
Adaptor Signature Based Atomic
Swaps Between Bitcoin and a

Mimblewimble Based
Cryptocurrency

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Jakob Abfalter, BSc
Matrikelnummer 01126889

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ. Prof. Dr. Matteo Maffei
Mitwirkung: Dr. Pedro Moreno-Sanchez

Wien, 22. Juni 2021
Jakob Abfalter Matteo Maffei

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Adaptor Signature Based Atomic
Swaps Between Bitcoin and a

Mimblewimble Based
Cryptocurrency

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Jakob Abfalter, BSc
Registration Number 01126889

to the Faculty of Informatics

at the TU Wien

Advisor: Univ. Prof. Dr. Matteo Maffei
Assistance: Dr. Pedro Moreno-Sanchez

Vienna, 22nd June, 2021
Jakob Abfalter Matteo Maffei

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Jakob Abfalter, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 22. Juni 2021
Jakob Abfalter

v

Danksagung

Ich möchte mich bei meinen Betreuern Dr. Pedro Moreno-Sanchez und Univ. Prof. Dr.
Matteo Maffei bedanken, die mir während dieser Arbeit wertvolle Hilfestellungen gegeben
haben. Ich möchte auch Andrew Poelstra und den Grin-Entwicklern (insbesondere Jasper)
dafür danken, dass sie mir bei technischen Problemen geholfen haben, die während der
Proof-of-Concept-Implementierung auftraten. Ein besonderer Dank geht außerdem an
Bernhard Abfalter für das Korrekturlesen.

vii

Acknowledgements

I wish to show appreciation to my advisors Dr. Pedro Moreno-Sanchez and Univ. Prof.
Dr. Matteo Maffei, for providing me with valueable guidance throughout this thesis. I
would also like to thank Andrew Poelstra and the Grin Developers (specifically Jasper) for
helping me with technical issues that arose during the proof of concept implementation.
Special thanks further go to Bernhard Abfalter for proofreading.

ix

Kurzfassung

Seit der Einführung von Bitcoin im Jahr 2008 haben wir ein kontinuierliches Wachstum
im Bitcoin- und Blockchain-Bereich erlebt. Da die Anzahl der Kryptowährungen steigt,
wird die Interoperabilität zwischen ihnen zu einem interessanten Thema, zum Beispiel
um dezentralen Exchange zwischen den Kryptowährungen zu ermöglichen. Durch die
Nutzung von Smart Contracts oder Skriptkonstrukten, die auf den meisten Blockchain-
Systemen verfügbar sind, ist die Verbindung zweier Kryptowährungen über sogenannte
Atomic Swaps möglich. Für Währungen, die sich auf die Verbesserung der Privatsphäre
konzentrieren, gibt es jedoch keine solchen Möglichkeiten.
Diese Arbeit erforscht das Mimblewimble-Protokoll, eine Konstruktion einer außergewöhn-
lich effizienten, die Privatsphäre verbessernden Kryptowährung. Aufbauend auf früheren
Arbeiten anderer Autoren formalisieren wir verschiedene Arten von Mimblewimble-
Transaktionen, die primitive Smart Contracts ermöglichen, und beweisen ihre Sicherheit
und Korrektheit. Wir verbessern das Sicherheitsmodell des Protokolls, indem wir eine
Schwäche in früheren Formalisierungen identifizieren und beheben. Unter Verwendung
unserer fortschrittlichen Transaktionsprotokolle gelingt es uns, ein Atomic-Swap-Protokoll
für Mimblewimble-basierte Systeme zu entwerfen, das ausschließlich aus kryptografischen
Primitiven aufgebaut ist. Außerdem formalisieren wir ein Atomic Swap-Protokoll zwi-
schen Bitcoin und Grin, einer Mimblewimble-basierten Kryptowährung. Anschließend
implementieren wir einen Proof of Concept in der Programmiersprache Rust, den wir
erfolgreich in den Testnets von Bitcoin und Grin einsetzen und evaluieren.

xi

Abstract

Since the inception of Bitcoin in 2008, we have witnessed continuous growth in the Bitcoin
and blockchain space. As the number of individual cryptocurrencies rises, interoperability
between them becomes a critical topic, for instance, to allow for decentralized coin
exchange. By utilizing smart contracts or script constructs available on most blockchain
systems, connecting two cryptocurrencies is possible via so-called Atomic Swaps. However,
for the currencies focusing on privacy enhancements, no such capabilities exist.
This thesis explores the Mimblewimble protocol, a construction of an exceptionally
efficient privacy-enhancing cryptocurrency. By building on other authors’ previous
work, we formalize different kinds of Mimblewimble transactions that allow for shared
coin ownership and simple contracts and prove their security and correctness. We
improve on the protocol’s security model by identifying and resolving a weakness in prior
formalizations. Utilizing our advanced transaction protocols, we manage to design an
Atomic Swap protocol for Mimblewimble-based systems built solely with cryptographic
primitives. We further formalize an Atomic Swap protocol between Bitcoin and Grin,
a Mimblewimble-based cryptocurrency. We then implement a proof of concept in the
programming language Rust, which we successfully deploy and evaluate on the Bitcoin
and Grin testnets.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1

2 Preliminaries 5
2.1 General Notation and Definitions . 5
2.2 Bitcoin . 9
2.3 Privacy-enhancing Cryptocurrencies 12
2.4 Mimblewimble . 15
2.5 Scriptless Scripts . 21

3 Two-Party Fixed Witness Adaptor Signatures 23
3.1 Definitions . 24
3.2 Schnorr-based Instantiation . 26
3.3 Protocols . 29
3.4 Correctness & Security . 31

4 Adaptor Signature Based Atomic Swaps Between Bitcoin and a Mim-
blewimble Based Cryptocurrency 43
4.1 Definitions . 44
4.2 Instantiation . 50
4.3 Protocols . 57
4.4 Correctness & Security . 61
4.5 Atomic Swap Protocol . 85

5 Implementation 93
5.1 Implementation Bitcoin side . 95
5.2 Implementation Grin side . 96
5.3 Evaluation . 96

xv

6 Related Work and Future Research 99

7 Conclusion 101

List of Figures 103

Bibliography 105

CHAPTER 1
Introduction

Since the original release of the Bitcoin whitepaper [33] on October 31, 2008, by the
anonymous entity Satoshi Nakamoto, we have seen a continuous rise in interest in Bitcoin
and other cryptocurrencies. The Bitcoin protocol allows for a P2P (peer to peer) exchange
of the Bitcoin currency without trusted intermediaries. This is made possible by the
distributed consensus protocol of proof-of-work in which so-called miners compete in
adding new transactions to the Bitcoin ledger for which they are rewarded by newly
created currency and transaction fees. Bitcoin works with the so-called UTXO (Unspent
transaction output) model, in which all funds are stored in transaction outputs. Every
output can only ever be spent once by its owner. Therefore, the list of UTXOs denotes
all currently spendable coins in the network.

Coin Exchanges. According to CoinMarketCap1 at the time of writing, there are
almost 9000 different cryptocurrencies available with a combined market cap of $1.8
trillion. Most of these currencies try to improve upon various Bitcoin protocol limitations,
for instance, by making it either more expressive, more private, or more efficient. Exchange
between Fiat (government-issued currency) and cryptocurrencies, and between individual
cryptocurrencies is a popular topic among retail investors. It has recently started
to become attractive as well for institutions and publicly listed companies such as
Microstrategy, Grayscale, or Tesla.2 Most of the exchange is currently happening on
centralized exchanges such as Binance3 or Coinbase4. Users can deposit, trade, and
withdraw cryptocurrencies or Fiat currency on these platforms, while the service provider
controls the funds available to its users.

