0 0

−0.3104 −0.6244 0.2309 0 0 0 0 0 0 0
0 0 0.5055 0 0 0 0 0 0 0

−1.9942 0 0 −0.6778 0 0 0 0 0 0
0 0 0 0 0.8114 0 0 0 0 0

B =

−0.5685 −0.4802 −0.1203 −0.0314 −0.1439 0 0 0 0
−0.1562 −0.1844 −0.061 0 0 0 0 0.2888 −0.0678
−0.0446 0.4863 0.524 0 0 −0.8264 −0.4741 0 0
1.3872 1.5029 0.3497 0.2595 0.3237 0 0 0 0

0 1.3704 0.2444 0 0 0 0 0 0
0.6426 0.6191 0.0992 0.2525 −0.0521 0 0 0 0
0.1424 0.1525 0.0608 0 0 0 0 −0.3249 0.0794
0.0457 −0.4503 −0.8676 0 0 0.7885 0.8201 0 0

−1.5414 −1.762 −0.3064 −0.6558 0.077 0 0 0 0
0 −1.1061 −0.0895 0 0 0 0 0 0

A.1.2 Improved Structure

In Chapter 4, the initial model structure is improved using an evolutionary algorithm. The
resulting models are presented in this section.

1st-Order Model

A =

0.3087 −0.5057 0 −0.2697 0

−0.4746 0.4305 −0.0176 −0.5935 0
0 0 0.9975 0.0072 0.0379

0.5026 0.4903 −0.0152 1.2193 0
0 0 0 0 0.7786

A.1 Linear State-Space Models 52

B =

−0.1051 0.1524 −0.0706 0.6397 −0.2635 0 0 0 0
−0.24 0.0793 −0.0259 0 0 0 0 0.585 −0.0206
0.0034 −0.0295 −0.23 0 0 −0.0236 0.2024 0 0
0.1052 −0.0607 0.0666 −0.4618 0.2621 0 0 0 −0.0539

0 0.3069 0.1715 0 0 0 0 0 0

2nd-Order Model

1.0836 0 0 −0.0157 0 1.0 0 0 0 0
0 0.834 0 0 0 0 1.0 0 0 0
0 −0.0816 0.9971 0 0 0 0 1.0 0 0
0 0.1177 0 0.6397 0 0 0 0 1.0 0
0 0 0 0 −0.0139 0 0 0 0 1.0

−0.2951 0 0 0.1526 0 0 0 0 0 0
−0.0865 0 0 −0.1992 0 0 0 0 0 0

0 0.0681 0 0 0.0037 0 0 0 0 0
0.2103 0 0 0.1057 0 0 0 0 0 0

0 0 0 0 0.798 0 0 0 0 0

B =

−0.5596 0.0452 0 0.1884 0 0.0488 0 0 −0.1901
−0.4876 0 0 0.5936 0 0 0 −0.463 −0.06
−0.1437 0 −0.0009 0 0 −0.2779 0 0 0
1.3561 0 0 0 0 0.4255 0 0 0.269

0 1.4424 0.183 0 0 0 0 0 0
0.6111 0 0 −0.1092 0.0502 0 0 0 0
0.4561 0 0 0 0 0 0 0 0.0439
0.1429 0 0 0 0 0.2703 0 0 0
−1.409 0 0 0 0 −0.4659 0 0 −0.0568

0 −1.1318 −0.0003 0 0 0 0 0 0

Bibliography

[1] CEWEP waste-to-energy plants in europe in 2018. https://www.cewep.eu/
waste-to-energy-plants-in-europe-in-2018/. Accessed: 2021-02-18.

[2] CEWEP latest eurostat figures: Municipal waste treatment 2018. https://www.cewep.
eu/municipal-waste-treatment-2018/. Accessed: 2021-02-18.

[3] Bo Leckner and Fredrik Lind. Combustion of municipal solid waste in fluidized bed or
on grate–a comparison. Waste Management, 109:94–108, 2020.

[4] J. Van Caneghem, A. Brems, P. Lievens, C. Block, P. Billen, I. Vermeulen, R. Dewil,
J. Baeyens, and C. Vandecasteele. Fluidized bed waste incinerators: Design, operational
and environmental issues. Progress in Energy and Combustion Science, 38(4):551–582,
2012.

[5] Derek Geldart. Types of gas fluidization. Powder technology, 7(5):285–292, 1973.

[6] HT Bi and JR Grace. Flow regime diagrams for gas-solid fluidization and upward trans-
port. International Journal of Multiphase Flow, 21(6):1229–1236, 1995.

[7] M. Leskens, L.B.M. van Kessel, and O.H. Bosgra. Model predictive control as a tool
for improving the process operation of msw combustion plants. Waste Management,
25(8):788–798, 2005.

[8] M. Leskens, P.P. van’t Veen, L.B.M. van Kessel, O.H. Bosgra, and P.M.J. Van den Hof.
Improved economic operation of mswc plants with a new model based pid control strategy.
IFAC Proceedings Volumes, 43(5):655–660, 2010. 9th IFAC Symposium on Dynamics and
Control of Process Systems.

