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Kurzfassung

Mit der Miniaturisierung der MOS-Transistoren ist ein neues Phänomen zum Vorschein gekommen,

welches als Negative Bias Temperature Instability (NBTI) bezeichnet wird und sich zu einem

ernsthaften Zuverlässigkeits- bzw. Lebensdauerproblem entwickelt hat. Der komplexe Mechanismus

hinter NBTI ist derzeit noch nicht vollständig geklärt. Es konnte jedoch Einigkeit darüber

erzielt werden, dass Ladungsträger im Substrat von Oxidedefekten eingefangen werden und dort

bis zum Ende der Stressperiode verbleiben. Dieser Vorgang ist mit einer Verschiebung der

Schwellspannung verbunden, welche die Bauteilcharakteristiken beeinflusst und die Lebensdauer

der Bauteile empfindlich verkürzt. Es wird vermutet, dass diese Ladungsträger während der

Relaxationsphase wieder von den Oxiddefekten emittiert werden und daher die Schwellspannung

wieder zu ihrem ursprünglichen Wert zurückkehrt. Die Einfang- und Emissionsprozesse während der

Stress- sowie der Relaxationsphase werden als Charge-Trapping bezeichnet und rücken ins Zentrum

der Untersuchungen dieser Arbeit.

Charge-Trapping basiert auf einem Transfer der Ladungsträger zwischen dem Kanal und den

Defekten. Zahlreiche, in der Literatur vorgestellte Modelle beschreiben diesen Ladungstransfer auf

unterschiedlichem theoretischen Niveau. Diese Modelle werden im Zuge dieser Arbeit hinsichtlich

der NBTI nochmals überprüft und in einem bestehenden Bauteilsimulator zum Vergleich mit

Experimenten eingebaut. Diese Evaluierung basiert auf einer Liste von Kriterien, welche die

besonderen Merkmale des Bauteilverhaltens für zum Beispiel unterschiedliche Einsatztemperaturen,

Gatespannungen oder Stresszeiten beinhalten.

Im einfachsten Modell basiert der Ladungstransfer auf elastischem Tunneln von Elektronen, welche

ihre Energie während des Übergangs beibehalten. Diese Art von Ladungstransfer bildet die Basis des

Elastic-Tunneling-Models dar, welches als erste Möglichkeit für ein NBTI-Modell untersucht wird.

Ein spezielles Augenmerk wurde dabei auf das Temperaturverhalten des Modells gelegt, was eine

genauere Untersuchung der Quantisierungseffekte im Kanal eines MOS-Transistors erfordert. In den

neuesten Bauteiltechnologien wurde die Oxiddicke auf ein paar wenige Nanometer reduziert, sodass

frühere Untersuchungen um den Einfluss des Tunnelns vom und zum Gatekontakt erweitert werden

müssen.

Ausgeklügeltere Konzepte berücksichtigen die Tatsache, dass die atomistische Defektkonfiguration

eine entscheidende Rolle während eines Ladungstransfers spielt. Nachdem ein Defekt einen

Ladungsträger vom Substrat eingefangen hat, unterzieht er sich einer Strukturrelaxation, welche

eine Stärkung, eine Schwächung oder sogar einen Bruch von Atombindungen verursachen kann.
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Interessanterweise hat diese Relaxation auch eine Verschiebung des Traplevels zur Folge — eine

Tatsache, die bisher unberücksichtigt geblieben ist. Mit Hilfe von First-Principles-Simulations

kann gezeigt werden, dass einige Defekte eine solche Traplevelverschiebung aufweisen, deren

Effekt auf die Trappingdynamik detailliert untersucht werden muss. Weiters, wird auch ein neues

Modell entwickelt, welches diese Traplevelverschiebung berücksichtigt und basierend auf den zuvor

genannten experimentellen Kriterien evaluiert wird.

Die realistischste Beschreibung des Ladungstransfers ist die Non-radiative-Multiphonon-

Theory —ursprünglich für die Lichtabsorption von Molekülen entwickelt und später für den

Ladungsträgereinfang und der Ladungsträgeremission in Festkörpern verallgemeinert. Diese Art

von Prozessen setzt eine Aktivierung über eine thermische Barriere voraus und führt daher zu einer

Temperaturabhängigkeit, die im Fall von elastischem Tunneln nicht vorhanden ist. In dieser Arbeit

wird eine vereinfachte Variante dieses Prozesses für das Two-Stage-Model verwendet. In diesem

wird Charge-Trapping mit einer Wasserstoffreaktion als gekoppelt angenommen. Auch wenn dieses

erweiterte Modell erfolgreich die Verschiebung der Schwellspannung bei NBTI-Experimenten in

Simulationen reproduzieren kann, spiegelt es gemäß der Time-Dependent-Defect-Spektroscopy

(TDDS) nicht korrekt die mikroskopischen Prozesse wider. In einer erweiterten Variante des Two-

Stage-Models wurde diese Schwäche durch ein Verfeinern der Beschreibung des Ladungstransfers

und durch die Berücksichtigung von metastabilen Zuständen in diesem Modell behoben. Mit diesen

Modifikationen liefert das verbesserte Two-Stage-Model eine Erklärung für die Rauschphänomene,

welche in Random-Telegraph-Noise- und TDDS-Messungen beobachtet wurden.

Zusammenfassend lässt sich sagen, dass Charge-Trapping in NBTI für verschiedene Erklärungen des

Ladungstransfers untersucht wurde. Es wird gezeigt, dass die verbesserte Variante des Two-Stage-

Models konsistent mit einer Reihe von der in NBTI- und Rauschmessungen beobachteten Merkmalen

ist. Aus diesem Grund wird dieses Modell als die beste Beschreibung von Charge-Trapping aus der

heutigen Sicht angesehen.
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Abstract

With the continuing miniaturization of MOS transistors, a phenomenon called the negative bias

temperature instability (NBTI) has evolved into a serious reliability concern. In the newest device

technologies, its detrimental impact complicates reliable lifetime projection of the devices. Even

though this fact has aroused large industrial and scientific interest, the complex mechanism behind

NBTI has only been partially clarified so far. At least it has been agreed that substrate charge carriers

are captured in oxide or interface defects and remain there until the end of the stress period. This

is associated with a threshold voltage shift, which affects the device characteristics and considerably

shortens the device lifetime. During relaxation, the same charge carriers are suspected to be emitted

from the oxide defects so that the threshold voltage returns towards its initial value. The capture and

emission of charge carriers during stress and relaxation are known under the name charge trapping

and will be the focus of this thesis.

Charge trapping involves a transfer of charge carriers between the channel and defects. Several

different models from literature describe this charge transfer at various levels of sophistication.

They are re-examined in the light of NBTI and incorporated into an existing device simulator for

comparison to measurements. This evaluation is based on a list of criteria, which include particular

features of the device behavior under different operation temperatures, gate biases, and stress times.

In the simplest model, the charge transfer is based on elastic tunneling, which involves an electron

whose energy must be preserved during a transition. This kind of a charge transfer reaction is the

basis for the elastic tunneling model, studied as the first candidate for NBTI. A special focus is put on

the temperature behavior of this model, requiring an investigation of the quantization effect within

the channel of a MOS transistor. Furthermore, the oxide thicknesses have been downsized to a

few nanometers in modern MOS technologies so that previous investigations must be extended to

account for elastic tunneling to and from the gate contact.

A more sophisticated concept also accounts for the fact that the defect configuration plays a crucial

role in the charge transfer process. After a defect has captured a charge carrier from the substrate,

it undergoes structural relaxation, including strengthening, weakening, or even breaking of bonds.

Most importantly, this relaxation results in a shift of the trap level — a fact that has remained

unconsidered so far. Using first principles simulations, it is proven that several defects have a large

level shift whose effect on the trapping dynamics needs to be studied in more detail. A new model

is developed, which accounts for the level shift and is evaluated based on the list of experimental

criteria mentioned before.
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The most realistic description of the charge transfer is given by nonradiative multiphonon (NMP)

theory, which has initially been developed for light absorption of molecules and later generalized to

charge capture and emission in solids. This kind of process involves an activation over a thermal

barrier and thus leads to a temperature dependence, which is missing in the case of the elastic

tunneling model for instance. In this thesis, a simplified variant of this process is used for the so-

called two-stage model, in which charge trapping is coupled to a hydrogen reaction. Even though

this model can successfully reproduce the threshold voltage shift observed in NBTI experiments, it

does not reflect the correct microscopic processes as shown by time-dependent defect spectroscopy

(TDDS). In an extended variant of the two-stage model, this deficiency has been overcome by refining

the description of the charge transfer process and incorporating a metastable state in this model.

With these modifications, the improved two-stage model can also give an explanation of the noise

phenomena observed in random telegraph noise and TDDS measurements.

In conclusion, hole trapping in NBTI is investigated using different explanations for the charge

transfer. It is demonstrated that the refined variant of the two-stage model is consistent with the

plenty of experimental features seen in NBTI and noise measurements. For this reason, this model is

expected to be the best description of hole trapping from the present perspective.
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Acronyms

a −SiO2 . . . Amorphous silicon dioxide

CDW . . . Coupled double well

c −SiO2 . . . Crystalline silicon dioxide

DFT . . . Density functional theory

ESR . . . Electron spin resonance

ETM . . . Elastic tunneling model

H . . . Hydrogen

HDL . . . Harry-Diamond-Laboratories

LSM . . . Level shift model

MPFAT . . . Multiphonon field assisted tunneling

MOSFET . . . Metal oxide semiconductor field effect transistor

MSM . . . Measure-stress-measure

NBTI . . . Negative bias temperature instability

NMP . . . Nonradiative multi-phonon (process)

O . . . Oxygen

OTF . . . On-the-fly

RD . . . Reaction diffusion

RDD . . . Reaction dispersive diffusion

RTN . . . Random telegraph noise

Si . . . Silicon

SiO2 . . . Silicon dioxide

SiON . . . Silicon Oxynitride

SRH . . . Shockley-Read-Hall

TDDS . . . Time-dependent defect spectroscopy

TSM . . . Two stage model

TWM . . . Triple well model

WKB . . . Wenzel-Kramers-Brillouin
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Physical Quantities

Symbol Unit Description

a 1 Kinetic exponent in the RD model

Aab s−1 Electronic matrix element in the Franck-Condon approximation

Ap V Prefactor of the permanent component in the NBTI fit formula

Ar V Prefactor of the recoverable component in the NBTI fit formula

Ay z m2 Interface area in the yz-plane

B 1 Parameter in the empirical relation of the universal recovery

cn m3s−1 Electron capture coefficient

cp m3s−1 Hole capture coefficient

cNMP
p m3s−1 Hole capture coefficient in the NMP model

cNMP
p,0 m3s−1 Temperature independent prefactor of cNMP

p

Cox CV−1m−2 Areal gate capacitance

Dc m2s−1 Diffusion coefficient in the RDD model

Dc1D J−1 Density of states of a one-dimensional, confined electron gas

Dc3D m−2J−2 Density of states of a three-dimensional, confined electron gas

Dit m−2J−1 Interface trap density of states

Dn m−3J−1 Electron density of states in the conduction band

Dn,1D m−1J−1 Density of states of a one-dimensional electron gas

Dn,1D+2D m−3J−2 Product of Dn,1D and Dn,2D

Dn,2D m−2J−1 Density of states of a two-dimensional electron gas

Dox m−2J−1 Oxide trap density of states

Dp m−3J−1 Hole density of state in the valence band

Dp,c3D m−2J−2 Density of states of a three-dimensional, confined hole gas

Dp,1D m−1J−1 Density of states of a one-dimensional hole gas

Dp,1D+2D m−3J−2 Product of Dp,1D and Dp,2D

Dp,2D m−2J−1 Density of states of a two-dimensional hole gas

DX m2s−1 Diffusion coefficient of the species X in the RD model

en m3s−1 Electron emission coefficient

ep m3s−1 Hole emission coefficient

eNMP
p m3s−1 Hole emission coefficient in the NMP model

eNMP
p,0 m3s−1 Temperature independent prefactor of eNMP

n

E J Electron energy in the band edge energy diagram

Eact J Activation energy

Eb J Electron energy in the conduction/valance band

Ec J Conduction band edge energy

E DFT
c J Conduction band edge energy in DFT calculations

Ec,0 J Conduction band edge energy in the flat band case

Ed J Demarcation energy
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Symbol Unit Description

Eds J Dissociation barrier in the reaction-limited model

Edsm J Mean value of the dissociation barriers in the reaction-limited model

Ef J Fermi energy

Ei J Energy of the electron system in the state i

En,i J Energy of a channel electron in the quasi-bound state i

Ep,i J Energy of a channel hole in the quasi-bound state i

Eq1/q2 J Switching trap level for a transition from charge state q1 to q2

Et J Trap level

Et,0 J Trap level in the flat band case

Et,1 J Trap level of the oxygen vacancy in the TSM

Et,2 J Trap level of the E ′ center in the TSM

E ′
t J Trap level in the NMP model

Etot,i j J Energy of the combined system of electrons and nuclei in the state i j

Ev J Valence band edge energy

E DFT
v J Valence band edge energy in DFT calculations

Ev,0 J Valence band edge energy in the flat band case

Ex J x-component of electron energy E

Exc J Exchange-correlation energy

f LSF
ab

1 Lineshape function

faαbβ 1 Franck-Condon factor

feq,i ,n 1 Equilibrium occupancy for the trap n

fi 1 Occupancy of a trap in state i

fi ,n 1 Occupancy for the trap n in state i

fit 1 Interface trap occupancy

fn 1 Electron occupancy

fox 1 Oxide trap occupancy

fp 1 Hole occupancy

ft 1 Trap occupancy

f
eq

t 1 Equilibrium trap occupancy

ft,2 1 Electron occupancy of the E ′ center in the TSM

fFD 1 Fermi-Dirac distribution

Fox Vm−1 Oxide field

Fc Vm−1 Reference field for the MPFAT mechanism

Fox,r Vm−1 Oxide field during relaxation

Fox,s Vm−1 Oxide field during stress

F 1 Trap occupancy for a set of states

Fi N Force on atom i

gH m−3J−1 Hydrogen trap density of states in the RDD model

gν 1 Degeneracy of the valley ν

H m−3 Hydrogen concentration in the RDD model

H Am−1 Magnetic field strength

H J General hamilton operator in the derivation of Fermi’s golden rule
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Symbol Unit Description

Hc m−3 Free hydrogen concentration in the RDD model

Hch J Hamilton operator of the channel in the derivation of Fermi’s golden rule�Htot J Hamilton operator of an atomic system

ID A Drain current

ID0 A Initial drain current

k m−1 Electron wavevector

k 1 Coupling constant between τcap and τem in Yang’s model

kf s−1 Forward rate of a reaction/transition

kf,0 s−1 Attempt frequency in the reaction-limited model

kr s−1 Reverse rate of a reaction/transition

kx/y/z m−1 x/y/z-component of the electron wavevector

Lx m Length of the substrate in the x-direction

mn m Effective mass of the electrons

mn,ν m Effective mass of the electrons for the valley index ν

mp m Effective mass of the holes

mp,ν m Effective mass of the holes for the valley index ν

mt m Tunneling mass of the charge carriers

M kg Oscillator mass in the harmonic approximation

Maαbβ J Matrix element for a vibronic transition from state aα to state bβ

Mi f J Matrix element for a transition from state i to state f

n m−3 Electron density

np 1 Power law exponent of permanent component in the NBTI fit formula

nr 1 Power law exponent of recoverable component in the NBTI fit formula

nRD 1 Power law exponent in the RD model

Na m−3 Acceptor concentration

Nc m−3 Effective conduction band weight

Nc,H m−3 Effective density of conduction states in the RDD model

Nd m−3 Donor concentration

Nit m−2 Concentration of interface states per area

Nit,0 m−2 Initial concentration of interface states per area

Nox m−2 Number of oxide charges per area

Nt m−3 Trap density

Nv m−3 Effective valence band weight

Nx 1 Number of states for a free electrons/holes gas in the x-direction

Ny z 1 Number of states for a free electrons/holes gas in the y z-plane

Nx y z 1 Number of states for a free electrons/holes gas in the x y z-volume

p m−3 Hole density

pi j s−1 Transition probability from state i to state j

q m Configuration coordinate

qi m Configuration coordinate at the energy minimum i

Qit Cm−2 Areal interface charges

Qox Cm−2 Areal oxide charges
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Symbol Unit Description

raαbβ s−1 Vibronic transition rate from state aα to state bβ

rcap,e s−1 Electron capture rate

rcap,h s−1 Hole capture rate

re s−1 Electron tunneling rate

req,i j ,n s−1 Transition rate ri j of a trap n during equilibrium conditions

re,q1/q2 s−1 Electron tunneling rate from the charge state q1 to q2 in the LSM

rem,e s−1 Electron emission rate

rem,h s−1 Hole emission rate

ri j s−1 Rate for the transition Ti→ j

rh s−1 Hole tunneling rate

rh,q1/q2
s−1 Hole tunneling rate from the charge state q1 to q2 in the LSM

Ri 1 Ratio of the vibration frequencies in an NMP transition

ri m Spatial coordinates of electron i

R s−1 Transition rate matrix

Ri m Spatial coordinates of atom i

s K−1V−1m Scaling factor for stress/relaxation curves

sr K−1V−1m Scaling factor s during relaxation

ss K−1V−1m Scaling factor s during stress

s0 1 Prefactor of the scaling factor s

S 1 Action in the WKB method

Si 1 Huang-Rhys factor for an NMP transition Ti→ j

t s Time

tox m Thickness of the insulator

tr s Relaxation time

ts s Stress time

t0 m First measurement point during stress

T K Temperature

TCc 1 Transmission coefficient for tunneling through the conduction band

TCv 1 Transmission coefficient for tunneling through the valence band

Teq K Temperature during equilibrium conditions

Ti→ j s−1 Transition from state i to state j

Ti↔ j s−1 Transitions between the states i to state j

Ti→ j→k s−1 Chain of the transitions Ti→ j and T j→k

Tr K Temperature during relaxation

Ts K Temperature during stress�Te J Electron kinetic energy operator�Tn J Nucleus kinetic energy operator

U J Adiabatic potential of an atomic system

U q J U for charge state q

Ui J U in the minimum configuration of state i

veff J Effective electron potential

vth,n ms−1 Thermal velocity of the electrons
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Symbol Unit Description

vth,p ms−1 Thermal velocity of the holes

vi ms−1 Velocity of atom i

V J Defect potential

Vch J Channel potential in the derivation of Fermi’s golden rule

Veq J Gate bias during equilibrium conditions

VEP J Interatomic empirical potential

VG V Gate bias

Vi J Energy of the system in state i in the TWM and the CDW

Vi ,0 J Initial energy of the system in state i in the TWM

Vr V Gate bias during relaxation

Vs V Gate bias during stress

Vth V Threshold voltage

Vth0 V Initial threshold voltage

V OTF
th

V Threshold voltage extracted from OTF measurements

V OTF
th0

V Initial threshold voltage extracted from OTF measurements

Vtr J Trap potential in the derivation of Fermi’s golden rule�Ven J Operator for the electron-nucleus Coulomb interactions�Vee J Operator for the electron-electron Coulomb interactions�Vnn J Operator for the nucleus-nucleus Coulomb interactions

WKBc 1 WKB factor for tunneling through the conduction band

WKBv 1 WKB factor for tunneling through the valence band

x m Direction perpendicular to the substrate-insulator interface

xif m Position of the substrate-insulator interface

xn,0 m Characteristic tunneling length for electrons

xp,0 m Characteristic tunneling length for holes

xt m Position of the trap

xB m Position of the tunneling hole front

X m−3 Density of the diffusing species X in the RD model

y m Direction parallel to the substrate-insulator interface

z m Direction parallel to the substrate-insulator interface

Zc 1 Charge state of the diffusing species X in the RD model

ZH 1 Charge state of the diffusing species in the RDD model

α 1 Characteristic exponent in the reaction-limited model

β 1 Parameter in the empirical relation of the universal recovery

γ JN−1 Field dependence factor of the thermal barrier in the TSM

Δ J Stress parameter in the TWM

Δi J Stress parameter in the CDW model

Δt s Time step in molecular dynamics

ΔDit m−2J−1 Change in the interface trap density of states

Δ fi 1 Change in the trap occupancy in state i

Δ fox 1 Change in the oxide trap occupancy

Δ ft 1 Change in the trap occupancy
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Symbol Unit Description

ΔEb J Energy barrier for charge trapping in the model of Kirton and Uren

ΔEb,1 J Energy barrier for hole capture of the oxygen vacancy in the TSM

ΔEb,2 J Energy barrier for hole capture of the E ′ center in the TSM

ΔEb,3 J Relaxation barrier to the oxygen vacancy in the TSM

ΔEb,4 J Thermal barrier for the hydrogen transition in the TSM

ΔEt J Et referenced to the substrate valence bandedge

ΔE ′
t J E ′

t referenced to the substrate valence bandedge

ΔNit m−2 Change in the number of interface charges per area

ΔNox m−2 Change in the number of oxide charges per area

ΔQit Cm−2 Change in the areal interface charges

ΔQox Cm−2 Change in the areal oxide charges

ΔVth V Change in the threshold voltage

ΔVth,r V Change in the threshold voltage during relax

ΔVth,s V Change in the threshold voltage during stress

ΔV OTF
th

V Change in threshold voltage extracted from OTF measurements

ΔUb,i j J NMP barrier for the transition Ti→ j

ε Fm−1 Electric permittivity

εi J Energy level of the bound state i

εKS
i

J Kohn-Sham eigenvalue

εi j J Energy barrier for the transition Ti→ j in the NMP model

εq1/q2 J Thermodynamic trap level for a transition from charge state q1 to q2

εT2′ s Energy difference between the state 2 and 2′ in the NMP model

ζn/p,i 1 Square root of the WKB factor

µ s1/2 Mean value of the distribution of τ in Yang’s model

µc m2V−1s−1 Mobility in the RD model

µX m2V−1s−1 Mobility of the diffusing species X in the RDD model

ν 1 Valley index

ν0 s−1 Attempt frequency

ξ 1 Normalized relaxation time

πi 1 Occupation probability for being in state i

Π 1 Occupation probability for set of states

Πeq 1 Equilibrium occupation probability for set of states

ρ Cm−3 Charge density

ρt m−3 Density of traps

ρH m−3J−1 Trapped hydrogen density in the RDD model

ρ0 Cm−3 Ground state charge density

σ s1/2 Spread of the distribution of τ in Yang’s model

σds J Spread of dissociation barrier in the reaction-limited model

σTSM
n m2 Cross section for an electon transition in the TSM model

σn,y z m2 Cross section for an electron tunneling in the ETM

σTSM
n,0 m2 Temperature-independent prefactor of σTSM

n

σSRH
p m2 Cross section for a hole transition in the SRH model

xiv



Symbol Unit Description

σNMP
p m2 Cross section for a hole transition in the eNMP model

σTSM
p m2 Cross section for a hole transition in the TSM model

σp,y z m2 Cross section for hole tunneling in the ETM

σSRH
p,0 m2 Temperature-independent prefactor of σSRH

p

σNMP
p,0 m2 Temperature-independent prefactor of σNMP

p

σTSM
p,0 m2 Temperature-independent prefactor of σTSM

p

τ s Transition time constant in the reaction-limited and the Yang model

τ1′
cap s Hole capture time constant over the state 1′ in the eNMP model

τ2′
cap s Hole capture time constant over the state 2′ in the eNMP model

τcap s Capture time constant

τcap,e s Electron capture time constant

τcap,h s Hole capture time constant

τ1′
c,min s Minimal τ1′

cap in the eNMP model

τ2′
c,min s Minimal τ2′

cap in the eNMP model

τem s Emission time constant

τ1′
em s Hole emission time constant over the state 1′ in the eNMP model

τ2′
em s Hole emission time constant over the state 2′ in the eNMP model

τem,e s Electron emission time constant

τem,h s Hole emission time constant

τ1′
e,min s Minimal τ1′

em in the eNMP model

τ2′
e,min s Minimal τ2′

em in the eNMP model

τTSM
n,0 s Electron capture time constant as defined in the TSM model

τETM
p,0 s Hole capture time constant as defined in the ETM

τNMP
p,0 s Hole capture time constant as defined in the eNMP model

τSRH
p,0 s Hole capture time constant as defined in the SRH model

τTSM
p,0 s Hole capture time constant as defined in the TSM model

τ̄n,0 s Reduced electron capture time in the ETM

τ̄p,0 s Reduced hole capture time in the ETM

Υi m−3N M/2 Wavefunction of the combined system of N electrons and M nuclei

ϕ V Electric potential

ϕs V Surface potential

φ J Potential energy of electrons/holes

φ1/2 J Left/Right border of the tunnel barrier

Φi j m−3N/2 Wavefunction of an N nuclei system in state i

ψi m−1/2 Single-electron wavefunction in state i

ψKS
i

m−1/2 Kohn-Sham orbitals

ψn,i m−1/2 Electron channel wavefunction of the quasi-bound state i

ψp,i m−1/2 Hole channel wavefunction of the quasi-bound state i

Ψi m−3N/2 Wavefunction of an N electron system in state i

Ψ0 m−3N/2 Wavefunction of an N electron system in the ground state

ω s−1 Oscillator frequency in the harmonic approximation
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Physical Constants

g0 . . . Gyromagnetic factor for electrons 2.0023193

h . . . Planck’s constant 6.6260755×10−34 Js

ħ . . . Reduced Planck’s constant h/(2π)

kB . . . Boltzmann’s constant 1.380662×10−23 JK−1

q0 . . . Elementary charge 1.6021892×10−19 C

me . . . Electron rest mass 9.1093897×10−31 kg

ε0 . . . Dielectric constant 8.8541878×10−12 AsV−1m−1

µB . . . Bohr magneton 9.2740092×10−24 JT−1
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1
Introduction

1.1 Definition of NBTI

The negative bias temperature instability (NBTI) falls into the category of reliability issues which

considerably affect the device behavior of metal oxide semiconductor field effect transistors

(MOSFETs). After its discovery several decades ago, NBTI has risen to one of the most serious

reliability concerns for modern CMOS technologies and has therefore increasingly attracted

industrial as well as scientific interest. In its idealized form it occurs when the device is subjected

to elevated temperatures and high gate voltages while the remaining terminals are grounded.

Temperatures typically encountered in practice range from 0◦C to 300◦C, while the field across the

dielectric reaches values up to approximately 10MV/cm. These conditions, usually referred to as

stress, have detrimental effects on the device characteristics, for instance a shift in the threshold

voltage Vth and a change in the subthreshold slope. However, as soon as the stress conditions are

removed, the device characteristics are found to recover, meaning that the device parameters slowly

revert towards their initial values. For operating stress conditions outside these parameter ranges,

NBTI occurs in a combination with other reliability phenomena, such as hot carrier degradation [1–

3] or time-dependent dielectric breakdown [4, 5] among others.

Interestingly, NBTI becomes increasingly pronounced for modern devices: First, the aggressive

down-scaling of device geometry goes hand in hand with higher electric fields across the dielectric.

Second, compact device integration gives rise to high power dissipation and thus to high operating

temperatures. Both strong fields as well as increased temperatures enhance the NBTI device

degradation. Also, the introduction of new technologies, especially nitrided oxides, has turned out

to reduce other reliability issues but enhances NBTI [6, 7]. On the other hand, advances in device

1



1. INTRODUCTION

processing improved the oxide reliability, which is accompanied by a reduction of defects at the

interface as well as in the dielectric. Even to date, NBTI has eluded our detailed understanding

regarding the phenomenological behavior as well as the underlying microscopic origins.

1.2 Two Main Contributions to NBTI

The change in the threshold voltage Vth, the signature of NBTI, originates from trapped charges

which are immobile and therefore cannot carry any drain current. Hence, the central question arises

whether NBTI must be ascribed to charges trapped at the Si/SiO2 interface (interface traps), in the

dielectric (oxide traps), or even a combination thereof.

Interface traps stem from the lattice mismatch caused by the abrupt transition from crystalline bulk

silicon to amorphous SiO2. Even the amorphous nature of modern high-quality oxides is not fully

capable of compensating the lattice mismatch through the flexibility of its bonding network. As a

result, a certain fraction of Si atoms cannot establish four bonds to their neighbor atoms and thus

leave behind unsaturated bonds, the so-called dangling bonds [8, 9]. The corresponding orbitals

can carry up to two electrons and feature two trap levels found to lie within the substrate bandgap.

Three different types of interface defects are observed experimentally: Pb centers have been found

at (111)Si/SiO2 interfaces, while Pb0 and Pb1 centers are present at the technologically more relevant

(100)Si/SiO2 interfaces [8, 10, 11]. The creation or annealing of charged interface states induces a non-

negligible threshold voltage shift ΔVth, which is considered as an undesired degradation by engineers.

However, these states can be eliminated by exposure to a hydrogen ambient, where the interfacial

dangling bonds are passivated and their corresponding energy levels are shifted out of the substrate

bandgap [10, 12].

There exists a series of traps, such as cycling positive charges [13], anti-neutralization positive charges

[13], border traps [14], switching traps [15, 16], oxide traps, E ′ centers [17], and Kn centers [18].

However, no precise distinction has been made between them. Experimentally, these traps are

characterized by either their trapping time constants or their defect structures. Furthermore, their

properties have been found to strongly depend on the local environment of their host material, such

as E ′ centers in amorphous SiO2 [19, 20]. Nevertheless, all these types of oxide traps have been

linked to the NBTI phenomenon [21, 22] since they are capable of exchanging charge carriers with the

substrate. Electron or hole injection is assumed to proceed by some kind of elastic [23] or inelastic

trapping mechanism [24] into spatially and/or energetically distributed traps. Ongoing research is

now dealing with the exact physical description of this process, including all dependences on the

oxide field and the temperature.

1.3 NBTI Experiments

In the past, a series of distinct measurement techniques has been established, which includes direct-

current current-voltage measurements, measure-stress-measure (MSM) technique, on-the-fly (OTF)

2



1. INTRODUCTION

measurements, capacitance-voltage measurements, charge-pumping, and electron-spin-resonance

(ESR). Each of them is suited and thus employed for the analysis of NBTI. part from equipment issues,

these measurement techniques strongly differ in the information they provide. In the following, their

basic experimental setup and principle functioning are outlined and their specific shortcomings are

discussed.

1.3.1 Measure-Stress-Measure Technique

The measure-stress-measure (MSM) technique has traditionally been employed to probe NBTI

experimentally [25, 26]. Before the real measurement of NBTI degradation starts, an ID(VG) curve

is taken by scanning the device in a range around the initial threshold voltage Vth0. Then the device

is subjected to stress bias and only interrupted by short intervals with the gate bias brought back to

Vth0. During these short measurement intervals, the drain current ID is monitored and converted to a

threshold voltage shift ΔVth based on the initially scanned ID(VG) curve [25]. Alternatively, Vth can be

directly obtained by enforcing the initial threshold current ID0 [27] or by the shift of complete ID(VG)

curves recorded using ultra-short pulses [28, 29].

However, the MSM method suffers from an unavoidable measurement delay [30], which is defined

as the time interval between the removal of stress and the first measurement of the drain current.

The degradation within this time is not covered by the measurements and so usually leads to an

underestimation of the threshold voltage shift. As pointed out in [31], the different delay times

seriously affect the interpretation of the degradation data, for instance, the exponent of a time power-

law as discussed in Section 1.4. Thus minimizing the measurement delay has long been the subject

of numerous studies [27].

1.3.2 On-The-Fly Measurements

On-the-fly (OTF) measurements try to circumvent the unintentional measurement delay and are

therefore often regarded as the method of choice for experimentally investigating NBTI. In this

method, the gate bias is maintained in the linear regime during the entire measurement run while

the drain bias is held at a small but constant level. Alternatively, short voltage pulses can be applied

to the drain during measurements only. In both cases, the device degradation is monitored based on

the drain current IDlin. Since the threshold voltage is of central interest for NBTI, the drain current

has to be converted to Vth using extrapolation schemes [32, 33]. The simplest is based on the SPICE

level 1 compact model

ΔV OTF
th = ID − ID0

ID0
(VG −V OTF

th0 ) , (1.1)

where ID0 and V OTF
th0 denote ID of the first measurement point [34, 35] and Vth of the undegraded

device, respectively. This compact model neglects mobility variations [35–37] ascribed to the

scattering of charge carriers at the trapped charges close at the interface. However, this model benefits

from the fact that, in contrast to other extrapolation schemes, only ID0 has to be recorded. More

3
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complex extrapolations schemes accounting for mobility variations have been proposed but require

the determination of the full IDVG curve. Note that these IDVG curves must be measured before stress,

thereby already causing a non-negligible amount of degradation, which is not accounted for in the

extrapolation scheme.

1.3.3 Electron Spin Resonance

Electron spin resonance (ESR) is a powerful tool to identify paramagnetic defects, which are

characterized by an unpaired electron in their orbitals. This electron is associated with a spin

whose response to an external magnetic field is measured in ESR experiments. For instance, such

paramagnetic defects can be Si-dangling bonds at the Si/SiO2 interface (the so-called Pb centers)

[8, 10, 11, 38] or in the dielectric (the numerous variants of E ′ centers) [39–44]. It thereby gives

chemical and structural information about the defect under investigation and provides insight into

the chemical processes occurring in the dielectrics. In this measurement technique, the defects in the

sample are subjected to a large but slowly varying magnetic field H , which splits their energy levels

according to the Zeeman effect. An unpaired electron residing in one defect orbital has two possible

orientations - namely either parallel or anti-parallel to the magnetic field. The energetical separation

of these two orientations equals

ΔE = g0µBH , (1.2)

where µB denotes the Bohr magneton and g0 the gyromagnetic factor. Due to energetical

considerations, the defect electron preferably aligns parallel to the magnetic field. Furthermore,

the sample is additionally exposed to a microwave radiation ν ∼ 9− 10GHz, thereby delivering an

energy of hν to the electron. In the case of resonance, the condition hν= g0µBH is satisfied and the

electron change the orientation of its spin, which causes as a peak in the ESR absorption spectrum.

The most frequently employed measurement technique records the ESR signal with respect of the

slowly varying magnetic field H . Note that this measurement technique is limited to defects that

have only one electron in their orbitals. Therefore, changing the charge state via electron or hole

capture will render these defects “ESR-inactive”. Conversely, defects with either no or two electrons

in the corresponding orbital can be made “ESR-active” by a charge capture event.

Additional structural information of the investigated defect is available via second-order effects: In

solids, the spin-orbit interactions vanish for the ground state in solids but affect the excited states.

They alter the gyromagnetic factor to an angle-dependent g -tensor, which reflects the symmetry of

the paramagnetic center. Hence, angle-dependent measurements allow the identification of defects

on the basis of this symmetry [8, 45]. In this way, it has been revealed that the central Si atoms of Pb

and Pb0 centers are tetrahedrally back-bonded to three other Si atoms. In contrast, Pb1 centers exhibit

a lower symmetry, which is traced back to a surface dimer bond. Another second order effect arises

from electron-nuclear hyperfine interactions. Due to different orientations of the nuclei magnetic

moments, additional characteristic peaks emerge in the ESR spectrum. For instance, the relative

heights of these features — more precisely, a ratio of 1/20 — is a special signature for the element Si.

Therefore all variants of Pb centers could be identified as Si dangling bonds. In the context of NBTI, a
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FIGURE 1.1: The time evolution of the threshold voltage shift for a small-area pMOSFET during recovery. The

recorded recovery traces (black lines) in the top panel have several steps marked by the red or blue

lines, respectively. The corresponding spectral map shows the emission times vs. the step height.

Note that there are regions (ellipses) with an accumulation of points. Each of them can be assigned

to one individual defect within the device.

series of investigations address hydrogen reactions with Pb centers as well as hydrogenated variants

of E ′
γ centers, namely 10.4G doublet and the 74G doublet [40, 41, 46]. Another variant of ESR is spin

dependent recombination (SDR) [18, 47], in which the recombination via deep traps in the substrate

bandgap is hampered due to a magnetic alignment of electrons in the conduction band and in the

trap. With this method, it has been suggested that KN centers play an important role in the NBTI

degradation of silicon oxynitrides.

1.3.4 Time Dependent Defect Spectroscopy

With the technical advances in the MOSFET technology during the last several years, the device

geometries of MOSFETs have been continuously shrunken and reached a point where the device

degradation is dominated by the occurrence of single charging or discharging events [48–50]. As

shown in Fig. 1.1, each of these events appears as a step in the recovery traces. Interestingly, one

can clearly recognize that those steps differ significantly in their heights. This can be ascribed to the

fact that the random distribution of dopants produces a spatially varying electrical potential inside

the channel. The resulting inhomogeneous current density from source to drain is frequently referred

to as the percolation current path, which is unique for each device. The lateral position of a charged

trap within the gate area determines the step height in the drain current and the threshold voltage

shift. This height is the signature of each defect and can thus be used for the identification of a single

trap. This fact has motivated the use of the so-called spectral maps [51–53], in which the frequency

of emission events is plotted vs. d and τem (see the lower panel of Fig. 1.1). These maps reveal the
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or the saturation regime during the measurement. This suggests that the electrostatics within the

device are responsible for the two distinct field dependences. It is noteworthy that the drop in τem

goes hand in hand with the decrease of the interfacial hole concentration p (dot-dashed line).

characteristic emission times for certain stress conditions, which can be varied for the investigation

of field and temperature dependence of τcap and τem (Fig. 1.2).

TDDS has lead to several essential findings [51–54] outlined in the following:

(i ) The plot in Fig. 1.2 reveals that the defects exhibit a strong, nearly exponential voltage

dependence of τcap. Empirically, this dependence can be described by exp(−c1Fox + c2F 2
ox).

However, it differs from defect to defect, implying that it is related to certain defect properties.

(ii ) The time constant plots show a marked temperature dependence, which becomes obvious by

the downward shift of the τcap curves for higher temperatures. The activation energies Eact

extracted from Arrhenius plots are about 0.6eV.

(iii ) τem of most defects is unaffected by changes in VG (“normal” behavior).

(iv ) A few defects show a drop in τem towards lower VG (“anomalous” behavior).

(v ) The τem of both types shows a temperature activation with a large spread (Eact = 0.6−1.4eV).

One should keep in mind that some defects exhibit an exponential oxide field dependence of τem

in normal random telegraph noise (RTN) measurements [55]. This difference to TDDS findings may

arise from the fact that these defects are not assessable by the TDDS measurements.
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Astonishingly, several TDDS recovery traces display RTN only after stressing [51]. The noise at one

recovery trace is physically linked to defects — in this case hole traps — which continuously exchange

charge carriers with the substrate. After a while, the RTN signal vanishes and does not reoccur during

the remaining measurement time. The termination of the noise signal is ascribed to hole traps which

change to their neutral charge state and remain therein. In [51], this kind of noise has been termed

temporary RTN (tRTN) since it occurs only for a limited amount of time.

A similar phenomenon called anomalous RTN (aRTN) has been discovered in the early studies of

Kirton and Uren [56]. Therein, electron traps have been observed, which repeatedly produce noise

for random time intervals. During the interruptions of the signal, the defects dwell in their negative

charge state so that no noise signal is generated. The behavior of these traps has been interpreted by

the existence of a metastable defect state.

1.4 Phenomenological Findings

Before embarking on detailed physical models, the focus is now put on a phenomenological

understanding of NBTI. In this respect, special attention is put on the functional form of the time

evolution of ΔVth depending on gate bias and temperature. Long term extrapolation does not only

allow lifetime projection relevant for industrial purposes but also should be viewed as a touchstone

for subsequent modeling attempts.