1https://coinmarketcap.com/
2https://bitcointreasuries.org/
3https://www.binance.com/en
4https://www.coinbase.com/

1

https://coinmarketcap.com/
https://bitcointreasuries.org/
https://www.binance.com/en
https://www.coinbase.com/

1. Introduction

Although used in practice, centralized exchanges have several drawbacks: We have seen
instances like 5,6,7 in which hackers managed to steal large quantities of funds from
such platforms. Furthermore, exchanges of this sort are required by law to collect KYC
information, which acts as proof of the customers’ identity to prevent illegal activity
on their platforms. This requirement can create a barrier of entry for people that lack
identification documents or are unwilling to give away this sort of data to the provider.
Consequently, decentralized exchanges such as Uniswap8 or Bisq9 have emerged and
are gaining rapidly in popularity. A decentralized exchange allows users to exchange
cryptocurrencies directly in a P2P fashion without the need for a trusted intermediary.
Smart contracts that reside on a blockchain such as Ethereum10 and allow for trustless
swaps between currencies make decentralized exchange possible. Interoperability between
cryptocurrencies is critical to enable such coin swaps. A trustless protocol allowing trades
of two individual cryptocurrencies is called an Atomic Swap protocol [21]. In such a
protocol, funds are locked up on both sides of the trade and settled such that each party
gains access to the locked funds on the other side after successful protocol execution.

Mimblewimble. The Mimblewimble protocol was introduced in 2016 by an anonymous
author Tom Elvis Jedusor [22] and represents an outline for a new privacy-enhancing
cryptocurrency with shallow space requirements of the ledger. The author’s and the
protocol’s name are references to the Harry Potter franchise.11 In Harry Potter, Mim-
blewimble is a tongue-tying curse, which reflects the protocol’s design goal: Improving
the user’s privacy. Later, Andrew Poelstra took up the original writing’s ideas and
published his understanding of the protocol [37]. Mimblewimble gained popularity in
the community and was implemented in the Grin12 and Beam13 cryptocurrencies that
both launched in early 2019. In the same year, two papers [17, 9] were published, which
successfully defined and proved security properties for Mimblewimble. Compared to
Bitcoin, there are some differences in the Mimblewimble protocol:

• Transaction values are hidden from a blockchain observer, which is not the case in
Bitcoin.

• Coin ownership is given by a single private key of a so-called coin Commitment. In
Mimblewimble, there are no addresses or scripting capabilities that do exist in Bitcoin.

• The nodes constantly purge spent coins from the ledger such that only unspent
transaction outputs remain, and the ledger’s space requirements remain low, but public
verifiability of the blockchain is not lost.

5https://tinyurl.com/yrcpp5jm
6https://tinyurl.com/5f8wkv7v
7https://tinyurl.com/a9hxmftm
8https://uniswap.org/
9https://bisq.network/

10https://ethereum.org/
11https://harrypotter.fandom.com/wiki/Tongue-Tying_Curse
12https://grin.mw/
13https://beam.mw/

2

https://tinyurl.com/yrcpp5jm
https://tinyurl.com/5f8wkv7v
https://tinyurl.com/a9hxmftm
https://uniswap.org/
https://bisq.network/
https://ethereum.org/
https://harrypotter.fandom.com/wiki/Tongue-Tying_Curse
https://grin.mw/
https://beam.mw/

• Transactions are continuously merged together to achieve a degree of transaction
indistinguishability, further improving the user’s privacy.

Motivation. Privacy-enhancing cryptocurrencies, such as Mimblewimble-based im-
plementations, are often not available for trade on centralized exchanges due to their
anonymity features that make it hard for providers to comply with regulatory require-
ments. Recently the exchange Bittrex announced the delisting of several coins of this
category, including Grin, which is a Mimblewimble-based cryptocurrency.14 Therefore
it is of particular interest to make these coins available for trading on decentralized
exchanges. However, making privacy-enhancing cryptocurrencies interoperable is a diffi-
cult problem. By employing additional cryptographic tricks to obfuscate transactions
and ledger, capabilities for executing more complex transactions and contracts required
for Atomic Swap protocols are missing. By constructing an Atomic Swap protocol
that does not rely on such capabilities, we could significantly improve interoperability
between privacy-enhancing cryptocurrencies, making them available for decentralized
coin exchange.

Our contribution. In this thesis, we will first describe a new variant of a Two-Party
Signature Scheme, which can be used to build primitive contracts on a Mimblewimble-
based cryptocurrency. We will formalize this construction and prove its correctness and
security in chapter 3. In chapter 4, we then define four different kinds of transaction
protocols that can be conducted between a sender and a receiver in a Mimblewimble-based
cryptocurrency, using the Two-Party Signature Scheme introduced in the previous chapter.
We show that all four transaction types are secure and correct as of the definitions given
by Fuchsbauer et al. in their cryptographic investigation of Mimblewimble [17]. Finally,
utilizing the transaction protocols introduced before, we construct an Atomic Swap
protocol that allows for the trustless exchange between Bitcoin and a Mimblewimble-
based cryptocurrency. In chapter 5, we showcase our proof of concept implementation of
the protocol, which is tested and evaluated on the Bitcoin and Grin testnets.
Our thesis contributes to making privacy-enhancing cryptocurrencies, specifically those
built on the Mimblewimble protocol, more interoperable, allowing for them to be listed
on decentralized exchanges. The following request for funding15 shows the developers’
and the community’s interest in implementing a production-grade version of such a
protocol. By implementing our formalization and taking our proof of concept as a
reference, developers can build and deploy an Atomic Swap protocol that securely swaps
Mimblewimble and Bitcoin funds without trusted intermediaries.

14https://tinyurl.com/bf42xxpj
15https://tinyurl.com/4jkbkccu

3

https://tinyurl.com/bf42xxpj
https://tinyurl.com/4jkbkccu

CHAPTER 2
Preliminaries

This chapter will lay down the general notations and definitions required for the later
parts of the thesis. In section 2.1, we will define several cryptographic primitives which
are necessary for our constructions. Section 2.2 will describe definitions around Bitcoin,
mainly its transaction structure. After that, in section 2.3, we will discuss the notion of
privacy-enhancing cryptocurrencies and range proofs in section 2.3.2. Both are essential
to understand the Mimblewimble protocol addressed in section 2.4. Finally, we explain
the concept of Scriptless Scripts and Adaptor signatures in section 2.5, which are relevant
building blocks for the constructions found in this thesis.

2.1 General Notation and Definitions
Notation We first define the general notation used in the following chapters to formalize
procedures and protocols. Let G denote a cyclic group of prime order p and Zp the
ring of integers modulo p with identity element 1p. Z∗

p is Zp \ [0]. g, h are adjacent
generators in G, where adjacent means the discrete logarithm of h regarding g is not
known. Exponentiation stands for repeated application of the group operation. We
define the group operation between two curve points as ga · gb = ga + b. For a
list of group points (Clist = [C1, C2, · · · , Cn]) we write 	 Clist as the application
of the group operations between the individual points of the list like C1 · C2 · · · Cn.
We write procedures as function(I) and protocols (executed between two parties) as
protocol < (Ia), (Ib) > where Ia is the input of the first party and Ib of the second.

