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Kurzfassung

MAKROSKOPISCHE TRANSPORTMODELLE zur Beschreibung des Ladungsträgertrans-
ports basierend auf der Boltzmanngleichung, wie das Drift-Diffusionsmodell sowie das

Energie-Transportmodell, genügen ingenieurtechnischen Anwendungen und sind sehr effizient
im Vergleich zu deutlich zeitaufwändigeren Monte Carlo Simulationen. Mit fortschreitender
Bauteilminiaturisierung hin in den Deka-Nanometerbereich verlieren jedoch nacheinander das
Drift-Diffusionsmodell und das Energie-Transportmodell ihre Gültigkeit. Wie in dieser Arbeit
gezeigt wird, ist ein Transportmodell höherer Ordnung basierend auf den ersten sechs Mo-
menten der Boltzmanngleichung eine effiziente Lösung, um die Genauigkeit zu erhöhen. Dabei
spielt die Charakterisierung der Transportparameter eine entscheidende Rolle. Es wird gezeigt,
dass ein Transportparametermodell, das auf Monte Carlo Tabellen beruht, eine sehr genaue
Parameterbeschreibung zulässt.

Der theoretische Teil dieser Arbeit liefert einerseits eine Einführung in die bestehenden Simula-
tionsmethoden des Quantentransports und andererseits wird auf die Ableitung von makroskopis-
chen Transportmodellen höherer Ordnung sehr genau eingegangen. Näherungen bei den Her-
leitungen der Modelle und die wichtige Abschlussbedingung des Sechsmomenten-Modells werden
beschrieben. Die zugrundeliegenden Ideen der Monte Carlo Simulation und die Technik der Ex-
pansion der Verteilungsfunktion in Kugelflächenfunktionen werden besprochen. Beide Methoden
liefern Referenzergebnisse zur Verifikation der entwickelten makroskopischen Transportmodelle.

Um den Gebrauch für moderne Applikationen zu verdeutlichen, beschäftigt sich der praktische
Teil dieser Arbeit mit dem Gültigkeitsbereich der makroskopischen Transportmodelle. Dabei
wird eine genaue Untersuchung bezüglich des Verhaltens der Modelle in einem dreidimensional-
en Elektronengas durchgeführt. Kurzkanaleffekte werden dabei analysiert. Das Hauptaugen-
merk dieser Arbeit liegt im Verhalten von Transportmodellen in der Inversionsschicht eines
UTB SOI MOSFET-Bauteils. Eine genaue Studie im homogenen Inversionskanal bezüglich des
Einflusses der Oberflächenrauhigkeit und der Quantisierung auf Transportparameter wird mit
Hilfe der Subband Monte Carlo Methode durchgeführt. Um die gesamte Inversionsschicht eines
Bauteils zu berücksichtigen, wurde ein zweidimensionales Sechsmomenten-Modell basierend auf
Subband Monte Carlo Tabellen entwickelt. Die Resultate wurden mit der sehr genauen Bauteil-
Subband Monte Carlo Methode als Referenz verglichen. Abschließend wurden Transportpara-
meter höherer Ordnung sowie die empirische Abschlussbedingung für das Sechsmomenten-Modell
in Legierungen wie SiGe oder GaAs untersucht.
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Abstract

THE CHARACTERIZATION of carrier transport for engineering applications with macro-
scopic models based on Boltzmann’s transport equation, like the drift-diffusion model or the

energy transport model, are very efficient compared to the time consuming Monte Carlo tech-
nique. However, by aggressive downscaling of the device dimensions into the deca-nanometer
regime, both the drift-diffusion and the energy transport model continuously loose their valid-
ity. As will be pointed out, an efficient solution to extend the range of accuracy is to consider
the first six moments of Boltzmann’s transport equation. In the analysis of these higher-order
macroscopic models up to the sixth order, it is crucial to describe the transport parameters with
as few simplifying assumptions as possible. It turns out to be a very precise technique to extract
these transport parameters from homogeneous Monte Carlo simulations.

The theoretical part of this thesis gives an introduction into quantum transport and a thorough
derivation of macroscopic transport models up to the sixth order. The assumptions made during
the derivation and their consequences as well as the closure problem of the six moments model
are described in detail. The basic ideas behind the Monte Carlo technique and the Spherical
Harmonics Expansion method, which both serve as references to the macroscopic transport
model simulations, are illustrated.

The practical part deals with an analysis of the validity of higher-order macroscopic transport
models. First, investigations concerning the behavior of the macroscopic models within the three
dimensional electron gas using transport parameter models extracted from fullband Monte Carlo
tables is given. Short channel effects as well as a benchmark to the Spherical Harmonics method
are demonstrated. The second and the main part of this section shows the coverage of inversion
layer effects by two dimensional higher-order transport models. A detailed study concerning the
impact of surface roughness scattering and quantization on higher-order transport parameters
is given using a self-consistent Subband Monte Carlo simulator. In order to describe carrier
transport in the inversion layer of a whole device, a two dimensional six moments model based
on Subband Monte Carlo tables has been developed and the model predictions are benchmarked
with device Subband Monte Carlo simulations. Finally, a Monte Carlo higher-order parameter
study in material alloys as SiGe and GaAs is given, and the empirical closure relation of the six
moments model is discussed.
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’Start by doing what is necessary, then do what is

possible, and suddenly you are doing the impossible.’

Francis of Assisi

Chapter 1

Introduction

WITH THE INVENTION of the microchip the digital revolution was initiated, which has
deeply influenced human society. One of the consequences is the increase of interdepen-

dence of economics, politics or telecommunications, which are the cornerstones of globalization.

Life is getting faster due to the fact that nowadays almost everyone has a cell phone, a computer,
and is an internet user. The demand for more calculation performance of electronic devices,
especially in computational science, but also in daily life, constantly increases due to programs
requiring more cpu power and memory.

Therefore, to speed up microchips, a tremendous downscaling of metal-oxide-semiconductor
field-effect transistors (MOSFET) into the sub-micrometer regime has been maintained. Gordon

Moore, a founder of Intel Corporation claimed in the year 1965 [10,11] that the transistors on a
chip double every eighteen months. This statement is known as Moore’s law and it has turned
out to be valid for the last four decades. Furthermore, this downscaling trend seems to hold as
well for the coming decades as predicted and institutionalized by the International Technology
Road-map for Semiconductors (ITRS) [12]. Another way to make chips faster is to use alternative
semiconductor materials and substrates. It was reported in [13] that by considering a substrate
under the active region of a bulk MOSFET improves the performance up to 25 % to 30 %. Thus,
silicon-on-insulator technology (SOI) reduces the power consumption, which has a strong impact
on the life time of batteries. An advanced further development of SOI MOSFETs is to reduce
not only the channel length, but also the body of the MOSFET, which results in the ultra thin
body (UTB) SOI MOSFET.

Powerful simulation tools have been developed to investigate characteristics of such advanced
devices. It has proved to be a good investment. They have become prerequisites for verification
of device specifications before starting their production. An efficient way to describe important
device quantities such as the output characteristics is to solve a system of partial differential-
equations based on the semi-classical Boltzmann’s transport equation. Numerical simulation of
carrier transport dates back to the famous work of Scharfetter and Gummel [14], who proposed
a robust discretization scheme of the drift-diffusion model, which is still in use today [15]. The
typical drift-diffusion model just takes the ohmic and diffusive part of carrier transport into
account, which is not very satisfying for small devices, where carrier heating plays an important
role. A further development was proposed by the work of Stratton [16] in the year 1962, who
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takes the first four moments of Boltzmann’s transport equation into account and approximates
the scattering operator by a microscopic relaxation time. The so called hydrodynamic transport
model retains the carrier temperature, which makes it possible to describe non-local effects as
the velocity overshoot. However, it was reported in several papers [17–19], that for decreasing
channel lengths even the hydrodynamic model after Stratton becomes more and more inaccurate.
To increase the accuracy within macroscopic models for decreasing channel lengths, higher-order
transport models which go beyond the Stratton model, have been developed.

The three dimensional bulk case was successfully investigated by Grasser [20,21] using the first
six moments of Boltzmann’s transport equation. However, the carriers in a UTB SOI MOSFET,
which is a very promising device candidate to prove the scaling path up to the end of the ITRS
road map, are strongly affected by quantization and surface roughness scattering. Due to the
quantum confinement, energy subbands occur in the inversion layer and one has to deal with a
two-dimensional electron gas. For an accurate description of these very scaled devices, it is very
important to investigate the behavior of higher-order transport models within inversion layers,
which has not been done satisfactorily yet.

This thesis characterizes the behavior of macroscopic transport models up to the sixth order for
both situations: The 3D bulk case and the 2D quantized inversion layer case and is organized
as follows:

Chapter 2 is devoted to the theory of transport modeling starting with an overview of existing
transport models. A brief introduction into quantum transport is given, describing just the
main ideas behind the models. The main focus is put on the semi-classical transport based
on Boltzmann’s transport equation. A detailed derivation of macroscopic transport models
as the drift-diffusion, the energy transport as well as the six moments model are presented.
Furthermore, as a benchmark to macroscopic models, the Monte Carlo method and the Spherical
Harmonics Expansion approach are explained.

In Chapter 3, a three dimensional bulk study of macroscopic transport models is carried out.
For comparative studies, results of both the Monte Carlo method and the Spherical Harmonics
Expansion approach serve as a reference. The validity of higher-order macroscopic models within
the 3D bulk regime is highlighted.

Chapter 4 characterizes higher-order transport parameters with the developed self-consistent
subband Monte Carlo simulator in a highly quantized system of the inversion layer channel
of a UTB SOI MOSFET. The impact of inversion layer effects is scrutinized. Furthermore, a
comparison with the 3D bulk system is carried out.

A further extension based on the subband Monte Carlo simulator explained in Chapter 4 is
shown in Chapter 5. The method to treat higher-order transport in the inversion layer of a
whole device is demonstrated and compared to device subband MC simulations.

material study concerning the behavior of higher-order transport parameters in semiconductor
alloys as SiGe and GaAs is given in Chapter 6.

Finally, Chapter 7 gives a summary and conclusions.
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’Plans are nothing; Plans are everything’

Dwight D. Eisenhower

Chapter 2

Theory of Transport Modeling

THE FUNDAMENTAL equation of semi-classical transport is Boltzmann’s transport equa-
tion (BTE). A common transport model, which can be easily derived from BTE is the drift-

diffusion model, which is the workhorse of today’s Technology Computer Aided Design (TCAD)
tools. However, driven by Moore’s law, the device dimensions of modern semiconductors de-
crease into the deca-nanometer regime following that the drift-diffusion model gets more and
more inaccurate. A solution is to use more sophisticated models based on BTE like the Monte
Carlo approach (MC) [22–25]. The disadvantage of the MC technique is it’s high computational
effort due to the statistical approach and hence rather less suitable for engineering applications.
However, the results obtained from the MC simulation method are often in a good agreement
with the experiment [1] and frequently used as a benchmark for other simpler models.

For engineering purposes, higher-order macroscopic models based on the method of moments
such as the hydrodynamic, six moments, or even higher-order models are adequate approaches
for modeling sub-microscopic devices [21]. A detailed discussion will follow in the sequel.

Another promising approach for solving the BTE is the method of spherical harmonics [26]. The
underlying idea is to expand the distribution function into spherical harmonics and exploit the
orthogonality of the basis (see Section 2.4.5).

Since the BTE is a semi-classical equation including both Newton mechanics and the quan-
tum mechanical scattering operator, transport models, as explained above, are only valid in
a certain regime, where quantum effects like source to drain tunneling play only a negligible
role (see Fig. 2.1) [27–29].

In order to cover the range of gate lengths below 10 nm, where source to drain tunneling plays
an important role, several quantum mechanical approaches have been developed. The Lan-

dauer-Büttiker approach is valid in a ballistic regime, where the carriers are not affected by
scattering [30]. This approach is based on a generalization of the conduction characterized
by the transmission and reflection of the carriers. However, in general, transport models in
the deca-nanometer regime are based on the fundamental equation of quantum mechanics, the
Schrödinger equation (see Fig. 2.1).
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Figure 2.1: Hierarchy of transport models

The non-equilibrium Green’s function (NEGF) formalism is a powerful method to handle open
quantum systems [31]. The method can be used both in a ballistic and a scattering dominated
regime (see Section 2.3.1). If the mean free path of the carriers is smaller than the device size,
the system is in a scattering dominated regime, while if the mean free path is longer than the
device the system can be described ballistically.

Other quantum approaches are based on a MC solution of the Wigner equation [32]. The
advantage, compared to NEGF is that the methods comprise the coordinates and the momentum
as the degree of freedom. In the NEGF method, the additional degree of freedom is the energy.
In the classical limit of Wigner Monte Carlo, the results converge to the Monte Carlo results
based on the BTE. A drawback of the Wigner equation is that the equation is not positive
definite. In literature, this is known as the negative–sign problem [33]. This method can be
used as well in the ballistic as in the scattering dominated regime.

The so called Pauli Master equation is derived from the Liouville von Neumann equation. The
Liouville von Neumann equation describes the quantum evolution of the density matrix and
forms the fundamental equation for the Pauli master equation. The Pauli master equation is a
frequently used model of irreversible processes in simple quantum systems and can be used in
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the ballistic and in the scattering dominated regions [34,35].

The Lindblad master equation, the last point of the mentioned quantum models in Fig. 2.1, is
the most general form of the Liouville von Neumann equation. It characterizes the non-unitary
evolution of the density matrix. The elements of the density matrix are trace preserving and
positive [36–38].

Other methods to cover gate lengths below the semi-classical regime are quantum macroscopic
transport models. These models as the quantum drift-diffusion model or the quantum hydro-
dynamic model can be derived from the Schrödinger equation using the so called Madelung

transformation [39]. A discussion will follow in Section 2.3.3.

All models have Poisson’s equation in common, which describes the electrostatics of the system.
For a new simulation strategy, it is also important to investigate the underlying material and to
compare the simulation results with measurement data.

2.1 Basic Equations

The basic equations of quantum and classical device simulations, namely Poisson’s equation,
the Schrödinger equation, and the BTE with its solution, the distribution function, are derived
and discussed in this section.

2.1.1 Derivation of Poisson’s Equation

Poisson’s equation is the basic equation of electrostatics [40,41]. It can be derived inserting the
definition of the electric field E

E = −∇rϕ , (2.1)

into the second Maxwell equation

∇r · D = ρ . (2.2)

Here, ϕ denotes the electrostatic potential, ρ represents the charge density, and D is the electric
displacement field defined as

D = ǫE . (2.3)

Combining equation (2.1) with (2.2) yields Poisson’s equation

∇r · (ǫ∇rϕ) = −ρ , (2.4)

whereby ρ can be expressed as

ρ = q (p − n + Na − Nd) . (2.5)

p, and n denote the holes and the electron concentration, respectively, whereas Na and Nd are
the concentration of acceptors and donors [42]. Inserting (2.5) into (2.6) yields

∇r · (ǫ∇rϕ) = −q (p − n + Na − Nd) . (2.6)

A complete description of transport within a device is achieved solving Poisson’s equation self-
consistently with the appropriate formulation of carrier transport within the semiconductor.
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2.1.2 Schrödinger-Poisson System

In classical physics, the evolution in time and space of an ensemble of particles can be char-
acterized using Newton’s law. As described at the beginning of the chapter, transport below
a gate length of 10 nm cannot be treated anymore with classical physics. In the nanometer
regime, particles must be described by their wave functions ψ(r, t), which can be derived from
the time–dependent single particle Schrödinger equation [43]


− �
2

2m
∇2 + V (r)

�
ψ(r, t) = i�∂tψ(r, t) . (2.7)

The Schrödinger equation characterizes a particle moving in a region under the influence of the
potential energy V (r) [44]. A solution strategy is a separation ansatz of the wavefunction into
a time T (t) and space φ(r) component

ψ(r, t) = φ(r)T (t) . (2.8)

With this separation, equation (2.7) can be decoupled into a time–dependent

i�∂tT (t) = αT (t) (2.9)

and a space-dependent part

− �

2

2m
∇2 + V (r)

�
φ(r) = αφ(r) , (2.10)

whereby α denotes the energy eigenvalue. For a free particle (V (r) = 0), plain waves are the
solution of the time–independent Schrödinger equation.

The quantum mechanical current density is defined as [45]

J =
�

2im

�
ψ†(r, t)∇rψ(r, t) − ψ†(r, t)ψ(r, t)

�
, (2.11)

with ψ†(r, t) as the transposed conjugate complex form of ψ(r, t).

However, the situation is more complex in real semiconductors. Here, the band structure to-
gether with the electrostatic energy V (r) = qϕ as described in Section 2.1.1 plays an important
role. Fig. 2.2 shows a cross-section of a typical p–type MOSFET device under inversion [46].
Due to the applied gate voltage, the conduction band forms a potential well. Therefore, the
so called quantum confinement occurs, if the carriers in bound states cannot propagate to in-
finity. Hence, the potential well forms a boundary condition. Within this well, discrete energy
levels, the so called energy subbands occur, which will be discussed in Section 2.2. Due to the
quantum confinement, the carriers cannot move in the direction perpendicular to the interface,
and therefore carrier transport is just in the two-dimensional plane parallel to the oxide [47].
For increasing lateral fields the carriers can go beyond the last occupied subband and become a
three-dimensional carrier gas. This can be explained as follows:

Assuming a triangular potential, which is an analytical approximation for the inversion layer,
the wavefunctions are the well known Airy functions, whereas the energy eigenvalues can be
expressed as [48]

Ei = c



i − 1

4

�2/3

, (2.12)
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Figure 2.2: Quantum confinement in a MOSFET structure

with c as a constant and i is the number of the ith subband. The difference between the ith
and the (i − 1)th subband can be written as

Ei − Ei−1 = c

�

i − 1

4

�2/3

−



(i − 1) − 1

4

�2/3
�

. (2.13)

This difference as a function of the number of subbands is visualized in Fig. 2.3. For increasing
number of subbands the energy gap decreases. Furthermore for an infinite number of energy
eigenvalues this gap converges to zero. Thus, the subband system is transformed into a bulk
system for an infinite number of subbands.

In order to correctly describe energy eigenvalues and wavefunctions in a device, the Schrödinger

equation has to be solved self-consistently with Poisson’s equation [2, 49]. The starting point
for solving the system is a potential distribution, which leads to charge neutrality. Inserting
the potential into the Schrödinger equation, one obtains the initial energy eigenvalues El and
wavefunctions φ(r) for the quantum mechanical carrier concentration defined as

n (Ec(r), Ef) = Ngv

�
l

1

1 + exp
�
El−Ef

kBTn

� |φ(r)|2 .