Grasser et al. [24] recognized that the recorded threshold voltage curves follow the same pattern at

different stress temperatures and voltages. Therefore, these curves can be scaled so that they overlap

for the stress and the relaxation phase. Mathematically, this can be described by

ΔVth(ts, tr,Fox,s,T )= s(T,Fox,s) ·ΔV 0
th(ts, tr). (1.3)

The scaling factor s(T,Fox,s) represents the temperature (T ) and oxide field (Fox,s) dependence, which

is best approximated by

s(T,Fox,s)≈ s0T 2F 2
ox,s . (1.4)

ΔV 0
th(ts, tr) mimics a universally valid shape of the threshold voltage curves. A series of stress

sequences for different temperatures are depicted in Fig. 1.3 in order to illustrate the common pattern

of the threshold voltage data. As a proof for scalability, all curves line up to one curve by dividing them

by their corresponding s(T,Fox,s). As demonstrated in Fig. 1.3, the initial part of the stress phase shows

a logarithmic behavior up to a stress time ts,0 ∼ 1s while the subsequent part follows a power-law with

an exponent of n = 0.11 afterwards. The stress phase [24] can be expressed as

ΔVth,s(ts, tr,Fox,s,T ) =
ss(T,Fox,s) · log10(ts/t0), ts ≤ ts,0

t n
s , ts > ts,0

, (1.5)

where t0 denotes the first stress measurement point. However, Huard [57] reported that, for some

devices, the scalability property is violated for the long term degradation with stress times larger ts,0 ∼

7
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FIGURE 1.3: Left: The degradation of the drain current recorded for various stress temperatures (25−200◦C)

applying the extended MSM (eMSM) scheme [25, 26]. In this method, the investigated device is

subject to exponentially growing stress intervals (VG = −2V) with interruptions of 12s (visible as

spikes in the plots). During stress, the OTF technique is employed, in which the degradation of

threshold voltage is estimated using the expression ΔVth
OTF ≈ (VG−Vth0)(ID−ID0)/ID0. During the

short relaxation periods, the drain current is converted to the threshold voltage using a initially

recorded ID(VG) curve. Right: The same data as in the left figure, where each curve is multiplied

with a suitably chosen factor. All curves share the same shape as proven by the nearly perfect

overlap. Note that the degradation lost during the short stress interruptions is restored within less

than one decade and thus does not affect the extracted exponent n of the time power-law.

10s. Depending on the details of the fabrication process, the long term part has a scaling factor, which

is estimated as

s(T,Fox,s)≈ s0 exp

�
− Eact

kBT

�
F 4

ox,s (1.6)

with Eact being an activation energy of 0.15−0.25eV.

In the context of the universal behavior, special attention has been paid to the recovery phase.

This was motivated by the notion that NBTI underlies reversible reaction kinetics. The degradation

during the stress phase was assumed to be caused by the combination of a forward and a reverse

rate. Therefore, the kinetics during stress were supposed to cover the whole physics, however, the

individual contributions of the forward and the reverse rate are obscured. By contrast, only the

reverse rate is activated during the relaxation phase, which is thus more suited for analyzing NBTI.

In the following, some observations on the relaxation phase are summarized:

• The recovery already sets in before the shortest measurable relaxation time of about 1µs.

• The recovery slows down before reaching the pre-stress level.

• The recovery data follow a universal curve when plotted as a function of ξ= tr/ts.
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1. INTRODUCTION

FIGURE 1.4: Relaxation data measured with the fast MSM technique of Reisinger [27]. Note that all relaxation

curves line up to one single curve and thus follow a universal behavior according to equation (1.7)

after they have been normalized as indicated by the upwards arrows.

These observations suggest the following procedure to process the recorded NBTI recovery data: First,

the relaxation curves must be normalized to their last respective stress points, which are generally

unknown but can be obtained using the back-extrapolation method proposed in [31]. Second, the

relaxation times have to be scaled to their last accumulated stress time. The resulting curve can be

best analytically described by the empirical relation [31] (cf. Fig. 1.4)

r (ξ)= 1

1+Bξβ
(1.7)

with ξ = tr/ts, B = 0.3−3, and β = 0.15−0.2. In a further step, the universal relaxation is extended

by the so-called permanent component [26, 28, 58] attributed to a mechanism with another physical

origin. This permanent component, however, is ascertained to be a slowly recovering component

rather than a constant contribution and is best represented by a power-law [59]. Separating the

permanent from the recoverable component P(ts), the degradation during stress can be written as

ΔVth,s(ts, tr,Fox,s,T ) = ss(T,Fox,s) · log10(ts/t0)+P(ts) (1.8)

with t0 being the first stress measurement point. Alternatively, it can also be formulated as

ΔVth(ts) = Art
nr
s + Apt

np
s . (1.9)

Ar/p is the prefactor of a power law with exponent nr/p, where the subscripts r and p refer to the

recoverable or the permanent component, respectively. Note that np is larger than nr in equation

(1.9) indicating that the permanent component becomes dominant at large stress times [59]. The

impact of the permanent component is demonstrated in Fig. 1.5, where the long term recovery

tails deviate from the universal curve. However, universality is regained by accounting for the

permanent component. For times longer than 1ms, the relaxation data can be well approximated

by a logarithmic behavior [60, 61] using the expression
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FIGURE 1.5: MSM data for the relaxation phase [62]. Top: The raw data as a function of ξ = tr/ts clearly

indicate the existence of a permanent component. Bottom Right: The same as in the top panel

but scaled to the last stress value and normalized to the stress time. One can clearly recognize the

deviation from the universal behavior r (ξ). Bottom Left: Only a combination of a recoverable and

a permanent component can reproduce the expected universal behavior.

ΔVth,r(ts, tr,Fox,s,T ) = sr(T,Fox,s) · log10(1+C ts/tr)+P(ts) (1.10)

with C being a parameter. The first term at the right hand side of equation (1.10) represents the

recovering component, which shows a nearly logarithmic behavior, and compares well with the short

term part of expression (1.7) [31, 60]. In [61] the prefactors ss(T,Fox,s) and sr(T,Fox,s) have been

extracted from the eMSM data in Fig. 1.3 for the time range 1ms . . .1s during stress and 1ms . . .100ms

during relaxation. A comparison of the prefactors has revealed a certain ratio ss/sr > 1, meaning

that the stress and relaxation curves have different slopes. This asymmetry has long remained

unrecognized but rules out several proposed NBTI models.

The logarithmic and power-law-like part of the stress curve along with the two components during

recovery raise the question whether NBTI is governed by two mechanisms with one of them

dominating in each of the time regimes. If this is the case, each of these mechanisms is highly likely to

be subject to different field and temperature acceleration. Then the transition between these regimes

should be controllable by varying the temperature and the electric field. However, no such transition

has been observed so far. In [63], it has been argued that NBTI must be caused by either a single

process or two tightly coupled ones. In the latter case, the interplay of both process enforces a single

field dependence and temperature dependence without any transitions.
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1.5 A Modeling Perspective

So far, only empirical relations, emerging from an experimental perspective but lacking any profound

physical justification, have been presented. Now the focus is put on an in-depth microscopic

understanding of the NBTI phenomenon. Hence, a series of modeling approaches are discussed in

the following, where each of them is traced back to the creation of either interface charges and/or

oxide charges.

The relation between the threshold voltage shift and the created charges can be expressed as

ΔVth(t ) =−ΔQit(t )+ΔQox(t )

Cox
(1.11)

with Cox being the areal gate capacitance. The change in interface charges ΔQit(t ) is given by

ΔQit(t )= q0

�
ΔDit(Et, t ) fit(Ef,Et, t )dEt . (1.12)

ΔDit(Et, t ) denotes the change in the time-dependent density of interface states at an energy level Et

and fit corresponds to their occupancy. In equation (1.12) it has been presumed that the temporal

charging and discharging of the interface states are negligible since both processes already occur

on much shorter timescales than that typically covered by NBTI. The interface traps can hold up

to two electrons and exhibit two distinct energy levels, namely one acceptor and one donor level.

Accordingly, they are also referred to as amphoteric traps [9, 64, 65], which behave as either a donor

or an acceptor by definition (cf. Fig. 1.6). Starting from midgap, a shift of the Fermi level towards the

conduction band charges the interface states negatively, while they become positively charged if the

the Fermi level is moved in the opposite direction.

In addition to interface charges, also oxide-trapped charges [68–70] impact the threshold voltage

shift. According to the current understanding of oxide-traps, charges are stored in preexisting defects

whose occupation is governed by the quantum mechanical trapping dynamics. The contribution of

the oxide traps to ΔVth can be evaluated using

ΔQox(t )= q0

��
Dox(x,Et, t )Δ fox(x,Et, t )(1−x/tox)dxdEt, (1.13)

where Dox(x,Et, t ) is the density of trap states and Δ fox represents the change in the trap occupancy.

It is commonly assumed that oxide traps have larger time constants compared to interface states. For

instance, this can be related to the depth of the trap location or the energetical position within the

bandgap. Then the structural disorder of a−SiO2 gives rise to a wide spread of trap levels assumed in

several NBTI models [24].

1.5.1 Reaction-Diffusion Model

First serious modeling attempts date back to the so-called reaction-diffusion (RD) model [71, 72],

which has been refined successfully in later studies [25, 60, 68, 73, 74]. It relies on an interface reaction

11



1. INTRODUCTION

FIGURE 1.6: A schematic representation of the donor and acceptor distribution within the bandgap of Si.

Energy levels for +/0 transitions, termed donor states, are located below midgap while energy

levels for 0/− transitions, acceptor states, are predominantly found above midgap. The spread of

the peaks in the trap distribution [10, 38] has been speculated to originate from the disorder of the

atomic structure at the interface. Note that in addition to the interface states density, a band tail

states density exponentially decays into the bandgap. They are ascribed to stretched Si-Si bonds

due to the disorder at the Si/SiO2 interface [66, 67].

involving the interfacial Si dangling bonds (present in the form of Pb centers) together with some sort

of hydrogen species. Initially, nearly all of the Pb centers are supposed to be passivated through a

hydrogen anneal step. This means that their unsaturated Si atoms has established a bond to a nearby

hydrogen atom H, thereby shifting the electrically active trap levels out of the substrate bandgap.

Upon application of stress, the Si−H bonds (PbH) can break due to the presence of an electric field,

thereby activating the forward reaction of

PbH ⇋ Pb +H . (1.14)

With the breakage of the Si−H bonds, the trap levels associated with the unsaturated Si atoms are

shifted back into the bandgap. Since the released hydrogen atoms can easily rebond to the Pb centers,

the reaction (1.14) is in equilibrium, resulting in a fixed ratio of the concentration of Pb centers,

hydrogen atoms, and Si−H bonds. The released hydrogen atoms can also diffuse away and are thus

not available for the passivation of the interfacial Si dangling bonds according to reverse reaction of

(1.14). This results in a temporally increasing concentration of Pb centers, measured as a degradation

in NBTI. After the removal of stress, the forward reaction of (1.14) is suppressed while the reverse

mode dominates the reaction dynamics. It is important to note here that the dynamics in the RD

model are eventually governed by the hydrogen diffusion but not by the interface reaction, which has

12
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been assumed to be in equilibrium. An alternative reaction involves molecular hydrogen H2 [75–77]

and presumes that atomic hydrogen dimerizes instantaneously right at the interface according to

PbH ⇋ Pb +H , (1.15)

H+H ⇋ H2 . (1.16)

Thus, the generation of interface states is described by the electro-chemical reaction

∂t Nit =kf(Nit,0 −Nit)−krNitX 1/a . (1.17)

Nit and Nit,0 denote the surface concentration of interface states and its initial concentration,

respectively. kf and kr stand for the field and temperature dependent forward and the reverse rate

of the interface reaction. The kinetic exponent a determines the migrating hydrogen species X , that

is, 1 for atomic H+ and H0, and 2 for molecular H2. Within the RD framework, the interface reaction

(1.17) is assumed to be in equilibrium and thus determines the ratio between X at the interface and

Nit. However, the basis of the RD model is the transport equation (1.18) for the migrating species X .

It is described by the drift-diffusion equation

∂t X =DX∂
2
x X +ZXµX Fox∂x X , (1.18)

which is coupled to the interface reaction via the boundary condition

a∂t Nit =DX∂x X +ZXµXFoxX . (1.19)

DX, µX, and ZX are the diffusion coefficient, the mobility, and the charge state of the species X,

respectively. Within the time regime of interest, the dynamics of the interface reaction are governed

by the interfacial hydrogen concentration, which in turn is controlled by hydrogen diffusion to and

from the interface.

A solution of equation (1.17)-(1.19) can be found as

ΔVth ≈ t nRD , (1.20)

where nRD is referred to as the time exponent. In the case of H0, the RD model yields a time exponent

nRD of 1/4, which is only compatible to measurements obtained with a relatively long delay. In

more recent studies with a shorter delay, a time exponents close to 1/6 is obtained, as predicted by

the RD model for H2. However, thorough examinations of the stress/relaxation curves show large

discrepancies between the RD theory and the universal relaxation (cf. Fig. 1.7). While the recovery

in experiments covers at least 12 decades, the RD model is limited to about 3 decades. This rules out

this model as a reasonable explanation for NBTI. Some attempts to remedy this deficiency have been

put forward:

• Since the gate thicknesses of modern MOSFET technologies have been downsized to a few

nanometer, the hydrogen is supposed to reach the gate interface during stress. In a new

two-region RD model [60, 77], it is assumed that the hydrogen can enter the poly-gate where

it continues to diffuse with a lower diffusivity. This extension introduces spurious features,

such as kinks or bumps into the degradation curves of the threshold voltage, which are in

contradiction to the universal shape of the ΔVth curves seen in experiments.
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FIGURE 1.7: A comparison between simulations, analytical results, and measurement data following universal

relaxation [60]. The circles mark measurement data while lines corresponds to simulations.

Irrespective of the particular hydrogen species, the recovery according to RD theory extends to

only 3 decades which is in strong contrast to experimental findings.

• The two-interface RD model [60, 78] is based on the assumption that atomic hydrogen released

from the substrate interface reacts with Si−H bonds at the gate interface and then migrates

inside the poly-gate with a lower diffusivity. This extension results in a power law with an

exponent of 1/6 during stress but yields a bump during relaxation. As in the case of the two-

region, such a feature has not been observed in experiments.

• In a further variant of the RD model, the dimerization to molecular hydrogen does not occur

due to an interface reaction but can take place over the whole bulk oxide. This assumption leads

to an initial time exponent which changes from 1/3 to 1/6 for larger stress times in agreement

with some measurements [74, 79]. However, the recovery remains the same as for the standard

RD model and therefore does not follow the universal relaxation.

Experimentally, the most convincing proof that NBTI is not explained by the RD model comes from

the TDDS [51, 53]. The spectral maps show clusters which are fixed on the emission time axis for

a certain temperature and evolve with increasing stress time. By contrast, the RD model predicts

clusters that extend towards larger emission times for rising stress times. Theoretical first-principles

calculations of the Pantelides group [80–83] predict too high dissociation barrier for the interface

reactions (1.14) and (1.15-1.16). In contradiction to the assumption of the RD model, Tsetseris et

al. [81–83] proposed that the interface reaction can be initiated by protons originating from the

substrate.
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1.5.2 Dispersive Transport

In order to explain the long recovery tails seen in experiments, a refinement of the hydrogen transport

in the RD model has been proposed. Due to the exposure to a hydrogen ambient during device

fabrication, a large background concentration of hydrogen has to be expected. However, this

background concentration would strongly enhance the reverse mode of the interface reaction so that

no device degradation could occur. According to dispersive transport, a large fraction of the hydrogen

particles is bonded to traps and thus cannot participate in the interface reaction. The retarded release

of the strongly bonded particles during recovery [84] should bring the required long recovery tails.

The hydrogen transport has been modeled to proceed over single trap levels, in which the particles

dwell most of their time. Diffusion only takes place when the hydrogen atoms are released from their

traps. This kind of transport is referred to as dispersive transport. Its formulation relies on multiple

trapping theory [85–87] and was combined with the interfacial hydrogen reaction to the reaction

dispersive diffusion (RDD) model [68, 73]. The overall hydrogen H (x, t ) concentration is split into

a contribution of free hydrogen Hc(x, t ) in a conduction state and hydrogen ρH(x,Et, t ) residing at

traps with an energy level Et:

H (x, t )= Hc(x, t )+
�

ρH(x,Et, t )dEt . (1.21)

The trap dynamics are expressed by balance equations for each trap

∂tρH(Et) =
ν0

Nc,H

�
g (Et)−ρH(Et)

�
Hc −ν0exp

�
−Ec −Et

kBT

�
. (1.22)

with ν0 being the attempt frequency, Ec the conduction state for hydrogen, and Nc,H the effective

density of conduction states. g (Et) stands for an exponential trap distribution. Only the free hydrogen

as a migrating species X is accounted for in the diffusion equation:

∂t Hc =Dc∂
2
x Hc(x, t )+ZcµcFox∂x Hc(x, t )+

�
∂tρH(Et)dEt . (1.23)

Here, the last term reflects the generation of free hydrogen, which escaped from their traps. The

particular variants of the RDD model primarily differ in the postulate whether the free hydrogen

Hc in the conduction state [25, 88] or the total hydrogen concentration H [37, 89] can enter the

interface reaction (1.19). As pointed out in [31], neither variant of the RDD model can explain the

long relaxation tails, irrespective of the assumed hydrogen species (see Fig. 1.8).

1.5.3 Reaction-Limited Models

The previous models rest on the assumption that hydrogen diffusion ultimately governs the

generation of interface states. Another modeling approach assumes the interface reaction as the rate-

limiting step. Due to the amorphous structure of SiO2, the Si−H bonds at the interface are subjected to

a wide spread of bond lengths and angles, which are both related to large variations of bond strengths.

In order to account for this fact, the associated dissociation barriers Eds [38, 58, 69, 90] are taken to be
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in too late for the Hc. As a consequence, this model is not capable of reproducing the long lasting

relaxation of NBTI.

distributed rather than single-valued. According to transition state theory, the bond breakage rates

follow an Arrhenius law and can be expressed as

kf(Eds) = kf,0Nit,0 exp

�
− Eds

kBT

�
, (1.24)

where kf,0 is an attempt frequency. Neglecting the corresponding reverse rate, simple first-order

interface kinetics deliver

Nit = Nit,0
�
1−exp(−kf(Eds)t )

�
. (1.25)

With a Fermi-derivative function for the distributions of dissociation barriers

g (E ,Edsm,σd)= 1

σds

exp
�

E−Edsm

σds

�
�
1+exp

�
E−Edsm

σds

��2
, (1.26)

the interface state generation follows

ΔNit ≈ Nit,0
1

1+ �
t
τ

�−α (1.27)

with

τ= 1/kf,0 exp(Edsm(Fox)/kBT ) , (1.28)

α= kBT /σds . (1.29)
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FIGURE 1.9: The schematic of the TWM. The double well represents the Born Oppenheimer surface with three

stable configuration (states 1, 3, and 5 with the energies V1,0, V3,0, and V5,0) and their separating

barriers (V2,0 and V4,0). Transitions between two configurations or rather states are indicated by

the arrows. Upon application of stress, the energies Vi are shifted down in energy according to

Vi = Vi0 − i ×Δ(T ) with Δ(T ) being a parameter and the defects move from state 1 to 5. When

switching back to equilibrium conditions (recovery), the defects return to the state 1.

The field dependence is incorporated in the mean dissociation barrier Edm, while the temperature

activation originates from the spread σds of the distribution (1.26). Due to a missing reverse rate

kr, this model cannot explain relaxation and must thus be assigned to the permanent component

of NBTI. In an improved variant of this model [60], the rate equation (1.25) was extended by a

reverse reaction with distributed barriers. Then the universal relaxation behavior can be accurately

reproduced but the degradation during the stress phase is drastically underestimated (n ∼ 0.03).

Therefore, this model falls short of capturing both the stress and the relaxation phase at the same

time.

1.5.4 Triple-Well Model

So far, the prolonged degradation and recovery are ascribed to the dispersive nature of either the

interface reaction or the hydrogen transport in the oxide. Since both modeling attempts remained

fruitless, a new model has been developed, which combines the dispersive interface reaction with a

diffusion-like mechanism. The concept of the Born Oppenheimer energy surface [91–93] motivated

the idea of the triple-well model (TWM) [94, 95] where the stable sites of hydrogen along with their

separating barriers are represented in one common energy diagram (see Fig. 1.9). The dynamics of

this system are expressed by coupled rate equations with Arrhenius-like expressions for transition

rates following transition state theory. In a simplified mathematical model, there exist three states

corresponding to an equilibrium, an intermediate and a lock-in configuration, which are connected

in series. While the temperature activation is already incorporated in Arrhenius-type transition rates,

the field acceleration is assumed to be due to an energetical downward shift of the intermediate and

the lock-in states along with their connecting barriers (see Fig. 1.9). For instance, this shift can be

related to breaking bonds with a dipole moment whose energy contribution depends on the oxide

field.

During stress the hydrogen particles travel from the equilibrium towards the lock-in configuration,

where a considerable fraction remains in the intermediate state. After the stress is removed, particles

from the intermediate state first return to the equilibrium configuration. This fraction of particles

correspond to the recoverable component of NBTI. The return of the other particles from the lock-
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FIGURE 1.10: Schematic of the coupled double well model (CDW). The left well corresponds to the first step,

which is described by a temperature-activated hole trapping process (V1-V2-V3). The distribution

of V3 represents the spread in the hole trap levels, where V2 reflects the required activation

energies for this process. The field acceleration of the hole capture process was modeled by the

term exp(−Δ1(Fox)), where the temperature-independent Δ1 referred to as the stress parameter.

The second step (V4-V5-V6) mimics the release of hydrogen analogously to the description of the

TWM.

in configuration occur at longer timescales and corresponds to the permanent or rather the slowly

recoverable component of NBTI. In SiO2, the first transition mimics the interface reaction involving

the hydrogen atom initially bonded to a Pb center, while the lock-in reflects the hydrogen diffusion

away from the interface. In contrast to previous models, the triple-well model cannot only reproduce

the complicated stress/relaxation pattern but also exhibits the correct temperature activation.

1.5.5 Combined Models

Investigations of the universal recovery (see Section 1.4) have revealed that there exists a permanent

in addition to a recoverable component, where each of them are caused by their own physical

mechanism. As a result, some sort of hole trapping into defects was suggested as the recoverable

component and assumed to be due to elastic tunneling of holes into preexisting traps [58]. By

contrast, a hydrogen reaction like the Si − H bond breakage in the RD model was ascribed to

the permanent component. However, both mechanisms were assumed to be tightly coupled and

therefore do not take place independently according the argumentation in Section 1.4.

A more promising approach assumes hole trapping “triggering” a hydrogen reaction as illustrated in

Fig. 1.10. This model [24] relies on thermally activated tunneling into precursor defects. The captured

charge weakens the hydrogen bond to the defect and thus causes the release of hydrogen. The last

step corresponds to the permanent component of NBTI since the reaction of the defect with hydrogen

requires considerably larger times compared to the hole trapping or detrapping process. Even though

unprecedented accuracy is achieved for the stress and the relaxation phase at different temperatures

and gate voltages, the field dependence of the stress parameter was phenomenologically introduced

but has not been justified so far.
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1.5.6 Conclusion

Electrical measurements, in particular MSM and OTF, have allowed to characterize NBTI on

a phenomenological basis, but only give little insight into the underlying physical processes.

Nevertheless, it has been possible to formulate criteria which can be used to the evaluate the

candidates for NBTI models (see Section 1.4). Additionally, TDDS experiments have revealed that

NBTI is attributed to a superposition of individual charge capture or emission events with certain

field and temperature dependences. In contrast to MSM and OTF, the TDDS findings shed light on

the microscopic processes behind NBTI and therefore give an additional criteria for any NBTI model.

Despite of all this experimental information, none of the NBTI models proposed so far could fully

explain all the findings from the aforementioned measurements. This is especially true for the RD

model along with all its variants based on a dispersive nature of the interface reaction and/or the

hydrogen reaction. As a consequence, the focus of this thesis is put on some kind of charge trapping

as a possible explanation for NBTI.
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2
Fundamentals of Charge Trapping

As pointed out in Section 1.2, all tested variants of the RD model have been ruled out. Alternatively,

the NBTI phenomenon may be ascribed to charge trapping into the oxide — a process that

also involves tunneling of electrons and holes, respectively [22, 57]. However, the underlying

microscopic mechanism has only been vaguely understood so far and the developed models are often

oversimplified [70, 96, 97].

This chapter provides a brief overview of miscellaneous charge trapping mechanisms at a

microscopic level. On the one hand, these mechanisms involve electrons and holes located in

the inversion layer of a MOSFET. Therefore, it will be necessary to address the electrostatics of

such devices considering quantum mechanical effects, such as the formation of subbands and the

penetration of the charge carriers into the dielectric. On the other hand, there are traps, whose

properties are highly sensitive to the exact defect configuration. As a consequence, the defects must

be addressed using an atomistic theory, which considers the structural relaxation of the defects and

the thermal lattice vibrations for instance. The above considerations will lead to three basic charge

trapping processes, which will be tested as a possible explanation for NBTI in this thesis.

These processes allow for a vast number of different transitions from the conduction or the valence

band into one trap.. In the second part of this chapter, all possible transitions will be incorporated in

compact rate expressions, which can be used for device simulation.
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FIGURE 2.1: Left: A schematic band diagram of the inversion layer. The wavefunctions of the quasi-bound

states ψn,0, ψn,1, ψn,2, . . . are spatially confined between the dielectric on the left-hand side and

the conduction band on the right-hand side. The free states encounter no boundary on the right-

hand side and are energetically located above the quasi-bound states En,0, En,1, En,2, . . . at the

conduction band edge deep in the substrate (Elim). Right: Schematic of the DOS Dn(E ) and

the Fermi-Dirac distribution fFD(E ). Each quasi-bound state associated with its own subband,

resulting in a stepped DOS. The Fermi energy Ef places the Fermi-Dirac distribution relative to the

DOS and determines the occupation of each state.

2.1 Tunneling — A Process Depending on Device Electrostatics

Since NBTI is triggered by the electric field Fox across the dielectric, much importance is attached

to the electrostatics within the device. Since source and drain are grounded during NBTI stress,

the electrical potential remains almost constant along the interface so that the charge carriers

face the same conditions for charge trapping over the entire channel area. As a consequence, the

description of this process can be reduced to a one-dimensional problem (in the x-direction) where

the electrostatics are only governed by the gate bias. The corresponding band diagram of a MOSFET

with a p-doped silicon substrate biased in inversion is depicted in Fig. 2.1 (left). Due to the potential

difference between substrate and gate, the band edges are strongly bent close to the interface so

that the conduction band Ec(x) forms a potential well. The electrons therein are confined to a small

region close to the interface, which results in the build-up of discrete quasi-bound states En,1, En,2,

En,3, . . . as shown in Fig. 2.1. The energetical separation between these states narrows towards higher

energies and changes to a continuum of free states at the energy Elim. In the two other dimensions

(y z-plane), the channel electrons behave as free particles and can therefore carry a current in these

directions. The combination of quasi-bound and free states yields subbands as illustrated in Fig. 2.1

(right). Therefore, steps appear in the electron density of states (DOS) Dn(E ), where each step belongs

to one subband. The occupation probability of a state is given by Fermi-Dirac statistics, which apply
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2. FUNDAMENTALS OF CHARGE TRAPPING

as long as thermal equilibrium prevails. This is certainly the case for NBTI conditions, where the

channel does not carry any appreciable current. Indeed, small and short channel current pulses,

required in some measurement techniques to assess the NBTI degradation, lead to an overpopulation

of high energy states. However, at the end of each pulse, the redistribution of the charge carriers back

to equilibrium proceeds quickly and thus has not been noticed in experiments up to now. For this

reason, electrons are assumed to obey the Fermi-Dirac statistics during NBTI conditions.

There exist several approximate methods to obtain the wavefunctions of bound states, however,

each of them suffers from oversimplifications in certain regions. The first approach makes use of

the Airy functions [98], which are solutions of the Schrödinger equation when the inversion layer is

approximated by triangular potential well. Even though these functions satisfactorily reproduce the

oscillatory behavior within the channel, they lack the exponential tails penetrating into the dielectric.

This is due to the fact that the discontinuity at the interface is approximated by an infinitely high

barrier. Another approach is provided by Gundlach’s method [99] that focuses on the part of the

wavefunctions located within the dielectric. The channel electrons, however, are modeled as free

particles in a constant potential and thus the effect of the electric field within the channel is not

considered in this method. The third analytical approach relies on the Wentzel-Kramers-Brillouin

(WKB) approximation [100, 101] (see Appendix A.2), which stems from a semi-classical derivation.

However, this approximation breaks down at the classical turning points xl/r,1, xl/r,2, xl/r,3 . . . where

the energies of the quasi-bound states En,1, En,2, En,3,. . . fall below the conduction band edge Ec(x).

This problem can be overcome using Langer’s method [102], which yields reasonable results — even

in a region close to the classical turning points — and is thus frequently applied for the calculation

of the tunneling probability. The most interesting part of the wavefunctions lies in the region left to

the interface where the WKB approximation is often simplified assuming a trapezoidal, a triangular,

or even a rectangular energy barrier (see Appendix A.3). The above deficiencies can be overcome by

numerically solving the Schrödinger equation for the whole region including the substrate and the

dielectric. This, for instance, is carried out in a Schrödinger-Poisson solver, which also considers the

electrostatics within the device (see Chapter 3).

The injection of electrons into the dielectric is hindered in crystal and amorphous structures due to

the absence of any quantum states within their bandgap. Atomic arrangements, where the symmetry

of the regular structure is broken, are termed defects. During processing they unavoidably arise in

large abundance and are distributed over the whole oxide. Furthermore, these defects have orbitals

that can potentially introduce energy levels within the insulator bandgap and are thus capable of

capturing and emitting substrate charge carriers. The band edges of the dielectric are large energy

barriers for the charge carriers in the substrate. Since the band offset between the substrate and

the dielectric has values of several electron volts, thermal activation over these barriers is negligible

when there is only a small bias applied between source and drain. However, the wavefunctions of

the charge carriers feature quickly decaying tails into the oxide. This implies a non-zero probability

of encountering charge carriers within the dielectric, meaning that they penetrate into the dielectric

and can be captured by defects. The rates of such transitions are given by Fermi’s golden rule.

ri f =
2π

� |Mi f |2δ(Ei −E f ) (2.1)
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2. FUNDAMENTALS OF CHARGE TRAPPING

The subscripts i and f denote the initial and the final state of the tunneling electron. Mi f is a matrix

element, which is associated with the transition and can be calculated as

Mi f = 〈ψi |V |ψ f 〉 . (2.2)

The term δ(Ei −E f ) in equation (2.1) guarantees energy conservation before and after the transition.

This kind of process is commonly referred to as ‘elastic’, where this term only refers to the energy of

the exchanged electron.

Tewksbury [23] provided an expression for matrix element assuming a constant oxide field within the

dielectric and a constant potential within the substrate. In his derivation, the trap was approximated

by a δ-type potential

V (x) = Ec(x)−Vδ δ(x −xt) (2.3)

with δ(x) being the Dirac delta function. Ec(x) and Vδ(x) are the conduction band edge in the oxide

and the depth of the trap potential, respectively. The form of this potential implies that the integral

in the matrix element only contributes directly at the center of the trap. Then the matrix element has

the form

Mi f =C
�

kx exp

− xt�
xif

Kx (x ′)dx ′
 , (2.4)

where kx and Kx (x) are defined as the wavevectors within the substrate and the dielectric,

respectively.

k2
x = 2mn

�2
(Ex −V (x)) (2.5)

K 2
x (x) = 2mt

�2
(V (x)−Ex ) (2.6)

Ex denotes the energy of the electrons in the x-direction and C is a normalization constant. xt stands

for the spatial depth of a trap measured from the substrate-oxide interface and xif is the position

of the interface. mt represents the tunneling mass and mn is the electron mass in the conduction

band. Note that the exponential term in equation (2.4) is the dominant factor in the matrix element.

For slowly varying Kx (x), it decays with increasing trap depth — a behavior characteristic for all

kinds of tunneling processes. The WKB integral in its exponent originates from the phase factor

of the channel wavefunction, whose corresponding wavevector Kx (x) is often approximated to be

constant for simplicity [23]. Due to the reduction to a one-dimensional problem, the δ-type trap

potential covers the entire plane parallel to the interface. To correct for this shortcoming, Tewksbury

introduced a capture cross section following the Freeman approach [103].

Lundstrom et al. [104] derived an expression of the matrix element assuming a step-potential for Ec(x)

and a three-dimensional δ-type trap potential [104].

Mi f =C

�
kx K

m2
t kx + m2

nKx

e−Kx (xt−xif) (2.7)

K 2 = 2mt

�2
(V0 −E ) (2.8)

K 2
x = K 2 + k2

y + k2
z (2.9)
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V0 stands for the height of the potential step. The wavevectors parallel to the interface are referred

to as ky and kz . Due to the constant potential energy within the dielectric, the WKB integrand is

reduced to a simple multiplication Kx (xt − xif). Keep in mind that the kinetic energy of the electrons

perpendicular to the interface enters the exponential term in contrast to equation (2.4). The sum of

this matrix element over all conduction band states assuming a free Fermi gas delivers a tunneling

time constant of the form

1

τ(E , x)
= 1

τ0(K ,k2
x +k2

y +k2
z , x)

e−K (xt−xif) , (2.10)

where the prefactor τ0 is shown to weakly depend on the trap energy Et = Ex and the trap depth

xt. Note that wavevector K , the equivalent quantity to Kx in the one-dimensional case, enters the

exponential term again.

The mechanism of pure elastic electron tunneling is often used as the standard explanation of

charge trapping in MOSFETs. Over the time, several simplified expressions of tunneling rates have

been published in numerous distinct charge trapping models [105, 106] and will be touched on for

completeness below. Christenson et al. [106] used Shockley-Read-Hall statistics in order to investigate

the low frequency noise spectrum of a MOS transistor. His hole capture rates incorporate a tunneling

probability through a rectangular potential barrier depending on the depth of a trap xt.

r = cn exp

�
− 2

ħ
�

2mtW xt

�
, (2.11)

where c and W stand for a capture coefficient and the barrier height, respectively. A further

improvement has been achieved by Scharf [97], who accounted for the energy dependence of the

tunneling charge carriers.

r = 1

τ0(E , xt,T )
exp

−2

xt�
xif

k(E )dx

 (2.12)

Here, the integral extends from the semiconductor-oxide interface xif to trap depth xt. Note that the

second factor on the right-hand side of equation (2.12) corresponds to a WKB factor and reflects the

exponentially decaying tunneling probability with increasing trap depth. However, this factor has

been phenomenologically introduced by Scharf but does not arise from a rigorous derivation. The

approximation provided by Tewksbury is the most suited one for the application to MOSFETs since it

accounts for the energy and depth dependence and uses a convenient one-dimensional formulation

of tunneling.

2.2 Franck-Condon Theory

Charge trapping models found in literature usually assume elastic electron tunneling, which ignores

the atomic configuration of the defects. In the Franck-Condon theory [107–110], however, changes in

the defect configuration play a crucial role in the charge trapping process. For instance, this theory

predicts that the defect levels can be subject to a shift [111–114] (discussed in Section 2.2). In order
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to support the physical understanding of such trapping processes, one has to deal with the basics

of microscopic theories, which provide the most complete description of a physical process, such as

charge trapping.

Therefore, the Schrödinger equation [91, 92] for a system involving electrons and nuclei is taken as a

starting point. Its Hamiltonian �Htot can be formulated as

�Htot({Rl }, {rm}) = �Te + �Ven({Rl }, {rm})+ �Vee + �Tn + �Vnn({Rl }) , (2.13)

where the subscripts n and e refer to nuclei and electrons, respectively. ri and Rj are the coordinates of

a certain electron m or a certain nucleus l , respectively, whereas the curly braces stand for the whole

set of coordinates, such as r1, r2, r3, . . . for {rm}. The Hamiltonian �Htot contains all contributions from

the electrons ( �Te) and nuclei ( �Tn) kinetic energies as well as from the Coulombic electron-electron�Vee, nucleus-nucleus �Vnn, and electron-nucleus �Ven interactions. Then, the Schrödinger equation

reads

�Htot, j ({Rl }, {rm}) Υ j ({Rl }, {rm}) = Etot, j Υ j ({Rl }, {rm}) , (2.14)

where the energy of the whole system of the electrons and the nuclei is denoted as Etot, j . It is

important to note at this point that the wavefunctions Υ j ({Rl }, {rm}) depend on all positions of the

electrons as well as the nuclei and thus the equation (2.14) cannot be solved due to its mathematical

complexity.

In order to obtain an approximate solution, one usually employs the Born-Oppenheimer

approximation, also known as the adiabatic approximation [91, 92], which states that the electrons

move much faster than the nuclei. In this picture, the electrons instantaneously adapt to each atomic

configuration and the motion of the nuclei can be neglected for the solution of the electron system.

Based on this assumption the wavefunction Υ j ({Rl }, {rm}) can be split into an electron (Ψi ({Rl }, {rm}))

and a nuclei (Φi j ({Rl })) part.

Υ j ({Rl }, {rm }) =
!

i

Ψi ({Rl }, {rm }) Φi j ({Rl }) (2.15)

In a further consequence, this ansatz separates the electron and nuclei system, which are then

characterized by the so-called ‘electronic’ and ‘vibrational’ states, respectively. The electron system

is described by the electronic Schrödinger equation with a fixed nuclei configuration {Rl }.� �Te + �Ven({Rl }, {rm})+ �Vee({rm})+ �Vnn({Rl })
�
Ψi ({Rl }, {rm}) = Ei ({Rl }) Ψi ({Rl }, {rm}) (2.16)

Ψi ({Rl }, {rm}) stands for the many-electron wavefunction, which is a function of the electron

coordinates {rm}. The nuclei have fixed positions {Rl } and enter the equation (2.16) as parameters

only. Consequently, their positive charges form an external potential �Ven({Rl }, {rm}) to the electron

system. The eigenvalues Ei ({Rl }) of equation (2.16) re-enter the Schrödinger equation of the nuclei

system,

� �Tn +Ei ({Rl })
�
Φi j ({Rl }) = Etot,i j Φi j ({Rl }) , (2.17)
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FIGURE 2.2: The configuration coordinate diagram of a nuclei system in a parabolic adiabatic potential (black

solid line). The ordinate represents the total energy Etot,0 j , where the electron system is assumed

to be in its ground state. The abscissa is the configuration coordinate q , which describes the

atomic configuration {Rl }. The quantum mechanical nature of the nuclei is reflected in the

formation of wavefunctions Φ0 j ({Rl }) (colored lines), each of which has its corresponding discrete

energies Etot,0 j .

and act as an external potential, in which the nuclei move. This potential is therefore referred to as

the adiabatic potential or the potential energy surface. The nuclei in the Schrödinger equation (2.17)

are treated as quantum mechanical particles. Therefore, they cannot be visualized as being to be

located at certain points in space but are described by their wavefunctions Φi j ({Rl }). Furthermore,

the energy spectrum of the nuclei system is quantized and includes discretized excitations known

as lattice vibrations in crystals. In quantum chemistry, the nuclei system is frequently visualized in

so-called configuration coordinate diagrams (see Fig. 2.2). The ordinate of these diagrams represents

the total energy Etot,0 j presuming that the electron system is in its ground state. The abscissa is the

configuration coordinate q , which summarizes the nuclei configuration {Rl } in one quantity. It is

important to note here that the coupling of the two Schrödinger equations (2.16) and (2.17) results

in so-called ‘vibronic’ states, which are combinations of the electronic and the vibrational states and

are defined by the wavefunctions Ψi ({Rl }, {rm}) ·Φi j ({Rl }) and their corresponding energy Etot,i j .