Definition 2.1 (Hard Relation [4]). Given a language LR := [X | ∃x s.t. (x , X) ∈ R]
then the relation R is considered hard if the following three properties hold:

1. (x , X) ← genRel(1 n) is a PPT sampling algorithm which outputs a statement/witness
of the form (x , X) ∈ R.

2. Relation R is poly-time decidable.

5

2. Preliminaries

3. For all PPT adversaries A the probability of finding x given X is negligible.

Definition 2.2 (Discrete Logarithm). We define the discrete logarithm in a group G of
a point h as the integer n such that for the groups generator g the following holds:

gn = h

Discrete logarithm assumption: Given the tuple (h, g) such that h = gn , one can compute
n only with negligible probability, which makes (h, n) a hard relation as of definition 2.1.

Definition 2.3 (Signature Scheme [18]). A Signature Scheme Φ is a tuple of algorithms
(keyGen, sign, verf) defined as follows:

Φ = (keyGen, sign, verf)

• (sk, pk) ← keyGen(1 n): The keygen function creates a keypair (sk, pk), the public
key pk can be distributed to the verifier(s) and the secret key sk has to be kept private.

• σ ← sign(m, sk): The signing algoritm creates a signature under the message m,
which can be verified with the respective public key pk. As an input it takes a message
m and the secret key sk of the signer.

• {1, 0} ← verf(m, σ, pk): The verification function allows a verifier, knowing the
signature σ, message m, and the provers public key pk to verify the validity of the
signature.

A valid Signature Scheme has to fulfill two security properties:

• Correctness: For all messages m and valid keypairs (sk, pk) the following must hold
with overwhelming probability: verf(pk, sign(sk, m), m) = 1

• Unforgeability (EUF − CMA): Informally the existential unforgeability under chosen
message attacks holds if attacker A with access to a signing oracle Os cannot forge a
valid signature for a chosen message. More formally, for a polytime adversary A, message
m, and public key pk, with access to the oracle σ ← Os(m, pk) that stores all signed
messaged in a list [m1, ..mn] the following must hold:

σ ← A(m∗, pk), m∗ �∈ [m1, ..mn], P(verf(m∗, σ, pk) = 1) ≤ negl(·)
Definition 2.4 (Cryptographic Hash Function [1]). A cryptographic hash function H is
defined as H(I) → {0, 1}n for some fixed number n and some input I . A secure hashing
function has to fulfill the following security properties:

• Collision-Resistance (CR): Collision-Resistance means that it is computationally
infeasible to find two inputs I1 and I2 such that H(I1) = H(I2) with I1 �= I2.

• Pre-image Resistance (Pre): In a hash function H that fulfills Pre-image Resistance it
is infeasible to recover the original input I from its hash output H(I). If this security
property is achieved, the hash function is said to be non-invertible.

6

2.1. General Notation and Definitions

• 2nd Pre-image Resistance (Sec): This property is similar to Collision-Resistance and
is sometimes referred to as Weak Collision-Resistance. Given such a hash function H
and an input I , it should be infeasible to find a different input I ∗ such that I �= I ∗ and
H(I) = H(I ∗).

The relation between the input I and the output H(I) is a hard relation as defined
in definition 2.1.

Definition 2.5 (Commitment Scheme [11]). A cryptographic Commitment Scheme
COM is defined by a pair of functions (setupCom, commit).
• rs ← setupCom(1 n): The setup procedure is a DPT function, it takes as input a
security parameter 1 n and outputs public parameters PP. Depending on PP we define a
input space IPP , a randomness space KPP and a Commitment space CPP .

• C ← commit(I , r) The commit routine is DPT function that takes an arbitrary input
I ∈ IPP , a random nonce value r ∈ KPP and generates an output C ∈ CPP .

Secure Commitments must fulfill the Binding and Hiding security properties:

• Binding: If a Commitment Scheme is binding it must hold that for all PPT adversaries
A given a valid input I ∈ IPP and randomness r ∈ KPP the probabilty of finding a
I ∗ �= I and a r∗ with commit(I , r) = commit(I ∗, r∗) is negligible.

• Hiding: For a PPT adversary A, Commitment inputs I0, I1 ∈ IPP randomness r ∈ KPP
and a Commitment output C := commit(Ib, r ,) the probabilty of the adversary choosing
the correct b out of {0, 1} must not be higher then 1

2 + negl(·).
Definition 2.6 (Additive Homomorphic Commitment Scheme [11]). A Commitment
Scheme as described in definition 2.5 is said to be addtive homomorphic if the following
holds

commit(I1, r1) · commit(I2, r2) = commit(I1 + I2, r1 + r2)

Definition 2.7 (Pedersen Commitment Scheme). A Pedersen Commitment Scheme is
an instance of a Commitment Scheme as described in definition 2.5 that has the additive
homomorphic property as shown in definition 2.6.

This can be achieved as follows: CPP := G of order p, IPP , KPP := Zp. The procedures
(setupCom, commit) are then instantiated as:

rs ← setupCom(g1, g2) := g := g1, h := g2

C ← commit(I , r) := grhI

An instantiation of the Pedersen Commitment Scheme must pick two adjacent generators
g1, g2 for the setup routine to be secure in terms of hiding and binding. Formally adjacent
means that there exists a hard relation between g and h in terms of the discrete logarithm
(see definition 2.2). So no x is known such that h = gx. In practice, this is often
achieved by hashing g with a special hash function that outputs a group element as h.

7

2. Preliminaries

Security proofs

To prove security of our protocols, we define the notion of security in the presence of
malicious adversaries, which may deviate from the protocol arbitrarily. To construct the
definition, we must first explain two terms: IDEAL, the execution in the ideal model and
REAL, and the real model’s execution. The following definitions are based on a tutorial
paper on simulation proofs by Yehuda Lindell [26].

Execution in the Ideal Model We have two parties P1 with input x and P2 with
input y that cooperate to compute a two-party functionality f : {0, 1}∗ × {0, 1}∗ �
{0, 1}∗ × {0, 1}∗. The adversary A either controls P1 or P2. The ideal execution IDEAL
relies on the assumption that we have access to a trusted third party (TTP) and proceeds
in the following steps:

1. Inputs: The input of P1 is x , and the input of P2 is y. Both parties get an additional
auxiliary input z . We note that we can generalize the concept to functions that require
multiple inputs or even functions which do not require any input. In the case of multiple
inputs, the inputs of P1 would then b a list [xi] and the inputs of P2 a list [yi]. For
simplicity, we here describe the case with one single parameter provided by each party.

2. Send Inputs: The honest party (the one which is not controlled by A) sends its
input x (resp. y) to the trusted third party. The malicious party can either abort the
execution by sending the symbol abort to the trusted third party, send its input x (resp.
y), or send an arbitrarily chosen string k with the same length as x to proceed with the
protocol execution. The decision is made by A and may depend on the input or auxiliary
input z. We denote (x∗, y∗) as the inputs received by the trusted third party. If P1 is
malicious then (x∗, y∗) = (k, y), if P2 is malicious then (x∗, y∗) = (x , k).

3. Abort: If the trusted third party has received abort from one of the parties, then it
sends abort to both parties.

4. Answer to Adversary: After having received both inputs the trusted third party
computes f(x∗, y∗) = (f1(x∗, y∗), f2(x∗, y∗)) and proceeds by sending f1(x∗, y∗) (respective
f2(x∗, y∗)) to the adversary.

