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Kurzfassung

THERMOELEKTRISCHE GENERATOREN sind Bauteile zur direkten Umwandlung von
Wärme in elektrische Energie. Ihre herausragende Ausfallsicherheit beruhend auf einem

Aufbau ohne beweglicher Teile macht sie zu attraktiven Kandidaten für eine Reihe von Anwen-
dungen, jedoch ist die Verwendung heutiger Thermogeneratoren durch ihre niedrige Effizienz und
hohe Kosten auf spezielle Nischen eingeschränkt. Die Optimierung thermoelektrischer Bauele-
mente für thermische und geometrische Gegebenheiten benötigt eine physikalisch basierte Simu-
lationsumgebung. Die vorliegende Arbeit befasst sich mit der Erweiterung und Anwendung der
Halbleiter–Bauelementsimulation auf thermoelektrische Strukturen.

In einem theoretischen Teil wird die Beschreibung des Ladungsträgertransports entwickelt. Mod-
elle, die auf verschiedenen Näherungen des Streuoperators der Boltzmann–Gleichung beruhen
werden systematisch mit Hilfe der Momentenmethode hergeleitet und mit einem phänomenolo-
gischen Zugang verglichen. Der theoretische Seebeckkoeffizient, der eine bedeutende Rolle in
thermoelektrischen Bauteilen spielt, wird diskutiert und mit Messdaten verglichen.

Nachfolgend sind im materialspezifischen Teil der Arbeit wichtige Eigenschaften thermoelek-
trischer Materialien sowie mögliche Ansätze zur Optimierung aufgezeigt. Nach einem Überblick
der wichtigsten thermoelektrischen Materialien sowie deren Eigenschaften steht Bleitellurid im
Mittelpunkt des Interesses, welches ein interessantes Material für den mittleren Temperaturbe-
reich darstellt. Weiters werden detaillierte physikalische Modelle für alle simulationsrelevanten
Grössen ausgeführt.

Der praktische Teil beinhaltet Fallstudien für konventionelle Thermogeneratoren sowie für eine
neuartige Diodenstruktur. Simulationsergebnisse von Strukturen basierend auf Silizium sowie
Bleitellurid werden mit Messdaten verglichen, wobei exzellente Übereinstimmung erreicht wird.
In einer ausführlichen Simulationsstudie werden die Einflüsse verschiedener Entwurfsparameter
wie Geometrie, Materialzusammensetzung und Dotierprofil auf das Bauteilverhalten untersucht.
Weiters ist das Verhalten unter nicht-idealen thermischen Umgebungsbedingungen Gegenstand
der Untersuchung. Die neuartige Diodenstruktur weist eine hohe Flexibilität bei der Anpassung
an vorgegebene Bedingungen auf.
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Abstract

THERMOELECTRIC GENERATORS are devices for direct conversion of heat into electric-
ity. Their outstanding reliability due to the lack of moving parts makes them attractive

candidates for a series of applications. However, today’s thermoelectric devices are limited by
their low efficiency and high costs. Thus, their operation is restricted to highly specialized niches.
Optimization of thermoelectric devices to given thermal and geometrical constraints depends on
a physics–based simulation framework. This work focuses on the extension and application of
semiconductor device simulation, which is a well established tool in mainstream microelectronics
to thermoelectrics.

In the theoretical part, proper transport description for thermoelectric devices is developed.
Models based on different approximations of the scattering operator within Boltzmann’s equa-
tion are systematically derived by the method of moments and compared to a phenomenolog-
ical approach based on the principles of irreversible thermodynamics. Models for the Seebeck
coefficient, which play a major role in thermoelectric devices are discussed and compared to
measurement data.

A material related part highlights important properties of thermoelectric materials as well as
mechanisms for possible optimization. After an overview of the most important thermoelectric
materials and their attributes, the focus is put on lead telluride, which serves as a thermoelectric
material in the intermediate temperature range. A detailed discussion on the physical modeling
of several simulation–relevant material properties is carried out.

The practical part incorporates case studies of both conventional thermoelectric devices as well
as a novel structure containing a large scale pn–junction. Simulation results for both silicon
and lead telluride structures are compared to measurement data, whereby excellent agreement
is achieved. In a detailed simulation study, the influences of several design parameters like
geometry, material composition, and doping profiles on the device performance of thermoelectric
generators are assessed. Furthermore, the device behavior is discussed within non–ideal thermal
environments. The novel structure incorporating a large scale pn–junction turns out to be highly
adaptable to given environmental conditions.
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’The best way to predict the future is to invent it.’

Alan Kay

Chapter 1

Introduction

AVAILABILITY OF ENERGY is an important cornerstone for wealth and social stability.
The continuous economical growth in the last two centuries went hand in hand with a

steady growth of energy demand in the industrial, public, and private sector. While very early
facilities had to deal with locally available energy sources, the beginning of the oil era with the
vision of apparently unlimited resources has brought an immense impact on industry, culture,
lifestyle, but also environment. These days, the end of fossil fuels as the major energy source
for the civilization in its current way is foreseeable, and environmental concerns have become
topics of international political discussions and daily news.

In the last decades, uprising efforts in science and engineering to increase fuel efficiency was
by far not able to compensate economical growth in order to at least keep the consumption of
limited fossil reserves on a constant level. The current scenario incorporates increasing energy
demand facing short running resources, which implies the need for tremendous efforts on an exit
strategy. While the awareness about the worth of our energy supply has to generally increase,
a new consciousness of consumption has to gain impact on the international markets. Politics
has to honestly deal with the problem in a holistic point of view and provide the background
for the right measures.

The role of science and engineering to develop technologies for providing electric energy from
renewable sources on a broad basis incorporates an immense responsibility for environment,
living space, wealth, and security for the next generations. Therefore, ecological, economical, and
social considerations have to enter engineering processes beside technical excellence. On the one
hand, decentralized power facilities based on renewable resources will play a significant role in the
future. On the other hand, the potentials of improvement in efficiency has to be exhausted in a
wide range of applications. Therefore, both existing technologies have to be further developed as
well as new innovative and unconventional ideas have to enter well established solutions. Besides
the power consumption optimization of single devices and components, interdisciplinary research
has to combine single optimization potentials by system wide considerations to intelligent global
solutions.

Thermoelectric energy conversion is one of the technologies with a potential to play a role
in future energy technology. It incorporates the direct energy conversion from temperature
gradients to electric energy, whereby the fundamental existence of its underlying physical effect
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CHAPTER 1. INTRODUCTION

has been well known for almost two centuries. However, in spite of ongoing efforts, their low
conversion efficiency currently limits the application of thermoelectric devices to a few highly
specialized niches. In the last decades, tremendous efforts on material research has provided both
novel materials for thermoelectric energy conversion as well as a principle understanding of the
demands for higher efficiencies. Thus, a directed search for according materials has been made
possible. Furthermore, recent developments in nanotechnology and low dimensional systems
include promising potentials for increased efficiencies.

The contribution of this thesis is a fruitful extension and application of semiconductor device
simulation to thermoelectric devices. Technology Computer Aided Design (TCAD) has been
established as an important tool to shorten development cycles in mainstream microelectronics.
Based on a physically rigorous framework, it incorporates the possibility of device investigations
by elaborate simulation studies as well as the optimization of several device parameters for given
constraints.

Chapter 2 starts with an overview of important milestones in the history of thermoelectrics.
Furthermore, the three thermoelectric effects as well as their relationships are discussed on a phe-
nomenological basis. A glimpse on current as well as potential future applications accomplishes
this chapter.

The focus of Chapter 3 is directed to the proper description of electrical transport in semi-
conductors. After a delimitation within the hierarchy of physical simulation approaches, the
fundamentals of macroscopic transport models are sketched. The main part incorporates the sys-
tematic derivation of macroscopic transport models from Boltzmann’s equation by the method
of moments. Thereby, different approximations of the scattering operator are investigated and
the resulting equations are summarized in a final comparison. Based on the equations of up to
the third moment, a transport model is formulated assuming local thermal equilibrium. The
compatibility of this model with the principles of phenomenological irreversible thermodynam-
ics is demonstrated. Special attention is payed to the Seebeck coefficient by a comparison of
measurement data with its theoretical formulation inherently contained in the transport model.

Chapter 4 is devoted to materials for thermoelectric energy conversion. Based on the thermo-
electric figure of merit, the influence of single material properties on device characteristics are
investigated and possibilities for performance optimization are discussed. In addition, relevant
parameters of the three most important material classes for thermoelectric applications are pre-
sented. Besides silicon–germanium alloys, the material systems of lead telluride and bismuth
telluride are briefly introduced.

In Chapter 5, the material properties of lead telluride are collected. Thereby, special attention
is drawn to the temperature dependence of several physical quantities. One of its ternary alloys,
lead tin telluride is used to highlight interesting aspects of the physical behavior. Models of all
relevant parameters for device simulation are formulated based on comprehensive measurement
data available in literature as well as theoretical considerations.

Finally, Chapter 6 contains case studies of both classical thermoelectric devices and a novel
structure incorporating a large scale pn-junction. The influences of several design parameters on
device behavior are assessed in elaborate simulation studies. Results for both silicon and lead
telluride devices are compared to measurement data, whereby excellent agreement is achieved.
Furthermore, the influence of non-ideal thermal environments on device performance are dis-
cussed. Chapter 7 gives some closing remarks.
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’Any sufficiently advanced technology is indistin-
guishable from magic.’

Arthur C. Clarke

Chapter 2

Fundamentals of Thermoelectric

Devices

THE HISTORY OF THERMOELECTRIC DEVICES began back in 1821, when Seebeck
discovered the deviation of a compass needle when keeping the two junctions of different

metals at different temperatures [1]. Today’s understanding of his discovery, the formation of a
potential difference due to the temperature slope, which further causes an electric current was
named after his discoverer, the Seebeck effect. Thirteen years later, Peltier observed that an
electrical current driven through a junction of two different metals causes a temperature change
at the junction [2]. However, it took until 1838 to discover an important property of Peltier’s
experiment, when Lenz realized, that both material combination and current direction control
if the junction is heated or cooled [3]. This behavior is known today as the Peltier effect. The
theoretical explanation as well as the connection between the Seebeck and the Peltier effect has
been performed by Thomson (later Lord Kelvin) within the framework of thermodynamics in
1851 [4]. Furthermore, he predicted the third thermoelectric effect, later named Thomson effect.

An important foundation for the theory of thermoelectric materials was built by Altenkirch
[5,6]. He concluded that high quality thermoelectric materials are characterized by high Seebeck
coefficients and electrical conductivities, while thermal conductivities should be low. Based on
this attributes, the thermoelectric figure of merit has been formulated later, which became an
important cornerstone of the systematic search for novel thermoelectric materials. Due to the
availability of first artificially manufactured semiconductors, Ioffe intensified the research on
semiconductor based thermoelectric devices in the mid of the last century and formulated the
basis of modern thermoelectric theory [7, 8]. The efficiency of thermoelectric generators could
be raised to about 5 % due to the favorable material properties of semiconductors compared to
metals.

Intense material research in the sequel lead to the successive discovery of materials with in-
creasing thermoelectric figures of merit suitable for several temperature ranges. Independent of
the materials used, the basic structure of thermoelectric generators has been established as a
combination of n–type and p–type semiconductor rods, which are arranged thermally parallel
and electrically serial. In the following, this chapter gives an overview about the thermodynamic
foundation as well as today’s and possible future applications.
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CHAPTER 2. FUNDAMENTALS 2.1. Thermoelectric Phenomena

Figure 2.1: Thermocouple made of two metal rods.

2.1 Thermoelectric Phenomena

In the following section, the three thermoelectric phenomena are described in the order of their
discovery. These effects build a phenomenological cornerstone for the description of thermoelec-
tric materials as well as the functioning basis for several thermoelectric devices and applications.

2.1.1 Seebeck Effect

Named after his discoverer, the Seebeck effect describes the occurrence of an electrical voltage
induced by a temperature gradient. While the theoretical interpretation in Seebeck’s pioneering
paper [1] is surpassed by his general discovery by far, he also gave an overview of several material
combinations usable in thermocouples as illustrated in Fig. 2.1.

Two rods of different materials are soldered together and the soldered points are held at the
temperatures TH and TC, respectively maintaining a temperature difference ΔT and thus an
according temperature gradient along the rods. On device level, the given temperature difference
causes a certain voltage measured at the device’s contacts

USeebeck ∝ ΔT . (2.1)

In contrast to the frequently occurring idea in literature, that the Seebeck effect is based on
the temperature dependence of the contact potential, the reason has to be looked for inside
the device. Having a closer look on the microscopic description, the definition of the Seebeck
coefficient is obtained by approaching infinitesimal small temperature differences. Then, a local
potential gradient is caused by an according temperature gradient, which are connected by the
temperature dependent Seebeck coefficient. Thus, the definition of the Seebeck coefficient reads

α(T ) = lim
ΔT→0

ΔU

ΔT
(2.2)

The total voltage measured at the ends of one rod is given by the path integral along the rod as

USeebeck = ϕ2 − ϕ1 =

x2�
x1

∂xϕ dx =

x2�
x1

α(T )∂xT dx =

T2�
T1

α(T )∂xT dT . (2.3)
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For the entire device, the path integral around the rods has to be evaluated. Beside the two
constitutions of the single rods, the according contact potentials at the soldered points have to
be added. However, the contact potentials cancel out each other and thus the voltage is given
by

USeebeck =

Tc�
T0

αa(T )∂xT dT +

TH�
TC

αb(T )∂xT dT +

T0�
TH

αa(T )∂xT dT . (2.4)

By averaging the temperature dependent Seebeck coefficients along the rods, a combined coef-
ficient for the material couple under given thermal conditions can be given as the difference of
the single constituents of each rod

USeebeck = (ᾱb − ᾱa)

TH�
TC

∂xT dT = (ᾱb − ᾱa) ΔT . (2.5)

Normally, two materials with Seebeck coefficients of different signs are chosen in order to gain
an accordingly large voltage.

While the Seebeck coefficient of most metals is in the range of 1–10 µV/K, values of 1 mV/K
and more are obtained with semiconductors. Both metals with positive and negative Seebeck
coefficients exist. The choice of according material combinations depends on the intention of
use. For example in measurement applications, high total Seebeck coefficients are less important
than a linear behavior in the desired temperature range. In semiconductors, the Seebeck coeffi-
cient can be varied by appropriate doping. While n–type semiconductors have negative Seebeck
coefficients, the ones of p–type materials are positive. Quantitative values obtained in semi-
conductors can be obtained by analysis of carrier transport. Based on Boltzmann’s equation,
expressions for the coefficients are derived throughout Chapter 3.

2.1.2 Peltier Effect

To some extent, the Peltier effect describes the phenomenologically reverse effect of the Seebeck
effect. However, the physical effect is different, since the Peltier effect is only present at the
presence of an electric current, while the Seebeck effect also causes a voltage at open circuit con-
ditions. An electrical current driven through two connected rods causes a temperature difference
between the two soldered points. Accordingly, heat is absorbed and rejected, respectively and
thus a heat flux throughout the rods is induced. The heat flux at the junctions can be under-
stood by considering energy conservation within the junction and a change of the total energy
of the carriers when passing the junction.

The heat flux throughout the rods depends on the charge current as well as the Peltier coefficient
and is given by

J
q
Peltier = πabqJ (2.6)

where the Peltier coefficient of a junction πab is defined by the difference of the coefficients of the
constituent materials πab = πa − πb. The direction of heat flow at a junction is thus defined by
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the choice of materials as well as the direction of the passing current. Furthermore, the Peltier
coefficients are temperature dependent, just as the Seebeck coefficients.

Peltier coefficient and Seebeck coefficient are not independent of each other. From both a
systematic approach using the method of moments as carried out in Chapter 3 as well as phe-
nomenological thermodynamics (first Kelvin relation) [9], it follows that

πab = αabT . (2.7)

2.1.3 Thomson Effect

Beside the Seebeck and Peltier effect, Thomson (later Lord Kelvin) observed the third ther-
moelectric effect. Assuming a homogeneous conductor with a temperature gradient applied,
carriers traversing the temperature gradient gain or release energy depending on their relative
direction to the temperature gradient. Applying local energy balance, the energy change of
the traversing carriers is absorbed or released as heat, respectively. The total Thomson heat
absorbed or released along one rod is given by

Jq
Thomson =

TH�
TC

χ(T )J dT (2.8)

where χ(T ) depicts the temperature dependent Thomson coefficient. Thomson and Seebeck
coefficient are connected by the second Kelvin relation

χ = T
dα

dT
(2.9)

as carried out in the following section.

2.1.4 Thermodynamic Relations

As already indicated, the three thermoelectric effects are not independent from each other and
thus the according coefficients are related. In the sequel, these relations are discussed on the
basis of fundamental thermodynamics [9–11].

While all three effects describe reversible phenomena, further two irreversible processes occur
within the structure. First, each electrical current causes the dissipation of Joule heat when
passing a material with a certain electrical resistance. Second, heat is conducted within the
device as described by Fourier’s law.

In the following derivations, the device illustrated in Fig. 2.1 is considered as electrically short–
circuited for the sake of brevity. Thus, no external electric voltage is induced and no electric
power is dissipated. Furthermore, the cold and the hot contact are connected to thermal reser-
voirs. Energy losses by Joule heating are very small and can be safely neglected. Considering
all three thermoelectric effects, the application of total energy conservation within the entire
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device including the reservoirs for a closed loop reads

JαabΔT

� �� �
Seebeck

= Jπab(TH) − Jπab(TC)

� �� �
Peltier

+ J

TH�
TC

χb dT − J

TH�
TC

χa dT

� �� �
Thomson

. (2.10)

There, the Seebeck effect maintains a driving force causing a current running throughout the
device. This current itself induces the Peltier effect as well as the Thomson effect. Introducing
the temperature difference ΔT as TH − TC and dividing (2.10) by ΔT as well as J results in

αab =
πab(TC + ΔT ) − πab(TC)

ΔT
+

1

ΔT




TC+ΔT�
TC

χb dT −
TC+ΔT�
TC

χa dT


 . (2.11)

Letting ΔT approach zero, the energy relation between the three effects is obtained

αab =
dπab

dT
+ χb − χa . (2.12)

Next, the net change of entropy of the entire structure including the heat reservoirs can be
assumed to be zero due to the neglect of irreversible processes. Accordingly, contributions from
all three effects cancel

ΔS = −J
πab(TC + ΔT )

TC + ΔT
+ J

πab(TC)

TC
− J

TH�
TC

χb

T
dT + J

TH�
TC

χa

T
dT = 0 . (2.13)

Division of (2.13) by J as well as extending the Peltier term by ΔT/ΔT results in�
−πab(TC + ΔT )

TC + ΔT
+

πab(TC)

TC

�
ΔT

ΔT
=

TH�
TC

χb

T
dT −

TH�
TC

χa

T
dT . (2.14)

Again letting ΔT approach zero, the relation between Peltier and Thomson coefficients is ob-
tained as

− d

dT

�πab

T

�
=

χb − χa

T
. (2.15)

Expansion of the derivative yields a more convenient formulation

πab

T
=

dπab

dT
+ χb − χa . (2.16)

Inserting (2.12) to (2.16) yields the correlation between Seebeck and Peltier effect, which has
already been observed by Thomson and is well known as the first Kelvin relation

πab

T
= αab . (2.17)

Furthermore, substitution of the Peltier term in (2.16) with (2.17) yields the correlation between
Seebeck and Thomson coefficients, which is known as the second Kelvin relation

T
dαab

dT
= χa − χb . (2.18)

The same result can be obtained from Onsager’s reciprocal relations of irreversible thermody-
namics [12] which are a cornerstone within the description of linear irreversible processes and
are applied in Section 3.5.9 to analyze macroscopic transport models.
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2.2 Applications of Thermoelectric Devices

Thermoelectric applications can be generally subdivided by the direction of energy conversion.
While the Peltier effect is used within thermoelectric cooling devices, the Seebeck effect is
responsible for the conversion of temperature gradients to an electrical voltage.

The initial configuration of thermoelements as illustrated in Fig. 2.1 is used for temperature
measurement applications [13–15], where the conversion efficiency plays an incidental role beside
the linearity between generated voltage and temperature difference within a desired measurement
range. Typical materials for thermocouples used in temperature measurement applications are
alloys of nickel with chromium as well as aluminum and copper, iron, platinum, and rhodium [16].
Due to the considerable temperature range of about −270 ◦C to 3000 ◦C covered by available
thermoelements, they can be found in measurement applications in almost every process control
system in chemical industry.

In spite of the early discovery of the thermoelectric effects almost two centuries ago, a widely
spread usage in commercial power conversion applications has not been reached until today due
to the low conversion efficiencies. While the most metallic configurations are not suitable because
of their low Seebeck coefficients, the introduction of semiconductors as thermoelectric materials
enabled maximum conversion efficiencies in the range of 5–10 % [17, 18], whereby theoretically
maximum values are predicted in the range of 20 % [19–23]. The efficiencies are still very low
in absolute terms, but it enables a limited economical usage of thermoelectric generators to
niche applications, where their outstanding reliability outweighs the low conversion efficiencies.
Furthermore, reported power densities are rather low, which is another limitation for some
weight sensitive applications.

However, due to their solid state nature and the lack of moving parts, thermoelectric generators
convince by good lifetime, extremely long maintenance intervals, and thus high reliability. While
these qualities are beneficial in a series of remote applications, under extreme conditions new
applications have even been enabled. In the sequel, the most prominent are briefly summarized
[24–26].

Wherever very cheap energy is available, the drawback of low conversion efficiency is relativized.
A good example is the application of thermoelectric generators as power sources for measurement
stations in oil and natural gas facilities [27]. While power consumption in measurement appli-
cations is relatively low, the power demand can be manifold for cathodic protection of pipelines
and reach several hundreds watts. On unmanned offshore oil rigs, thermoelectric generators
are used as security backup power source in order to establish a defined state in emergency
cases [24].

Some further examples are seismic measurement stations for earthquake prediction as well as
early remote communication gear, as radio and TV relay stations [24]. Wherever the waste heat
can be used for heating, thermoelectric generation of electric energy can be favorable as well.
Thus, some research stations and radio communications gear in the arctic and antarctic region
are equipped with thermoelectric generators [28].

Thermoelectric active parts in most fossil fueled thermoelectric generators consist of either
lead telluride or one of its alloys, or silicon–germanium alloys due to their fitting operational
temperature range. While lead telluride can be used at temperatures of up to 900K, SiGe
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enables higher temperatures of up to 1300K. The biggest limitation for fossil–fueled devices is
the availability of fuel, and in some cases also air to maintain proper combustion. An approach
to overcome these limitations in even more extreme situations is to use radioisotopes as a heat
source. In most reported terrestrial applications, strontium–90 has been applied, which has a
half life of about 29 years and thus acts as a continuous power source over a long time. However,
the need for proper shielding as well as high costs and, last but not least, security issues and
the availability of nuclear fuel limits their use to governmental projects. Probably the most
prominent application of radioisotope powered thermoelectric generators is as a power source
on space vehicles such as satellites and research gear on several missions [29, 30].

2.3 Future Applications

Beside the already established niches, further increase of efficiency and power density as well
as the ongoing development of energy costs can open a series of additional applications in
economically competitive areas to conventional energy sources. Wherever a lot of waste heat
is produced in a considerable temperature range, a good chance exists to establish increased
efficiencies by thermoelectric devices [31].

In the automotive sector, it is thinkable to replace the alternator by thermogenerators driven
by waste heat at both radiator and exhaust gas system [32, 33]. Depending on the size of the
vehicle, an increase of the fuel efficiency of up to 5% can be achieved with today’s technology [34].
Furthermore, the emerge of hybrid vehicles opens a wide application of thermoelectric devices
as additional energy source for battery charging [35].

Sufficiently cheap thermoelectric modules could be used to increase the efficiency in stationary
industry and power generation facilities beside other measures such as coupling to district heating
systems. Solar energy is thinkable as a clean power source for an alternative to caloric power
plants. Thermoelectric devices could be used to increase the efficiency of solar cells. Materials
having their maximum figure of merit at relatively low temperatures such as bismuth telluride
and its alloys could be used for geothermal power sources.

In the cooling sector, Peltier modules with sufficiently high efficiencies would be an attractive
alternative to conventional thermodynamic machines [36]. Refrigerators would benefit from
several advantages of solid state cooling such as silence and long life times as well as the absence
of environmentally hazardous coolants. On a much smaller scale, within integrated devices such
as power amplifiers and processors, the steady increase of power densities requires sophisticated
thermal management both within the device as well as on a packaging level [37–40].

Beside the replacement and improvement of established technologies, thermoelectrics is one of
the technologies having the potential to open completely new applications. The lifetime of mobile
and integrated devices is mostly limited by their energy sources. Therefore, a replacement of
classical batteries by according self–recharging systems is highly desired. Ongoing reduction
of the power consumption of VLSI circuits makes them compatible to available natural energy
sources incorporated in the environment of usage.

Recently, the term “energy harvesting” has been established based on the idea of energy conver-
sion from even very small ambient sources to electrical energy. It incorporates the exploitation
of several present forms of energy by according converters [41,42]. While mechanical vibrations
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can be harvested by piezoelectric as well as electrostatic and electromagnetic devices [43, 44],
especially wireless compact devices are thinkable to power themselves from ambient radio fre-
quency electromagnetic radiation. Light serves as the energy source converted by solar cells and
thermoelectric devices gain potential from ambient temperature differences.

Thereby, the power characteristics with respect to time of each conversion mechanism has to
be adapted to the needs of the application. Thermoelectric generators are thinkable to continu-
ously harvest small amounts of energy for charging a battery or capacitor, which itself provides
comparable high power over a short time. Especially when different technologies are combined,
power management has to be applied. Furthermore, the operating cycles of the application can
be adapted to the energy available [45].

Despite of the single technologies possible power densities, the ideal power source varies from
application to application. For example, personal radio communication gear, mobile comput-
ing devices, health monitoring systems [46], or simple wristwatches [47] could be recharged by
a combination of piezoelectric and thermoelectric converters within clothes. While available
mechanical energy during walking can be converted by shoe inserts [48, 49], the temperature
difference between the human body and its ambiance can serve as the energy source for ther-
moelectric generators [50, 51].

Another energy harvesting application for thermoelectric devices is the exploitation of natural
temperature differences between air and soil [52,53]. Thereby, the soil’s thermal capacity causes a
delay in temperature evolution and the temperature difference changes its sign between daytime
and nighttime. In contrast to photovoltaic devices, there is always a potential for harvesting,
even in the absence of sunlight.

The slowly closing gap between the energy consumption of single applications, especially in low
power microelectronics, and available devices for providing the energy needed on a regenerative
basis is documented by an impressive number of publications. However, there is still a long
way to go in order to make thermoelectrics competitive for a wider range of applications by
continuous efforts on increasing efficiency and power densities.
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’You can know the name of a bird in all the lan-
guages of the world, but when you’re finished, you’ll
know absolutely nothing whatever about the bird...
So let’s look at the bird and see what it’s doing —
that’s what counts.’