According to the Franck-Condon principle [107–110], these vibronic transitions involve a change in

the electronic as well as in the vibrational state. The corresponding rate can be calculated using

Fermi’s golden rule (see Appendix A.1)

raαbβ = 2π

� M 2
aαbβ δ(Etot,aα−Etot,bβ) , (2.18)

Maαbβ =
###�Φaα({Rl })

###�Ψa ({Rl }, {rm})
###V ′

###Ψb({Rl }, {rm })
�###Φbβ({Rl })

�### (2.19)

with V ′ being the perturbation operator. aα and bβ denote the initial and the final vibronic

state, respectively, where the latin and greek symbols refer to the electronic and vibrational states.
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According to the Franck-Condon approximation, the matrix element Maαbβ can be separated into

two factors:

Maαbβ =
###�Φaα({Rl })

###Φbβ({Rl })
�### · ###�Ψa ({Rl }, {rm})

###V ′
###Ψb({Rl }, {rm})

�### (2.20)

Using the above equation, the transition rate (2.19) can be rewritten as

raαbβ = Aab faαbβ , (2.21)

Aab = 2π

�
###�Ψa ({Rl }, {rm })

###V ′
###Ψb({Rl }, {rm})

�###2
, (2.22)

faαbβ =
###�Φaα({Rl })

###Φbβ({Rl })
�###2

. (2.23)

Here, Aab denotes the electronic matrix element and is associated with an electronic transition, for

instance electron or hole tunneling in the case of charge trapping in defects. The Franck-Condon

factor faαbβ gives the probability of the vibrational transition, which is determined by the overlap

of the nuclei wavefunctions. The probability for such a transition is lower than that for the electron

transition. Therefore, faαbβ becomes the decisive factor in equation (2.21).

2.3 The Level Shift

The Frank-Condon theory provides a theoretically profound description of vibronic transitions and

has a wide range of applications in quantum chemistry, such as the calculation of the absorption and

fluorescence spectra. In the following, this theory will be employed for the case of charge trapping

into oxide defects and will lead to a shift of the defect levels. This level shift can be best explained

using a configuration coordinate diagram of a defect (depicted in Fig. 2.3). The neutral defect is

represented by the curve U0(q), which can, for instance, be identified with the formation energy

Uf of the defect1. In equilibrium, the neutral defect takes on its minimum configuration q1 labeled

with A in Fig. 2.3. If the defect is charged positively, one electron has to be removed from the defect

and placed within the substrate valence band, for instance at Ev. As a consequence, the electron

energy Ev must be added to the defect energy U+(q) for a correct comparison with U0(q). But one

should consider that vibronic transitions can occur with each conduction or valence band state in

the substrate, including the energies E0/+ and E+/0. As mentioned before, the transition rates for

charge trapping can be calculated using the Franck-Condon theory. The corresponding equation

(2.21) depends most strongly on the factor faαbβ, which is determined by the overlap of the nuclei

wavefunctions. This factor reaches the largest values for vibrational transitions, whose energies lie

close the intersection point (IP) of the adiabatic potentials. In the classical limit, it is even peaked

at the energy of this intersection point, at which the vibronic transition is assumed to occur. During

a hole capture process, the neutral defect is initially in its equilibrium configuration q1 (state A in

Fig. 2.3). There, the defect has an energy of U0(q1), which only intersects with U+(q1) when the

emitted electron is placed at the energy level E0/+ in the substrate valence band. It is emphasized

1 The formation energy corresponds to the energy required to piece together a defect out of its individual components

and can be determined from first-principles calculations, such as density functional theory.
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FIGURE 2.3: The configuration coordinate diagram of a defect in its positive and neutral charge state (left)

and the corresponding trap levels in the band diagram (right). The solid curves U+(q)+Ev and

U0(q) represents the adiabatic potentials of the positive and neutral defect system, respectively.

In the former case, the tunneling electron is moved to the substrate where it sits at the valence

band edge. When the electron has a different energy, for instance E0/+ or E+/0, the corresponding

adiabatic potential is shifted on the energy scale and depicted by the dashed lines. The red and

the blue filled circle indicates the points, where the hole and electron trapping process can occur.

These points only represent the temporary states, which are realized right after the tunneling

process. The band diagram on the right-hand side includes the defect levels extracted from the

configuration coordinate diagram (left). The resulting electron (E+/0) and hole capture (E0/+) level

can be separated by several electron Volts, where only one of these two levels can be active at a

time. Interestingly, the energy level E+/0 must always lie above E0/+ due to the positive curvature

of the adiabatic potentials.

here that the defect is assumed not to overcome the barrier over the intersection point IP (path C →
IP → A in Fig. 2.3) in the concept of the level shift. During the tunneling transition of the electron,

the defect is not capable of adopting the new configuration of the new charge state according to the

Franck-Condon principle. Afterwards, it is in the state A′ and relaxes to the equilibrium configuration

q2 (state A′′). During this process, the defect dissipates the relaxation energy of U+(q1)−U+(q2) to

the heat bath. In the case of an electron capture process, the defect is initially in its equilibrium

configuration q2 labeled with B in Fig. 2.3. A vibronic transition is only allowed, if a substrate electron

is excited to the energy E+/0 (from state A” to B) by the heat bath. Then the defect plus the electron

have an energy of U+(q2)+E+/0 (state B in Fig. 2.3), which coincides with the energy of the neutral

defect U0(q2). Analogously to the hole capture process, the defect configuration q2 is preserved

during the tunneling transition (state B ′). Afterwards the defect undergoes a structural relaxation

to state B ′′ thereby dissipating an energy of U0(q2)−U0(q1) to the heat bath. The aforementioned

electron levels E0/+ and E+/0 are usually referred to as switching levels and can be defined as the

difference of adiabatic potential energies:

E0/+ =U0(q2)−U+(q2) (2.24)

E+/0 =U0(q1)−U+(q1) (2.25)

There is a the shift between energy levels for electron (E+/0) and hole (E0/+) capture. This difference is

ascribed to the fact that the defects have different equilibrium configurations q1 and q2 for different
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replacements

Uf

q

Ui (q) U j (q)

Ui (qi )

U j (q j )

qi q j

S�ωS�ω

U ji

ΔUb,i j

ΔUb, ji

IP

FIGURE 2.4: The configuration coordinate diagram for the NMP model. The two parabolas Ui (q) and U j (q)

show the adiabatic potentials for the case that the electron is located in the channel or the

defect, respectively. IP labels the intersection point of Ui (q) and U j (q), where the NMP process

takes place in the classical approximation. The electron capture or emission rates are primarily

determined by the NMP barriers ΔUb,i j and ΔUb, ji , respectively.

charge states of the defect. As a consequence, an ‘elastic’ vibronic transition can only occur at

different energies in the configuration coordinate diagram. This requires that the exchanged electron

has different energies E+/0 and E0/+ for electron and hole capture — a fact that has motivated the

term ‘level shift’. It is important to note at this point that the above considerations are not restricted

to defect transitions between positive and neutral charge states and can in principle be extended to

all possible combinations of charge states.

In conclusion, the conventional concept of fixed trap levels must be questioned if a defect has distinct

equilibrium configurations for two charge states. Instead, the trap/defect levels depend on their

charge state, which can have a considerable impact on the trapping dynamics. Although this concept

has not been applied to charge trapping so far, it can give an explanation for trap-assisted tunneling

through dielectrics [112, 113].

2.4 Nonradiative Multi-Phonon Theory

For the level shift, it has been implicitly presumed that vibronic transitions always take place at

equilibrium configurations of the defects. Thereby, it has been ruled out that the defects are thermally

excited2 up to the intersection points of their adiabatic potentials (see Fig. 2.4). However, this case has

been accounted for in the nonradiative multi-phonon theory (NMP) [107, 115]. This mechanism has

2 In solid-state physics, the thermal excitations are associated with a distortion of defects and the absorption of phonons.

By contrast, the structural relaxation of defects is related to the emission of phonons.
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already been suggested for random telegraph noise and 1/ f noise in microelectronic devices [56],

where only a simplified description of NMP process has been employed. Furthermore, it is also

encountered in the context of phonon-assisted tunneling ionization of deep centers [116–118] and

discussed on various levels of theoretical sophistication [55, 119–122] including additional second-

order effects, such as the Coulomb energy [123–125] and field-enhancement factors [116, 117].

In NMP theory, the equation (2.21) is generalized to account for all possible thermal excitations. Then

the equation (2.21) must be rewritten as

rab = Aab f LSF
ab , (2.26)

f LSF
ab = ave

α

!
β

faαbβ , (2.27)

where f LSF
ab

is referred to as the lineshape function. ‘ave’ denotes the thermal average over all initial

vibrational states α and accounts for the thermal excitations using a sum over weighted Boltzmann

factors. The lineshape function eventually depends on the Franck-Condon factor and thus on the

complicated shape of the adiabatic potentials of the defects. It is noted that these potentials are

not assessable via experiments but can also not be calculated using first-principles calculations (see

Section 3.3), which would by far exceed the current computational capabilities. However, they can be

reasonably approximated using the harmonic approximation when only small displacements from

the equilibrium configuration of the defects are considered. In this approximation, the adiabatic

potentials are represented as a Taylor expansion whose linear term vanishes close to the equilibrium

configuration. As a result, these potentials become parabolic and therefore, describe harmonic

oscillators frequently used in solid state physics. A corresponding configuration coordinate diagram

for the vibronic transitions of a defect is depicted in Fig. 2.4. The total energies Ui (q) and U j (q) in

Fig. 2.4 include the contributions from the defect atoms along with its immediate surrounding (and

the channel region) and therefore correspond to the adiabatic potentials Etot,i j ({Rl }). For this reason,

their corresponding adiabatic potentials differ only in the location of electron involved in the trapping

process. In the case of Ui (q), the electron resides in the channel while, for U j (q), it is located at the

defect site. In the harmonic approximation, the adiabatic potentials can be written as:

Ui (q) = 1

2
Mω2(q −qi )2 +Ui (2.28)

U j (q) = 1

2
Mω2(q −q j )2 +U j (2.29)

ω stands for the vibrational frequency of the oscillator and determines the curvature of the parabola

while M is the mass of the oscillator. Analogously to the previous section, the classical vibronic

transitions are assumed to occur at the intersection points of the adiabatic potentials. Therefore, the

defect system must be thermally excited from its initial configuration Ui (qi ) to the intersection point

IP of the two parabolas in Fig. 2.4. At this point, the total energies Ui (q) and U j (q) equal and allow

for an elastic tunneling transition. From there, the system relaxes to the equilibrium configuration q j

with the energy U j (q j ). The energy difference between Ui (q) and U j (q) can be expressed as

ΔU (q) =U j (q)−Ui (q)

=U ji +S�ω −
�

2S�ω
�

Mω

� (q −qi ) . (2.30)
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U ji =U j (q j )−Ui (qi ) is the so-called thermodynamic trap level. It is given relative to the conduction

or the valence band edge for electron or hole trapping3 and determines the occupancy of the defect

in thermal equilibrium. As demonstrated in Fig. 2.4, the Huang-Rhys factor S is defined by the energy

differencesU j (qi )−U j (q j ) andUi (q j )−Ui (qi ), which are both equivalent to S phonons with an energy

of �ω. That is, this quantity determines the intersection point of the parabolas and eventually impacts

the probability for an electron transition between the defect and the channel. In the above NMP

concept, it has been assumed that the charge state of the defect does not affect the curvatures of

Ui (q) and U j (q). As a result, only a linear term in q appears in equation (2.30). Note that its sign

is determined by the relative positions of qi and q j but has no physical meaning. The forward and

reverse barrier of this process are given by

ΔUb,i j =
(U ji +S�ω)2

4S�ω (2.31)

and

ΔUb, ji =
(U ji −S�ω)2

4S�ω , (2.32)

respectively.

The NMP mechanism was suggested several decades ago but has been disregarded in the context

of NBTI so far. Nevertheless, this mechanism should be considered as a possible description of

charge trapping in NBTI. The underlying theory relies on the complicated quantization effects of the

nuclei system and is therefore quite complex in its original variant. However, several convenient and

accurate approximations, including the version presented in this section, have been developed over

the years and allow for theoretical investigations on a device level.

2.5 Effective Rates into Single Traps

Up to this point, trapping has been defined for transitions from one band state in the substrate into

one trap state or vice versa. Each of the possible transitions is associated with one rate entering the

trapping dynamics. In order to reduce the set of rate equations, compact analytical expressions for

the overall trapping rates into one defect are required. In this section, a derivation of the sought

expressions will be presented for the case of elastic as well as inelastic tunneling.

2.5.1 Elastic Electron Tunneling

The derivation below follows the approach of Tewksbury [23] with some slight modifications. For

a proper description of charge trapping, Fermi’s golden rule is taken as a starting point. This

3 Here it has been implicitly presumed that the electrons or holes lie exactly at the conduction or valence band edge,

respectively. However, if quantum confinement in the inversion layer is considered, the band edges must be replaced

by the energy of the first quasi-bound state in the respective band.
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fundamental law (see Appendix A.1) gives the rate for a transition between a certain initial and final

state. In its most general form it reads:

rt b = 2π

� |Mt b|2δ(Et −Eb) (2.33)

The subscripts t and b denote a trap or a band state, respectively, and Mt b represents the tunneling

matrix element. The δ-function indicates that the electron energy before and after the transition must

be conserved as it is required for elastic tunneling. In semiconductor devices, the charge carriers

captured in the dielectric can originate from several different energy levels of the substrate valence

or conduction band. In order to account for their contribution to the whole tunneling rate, the sum

over all k states has to be taken.

r =
!

k

2π

� |Mt k|2δ(Et −E (k)) (2.34)

Here, Et and E (k) is the trap level and the electron energy in the substrate, respectively. The subscript t

in equation (2.33) has been omitted since only tunneling into and out of a certain trap is considered.

The matrix element Mt k involves the trap wavefunction, whose exact form is in general unknown.

Often, the calculation of the matrix element is simplified to a one-dimensional δ-type trap potential.

Its solution [23],

Mc/v,t kx
(Ex , xt) = Mc0/v0,t kx

(Ex , xt) ζWKB,c/v(Ex , xt) , (2.35)

consists of the factors

Mc0/v0,t kx
(Ex , xt) =

�2Kc/v,x (Ex , xt)

mt

�
kc/v,x (Ex )

2Lx
(2.36)

and

ζWKB,c/v(Ex , xt) = exp

− xt�
xif

Kc/v,x (Ex , xt)dx

 (2.37)

with

K 2
c/v,x (Ex , x) = 2mt

�2

###Ec/v,ox(x)−Ex

### , (2.38)

k2
c/v,x (Ex ) = 2mn/p

�2

###Ex −Ec/v,sc(xif)
### . (2.39)

Note that electron and hole tunneling proceed through an energy barrier formed by the oxide

conduction and valence band, respectively. The matrix elements for these cases are labeled by

‘c’ and ‘v’, accordingly. The second factor ζWKB,c/v(Ex , xt) of the matrix element in equation (2.35)

arises from the exponential decay of the electron wavefunction, which can be derived using the

WKB approximation. Since this factor shows a dependence on the carrier kinetic energy |Ex −
Ec/v,sc(x)| perpendicular to the interface, the summation over all band states must be split into a

one-dimensional and a two-dimensional part (see Appendix A.4):

!
k

= Lx Ay z

 ∞�
Ec

E�
Ec

Dn,1D+2D(Ex )dEx dE +
Ev�

−∞

Ev�
E

Dp,1D+2D(Ex )dEx dE

 , (2.40)

Dn/p,1D+2D(Ex ) = mn/p

π2�3

�
mn/p

2|Ex −Ec/v,sc(x)| . (2.41)
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In Dn/p,1D+2D(Ex ) a factor of two has been introduced in order to account for spin degeneracy.

Note that the DOS has been derived based on the parabolic band approximation, however, the

potential well in the inversion layer gives rise to the formation of subbands (see Section 2.1) and

in consequence a different DOS. This means that the equation (2.40) neglects quantization effects in

the inversion layer. Nevertheless, inserting the expression (2.40) into equation (2.34) yields

r = Lx Ay z
2π

�

� ∞�
Ec

E�
Ec

Dn,1D+2D(Ex ) |Mc0,t b(Ex , xt)|2 ζ2
WKB,c(Ex , xt)δ(Et −E )dEx dE

+
Ev�

−∞

Ev�
E

Dp,1D+2D(Ex ) |Mv0,t b(Ex , xt)|2 ζ2
WKB,v(Ex , xt)δ(Et −E )dEx dE

�
,

(2.42)

which can be simplified to

r = Lx Ay z
2π

�

� Et�
Ec

Dn,1D+2D(Ex ) |Mc0,t b(Ex , xt)|2 ζ2
WKB,c(Ex , xt)dEx

+
Ev�

Et

Dp,1D+2D(Ex ) |Mv0,t b(Ex , xt)|2 ζ2
WKB,v(Ex , xt)dEx

�
.

(2.43)

The factor ζWKB,v(Ex , xt) enters the above equation as a square, which corresponds to a transmission

coefficient of an electron through an energy barrier [126], and will be referred to as the ‘WKB factor’

in the following.

In this derivation, the calculation of the matrix element has been reduced to a one-dimensional

problem in favor of a compact and analytical expression. In order to correct for this approximation,

the term σn/p,x y /Ay z must be introduced following Freeman’s approach [103].

r (Et) = re(Et)+ rh(Et) (2.44)

re(Et) = Lx
2π

�

Et�
Ec

Dn,1D+2D(Ex ) σn,y z |Mc0,t b(Ex , xt)|2 ζ2
WKB,c(Ex , xt)dEx (2.45)

rh(Et) = Lx
2π

�

Ev�
Et

Dp,1D+2D(Ex ) σp,y z |Mv0,t b(Ex , xt)|2 ζ2
WKB,v(Ex , xt)dEx (2.46)

Keep in mind that these equations describe elastic tunneling, meaning that a trap can only exchange

charge carriers with those bound states, whose energy E coincides with the trap level Et — even

though E can have different components Ex . In this derivation, the cross-sections σn/p,y z correspond

to fitting parameters but can be estimated by analytical expressions presented in [23]. Since the values

obtained by these expressions range around 10−16 cm2 and are subject to small variations, the cross-

sections are assumed to be constant throughout this thesis.
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2.5.2 Shockley-Read-Hall Theory

Compact expressions for inelastic transitions are provided by the framework of the Shockley-Read-

Hall (SRH) theory [127]. It has been developed to describe recombination centers in bulk but has also

been extended for the case of electron or hole trapping into dielectrics [128]. The following derivation

of the SRH rates is generalized to NMP transitions, presuming the case of hole trapping, and starts

from equation (2.27).

rt b(E )= At b f LSF
t b (Et ,Eb) (2.47)

The trap and the band state involved in the NMP transition are labeled by the subscripts t and b,

respectively. Et denotes the thermodynamic trap level and Eb an arbitrary state in the valence band.

Since the NMP theory assumes thermal transitions, the energies of the states t and b may differ,

meaning that the trap can in principle exchange charge carriers with the entire valence band. In

order to account for this fact, a sum over all band states has to be carried out.

rt (E ) =
!
b

At b f LSF
t b (Et ,Eb) (2.48)

Employing to the parabolic band approximation (see Section A.45), the sum over all band states b can

be approximated by an integral over the valence band DOS Dp (E ), where E can be identified with the

energy Eb of the valence band state b (see Appendix A.4).

!
b

= Lx Ay z

Ev�
−∞

Dp (E ) dE (2.49)

Using the expression (2.49), the transition rate can be rewritten as

rt b(E )= Lx Ay z

Ev�
−∞

At b(E ) f LSF
t b (E )Dp (E ) dE . (2.50)

For a hole capture process, one must account for the joint probability that the trap must be occupied

by an electron while the band state with an energy E is empty. The first condition is considered by the

trap occupancy ft. The second one can be expressed by

fp = 1− fFD (2.51)

with fFD being the Fermi-Dirac distribution

fFD(E ) = 1

1+exp
�
β(E −Ef)

� , (2.52)

β= 1

kBT
. (2.53)

With this joint probability, one obtains the rate equation for hole capture,

∂t ft =−Lx Ay z

Ev�
−∞

ft At b(E ) f LSF
t b (E )Dp (E ) fp (E )dE , (2.54)
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where the ‘minus’ sign on the right-hand side in the above equation reflects the fact that the trap

occupancy is decreased by a hole capture event. An analogous argumentation for hole emission yields

∂t ft = Lx Ay z

Ev�
−∞

(1− ft) Abt (E ) f LSF
bt (E )Dp (E ) fn(E )dE , (2.55)

where fn equals the Fermi-Dirac distribution fFD. Combining the rate equations for hole capture

(2.54) and emission (2.55) and using the shorthands

cp (E ) = Lx Ay z At b(E ) f LSF
t b (E ) , (2.56)

ep (E ) = Lx Ay z Abt (E ) f LSF
bt (E ) , (2.57)

one obtains

∂t ft =
Ev�

−∞

�
(1− ft)ep (E ) fn(E )− ftcp (E ) fp (E )

�
Dp (E )dE (2.58)

=
Ev�

−∞

�
(1− ft)

ep (E )

cp (E )
fn(E )− ft fp (E )

�
cp (E )Dp (E )dE . (2.59)

If thermal equilibrium is assumed [127], the trap level Et is occupied according to the Fermi-Dirac

statistics

ft(E )= fFD(Et) =
1

1+exp
�
β(Et −Ef)

� (2.60)

and detailed balance

∂t ft = 0 (2.61)

must be employed. Using the identity

fn(E )= exp
�−β(E −Ef)

�
fp (E ) (2.62)

one obtains

ep (E )

cp (E )
= exp

�−β(Et −E )
�

. (2.63)

Inserting this result back into equation (2.59) yields

∂t ft =
�
(1− ft)exp

�−β(Et −Ef)
�− ft

� Ev�
−∞

cp (E )Dp (E ) fp (E )dE . (2.64)

The hole capture time constant can be expressed as

1

τcap,h
=

Ev�
−∞

cp (E )Dp (E ) fp (E )dE

Ev�
−∞

Dp (E ) fp (E )dE� �� �
≡σSRH

p vth,p

p , (2.65)
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Hole Capture Process

Eve−

h+
|ΔEt|

ΔEb

Bulk

Oxide

x

E

∼ Ev

Et

FIGURE 2.5: The transition barrier for a hole capture process with Et < Ev. The hole is initially located in the

bulk at an energy level ∼ Ev. Its capture can be imagined to proceed over a downwards directed

barrier of the height |ΔEt|+ΔEb. For this process, an minimum energy of ΔEt is required to push

down the hole from Ev to Et. As a consequence, the forward barrier is higher than its reverse

counterpart by a value of |ΔEt|. The rest of the barrier height is accounted for by ΔEb, which

is assumed to have a finite value for generality. It is noted here that the SRH theory [127] has

been derived without assuming thermal barriers. Therefore, this theory is usually considered for

processes proceeding without or with a negligible thermal barrier.

where the first term on the right-hand side of the above equation is defined as the product of a cross

section σSRH
p and the thermal velocity vth,p . The definition of the hole emission time constant follows

from equation (2.64).

∂t ft = (1− ft)σ
SRH
p vth,p p exp

�−β(Et −Ef)
�� �� �

=1/τem,h

− ftσ
SRH
p vth,p p� �� �
=1/τcap,h

For the ratio of the time constants, one obtains the well-known relation

τcap,h(E )

τem,h(E )
= exp

�−β(Et −Ef)
�

, (2.66)

which is frequently invoked in the context of charge trapping — in particular for NMP models [55, 56,

121, 124, 125]. Note that the quantity σSRH
p in equation (2.65) contains the matrix element At b and the

Frank-Condon factor f LSF
t b

(Et ,Eb). The former is associated with an electron tunneling process and

thus often approximated by a WKB factor. The latter is strongly determined by the barrier height of

an NMP transition (see Section 2.4). This suggests that also the cross section σSRH
p in the SRH theory

should somehow reflect this barrier dependence. For a hole capture process with Et <Ev (cf. Fig. 2.5),

the barrier height can be split into two components, namely |ΔEt| and ΔEb. The former is defined as

ΔEt = Et,0 −Ev,0 , (2.67)

where Et,0 and Ev,0 are the trap level and the valence band edge in the absence of an electric field.

The value of |ΔEt| corresponds to minimal energy required for a transition. The latter, that is ΔEb,
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represents only the remainder to the overall barrier |ΔEt|+ΔEb. For the Et >Ev, the component |ΔEt|
vanishes and only ΔEb remains. Using the above definitions of the barriers, the cross section can be

written as

σSRH
p =σSRH

p,0 exp
�−xt/xp,0

�exp
�−βΔEb

�
, Et > Ev

exp
�−βΔEb

�
exp

�−β(Ev −Et)
�

, Et < Ev

, (2.68)

where σSRH
p,0 and xp,0 denote a temperature-independent cross section and the characteristic

tunneling length. It is remarked at this point that the transition barriers has been assumed to be

independent of the energy of the holes.

1/τcap,h =σSRH
p,0 vth,p p exp

�−xt/xp,0
�

exp
�−βΔEb

�1, Et > Ev

exp
�−β(Ev −Et)

�
, Et < Ev

, (2.69)

1/τem,h =σSRH
p,0 vth,p p exp

�−xt/xp,0
�

exp
�−βΔEb

�exp
�−β(Et −Ef)

�
, Et >Ev

exp
�−β(Ev −Ef)

�
, Et <Ev

. (2.70)

Making use of

p = Nv exp
�−β(Ef −Ev)

�
,

Ev = Ev,0 −q0ϕs ,

Et = Et,0−q0ϕs −q0Foxxt

(2.71)

with Et,0 and Nv being the trap level in the flat band case and the effective valence band weights,

respectively, the rates (2.69) and (2.70) can be rewritten as

1/τcap,h = p

τSRH
p,0 Nv

exp
�−xt/xp,0

�
exp

�−βΔEb

�1, Et > Ev

exp
�
βΔEt

�
exp

�−βq0Foxxt
�

, Et < Ev

, (2.72)

1/τem,h = 1

τSRH
p,0

exp
�−xt/xp,0

�
exp

�−βΔEb
�exp

�−βΔEt
�

exp
�
βq0Foxxt

�
, Et >Ev

1, Et <Ev

(2.73)

with
1

τSRH
p,0

= Nvvth,pσ
SRH
p,0 . (2.74)

The corresponding expression for electron trapping from the conduction band can be derived in an

analogous manner and reads

1/τcap,e =
n

τSRH
n,0 Nc

exp
�−xt/xp,0

�
exp

�−βΔEb
�exp

�−βΔEt
�

exp
�
βq0Foxxt

�
, Et > Ec

1, Et < Ec

, (2.75)

1/τem,e =
1

τSRH
n,0

exp
�−xt/xp,0

�
exp

�−βΔEb

�1, Et > Ec

exp
�
βΔEt

�
exp

�−βq0Foxxt
�

, Et < Ec

(2.76)

with
1

τSRH
n,0

= Ncvth,nσ
SRH
n,0 . (2.77)

Finally, it should be mentioned that the conventional SRH theory as established in [127] does not

account for charge carrier tunneling and the possible presence of thermal barriers.
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Applied Methods

3.1 Schrödinger-Poisson Solver

All NBTI models share the same challenge, namely to explain the correct field acceleration and

temperature activation of the ΔVth degradation. These experimentally observed dependences must

be traced back to the physics in a MOSFET. The most frequently used charge trapping models

require the band diagram, the electric field across the insulator, and the spatial distribution of the

inversion charge carriers. This information can easily be computed via a Poisson-solver (P-solver) or

a Schrödinger-Poisson solver (SP-solver) [129] if quantum mechanics are assumed to play a crucial

role.

The electrostatics within a MOS device are described by the Poisson equation

ε∇xϕ(x) =−ρ(x) , (3.1)

where ϕ(x) denotes the electrical potential. The charge density

ρ(x)= q0
�
p(x)−n(x)−Na(x)+Nd(x)

�
(3.2)

is decomposed into the charge carrier densities of the electrons n(x) and holes p(x) and the ionized

dopant concentration of acceptor Na(x) and donator Nd(x) atoms. The charge carrier densities at the

point x are expressed as

n(x)=
∞�

Ec

Dn(E , x) fFD(E )dE , (3.3)
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p(x)=
Ev�

−∞
Dp (E , x)

�
1− fFD(E )

�
dE , (3.4)

where fFD stands for the Fermi-Dirac distribution, which determines the occupation of the

conduction and valence band states and is given by

fFD(E ) = 1

1+exp
�
β(E −Ef)

� (3.5)

Its validity rests upon thermal equilibrium between the charge carriers in a specific region of the

MOS device. This assumption is well justified when no voltage is applied between source and drain

of a MOSFET during NBTI stress. In the parabolic band approximation the electron (Dn) and hole

(Dp ) DOS in equation (3.3) and (3.4) are defined by

Dn(E , x)=
!
ν

gνm3/2
n,ν

�2π2

�
2(E −Ec(x)) , (3.6)

Dp (E , x)=
!
ν

gνm3/2
p,ν

�2π2

�
2(Ev(x)−E ) . (3.7)

mnn/p,ν is the electron/hole effective mass with a degeneracy of gν, where ν denotes the valley index.

Ef, Ec, and Ev stand for the Fermi energy, the conduction, and the valence band edge, respectively.

The electrostatic potential ϕ(x) enters the calculation of the conduction (Ec(x)) and the valence

(Ev(x)) band edge as follows:

Ec(x) = Ec,0 −q0ϕ(x) (3.8)

Ev(x) = Ev,0 −q0ϕ(x) (3.9)

Ec,0 and Ev,0 denote the conduction and the valence band edge energy in the flat band case,

respectively. Due to the mutual dependence between ϕ(x), on the one hand, and the carrier densities

n(x) and p(x), on the other hand, the equations (3.1)-(3.9) must be solved self-consistently. This has

been achieved by a P-solver, whose functionality relies on a numerical iteration scheme, visualized in

Fig. 3.1.

More realistic simulations must account for the quantum confinement of the charge carriers in the

inversion layer. This effect arises from the band bending, which forms a potential well for one type of

charge carriers. As described in Section2.1, this well enters as the potential in the one-dimensional

Schrödinger equation, whose solution consists of the single quasi-bound states of electrons and

holes. These states are required for the calculation of the carrier densities

n(x)=
Elim,n�
En,0

!
ν

gν

mn,ν,y z

�2π

!
i

Θ(E −En,i )|ψn,i (x)|2 fFD(E )dE , (3.10)

p(x)=
Ep,0�

Elim,p

!
ν

gν

mp,ν,y z

�2π

!
i

Θ(E −Ep,i )|ψp,i (x)|2 �
1− fFD(E )

�
dE , (3.11)
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ε∇xϕ
k+1(x) = q0(Nd(x)−nk (x)) → E k+1

c (x)

Solve the Schrödinger Equation

[− �2

2m∇2
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||nk+1 −nk || < ǫ
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FIGURE 3.1: A flow chart diagram of the Newton iteration scheme used in the Poisson (left) and the

Schrödinger-Poisson solver (right). The procedure is only discussed for electrons in the

conduction band for simplicity but it also holds true for holes in the valence band using analogous

formulas. In both iteration schemes, the old electron density nk (x) enters the Poisson equation

and a new electrical potential ϕk+1(x) is obtained, which is then required to calculate the new

electron density nk+1(x). In a Poisson solver the new electron density nk+1(x) is evaluated using

the semi-classical formula (3.3). By contrast, in the Schrödinger-Poisson solver the bound states

must be determined, which are then taken to evaluate the new electron density nk+1(x) according

to equation (3.10). Using the newly computed nk+1(x), the iteration loop is continued at the

Poisson step until the update ||nk+1(x)−nk (x)|| falls below a certain limit ǫ.

where Θ(x) stands for the Heaviside step function defined by

Θ(x) =
1, x ≥ 0

0, x < 0
. (3.12)

En,i denotes the energy of the electron quasi-bound state i and ψn,i (x) is the corresponding channel

wavefunction. The single subbands of the quasi-bound states add up to the electron DOS within

the potential well, which is formed by Ec(x) and limited by Elim,n . Outside this region, the charge

carriers are calculated according to equations (3.6) for the free states. Similarly, the hole quasi-bound

states Ep,i with the channel wavefunction ψp,i form subbands within the energy range between

Ev and Elim,p . For the calculation of the band diagram, the Poisson equation and the Schrödinger

equation must be solved self-consistently since they are coupled through the electrostatic potential

ϕ(x) and the charge carrier concentrations, n(x) and p(x). In a SP-solver, this system of coupled

equations is treated using a self-consistent iteration method, outlined in Fig. 3.1. Throughout this
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thesis, the Vienna Schrödinger Poisson (VSP) solver [130] has been applied for the calculation of the

band diagram and the charge carrier concentrations.

3.2 From Rates to Degradation Curves

The last section has been devoted to the possible physical explanations for the charge trapping

process in NBTI. The involved mechanisms, such as quantum mechanical tunneling for instance, are

characterized by their stochastic nature. This means that one must deal with probabilities instead

of pre-determined transition times for the trapping events. Such problems can be best handled

within the framework of homogeneous continuous-time Markov chain theory [131], which rests on

the assumption that the transition rates do not depend on the past of the investigated system.

The continuous time Markov chain theory presumes a set of discrete states S ∈ {1, . . . , N }:

Π(t )= (π1(t ),π2(t ), . . . ,πN(t )) (3.13)

The πi (t ) are the time-dependent occupation probabilities, which fulfill the normalization condition!
i∈S

πi (t ) = 1 . (3.14)

This equation states that the probability of finding the system in one of the states i ∈ S equals unity.

The time-dependent probability pi j for a transition from state i to state j can be formulated as

pi j (Δt )= P
�

X (t +Δt )= j |X (t )= i
�= ri jΔt +O(Δt ) , (3.15)

pi i (Δt )= P
�

X (t +Δt )= i |X (t )= i
�= 1−

!
j �=i

ri jΔt +O(Δt ) , (3.16)

where ri j denotes the transition rate belonging to pi j . The time evolution of the system can be

described by the first-order partial differential equation

∂tπi (t ) =
!
j �=i

π j (t )r ji� �� �
transitions into state i

−
!
j �=i

πi (t )ri j� �� �
transitions out of state i

. (3.17)

The above equation is referred to as the Master or rate equation and controls the time-dependent

occupation probabilities. The first term on the right-hand side represents the transitions T j→i while

the second term stands for the opposite direction. With the definition

ri i =−
!
j �=i

ri j (3.18)

the rate equation (3.17) can rewritten as

∂tΠ(t )=Π(t ) ·R , (3.19)

where R denotes the matrix belonging to the elements ri j . The solution of equation (3.19) is given by

Π(t )=Π(0) ·exp (RΔt ) (3.20)
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and can be expanded into a truncated Taylor series.

Π(t )≈Π(0) · (1+RΔt ) (3.21)

Assuming detailed balance, the time derivative of Π(t ) vanishes and the equilibrium occupation

probabilities Πeq must satisfy

Πeq ·R = 0 . (3.22)

In the case of charge trapping, a single defect is represented by one vector Π(t ). When considering

a large ensemble of defects, the stochastic behavior vanishes and πi (t ) and Π(t ) can be replaced by

their corresponding expectation values fi (t ) and F(t ), respectively. Then the equations (3.19) and

(3.22) read

∂t F(t )=F(t ) ·R (3.23)

and

Feq ·R = 0 , (3.24)

respectively.

When applying Markov theory to charge trapping in NBTI, each state must be assigned to a certain

configuration and a certain charge state of a defect. The rates ri j linking the states i and j must

be related to certain defect transitions, such as charge transfer reactions or thermally activated

rearrangements of the defect structure. The trapping dynamics are then governed by equation (3.23),

which must be solved as a function of time. The details of the applied numerical procedures are

outlined in Fig. 3.2.

Before the real device is subject to stress, the device is assumed to be in equilibrium. The

corresponding band diagram is computed by a P/SP-solver (A) for the equilibrium conditions VG =
Veq and T = Teq. Based on this information, the transition rates req,i j ,m (B) can be evaluated for

each defect m. With the rates req,i j ,m at hand, the equilibrium occupation probabilities feq,i ,m are

calculated using the equation (3.24) and must be subsequently stored (C). When stress sets in, the gate

voltage VG and the temperature T are changed to Vs and Ts, respectively. Since this alters the band

diagram and in consequence the transition rates rs,i j ,m, the S/SP-solver step (D) and the calculation

of the rates (E) must be repeated. Then the implicit Euler method is employed for the numerical

time integration of equation (3.23). This iteration scheme must be continued until the end of the

stress time ts has been reached. At each tk , the change in the defect occupancies Δ fi ,m(tk+1) (G) and

the corresponding threshold voltage shift ΔVth(tk+1) (H) are computed. With the beginning of the

relaxation phase, VG and T are modified again and the whole iteration loop including the steps D, E,

F, G, and H must be repeated. This can be continued for several stress/relaxation cycles with different

stress/relaxation conditions. The steps E, F, and G of numerical procedure in Fig. 3.2 must be repeated

for each individual defect, where the calculation of the rates requires most of the computation time.
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FIGURE 3.2: A flow chart diagram for the calculation of stress/relaxation curves. At first, the occupations for

equilibrium conditions (VG =Veq, T = Teq) are calculated in steps A, B, and C. During one stress or

relaxation cycle, the band edges (D) and the transition rates (E) must be determined at first. Then

the corresponding the time-dependent occupations (F) and the resulting threshold voltage shift

(G,F) are evaluated at each time step tk . This complete cycle must be performed for each stress or

relaxation phase.

For the evaluation of ΔVth, the charge sheet approximation is employed.

ΔVth,m = q0tox

εrε0

�
1− xm

tox

�
Δ fi0,m (3.25)

xm and tox are the trap depth and the thickness of the dielectric, respectively. The above expression

gives the threshold voltage shift ΔVth,m due to a single trap m in the ‘charged’ state i0. It is noted

that the term in the parentheses of equation (3.25) accounts for the trap depth dependence of

ΔVth,m according to which traps closer to the interface have a larger impact on the threshold voltage.

However, there also exists a strong dependence on the lateral location of the traps, totally neglected

in the above equation. Recall in this context that the Vth steps in the TDDS measurements have also

been caused by single charged traps. The wide variations of these steps have been ascribed to the

position of the traps relative to the current percolation path and follow an exponential distribution

according to an investigation carried out by Kazcer et al. [50]. This issue has been intensively studied

under the name random dopant fluctuations [50, 132–134] and gained large interest due to its serious

influence on the lifetime projection. For instance, the charging of one defect can even produce step
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heights in the threshold voltage beyond 30mV, which already violates typical lifetime criteria. By

contrast, the charge sheet approximation rests on the assumption that a trapped charge is distributed

over the whole plane parallel to the interface. Therefore, variations in the threshold voltage shift due

to random dopant fluctuations remain unconsidered in this approximation.