5. Adversary Instructs Trusted Party: A now again has the option of sending abort
to the trusted third party to stop the execution. Otherwise, it may send continue which
means the output f1(x∗, y∗) (respective f2(x∗, y∗)) will be delivered to the honest party.

6. Outputs: The honest party outputs the answer of the trusted third party. The
malicious party may output an arbitrary function of its input, the auxiliary string z , or
the answer for the trusted party.

Let A be a non-uniform PPT algorithm, and i ∈ {1, 2} be the corrupted party’s index. We
then denote IDEALf,P(z),i(x , z) as the ideal execution of f on inputs (x , y) with auxiliary
input z to A and security param 1 n defined as the output pair of the honest party and
A from the ideal execution.

8

2.2. Bitcoin

Execution in the Real Model Again let A be a non-uniform PPT adversary and
i ∈ {1, 2} be the corrupted party’s index. In this model, a real two-party protocol γ is
executed, but the adversary A sends all messages in place of the corrupted party and may
follow an arbitrary polynomial-time strategy. Then the real execution of the two-party
protocol γ between P1 and P2 on inputs (x , y) and auxiliary input z to A and security
parameter 1 n is denoted by REALf,P(z),i(x , z) and is defined as the output pair of the
honest party and the adversary A from the real execution of γ.

Definition 2.8 (Security in the Malicious Setting [26]). We say a two-party protocol γ
securely computes a function f with aborts and inputs (x , y) in the malicious setting if
for every non-uniform PPT adversary A in the real model, there exists a non-uniform
PPT algorithm S, refered to as simulator, such that

{IDEALf,S(z),i(x, z) ≡c REALf,A(z),i(x , z)}
where |x | = |y| and z = poly(|x|) and ≡c means computationally indistinguishable.

2.2 Bitcoin
In this section, we will discuss the basics of the Bitcoin transaction protocol. We
will find definitions that we will use later in section 4.5 to construct an Atomic Swap
protocol. The primary reference of this section is the book Mastering Bitcoin by Andreas
Antonopoulos [3].

2.2.1 Bitcoin Transaction Protocol
A Bitcoin Transaction is a data structure that allows transferring value between partici-
pants of the network. In Bitcoin, there are no user balances or user accounts. Instead,
the UTXO model (unspent transaction outputs) is employed. A UTXO is an output
constructed in a previous transaction that holds value in the form of an amount expressed
in Bitcoin (more precisely in Satoshis, which is the smallest unit of Bitcoin) and a locking
condition (referred to as scriptPubKey). Unspent means the output has not yet been
spent, and its funds are available to be redeemed by the owner. To unlock this value, one
must provide a script fulfilling the locking condition, referred to as scriptSig. In the most
common case, the lock condition will fulfill by giving a valid signature under a public
key. This type of construction is referred to as a P2PK or P2PKH output, which we will
see in more detail in section 2.2.1. However, more complex conditions, such we shall see
in section 2.2.1, are possible.

Definition 2.9 (Unspent Transaction Output - UTXO). An unspent transaction output
is a data structure consisting of a locking condition spk, a value expressed in Bitcoin v
and an unlocking script σ which is initially empty and has to be provided by the owner
when spending the UTXO in a transaction. In this thesis, we generally use ψ to refer to
a singular UTXO and Ψ to refer to a set of UTXOs.

ψ := {v, spk, σ}

9

2. Preliminaries

We define three auxiliary functions for the creation, spending, and verification of a
UTXO. Note that we use verf as a generalization of a verification function. In practice,
verification of a spent UTXO will most of the time correspond to the digital signature
verification. However, as we shall see in section 2.2.1, this is not necessarily always the
case.

createUTXO(v, spk)

1 : return ψ := {v := v, spk := spk, σ := ∅}
spendUTXO(ψ, σ)

1 : {v, spk} ← ψ

2 : return ψ := {v := v, spk := spk, σ := σ}
verfUTXO(ψ)

1 : {v, spk, σ} ← ψ

2 : return verf(spk, σ, v)

A complete transaction consists of one or many UTXOs as inputs and one or many new
UTXOs as output. For the transaction to be considered valid, the σ fields in the inputs
need the be correctly filled, and the value in the newly created output UTXOs must
not exceed the value stored in the spending UTXOs. An output value lower than the
combined input value is allowed. Then the miner of the transaction gets to collect the
difference as a fee. The higher this fee, the more incentive the miners will have to include
your transaction in the blockchain. Additionally, a transaction consists of a version
number, and a locktime field which semantically means that a transaction will only verify
after a certain block number in the Bitcoin blockchain was mined. Figure 2.1 shows a
decoded Bitcoin transaction. 1

Definition 2.10 (Bitcoin Transaction). A Bitcoin transaction consists of a series of
input UTXOs Ψinp, a series of output UTXOs Ψout, a transaction version vs, and an
optional locktime t:

txbtc := {vs, t, Ψinp, Ψout}

A transaction is valid if the following conditions are fulfilled:

• The total value of inputs is greater than or equal to the total value of outputs.

• For all ψ ∈ Ψinp verfUTXO(ψ) = 1 must hold.

• All input UTXOs have not been spent before.
1https://github.com/bitcoinbook/bitcoinbook/blob/develop/ch06.asciidoc

10

https://github.com/bitcoinbook/bitcoinbook/blob/develop/ch06.asciidoc

2.2. Bitcoin

Figure 2.1: A decoded Bitcoin transaction

• If a locktime t is given, the Bitcoin blockchain’s current block needs to be higher or
equal t.

Definition 2.11 (Bitcoin Transaction Scheme). We define a Bitcoin Transaction Scheme
as a tuple of two DPT functions (buildTransaction, verfTransaction) and the PPT function
signTransaction.

• txbtc ← buildTransaction(Ψinp, Ψout, vs, t): The transaction building algorithm is a
DPT function that takes as input a set of unspent transaction outputs Ψinp, a collection
of newly created transaction outputs Ψout, a version number vs, and an optional locking
time t. The algorithm will output an unsigned transaction txbtc.

• txbtc
∗ ← signTransaction(txbtc, [σ]): The transaction signing algorithm is a DPT

function that takes as input an unsigned Bitcoin transaction txbtc and an array of
unlocking scripts [σ] for all transaction inputs. The algorithm outputs a signed Bitcoin
transaction, which the sender can now broadcast to the network.

• {1, 0} ← verfTransaction(txbtc): The verification algorithm is a DPT function taking
as input a transaction txbtc outputting 1 on a successful verification or 0 otherwise. The
function will check the well-balancedness of the transaction, verify the unlocking scripts,
locktime and scan through the blockchain if all inputs are indeed unspent. Note that
any public verifier with access to the blockchain ledger and txbtc is able to perform the
verification.

We now outline two common structures of Bitcoin outputs the P2PK/P2PKH and the
P2SH outputs.

11

2. Preliminaries

P2PK, P2PKH

P2PK stands for Pay-to-Public-Key, and P2PKH for Pay-to-Public-Key-Hash. In the
former type of output spk will be constructed such that its value unlocks if a correct
signature is provided in σ for a corresponding public key pk. P2PKH is an update to
this script in which the spk contains a hashed version of the public key pk instead of the
public key itself. To spend a P2PKH output, one has to provide the unhashed public key
in addition to a valid signature. This type of output is the most commonly used output
in the Bitcoin blockchain to transfer value from one participant to another. Delgado
et al. found in their paper Analysis of the Bitcoin UTXO set [12] from 2017 that more
than 80% of the UTXO set consisted of P2PKH transactions, whereas about 17% were
P2SH and 0.12% P2PK outputs. P2PKH outputs can be encoded into a Bitcoin address
using base58 encoding. These addresses can be handed out to request a payment from
somebody.