Richard Feynman
Chapter 3

Electrical Transport

THE FOLLOWING CHAPTER deals with the description of electrical transport within
semiconductors. Starting with an overview of different simulation approaches based on

either quantum mechanical or classical principles, the further focus is put on classical transport
based on Boltzmann’s equation. In the sequel, the two cornerstones of classical device simulation,
namely Poisson’s equation and Boltzmann’s equation are discussed followed by a glimpse on their
solution, the distribution function. Furthermore, models for the band structure are introduced
and their validity is discussed.

Macroscopic transport models based on Boltzmann’s equation are derived by the method of
moments, which is a powerful approach to obtain a series of weighted balance and flux equations.
Dependent on the number of involved equations, transport models of increasing complexity can
be derived. In this work, the highest order moment taken into account is the energy flux
equation, which is governed by the third weight in a geometric series of weights based on the
carrier momentum.

Within semiconductor device simulation, the simulation domain is subdivided into several sub-
systems comprising electrons, holes, and the lattice as illustrated in Fig. 3.1. For each the
electron and hole subsystem, moment–based equations are derived, while for the lattice, an
additional heat–flow equation has to be solved in the non–isothermal case. Energy can be
transferred between the single subsystems by scattering. Phonon scattering causes an energy
exchange between the carrier subsystems and the lattice. Carrier generation and recombination
is described as particle exchange between the electron and hole subsystem.

Introduction of the relaxation time approximation enables an analytical treatment of the scatter-
ing term. Dependent on the treatment of the stochastic part of Boltzmann’s equation, different
terms result in the equations. The two approaches of microscopic and macroscopic relaxation
times proposed by Stratton and Bløtekjær are applied.

Finally, an electrothermal transport model is formulated assuming local thermal equilibrium,
which is compatible to an approach based on phenomenological irreversible thermodynamics [54].
This transport model is the chosen for the case studies presented in Chapter 6, since the size
of the thermoelectric devices taken into account is far above the critical size where hot carrier
effects play a dominant role.
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Figure 3.1: Interactions between the subsystems of electrons, holes, and the lattice.
While solid lines depict particle exchange, dashed lines denote energy
exchange, after [54].

The validity of Onsager’s relations, which are a fundamental principle for thermodynamic equi-
librium is investigated for several transport models. Furthermore, special attention is devoted to
the Seebeck coefficient, which is a crucial parameter for thermoelectric applications and enters
the transport model as a link between the thermal and the electrical systems.

3.1 A Hierarchy of Simulation Strategies

Gordon Moore, one of the founders of Intel Corporation, predicted an exponential increase in
computing power available in the mid 1960s [55]. He stated the transistors on a chip to roughly
double every eighteen months. This rule, which has become known as Moore’s law, has turned
out to be true for the last four decades.

Technology Computer–Aided Design (TCAD) has become crucial to maintain the continuous
gain in transistor performance, which itself enables more and more powerful simulation tools
for engineering applications. While device design solely based on an experimental basis results
in long development cycles and enormous costs, simulation offers a fast and inexpensive way to
check and optimize device structures as well as their fabrication processes. With the tremendous
progress in mainstream CMOS design as a strong background, TCAD has also reached the
development process of novel and — from a CMOS point of view — more exotic devices.

The tools for numerical simulation in semiconductor device modeling can be separated in three
categories of hierarchical order as sketched in Fig. 3.2. Accurate device simulation is based on
an appropriate description of the underlying materials. Careful measurements of basic physical
and chemical material properties are a valuable foundation of several simulation strategies for
material description. Pseudopotential methods [56, 57] deliver the band structure as well as its
temperature dependence later used in bulk full band Monte Carlo simulations, which themselves
calculate parameters like carrier mobility and energy relaxation time for high order transport
models. Numerical simulation in material science not only performs parameter extraction for
several device simulation strategies, but also enables directed research for a possible synthesis of
certain materials with desired parameters. Practical application of first principle methods based
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Figure 3.2: Hierarchy of simulation approaches. Physically rigorous simulation ap-
proaches as well as measurement data are used to parametrize device
simulators, which can be based on either quantum mechanical or semi–
classical approaches. Device simulation results itself can be used to de-
velop compact models for circuit simulation.

on density functional theory (DFT) has been made possible in recent years by the ongoing
increase of available computing power [58].

Depending on the needs of the device structure to be described, several models of different
complexity can be derived. While all approaches have Poisson’s equation in common, the trans-
port description can be based on differently sophisticated physical principles. The simulation
of devices in the nanometer regime demands quantum–mechanical formulations, which are ei-
ther based on the Schrödinger [59–61] or the Wigner equation [62, 63]. Quantum effects can
be safely neglected in larger devices, and thus a semi–classical approach based on Boltzmann’s
equation may be chosen [64]. The Boltzmann transport equation can be either solved by Monte
Carlo methods [65], by the expansion of the distribution function into its spherical harmon-
ics [66, 67], or by moment–based methods [68, 69]. In contrast to the other approaches, the
Monte Carlo method is based on a computationally rather expensive statistical approach. The
Full band Monte Carlo method is by now the physically most rigorous approach to solve the
Boltzmann transport equation, because it relies on the exactly calculated band structure, and
is thus frequently used as a reference [70, 71].

Moment–based methods can be carried out to different orders. Depending on the number of
equations derived, the drift–diffusion model, energy transport models, or models of even higher
order can be achieved. The drift–diffusion model has been TCAD’s workhorse for many years
due to its outstanding numerical robustness and performance. From physically–based device
simulation, empirically derived compact models can be derived for lumped simulation of entire
circuits. Their parameters are obtained by parameter extraction from device simulation. Mixed–
mode simulation tools combine the approaches of device simulation and compact modeling.
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Thereby, device level simulation of one or more devices coupled with a set of devices described
by compact models is possible.

3.2 The Basic Equations

In this section, the two cornerstones of semi–classical device simulation are given — Poisson’s
equation and Boltzmann’s equation. While electrostatics is covered by Poisson’s equation, Boltz-
mann’s equation describes the propagation of the distribution function within a simulation do-
main. These two equations are solved in a self consistent manner for example in Monte–Carlo
simulators, often used as a reference for higher–order transport models which are derived from
the Boltzmann transport equation as well.

3.2.1 Poisson’s Equation

Poisson’s equation is a common constituent to all charge transport models for semiconductor
devices and serves as the link between the electrostatic potential and the charge distribution
within the device. It reads

∇r · (ǫ∇rϕ) = −q (p − n + NA − ND) , (3.1)

where ϕ denotes the electrostatic potential, ǫ the dielectric permittivity, n and p the electron and
hole concentration, respectively, and NA and ND the concentration of acceptors and donors. Its
derivation is straight–forward from Gauss’ law and the proper material equation for the quasi
stationary case [72]. In order to obtain a complete device description, Poisson’s equation has to
be solved self–consistently with the transport system in an iterative approach.

3.2.2 Boltzmann’s Equation

In this section, Boltzmann’s equation is introduced as an important foundation for semi–classical
transport description in semiconductor devices. In order to describe the complete device behav-
ior, theoretically every single carrier within the device would have to be described by solving
Newton’s classical equations of motion

dr

dt
= v =

1

�
∇kH , (3.2)

�
dk

dt
= F = −∇rH . (3.3)

Within these, a generalized force F with unique direction comprises the electric field as well as
other fields causing a driving force to carriers, such as a thermal gradient (Seebeck–, Peltier–
effect) or a magnetic field (Lorentz–force). This force is overlaid by forces with random direction
describing the microscopic thermal movement.

The Hamilton function H represents the total carrier energy and can be split into two parts: The
potential energy Epot and the kinetic energy Ekin. The potential energy incorporates the conduc-
tion and valence band edge energies Ec,v for electrons and holes, respectively, ΔEc,v considering
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band gap narrowing, and the electrostatic potential ϕ. Thus, H can be expanded as

H = Ec,v + ΔEc,v + sνqϕ� �� �
Epot

+ E����
Ekin

. (3.4)

For the sake of clarity, q denotes the elementary charge and does not incorporate the different
sign of the charges of electrons and holes. The different charge of electrons and holes is treated
by sν , which becomes −1 for electrons and 1 for holes.

Instead of keeping the focus on every single carrier, a statistical description is introduced. Ne-
glecting Heisenberg ’s uncertainty principle, each carrier is exactly described by its momentum
and position, so it takes a certain place within 6 dimensional (r,k)–space. The normalization
of all present carriers within the volume under investigation results in the distribution function,
which is the solution variable of Boltzmann’s equation. It incorporates the carrier density within
6–dimensional (r, k)–space.

In the sequel, the Boltzmann transport equation is derived from phenomenological consider-
ations and its range of validity is discussed. Formally, Boltzmann’s equation represents a
seven–dimensional integro–differential equation within the phase space (r, k, t). However, it
is accessible using a book–keeping background, which is presented in Section 3.2.2.1. Originally
formulated for the description of statistical mechanics of gases, it is the cornerstone for the
classical description of transport in semiconductors as well. The transport models derived in
this thesis later on are based on the Boltzmann transport equation.

3.2.2.1 Phenomenological Approach

Since the Boltzmann transport equation represents a book–keeping equation for the distribution
function, it can be derived from a phenomenological point of view illustrated in Fig. 3.3 for each
spatial and momentum dimension. The net increase of carriers within the volume ΔrΔk can
only be caused by a net in–flux of carriers in both real and momentum space or net in–scattering.
Thus, the change of carriers within the volume ΔrΔk during the time window Δt reads

ΔfΔr�Δk = (f(r) − f(r + Δr)) v�ΔkΔt (3.5)

+ (f(�k) − f(�k + �Δk))FΔrΔt

+ Q(f)Δr�ΔkΔt −R(f)Δr�ΔkΔt ,

with the velocity in real space v and F as a generic force. Scattering is expressed with the
scattering operators Q(f) and R(f), whereby the latter comprises inter–band processes and thus
represents generation and recombination of free carriers in the semiconductor. Letting Δr, Δk,
and Δt become infinitesimal small and rearranging the equation leads to the one–dimensional
Boltzmann transport equation

∂tf + v∂rf + F
1

�
∂kf = Q(f) −R(f) . (3.6)

Reformulation of (3.6) for three spatial and momentum dimensions yields

∂tf + v · ∇rf + F · 1

�
∇kf = Q(f) −R(f) . (3.7)
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Figure 3.3: Illustration of the book–keeping character of Boltzmann’s equation for
one r– and p–dimension. Possible transitions are a spatial flux of carriers,
a change of the carrier’s momentum due to an external generic force, and
scattering processes, after [73].

Inserting Eqs. (3.2) and (3.3) into (3.7) delivers the commonly used form of the Boltzmann
transport equation

∂tf +
1

�
∇kH · ∇rf −∇rH · 1

�
∇kf = Q(f) −R(f) . (3.8)

The introduction of a formulation using Poisson brackets enables a compact and convenient
notation incorporating useful identities. The definition of Poisson brackets as well as important
properties are given in Section A. For the distribution function and the total energy, the Poisson
bracket’s definition (A.1) reads

{f,H} = ∇rf · 1

�
∇kH− 1

�
∇kf · ∇rH , (3.9)

which enables the formulation of (3.8) in the compact form of

∂tf + {f,H} = Q(f) −R(f) . (3.10)

The left side of the equation describes the ballistic behavior of the particle influenced by the
generic force F . The Poisson bracket {f,H} is also often referred to as the drift term of the
Boltzmann transport equation. The generic force incorporates the sum of all considered driving
forces to the particle, namely the electric field, a temperature gradient, as well as a position
dependent band structure. The Lorentz force v ×B describing the influence of a magnetic field
is not taken into account in this work.

Statistical collisions interrupt the ballistic motion of the particles which are described by the
collision term at the right side of Boltzmann’s equation. The collision term incorporates both
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in–scattering from p′ to p as well as out–scattering from p to p′. Thus it can be formulated
as [73]

Q(f) =
�
p′

f(p′) (1 − f(p)) S(p′, p) −
�
p′

f(p)


1 − f(p′)

�
S(p, p′) , (3.11)

where f(p′) denotes the probability for the state at p′ to be occupied and (1 − f(p)) the prob-
ability for the state at p to be available for in–scattering. S(p′, p) is the transition rate from
p′ to p. The sum is performed over all states available for scattering to and from p. Phys-
ically speaking, the collision term incorporates the interaction of the carriers with the lattice
(phonon scattering), the influence of ionized impurities, as well as additional scattering caused
by inhomogeneities in the grid in material alloys and has to be modeled accordingly [65, 74].

An alternative approach for the derivation of the Boltzmann transport equation can be found
e.g. in [73], which is also useful for solving it with the help of path integrals. The motion of free
carriers is influenced by an external electric field and the resulting path through (r, k)–space
is described with trajectories following Newton’s laws. Scattering events cause the particle to
change its momentum, but not its position.

3.2.2.2 Validity

In the derivation of the Boltzmann transport equation, several assumptions are inherently in-
corporated which result in a limited range of validity. These assumptions include the items
below:

! By the introduction of the distribution function, the original many–electron problem is re-
placed by a one–electron problem with an appropriate potential. According to the Hartree-
Fock approximation [75], the contribution of all surrounding electrons to this potential is
approximated by a surrounding charge density. Thus, the short range electron–electron in-
teraction can not be described properly. However, the potential of the surrounding carriers
is treated by the electric field self–consistently.

! The Boltzmann transport equation is a semi–classical equation and thus not compatible
with a quantum mechanical approach, since the carriers are described by Newton’s classic
equation set of motion. A particle’s position and momentum can never be determined
with arbitrary accuracy because of Heisenberg ’s uncertainty relations.

! The collisions are considered to happen instantaneously. The validity of this approximation
is in good agreement with the conception of very long free flight times compared to the
collision times.

3.3 Band Structure Model

Generally, the full band structure of semiconductors incorporates an anisotropic dispersion rela-
tion E(k), which is only accessible by numerical methods. Fig. 3.4 illustrates iso–energy surfaces
of the first conduction band of silicon within one octant of the Brillouin zone, where the low-
est energy minima are located close to the X–points. Around these energy minima valleys
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Figure 3.4: Equi–energy surfaces of the full band structure of silicon within one oc-
tant of the first Brillouin zone.

are formed, whose shape deviates strongly from the conventionally used elliptic approximation
with increasing energies. Beside the valleys at the X–points, further valleys are located at the
L–points, whose energy minima are higher than that of the X–valleys. However, in order to
describe the transport in the semiconductor in a closed analytical way, simplified expressions for
the rather complicated full–band structure are commonly introduced. In the following deriva-
tions, isotropic bands are assumed, which imply the dispersion relation to depend only on the
magnitude of the wave vector k. For the sake of convenience, the dispersion relation is separated
into its parabolic and non–parabolic contributions [76]

E(k)HE(E) =
�

2k2

2m∗
(3.12)

with the non–parabolicity function HE and the isotropic carrier mass m∗. The simplest band
structure model is the parabolic one, which is obtained for HE = 1 as

E(k) =
�

2k2

2m∗
. (3.13)

However, the validity of the parabolic band model is restricted to low carrier energies. In order
to address higher energies, the non–parabolicity of the band structure has to be taken into
account by appropriate expressions for HE . Kane proposed a first–order correction [77] in the
form

E(k) (1 + γE(k)) =
�

2k2

2m∗
, (3.14)
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Figure 3.5: Fermi–Dirac equilibrium distribution function and Maxwell–Boltzmann
approximations at 300K and 1000K.

whose validity is limited to energies below 1 eV in silicon [73]. In order to accurately describe
the dispersion relation for even higher energies, more sophistic models can be applied, such
as tabulated data for HE obtained from numerical band structure calculations. However, the
carriers in thermoelectric devices as investigated in this work are not driven far from equilibrium
and thus the band structure is described by the parabolic expression (3.13) in the following
derivations of transport models.

3.4 The Distribution Function

As the solution variable of the Boltzmann transport equation, the distribution function plays an
important role for the description of transport within semiconductor devices. The distribution
function of electrons and holes in thermal equilibrium is the Fermi–Dirac distribution

f(E) = A
1

1 + exp
E − Ef

kBTν

. (3.15)

A commonly used approximation to the Fermi–Dirac distribution function is the Maxwell–
Boltzmann distribution

f(E) = A exp
Ef − E
kBTν

. (3.16)

From a mathematical point of view, the 1 in the denominator of (3.15) can be neglected, if the
second term dominates. This is valid if the difference between the carrier’s energy and the Fermi
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level is large compared to kBTν , which is the case in non–degenerate semiconductors. While the
Fermi–Dirac distribution incorporates Pauli’s exclusion principle, which becomes important at
high dopings, the Maxwell–Boltzmann distribution neglects this principle. Thus, the Maxwell–
Boltzmann distribution’s validity is limited to the lowly doped case.

Fig. 3.5 illustrates the situation for a semiconductor in equilibrium. Both Fermi–Dirac and
Maxwell–Boltzmann statistics are plotted for 300 K and 1000 K, respectively. While the tran-
sition at the Fermi level is relatively sharp at lower temperatures, it is extended to a higher
energy range at elevated temperatures. For intrinsic and lowly doped semiconductors, the range
where the deviation between Fermi–Dirac and Maxwell–Boltzmann statistics accounts for a
non–negligible error is completely covered by the forbidden energy gap. However, the Fermi
energy is shifted close to the band edge in highly doped samples and thus the range with non–
negligible deviations between Maxwell–Boltzmann statistics and Fermi–Dirac statistics reaches
energy levels outside the forbidden gap.

While (3.16) represents the equilibrium case, carrier transport can be incorporated by a displaced
Maxwellian, which reads assuming parabolic bands (3.13)

f(k) = A exp

	
−�

2 |k − k0|2
2m∗kBTν

�
. (3.17)

Here, p0 = �k0 is the average momentum of the carriers and their average velocity reads
v0 = p0/m∗. Especially in thermoelectric devices, the deterministic shift of the distribution
function is very small compared to the stochastic movement due to non–zero temperature.
Therefore, the diffusion approximation can be applied, where the displaced Maxwellian (3.17)
is expanded to is Taylor series and truncated after the first–order term [73]

f(k) = A

�
1 +

p · v0

kBTν

�
exp

�
−E(k)

kBTν

�
. (3.18)

For the derivation of electrical transport models in the next sections, Maxwell–Boltzmann statis-
tics in the formulation of (3.18) have been assumed for the closure relations due to reasons of
mathematical convenience. However, strictly speaking this approximation consequently affects
macroscopic quantities, which are assessed in Section 3.5.1.

3.5 Macroscopic Transport Models

Since the direct solution of the Boltzmann transport equation is computationally very demand-
ing, it is either solved applying the Monte–Carlo technique or approximated by macroscopic
transport models, which are the background for commercial device simulators. The solution
variables of macroscopic transport models are macroscopic quantities, which are accessible by
measurement in contrast to the distribution function. However, the information of the device
state incorporated in the macroscopic quantities is limited, and the access to the full distri-
bution function is limited to approaches dealing directly with Boltzmann’s equation, such as
the Monte–Carlo method [65]. Thus, data governed by Monte–Carlo simulations is frequently
used to judge the validity of macroscopic transport models for a certain device regime [78–80].
Macroscopic quantities represent averages of microscopic quantities in momentum–space. The
coherences between microscopic and macroscopic quantities are given in Section 3.5.1.
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Basically, macroscopic transport models can be formulated following two approaches. First, in
the systematic approach, a set of equations is derived from the Boltzmann transport equation
applying the method of moments, which is introduced in Section 3.5.2. In mathematical words,
Boltzmann’s equation, which is a seven–dimensional integro–differential equation is transformed
into a series of coupled partial differential equations. Compared to the underlying Boltzmann
transport equation, information on the distribution function is approximated due to the trun-
cation of the system after a certain number of equations and the closure of the equation system
based on information incorporated in the equations governed. Theoretically, an arbitrary num-
ber of equations could be derived, but the computational effort increases considerably with the
number of equations. By a proper choice of weight functions, these equations hold a physical
meaning which is also accessible from a more intuitive point of view.

Second, in the phenomenological approach, the semiconductor equations are formulated fol-
lowing the basic laws of mass and energy conservation as well as the principles of irreversible
thermodynamics. In the simplest case, both approaches based on completely different procedures
lead to similar results.

In the sequel, a toolkit for the systematic derivation of transport models and a proper nomen-
clature are given. Three transport models are derived and compared following the systematic
approach applying different assumptions on the collision term.

3.5.1 Microscopic and Macroscopic Quantities

While microscopic quantities represent a certain state in (r, k)–space, their macroscopic coun-
terparts are averages over k–space. As a consequence, their dependency restricts to r–space.
Macroscopic quantities are obtained by the integration of the according microscopic quantity
multiplied by the distribution function f . The spin degeneracy is implied by a factor of two, a
further factor of 1/(2π) per degree of freedom results from the transition from discrete states
to a continuum distribution function. Thus, a general macroscopic density x reads from its
microscopic, scalar–valued counterpart X and the distribution function f

x(r) =
2

(2π)3

∞���
−∞

f(r, k)X(r, k) dkx dky dkz (3.19)

=
2

(2π)3

∞���
−∞

ν(r)F (r, k)X(r, k) dkx dky dkz

= ν(r)�X(r, k)�
= ��X(r, k)��

with F as the normalized distribution function and ν the carrier density. The short forms �·� and
��·�� denote the normalized statistic average and the statistic average, respectively. Analogously,
macroscopic current densities are defined from vector–valued microscopic quantities X and the
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distribution function f

jx(r) =
2

(2π)3

∞���
−∞

f(r, k)X(r, k) dkx dky dkz (3.20)

= ν(r)�X(r, k)�
= ��X(r, k)�� .

Macroscopic densities occurring in the following derivations are the carrier density ν and the
energy density w. The corresponding fluxes are a particle flux jν and the energy flux ju

ν ,
respectively. The formulation used within this work consequently implies the particle flux, which
differs from the electric current by the elementary charge. Important microscopic quantities and
their macroscopic counterparts are outlined in Table 3.1.

Macroscopic quantity Symbol Definition

general macroscopic density x ��X��
general macroscopic flux jx ��X��
carrier density ν ��1��
carrier flux density jν ν�v�
average energy density w �E�
energy flux density ju

ν �vE�

Table 3.1: Some important macroscopic quantities for transport models with their
definition from the microscopic counterparts.

In the following, important averages are given for a heated, displaced Maxwellian (3.17) and
parabolic bands (3.13). The carrier concentration evaluates as

ν = ��1�� =
2A

(2π)3

�
e
−

�
2(k−k0)2

2m∗kBTν d3k =
2A

(2π)3

�
e
−

�
2k′

2

2m∗kBTν d3k′ (3.21)

=
2A

(2π)3
4π

∞�
0

k′2e
−

�
2k′

2

2m∗kBTν dk′ =
2A

(2π)3

�
2πm∗kBTν

�2

� 3
2

and is used to normalize further averages in the sequel. In order to derive the average energy
w, the average of the carrier energy ��E�� has to be evaluated

w =
1

ν
��E�� =

1

ν

2A

(2π)3

�
e
−

�
2(k−k0)2

2m∗kBTν
�

2k2

2m∗
d3k (3.22)

=
1

ν

2A

(2π)3

�
e
−

�
2k′

2

2m∗kBTν
�

2(k′ + k0)
2

2m∗
d3k′

=
1

ν

2A

(2π)3

�
e
−

�
2k′

2

2m∗kBTν

	
�

2k′2

2m∗
+

�
22k′k0

2m∗
+

�
2k2

0

2m∗

�
d3k′ .
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The second term within the parenthesis vanishes due to the product of an odd and an even term
in the integrand. Furthermore, the transformation to polar coordinates yields

w =
1

ν

2A

(2π)3
4π

∞�
0

k′2e
−

�
2k′

2

2m∗kBTν
�

2k′2

2m∗
dk′ +

1

ν

2A

(2π)3
4π

∞�
0

k′2e
−

�
2k′

2

2m∗kBTν
�

2k2
0

2m∗
dk′ (3.23)

=
1

ν

	
3A

(2π)3
kBTν

�
2πm∗kBTν

�2

� 3
2

+
2A

(2π)3
�

2k2
0

2m∗

�
2πm∗kBTν

�2

� 3
2

�

=
3

2
kBTν +

�
2k2

0

2m∗
.

The resulting average energy consists of two parts comprising the thermal energy by random
movement and the drift energy corresponding to the average carrier movement. For compar-
ison, the average energy is evaluated within the diffusion approximation, whereby the heated
Maxwellian is expressed by its first–order Taylor approximation (3.18)

w =
1

ν
��E�� =

1

ν

2A

(2π)3

� �
1 +

�k · v0

kBTν

�
e
−

�
2k2

2m∗kBTν
�

2k2

2m∗
d3k (3.24)

=
1

ν

2A

(2π)3
4π

∞�
0

k2e
−

�
2k2

2m∗kBTν
�

2k2

2m∗
dk =

1

ν

2A

(2π)3
3

2
kBTν

�
2πm∗kBTν

�2

� 3
2

=
3

2
kBTν .

In contrast to the full displaced Maxwellian, the first–order approximation leads to a neglection
of the drift component in the average energy expression. This result underlines the range of
validity of the diffusion approximation. For a slowly drifting, hot carrier gas, the drift term in
(3.23) is negligibly small compared to the thermal energy. The formulation of the distribution
function approximation (3.18) has been motivated exactly by this assumption.

3.5.2 Method of Moments

The basic idea behind the method of moments is not to solve the Boltzmann transport equation
coupled with the Poisson equation directly, but to derive a set of balance and flux equations
for macroscopic quantities based on the moments of the Boltzmann transport equation. The-
oretically, an arbitrary number of equations can be derived, each containing information from
the next–higher equation. As a consequence, the number of variables exceeds the number of
equations. In order to obtain a closed equation system, the derivation of moments has to be
truncated and a closure relation has to be formulated by a suitably chosen ansatz [81,82] based
on the information incorporated in the underlying lower moments equations. Besides several
theoretical approaches [83], the closure can be obtained by extraction of the missing next–higher
moment from Monte–Carlo simulations [84].

In order to obtain a certain moment equation, the Boltzmann transport equation is multiplied
by a general weight function and integrated over k–space according to equations (3.19) and
(3.20). Thereby, the series of weight functions is chosen as the powers of increasing orders of the
momentum p. Because of this average in k–space, information on the distribution of microscopic
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quantities over the momentum is lost, which is originally incorporated in Boltzmann’s equation.
However, the information incorporated in the macroscopic equations is sufficient for a wide range
of engineering applications.