[9] Yingmin Jia, H. Kokame, and J. Lunze. Simultaneous adaptive decoupling and model
matching control of a fluidized bed combustor for sewage sludge. IEEE Transactions on
Control Systems Technology, 11(4):571–577, 2003.

[10] Lennart Ljung. System identification : theory for the user. Prentice Hall information and
system sciences series. Prentice Hall, Upper Saddle River, N.J., 2nd ed.. edition, 1999.

[11] Mohamad H Hassoun et al. Fundamentals of artificial neural networks. MIT press, 1995.

https://www.cewep.eu/waste-to-energy-plants-in-europe-in-2018/
https://www.cewep.eu/waste-to-energy-plants-in-europe-in-2018/
https://www.cewep.eu/municipal-waste-treatment-2018/
https://www.cewep.eu/municipal-waste-treatment-2018/

Bibliography 54

[12] Jerome T Connor, R Douglas Martin, and Les E Atlas. Recurrent neural networks and
robust time series prediction. IEEE transactions on neural networks, 5(2):240–254, 1994.

[13] Martin T Hagan and Mohammad B Menhaj. Training feedforward networks with the
marquardt algorithm. IEEE transactions on Neural Networks, 5(6):989–993, 1994.

[14] Urban Forssell and Lennart Ljung. Closed-loop identification revisited. Automatica,
35(7):1215–1241, 1999.

[15] Paul Van den Hof. Closed-loop issues in system identification. Annual reviews in control,
22:173–186, 1998.

[16] Inc. The MathWorks. System Identification Toolbox. Natick, Massachusetts, United State,
2021.

[17] Inc. The MathWorks. Deep Learning Toolbox. Natick, Massachusetts, United State, 2021.

[18] Oliver Kramer. Genetic algorithms. In Genetic algorithm essentials, pages 11–19.
Springer, 2017.

[19] Otoniel Buenrostro-Delgado, Juan Manuel Ortega-Rodriguez, Kevin C Clemitshaw, Car-
los González-Razo, and Iván Y Hernández-Paniagua. Use of genetic algorithms to improve
the solid waste collection service in an urban area. Waste management, 41:20–27, 2015.

[20] Ben McKay, Mark Willis, and Geoffrey Barton. Steady-state modelling of chemical pro-
cess systems using genetic programming. Computers & chemical engineering, 21(9):981–
996, 1997.

[21] Kemal Özkan, Şahin Işık, Zerrin Günkaya, Aysun Özkan, and Müfide Banar. A heating
value estimation of refuse derived fuel using the genetic programming model. Waste
Management, 100:327–335, 2019.

[22] Noraini Mohd Razali, John Geraghty, et al. Genetic algorithm performance with different
selection strategies in solving tsp. In Proceedings of the world congress on engineering,
volume 2, pages 1–6. International Association of Engineers Hong Kong, 2011.

[23] Liuping Wang. Model predictive control system design and implementation using MAT-
LAB®. Springer Science & Business Media, 2009.

[24] Basil Kouvaritakis and Mark Cannon. Model predictive control : classical, robust and
stochastic. Springer, 2016.

[25] Urban Maeder, Francesco Borrelli, and Manfred Morari. Linear offset-free model predic-
tive control. Automatica, 45(10):2214–2222, 2009.

[26] Manfred Morari and Urban Maeder. Nonlinear offset-free model predictive control. Au-
tomatica, 48(9):2059–2067, 2012.

Bibliography 55

[27] Gabriele Pannocchia and James B Rawlings. Disturbance models for offset-free model-
predictive control. AIChE journal, 49(2):426–437, 2003.

[28] Johan Lofberg. Yalmip: A toolbox for modeling and optimization in matlab. In 2004
IEEE international conference on robotics and automation (IEEE Cat. No. 04CH37508),
pages 284–289. IEEE, 2004.

[29] Inc. The MathWorks. Optimization Toolbox. Natick, Massachusetts, United State, 2021.

	Introduction
	Fluidized Bed Furnace
	Introduction
	Physical Modelling
	Bed Temperature
	Furnace Head Temperature
	Oxygen Concentration in the Furnace Head
	Flue Gas Mass Flow
	Mass Flow for Fluidization

	System Identification
	Introduction
	Data Preprocessing
	Normalizing Data
	Filtering and Resampling
	Data Division

	Definition of Input and Output Variables
	From Physical Equations to Polynomial Models
	Flue Gas Mass Flow
	Furnace Head Temperature
	Fluidized Bed Temperature
	Oxygen Concentration Furnace Head
	Mass Flow for Fluidization

	Identification of Linear State-Space Models
	Model Structure
	Parameter Estimation

	Identification of Artificial Neural Networks
	Network Architecture
	Network Training

	Model Validation
	Simulations Using Measurement Data
	Physical Interpretation

	Model Structure Optimization
	Introduction
	Structure Optimization Using Evolutionary Algorithm
	Fitness
	Crossover
	Mutation

	Results

	Model Predictive Control
	Introduction
	Process Description for Predictive Control
	Linear State-Space Model
	Constraints

	Offset-Free MPC
	Observer Design
	Cost Function

	Extended Prediction Horizon
	Results

	Conclusion
	Appendix
	Linear State-Space Models
	Initial Structure
	Improved Structure

	Bibliography