Here, Ngv denotes the effective density of states

Ngv = 2gv , (2.14)

with gv as the degeneracy of the system.

The next step is a recalculation of the potential by Poisson’s equation followed by new wave-
functions and energy eigenvalues. These steps are performed in a loop until the update is below

7
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Figure 2.3: For increasing subbands the difference between the energy eigenvalues de-
creases and converge to zero for an infinite number of energy-eigenstates.
In this limit the subband system becomes a bulk system.
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a certain limit, thus convergency is reached. Results from a Schrödinger-Poisson solver are
presented in Fig. 2.4 [50].

Here, the first energy subband together with two wavefunctions for different gate voltages as
a function of the channel thickness are highlighted. Due to the shift of the wavefunctions to
the oxide for high gate voltages, the carriers are strongly localized. Therefore, the impact of
interface effects as surface roughness scattering for high gate voltages is very strong.

2.1.3 Boltzmann’s Transport Equation

The basic equation of macroscopic transport description, the BTE, is derived using fundamental
principles of statistical mechanics. The first part concerns the discussion of the solution of the
BTE, whereas the second part is devoted to its derivation.

2.1.3.1 The Distribution Function

The carrier distribution function f(r,k, t) is the solution of the BTE [1]. f(r,k, t) is the proba-
bility of the number of particles having approximately the momentum �k near the position r in
phase space and time t. Taking Pauli’s exclusion principle into account, the thermal equilibrium
distribution function is the Fermi–Dirac function (equilibrium solution of the BTE)

f (E) = C
1

exp
�
E−Ef

kBTn

�
+ 1

, (2.15)

with C as a normalization factor, whereas Ef is the Fermi energy. Fig. 2.5 shows the Fermi–Dirac

function for 0K, 300K, and 500K. For 0K, the Fermi–Dirac function can be written as a step
function θ (Ef − E). Hence, all states are fully occupied below Ef . For increasing temperatures,
states above Ef can be occupied, which results in a smoother transition. The energy range of
the transition region is kBT (see Fig. 2.5). If the relation

kBT ≪ (E − Ef) (2.16)

is fulfilled, the Fermi–Dirac distribution function can be approximated by the Maxwell distri-
bution function

f (E) = C exp



−E − Ef

kBT

�
. (2.17)

The Maxwell distribution function neglects Pauli’s exclusion principle. Therefore, the validity
is limited to lowly doped, non-degenerate semiconductors.

2.1.3.2 Diffusion Approximation

An important approximation used in the derivation of macroscopic transport models (see Sec-
tion 2.4.3) is the diffusion approximation, which will be discussed here.

Every distribution function can be split into a symmetric fs and an anti-symmetric fa part as

f = fs + fa . (2.18)
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Figure 2.5: Fermi–Dirac distribution function for 0K, 300 K, 500 K, and the limit
kBT ≪ E − Ef is demonstrated. In this limit, the Fermi–Dirac function
can be approximated by a Maxwell distribution function.

Within the diffusion approximation it is assumed that the displacement of the distribution
function is small, which means that fa is much smaller than fs [51]. One of the consequences
of this approximation is that only the diagonal elements of the average tensorial product of for
instance the momentum

�
2�k ⊗ k� = n

∞���
−∞

k ⊗ kfs dkx dky dkz , (2.19)

contribute, while the off diagonal elements can be neglected, due to symmetry reasons. The aver-
age operation used in equation (2.19) is the normalized statistical average and will be described
in Section 2.4.3.

In general, the average energy of the carriers can be decomposed into

�E� = �E�kin + �E�therm , (2.20)

where �E�kin is the kinetic energy part and �E�therm is the thermal energy part of the aver-
age carrier energy. Within the diffusion approximation the kinetic part of equation (2.20) is
neglected.

2.1.3.3 Derivation of Boltzmann’s Transport Equation

The Boltzmann’s transport equation is derived from a fundamental principle of classical statis-
tical mechanics, the Liouville theorem [52, 53]. The proposition asserts that the many particle

10
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distribution function f(r1, ...rn, k1..., kn, t) along phase-space trajectories Γi is constant for all
times t [54]. With the total derivation of the many particle distribution function, the Liouville

theorem can be expressed as

df

dt
= ∂tf +

n�
i=1



dri

dt
∂ri

f +
dki

dt
∂ki

f

�
= 0 . (2.21)

Due to the Hamilton equations

dr

dt
= ∇pH and

dp

dt
= −∇rH , (2.22)

and the Poisson bracket defined as

{r, k} =

s�
i=1

(∂ri
r∂ki

H− ∂ki
r∂ri

H) , (2.23)

the Liouville equation (2.21) can be written in a very compact form as

∂tf + {f,H} = 0 . (2.24)

Equation (2.24) has to be solved in the R
2dM ×R space, where M is the number of particles and

d is a dimension factor. The initial condition is defined as

f (r, k, 0) = f (r0, k0) , (r, k) ∈ R
2dM . (2.25)

M is naturally very large and therefore the solution of (2.24) is very expensive.

To derive a lower-dimensional equation, Vlasov introduced a single particle Liouville equation
with a force Feff [55]

∂tf(r,k, t) + ∇pH∇rf(r,k, t) + Feff∇pf(r,k, t) = 0 . (2.26)

Many-particle physics is taken into account in Vlasov ’s equation through the force Feff and
the assumption that the probability to occupy a state along phase trajectories is constant.
The force can be split into an external and a long-range interaction force. However, the main
disadvantage of Vlasov ’s equation is that it does not provide a description of strong short-range
forces such as scattering of particles with other particles or with the crystal. So, an extended
Vlasov equation must be formulated to treat these important transport effects. Introducing the
scattering operator Qcoll (f), the balance equation for the distribution function must fulfill the
conservation equation

df(r,k, t)

dt
= Qcoll (f ) . (2.27)

Hence, scattering allows particles to jump from one trajectory to another (see Fig. 2.6). With
the full derivative of the distribution function and equation (2.22), the Boltzmann’s transport
equation (2.27) can be finally expressed in the common form as

∂tf + ∇pH∇rf −∇rH∇pf = Qcoll (f) . (2.28)

11
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Figure 2.6: Scattering event from one trajectory to another in phase space. Scatter-
ing events, which are assumed to happen instantly, change the carrier’s
momentum, while the position is not affected (after [1]).

Equation (2.28) is a semi-classical equation containing Newton mechanics on the left side, and
the quantum mechanical scattering operator on the right side. Still, it remains to formulate an
expression for the scattering operator Qcoll. There exist many strategies for modeling the scat-
tering operator [4,16]. To develop solution strategies for the semi-classical differential equation,
it is important to discuss the underlying limitations and assumptions of the BTE:
• The original many particle problem is replaced by a one particle problem with an appropriate
potential. Due to the Hartree-Fock approximation [56], the contribution of the surrounding
electrons to this potential is approximated by a charge density. Furthermore, the short range
electron–electron interaction cannot be described. However, the potential of the surrounding
carriers is treated by the electric field self-consistently.
• The distribution function f(r,k, t) is a classical concept due to the negligence of Heisenberg ’s
uncertainty principle. The distribution function specifies both the position and the momentum
at the same time.
• Due to the uncertainty principle, the mean free path of the particles must be longer than the
mean De Broglie wavelength.
• Semi-classical treatment of carriers as particles obey Newton’s law.
• Collisions are assumed to be binary and to be instantaneous in time and local in space.
It is important to have these limitations in mind, while deriving transport models based on
the BTE. However, as has been reported in many publications [57–60], models based on the BTE
give good results in the scattering dominated regime. Thus, it is a good starting point for simpler
macroscopic transport models such as the drift-diffusion, the hydrodynamic, or even higher-order
models.

12
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2.2 Band Structure

The focus of this section is put on the band structure of bulk silicon and the occurrence of
subbands. Furthermore, results are presented, which show the influence of the band structure
on the transport properties.

2.2.1 Bulk

Carriers in a crystal are moving in a periodic potential energy Vperiodic(r). Due to this periodic
potential, the solution of the time-independent Schrödinger equation


− �
2

2m
∇2 + Vperiodic(r)

�
φ(r) = Eφ(r) , (2.29)

are the so called Bloch waves expressed as [61,62]

ψk (k, r) = uk (r) exp (ikr) . (2.30)

The boundary condition

uk (r + a) = uk (r) (2.31)

must hold, with a as the lattice constant. Inserting the Bloch waves (2.30) into equation (2.29)
the Schrödinger equation can be written as�

1

m



�

i
∇r + �k

�2

+ Vperiodic(r)

�
uk = E (k)uk . (2.32)

The so called k ·p method gives approximate solutions to (2.32) [63,64]. Several other methods
such as pseudo-potential calculations [65, 66], tight binding [67], Hartree-Fock [68], and den-
sity functional theory [69] have been proposed to calculate the full band structure within the
first Brillouin zone.

If the band structure is already given, E (k) can be expanded around the band edge minimum
into a Taylor series as

E (k) = E (0) + ∂kE (k) |k=0kl +
1

2
∂kl

∂km
(E (k)) |k=0 klkm . (2.33)

Here the Taylor series is truncated after the second derivative. The energy minimum is assumed
at k = 0 following that the term with the first derivative can be neglected. Thus the energy can
be expressed as

E (k) − E (0) =
1

2
∂kl

∂km
((E) (k)) klkm . (2.34)

With a comparison between equation (2.34) and the energy dispersion relation

E (k) =
� k2

2m
, (2.35)
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Figure 2.7: Energy ellipsoids of the first conduction band within the first Brillouin

zone of silicon (after [2]).

the inverse effective mass tensor can be written as

1

m∗
lm

=
1

�2
∂kl

∂km
E (k) . (2.36)

So electrons in a crystal can be assumed as free particles with a direction dependent mass. For
silicon, the effective mass yields [44]

1

m∗
lm

=




1
mx

0 0

0 1
my

0

0 0 1
mz


 . (2.37)

Furthermore, the effective mass of cubic semiconductors depends on the crystallographic orien-
tation of the applied field. With the so called longitudinal mass or heavy hole mass m∗

l and the
transversal mass or light hole mass m∗

t , the energy dispersion relation can be defined as

E (k) =
�

2

2



k2

l

m∗
l

+
k2

t

m∗
t

�
. (2.38)

Equation (2.38) is a band with ellipsoidal constant energy surfaces as depicted in Fig. 2.7. These
are the six valleys of the first conduction band of silicon.

Due to the truncation after the second-order derivative of the Taylor series, the effective mass
approximation is only valid for low fields. Thus, the assumption of parabolic bands is not valid
anymore for high fields. With the introduction of a non-parabolicity factor α, as proposed
by Kane [47, 70, 71], the parabolic dispersion relation (2.35) can be rewritten into a first order
correction

E (1 + αE) =
�

2

2



k2

l

m∗
l

+
k2

t

m∗
t

�
. (2.39)
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A direct consequence of the band structure is the density of states, which describes the energetical
density of electronic states per volume [1]

D(E) =
1

V

�
k
′

δ (E − E (k)) . (2.40)

In the parabolic band approximation the density of states for one, two, and three-dimensions
reads as

D1D(E) =
2m∗

π�

1√
2m∗E , D2D(E) =

m∗

π�2
, and D3D(E) =

m∗
√

2m∗E
π2�3

. (2.41)

For the non-parabolic dispersion relation (2.39) the density of states can be formed as

D1D(E) =
2m∗

π�

1√
2m∗E , D2D(E) =

m∗

π�2
(1 + 2αE) , and (2.42)

D3D(E) =
m∗

√
2m∗E

π2�3

�
(1 + αE) (1 + 2αE) . (2.43)

Note that in the two-dimensional case for non-parabolic bands the density of states is energy
dependent, whereas for a parabolic band structure the density of states is energy independent.
Equation (2.39) is valid up to energies of 1 eV [1]. Therefore, to model high-field transport, a
more sophisticated description has to be found. One possibility, which is used in this work, is
to calculate non-parabolic factors as a post processing step from Monte Carlo simulations. This
procedure will be explained in Section 2.4.3.

2.2.2 Subbands

In Section 2.1.2, an introduction of the Schrödinger–Poisson loop including inversion layer effects
has been given. In real devices within the crystallographic orientation [001], the valley, which has
its longitudinal mass perpendicular to the interface surface, gives rise to a ladder of subbands,
the so called unprimed valley, whereas the other valleys give rise to an other, higher lying
ladder in the primed and double primed valleys [72]. It has been pointed out in [47] that by
inserting the mass tensor (2.37) into the Schrödinger equation, the energy dispersion relation of
the orientation [001] can be described as

E (kx, ky) = Ei +
�

2

2



1

mx
k2

x +
1

my
k2

y

�
, (2.44)

with z as the quantization direction. Ei is the bottom energy of the ith subband. Equation (2.44)
represents constant energy-parabolas above Ei, the so called subband ladders. Inserting the
corresponding longitudinal mass or the transversal mass of the valley into equation (2.44), one
yields the subband ladders of the unprimed, primed, and double primed valleys, respectively.

Fig. 2.8 shows the subband ladders of the unprimed and primed valleys. Since the double primed
and the primed valleys have the same energy subband values, due to the identical quantization
mass, only the primed ladders are visualized. Due to the fact that the energy is inversely
proportional to the quantization mass the energies of the primed ladders are higher than the
ones from the unprimed ladders [73]. The quantization mass of the unprimed and primed
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Figure 2.8: Unprimed and primed subband ladders

valleys are m∗
l and m∗

t , respectively. The subband occupations within high fields have got a
strong influence on the carrier transport properties as demonstrated in Fig. 2.9 and Fig. 2.10

In Fig. 2.9, the subband occupation as a function of the driving field of an example device
is presented. Carriers gain kinetic energy, which results in a re-occupation of higher subband
ladders. Due to this re-occupation for high fields, the carrier wavefunctions are shifted within
the inversion layer, which inherently affects the overlap integral of the scattering operator.
Furthermore, the subband ladder reconfiguration leads to a variation of the spatial distribution
function of the electrons, which itself has an impact on the shape of the potential well that forms
the inversion channel.

The carrier velocity of the first and the second subband is displayed in Fig. 2.10. Due to different
conduction masses in transport direction of each valley as well as a strong occupation of the
primed valley in the high field regime (see Fig. 2.9), the total velocity is lower than in the
unprimed and double primed valley [50]. A detailed discussion about subbands is given in [47].

2.3 Quantum Transport

An introduction of the most common quantum transport models, namely the non-equilibrium
Green’s function method, the Wigner Monte Carlo technique, and quantum macroscopic models
is given, followed by a discussion of quantum correction models suitable for semi-classical models.

2.3.1 Non-Equilibrium Green’s Function Method

The non-equilibrium Green’s function (NEGF) is a very powerful technique to describe open
systems fully quantum mechanically.

This method has been extensively used in modeling nanoscale transistors and is an efficient
way of computing quantum effects in devices as subband quantization, tunneling, and quan-
tum reflections. It is exact in the ballistic regime. Recently scattering processes have been
included, which, however, requires considerable computational power. Furthermore NEGF al-
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lows to study the time evolution of a many-particle open quantum system. The many-particle
information about the system is set into self-energies, which are parts of the equations of motion
for the Green’s functions. Green’s functions can be calculated from perturbation theory [74].
The NEGF technique is a sophisticated method to determine the properties of a many-particle
system both in thermodynamic equilibrium as well as in non-equilibrium situations. In the
sequel, a description of the quantum transport method for the single particle model is given.
For open systems with a coupling to a reservoir, the Hamiltonian, which describes the quantum
system, can be expressed as [31,75]�

H σ

σ† HR

�
, (2.45)

with H and HR as the Hamilton operators of the contact and the channel respectively, and σ
denoting the coupling matrix. Hence, the Schrödinger equation of the channel–contact system
can be written as [76]

E
�

ψ

φ

�
=

�
H σ

σ† HR

��
ψ

φ

�
. (2.46)

Here, ψ and φ are the wavefunctions of the channel and the contact, respectively. The Green’s
function equation is defined as�

ÎE −H
�

G = Î (2.47)

and therefore the corresponding Green’s function to (2.46) can be expressed as [31]�
G GdR

GRd GRR

�
=

�
E Î −H −σ

−σ† E Î −HR

�−1

, (2.48)

where GdR and GRd describe the coupling between device and the reservoir, whereas GRR is the
Green’s function of the reservoir itself. The retarded Green’s function G can be written as

G =
�
E Î −H− Σ (E)

�−1

. (2.49)

Σ is the energy dependent self-energy and describes the interaction between the device and the
reservoir [77–79]. Thus, the advantage of the self-energy is that it reduces the Green’s function
of the reservoir to the dimension of the device Hamiltonian. The self-energy can be obtained as

Σ = σGσ† , (2.50)

and is usually determined iteratively. The spectral function A can be written as

A = i
�
G (E) − G† (E)

�
. (2.51)

A/2π is the matrix form of the density of states D(E). Finally, the density matrix can be
expressed as

ρ =
1

2π

∞�
0

f (E − Ef)A (E) dE , (2.52)
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which provides the charge distribution in the channel. f is the Fermi distribution function as
explained in Section 2.1.3.1 and Ef is the Fermi energy.
Assuming that the device is being connected to two contacts with different Fermi energies and
hence also different Fermi functions, the current in the ballistic regime can be obtained as [78]

I = −2q

h

∞�
0

T (E) dE(f (Ef1) − f (Ef2)) . (2.53)

T (E) is the transmission coefficient indicating the probability, that an electron with the energy E
can travel from the source to the drain and is defined as

T (E) = tr (Γ1A2) = tr (Γ2A1) (2.54)

with

Γ1,2 = i
�
Σ1,2 − Σ†

1,2

�
(2.55)

as the coupling of the channel to the reservoir.