For scalar–valued weights X, the application of the moment definition to Boltzmann’s equation
(3.10) leads to the conservation equation for the general weight function X

∂t
2

(2π)3

�
X(r, k)f d3k +

2

(2π)3

�
X(r, k){f,H} d3k (3.25)

=
2

(2π)3

�
X(r, k)Q(f) d3k − 2

(2π)3

�
X(r, k)R(f) d3k .

which can be conveniently formulated as

∂tx +
2

(2π)3

�
X(r, k){f,H} d3k = Q(x) −R(x) . (3.26)

With the Poisson bracket identities (A.8), (A.10), and (A.11), the second term of the right hand
side of equation 3.25 can be expanded as

2

(2π)3

�
X{f,H} d3k =

2

(2π)3

�
{Xf,H} − f{X,H} d3k (3.27)

=
2

(2π)3

� �
∇r(Xf)

1

�
∇kH− 1

�
∇k(Xf)∇rH

�
d3k − ��{X,H}��

=
2

(2π)3

� �
∇r

�
Xf

1

�
∇kH

�
− Xf∇r

1

�
∇kH− 1

�
∇k(Xf∇rH) + Xf

1

�
∇k∇rH

�
− ��{X,H}�� .

Transforming the third term using Gauss’ theorem and assuming f to go stronger to zero than
X, this term vanishes [80]. Applying (3.20) to the first term, we can write the general moment
equation as

∂tx + ∇r · ��Xv�� − ��{X,H}�� = Q(x) −R(x) . (3.28)

Inserting the decomposition of the Hamilton function (3.4) into (3.28) and introducing the
effective potential ϕ̃, we finally obtain the macroscopic balance equation, which follows from the
even, scalar–valued weight functions X

∂t��X�� + ∇r · ��Xv�� − ��{X, E}�� + sνq
��1

�
∇kX

��
∇rϕ̃ = Q(x) −R(x) . (3.29)

Analogously, formulation of the moment equation with a general odd, vector–valued weight
function X yields the according macroscopic flux equation

∂t��X�� + ∇r · ��X ⊗ v�� − ��{X, E}�� + sνq
��1

�
∇k ⊗ X

��
· ∇rϕ̃ = Q(jx) −R(jx) . (3.30)

Equations (3.29) and (3.30) are the starting point for the derivation of macroscopic transport
models carried out in the sequel. For homogeneous materials, ∇ϕ̃ is equal to the gradient of
the electrostatic potential ∇ϕ, while for inhomogeneous samples, the additional gradient of the
band edges due to spatially dependent material composition enters ∇ϕ̃ as well. Throughout the
derivation of (3.29) and (3.30), no approximations beside the ones implied in the Boltzmann
transport equation described in Section 3.2.2 were made.
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3.5.3 A Hierarchy of Transport Models

In the following sections, the method of moment is applied to Boltzmann’s equation in order to
systematically derive a set of equations for the carriers within a semiconductor. Depending on
the number of equations involved, different levels of physical complexity can be described with
the according models. Furthermore, additional driving forces caused by graded material alloys
and hetero–structures can be considered or neglected, dependent on the device under analysis.
All models have Poisson’s equation in common, describing electrostatics within the device.

The simplest model is the isothermal drift–diffusion model, which is also accessible by a phe-
nomenological approach. It consists of carrier balance equations and current equations for
electrons and holes, respectively accounting for carrier drift induced by external driving forces
as well as diffusion. The unknowns for the equation system are the electrostatic potential and
carrier densities as well as current densities for both electrons and holes.

For the treatment of non–isothermal conditions the lattice temperature has to be included as
an additional solution variable. The temperature is addressed by the heat–flow equation, which
has to be solved self–consistently with the carrier balance and flux equations. For the non–
isothermal drift–diffusion model, the equation series is truncated after the first moment and
the equation system is closed by the condition of local thermal equilibrium �E�ν = �E�L. An
elaborate discussion of the energy exchange between carriers and lattice is given in Section 3.5.10
and Section 3.5.11 based on a systematic and a phenomenological thermodynamic approach,
respectively.

The set of models incorporating equations up to the first moment — the particle current equa-
tions — is able to accurately describe the behavior of comparably large structures. Their only
parameters are the carrier mobilities, which are easily accessible by measurement. Besides their
dependencies on temperature and dopant concentration, the mobilities depend on the shape of
the distribution function. However, due to the lack of additional information incorporated in
the equation system, they are modeled as field dependent. This approximation incorporates the
neglection of non–local effects such as the velocity–overshoot [85], which can be addressed by
proper modeling of an energy–dependent mobility. In small devices, non–local effects play an
important role and the assumption of local thermal equilibrium breaks down, since carriers gain
energy from strong electric fields and carrier temperatures much above the lattice temperatures
are possible.

In order to include appropriate description of carriers driven far from equilibrium, the carrier
energies as well as the according energy fluxes have to be included as additional solution variables.
In order to maintain the additional unknowns, the energy balance equation as well as the energy
flux equation for each of the carrier subsystems is included. In terms of the method of moments,
the highest–order moment is the third one. This class of transport models is referred to as
hydrodynamic transport models [86].

The systematic approach to the formulation of transport models can be continued by the in-
clusion of further equations obtained by higher moments of the Boltzmann transport equation.
With each moment, more information on the carrier distribution function is included. A trun-
cation after the fifth moment results in the six moments model including the kurtosis as well as
the according flux as additional unknowns [76,78,87]. However, the consideration of these high
moments is only of importance in devices driven far from equilibrium, such as modern CMOS
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devices of the deca–nanometer regime used in today’s microprocessors and DRAM memories.
In this work, transport models including equations up to the third moment are derived in order
to accurately reproduce the energy relations within large thermoelectric devices.

3.5.4 Relaxation Time Approximation

In order to obtain an expression for the right hand side of (3.29) that can be handled analytically,
a commonly used simplification — the relaxation time approximation is introduced [73]. For
small deviations of the distribution function f from its equilibrium state f0, the collision term
can be expressed by [79]

Q(f) = −f − f0

τf
. (3.31)

Within this formulation, the distribution function f relaxes to its equilibrium state f0 with the
time constant τf after removing all driving forces.

The moments of the collision term can be modeled following different strategies. Bløtekjær
proposed a set of one single relaxation time for each macroscopic moment derived [88], thus the
according formulations read

Q(x) ≈ −��X�� − ��X0��
τx

=
x − x0

τx
(3.32)

Q(jx) ≈ −��X�� − ��X0��
τjx

=
jx

τjx

(3.33)

for macroscopic balance and flux equations, respectively. In equilibrium, all averages of vector–
valued weights vanish, thus ��X0�� = 0. The relaxation times τx and τjx are generally dependent
on the distribution function and represent the parameters of the transport model. In order
to gain accurate results, they have to be carefully calibrated. However, only the particle flux
relaxation time, which is connected to the carrier mobility is accessible by measurement. Models
for all other relaxation times can be extracted from Monte–Carlo simulations, which incorporate
information on the full distribution function. In order to obtain a closed formulation of the
transport model, the relaxation times have to be modeled with respect to quantities available
in the macroscopic transport model.

In contrast to the macroscopic relaxation time approximation applied in Bløtekjær’s approach,
Stratton’s ansatz incorporates one microscopic relaxation time τ for the entire transport model
that describes the scattering of single carriers. Therefrom, the according formulation for the
collision term reads

Q(jx) = −
��jX

τf

��
. (3.34)

The weights for the odd moment equations are chosen in a way that the right sides become the
fluxes themselves. As a consequence, additional terms in the flux equations appear, which are
systematically derived and analyzed in the sequel. The relaxation time τ is often modeled to
depend on the energy by a power law

τf ≈ τ0

� E
E0

�rν

, (3.35)
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which enables the analytical treatment of several integrals. Depending on the dominant scat-
tering mechanism, the scattering parameter rν takes values between −1/2 for acoustic phonon
scattering and 3/2 for ionized impurity scattering. While expression (3.35) is valid with a con-
stant τ0 for acoustic phonon scattering, τ0 is slightly energy dependent for ionized impurity
scattering [73].

3.5.5 Stratton’s Approach

Stratton proposed to formulate the collision term using one single microscopic relaxation time.
Usually, this relaxation time, τ , is modeled to be energy dependent. In order to obtain the
fluxes on the right side of the governed flux equations directly, the weights for the derivation are
chosen as

X = (1, τp, E , τEp) . (3.36)

During the following derivation, several assumptions and simplifications are sequentially intro-
duced. The assumptions made throughout the derivation of this transport model are as follows:

! Microscopic relaxation time approximation

! Time derivatives are neglected in the flux equations

! Product ansatz for the kinetic energy

! The tensor valued transport parameters are estimated by their traces

! Power–law approximation τ = τ0

�
E

E0

�rν

for the microscopic relaxation time

! Parabolic band structure

! Linearized heated displaced Maxwellian distribution function for the closure relation

! k–independent rν

3.5.5.1 Carrier Balance Equation

The derivation of the continuity equation is trivial starting from equation (3.29). Inserting the
weight X = 1 results in a vanishing Poisson bracket because of (A.9) as well as a vanishing field
term. Thus, the continuity equation for carriers reads

∂tν + ∇r · jν = −R . (3.37)

The systematically derived equation is what can also be expected from a phenomenological point
of view: The increase of carriers within a certain volume has to be equal to the influx minus the
net recombination rate within this volume.
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3.5.5.2 Particle Flux Equation

In the following, the particle flux equation is derived, whereby the starting point is Boltzmann’s
equation with a general vector–valued weight X in the form of equation (3.30). For the flux
equations, the time derivative (first term in (3.30)) can be safely neglected, since the relaxation
time is in the order of picoseconds, which ensures quasi–stationary behavior even for today’s
fastest signals [87]. This means that a transient signal must only change as fast as the carriers
are available to follow into a new equilibrium state.

Inserting τp as X into (3.30) delivers the particle current equation in its original form which
serves as a basis for further derivations

∇r · ��τp ⊗ v��� �� �
(i)

−��{τp, E}��� �� �
(ii)

+ sνq
��1

�
∇k ⊗ (τp)

��
· ∇rϕ̃� �� �

(iii)

= −��p�� . (3.38)

The single contributions to the left side can be identified as a diffusion term (i) and two drift
terms (ii) and (iii), whereby the latter one is caused by external electric fields (iii). In the sequel,
these terms are subject to several simplifications caused by assumptions on the distribution
function, the band structure, and the relaxation time.

Equation (3.38) contains statistical averages of tensor–valued quantities, which are subject to
closer investigation in the following. With the assumption of an almost isotropic distribution
function, the non–diagonal elements of the tensors are negligible. For a hot, slowly drifting
electron gas, such as discussed in Sections 3.4 and 3.5.1, the influence of the displacement on
the averages of even weights, such as energy–like tensors is negligible [84]. Thus, each of the
terms can be represented by proper scalar quantities, which are expressed using traces of the
corresponding tensor–valued transport parameters. For example, p ⊗ v can be estimated using

p ⊗ v =


pxvx pxvy pxvz

pyvx pyvy pyvz

pzvx pzvy pzvz


 ≈ pxvx + pyvy + pzvz

3
Î =

1

3
tr (p ⊗ v)̂I . (3.39)

Monte–Carlo simulations indicate the validity of this approximation. It turned out that for
the case sketched above, the non–diagonal elements are about five magnitudes smaller than the
diagonal elements. In low field cases, the assumption of isotropy is fulfilled very well for the
materials taken into account in this work.

In order to incorporate the band structure in an analytical way, assumptions on the dispersion
relation as discussed in Section 3.3 have to be made. In order to obtain a mathematically
convenient formulation, a product ansatz for the kinetic energy separating the dependencies on
r and k is performed

E(r, k) = θEr(r)θEk(k) , (3.40)

which will be expressed by parabolic bands later on in this derivation. As a direct consequence,
the energy’s gradients in r– and k–space read

∇rE = θEk∇rθEr = E∇r ln θEr , (3.41)

1

�
∇kE = v = θEr

1

�
∇kθEk = E 1

�
∇k ln θEk . (3.42)
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It is useful to introduce a non–parabolicity factor γ(k) which becomes 1 for parabolic bands.
Thus, the velocity reads

v = E 1

�
∇k ln θEk = E 1

�
∂k ln θEk

p

p
= Eγ

2p

p2
with γ =

1

�
∂k ln θEk

p

2
. (3.43)

In the following, the three parts of equation (3.38) indicated by the horizontal braces are se-
quentially treated. Applying Eqs. (3.39) and (3.43) to equation (3.38), part (i), one obtains

∇r ·
��

τp ⊗ pEγ
2

p2

��
≈ 2

3
∇r��τEγ�� . (3.44)

For the second part of equation (3.38), the Poisson bracket has to be expanded using (A.10) as
well as the definitions for the Poisson bracket, equations (A.1) and (A.6)

��{τp, E}�� = ��τ{p, E} + p{τ, E}�� (3.45)

=
��

τ

�
(∇r ⊗ p) · v −

�
1

�
∇k ⊗ p

�
· ∇rE

���
+

��
p

�
(∇rτ) · v − 1

�
∇kτ · ∇rE

���
The first term vanishes due to the momentum being orthogonal to the space vector, and finally
the approximation for tensor valued quantities (3.39) and the application of identity (B.5) leads
to ��

−τE∇r ln θEr + p

�
v · (∇rτ) − p

1

�
∇kτ · ∇rE

���
(3.46)

= − ��τE��∇r ln θEr + ��(p ⊗ v) · ∇rτ�� −
��

p
1

�
∇kτ · E∇r ln θEr

��
= − ��τE��∇r ln θEr +

2

3
��Eγ∇rτ�� − 1

3

��
Ep · 1

�
∇kτ

��
∇r ln θEr .

Part (iii) of equation (3.38) has to be converted using identity (B.4) before the trace approxi-
mation can be performed, which leads to

q
��1

�
∇k ⊗ (τp)

��
· ∇rϕ̃ = q��τ��∇rϕ̃ + q

��p

3

1

�
∂kτ

��
∇rϕ̃ . (3.47)

Assembling the terms (i) – (iii) again, the isotropic particle current equation with a product
ansatz used on the kinetic energy E is obtained

��p�� =
2

3
∇r��τEγ�� + ��τE��∇r ln θEr (3.48)

− 2

3
��Eγ∇rτ�� +

1

3

��
Ep · 1

�
∇kτ

��
∇r ln θEr

+ sνq��τ��∇rϕ̃ − q
��p

3

1

�
∂kτ

��
∇rϕ̃ .

In order to obtain a closed formulation, the relaxation time has to be parametrized with macro-
scopic quantities available in the equation system. Thus, a power–law approximation is intro-
duced as discussed in Section 3.5.4. The according reference energy E0 refers to the energy in
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local thermal equilibrium with the lattice and thus incorporates the lattice temperature. τ is
expressed as

τ = τ0

� E
E0

�rν

= τ0

� E
kBTL

�rν

. (3.49)

Inserting (3.49) to (3.48) yields

��p�� =
2

3
∇r

�
τ0

1

(kBTL)rν
��Erν+1��

�
(3.50)

+ τ0
1

(kBTL)rν
��Erν+1��∇r ln θEr − 2

3
τ0

��
Eγ∇r

� E
kBTL

�rν ��
+

��
E τ0

(kBTL)rν
v
��

· ∇r ln θEr

+ sνqτ0
1

(kBTL)rν
��Erν ��∇rϕ̃ + sνqτ0

1

(kBTL)rν

��p

3

1

�
∂kErν

��
∇rϕ̃ .

In order to close the equation system, a heated, displaced Maxwellian in the diffusion approxi-
mation (3.18) is assumed. This approximation is justified by the comparably low drift velocities
in thermoelectric devices. Furthermore, parabolic bands (3.13) are introduced

f = A

�
1 +

p · v0

kBTν

�
e
−

E(k)
kBTν and E =

�
2k2

2m∗
. (3.51)

With these assumptions, the average in (i) is first transformed to polar coordinates and further-
more to an integral in E–space and the gamma function can be identified. The integral over the
odd term of the distribution function

fA = A
p · v0

kBTν
e
−

E(k)
kBTν (3.52)

vanishes, since the product of an even and an odd function results in an odd function

��Erν+1�� =

∞���
−∞

Erν+1A

�
1 +

p · v0

kBTν

�
e
−

E(k)
kBTν dkx dky dkz (3.53)

= 4πA

∞�
0

Erν+1k2e
−
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kBTν dk =
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2m∗
,
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=
�
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3
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2 e
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E

kBTν dE =

���� Γ (ζ) =
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Eζ−1e−E dE

=
4π

√
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3
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�3
A (kBTν)

rν+ 5
2 Γ

�
rν +

5

2

�
.

The integral for the carrier density is derived analogously, and yields

ν = ��1�� =
2

3

4π
√

2m∗
3
2

�3
A (kBTν)

3
2 Γ

�
3

2

�
(3.54)

whereby the identity ζΓ (ζ) = Γ (ζ + 1) has been applied. The carrier concentration is introduced
to normalize (3.50). Finally, the carrier mobility is obtained from a coefficient comparison for
the homogeneous case as [73]

µν =
q

m∗

��Eτ��
��E�� =

qτ0

m∗

�
Tν

TL

�rν Γ


rν + 5

2

�
Γ



5
2

� , (3.55)
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for a heated, displaced Maxwellian. Inserting equations (3.54) and (3.55) to (3.53), part (i)
becomes

2

3
∇r

	
τ0

1

kBT rν

L

3

2
ν (kBTν)

rν+1 Γ


rν + 5

2

�
Γ



5
2

�
�

=
kB

q
∇r (µννTνm

∗) . (3.56)

Parts (ii) and (iii) can be treated as described above. The gradient in the second average has to
be expanded resulting in the sum of two expressions, a ∇r ln m∗ and a ∇rTL term. The average
needed for the expressions of part (iii) can be derived analogously to (3.53) and results in

��Erν �� =
3

2
(kBTν)

rν
Γ



rν + 3

2

�
Γ



5
2

� . (3.57)

Assembling the three parts and inserting the definition of the particle flux

jν = ��v�� =
1

m∗
��p�� (3.58)

results in the final isotropic particle flux equation obtained using a power–law approximation
for the microscopic relaxation time, parabolic bands and a heated, displaced Maxwellian

jν = − kB

qm∗
∇r (µννTνm

∗) +
3

2
µνν

kB

q
Tν∇r ln m∗ − rνµνν

kB

q

Tν

TL
∇rTL − sνµνν∇rϕ̃ . (3.59)

An alternative formulation of the current equation is obtained by combining the gradients of
the carrier concentration ν and the effective mass m∗ to the chemical potential which itself is
summed up with the electrostatic potential ϕ̃ to the electrochemical potential Φν . Therefore,
the effective density of states is introduced [89], which is proportional to m∗ and T

Nc,v = N0 (m∗Tν)
3/2 , (3.60)

where N0 reads for a Maxwellian distribution function

N0 = 2Mc,v

�
kB

2π�

�3/2

. (3.61)

The chemical potential Φc
ν and the electrochemical potential Φν are introduced as

Φν = ϕ̃ + sνΦ
c
ν = ϕ̃ + sν

kBTν

q
ln

ν

Nc,v
. (3.62)

Applying Eqs. (3.60) and (3.62) to the particle current (3.59) yields

jν = −sνµνν∇rΦν − kB

q

�
5

2
− ln

ν

Nc,v

�
µνν∇rTν (3.63)

− kBTν

q
µνν∇r ln m∗ − kBTν

q
ν∇rµν − rνµνν

kB

q

Tν

TL
∇rTL .
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3.5.5.3 Energy Balance Equation

For the weight X = E , the energy balance equation is obtained. Starting from (3.29) with a
microscopic relaxation time approximation, one obtains

∂tw + ∇r · ju
ν − ��{E , E}�� + sνq

��1

�
∇kE

��
· ∇rϕ̃ = −��E�� − ��E0��

τ
+ GE

ν . (3.64)

While the Poisson bracket in the second term vanishes according to (A.8), the average in the
third term can be identified as the particle current. GE

ν represents the net energy generation
rate by recombination processes. Assuming Boltzmann statistics in the diffusion approximation,
the averages on the right side can be expressed as 3/2νkBTν and 3/2νkBTL, respectively. Thus,
the final energy balance equation reads

3

2
kB∂tTν + ∇r · ju

ν + sνqjν · ∇rϕ̃ +
3

2
νkB

Tν − TL

τ
− GE

ν = 0 . (3.65)

Having a closer look at the final result, one can easily recognize the total energy conservation
character of this equation. The change of total energy within an infinitesimal small volume is
equal to the energy influx minus the energy exchanged with the lattice. In the homogeneous case
without external driving forces, the last term ensures the relaxation of the carrier temperature
Tν to TL.

3.5.5.4 Energy Flux Equation

The energy flux equation is obtained analogously to the particle current equation starting from
equation (3.30) with the weight X = τEp

∇r (��τEp ⊗ v��)� �� �
(i)

−��{τEp, E}��� �� �
(ii)

+ sνq
��1

�
∇k ⊗ (τEp)

��
· ∇rϕ̃� �� �

(iii)

= −ν�Ep� (3.66)

The estimation of all tensor valued quantities with their traces as outlined in (3.39) as well as
the expansion of the kinetic energy E using the product ansatz (3.40) are applied on equation
(3.66). Part (i) is straight–forward

∇r��τEp ⊗ v�� =
2

3
∇r��τE2γ�� . (3.67)

The Poisson bracket in part (ii) has to be expanded using (A.10)

��{τEp, E}�� = ��E{τp, E} + τp{E , E}�� . (3.68)

The second term vanishes because of (A.8) while the first term is treated according to (3.45)
and yields

−��E2τ��∇r ln θEr +
2

3
��E2γ∇rτ�� − 1

3

��
E2p · 1

�
∇kτ

��
∇r ln θEr . (3.69)
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Application of identity (B.4) to part (iii) and assembly of all three terms results in

��Ep�� =
2

3
∇r��τE2γ�� (3.70)

+ ��E2τ��∇r ln θEr − 2

3
��E2γ∇rτ�� +

1

3

��
E2p · 1

�
∇kτ

��
∇r ln θEr

+ sνq��τE��∇rϕ̃ − 1

3
q
��

p
1

�
∂k (τE)

��
∇rϕ̃ .

Next, the power–law ansatz is introduced for the relaxation time τ

��Ep�� =
2

3
τ0∇r



(kBTL)−rν ��Erν+2γ��� (3.71)

+ τ0 (kBTL)−rν ��Erν+2��∇r ln θEr − 2

3
τ0

��
E2γ∇r

� E
kBTL

�rν ��
+

1

3
τ0 (kBTL)−rν

��
E2p · 1

�
∇kErν

��
∇r ln θEr

+ sνqτ0 (kBTL)−rν ��Erν+1��∇rϕ̃ + sν
1

3
qτ0 (kBTL)−rν

��
p
1

�
∂kErν+1

��
∇rϕ̃ .

For the next steps, parabolic bands and a heated, displaced Maxwellian (3.51) are assumed.
The statistical average in part (i) is carried out similarly to (3.53), normalized using (3.54), and
reads

��Erν+2�� =
4π

√
2m∗

3
2

�3
A (kBTν)

rν+ 7
2 Γ

�
rν +

7

2

�
. (3.72)

Thus, part (i) becomes

∇r

��
rν +

5

2

�
ν (kBTL)2 µν

m∗

q

�
(3.73)

using the mobility definition (3.55). With the assumption of a k–independent rν and basic
arithmetic operations, the first term of part (ii) is expressed in terms of an effective mass
gradient ∇rm∗. The second term is split into a ∇rTL and a ∇rm∗ term, while the ∇rm∗–term
cancels with the third term. Thus, part (ii) finally reads

−3

2

m∗

q
µνν

�
rν +

5

2

�
(kBTν)

2 ∇r ln m∗ + rν
m∗

q
µνν

Tν

TL

�
rν +

5

2

�
(kBTν)∇r (kBTL) . (3.74)

While the first term of part (iii) is handled straight–forwardly with the statistical average (3.53),
the derivative in the second term has to be expressed before processing the statistical average.
While the first term contributes with a factor of 3

2 , the second’s contribution is rν + 1. Thus,
the sum reads�

rν +
5

2

�
µννkBTνm

∗∇rϕ̃ . (3.75)

With a definition of the energy flux analogously to (3.58)

ju
ν = ��Ev�� =

1

m∗
��Ep�� (3.76)
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the final energy flux for parabolic bands and a heated, displaced Maxwellian reads

ju
ν = − 1

m∗
∇r

��
rν +

5

2

�
ν (kBTν)

2 µν
m∗

q

�
(3.77)

+
3

2

1

q
µνν

�
rν +

5

2

�
(kBTν)

2 ∇r ln m∗ − rν
1

q
µνν

Tν

TL

�
rν +

5

2

�
(kBTν)∇r (kBTL)

− sν

�
rν +

5

2

�
µννkBTν∇rϕ̃ .

Introducing the electrochemical potential as defined in Eqs. (3.60) and (3.62) yields

ju
ν = −sν

�
rν +

5

2

�
µννkBTν∇rΦν −

�
rν +

5

2

�
µνν

k2
BTν

q

�
7

2
− ln

ν

Nc,v

�
∇rTν (3.78)

− k2
B

q
µννT 2

ν ∇rrν − k2
B

q

�
rν +

5

2

�
νT 2

ν ∇rµν − k2
B

q

�
rν +

5

2

�
µννT 2

ν ∇r ln m∗

− rν
k2

BTν

q

�
rν +

5

2

�
µνν

Tν

TL
∇rTL .

3.5.6 Bløtekjær’s Approach

In contrast to Stratton, Bløtekjær originally proposed the concept of macroscopic relaxation
times introducing one relaxation time for each moment equation. The set of weight functions
used in this derivation is

X = (1, p, E , Ep) , (3.79)

which gives the possibility of a direct comparison to the terms obtained throughout the derivation
after Stratton. The assumptions and simplifications are listed below:

! Macroscopic relaxation time approximation

! Time derivatives are neglected in the flux equations

! Product ansatz for the kinetic energy

! Tensor–valued transport parameters are estimated by their traces

! Parabolic band–structure

! Linearized heated displaced Maxwellian distribution function as closure relation

3.5.6.1 Particle Flux Equation

In the following, the derivation of the particle flux equation is performed analogously to Strat-
ton’s approach. The starting point is again the Boltzmann transport equation with a general
weight X in the form of equation (3.30). Inserting X = p as X yields

∇r��p ⊗ v��� �� �
(i)

−��{p, E}��� �� �
(ii)

+ sνq
��1

�
∇k ⊗ p

��
· ∇rϕ̃� �� �

(iii)

= −��p�� − ��p0��
τj

. (3.80)
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Application of the trace approximation of tensor valued expressions (3.39) as well as a product
ansatz for the energy as presented in equation (3.40) on term (i) results in

∇r��p ⊗ v�� = ∇r

��
Eγ2 1

p2
p ⊗ p

��
=

2

3
∇r��Eγ�� . (3.81)

The Poisson bracket within the average in (ii) has to be expanded using (A.6). Furthermore,
the inverse product rule (B.3) is used to transform the ∇r ⊗ p – term in the first term. The
product ansatz for the energy as well as the trace approximation result in

��{p, E}�� =
��

(∇r ⊗ p) · v −
�

1

�
∇k ⊗ p

�
· ∇rE

��
(3.82)

= ��∇r (p ⊗ v)�� − ��p (∇r · v)�� − ��E��∇r ln θEr

=
��
∇r

�
p ⊗ pEγ

2

p2

���
−

��
p

�
∇r · pEγ

2

p2

���
− ��E��∇r ln θEr

= −��E��∇r ln θEr .