Small-area devices often contain only a handful of defects. Then the steps B, C, E, F, G, and H can

be performed at computationally feasible costs. But since the calculation time increases with the

number of defects, the simulation of large-area devices can become time-consuming. In order to

reduce computation time for these simulations, a certain number of defects with similar properties

are grouped together and replaced by one representative trap. This approach implies that the channel

area covers several defects with similar properties including the trap level and the spatial location

among others1. Furthermore, it is important to note here that the value of trap density is often quite

inaccurate and can differ by some orders of magnitude. Therefore, the number of traps must be

treated as a variable in the simulations. This means that the calculated degradation curves can be

scaled to the experimental data in order to achieve reasonable agreement of the simulations with the

measurements.

3.3 Density Functional Theory

3.3.1 Introduction

In material science, numerous research topics are related to microscopic processes. The description

of these processes often relies on quantities which are not assessable by experiments but can

be extracted from atomistic simulations. In the past, so-called first-principles calculations have

been successfully employed for the determination of those quantities. These calculations solve the

Schrödinger equation of the electrons for a given atomic configuration, and therefore, they do not

depend on any fitting parameters. At this point it is should be noted that the knowledge about the

exact atomic configuration is often vague, which can sometimes be an serious issue. For instance, it

is frequently debated whether the Si/SiO2 interface is abrupt or graded or even has defects, such as

suboxides or protrusions. One prominent example of first principle calculations is the Hartree-Fock

method. It takes the fundamental exchange interactions2 into account but suffers from a complete

neglect of electron correlations and thus fails to reproduce some fundamental properties in solid

state physics. Since Hartree-Fock simulations scale badly with the number of electrons, they perform

unsatisfactorily with respect to the computational costs when more than only a few tens of atoms are

considered. Therefore an alternative approach based on the electron density has been pursued. It is

termed density functional theory (DFT) [91, 92, 136] and can be considered as the workhorse in the

field of microscopic simulations. In the following, the basics of this method will be explained.

1 Note that this assumption fails for small devices with only a few defects. In this case, the stochastic nature of the

trapping process emerges and the device degradation must be understood in terms of expectation values and variances

of the threshold voltage shift. Then, the calculations must be tackled with a stochastic simulation algorithm [135].
2 The exchange interactions arise from the asymmetry of the many-electron wavefunction — a consequence of the fact

that electrons are Fermions.
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FIGURE 3.3: Left: The mapping of the external potential onto the electron density obviously holds true,

however, its reverse direction is the central issue of the HK theorem. Right: Electron densities

that do not correspond to any external potential violate the requirement of V-representability and

thus pose in principle a problem to DFT.

3.3.2 The Basic Concepts of DFT

The first main idea of DFT is to reformulate the energy of an atomic system as a functional of the

ground state electron density instead of the electron wavefunction. The proof of existence for such

functionals relies on a one-to-one correspondence between the external potential �Ven({Rl }, {rm}) and

the ground state electron density ρ0(r). The mapping of �Ven({Rl }, {rm}) onto ρ0(r) is obvious: Any

Hamiltonian �H with a given external potential �Ven({Rl }, {rm }) has a ground state solution with an N -

electron wavefunctions Ψ0(x), which can be uniquely identified with an electron density ρ0(r) using

ρ0(r) = N

�
|Ψ0(r1,r2, . . . ,rN)|2δ(r−r1)dr1 . . .drN . (3.26)

The other direction of this mapping (see Fig. 3.3) was proven by the Hohenberg-Kohn (HK) theorem

[137]. Due to the resulting one-to-one correspondence between �Vne(r) and ρ0(r), the energy of the

atomic system Ei can be expressed as a functional of the electron density ρ0(r). Note that DFT is

actually restricted to so-called ‘V-representable’ electron densities, however, this is not an issue in the

practical use.

The many-electron wavefunction used in equation (3.26) reads

Ψ(x) =Ψ(r1,r2, . . . ,rN) , (3.27)

where its form depends on the ‘combination’ of all spatial electron coordinates. Unfortunately, such

an approach would by far exceed any computational capabilities. However, this problem can be

overcome using the Kohn-Sham (KS) ansatz, in which the fully-interacting system is replaced by a

non-interacting one. This ansatz corresponds to a mean-field approach, where the wavefunction is

decomposed into a product of single-electron orbitals ψi (r). This simplification leads to a neglect

of an energy contribution termed ‘correlations’. As a correction, the functional Ecx[ρ(r)] must be

introduced as an additional term in the Hamiltonian. It is noted that this term does not only account

for the correlations but also for the unconsidered exchange interactions. Applying the variation

principle to the modified Hamiltonian yields a single-particle Schrödinger equation, also referred

to as Kohn-Sham equation in DFT. This equation includes an effective potential veff(r), which is
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produced by the Coulomb forces of all other electrons and nuclei and incorporates the exchange and

correlation interactions.�
− �2

2me
∇2 +veff(r)

�
ψKS

i (r)= εKS
i ψKS

i (r) (3.28)

veff(r) =Ven(r)+
�

ρ0(r′)
|r−r′|dr′� �� �
=Vee(r)

+ δ Exc[ρ0(r)]

δρ(r)� �� �
=Vxc(r)

(3.29)

The Kohn-Sham orbitals ψKS
i

(r) only reproduce the correct electron density but actually have no

physical meaning. The total energy of the atomic system reads3:

Ei [ρ0(r)] =
occ!

i

εKS
i − 1

2

��
ρ0(r)ρ0(r′)

|r−r′| drdr′−
�

Vxc(r)ρ0(r)dr+Exc[ρ0(r)] (3.30)

Up to now, DFT has been presented as a formally exact framework, however, the complicated part

of physics, namely the exchange and correlation interactions, is incorporated in Exc[ρ(r)]. The

above eigen-value problem is solved using an iterative method that makes up the computationally

expensive step of the DFT calculations. A schematic representation of a self-consistent loop in this

numerical method is depicted in Fig. 3.4. With the forces at hands, the energy of a configuration

can be minimized with respected to the atomic coordinates. Mathematically, this corresponds to

finding the stationary point of a function whose exact form is generally unknown. This task is

solved employing iterative methods [92], such as quasi-Newton methods or the conjugate gradient

method for instance. The obtained energy minima corresponds to the stable configurations, which

are physically realized and thus important for the determination of stable defect configurations.

When self-consistency is achieved for this loop, the electronic part of the system is solved. However,

the nuclear part described by the Schrödinger equation (2.17) has not been addressed so far. Due to

the relatively high nuclei mass, quantum mechanical considerations can be neglected so that the

Schrödinger equation (2.17) can be replaced by Newton’s law of motion. The required forces are

evaluated according to the Hellmann-Feynman theorem [91, 92]:

Fi =−
�

ρ(r)
∂Ven({Rl }, {rm})

∂Ri
dr− ∂Vnn({Rl })

∂Ri
(3.31)

3.3.3 Simulation Details

The simulations in this thesis are performed using the Vienna Ab-initio Simulation Package (VASP)

[138–141], which is based on a plane-wave implementation of DFT. The computational details,

especially those important for defect calculations, will be discussed in the following.

The correct description of the exchange-correlation functional takes a crucial role in DFT. The local-

density approximation has already achieved satisfactory results for systems with a slowly varying

3 The last term �Vnn of the Hamiltonian in equation (2.16) describes the Coulomb interactions between nuclei. With

respect to the electronic system, it yields a constant contribution, which has been left out in this derivation for

simplicity.
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FIGURE 3.4: A flow chart of the iteration scheme. At first, an initial guess for the electron density is assumed,

which is required for the calculation of veff(r), the diagonalization of the Kohn-Sham equations,

and the subsequent evaluation of ρ(r) along with Etot. As long as the convergence criterion is not

fulfilled, the numerical procedure is continued with the last ρ(r) instead of the initial guess. When

the criterion is satisfied, various output quantities are computed.

electron density, such as metals [93]. However, it has a tendency termed overbinding, which

overestimate binding energies and thus for instance predicts too strong hydrogen bonds with too

short bonds lengths. The generalized gradient approximation is a systematic expansion, gives good

results in most cases, and corrects for the overbinding [93]. Recently, hybrid functionals [142] have

emerged, which achieve an improved accuracy, especially for the bandgap [143]. However, their use

for large-scale investigations of atomic systems is time-demanding. Therefore, the functional based

on the parametrization of Perdew, Burke, and Ernzerhof [144] and provided by the VASP code has

been regarded as a reasonable trade-off between accuracy and computation time.

A realistic defect model must contain some of the surrounding atoms of its host material since the

atoms of a real defect are connected to the surrounding atomic network and thus are not allowed to

move around freely. In order to account for this, the long-range structural relaxations are handled

using periodic supercells containing 108 atoms. The host structures have been produced using

empirical potential molecular dynamics presented in Section 3.4. The resulting structures were

optimized on DFT level employing a conjugate gradient algorithm that minimizes the force on each

atom below 0.03eV/Å. In a further step, the defects were manually introduced by the addition or

removal of single atoms, followed by a subsequent structural optimization. Due to the imposed
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periodic boundary conditions in supercells, the Kohn-Sham orbitals Ψ
KS(x) were represented by

an expansion of plane waves up to a cut-off energy of 400eV. Since the large size of the supercells

(> 1000Å3) decreases the corresponding Brillouin zones, the k-point sampling was restricted to the

Γ-point only.

VASP employs a sophisticated transformation of the Kohn-Sham equations based on the projector-

augmented wave (PAW) method [145, 146], which smoothens the effective potential veff(r) near

the cores in order to spare the computationally expensive inclusion of the highly oscillating

wavefunctions. The PAW method is one of the most powerful approaches which combines a good

transferability to different atomistic configurations and chemical compositions with the required

accuracy [93, 145].

Defect levels for charge capture or emission are calculated by means of the formation energies U
q

f
[Xq ]

[147, 148], which are defined for a certain charge state q and a certain atomic configuration Xq of the

defect as

U
q

f
[Xq ′

] =Etot[X
q ′

]−Etot[bulk]−
!

j

n jη j +q(µ+εv +ΔV )+Ecorr . (3.32)

Etot[bulk] stands for the total energy of a supercell containing pure bulk material while Etot[X
q ′

] the

supercell also contains the defect. The third term in equation (3.32) corrects for the different numbers

of atoms in both supercells. n j gives the number of added (n j > 0) or removed (n j < 0) atoms which

are required to create the defect from a perfect bulk structure. The subscript j refers to the atom type

and η j denotes the corresponding energy in an atomic reservoir, which must be specified for each

individual use case. The fourth term in equation (3.32) accounts for the charge state q of the defect.

µ is defined as the electron chemical potential referenced with respect to the valence band edge εv in

a bulk-like region. ΔV [147] corrects the shift in the reference level between two differently charged

supercells and is obtained from the difference in the electrostatic potential far distant from the defect.

Due to the periodic boundary conditions, charge neutrality must be ensured within a supercell. Thus

a homogeneous compensating background charge must be introduced in calculations of charged

defects. Its artificial Coulomb interactions are corrected by the term Ecorr.

In DFT literature, one distinguishes between switching and thermodynamic transition levels. The

former pertain to a charge capture or emission process, during which the atomic configuration is

preserved, and thus they have the same meaning as the electron capture levels and hole emission

levels presented in Section 2.3. In DFT they are defined as the difference of formation energies [113,

149] and can be written as

E+/0 =U 0
f [X+]−U+

f [X+] , (3.33)

E0/+ =U 0
f [X0]−U+

f [X0] , (3.34)

E−/0 =U−
f [X−]−U 0

f [X−] , (3.35)

E0/− =U−
f [X0]−U 0

f [X0] . (3.36)

Analogously to Section 2.3, energy levels E+/0 and E 0/+ apply to a process which neutralizes a positive

defect or introduces a positive charge into a neutral defect, respectively. An alternative possibility for

the evaluation of the switching transition levels is provided by the Slater-Janak theorem [150].

49



3. APPLIED METHODS

The thermodynamic transition levels correspond to the difference between two energy minima,

which is also the case for U ji in the NMP theory (see section 2.4). In contrast to the switching

transition levels, the relaxed configurations for each charge state must be used.

ε0/+ = E 0
f [X0]−E+

f [X+] (3.37)

ε−/0 = E−
f [X−]−E 0

f [X0] (3.38)

3.4 Empirical Potential Molecular Dynamics

Molecular dynamics has been established as a powerful tool for the generation of amorphous

structures [151, 152]. It can simulate the time evolution of a group of atoms at a certain temperature,

where the bonding between atoms is mimicked by interatomic empirical potentials. Even though it

performs considerably fast, the simulation times are still restricted to a few thousand picoseconds

[153–156]. For this reason, empirical potential molecular dynamics is not capable of simulating the

processing of a-SiO2. Nevertheless, a combination of experimental and theoretical investigations

have shown that realistic amorphous structures [151, 152] can be produced by cooling down a random

configuration of silicon and oxygen atoms from 3000K to room temperature within a few tens

of a picosecond. It has been found [151–153, 155] that a-SiO2 is composed of slightly deformed

tetrahedral SiO4 units with one Si atom in their centers. These units are randomly connected to each

other so that they form Si-O-Si chains at their corners. In this way, each silicon atom is fourfold

coordinated to oxygen atoms and each oxygen atom in turn is bonded to two silicon atoms. The

distributions of the dSi−O, dO−O, and dSi−Si bond lengths as well as the φO−Si−O and φSi−O−Si angles

have been used in the following to check the quality of the generated a-SiO2 structures.

3.4.1 Fundamentals of Molecular Dynamics

The atomistic dynamics are accurately described by Newton’s law of motion, which is applied for

classical molecular dynamics [157].

mi
d

d t
Ri (t ) = Fi (t ) (3.39)

Fi (t ) =−∇i V (R1(t ), . . . ,RN(t )) (3.40)

Ri (t ) and mi denotes the position and the mass of atom i . The term on the right-hand side of

equation (3.39) represents the force Fi (t ) acting on the atom i and is evaluated by the derivative of the

interatomic empirical potential V (R1(t ), . . . ,RN(t )) with respect to Ri (t ). This differential equation

is solved numerically using an appropriate time integration algorithm, such as the leap-frog Verlet

algorithm.

Ri (t +Δt )= Ri (t )+vi (t + 1

2
Δt ) ·Δt (3.41)

vi (t + 1

2
Δt )= vi (t − 1

2
Δt )+ Fi

mi
·Δt (3.42)
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In this procedure, the current positions Ri (t ) and the accelerations Fi /mi are stored together with

the mid-step velocities vi (t − 1
2Δt ). The structure generation method used in this thesis is based

on a rapid quench of a molten atomic system. Therefore, a thermostat is required to control the

temperature of the atomic system during the quenching procedure. For this purpose, the Nose-

Hoover thermostat [157] as implemented in the GULP code was employed throughout this thesis.

It relies on a sophisticated method to couple the atomic system to a heat bath with the desired

temperature. Since this method correctly produces the thermodynamical temperature fluctuations

as well as the dynamics of the atomic system, the Nose-Hoover thermostat is usually considered as

the working horse for molecular dynamics simulations.

3.4.2 Procedure for Structure Generation

The silicon and oxygen atoms were randomly placed in the periodic simulation cells. In order to

avoid any overlapping between the atoms, exclusion radii (rSi−O = 1.5Å, rO−O = 2.5Å, rSi−Si = 3.1Å)

were used. The edge length of the simulation cells (11.79Å) was chosen to match a mass density

of 2.19g/cm3 [155]. The resulting random structures were taken as a starting configuration for the

subsequent molecular dynamics equilibration step, which was performed at 3000K for 30ps with a

time step of 1fs. In this step the atomic structure is evolved from an unnatural random configuration

to a liquid that should resemble molten SiO2. It was followed by a quenching step to 0K for 30ps with

a time step of 1fs, where the liquid was cooled down to an amorphous solid.

The simulations were performed using the popular Beest-Kramer-van Santen (BKS) potential [158].

This consists of Buckingham potentials, which were extended by a Coulombic term and parametrized

to reproduce the interatomic interactions obtained from DFT. These two-body potentials feature

artificial singularities at their origins and small separating barriers to the next energy minimum. But

since the structures were not heated above 5000K, corrections within a certain cut-off radii as applied

in [159] could be omitted. The interatomic interactions were only represented by Si-O and O-O pair-

potentials that describe the Si-O bonding and ensure the tetrahedral arrangement. Despite these

strong simplifications, a series of studies have proven their successful application for SiO2 structure

generation [151, 152, 158, 159].

In order to prove the correctness of the applied production procedure, the obtained samples were

evaluated based on the pair-correlation functions and angle distributions as shown in Fig. 3.5

and 3.6. Due to the fact that edge-sharing tetrahedra are energetically unfavored [152], only samples

containing none of these edge-sharing tetrahedra were used for further investigations while the

others were simply discarded. The remaining samples exhibited no miscoordination, such as broken

Si-O bonds or threefold coordinated Si atoms. As demonstrated in Table 3.1, satisfying agreement

has been achieved with previously published results [152, 153, 155]. The selected structures were

minimized on a DFT level in order to prepare them for the following defect calculations. During this

step, a small structural relaxation was observed indicating that no bonds had been broken.
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Ref. dSi−O dO−O dSi−Si φO−Si−O φSi−O−Si

Present study 1.64 2.66 3.08 109.42 142.62

[152] 1.62 2.64 3.10 109.6 142.0

[155] 1.63 2.67 3.11 109.4 146.8

[153] 1.62 2.68 2.98 109 136

TABLE 3.1: Comparison of the characteristic properties of the produced a-SiO2 structures. dSi−O, dO−O, and

dSi−Si denote the first maximum in the corresponding pair-correlation functions. φO−Si−O and

φSi−O−Si are the maxima of the respective angle distributions. The obtained values compare

reasonably well with the published values in [152, 153, 155]. It should be mentioned here that the

φO−Si−O angles are quite sensitive to the details of the used structure generation method. Thus,

their values in the literature [152, 153, 155, 156, 159] are subject to a strong variation ranging from

136◦ and 152◦ and thus are still debated [156].
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FIGURE 3.5: The pair-correlation functions [151] for the dSi−O (left), the dO−O (middle), and the dSi−Si (right)

bonds. The solid black lines represent the data obtained in this thesis while the dashed ochre

and the dashed-dotted green line are extracted from the studies of Sarnthein [153] and Rino [152],

respectively. In order to improve the accuracy of statistics, the data have been collected from a 1ps

DFT molecular dynamics run at 300K for five different samples. The first sharp peak corresponds

to the length of the respective bond type and compare well with the values from literature (see

Table 3.1). It is noted that also the other features are found to be in qualitative agreement with the

extracted data. The integral over the first peak yields the number of first nearest neighbors for the

respective atom type. The values 4.0, 6.19, and 4.05 have been obtained for the dSi−O, the dO−O,

and the dSi−Si bonds in agreement with [151, 153, 155]. The slight deviations have been attributed

to the still small statistics associated with a small resolution with respect to r . Furthermore, the

first peaks overlap with the next features at the right integration limit (indicated by the arrow)

leading to an inaccurate determination of the numbers of first nearest neighbors.
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FIGURE 3.6: The angle distribution of the O-Si-O (left) and the Si-O-Si (right) chains for the data of this thesis

and (ochre) Sarnthein [153] and (green) Rino [152]. The maxima as well as the full width at half

maximum of the O-Si-O angle distribution are in reasonable agreement with the extracted data in

[152, 153]. The values for the O-Si-O angles are subject to appreciable deviations, which originate

from the complications mentioned in Table 3.1. Nevertheless, the maxima of Gaussian fits are

found to be in an acceptable agreement.
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4
Elastic Tunneling Model

It was long believed that NBTI is controlled by the creation of interface dangling bonds as it is the case

in numerous variants of the reaction-diffusion and the reaction-limited models. With time, more

and more authors [23, 70] considered trapped oxide charges as a possible cause for NBTI. One of

the simplest trapping models has been proposed by Yang et al. [70]. It rests on the assumption that

the capture and emission time constants follow certain distributions. Even tough these distributions

have been introduced in an ‘ad hoc’ manner and do not rely on any physical profound explanation,

the basic concept is still present in each charge trapping model. Therefore, this phenomenological

model will be briefly discussed in this chapter.

Tewksbury [23] explained charge trapping as an elastic tunneling process of substrate charge carriers

into and out of oxide defects and ascribed the distribution of time constant to a wide range of

trap depths. For an evaluation against experiments, his model has been implemented in a device

simulator and tested whether it is consistent with the list of experimental findings presented in

Section 1.4. In these investigations, a special focus has been put on the temperature dependence

of charge trapping, which requires the consideration of quantization effects in the inversion layer.

Since the oxide thickness has been reduced to a few nanometers, the model has also been extended

to consider charge trapping from and to the gate contact.
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FIGURE 4.1: The time evolution of the trap occupancy for five traps with their different trapping time constant

τi assuming 1/τ= 1/τcap +1/τem and ft(0) = 0. τi gives the time point, when the trapping process

should occur according to its expectation value E {τ}. In a time-logarithmic plot, the time point of

the transition shifts linearly with the order of magnitude of τi .

4.1 A Phenomenological Trapping Model

The trapping dynamics in the simplest case are governed by the first-order rate equation

∂t ft(t )= 1

τcap� �� �
=kf

(1− ft)−
1

τem����
=kr

ft (4.1)

with ft being the electron occupancy of a single trap. Each of these traps is characterized by its own

capture (τcap) and emission (τem) time constant, which are related to the forward (kf) or the reverse

(kr) rate, respectively. The first term on the right-hand side of equation (4.1) has a positive sign, stands

for electron trapping and increases ft. By contrast, detrapping is represented by the second term with

the negative sign and causes a reduction in ft. It is emphasized that the defects have only discrete

occupation numbers. This means that the defects carry an integer number of electrons and thus

ft must equal to either zero or unity. However, for a large number of defects, ft corresponds to the

average occupation number and thus takes values within the range [0,1]. It is further mentioned

that the physical trapping process is of a stochastic nature, as it has also been the case for electron

tunneling and vibronic transitions in Chapter 2. These stochastic processes are characterized by the

fact that the transition times are statistically distributed. As a consequence, τcap and τem correspond

to the expectation value of the capture (E {τcap}) or emission (E {τem}) times, respectively, and the

electron occupancy only changes gradually with time. The electron occupancy as a function of time

is determined by the rate equation (4.1), which is a first-order differential equation with the solution

ft(t )= τem

τem +τcap� �� �
= f

eq
t

+
�

ft(0)− τem

τem +τcap

�
� �� �

= ft(0)− f
eq

t

·exp

�
−

�
1

τem
+ 1

τcap

�
� �� �

=1/τ

t

�
, (4.2)

and is depicted in Fig. 4.1. The first term of equation (4.2) corresponds to the equilibrium occupancy

f
eq

t , which approaches unity for the assumption τcap ≪ τem. The second term describes an
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exponential transition of ft(t ) towards f
eq

t . In a time-logarithmic representation this leads to a step

of ft(t ), occurring within three decades around τ. This step is associated with the expectation value

of the transition E {τ} in the trapping process and the stochastic nature of this process is reflected in

the washed-out shape of the step. As demonstrated in Fig. 4.1, the step linearly shifts with the order

of magnitude of τ. Furthermore, its height reaches the maximal value of 1 when the capture and

emission time constant differ by some orders of magnitude. Note that hole detrapping requires that

τem ≪ τcap and the time point of the transition is then determined by τem.

One has to consider that the atomic structure of defects strongly influences the defect properties.

Dielectric host materials, in particular SiO2 and SiON, exhibit an amorphous structure with large

variations in the bond lengths and angles, which are assumed to have an impact on τcap and τem.

As a result, the trapping time constants in equation (4.1) are subject to a dispersion. This will be

accounted for by a probability density function g (τcap,τem), which is normalized by definition. Then

the time evolution of trapped charges Nox(t ) can be expressed as

Nox(t )= Nt

�
ft(t ,τcap,τem)g (τcap,τem)dτcapdτem , (4.3)

where g (τcap,τem) is normalized and Nt stands for the concentration of traps. The integral in equation

(4.3) can be interpreted as a superposition of individual and thus independent trapping processes.

Note that this concept is in agreement with the findings of TDDS, in which the single trapping

processes take place almost independently from each other.

In a phenomenological model of Yang et al. [58], the capture and emission time constants were

correlated by the relation

τcap = kτem = τ . (4.4)

Furthermore, Yang et al. assumed a log-normal distribution of τ

g (τ) = 1�
2πτσ

exp

�
−1

2

�
log(τ)−µ

σ

�2�
. (4.5)

Although his model allows reasonable fits to single relaxation curves, it is inconsistent with the

scalability of the experimental data (see Section 1.4). This is due to the fact that neither the probability

density function nor the time constants have a field- or temperature dependence, which were not

considered. Nevertheless, the above formulation of the rates already includes the central aspects of

a charge trapping model and thus has served as a foundation for other models. The following points

are suggested as an improvement for Yang’s model:

• The probability density function has been phenomenologically introduced, where its shape

was chosen to reproduce experimental data. Therefore, it is the goal to correlate the probability

density function with certain physical properties of the defects and find reasonable shapes for

g (τcap,τem).
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• The model does not contain any information about the physics of the trapping process1.

Therefore, expressions for τcap and τem are sought, which are derived from physical

considerations and must consequently depend on the temperature and the electrostatics in

the device.

4.2 Elastic Tunneling

Tewksbury [23] assumed elastic tunneling of electrons and holes into and out of oxide defects as

the mechanism responsible for charge trapping. The use of his model has been suggested by

Huard et al. [58] in order to explain the recoverable part of the NBTI degradation. In this section,

Tewksbury’s model will be reviewed, extended for an application of present-day devices with small

gate thicknesses, and referred to as the elastic tunneling model (ETM) in the following.

The approach applied in this thesis relies on rate equations for tunneling into one trap. The

required rate expressions re(Et) and rh(Et) are given by the equations (2.45) and (2.46), which already

incorporate all elastic tunneling transitions between one trap and the numerous band states. Due to

their analytical complexity, these rate equations are solved numerically using the numerical iteration

scheme presented in Section 3.2. The used simple first-order partial differential equation reads

∂t ft =
 fn(Et) re(Et) (1− ft) − fp (Et) re(Et) ft, Et ≥ Ec

fn(Et) rh(Et) (1− ft) − fp (Et) rh(Et) ft, Et ≤ Ev

, (4.6)

with the electron and hole trapping times approximated as

τcap,e(Et, xt) =
1

fn(Et) re(Et)
, (4.7)

τem,e(Et, xt) =
1

fp (Et) re(Et)
, (4.8)

τem,h(Et, xt) =
1

fn(Et) rh(Et)
, (4.9)

τcap,h(Et, xt) =
1

fp (Et) rh(Et)
. (4.10)

The electron ( fn) and hole ( fp ) occupancy are defined as

fn(E )= fFD(E ) ,

fp (E )= 1− fFD(E )
(4.11)

with fFD being the Fermi-Dirac distribution. The above rate equation features the same structure as

that of equation (4.1). Therefore, the same mathematical implications as for the phenomenological

model hold true for the ETM. Furthermore, equation (4.6) covers all four basic transitions illustrated

Fig. 4.2 so that it can be viewed as a comprehensive description of elastic tunneling in MOSFETs.

1 It is remarked here that the exact nature of this mechanism is considered as an open issue in this thesis. As a

consequence, the more general term ‘trapping’ is preferred to the term ‘tunneling’ when not referring to a special

physical mechanism.
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FIGURE 4.2: The basic tunneling transitions in a MOSFET for traps located above the conduction or below the

valence band edge in the dielectric. Defects (gray filled ellipses) become positively charged in the

left figure while they are neutralized in the right figure. The red arrows indicate a hole tunneling

process, which always starts out from an empty state (marked by a red circle). It is noted here that

this ‘empty state’ is located in the valence band and thus should be correctly referred to as a ‘hole’.

However, the conduction and valence band states only differ in their effective masses — apart from

their energetical position. These masses only affect the transport properties, such as the carrier

mobilities, but marginally change the tunneling rates (2.45) and (2.46). In this respect, the terms

‘empty states’ and ‘holes’ are interchangeable and thus used synonymously in the remainder of

this thesis.

4.2.1 The Behavior of A Single Trap

In this chapter, the investigations are focused on NBTI in pMOSFETs since these devices attract a large

industrial interest at the moment. Therefore, only hole tunneling from the substrate valence band

will be addressed in the following. Naturally, the basic statements will also remain valid for electron

tunneling in the case of PBTI in nMOSFETs and for the different dielectric materials used in modern

device technologies. For the trapping dynamics, fFD and ζ2
WKB,v(Ex , xt) in 1/τcap,h(Et) and 1/τem,h(Et)

of equation (4.6) are the most sensitive factors. These quantities determine the basic properties of the

ETM and will be discussed in detail in this section.

The trapping dynamics are described by the rate equation (4.6), which has the same forward re and

reverse rh rate considering hole trapping (Et ≤ Ev).2 This special form implies that the occupancy

2 The equal forward and reverse rate originate from the assumption that the defect and the channel wavefunction are

unchanged after a trapping or detrapping event. A consequence of this is that the overlap of the wavefunctions and

thus the matrix element |Mv,tb (Ex , xt)| are unaffected, resulting in equaling rates rh for the forward and the reverse

mode of the tunneling process.
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FIGURE 4.3: The hole capture (τcap,h) and emission times (τem,h) for two different temperatures as a function

of the trap level Et. The simulated device is subject to heavy stress conditions, at which tunneling

‘through’ the dielectric actually play a crucial role and should be taken into account. Nevertheless,

VG is set to a high gate voltage for illustration purposes only. The Fermi-Dirac distribution predicts

a decrease in fn above Ef, which leads to exponentially rising τem,h. Analogously, fp decays and

τcap,h rises below the Ef. As a result, τem,h is larger than τcap,h in the region above the Ef so that hole

trapping can occur there. By contrast, hole trapping is inhibited below Ef since τem,h ≪ τcap,h. For

higher temperatures, the exponential decay becomes weaker, which is reflected in smaller slopes

of the τcap,h and τem,h.

of the trap ft equilibrates to that of the valence band states at the same energy Et. For steady state

conditions, ft reads

ft(t )= 1

1+τcap,h(Et, xt)/τem,h(Et, xt)
, (4.12)

where τcap,h and τem,h take the role of τcap and τem in (4.2), respectively. The above equation shows

that the trap occupancy is eventually governed by the relative magnitude of τcap,h and τem,h. Both

time constants are most strongly affected by the exponential decay of the Fermi-Dirac distribution.

This dependence is pointed out in Fig. 4.3, where the hole capture and emission times are plotted

with respect to the trap energy Et. In the region below Ef, the hole occupancy fp decreases by several

orders of magnitude per 1eV so that the hole capture times τcap,h by far exceed the corresponding

emission times τem,h. Therefore, no effective hole trapping can take place in this region, irrespectively

of the temperature. By contrast above Ef, the exponential decay of fn causes an increase in the

hole emission times τem,h, which gives rise to hole trapping there. That is, Ef can be regarded as

a demarcation energy between both regions. This fact is also reflected in the equilibrium solution

(4.12) when using the definitions of τcap,h and τem,h.

ft(t )= 1

1+ fp (Et)/ fn(Et)

= 1

1+eβ(Et−Ef)

(4.13)
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WKB,v(Ex ), and their product for

flat band conditions. For better visibility, all functions are normalized to their maximal values.

While DOSp,1D+2D(Ex) and |Mv0,tb (Ex , xt)|2 remain within one order of magnitude, the WKB factor

drops significantly. Since only the product of the three quantities enters the integrand of the rate

equation (2.45) and (2.46), the largest contribution to the integral comes from the region slightly

below the trap level Et.

As a consequence, the trap occupancy is governed by the position of the substrate Fermi level in

equilibrium3.

As mentioned before, the most sensitive factors in the tunneling rates of equation (4.6) are the Fermi-

Dirac distribution and the WKB factor. In contrast to fn and fp , the latter is a function of Ex and

cannot be taken out of the integrals in the rate expressions (2.45) and (2.46). As shown in Fig. 4.4,

DOSp,1D+2D(Ex ) and |Mv0,t b(Ex , xt)|2, the matrix element without the WKB factor, are subject to small

variations so that they weakly affect the tunneling rates. Since the WKB factor falls off quickly with

increasing Ex , the integral (2.46) delivers the largest contribution close to the trap level Et. Therefore,

it makes sense to approximate the rate integral (2.46) by dividing it through ζ2
WKB,v(Et, xt) and define

the resulting expression as τETM
p,0 (Et). This new quantity incorporates the weak dependences on Ex

while the sensitive factors, namely fn or fp and the WKB factor, are separated. Due to the small

variations of DOSp,1D+2D(Ex ) and |Mv0,t b(Ex , xt)|2, τETM
p,0 (Et) shows small changes with Et compared

to fFD(Et) and ζ2
WKB,v(Et, x) (see Fig. 4.5). This fact justifies approximations [23, 105, 106, 160], in which

τETM
p,0 as a prefactor of the WKB factor is approximated as a constant. Using the above definitions, the

rate equation for holes reads:

∂t ft = fn
1

τETM
p,0 (Et)

ζ2
WKB,v(Et, xt)� �� �

=1/τem,h(Et ,xt)

(1− ft) − fp
1

τETM
p,0 (Et)

ζ2
WKB,v(Et, xt)� �� �

=1/τcap,h(Et,xt)

ft (4.14)

3 Here, the term ‘equilibrium’ refers to the trapping kinetics but not to a thermal equilibrium. Therefore, it actually

corresponds to steady state conditions, where the time derivative of ft vanishes.
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FIGURE 4.5: The quantity τETM
p,0 as a function of the trap level for different gate biases. Note that τETM

p,0 remains

within one or two orders of magnitude. The peaks close to Ev can be traced back to a small

kinetic energy of the holes within a classical picture. Quantum mechanically, the amplitude of the

channel wavefunction at the interface is reduced for smaller charge carrier energies. This results

in a decreased overlap of the wavefunction in the matrix element, a smaller tunneling probability,

and ultimately in larger τETM
p,0 close to the band edges.

For the time evolution of charge trapping, ζ2
WKB,v(Et, xt) becomes the essential factor (cf. Fig. 4.6).

It shows an exponential decay with increasing trap depth, which results in a shift of τcap and τem

towards larger times (cf. Fig. 4.7). Note that the energy of the tunneling charge carrier also impacts

the WKB factor and the capture and the emission times. Since the energy dependence of the WKB

factor enters both the capture and the emission times, their relative magnitude remains unaffected

and the above argumentation of Ef as a demarcation energy remains valid.

In conclusion, the following findings have been made: The equilibrium charge state of an oxide defect

is directly determined by the Fermi level in the substrate. When Et is situated above Ef, the defect will

capture a hole if the defect is initially occupied by an electron. Vice versa, positively charged defects

with Et below Ef will emit their holes. However, this relationship does not make any statement about

the time point when the tunneling transitions occur. This is solely given by the respective capture

(τcap,h) or emission (τem,h) time constant. The actual trapping times are given by the WKB factor,

which predicts increasing capture (τcap,h) and emission (τem,h) times for larger tunneling distances.

4.2.2 Spatially and Energetically Distributed Traps

In the previous sections, only the behavior of single traps has been addressed but NBTI is actually

caused by charging or discharging of a multitude of defects. This means that the degradation has to

be understood as a superposition of several trapping events. It must be considered that the individual

defects differ in their properties, such as their spatial depth and their energetical position within the
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rectangular approximation yields reasonable estimates of the accurate WKB factor for trap levels

close to the valence band edge. Nevertheless, all simulation results in this chapter are computed

using the accurate WKB factor. Note that the temperature does not enter the calculation of the

matrix element and in consequence the WKB factor. This is why to first order elastic tunneling

is expected to be a temperature independent process. However, there are small effects due to

the temperature dependent shape of the channel wavefunction. They are not considered in the

derivation of Section 2.5.2 but will be later shown to marginally affect the temperature dependence

of hole trapping (see Section 4.2.7).
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FIGURE 4.8: Left: A simulation of the trapped charges ΔQt as a function of stress time for different gate biases

(T = 125◦C). Charge trapping occurs over up to approximately 15 decades and shows a logarithmic

time dependence. The slopes in the plot increase linearly with the oxide field, which cannot

be reconciled with the quadratic field dependence obtained from experiments. Right: The time

evolution of the threshold voltage shift ΔVth for different gate biases. The resulting curves roughly

approximate a logarithmic time dependence in a small experimental window from 1µs to 1ks.

oxide bandgap. The defects in this model are assumed to be bulk traps, which are scattered across

the whole dielectric. The distribution in the trap levels can be attributed to variations in bond length

and angles, which impact the energy levels of the defect orbitals according to quantum mechanical

considerations [23, 161, 162]. Therefore, large variances up to a few electron Volts have been assumed

in the ETM. However, the defect levels of the hydrogen interstitial [163] and the oxygen vacancy [164,

165] are found to have a spread below 0.5eV. Hence, distributions of energy levels with a spread larger

than 1eV seem to be unrealistic and must be verified by detailed atomistic investigations.

The following simulations, unless otherwise stated, are carried out on a pMOSFET (Nd = 5 ×
1017 cm−3) with a strongly doped p-poly gate (Na = 2×1020 cm−3) on top of a 3nm thick SiO2 layer.

The traps in the dielectric are uniformly distributed in space while their corresponding levels span

a range from 0.3 to 4.3eV below Ev. The operation temperature is 125◦C so that this value lies in

the center of the temperature range relevant for NBTI. For simplicity, only charge injection from the

valence band has been taken into account. Nevertheless, this does not affect the general findings of

the model discussion.

4.2.3 Time Behavior during Stress

In the following, the ETM will be tested whether it is consistent with the experimental findings

presented in Section 1.4. For this model evaluation, the temporal behavior during the stress phase is

the most essential criterion. It is depicted in Fig. 4.8 as the evolution of trapped charges ΔQt and the

threshold voltage shift ΔVth. The former reveals a logarithmic time behavior, which is preserved for
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a large time range and by far exceeds the measurement window ranging from 1µs to 1ks. Recall that

the behavior of one defect is described by the rate equation (4.6), which has the form of an ordinary

first-order differential equation (4.1). It has been pointed out in Section 4.1 that the change in the

occupancy Δ ft(t ) is given by the dominating time constants in the exponential term of equation (4.2).