2.3.2 Wigner Monte Carlo

The MC technique is a well established and accurate numerical method to solve the BTE. Due
to the similarities between the Wigner equation written as [80,81]

∂tfw −∇pH∇rfw − q (E −∇rVw(r))∇pfw = Qcoll (fw) (2.56)

and the BTE (see equation (2.28)), it is tempting to solve the Wigner equation with the MC
technique [33,82,83] as well. Vw(r) denotes an external Wigner potential. The Wigner function
fw can be derived from the density matrix expressed by the Liouville von Neumann equation
using the Wigner–Weyl transformation [84]. With the Fourier transformation of the product of
wavefunctions at two points [85], the Wigner function can be expressed as

fw(r,k, t) =
1

π3

∞�
−∞

ψ(r − r′, t) drψ∗(r + r′, t)e2ir′k . (2.57)

The Wigner function is a quantum mechanical description in phase-space, which is, however no
longer positive definite. Hence, it cannot be regarded as a distribution function directly, but
observables need to be derived from it. In the literature this is known as the negative–sign
problem [86,87].
An important feature of this so called phase–space approach is the ability of expressing quantum-
mechanical expectation values in the same way as it is done in classical statistical mechanics.
Furthermore, the Wigner equation can be used as a base for quantum macroscopic transport
models as the quantum drift-diffusion or the quantum hydrodynamic model using the method
of moments.
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2.3.3 Quantum Macroscopic Models

Quantum macroscopic models can be derived from a fluid dynamical view using the Madelung

transformation for the wave function ψ defined as [39]

ψ =
√

n exp



imS

�

�
, (2.58)

The Madelung transformation states that the wave function can be decomposed in its ampli-
tude

√
n and phase S, whereby the amplitude is defined as the square root of the particle density.

i is referred here to the complex number
√−1, whereas m denotes the carrier mass. Since the

electron density of a single state is defined as [39]

ni = |ψi|2 , (2.59)

and the density is by definition positive, the Madelung transformation makes only sense as long
as n > 0 is valid [53].

Quantum macroscopic models can be derived from the Wigner equation as well using the method
of moments. Since macroscopic transport models based on the BTE are derived using the
method of moments (see Section 2.4.1), only the derivation of quantum macroscopic models using
the Madelung transformation is pointed out here. Inserting equation (2.58) into equation (2.11),
the current density J can be written as

J = −qn∇rS . (2.60)

The phase S of equation (2.58) can be interpreted as a velocity potential. Inserting equa-
tion (2.58) into the Schrödinger equation (2.7) yields

i�∂t


√
n exp



imS

�

��
= − �

2

2m
∇2


√
n exp



imS

�

��
− qV (r)


√
n exp



imS

�

��
.

Dividing equation (2.61) with exp
	

imS
�

�
leads to
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√
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√
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�
∂tS

�
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∇2

√
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2im
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∇r

√
n∇rS − m2

�2

√
n (∇rS)2 (2.61)

+
im

�

√
n∇2S

�
− qV (r)

√
n .

With the imaginary part, one can obtain the particle conservation equation as

∂tn = −2
√

n∇r · 	√n∇rS
� − n∇2S = −∇r · (n∇rS) = −1

q
∇r · J , (2.62)

∂tn +
1

q
∇rJ = 0 . (2.63)

The real part yields

∂tS =
�

2

2m2

∇2
√

n√
n

− 1

2
(∇rS)2 +

q

m
V (r) . (2.64)
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With the gradient and a multiplication of (2.64) with −qn, one obtains the quantum conservation
equation of the current

∂tJ − 1

q
∇r



J ⊗ J

n

�
+

q2

m
n∇rV (r) +

�
2q

2m2
n∇r


∇2
√

n√
n

�
= 0 . (2.65)

Equations (2.63) and (2.65) are referred to as the quantum hydrodynamic equations [39]. With
“� → 0”, the quantum conservation equation (2.65) turns into the classical current conservation
equation. The advantage of this method is that in two or three space dimensions fluid-dynamical
models are numerical cheaper compared to the Schrödinger equation. Furthermore, boundary
conditions can be more easily applied compared to the Schrödinger formulation. However, the
dispersive character of the quantum hydrodynamic transport system implies that the solution
may develop high frequency oscillations, which are localized in regions not a priori known.
Therefore, the numerical simulations with quantum hydrodynamic models require an extremely
high number of grid points, which leads to unnecessarily time consuming computations [88].

2.3.4 Quantum Correction Models

Since transport parameters as for instance the carrier mobility of modern semiconductor devices
are strongly influenced by quantum mechanical effects, it is essential to take quantum correction
models within classical simulations into account. Several quantum correction models based on
different approaches have been proposed, which influence the electrostatics of the system.

The quantum correction model modified local density approximation (MLDA) [89] is based on
a local correction of the effective density of states Nc near the gate oxide as

Nc = Nc,0

�
1 − exp

�
− (z + z0)

2

χ2λ2
thermal

��
with λthermal =

�√
2mkBT

. (2.66)

Nc,0 is here the classical effective density of states with χ as a fitting parameter. z is the distance
from the interface, z0 is the tunneling distance, and λthermal denotes the thermal wavelength. The
correction term of equation (2.66) can be calculated from the quantum mechanical expression
of the particle density as stated in [90]. The advantage of the MLDA procedure is that no
solution variable is used in the correction term. Therefore, the model can be implemented as a
preprocessing step and has only a minor impact on the overall CPU time [91]. However, this
approach is based on the field-free Schrödinger equation. The method loses its validity for high-
fields. An improved MLDA technique has been suggested in [92, 93]. A heuristic wavelength
parameter has been introduced as

λ′
thermal(z,Neff , T ) = χ(z,Neff , T )λthermal(T ) , (2.67)

where Neff is defined as the net doping Neff = Na−Nd with χ(z,Neff , T ) as a fit factor. As pointed
out in [92], the improved MLDA can now cover the important case of high fields perpendicular
to the interface. The fit parameters have been matched with the results of a self-consistent
Schrödinger–Poisson solver. The model is calibrated for bulk MOSFET structures. However,
the MLDA method is only valid for devices with one oxide. Therefore, a characterization of
quantization in DG MOSFETs is not possible.
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A quantum correction technique to cover such devices is presented in [94]. The idea behind this
model is as follows: The strong quantization perpendicular to the interface can be well approx-
imated with an infinite square well potential. The eigenstates within the quantization region
are estimated using an analytical approach. This assumption allows to determine a quantum
correction potential which modifies the band edge to reproduce the quantum mechanical carrier
concentration.

In [95], the correction is carried out by a better modeling of the conduction band edge as

Ec = Eclass +
13

9
F(z) ΔEg with ΔEg ≈ β



κSi

4qkBT

�1/3

|E⊥|2/3 . (2.68)

Eclass is the classical band edge energy, the correction F is a function of the distance to the
interface, and E⊥ is the electric field perpendicular to the interface. The value of the pro-
portionality factor can be determined from the shift of the long–channel threshold voltage as
explained in [95].

Fig. 2.11 shows the electron concentration calculated for a single gate SOI MOSFET classically,
quantum mechanically, and with the quantum correction models MLDA, the model after [95],
and the improved modified local density approximation (IMLDA) [92]. A gate voltage of 1V has
been applied, and the quantum electron concentration has been calculated using a Schrödinger–
Poisson solver [2]. As can be observed, the electron concentration obtained from the IMLDA
model fit the quantum mechanical simulation quite well compared to the other approaches.
Therefore, the IMLDA model is used in this work to cover quantum effects in the classical
device simulations.

2.4 Semi-Classical Transport

The main focus of this work is set on macroscopic transport models based on the BTE. First, the
method to derive higher–order macroscopic models is described followed by a detailed derivation.
Since the models must be benchmarked to other solution techniques of the BTE [96,97], a short
introduction of the Monte Carlo method and the Spherical Harmonics Expansion approach is
presented.

2.4.1 Method of Moments

On an engineering level, a very efficient way to find approximate solutions of the BTE is the
method of moments. In order to formulate a set of balance and flux equations coupled with
Poisson’s equation, one has to multiply the BTE with a set of weight functions and integrate
over k-space.

An arbitrary number of equations can be derived, each containing information from the next-
higher equation. Hence, there exists more moments than equations. Therefore, one has to
truncate this equation hierarchy in order to get a fully defined equation-system. The assumption
to close the system and to express the highest moment with the lower moments is called closure
relation. The closure relation estimates the information of the higher-order moments and thus
determines the accuracy of the system. For instance, in the case of the drift-diffusion model,
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Figure 2.11: The electron concentration of a single gate SOI MOSFET has been
calculated classically, quantum-mechanically, together with the quan-
tum correction models MLDA, Van Dort, and the improved MLDA (af-
ter [3]).

the electrons are assumed to be in thermal equilibrium (Tn = TL) with the lattice [1]. There
exist several theoretical approaches to cover the closure problem [98], like the maximum entropy
principle [99–101] in the sense of extended thermodynamics.

The idea of the maximum entropy principle is that a large number of collisions is necessary to
relax the carrier energies to their equilibrium, while the momentum, heat flow, and anisotropic
stresses relax within a shorter time. Therefore, an intermediate state arises, where the fluid is
in its own thermal equilibrium. This can be called partial thermal equilibrium. All transport
parameters are zero except for the carrier temperature Tn. Another important assumption is
that the entropy density and the entropy flux do not depend on the relative velocity of the
electron gas. With the partial thermal equilibrium, closure relations can be found which are
exactly those obtained with a shifted Maxwellian. A heated Maxwellian is used here as a closure
for the hydrodynamic transport model and by the introduction of the kurtosis, the six moments
model will be closed. A detailed description is given in the sequel.

To get physically reasonable equations, the weight functions are chosen as the powers of increas-
ing orders of the momentum. The moments in one, two, and three dimensions, respectively, are
defined as

xjd(rd) =
2

(2π)d

∞�
−∞

Xjd(rd,kd)fd(rd,kd, t) ddk = n�Xjd(kd)� = ��Xjd(kd)�� . (2.69)

xj(r) denotes the macroscopic values together with the microscopic counterpart Xj(k), where
fd(rd,kd, t) is the time dependent distribution function in the six-dimensional phase space.
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d is linked to the one, two, and three-dimensional electron gas (d = 1, d = 2, or d = 3), whereas
n represents the carrier density.

For the sake of clarity, during the derivation of macroscopic transport models the dimension
indices are neglected. Multiplying the BTE with the even scalar-valued weights X = X(r,k)
and integrating over k-space�

X∂tf d3k +

�
Xv∇rf d3k +

�
XF∇pf d3k = ��∂tX��coll , (2.70)

yields the general conservation equations. In the following derivations, the distribution f(r,k, t),
the group velocity v(k, r), and the generalized force F (k, r) are denoted as f ,v, and F .

The first term on the left side of equation (2.70) leads to�
X∂tf d3k = ∂t

�
Xf d3k = ∂t��X�� , (2.71)

whereas the second term yields�
Xv∇rf d3k =

�
∇r (Xvf) d3k −

�
Xf∇rv d3k −

�
vf∇rX d3k (2.72)

and the third term�
XF∇pf d3k =

�
∇p (XF f) d3k −

�
X∇pF f d3k −

�
F∇pXf d3k . (2.73)

Using Gauss’theorem and assuming that all surface integrals over the border of the Brioullin–
Zone are equal to zero [102], the first term on the right side of equation (2.73) vanishes. Inserting
F = −∇rH and v = ∇pH with the Hamilton function H given as

H = ±Ec,v(r) + sαqϕ + E(k, r) = E(k, r) + sαqϕ̃(r) , (2.74)

with sα = −1 for electrons and sα = 1 for holes, into equation (2.72) and (2.73) respectively,
leads to the BTE expressed by the averages of the even scalar-valued moment

∂t��X�� + ∇r��vX�� − ��v∇rX�� − ��F∇pX�� = ��∂tX��coll . (2.75)

Finally, the equation reads

∂t��X�� + ∇r��vX�� − ��v∇rX�� + ��∇rE∇pX�� + sαq��∇pX��∇rϕ̃ = ��∂tX��coll . (2.76)

Furthermore, the BTE for the odd vector-valued moments can be transformed analogously

∂t��X�� + ∇r��v ⊗ X�� − ��v∇r ⊗ X�� + ��∇rE∇p ⊗ X�� + sαq��∇p ⊗ X��∇rϕ̃ (2.77)

= ��∂tX��coll .

Equations (2.76) and (2.77) are the starting points for the derivations of the conservation equa-
tions and fluxes of macroscopic transport models.
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2.4.2 Modeling of the Scattering Operator

In order to get an analytical expression for the right hand side of equations (2.76) and (2.77)
several approaches have been suggested in [16, 103]. In this work, the macroscopic relaxation
time approximation after Bløtekjær [104] is used to approximate the scattering operator of
the BTE

��∂tX��coll = −��X�� − ��X0��
τX (f)

. (2.78)

τX (f) is the macroscopic relaxation time for the weight function X. ��X0�� is the average weight
function in equilibrium. Since the relaxation time τX (f) depends on the distribution function,
equation (2.78) is not an approximation. With

τX �= τX (f) (2.79)

equation (2.78) turns into the macroscopic relaxation time approximation. Therefore, the relax-
ation times depends only on the moments of the distribution function. For the odd moments,
the approximation yields

��∂tX��coll ≈ −��X�� − ��X0��
τodd

= − x

τodd

, (2.80)

and for the even moments one obtains

��∂tX��coll ≈ −��X�� − ��X0��
τeven

= −x − x0

τeven
. (2.81)

The subscript odd and even is linked to whether the moment is even or odd.

2.4.3 Macroscopic Transport Models

A hierarchy of macroscopic transport models based on the equations (2.76) and (2.77) can be
derived using the method of moments described above [105]. The first three even scalar valued
moments are defined as the powers of the energy E(r,k)

Xeven =
	E0, E1, E2

�
, (2.82)

and the first three odd vector valued moments are defined as

Xodd =
	
pE0,pE1,pE2

�
. (2.83)

In order to obtain the particle balance equation and the current equation, one has to insert
the zeroth moment E0 and the first moment pE0 into equation (2.76) and (2.77), respectively.
While in the particle balance equation the particle current remains as an unknown variable,
the particle current equation comprises the average kinetic energy. With a heated Maxwellian

and the diffusion approximation the powers of the average energy assuming a parabolic band
structure can be expressed by the carrier temperature as

��E i��1D =
(2i − 1)!!

2i
(kBTn)i , ��E i��2D = i! (kBTn)i , and ��E i��3D =

(2i + 1)!!

2i
(kBTn)i (2.84)
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for the one, two, and three-dimensional electron gas, respectively. For instance, the average
energy (i = 1) for the 3D case can be written as

��E�� =
3

2
kBTn . (2.85)

The drift-diffusion model is closed by the assumption of local thermal equilibrium, thus the car-
rier temperatures are set to the lattice temperature. The energy balance equation is introduced
taking the second moment E into account, where the energy flux remains as an unknown term.
The third moment vE describes exactly this energy flux. The transport model considering these
first four moment equations is called the hydrodynamic transport model [4]. By considering
additional moments E2 and pE2, leads to the second-order temperature balance equation and to
the second-order temperature flux. The so called six moments model is closed by introducing
the kurtosis β describing the deviation of the current distribution function from the Maxwell

distribution function [106].

The assumptions made during the derivation of the transport model are specified as follow:

• Non-parabolic band structure

• Product ansatz for the kinetic energy

• Isotropic band structure

• Tensor valued parameters are approximated by their traces

• Macroscopic relaxation time approximation

• Diffusion approximation

• Homogeneous materials

Furthermore, the averages of the microscopic quantities are defined as wi = �E i� and Vi = �vE i�.
In the case of the six moments model, i is defined in the range i ∈ [0, 2]. A detailed derivation
and discussion of these models follows in the next section. An important objective here is to
point out the model limitations.

2.4.3.1 Drift-Diffusion Transport Model

Inserting the zeroth moment into equation (2.76) yields the particle balance equation

∂t��E0��� �� �
(1)

+∇r��vE0��� �� �
(2)

−��v∇rE0��� �� �
(3)

+ ��∇rE∇pE0��� �� �
(4)

+ sαq��∇pE0��∇pϕ̃� �� �
(5)

= −R . (2.86)

Since E0 depends neither on r or p, one can omit the third, the fourth, and the fifth term of
equation (2.86) to obtain

∂t (nw0) + ∇r (nV0) = −R . (2.87)
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Inserting the first moment pE0 into equation (2.77), the particle flux is obtained. The time
derivation terms of the fluxes are neglected, since the relaxation time is in the order of picosec-
onds, which ensures quasi-stationary behavior even for today’s fastest signals [20,107].

∇r��v ⊗ pE0��� �� �
(1)

−��v∇r ⊗ pE0��� �� �
(2)

+ ��∇rE∇p ⊗ pE0��� �� �
(3)

+ sαq��∇p ⊗ pE0��∇rϕ̃� �� �
(4)

= −��pE0��
τ0

,

(2.88)

where τ0 is the momentum relaxation time. Due to the assumption of an isotropic band structure
and in the diffusion limit, the non-diagonal elements of the tensors of equation (2.88) vanish.
Hence, the tensor of the first part (1) of equation (2.88) can be approximated as the trace divided
by the dimension factors of the system. Multiplying (1) with tensorial non-parabolicity factors
Hi, one obtains

∇r��v ⊗ pE0�� ≈ 1

d
∇r�� tr (v ⊗ p)̂I�� = AH1∇r(nw1) (2.89)

with A as a dimension factor. A can be calculated considering the dimension of the system
and the prefactors of the average energy assuming a parabolic bandstructure and a Maxwell

distribution function. For instance, in the case of the three-dimensional electron gas the value
of A can be derived as

��v ⊗ pE0�� ≈ 1

3
�� tr (v ⊗ p)̂I�� =

2

3
H1

3

2
nkBTn . (2.90)

A is equal to 2/3. The average energy has been considered according to equation (2.85). For
the one and two-dimensional electron gas the values are A1 = 2 and A2 = 1, respectively. In
the sequel, the non-parabolic factors will be shown using Subband Monte Carlo (SMC) data for
the two-dimensional electron gas. m∗

n,p represents the effective masses for electrons and holes
respectively.

Based on the second assumption that the kinetic energy can be expressed using a product ansatz

E = νκ(k) , (2.91)

term (2) and (3) of (2.88) vanish. The fourth term of (2.88) can be written as

sαq��∇p ⊗ p��∇rϕ̃ ≈ sαnqw0∇rϕ̃ . (2.92)

Putting all terms together, the particle flux equation yields

nV0 = −µ0

q
H1A∇r (nw1) − sαnµ0w0∇rϕ̃ . (2.93)

There, the carrier mobility µ0 is defined as µ0 = qτ0/m
∗
n,p.