The third term (iii) can be handled in a straight–forward manner. Assembly of all three terms
leads to

2

3
∇r��Eγ�� + ��E��∇r ln θEr + sνqν∇rϕ̃ = −��p��

τj

. (3.83)

Assuming parabolic bands and a heated, displaced Maxwellian, γ becomes unity and the average
reads

��E�� =
4π

√
2m∗

3
2

�3
A (kBTν)

5
2 Γ

�
5

2

�
=

3

2
νkBTν (3.84)

normalized with the carrier concentration (3.54). Summation over all parts as well as the
mobility definition consistent with the homogeneous case

µν =
qτj

m∗
(3.85)

yields the final form of the particle current equation

−��p��
τj

= ∇r (νkBTν) − 3

2
νkBTν∇r ln m∗ + sνqν∇rϕ̃ (3.86)

jν = −kB

q
µν∇r (νTν) +

3

2

kB

q
µννTν∇r lnm∗ − sνµνν∇rϕ̃ . (3.87)

Rewriting the particle current equation with the electrochemical potential defined in Eqs. (3.60)
and (3.62) results in

jν = −sνµνν∇rΦν − µνν
kB

q

�
5

2
− ln

ν

Nc,v

�
∇rTν . (3.88)
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3.5.6.2 Energy Flux Equation

With the weight X = Ep, one obtains the energy flux equation

∇r��Ep ⊗ v��� �� �
(i)

−��{Ep, E}��� �� �
(ii)

+ sνq
��1

�
∇k ⊗ (Ep)

��
· ∇rϕ̃� �� �

(iii)

= −��Ep��
τu

. (3.89)

The first part is straight–forward

∇r��Ep ⊗ v�� =
2

3
∇r��E2γ�� , (3.90)

while part (ii) has to be expanded using (A.10). The Poisson bracket {E , E} vanishes because
of (A.8) as well as the ∇r ⊗ p – term. Thus, the second part becomes

��{Ep, E}�� = −��E2��∇r ln θEr . (3.91)

The derivative in part (iii) has to be expanded using identity (B.6)

q
��1

�
∇k ⊗ (Ep)

��
· ∇rϕ̃ = q��E��∇rϕ̃ +

1

3
q
��

p
1

�
∂kE

��
∇rϕ̃ . (3.92)

Thus, the equation becomes

2

3
∇r��E2γ�� + ��E2��∇r ln θEr + sνq��E��∇rϕ̃ + sν
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3
q
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p
1

�
∂kE

��
∇rϕ̃ = −��Ep��
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. (3.93)

For parabolic bands and a heated, displaced Maxwellian, the average ��E2�� becomes

��E2�� =
4π

√
2m∗

3
2

�3
A (kBTν)

7
2 Γ

�
7

2

�
=

15

4
ν (kBTν)

2 (3.94)

analogously to (3.53). While the parts (i) and (ii) are straight–forward to handle, the derivative
in part (iii) has to be explicitly expressed which finally also leads to the energy average. Finally,
the mobility definition (3.85) already used in the particle flux equation is inserted

−��Ep��
τu

=
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2
∇r

�
ν (kBTν)

2
�
− 15

4
ν (kBTν)

2 ∇r ln m∗ + sν
5
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qνkBTν∇rϕ̃ (3.95)
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ν (kBTν)
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+
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4

µu
ν

q
ν (kBTν)

2 ∇r ln m∗ − sν
5

2
µu

ννkBTν∇rϕ̃ . (3.96)

Introducing the electrochemical potential defined in Eqs. (3.60) and (3.62), the energy flux
equation becomes

ju
ν = −sνµ

u
νν

5

2
kBTν∇rΦν − µu

νν
5

2

k2
BTν

q

�
7

2
− ln

ν

Nc,v
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∇Tν . (3.97)
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3.5.7 Non–Diagonal Relaxation Time Ansatz

In the sequel, an alternative ansatz for the scattering operator is introduced. Instead of the
commonly used relaxation time approximation, the stochastic part of the moments is modeled
using an expansion of the scattering integrals into the odd moments of the distribution function
[90, 91]. Thus, the scattering integrals are represented as linear combinations of the fluxes
derived. The weight set chosen for this ansatz is the same as in Bløtekjær’s approach, so the left
side of the Boltzmann transport equation can be expressed similarly. Using the deterministic
parts of the particle and energy flux equations from Eqs. (3.86) and (3.96)

F0 = −1

q
∇r (νkBTν) +

3

2

kB

q
νTν∇r ln m∗ − sνν∇rϕ̃ (3.98)

F1 = −5

2
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q
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�
ν (kBTν)

2
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15

4

1

q
ν (kBTν)

2 ∇r ln m∗ − sν
5

2
νkBTν∇rϕ̃ , (3.99)

the corresponding equations are formally expanded as

F0 = Z00jν + Z01j
u
ν (3.100)

F1 = Z10jν + Z11j
u
ν . (3.101)

Since the actual quantities of interest are the particle current jν and the energy flux density ju
ν ,

the coupled equations are formulated in order to explicitly express the particle and energy flux,
respectively

jν =
Z11F0 − Z01F1

Z00Z11 − Z10Z01
(3.102)

ju
ν =

Z00F1 − Z10F0

Z00Z11 − Z10Z01
. (3.103)

The fluxes F0 and F1 Eqs. (3.98) and (3.99) are inserted to (3.102) and thus the particle current
equation reads

jν = − Z11 − 5
2kBTνZ01

Z00Z11 − Z10Z01

1

q
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2kBTνZ01
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q
νTν∇rTν .

Introducing the electrochemical potential (3.62), the current can be expressed as a linear com-
bination of a ∇rΦν and a ∇rTν expression

jν = − Z11 − 5
2kBTνZ01

Z00Z11 − Z10Z01
sνν∇rΦν (3.105)

−
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kB

q
ν∇rTν .

For the according energy flux equation, which is expressed analogously, the fluxes F0 and F1

Eqs. (3.98) and (3.99) are inserted to (3.103)
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With the electrochemical potential, it can be rewritten as

ju
ν = −

5
2kBTνZ00 − Z10

Z00Z11 − Z10Z01
sνν∇rΦν (3.107)

−
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q
ν∇rTν .

A coefficient comparison between the particle flux equation (3.105) and the according equation
derived using Bløtekjær’s concept of macroscopic relaxation times (3.88) enables the identifica-
tion of several transport parameters

µν =
Z11 − 5

2kBTνZ01

Z00Z11 − Z10Z01
, (3.108)

µu
ν =

1
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2kBTν

5
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, (3.109)
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5
2kBTνZ01
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2kBTνZ01

. (3.110)

Analogously to the extended ansatz for the stochastic part of Boltzmann’s equation, these trans-
port coefficients can be seen as an extension to the ones derived using Bløtekjær’s ansatz. As-
suming the cross coefficients Z01 and Z10 to be zero, the coefficients for Bløtekjær’s approach
carried out in Section 3.5.6 are obtained. Although the scattering parameters Zij can be calcu-
lated using accurate physical models, this approach results in a very complicated description.

3.5.8 Summary of Equations

In the following, the equations derived applying both Stratton’s and Bløtekjær’s approach are
summarized. While the balance equations, which belong to scalar weights are equivalent for
both approaches, the flux equations differ due to the different approaches of relaxation time
approximations to the collision term as well as the associated choice of weights. For both
Stratton’s and Bløtekjær’s approach the carrier balance equation and energy balance equation
read

∂tν + ∇r · jν = −R (3.111)

∂tw + ∇r · ju
ν − qjν · ∇rϕ̃ +

3

2
νkB

Tν − TL

τ
− GE

ν = 0 . (3.112)

The carrier flux and energy flux equations derived by using Stratton’s microscopic relaxation
time ansatz are
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The according formulation with the electrochemical potential introduced reads
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In some cases, it is convenient to formulate the energy flux in terms of the particle flux. For
Stratton’s equations, it is given by
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Bløtekjær’s concept of macroscopic relaxation times yields for the particle and energy flux
equations, respectively
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With the electrochemical potential, they are

jν = −sνµνν∇rΦν − µνν
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Formulation of the energy flux in terms of the particle flux yields

ju
ν =

µu
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2
kBTνjν − µu

νν
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2
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BTν

q
∇rTν . (3.122)

Compared to Bløtekjær’s model, Stratton’s equations incorporate additional gradients of the
mobility and the lattice temperature resulting from the formulation of the microscopic relaxation
time in a power–law. The exponent rν enters the equations as a further model parameter, which
has to be approximated to account for the dominant scattering mechanisms. It depends on both
the doping profile and the temperature and can be in the range [−0.5, 1.5] [73]. Generally, both
approaches are able to cover the physical background on the same level [92]. However, it has to
be kept in mind that the definitions of the mobilities employed in both model equations differ
significantly. In the homogeneous case, the mobilities are equal [92,93], but for locally changing
driving forces, they diverge. While the mobility in Bløtekjær’s equations can be approximated
by the energy dependent bulk value, the definition in Stratton’s model is always different [86].
Thus, for engineering purposes, transport description based on Bløtekjær’s equations is more
convenient.

39



CHAPTER 3. ELECTRICAL TRANSPORT 3.5. Macroscopic Transport Models

3.5.9 Onsager Relations

The relationship between Seebeck and Peltier coefficient has been identified in the pioneering
work by Kelvin and formulated in the first Kelvin relation. However, Onsager formulated an
extended theory valid for general systems consisting of several mutually dependent irreversible
processes [12]. His theory is based on thermodynamics and the general principle of time symme-
try and holds for systems around their equilibrium. Every flux of a certain quantity xi within a
system is given by the linear combination of according driving forces

jxi
=

�
j

Lijξj , (3.123)

while each flux has an assigned driving force defined by the derivative of the system’s entropy
with respect to the according quantity [94]

ξj = ∂xj
S . (3.124)

Following (3.123), the affinities ξj describe the deviation from equilibrium, which is characterized
by zero currents. In equilibrium, the entropy S reaches a maximum. Onsager’s reciprocal
relations state the identities of the cross coefficients

Lij = Lji (3.125)

for vanishing magnetic fields. The cross coefficients Lij are a measure for the coupling of the
single transport phenomena within the system. A system with Lij = 0 consists of independent
irreversible processes, where every driving force only affects its connected flux. A convenient
form to identify the according affinities to given fluxes is obtained by considering the time
derivative of the entropy

∂tS =
�

j

ξj∇r · jxi
. (3.126)

For the thermoelectric case, the basic relations are given from irreversible thermodynamics [9].
In local thermodynamic equilibrium, the differential total energy is obtained as the sum of
products of corresponding internal variable and the differential external variable

dU = T dS − p dV + qΦc
ν dN (3.127)

with the number of particles within the system N and the chemical potential Φc
ν , which is the

difference of the electrochemical and electrostatic potentials. Since the electrostatic potential is
connected to the carrier densities as well as doping densities by Poisson’s equation, it is not an
independent variable in the thermodynamic sense. Neglecting thermal expansion, the dV –term
vanishes. Thus, expression of the differential entropy results in

dS =
1

T
dU − qΦc

ν

T
dN . (3.128)

Introducing the according current densities, the entropy flux becomes

js =
1

T
ju − qΦc

ν

T
jν . (3.129)
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Formulating balance equations for the entropy, the total energy, and the particle density, as
well as assuming steady state conditions, the change of entropy for the thermoelectric case is
obtained as

∂tS = ∇r

1

T
· ju −∇r

qΦc
ν

T
jν . (3.130)

According to the definition of heat dQ = T dS, the heat flux equation can be obtained from the
energy flux as

jq
ν = ju

ν − qΦc
νjν . (3.131)

Thus, the change of entropy with respect to the heat flux instead of the total energy flux reads

∂tS = ∇r

1

T
· jq

ν − 1

T
∇rΦc

ν · jν . (3.132)

From (3.130), it follows that if particle current and total energy current are considered as fluxes,
the according affinities are ∇r(1/T ) and ∇r(Φc

ν/T ). A more convenient choice can be extracted
from (3.132), where the affinities ∇r(1/T ) and (1/T )∇rΦc

ν follow from the particle current and
the heat current as chosen fluxes. In the sequel, the combination of particle flux and heat flux
has been chosen for the analysis of several transport models derived. The general equations for
particle and heat flux with the Onsager coefficients Lij read

jν = L11
1

T
∇rqΦc

ν + L12∇r

�
1

T

�
(3.133)

jq
ν = L21

1

T
∇rqΦc

ν + L22∇r

�
1

T

�
. (3.134)

The expansion of the temperature derivatives results in a more convenient form which can be
used for a direct coefficient comparison with the transport equations obtained previously

jν = L11
1

T
∇rqΦc

ν − L12
1

T 2
∇rT (3.135)

jq
ν = L21

1

T
∇rqΦc

ν − L22
1

T 2
∇rT . (3.136)

Particle current and heat current obtained by Bløtekjær’s approach read

jν = −sνµνν∇rΦν − µνν
kB

q

�
5

2
− ln

ν

Nc,v

�
∇rT (3.137)

jq
ν = −sνµννkBT

�
µu

ν

µν

5

2
− ln

ν

Nc,v

�
∇rΦν (3.138)

− µννk2
BT

�
µu

ν

µν

5

2

�
7

2
− ln

ν

Nc,v

�
+

�
5

2
− ln

ν

Nc,v

�
ln

ν

Nc,v

�
∇rT .

A coefficient comparison between (3.135) and (3.137) as well as (3.136) and (3.139) yields the
Onsager coefficients

L12 = µνν
kBT 2

q

�
5

2
− ln

ν

Nc,v

�
(3.139)

L21 = µνν
kBT 2

q

�
µu

ν

µν

5

2
− ln

ν

Nc,v

�
. (3.140)
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As a consequence of the macroscopic relaxation time approximation, where one relaxation time
for every current is introduced, different mobility definitions enter the particle current and heat
current. Thus, the model obtained by Bløtekjær’s approach does not inherently fulfill Onsager’s
reciprocity theorem.

Next, the model obtained by Stratton’s approach is analyzed. The equations for particle and
heat flux are obtained for homogeneous materials as

jν = −sνµνν∇rΦν − kB

q

�
5

2
+ rν − ln

ν

Nc,v

�
µνν∇rT (3.141)

jq
ν = −sνµννkBT

�
5

2
+ rν − ln

ν

Nc,v

�
∇rΦν (3.142)

− µνν
k2

BT

q

	�
5

2
+ rν

�2

−
�

ln
ν

Nc,v

�2

+
5

2
+ rν

�
∇rT .

Analogously, the Onsager coefficients are identified by a coefficient comparison between (3.135)
and (3.141) as well as (3.136) and (3.142) as

L12 = L21 = µνν
kBT 2

q

�
5

2
+ rν − ln

ν

Nc,v

�
. (3.143)

For the Stratton model, Onsager’s reciprocity theorem holds due to the application of the
microscopic relaxation time approximation, where a single relaxation time enters all fluxes.

Finally, the model derived in Section 3.5.7 is analyzed. In contrast to the other models, the
stochastic part is described by a linear combination of all fluxes taken into account. The final
particle current and heat current equations are

jν = − Z11 − 5
2kBTZ01

Z00Z11 − Z10Z01
sνν∇rΦν (3.144)

−


Z11 − 5

2kBTZ01

� �
5
2 − ln ν

Nc,v

�
− 5

2kBTZ01

Z00Z11 − Z10Z01

kB

q
ν∇rT

jq
ν = −

5
2kBTZ00 − Z10 − kBT ln ν

Nc,v



Z11 − 5

2kBTZ01

�
Z00Z11 − Z10Z01

sνν∇rΦν (3.145)

−




5
2kBTZ00 − Z10

� �
5
2 − ln ν

Nc,v

�
+ 5

2kBTZ00

Z00Z11 − Z10Z01

−kBT ln
ν

Nc,v



Z11 − 5

2kBTZ01

� �
5
2 − ln ν

Nc,v

�
− 5

2kBTZ01

Z00Z11 − Z10Z01


 kB

q
ν∇rT .

The Onsager coefficients are identified in the usual way by a coefficient comparison between
(3.135) and (3.145) as well as (3.136) and (3.146), respectively. Thus, the according Onsager
coefficients are

L12 =



Z11 − 5

2kBTZ01

� �
5
2 − ln ν

Nc,v

�
+ 5

2kBTZ01

Z00Z11 − Z10Z01
νT 2 , (3.146)

L21 =

5
2kBTZ00 − Z10 − kBT ln ν

Nc,v



Z11 − 5

2kBTZ01

�
Z00Z11 − Z10Z01

νT . (3.147)
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A comparison of the relevant parameters results in the relation

Z10 +
5

2
kBTZ11 − 5

2
kBTZ00 − 35

4
(kBT )2 Z01 = 0 . (3.148)

Briefly summarized, Stratton’s equations inherently fulfill the Onsager relations, while the On-
sager conformity of Bløtekjær’s equations depends on the choice of the model parameters. This
is a consequence of the extended degrees of freedom due to the additional model parameters
introduced by the macroscopic relaxation time approximation. For the non–diagonal ansatz, the
reciprocity principle is fulfilled, when the model is parametrized obeying the relation (3.148).

3.5.10 Electrothermal Transport Model

For the simulation of thermoelectric devices, it is important to accurately describe the energy
relations within the device. In the electrothermal transport model, the contributions of the
carrier subsystems and the lattice are combined to one heat–flux equation, whereby a rigorous
treatment of the coupling mechanisms between the thermal and the electrical description is
achieved.

Since the driving forces within thermoelectric devices are very low compared to modern CMOS
devices, the carrier gas can be safely assumed to be in local thermodynamic equilibrium with
the lattice. Thus, the inclusion of additional equations accounting for carriers driven far from
equilibrium to the constituent equation system are an unnecessary computational overhead.
Assuming local thermodynamic equilibrium, the electrothermal transport model can be obtained
from the energy transport model as a starting point.

Besides Poisson’s equation, the electrothermal transport model incorporates carrier balance
equations as well as current equations for both electrons and holes. The energy relations are
described by an additional heat–flow equation, which is accessible from both a systematic and
a phenomenological point of view.

In the sequel, the electrothermal transport model is governed based on the moment equations
derived by Bløtekjær’s approach. The calculation with Stratton’s equations is similar, and
includes additional terms accounting for the scattering parameters rν . The energy flux equation
derived after Bløtekjær (3.122) assuming local thermal equilibrium expressed in terms of the
particle flux reads

ju
ν =

µu
ν

µν

5

2
kBTjν − κν∇rT (3.149)

with the thermal conductivity κν of the carrier subsystem obeying a Wiedemann–Franz law

κν =
5

2

k2
B

q
µu

ννT . (3.150)

In (3.149), the two contributions to the energy flux by a moving carrier gas as well as heat
conduction by the carrier gas can be identified. However, in non–degenerate semiconductors, the
thermal conductivities of the carrier subsystems can be neglected against the lattice contribution
[95]. Insertion of (3.149) into the energy balance equation (3.65) yields

∂tw +
µu

ν

µν

5

2
kBT∇ · jν +

µu
ν

µν

5

2
kBjν · ∇rT −∇r · (κν∇rT ) (3.151)

+sνqjν · ∇rϕ̃ − GE
ν = 0 .
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In order to obtain expressions accessible by physical interpretation, a few rearrangements have
to be performed on (3.151). First, the gradient of the electrochemical potential has to be
substituted by the current relation (3.88)

∇rΦν = −sν
jν

µνν
− sν

kB

q

�
5

2
− ln

ν

Nc,v

�
∇rT . (3.152)

Furthermore, the Seebeck coefficient

αν = sν
kB

q

�
5

2
− ln

ν

Nc,v

�
, (3.153)

is introduced which is described closer in Section 3.5.12. Inserting (3.152) and (3.153) to (3.151)
yields

∂t
3

2
kBT −∇r · (κν∇rT ) + sνq

µu
ν

µν
∇r · jν (ανT + Φν − ϕ̃) +

µu
ν

µν
qsνTjν · ∇rαν (3.154)

−µu
ν

µν
q
|jν |2
µνν

+ sν

�
1 − µu

ν

µν

�
qjν · ∇rϕ̃ − GE

ν = 0 .

Equation (3.154) denotes the energy balance equation for the electron and hole subsystem,
respectively. The lattice contribution incorporates an additional heat flux term, which is the
dominant contribution to heat conduction within most moderately doped semiconductors. This
heat flux is expressed by a Fourier law with the according lattice heat conductivity κL. The
energy balance equations for the three subsystems read

3

2
kB∂tT = ∇r · (κn∇rT ) +

µu
n

µn
q
|jn|2
µnn

+
µu

n

µn
q (αnT + Φn − ϕ̃)∇r · jn (3.155)

+
µu

n

µn
qTjn · ∇rαn +

�
1 − µu

n

µn

�
qjn · ∇rϕ̃ + GE

n

3

2
kB∂tT = ∇r · (κp∇rT ) +

µu
p

µp
q
|jp|2
µpp

− µu
p

µp
q (αpT + Φp − ϕ̃)∇r · jp (3.156)

− µu
p

µp
qTjp · ∇rαp −

�
1 − µu

p

µp

�
qjp · ∇rϕ̃ + GE

p

cL∂tT = ∇r · (κL∇rT ) (3.157)

The final heat–flow equation is governed as the sum of the contributions of all three subsys-
tems. Both specific heat and thermal conductivity are expressed as parameters for the entire
semiconductor. Thus, the heat–flow equation reads

ctot∂tT = ∇r · (κtot∇rT ) + H (3.158)
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with the heat source term

H =
µu

n

µn
q
|jn|2
µnn

+
µu

p

µp
q
|jp|2
µpp

(3.159)

+ EgR

+
µu

n

µn
q (αnT + Φn − ϕ̃)∇r · jn

− µu
p

µp
q (αpT + Φp − ϕ̃)∇r · jp

+ qT

�
µu

n

µn
jn · ∇rαn − µu

p

µp
jp · ∇rαp

�

+ q

��
1 − µu

n

µn

�
jn −

�
1 − µu

p

µp

�
jp

�
∇rϕ̃ .

For the stationary case, the divergence terms of the electron and hole currents can be expressed
by the net recombination rate due to the vanishing ∂tν–term in the carrier balance equation
(3.37). For this special case, the heat source term becomes

H =
µu

n

µn
q
|jn|2
µnn

+
µu

p

µp
q
|jp|2
µpp

(3.160)

+ q

�
µu

n

µn
(αnT + Φn − ϕ̃) − µu

p

µp
(αpT + Φp − ϕ̃) − Eg

�
G

+ qT

�
µu

n

µn
jn · ∇rαn − µu

p

µp
jp · ∇rαp

�

+ q

��
1 − µu

n

µn

�
jn −

�
1 − µu

p

µp

�
jp

�
∇rϕ̃ .

An often used, but not fully justifiable assumption is that the mobility ratios equal unity for
each electrons and holes [86]. Therefore, the heat source term reduces to

H = q
|jn|2
µnn

+ q
|jp|2
µpp

(3.161)

+ q (T (αn − αp) + Φn − Φp − Eg) G

+ qT (jn · ∇rαn − jp · ∇rαp) .

The contributions to equation (3.161) are the Joule heat losses due to current flow through-
out the structure, the recombination heat, which is transferred to the lattice due to carrier
recombination, and the Thomson heat. This expression is compatible to an approach based on
considerations of phenomenological irreversible thermodynamics, which is summarized in the
following section.

3.5.11 Phenomenological Approach

Besides the systematic approach carried out in the preceding sections, the thermoelectric be-
havior of semiconductors can also be explained by an approach based on phenomenological
irreversible thermodynamics [54, 96].
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For the non–isothermal case, besides the gradient of the electrochemical potential a temperature
gradient yields an additional driving force which is known as the Seebeck effect in the particle
current relations

jn = µnn (∇rΦn + αn∇rT ) (3.162)

jp = −µpp (∇rΦp + αp∇rT ) , (3.163)

which are similar to the systematically derived equations. The corresponding heat fluxes are
identified as

jq
n = qαnTjn − κn∇rT (3.164)

jq
p = qαpTjp − κp∇rT (3.165)

by the application of Onsager’s reciprocity theorem. The total energy flux of all three subsystems
is written as

ju
tot = −κL∇rT + jq

n − qΦnjn + jq
p + qΦνjp . (3.166)

The differential energy densities of electrons and holes are derived using Maxwell’s relations [9]
as

dun = cndT + q
�
T (∂T Φn)n,p − Φn

�
(3.167)

dup = cpdT + q
�
T (∂T Φp)n,p − Φp

�
. (3.168)

Inserting the accumulated differential energy densities for the electron, hole, and lattice subsys-
tems into the energy balance equation

∂tutot + ∇r · ju
tot = 0 (3.169)

yields the heat conduction equation

ctot∂tT = ∇r · (κtot∇rT ) + H (3.170)

accounting for the conservation of total energy with the heat source term

H = q
|jn|2
µnn

+ q
|jp|2
µpp

(3.171)

+ q
�
T (∂T Φn)n,p − Φn − T (∂T Φp)n,p + Φp

�
G

+ qT
�
(∂T Φn)n,p − αn

�
∇r · jn − qT

�
(∂T Φp)n,p + αp

�
∇r · jp

+ qT (jn · ∇rαn − jp · ∇rαp) .

With the electrochemical potential (3.88) and the Seebeck coefficient (3.153) for Maxwell–
Boltzmann statistics, the heat–source term can be rewritten to

H = q
|jn|2
µnn

+ q
|jp|2
µpp

(3.172)

+

�
5

2
kBT

�
R

+ q (αnT + Φn − ϕ̃)∇r · jn − q (αpT + Φp − ϕ̃)∇r · jp

+ qT (jn · ∇rαn − jp · ∇rαp) ,
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which can be finally simplified for the static case because of the vanishing ∂tν–term in (3.37) to

H = q
|jn|2
µnn

+ q
|jp|2
µpp

(3.173)

+ q (T (αn − αp) + Φn − Φp − Eg) G

+ qT (jn · ∇rαn − jp · ∇rαp) .

The final result is equal to the heat–source term of the systematically derived heat–flow equation
in Section 3.5.10 under several simplifying assumptions, when the electrochemical potential
as well as the Seebeck coefficient are expressed by the corresponding relations for Maxwell–
Boltzmann statistics.