In the hole trapping region (cf. Fig. 4.3), τcap,h ≪ τem,h holds. Then equation (4.2) simplifies to

Δ ft(t , xt,Et) = ft(0)− ft(t →∞)� �� �
=Δ ft,max

×exp

�
− t

τcap,h(xt,Et)

�
. (4.15)

Assuming a rectangular tunneling barrier for the WKB factor, one obtains

Δ ft(t , xt,Et) =Δ ft,max ×exp

�
− t

τ̃ETM
p,0 (Et)

e−xt/xp,0

�
(4.16)

using the definitions

τ̃ETM
p,0 (Et) = τETM

p,0

 
fp (Et) (4.17)

and

xp,0 =
�

2
�

2mp (Ev,sub −Ev,ox)
. (4.18)

The exponential term on the right-hand side of equation (4.16) is characterized by a sharp drop at

xB(t )= xp,0 ln(t /τ̃ETM
p,0 ) , (4.19)

which suggests the following approximation

Δ ft(t , x) =
Δ ft,max, x < xB(t )

0, x > xB(t )
. (4.20)

The sharp drop at xB(t ) represents a border between defects which ‘already have’ and ‘still do

not have’ captured holes from the substrate until the time t . This border moves away from the

substrate towards deep into the dielectric as time progresses (see Fig. 4.9). Its shift follows a time

logarithmic law according to equation (4.19) and results in straight lines in ΔQt(t ) of Fig. 4.8. When

the border arrives at the gate, hole trapping stops, which becomes visible as a saturation in ΔQt(t ) and

ΔVth(t ). According to the charge sheet approximation, charges more distant from the substrate oxide

interface make a smaller contribution to ΔVth due to their smaller weighting factors (1− xt/tox) in

equation (3.25). This yields the curvature seen in ΔVth(t ) plots of Fig. 4.8. However, the resulting

curves still roughly follow a logarithmic time behavior. When disregarding the oxide field and

temperature dependence for the time being, this fact might be misinterpreted as an agreement with

the experimentally observed logarithmic time behavior (1.8).
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FIGURE 4.9: The hole filling of traps during the stress phase (VG = −1V). Single traps are represented by the

small circles located in the lower part of the oxide bandgap, where the occupied and the empty

states are depicted as purple and white filled circles, respectively. The hole occupation of traps

in the band diagram is recorded for a series of stress times and demonstrates the filling of traps

with time. One can recognize a tunneling hole front, which starts from the substrate (right) and

penetrates deep into the dielectric (towards the left). For demonstration purposes, the simulations

were performed with the upper edge of the trap band shifted slightly above the substrate valence

band. Note that traps located above the Fermi level do not have captured holes. This is due to

the fact that these traps are energetically located within the substrate bandgap and thus have no

corresponding energy level which can serve as a hole source in a tunneling process. Furthermore,

hole trapping from the poly-gate has been neglected in these simulations but this aspect will be

addressed later in Section 4.2.8.
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FIGURE 4.10: The time evolution of hole trapping for different thicknesses of the dielectric (VG = −1V, T =

125◦C). For comparison with Section 4.2.8 uppermost trap level has been shifted −0.3eV below

the substrate valence band edge in this simulation. One can observe an early saturation for

devices with an oxide thickness equal or smaller than 2nm, not seen in experiments. The inset

shows that the time point of saturation is shifted out of the measurement window for devices

with an oxide thickness notably exceeding a value of 2nm.

4.2.4 Time Range of Trapping

The simulations in Fig. 4.8 reveal that hole trapping sets in around 1ps and lasts over approximately

15 decades. In this context one should consider that the electrical characterization methods used in

NBTI have a limited time resolution of about 1µs. Therefore, they can only assess the accumulated

degradation within a small measurement window while a large part of the real degradation is invisible

in the experimental data. However, note that despite the wide time range, hole trapping is limited

to a few seconds in a 2nm thick device (cf. Fig. 4.10). By contrast, no sign of saturation has been

experimentally observed in the stress phase of NBTI so far.

4.2.5 Oxide Field Dependence

The simulated curves in Fig. 4.8 have the same shape irrespective of the applied gate bias and

can be made overlap by multiplying them with appropriate scaling factors s(Fox,T ). According

to measurement data, s(Fox,T ) should follow a quadratic field dependence up to approximately

8MV/cm. However, the required scaling factors do not show the correct tendency. Recall that

only defects energetically shifted above Ef are capable of capturing holes. Therefore, the amount

of trapped charges per unit time is determined by the difference between Ev and Ef before and during

the application of the stress voltage. The relative shift of these both energies is directly related to

the surface potential ϕs according to equation (3.9). The simulations in Fig. 4.11 demonstrate that

ϕs follows a nearly linear behavior over a wide range of the electric fields. As a result, one obtains
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FIGURE 4.11: The surface potential ϕs versus the applied gate bias and the oxide field for the simulated

pMOSFET (T = 125◦C). This quantity is proportional to the scaling factor s(F,T ) in the simulated

curves of Fig. 4.8 and thus determines the field-acceleration of the ETM. In the region relevant

for NBTI, ϕs shows a nearly linear dependence on the oxide field.

a linear dependence for s(F,T ) in the NBTI region (indicated in Fig. 4.11), opposed to the quadratic

field-acceleration observed in experiments.

4.2.6 Time Behavior during Relaxation

In the simulated relaxation data in Fig. 4.12, the degradation returns back to its pre-stress value,

meaning that all defects charged during the stress phase also take part in the recovery phase via hole

emission. In these simulations it has been presumed that the trapped holes can only tunneling back

to the substrate. However in devices with a small oxide thickness, the trapped charges can in principle

be emitted to the poly-gate contact. This case will be addressed in detail in Section 4.2.8.

The simulations in Fig. 4.12 exhibit a logarithmic time behavior as observed in experiments (see

Section 1.4). As for the stress phase, hole tunneling is determined by the WKB factor so that the

tunneling times increase exponentially with larger xt. This gives rise to a tunneling electron4 front,

which starts out from the substrate and continues deep into the dielectric as illustrated in Fig. 4.13.

The annihilation of trapped holes becomes visible as straight lines in Fig. 4.12, consistent with the

experimental findings for the recovery phase. Against intuition, devices stressed at a higher gate bias

recover faster. This can be traced back to the fact that spatially deeper traps have a reduced tunneling

barrier when they are shifted down in the band energy diagram during relaxation (see Fig. 4.14). The

above behavior has not been observed in measurements. This deviation from experimental data

4 Hole emission can be envisioned as electrons capture at a microscopic level, when disregarding the effective masses of

the charge carriers.
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FIGURE 4.12: The same as Fig. 4.8 but for the relaxation phase. Note the accelerated recovery in the ΔQt curve

for heavier stress conditions, which shifts the end of the relaxation phase below 1s.
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FIGURE 4.13: The same as Fig. 4.9 but for the relaxation phase. The tunneling electron front annihilates the

trapped holes within the oxide, starting from the substrate.
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FIGURE 4.14: Hole trapping (left) and detrapping (right) during stress and recovery, respectively. The tunneling

barrier during relaxation (indicated by the grey area) is appreciably reduced compared to stress,

which is associated with shorter tunneling times and results in an accelerated recovery.

could, in principle, also originate from an additional permanent or slowly recovering component

which is not accounted for in the present simulations. As compared to the stress phase, the time span

for the relaxation phase is shortened for higher gate biases so that the recovery already ends before

1s.

A remarkable peculiarity of NBTI is the the asymmetry in the slopes during stress (srelax(T,Fox,s)) and

relaxation (sstress(T,Fox,s)). It is related to the fact that the recovery phase exceeds the duration of

the stress phase by a couple of decades. However, the ETM (see Fig. 4.15) predicts that the recovery

proceeds at equal pace or even faster than the degradation during stress does. This is due to the

fact that traps charged with τcap,h during stress emit their holes with approximately the same time

constants τem,h during recovery.

4.2.7 Investigation of the Temperature Dependence using a Quantum Refinement

Another important issue concern the temperature dependence of the ETM. Recall that the

experimental data exhibit an increased degradation at higher temperatures, which was thought to go

hand in hand with an enhanced ‘total’ hole concentration ptot
5. However, the simulations in Fig. 4.16

reveal an inverse tendency for the ETM. The discrepancy might be attributed to a shift of the hole

centroid into the substrate and an associated reduction in the ‘interfacial’ hole concentration pif (see

insert of Fig. 4.16) for higher temperatures. In the band diagram, this is associated with a rise of

Ef towards the center of the substrate bandgap and thus away from Ev. The relative position of Ef

and Ev at the interface is the quantity which enters the calculation of the tunneling rates (2.46) and

yields a reduction in the amount of hole trapping for higher temperatures. In a quantum mechanical

5 ptot is defined as the hole concentration integrated over the direction perpendicular to the interface.
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cover the same number of decades, which is in disagreement with the experimentally obtained
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FIGURE 4.16: The time evolution of trapped holes during stress (left) and relaxation (right) for different

temperatures. The applied gate bias has been set to −2V. Surprisingly, the classical simulations

predict a decrease in the amount of trapped holes for higher temperatures. This seems to be

related to the reduction in the interfacial hole concentration pit shown in the insert of the left

plot.
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treatment, the substrate holes are described by channel wavefunctions, which are spread over the

whole channel region and penetrate deep into the dielectric. Tunneling and thus charge trapping are

eventually induced by the overlap of the hole and trap wavefunctions. The ETM must be refined in

order to account for the quantum mechanical nature of the confined charge carriers in the channel.

Again equation (2.34) is taken as a starting point in the following derivation.

r =
!
b

2π

� |Mc/v,t b(Ex , xt)|2 δ(Et −Eb) (4.21)

Here, b stands for the initial states. The sum over these states is split into components parallel and

perpendicular to the semiconductor-oxide interface, where the charge carriers are confined in the

latter direction. As derived in the Appendix A.4, the number of states in an one-dimensional confined

electron gas is

!
b

= Ay z

� ∞�
En,0

dE Dn,2D

E�
En,0

dEx

!
jn

δ(Ex −En, jn
)+

Ep,0�
−∞

dE Dp,2D

Ep,0�
E

dEx

!
jp

δ(Ex −Ep, jp
)

�
, (4.22)

jn , jp = 0,1,2, . . . denote the quantum numbers and En/p, jn/p
the respective eigenstates of the confined

states in the conduction or the valence band, respectively. Note that the integrals run from the first

confined eigenstate En, jn
or Ep, jp

since they are located closest to the conduction or valence band

edges, respectively. Using (4.22), the rate (4.21) can be rewritten as

r =Ay z
2π

�

� ∞�
En,0

dE Dn,2D

E�
En,0

dEx

!
jn

δ(Ex −En, jn
) |Mc,t b(Ex , xt)|2 δ(Et −E )

+
Ep,0�

−∞
dE Dp,2D

Ep,0�
E

dEx

!
jp

δ(Ex −Ep, jp
) |Mv,t b(Ex , xt)|2 δ(Et −E )

�
.

(4.23)

Due to the δ-function, the right-hand side of equation (4.22) can be simplified to

r =Ay z
2π

�

�
Dn,2D

Et�
En,0

dEx

!
jn

δ(Ex −En, jn
) |Mc,t b(Ex , xt)|2

+Dp,2D

Ep,0�
Et

dEx

!
jp

δ(Ex −Ep, jp
) |Mv,t b(Ex , xt)|2

�
.

(4.24)

The refined variant of the ETM shows an increase in the total hole concentration ptot (see inset of

Fig. 4.17), which would suggest an increased degradation for higher temperatures. Contrary to this

ad hoc hypothesis, the simulations in Fig. 4.17 yield a reduced degradation, which is still in contrast

to the experimental observations (see Section 1.4). Actually, not the change in the hole concentration

— may it be pit or ptot — causes the inverse trend but the shift of Ef relative to Ev. From a statistical

point of view, traps and band states at an energy Et will equilibrate, meaning that their occupancies fp

and ft will equalize. For higher temperatures, the raise of Ef in the band diagram implies a reduction

72



4. ELASTIC TUNNELING MODEL

10
-20

10
-15

10
-10

10
-5

10
0

10
5

10
10

t
s
 [s]

0

0.2

0.4

0.6

0.8

1

Δ
Q

t/Δ
Q

t,
m

ax
 [

1
]

 50
o
C

100
o
C

150
o
C

200
o
C

300 350 400 450 500
T [K]

6.1

6.12

6.14

6.16
1

0
-1

9
 p

to
t [

cm
-2

]

10
-20

10
-15

10
-10

10
-5

10
0

10
5

10
10

t
s
 [s]

0

0.2

0.4

0.6

0.8

1

Δ
Q

t/Δ
Q

t,
m

ax
 [

1
]

 50
o
C

100
o
C

150
o
C

200
o
C

FIGURE 4.17: The same as in Fig. 4.16 but for the quantum mechanical variant of the ETM. The improved model

delivers the same tendency as its classical variant even though the total hole concentration ptot

(see the insert of the left plot) would suggest an increased hole trapping for higher temperatures.

In comparison to the classical variant, a shift of the whole set of curves towards earlier times is

observed.

of fp and in consequence ft, which is related to the amount of trapped charges. It is important to

note here that the density of states only affects the rates but not the equilibrium trap occupancies. In

conclusion, the inverse temperature dependence cannot be ascribed to the deficiency of the classical

variant of the ETM but it is inherent to elastic tunneling itself. Furthermore, the curves in Fig. 4.17

are shifted approximately two decades towards earlier times compared to the classical variant, which

worsens the problem of the early saturation during stress.

4.2.8 Charge Injection from the Gate

So far, the existing description of charge trapping has been restricted to charge injection from the

substrate. In device structures with thicker gate dielectrics, the large tunneling distances from the

gate towards the defects are associated with small rates so that the presence of the gate contact as a

source or sink of charge carriers could be neglected. As the oxide thickness of modern semiconductor

devices has entered the nanometer range, this assumption has lost its justification. Therefore, the

ETM needs to be extended by charge carrier injection from the gate. As illustrated in Fig. 4.18, this

can be achieved by introducing additional terms into the rates equation:

∂t ft =
�

fn ,s(Et) re,s(Et)+ fn ,g(Et) re,g(Et)
�

(1− ft) − �
fp ,s(Et) re,s(Et)+ fp ,g(Et) re,g(Et)

�
ft

+ �
fn ,s(Et) rh,s(Et)+ fn ,g(Et) rh,g(Et)

�
(1− ft) − �

fp ,s(Et) rh,s(Et)+ fp ,g(Et) rh,g(Et)
�

ft

(4.25)

The subscripts s and g refer to quantities from the substrate or the poly-gate, respectively. The

simulations presented in Fig. 4.19 underline the importance of the gate contact when thin dielectrics

are considered. Recall that tunneling in the conventional ETM can be envisaged as a tunneling hole
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FIGURE 4.18: A schematic of the rates considered in the conventional and the extended ETM for a trap located

below the substrate bandgap. The gray filled circles are hole states in the substrate, the dielectric,

or the gate. The ellipse marks a trap within the dielectric. Tunneling rates from and towards

the substrate are represented by the arrows with solid lines and already taken into account in

the conventional ETM. For thinner gate dielectrics, the charge injection from the gate gains

importance since the associated rates increase due to the shorter tunneling distances. These

rates, indicated by the arrows with the dashed lines, must be incorporated the extended ETM.
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FIGURE 4.19: The same as in Fig. 4.10 but for the conventional (solid line) as well as the extended (dashed line)

ETM (VG = −1V, T = 125◦C). It is noted that the uppermost trap level is located 0.3eV below

the substrate valence band edge in this simulation. In the case of the extended ETM, one can

recognize an early saturation, which reflects the stopping of the hole front in the dielectric. As

pointed out in the inset, this time point of saturation is moved towards an earlier time, which

may lie within typical measurement windows for NBTI (ranging from 1µs to 10ks). One should

keep in mind that only devices with an oxide thickness thicker than 5.5nm show a logarithmic

time behavior beyond 100ks, which corresponds to the largest investigated stress times.
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front that starts at the substrate interface and continues towards the gate. Traps located in the second

half of the dielectric are located closer to the gate and thus have shorter tunneling distances to the

gate. For these traps, electron injection from the gate outbalances hole trapping from the substrate.

Hence, the presence of the gate interface establishes a spatial border to the penetrating hole front.

When this border is reached, the tunneling hole front stops, which causes an even earlier saturation

during the stress phase. At this point it is important to note that, depending on the spatial and

energetical distribution of traps, the band bending in the gate can also trigger electron injection from

the gate. A comparison of both models is presented in Fig. 4.19. One may notice that the timescale

for trapping is dramatically reduced in the case of the extended ETM. For devices with relatively

thick gate dielectric of 4nm, the saturation sets in before 1s. In technologically more relevant device

structures with a gate dielectrics thinner than 2.5nm, the degradation due to hole trapping ends

before 1µs and would even be not assessable with ultra-fast MSM measurements [27]. The fact that

only traps with short tunneling times participate during the stress phase is also reflected in a fast

removal of trapped charges during the relaxation phase. The complete removal of positive charges

during the relaxation phase is achieved within approximately the same timescales than hole trapping

during stress. By contrast, the relaxation seen in experiments is often described as a long-lasting

process, which exceeds 105 s. More importantly, hole trapping is reduced below five decades for oxide

thicknesses below 3nm while the eMSM data on a 1.7nm thick device (see Fig. 1.4) show at least seven

decades.

4.2.9 Width of the Trap Band

Up to this point, only broad distributions of trap levels have been addressed. However, it is speculated

that some high-κ dielectrics have a crystalline structure [166], which is characterized by small

temperature-induced variations of bond distances and angles. These lattice distortions yield a small

spreading of defect levels, seen as a small trap band in Fig. 4.20. In Fig. 4.20, the time evolution of

ΔQt is plotted for a narrow distribution of defect levels. During stress, the onset of hole trapping is

shifted towards earlier times for increasing gate voltages. This behavior can be traced back to different

defects involved in charge trapping at different VG (see Fig. 4.21). As the gate bias is increased, defects

located closer to the substrate interface are moved into the region around the Fermi level. Due to their

reduced tunneling distances, they feature shorter trapping times and therefore give rise to an earlier

onset in the ΔQt(t ) curves. Since the defects in the active trapping region are spatially concentrated

to a small region, their corresponding tunneling distances are limited to a small range. Thus the

distribution of trapping times is sharply peaked, which becomes visible as sudden jumps in theΔQt(t )

curves of Fig. 4.20. The shape of these curves is in stark contrast to the wide range of timescales

usually involved in NBTI.
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FIGURE 4.20: The time evolution of the normalized ΔQt (T = 125◦C) for stress (left) and relaxation (right)

presuming a narrow distribution of defect levels (0.1eV) centered around −0.75eV below the

substrate valence band edge. For this assumption, the ETM predicts short jumps or drops in

ΔQt for both phases, which are limited to only a very few decades. This cannot be reconciled

with NBTI data with a relaxation phase that spans over 10 decades. In the case of VG = 0.5V, the

defect levels are not moved into the region around the Fermi level so that no trapping can occur.

h+ Ec

Ev
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FIGURE 4.21: The band diagram for two different gate voltages. The crossing point between the Fermi level

and the band of trap levels (shown as a purple and a blue region for a low and a high gate bias,

respectively) is linked to the earliest trapping events and the beginning of charge trapping. When

the gate bias is increased, the crossing point is shifted closer to the substrate interface (x1 → x2)

where traps with smaller tunneling time constants (τ2 ≪ τ1) are situated. This leads to an earlier

onset of charge trapping for higher gate voltages.
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Model Properties

(i ) Involved Time Scales ✗

(ii ) Log. Behavior during Stress �

(iii ) Log. Behavior during Recovery �

(iv ) Asymmetry Stress/Recovery ✗

(v ) Quadratic Field Dependence ✗

(vi ) Quadratic Temperature Dependence ✗

TABLE 4.1: Checklist for an NBTI model. This table contains the most important features of the NBTI stress

and relaxation curves. The above features must be viewed as criteria which have to be fulfilled by

an NBTI model candidate.

4.3 Conclusion

In this chapter, several peculiarities of the ETM have been analyzed and compared to the

experimental findings of NBTI. It has been pointed out that this model predicts a logarithmic time

behavior over several decades during stress and relaxation. However, the ETM fails to explain NBTI

for several reasons:

• ΔVth(t ) saturates within or even before the experimental time window for devices with thin gate

dielectrics as applied in modern semiconductor devices. This problem becomes even more

severe if charge injection from the gate is considered.

• The asymmetry between stress and recovery cannot be reproduced by this model.

• The ETM shows the wrong temperature and field dependence, which are both inherent to the

model and therefore cannot be improved by suitably chosen fitting parameters.

The above arguments summarized in Table 4.1 are a strong evidence that the NBTI degradation

cannot be described by hole trapping according to the ETM. As a consequence, this model is

discarded from the list of possible NBTI models, and other capture processes must be considered.
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5
Level Shift Model

The ETM has been based on the concept that electrons tunneling into and out of a defect have the

same energy. This implies that the corresponding trap level remains at the same energy within the

oxide bandgap regardless of whether the defect has captured a charge or not. However, as pointed

out in Section 2.3, this level is subject to a shift after each charging or discharging event. This is due

to the fact that the defect undergo structural relaxation, which involves strengthening, weakening,

or even disrupting bonds. With this deformation, the defect orbitals change which is accompanied

by a shifts of the corresponding defect levels. This concept of the level shift has not received much

attention so far but has important implications for the tunneling kinetics in a −SiO2.

In the first part of this chapter it will be demonstrated that the charging and discharging of defects

involves a non-negligible structural relaxation, which results in an appreciable level shift and thus

impacts the trapping dynamics. Using DFT, the corresponding switching levels will be determined

for a number of defects suspected to be present in a − SiO2. Based on the position of these levels,

the defects will be tentatively classified according to their expected trapping behavior in NBTI

experiments. In order to allow for quantitative predictions, a new model accounting for the level

shift will be developed in the second part of this chapter. This model will then be tested whether it

can explain the NBTI experiments.
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5.1 Defects in a −SiO2

This section deals with the basic properties of defects, especially the position of their corresponding

trap levels. Previous theoretical investigations were focused on defects in crystalline SiO2 [112, 113]

as a substitute for amorphous materials. At this point it is emphasized that one has to consider

the amorphous nature of SiO2 since it strongly affects the defect properties: For instance, oxygen

molecules O2 in c − SiO2 have only discrete values for the barriers to migrate from one void to the

next one. By contrast in a −SiO2, they encounter a distribution of barriers whose average eventually

determines the effective activation energy for diffusion [167, 168]. Another example is the stability

of the E ′ center, which can transform to an oxygen vacancy by overcoming a thermal barrier. The

height of this barrier and thus the stability of the E ′ center have been found to strongly depend on

the the local surrounding silica network [19, 20]. These two examples suggest that small variations

in the bond lengths and angles of the surrounding structure could result in a wide distribution of

trap levels [161, 162] and thereby impact the trapping dynamics. Unfortunately most of the defect

properties are difficult to determine experimentally so that theoretical methods, such as DFT, were

chosen for the determination of defect levels. The empirical potential molecular dynamics was

employed for the production of a −SiO2. The details of this procedure are described in Section 3.4.2.

Pair-correlation functions, angle distributions, and the ring distribution have been evaluated in order

to ensure that the obtained samples mimic real a − SiO2. The generated structures were used for

DFT calculations, whose parameters are summarized in Section 3.3.3. The defect structures have

been obtained by adding, shifting, or removing the silicon, the oxygen, or the hydrogen atoms. The

switching trap levels for the created defects have been evaluated using the formulas (3.33)−(3.36).

The calculated trap levels have been aligned to the silicon bandgap using the procedure proposed

in [113]. The obtained valence band offset of 2.6 eV for the Si/SiO2 interface has been found to be

in good agreement with the values extracted from [80, 169, 170]. In the following, a study of several

prominent defects in a −SiO2 will be presented. They will be discussed based on their configuration

in their various charge states in order to check the correctness of the produced defect structures.

Furthermore, their expected trapping behavior will be inferred from the switching levels gained from

DFT simulations.

5.1.1 Oxygen Vacancy

In stoichiometric SiO2, two silicon atoms are always connected by one bridging oxygen atom. When

this atom is removed, the two neighboring silicon atoms establish a common bond, the heart of the

oxygen vacancy (see Fig. 5.1). In c − SiO2, the length of this bond is approximately 2.5Å [19, 149],

which compares well with the Si-Si distance of 2.35Å in crystalline bulk silicon [171]. In the DFT

simulations of this thesis, the defects are embedded in an amorphous SiO2 host material so that this

characteristic length is distributed. Our set of structures covers Si-Si bond lengths between 2.3Å and

2.8Å. These values are in reasonable agreement with the range (2.3−2.7Å) obtained in the study of

Mukhopadhyay et al. [172]. Nicklaw [162] extended his defect calculations to highly strained oxygen

vacancies whose bond lengths reach values up to 3.2Å. This kind of defects is associated with large
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FIGURE 5.1: Left: An electron density plot of an oxygen vacancy. Red and white spheres represents silicon and

oxygen atoms, respectively, and bonds are shown as the sticks connecting these atoms. The Si-

Si bond, established after the removal of an oxygen atom, is indicated by a high charge density

(dark area) between the neighboring silicon atoms. Right: The defect levels arising from oxygen

vacancies (neutral) or E ′
δ

centers (positively charged) in a −SiO2. E DFT
c/v (dashed line) denotes the

conduction/valence band edge, extracted from the DFT simulations. The E+/0 levels are related to

the capture of electrons while the E0/+ levels apply to electron emission. The double-sided arrow

represents the shift of defect levels and the spreads of energy levels are visualized by the grey boxes.

formation energies [173], thus exists in small concentrations, and has a negligible contribution to the

trapping kinetics of NBTI. The Si-Si bond is associated with the E0/+ level, which is sharply peaked

and situated far below the silicon valence band edge (cf. Fig. 5.1 and Table 5.1). For comparison, the

corresponding defect calculations in c −SiO2 [149] predict E0/+ at approximately the same position.

In the context of EPR measurements, the positively charged counterpart of the oxygen vacancy is

referred to as the E ′
δ

center. The missing negative charge within its bond causes a repulsion between

the two electropositive silicon atoms and results in a stretching but not in a breakage of the Si− Si

bond. In the c − SiO2 reference, the Si-Si bond of E ′
δ

center was found to extend from ∼ 2.5Å to

∼ 3.0Å [19, 149], which is large in comparison to the bond length of a neutral oxygen vacancy. In the

DFT simulations of this thesis, this kind of weak bonds experiences large tensile and compressive

forces due the amorphous SiO2 host material. The corresponding bond lengths are found to be

distributed within a range of 2.6− 3.5Å, consistent with the values used in [19] and [20]. This Si-Si

bond is associated with a defect level close to the silicon valence band edge. Due to the amorphous

nature of SiO2, the defect levels E+/0 are spread widely over an energy range from −1.5eV to +0.4eV

(cf. Fig. 5.1). By contrast in the case of the neutral oxygen vacancy the impact of the surrounding

network can be neglected due to the strong Si−Si bond so that the distribution of E+/0 levels is narrow

as shown in Fig. 5.1.
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Defect Trap Level Min. Max.

E+/0 −1.5eV +0.4eV
E ′
δ E0/+ −2.9eV −2.7eV

E+/0 +0.7eV +0.9eV
E ′
γ E0/+ −1.1eV −0.8eV

E+/0 +1.2eV +1.7eV

E0/+ −1.5eV −0.9eV
E ′
δ

H
E0/− +0.9eV +1.1eV

E−/0 −2.0eV −0.6eV

E+/0 +1.7eV +1.9eV

E0/+ −2.9eV −2.3eV
H

E0/− +0.0eV +1.2eV

E−/0 −2.3eV −2.0eV

TABLE 5.1: Switching levels (E+/0, E0/+, etc.) referenced to the midgap of the substrate silicon. The first sign

of Eα/β (α,β = +,0,−) indicates the equilibrium configuration of the defect in the corresponding

charge state and the second sign gives the charge state of the defect for a given configuration.

Regarding the tunneling dynamics, one has to differentiate between two cases: If the defect level E+/0

is located below the silicon valence band edge, electrons from the substrate valence band can be

captured by the defect via elastic tunneling. For the reverse process, the defect level is already shifted

downwards, where the electron in the defect is unlikely to find a high energetic hole in the substrate.

From this argumentation it is expected that oxygen vacancy remains neutral if it is discharged once.

In case the E+/0 level is located above the silicon valence band edge, electron capture into the defect

is inhibited, which suggests that this defect acts as a ‘fixed positive charge’. However, keep in mind

that these charges may be neutralized via interface states instead.

5.1.2 E ′
γ Center and Variants

The existence of the E ′
γ center as an additional metastable configuration of the oxygen vacancy has

been confirmed by a wide range of theoretical [19, 20] as well as experimental [15, 16] studies. Starting

from the E ′
δ

center, one side of the defect undergoes a transformation called ‘puckered’. During this,

the dimer bond is disrupted and the ‘puckered’ silicon atom moves through the plane defined by its

three oxygen neighbors where this new configuration is stabilized via a back bond to a nearby oxygen

atom. In the DFT simulations of this thesis, the back bond has typically a length of 1.8−2.0Å, which

is large compared to the Si-O bond in bulk SiO2 (1.6Å) [153–155, 174]. This indicates a weak bonding

of the ‘puckering’ silicon atom to the back oxygen. On the other side of this defect, an unsaturated

silicon dangling bond is left behind, which can carry up to two electrons and gives an EPR signal

[17]. Only if the E ′
γ center is neutralized, this defect is prone to a collapse into its oxygen vacancy

configuration [20] again. The configuration of the E ′
γ center is depicted in Fig. 5.2.
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DB BO

FIGURE 5.2: The structure of an E ′
γ center. The silicon atom on the left of the oxygen vacancy can carry up

to two electrons in the dangling bond (DB), which is indicated by the stick only connected to the

silicon atom. The positively charged silicon atom on the right-hand side is bonded to the back

oxygen (BO). The above atomic arrangement is also referred to as the puckered configuration.

In contrast to the oxygen vacancy, the defect levels E+/0 and E0/+ of the E ′
γ center have only a small

spread of about 0.2eV since the silicon dangling bond along with the three other Si−O bonds almost

preserve their tetrahedral symmetry during structural relaxation. The puckered side of the defect

complex does not interact with the dangling bond and consequently does not impact its defect levels.

The levels for tunneling into (E+/0) or out of (E0/+) the traps lie close to the silicon band edges (see

Fig. 5.3). Therefore, only a small thermal excitation of the substrate charge carriers is required for

a tunneling process. In this case, the band bending controls the concentrations of electrons in

the silicon conduction band or holes in the silicon valence band, respectively, and consequently

governs the tunneling rates. This means that the E ′
γ centers can be repeatedly charged and

discharged by electrons by switching the MOSFET between strong inversion and accumulation. The

E ′
γ configuration was already proposed by Lelis [15, 16] in the context of the temperature-dependent

annealing behavior of oxide traps. The temperature dependence in his model was explained by

a transition from a spin-triplet [15] to its corresponding spin-singlet state. The latter denotes the

ground state of two electrons, which sit in the dangling bond of an E ′
γ center and have their spins

aligned anti-parallel. The spin-triplet state is the excited counterpart, which is characterized by a

parallel alignment of the electron spins and decays immediately to the spin-singlet ground state

after it is occupied. According to the argumentation of Lelis, the concentration of thermally excited

electrons is increased at elevated temperatures. This gives rise to an enhanced tunneling probability

and thus an accelerated annealing of positively charged E ′
γ centers. Interestingly, the energy level

of the excited spin-triplet state [15] coincides with the electron capture level E+/0 obtained by the

DFT simulations of this thesis. Thus, the level shift can explain the same trapping dynamics as

in Lelis when replacing the spin-triplet state with the E+/0 level. In this way, the defect levels
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FIGURE 5.3: The defect levels originating from an E ′
γ centers in a −SiO2. The energy levels for the capture of

electrons (E+/0) as well as the energy levels for the emission of electrons (E0/+) are found to lie

close to the silicon conduction or valence band, respectively.

responsible for the annealing behavior in the Lelis model has been theoretically confirmed but with

the interpretation based on the level shift. As highlighted in [20], most of the E ′
γ centers immediately

collapses into their oxygen vacancy configuration after neutralization. Then they feature defect levels,

located down far below the silicon valence band edge. Therefore, once these defects are neutralized,

they cannot be recharged again and will be permanently annealed out. However, this does not rule

out the E ′
γ center as a cycling charge. A considerable fraction of the neutralized E ′

γ centers [20] have

a large barrier for the relaxation to the oxygen vacancy configuration and thus may remain in the

puckered configuration for time scales relevant for NBTI. In this configuration, they are capable of

repeatedly exchanging electrons or holes with the Si/SiO2 interface.

Another variant of the E ′
γ center is the E ′

74 center (shown in Fig. 5.4), which has been extensively

studied by Conley and Lenahan [40]. Its structure can be visualized by replacing one of the nearby

oxygen atoms with an hydrogen atom. The DFT simulations in this thesis have revealed that the

neighboring hydrogen atom does not affect the position of the defect levels originating from the

dangling bond. As a result, this defect features the same distribution of trap levels and therefore can

be repeatedly charged and discharged similarly to the simple E ′
γ center.

5.1.3 Hydrogen Atom

In the context of reliability issues, the hydrogen atom [175, 176] is of special interest since it is

available in appreciable amounts. Indeed it has been speculated in many investigations [149, 177]

that hydrogen seriously affects the reliability of MOSFETs. Its configuration strongly differs with its
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DB

FIGURE 5.4: A representation of an E ′
74 center. The blue sphere represents an hydrogen atom. One of the

neighboring O atoms is replaced by an hydrogen atom which shows a tendency to bond to a silica

network atom.

FIGURE 5.5: A representation of a negatively charged hydrogen bound to the silica network. H+ attaches to the

bridging oxygen atom, H0 is situated in the middle of a void, and H− forms a weak bond to a silicon

network atom.
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FIGURE 5.6: The defect levels of the hydrogen atom in a−SiO2. The energy levels for charging and discharging

are far away from the respective silicon band edges. Except of E0/−, all defect levels are largely

separated from the band edges and thus unlikely to find a high energetic charge carrier for a

tunneling transition.

charge state: The DFT simulations of this thesis predict the neutral atom H0 in the middle of a void

where it does not form a bond with any SiO2 network atom, consistent with DFT investigations in

c−SiO2 [175, 176]. The positively charged atom H+ weakly binds to one of the electronegative oxygen

network atoms as shown in Fig. 5.5. The corresponding Si-H bond length is found to be approximately

1.0Å, which compares perfectly well with the values for a −SiO2 (1.0Å) in [164] and c −SiO2 (1.02Å)

in [149, 176]. The negatively charged atom H− attaches to an electropositive silicon atom with a bond

distance of about 1.5Å, in agreement with [149, 164, 176].

The energy levels of the hydrogen atom are visualized in Fig. 5.6 and listed in Table 5.1. The trap levels

E+/0, E0/+, and E−/0 are located far away from the silicon band edges and consequently require highly

excited substrate charge carriers for a tunneling transition. By contrast, E0/− is centered around the

silicon conduction band edge, resulting in a high tunneling probability. This suggests that the defect

is preferredly found in its negative charge state at a weak oxide field. At a first glance, this result

seems to contradict the findings of other groups [149, 175, 176]. According to them, the proton has

been predicted to be the most stable charge state of the hydrogen atom. However, the calculations

are based on a thermodynamic transition level, which only applies to thermally-activated processes,

such as NMP transitions for instance.

5.1.4 Hydrogen Bridge

Hydrogen is frequently suspected to undergo reactions with oxide defects [178, 179]. Therefore,

the present investigations include a hydrogenated variant of the E ′
δ

center, also referred to as the
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DB

FIGURE 5.7: Representation of the hydrogen bridge in the neutral charge state. The positively charged defect

is characterized by a Si-H-Si bond chain. After neutralization this chain is disrupted yielding a

dangling bond on the left hand side of this complex and a saturated dangling bond on the right-

hand side. In the case of a negatively charged hydrogen bridge, the Si-H bond is bent away from

the dangling bond.

hydrogen bridge (see Fig. 5.7). This defect can be constructed by placing a hydrogen atom inbetween

the silicon dimer of an oxygen vacancy. In the positive charge state, the hydrogen atom forms a three-

center bond involving the two silicon atoms from the dimer and the hydrogen atom in the central

position. Its relaxed structure exhibits an asymmetry in the Si-H distances with values of 1.5−1.7Å

and 1.6− 2.0Å. This is in qualitative agreement with the corresponding defect structure generated

in c −SiO2 [149], however, there are small deviations in the Si-H distances attributed to variations in

the atomic structure of the a − SiO2 host structure. Note that although the aforementioned three-

center bond is generally considered unusual in chemistry, the same Si-H-Si bond chain has also been

observed for H+ in c −Si [180]. In the neutral charge state, the three-center bond is disrupted on the

side with the long Si−H distance. The breakage is accompanied by a large structural relaxation which

detaches the Si-H complex from the remaining dangling bond. The Si−H bond length reduces to its

typical value of 1.5Å [181] for the unperturbed Si-H bond while the other silicon atom is separated

from the hydrogen atom by about 2.2−2.9Å and carries one electron in its dangling bond orbital. By

contrast, Blöchl et al. [149] found that even in the neutral charge state the hydrogen atom interacts

with both silicon atoms. This discrepancy may originate from the rigid network of the surrounding

c − SiO2, which keeps both silicon atoms together and thus prevents the Si-H-Si chain from bond

breakage in the neutral charge state. In the negative charge state, the added electron sits on the

dangling bond and causes a further repulsion between the dangling bond and the Si-H complex

(2.6−2.9Å).

87



5. LEVEL SHIFT MODEL

SiSiO2

Ec

Ev

E DFT
c

E DFT
v

Ec

Ev

+/0

0/+

0/−

−/0 e−

e−

E′
δ

H

FIGURE 5.8: The defect levels of the hydrogen bridge in a −SiO2. The hole (E−/0 and E0/+) capture levels lie

slightly closer to the substrate bandgap compared to the electron (E+/0 and E0/−) levels. This

indicates that the hydrogen bridge favors the positive charge state. In the end, the operation state

of the MOSFET will eventually determine the charge state of the defect.

As shown in Fig. 5.8 and Table 5.1, all defect levels are located within a reasonable distance from

silicon band edges on the energy scale. This suggests that none of the considered transitions can

be ruled out based on the positon of its corresponding trap level. Thus the trapping dynamics are

eventually governed by the band bending in the substrate and the operation state of the MOSFET.

5.2 The Level Shift Model

So far, only qualitative statements about the defect behavior could be made based on the switching

levels. In order to make quantitative predictions, the ETM must be generalized in a way to account

for the levels shift. Recall that the conventional concept of the ETM is based on the assumption that

the energy levels for tunneling ‘into’ and ‘out of’ a defect coincide. This is only the case for unrealistic

defects which do not deform after a tunneling event. But as proven in the previous Section 5.1, defects

do undergo structural relaxation and therefore feature two switching levels, say E0/+ for hole capture

and E+/0 for hole emission for instance, which can even be separated by some electron Volts (see

Fig. 5.9). To be precise, the switching levels E0/+ and E+/0 actually originate from the one defect

orbital and thus must be correctly interpreted as one trap level, which shifts after each charging or

discharging event. For the trapping kinetics, this means that only one of these levels can be present

in the band diagram at a time. For instance, when the defect in Fig. 5.10 is in its neutral charge state,

it has a trap level E0/+ for hole capture while its corresponding trap level E+/0 remains inactive for

the time being. If a hole capture process takes place, the E0/+ level vanishes and thus the E+/0 level

appears. Based on the considerations above, the ETM must be regarded as a special case of the level
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FIGURE 5.9: A schematic of the level shift model. As opposed to the ETM, two distinct defect levels must

be considered — namely, E+/0 and E0/+ for electron and hole capture, respectively. When the

positively charged trap (blue filled circle in gray ellipse) captures a substrate electron with an

energy of E+/0 (blue arrow), the defect level E+/0 vanishes but reappears at E0/+. The now neutral

defect (red circle in gray ellipse) is only capable of capturing a hole from the silicon valence band

(red arrow). Right after this process the defect level has returned to its initial position E+/0 again.

shift model (LSM) but with a negligible defect relaxation. Consequently, the formulation of the ETM

must be modified in order to account for the level shift. Thus equation (4.6) is rewritten as

∂t ft =+ fn(Eq1/q2 ) re,q1/q2 (Eq1/q2 , xt)� �� �
=1/τcap,e(Eq1/q2 ,xt)

(1− ft) − fp (Eq2/q1 ) re,q2/q1 (Eq2/q1 , xt)� �� �
=1/τem,e(Eq2/q1 ,xt)

ft

+ fn(Eq1/q2 ) rh,q1/q2
(Eq1/q2 , xt)� �� �

=1/τem,h(Eq1/q2 ,xt)

(1− ft) − fp (Eq2/q1 ) rh,q2/q1
(Eq2/q1 , xt)� �� �

=1/τcap,h(Eq2/q1 ,xt)

ft ,
(5.1)

where the rates are defined as

re,q1/q2 (Eq1/q2 , xt) = re,q2/q1 (Eq1/q2 , xt) =
1

τETM
n,0 (Eq1/q2 )

ζ2
WKB,c(Eq1/q2 , xt) , (5.2)

rh,q2/q1
(Eq2/q1 , xt)= rh,q2/q1

(Eq2/q1 , xt) =
1

τETM
p,0 (Eq2/q1 )

ζ2
WKB,v(Eq2/q1 , xt) . (5.3)

q1 and q2 denote the two charge states involved in the tunneling process and the trap levels Eq1/q2

and Eq2/q1 corresponds to the switching traps introduced in Section 2.3. The above rate equation is

reminiscent of the ETM presented in the previous Section 2.5.2. The peculiarity of the LSM is that the

particular terms on the right-hand side of equation (5.1) must be evaluated for different energies,

namely E+/0 or E0/+, depending on the charge state of the defect before the tunneling transition
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FIGURE 5.10: Left: The calculated time constants according to the ETM (T = 50◦C). The defect is placed close

to the interface (xt = 2Å) of a pMOSFET in the off-state and features one single trap level Et =
E+/0 = E0/+ indicated by the vertical dashed line. In the present case, the trap level lies 2.5eV

below the substrate valence band edge, where hole emission (circle) proceeds much faster than

hole capture (box). Note that for trap levels within the substrate bandgap also tunneling from

interface states [23] has been taken into account. Right: The same as in the left figure but for

the LSM. Note that the form of the capture and emission times remain the same in both models

whereas only the energy E+/0 at which electron capture time is calculated has been changed

(E0/+ = E+/0). According to the equations (5.2) and (5.3), τcap,h and τem,h are evaluated at two

different trap levels, namely one at E+/0 for electron capture and another at E0/+ for hole capture.