Together with Poisson’s equation, the drift-diffusion (DD) model can be formulated as

∂t (nw0) + ∇r (nV0) = −R , (2.94)

nV0 = −µ0

q
H1A∇r (nw1) − sαnµ0w0∇rϕ̃ . (2.95)
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As the closure relation, the local thermal equilibrium approximation has been assumed. The
local thermal equilibrium approximation sets the carrier temperatures Tn equal to the lattice
temperature TL. Furthermore, with the assumption of a cold Maxwell distribution function, the
highest moment w1 can be expressed as

w1D
1 =

1

2
kBTL, w2D

1 = kBTL, and w3D
1 =

3

2
kBTL . (2.96)

Due to the diffusion approximation the drift term of the average carrier energy is neglected.

2.4.3.2 Energy Transport Model

The Energy Transport (ET) model can be derived by inserting the first four moments E i and
pE i with i ∈ [0, 1] into equation (2.76) and (2.77), respectively. The energy balance equation
can be obtained by the second moment E

∂t��E�� + ∇r��vE�� − ��v∇rE�� + ��∇rE∇pE�� + sαq��∇pE��∇rϕ̃ = −n
��E�� − ��E0��

τ1
. (2.97)

After a reformulation, equation (2.97) yields

∂t (nw1) + ∇r (nV1) + sαqnV0∇rϕ̃ + n
w1 − w10

τ1
= 0 . (2.98)

w10 is the equilibrium case of w1, whereas V1 is the energy flux, the next higher moment. τ1 is
known as the energy relaxation time. The energy flux can be derived inserting the third moment
vE into equation (2.77)

∇r��v ⊗ pE��� �� �
(1)

−��v∇r ⊗ pE��� �� �
(2)

+ ��∇rE∇p ⊗ pE��� �� �
(3)

+ sαq��∇p ⊗ pE��∇rϕ̃� �� �
(4)

= −��pE��
τ3

. (2.99)

The first term on the left side of equation (2.99) can be expressed as

∇r��v ⊗ pE�� ≈ 1

d
∇r�� tr (v ⊗ vE )̂I�� = AH2∇r (nw2) . (2.100)

Using the tensorial identity ∇x ⊗ xh (x) = h (x)∇x ⊗ x + x ⊗∇xh (x), the second term can be
rewritten as

��v∇r ⊗ pE�� = ��v (E∇r ⊗ p + p ⊗∇rE)�� , (2.101)

and the third term as

��∇rE∇p ⊗ pE�� = ��∇rE (E∇p ⊗ p + p ⊗∇pE)�� ≈ ��E∇rE + ∇rE (p ⊗ v)�� . (2.102)

Combining equations (2.101) with (2.102) cancels each other. The fourth term on the left side
of (2.99) can be approximated again with the above tensorial identity used in (2.100) as

sαq�∇p ⊗ pE�∇rϕ̃ = sαq��E∇p ⊗ p + p ⊗∇pE��∇ϕ̃ (2.103)

= sαqnw1 (1 + AH1)∇ϕ̃ . (2.104)
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Collecting all terms together yields the energy flux

nV1 = −µ1

q
H2A∇r (nw2) − sαnµ1 (1 + AH1) w1∇rϕ̃ . (2.105)

The energy flux mobility µ1 is defined as µ1 = qτ3/m
∗
n,p. Summarizing the derivation of the

energy balance and the energy flux equation the ET transport model yields

∂t (nw0) + ∇r (nV0) = −R , (2.106)

nV0 = −µ0

q
H1A∇r (nw1) − sαnµ0w0∇rϕ̃ , (2.107)

∂t (nw1) + ∇r (nV1) + sαqnV0∇rϕ̃ + n
w1 − w10

τ1
= 0 , (2.108)

nV1 = −µ1

q
H2A∇r (nw2) − sαnµ1 (1 + AH1) w1∇rϕ̃ . (2.109)

In order to close the system, a heated Maxwellian is assumed. The highest moment w2 for the
one, two, and three-dimensional electron gas, respectively, can be written as

w1D
2 =

3

4
(kBTn)2 , w2D

2 = 2 (kBTn)2 , and w3D
2 =

15

4
(kBTn)2 . (2.110)

Note that due to the diffusion approximation convective terms of the form �k�⊗�k� and �k� ·�k�
are neglected against terms of the form �k ⊗ k� and �k · k�. The consequence is that only
the thermal energy kBTn is considered, whereas the drift energy term of the carrier energy is
neglected.

2.4.3.3 Six Moments Transport Model

Adding the two next higher moments to the hydrodynamic transport model, the six moments
(SM) transport model can be derived. Using the fourth moment E2 in equation (2.76), the
second-order energy balance equation is expressed as

∂t��E2�� + ∇r��vE2�� − ��v∇rE2�� + ��∇rE∇pE2�� + sαq��∇pE2��∇rϕ̃ = −n
��E2�� − ��E2

0 ��
τ2

.

(2.111)

With ∇rE2 = 2E∇rE , the second-order energy balance equation can be formulated as

∂t (nw2) + ∇r (nV2) − 2sαqV1∇rϕ̃ + n
w2 − w20

τ2
= 0 . (2.112)

The second-order energy flux equation can be obtained inserting the sixth moment vE2 into
equation (2.77)

∇r��v ⊗ pE2��� �� �
(1)

−��v∇r ⊗ pE2��� �� �
(2)

+ ��∇rE∇p ⊗ pE2��� �� �
(3)

+ sαq�∇p ⊗ pE2�∇rϕ̃� �� �
(4)

= −pE2

τ4

. (2.113)

29



CHAPTER 2. TRANSPORT MODELING 2.4. Semi-Classical Transport

Each term on the left hand side of equation (2.113) is derived as in the case of the energy flux
equation. The first term yields

∇r��v ⊗ pE2�� ≈ 1

d
∇r�� tr

	
v ⊗ pE2

�
Î�� = AH3∇r (nw3) , (2.114)

while the second and the third term together can be neglected. The fourth term on the left-hand
side of equation (2.113) yields

sαq��∇p ⊗ vE2�� ≈ (1 + 2AH2) nw2∇rϕ̃ . (2.115)

Summarizing all contributions, the second-order energy flux can be written as

nV2 = −µ2

q
H3A∇r (nw3) − sαnµ2 (1 + 2AH2)w2∇ϕ̃ . (2.116)

The second-order energy flux mobility is defined as qτ4/m
∗
n,p. The SM transport model can be

now written as

∂t (nw0) + ∇r (nV0) = −R , (2.117)

nV0 = −µ0

q
H1A∇r (nw1) − sαnµ0w0∇rϕ̃ , (2.118)

∂t (nw1) + ∇r (nV1) + sαqnV0∇rϕ̃ + n
w1 − w10

τ1
= 0 , (2.119)

nV1 = −µ1

q
H2A∇r (nw2) − sαnµ1 (1 + AH1) w1∇rϕ̃ , (2.120)

∂t (nw2) + ∇r (nV2) + 2sαqV1∇rϕ̃ + n
w2 − w20

τ2
= 0 , (2.121)

nV2 = −µ2

q
H3A∇r (nw3) − sαnµ2 (1 + 2AH2)w2∇ϕ̃ . (2.122)

In order to close the six moments model, the kurtosis, which is the deviation of the current
distribution function from a heated Maxwellian, is introduced. For the one, two, and three-
dimensional electron gas the kurtosis is defined as

β1D =
1

3

w2

w2
1

, β2D =
1

2

w2

w2
1

, and β3D =
3

5

w2

w2
1

. (2.123)

The factors 1/3, 1/2, and 3/5 in the 1D, 2D, and 3D case are normalization factors, respectively.
For parabolic bands and a heated Maxwellian the kurtosis equals unity. In realistic devices the
kurtosis is in the range [0.75, 3], which indicates a strong deviation from a heated Maxwellian.
This is visualized in Fig. 2.12.

Here, the kurtosis of an n+nn+ structure calculated with the 3D MC approach is shown. A
driving field of 100 kV/cm in the middle of the channel has been applied. The kurtosis is

30



CHAPTER 2. TRANSPORT MODELING 2.4. Semi-Classical Transport

0 100 200 300 400 500
x [nm]

0

1

2

3

4

K
ur

to
si

s 
β

Eabs
A = 100kV/cm

Point A

Figure 2.12: Kurtosis for a 100 nm n+nn+ structure calculated with the MC method.
In the channel the kurtosis is lower than one, which means that the
heated Maxwellian overestimates the carrier distribution function, while
the Maxwellian underestimates the carrier distribution in the drain.

equal to unity at the beginning of the device, which means that a heated Maxwellian is a good
approximation for the carrier distribution function. In the channel the kurtosis is below unity.
Therefore, the Maxwellian overestimates the carrier distribution function. In the drain region
the carrier distribution function overestimates the Maxwellian. A detailed discussion about this
deviation of the carrier distribution function from a Maxwellian is given in the next chapter.
The closure relation for the six moments model can be finally written as

w1D
3 =

15

8
(kBTn)3 βc, w2D

3 = 6 (kBTn)3 βc, and w3D
3 =

105

8
(kBTn)3 βc . (2.124)

c is a fit factor and it has been previously demonstrated [108, 109] that a value of 2.7 delivers
good results for w3 in the source and in the channel regions. This is visible in the left part
of Fig. 2.13. Here, the ratio between the sixth moment calculated with MC simulation and the
analytical equations (2.124) for different c in a n+nn+ structure is shown. As can be observed,
a value of 2.7 provides the best result in the source and in the channel region, while the value 3.0
of c gives better results at the beginning of the drain region. Due to the better modeling of w3

with 2.7 in the source and in the channel region compared to c = 3.0, 2.7 is the exponent of
choice.

On the right side of Fig. 2.13 the maximum peak of the ratio in point B (see the left part
of Fig. 2.13) is shown as a function of the lattice temperature TL. The maximum peak decreases,
which means that the closure relation of the six moments model with c = 2.7 is improved,
especially in the drain region. The origin of this improvement for increasing TL is a decrease of
the high energy tail of the distribution function as pointed out in Fig. 2.14.
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Figure 2.13: Ratio between the sixth moment obtained from three-dimensional
bulk MC simulation and the analytical closure relation (2.124) of the six
moments model for different values of c (see left part). The maximum
peak at point B of the ratio as a function of the lattice temperature is
shown on the right.
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Figure 2.14: Distribution function at point B for lattice temperatures of 200 K, 300 K,
and 400 K. The high energy tail of the carrier distribution function
decreases for high lattice temperatures.

The ratio between the sixth moment and the 2D analytical expression from equation (2.124) as
a function of the lower order moments from subband MC simulations through a SOI MOSFET
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Figure 2.15: The ratio of the six moments model obtained from two-dimensional Sub-

band Monte Carlo data with the analytical 2D closure relation of the
six moments model for different c is presented. As can be observed is
for the 2D case as well the best value.

with a channel length of 100 nm has been calculated in Fig. 2.15. As demonstrated in the 2D
system the value 2.7 provides as well the best result.

All three non-parabolic factors are visualized in Fig. 2.16 using Subband Monte Carlo data.
For low energies, the parabolic band approximation is valid, whereas for high-fields the non-
parabolicity of the band structure must be taken into account. Finally, the derived macroscopic
transport models can be generalized into one balance equation

∂t (nwi) + ∇r (nVi) + isαqnVi−∇rϕ̃ + n
wi − wi0

τi
= 0 , (2.125)

and one flux equation

nVi = −nµiHi+1A∇r (nwi+1) − sαnµi (1 + iAHi) wi∇rϕ̃ . (2.126)

For instance, in the case of the six moments model the index i is valid in the range i ∈ [0, 2]
due to the incorporation of each three conservation and flux equations.

2.4.3.4 Transport Parameter Modeling

It is challenging to model transport parameters as the mobilities µ0, µ1, µ2, and the relaxation
times τ1 and τ2, since they all depend on the actual shape of the distribution function, on the
scattering rates, and on the band structure. They therefore contain information on hot-carriers
and non-parabolicity effects. Theoretical models for a characterization of these parameters
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Figure 2.16: H1,H2, andH3 as functions of the energy with an effective field
of 950 kV/cm. For low energies, the non-parabolicity factors approach
unity. The non-parabolicity factors have been calculated out of Sub-

band Monte Carlo simulations.

are often very complicated and simplified results are unsatisfying. For engineering purposes
empirical models are often a better choice. A common assumption is that the effective carrier
mobility is written as

µLISF
0 = µLISF

0

	
µLIS

0

	
µLI

0

	
µL

0

���
, (2.127)

with µLISF
0 as the mobility influenced by lattice scattering (index L), ionized impurity scattering

(index I), surface scattering (index S), and carrier heating (index F). A very simple model to
describe µL

0 is a power law ansatz. Empirical models for the characterization of the impact of
ionized impurity and surface scattering on µ0 can be found in [110] and [111], respectively.

The carrier mobility in the empirical mobility models are characterized by the electric field. But
the mobilities depend on the distribution function and hence on the carrier energy rather than
on the electric field as (for a parabolic band structure)

µ0 =
qτ0 (f)

m∗
≈ qτ0 (w)

m∗
, (2.128)

µ1 =
qτ3 (f)

m∗
≈ qτ3 (w)

m∗
, (2.129)

µ2 =
qτ5 (f)

m∗
≈ qτ5 (w)

m∗
. (2.130)
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However, these simple empirical transport models did not deliver satisfactory results especially in
the high field regime. Furthermore, a consistent comparison with other methods as for instance
Monte Carlo simulations is difficult, because the transport model does not reproduce the Monte
Carlo results in the homogeneous case [21].

In [112] a transport parameter model based on homogeneous fullband Monte Carlo tables has
been introduced. Here, all higher-order transport parameters are extracted for different doping
concentrations and for different driving forces. The transport parameters are then considered
in the macroscopic transport models as a function of the average energy. Since all transport
parameters are obtained from Monte Carlo simulations the transport models are free of fit
parameters. Macroscopic models based on Monte Carlo data improves its counterpart models
based on empirical models significantly, both in terms of numerical stability and in the agreement
with Monte Carlo device simulations, as will be demonstrated in the next chapter.

2.4.4 Monte Carlo Method

The Monte Carlo MC method is a statistical approach to solve the BTE equation [113–117].
The procedure does not aim at solving differential equations as described above, but to observe
the trajectories of carriers as they move through a device under the influence of a driving field
and scattering forces [1]. The method is illustrated in Fig. 2.17. The momentum of a particle is
set as an initial condition. Pseudo-random numbers define the time of free flight of the particles
as well as the scattering events. The simulation converges, when the statistical error of the
quantities is under a certain limit. During convergence transport parameters like the carrier
mobility or higher-order transport parameters can be extracted.

An advantage of this approach is that all kind of scattering mechanisms including for instance
optical, acoustical phonon scattering and a general band structure can be modeled very precisely.
Thus, the method is often used as a benchmark for computationally less expensive transport
models. The disadvantage of this statistical approach is that the error bound of a quantity goes
with 1/

√
N , with N describing the number of random events. Therefore, with the increased

accuracy of the factor χ, the number of scattering events increases with χ2 [118]. The conse-
quence is that the simulation time increases as well. Therefore, for engineering applications,
macroscopic transport models based on the method of moments, which are computationally
much less expensive, are more suitable than the MC technique.

2.4.4.1 Free Flight - Self Scattering

As displayed in Fig. 2.17, the free flight is an important part of the MC simulation. The
coordinates of a moving particle in phase space with an applied electric field in x can be written
as

px (t) = px (0) − qExt ,

py (t) = py(0) , (2.131)

pz (t) = pz(0) ,

x (t) = x (0) − E (t) − E (0)

qEx
,
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Figure 2.17: Flowchart of a MC Simulation (after [1])

y (t) = y(0) +
py

m∗
n,p

t , (2.132)

z (t) = z(0) +
pz

m∗
n,p

t .

E denotes the conduction band edge, whereas m∗
n,p is the effective mass of the electrons and

holes, respectively. The scattering rates Γ of the carriers are indirectly proportional to the
duration of the free flight [22]

Γ (E) =
k�

i=1

1

τi (p)
. (2.133)

The sum includes all scattering mechanisms k, where the summation of τi denotes the free flight.
The probability of the carrier movement not being affected by the first collision between t and
t + dt is the scattering rate times the probability that it survives until the time t [119]. For a
random number generator that produces uniformly distributed numbers between u ∈ [0, 1], the
collision times can be expressed as [120]

tcoll = − 1

Γconst

ln (1 − u) . (2.134)

Γconst denotes a constant scattering rate and u are random numbers. Equation (2.134) is a very
simple description of the free flight. In real semiconductor devices the scattering rates are energy
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dependent. Hence, equation (2.134) must be rewritten to acknowledge this fact. This can be
done by introducing the so called self–scattering Γself (E). The Γself is defined as

Γself (E) = Γ0 − Γ (E) . (2.135)

Note that Γself is energy dependent. Finally, the total scattering rate (Γself (E) + Γ (E)) remains
constant, so the simple equation (2.134) can be applied. It is important that the self–scattering

does not influence the trajectories. Hence, the carriers momentum of a self–scattering event
must be unchanged.

2.4.4.2 Scattering Events

Equations (2.131) and (2.132) determine the free flight of the carriers in an electric field. The
Monte Carlo method defines the correct scattering events as follows: After the free flight a new
scattering event can be obtained in the range

ΓTotal
before ≤ u < ΓTotal . (2.136)

Γbefore characterizes the total scattering rate according to equation (2.133) divided by the self–

scattering rate before the scattering event. ΓTotal is defined via (2.133) divided by the self–

scattering rate, whereas u is a uniform random number between 0 and 1. The relaxation times
can be calculated via Fermi’s golden rule [1]

S(p,p
′

) =
2π

�
|H

p
′
p
|2δ

�
E(p

′

) − E (p) − ΔE
�

, (2.137)

1

τ (p0)
=

�
p
′
↑

S(p0,p
′

)
�
1 − f(p

′

)
�

. (2.138)

(2.138) is the rate at which carriers with a specific momentum p0 and spin up scatter to any
other state. In the sequel, the scattering at the interface based on (2.137) and (2.138) will be
discussed, which is an important inversion layer effect.

As pointed out in [22], the scattering events calculated with the random procedure explained
above are in very good agreement with the experiment.