3.5.12 Seebeck Coefficient

While the Seebeck coefficient has been treated on a phenomenological basis in Section 2.1.1, the
identification of its inclusion in the semiconductor current equations is the topic of this section.

Assuming a block of homogeneous material, a thermoelectric voltage can be measured between
the two ends of the solid in the case of a non–zero temperature gradient. The Seebeck coeffi-
cient is defined as the ratio of the resulting voltage and the temperature difference. Expressed
in “internal” quantities, the negative gradient of the electrochemical potential is equal to the
temperature gradient times the Seebeck coefficient

−∇rΦν = αν∇rT . (3.174)

This relation is limited to thermoelectric devices in the open circuit case, which is character-
ized by zero current. The current equation (3.88) derived after Bløtekjær in the formulation
incorporating the electrochemical potential reads

jν = −sνµνν∇rΦν − µνν
kB

q

�
5

2
− ln

ν

Nc,v

�
∇rT

.
= 0 , (3.175)

whereby the carrier gas is assumed to be in local thermal equilibrium with the lattice. Thus,
the carrier temperature is equal to the lattice temperature, which is expressed by a single
temperature in the current relations

Tν = TL = T . (3.176)

An identification of the Seebeck coefficient in (3.175) with its definition after (3.174) results in

αν = sν
kB

q

�
5

2
− ln

ν

Nc,v

�
. (3.177)

Finally, the current equations for electrons and holes read

jn = µnn∇rΦn − µnn
kB

q

�
5

2
− ln

n

Nc

�
∇rT = µnn (∇rΦn + αn∇rT ) , (3.178)

jp = −µpp∇rΦp − µpp
kB

q

�
5

2
− ln

p

Nv

�
∇rT = −µpp (∇rΦp + αp∇rT ) (3.179)
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Figure 3.6: Doping dependent Fermi energy with respect to temperature.

with the modeled Seebeck coefficients

αn = −kB

q

�
5

2
− ln

n

Nc

�
, (3.180)

αp =
kB

q

�
5

2
− ln

p

Nv

�
. (3.181)

In literature, they are also often referred to as thermoelectric forces. The different sign of the
Seebeck coefficients is the basis for thermoelectric devices consisting of two legs with opposite
doping. Their construction with the legs parallel in a thermal sense and electrically serial yields
a constructive interference of both leg’s contributions.

Stratton’s equations can be treated analogously to Bløtekjær’s approach. They yield additional
rν summands within the brackets due to the formulation of the microscopic relaxation time
in a power–law ansatz, which refer to the dependence of the Seebeck coefficients on different
dominant scattering mechanisms, which are expressed explicitly in this case. Thus, the Seebeck
coefficients within Stratton’s framework for electrons and holes are modeled as

αn = −kB

q

�
5

2
+ rn − ln

n

Nc

�
, (3.182)

αp =
kB

q

�
5

2
+ rp − ln

p

Nv

�
. (3.183)

The modeled Seebeck coefficients incorporate several physical mechanisms causing an additional
driving force to carriers by a temperature gradient. In order to clarify the situation, the ex-
pressions for the Seebeck coefficients in n– and p–type semiconductors (3.180) and (3.181) are
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rewritten in terms of the energy levels in the semiconductor. Therefore, the carrier concentra-
tions are expressed by Maxwell statistics

n = Nc exp

�Ef − Ec

kBT

�
(3.184)

p = Nv exp

�Ev − Ef

kBT

�
(3.185)

is inserted and yields

αn = −kB

q

�
5

2
− Ef − Ec

kBT

�
(3.186)

αp =
kB

q

�
5

2
− Ev − Ef

kBT

�
. (3.187)

Several temperature dependencies within (3.186) and (3.187) are analyzed in the sequel. First,
the temperature dependence of the Fermi level itself causes a gradient along a thermoelectric
device and thus a driving force to the carriers. Furthermore, in semiconductors the temperature
dependent band–gap enters into the position of the band edges and thus also contributes to
the driving force. Within Stratton’s formulation, the scattering parameter r is influenced by
the dominance of the single scattering mechanisms. Due to the temperature dependence of
single carrier scattering mechanisms, r changes as well and thus has an influence on the Seebeck
coefficients.

Fig. 3.6 illustrates the temperature dependent energy relations for doped silicon. The band–gap
Ec−Ev decreases with increasing temperature. Furthermore, the intrinsic Fermi level for undoped
samples moves towards the conduction or valence band edge for n–doped and p–doped samples,
respectively. With increasing temperatures, the Fermi level for doped samples converges against
the intrinsic level of undoped samples again.

Both the models incorporated in Bløtekjær’s as well as Stratton’s equations have been derived
assuming Maxwell–Boltzmann statistics. However, in order to account for high doping concen-
trations, Fermi–Dirac statistics have to be considered. Furthermore, the phonon system has
been assumed to be in equilibrium, which act as scattering centers for carriers. However, this
is not the case in thermoelectric devices, where strong temperature gradients cause a phonon
movement throughout the structure. Due to this phonon net movement driven by a tempera-
ture gradient from the hot to the cold end, the carriers gain additional momentum. This term
caused by the net movement of the phonons is referred to as the phonon–drag effect [97–100] and
can be modeled as additional driving force for the carriers within the expressions for the See-
beck–coefficients [101–103]. Since Boltzmann’s equation does not incorporate a net movement
of the phonon gas itself, but relies on thermal equilibrium, this effect is not incorporated in the
derivation carried out in the last sections. A theoretical approach including the phonon–drag
effect as well can be found in [104]. In silicon, the phonon–drag plays a role in the temperature
range between 10 K and 500K [102].

In order to account for the deviation between Maxwell–Boltzmann and Fermi–Dirac statistics
in the degenerate case as well as for the phonon–drag effect, the correction terms ζn and ζp

are introduced, which are generally both dependent on the temperature as well as the dopant
concentration. Therefore, the models for the Seebeck coefficients of electrons and holes are
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Figure 3.7: Seebeck coefficients for differently doped p–type silicon samples. Solid
lines depict the theoretical models, whereby the decrease for elevated
temperatures results from the increased hole concentration in the intrinsic
range.

expressed as

αn = −kB

q

�
5

2
− ln

n

Nc
+ ζn

�
, (3.188)
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Nv
+ ζp

�
. (3.189)

The Seebeck coefficients for p–type and n–type silicon are analyzed in Figures 3.7 and 3.8. Solid
lines depict analytical model data based on (3.180) and (3.181), which have been obtained by a
post processing step after self–consistent simulations of a thermoelectric device. Thus, the carrier
concentrations increase at certain temperatures from the doping concentrations to the intrinsic
values. Constant carrier concentrations at the doping level are illustrated by dotted lines and are
the asymptotes in the lower temperature regime. Measurement data has been taken from [105],
which is based on original data from [97]. However, there is some uncertainty in the temperature
range between 350K and 500K, since in this range data has been obtained by extrapolation
following a 1/T–law [106]. In contrast to the analytical expressions, measurement values also
incorporate the phonon–drag contribution, which is not relevant in the higher temperature range.
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’Hell must be isothermal; for otherwise the resident
engineers and physical chemists (of which there must
be some) could set up a heat engine to run a refrig-
erator to cool off a portion of their surroundings to
any desired temperature.’

Henry A. Ben
Chapter 4

Materials for Thermoelectric Devices

MATERIAL RESEARCH AND ENGINEERING is one of the cornerstones of efficient ther-
moelectric devices. This chapter first gives an overview on characteristic material proper-

ties as well as their dependence on temperature and carrier concentration. A good thermoelectric
material is identified by high Seebeck coefficients and good electric transport properties, while
thermal transport is held on the short side [107].

Usually, these material properties are subject to a pronounced temperature dependence, leading
to the definition of ideal thermal operation conditions for a certain material. Furthermore, the
influence of the doping on several relevant parameters is investigated and an approximation for
the ideal material doping is given.

In the following, technologically important thermoelectric materials are introduced and their
operational range is outlined. On the example of silicon–germanium, the important feature of
lowered thermal conductivity within semiconductor alloys compared to their pure constituents
is illustrated. Furthermore, SiGe plays an important role in modeling and simulation due to
its elaborate available physical description driven by mainstream microelectronics. On the tem-
perature scale, SiGe is located at relatively high operational values. In contrast to some other
materials, it is available for both p- and n-doped samples.

Lead telluride (PbTe) is an interesting candidate for the intermediate temperature range with
a maximum operating temperature of about 900K. Beside its application in thermoelectrics,
it is also used for optical devices in the infrared wavelength regime. Its material description is
carried out for device modeling in detail in Chapter 5. In addition to doping by foreign atoms,
the material type can be adjusted by deviation of its stoichiometric composition. Beside pure
lead telluride, several ternary alloys exist, which are subject to ongoing research. Generally,
lead telluride is applicable for both n-type and p-type samples. However, in contrast to n-type
samples, p-type samples suffer under low stability under high temperatures, difficult bonding,
as well as poorer mechanical properties depending on their dopants [108]. Thus, the p-doped
leg is often replaced by alloys consisting of silver antimony telluride and germanium telluride,
often referred to as TAGS.

The lower end of the temperature scale is covered by bismuth telluride. Due to its good ther-
moelectric properties at room temperature, devices made of bismuth telluride are often used for
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cooling applications. As in lead telluride, the material type and number of access carriers can
be adjusted by a deviation of stoichiometry.

Besides these “classical” thermoelectric materials, which are well established in several genera-
tion and cooling applications, ongoing research focuses on novel materials [109–111] as well as
nanostructures [112–120] especially designed for thermoelectric needs.

4.1 Characterization of Materials

The overall performance of a thermoelectric generator is rated by characteristic numbers as
its efficiency, total power output, and power density. However, these numbers, especially the
efficiency, is limited by several parameters. Besides the geometrical impact, material parameters
such as the Seebeck coefficient as well as thermal and electrical conductivities have a strong
influence on both transport of carriers and phonons and thus the overall device behavior. In the
sequel, the thermoelectric figure of merit, which embraces the material parameters affecting the
device behavior, as well as its influence on the device efficiency are discussed.

According to Ioffe [7], the maximum conversion efficiency ηmax of a thermoelectric generator at
matched load condition Ri = RL is given by the product of the ideal reversible thermodynamic
process’ efficiency and a factor describing the energy losses within the device due to Joule heating
and non-ideal thermal conductivity [11]

ηmax =
TH − TC

TH

M − 1

M + TC/TH
(4.1)

where TH and TC denote the temperatures of the heated and the cooled end of the device,
respectively and

M =

�
1 +

1

2
Z (TC + TH) . (4.2)

The averaged thermoelectric figure of merit for both legs of the device, indicated by numerical
subscripts, with matched geometry

Z =
(α1 − α2)

2��
κ1/σ1 +

�
κ2/σ2

�2 . (4.3)

This figure of merit incorporates all relevant material parameters, which are the Seebeck coeffi-
cient α, thermal conductivity κ, and electric conductivity σ. Due to the strong dependence on
both temperature and the concentration of free carriers of these single parameters, the figure
of merit exhibits according dependencies as well, which means that each material has its own
optimum range of operation. However, in practical devices, both legs have similar material
properties, and the bulk figure of merit for a certain material is conveniently defined as

Z =
α2σ

κ
. (4.4)

From a microscopic point of view, the figure of merit is influenced by both charge and heat
transport as well as the coupling of these two within a semiconductor. Thus, the figure of merit
follows from the band structure, lattice dynamics, and scattering mechanisms of charge carriers.
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Figure 4.1: Seebeck coefficient, conductivity, thermal conductivity, and figure of
merit with respect to free carrier concentration, after [121].

An ideal thermoelectric material is not only assured by a high figure of merit, but also by the
temperature range, where these high values are achieved. In practical situations, each material
has its ideal operation temperature range, thus the choice of the material is strongly affected by
the intended use.

The free carrier concentration which is influenced by the doping in semiconductors, has a strong
influence on the figure of merit. Fig. 4.1 illustrates the dependence of several material parame-
ters on the concentration of free carriers. While increasing carrier concentrations have generally
a detrimental effect on the Seebeck coefficient, the electric conductivity σ increases due to the
increased number of available carriers. On the other hand, the electric part of the thermal con-
ductivity κν becomes non-negligible at high values of the carrier concentration and the dominant
thermal conductivity mechanism on the transition to metals. Both insulators and metals show
superior conditions for single parameters, but accordingly poor conditions for others. Metals are
characterized by generally low values of the Seebeck coefficient and comparably high thermal
conductivities, which cannot be compensated by their low electric resistances. On the other
hand, insulators have comparably high Seebeck coefficients, which cannot outperform the very
low electric conductivities. Semiconductors are positioned in the competition region of the sin-
gle parameters, and thus the resulting thermoelectric figure of merit has its maximum. This
maximum is supported by still moderate Seebeck coefficients and already good electrical con-
ductivities and limited by elevated electrical thermal conductivity in the region of high carrier
concentrations. Within semiconductors, the optimum carrier concentration can be accurately
controlled by proper doping concentrations.
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Figure 4.2: Thermoelectric figure of merit vs. temperature for several materials used
for thermoelectric devices, after [121].

Temperature dependent figure of merit data for materials commonly used in thermoelectric
devices are collected in Fig. 4.2. While bismuth telluride and several ternary alloys area good
choice for low temperature thermoelectrics, silicon and silicon-germanium alloys are suitable for
higher temperatures. Lead telluride covers the intermediate range between bismuth telluride
and silicon-germanium. For even higher temperatures, wide band gap materials such as silicon
carbide and boron carbide have to be considered. The dashed line depicts the product of the
figure of merit and temperature to be one. Maximum figure of merit values for several materials
do not outperform this line by far which results in an accordingly limited conversion efficiency.

4.2 Optimization of Device Performance

In the previous section, the suitability of several materials to certain temperature ranges as well
as the basic material properties responsible the maximum device performance have been carried
out. In the following, correlations between several parameters are highlighted and furthermore
strategies to improve device efficiency and performance are evolved on the basis of these material
parameters.

From the definition of the figure of merit (4.4), it is obvious that the thermal conductivity has to
be lowered while maintaining high values of electric conductivity and Seebeck coefficient in order
to achieve high Z values. Since several parameters strongly depend on the carrier concentration
as illustrated in Fig. 4.1, it is an interesting task to determine the ideal carrier concentration for
a certain material and a certain temperature [122]. For non-degenerated materials, the Seebeck
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coefficient is given by

αν = ∓kB

q

�
5

2
+ rν − ln

ν

Nc,v

�
(4.5)

where the carrier concentration is denoted by ν, the scattering parameter rν , and the effective
density of states for the conduction and valence bands Nc,v, respectively. The sign is negative
for electrons and positive for holes. This expression ignores the phonon-drag effect, whose
impact is normally pronounced in relatively low temperature ranges. Furthermore, the carrier
concentration enters the expression for the electric conductivity

σν = qνµν (4.6)

as well as the electric component of the thermal conductivity. The latter is expressed introducing
the Lorentz number L0 by

κν = L0

�
kB

q

�2

σT . (4.7)

Inserting (4.5), (4.6), and (4.7) into equation (4.4) and after some rearrangement, one obtains

Z =

�
5

2
+ rν − ln

ν

Nc,v

�2 �
κL

(kB/q)2 qνµν

+ L0T

�−1

. (4.8)

Setting the derivative with respect to ν of the figure of merit to zero, the equation for the
optimum carrier concentration is obtained as [123]

ln
ν

Nc,v
+ 2

�
5

2
+ rν

�
k2

B

q

µν

κL
Tν =

1

2
+ rν (4.9)

assuming that the Lorentz number does not depend on the carrier concentration. Ignoring the
carrier contribution in the expression for the thermal conductivity, which holds true for low to
moderately doped semiconductors, the optimum carrier concentration is given dependent on the
scattering parameter [122] as

νopt = Nc,v exp

�
1

2
+ rν

�
. (4.10)

This result has to be handled carefully, since the scattering parameter itself is doping dependent.
While for relatively low impurity concentration, scattering by phonons is dominant and thus
rν = −1/2, high doping concentrations increase scattering by ionized impurities and shift rν

to a value of 3/2. However, relatively high doping concentrations are necessary to obtain good
thermoelectric performance [122].

The maximum efficiency for a thermoelectric generator made of Si0.7Ge0.3 has been derived to be
12.1 % in [19]. Furthermore, a reduction of the lattice thermal conductivity without side effects
on the electric properties has been calculated to result in a total efficiency of 23.3 %, which is
far from today’s practically realized generators.

Optimization of the figure of merit by influencing the carrier concentration is quite limited due
to the interdependency of Seebeck coefficient and electric conductivity as well as the electric

56



CHAPTER 4. MATERIALS 4.3. Silicon–Germanium

part of the thermal conductivity due to their common dependence on the carrier concentration.
In contrast to this, the lattice thermal conductivity incorporates potential to increase the figure
of merit independently of the carrier concentration. The key to obtain elevated figures of merit
are low lattice thermal conductivities in order to keep the heat flux throughout the device low.
In terms of microscopic processes, it is favorable to achieve higher phonon scattering rates while
not affecting the carrier ones.

In semiconductor alloys, additional scattering is introduced by the internal lattice disorder. This
mechanism is especially pronounced in alloys with a rather large difference between the single
masses of the components. For example, the thermal conductivity of SiGe with a germanium
content of only 10 % is lower by a factor of 6 compared to pure silicon [95]. At the same time,
the electrical properties show only minor changes.

Furthermore, the introduction of sintered materials causes increased scattering of phonons at
the grain boundaries resulting in accordingly limited phonon mean free paths. The preparation
as well as the influence of different grain sizes on the thermal conductivity of lead tin telluride
are reported in [124–128]. Similar results are collected for SiGe in [129]. Grain sizes have to be
in a range where the electrical conductivity is not significantly affected by additional scattering.
Thus, promising combinations seem to be carefully designed sintered semiconductor alloys.

A continuation of this concept is incorporated in the idea of low–dimensional structures as
well as directed search for novel materials with accordingly low thermal conductivities. Re-
cent research focuses on both nanostructures [112–120] as well as emerging materials such as
clathrates [109, 110], where their large molecular structure ensures low thermal conductivities.
In nanostructures, thermal conductivity is held low by affecting phonon transport with low–
dimensional structures. In a certain geometrical range, the electrical properties are almost not
affected compared to bulk materials, while thermal conductivity is decreased by various size
effects.

4.3 Silicon–Germanium

This section gives a brief summary of application examples as well as material properties of
silicon–germanium alloys. SiGe thermogenerators have been successfully used in a couple of
applications. Probably the most fascinating of them are thermoelements powered by radioiso-
topes (RTGs), which proved to be a reliable power source on several space missions as well as
in remote weather stations [11]. The material has been chosen due to its high reliability as well
as high operating temperatures in order to match the conditions provided by the nuclear fuel.

Furthermore, the SiGe material system serves as an ideal basis for simulation studies for ther-
moelectric device optimization due to its well known material parameters from main stream
microelectronics. Especially the introduction of strain techniques to commercially available de-
vices [130–132] caused major research efforts on the properties as well as processability of Si/SiGe
devices. Due to the widely available data and models, only the most important material data are
briefly summarized in the sequel. Detailed analysis and material characterization of SiGe alloys
with its emphasis on physical modeling for device simulation can be found in [133]. Besides
this, a review on the validity of several models at high temperatures with a focus on mobility
modeling has been carried out in [134].
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Figure 4.3: Thermal conductivity of silicon–germanium alloys with respect to mate-
rial composition for different temperatures.

Compared to the corresponding pure materials, SiGe alloys are interesting candidates for ther-
moelectric applications due to the different influence of the material composition on thermal
conductivity and mobility. Theoretical calculations on the maximum figure of merit have been
carried out in [19,135]. While in [135], a two-band model has been used, the second conduction
band has been considered in [19] resulting in a wider temperature range covered by the model.

The lattice thermal conductivity for SiGe decreases significantly with increasing germanium
content of up to 50%. Above 50 %, the trend reverses to finally approach the value of pure
germanium. This characteristics is caused by the important role of alloy disorder scattering
of phonons due to the large mass difference of silicon and germanium as well as the random
distribution of the constituents in the alloy [136]. Fig. 4.3 illustrates the material composition
dependence of SiGe thermal conductivity for 300K, 500K, and 700K. Several measurement
data found in literature are in good agreement to the model [95, 106, 137–141]. Accordingly,
lower values in sintered samples are reported in [142] due to additional phonon scattering at
grain boundaries. Constantly low sensitivity of the thermal conductivity on the material com-
position over a wide range of germanium contents results in a good figure of merit for sintered
composites, as often used in thermoelectric applications. This is beneficial especially in inhomo-
geneous samples, where clusters normally cause relatively large local deviations of the material
parameters.

Material composition dependent mobilities for n-type silicon–germanium samples are illustrated
in Fig. 4.4. The symbols depict data obtained by Monte Carlo simulations, while the lines
show data obtained by the according models [143]. In contrast to the thermal conductivity, the
mobility decreases more slowly with increasing Ge content resulting in a range with good figures
of merit.
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Figure 4.4: Electron mobility vs. material composition for silicon–germanium alloys
for different at room temperature.

Several measurements of the Seebeck coefficient for both pure silicon and germanium as well as
several alloys can be found in literature [97, 98, 106, 144, 145]. At the lower temperature range,
the coefficients are elevated by the phonon-drag effect [146–149] in pure silicon, which is not the
case in SiGe alloys due to the short phonon mean free paths [19]. Interestingly, the electronic
contribution does not change noticeably for different material compositions, thus modeling of
the Seebeck coefficients for SiGe samples can be reduced to the electronic contribution.

In spite of their outstanding reliability, some attention has to be paid on degradation of SiGe
thermoelectric generators [150] causing a reduction of the figure of merit over the device lifetime.
At high temperature conditions, sublimation can cause both thermal and electrical shortcuts
due to deposition in the surrounding. Under extreme conditions, erosion occurs and may cause
device failures by open circuits or mechanical damage. A coating of silicon nitride reduces
temperature dependent loss rates by sublimation by a factor of approximately 10 [150]. Fur-
thermore, accordingly high doping concentrations, which are favored in order to achieve high
figures of merit, tend to build up local accumulations. Such accumulations cause a reduction of
the free carrier concentration and thus increase the electric resistivity resulting in worse figures
of merit. Boron-doped p-type samples are less sensitive to this effect than n-type samples doped
with phosphorus due to the comparably lower diffusion rates of the dopants.

4.4 Lead Telluride and its Alloys

Lead telluride (PbTe) as well as lead tin telluride (Pb1−xSnxTe) have their operational tempera-
ture ranges between those of bismuth telluride and silicon–germanium. Although the maximum
figure of merit is slightly lower than that of bismuth telluride, lead telluride extents the temper-
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ature range covered for thermoelectric applications with comparable good efficiencies. Electrical
properties can be controlled by variations of the material composition through changing the
stoichiometric ratio. While excess usage of lead results in an n-type semiconductor, a shift to
more tellurium gives a p-type semiconductor. However, the maximum carrier concentration
achievable by this mechanism is in the order of 1018 cm3, which is lower than the ideal doping
for thermoelectric applications [11]. Higher carrier concentrations can be achieved by doping.
While PbI2, PbBr2, or Ge2Te3 are used as extra donors, Na2Te or K2Te are applied for elevating
acceptor concentrations.

Both PbTe and Pb1−xSnxTe can be manufactured as single crystals as well as sintered ma-
terials. Sintered samples are usually fabricated at temperatures around 1000K [151] and are
distinguished from single crystals by their lower thermal and electrical conductivities due to
additional scattering at grain boundaries.

A comprehensive elaboration of the physical properties of lead telluride and lead tin telluride as
well as according models for application within device simulation is given in Chapter 5.

4.5 Bismuth Telluride and its Alloys

Due to its good thermoelectric figure of merit at room temperature, bismuth telluride (Bi2Te3)
as well as some related ternary alloys are often used for cooling applications in commercial
Peltier elements. Commonly applied ternary alloys consist of bismuth telluride with either
bismuth selenide (Bi2Se3) or antimony telluride (Sb2Te3) [152]. Their common crystal structure
is hexagonal [153], although some authors also describe the unit cell as rhombohedral [154],
which is not a discrepancy. The hexagonal description outlines the layered structure of the
material, and its unit cell has the lattice constants a = 4.38 Å and c = 30.36 Å at 77 K [155].
Furthermore, the corresponding linear thermal expansion coefficients are 14.4 × 10−6 K−1 and
21.3 × 10−6 K−1 [156,157]. According to [158], Bi2Te3 has a mass density of 7.86 g/cm−3 and a
melting point of 858K which limits the temperature range for thermoelectric applications.

A change of the free carrier concentration can, similarly to lead telluride, either be performed
by changing the material composition or with extra dopants. In contrast to lead telluride,
stoichiometric bismuth telluride is of p-type with a free carrier concentration of approximately
1019 cm−3. A shift to excess tellurium leads to an n-type material.

Bismuth telluride is a narrow gap semiconductor with an indirect band gap of 160meV at 300K.
As most semiconductors, the temperature dependence of its band–gap is negative with a value
of −1.5× 10−4 eV/K [159–161]. According to pseudopotential band structure calculations [162],
both the highest valence band and lowest conduction band have six valleys. Beside these two
bands, each a second conduction and valence band with energy separations of 30 meV and
20 meV, respectively are proposed in [163,164]. Due to the low density of states, the population
of higher energy levels is relatively high. Thus, the large non-parabolicity of the band structure
becomes important [165]. Recently, experimental work has been accomplished with first principle
calculations [166,167], which serves as a basis for further performance optimization, such as the
introduction of low–dimensional structures [168].

Reduction of the thermal conductivity is one important possibility to increase the figure of
merit. Within ternary alloys, the lattice thermal conductivity depends on the additional phonon
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Figure 4.5: Free carrier concentration as well as figure of merit with respect to ma-
terial composition for Bi2Te3, after [175].

scattering introduced by alloy disordering. The lowest values are achieved at the highest lattice
disorder, for bismuth antimony telluride, this is achieved in (Bi0.5Sb0.5)2Te3 [169]. However,
the according maximum figure of merit is obtained at higher antimony content due to the
contra-productive evolution of the electrical conductivity and the carrier contribution to the
total thermal conductivity [170, 171]. In sintered samples, the lattice thermal conductivity is
reduced by additional grain boundary scattering [172]. The influence of several dopants on the
thermal conductivity is examined in [173]. Specific heat as well as the influence of dopants has
been studied in [163,174].

While pioneering work has focused on pure bismuth telluride [176], the electrical properties for
many ternary alloys have been investigated extensively later on [177–181]. Additional doping
of bismuth antimony telluride with lead telluride causes a more favorable ratio of electrical and
thermal conductivity and thus results in an elevated figure of merit [182].

Since the figure of merit reaches its maximum in a narrow temperature range of about 50 K, the
overall device performance of a thermoelectric generator is lower than the theoretical maximum.
An approach to overcome this fact is the introduction of graded or segmented materials along the
temperature gradient in order to match the optimum material properties to the given thermal
conditions [183].