For this case the relative magnitude of τcap,e and τcap,h depends on the energy distance of the

respective trap level to Ef.

occurs. For instance, the positively charged defect of Fig. 5.9 has a trap level E+/0, which must be

applied for calculation of the electron capture rate 1/τcap,e(E+/0, xt) (see Fig. 5.10). By contrast, the

neutralized defect features a trap level E0/+ used for the hole capture rate 1/τcap,h(E0/+, xt). The

calculation of the corresponding time constants is illustrated in Fig. 5.10. It is important to note here

that the expressions for τcap,e, τcap,h, τem,e, and τem,h remain the ‘same’ as in the ETM and only change

in the energy they are evaluated for. This is due to the fact that the tunneling mechanism itself is not

affected by the structural relaxation. Thus, analogously to the ETM, the tunneling process can be

described by the tunneling rates (2.45) and (2.46) of the ETM and reasonably approximated by (5.2)

and (5.3).

In the following, a new quantity, referred to as the demarcation energy1, Ed will be introduced. It

determines equilibrium occupancy of the defects and is defined by the condition

τcap,e(E+/0,Ef)= τcap,h(E0/+,Ef) (5.4)

1 Note that Ed must not be confused with the thermodynamic transition level, which only applies to thermally-activated

processes, such as NMP transitions.
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with

τcap,e(E+/0,Ef) =
τETM

n,0 (E+/0)

ζ2
WKB,c(E+/0, xt) fn(E+/0)

, (5.5)

τcap,h(E0/+,Ef) =
τETM

p,0 (E0/+)

ζ2
WKB,v(E0/+, xt) fp (E0/+)

. (5.6)

Assuming Boltzmann statistics, the energy dependences of the electron and hole occupation can be

approximated as follows:

fn(E )≈
exp

�−β(E −Ef)
�

, E > Ef

1, E < Ef

(5.7)

fp (E )≈
1, E > Ef

exp
�−β(Ef −E )

�
, E < Ef

(5.8)

Suppose that E0/+ > Ef and E+/0 < Ef as it has been the case for the E ′
γ center. Then only the

exponential terms of fn and fp enter the time constants. The WKB factors in the expressions (5.5)

and (5.6) can be replaced by their approximative variants for a rectangular barrier.

ζ2
WKB,c/v(E )≈ exp

�
−2

�
2mt

� xt

�
|Ec/v,ox −E |

�
. (5.9)

Since τETM
n,0 (E+/0) ≈ τETM

p,0 (E0/+) ∼ 10−14 s−1 holds, equation (5.4) can be rewritten as

exp
�
2

�
2mt

� xt

�
Ec,ox −E+/0

�
exp

�
β(E+/0 −Ef)

�=
= exp

�
2

�
2mt

� xt

�
E0/+−Ev,ox

�
exp

�
β(Ef −E0/+)

�
. (5.10)

Taking the logarithm of this equation and after rearranging some terms, one obtains

Ed = Ef =
E0/++E+/0

2
+ α

β

��
Ec,ox −E+/0 −

�
E0/+−Ev,ox

�
xt (5.11)

with

α= 2

�
2mt

� . (5.12)

The factor αxt/(βq0) in equation (5.11) takes a value of approximately 0.094 at room temperature

(23◦C). Thus the last term is negligible compared to the remainder of equation (5.11) and Ed can be

estimated by

Ed = E+/0 +E0/+
2

. (5.13)

This quantity predicts the electron occupancy of a defect when equilibrium has been reached. For

instance, when a stress voltage is applied to the gate of a pMOSFET, Ed is raised above Ef and the
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initially neutral defect can capture a substrate hole during the stress phase. Conversely, when the

MOSFET is switched from stress to relaxation, Ed falls below Ef and the positively charged defect will

become neutralized in equilibrium. As an example, the Ed level of the oxygen vacancy varies between

−1.7eV and −0.5eV according to the present DFT results. These values lie too low to be shifted above

Ef for defects located close to the interface (< 1nm). Therefore, the level Ed of the E ′
γ center reveals

that the LSM is incompatible with the concept of hole capture into oxygen vacancies. All other defect

candidates, investigated by the DFT simulations in this thesis, feature values of Ed close to Ef and

cannot be ruled out on the basis of the above argument.

While the equilibrium occupation of the defects is given by the demarcation energy, the trapping

dynamics directly follow from the electron and hole capture time constants, whose dependence on

the Fermi level and the trap depth will be discussed in the following. The ‘interesting’ instance is when

the Fermi level is situated inbetween the levels E+/0 and E0/+ (cf. Fig. 5.10). Using Boltzmann statistics

(5.7) and (5.8) and approximative WKB factor (5.9), the capture time constants can be estimated by

τcap,e(E+/0, xt) = τETM
n,0 exp

�
2α

�
Ec,ox −E+/0xt

�
exp

�
β(E+/0 −Ef)

�
(5.14)

τcap,h(E0/+, xt) = τETM
p,0 exp

�
2α

�
E0/+−Ev,oxxt

�
exp

�
β(Ef −E0/+)

�
. (5.15)

In the equations above, the last term, originating from the Fermi-Dirac distribution, has the largest

impact on both time constants. For instance, τcap,e exponentially depends on the energy difference

|E0/+−Ef|, that is, a higher E0/+ level gives a larger τcap,e. Analogous considerations hold true for

the energy difference |Ef −E0/+| and τcap,h. These dependences are also reflected in the exponential

branches of the time constant plot in Fig. 5.10. Note that the simulated defect in this figure has

been placed only 2Å away from the interface where the time taken for the tunnel step can be almost

neglected. However, when the defects are assumed to be situated deeper within the oxide, their time

constants are increased due to the reduced tunnel probability. As demonstrated in Fig. 5.11 (left), this

effect is more pronounced in the middle of the oxide bandgap while it almost diminishes towards

the band edges due to the reduced tunneling barrier there. The ‘uninteresting’ instance is when the

Fermi level is situated above E0/+ as well as E+/0 as shown Fig. 5.11 (right). In this case τem,h is larger

than τcap,h, implying that hole capture is effectively suppressed. Note that analogous consideration

holds true for the electron capture when the Fermi level fall below E+/0 and E0/+.

5.2.1 Model Evaluation

In this section, the LSM will be employed to investigate the impact of the level shift on the trapping

dynamics in NBTI experiments. Based on the NBTI checklist established in Section 1.4, it will be

tested whether this model is capable of reproducing the NBTI degradation seen in experiments. The

following simulations are carried out on a pMOSFET (Nd = 5×1017 cm−3) with a strongly doped p-

poly gate (Na = 3 × 1020 cm−3). The thickness of the oxide layer has been chosen to be 5nm for

demonstration purposes. Thereby, the traps can be homogeneously spread within the dielectric but

are still sufficiently separated (2.0nm) from the poly interface in order to be able to neglect trapping

from the gate. Furthermore, this wide range of trap depths ensures a large distribution of capture

and emission times over 14 decades in time (cf. Fig. 5.11). The energy levels of the traps have been
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FIGURE 5.11: Left: The calculated time constants according to the LSM for various trap depths (T = 50◦C,

VG = 0V). The increase in the time constants is related to a larger tunneling distance for deeper

traps. However, this effect, incorporated in the WKB factor, becomes weaker for energies closer

to the oxide band edges since the tunneling barrier is dramatically lowered there. Right: The

calculated time constants (T = 50◦C, VG = 0V) for the case when the Fermi level is situated above

both trap levels E0/+ and E+/0. Since τcap,h exceeds τem,h, hole capture is overcompensated by

hole emission and thus effectively suppressed.

assumed to be uniformly distributed with the E0/+ and the E+/0 levels being uncorrelated and thus

independently calculated using a random number generator. The operation temperature is set to

125◦C and thus lies in the middle of the range relevant for NBTI. It is noted that only charge injection

from the substrate is accounted for in the following simulations for simplicity.

In the following, the basic properties of the LSM will be discussed on the basis of a simple showcase.

Therefore, this model is evaluated for a type of defect whose trap level E0/+ has a wide distribution

below Ev while the E+/0 counterpart is sharply peaked slightly above Ec (see Fig. 5.12). At the

beginning of the stress phase nearly all defects are neutral and thus occupied by one electron. In this

state, the traps are characterized by the hole capture levels E0/+ located below the substrate valence

band. The corresponding electron capture levels E+/0 lie above the substrate conduction band but

are inactive for the time being. During the stress phase, the substrate holes must be thermally excited

to the defect level E0/+ in order that a tunneling process can occur. In equation (5.6) their energy-

dependent concentration is linked to the factor fp , which decays exponentially with decreasing

energies assuming Boltzmann statistics. This decay would lead to a temporal filling of traps from

energetically higher towards lower traps in the band diagram. Furthermore, the tunneling of electrons

and holes has an additional trap depth dependence, which is reflected in the WKB factor of equation

(5.6). Analogously to the ETM, this would cause a temporal filling of traps starting from close to

the interface and continuing deep into the oxide. As demonstrated in Fig. 5.13, the superposition

of both effects results in a tunneling hole front which proceeds from high defect levels close to the

interface towards lower ones deep in the oxide. The resulting time evolution of the trap occupancies

is visualized in Fig. 5.12.
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FIGURE 5.12: The time evolution of hole trapping during the stress (first row) and the relaxation (second row)

phase (Vs = −3.0V, T = 150◦C). The substrate Fermi level is indicated by the red line and the

small circles represent the trap levels E+/0 and E0/+ of the single defects. The neutral defects

are assumed to have fully occupied defect orbitals and thus can only trap holes. Therefore, they

feature hole capture levels E0/+, which are located below the center of the substrate bandgap

and are said to be ‘active’. By contrast, the positively charged defects are assumed to be able to

trap electrons only. Accordingly, they have only electron capture levels E+/0 above midgap but

no energy levels E0/+, which reappear once these defects are charged again. It is emphasized

that the occupancy of one defect is related to which of its trap levels E0/+ and E+/0 is active at

the moment. Therefore, the above figures also reflects the trap occupancies at a certain time.

Since the trap levels are recorded at the beginning, the middle, and the end of the stress and the

relaxation phase, these figures show the tunneling hole front, which is illustrated by the active

trap levels and thus the occupancy of the defects.
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FIGURE 5.13: Motion of the tunneling hole front shown for a snippet of the hole occupancy in Fig. 5.12 after a

stress time ts = 105 s. The capture time constants are determined by the exponential decay in the

WKB factor and the Fermi-Dirac distribution. The latter has been approximated by the Maxwell-

Boltzmann distribution and shows an exponential energy dependence a few kBT away from the

Fermi level. As indicated by the green vertical arrow, this dependence leads to a tunneling hole

front moving downwards in the band diagram. By contrast, the WKB factor is most strongly

affected by the trap depth, resulting in an tunneling hole from the substrate to deep into the

oxide (green horizontal arrow). The resulting motion of the tunneling hole front is depicted by

red arrow.

The temporal filling is also reflected in the occupancies of the demarcation energies, shown in

Fig. 5.14. As already mentioned before, only defects located above Ef can participate in hole capture.

As a consequence, the temporal filling of traps does not proceed below Ef, which thus marks a border

to the tunneling hole front.

After the stress phase, a large part of the hole capture levels has disappeared and is replaced by their

corresponding electron capture levels E0/+. The latter are assumed to be concentrated in a small

trap band slightly above the substrate conduction band. During the recovery phase, electrons in

the substrate conduction band must be thermally excited up to the E0/+ level where the trap depth-

dependent tunneling process can take place. According to Fig. 5.12, the defects are found to be filled

according to their trap depth, visible as a horizontally moving tunnel front. The small separation of

the E+/0 levels on the energy scale results in a narrow distribution of electron capture times. From

this it follows that two particular charging events at the upper and the lower edge of the trap band

can be hardly resolved in time. As a consequence, no vertical component in the motion of the tunnel

front is observed during the recovery phase of Fig. 5.12. Analogously to the stress phase, the tunneling

hole front also appears in the occupancies of the demarcation levels displayed in Fig. 5.14. During the

relaxation phase, the Ed levels are shifted below Ef where they can be neutralized if equilibrium has

been reached. However, Fig. 5.14 reveals that the discharging of traps has not been completed even

until an unrealistic long relaxation time of 1010 s. It is important to note here that Ef during stress

and relaxation determines the active area in which hole capture is possible. Defects above this area
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FIGURE 5.14: Left: The demarcation levels Ed at the end of the stress phase for the defects shown in Fig. 5.12

(Vs = −3.0V, T = 150◦C). The white circles represent neutral defects which have not trapped a

hole during the stress phase. The purple filling color indicates that the defect is positively charged

due to a finished hole capture event. Since there exist neutral defects with an Ed level above Ef,

hole trapping has not reached saturation after a stress period lasting 105 s. Middle: The same as

in the left figure but at the end of the relaxation phase. The figure indicates that not all trapped

holes have been removed after a relaxation time of 1010 s. Right: Resulting active area for charge

trapping in the LSM. The full red lines show the substrate Fermi levels during stress (Ef,stress)

and relaxation (Ef,relax). The defects situated below Ef,stress cannot capture a hole during stress

while those located above Ef,relax remain positively charged during relaxation and thus do not

contribute to ΔVth.

are already unoccupied before stress and thus cannot capture a further hole, while the ones below

will remain neutral due to the high hole emission rate. As a result, only defects within this area can

change their charge state and thus contribute to the net amount of captured holes and in further

consequence to NBTI.

The LSM has been employed to simulate NBTI degradation in a pMOSFET for a wide range of

different stress conditions. The calculated stress/relaxation curves for the aforementioned showcase

are presented in Fig. 5.15. In contrast to the ETM, they exhibit a marked temperature dependence in

addition to the obvious field acceleration. While the former one mainly stems from the temperature

dependent Fermi-Dirac distribution in τcap,h (cf. equation (5.6)), the latter one cannot be simply

interpreted by the lowering of the tunneling barrier at higher Fox. The field acceleration originates

form the larger shift of the trap levels at higher Fox, as visualized in Fig. 5.16. As such, the field

acceleration strongly depends on the distribution of the trap levels in space and energy but is not

inherent to the LSM itself. For instance, a defect with xt = 0nm and Ed < Ef during stress will not be

able to capture a hole at all (see Fig. 5.17). In order to obtain more realistic results, tunneling from

interface states [23] has been incorporated into LSM. The obtained degradation curves for defects

with E+/0 = Ev + 1.5± 1.0eV and E0/+ = Ev − 1.75± 1.0eV are depicted in Fig. 5.18. Based on these

results, it will be evaluated whether the LSM can satisfactorily reproduce the basic features seen in
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FIGURE 5.15: Left: The trapped charges ΔQox(t) as a function of stress time for different gate biases. Right: The

same as for the left figure but for different temperatures.
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FIGURE 5.16: The trap levels E0/+ and E+/0 (both second row) after a stress time of 105 s for Vs =−1.0/−2.5/−
4.0V (from left to right) and T = 150◦C. The higher position of the E0/+ levels goes hand in hand

with shorter hole capture times and in consequence a larger amount of trapped charges after a

stress time of 105 s. From this it can be concluded that the oxide field dependence of the LSM

primarily originates from the upwards shift of the trap levels but is only marginally influenced by

the reduced tunneling barrier at higher Fox.
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FIGURE 5.17: The position and the trap occupancy of Ed after a stress time of 105 s for Vs =−1.0/−2.5/−4.0V

(from left to right) and T = 150◦C. It can be recognized that a higher Fox increases the portion of

Ed levels above Ef and thus a larger number of traps are available for hole capture.
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FIGURE 5.18: The same as in Fig. 5.15 but for a different distribution of defect levels and including tunneling

from interface states. Left: During stress, charge trapping sets in later (10ms) when smaller

biases are applied to the gate. The degradation curves follow a nearly logarithmic behavior over a

wide time range, where the curves obtained for a small stress voltages can be better approximated

by a power-law. Furthermore, none of the curves show a sign of saturation until a stress time of

105 s. It is noted that their slopes appear to be insensitive to the applied gate bias — except from

small gate biases again. Regarding the relaxation phase, deviations from the time logarithmic

behavior can be recognized below 10ms. Right: For the stress as well as the relaxation phase, a

very weak temperature dependence is obtained.
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FIGURE 5.19: The field acceleration and temperature activation in the LSM during stress. Since the degradation

roughly follows a logarithmic behavior in this phase, scaling factors can be extracted from

Fig.5.18. s(T ) and s(Fox) demonstrate that the LSM does not reproduce the quadratic field and

temperature dependence seen in experiments.

NBTI experiments. In the NBTI checklist of Table 5.2, these features are formulated as necessary

criteria, where each of them will be judged in the following.

(i ) Hole trapping during stress and relaxation is found to cover the time range from milliseconds

to a few thousand seconds as in the reference data of Section 1.4. Moreover, it even extends

from 1µs to 105 s during stress and from 1µs to 1010 s during relaxation and thus even goes far

beyond the experimental time window.

(ii ) At low stress voltages, the degradation curves feature only a weak curvature and thus roughly

follow a logarithmic time behavior.

(iii ) Only small deviations from the logarithmic time behavior are present at low stress voltages in

the relaxation phase. But one should kept in mind that the relaxation data cannot be scaled as

there is an intersection point between the high and low temperature recovery curves.

(iv ) Since the degradation accumulated during the stress phase does not completely recover during

the much longer relaxation phase, the LSM allows for the asymmetry between stress and

relaxation. This can be ascribed to the fact that the E+/0 levels are more widely spread on the

energy scale than their E0/+ counterparts. The wide separation of the E+/0 levels is linked to a

broad distribution of τcap,e, giving rise to a retarded recovery.

(v ) The field acceleration is found to follow a nearly linear behavior (cf. Fig. 5.19), which is

inconsistent with the NBTI criteria of Section 1.4.

(vi ) The elevated temperatures yield a weakly enhanced NBTI degradation during stress (cf.

Fig. 5.19), while they reduce the electron capture times and thus lead to an accelerated recovery

during relaxation. These tendencies cannot be reconciled with the quadratic temperature

activation obtained in experiments.
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Model Properties

(i ) Involved Time Scales �

(ii ) Log. Behavior during Stress �

(iii ) Log. Behavior during Recovery ✗

(iv ) Asymmetry Stress/Recovery �

(v ) Quadratic Field Dependence ✗

(vi ) Quadratic Temperature Dependence ✗

TABLE 5.2: Checklist for an NBTI model validation. Since the LSM does not fulfill all of the criteria established

in Section 1.4, it must be discarded as a possible model for NBTI.

The above list provides strong evidence that the LSM cannot be reconciled with the experimental

NBTI data. As a consequence, pure tunneling must be discarded as a possible cause for hole trapping

in NBTI.

5.2.2 Conclusion

In this chapter, the concept of the level shift has been incorporated in the ETM. The resulting LSM has

been tested whether it is capable of explaining the NBTI phenomenon. By means of DFT simulations

it has been proven that the structural relaxation after a tunneling process occurs for a series of defects

suspected to be responsible for NBTI. Therefore, the ETM has been modified to account for the

unquestionable occurrence of the level shift. This involves more complicated trapping dynamics

but, for instance, allows for a temperature activation, missing in the ETM, as well as the asymmetry

between stress and recovery. However, as pointed out in Table 5.2, the LSM is not capable of

reproducing all of the essential NBTI features, such as the field and temperature dependence. As

a consequence, it must be ruled out as an adequate model for charge trapping in NBTI.
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6
SRH-Based Models

In the previous chapters, it has been demonstrated that the ETM as well as the LSM cannot explain

charge trapping in NBTI. In particular the ETM, suggested by Huard et al. [58], suffers from several

weaknesses, such as a too weak field dependence or a too short relaxation phase (see Section 4.2.9).

However, the most severe deficiency is the lack of an appreciable temperature activation. As a

result, there must exist an additional temperature-activated process coupled to elastic tunneling.

Both subprocesses constitute a common trapping mechanism capturing the field as well as the

temperature dependence.

The SRH equations (2.72) and (2.73) form the basis for the inelastic tunneling transitions mentioned

before. They describe charge carrier transitions via an undefined temperature-activated process,

which has not to be specified within the general framework of the standard SRH. Besides NBTI, the

underlying concept has also been employed as a description for other charge trapping phenomena,

such as random telegraph noise (RTN). The latter has been intensively investigated by means of time

constant plots, which show τcap and τem as a function of the oxide field or the gate voltage [55, 56,

124, 125]. Recently, they have been used as one way to tackle the NBTI phenomenon experimentally

[51, 53]. Since these plots reveal the behavior of single defects, they provide an insight into the

microscopic processes behind a charge capture or emission event. Therefore, they will be used to

evaluate the NBTI models presented in this chapter.
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6.1 McWhorter Model

In the middle of the last century, McWhorter [182] dealt with the spectrum of 1/f -noise observed at

germanium-oxide interfaces. This kind of noise is attributed to fluctuations in the trap occupancy

ft due to charge carriers tunneling forth and back between the bulk and the defects. McWhorter

described these fluctuations using a simple SRH-based model, which can be considered as a

prototype for other charge trapping models. His model extends the conventional SRH theory by

the effect of charge carrier tunneling, which is accounted for by the factor exp(xt/xp,0). Thus, the

simplified time constants read as

τcap,h = τSRH
p,0 exp

�
xt

xp,0

�
Nv

p
, (6.1)

τem,h = τSRH
p,0 exp

�
xt

xp,0

�
exp(βΔEt) exp(−βq0Foxxt) . (6.2)

The model presumes that all traps are energetically located within the substrate bandgap so that none

of them will be found below Ev. Furthermore, they are assumed to be spatially distributed over the

entire dielectric.

In the following, the McWhorter model will be evaluated against the findings of the TDDS

experiments (see Section 1.3.4).

(i ) After equation (6.1) τcap,h shows a weak field dependence following 1/p. The drop in the

hole concentration p at small fields leads to a sharp peak, which is inconsistent with the field

acceleration observed in TDDS experiments.

(ii ) Since the hole concentration weakly varies with changes in the temperature, the hole capture

process is not thermally activated.

(iii ) The field dependence of τem,h is governed by the exponential term exp(−βq0Foxxt) and thus is

inconsistent with the behavior of ‘normal’ defects. But one should keep in mind that some RTN

investigations [55, 125] have revealed that there exist defects whose emission times increase

exponentially with the gate bias.

(iv ) Consequently, the McWhorther model does also not agree with the linear dependence on

p seen for τem,h in the case of the ‘anomalous’ defects. Beyond that, it does not give an

explanation for the two distinct kinds of defects in general.

(v ) The McWhorther model predicts τem,h to be temperature-activated in agreement with the

experimental findings.

The term exp(xt/xp,0) in τcap,h and τem,h accounts for the trap depth dependence of tunneling and

leads to an upwards shift of the entire τcap,h and τem,h curves with an increasing trap depth xt. Due

to the wide distribution of xt, the McWhorter model allows a wide range of capture and emission

times in thick oxides. In modern device technologies, however, the time constant of the devices with
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an oxide thickness of 2nm would be limited to 1ms after the model. As such, this model cannot

explain time constants larger than 1ms for devices with an oxide thickness of 2nm. This is in contrast

to the experimental results (cf. Fig. 1.2), in which τem,h extends well into the kilosecond regime. In

conclusion, this model cannot be reconciled with the findings of the TDDS and is thus inadequate to

describe the traps involved in NBTI.

6.2 Standard Model of Kirton and Uren

Since the McWhorter model suffers from a weak temperature dependence of τcap,h and small time

constants, Kirton and Uren [56] incorporated field-independent barriers ΔEb in the cross sections

σSRH
n and σSRH

n (see Section 2.5). The ‘ad hoc’ introduction of these barriers has been motivated

by the theory of nonradiative multi-phonon transitions (NMP) process [115]. However, Kirton and

Uren have not provided a detailed theoretical derivation based on this NMP theory. Nevertheless,

their work is regarded as a substantial improvement in the interpretation of charge trapping at

semiconductor-oxide interfaces and thus also referred to as the standard model throughout this

thesis. In an extended version of the McWhorter model, the holes can also be captured by traps with

an energy below the substrate valence band. As illustrated in Fig. 2.5 of Section 2.5.2, the required

barriers consist of two components, namely ΔEb and |ΔEt|. The latter is the required minimum

energy for a hole capture process while ΔEb is the barrier component which must be overcome for

hole capture as well as emission. In this variant, the capture and emission time constants read

τcap,h = τSRH
p,0 exp

�
xt

xp,0

�
exp(βΔEb)

Nv

p

1, Et > Ev

exp(−βΔEt) exp(βq0Foxxt), Et < Ev

, (6.3)

τem,h = τSRH
p,0 exp

�
xt

xp,0

�
exp(βΔEb)

exp(βΔEt) exp(−βq0Foxxt), Et > Ev

1, Et < Ev

, (6.4)

where the traps are not restricted to lie within the bandgap. Its behavior with respect to the

temperature and the oxide field is illustrated in Fig. 6.1 and evaluated based on the TDDS checklist in

Table 6.1. When the trap level lies below the valence band edge (Et < Ev), τcap,h shows an exponential

field dependence, which is superimposed by a sharp peak due to a drop of the hole concentration

at weak oxide fields. Comparing the model to the experimental TDDS data (see Section 1.3.4), this

exponential behavior allows for reasonable and approximative fits to τcap,h but it is incompatible

with the observed curvature in τcap,h. Furthermore, the model predicts τem,h to be field insensitive for

Et < Ef according to the equations (6.4). It should be mentioned at this point that the derivation of the

analytical expression (6.3) and (6.4) is based on Boltzmann statistics, leading to small deviations in

τcap,h and τem,h compared to the simulations of Fig. 6.1 (left) using Fermi-Dirac statistics. The weak

field dependence of the simulated τem,h reasonably agrees with the behavior of ‘normal’ (constant

emission times) but is inconsistent with as well as ‘anomalous’ traps (a drop at weak oxide fields).

Nevertheless, Fig. 6.1 reveals that the introduction of ΔEb yields the required temperature activation

and larger time constants in agreement with the points (ii ) and (v ) of the TDDS findings.
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FIGURE 6.1: The simulated time capture and emission times according to the standard model of Kirton et

al. [56] using Fermi-Dirac (left) and Boltzmann (right) statistics. The τcap,h are plotted as solid

lines, while the τem,h are depicted by dashed lines. The vertical dashed lines mark the values of

Fox or VG when the trap level Et passes either the Fermi level or the valence band edge in the

substrate, respectively. Equation (6.4), which is based on Boltzmann statistics, predicts that τem,h

remains constant in the region Et < Ev as shown in the right figure. Using more accurate Fermi-

Dirac statistics the emission time constants are subject to a weak field dependence (cf. left figure).

On the logarithmic scale, the τcap,h follow a linear behavior in Fox over a wide range but do not

have the same curvature as present in the TDDS data. The τem,h show neither a plateau nor a

drop towards weak fields. Compared to the McWhorter model, τcap,h and τem,h exhibit a clear

temperature activation over the whole range of oxide fields so that their values are moved to larger

time scales relevant for NBTI.

A fit of the Kirton model to the experimental TDDS data is presented in Fig. 6.2. Although the model

can reproduce some features seen in the TDDS data, except for the curvature in τcap, no reasonable

agreement with the measurement data could be achieved. This discrepancy can be explained as

follows: The exponential bias dependence extends up to a voltage VGTV at which Et coincides with

Ev. In Fig. 6.2 (left) VGTV is approximately 2.5V so that τcap,h shows an exponential bias dependence

up to this value and becomes constant afterwards. Therefore, Et must be chosen such that VGTV lies

above the voltage range used in the measurements. This is only the case for defects whose trap levels

Et are situated sufficiently low. Note that those defects are also characterized by a large VGTF, which

marks the voltage where Et coincides with Ef. After equation (2.66), their τcap,h must equal their τem,h

at VGTF, visible as the crossings between τcap,h and τem,h in Fig. 6.2. At a low gate bias, their trap

levels are moved far below Ef so that their emission times fall several orders of magnitude below their

corresponding capture time constants. The large difference between τcap,h and τem,h predicted by the

Kirton model is inconsistent with the experimental TDDS data. Additionally, a fit of the Kirton model

to τem,h is presented in Fig. 6.1 (right). It clearly shows that the simulated τcap,h fails to reproduce the

experimentally obtained τem when a good match with τem,h is achieved.
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FIGURE 6.2: A fit of the Kirton model to the TDDS data. The symbols stand for the measurement data and

the lines represent the simulated time constants. When the Kirton model is optimized to the hole

capture times τcap,h (left), reasonable fits can be achieved for them but τem,h is predicted three

orders of magnitudes too low. Alternatively, a good agreement (right) can be obtained for the hole

emission times τem,h but with a strong mismatch of the capture times τcap,h for VG > VGTV. From

this it is concluded that the Kirton model is not capable of fitting τcap,h and τem,h at the same time.

Model McWhorter Kirton

(i ) Curvature in τcap ✗ ✗

(ii ) Temperature Activation of τcap ✗ �

(iii ) ‘Normal’ Defect Behavior ✗ �

(iv ) ‘Anomalous’ Defect Behavior ✗ ✗

(v ) Temperature Activation of τem � �

TABLE 6.1: Checklist for a TDDS defect. The individual criteria stem from the TDDS data addressed in

Section 1.3.4. The McWhorter as well as the Kirton model do not fulfill all criteria and thus do not

describe the defects seen in TDDS experiments.
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6.3 Two Stage Model

The concept of NMP has been used in a slightly modified variant termed multiphonon field-assisted

tunneling (MPFAT) [55, 115–117, 125], which was proposed for ionization of deep impurity centers.

The underlying theory accounts for the fact that the emission of charge carriers out of bulk traps

is accelerated in the presence of an electric field. This effect is eventually related to the shortened

tunneling distance through a triangular barrier when considering thermal excitation of the charge

carriers. According to theoretical calculations of Ganichev et al. [117], it yields a field enhancement

factor exp(F 2/F 2
c ), which is suspected to have a strong impact on hole capture processes in NBTI and

has therefore been phenomenologically introduced in the two-stage model (TSM) [61].

6.3.1 Physical Description of the Model

The TSM relies on the Harry-Diamond-Laboratories (HDL) [15] model but is extended by a second

stage accounting for the permanent component of NBTI (cf. Fig. 6.3). The defect precursor, an oxygen

vacancy according to the HDL model, is capable of capturing substrate holes via the aforementioned

MPFAT mechanism. The trap level Et,1 of the precursor is located below the substrate valence band

and subject to a wide distribution due to the amorphousness of SiO2. Upon hole capture, the defect

undergoes a transformation to an E ′ center, which is visible in ESR measurements [43]. In this new

configuration, it features a Si dangling bond associated with a defect level Et,2 within or close to within

the substrate bandgap in accordance to [162]. The level shift from Et,1 to Et,2 arises from the change

to a new ‘stable’ defect configuration, namely the Si dangling bond. In the E ′ center configuration,

the defect can be repeatedly charged and discharged by electrons tunneling in or out of its dangling

bond. The associated switching behavior1 is in agreement with the experimental observations made

in electrical measurements [15, 16]. Only in the neutral state 3, in which the Si dangling bond is

doubly occupied by an electron, the E ′ center can be annealed, thereby becoming an oxygen vacancy

again.

The second stage involves an amphoteric trap, most probably a Pb center, which has been found to

interact with the switching trap as observed in irradiation experiments [43]. That is, a hydrogen is

detached from an interfacial Si-H bond and leaves behind a Pb center. In a subsequent reaction, it

saturates the dangling bond of the E ′ center. This stage fixes the positive charge at the oxide defect

and creates a new interface state, whose charge state is controlled by the substrate Fermi level. Since

the hydrogen transition is assumed to last much longer than the hole capture or emission process,

this stage corresponds to the permanent or slowly recoverable component of NBTI.

Mathematically, the dynamics of this complex mechanism are described by the set of the following

rate equations:

1 Once switching traps are created, they have a defect level within the substrate bandgap and thus their charge state can

be repeatedly changed by small variations of the gate bias.
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FIGURE 6.3: The transition state diagram for the trapping dynamics of the TSM. The recoverable component

of NBTI constitutes the first stage of the TSM. The precursor (state 1) is transformed to a switching

trap (state 2) via an irreversible MPFAT process. In this configuration, the defect can quickly

respond to small variations of the gate bias by switching between the states 2 and 3. From the

neutral charge state 3, the defect can undergo structural relaxation over a thermal barrier and

arrives at its initial configuration. The second stage gives an explanation for the permanent

component, which is attributed to a hydrogen transition from state 2 to 4. This transition fixes

the positive charge (red plus sign) in the defect and creates a new interface state (ellipse with one

or two blue arrows).

∂t f1 =− f1r12 + f3r31, (6.5)

∂t f2 =+ f1r12 − f2r23 + f3r32 − f2r24+ f4r42, (6.6)

∂t f3 =+ f2r23 − f3r32 − f3r31, (6.7)

∂t f4 =+ f2r24 − f4r42, (6.8)

The subscript i of fi stands for the state according to the numbering in Fig. 6.3. The transition rates

are denoted as ri j , with i and j as the initial and the final states, respectively. The rate r12 is derived

from the SRH equations (2.69), in which the empirical enhancement factor exp(F 2
ox/F 2

c ) for the MPFAT

transition2 T1→2 has been phenomenologically introduced. Then the transition rates read

r12 = rcap,h(ΔEb,1,Et,1) exp

�
F 2

ox

F 2
c

�
+ rem,e(ΔEb,1,Et,1) (6.9)

2 The abbreviation Ti→ j denotes transitions from state i to j while Ti↔ j stands for the bidirectional analogons.

Furthermore, Ti→ j→k stands for a chain of two transitions Ti→ j and T j→k .
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with

rcap,h(ΔEb,Et) =
1

τTSM
p,0

p

Nv
exp

�
− xt

xp,0

�
exp(−βΔEb)

1, Et > Ev

exp
�−β(Ev −Et)

�
, Et < Ev

, (6.10)

rem,e(ΔEb,Et) =
1

τTSM
n,0

n

Nc
exp

�
− xt

xn,0

�
exp(−βΔEb)

exp
�−β(Ef −Ec)

�
, Et > Ec

exp
�−β(Ef −Et)

�
, Et < Ec .

. (6.11)

The quantity τTSM
p,0 is the equivalent of τSRH

p,0 in the TSM and can be calculated according to equation

(2.74). The barriers ΔEb,1 and ΔEb,2 are defined analogously to the barrier ΔEb in Fig. 2.5. Therefore,

they corresponds to the barrier component, which must be overcome in both directions of the

transitions T1↔2 and T2↔3, respectively (cf. Fig 2.5). For the transitions between the states 2 and

3

r23 = rcap,e(ΔEb,2,Et,2)+ rem,h(ΔEb,2,Et,2) , (6.12)

r32 = rem,e(ΔEb,2,Et,2)+ rcap,h(ΔEb,2,Et,2) , (6.13)

the capture and emission of electrons as well as holes are taken into account.

rem,h(ΔEb,Et) =
1

τTSM
p,0

p

Nv
exp

�
− xt

xp,0

�
exp(−βΔEb)

exp
�−β(Et −Ef)

�
, Et >Ev

exp
�−β(Ev −Ef)

�
, Et <Ev

(6.14)

rcap,e(ΔEb,Et) =
1

τTSM
n,0

n

Nc
exp

�
− xt

xn,0

�
exp(−βΔEb)

exp
�−β(Et −Ec)

�
, Et > Ec

1, Et < Ec

(6.15)

The annealing of the defect (T3→1) is represented by the rate r31, which is modeled by a structural

relaxation over a thermal barrier ΔEb,3.

r31 = ν0 exp(−βΔEb,3) (6.16)

ν0 denotes the attempt frequency, which is usually in the order of 1013 s−1. The hydrogen transition

T2↔4 is modeled assuming a field-dependent thermal barrier, as shown in Fig. 6.4.

r24 = ν0 exp
�−β(ΔEb,4 −γFox)

�
(6.17)

r42 = ν0 exp
�−β(ΔEb,4 −E4 +γFox)

�
(6.18)

The occupancy of interface traps, present in state 4, is calculated using conventional SRH statistics as

implemented in standard device simulators [183].

6.3.2 Model Evaluation

The following simulations are based on the same numerical scheme as has been presented in

Section 3.2 and are used for the ETM and the LSM in Chapter 4 and 5. Each representative trap in

this scheme is characterized by its individual set of defect levels and barriers. The generated random
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E2 = 0

E4ΔEb,4

ΔEb,4−E4

+γFox−γFox

FIGURE 6.4: The schematic of the hydrogen transition. The solid line depicts the adiabatic potentials for a

hydrogen reaction in a configuration coordinate diagram. When a bias is applied to the gate,

the oxide field lifts the energy minimum of state 2 (E2) but lowers that of state 4 (E4). Since

the interfacial Si-H bonds are associated with a dipole moment, the shift of the energy minima

depends linearly on the oxide field with a proportionality constant of γ. The applied oxide field

gives rise to a reduced forward barrier (T2→4) and an increased reverse barrier (T4→2). Without

loss of generality, the value of E2 is set to zero.

numbers are homogeneously distributed for Et,1, Et,2, ΔEb,1, and ΔEb,2 while they follow a Fermi-

derivative (Gaussian-like) distribution [90] for ΔEb,4 and E4. The remaining quantities including

σTSM
p,0 = σTSM

n,0 ∼ 3× 10−14 cm2, Fc ∼ 2MV/cm, vth,p = vth,n ∼ 107 cm/s, xp,0 = 0.5Å, and xn,0 = 0.5Å

are assumed to be single-valued.