2.4.4.3 Fundamental Statistics

The Monte Carlo method allows to evaluate averages of microscopic quantities as defined in
equation (2.69). Assuming an ensemble of N independent and identical particles, the estimation
of an expected value based on an ensemble average can be expressed as [112,121]

�x� =
1

N

N�
j=1

wjX (γj (t)) , (2.139)

where �x� is the macroscopic quantity and X is the corresponding microscopic counterpart. w
is the statistical weight and γj denotes the state of the jth carrier. The weight w is defined as

0 ≤ wj ≤ N and

N�
j=1

wj = N . (2.140)

37



CHAPTER 2. TRANSPORT MODELING 2.4. Semi-Classical Transport

The Monte Carlo simulator used in this work, the so called before–scattering method is used [122].
Here, the averages are calculated at the end of the free flight. Hence, equation (2.139) is used
right before the next scattering event. The relaxation times in a Monte Carlo simulator can be
obtained as [123]

τi = −n
�E i� − �E i

0�� E iQcoll (f) d3k
. (2.141)

E0 is the equilibrium energy. Only E0 depends on the band structure. For the energy relaxation
times, the equilibrium energy E0 is defined as [123]

�E0� =

�3
i=1 Zim

3

2

i e
−

Ei

kBTn (Eip0(Tn) + AkBTnp1(Tn))�3
i=1 Zim

3

2

i e
−

Ei

kBTn p0(Tn)

. (2.142)

A is a dimension factor, whereas p0(Tn) and p1(Tn) are polynomials considering the non-
parabolicity of the band structure [123]. The summation index i runs over all valleys in the
material. In the case of silicon the index is in the range of 1 to 3. In a single valley, the
equilibrium energy for three-dimensions can be calculated as

�E0� =
3

2
kBTn

p0(Tn)

p1(Tn)
(2.143)

The mobilities for the six moments model can be obtained from the homogeneous macroscopic
transport model as

µd
0 =

V0

E
, µd

1 =
V1

Ew1 (1 + AH1)
, and µd

2 =
V2

Ew2 (1 + 2AH2)
. (2.144)

E is the electric field, the index d denotes the dimension of the electron gas, and in the numerators
of equation (2.144), there are the odd moments of the BTE as explained in the previous section.
Hence, the mobilities can be calculated as a post-processing step.

2.4.5 Spherical Harmonics Expansion

The Spherical Harmonics Expansion (SHE) procedure is a numerical method for solving the BTE.
It gives approximate deterministic solutions of the BTE by an expansion of the distribution
function f(r,k, t) in the k-space into spherical harmonic functions Ylm(θ, φ) [124]. As will be
demonstrated the SHE procedure reproduces the results obtained from MC quite well with less
computational effort.

Spherical harmonic functions are defined as [125,126]

Ylm(θ, φ) =

�
2l + 1

4π

(l − m) !

(l + m) !
Pm

l (cos(θ))eimφ , (2.145)

with Pm
l (cos(θ)) as the associated Legendre polynomial. The indices l and m are defined in

the range l ∈ {0,∞} and m ∈ {−l, l} respectively. Furthermore, the spherical harmonics are
orthogonal,

π�
0

2π�
0

dΩ Ylm(θ, φ)Y ∗
l′m′ (θ, φ) = δl′ l δm′m , (2.146)
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normalized and complex valued [127]. The second term with the primed indices of (2.146) is the
conjugate complex term of Ylm(θ, φ), whereas dΩ is defined as dΩ = sin θ dθdφ.

For instance the spherical harmonic functions Y00, Y10, Y11, and Y20 can be expressed as

Y00 =

�
1

4π
, Y10 = −

�
3

8π
sin(θ)eimφ, Y11 =

�
3

4π
cos(θ) , and Y20 =

�
5

16π

	
3cos2(θ) − 1

�
.

(2.147)

Y00 is a sphere, while Y10 and Y11 are visualized in Fig. 2.18.
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Figure 2.18: Y10 and Y11 in polar coordinates

Note that for rotational symmetry in the φ direction, the spherical harmonic function is reduced
to the associated Legendre polynomials.

The distribution function can be now expanded as

f(r, k) =

∞�
l=0

l�
m=−l

flm(r, k)Ylm(θ, φ) . (2.148)

The coefficients flm(r, k) are given by

flm(r, k) =

π�
0

2π�
0

dΩ f (θ, φ)Y ∗
l′m′ (θ, φ) . (2.149)

The fluxes for a three-dimensional electron gas as defined in (2.83) can be now expressed as

nVi =

∞�
l=0

l�
m=−l

π�
0

2π�
0

dΩ vE i flm (θ, φ) Ylm(θ, φ) . (2.150)

The next step is to apply the SHE method to the stationary BTE. For the sake of clarity, the
transport direction of the carriers is assumed just along the z coordinate and a parabolic band
structure is taken into account. Hence, the expansion (2.149) reduces to

f(z, k) =

N�
l=0

fl(z, k)Pl(cos(θ)) , (2.151)
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where the angle θ is specified by the direction of the electric field and the Pl(cos(θ)) are the Leg-

endre polynomials. Before substituting the distribution function with spherical harmonics, a
variable transformation from k-space into E-space is performed. The transformation into the
E-space has many advantages, e.g. in equilibrium, the distribution function is isotropic on
equienergy surfaces [127]. Inserting the expansion (2.151) into the BTE, one can obtain the
BTE expressed by the SHE [128,129]. The first two lowest order expansions can be written as

l = 0 ⇒ ∂zf1 − qE (∂Ef1 + ΓBf1) =
1

v
(∂tf0)coll , (2.152)

l = 1 ⇒ ∂zf0 − 2∂zf2 − qE (∂Ef0 + 2∂Ef2 + 3ΓBf2) =
3

v
(∂tf1)coll . (2.153)

For N → ∞, the result is an exact solution of the BTE. In Fig. 2.20, a velocity profile of
an n+nn+ structure calculated with a MC simulation and with SHE simulations taking several
Legendre polynomials into account is shown. The result is different from the MC simulation
considering just one Legendre polynomial, whereas for at least 9 polynomials, both simulations
are in good agreement. Therefore, the SHE simulation is a good benchmark alternative to the
Monte Carlo technique considering enough polynomials.

The question may arise about the relation of the SHE to macroscopic models as e.g. the drift-
diffusion model. The answer to this question will be discussed in the following.

Assuming a homogeneous, stationary system with an applied electric field E, the macroscopic
relaxation time approximation on the right hand side of the BTE, parabolic bands, and the
diffusion approximation [51], the BTE can be written as

−qE∇pf = −f − f0

τ0
. (2.154)

To derive an expression for the anti-symmetric part of the distribution function fa, which is the
important part for systems within non-equilibrium conditions, the distribution function f can
be split into a symmetric part fs and fa. Due to the assumption of the diffusion approximation

fs ≫ fa , (2.155)

which states that the system is not very far away from equilibrium. The equation (2.154) can
now be used to derive an expression for the anti-symmetric part fa [1]

fa = qτ0E∇rf0 =
qτ0f0

kBTL
Ev =

qτ0�

kBTLm∗
f0|E||k|P1(cos(θ)) . (2.156)

Inserting equation (2.156) into (2.150) the drift term of the drift-diffusion model is obtained.

Hence, taking just the first Legendre polynomial of the SHE, in a homogeneous system within the
low–field regime, the results of the SHE are equal to the results from drift-diffusion simulations.

In Fig. 2.19, the low-field and the high-field mobility calculated with a SHE simulator and a
standard drift-diffusion model as a function of the doping concentration is shown. In the SHE
simulator, only the first Legendre polynomial has been taken into account. The results of the
two simulations show a very good agreement in the low-field regime, whereas the assumptions
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Figure 2.19: A comparison of the low and high-field mobility as a function of the dop-
ing in the bulk calculated with the SHE method and the drift-diffusion
model. In the SHE simulation, only the first Legendre polynomial has
been taken into account.
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simulation and with a SHE simulator taking 1, 5, 9, and 15 Legendre

polynomials (LP) into account.
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stated above are not valid anymore for high-fields. The situation changes taking more than
one Legendre polynomial into account.

As demonstrated in Fig. 2.20, the SHE method is in very good agreement with MC simulations
when at least 9 Legendre polynomials are considered. Due to the good agreement with MC
simulations in short channel devices and to the shorter simulation time of the SHE method com-
pared to MC, the SHE method is used as a reference solution for the derived three-dimensional
higher-order macroscopic transport models in the next chapter.
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’Any sufficiently advanced technology is indistin-

guishable from magic.’

Arthur C. Clarke

Chapter 3

The Three-Dimensional Electron Gas

THIS CHAPTER investigates the validity of higher-order transport models on a series of
the most popular test devices, one dimensional n+nn+ structures. These topologies display

similar features as a MOSFET and bipolar transistors like a distinctive velocity overshoot and a
mixture of a hot and a cold distribution function in the drain region. Therefore, it is possible to
study the basic behavior of macroscopic transport models for very small devices within n+nn+

structures without the additional levels of complexity introduced by two-dimensional MOS de-
vices [21, 130]. In order to consider the high-field case as accurately as possible, a transport
model based on fullband MC tables is considered. The results of the MC based higher-order
transport models are benchmarked against the SHE and MC simulations.

3.1 Table Based Macroscopic Transport Models

For an accurate description of higher-order transport models, it is important to model higher-
order transport parameters with as few simplifying assumptions as possible [21, 131]. The full-
band bulk MC tables with respect to different doping concentrations and different driving fields
are used as a base for a parameter interpolation within macroscopic transport models [132].
Fullband structure of the material, scattering mechanisms such as phonon induced scattering
are now inherently considered in the MC tables, and in the following also in the transport
model. Hence, approximate methods for the transport parameter modeling e.g. the low field
mobility model after [110] are replaced by the MC table based model. Furthermore, the trans-
port parameters of three-dimensional simulations can be expressed as a function of the doping
concentration and the driving force. The extracted bulk parameter-set needed for higher-order
macroscopic transport models is displayed in Fig. 3.1 and Fig. 3.2. Here the carrier mobility µ0

and higher-order mobilities µ1 and µ2 as a function of the electric field Eabs for different doping
concentrations Nd are presented. As can be observed, for fields above 100 kV/cm the values of
the mobilities are independent of the doping concentration, while for low fields and low doping
concentrations, the carrier mobility is very high compared to low fields and high doping con-
centrations. The energy flux mobility and the second-order energy flux mobility are lower than
the carrier mobility for low doping concentrations and low fields, while for low fields and high
doping concentrations, the value of all three mobilities are comparable.
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Figure 3.1: Carrier mobility µ0, energy flux mobility µ1, and second-order energy
flux mobility µ2 versus driving field for different doping concentrations.
For fields higher than 100 kV/cm, the mobilities are independent of the
doping concentration, while for low fields the values of the mobilities of
the low doping case is high compared to high doping concentrations.

Fig. 3.2 presents the relaxation times τ1 and τ2 for different doping concentrations and as a
function of the kinetic energy of the carriers. As can be seen, for high energies the relaxation
times are doping independent and decrease due to the increase of optical phonon scattering. For
high Nd, the MC simulations predict low relaxation times compared to low Nd.

The carrier velocity as a function of the lateral field and for different Nd is demonstrated
in Fig. 3.3. The saturation velocity of Si is reached at a driving field of 150 kV/cm.
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0 100 200 300 400
Eabs [kV/cm]

0

0.2

0.4

0.6

0.8

1.0

v e [1
07  c

m
/s

]

Nd = 1014cm-3

Nd = 1016cm-3

Nd = 1018cm-3

Figure 3.3: Bulk velocity of electrons as a function of the driving field Eabs for a
doping of 1014 cm−3, 1016 cm−3, and 1018 cm−3. In the low field regime,
the electron velocity for high dopings is lower than the velocity of the
low dopings, while the value of the velocity converges for high fields.
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3.2 Device Studies

A study concerning the behavior of three-dimensional macroscopic transport models in long and
short n+nn+ test structures is given and compared to SHE and MC simulations. Short channel
effects as the velocity overshoot, impact ionization, and the influence of hot electrons on the
carrier distribution function are discussed.

3.2.1 Long Channel Devices

First, a study on the behavior of higher-order transport models in long channel devices is per-
formed. The aim is to find a calibration point, where all macroscopic transport models together
with the spherical harmonics approach, which is the reference simulator here, yield the same
result. Thus, n+nn+ structures with a channel length from 1000 nm down to 100 nm and with
a doping profile of 1020 cm−3 and 1016 cm−3 have been investigated.

Fig. 3.4 shows the output currents of different n+nn+ structures for channel lengths of 100 nm,
250 nm, and 1000 nm calculated with the DD, ET, SM and the SHE model.1 As can be observed
for a channel length of 1000 nm all models yield the same results with an error below 1%
(see Fig. 3.5). While the error of the ET and SM model stays more or less constant below 2.5 %
for a channel length down to 250 nm, the error of the DD model continuously increases and
reaches a value of −16 % for a channel length of 100 nm. While the inaccuracy of the ET model
starts to increase below 250 nm, the SM model gives still results very close to SHE simulations.
Therefore, simulating short channel devices with the DD model gives only poor results. However,
for devices with a channel length of 1µm, the DD, ET, SM, and the SHE model predict the same
current value with an error of below 1%. Hence, the calibration point is the 1000 nm channel
device.

3.2.2 Short Channel Effects

Since the channel length is reduced to increase the operation speed and the number of com-
ponents per chip, the so called short-channel effect arise [133]. The first short channel effect
described here is the velocity overshoot.

3.2.2.1 Velocity Overshoot

The velocity overshoot in short channel devices has been the object of many investigations [134–
138]. The carrier velocity in most devices operating near room temperature and under modest
bias condition is always limited by scattering. Carriers cannot go beyond a certain velocity. The
maximum velocity observed in bulk silicon measurements is the saturation velocity vsat. The
value of vsat is 107 cm/s [139]. However, as demonstrated in Fig. 3.6 for short channel devices the
situation is different. As the channel length decreases, the electric field inside the device increases
as well. Thus, the carriers will be accelerated without colliding with the lattice (Tn = TL) for at
least a few pico seconds. Therefore, the random component of the carrier velocity induced by
scattering events is small, which leads to a maximum drift velocity in the range of 107 cm/s to
108 cm/s [140]. This is known as the velocity overshoot.

1Thanks to Prof. Jungemann for providing his SHE simulator
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Figure 3.4: Output currents for different n+nn+ structures calculated with DD, ET,
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the current for a channel length of 100 nm.

100 200 300 400 500 600 700 800 900 1000
LCh [nm]

-20

-15

-10

-5

0

5

10

R
el

at
iv

e 
E

rr
or

 I d [%
]

DD
ET
SM

Vd/LCh = 1V/µm

Figure 3.5: Relative error of the current calculated with the DD, ET, and the SM
model as a function of the channel length. A voltage of 1V has been
applied. While the ET and SM model is below 7.5 %, the DD model
approaches to 16 % at a channel length of 100 nm.

47



CHAPTER 3. 3D ELECTRON GAS 3.2. Device Studies

0 0.2 0.4 0.6 0.8 1.0
Normalized Distance

0

0.5

1.0

1.5

2.0

v e [1
07  c

m
/s

]

LCh = 200nm

LCh = 100nm

LCh = 50nm

vsat

Velocity Overshoot

Figure 3.6: Velocity profiles of a 50 nm, 100 nm, and 200 nm long n+nn+ structure
calculated with the MC method are presented after [4]. The velocity
overshoot at the beginning of the lowly doped n–region is clearly visible.

3.2.2.2 Hot Electrons

Hot electrons can enter the oxide, where they can be trapped, giving rise to oxide charging
and can accumulate with time and degrade the device performance by increasing the threshold
voltage and adversely affect the gate control on the drain current [133].
Therefore, an analytical expression within high fields for the carrier temperature Tn in a homo-
geneous and stationary bulk Si system is derived. Here, all spatial gradients in the transport
models can be neglected. Hence, the energy balance equation (2.108) can be formulated as

−sαqnV0E + n
w1 − w10

τ1
= 0 . (3.1)

With

w10 =
3

2
kBTL and w1 =

3

2
kBTn , (3.2)

Tn can be written as [4]

Tn = TL +
2

3

q

kB
τ1µ0E

2 . (3.3)

Note that only the drift term of the current

nV0 = sαnµ0E (3.4)

has been inserted into the homogeneous energy balance equation. As has been pointed out,
Tn is roughly proportional to the square of the electric field. In a certain high field regime,
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bulk simulation carried out with fullband MC. For lower fields, the carrier
temperature is a function of E2, while for high fields, the temperature is
a linear function of the driving field.

where optical phonons can be neglected, the energy relaxation time τ1 is more or less constant
(see Fig. 3.2). Note that optical phonon scattering is an inelastical process, which changes the
energy relaxation time. In this special high field regime, µ0 can be written as [140]

µ0 =
vsat

E
, (3.5)

and the temperature expression (3.3) can be described in terms of the saturation velocity vsat

as

Tn = TL + τconst
2q

3kB
vsatE . (3.6)

For electrons within the saturation velocity regime, Tn is a linear function of the electric field.
In Fig. 3.7, the bulk carrier temperature as a function of the electric field calculated with
the bulk fullband MC method is presented. In order to consider the whole band structure
of Si fullband MC has been taken into account instead of the analytical SHE method. As
pointed out, the quadratic dependence of the carrier temperature from the electric field is a
good approximation for fields lower than 200 kV/cm, while for higher fields up to 450 kV/cm
the linear approximation (3.6) can be used. However, for driving fields above 450 kV/cm the
linear approximation breaks down due to optical phonon scattering, which changes τ1. Thus,
the assumption that the energy relaxation time is constant is not valid anymore.

3.2.2.3 Hot and Cold Electrons

Carrier energy has got a deep impact on the distribution function. The so called high-energy tail
at the beginning of the drain region, which is an expression of the coexistence of a hot electron
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Figure 3.8: Evolution of the distribution function inside an n+nn+ structure. The
mixture of hot and cold electrons is expressed by the high-energy tail of
the carrier distribution function.

population coming from the channel and the cold electron population from the drain region, is
presented in Fig. 3.8. Here, the evolution of the distribution function through a n+nn+ structure
with a channel length of 40 nm and a doping profile of 1020 cm−3 and 1016 cm−3 is demonstrated.
An electric field of 50 kV/cm in the middle of the channel has been assumed. The distribution
function is calculated with the MC method. At point A a Maxwellian can be assumed as the
carrier distribution function, while at point B the heated Maxwellian overestimates the carrier
distribution function. In point D the high-energy tail occurs.