Several mechanical, optical, and transport parameters show a strong anisotropy. While anisotropy
ratios of 4–6 and 2–2.5 are reported for the electrical resistivity and the thermal conductivity,
respectively [169, 184, 185], the Seebeck coefficient is rather isotropic with a deviation of about
10% between the according extrema. Both p-type and n-type samples have Seebeck coefficients
between 100 µV/K and 250µV/K which depend on the material composition [175, 186]. The
maximum figure of merit can be observed parallel to the cleavage plains and outperforms the
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Figure 4.6: Resistivity as well as thermal conductivity with respect to material com-
position for Bi2Te3, after [175].

normal direction by a factor of 2. Figures 4.5 and 4.6 depict thermoelectrically relevant data of
bismuth telluride alloys with respect to the material composition at room temperature. Trans-
port properties have been measured parallel to the cleavage plains [175] since this direction is
the most favorable for thermoelectric applications.

Thermal conductivity values shown in Fig. 4.6 change due to the influence of the material
composition on phonon scattering as well as an additional carrier contribution at elevated free
carrier concentrations. Electrical resistivity is mainly influenced by the free carrier concentration
and the rate of ionized impurity scattering. The resulting figure of merit has a reported maximum
for n-type materials at a tellurium content of 64.5 %. Due to the high sensitivity of the figure of
merit to the material composition, an exact stoichiometric control during fabrication is necessary.
For p-type material, the maximum figure of merit is lower than that of n-type material.
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’The sciences do not try to explain, they hardly
even try to interpret, they mainly make models. By
a model is meant a mathematical construct which,
with the addition of certain verbal interpretations,
describes observed phenomena. The justification of
such a mathematical construct is solely and precisely
that it is expected to work.’

Johann von Neumann
Chapter 5

Physical Modeling of PbTe and

PbSnTe

THE FOCUS OF THIS CHAPTER is put on the characterization of physical material prop-
erties of lead telluride as well as lead–tin telluride. Material parameters are collected from

literature, where parameters needed for both device simulation as well as Monte Carlo simula-
tions are considered. While the formulation of appropriate models for lead telluride is in the
foreground, the consideration of lead–tin telluride opens interesting insights to properties of
this material class. Models available in the literature are carefully compared and extended by
own formulations based on collected measurement data. In the sequel, physical quantities and
according models are introduced for the groups of lattice properties, thermal properties, band
structure, carrier mobility, as well as generation and recombination.

5.1 Lattice Properties

Both lead telluride and tin telluride are polar semiconductors [187] and crystallize in the rock-salt
(NaCl) structure [188]. The melting temperatures for PbTe and SnTe are 1197K and 1078K,
respectively [189]. At high pressures, PbTe recrystallizes in an orthorhombic structure [190], as
transists SnTe to at temperatures lower than 100K [191].

5.1.1 Lattice Constant, Thermal Expansion, and Mass Density

Lattice constants for both PbTe and SnTe crystallized in the rock salt structure at 300K are
collected in Table 5.1. Their temperature dependence is expressed by the thermal expansion
coefficient, which is rather large compared to other semiconductors. For lead telluride, values of
1.98× 10−5 K−1 [192] and 2.04× 10−5 K−1 [193] were reported, while the values are significantly
smaller at very low temperatures [192]. A good approximation for the thermal expansion coef-
ficient for PbTe and SnTe above 250K is 2× 10−5 K−1 [191]. Reported mass densities for PbTe
and SnTe at room temperature are collected in Table 5.2.
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PbTe SnTe

a [Å] Ref. a [Å] Ref.

6.462 [194] 6.327 [188]

6.443 [190] 6.303 [190]

Table 5.1: Lattice constants for PbTe and SnTe in the rock-salt crystal structure at
300K.

The mass density for alloys can be interpolated linearly between the ones of the constituents

ρAB = (1 − x)ρA + xρB (5.1)

with 1 − x and x as the PbTe and SnTe content, respectively.

PbTe SnTe

ρ [kgm−3] Ref. ρ [kgm−3] Ref.

8160 [188] 6410 [195]

8219 [196] 6383 [196]

8241 [193] 6454 [197]

Table 5.2: Mass densities for PbTe and SnTe at 300K.

5.1.2 Dielectric Constant

The dielectric constant, also called permittivity ǫ describes the relation between electric dis-
placement and field strength. For the general case it is a tensor dependent on the frequency and
external influences like magnetic fields. In isotropic materials, this tensor reduces to a scalar.
The permittivity is usually given as the product of the dimensionless relative permittivity ǫr and
the vacuum permittivity ǫ0.

Special interest is devoted to the static dielectric constant ǫs and the high frequency dielectric
constant ǫ∞. While the static dielectric constant enters Poisson’s equation as well as the models
for several scattering mechanisms, both constants are employed in the description of polar optical
scattering.

The static dielectric constant of lead telluride is unusually high and is dependent on temperature
as illustrated in Fig. 5.1. Experimental data are mostly available for the low temperature
range [198–200]. Values for room temperature and higher are given in [194, 200] but are not
sufficient to give us a clear picture of the dependence of ǫ(T ) in that range. The low temperature
data from Nishi [198], Tennant [200], and Dashevsky [201] can be modeled by a simple power–law

ǫs = 412

�
TL

300K

�−0.6

. (5.2)
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Figure 5.1: Relative static dielectric constant ǫs for PbTe with respect to the tem-
perature.

However, data from Dalven [194] suggest a linear dependence, modeled by

ǫs = 428 − 48

�
TL

300K

�
. (5.3)

An expression for ǫs(x) in Pb1−xSnxTe in the range x < 0.35 is given in [202]. Furthermore,
experimental data for the low temperature range are provided by Nishi in [198].

The high–frequency dielectric constant is about 11 times lower than the static dielectric constant
[194,203].

ǫ∞ = 38 − 5

�
TL

300K

�
. (5.4)

The linear models (5.3) and (5.4) are applied for the Monte–Carlo simulations presented in
Section 5.4 for the high–temperature range.

5.1.3 Elastic Moduli and Sound Velocities

Beside the mechanical relevance of the elastic moduli, they are related to the sound velocities
dependent on their direction relative to the crystallographic axes. Average values of the sound
velocities enter several scattering models applied in Monte Carlo simulations [204]. In literature,
data on both elastic moduli as well as sound velocities in specified directions are commonly given.
In order to allow a comprehensive comparison, available data are collected in Tables 5.3 and 5.4,
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where the missing values are calculated using the according relations [205]

vsl,[100] =

�
c11

ρ
, (5.5)

vst,[100] =

�
c44

ρ
, (5.6)

vsl,[111] =

�
c11 + 2c12 + 4c44

3ρ
. (5.7)

A comprehensive disquisition on the coherence between sound velocities and second order elastic
moduli in different directions is given in [205]. Throughout the calculations, a mass density of
ρ = 8241 kg m−3 [193] has been used.

Measurement data and corresponding quantities of lead telluride at room temperature are col-
lected in Table 5.3, where measurement data [188, 193, 196] are summarized and extended by
recently presented results of first-principle approaches [206].

c11 c12 c44 PbTe vsl,[100] vst,[100] vsl,[111]

[GPa] [GPa] [GPa] Data Refs. [m/s] [m/s] [m/s]

105.3 7.0 13.22 exp. [196] 3575 1267 2639

108.0 7.7 13.43 exp. [193] 3620 1277 2677

107.2 7.68 13.00 exp. [193] 3607 1256 2657

104.0 4.37 13.00 exp. [188] 3552 1256 2581

107.4 7.8 12.90 calc. [207] 3610 1251 2657

115.7 4.2 14.3 calc. GGA [206] 3747 1317 2708

Table 5.3: Summary of elastic constants and corresponding sound velocities for PbTe.

The temperature dependence of the elastic constants and sound velocities has been investigated
by Houston [193] for the low temperature range between 4.2 K and 300K.

Based on data presented in Tables 5.3 and 5.4, analytical expressions for the second–order elastic
moduli of lead telluride have been derived using polynomial ansatzes of second and first order,
respectively. The according expressions read

c11 = 126.9 − 14.5

�
TL

300K

�
− 3.9

�
TL

300K

�2

, (5.8)

c12 = 2.86 + 4.74

�
TL

300K

�
, (5.9)

c44 = 15.0 − 1.55

�
TL

300K

�
. (5.10)
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TL c11 c12 c44 vsl,[100] vst,[100] vsl,[111]

[K] [GPa] [GPa] [GPa] [m/s] [m/s] [m/s]

0 126.05 4.28 14.91 3911 1345 2803

10 125.8 4.38 14.89 3907 1344 2802

20 125.41 4.41 14.86 3901 1343 2799

30 124.96 4.47 14.84 3894 1342 2796

50 124.06 4.48 14.75 3880 1338 2787

100 121.39 4.76 14.49 3838 1326 2764

150 118.5 5.23 14.23 3792 1314 2742

200 115.09 6.04 13.97 3737 1302 2721

250 111.78 6.73 13.71 3683 1290 2699

303.2 107.99 7.65 13.44 3620 1277 2676

Table 5.4: Temperature dependence of elastic constants and corresponding sound ve-
locities.

Corresponding expressions for the temperature dependence of the average longitudinal and
transversal sound velocities have been determined by applying Ridley ’s formalism [208] as

vsl = 3297 − 170

�
TL

300K

�
− 37.2

�
TL

300K

�2

, (5.11)

vst = 2016 − 121

�
TL

300K

�
− 44.8

�
TL

300K

�2

. (5.12)

5.2 Thermal Properties

Besides the temperature dependence of several electrical material parameters, the non-isothermal
behavior of semiconductor devices is mainly described by its thermal properties. While specific
heat capacity and thermal conductivity enter the heat-flux equation within the non-isothermal
drift-diffusion model, the thermoelectric powers directly enter the current relations for electrons
and holes, respectively.

5.2.1 Specific Heat Capacity

The specific heat capacity cL enters the heat flux equation as a time independent model param-
eter and is defined as the energy per mass needed to increase the temperature of a specimen by
one Kelvin. It is modeled by [209]

cL(TL) = cL,300 + c1
(TL/300 K)αc − 1

(TL/300K)αc + c1/cL,300
, (5.13)

where cL,300 is the specific heat capacity at TL = 300K. Fig. 5.2 shows the temperature depen-
dence of the specific heat capacities for PbTe and SnTe, respectively. Measurement data have
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Figure 5.2: Temperature dependence of the specific heat capacity of lead telluride
and tin telluride including measurement data and model parameter sets.

been obtained from [121, 174, 210–212] for lead telluride and from [213, 214] for tin telluride,
where the latter is a review of several collected papers. For the ternary alloys Pb1−xSnxTe, the
resulting specific heat capacity is expressed as a linear interpolation between the values for the
according pure materials

cAB
L = (1 − x)cA

L + xcB
L , (5.14)

where A stands for lead telluride, B for tin telluride and x denotes the according atomistic
content.

PbTe SnTe

cL,300 156 J/kgK 197.3 J/kgK

c1 9.5 J/kgK 115 J/kgK

αc 1.15 0.63

Table 5.5: Parameters for the specific heat capacity models for PbTe and SnTe.
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5.2.2 Thermal Conductivity

The thermal conductivity κ parametrizes the flux term in the heat flux equation and depicts the
energy flux per area and temperature difference transported within a homogeneous material.
Measurement of the thermal conductivity is conventionally based on gathering the tempera-
ture difference caused by a steady heat flow, but also more sophisticated approaches like the
3ω-method can be applied in special cases [215]. The total thermal conductivity in semiconduc-
tors consists of the lattice and the electronic contribution, which is connected to the electrical
conductivity by a Wiedemann-Franz law. While the lattice thermal conductivity, which is the
dominant mechanism over a wide range of carrier concentrations in silicon, germanium, and sev-
eral III-V semiconductors, is commonly modeled as a temperature dependent power law [133],
the electron or hole contribution in n- and p-type materials gains weight in heavily doped sam-
ples. In the intrinsic range, both electrons and holes contribute to the thermal conductivity,
which is referred to as the bipolar contribution. In lead telluride, these additional contributions
to the thermal conductivity caused by the carrier gas play already a significant role at technically
relevant carrier concentrations [121]. Based on the theoretical considerations presented in [125],
the thermal conductivity dependence on the temperature and the electron concentration can be
modeled as

κ = κ300

�
TL

300K

�ακ

	
1 +

�
n

nref

�βκ

�
. (5.15)

The according parameters are collected in Table 5.6.

Parameter Value

κ300 1.5486 W/Km

ακ −1.3122

nref 4.55 × 1018 cm−3

βκ 0.651

Table 5.6: Parameter values for the lead telluride thermal conductivity model incor-
porating the carrier contribution.

In Fig. 5.3, the agreement between Bhandari’s data [125] and the model is illustrated. Sev-
eral measurement data available in literature [216–219] show a general decrease of the thermal
conductivity for increasing temperatures with an alleviated or even reverse trend at higher
temperatures caused by the increased electronic contribution due to additionally available free
carriers.

The heat flux between two points with temperatures T1 and T2 is calculated by the integral

T2�
T1

κ(T, n)dT =
κ300

ακ + 1

	�
T2

300K

�ακ+1

−
�

T1

300K

�ακ+1
� 	

1 +

�
n

nref

�βκ

�
(5.16)

assuming the carrier concentration to be constant throughout the discretization box.
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Figure 5.3: Dependence of the thermal conductivity of lead telluride on the lattice
temperature and carrier concentration. While red glyphs depict Bhan-
dari’s data [125], the surface denotes the modeled thermal conductivity.

In Pb1−xSnxTe, alloy scattering enters as an additional mechanism and thus the thermal con-
ductivity is drastically reduced compared to pure PbTe and SnTe. Fig. 5.4 depicts the variation
of the thermal conductivity with respect to the material composition at 300 K. Measurement
data have been collected from [220–222], where the latter two comprise investigations of sin-
tered samples which explains the lower thermal conductivity values. The lattice component has
been theoretically investigated by molecular–dynamics studies in [223] and by subtracting the
electronic contribution

κν = LσT (5.17)

derived from the electron conductivity σ, the Lorentz number L and the temperature [220]. The
model for the material composition dependent thermal conductivity in alloys reads [133]

κ300 =

�
1 − x

κA
300

+
x

κB
300

+
(1 − x)x

Cκ

�−1

, (5.18)

αAB
κ = (1 − x)αA

κ + xαB
κ , (5.19)

where x and 1 − x denote the SnTe and PbTe content, respectively. κA
300 is the thermal con-

ductivity for PbTe at room temperature, κB
300 analogously for SnTe, and Cκ the bowing factor

accounting for the alloy scattering reduction of the thermal conductivity. The exponents de-
scribing the temperature dependence are interpolated linearly between the values for the pure
material constituents. The additional electronic contribution can be estimated by

κtot,300 = κL,300 + A0 + A1x
2 (5.20)
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Figure 5.4: Material composition dependent lattice and total thermal conductivity of
Pb1−xSnxTe at 300K including measurement data and model parameter
sets.

for Pb1−xSnxTe based on the data published in [220]. According values for the temperature
exponents αA and αB have been identified for the lattice thermal conductivity based on data
published in [222] and [224]. The parameters for the material composition dependent thermal
conductivity model are collected in Table 5.7.

Parameter Value

κA
300 2.2 W/Km

κB
300 3.05 W/Km

Cκ 0.6

αA
κ −1.06

αB
κ −0.27

A0 0.5 W/Km

A1 5.3 W/Km

Table 5.7: Parameter values for the material composition dependent PbSnTe thermal
conductivity models.

A decrease of the thermal conductivity compared to single crystals due to grain boundary
scattering in sintered materials has been reported in [124,126,225] to be as high as 4−6% in pure
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Figure 5.5: Temperature dependence of the thermoelectric power in n–PbTe for dif-
ferent dopings. The lines depict calculated values while the symbols show
according measurement data from [228].

lead telluride and 11−13% in disordered lead telluride alloys. However, a drastic decrease of the
thermal conductivity is reported in [128] for grain sizes in the range of 0.7 −4µm. Furthermore,
the influence of the grain size within sintered Pb1−xSnxTe is investigated in [127] for hot and
cold pressed materials. Recent work has dealt with the dependence of the thermal conductivity
on the pressure during fabrication using high temperature and high pressure processes [226,227].

5.2.3 Thermoelectric Powers

The thermoelectric powers, or Seebeck coefficients for electrons and holes depict the ratio be-
tween a temperature gradient and the resulting driving forces on the carriers as presented in
Section 3.5.12. They show dependencies on both temperature and carrier concentration. A com-
parison between measurement data for n–type lead telluride [228] and the theoretical models of
the Seebeck coefficient is illustrated in Fig. 5.5. Values for the effective densities of states Nc

and Nv incorporated in the theoretical models are given in Section 5.3.2.

In contrast to silicon, additional gain on the thermoelectric power by phonon-drag is limited
to very low temperatures. Thus, good agreement between theoretical and measured data is
achieved. At high temperatures, the measured values drop to lower values due to the additionally
available free holes in the intrinsic range, as indicated in Figures 5.5 and 5.6.

Measurement data illustrated by circles in Fig. 5.6 have been taken from [229]. Different con-
centrations of free carriers have been obtained by deviation from the stoichiometric equilibrium
between Pb and Te. The good agreement between theoretical curves and measurement data
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Figure 5.6: Temperature dependence of the thermoelectric power in p-PbTe for dif-
ferent dopings. The lines depict calculated values while the symbols show
according measurement data from [229].

in the low temperature range indicates that additional phonon-drag is absent in the indicated
temperature range. For temperatures above 400K, carriers start to populate the second valence
band, thus the averaged effective mass of both valleys must be taken into account [230]. With
further increasing temperatures, the intrinsic range is reached, where the total thermoelectric
power even changes its sign due to the additional contribution of electrons. A comparable
behavior is reported for silicon in [97].

Considerably larger values for thermoelectric powers have been measured for sintered samples,
where a strong dependence on the grain size has been reported [128,228]. Values for thermoelec-
tric powers double if the grain size is reduced from 4µm down to 0.7µm. Further investigations
of several alloys can be found in [218,231].

5.3 Band Structure

Lead telluride crystallizes in the NaCl structure with face-centered cubic unit cells [232]. The
resulting Brillouin zone with its first octant as well as its irreducible wedge and high symme-
try points are illustrated in Fig. 5.7. The band structure of lead telluride and its alloys has
been investigated extensively both theoretically and by experiments. The principle position and
alignment of the valleys as well as the band gap have been obtained by several measurement
techniques, like investigations on the optical absorption, recombination spectra, reflectivity, as
well as magneto- and piezoresistivity [233–237]. Parameters for models based on the k ·p-theory
have been obtained for lead chalcogenides in [238–240]. Theoretical band structure calculations
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Figure 5.7: Brillouin zone, its first octant, and irreducible wedge with high symmetry
points and lines for a face centered cubic lattice.

have been performed applying the augmented plane–wave method [241]. The results of rela-
tivistic orthogonalized plane–wave calculations are published in [242], while Johnson generally
pointed out the importance of relativistic effects within band structure calculations on lead tel-
luride [243]. Extensive calculations based on the empirical pseudopotential method, extended by
non-local effects and spin-orbit coupling have been performed in [244–248] and the temperature
dependent band-structure has been investigated in [249–251].

Lead telluride is a direct semiconductor where the conduction band minima and valence band
maxima are located at the L point of the Brillouin zone. The valleys are both heavily anisotropic
and non-parabolic. The major alignment is in [111] direction with the band minima located
exactly at the L point, thus the valleys have a multiplicity of 4. Furthermore, a second valence
band with band minima at Σ exists with an alignment of the valleys in [100] direction [252,253].
In PbSnTe, a band inversion occurs, meaning that the highest valence band and the lowest
conduction band change their roles throughout a variation of the alloy composition between
PbTe and SnTe [254]. This band inversion model has been supported by several measurements
[255,256]. However, there is still some uncertainty about the band parameters within the band
inversion zone [257].
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band gaps in lead telluride.

5.3.1 Band Gap

At room temperature, the band-gap is defined by the direct distance between the valleys at
the L-point of the Brillouin zone. In contrast to many other semiconductors, the temperature
dependence of this band gap is positive, meaning that with increasing temperatures the direct
band gap at the L-point also increases. Beside the valence band maximum at the L point,
there exists another one close to Σ resulting in an additional indirect band gap separated by
0.14 eV at 0 K [258]. Reported measurement values differ only slightly, where the 0 K band gap
is given as 0.19 eV [194]. The gradient describing the temperature dependence in a linear fit is
reported to be 4 × 10−4 K−1 [234, 253], 4.1 × 10−4 K−1 [259], and 4.2 × 10−4 K−1 [194]. There
is a transition between the direct and the indirect band gap at about 420K depending on the
chosen temperature dependence of the direct band gap. The indirect band gap has a value of
0.36 eV which is reported to be temperature independent [191,253].

Several models found in literature have been compared to collected measurement data [199,255,
260,261], as illustrated in Fig. 5.8. While the ansatz proposed by Grisar [260] delivers

Eg(T )/meV = 171.5 +


12.82 + 0.19(T + 20)2

�1/2
, (5.21)

Sitter [253] proposed a simple linear fit

Eg(T )/eV = 0.19 + 4 × 10−4 T . (5.22)

The parameters for Varshni’s model [262], which is widely used in semiconductor device simula-
tion, have been identified in [202]. Thus, the expression for the band gap for the Varshni model
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reads

Eg(T )/eV = 0.19 +
4.5 × 10−4T 2

T + 50
. (5.23)

In PbSnTe, the crossover between the highest valence band and the lowest conduction band
throughout a variation of the alloy composition between PbTe and SnTe strongly affects the
band gap. This results in decreasing band gap values with increasing SnTe content for PbTe-
rich samples, followed by a zero band-gap zone, and finally approaching the SnTe value for lower
temperatures. The SnTe content for which the zero band-gap situation occurs shifts to higher
contents with increasing temperature [256]. The temperature dependence of the band gap in
tin telluride was subject of intense discussion. While generally a slight negative temperature
coefficient is suggested, the temperature coefficient’s sign is reported to change for higher carrier
concentrations [188]. However, for technologically relevant PbTe-rich samples, this is not the
case. The band gap models valid for this range are formulated by an extension of the according
PbTe models by a material composition dependent expression. Thus, Varshni’s extended model
reads

Eg(T )/eV = 0.19 − 0.48x +
4.5 × 10−4T 2

T + 50
. (5.24)

An extension to Grisar’s model is obtained analogously as

Eg(T )/meV = 171.5 − 535x +


12.82 + 0.19(T + 20)2

�1/2
. (5.25)

Fig. 5.9 illustrates the situation for different material compositions. The direct band gap is
shifted to lower values with increasing SnTe content until the band inversion occurs. Addition-
ally, the indirect band gap decreases due to a shift of the second valence band. The values
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identified for x = 0.07 and x = 0.15 are 0.29 eV and 0.27 eV, respectively. Measurement data
published in [188,199,254,255,263–265] have been used to identify the parameters.

5.3.2 Effective Masses, Density of States, Intrinsic Carrier Density

While the effective masses for each the first conduction and valence band of lead telluride have
been studied quite well in literature, only very uncertain information is available for the second
valence band. Both the valence and the conduction band feature a strong anisotropy with mate-
rial composition dependent values of 10 − 14 [188,260]. Values based on both measurements as
well as band structure calculations of the low temperature effective mass for the first conduction
and valence band, respectively are collected in Table 5.8.

Electrons Holes

ml mt ml mt Ref.

0.24 0.024 0.31 0.022 meas. [194]

0.238 0.031 0.426 0.034 calc. [241]

0.274 0.043 meas. [266]

0.165 0.030 meas. [267]

0.24 0.022 meas. [199]

0.23 0.022 calc. [199]

Table 5.8: Low temperature effective masses for the first conduction and valence band
in lead telluride.

The temperature dependence of the effective masses is commonly expressed by quadratic poly-
nomials [268]. According coefficients have been identified based on temperature dependent data
in [188]. Expressions for the longitudinal and transversal effective masses for each the first
conduction and valence bands in pure lead telluride read

m∗

c,l = 0.25 + 0.11

�
TL

300 K

�
− 0.011

�
TL

300K

�2

, (5.26)

m∗
c,t = 0.024 + 0.0112

�
TL

300K

�
− 0.0013

�
TL

300K

�2

, (5.27)

m∗

v,l = 0.286 + 0.142

�
TL

300K

�
− 0.007

�
TL

300 K

�2

, (5.28)

m∗
v,t = 0.025 + 0.012

�
TL

300K

�
− 0.0012

�
TL

300K

�2

. (5.29)

The according temperature dependencies of the density-of-states masses derived by

m∗ =
�
m∗

t
2 m∗

l

�1/3
, (5.30)
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Figure 5.10: Temperature dependence of the effective density of states as well as the
intrinsic carrier concentration in lead telluride.

have been identified as

m∗
c = 0.052 + 0.024

�
TL

300K

�
− 0.0027

�
TL

300K

�2

, (5.31)

m∗
v = 0.056 + 0.027

�
TL

300K

�
− 0.0023

�
TL

300K

�2

. (5.32)

Since the extrema of both the first conduction and valence band are located at the L point, the
number of equivalent valleys within the Brillouin zone Mc,v is 4. Thus, the effective density of
states including spin-degeneracy can be expressed by [269]

Nc,v = 2Mc,v

�
2πm∗

c,vkBTL

h2

�3/2

, (5.33)

and the intrinsic carrier concentration is derived as

ni =
�

NcNv exp

�
− Eg

2kBTL

�
. (5.34)

Expressions for the material composition and temperature dependent effective masses have been
given by Preier [260] and Akimov [202]. While both give expressions with respect to the tem-
perature and material composition dependent band gap, the latter does not differ between the
valence and conduction band and provides a constant anisotropy ratio between the transversal
and longitudinal effective masses. His expressions for the relative carrier masses read

m∗
t (x, T ) = 0.16 Eg(x, T ) (5.35)

m∗

l (x, T ) = 10.5 m∗
t (x, T ) . (5.36)
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Preier differs between the according values of the valence and conduction band and implies a
material composition dependent anisotropy ratio

m∗
c,t =

�
30.58

Eg(0, 0)

Eg(x, T )
+ 14.29

�−1

, (5.37)

m∗
v,t =

�
30.58

Eg(0, 0)

Eg(x, T )
+ 10.00

�−1

, (5.38)

m∗

c,l =

�
30.58

10.25 + 6.56x

Eg(0, 0)

Eg(x, T )
+ 2.42

�−1

, (5.39)

m∗

v,l =

�
30.58

10.25 + 6.56x

Eg(0, 0)

Eg(x, T )
+ 1.52

�−1

. (5.40)

5.4 Carrier Mobility

Lead telluride attracts attention due to its extraordinarily high carrier mobilities at low tem-
peratures. Values of 800, 000 cm2/Vs and 256, 000 cm2/Vs have been reported for electrons and
holes, respectively at 4.2 K, which reduce to 1, 900 cm2/Vs and 900 cm2/Vs at room tempera-
ture [270]. The mobilities for electrons and holes, µn and µp are limited by carrier scattering
within the semiconductor. The electron mobility model is based on experimental and Monte–
Carlo simulation data [271], while the hole mobility model relies on collected measurement data.