P2SH

If more advanced spending conditions, such as multi-signature, are required, P2SH
(Pay-to-script-hash), introduced in 2012, is a way to implement those in a space-efficient
and straightforward manner. Here the locking condition spk does not contain a script
but instead the hash of a script. Upon spending, the spender has to provide the original
script and the unlocking requirements for the script itself. Upon verification, the provided
script’s hash will be computed and compared with the value given in the locking condition.
If those match, the actual script will be executed. The advantage of using this approach
over just handcrafting a custom locking script is that the locking scripts are relatively
short, making the transactions smaller, reducing fees, or shifting them from the sender to
the output owner. Additionally, this type of output can be encoded again into a Bitcoin
address similar to a P2PKH output, making it easy to request a payment.

2.3 Privacy-enhancing Cryptocurrencies
As seen in section 2.2 in Bitcoin funds are stored in UTXOs, which an address can
identify. The value being transferred in a transaction is given in plain text; therefore,
by the nature of Bitcoin’s public blockchain, anyone can look up the amount stored in
a given address. So-called block explorers2 make such a lookup straightforward. As
demonstrated, for instance, in [6] or [39], it is further possible to link multiple addresses
by analyzing transactions, further weakening the system’s anonymity and allowing for
the extraction of sensitive metadata. Attempts such as CoinJoin [28] or its successors
CoinShuffle [41] and CoinShuffle++ [42] introduced protocols that can mitigate this
likability issue in Bitcoin.

The goal of privacy-enhancing cryptocurrencies is to improve upon Bitcoin’s anonymity
by the use of cryptographic techniques such as Zero-Knowledge Proofs (see section 2.3.1)

2https://blockstream.info/

12

https://blockstream.info/

2.3. Privacy-enhancing Cryptocurrencies

and homomorphic commitments (see definition 2.6) to achieve Transaction Unlinkability
as well as Confidential Transaction Amounts (first mentioned by Adam Back in [5]) in
which the transferred values are hidden in homomorphic Commitments.

Definition 2.12 (Transaction Unlinkability). Given are the two related transactions txa

which sends value from A → B, txb from B → C and unrelated txc from X → Y . For
an attacker A that is given txa, txb, txc with the task of finding the linking transactions
and without having any additonal knowledge than what can be inferred from the public
ledger, the following must hold for Transaction Unlinkability to be fulfilled:

P(A(txa, txb, txc) = (txa, txb)) = 1
3 + negl(·)

Definition 2.13 (Confidential Transaction Amounts). Given two transaction amounts
a1, a2, randomness r ← Z∗∗ and two encrypted transaction amounts C1 ← commit(a1, r),
C2 ← commit(a2, r). For the adversary A with the task of finding the correct encrypted
transaction amount the following must hold:

b ← {0, 1} P(A(ab, (C1, C2)) = Cb) = 1
2 + negl(·)

Notable examples of such constructions are Zerocash [43], Monero [34], and Mimblewim-
ble [22]. Zerocoin proposed using one-way accumulators [8], allowing the minting of of
unlinkable Zerocoins from regular Bitcoins. However, their proposal had some limitations,
such as only allowing Zerocoins of a fixed denomination and the inefficient construction.
In Zerocash, the authors improved upon Zerocoin by utilizing Zero-Knowledge Succinct
Non-interactive Arguments of Knowledge (zk-SNARKs) [10] instead of an accumulator
and managed to address the limitations. However, the protocol requires an initial trusted
setup. A prominent implementation of the Zerocash protocol is the Zcash cryptocur-
rency.3 Monero utilizes Ring Signatures to achieve Transaction Unlinkability and further
uses homomorphic Commitments (see definition 2.6) together with range proofs (see sec-
tion 2.3.2) to hide transaction amounts as initially proposed by Adam Back. The Monero
protocol has been implemented in the Monero cryptocurrency.4 Mimblewimble, being
the main topic of this thesis, will be discussed in detail in section 2.4.

2.3.1 Zero-Knowledge Proofs
Zero-Knowledge proofs were first defined in 1988 by Fiat, Fiege, and Shamir and are
essential for building cryptocurrencies. The proofs allow a prover to convince a verifier
that he owns a witness value without revealing the value itself. Initially, the protocol was
presented as an interactive proof between a prover and verifier. However, by utilizing the
Fiat Shamir Heuristic [16], the proofs can be converted into a non-interactive protocol,
making the proof publicly verifiable. Digital signatures (see definition 2.3) such as

3https://z.cash/
4https://www.getmonero.org/

13

https://z.cash/
https://www.getmonero.org/

2. Preliminaries

Schnorr Signatures are a prominent instantiation of a Zero-Knowledge proof protocol.
Zero-Knowledge proofs such as Bulletproofs [11], or zk-SNARKS [10], have essential
applications in privacy-enhancing cryptocurrencies.

2.3.2 Range Proofs
A range proof testifies that a secret value that was encrypted or committed to lies within
a specific valid range of values. The proofs are zero-knowledge in that they do not leak
any information about the secret value other than that it lies in the given interval [11].
Range proofs can be implemented using ring signatures [35], which was the original
implementation used by Monero, later replaced by the more efficient Bulletproofs [11],
which are also used in the two most prominent Mimblewimble-based cryptocurrencies,
Beam and Grin. We define a Range Proof System as follows:

Definition 2.14 (Range Proof System). A Range Proof System ΠRP [COM] regarding
a homomorphic Commitment Scheme COM consists of a tuple of functions (ranPrfSetup,
ranPrf, vrfRanPrf).

• ps ← ranPrfSetup(1 n , i, j): The range proof setup algorithm takes as input a security
parameter 1 n and two numbers i and j to define the lower and upper bound (lb, ub) of
the range proof protocol.

• π ← ranPrf(C , v, r): The proof algorithm is a PPT function that takes as input a
Commitment C , a value v and a blinding factor r . It will output a proof π attesting
that the value v of Commitment C is in between the range �lb, ub� as defined during the
ranPrfSetup function.

• {1, 0} ← vrfRanPrf(π, C): The proof verification algorithm is a DPT function that
verifies the validity of the proof π concerning the Commitment C . It will output 1 upon
a successful verification or 0 otherwise.

An efficient instantiation of a Range Proof System is the Bulletproofs [11] protocol that
is currently used in the Monero and Mimblewimble-based cryptocurrencies.

We also define a Two-Party Range Proof System as an extension to a regular Range
Proof System. Two parties collaborate to compute a zero-knowledge proof attesting that
a secret value of a specific Commitment or encrypted value is within a given interval. A
construction of such a protocol was done, for instance, by Klinec et al. in [24].

Definition 2.15 (Two-Party Range Proof System). A Two-Party Range Proof System
ΠRP −MP [COM] regarding a homomorphic Commitment Scheme COM is an extension
to the regular Range Proof System with the following distributed protocol dRanPrf .

• π ← dRanPrf�(C , v, rA), (C , v, rB)�: The distributed proof protocol allows two
parties Alice and Bob, each owning a share of the Commitment C , to cooperate to
produce a valid range proof π without a party learning the blinding factor share from
the other party.

14

2.4. Mimblewimble

We require both our Range Proof System and the Two-Party Range Proof System to fulfill
Soundness (as defined in [32]), Completeness (as defined in [32]) and Zero-Knowledge (as
defined in [17]).