In [141], an analytical distribution function model has been developed, which goes beyond the
assumption of a Maxwellian shape. The symmetric part of the distribution function is based on
a mixture of a cold and a hot Maxwellian and can be expressed as [141]

fs (E) = A

�
exp

�
−


E
a

�b
�

+ c exp



− E

ac

��
= A (fh (E) + cfc (E)) . (3.7)

The five parameters A, a, b, c, and ac, which describe the distribution function, must be de-
termined and are calculated in that way that the distribution reproduces the first three even
moments provided by the six moments model. Since the DD and the ET models exhibit only
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two and three equations, respectively, the SM model provides enough equations to calculate the
five parameters. Of fundamental importance to this model is the kurtosis. The kurtosis gives
the information to differentiate between the channel region and the drain region [141].

The kurtosis of an n+nn+ structure with a 100 nm channel for different source and drain dopings
is visualized in Fig. 3.9. There, a channel doping of 1016 cm−3 has been considered. As can be
observed for low dopings, the maximum peak of the kurtosis is at 300 nm, compared to high
dopings, where the maximum is at about 220 nm.

This can be explained as follows: Due to the higher concentration of cold electrons in the drain
region of the high doped drain, the relaxation of hot carriers is faster than in the low doped
drain region. Hence, the maximum peak of β in the high doping concentration case is 25 %
higher than for low doping concentrations.

In Fig. 3.10, the second-order temperature Θ defined as

Θ = βTn , (3.8)

and the carrier temperature Tn for a short and a long channel devices are presented. For the
long channel device, the hot distribution part of equation (3.7) can be neglected due to the
small deviation of the second-order temperature Θ from Tn. In short channel devices as the
60 nm device, an accurate modeling of the high-energy tail is very important as demonstrated
in Fig. 3.11.

Here, carrier distribution functions of a 40 nm, 60 nm, 80 nm, and 100 nm channel devices at
point D of Fig. 3.8 are shown. The distribution functions are calculated with the MC method.
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Figure 3.10: Carrier temperature Tn together with second-order temperature Θ for
a 1000 nm and a 60 nm device. A field of 50 kV/cm has been assumed.
While in the long channel device a Maxwellian can be used, the high-
energy tail in the short channel device in the drain region increases.

As pointed out for increasing channel lengths the high-energy tail decreases. Also high fields
have got a strong influence on the kurtosis as shown in Fig. 3.12. Here, the kurtosis for 5 kV/cm,
20 kV/cm, and 50 kV/cm fields of a 100 nm channel length structure is demonstrated in the upper
left part of Fig. 3.12. The electric field has been calculated in the middle of the channel at point
A. As can be seen for low fields as 5 kV/cm, where the carrier temperature is low (see the upper
right part) a heated Maxwellian can be used, while for 20 kV/cm an increase of the kurtosis at
the beginning of the drain region is visible. A significant increase of the kurtosis can be observed
for high fields.
The kurtosis starts to rise, when the maximum of the carrier temperature decreases to the
equilibrium value. This is the region, where the hot electrons from the channel meet the large
pool of cold electrons in the drain region. The distribution function has also a strong impact on
the carrier velocity as pointed out in the lower part of Fig. 3.12. The ET transport model yields
the same velocity profile in the low field regime as the SM model, which is also an indication
that a Maxwellian is a good approximation within low fields. However, for high fields, the ET
overestimates the velocity profile of the DD and the SM model, and has got a maximum at
the end of the channel. A second velocity overshoot in the ET and in the SM model can be
observed, which will be discussed in the next section.

3.2.2.4 Impact Ionization

Impact ionization especially occurs in n-channel MOSFETs, due to the high velocity of the
electrons and high lateral fields. The electrons collide with Si atoms and generate electron hole
pairs. Hence, the probability of impact ionization for electrons in a strong field is determined
by the probability that the electrons will acquire the ionization energy of the atoms from the
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Figure 3.11: Distribution function at point D of Fig. 3.8 for 40 nm, 60 nm, 80 nm,
and 100 nm channel devices. As can be observed, the high-energy tail
for increasing channel lengths decrease.

field [142]. The process of increasing energies of the electrons depends on two factors: Accel-
eration in the field and energy dissipation with phonons. Thus, electrons can gain energy from
the field without experiencing a single collision, or the second possibility of receiving the same
energy is that the electrons achieve energy after many collisions, in that way that in each col-
lision the electron loses less energy than it receives from the field during the time between two
collisions.

Fig. 3.13 shows impact ionization rates of a 200 nm and a 50 nm channel device calculated with
the DD, ET, SM model and the MC method. As can be observed, the impact ionization rate
predicted by the SM model is closer to MC data than the ET and the DD model due to the
better modeling of the distribution function in the SM model, as explained in the following
section.

3.2.3 Application of Higher-Order Models on Deca-Nanometer Devices

Higher-order transport models such as the SM model can cover non-local effects due to the
improved modeling of the distribution function. This is very important for deca-nanometer
devices, where short channel effects have a strong influence on carrier transport properties.
The channel length range of deca-nanometer devices is defined in this work from 100 nm down
to 20 nm. However, beside the advantages of higher-order transport models concerning the
description of the explained effects, the models also predict a velocity overshoot, when the electric
field decreases rapidly. This is the case for instance at the end of the channel of a MOSFET.
Since the velocity overshoot at the end of the channel is not observed by MC simulations, the
effect is known as the spurious velocity overshoot (SVO) [143–145]. In [6] it was demonstrated
that the reason for the SVO is due to the closure relation and to the modeling of the transport
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Figure 3.12: Kurtosis β and the carrier temperature for electric fields of 5 kV/cm,
20 kV/cm, and 50 kV/cm through a 100 nm channel n+nn+ device (the
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fields, all models yield the same velocity profiles, which is an indication
that the heated Maxwellian can be used. For high fields, a significant
deviation of the velocity profiles can be observed.
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Figure 3.13: The impact ionization rate is calculated with MC, the DD, ET, and
the SM model for a 200 nm and a 50 nm structure. Due to the better
modeling of the distribution function in the SM model, the results are
closer to the MC data than the DD and the ET model (after [5]).

parameters. For higher-order transport models, the error in the SVO decreases. This is shown
in Fig. 3.14.

Here, the evolution of the velocity profile within several n+nn+ structures calculated with the
DD, ET, SM, and the SHE as a reference, is presented. An electric field of 50 kV/cm in the
middle of the channel of each device has been assumed. For long channel devices, all models
yield more or less the same velocity profile, while for decreasing channel lengths, the SVO in
the ET model and the reduced one in the six moments model are clearly visible. The velocity
of the ET model increases very fast for decreasing channel lengths and is four times as high as
the results obtained from SHE simulations at LCh = 15 nm. On the other hand, the DD model
does not predict any velocity overshoot and stays always under the saturation velocity vsat of
the bulk. The SM model predicts a velocity profile closer to the SHE data than the DD and the
ET model, due to the advanced description of the high-energy part of the distribution function,
following that the closure relation of the SM model is improved compared to the ET model.
One of the consequences is that the SVO is reduced in the SM model. Therefore, with a better
description of the closure relation and the transport parameters, the SVO would disappear as
demonstrated in Fig. 3.15. Here, the velocity profile of the ET model is presented, considering
closure relations and relaxation times based on MC simulations. As can be observed, the SVO in
the ET model disappears, which justifies the above mentioned assumption. The better modeling
of device characteristics within higher-order moments is also reflected in the currents, which is
pointed out in Fig. 3.16. Here, the output characteristics of a 40 nm and 80 nm channel length
n+nn+ structure calculated with the DD, ET, SM, and the reference SHE model are shown.
While the relative error of the current calculated with the SM and the ET model stays more or
less constant in long channel devices (see Fig. 3.5), there is a significant deviation of this pattern
in the error in short channel devices.
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Figure 3.14: Evolution of the carrier velocity profiles for decreasing channel lengths
calculated with the DD, ET, and the SM model. The velocities are
compared to the results obtained from SHE simulations. While the
maximum velocity of the DD model is the saturation velocity vsat, the
spurious velocity overshoot at the end of the channel in the ET and the
SM model is clearly visible. The velocity overshoot at the beginning of
the channel can be quantitatively identified at the 100 nm device in the
ET and the SM model.
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Figure 3.17: Relative error in the current of the DD, ET, and the SM model for
an n+nn+ structure in the channel range from 100 nm down to 40 nm.
While the relative error of the SM model is below 6%, the error of
the DD and the ET model is at −30 % and 40 % for a channel length
of 40 nm, respectively.

In the short channel range from 40 nm to 100 nm the current calculated with the SM model is
below an error of 10 %, while the errors of the DD and the ET model are at −30 % and 40 % for
a channel length of 40 nm, respectively (see Fig. 3.17).

As has been pointed out, the ET model is accurate down to a channel length of 80 nm, while a
strong increase of the current error can be observed below 80 nm. Therefore, the ET model is a
suitable transport model for devices down to 80 nm channel lengths only. However, with channel
length below 80 nm the SM model is the model of choice. The strength of the six moments model
is that the model gives more informations about the distribution function than the ET model.
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’If you can’t explain it simply, you don’t understand

it well enough.’

Albert Einstein

Chapter 4

Homogeneous Transport in Inversion

Layers

WITH CONTINUOUSLY downscaling of the device geometry, the influence of quantum me-
chanical effects on the device characteristics starts to increase. Transport parameters are

fundamentally affected by surface roughness scattering [146,147] and quantization [148]. In [149],
surface roughness scattering has been approximated using the semi-empirical Matthiesen rule.
However, the influence of inversion layer effects on higher-order transport parameters has not
been studied satisfactorily yet. To point out the impact of these effects on the transport pa-
rameters, a self-consistent SMC simulator has been developed. The object of investigations is
a homogeneous bulk UTB SOI MOSFET, where the impact of inversion layer effects on the
carrier transport is very high.

4.1 Subband Monte Carlo Model

Investigations of inversion layer effects using the SMC simulations, have already been given
in numerous publications [150–152]. However, a description concerning higher-order transport
parameters in the inversion layer, which is important for the characterization of macroscopic
transport in realistic devices, has not been done satisfactorily yet.

In order to study the influence of quantization and surface roughness scattering on higher-order
transport parameters within high-fields, a self-consistent SMC simulator has been developed [50,
153,154] (see sketch in Fig. 4.1).

Subband energy levels and wavefunctions are initially determined self-consistently with the Pois-

son equation assuming Fermi–Dirac statistics. Based on the subband structure, Monte Carlo
calculations are performed taking into account phonon induced, impurity and surface roughness
scattering. The non-parabolicity of the band structure is treated by Kane’s model [70]. The
scattering rates are strongly affected by high driving fields, which results in a shift of the wave-
functions. The consequence of this shift is a change in the overlap integral of the scattering
operator and therefore a change in the subband occupations, which leads to a modified carrier

59



CHAPTER 4. INVERSION LAYER TRANSPORT 4.2. Surface Roughness Scattering

Figure 4.1: Principle data flow of the parameter extraction for higher-order transport
models. While transport is treated in the SMC code, the influence of the
confinement perpendicular to the oxide interface is carried out by the
Schrödinger-Poisson solver.
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�
ψ2

n′′ (z) dE .

The subband occupation number is represented by the Fermi–Dirac distribution function f .
After convergence is reached, which is achieved by an exchange of energy eigenvalues, wavefunc-
tions, and subband occupations, the transport parameters can be extracted.

In Fig. 4.2, a result of the self-consistent loop between the Schrödinger-Poisson solver and the
MC simulator is presented. Several velocities for different inversion layer concentrations Ninv as
a function of the lateral field for a UTB SOI MOSFET device with a channel thickness of 4 nm
and a substrate doping of 2 × 1016 cm−3 have been extracted.

4.2 Surface Roughness Scattering

Surface roughness scattering (SRS) is the main scattering process in high inversion layer con-
centrations, which has a strong impact on the transport parameters (see Fig. 4.3). Surface
roughness can be seen as a barrier at the interface, whose position has a small and slowly vary-
ing displacement Δr. Here, r is the two-dimensional vector in the plane of the interface [47].
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Figure 4.2: Carrier velocity as a function of the driving field for different inversion
layer concentrations. Due to surface roughness scattering, the carrier ve-
locity decreases for increasing inversion layer concentrations. The maxi-
mum velocity is below the saturation velocity of bulk Si.

Δr can be expressed by its Fourier components

Δr =
�

q

Δq exp (iqr) , (4.2)

whereas the power spectrum �|Δq|2� is usually modeled with a Gaussian form as [155]

�|Δq|2� = πΔ2Λ2 exp
	−q2Λ2/4

�
, (4.3)

or with an exponential shape as described in [156,157]. q is the difference between the incoming
wavevector k and the wavevector k

′

after the scattering event. Λ is the correlation length of the
oxide thickness fluctuations and should be understood as the minimum distance between two
points at which thicknesses are considered independent. The SRS matrix elements V SRS

kk
′ have

been defined and discussed in [158] as

V SRS
kk

′ =
�

2

2m
Δk−k
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dψ∗
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dψn′

dx

���
x=0

. (4.4)

Therefore, the derivative of the wave function at the interface plays an important role. The
quantization direction in equation (4.4) is in x direction. In [47] it has been shown that the
scattering potential depends linearly on the inversion layer concentration Ninv defined as [1,47]

Ninv = gv

��
m∗

tm
∗
l

π�2

�
kBTnln



1 + exp


Ef − Ei

kBTn

��
, (4.5)
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Figure 4.3: The effective mobility as a function of the effective field [7]. For in-
creasing bulk doping and for low inversion layer concentrations Coulomb

scattering is the main scattering process, while for increasing Ninv phonon
scattering becomes more important.

and on the depletion concentration Ndep which can be expressed as [7]

Ndep =



4NǫSi

kBTL

q2
ln



N

ni

��1/2

. (4.6)

N and ni denote the substrate and the intrinsic concentration, respectively. The influence of
this dependence on higher-order transport parameters will be shown in the sequel. Inserting the
scattering matrix into Fermi’s golden rule (see equation (2.137)) and integrating over the whole
space, the SRS time τSR can be written as [47]
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. (4.7)

With a large correlation length Λ, the interface is locally flat and therefore the term �|Δ2
k−k

′ |�
tends to zero, which means that the surface roughness scattering is not effective. For small Λ
the relaxation time is determined by the product of Δ and Λ (see equation (4.3)). In fact,
for relatively small correlation lengths, a considerable scattering rate is observed, if the ampli-
tude of thickness variations Δ is high enough. The energy in the denominator of the expres-

sion V SRS
kk

′ /Δ
k−k

′E
�
k − k

′
�

reflects the fact that scattering with small wave vectors predom-

inates,
	
1 − cos

	
θkk

′

��
is the essential component entering the relaxation time [1], while the

delta function is related to the elastic nature of the process.
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4.3 Influence of Surface Roughness Scattering on Higher-Order

Transport Parameters

The main differences between bulk transport and transport in an inversion layer is the occur-
rence of quantum mechanical effects such as quantum confinement, subbands and SRS. Due
to quantum confinement, carriers cannot move in the direction perpendicular to the interface.
Thus, carriers have to be treated as a two-dimensional gas, which has a considerable impact on
the transport properties.

In Fig. 4.4, higher-order mobilities as a function of the inversion layer concentration Ninv are
shown. In a bulk MOSFET within low fields, the carrier mobility µ0 fits the measurement data of
Takagi [7,159] quite well, while a significant reduction is observed in the quantized 4 nm channel
region of a UTB SOI MOSFET [160]. A considerable deviation of higher-order mobilities for
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Figure 4.4: Higher-order mobilities as a function of the inversion layer concentra-
tion Ninv for different lateral fields. For high fields the difference of the
mobilities decreases. For low fields in a bulk MOSFET the carrier mo-
bility is equal to the measurement data of Takagi.

low Ninv and low fields can be observed, while for high fields this deviation disappears. All
mobilities are constant for high fields and are not affected anymore by SRS. The reason for the
constant mobilities for high fields can be explained with Fig. 4.5 and Fig. 4.6.

In Fig. 4.5 the conduction band edge for several Ninv is presented. Due to the band bending
for increasing Ninv, the carriers move closer to the interface, and therefore the influence of SRS
becomes stronger, which results in a lowering of the mobilities. For high fields, the distance of
the carriers to the interface increases, which reduces the influence of SRS on the mobilities.
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Figure 4.5: Conduction band edge as a function of the position for different inversion
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and hence they are more affected by surface roughness scattering than
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electric fields. Both the wavefunctions and subbands are shifted with
increasing lateral electric fields. The conduction band edge is affected by
the change in the subband occupations.
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This is demonstrated in Fig. 4.6. Here, the behavior of the conduction band edge together
with the first two subbands and their wavefunctions for different driving fields of 30 kV/cm and
100 kV/cm is presented. As pointed out before, there is a shift of the conduction band edge and
subbands to lower values for increasing driving fields. The result of this band edge shift is that
the wavefunction is shifted away from the interface, which means that the probability of finding
a carrier near the interface decreases. As a consequence, the influence of surface characteristics
on the transport parameters decreases as well. Therefore, the effect of SRS on the mobilities is
drastically reduced for high fields.
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Figure 4.7: Influence of surface roughness scattering on µ0, µ1, and µ2 as a function
of the lateral field for different Ninv. For low fields, surface roughness
scattering has a strong impact, while for high fields the mobilities are
unaffected by SRS.
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Figure 4.8: Ratio between the mobilities neglecting and considering SRS for high
and low Ninv values as a function of the lateral field. For low Ninv, the
mobilities are unaffected. The carrier mobility is more affected by SRS
than the higher-order mobilities.

This is visible in Fig. 4.7. Here, higher-order mobilities as a function of the electric field for
different inversion layer concentrations have been calculated both with and without surface
roughness scattering. For fields above 120 kV/cm, the effect of surface roughness scattering on
the carrier mobility can be neglected, while for the energy flux mobility and the second-order
energy flux mobility even at 100 kV/cm the scattering process has only a minor impact. Thus,
higher-order mobilities are not so much affected by SRS as the carrier mobility.