In contrast to previous models, oxide charges (state 2) as well as interface traps (state 4) are

incorporated into the TSM so that two states must be considered for the calculation of ΔVth. It

is important to note that only a part of the overall degradation during stress is observed within

the experimental time window. As demonstrated in Fig. 6.5, a large fraction already occurs before

the beginning of the OTF measurement (t0 = 1ms) and only a part of the Vth degradation can be

monitored by this technique (cf. Section 1.3.2). As a consequence, the measured threshold voltage

shift must be calculated as

ΔVth(ts) =Vth(ts)−Vth(t0) . (6.19)

Furthermore, the recovery during relaxation is monitored after t0 = 1ms so that only the tails of the

real recovery curve can be assessed experimentally.

The TSM [61] has been compared to a large set of measurement data, including various combinations

of stress voltages and temperatures. For illustration, a fit to the eMSM (cf. Section 1.4) data at 150◦C

is depicted in Fig. 6.6. The findings of this model are evaluated in the following:

(i ) Hole trapping during stress sets in before the first OTF measurement point (1ms) is determined

and no sign of saturation appears until 2s. Detrapping during relaxation extends over the whole

experimental time window ranging from 1ms to 1000s.

(ii ) ΔVth(t ) follows a logarithmic time behavior during the whole stress phase.
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FIGURE 6.6: Left: An evaluation of simulation data (lines) against measurement data of a thin SiON device
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as the asymmetry between stress and relaxation have been nicely reproduced. Right: Averaged

trap occupancy during stress and recovery for a single trap. The dotted lines refer to oxide defects

in state 2 or 3, while the solid lines include the positively charged defects (state 3) only. The ratio

between the slope of the stress (As) and the relaxation (Ar) curve yields As/Ar ∼ 2.5, as observed

experimentally in [61].
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Model Properties

(i ) Involved Time Scales �

(ii ) Log. Behavior during Stress �

(iii ) Log. Behavior during Recovery �

(iv ) Asymmetry Stress/Recovery �

(v ) Quadratic Field Dependence �

(vi ) Quadratic Temperature Dependence �

TABLE 6.2: Checklist for an NBTI model. The TSM fulfills all criteria established in Section 1.4. From this

perspective the model can be justifiably regarded as a reasonable explanation for NBTI.

(iii ) During the initial phase of recovery, a logarithmic time dependence is clearly recognizable.

However, this behavior is obscured for relaxation times larger than 1s where the ΔVth(t ) curve

starts to level off. This is due to the fact that the TSM also accounts for the permanent

component of NBTI.

(iv ) The logarithmic slopes of ΔVth during the stress and the relaxation phase exhibit a ratio of ∼ 2.5

in agreement with [61]. This asymmetry is demonstrated by the temporal change of the trap

occupancy in Fig. 6.6 (right). After the level shift from Et,1 to Et,2, when the defect transforms

from an oxygen vacancy to an E ′ center, the trap level Et,2 lies closer to the substrate valence

bandedge than Et,1. This results in higher trapping rates for hole capture (r32) and emission

(r23) so that the subsystem of states 2 and 3 is only weakly affected by r31 during recovery.

Therefore, this reduced system is close to equilibrium, meaning that

f2r23 = f3r32 (6.20)

with f2 + f3 = 1. Then the occupation f3 is given by

f3 =
1

1+ rcap,h(ΔEb,2 ,Et,2)
rem,h(ΔEb,2 ,Et,2)

= 1

1+exp
�
β(Et,2 −Ef)

� (6.21)

and can be interpreted as the electron occupancy ft,2 of the E ′ center with the defect level Et,2.

According to the above equation, the defect occupancy in the whole defect system of the TSM

follows the substrate Fermi level, which thus controls the annealing rate r31 and can slow down

the recovery. Due to this ‘occupancy effect’, the TSM is able to capture the asymmetry between

stress and relaxation.

(v ) The simulations fit the experimental stress and relaxation curves for a wide range of gate biases

meaning that the TSM correctly reproduces the field dependence seen in measurements.
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FIGURE 6.7: The field dependence of recovery [61]. Five devices were stressed for 6000s under the same

conditions (T = 125◦C, Vs = −2.0V). The following recovery phase (left and right panel) was

interrupted for a period of time during which VG was switched from the recovery voltage of

−0.13V to Vread for 2s (middle panel). The experimental data are marked by symbols, while

the simulations are represented by lines (dotted: ΔNox +ΔNit, solid: ΔVth due to ΔQox +ΔQit,

dashed: ΔVth due to ΔQit). The measurements demonstrate that the recovery is clearly affected

by variations of the recovery bias. This effect is reminiscent of the field-dependent emission times

seen in TDDS. The agreement of the simulations with the measurements shows that the TSM can

explain the field-dependent NBTI recovery.

(vi ) An equal quality of fits (not shown here) has been achieved for other temperatures with the

same set of parameters, meaning that the TSM is able to describe the temperature dependence

observed experimentally.

The TSM is found to satisfy all criteria of Table 6.2 and therefore seems to properly describe NBTI

degradation. Besides that, it also agrees well with the observation of a field-dependent recovery,

which is demonstrated by the measurements shown in Fig. 6.7. Due to the occupancy effect, the

substrate Fermi level Ef controls the portion of neutral E ‘ centers (state 3) which can return to state

1 by structural relaxation and contribute to the NBTI recovery. Interestingly, this field dependence is

compatible with the finding that the emission times of ‘anomalous defects’ are field-sensitive.

The distributions of trap levels obtained from the model calibration are depicted in Fig. 6.8. The

trap levels Et,1 of the precursors (state 1) are uniformly distributed between −1.68eV and −0.25eV in

qualitative agreement with the values in [39]. The defects located the highest have also the highest

substrate hole capture rates r12 and therefore have already been transformed E ′ centers (states 2 and

3) after a stress time of 1000s. In this new configuration, they feature a trap level Et,2 in the range

between −0.62eV and 0.39eV in qualitative agreement with the values published in [39]. According

to equation (6.21), the occupancy of the Et,2 levels is determined by the substrate Fermi energy and

thus the number of neutralized defects in the E ′ center configuration (state 3) increases with a lower

energies. Since only defects in this state transformed to a precursor (state 1) again, the number of

traps in state 2 diminished towards the substrate Fermi energy (cf. Fig. 6.8). The donor levels of the
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FIGURE 6.8: A histogram of energetically distributed defects after a stress time of 1000s. The numbers in

the white filled boxes denote the state of the defects. The area in the plain red color gives the

number of precursors (state 1) with the trap level Et,1. The rest of the defects is in the E ′ center

configuration, in which they can be positively charged (purple striped pattern) or neutralized

(plain purple color) and have a trap level of Et,2. The occupied (plain) and unoccupied (striped)

interface states are depicted as beige areas. The beige striped area gives the density of interface

states originating from the Pb centers.

interface states have been assumed to be uniformly distributed and are located within the lower part

of the substrate bandgap consistent with [64].

6.3.3 Quantum Mechanical Simulations

So far, classical calculations of the band diagram have been performed to obtain the interface

quantities, such as the position of the bandedges (EC, EV), the Fermi level (EF), and the electric field

(F ) within the dielectric. These quantities enter the expressions of the rates and will significantly alter

them due to their exponential dependences. However, the SRH rates (6.9) used in Section 6.3.1 are

valid for a three-dimensional electron gas [55] but this assumption breaks down for an inversion layer

of MOS structures. In the one-dimensional triangular potential well in the channel, quasi-bound

states build up and form subbands, which correspond to the new initial or final energy levels for

the charge carriers undergoing an NMP transitions. The quantum mechanical transition rates are

obtained following the derivation in Section 2.5.2 but using the DOS for one-dimensionally confined

holes. Then the rate equation (2.59) modifies to

∂t ft =
Ev�

−∞

�
(1− ft)

ep (E )

cp (E )
fn(E )− ft fp (E )

�
cp (E )Dp,c3D(E ) fp (E )dE . (6.22)
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It is noted here that the exact shape of Dp,c3D(E ) does not enter this derivation and consequently the

DOS can be expressed as

Dp,c3D(E ) = D̃p,c3D(E ) Θ(E −Ep,0) . (6.23)

Using the above expression, the rate equation (6.22) simplifies to

∂t ft =
�
(1− ft)

ep (E )

cp (E )
fn(E )− ft fp (E )

� Ep,0�
−∞

cp (E )D̃p,c3D(E ) fp (E )dE (6.24)

and the capture time τcap,h can be identified as

1

τcap,h
=

Ep,0�
−∞

cp (E )D̃p,c3D(E ) fp (E )dE

Ep,0�
−∞

D̃p,c3D(E ) fp (E )dE� �� �
≡σTSM

p vth,p

p . (6.25)

Analogously to the derivation in Section 2.5.2, the barrier dependence for the NMP transition is

incorporated in the cross section σTSM
p (cf. Fig. 6.9).

σTSM
p =σTSM

p,0 exp
�−xt/xp,0

�exp
�−βΔEb

�
, Et > Ep,0

exp
�−βΔEb

�
exp

�−β(Ep,0 −Et)
�

, Ep,0 < Ev

, (6.26)

where Ep,0 corresponds to the first bound state. Inserting the modified cross section in equation

(2.65) and (2.66) yields

rcap,h(ΔEb,Et) =
1

τTSM
p,0

p

Nv
exp

�−xt/xp,0
�

exp
�−βΔEb

�1, Ep,0 >Ev

exp
�−β(Ep,0 −Et)

�
, Ep,0 <Ev

(6.27)

and

rem,h(ΔEb,Et) =
1

τTSM
p,0

p

Nv
exp

�−xt/xp,0
�

exp
�−βΔEb

�exp
�−β(Et −Ef)

�
, Ep,0 > Ev

exp
�−β(Ep,0 −Ef)

�
, Ep,0 < Ev

. (6.28)

These rates have been used to incorporate the aforementioned quantum effects into the TSM, which

has been evaluated against the same set of experimental data. For a proper comparison with the

classical variant of TSM, only the NMP parameters (Et,1, Et,2, ΔEb,1, and ΔEb,2) have been optimized

while all other parameters have been held fixed. The simulated degradation curves show a good

agreement with experimental data (see Fig. 6.10) so that the quantum mechanically refined variant

of the TSM still fulfills all criteria listed in Table 6.2. It is noted here that these simulations yield an

the uppermost trap levels Et,1, which have been shifted downwards by about the same energy as the

separation of E1 and Ev (ranging between 169 and 277 meV). This can be explained when considering

that, first, Ev is replaced Ep,0 in the rate equations (6.27) and (6.28) and, second, the NMP barrier for

hole capture is reduced by this energy difference. From this it follows that also the trap levels Et,1 must

be shifted down by approximately the same energy in order to obtain hole capture rates of an equal

magnitude. In summary, it has been assured that also the quantum mechanically refined variant of

the TSM can explain the NBTI data and must therefore be considered as a reasonable NBTI model.
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FIGURE 6.9: The band diagram of a pMOSFET. According to classical considerations the substrate holes initially

lie at the valence band, however, they are concentrated around the first bound state E1 when

quantum confinement is taken into account. The shift of the initial energy level from Ev to E1

reduces the corresponding NMP barriers (red lines) and thus enhances the hole capture rates.

Note that the energy difference between Ev and E1 varies with the oxide field and thus affects the

field dependence of τcap and τem.
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FIGURE 6.10: The temporal evolution of the trapped charges including quantization effects. A pMOSFET

with a gate thickness of 1.75nm is subjected to two different temperatures (50◦C left panels,

150◦C tight panels) and three different gate voltages for 1s during the first phase termed

trapping/stress (left hand side). After the gate voltage is removed, the second phase called

detrapping/relaxation phase (right-hand side) sets in. Symbols mark measurement data while

solid lines belong to simulation data. Note that the temperature and field dependence is well

reproduced simultaneously for relaxation phase. The slight tendency of the simulations to

underestimate the measurements at high stress temperatures during the stress phase appear in

the classical as well as in the quantum mechanical simulations. They may be traced back to the

mobility degradation of the drain current during the MSM measurements [26].
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6.3.4 Capture and Emission Time Constants

The criteria in Table 4.1 have been successfully satisfied by the TSM. With this respect, the TSM

should be regarded as model qualified to describe NBTI. However, these criteria only evaluate the

degradation produced by an ensemble of defects but do not consider whether the behavior of a single

defect is correctly reproduced. For this reason, the TSM will be investigated using the time constant

plots in the following. Since the TDDS measurements cannot capture the permanent component of

NBTI, the transition state diagram must be reduced to stage one. This means that the equation (6.8)

and the rates r24 and r42 in equation (6.6) must be omitted. Since the trap level Et,2 is assumed to lie

closer to the valence band edge than Et,1, the accociated rate r23 and r32 are much larger than r12.

Thus the fast switching between state 2 and 3 produces noise, which is undesired for the analysis of

τem,h in the time constant plots. Therefore, a compact rate expression for the transition 2 ↔ 3 → 1

is sought. One can calculate the corresponding emission time τ21 as the mean first passage time in

continuous time Markov chain theory [131] (discussed in Section 3.2).

1

τ21
= r21 =

r23r31

r23 + r32 + r31
(6.29)

Assuming r32 ≫ r31 and r23 ≫ r31, the above expression can be simplified to

r21 = r31
1

1+ r32

r23

. (6.30)

Since in a pMOSFET the trapping dynamics are dominated by the hole capture and emission from the

valence band, the electron rates rcap,e(ΔEb,1,Et,2), rcap,e(ΔEb,2,Et,2), and r23 = rem,e(ΔEb,2,Et,2) can be

neglected.

1/τcap,h = 1

τTSM
p,0

p

Nv
exp

�
− xt

xp,0

�
exp(−βΔEb,1) exp

�
F 2

ox

F 2
c

�1, Et,1 > Ev

exp
�−β(Ev −Et,1)

�
, Et,1 < Ev

(6.31)

1/τem,h = ν0 exp(−βΔEb,3) ft,2 (6.32)

ft,2 =
1

1+exp
�
β(Et,2 −Ef)

� (6.33)

This reduced variant of the TSM is fitted against the TDDS data and will be evaluated according to the

list of criteria established in Section 1.3.4.

(i ) The simulated τcap in the time constant plot of Fig. 6.11 has a wrong curvature. This can be

traced back to the fact that τcap is proportional to exp(−F 2
ox/F 2

c ) according to equation (6.31).

(ii ) The NMP barriers allow for a marked temperature activation of τcap.

(iii ) The TSM gives field-insensitve τem as demonstrated in Fig. 6.11. However, this is only true for

defects with a trap level Et,2 above Ef. In this case, ft,2 approximates to 1 and τem is given by

ν−1
0 exp(βΔEb,3).
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FIGURE 6.11: The TSM optimized against the TDDS data of ‘normal’ (left) and ‘anomalous’ (right) defects.

Symbols mark measurement data while solid lines belong to simulations. Depending on the

position of the trap level Et,2, the TSM can explain both defect behaviors. However, it does not

give the correct curvature of τcap due to the field enhancement factor.

Model McWhorter Kirton TSM

(i ) Curvature in τcap ✗ ✗ ✗

(ii ) Temperature Activation of τcap ✗ � �

(iii ) ‘Normal’ Defect Behavior ✗ � �

(iv ) ‘Anomalous’ Defect Behavior ✗ ✗ �

(v ) Temperature Activation of τem � � �

TABLE 6.3: The same as in Table 6.1 but including the TSM. In contrast to previous models the TSM can give an

explanation for the ‘normal’ as well as the ‘anomalous’ defect behavior.

(iv ) The TSM also allows for field-sensitive τem if Et,2 is located slightly below Ef at the relaxation

voltage. Then the field dependence is caused by the term ft,2 in equation (6.32).

(v ) In both defects, τem is thermally-activated.

As demonstrated in the previous section, the TSM is indeed an important improvement of the NBTI

model. Regarding the time constant plots (cf. Table 6.3), the introduction of the state 3 gives an

explanation for ‘normal’ as well as the ‘anomalous’ defect behavior. However, the TSM predicts a

wrong curvature of τcap and thus cannot be reconciled with the TDDS data. As a consequence, it can

be concluded that the TSM performs well for stress and relaxation curves but fails to describe the

behavior of single defects.
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6.4 Conclusion

In this chapter, several peculiarities of the TSM have been analyzed and compared to the findings of

NBTI measurements. In contrast to the previous models, the TSM is capable of fulfilling all criteria

in Table 6.2, including the logarithmic behavior during stress and relaxation, the quadratic field and

temperature dependence, as well as the asymmetry of stress and relaxation. Furthermore, it exhibits

a field dependence of recovery as noticed in NBTI measurements. Therefore, this model seems to

reasonably describe the degradation process of NBTI. Furthermore, it evaluated for the time constant

plots extracted from the TDDS measurements (cf. Table 6.3). Thereby it has been tested whether the

TSM correctly reflects the behavior of a single defect. However, no reasonable agreement has been

achieved, indicating that the TSM does not correctly describe the capture or emission process of a

single trap.
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The Extended Nonradiative Multi-Phonon Model

The Kirton model and the TSM rely on the concept of NMP processes and can therefore give an

explanation for the experimentally observed temperature activation of τcap and τem. However, the

energy barriers used in those models are not calculated by the crossing point of two adiabatic

potentials, as it would be necessary according to theoretical considerations. Palma et al. [125]

related the measured capture and emission time constants of RTN to the properties of oxide defects

based on NMP theory. The success of their model was based on the effect of a Coulomb barrier,

which was required to obtain the correct field dependence of τcap and τem. Irrespective of the

physical correctness of this assumption, the Coulomb barrier was only successfully applied to

MOSFETs with thick dielectrics [123, 125, 184]. In a few RTN studies [56] as well as in more recent

TDDS measurements [53], interesting phenomena, such as aRTN and tRTN (both discussed in

Section 1.3.4), have been observed. They are linked to quite complex trapping dynamics, which can

only be explained by metastable defect states. Accordingly, a successful, physics-based NBTI model

must incorporate additional metastable defect configurations in order to account for all experimental

results. In a new modeling attempt, the theoretical framework of NMP charge transfer reactions has

been combined with the concept of metastable states. The resultant model has been termed extended

NMP (eNMP) and will be addressed in the following.

7.1 Transition Rates according to the NMP Theory

The transition rates of charge transfer reactions must be discussed on the basis of configuration

coordinate diagrams. One such a diagram is depicted in Fig. 7.1 for the case of hole trapping. The
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Uf

q

U (q)

Ui (q) U j (q)
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U j

qi q j

Si�ωiS j�ω j

ΔUb,i j

ΔUb, ji

IP

Neutral Defect Positive Defect

FIGURE 7.1: The configuration coordinate diagram for a hole trapping process. The left parabola corresponds

to the case when the defect is neutral and the holes reside in the substrate valence band. Then

the hole can be thermally excited by an energy ΔE , accompanied by an upwards shift of the left

parabola from Ui (q) (solid) to U (q) (dashed). By contrast, when the defect is positively charged

(right parabola), the whole system including the defect and the substrate is represented by the

parabola U j (q) (solid). In general, the curvature of Ui (q) and U j (q) do not need to be equal. As

a consequence, both adiabatic potentials are characterized by their own oscillator frequency (ωi ,

ω j ) and in further consequence their own Huang Rhys factor (Si , S j ).

adiabatic potentials Ui (q) and U j (q) in the configuration coordinate diagrams are approximated by

the parabolas around their respective minima Ui and U j assuming the harmonic approximation:

Ui (q) = 1

2
Mω2

i (q −qi )2 +Ui (7.1)

U j (q) = 1

2
Mω2

j (q −q j )2 +U j (7.2)

ωi and ω j denote the vibrational frequency of the oscillator potential when the defect is in the charge

state i and j , respectively. It is stressed that these oscillator potentials of both charge states are

assumed to have different curvatures ωi �= ω j in this derivation. The transition barriers ΔUb,i j and

ΔUb, ji differ by the energy U j −U (qi ), which can be expressed as

U j −U (qi ) =U j −Ui +Ui −U (qi )

=Ev −Et −ΔE (7.3)

using the relations

Ui −U j =Et −Ev , (7.4)

U (qi )−Ui =Ev −E =ΔE . (7.5)

Ui −U j corresponds to the separation of the trap level from the valence band edge and U (qi )−Ui
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gives the kinetic energy of the substrate hole. Making use of expression (7.3), the difference between

the transition barriers can be expressed as:

ΔUb,i j −ΔUb, ji =U j −U (qi )

=−ΔE −Et +Ev (7.6)

Using the identity (2.62) and equation (7.6), one obtains the following relation:

exp(−βΔUb, ji ) fn(E ) = exp(−βΔUb,i j )exp
�−β(Et −Ef)

�
fp (E ) (7.7)

Analogously to the equation (2.59), the trapping dynamics are governed by the rate equation

∂t ft =
Ev�

−∞

�
(1− ft)eNMP

p (E )exp(−βΔUb, ji ) fn(E )− ftc
NMP
p (E )exp(−βΔUb,i j ) fp (E )

�
Dp (E )dE (7.8)

with

eNMP
p (E ) = eNMP

p,0 exp(−βΔUb, ji ) , (7.9)

cNMP
p (E ) = cNMP

p,0 exp(−βΔUb,i j ) . (7.10)

Making use of (7.6), the above rate equation can be simplified to

∂t ft =
�
(1− ft)eNMP

p,0 exp
�−β(Et −Ef)

�− ftc
NMP
p,0

� Ev�
−∞

exp(−βΔUb,i j ) fp (E )Dp (E )dE . (7.11)

In order to evaluate the integral in the above equation, analytic expressions for ΔUb,i j and Dp (E ) are

required. The former is defined as the energy difference between Ui and the intersection point IP in

the configuration coordinate diagram. The position of of this point can be derived from the condition

Ui (q) =U j (q) (7.12)

and reads

(q −qi ) =−q j −qi

Ri −1
±

�
(q j −qi )2

(Ri −1)2
+

(U j −Ui )/
� 1

2 Mω2
i

�+ (q j −qi )2

Ri −1
(7.13)

with

Ri =
ωi

ω j
. (7.14)

Inserting the expression (7.13) into equation (7.1), one obtains

ΔUb,i j =Ui (q)−Ui

= Si�ωi

(R2
i
−1)2

�
1−Ri

�
1+ (R2

i
−1)

U j −Ui

Si�ωi

�2

, (7.15)
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where the Huang Rhys factor Si is defined by the equation

1

2
Mω2

i (q j −qi )2 = Si�ωi . (7.16)

A second order expansion of equation (7.15) delivers

ΔUb,i j ≈
Si�ωi

(1+Ri )2
+ Ri

1+Ri

�
U j −Ui

�+ Ri

4Si�ωi
(U j −Ui )2 . (7.17)

According to equation (7.14), the oscillator frequencies ωi and ω j differ and thus the quantity Ri

deviates from unity. Since Ri enters the above expression for the barrier height, the oscillator

frequencies have a strong impact on the transition rates. When the kinetic energy of the substrate

hole is taken into account, Ui must be replaced by U (qi ) and equation (7.17) can be rewritten as

ΔUb,i j ≈
Si�ωi

(1+Ri )2
+ Ri

1+Ri

�
(−ΔE )+ (Ev −Et)

�+ Ri

4Si�ωi

�
(−ΔE )+ (Ev −Et)

�2
. (7.18)

In the case of strong electron-phonon coupling, Si�ωi ≫ |ΔE +Et −Ev| holds and the third term can

be neglected. Assuming parabolic bands (see Appendix A.4), the valence band density of states can

be expressed as

Dp (E ) =Dp,0

�
ΔE (7.19)

with

Dp,0 =
m3/2

e�
2π2�3

. (7.20)

Using (7.19), the integral in equation (7.11) can be evaluated as

Ev�
−∞

exp(−βΔUb,i j ) fp (E )Dp (E )dE =

= exp

�
−β Si�ωi

(1+Ri )2

�
exp

�
−β Ri

1+Ri
(Ev −Et)

�
Dp,0 exp

�
β(Ev −Ef)

� �
β

1+Ri

�−3/2

Γ(3/2)

(7.21)

and simplifies to

Ev�
−∞

exp(−βΔUb,i j ) fp (E )Dp (E )dE = exp

�
−β Si�ωi

(1+Ri )2

�
exp

�
−β Ri

1+Ri
(Ev −Et)

�
(1+Ri )3/2p

= exp
�
−βΔUb,i j

###
ΔE=0

�
(1+Ri )3/2p (7.22)

with

p = Dp,0 exp
�
β(Ev −Ef)

�
β−3/2

Γ(3/2) . (7.23)

Here, Γ(x) denotes the Gamma function, which is defined by

Γ(x) =
∞�

0

t x−1exp(−t )dt . (7.24)
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With (7.22), the compact form of the rate equation (7.11) can be rewritten as

∂t ft =
�
(1− ft)eNMP

p exp
�−β(Et −Ef)

�− ftc
NMP
p

�
exp

�
−βΔUb,i j

###
ΔE=0

�
(1+Ri )3/2p . (7.25)

From this, it follows that

1/τcap = cNMP
p,0 exp

�
−βΔUb,i j

###
ΔE=0

�
(1+Ri )3/2p , (7.26)

1/τem = eNMP
p,0 exp

�−β(Et −Ef)
�

exp
�
−βΔUb,i j

###
ΔE=0

�
(1+Ri )3/2p . (7.27)

Just as in the standard SRH theory (see Section 2.5), the right-hand side of equation (7.26) can be

simplified using the definition

cNMP
p,0 exp

�
−βΔUb,i j

###
ΔE=0

�
(1+Ri )3/2 =σNMP

p vth,p (7.28)

with

σNMP
p =σNMP

p,0 exp
�
−βΔUb,i j

###
ΔE=0

�
. (7.29)

Analogously to Section 2.5, thermal equilibrium can be assumed so that the trap occupation follows

Fermi-Dirac statistics and detailed balance applies for the rate equation (7.25). Then cNMP
p equals

eNMP
p and the hole capture and emission time constant reads

1/τcap = vth,pσ
NMP
p,0 exp

�
−βΔUb,i j

###
ΔE=0

�
(1+Ri )3/2p (7.30)

1/τem = vth,pσ
NMP
p,0 exp

�−β(Et −Ef)
�

exp
�
−βΔUb,i j

###
ΔE=0

�
(1+Ri )3/2p . (7.31)

It is emphasized that the barrier heights are correctly calculated by determining the crossing point of

two parabolas. Thereby, one avoids the artificial differentiation, whether Et is located above or below

Ev, as it has been the case in equation (6.10) of the TSM. Additionally, the NMP barriers have not been

assumed to be independent of the energy of the hole in contrast to the Kirton model and the TSM.

7.2 States of a Bistable Defect

In the eNMP model, the defects are described by the form of their adiabatic potentials. Motivated by

TDDS and EPR experiments [42, 53, 185], they are assumed to feature one stable and one metastable

configuration. This bistability is reflected in the double well form of their adiabatic potentials (see

Fig. 7.2). Note that it is the key aspect of the eNMP model since it can give an explanation for a plenty

of challenging experimental observations, addressed later in this chapter.

The configuration coordinate diagram of such a bistable defect is depicted in Fig. 7.2. The numbers 1

and 2 denote the positive and neutral charge state of the defect, respectively, and the metastable states

are marked by additional primes. In the configuration coordinate diagram, there exist two crossing

points, where each of them is related to one of the two charge transfer reactions T1↔2′ and T1′↔2.
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FIGURE 7.2: Left: A schematic of the configuration coordinate diagram for a bistable defect. The solid red and

the blue dashed lines represent the adiabatic potentials for a defect in its positive and neutral

charge state, respectively. The energy minima correspond to the stable or metastable defect

configurations, labeled by i with i = 1,1′,2,2′. The present configuration coordinate diagram

describes the exchange of holes with the valence band and thus is associated with a hole capture or

emission process. The stick-and-ball models display a defect in its various stable and metastable

configurations. A possible candidate for such a bistable defect might be the well-known E ′

center, which is frequently invoked in the context of noise in MOSFETs. Right: Definitions of

the used energies and barriers in the eNMP model. Recall that two adiabatic potentials must be

shown for one transition. It is assumed that an alternative transition pathway with an additional

crossing point exists in the multi-dimensional atomic configuration space. In order to show both

intersections (related to T1↔2′ and T2↔1′) in one configuration coordinate diagram, the ‘neutral’

potential must be plotted twice. Obviously, ε22′ = ε2′2 +εT2′ and ε11′ = ε1′1 +ΔE ′
t −ΔEt hold.

Their corresponding NMP barriers1
ΔUb,12′ and ΔUb,1′2 are derived by evaluating equation (7.17) for

the energy differences

U2′ −U1 = Ev −Et +εT2′ , (7.32)

U2 −U1′ = Ev −E ′
t , (7.33)

respectively (see Fig. 7.2). The resulting expressions for the NMP barriers read

ΔUb,12′ ≈ S1�ω1

(1+R1)2
+ R1

1+R1
(−ΔE +Ev −Et +εT2′) , (7.34)

ΔUb,1′2 ≈
S1′�ω1′

(1+R1′)2
+ R1′

1+R1′

�−ΔE +Ev −E ′
t

�
. (7.35)

1 The barrier for a transition from state i to j is denoted as εi j , irrespective of whether it belongs to an NMP process or a

pure thermal transition.

124



7. THE EXTENDED NONRADIATIVE MULTI-PHONON MODEL

Inserting them into the equations (7.30) and (7.31) delivers the transition rates

r12′ = (1+R1)3/2σNMP
p,0 vth,p p exp(−βε12′) , (7.36)

r2′1 = (1+R1)3/2σNMP
p,0 vth,p p exp(−βε12′) exp

�−β(Et −Ef −εT2′)
�

, (7.37)

r1′2 = (1+R1′)3/2σNMP
p,0 vth,p p exp(−βε1′2) , (7.38)

r21′ = (1+R1′)3/2σNMP
p,0 vth,p p exp(−βε1′2) exp

�−β(E ′
t −Ef)

�
, (7.39)

with

ε12′ = S1�ω1

(1+R1)2
+ R1

1+R1
(Ev −Et) , (7.40)

ε1′2 =
S1′�ω1′

(1+R1′)2
+ R1′

1+R1′

�
Ev −E ′

t

�
. (7.41)

In order to reduce the number of fitting parameters in the numerical simulations, the cross sections

σNMP
p are expected to be within the same order of magnitude for all charge transfer reactions and are

thus set equal. The field dependence of the charge transfer reactions T1↔2′ and T1′↔2 is governed

by the relative position of the ‘neutral’ and the ‘positive’ adiabatic potential. When a negative bias is

applied to the gate of a pMOSFET (see Fig. 7.2), the ‘neutral’ potential is raised. As a result, the barriers

ε12′ and ε1′2 are reduced, which facilitates the charge transfer reactions T1→2′ and T1′→2, respectively.

Conversely, the transitions T2′→1 and T2→1′ are slowed down since the corresponding barrier heights

ε2′1 and ε21′ have become larger.

The transitions T1↔1′ and T2↔2′ are thermally activated and do not vary with the applied gate bias.

According to transition state theory, they can be expressed as

r11′ =ν0 exp(−βε11′) , (7.42)

r1′1 =ν0 exp(−βε1′1) , (7.43)

r22′ =ν0 exp(−βε22′) , (7.44)

r2′2 =ν0 exp(−βε2′2) , (7.45)

where the barriers εi j are defined as in Fig. 7.2 and ν0 stands for the attempt frequency, which is

typically of the order 1013 s−1. Using ε11′ = ε1′1 +ΔE ′
t −ΔEt and ε22′ = ε2′2 +εT2′ , the rates r11′ and r22′

can be rewritten as

r22′ =ν0 exp
�−β(ε2′2 +εT2′ )

�
, (7.46)

r11′ =ν0 exp
�−β(ε1′1 +ΔE ′

t −ΔEt)
�

. (7.47)

The defect in the eNMP model has a state diagram as shown in Fig. 7.3. With the rates (7.36)-(7.47),

the defect kinetics are described by

∂t f1 =− f1r12′ + f2′r2′1 − f1r11′ + f1′r1′1 , (7.48)

∂t f2′ =− f2′r2′1 + f1r12′ − f2′r2′2 + f2r22′ , (7.49)

∂t f2 =− f2r22′ + f2′r2′2 − f2r21′ + f1′r1′2 , (7.50)

∂t f1′ =− f1′r1′2 + f2r21′ − f1′r1′1 + f1r11′ . (7.51)
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FIGURE 7.3: The state diagram of the eNMP model. The individual states are represented by the circles,

where the red and the blue color indicate the positive and the neutral charge state of the defect,

respectively. The transition rates between two states are denoted by the colored arrows. The

vertical transitions correspond to pure thermal transitions while horizontal ones stand for charge

transfer reactions, which are detectable in NBTI, RTN, and TDDS experiments.

7.3 Model Evaluation

The multitude of transition possibilities in the eNMP model results in quite complex defect kinetics,

which allow to explain the defect behavior seen in TDDS. This is indeed important, since NBTI

stress and relaxation processes are a superposition of several single trapping and detrapping events.

Therefore, the degradation could in principle be reproduced by well-chosen distributions of model

parameters. However, TDDS experiments give insight into the behavior of single defects and can

therefore reveal whether a trapping model reflects the physics of a real defect.

The time constant plots in Fig. 7.4 depict a fit of the eNMP model against TDDS measurement data.

An evaluation of the checklist in Table 7.1 is given below:

(i ) The curvature in τcap is reproduced by the eNMP model for the first time.

(ii ) τcap shows a marked temperature activation over the whole range of VG, visible as a parallel

upward shift.

(iii ) In general, the eNMP model yields field-insensitive τem as displayed in Fig. 7.4 left. It is

important to note here that at larger oxide fields this model also predicts an exponential

dependence, which has also been observed for some defects in RTN measurements [55].

(iv ) However, it also allows for a field-dependent τem provided that the energy minima of the states

1′ and 2 are separated by only a few hundredth of an electron Volt at small VG (cf. Fig. 7.4 right).

(v ) In both cases, τem is thermally-activated.

The above checklist demonstrates that the eNMP model predicts the key features of the hole capture

and emission process correctly, strongly indicating that the eNMP model can describe the physics of

the defects seen in TDDS.
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FIGURE 7.4: Left: The capture (solid lines) and emission (dashed lines) times of a ‘normal’ defect as a function

of the gate bias. The symbols stand for the measurement data and the lines represent the

simulation results of the eNMP model. The latter are shown to be in remarkable agreement with

the experimental data. The inset (bottom left) depicts the adiabatic potential for the neutral (blue,

dashed lines) and the positive (red, solid lines) charge state of the defect, when no bias is applied

to the gate. Under these conditions the energy minima of the states 1′ and 2 differ by at least a few

tenth of an electron Volt. This fact eventually characterizes this trap as a ‘normal’ defect. Right:

The same but for an ‘anomalous’ defect as presented in the Section 1.3.4. Compared to the defect

#4, the present defect (#1) shows a strong voltage/field dependence of τem at low VG or Fox. In

contrast to a ‘normal’ defect, the energy minima of the states 1′ and 2 coincide, which allows for

the strong sensitivity of τem to VG.

Model McWhorter Kirton TSM eNMP

(i ) Curvature in τcap ✗ ✗ ✗ �

(ii ) Temperature Activation of τcap ✗ � ✗ �

(iii ) ‘Normal’ Defect Behavior ✗ ✗ ✗ �

(iv ) ‘Anomalous’ Defect Behavior ✗ ✗ ✗ �

(v ) Temperature Activation of τem � � ✗ �

TABLE 7.1: Checklist for a defect model (see Section 1.3.4). The McWhorter model, the Kirton model, as well

as the TSM do not fulfill all criteria and thus do not describe the defects seen in TDDS experiments.

By contrast, the eNMP reproduces the correct field and temperature dependence and gives an

explanation for the ‘normal’ and ‘anomalous’ defects.
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rBA

rBC

rCB

FIGURE 7.5: The state diagram for a two-step process from the state A to C . The first passage time of such a

process is calculated by equation (7.52). Consider that the transition rate rC B , indicated by the

dashed arrow, does not enter this equation.

7.4 Analytics Derivation of the Capture and Emission Time Constants

In order to promote the understanding of the eNMP model, τcap and τem will be derived analytically

in the following. The time constants observed in TDDS can be calculated on the basis of first passage

times of a two-step process (see Fig. 7.5).

τ= r AB + rBC + rB A

r AB rBC
(7.52)

= 1

r AB
+ 1

rBC
+ 1

rBC

rB A

r AB
(7.53)

This quantity corresponds to the mean time it takes the considered system to arrive at the state C ,

provided that it was in the state A but not in state B at the beginning. In the eNMP model, one is only

interested in the transition times between the stable states 1 and 2, in which the defect dwells most

of the time. Since the metastable states 1′ and 2′ are energetically higher than their corresponding

stable counterparts 1 and 2, the defect only remains temporarily in these metastable states. This is in

agreement with the condition for the first passage time that the system must not be in state B at the

beginning. As a result, the transition rates between the states 1 and 2 can be reasonably described as

the inverse of first passage times.

The various transition pathways allowed in the eNMP model are summarized in the state diagrams of

Fig. 7.6. The corresponding first passage times for the hole capture or emission read

τ2′
cap = 1

r12′
+ 1

r2′2
+ 1

r2′2

r2′1

r12′
, (7.54)

τ1′
cap = 1

r11′
+ 1

r1′2
+ 1

r1′2

r1′1

r11′
, (7.55)

τ2′
em = 1

r22′
+ 1

r2′1
+ 1

r2′1

r2′2

r22′
, (7.56)

τ1′
em = 1

r21′
+ 1

r1′1
+ 1

r1′1

r1′2

r21′
. (7.57)
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FIGURE 7.6: A simplified state diagrams of hole capture and emission over the metastable states 1′ and 2′. The

superscript of τ denotes the intermediate state, which has been passed through during a complete

capture or the emission event. Note that there exist two competing pathways for a hole capture

event, namely one over the intermediate state 1′ and one over 2′. Of course, the same holds true

for a hole emission event.