2.4 Mimblewimble
This section will outline the fundamental properties of the protocols employed in Mim-
blewimble, which are relevant for the thesis and particularly the Atomic Swap protocol
constructed in chapter 4. The Mimblewimble protocol is an outline for a privacy-enhancing
cryptocurrency that achieves Confidential Transactions as of definition 2.13. If the proto-
col also achieves Transaction Unlinkability (see definition 2.12) is not fully clear. One can
argue that Transaction merging (see section 2.4) and Cut-through (see section 2.4) should
make transactions unlinkable. However, one author managed to link many Mimblewimble
transactions in a practical setting using well-connected network nodes that attempt to
sniff original transactions before they are merged5. This known attack vector is called
Flashlight Attack and has also been discussed by Ian Miers in [31]. The Grin website
currently lists this as an open research problem.6. However, even though the possibility
of such an attack exists, it is still highly impracticable. Compared to Bitcoin, in which
linking of transactions usually is trivial, the Mimblewimble protocol still offers substantial
privacy improvements.

Transaction Structure

First, we will define the notion of a coin in Mimblewimble, which has similarity to an
unspent transaction output (UTXO) in Bitcoin.

Definition 2.16 (Mimblewimble Coin). For two adjacent elliptic curve generators, g
and h, a coin in Mimblewimble is a tuple of the form (C, π), where C := gv · hn is
a Pedersen Commitment [36] to the value v with blinding factor n. π is a range proof
attesting to the statement that v is in a valid range in zero-knowledge. The valid range
is defined by the specific implementation. In pratice �0, 264 − 1� is used in the most
prominent implementations.

A Mimblewimble transaction consists of Cinp := (C1, . . . , Cn) input coins, Cout := (C

1, . . . , C

n)
output coins, and kernel K , which we will define throughout this section.

Definition 2.17 (Transaction well-balancedness). A transaction is considered well-
balanced if for a list of input coins with values [v], a list of output coins with values [v∗],
and a fee f , 	 [v] − 	 [v∗] − f = 0, so the sum of all output values and the fee
subtracted from the sum of input values is 0.

Definition 2.18 (Transaction validity). A transaction is valid if:
5https://github.com/bogatyy/grin-linkability
6https://tinyurl.com/3e6bca5z

15

https://github.com/bogatyy/grin-linkability
https://tinyurl.com/3e6bca5z

2. Preliminaries

• The transaction is well-balanced as defined in definition 2.17

• ∀ (Ci, πi) ∈ Cout vrfRanPrf(πi, Ci) = 1

From the definition of Transaction validity we can derive the following equation:�
Cout −

�
Cinp =

�
(hv�

i · gn�
i) −

�
(hvi · gni) − hf

So if we assume that a transaction is valid, then we are left with the following so-called
excess value:

E = ge = g(
	

n�
i −

	
ni)

Knowledge of the opening of all coins and the transaction’s well-balancedness implies
knowledge of the discrete logarithm e of E . Directly revealing e would leak too much
information, an adversary knowing the openings for input coins and all but one output
coin could easily calculate the unknown value given e. Therefore, knowledge of the
discrete logarithm to E is proven by providing a valid signature under E as the public
key. Finally, we would like to add that coinbase transactions (transactions creating new
money as part of mining reward) additionally include the newly minted money as supply
s in the excess equation as follows:

E := g(
	

n�
i −

	
ni) − hs

For non-coinbase transactions, s will be set to 0. A complete Mimblewimble transaction
is of the form:

tx := (s, Cinp, Cout , K) with K := ([π], [E], [σ])

where s is the transaction supply amount, Cinp is the list of input coins, Cout is the list
of output coins, and K is the transaction Kernel. The Kernel consists of [π] which is a
set of all output coin range proofs, [E] a set of excess values, and [σ] a set of signatures
[17]. Even though usually a transaction would only require a single excess and signature,
we will see in the next section that these fields always have to be lists instead of just a
single value.

Transaction Merging

An intriguing property of the Mimblewimble protocol is that two transactions can easily
be merged into a single one, essentially a non-interactive version of the CoinJoin protocol
on Bitcoin [28]. Assume we have the following two transactions:

tx0 := (s0, C0
inp, C0

out , ([π0], [E0], [σ0]))
tx1 := (s1, C1

inp, C1
out , ([π1], [E1], [σ1]))

16

2.4. Mimblewimble

Then we can build a single merged transaction by concatenating the list of inputs, outputs,
proofs, excess values, and signatures. Using || as the concatenation symbol, the merged
transaction looks as follows:

txm := (s0 + s1, (C0
inp || C1

inp), (C0
out || C1

out), ([π0] || [π1], [E0] || [E1], [σ0] || [σ1])
We can easily deduce that if tx0 and tx1 are valid, it must follow that txm is valid:
If tx0 and tx1 are valid as of definition 2.18, that means C0

inp − C0
out − hs0 = E0, [π0]

contains valid range proofs for the outputs C0
out and [σ0] contains a valid signature to

E0 − hs0 as the public key. The same must hold for tx1.
Then it follows that�

(C0
inp || C1

inp) ·
�

(C0
out || C1

out)−1 · (hs0 + s1)−1 = E0 · E1

[π0] || [π1] must contain valid range proofs for the output coins and [σ0] || [σ1] must contain
valid signatures to the respective excess points, which makes txm a valid transaction.

Subset Problem A subtle problem arises with the way transactions are merged in
Mimblewimble. From the construction shown earlier, it is possible to reconstruct the
original separate transactions from a merged one, which can be a privacy issue. Given a
set of inputs, outputs, and kernels, a subset of these will recombine to reconstruct one of
the valid transactions which was aggregated since kernel excess values are not combined.
Recall the merged transaction from earlier:

txm := (s0 + s1, (C0
inp || C1

inp), (C0
out || C1

out), ([π0] || [π1]), [E0] || [E1], [σ0] || [σ1])
Since the attacker has access to both E0 and E1 as well as σ0 and σ1, he can simply try
different combinations of input values [Cinp]∗ and output values [Cout]∗ until he finds
a combination under which the transaction is valid with E0, σ0 or E1, σ1. Thereby the
attacker was able to reconstruct one of the original transactions from which txm was
constructed. Following this method, he might be able to uncover all original transactions
from the merged one.
This problem has been mitigated in cryptocurrencies implementing the Mimblewimble
protocol by including an additional variable o in the Kernel, called offset value. Briefly
recall the construction of the excess value E :

E := ge

In order to solve the problem we redefine E as:
E := ge − o

Since o is now also included in the transaction kernel and therefore known to the verifier,
public verification is still possible. Now every time two transactions are merged with the
method laid out previously, the two individual offset values o0 and o1 are combined into
a single value om. If offsets are picked truly randomly, and the possible range of values is
broad enough, the probability of recovering the uncombined offsets from a merged one
becomes negligible, making it infeasible to recover original transactions from a merged
one [37].

17

2. Preliminaries

Cut Through From the way transactions are merged together, we can now learn how
to purge spent outputs securely. Let’s assume Ci appears as an output in tx0 and as an
input in tx1:

tx0 := (s0, C0
inp, Ci

out , ([π0], [E0], [σ0]))
tx1 := (s1, Ci

inp, C1
out , ([π1], [E1], [σ1]))

Essentially this means tx1 spends a coin created in tx0. Now let’s recall the equation
given for transaction well-balancedness in definition 2.17:�

Cout −
�

Cinp =
�

(gn�
i) −

�
(gni)

If we merge tx0 with tx1 as done previously, the coin Ci will appear both in 	 Cinp
and 	 Cout . Therefore we can erase Ci from both lists while maintaining transaction
balancedness. Informally this means that every time a coin gets spent, it can be erased
from the ledger without breaking the rules of the system. This property is employed in
the Mimblewimble protocol to reduce the space requirements of the protocol and provide
a notion of unlinkability, as transaction histories are continuously erased.