This is demonstrated in Fig. 4.8, where the ratios of higher-order mobilities with and with-
out SRS for high and low inversion layer concentrations of 1.2× 1013 cm−2 and 2.8× 1012 cm−2,
respectively, are plotted. The difference in the low Ninv regime between the ratio curves of µ0

and the higher-order mobilities is not as high as in the strong inversion regime. This can be
explained as follow: Surface roughness scattering changes the momentum relaxation time τ0

and therefore the velocity, which is proportional to τ0, is shifted to lower values for increas-
ing Ninv (see Fig. 4.10). Therefore, the antisymmetric part of the distribution function is re-
duced for high inversion layer concentrations following that the distribution function becomes
more isotropic. The effect is that the impact of SRS on the energy flux is not as high as on the
carrier flux. This is pointed out in Fig. 4.9. where the ratio of the momentum relaxation time
and the energy-flux relaxation time τ3 is presented. Due to the strong increase for high Ninv of τ0

compared to τ3, the higher-order mobilities, which are proportional to the relaxation times, are
not as effected by SRS as µ0. The dependence of µ0 on Ninv has an impact on the carrier veloc-
ity as pointed out in Fig. 4.10. There, the velocity for high inversion layer concentration and low
inversion layer concentration is shown. The difference in the high field case between the carrier
velocities considering once SRS and neglecting SRS for the high inversion layer concentration
case is about 25 %, while the velocities in the high and low Ninv neglecting SRS respectively,
yield the same result.
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Figure 4.9: Ratio of the momentum relaxation time τ0 and energy flux relaxation
time τ3 for different Ninv as a function of the driving field. Surface rough-
ness scattering influences τ0 more than τ3, especially for high inversion
layer concentrations.
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Figure 4.11: Influence of surface roughness scattering on τ1 and τ2 as a function of
the kinetic energy of the carriers for different Ninv. Due to the elastic
scattering nature of SRS, the relaxation times are not affected by SRS.
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lateral electric fields. For a field of 50 kV/cm and high Ninv, τ1 and τ2

increase in contrast to high-fields, where the energy relaxation time
remain constant.

Fig. 4.11 shows the energy relaxation time and the second-order relaxation time as a function of
the kinetic energy of the carriers for low and high inversion layer concentrations considering and
neglecting SRS. Due to the elastic nature of SRS, there is no change in the energy relaxation
time and in the second-order relaxation time.
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Figure 4.13: First subband occupation of the unprimed, primed, and double primed
valleys as a function of the inversion layer concentration for fields
of 50 kV/cm and 100 kV/cm. Due to the light mass of the unprimed
valley in transport direction, the subband occupation number is higher
than in the other valleys.

In Fig. 4.12, τ1 and τ2 as a function of Ninv for different lateral electric fields are presented.
As can be observed, the relaxation times for high fields are constant except for a lateral field
of 50 kV/cm. There is a significant change in the second-order relaxation time. This can
be explained with Fig. 4.13, where the first subband occupation as a function of Ninv of the
unprimed, primed, and double primed valleys for lateral fields of 50 kV/cm, and 200 kV/cm is
shown. Due to the fast increase of the occupation number of the first subband in the unprimed
valley at 50 kV/cm compared to the high-field case, where the occupation is constant, the change
in the second-order relaxation times increases as well for high Ninv.

Fig. 4.14 demonstrates the mobilities in each valley and the total average mobility as a function
of the channel thickness. The mobilities are indirectly proportional to the effective masses. As
has been pointed out in Fig. 2.10, the velocity of the unprimed valley is high compared to the
primed and double primed valleys. This is due to the light conduction mass of the unprimed
valley and therefore the mobility is also high compared to the other valleys. The maximum
peak in the total average mobility is due to a high occupation of the unprimed ladder for a
thickness of 2 nm as demonstrated in Fig. 4.15. By increasing the channel thickness to 3 nm,
the occupation of the unprimed valley decreases and the occupation of the primed valley with
the heavy conduction mass increases. The total mobility curve has a minimum at about 4 nm
bulk thickness. At this value, the occupation of the primed valley has its maximum. After
the occupation of the double primed valley starts to increase, the total mobility increases too,
until the occupation numbers of each valley reach a saturation value. Furthermore, it has been
reported in [155] that for ultra thin body devices the carrier mobility is proportional to the
device thickness to the power of six, which is in good agreement with the results.
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Figure 4.15: Populations of the unprimed, primed, and double primed valleys as
functions of the channel thickness.
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4.4 Comparison with Bulk Simulations

To point out just the influence of quantization on higher-order transport parameters, the subband
results have been compared to three-dimensional bulk data. Surface roughness scattering has
not been considered in these subband simulations.

In Fig. 4.16, µ0, µ1, and µ2 are compared to bulk simulations with a doping of 1016 cm−3. As
can be observed, the higher-order mobilities of the 2D electron gas are below the mobilities of
the 3D bulk simulations, especially in the low field regime.
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Figure 4.16: Carrier, energy-flux, and second-order energy flux mobility of SMC and
bulk MC simulations. The mobilities obtained by bulk simulations are
higher than in subband simulations. For high fields, the mobilities from
subband simulations yield the same value as from bulk simulations.
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Figure 4.17: Comparison of the energy relaxation time and second-order energy re-
laxation time using 2D SMC data and 3D bulk MC data. For high
energies both simulations converge to the same value.

This behavior can be explained as follows: Due to Heisenberg ’s uncertainty principle, there is
a wider distribution of momentum in the quantization area, because of a higher localization of
the particles than in the bulk. Hence, there are more bulk phonons available that can assist
the transition between electronic states. This will lead to an increase of the phonon rates and a
decrease of the mobilities [161].

Due to the higher probability of scattering with phonons in the subband case, the energy relax-
ation time and the second-order energy relaxation time are lower than in the bulk as demon-
strated in Fig. 4.17. This is also the case in the carrier temperatures as visualizes in Fig. 4.18.

Here, the subband carrier temperature is below the bulk temperature due to the fact, that an
increase of the phonon scattering probability decreases the carrier temperature. However, for
high energies, the relaxation times and the temperatures of the subband simulations converge
to the bulk results due to the occupation of higher subbands.

Fig. 4.19 shows the subband occupation as a function of the subband ladders for a low field
and a high field. As pointed out, for an electric field of E = 1kV/cm, the first subband in the
unprimed valley is highly occupied, while the ladders in the primed and double primed valleys
are more or less unoccupied. The situation changes for a field of E = 100 kV/cm. The carriers
gain more energy, which results in the occupation of higher subbands. The occupation values of
the first two ladders in the primed and double primed valleys are higher than in the unprimed
valley.

A study of the influence of important inversion layer effects on higher-order transport parameters
using the SMC method has been given. The investigations made in this chapter are based on
a homogeneous bulk subband system, where all spatial gradients of the macroscopic transport
models are negliable. The next chapter is devoted to higher-order transport models in real
devices.
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Figure 4.18: Comparison of the carrier temperature using 2D SMC data and 3D
bulk MC data. Due to higher phonon scattering in the 2D case the
temperature is lower than in the 3D case.

1 2 3
Number of Subbands

0.0001

0.001

0.01

0.1

1

10

80

Su
bb

an
d 

O
cc

up
at

io
n 

[%
]

Unprimed

Primed 
Double Primed

Eabs = 1kV/cm

1 3 5 7
Number of Subbands

0.1

1

10

30

Su
bb

an
d 

O
cc

up
at

io
n 

[%
]

Eabs = 100kV/cm

Figure 4.19: Subband occupations as functions of the subband ladders in the un-
primed, primed, and double primed valleys for electric fields of 1 kV/cm
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’Knowing is not enough; we must apply. Willing is

not enough; we must do.’

Johann W. von Goethe

Chapter 5

Subband Macroscopic Models

IN ORDER TO ACCURATELY describe carrier transport in the inversion layer of a whole
device, a 2D non-parabolic macroscopic transport model up to the sixth order has been

developed. To include inversion layer effects and to characterize high field transport, a special
transport parameter extraction technique from SMC simulations has been carried out. Surface-
roughness scattering as well as quantization are thus inherently considered in the SMC tables as
described in the previous chapter. Now it is possible to specify higher-order mobilities as well
as the macroscopic relaxation times as a function of the effective field. To verify the validity
of the 2D macroscopic models, the results are benchmarked against device-SMC simulations.
The models are applied to UTB SOI MOSFETs and their predictions are discussed for different
channel lengths.

5.1 The Model

As shown in Fig. 5.1, the extracted higher-order transport parameters derived from SMC forms
the base for a parameter interpolation within the channel of the device simulator. In the source
and in the drain region the transport parameters are set as constant. The device simulator
calculates the transverse effective field in the channel, which is the field perpendicular to the
current flow defined as

Eeff =

C�
0

Eyn dy

C�
0

n dy

, (5.1)

and extracts from the SMC tables the mobilities and relaxation times as a function of the
effective field. The upper integration limit C of equation (5.1) is the channel thickness. The
calculated effective field in Fig. 5.2 for different drain voltages Vd of 0.1 V, 0.25 V, and 0.5 V
throughout a 40 nm channel length SOI MOSFET device are shown, while the extracted higher-
order parameter-set from SMC simulations for different effective fields is presented in Fig. 5.3
and Fig. 5.4. The explicit equation-set of the 2D six moments model is given as
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Figure 5.1: The SP-SMC loop describes the transport of a two-dimensional electron
gas in an inversion layer. After convergency is reached, the device simu-
lator utilizes the extracted parameters to characterize transport through
the channel of the whole device.

∂t (nw0) + ∇r (nV0) = −R , (5.2)

nV0 = −2
µ0

q
H1∇r (nw1) − sαnµ0w0∇rϕ̃ , (5.3)

∂t (nw1) + ∇r (nV1) + sαqnV0∇rϕ̃ + n
w1 − w10

τ1
= 0 , (5.4)

nV1 = −2
µ1

q
H2∇r (nw2) − sαnµ1 (1 + 2H1)w1∇rϕ̃ , (5.5)

∂t (nw2) + ∇r (nV2) + 2sαqV1∇rϕ̃ + n
w2 − w20

τ2
= 0 , (5.6)

nV2 = −2
µ2

q
H3∇r (nw3) − sαnµ2 (1 + 4H2)w2∇ϕ̃ . (5.7)

The closure relation of the 2D six moments model has been taken into account according
to Fig. 2.15 as

w2D
3 = 6 (kBTn)3 β 2.7 . (5.8)

The behavior of the kurtosis β of the 2D six moments model through the channel of the UTB SOI
MOSFET with a channel length of 100 nm, 60 nm, and 40 nm, respectively, is shown in Fig. 5.5.
On the left side of Fig. 5.5, the second-order temperature Θ = βTn and the carrier temperature
profile Tn is shown, while on the right side the kurtosis is presented. In the source region,
the kurtosis equals unity in all three shown devices, while the kurtosis decrease down to 0.8
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Figure 5.2: Effective field profile throughout the whole device for several bias points.
With the effective fields and the SMC tables, higher-order transport pa-
rameters can be modeled as a function of the effective field.
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Figure 5.3: Energy relaxation time and second-order relaxation time for different
effective fields as a function of the kinetic energy of the carriers. For high
carrier energies, the relaxation times of the different inversion layers yield
the same value.

at the end of the channel, which means that the heated Maxwellian overestimates the carrier
distribution function in the channel also in the 2D model. Different values greater than one can
be observed at the beginning of the drain region. While for the device with a channel length
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Figure 5.4: Carrier and higher-order mobilities for different effective fields as a func-
tion of the lateral field. For high fields the mobilities converge to the
same value.

of 100 nm the value of the kurtosis is 1.55, the value increases up to 2 for the 40 nm channel
length device. Therefore, for decreasing channel lengths, the kurtosis increases in the inversion
layer as well, which is an indication of the increasing high energy tail of the distribution function.

In Fig. 5.6, the carrier temperature together with the second-order temperature profiles for
drain voltages of 0.3 V and 1V are plotted. For low fields, a good approximation of the carrier
distribution function is the heated Maxwellian, while an increase of the kurtosis can be observed
for high driving fields especially in the drain region.

5.2 The Quantum Correction Model

Quantum mechanical confinement has been considered in the classical device simulator using the
quantum correction model IMLDA, which has been consistently calibrated to the Schrödinger-
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Figure 5.5: Second-order temperature θ = βTn, carrier temperature Tn, and kurto-
sis β for different SOI MOSFETs with channel lengths of 100 nm, 60 nm,
and 40 nm. For decreasing channel lengths the kurtosis increases due to
the increase of the high energy tail of the distribution function.
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Figure 5.6: Temperature and second-order temperature profiles for different drain
voltages. For the low drain voltage case, the second-order temperature
yields a similar result compared to the carrier temperature, while a sig-
nificant deviation between θ and Tn especially in the drain region can
be observed for high fields.

Poisson simulator used in the device-SMC simulator (DSMC) as demonstrated in Fig. 5.7
(see Section 2.3.4). A detailed description of the used DSMC simulator can be found in [148,
162,163].

The CV-curves of SOI MOSFETs with different gate lengths of 80 nm, 60 nm, and 40 nm are
calculated once with the SP solver used in the DSMC simulator and with the classical device sim-
ulator including the IMLDA model. As can be observed for high gate voltages both simulations
yield the same capacitances and therefore we conclude that the IMLDA model approximates
the quantum confinement very well. In the following simulations, a gate voltage of 1.3 V is
applied. The importance of the quantum correction model is pointed out in Fig. 5.8. Here,
the output current is calculated with the DD, ET, SM, and as a reference with device-Subband

Monte Carlo data of a 40 nm channel length SOI MOSFET. In the macroscopic models the cal-
ibrated quantum correction model has been considered. As can be clearly seen, the SM model
predicts an output current very close to the DSMC result, while the ET model overestimates the
current and the DD model is below the DSMC result. All currents of the macroscopic models
are shifted to higher values when the quantum correction model is neglected. Thus, in order
to have a reasonable comparison between the 2D macroscopic transport models and the DSMC
simulator, where the Schrödinger equation is directly solved, the quantum correction model is
very important, as will be demonstrated in the next section.

79



CHAPTER 5. SUBBAND MACROSCOPIC MODELS 5.2. The Quantum Correction Model

0 0.5 1.0 1.5 2.0
Vg [V]

0

0.5

1.0

1.5
C

ap
ac

ity
 [1

0-1
5 F]

IMLDA
SP

40nm

60nm

80nm

Figure 5.7: Capacity versus gate voltages for devices with 40 nm, 60 nm, and 80 nm
gate lengths calculated with the Schrödinger-Poisson solver and with the
calibrated quantum correction model. For a gate voltage used in most
simulations of 1.3 V both simulators yield the same result.
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Figure 5.8: Output characteristics of a 40 nm channel length UTB SOI MOSFET
calculated with the DD, ET, SM models and, as a reference, with DSMC
data. As can be observed, the SM model delivers a current very close
to the SMC current. Neglecting the quantum correction model increases
the output current of the macroscopic models.
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5.3 Comparison with Device-SMC

To investigate the validity of the developed subband macroscopic models a comparison with the
device-SMC simulator will be carried out. Starting with the long channel device, the further
focus is put on short channel devices.

5.3.1 Long Channel Device

As a consistency check for long channel devices, all macroscopic transport models together with
the DSMC method must yield the same results. In Fig. 5.9 output characteristics of a 1000 nm
and a 100 nm channel length SOI MOSFETs are presented.
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Figure 5.9: Output current of 1000 nm and 100 nm channel devices calculated with
the DD, ET, and SM model are compared to the output current obtained
by DSMC simulations. For the 1000 nm device, the results of all models
converge.

As demonstrated for a channel length of 1000 nm, all models predict approximately the same
results. Hence, the DD model is a suitable model for long channel devices. However, for a
channel length of 100 nm, the SM model and the DSMC method predict comparable output
currents, while a significant deviation of the current to lower values can be observed in the DD
model for high drain voltages. While the DD model yields lower values, the ET model slightly
overestimates the results from DSMC simulations. This current overestimation of the ET model
increases for decreasing channel lengths as can be seen in short channel devices (see Fig. 5.8).
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5.3.2 Short Channel Devices

Output currents of a 40 nm channel SOI MOSFET device have been already demonstrated
in Fig. 5.8. The current of a critical channel length device of 30 nm is pointed out in Fig. 5.10.
As can be observed already at Vd = 0.2 V, the DD model underestimates the current of the SMC
simulation, while the ET overestimates the current. The marks at drain voltages of Vd = 0.2 V,
Vd = 0.4 V, Vd = 0.6 V, and Vd = 0.8 V are linked to the velocity profiles presented in Fig. 5.11.
However, at high drain voltages, even the DD model is closer to the DSMC results than the ET
model. The most accurate model is the SM model, which is also visible in the velocity profiles
shown in Fig. 5.11.
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Figure 5.10: Output current of a 30 nm channel length device calculated with the DD,
ET, SM models, and with the SMC method. The SM model predicts the
most accurate result, while ET overestimates and DD underestimates
the current, respectively.

Here the velocity profile for several drain voltages of Vd = 0.2 V, Vd = 0.4 V, Vd = 0.6 V,
and Vd = 0.8 V of the 30 nm channel device is presented. At low drain voltage of Vd = 0.2 V,
the velocity of all macroscopic transport models are equal to the velocity profile obtained by
MC simulations, which corresponds to the same output current of Fig. 5.10. However, with
increasing drain voltages the velocity profile obtained by the ET model increases rapidly, which
has a strong impact on the current of the ET model. The DD model delivers the lowest velocity
of all three models due to the inferior closure relation. The velocity obtained from the SM model
is between ET and DD model and is very close to the SMC simulation. The spurious velocity
overshoot at the end of the channel in the higher-order transport models is also clearly visible
for high drain voltages. For low drain voltages, the peak in the velocity profile at the end of the
channel disappears. Due to surface roughness scattering and quantum correction, the velocity
profile of the 30 nm device is only half as high as in the 3D case (see Fig. 3.14).
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Figure 5.11: Evolution of the velocity profiles of a UTB SOI MOSFET with a channel
length of 30 nm for drain voltages of Vd = 0.2 V, Vd = 0.4 V, Vd =
0.6 V, and Vd = 0.8 V. The spurious velocity overshoot, especially in
the ET model is clearly visible for drain voltages of 0.8 V. The SM
model predicts most accurate results.