The Monte–Carlo technique serves as a powerful link between measurement data and models
for device simulation in hierarchical device simulation [79]. Macroscopic average quantities
such as carrier mobility and energy relaxation times are derived from the microscopic behavior
of single electrons with statistical methods. Bulk Monte-Carlo simulations have been carried
out using the Vienna Monte Carlo simulator (VMC) [204] applying a single particle Monte
Carlo technique. For the analysis, the two lowest conduction band valleys at L and W points,
respectively are incorporated. Several relevant stochastic mechanisms are considered, which are
phonon scattering in the acoustic and optical branch, polar optical phonon scattering, optical
deformation potential scattering, L-L intravalley scattering, and scattering by ionized impurities.
The band structure is described by a non-parabolic approximation of the valleys using Kane’s
formula [77]

γ(E(k)) = E(1 + αE) =
�

2k2

2m∗
. (5.41)

Compared to widely used materials such as silicon or germanium, the material parameters of
lead telluride show higher uncertainties, especially at higher temperatures. The influences of
the according single material parameters on the mobility are assessed and some parameters are
adjusted in an iterative process to account for available measurement data for certain doping
and temperature values. This calibrated set of models finally serves as a basis for the extraction
of bulk mobility data in order to further calibrate the according mobility models in the device
simulator Minimos-NT [268].

Only a few Monte-Carlo simulations are currently documented in literature for lead telluride.
The negative differential mobility at “high-field” conditions in lead telluride has been inves-
tigated in [272] at 77K. This work has been extended to selected lead-tin telluride alloys
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quantity symbol value unit

valley separation energy ΔEWL 0.15 + 0.04
�

TL
300 K

�
eV

effective masses m∗

L,l 0.25 + 0.11
�

TL
300 K

�
− 0.011

�
TL

300 K

�2

m∗
L,t 0.024 + 0.0112

�
TL

300 K

�
− 0.0013

�
TL

300 K

�2

m∗

W,l 0.5

m∗
W,t 0.5

sound velocities vsl 3297 − 170
�

TL
300 K

�
− 37.2

�
TL

300 K

�2
m/s

vst 2016 − 121
�

TL
300 K

�
− 44.8

�
TL

300 K

�2
m/s

lattice constant a 6.462 Å

mass density ρ 8241 kg/m3

non–parabolicity constants αL 3 1/eV

αW 3 1/eV

relative permittivities ǫs 428 − 48
�

TL
300 K

�
ǫ∞ 38 − 5

�
TL

300 K

�
acoustical deformation potential EADP 10 eV

optical phonon energy �ωLO 13.6 meV

intervalley phonon energy �ωij 10.5 meV

intervalley coupling constant Dij 1.6 × 108 eV/cm

ODP coupling constant Do 1.2 × 109 eV/cm

Table 5.9: Parameters for several scattering models incorporated in Monte-Carlo sim-
ulations.

in [273]. A comprehensive investigation including both measurements and Monte-Carlo simula-
tion results for the hot-electron behavior in lead telluride as well as lead-tin telluride alloys is
presented in [274]. However, all these studies are limited to a temperature of 77 K and focus on
the influence of the W-valley. In recent work, Palankovski et al. [275] provided results for the
electron mobility as a function of temperature up to 500K, carrier concentration, and electric
field.

In contrast to semiconductors with wider band gaps such as silicon, the temperature depen-
dence of several parameters becomes more pronounced. Thus, these parameters are modeled
accordingly by introducing temperature dependent expressions. Model parameters applied in the
simulations are collected in Table 5.9. Due to the low driving forces far below saturation effects
within thermoelectric applications, mobility model parameters are obtained for the low–field
case. Low–field mobilities for electrons and holes are modeled by a two-stage model [268]. The
temperature dependent mobilities for intrinsic and low doped samples, where lattice scattering
is the dominant scattering mechanism, are expressed by a power law

µL
ν = µL

ν,300

�
TL

300K

�γ0,ν

. (5.42)
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Figure 5.11: Temperature dependence of the electron mobility in lead telluride for
different dopings.
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Figure 5.12: Doping dependent electron mobility degradation in lead telluride at
room temperature.
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Figure 5.13: Temperature and doping dependent hole mobility in lead telluride.

Doping dependent mobility degradation due to ionized impurity scattering is introduced using
a simplified Caughey-Thomas equation [276]

µLI
ν =

µL
ν

1 +
�

Ntot

Nref
ν

�αν
, (5.43)

where µL
ν depicts the temperature dependent mobilities for undoped samples (5.42) and Ntot

stands for the total impurity concentration. The mobility degradation with increasing impurity
concentration is determined by N ref

ν and αν . While N ref
ν depicts the impurity concentration,

where the according mobility becomes µL
ν /2

N ref
ν = N ref

ν,300

�
TL

300K

�γ1,ν

, (5.44)

the exponent αν models the gradient of the mobility degradation with increasing impurity con-
centration

αν = αν,300

�
TL

300K

�γ2,ν

. (5.45)

The parameters for lead telluride are collected in Table 5.10 for electrons and holes, respectively.
The validity of the model for electrons is illustrated in Figures 5.11 and 5.12. Fig. 5.11 depicts
the temperature dependent electron mobility for doping concentrations of 3 × 1018 cm−3 and
5.25 × 1019 cm−3, respectively. The temperature dependence follows a power law, where the
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Electrons Holes

µL
ν,300 1900 cm2/Vs 900 cm2/Vs

γ0,ν −2.4 −2.45

N ref
ν,300 4.4 × 1019 cm−3 8.2 × 1019 cm−3

γ1,ν 0.56 2.05

αν,300 0.96 1.38

γ2,ν −0.32 0.3

Table 5.10: Parameters for lead telluride mobility models.

exponent’s value of −2.4 for low doped samples reduces for higher dopings. Fig. 5.12 illustrates
the mobility degradation with increasing dopant concentrations at room temperature. Ueta’s
data are based on epitaxial layers grown on BaF2 and are thus somewhat lower than bulk values
due to additional surface scattering and lattice mismatch. An overview of hole mobility data is
given in Fig. 5.13, where measurement data from [194,270,277–281] has been used as a basis for
the hole mobility model.

5.5 Generation and Recombination

Generation and recombination has been studied extensively for the lead chalcogenides because
of its applications as photodetectors and lasers in the infrared range [282–286]. In lead tel-
luride, radiative transitions dominate the generation/recombination behavior due to the direct
band gap within pure single crystals. Furthermore, defects generate states within the band
gap and thus have a strong influence on generation and recombination rates [287, 288] which
can be described by the Shockley-Read-Hall model [289]. For high carrier concentrations, the
Auger process becomes highly competitive with direct recombination [290]. Furthermore, a
temperature dependence of the intrinsic recombination rates analogously to Shockley-Read-Hall
recombination is suggested due to the strong temperature dependence of the band gap as well
as the effective masses. An overview of the mechanisms involved in lead telluride as well as
modeling parameters are given in the sequel.

5.5.1 Direct Recombination

Direct recombination is an important transition in semiconductors with a direct band gap like
lead telluride. Recombination goes hand in hand with radiative emission, while carrier generation
is used within photodetectors for selective frequencies matching the band gap. For lead telluride,
the sensitive frequency region is the infrared range. Due to the strong band gap dependence on
material composition in lead tin telluride, the corresponding wavelength can be adjusted. The
according generation/recombination rate depends on the carrier concentration and is modeled
as

RRAD = CRAD


np − n2

i

�
, (5.46)
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where CRAD denotes a proportionality factor. Calculated radiative carrier lifetimes of 0.6µs are
reported in [291] for lead telluride comparable to 0.8 µs in [292].

5.5.2 Shockley-Read-Hall Recombination

Trap-assisted generation and recombination is modeled using the Shockley-Read-Hall model
[289]. The rate dependence on the carrier concentration is described by the expression

RSRH =
np − n2

i

τp(n + n1) + τn(p + p1)
, (5.47)

where τn and τp depict the generation/recombination lifetimes for electrons and holes, respec-
tively. The auxiliary variables n1 and p1 are defined as

n1 = Nc(TL) exp

�ET − Ec

kBTL

�
, (5.48)

p1 = Nv(TL) exp

�Ev − ET

kBTL

�
. (5.49)

There, the effective densities of states for electrons and holes are denoted by Nc and Nv and
the conduction and valence band edges by Ec and Ev, respectively. The most effective genera-
tion/recombination centers are those with an energy ET close to the mid of the band-gap. The
generation/recombination lifetimes τn and τp at room temperature can be expressed as

τn,300 =
1

σT,nNTvn,300
(5.50)

τp,300 =
1

σT,pNTvp,300
, (5.51)

where they are dependent on the trap concentration NT as well as the trap capture cross sections
σT,n and σT,p for electrons and holes, respectively. The thermal velocities for electrons and holes
are expressed as

vν =

�
3kBTL

m∗
c,v

(5.52)

in order to formulate the generation/recombination lifetimes dependent on the trap concentra-
tion NT as well as the trap capture cross sections σT,n and σT,p for electrons and holes, respec-
tively. Furthermore, the temperature dependence of the generation/recombination lifetimes is
described by the empirical power law

τn =

�
300K

TL

�3/2

τn,300 , (5.53)

τp =

�
300K

TL

�3/2

τp,300 . (5.54)

84



CHAPTER 5. PHYSICAL MODELING 5.5. Generation and Recombination

Additionally, doping dependent generation/recombination lifetimes can be introduced using the
Scharfetter relation

τn(Ntot) = τn,min
τn,max − τn,min

1 +
�

Ntot
Nref,n

�γn
, (5.55)

τp(Ntot) = τp,min
τp,max − τp,min

1 +
�

Ntot
Nref,p

�γp
, (5.56)

which can be used to calibrate the model to experimental data. Since the lifetimes strongly
depend on the process technology as well as material quality, the parameters have to be deter-
mined from sample to sample. While in single crystals relatively long lifetimes can be expected,
grain boundaries within sintered samples have a reducing effect.

5.5.3 Auger Recombination

Auger recombination is a process with three particles involved. In this mechanism, the energy
set free by the recombination of an electron-hole pair is absorbed by a third carrier which is
thus raised to a higher energy. In a second step, this carrier falls back to its initial state and
thus transfers its excess energy to the lattice. Auger recombination becomes important for high
carrier concentrations. It is modeled as the triple concentration product [268]

RAU =


CAU

n n + CAU
p p

� 

np − n2

i

�
(5.57)

introducing the Auger coefficients CAU
n and CAU

p . In [293], the importance of Auger recombi-
nation in highly excited lead telluride has been discussed for thin films. Furthermore, the coef-
ficients were determined by photo-conductivity measurements as 5 × 10−28 cm6s−1. In contrast
to temperature dependent values as suggested for several semiconductors in [73] constant values
over a wide temperature range have been observed in [294]. The coefficients for Pb1−xSnxTe
have been determined both theoretically and by measurement in [290]. For pure lead telluride,
the theoretical value of 4.5 × 10−28 cm6/s corresponds quite well with the measured value of
3.8 × 10−28 cm6/s at 300K. With a tin telluride content of x = 0.17, the according values for
room temperature shift to 4.3 × 10−27 cm6/s and 4.5 × 10−27 cm6/s.
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’For it is with the same imperialism that present-day
simulators try to make the real, all the real, coincide
with their simulation models.’

Jean Baudrillard

Chapter 6

Case Studies

THERMOELECTRIC DEVICES are interesting candidates for a series of applications due to
their capability of direct conversion of heat into electric energy. For a rigorous study, general

device structures have to be considered, which demands the application of a general-purpose
device simulator. For the following investigations, the device simulator Minimos-NT [268] has
been applied. As a part of this work, the transport model has been revised and mechanisms for
the visualization of thermoelectrically relevant quantities have been implemented.

In the sequel, the device behavior of two classes of devices is analyzed. First, the general
behavior of classical thermoelectric devices is investigated with special attention payed to the
influence of geometrical parameters as well as thermal environment and device parameters. The
influence of material composition in alloys is illustrated for the example of silicon–germanium
devices. Based on mixed-mode simulation [295], non-ideal thermal conditions are considered by
an analog electric compact model.

For the simulation of lead telluride based devices, the model database has been extended by
an according material class and model parameters. Furthermore, a set of models has been
implemented in Minimos-NT in order to accurately account for the physical properties, such
as the band gap and the doping dependent electric contribution to the thermal conductivity,
as described in detail in Chapter 5. On the basis of a lead telluride device, an optimization
strategy for stacked devices is discussed.

As a second thermoelectric structure, pn-junctions under a temperature gradient are rigorously
investigated. In contrast to classical devices, carrier generation plays an important role within
this structure. In order to sketch some possibilities for device optimization, the influence of
several device parameters on its performance is investigated. Particularly, graded material
alloys are investigated as a possibility to engineer the temperature profile within the device.
Furthermore, the influence of additional traps on thermal carrier generation and thus the device
performance is investigated and geometrical variations in order to improve transport within
the device are considered. The complex interaction of several mechanisms are presented in an
elaborate case study.
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heated side

cooled side

p−bulk

n−bulk

anode

cathode

temperature gradient

Figure 6.1: Principle configuration of a classical thermoelectric device.

6.1 Ideal Classical Thermoelectric Generators

The first type of thermoelectric generators, which is also the one usually used in commercial
energy conversion applications, has inherited its principle assembly from early thermocouples
and temperature sensors. It consists of two semiconducting legs, where one is made of p-type
and the other of n-type material. In practical devices, the p-type leg is designed with a larger
cross section than the n-type one due to the lower hole mobility. While the two legs are thermally
parallel, they are electrically connected in series by a contact at the heated end of the devices.
Due to the different signs of Seebeck coefficients in differently doped materials, the total voltage
of the device is the sum of the single contributions of each leg.

In practical applications, thermoelectric modules are constructed of several single thermoele-
ments, as sketched in Fig. 6.1. There, a possibility to adapt to thermal and electrical speci-
fications is the different connection of single elements to modules in both an electrical as well
as a thermal sense. While electrically parallel connection of single elements increases the to-
tal current, a serial configuration is applied to enhance the output voltage. The same principle
works for the thermal configuration. Multiple single elements on the same level increase the heat
flux throughout the entire module in order to exploit relatively “strong” temperature reservoirs
at temperature differences matching one single stage. Environments with higher temperature
differences are often treated with modules consisting of multiple stages. There, the temperature
difference is subdivided to a thermally serial configuration within stacked modules. Since every
material has an ideal thermal operating point, as outlined in Chapter 4, it is often beneficial to
combine stages built of different semiconductors.
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Figure 6.2: Voltage and current with respect to the load resistance.

In the sequel, the basic behavior of single thermoelements is discussed on the basis of simulation
results. In order to analyze the internal behavior of a single thermoelectric device, the focus is put
on the thermoelectrically active device itself first. In this idealized perspective of thermoelectric
generators, thermal contact resistances as well as characteristics of heat sources and sinks are
neglected. This means that the thermoelectrically active legs capitalize from the entire thermal
potential, which is provided by ideally stiff temperature sources. Furthermore, electric contact
resistances are neglected as well. Such a treatment is beneficial in order to identify the maximum
conversion potential of a thermoelectric device, which will be reduced by parasitic external effects
in practical situations. Furthermore, it enables an analysis of the internal mechanisms, which
governs valuable insights for device optimization and further development.

In Fig. 6.2, the current and voltage behavior of a single thermocouple with respect to a load
resistance is illustrated for different temperature differences. The device assumed has a leg
length of 20 mm and a cross section of 5 × 1 mm2. Both legs are made of silicon and have
according doping concentrations of 1 × 1019 cm−3. The electric contacts are considered as ideal
conductors, which is a safe assumption for conventional device geometries. For example copper
features an electrical conductivity of 59.6 × 106 S/m, which is about three orders of magnitude
above the conductivity of accordingly doped silicon.

With a constant temperature difference maintained along the device, a simulated ohmic load
resistance is swept over four decades. For low resistances, the behavior converges against short
circuit conditions. While the voltage drops to zero, an accordingly high current is driven by the
temperature gradient. For accordingly high resistances, the driven current goes to zero, while
the voltage approaches its open circuit value. Within considerable ranges, both current and
voltage increase with increasing temperature differences. This behavior is limited by strongly
decreasing Seebeck coefficients at high temperatures, as presented in Figures 3.7 and 3.8.
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Figure 6.3: Electric power output as well as conversion efficiency vs. load resistance
for different leg thicknesses.

The electrical power output is obtained as the product of contact voltage Uc and driven current
I, where the contact voltage can be obtained as the directed integral along both legs as

Pel = UcI =


 x1�

x0

αp(T (x))∂xT dx −
x1�

x0

αn(T (x))∂xT dx


 I . (6.1)

Due to the different signs of the Seebeck coefficients αp and αn, the contributions of the legs
add constructively to the total voltage. Furthermore, the according current is specified by the
driving voltage as well as the sum of internal and external resistances.

The thermoelectric conversion efficiency is defined by the energy balance within the device as
the ratio of generated electrical power and incoming heat-flux throughout the heated thermal
contact

η =
Pel

Jq
hot

. (6.2)

Fig. 6.3 illustrates the corresponding electric powers and thermoelectric conversion efficiencies at
a temperature difference of 500K above room temperature. The optimum power and efficiency
are achieved at matched load conditions, where the external load resistance is equal to the
internal resistance Rl = Ri. A modification of the device geometry results in changed internal
resistances. For lower leg thicknesses, the internal resistance increases, thus the total power
output decreases and the optimum operating point is shifted to higher load resistances as well.
However, due to the lower cross section of the legs, the thermal resistance is increased as well
and thus the heat flux throughout the device is reduced resulting in a constant efficiency. For
higher leg thicknesses, the quantities change accordingly to the other direction. The resulting
power density of the device is constant as well.
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Figure 6.4: Electric current as well as power output vs. load resistance for differently
doped devices.

Within the idealized treatment of thermoelectric devices, the same considerations are valid for
changes of the leg length, as long as the temperature at the thermal contacts can be assumed
to be constant. However, in real world devices, especially in miniaturized elements, this is not
the case due to the influence of parasitic external thermal resistances, as demonstrated later
on. Since geometrical modifications affect both the thermal as well as the electrical circuit,
the conversion efficiency and power density are not affected over a wide range. Mathematically
speaking, a principle approach to performance improvement is to change the parameters of only
one of the electrical and thermal subsystems as well as their coupling mechanisms. For the
thermal part, it is beneficial to reduce the heat flux as much as possible while not affecting the
electric conductivity. For the electric part, for example modification of the doping concentrations
results in a change of the electrical conductivity. However, the Seebeck coefficient is affected
reversely and thus, an optimum doping concentration can be identified.

Figures 6.4 and 6.5 point out the influence of different doping concentrations on the device
performance. The contact voltage decreases with increasing doping due to the detrimental effect
of large carrier concentrations on the Seebeck coefficient. For comparison, see also Figures 3.7
and 3.8. The current follows driving voltage and internal resistance. While the driving voltage is
reduced at higher doping concentrations, the conductivity is noticeably increased. This results in
an increased current as well, as presented in Fig. 6.4. For the power output, a trade–off between
the doping’s influences on current and voltage occurs. Thus, an optimum carrier concentration
exists, which is about 1020 cm−3 in the presented example. Since the carrier contribution to the
thermal conductivity is only of subsidiary significance, the heat flux throughout the device is
only increased at very high carrier concentrations. This results in an optimum efficiency at a
doping concentration close to the one for the optimum power output. Fig. 6.6 illustrates the
temperature dependence of the electric power output. The strongly increasing power output
saturates at high temperatures depending on the doping concentration.
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Figure 6.5: Voltage as well as conversion efficiency vs. load resistance for differently
doped devices.
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Figure 6.6: Electric power output vs. temperature for differently doped devices.
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Figure 6.7: Temperature distribution for a non-ideal thermoelectric generator.

6.2 Non-Ideal Devices and Thermal Environment

In real-world thermoelectric devices, several thermal and electrical losses outside the thermo-
electrically active parts occur. Furthermore, heat source and sink are not ideally rigid as well,
meaning that their temperature changes with their thermal load, which is the heat flux traversing
the thermoelectric device. Beside the internal thermal resistances of several subparts, thermal
contact resistances occur.

The thermal relations can be described using an electrical analogon, where the temperature
takes the same place as the electrical potential [296]. Furthermore, the heat flux corresponds to
the electrical current and the thermal conductivity takes the place of the electrical conductivity.
A thermal network is formulated similarly to an electric circuit, and consequently can be treated
with the same toolkit as an electric circuit. The basic relation is the analogon to Ohm’s law,
connecting the temperature drop along a structure with its thermal resistance and the traversing
heat flux.

The thermal relations within a thermoelectric generator as well as its environment are sketched
in Fig. 6.7. A corresponding circuit using the electrical analogon is shown in Fig. 6.8.

A thermoelectric device is connected to a heat source and a heat sink throughout electrically
insulating layers. The heat source’s “contact” temperature available for the device is given in
terms of its off-load temperature, the internal thermal resistance, and the load heat flux as

TH = TH,0 − ΔTint,H = TH,0 − Jq
hotR

th
int,H . (6.3)

Subtracting the temperature drop throughout the electrical insulation at the heated end ΔTins,H

from the heat source temperature TH, the temperature at the hot side thermal contact of the
thermoelectric generator is obtained. The electric contact further slightly reduces the tempera-
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Figure 6.8: Thermal equivalent network of a thermoelectric device accounting for
non-ideal thermal environment.

ture to the one at the hotter end of the thermoelectrically active legs. It is considered that the
temperature drops include both the ones caused by internal and thermal contact resistances.

The same considerations work for the cooled end of the assembly starting at the non-ideal heat
sink. The lower temperature at the active legs is obtained by adding the temperature drops
along the electrical insulation to the heat sink’s temperature under thermal load conditions TC.
The resulting temperature difference available for thermoelectric conversion is reduced from the
idealized value of TH − TC to T1 − T0.

Depending on the geometrical relations as well as the kind of insulation medium between the
legs, a more or less pronounced parasitic heat flux parallel to the legs can occur. This heat
flux contributes to the thermal load of heat source and sink, but not to the thermoelectric
conversion process and thus has a detrimental effect on the conversion efficiency by reducing the
temperature difference available for thermoelectric exploitation. However, the gaps between the
legs are minimized in order to gain a best possible spatial utilization and normally, the thermal
conductivity of the legs is by far larger than that of the gaps. Thus, this heat flux parallel to
the legs can be neglected safely.

In the following example, all external thermal resistances as well as the non-ideal behavior of
the heat source are treated as a lumped thermal resistance between the heat source and the
heated end of the thermoelectric generator. Furthermore, the cooled end is assumed to be
ideally connected to a heat sink held constantly at 300 K.

The assembly works as a temperature divider between the lumped external thermal resistance
and the thermoelectrically active generator itself. Thus, at a certain heat flux, the temperature
drop at the legs is reduced to

ΔTte = (TH − TC)
Rth,TEG

Rth,TEG + Rth,ext
, (6.4)

where Rth,TEG denotes the thermal resistance of the thermoelectric generator and Rth,ext is the
serial external thermal resistance.
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Figure 6.9: Electric power output with respect to the device leg length.

Fig. 6.9 illustrates the influence of the thermal relations to the power output of the thermoelectric
generator. At a certain external thermal resistance, longer devices benefit from their increased
thermal resistance and thus increased temperature drop. On the other hand side, higher thermal
losses decrease the available thermal potential for the thermoelectrically active parts and thus
reduce the power output. For relatively low external thermal resistances, the power output first
increases with decreasing device length due to the elevated heat flux throughout the structure.
However, below a certain length, the detrimental effect of the reduction of the device’s tempera-
ture drop exceeds the increase of heat flux resulting in strongly decreasing power outputs. This
behavior vanishes in the border case of ideal thermal conditions, as indicated by the dashed line.
The behavior of the power density is shown in Fig. 6.10.

The according conversion efficiencies are presented in Fig. 6.11. For ideal thermal environment
conditions, the conversion efficiency is constant over a wide region, since a change of the device
length affects both the heat flux and the power output via the according internal resistances. For
increasing external thermal resistances, the conversion efficiency reduces remarkably. In contrast
to the power output, the initial increase with decreasing leg length can not be identified for the
efficiency since the advantage at the electric power side is compensated by an increased heat
flux, which also enters the efficiency.

In any case, a reduction of the external thermal resistance is beneficial for the device performance,
as pointed out in Fig. 6.12. Especially for very short devices, the negative influence on power
output at already relatively low thermal resistances is pronounced.
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Figure 6.10: Electric power density with respect to the device leg length.
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Figure 6.11: Conversion efficiency with respect to the device leg length.
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Figure 6.12: Electric power output with respect to the external thermal resistance.

6.3 Reduced Thermal Conductivity by Alloys

In the sequel, the influence of material alloys on thermoelectric device characteristics is dis-
cussed on the example of silicon–germanium. As demonstrated in Section 4.3, elevated phonon
scattering rates in SiGe alloys lead to a remarkably reduced thermal conductivity compared to
pure silicon. However, the electric properties are affected as well. The trade-off between the
advantage of lowered thermal conductivity and the drawback of decreased mobility as well yields
a more or less pronounced improvement of conversion efficiency.

Simulation studies have been carried out for a thermoelectric generator with a leg length of
20mm and a cross section of 5 × 1 mm2. The dopings for both p– and n–type legs are held
constant at 1019 cm−3. Furthermore, the temperature difference considered is 600K above room
temperature.

Both decreased Seebeck voltages as well as reduced mobilities with increasing germanium content
over a wide range (compare Fig. 4.4) result in a drop of currents with increasing germanium
contents. The according electric power output also takes its highest value at pure silicon, as
indicated in Fig. 6.13. The lower mobilities result not only in a reduction of the absolute
maximum of the power output, but also on a shift to higher resistances.

However, the impact of the material composition on the thermal conductivity and thus the heat
flux traversing the device outweighs the influence on the electrical properties, as presented in
Fig. 6.14. The heat flux reduces to a minimum at about 50 % Ge which is one magnitude lower
than the one of pure silicon. The resulting maximum of the conversion efficiency is predicted
for about 30 % germanium content, where an optimum relation between thermal and electrical
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Figure 6.15: Electric power output with respect to the material composition in SiGe
alloys for several temperatures.
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Figure 6.17: Temperature dependent Seebeck coefficients for a lead telluride n-type
device.

properties occurs. For higher germanium contents, the thermal conductivity still decreases
slightly, but cannot outweigh the worse mobility and Seebeck voltages anymore. Fig. 6.15
outlines the dependence of the power output on the material composition at matched load con-
ditions for different temperature differences. The according behavior of the conversion efficiency
is presented in Fig. 6.16. While the power output steadily decreases with increasing germanium
content, the conversion efficiency has its maximum at about 30% germanium.