Transaction Building

Throughout the thesis, whenever we are concerned with Mimblewimble transactions, we
generally refer to the sending party (owning the input coins) as Alice and the receiving
party (owning the newly created output coin) as Bob. As already pointed out, building
transactions in Mimblewimble is an interactive process between the sender and receiver
of funds. Jedusor Tom Elvis originally envisioned the following two-step process to build
a transaction: [22]

1. Alice first selects an input coin Cinp (or potentially multiple) in her control with total
stored value v with v ≥ p. She then creates change coin outputs CA

out (could again be
multiple) with the remainder of her input value substracted by the value sent to Bob. For
her newly created output coins and her input coins, she calculates her part of discrete
logarithm x (her part of the key) to the final E and sends all this information to Bob as
a pre-transaction.

2. Bob creates himself additional output coins CB
out of total value p and similar to Alice

creates his share x∗ of the discrete logarithm of E . Together with the share received from
Alice, he can now create a signature to E and finalize the transaction

Figure 2.2 depicts the original transaction flow.

This protocol, however, turned out to be insecure as shown by Fuchsbauer et al. in [17].
It is vulnerable to the following attack: The receiver could spend Alice’s change coins CA

out
by reverting the transaction. Doing this would give the sender his coins back, however as

18

2.4. Mimblewimble

Alice Bob

Select Cinp with value v ≥ p and blinding factor ri

Create CA
out of value v − p with blinding factor ro

We then have EA :=
�

CA
out −

�
Cinp

x := ri − ro together with −p is then the opening to EA

Create range-proof π for CA
out

(−p, x), π

Create CB
out with value p and keys (x∗

i)

xshared := x +
�

x∗
i

Create σ with xshared

Create range-proof π for CB
out

Finalize transaction tx

Figure 2.2: Original transaction building process

the sender might not have the keys for his spent outputs anymore, the coins could then
be lost.

In detail, this reverting transaction would look like this:

txrv := (0, (CA
out || CB

out), Cinp, (πrv, Erv, σrv))

So, in essence, it is exactly the reverse of the previous transaction. Again remembering
the construction of the excess value of this construction would look like this:

Erv :=
�

(CA
out || CB

out) · C−1
inp

The key x originally sent by Alice to Bob is a valid opening to 	 Cinp − 	 CA
out . With

the inverse of this key xinv we get the opening to 	 (CA
out − Cinp). Now, all Bob has to

do is add his key x∗ to get:
xrv := −x + x∗

which is the opening to Erv. Therefore Bob is able to construct a valid signature under
Erv. Range proofs can just be reused because this transaction spends to a coin that has
already existed on the ledger with the same blinding factor and value, meaning the proof
will still be valid.

This means Bob spends the newly created outputs and sends them back to the original
input coins, chosen by Alice. It might at first seem unclear why Bob would do that. An
example situation could be if Alice pays Bob for some good which Bob is selling. Alice
decides to pay in advance, but then Bob discovers that he is already out of stock of
the good that Alice ordered. To return the funds to Alice, he reverses the transaction

19

2. Preliminaries

Alice Bob

Select Cinp of value v ≥ p

Create CA
out of value v − p

xsp ←$Z∗
p

Create Csp
out := hp + gxsp

Construct and sign txA with Cinp, CA
out , Csp

out

txA, p, xsp

Create CB
out with value p

Create txB spending Csp
out to CB

out
Merge txA and txB to txm

Publish txm

Figure 2.3: Salvaged transaction protocol by Fuchsbauer et al. [17]

instead of participating in another interactive process to build a new transaction with
new outputs. If Alice already deleted the keys to her initial coins, the funds are now
lost. The problem was solved in the Grin and Beam Mimblewimble implementations by
making the signing process itself a two-party process which will be explained in more
detail in chapter 3.

Alternatively, Fuchsbauer et al. [17] proposed another way to build transactions that
would not be vulnerable to this problem:

1. Alice constructs a full-fledged transaction txA spending her input coins Cinp and creates
her change coins CA

out , plus a special output coin Csp
out := hp · gxsp , where p is the desired

value which should be transferred to Bob and xsp is a randomly chosen key. She proceeds
by sending txA as well as (p, xsp) and the necessary range proofs to Bob.

2. Bob now creates a second transaction txB, spending the special coin Csp
out to create

an output only he controls CB
out and merges txA with txB into txm. He then broadcasts

txm to the network. Note that when the two transactions are merged, the intermediate
special coin Csp

out will be both in the coin output and input list of the transaction and
therefore will be discarded.

One drawback of this approach is that we have two transaction kernels instead of just
one because of the merging step, making the transaction slightly bigger. However, there
is still only one interaction required between Alice and Bob. In the solution employed
by the Grin and Beam implementations which we will discuss in chapter 4, at least one
additional round of interaction will be required. A figure showing the protocol flow is
depicted in fig. 2.3.

20

2.5. Scriptless Scripts

Mimblewimble Ledger

In Mimblewimble, the ledger itself is a transaction of the form defined in section 2.4 with
a set of input and outputs which initially start out empty [17]. The list of outputs as
given in the ledger is the list of spendable coins, similar to the list of UTXOs (unspent
transaction outputs) in Bitcoin. When publishing a new transaction, it will be merged
with the ledger itself, as seen in section 2.4, after which a cut-through as seen in section 2.4
is executed. By running the cut through, all coins that now appear in both the output
and input list are discarded. It is easy to see that the input list of the ledger must
therefore always be empty as whenever an output coin is spent, it will be discarded
immediately after. We can further see that with this setup, the ledger only ever grows in
size of the unspent output list, which is very helpful given that each output coin must
also attach a range proof that usually has high space requirements. In Grin and Beam,
updates to the ledger are made in the form of blocks requiring proof of work which is the
same as it is in Bitcoin [3]. A miner that found a new block by having solved the proof
of work is allowed to include one coinbase transaction creating a fixed amount of new
supply which he can send to himself as a reward.

2.5 Scriptless Scripts
In 2017 Andrew Poelstra presented a concept called Scriptless Scripts that achieves the
execution of primitive contracts only by the use of standard cryptographic tools such as
digital signatures. [38] The most prominent Scriptless Script is the Adaptor Signature
Scheme which has been fully formalized and proven to be secure for Schnorr and ECDSA
by Aumayr et al. in [4]. Scriptless Scripts are helpful for cryptocurrencies that lack
scripting functionality, as is the case in Mimblewimble-based systems. It also helps
to replace script-based approaches with improvements in privacy as well as efficiency,
shown in a paper by Christoph Egger et al. [14]. In chapter 3, we will leverage the
Adaptor Signature Scheme concept together with a Two-Party Signature Scheme to build
a scriptless Atomic Swap protocol applicable for Mimblewimble-based cryptocurrencies.
The Adaptor Signature Scheme is a two-step process: A signer first computes a pre-
signature that can be completed only by a party knowing a certain secret witness value
x from a hard relation (x , X) ∈ R. After the pre-signature is completed into the final
one, it must then be possible to extract x given the final and the pre-signature.