In Fig. 5.12, the current at Vd = 1V as a function of the channel length is shown. For 100 nm,
the ET and the SM model yield an output current with an error below 5% (see Fig. 5.13), while
the error of the current of the DD model is about −8%. With a further decrease of the channel
length down to 70 nm, the error of the ET model increases rapidly, while the SM model stays
below 5%. At about 60 nm, even the magnitude of the error of the DD is smaller than the ET
model. For a critical channel length of 30 nm, the error of the DD, ET, and SM model is −20 %,
55 %, and 14 %, respectively. Fig. 5.14 shows the transit frequencies of devices with different
channel lengths. As can be observed, the SM model is as well the most accurate model compared
to the DD and the ET model. The error of the DD model (see Fig. 5.15) of the transit frequencies
is higher than the error of the current at very short channel lengths. Therefore, comparing all
three macroscopic transport models, the SM approach predicts the most accurate results, while
the error of the DD and especially of the ET model increase rapidly below a channel length of
80 nm.
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Figure 5.12: Output current at Vd = 1V as a function of the channel length. A
significant increase in the current of the ET model at channel lengths
below 80 nm can be observed, while the current from the DD model is
below the current of the DSMC. The SM model yields the most accurate
current.
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Figure 5.13: Relative error as a function of the channel length of the DD, ET, and
the SM models. The error of the ET model increases rapidly for devices
with a channel length below 80 nm where even the DD model becomes
better. The SM model is the most accurate model for short channel
devices.
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Figure 5.14: Transit frequencies as a function of the channel length. A significant
increase of the frequency in the ET model at channel lengths below
80 nm can be observed, while the frequency from the DD model is below
the frequency of the DSMC. The SM model yields the most accurate
result.
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Figure 5.15: Relative error of the transit frequencies as a function of the channel
length of the DD, ET, and the SM models. The error of the DD model
is higher than the error of the current (see Fig. 5.13), while the SM
model is here as well the most accurate model.
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5.4 Influence of SRS on Device Simulations

In order to show the influence of surface roughness scattering within higher-order macroscopic
transport models of a whole device, macroscopic transport model simulations have been per-
formed once with MC tables, where SRS is neglected and than with MC tables, where SRS is
considered. To show just the impact of SRS, the quantum correction model has been turned off.
A 40 nm channel length UTB SOI MOSFET is here the object of investigations.

Fig. 5.16 shows the carrier mobility and higher-order mobility cut of the 40 nm device. As can be
observed the influence of SRS at the beginning of the channel is stronger than at the end. This
can be explained as follows: As shown in Chapter 4, for low energies the carrier wavefunctions
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Figure 5.16: Carrier and higher-order mobilities for a 40 nm channel length device.
The influence of SRS at the beginning of the channel is stronger than
at the end.
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are closer to the interface than for high energies. The carriers are shifted away from the interface
and therefore the impact of surface roughness scattering decrease for high energies. Since the
carriers have got low energies at the beginning of the channel the impact of SRS is high. With
increasing energies SRS decreases. This is visible in Fig. 5.16. Due to the elastic nature of SRS
the relaxation times are unaffected by SRS as already demonstrated in Chapter 4.

Due to the elastic nature of the scattering process, SRS has got only a minor influence on the
carrier temperature Tn and the second-order temperature Θ as presented in Fig. 5.17. Fig. 5.18
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Figure 5.17: Carrier temperature Tn and second-order temperature Θ calculated once
with MC tables considering SRS and neglecting SRS, respectively. As
can be seen Tn and Θ are unaffected by SRS.

shows output characteristics calculated with the DD, ET, and the SM model considering and ne-
glecting SRS. As pointed out, the current, where surface roughness scattering has been neglected
is significantly higher, than the current with surface roughness scattering.

5.5 2D Subband Simulations versus 3D Bulk Simulations

In this section, a comparison between the 2D higher-order macroscopic models and the 3D
higher-order models based on bulk MC tables is carried out. The quantum correction model
has been turned off in the device simulator for the 2D and in the 3D case, in order to depict the
influence of the 2D discretization and the 2D subband MC tables. In order to have an adequate
comparison between 3D bulk simulations, where by definition no surface roughness scattering is
considered, SRS has been also neglected in the 2D subband models.

Fig. 5.19 presents velocity profiles of the UTB SOI MOSFET with a channel length of 40 nm
calculated with the DD, ET, and the SM model. As can be observed 3D bulk macroscopic
models with fullband MC data yield higher velocities than the 2D macroscopic models with
subband MC data, where surface roughness scattering is neglected.
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Figure 5.18: Output characteristics of a 40 nm channel length SOI MOSFET calcu-
lated with the DD, ET, and the SM model using SMC data with SRS
and SMC data without SRS.
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Figure 5.19: Velocity profile of a 40 nm channel length SOI MOSFET computed with
the two-dimensional DD, ET, and SM model neglecting SRS in the
subband MC tables and with the 3D macroscopic models using fullband
MC tables.
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Figure 5.20: Output characteristics of a 40 nm channel length SOI MOSFET calcu-
lated once with the 2D macroscopic models using SMC data without
SRS and with their 3D counterpart using fullband MC data.

Due to the higher velocities in the bulk regime, the output currents of the DD, ET, and the SM
model are also higher than in the subband system as shown in Fig. 5.20.

A higher-order macroscopic approach to describe carrier transport in the inversion channel of
advanced devices such as UTB SOI MOSFETs has been demonstrated and successfully compared
to device-SMC data. A very good agreement of the output current down to channel length of
40 nm between the SMC simulations and the 2D six moments model based on SMC data is
observed. The great advantage of macroscopic models compared to Monte Carlo simulations is
the time factor, which makes it suitable for engineering applications.
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’There are two possible outcomes: if the result con-

firms the hypothesis, then you have made a measure-

ment. If the result is contrary to the hypothesis, then

you have made a discovery.’

Enrico Fermi

Chapter 6

Material Investigations

AN OUTLOOK of the behavior of higher-order macroscopic transport parameters in the bulk
regime of semiconductor alloys such as Silicon-Germanium (SiGe) and Gallium Arsenide

(GaAs) is given. Investigations concerning the closure relation of the six moments model using
the MC method are carried out.

6.1 Higher-Order Parameter Extraction

So far in this work, all transport investigations have been performed for Si. However, for in-
stance in high-frequency devices such as high electron mobility transistors (HEMTS) the basic
semiconductor material is GaAs. Therefore, for engineering applications, an accurate macro-
scopic description of carrier transport in other materials is of substantial importance. With
the developed MC based transport parameter model it is possible to characterize higher-order
transport models in these materials with as few approximations as possible. Hence, a study of
higher-order parameters in these material systems is very crucial. In order to describe 3D bulk
higher-order macroscopic transport models in materials as SiGe [164–166] and GaAs [167], the
relaxation times as well as the higher-order mobilities are extracted as a function of the kinetic
energy of the carriers and as functions of the lateral electric field, respectively.

6.1.1 Silicon-Germanium

With increasing Ge fraction up to 40 % in Si, the values of higher-order mobilities decrease,
due to the increase of alloy scattering as visualized in Fig. 6.1. Here, the mobilities µ0, µ1,
and µ2 are presented as a function of the electric field for a doping concentration of 1015 cm−3,
1017 cm−3, and 1019 cm−3, respectively and for a Ge composition in Si of 10 % and 40 %. A
non-parabolic band structure has been assumed. As pointed out the mobilities of 10 % Ge
fraction are higher than the mobilities of 40 %. For high-fields the values of the mobilities yield
more or less the same results, while for low fields a significant splitting especially in the 10 %
Ge fraction case between the highly doped and the lowly doped concentration is visible. The
energy flux and the second-order energy flux mobilities are for low doping concentrations lower
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Figure 6.1: Carrier mobility and higher-order mobilities for a 10 % and 40 % Ge com-
position, respectively as a function of the lateral electric field. Ge has
got a deep influence on the mobilities for low fields, while for high-fields
the influence of Ge on the mobilities decreases.

than the carrier mobility. However, as can be seen, for increasing doping concentrations the
higher-order mobilities together with µ0 are practically equal. Such a behavior is also typical for
Si (see Fig. 3.1). The carrier mobility together with the higher-order mobilities for low fields as
a function of the Ge composition are given in Fig. 6.2. The carrier mobility shows a very good
agreement with the mobility data from [8]. All mobilities have a minimum at 40 % Ge, while a
high increase of the mobility values at a Ge composition greater than 80 % can be observed. For
pure Ge the mobilities are very high. In Fig. 6.3, the energy relaxation time and the second-order
relaxation time are given for different Ge fractions as a function of the carrier kinetic energy.
As can be observed, the energy relaxation time for the 10 % Ge case is lower than for the 40 %
Ge case, which is an indication of the higher optical phonon scattering rate in the 10 % Ge case
compared to the 40 % Ge.
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Figure 6.2: Low field carrier mobility together with higher-order mobilities as a func-
tion of the Ge composition. The carrier mobility fits the data from [8]
quite well. The minimum of the mobilities is at 40 %, while a high in-
crease of the mobility values can be observed for Ge composition greater
than 80 %.
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Figure 6.3: The energy relaxation time (left) and the second-order relaxation time
(right) for a Ge mole fraction of 10 % and 40 % as a function of the carrier
energy. For the 10 % Ge case the relaxation times are lower than for the
40 % Ge case.
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Figure 6.4: Carrier velocities for different doping concentrations as a function of the
electric field and for different Ge compositions. For high fields the veloc-
ities are independent of the doping concentrations, while the velocities
for low Ge compositions are higher than for the 40 % case.

The velocities for the same doping concentrations as for the higher-order transport parameters
are shown in Fig. 6.4. For high electric fields the values of the velocities are independent of the
doping concentrations, while their maximum values are reduced in the 40 % Ge case. For Ge
composition higher than 40 % the velocity would increase, due to the rise of the carrier mobility
for Ge composition greater than 40 % as can be seen in Fig. 6.2.

The kurtosis of a 100 nm channel length n+nn+ structure is presented in Fig. 6.5 for pure Si
and for SiGe with a Ge composition of 40 %. An electric field of 50 kV/cm in the middle of
the channel has been applied. As can be observed in the channel, the kurtosis of the 40 % Ge
case is approximately 0.85, while the kurtosis in the Si case is 0.8. The maximum values at the
beginning of the drain region is 1.4 in Si and 1.3 in SiGe, respectively. The kurtosis in 40 %
Ge is closer to unity than for the Si case, which is an indication that the carrier distribution
function of 40 % Ge is closer to a heated Maxwellian than in pure silicon. This is also visible
in Fig. 6.6.

Next, investigations concerning the empirical factor c of the closure relation of the six moments
model in SiGe are carried out. The sixth moment from MC simulations divided by the analytical
expressions (2.124) is shown in Fig. 6.6. The lower order moments from equation (2.124) has
been used from MC. It has been demonstrated that the value 2.7 is as well the best choice in
SiGe and is even improved compared to the Si case, which is also pointed out in Fig. 6.6.
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Figure 6.5: Kurtosis for a 100 nm n+nn+ structure for Si and SiGe. In the channel
region the kurtosis of SiGe is higher than in Si, while the kurtosis of Si
exceeds the one of SiGe at the beginning of the drain region.
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Figure 6.6: Sixth moment obtained by MC simulations divided by the expression
from equation (2.124) for different values of c. The value 2.7 is also a
very good choice in SiGe and is even improved compared to Si.
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6.1.2 Gallium Arsenide

The carrier mobility together with the higher-order mobilities are presented in Fig. 6.7. As
demonstrated, µ0 is very high for a doping concentration of 1015 cm−3 compared to Si, which
makes GaAs very attractive for high electron mobility transistors (HEMT) [167–171]. Lower
values of µ1 and µ2 can be observed for doping concentrations of 1015 cm−3 and 1017 cm−3, while
for high doping concentrations, the values of all three mobilities are comparable.
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Figure 6.7: Carrier mobility and higher-order mobilities for GaAs as a function of
the lateral electric field. The values of the mobilities are very high with
respect to the ones for Si.

The energy relaxation time and the second-order energy relaxation time for different dopings as
a function of the kinetic energy is presented in Fig. 6.8. As depicted, the value of τ1 is higher
than in Si or SiGe and the peak corresponds to the kinetic energy of 100 meV.
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Figure 6.8: Energy relaxation time and the second-order relaxation time for GaAs
obtained for different doping concentrations as a function of the kinetic
energy. The energy relaxation time has its maximum at 100 meV, while
the shape of the second-order energy relaxation time is completely dif-
ferent compared to the energy relaxation time.

Different relaxation times can be observed for different doping concentrations for energies below
150 meV, while for high kinetic energies τ1 and τ2 are doping concentration independent. Note
that the shape of τ1 and τ2 is different compared to Si and SiGe, where these values are more
or less equal. The reason of the strong decrease of the relaxation times at 120 meV is the
transition of the carriers from the light effective mass valley (Γ-valley) to the heavy effective
mass (L-valley). In Fig. 6.9 the velocity for doping concentrations of 1015 cm−3, 1017 cm−3, and
1019 cm−3 are plotted as a function of the driving field. This velocity behavior in GaAs can be
explained in a two valley picture [9] similar to the shape of the relaxation times as demonstrated
in Fig. 6.10. Here the valleys around the Γ and L points of GaAs are shown. The Γ-valley
and the L-valley have effective masses of m∗ = 0.063m0 and m∗ = 0.55m0, respectively. Due to
the light effective mass, the carrier mobility of the Γ valley is high, while the mobility decreases
in the L-valley due to the heavy mass. Such a behavior related to different effective masses
in each valley of GaAs leads to the decrease of carrier velocity for high fields as demonstrated
in Fig. 6.9. However, the maximum carrier velocity in GaAs is more or less twice as high as in
Si and therefore the kinetic energy of the carriers is four times larger than in Si. This is also
reflected in Fig. 6.11.

Here, the kurtosis of a n+nn+ structure with a channel length of 100 nm in GaAs and Si is given.
As can be observed, the kurtosis in GaAs is higher in the channel and at the beginning of the
drain region than in Si, which is an indication of the higher influence of the energies in GaAs
on the distribution function than in Si. This is depicted in Fig. 6.12. Here, the closure relation
investigations of the six moments model concerning the empirical factor c of equation (2.124) is
shown and compared to the Si case. As can be observed 2.7 is also a very good choice for c in
GaAs.
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Figure 6.9: The carrier velocity for different doping concentrations as a function of
the driving field. For a field of 5 kV/cm the carrier velocity has its max-
imum, while for high fields the velocity decreases.

Figure 6.10: Γ- and L-valleys of GaAs are shown. For low fields the carriers are in
the light hole Γ-valley, while for high-fields the carriers are in the upper
heavy hole valleys, decreasing the carrier velocity (after [9]).
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Figure 6.11: Kurtosis profile of the n+nn+ structure with a channel length of 100 nm
of GaAs and Si. The kurtosis at the end of the channel is lower in GaAs
than in Si, while the kurtosis of GaAs is beyond Si at the beginning of
the drain region.
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Figure 6.12: Sixth moment obtained by MC simulations divided by the analytical ex-
pression from equation (2.124) for different values of c. The lower-order
moments for equation (2.124) have been taken from MC simulations.
Note that c = 2.7 is also a good choice in GaAs.
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’A man may die, nations may rise and fall, but an

idea lives on.’

Albert Einstein

Chapter 7

Summary and Conclusion

TO EFFICIENTLY characterize carrier transport in the inversion layer of deca-nanometer de-
vices, a higher-order transport model for a two-dimensional electron gas based on Subband

Monte Carlo tables has been developed. The first six moments of Boltzmann’s transport equa-
tion are considered and compared to device-Subband Monte Carlo simulations. Fully depleted
ultra thin body SOI MOSFETs with several channel lengths are the objects of investigations.
As a consistency check, for long channel devices (≈ 1000 nm) all models converge to the same re-
sults. With decreasing channel lengths down to 100 nm, the drift-diffusion model underestimates
the current compared to the reference Subband Monte Carlo device simulator, while the energy
transport and the six moments model can accurately reproduce the reference results. The error
of the current of the energy transport model increases rapidly below a channel length of 80 nm
and becomes even larger than the error of the drift-diffusion model at 40 nm. The error of the six
moments model is about 17 % for a critical channel length of 30 nm, while the errors of the drift-
diffusion and the energy transport model are at −20 % and 55 %, respectively. A comparison of
a very sensitive quantity, the transit frequencies of the drift-diffusion, energy transport, and the
six moments model has been carried out. The error of the drift-diffusion, energy transport, and
the six moments model is at −40 %, 40 %, and 18 % for a channel length of 30 nm, respectively.
The inaccuracy of the drift-diffusion model in the transit frequency is twice as large as in the
current. The developed six moments model for carrier transport in inversion layers yields very
accurate results through the whole scattering dominated regime and outperforms the energy
transport and the drift-diffusion model in deca-nanometer channel length devices.

Furthermore, a detailed study concerning the impact of surface roughness scattering and quan-
tization on higher-order transport parameters is given for the homogeneous inversion layer and
in a whole device. It has been demonstrated that the influence of surface roughness scattering
on the carrier mobility within low fields is higher than for the higher-order mobilities, while
the relaxation times are unaffected by surface roughness scattering, due to the elastic nature of
the process. The influence of quantization on transport parameters is presented by a compari-
son between Subband Monte Carlo simulations and three-dimensional bulk Monte Carlo data.
Additionally, the behavior of higher-order macroscopic models for a three-dimensional electron
gas has been investigated using n+nn+ test-structures. Here, short channel effects as well as
the validity of macroscopic models are studied and benchmarked against the Spherical Har-

monics Expansion approach. The increasing error of the models for decreasing channel lengths
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is demonstrated. Investigations concerning the closure relation of the six moments model are
given. It shows that the empirical factor of the closure relation of the three-dimensional electron
gas can be used also in a quantized system of a two-dimensional electron gas and in material
alloys such as SiGe and GaAs. In order to use higher-order macroscopic transport models in
material alloys, higher-order transport parameters are extracted and discussed.
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[111] S. Selberherr, W. Hänsch, M. Seavey, and J. Slotboom, “The Evolution of the MINIMOS
Mobility Model,” Archiv für Elektronik und bertragungstechnik, vol. 44, pp. 161–171, 1990.

[112] C. Jungemann and B. Meinerzhagen, Hierachical Device Simulation The Monte Carlo
Perspective. Springer Wien New York, 2003.

[113] H. Wang, R.Jaszczak, and R. Coleman, “Monte Carlo Modeling of Penetration Effect for
Iodine-131 Pinhole Imaging,” IEEE J. Nuclear Science, vol. 43, pp. 3272–3277, Dec. 1996.

[114] G. Fishman, Monte Carlo Concepts, Algorithms, and Applications. Springer Series in
Operations Research, 1996.

[115] M. Newman and G. Barkema, Monte Carlo Methods in Statistical Physics. Oxford Uni-
versity Press, 2002.

[116] T. Yu and K. Brennan, “Monte Carlo Calculation of Two-Dimensional Electron Dynamics
in GaN&lGaN Heterostructures,” J.Appl.Phys., vol. 91, pp. 3730–3736, Mar 2002.

[117] H. Kosina, M. Nedjalkov, and S. Selberherr, “The Stationary Monte Carlo Method for
Device Simulation. I. Theory,” Journal of Applied Physics, vol. 93, pp. 3553–3563, Mar
2003.
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