6.4 Stacked Lead Telluride Thermoelectric Devices

Due to the temperature dependence of several material parameters, every material configuration
has its maximum conversion efficiency in a specified temperature range. Thermoelectric gener-
ators built from one single block of homogeneous materials suffer from the spatial limitation of
matched thermal conditions which follows from the temperature gradient throughout the device.
A possibility to overcome this limitation is the introduction of stacked thermoelectric devices.
There, the material parameters are locally adapted in order to match the required temperature
range.

This concept is discussed for the example of an n-type lead telluride leg, as experimentally
carried out in [297]. Two ingots of lead telluride with a quadratic cross section of 3.45mm side
length and lengths of 2.78 mm and 4.35 mm build the basis for the analysis. The ingots are
doped with PbI2, where the shorter sample has an impurity concentration of 3× 1018 cm−3 and
the longer one 6 × 1019 cm−3.
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Figure 6.18: Temperature dependent power factor for a lead telluride n-type device.

In order to ensure accurate simulation results, the parameter models have been calibrated to
measurement data. While good agreement between resistivity data given in [297] and the mo-
bility model presented in Section 5.4 is obtained, experimental data on the Seebeck coefficient
has to be treated carefully, since the second conduction band gives a contribution to carrier
transport for elevated energies. In the simulations, a two–band model has been applied, where
the Seebeck coefficient has been calibrated to measurement data from [297] following equation
(3.188). Fig. 6.17 demonstrates the calibration of the model to the measured Seebeck coeffi-
cients. Furthermore, the power factor α2σ as the electric part of the thermoelectric figure of
merit Z incorporates both the Seebeck coefficient as well as the electric conductivity and thus
the carrier mobility. Besides the models for the Seebeck coefficients and the effective mass,
Fig. 6.18 illustrates the conformance of the mobility model.

The basic principle behind stacked thermoelectric devices can be recognized in Fig. 6.18 as
well. A lower Seebeck coefficient limits the power factor of the higher doped ingot in spite of its
relatively high conductivity. For the lower doped ingot, the higher Seebeck coefficient dominates
over the lower conductivity at lower temperatures. Thus, at lower temperatures, the lowly doped
ingot outperforms the higher doped one, which is reversed at temperatures above about 550K
for the considered dopant concentrations of 3 × 1018 cm−3 and 6 × 1019 cm−3, respectively.

Fig. 6.19 illustrates the maximum specific power output at matched load conditions of both
the single higher doped ingot and the stacked combination of both ingots as illustrated in the
inlay. Since the power output depends on the device length, the specific power outputs are used
for comparison. The stacked module outperforms the single ingot over the entire temperature
range, where the curve for the single ingot represents the total generated power.
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Figure 6.19: Electric power output with respect to temperature difference for a lead
telluride n-type device.

The beneficial effect of stacking is further amplified by the relation of the thermal conductivities.
In the higher doped ingot, the carrier contribution of the thermal conductivity plays a significant
role, as also predicted in Fig. 5.3. As illustrated in Fig. 6.22, the temperature distribution shifts
to elevated temperatures in the higher doped ingot and a steeper gradient in the lower doped
one. Following Fig. 6.18, ideal power output is obtained with the interface between the two
ingots at a temperature of about 550K. This can been applied as a design rule for the length
ratio of the two parts.

The adaption of a stacked thermoelectric generator to given thermal boundary conditions within
a desired range of temperatures is illustrated in Figures 6.20 and 6.21. In Fig. 6.20, the influence
of the temperature at the heated end as well as the stack assembly on the electrical power
output is analyzed. There, the temperature at the cooled end is kept constant at 300 K. For
this analysis, the overall length of the entire stacked thermogenerator is 7.13 mm and the length
ratio of the two differently doped ingots is varied. For decreasing temperatures at the heated
end, the optimum length of the highly doped ingot located at the heated end decreases. This
is obvious, since the highly doped sample outperforms the lowly doped one only at elevated
temperatures, as shown in Fig. 6.18. Thus, the optimum length ratio maintains the crossover
temperature of 550K at the ingot interface. In Fig. 6.21, the interface temperature is plotted
with respect to the temperature of the heated end and the ingot length ratio. The red line
depicts the optimum interface temperature, whose parameters are congruent with these of the
optimum power output.

While the maximum power output directly depends on the thermoelectric power factor, the
conversion efficiency is additionally affected by the heat flux throughout the device.
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Figure 6.20: Power output with respect to the temperature at the heated end and
the ingot length ratio for a stacked lead telluride device.

Figure 6.21: Temperature at the ingot interface with respect to the heated end’s tem-
perature and the ingot length ratio for a stacked lead telluride device.
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within a stacked lead telluride device.
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Figure 6.24: Principle configuration of a large area pn-junction thermoelectric gen-
erator.

The corresponding material parameter — the thermoelectric figure of merit — therefore incor-
porates the thermal conductivity. As indicated in Fig. 6.23, the figure of merit of the highly
doped ingot is outperformed by the lower doped one throughout the entire temperature range
due to the high electric contribution to the thermal conductivity. Thus, the effect of the heat
flux on the efficiency is dominant and the efficiencies decrease with increasing length of the
highly doped ingot.

Thermoelectric generators consisting of two differently doped legs benefit from the stacking
concept as well. Besides the adaption of local doping, as presented for the example of the n–
type lead telluride leg, the legs can consist of different materials in order to match the local
thermal environment [32]. There, the materials are chosen from several classical thermoelectric
materials, such as bismuth telluride, lead telluride, and SiGe, as well as novel materials such as
clathrates [110,183,298].

6.5 Pn–Junctions as Thermoelectric Devices

As an alternative to classical thermoelectric devices, a structure incorporating a large area pn-
junction [299] is investigated in this section. The principle design of a large area pn-junction
thermoelectric generator is shown in Fig. 6.24. Both electrical contacts are at the cooled end
of the structure and a temperature gradient is applied along the pn-junction. In contrast to
conventional thermoelectric devices, the thermal generation of electron-hole pairs is explicitly
used within large area pn-junction generators.

The underlying physical functionality is based on the temperature influence on the device’s elec-
trostatics. A temperature gradient within the structure leads to the generation of an electrical
current, which is caused by the effect of the temperature on the electrostatic potential of a
pn-junction. Basically, the higher temperature T1 leads to a smaller energy step ΔE1 from the
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Figure 6.25: Energy relations in large area pn-junction thermoelectric generators.

potential of the n- to the p-layer compared to the step ΔE0 at the lower temperature T0. By
having a temperature gradient in a large area pn-junction, both conditions occur neighboring
to each other with the result that carriers at different potentials come into contact and thus
experience a driving force to the colder region. The relations are illustrated in Fig. 6.25.

Because both types of carriers, electrons and holes, are moving in the same direction (ambipolar
drift and diffusion), away from the pn-junction at the higher temperature T1, this region becomes
depleted and the local thermal equilibrium is disturbed. The generation-recombination balance
is shifted to higher generation to compensate the off-drifting carriers.

At the part of the structure with the lower temperature T0, the opposite effect takes place. The
incoming carriers enhance the recombination, which results in a circular electrical current within
the large area pn-junction from the hot region with enhanced generation to the cold side with
increased recombination. Using selective contacts to both the n- and p-type layers, this circular
current can be diverted to an external load and a power source is established, a thermoelectric
element.

The internal functionality of the device can best be illustrated for significant limiting cases. A
structure with a length of 20mm and a total thickness of 2.4 mm is investigated as an example.
The p- and n-layer are symmetrically doped with a maximum concentration of 1020 cm−3 and
separated by a 0.4 mm thick intrinsic layer. Electric contacts are applied at the cooled end of
the structure.

For an open circuit, no current can flow to the outside. This situation is illustrated in Figures
6.26 and 6.27. Carrier generation takes place at the heated end of the device with peaks at the
borders of the intrinsic layers, where carriers are extracted to the conducting layers.
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Figure 6.26: Local generation rate at open circuit conditions.
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Figure 6.27: Electron current density at open circuit conditions.
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Figure 6.28: Local generation rate at short circuit conditions.
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Figure 6.29: Electron current density at short circuit conditions.
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Figure 6.30: Local generation rate at matched load conditions.

0

50
00

10
00
0

15
00
0

20
00
0

x 
[u
m]

0

500

1000

1500

2000

y [um]

0
10

20
30

40
[A
/c
m^
2]

Figure 6.31: Electron current density at matched load conditions.
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The generated carriers are accelerated and accumulate to a current starting from the hot thermal
contact to the competition region of the device, where the temperature starts to be too low for
further carrier generation. Contrary to the heated end, recombination takes place and the current
density is reduced again until zero. The total generation of carriers is exactly compensated by
recombination throughout the entire structure. The other extreme is represented by a short
circuit of the electric contacts as demonstrated in Figures 6.28 and 6.29. Beyond the generation
zone, almost the entire current density reaches the electric contacts while recombination is
reduced to a minimum. This yields even higher generation rates and the device state adjusts to
an accordingly high electric current density.

At matched load conditions, which is shown in Figures 6.30 and 6.31, generation and current
density adjust to an equilibrium between the two cases presented above. The existence of
recombination indicates that the device is not fully optimized at this stage.

6.5.1 Temperature Control by Graded Material Alloys

As pointed out in the preceding section, carrier generation plays a dominant role for the device
characteristics of pn-junction thermoelectric generators. Since the carrier generation is strongly
influenced by the lattice temperature, the zone of high generation rates is limited to the hottest
parts of the device.

In order to increase the total generation rate, it is beneficial to maintain high temperatures in
relatively large parts of the device. In devices consisting of one pure material, the temperature
distribution along the pn-junction is concave due to the decrease of the thermal conductivity
with increasing temperatures. This results in a steep temperature gradient at the heated end
and thus in low areas of high temperature, there limiting carrier generation.

Engineering of the spatial distribution of thermal conductivity is a possibility to increase the
area of high temperatures. The introduction of graded material alloys is one way to achieve
exactly this. As pointed out in Fig. 4.3, the thermal conductivity drastically increases in SiGe
alloys with increasing germanium content up to about 50 %. A material profile with higher
germanium contents at the cooled side of the device yields locally lower thermal conductivities
and thus shifts the temperature drop to the cooler end. The behavior can be compared to a
potential divider in the electric analogon model.

Fig. 6.32 clarifies the situation on the example of a large area pn-junction device. The tempera-
ture distribution given in a) results from the assumed spatial distribution of germanium content
displayed in b). The concave temperature curve corresponds to pure silicon, whereas an increas-
ing germanium content shifts the temperature distribution more and more to a plateau with a
steep gradient at the cooler end. The according spatial distribution of carrier generation rates
is presented in c). An enlargement of the area where generation takes place can be identified at
already relatively low germanium content. At higher germanium contents, the influence on the
temperature profile saturates and the local generation rate is elevated according to the higher
temperatures available.

However, besides the high total carrier generation rates, the carriers have to be efficiently trans-
ported to the contacts as well. Both doping and geometrical dimensions of the transport layers
have to be designed accordingly to avoid recombination at the best. There, geometrically over-
sized transport layers also increase the heat flux while the electric properties are not further
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Figure 6.33: Power output for pn-junction thermoelectric generators vs. load resis-
tance for several temperature differences and two layer thicknesses.

improved, which results in a decreasing efficiency. Careful analysis of the interrelation of several
effects within the device is a basis for efficient device optimization.

The relation of transport layer thicknesses, available temperature difference, and power output
is outlined in Fig. 6.33. The dashed line depicts the maximum power output curve for an
initially considered device geometry, while the solid line identifies optimized relations with thicker
transport layers. Due to the lower internal resistance, the optimum power output curve shifts
to lower load resistances as well. Furthermore, the temperature scale along the maximum power
output curve shifts to higher values, thus the same thermal environment yields a noticeably
improved power output.

The power output dependence on both n- and p-layer thicknesses is illustrated in Fig. 6.34. For
too thin layers, carrier transport is the limiting factor to power output due to increased carrier
recombination within the relatively cold zones of the device. The optimum is indicated at an
asymmetric device with an accordingly thicker p-layer because of the lower hole mobility.

6.5.2 Generation Enhancement by Additional Traps

Due to the temperature dependence of the generation rate, it is beneficial to maintain large
areas of high temperature, as pointed out in the last section. However, carrier generation can
be further improved by the introduction of traps in the forbidden energy gap.

According to the Shockley-Read-Hall formalism [289], thermal generation is affected by local
temperature as well as the amount and energy level of present traps. For trap energy levels
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Figure 6.34: Influence of the layer thicknesses on the power output of a pn-junction
thermoelectric generator.

at the mid band gap, the thermal generation reaches its maximum. For silicon, gold can be
used as additional dopant in the generation region of the device to introduce deep levels close to
mid band gap [300]. Since the impurity state can absorb differences in momentum between the
carriers, this generation process is the dominant one in silicon and other indirect semiconductors.
To some extent, the device performance of a pn-junction thermoelectric generator at a certain
temperature can be shifted to lower temperatures by adaption of the additional trap density
and distribution.

As an example, a thin film thermoelectric generator based on silicon is investigated. The device
consists of a p-doped substrate with a dopant concentration of 1019 cm−3 and an n-doped layer
with a dopant concentration of 1020 cm−3, resulting in a pn–junction, which is located at a
depth of 2.5 µm. In order to increase the power output, gold has been implanted as additional
generation centers at the hotter end of the device. The device considered is 30mm long and has
a width of 20mm.

Fig. 6.35 illustrates the power output of the device at different thermal conditions. The dashed
line represents the variation of the maximum power output with temperature. For higher temper-
atures, carrier generation is more pronounced and thus the power output increases significantly,
while at the same time, the inner resistance reduces. The temperature scale along the dashed
line has been calibrated by the external thermal resistances as well as the exact trap density
within the device. A maximum power output of 19µW has been measured for a hot end tem-
perature of 535K, while a temperature of 596K increases the output to a maximum of 115µW.
The dotted line depicts the simulated power output of the similar structure without additional
traps. For this device configuration, a maximum power output of 91µW is predicted.
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Figure 6.35: Power output of a thin film thermoelectric generator at different hot
end temperatures.

6.5.3 Optimization of Device Characteristics

A combination of graded material alloys and suitable trap profiles is a promising approach for
optimized devices. In the sequel, a simulation study on different configurations of Si/SiGe struc-
tures with spatial variable germanium content are investigated and compared to corresponding
structures with constant germanium content throughout the entire device. Furthermore, the
influence of additionally introduced traps is demonstrated. The structures under investigation
differ in the material composition profile as illustrated in Fig. 6.36, Fig. 6.37, and Fig. 6.38,
where the according temperature profiles for increasing germanium content can be found as
well. Each of the three structures, which differ in different lengths of their SiGe parts, is ana-
lyzed for varied germanium contents and with or without additional traps. Increasing lengths
of the SiGe part are indicated by increasing numbers in their designation. The considered trap
profiles are adapted to the material profiles, thus a constant trap distribution of 1017 cm−3 is
considered within the silicon segment of the devices.

In the sequel, the influence of germanium content, material composition profile, and additional
trap states on electric and thermal device behavior is investigated. Fig. 6.39 depicts the heat
flux throughout the structures with respect to the germanium content within the SiGe part. The
decreasing thermal conductivity with increasing germanium content of silicon–rich SiGe alloys,
as illustrated in Fig. 4.3, leads to decreasing heat fluxes as well. The material composition’s
influence is diminished by longer silicon segments.

Fig. 6.40 illustrates the power output of several structures under investigation. For the homoge-
neous device, which is depicted by the dotted line, the power output decreases continuously with
increasing germanium content due to the detrimental effect of increasing germanium content on
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the carrier mobility. For the staged structures, two effects can be noticed, whose dominance
depend on the germanium content. First, the elevated germanium content results in a shift
of the temperature distribution, as indicated in Fig. 6.36, Fig. 6.37, and Fig. 6.38. Thus, the
conductive part of the pn-junction is enlarged, which results in higher power output. For fur-
ther increased germanium content, the decreased mobility becomes the limiting factor, which
results in declining power output. Structure 3 (Fig. 6.38) exhibits the highest sensitivity on the
germanium content, which decreases with decreasing SiGe segment length.

Fig. 6.41 visualizes the conversion efficiency. The pure silicon structures show the lowest effi-
ciency of about 0.4% because of the very high heat flux. For the staged samples, the efficiency
is influenced by the temperature distribution, the conductivity relations, as well as the overall
thermal conductivity. For all structures, additional traps increase the power output over the
entire range. Since their effect on the thermal conductivity is negligible, the increased power di-
rectly leads to increased efficiencies as well. For Structure 3, the maximum efficiency is elevated
from 2.0 % to 2.75%.

In Fig. 6.39, Fig. 6.40, and Fig. 6.41, it can be seen that devices with different material parti-
tioning feature comparable conversion efficiencies while the heat conductivity and power output
vary about a factor of two. This behavior can be used to adjust the power and heat flux den-
sity to given boundary conditions while maintaining the same geometry of the generator or to
reduce costs by changing the geometry but not the conversion efficiency. The large amount of
design parameters allows a good adjustment of large area pn-junction thermoelectric generators
to specific thermal and geometrical environments.
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length of 6 mm (Structure 1).
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Figure 6.37: Spatial distribution of material composition and temperature for a Ge
length of 10mm (Structure 2).
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Figure 6.39: Heat flux vs. germanium content for different material composition
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’When you know a thing, to hold that you know it;
and when you do not know a thing, to allow that you
do not know it - this is knowledge.’

Confucius

Chapter 7

Summary and Conclusions

THE PERFORMANCE of thermoelectric materials and devices strongly depends on the
thermal environment as well as given geometric constraints. In order to exhaust the avail-

able thermal energy at the best, thermoelectric generators have to be optimized for each given
situation. Thereby, the design of custom devices for given environments depends on a physi-
cally based simulation framework. In mainstream microelectronics, Technology Computer Aided
Design (TCAD) has been successfully applied for years to maintain the development of semi-
conductor devices. Besides its role in process development and device optimization, insights to
the internal behavior of devices improve the physical understanding of internal quantities. This
work implies a fruitful extension to the field of semiconductor device simulation of thermoelectric
devices.

A transport model suitable for thermoelectric devices has been systematically derived by the
method of moments, which is compatible to an approach based on phenomenological irreversible
thermodynamics. Thereby, special attention has been paid to the Seebeck coefficient by a
comparison of measurement data with the theoretical formulation.

In addition to the Silicon–Germanium material system which is used for high temperature ther-
moelectric applications, lead telluride plays an important role for the intermediate temperature
range. The material database of Minimos-NT has been extended by all relevant models and
parameters for lead telluride in order to enable predictive simulation of such devices.

The behavior of both classical thermoelectric devices and novel structures incorporating a large
scale pn-junction has been investigated with Minimos-NT. Thereby the influence of geometry,
material composition, and forced carrier generation on the device performance has been assessed.
Non-ideal thermal environments have been discussed and considered using mixed-mode simula-
tions. While the number of possible device variations of conventional thermoelectric devices is
relatively small, the numerous design parameters of the novel structures allows good adaption
to given environments.
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Appendix A

Poisson Brackets Formulation

The Poisson bracket represents an important and convenient operator within Hamiltonian me-
chanics. It allows not only a compact treatment of the Boltzmann transport equation and
its moments as carried in Chapter 3, but has some useful identities applied throughout the
derivation of several transport models. Its basic definition for two scalars reads

{a, b} = ∇ra · 1

�
∇kb − 1

�
∇ka · ∇rb , (A.1)

whereas the Poisson bracket for a vector valued quantity and a scalar has to be handled more
carefully. This case can be extrapolated by having a closer look on its single components.
Considering a vector a with its components ax, ay, and az, and using Einstein’s summation
convention

a =
z�

m=x

amem = am , (A.2)

∇ · a =

z�
m=x

∂mam = ∂mam , (A.3)

∇⊗ a =

z�
m=x

z�
n=x

∂nbm = ∂nbm (A.4)

one can write

{am, b} = ∇ram · 1

�
∇kb − 1

�
∇kam · ∇rb (A.5)

= ∂man
1

�
∂k

nb − 1

�
∂k

nam∂mb

{a, b} = ∇r ⊗ a · 1

�
∇kb − 1

�
∇k ⊗ a · ∇rb . (A.6)

With these definitions, the subsequent identities can be carried out. As a consequence of its
definition, the Poisson bracket is anti–commutative, meaning that

{a, b} = −{b, a} . (A.7)
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Moreover, the Poisson bracket of a variable with itself vanishes

{a, a} = 0 , (A.8)

which is important for the special case of {E , E} in the following derivations. The Poisson bracket
of every scalar or vector and a constant C vanishes

{C, a} = 0 , (A.9)

which is especially useful for C = 1 during the derivation of the balance equations. Furthermore,
the Poisson bracket of a product can be expressed as

{ab, c} = a{b, c} + b{a, c} (A.10)

which can be easily verified using the product rule. The Poisson bracket is bi-linear, thus two
sums can be expanded like

{a + b, c + d} = {a, c + d} + {b, c + d} (A.11)

= {a, c} + {b, c} + {a, d} + {b, d} .
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Useful Identities

Several identities from tensor and vector analysis used throughout the derivation of transport
models in this work are listed below.

a · ∇b = ∇ · (ba ⊗ c) − b∇ · (a ⊗ c) (B.1)

a · ∇b = ∇ · (ab) + b · (∇⊗ a) (B.2)

∇ · (b ⊗ a) = a (∇ · b) + b (∇⊗ a) (B.3)

1

�
∇k ⊗ ph(p) = h(p)̂I + (p ⊗ p)

1

p
∂ph (B.4)

a (b · c) = c · (b ⊗ a) (B.5)

1

�
∇k ⊗ uh(p) = h(p)

1

�
∇k ⊗ u + u ⊗ 1

�
∇kh(p) (B.6)

a∇r · b(r) = ∇r · (b(r) ⊗ a) ,∇r · a ≡ 0 (B.7)
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[143] V. Palankovski, G. Röhrer, T. Grasser, S. Smirnov, H. Kosina, and S. Selberherr, “Rigor-
ous Modeling Approach to Numerical Simulation of SiGe HBTs,” Applied Surface Science,
vol. 224, no. 1–4, pp. 361–364, 2004.

[144] A. Amith, “Seebeck Coefficient in N-Type Germanium-Silicon Alloys: ”Competition Re-
gion”,” Physical Review, vol. 139, no. 5A, pp. 1624–1627, 1965.

[145] D. Rowe, “Electrical Properties of Hot-Pressed Germanium-Silicon-Boron Alloys,” J.
Phys. D: Appl. Phys., vol. 8, pp. 1092–1103, 1975.

[146] M. Brinson and W. Dunstant, “Thermal Conductivity and Thermoelectric Power of Heav-
ily Doped N-Type Silicon,” J.Phys.C:Solid State Phys., vol. 3, no. 3, pp. 483–491, 1970.

[147] K. Hubner and W. Shockley, “Transmitted Phonon Drag Measurements in Silicon,” Phys-
ical Review Letters, vol. 4, no. 10, pp. 504–505, 1960.

[148] R. Trczinski, E. Gmelin, and H. Queisser, “Quenched Phonon Drag in Silicon Microcon-
tacts,” Physical Review Letters, vol. 56, no. 10, pp. 1086–1089, 1986.

[149] L. Weber and E. Gmelin, “Transport Properties of Silicon,” Appl.Phys.A, vol. 53, pp. 136–
140, 1991.

131



BIBLIOGRAPHY

[150] C. Vining, CRC Handbook of Thermoelectrics, ch. Silicon Germanium, pp. 329–337. CRC
Press, Inc., 1994.

[151] V. Fano, CRC Handbook of Thermoelectrics, ch. Lead Telluride and Its Alloys, pp. 257–
266. CRC Press, Inc., 1994.

[152] Z. Ding, S. Huang, D. Marcus, and R. Kaner, “Modification of Bismuth Telluride for
Improving Thermoelectric Properties,” in Thermoelectrics, 1999. Eighteenth International
Conference on, pp. 721–724, 29 Aug.-2 Sept. 1999.

[153] W. Kullmann, J. Geurts, W. Richter, N. Lehner, H. Rauh, U. Steigenberger, G. Eichhorn,
and R. Geick, “Effect of Hydrostatic and Uniaxial Pressure on Structural Properties and
Raman Active Lattice Vibrations in Bi2Te3,” Phys.stat.sol.(b), vol. 125, pp. 131–138, 1984.

[154] L. Caywood and G. Miller, “Anisotropy of the Constant-Energy Surfaces in N-Type Bi2Te3

and Bi2Se3 from Galvanomagnetic Coefficients,” Physical Review B, vol. 2, no. 8, pp. 3209–
3220, 1970.

[155] J. Jenkins, J. Rayne, and R. Ure, “Elastic Moduli and Phonon Poperties of Bi2Te3,”
Physical Review B, vol. 5, no. 8, pp. 3171–3184, 1972.

[156] J. Barnes, J. Rayne, and R. Ure, “Lattice Expansion of Bi2Te3 from 4.2K to 600K,”
Phys.Lett., vol. 46A, pp. 317–318, 1974.

[157] E. Marchenkov and V. Shipul, “Thermal Expansion of Semionductor Materials,” Journal
of Engineering Physics and Thermophysics, vol. 66, no. 5, pp. 547–551, 1994.

[158] J. Drabble, Progress in Semiconductors, vol. 7. John Wiley & Sons, Inc., New York, 1963.

[159] T. Harman, B. Paris, S. Miller, and H. Goering, “Preparation and Some Physical Proper-
ties of Bi2Te3, Sb2Te3, and As2Te3,” J. Phys. Chem. Solids, vol. 2, pp. 181–190, 1957.

[160] R. Sehr and L. Testardi, “The Optical Properties of P-Type Bi2Te3Sb2Te3 Alloys Between
2-15 Microns,” J. Phys. Chem. Solids, vol. 23, pp. 1219–1224, 1962.

[161] E. Muller, W. Heiliger, P. Reinshaus, and H. Submann, “Determination of the Ther-
mal Band Gap from the Change of the Seebeck-Coefficient at the pn-Transition in
(Bi0.5Sb0.5)2Te3,” in Thermoelectrics, 1996., Fifteenth International Conference on,
pp. 412–416, 26-29 March 1996.

[162] R. Togei and G. Miller, Phys. Semimetals and Narrow Gap Semiconductors. Pergamon
Press, Oxford, 1971.

[163] G. Shoemake, J. Rayne, and R. Ure, “Specific Heat of N- and P-Type Bi2Te3 from 1.4 to
90 K,” Physical Review, vol. 185, no. 3, pp. 1046–1056, 1969.
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