For studying the field dependence of these capture and emission times, the definition (2.67) is used

for ΔEt and ΔE ′
t in the expression for the NMP barriers (7.17):

ε12′ ≈ S1�ω1

(1+R1)2
+ R1(Ev −Et +εT2′)

1+R1

= S1�ω1

(1+R1)2
− R1(ΔEt −εT2′ )

1+R1
+ R1q0xtFox

1+R1
(7.58)

ε1′2 ≈
S1′�ω1′

(1+R1′)2
+ R1′(Ev −E ′

t)

1+R1′

= S1′�ω1

(1+R1′)2
− R1′ΔE ′

t

1+R1′
+ R1′q0xtFox

1+R1′
. (7.59)

Using the definitions

τ2′
c,min = 1/r2′2 , (7.60)

τ2′
e,min = 1/r22′ , (7.61)

τ1′
c,min = 1/r11′ , (7.62)

τ1′
e,min = 1/r1′1 , (7.63)

τNMP
p,0 = 1

σNMP
p,0 vth,p Nv

(7.64)

the mean time constants (7.54)-(7.57) can be expressed as

τ2′
cap = τ0

N2

p
exp

�
β

R1q0xtFox

1+R1

�
+τ2′

c,min

�
1+ N1

p
exp

�
βq0xtFox

��
, (7.65)

τ1′
cap = τ1′

c,min +τ0
N3

p
exp

�
β

R1′q0xtFox

1+R1′

�
, (7.66)

τ2′
em = τ2′

e,min +τ2′ exp

�
−βq0xtFox

1+R1

�
, (7.67)

τ1′
em = τ1′ exp

�
−βq0xtFox

1+R1′

�
+τ1′

e,min

�
1+exp

�
β(E ′

t −Ef)
��

(7.68)
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with

N1 = Nv exp
�
β(εT2′ −ΔEt)

�
, (7.69)

N2 =
Nv

(1+R1)3/2
exp

�
β

S1�ω1

(1+R1)2

�
exp

�
−βR1(ΔEt −εT2′)

1+R1

�
, (7.70)

N3 =
Nv

(1+R1′)3/2
exp

�
β

S1′�ω1′

(1+R1′)2

�
exp

�
−β R1′

1+R1′
ΔEt

� �
1+exp

�
β(ΔE ′

t −ΔEt)
��

, (7.71)

τ2′ =
τNMP

p,0

(1+R1)3/2
exp

�
β

S1�ω1

(1+R1)2

�
exp

�
β
ΔEt−εT2′

1+R1

� �
1+exp(βεT2′)

�
, (7.72)

τ1′ =
τNMP

p,0

(1+R1′)3/2
exp

�
β

S1′�ω1′

(1+R1′)2

�
exp

�
β

ΔE ′
t

1+R1′

�
. (7.73)

Recall that the hole capture process can proceed from state 1 over one of the metastable states 2′

or 1′ to the final state 2 according to the state diagram of Fig. 7.3. The corresponding capture time

constants are denoted as τ2′
cap and τ1′

cap, respectively, and will be discussed in the following. When the

transition pathway T1→2′→2 is preferred, the capture time constant in the form of (7.52) is given by

τ2′
cap = r12′ + r2′1 + r2′2

r12′r2′2
. (7.74)

Each of the summands in the nominator can be dominant so that τ2′
cap is characterized by three

distinct regimes, namely B, C, and D in Fig. 7.7.

• At extremely high negative oxide fields (regime D), r12′ is the dominant rate meaning that the

transition2 T1→2′ proceeds much faster than T2′→2 (cf. Fig. 7.8). Thus the pace of the complete

capture process (T1→2′→2) is determined by the second transition T2′→2, which is much slower

and has a time constant of τ2′
c,min. Since this second step is only thermally-activated, τ2′

cap does

not depend on the oxide field. This is consistent with equation (7.65) at extremely high negative

oxide fields, at which both exponential terms become negligible compared to τ2′
c,min.

• At high negative oxide fields (regime C), the rate r12′ approaches the order of magnitude of r2′1

and even falls below r2′2. Then the transition T2′→2 over the thermal barrier ε2′2 is undergone

immediately after the defect has changed from the state 1 to 2′. Thus the kinetics of the hole

capture process are governed by the forward rate of the NMP process T1→2′ . As a result, τ2′
cap

shows an exponential oxide field dependence, which is reflected in the first term of equation

(7.65). Note that the second term is negligible due to its steeper exponential slope within this

regime.

• At low negative oxide fields (regime B), r12′ is already outbalanced by its reverse rate r2′1 (see

Fig. 7.8) and the ratio of both rates determines the oxide field dependence. This gives an

increased exponential slope originating from the second term of equation (7.65).

2 Keep in mind that the term ‘transition’ does not refer to the duration of the physical process itself, such as the time it

takes an electron to tunnel through an energy barrier. It rather denotes the mean time until the physical process takes

place and the defect change its state.

130



7. THE EXTENDED NONRADIATIVE MULTI-PHONON MODEL

-2 0 2 4 6 8 10 12 14 16
-F

ox
 [MV/cm]

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

τ ca
p
 [

s]

τ
c

1’
 ~ τ

c;min

1’

τ
c

2’
 ~ τ

c;min

2’

τ
c
 ~ τ

c

2’

τ
c

2’
τ

c
 ~ τ

c

1’

A B C D

-2 0 2 4 6 8 10 12 14 16
-F

ox
 [MV/cm]

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

τ em
 [

s]

τ
e;min

2’

τ
e;min

1’

τ
e

1’
τ

e
 ~ τ

e

2’

τ
e
 ~ τ

e

1’

E F G

FIGURE 7.7: Left: The calculated hole capture time constants as a function of the oxide field. The different
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cap show the capture processes over a

metastable state i . The field dependence of τcap within a certain regime is shown by the dashed

curve, which becomes constant if τcap is insensitive to Fox. Right: The same but for the hole

emission time constants with the regimes (E, F, and G).
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FIGURE 7.8: A schematic representation of adiabatic potentials in the regimes B, C, and D. The arrows show the

possible directions of the transitions involved in the capture process. Their thicknesses indicate

the magnitude of their rates, where the thinner arrows are associated with larger transitions times

and thus governs the oxide field and temperature dependence of the complete capture process

T1→2′2. With higher oxide fields (B → D) the blue potential (neutral defect) is raised relative to the

red one (positive defect). This is associated with an increase of r12′ and a decrease of the reverse

rate r2′1. In contrast to the charge transfer reactions T1→2′ and T2→′1, the thermal transition T2′→2

is not affected by the oxide field.
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The transitions between these three regimes are smooth so that a curvature appears in the time

constant plots of τcap. However, when the transition over the metastable state 1′ is favored (regime

A), the capture time constant can be again formulated as a first passage time:

τ1′
cap = r11′ + r1′1 + r1′2

r11′r1′2
(7.75)

Since the metastable state 1′ is situated above the state 1 by definition, r1′1 ≫ r11′ holds. Therefore,

the expression (7.75) can be approximated by

τ1′
cap ≈ r1′1

r11′r1′2
+ 1

r11′
, (7.76)

which is characterized by only two regimes (A’ and A”) now.

• At negative oxide fields (regime A’), the state 1′ is located relatively high (see Fig. 7.9) and the

transition rate r1′2 exceeds r11′. Therefore, the first term of expression (7.76) vanishes and the

field-insensitive transition T1→1′ with a time constant of τ1′
c,min dominates τ1′

cap.

• When reducing the oxide field, the state 1′ is shifted downwards in the configuration coordinate

diagram, thereby decreasing the transition rate r1′2. At a certain oxide field, r1′2 falls below r1′1

and the first term of the expression (7.76) becomes dominant (regime A”). As a consequence,

τ1′
cap governed by the field-dependent transition T1′→2, which causes the exponential term of

the expression (7.66). Depending on the value of τ1′
c,min, there exists a crossing point between

the curves τ2′
cap and τ1′

cap, marking the transition between the regime A and B. It is noted that the

NMP transitions in the regimes A, B, and C also involve a nearly negligible 1/p field dependence,

which has already been present in the TSM for instance.

The transition between A’ and A” yields a kink, which is visible in τ1′
cap of Fig. 7.7 (dotted line) but not

in the overall hole capture time given by

1

τcap
= 1

τ1′
cap

+ 1

τ2′
cap

. (7.77)

As a result, this transition has not been observed in TDDS experiments, the regimes A’ and A” are not

differentiated in Fig. 7.8.

Also the hole emission process has the possibility to proceed over either the state 1′ or 2′, with τ1′
em

and τ2′
em being the corresponding emission time constants (see Fig. 7.10). For the transition pathway

over 2′ the emission time constant can be expressed as:

τ2′
em = r22′ + r2′2 + r2′1

r22′r2′1
(7.78)

Since r2′2 ≫ r22′ applies, τ2′
em has only two regimes, labeled with the capital letters F and G in Fig. 7.7.

τ2′
em ≈ r2′2

r22′r2′1
+ 1

r22′
(7.79)
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• At extremely high negative oxide fields (regime G), the state 1 is shifted upwards so that r22′

dominates and the field-dependent NMP transition T2′→1 determines the pace of T1→2′→2. The

sensitivity of T2′→1 to the oxide field is reflected in the exponential term of equation (7.67).

• At high negative oxide fields (regime F), the transition T2′→1 proceeds much faster than T2→2′

over the purely thermal barrier ε22′ . Thus, τ2′
em is determined by the field-insensitive transition

T2→2′ with a time constant of τ2′
e,min. It is important to note that the field independence of this

regime is experimentally observed in the time constant plots of ‘normal’ defects (cf. Fig. 7.4

left).

At a low oxide field (regime E), the state 1′ is further shifted down, which speeds up the NMP transition

T2→1′ and allows the pathway over the metastable state 1′. The corresponding emission time constant

τ1′
em is given by

τ1′
em = r21′ + r1′2 + r1′1

r21′r1′1
. (7.80)

For a sufficiently large barrier ε1′1 the rate r1′1 is negligible compared to r21′ and r1′2 and the above

equation simplifies to

τ1′
em = 1

r1′1
+ r1′2

r21′r1′1
. (7.81)

In this case, the state diagram reduces to a subsystem which includes the states 1′ and 2 and is

marginally disturbed by the rate r1′1. Then the states 1′ and 2 can be assumed to be in quasi-

equilibrium.

f1′r1′2 = f2r21′ (7.82)

In this subsystem the condition f1′ + f2 = 1 holds so that the trap occupancy f ′
t = f1′ is given by

f1′ = 1

1+ r21′
r1′2

(7.83)

= 1

1+exp
�
β(E ′

t −Ef)
� . (7.84)

In the above equation, it becomes obvious that the condition r1′2 = r21′ is equivalent to E ′
t = Ef.

Furthermore, this equation can be used to simplify the equation (7.68) as follows:

τ1′
em = τ1′ exp

�
−βq0xtFox

1+R1′

�
+
τ1′

e,min

ft′
. (7.85)

If E ′
t falls below Ef at a certain relaxation voltage, the state 1′ becomes occupied and the emission

time τ1′
em is determined by the field-independent transition T1′→1 with the time constant τ1′

e,min.

By contrast, if E ′
t is raised above Ef, the state 1′ is underpopulated thereby slowing down the hole

emission process. This occupancy effect is reflected in the second term, which reacts sensitive to

changes in Ef.
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The overall hole emission time τem follows from

1

τem
≈ 1

τ1′
em

+ 1

τ2′
em

(7.86)

and is depicted in Fig. 7.7. At a certain oxide field, when the state 1′ is shifted below state 2, τ1′
em

reaches its minimum value and falls below τ2′
em. The resulting drop in τem is observed as the field

dependence characterizing ‘anomalous’ defects at weak oxide fields in TDDS experiments. As pointed

out in Fig. 7.4, the drop of τem occurs when the minimum of the state 1′ passes that of state 2, and is

thus related to the exact shape of the configuration coordinate diagram.

7.5 Explanation for Noise in TDDS Measurements

So far it has been shown that the eNMP model accounts for all features seen in the time constant

plots for the ‘normal’ as well as the ‘anomalous’ defects. Beyond that, the model can also give an

explanation for tRTN observed in TDDS (see Section 1.3.4). The generated noise stems from defects

switching forth and back between states 2 and 1′. The associated charge transfer reactions T2↔1′ do

not involve any intermediate states and are therefore simple NMP processes. It is remarked here that

the transitions T2↔1′ require the energy minima 2 and 1′ in the configuration coordinate diagram

to be on approximately the same level at the relaxation voltage. This is only the case for a group of

defects whose energy minima 1 and 1′ are energetically not far separated. In a TDDS measurement,

the investigated devices are stressed at a high VG so that the defects are forced from the state 1 into

the state 2 or 1′. During this step, the defects undergo the transition T1→2′→2 into the state 2 or even

further into 1′. The other direct pathway T1→1′ into the state 1′ or 2 is assumed to go over a large

barrier ε11′ . Therefore, the transition T1→1′ proceeds on much larger timescales compared to T1→2′→2

and can be neglected. After stressing, the recovery traces are monitored at low VG or Fox, respectively,

at which the energy minima of the states 2 and 1′ coincide and noise is produced. However, the state

1 is thermodynamically preferred due to its energetically lower position compared to the states 2 and

1′. When the defect returns to its initial state 1, the RTN signal disappears with a time constant of τs
em.

The corresponding transition could be either T2→2′→1 or T1′→1 with a time constant of τ2′
em or τ1′

e,min,

respectively (cf. Fig. 7.11). The termination of the noise signal after a time period of τs
em is determined

by the minimum of these time constants. Consider that the NMP barriers ε21′ and ε1′2 must not be

too large since otherwise trapping events will occur too fast and are therefore not detected using a

conventional measurement equipment.

Interestingly, there also exists a sort of defects which repeatedly produce noise for a some time (see

Section 1.3.4). This kind of noise has been referred to as aRTN and will be discussed for hole traps in

the following. Just as in the case of tRTN, the noise signal is generated by charge transfer reactions

between the states 2 and 1′. The recurrent pauses of the noise signal (see Fig. 7.11) originate from

transitions into the metastable state 2′, which is electrically indistinguishable from the state 2. These

interruptions correspond to the time during which the defect dwells in this state and no charge

transfer reaction can take place. Thereby it has been presumed that the NMP transition T2′→1 occurs

on larger time scales than the return to the state 2 through the transition T2′→2. The slow capture
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FIGURE 7.11: Top Left: The hole occupancy during tRTN. At t = 0 the stress voltage has been removed and

the defect is in its positive state 2. After a time τs
em the defect ceases to produce noise. Bottom

Left: Configuration coordinate diagram for a tRTN defect. The thick arrow indicates the fast

switches between the states 2 and 1′ related to the occurrence of noise. The possibilities to

escape from these states are shown by the thin arrows. Top Right: Hole occupancy during aRTN.

Bottom Right: Configuration coordinate diagram for an aRTN defect. Since this defect is a hole

trap, the red solid and the blue dashed line correspond to the positive and neutral charge state,

respectively. The double-sided thick arrow is associated with aRTN while the thin one represents

the transitions into and out of the metastable state 2′.

time constant τs
cap in Fig. 7.11 defines the mean time interval during which noise is observed. Its

value is given by the inverse of the transition rate 1/r22′ . The slow emission time constant τs
em = 1/r2′2

corresponds to the mean time interval until the next noise period starts.

One should keep in mind that defects showing an aRTN behavior can also be responsible for tRTN

seen in TDDS measurements. During TDDS stress, this sort of defects are forced into one of

the states 2 and 1′ where they produce an RTN signal. As in aRTN, they undergo a transition to

the metastable state 2′ thereby stopping to produce a noise signal. However, this special sort of

defects is characterized by a slow emission time constant τs
em, which is much larger than the typical

measurement time of TDDS. As a consequence, the next transition back to the state 2 and the

subsequent noise period are shifted out of the experimental time window of TDDS and will not be

recorded during the measurement run. According to this explanation, tRTN can also be explained as

a stimulated variant of aRTN.

In summary, the eNMP can account for the features from the time constant plots and is consistent

with the observation of tRTN as well as aRTN. This fact is presented here since it is regarded as an

additional support for the validity of this model.

7.6 Discussion

As demonstrated in great detail, the eNMP model successfully reproduces the features of the time

constants extracted from TDDS measurements. These experiments reveal the behavior of single
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FIGURE 7.12: Normalized degradation curves for a varying number of defects. With an increasing number

of traps, the stepped curve becomes smoothed out and approaches the expectation value of

ΔVth(t). The barriers for hole capture are assumed to be homogeneously distributed, resulting

in a logarithmic time behavior. The step height due to one hole capture follow approximately an

exponential dependence in agreement with [25].

defects by monitoring the response of single defects to different stressing conditions. This has made

it possible to identify the underlying physical process involved in charge trapping. Reisinger et

al. [54] established the link between single defects and NBTI by showing that the NBTI degradation

is primarily caused by a large number of individual trapping events. The capture and emission times

of these events are characterized by a wide distribution. In the eNMP this can be explained by large

variations in the adiabatic potentials of defects, as usual for defects in an amorphous host materials

[19, 20]. Fig. 7.12 illustrates how single hole capture events sum up to smooth degradation curves

obtained in NBTI measurements. It becomes clear that the increase in the number of traps leads to

an averaging of the ΔVth(t ) curves and the steps of single events cannot be resolved anymore. The

distribution of hole capture times determines the form of the stress curves while the corresponding

emission times yields the recovery curves. Consequently, the field acceleration and temperature

activation of the time constants may explain the field and temperature dependences of the NBTI

degradation curves. But one should keep in mind that the permanent component of NBTI is not

captured by TDDS and thus have not been accounted for in the eNMP model. As a result, a significant

contribution to the overall NBTI degradation is not described by the hole capture and emission

process.

In the TSM the hole capture is modeled by an MPE process, which relies on a concept similar to the

charge transfer reactions in the eNMP model. In both cases, the defect has to overcome an energy

barrier resulting from the intersection of two adiabatic potentials in the configuration coordinate

diagram. While the height of this barrier is a random variable in the TSM, it is determined from

the shape of the adiabatic potentials in the eNMP model. In the latter, the intersection point varies

with the relative position of the adiabatic potentials and consequently with the oxide field. Together
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Used Models TSM eNMP

Stress T1→2 T1→2′→2 NMP Transfer Reaction + Intermediate State

‘Normal Defects’ ✗ T2→2′→1

‘Anomalous Defects’ T2→3→1 T2→1′→1 Field-Dependent Recovery

TABLE 7.2: Comparison between the TSM and the eNMP model.

with the intermediate state 2′, which is involved in the hole capture process, the eNMP model can

reproduce the time constants seen in TDDS. By contrast, a field enhancement factor in the TSM

had to be phenomenologically introduced in order to capture the field dependence observed in the

experimental data. For the aforementioned reasons, the eNMP model is viewed as an improvement

in the description of the hole capture process.

Apart from these physical details, the higher-level picture of the hole capture process remains the

same for both models. In the precursor configuration (state 1 in both models), the defect features a

trap level located far below the substrate valence band. Note that this level is referred to as Et,1 in the

TSM or Et in the eNMP model. If Et,1/Et is shifted upwards by the oxide field, the defect can capture

a substrate hole. This is accompanied by a structural relaxation of the defect configuration and leads

to a new trap level E ′
t located within or at least close to the substrate bandgap.

The TSM as well as the eNMP model can describe defects which show a field dependence in the

emission times and the recovery, respectively. This behavior is linked to a hole emission process,

which neutralizes the defect via the transition T2→3 in the TSM or T2→1′ in the eNMP. As mentioned

before, the corresponding trap level is Et,2 in the TSM and E ′
t in the eNMP model and lies within

or close to the substrate bandgap. As a result, the occupation of Et,2 or E ′
t is strongly dependent of

small variations of the substrate Fermi level, also known as the ‘switching trap’ behavior of defects.

Only from the neutral charge state (the state 3 in the TSM and the state 1′ in the eNMP model), the

defect is allowed to return to its initial state 1 by structural relaxation. In the state diagrams, the last

step corresponds to the transition T3→1 in the TSM or T1′→1 in the eNMP model. It is important to

note here that the hole emission times in both models are eventually controlled by the position of Ef

relative to Et,2 or E ′
t. This effect is reflected in the field dependence of the ‘anomalous’ defects, on

the one hand, and NBTI recovery, on the other hand. Consider that the transition T2↔3 in the TSM

and T2↔1′ in the eNMP model are actually based on a different description of the hole capture and

emission process. However, the corresponding transition barriers are assumed to be small in both

models. Therefore, T2↔3 in the TSM and T2↔1′ in the eNMP model occur fast so that the occupancies

of the involved states reach their equilibrium values, which are unaffected by the barrier heights.

Insofar the different field dependences of both models do not enter the occupancies of the states and

thus do not impact the model behavior.

Besides the ‘anomalous’ defects, the eNMP model also gives an explanation for ‘normal’ defects.

They are characterized by the fact that the alternative pathway from the state 2 back to 1 is taken

138



7. THE EXTENDED NONRADIATIVE MULTI-PHONON MODEL

over the metastable state 2′. Thus the hole emission process is determined by the thermal transition

T2→2′ resulting in field independent emission times as required for this kind of defects. But note that

the TSM has no analog for the ‘normal’ defect behavior and thus must be viewed as an insufficient

description of charge trapping in NBTI and TDDS.

In summary, it has been pointed that the physical picture behind of hole trapping in NBTI is the same

for the TSM as well as for the eNMP model. Nevertheless, the eNMP model should be regarded as an

improvement for the two reasons: First, it is extended by the metastable state 2′, which allows for the

curvature in τcap and the field independence of τem. Second, the NMP formalism is expected to be a

better description of the investigated charge transfer reactions than its simplified MPE variant used in

the TSM. In contrast to the TSM, the eNMP model has been rigorously derived from one configuration

coordinate diagram, which is regarded as the most complete description of a defect with respect to

energy.

7.7 Conclusion

In the previous chapter it has been demonstrated that the TSM captures the essential features of NBTI

degradation curves but fails to explain the time constant plots obtained by TDDS experiments. This

indicates that this model does not correctly reflect the nature of the microscopical trapping process

behind NBTI. Therefore, the charge transfer reaction has been refined by using a more accurate

description of the NMP process based on the adiabatic potentials of a defect. Furthermore, an

additional metastable state has been introduced. With these extensions of the eNMP, it has also been

able to reproduce the experimental findings of TDDS. In particular, the eNMP allows to reproduce the

time constant plots and explain the ‘normal’ as well as the ‘anomalous’ defect behavior depending on

the shape of the adiabatic potentials in the configuration coordinate diagram. Besides that, it gives

an explanation for the occurrence of tRTN and aRTN, both seen in experiments.
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8
Conclusion and Outlook

Due to the downscaling of semiconductor device geometries, modern MOS technologies are

becoming increasingly prone to reliability issues, in particular to negative bias temperature instability

(NBTI). This parasitic effect seriously limits the lifetime of the devices and has thus aroused

considerable scientific interest. The data obtained by time-dependent defect spectroscopy (TDDS)

provide experimental evidence that this NBTI issue is not related to a diffusion-controlled problem

but rather to a hole trapping process. However, the exact nature of this process has remained vague

and thus the charge transfer mechanism involved in hole trapping has shifted into the focus of

interest. In this thesis, different kinds of mechanisms were taken into consideration and studied

within the framework of rate equations. For each mechanism, the simulated NBTI degradation

was compared to the data extracted from the extended measure-stress-measure (eMSM) technique.

In these studies, only the short-term part of the NBTI degradation was considered since it is only

weakly obscured by the permanent component of NBTI, which is attributed to another degradation

mechanism.

The first charge trapping mechanism investigated was elastic tunneling of the charge carriers from

the channel into the defects. The elastic tunneling model predicts a logarithmic time behavior,

which is also observed for the short-term degradation of NBTI. Nevertheless, this concept has been

ruled out for several reasons. First, the elastic tunneling model predicts a negligible temperature

dependence, which is inconsistent with the experimental findings of the eMSM technique. Second,

its field acceleration is linear instead of quadratic. It is noted that the temperature as well as the

field dependence are inherently given by the physical foundations of this model and thus cannot be

adjusted by any fitting parameters. Furthermore, modern device technologies have ever smaller oxide

thicknesses so that the tunneling to and from the gate enters in the trapping dynamics. This aspect
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was paid attention in an extended version of the elastic tunneling model used to study the impact

of the gate contact. It was found that elastic tunneling is limited to a time range below 1s for oxide

thicknesses smaller than 4nm. As a consequence, this concept cannot give an explanation of the wide

distribution of time constants seen in NBTI experiments.

Another model attempt starts from the assumption that the defect configuration is closely linked to

the position of the trap level. Since defects undergo structural relaxation after each charging event,

the trap levels rise or fall within the oxide bandgap. This shift of the trap level was expected to have

a strong impact on the trapping dynamics. As a consequence, it was incorporated in a new, rate-

based model, which was considered as a possible explanation for hole trapping in NBTI. Using first

principles calculations, it was verified that the level shift can be significant. These theoretical studies

included the usually suspected defects, such as the oxygen vacancy, the E ′ centers, the hydrogen

bridge, and the hydrogen interstitial, where each of them features a shift of at least one electron Volt.

In a second step, the level shift model was investigated for its time dynamics as well as for its field and

temperature dependence. Even though it shows a nearly logarithmic time behavior during stress and

recovery, it can explain neither the field nor temperature dependence observed in NBTI experiments.

As a consequence, this model must also be abandoned as an explanation for NBTI.

The level shift model was extended to account for the activation over thermal barriers. This modified

variant, called nonradiative multi-phonon (NMP) theory, was used to describe the charge capture

and emission process within bulk materials and has been employed in the two-stage model. This new

model achieves a good match with the complicated NBTI stress and relaxation degradation curves for

various different gate voltages and temperatures. As such, it fulfills all criteria inferred from the eMSM

data and can thus be regarded as a successful model to describe NBTI. In order to test whether the

two-stage model properly reflects the behavior of the microscopic processes, it had to be evaluated

against the field and temperature dependent hole capture and emission of single defects. For this

purpose, the simulated time constants were compared to results of TDDS experiments. The two-stage

model was found to yield the correct temperature activation and successfully reproduce the field

dependence of the ‘normal’ as well as the ‘anomalous’ defects. However, this model cannot explain

the curvature in the experimentally obtained capture time constants. In an improved description of

the NMP process, the heights of the thermal barriers were not assumed to be statistically distributed

as in the two-stage model but derived from atomistic quantities, such as the vibrational frequencies of

a defect. Furthermore, a second metastable state was introduced into the two-stage model in order

to allow for temperature independent emission times and a curvature in the capture times. This

refined model, called extended NMP model, was shown to capture all experimental feature seen in the

TDDS data and, as such, gives an improved description of the microscopic charge transfer process.

The validity of the extended NMP model was further supported by the fact that it can also give an

explanation for anomalous and temporary random telegraph noise. Therefore, this new model is an

important step forward in the understanding of NBTI.

In this work a new model has been devised, which captures the essential physics of charge trapping

in MOSFETs. It depends on a couple of model parameters, which are directly linked to the physical

properties, such as equilibrium configurations, barrier heights, and positions of the trap levels. By

comparison to TDDS data, the range of these parameters could already be narrowed down. Given
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that information, a very detailed list of requirements on the microscopic defect properties can be

compiled. Unfortunately, a corresponding microscopic defect has still not been identified. The

most prominent defect candidate has been the oxygen vacancy, which shows the bistability required

in the extended NMP model, as already summarized in the Harry-Diamond-Laboratories model.

However, recent first-principles simulations have shown that the trap levels of the oxygen vacancy

are located far below the substrate valence band edge so that this defect must be ruled out for this

model. Therefore, future investigations should be devoted to a systematic search for defects qualified

according to the extended NMP model. These investigations should include defect candidates in the

various dielectric materials, including silicon dioxide, silicon oxynitride, and high-k dielectrics. Most

of these materials are expected to be amorphous so that the defect properties are subject to statistical

variations. Furthermore, it has been realized that the defect properties can be seriously affected by

the presence of a nearby interface. All these aspects should be accounted for in future investigations

on hole trapping. When the question which defects is involved in charge trapping is solved, their

occurrence could even be suppressed during processing.
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A
Physical Basics

A.1 Fermi’s Golden Rule

Fermi’s golden rule provides one way to calculate the transition rate between two certain quantum

mechanically defined states. Due to its generality, it has various applications in the field of atomic,

nuclear, and solid-state physics. In the case of NBTI, it is of most interest for charge transfer reactions

and electron tunneling in particular. In the following, Fermi’s golden rule is derived for electron

tunneling from the substrate into an oxide defect as illustrated in Fig. A.1. The system is divided

into three separate regions, namely the channel, the insulator barrier, and the trap region. The

electron wavefunctions ψl (x) and ψr (x) extend into the classically forbidden barrier region. Their

overlap actually leads to a mutual influence between the channel and the trap system. However, this

influence is assumed to be negligible so that both systems can be treated independently to first order.

This justifies the assumption that in a first approximation the channel and the trap system can be

described by their own Hamiltonians Hch(x) and Htr(x). For the derivation of the tunneling rate, the

Hamiltonian of the common system is taken as a starting point.

H (x)= Hch(x)+H ′(x) (A.1)

Hch(x) =− �2

2me
Δ+Vch(x) (A.2)

H ′(x) =Vtr(x) (A.3)

H ′(x) is viewed as the time-dependent perturbation that triggers the scattering from the band states

ψl (x) into the trap states ψr (x). The solution ψ(x, t ) of the common system H (x) can be written as a

linear combination of the eigen wavefunctions ψl (x) of the unperturbed system Hch(x).
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V (x)

V0 = 0

x
channel barrier trap

Hch(x) =− �2

2me
Δ+Vch(x)

Hch(x)ψl (x) =Elψl (x)

Htr(x) =− �2

2me
Δ+Vtr(x)

Htr(x)ψr (x) =Erψr (x)

FIGURE A.1: Schematic representation of the channel, the barrier, and the trap region. Interactions between

the channel and the trap system are neglected to first order so that both systems are characterized

by a separate Hamiltonian Hch(x) and Htr(x), respectively. This means that the attractive trap

potential Vtr(x) is not accounted for in Vch(x) so that Vch(x) =V0 in the trap region. Vice versa, the

channel potential Vch(x) is omitted in Vtr(x), which consequently takes the value V0 in the channel

region.

ψ(x, t )=
!

l

al (t ) exp

�
−i

El

� t

�
ψl (x) (A.4)

This expansion of the wavefunction is inserted into the time-dependent Schrödinger equation

H (x) ψ(x, t ) = i� ∂tψ(x, t ) (A.5)

and leads to

(Hch(x)+Vtr(x))
!

l

al (t ) exp

�
−i

El

� t

�
ψl (x) = i�

!
l

�
(∂t al (t )) exp

�
−i

El

� t

�
ψl (x)

+al (t )

�
−i

El

�

�
exp

�
−i

El

� t

�
ψl (x)

�
.

(A.6)

Due to Hch(x)ψl (x) =Elψl (x), the above equation simplifies to

Vtr(x)
!

l

al (t ) exp

�
−i

El

� t

�
ψl (x) = i�

!
l

(∂t al (t )) exp

�
−i

El

� t

�
ψl (x) . (A.7)

Multiplying both sides by ψr (x)∗ exp(i Er

� t ) from the left and integrating over space yields

∂t ar (t )=− i

� exp

�
−i

El −Er

� t

� �
ψ∗

r (x) (H −El ) ψl (x) dx , (A.8)

=− i

� exp

�
−i

El −Er

� t

� �
ψ∗

r (x) (H −Hch) ψl (x) dx , (A.9)

=− i

� exp

�
−i

El −Er

� t

� �
ψ∗

r (x) Vtr(x) ψl (x) dx� �� �
=Ml r

, (A.10)
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where Mlr is referred to as the matrix element. |ar (t )|2 gives the transition probability Plr (t ) that an

electron initially located in the state ψl (x), evolves into the final states ψr (x) after a time t. Therefore,

it must be divided by the time t in order to yield the transition rate rlr .

rlr =
Plr (t )

t
= |ar (t )|2

t
= |Mlr |2

#### 1
�

t�
0

exp
�

i (El−Er )t ′

�
�

dt ′
####2

t
(A.11)

The integrand is sharply peaked at El = Er and can be approximated as a δ-function.###### 1

�

t�
0

exp

�
i (El −Er )t ′

�

�
dt ′

######
2

≈ 2πt

� δ(El −Er ) (A.12)

Substituting the integral in rate expression (A.11), one finally obtain ‘Fermi’s golden rule’.

rlr =
2π

� |Mlr |2 δ(El −Er ) (A.13)

A.2 Wenzel-Kramers-Brillouin Method

The WKB method [102] is an approximative semiclassical approach to compute the stationary

solution of the Schrödinger equation without struggling with the difficulties of a second order

differential equation. Taking the time-independent, one-dimensional Schrödinger equation

�2

2me
∂2

xψ(x)+ (E −V (x))ψ(x) = 0 (A.14)

as a starting point and inserting the ansatz

ψ(x) = exp

�
i

S(x)

�

�
(A.15)

leads to

(∂x S(x))2 = 2me (E −V (x))+ i� ∂2
x S(x) . (A.16)

Substituting the action S(x) by its expansion in power series of �/i

S(x)= S0(x) + (i�) S1(x) + (i�)2 S2(x) + . . . , (A.17)

one obtains

S0(x) = exp

± i

�

x�
x0

p(x ′)dx ′
 , (A.18)

p(x)2 ≡ 2me (E −V (x)) (A.19)
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for terms of the order ∼�0 and

∂x S1(x) = 1

2

∂2
x S0(x)

∂x S0(x)
= 1

2

∂x

�
p(x)/���

p(x)/�� . (A.20)

for terms of the order ∼�1. Integrating (A.20), one obtains

S1(x) = 1

2
ln|p(x)|+c (A.21)

which yields

ψ(x) = c�|p(x)|
exp

± i

�

x�
x0

p(x ′)dx ′
 , (A.22)

where the integration spans from x0 to an arbitrary point x. x0 is also referred to as the classical

turning point, where the particle energy E equals the potential energy V (x). Note that close to this

point, the WKB approximation breaks down and the expression for the wavefunction diverges since

p(x) in the denominator approaches zero. As a result, the wavefunction left and right to this point

cannot be adjusted, which is the case at the discontinuity of the semiconductor-dielectric interface

for instance. One way to overcome this problem is to apply Langer’s procedure [102], which is not

presented here. The above formula also applies to classical forbidden regions where the particle

energy E lies below the potential barrier V (x).

A.3 WKB Formulas for Different Shapes of Energy Barriers

In the classical forbidden region, the shape of the wavefunction is dominated by the exponential term

in equation (A.22).

ψ̃(x) ≈ exp

− 1

�

x2�
x1

�
2me(φ(x)−E ) dx

 (A.23)

≈ exp

−�
2me

�

x2�
x1

�
φ(x)−E dx

 (A.24)

x1 and x2 stand for the classical turning point at the semiconductor-dielectric interface and the

position of the trap, respectively. Supposing that only a negligible amount of charges is located in

the dielectric, the potential energy φ(x) can be expressed as

φ(x) =φ1 +
φ2 −φ1

x2 −x1� �� �
=q0Fox

(x −x1) . (A.25)

For a trapezoidal barrier (see Fig. A.2), ψ̃(x) simplifies to
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εεε
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φ2
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φ(x)

φ(x)
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FIGURE A.2: Schematic representation of a trapezoidal (left) and a triangular barrier for a negative (middle) and

a positive (right) gate bias. φ(x) displays the shape of the potential energy and takes the values φ1

and φ2 for the semiconductor-dielectric interface at x1 and the trap at x2. For the case of triangular

barriers, the classical forbidden region is decreased to the point x0.

ψ̃(x) ≈ exp

−�
2me

�

x2�
x1

�
φ1 +q0Fox (x −x1)−E dx

 , (A.26)

≈ exp

�
− 2

�
2me

3�q0Fox
(φ1 +q0Fox (x −x1)−E )

3
2

###x2

x1

�
, (A.27)

≈ exp

�
− 2

�
2me

3�q0Fox

�
(φ2 −E )

3
2 − (φ1 −E )

3
2

��
. (A.28)

If tunneling occurs through a triangular barrier (see Fig. A.2), the classically forbidden region extends

to

x0 = x1 +
E −φ1

q0Fox
. (A.29)

For negative electric fields (φ2 < E <φ1), one obtains

ψ̃(x) ≈ exp

− 1

�

x0�
x1

�
2me(φ(x)−E ) dx

 , (A.30)

≈ exp

�
− 2

�
2me

3�q0Fox
(φ1 +q0Fox (x −x1)−E )

3
2

###x0

x1

�
, (A.31)

≈ exp

�
2
�

2me

3�q0Fox
(φ1 −E )

3
2

�
. (A.32)
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while positive electric fields (φ1 < E <φ2) results in

ψ̃(x) ≈ exp

− 1

�

x2�
x0

�
2me(φ(x)−E ) dx

 , (A.33)

≈ exp

�
− 2

�
2me

3�q0Fox
(φ1 +q0Fox (x −x1)−E )

3
2

###x2

x0

�
, (A.34)

≈ exp

�
− 2

�
2me

3�q0Fox
(φ2 −E )

3
2

�
. (A.35)

The these two cases are commonly known as the Fowler-Nordheim formulas [186]. For a rectangular

barrier with E <φ1 =φ2 =φ, the integral in equation (A.23) simplifies to a multiplication.

ψ̃(x) ≈ exp

�
−

�
2me(φ−E )

� (x2 −x1)

�
(A.36)

A.4 Density of States

When going from small electron systems, such as atoms and molecules, to large electron systems,

solids for instance, the number of available electron states reaches high values so that it is best

expressed in terms of a density per energy and volume. In solid state theory the assumption of

periodic boundary conditions is frequently employed and delivers simple first-order approximation

of the density of states (DOS). However, in a few cases, such as tunneling, DOS decomposed in one

energy component perpendicular (Ex ) and one parallel (Ey z ) to a certain plain is required. The

corresponding derivation will be outlined in the following.

In each direction with periodic boundary conditions, each quantum number n is directly related to

one wavevector k :

k = 2π

L
n , (A.37)

If the length of the periodicity L is increased, the single quantum states narrows in the k space and k

becomes an continuous quantity. Then the summation over the single states can be replaced by an

integral.

!
n

=
+∞�

−∞
dn = L

2π

+∞�
−∞

dk (A.38)

Making use of the relation

E = �2k2

2me
(A.39)

one obtains the number of states in the x-direction

Nx =
!
nx

= 2
Lx

2π

+∞�
0

dkx = Lx

+∞�
0

1

π�

�
me

2Ex� �� �
=D1D(Ex )

dEx . (A.40)
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For periodic boundaries in two dimensions, an integral transformation to polar coordinates is carried

out in order to obtain the number of states in the y z-plane.

Ny z =
!

ny ,nz

= Ly Lz

(2π)2

+∞�
0

+∞�
0

dky dkz = Ly Lz� �� �
=Ayz

+∞�
0

me

2π�2� �� �
=D2D

dEy z (A.41)

with Ey z being the energy in the y z-plane. Combining both solutions yields

Nxyz =
!

nx ,ny ,nz

= Lx Ay z

+∞�
0

+∞�
0

me

π2�3

�
me

2Ex
dEy z dEx , (A.42)

= Lx Ay z

+∞�
0

E�
0

me

2π2�3

�
me

2Ex
dEx dE , (A.43)

where an integral transformation from (Ey z ,Ex ) to (E ,Ex) with the constraint E = Ex + Ey z is

performed. The split one/two dimensional DOS is defined as

D1D+2D(Ex ) = me

2π2�3

�
me

2Ex
(A.44)

while the commonly known three dimensional DOS for a free electron gas reads

D3D(E ) =
E�

0

me

2π2�3

�
me

2Ex
dEx , (A.45)

= me

2π2�3

�
2meE , (A.46)

which is usually found in textbooks [129].

For the case that the electrons are confined in the x-direction, the number of states are counted in

the following way:

Nx =
!
nx

θ(Ex −Enx
) =

+∞�
0

!
nx

δ(Ex −Enx
)dEx (A.47)

Here, Enx
denotes the quasi-bound states with the quantum number nx . In order to refer Nx to the

unit volume, one must introduce the the square of the wavefunction.

!
nx

θ(Ex −Enx
) =

+∞�
0

!
nx

δ(Ex −Enx
)� �� �

=Dc1D(Ex )

dEx (A.48)

When Dc1D(Ex ) is multiplied with D2D and the same integral transformation as for the derivation of

D3D(E ) is performed, one obtains the DOS for an one-dimensionally confined electronic system:

Dc3D(E )=
E�

0

D2D

!
nx

δ(Ex −Enx
)dEx , (A.49)

= D2D

!
nx

Θ(E −Enx
) (A.50)

Note that in this derivation the spin degeneracy introducing a factor 2 has been neglected.
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