We here repeat the definition of an Adaptor Signature Scheme found by Aumayr et al.
in [4].

Definition 2.19 (Adaptor Signature Scheme). An Adaptor Signature Scheme wrt. a
hard relation R as of definition 2.1 and a Signature Scheme Φ as of definition 2.3 consists
of four algorithms:

• σ̃ ← pSign(sk, m, X) is a PPT algorithm that on input secret key sk, message
m ∈ {0, 1}∗ and statement X outputs a pre-signature σ̃.

21

2. Preliminaries

• {1, 0} ← pVrfy(pk, m, X , σ̃) is DPT algorithm that on input a public key, message
m ∈ {0, 1}∗, statement X and pre-signature σ̃, outputs either 1 or 0.

• σ ← Adapt(σ̃, x) is a DPT algorithm that on input a pre-signature σ̃ and witness
value x , outputs a signature σ.

• x ← Ext(σ, σ̃, X) is a DPT algorithm that on input a signature σ, pre-signature σ̃
and statement X , outputs a witness x such that (x , X) ∈ R, or ⊥.

For an Adaptor Signature Scheme to be secure it must be aEUF-CMA secure, pre-
signature adaptable and witness extractable. All three of these properties are defined by
Aumayr et al. in [4].

22

CHAPTER 3
Two-Party Fixed Witness

Adaptor Signatures

This chapter will define a variant of the Adaptor Signature Scheme as shown in defi-
nition 2.19. This new variant is explicitly tailored to meet the requirements of being
applicable in the scenario of two-party signature protocols that one can construct for
Signature Schemes such as Schnorr [29]. In a two-party signature protocol, each party
holds only a share of a private key (to a composite public key) for which they want to
create a signature cooperatively, without revealing their key share to the other party.
The advantage of our Adaptor Signature Scheme in comparison to the original definition
is that we do not need to introduce an additional pre-signature step in the two-party
scenario mentioned above. Instead, one of the partial signatures created and exchanged
by the two parties will serve as what is defined as the pre-signature by Aumayr et al.,
allowing for a more straightforward protocol. In particular, our protocol will allow one of
the two parties to mask his signature share with a witness value x of (x , X) ∈ R (where
R is a hard relation as of definition 2.1). The second party (knowing X , but not x) can
verify that x is indeed contained in the peer’s partial signature. To complete the final
signature, the party knowing x has to first replace his partial signature (masked with
x) with the original unmasked version, which corresponds to the adapting step of the
original Adaptor Signature Scheme from definition 2.19. Having previously received the
masked partial signature, the second party can now extract x from the final signature, his
partial signature, and the other party’s masked partial signature. One can then leverage
this feature to build an Atomic Swap protocol, as shown in chapter 4.

The rest of the chapter is organized as follows: First, we will define the general two-
party Schnorr signature protocol, as it is currently implemented in Mimblewimble-based
cryptocurrencies. We will then show that the protocol’s final signatures fulfill the same
properties as regular Schnorr signatures seen in [44] and prove its correctness. From this
two-party protocol, we then derive the adapted variant already mentioned before. We

23

3. Two-Party Fixed Witness Adaptor Signatures

start by defining our extended Signature Scheme in section 3.1, proceed by providing a
Schnorr-based instantiation of the protocol in section 3.2 and finally prove its correctness
and security in section 3.4.

3.1 Definitions
A Two-Party Signature Scheme is an extension of a Signature Scheme shown in defini-
tion 2.3, which allows us to distribute signature generation for a composite public key
shared between two parties Alice and Bob. Alice and Bob want to collaborate to generate
a signature valid under the composite public key pk := pkA · pkB without revealing their
secret keys to each other. The definition below was constructed with the goal in mind
of formalizing exactly what is currently implemented and used in Mimblewimble-based
cryptocurrencies.

Definition 3.1 (Two-Party Signature Scheme). A Two-Party Signature Scheme ΦMP
extends a Signature Scheme Φ with a tuple of protocols and algorithms
(dKeyGen, signPt, vrfPt, finSig) defined as follows:

• ((skA, pkA, nA, Λ), (skB, pkB, nB, Λ)) ← dKeyGen�1 n , 1 n�: The distributed key gen-
eration protocol takes as input the security parameter from both Alice and Bob. It
returns the tuple (skA, pkA, nA, Λ) to Alice (similar to Bob) where (skA, pkA) is a pair of
private and corresponding public keys, nA a secret nonce and Λ is the signature context
containing parameters shared between Alice and Bob. We introduce Λ for the participants
to share and update parameters with each other during the protocol execution. Note
that this context always has to be consistent between the two parties. If Alice were to
update Λ, she has to send the updated version to Bob to continue the protocol.

• (σ̃A) ← signPt(m, skA, nA, Λ): The partial signing algorithm is a DPT function that
takes as input the message m, the share of the secret key skA and nonce nA (similar for
Bob), and the shared signature context Λ. The procedure outputs (σ̃A), that is, a share
of the signature to a participant.

• {1, 0} ← vrfPt(σ̃A, m, pkA): The share verification algorithm is a DPT function that
takes as input a signature share σ̃A, a message m, and the other participant’s public key
pkA (pkB for Bob’s partial signature). The algorithm returns 1 if the verification was
successful or 0 otherwise.

• σfin ← finSig(σ̃A, σ̃B): The finalize signature algorithm is a DPT function that takes
as input two shares of the signatures and combines them into a final signature valid
under the composite public key pk = pkA · pkB.

We require the Two-Party Signature Scheme to be correct as well as secure as of defini-
tion 2.8. For the security of the distributed key-generation protocol dKeyGen, special care
needs to be taken to protect the scheme against rogue-key attacks. In such an attack one
of the public keys is computed as a function of the other parties public key, allowing the

24

3.1. Definitions

corrupted signer to produce forged signatures under the honest users public key without
knowing its secret key [29].
From definition 3.1, we now derive a Two-Party Adaptor Signature Scheme ΦApt , allowing
one of the participants to hide a secret witness value inside his partial signature.

Definition 3.2 (Two-Party Fixed Witness Adaptor Signature Scheme). Given a pair
(x , X) ∈ R, (where R is a hard relation as of definition 2.1) a Two-Party Fixed Witness
Adaptor Signature Scheme ΦApt is an extension to ΦMP with the following algorithms.

ΦApt := (ΦMP || mskSig || vrfMskSig || extWit)

• σ̂A ← mskSig(σ̃A, x): The mask signature algorithm is a DPT function that takes as
input a partial signature σ̃A and a secret witness value x . The procedure will output a
masked partial signature σ̂A that can be verified to contain x using the vrfMskSig function
without revealing x .
• {1, 0} ← vrfMskSig(σ̂A, m, pkA, X): The masked signature verification algorithm is a
DPT function that takes as input a masked partial signature σ̂A, the other participant’s
public key pkA and a statement X . The function will verify the partial signature’s validity
and that it was masked with the secret witness x.
• x ← extWit(σfin , σ̃A, σ̂B): The witness extraction algorithm is a DPT function that
lets Alice extract the secret witness x after having learned the final composite signature
σfin . As input, it expects the partial signatures σ̃A and σ̂B shared between the participants
during protocol execution and the final composite signature σfin . Consequently, only
protocol participants knowing the partial signatures exchanged during the protocol can
run this algorithm.

Similar to how it is defined in [4], additionally to regular Correctness, as described
in definition 2.3, we require our Signature Scheme to satisfy Adaptor Signature Correctness.
This property is given when one can complete every masked partial signature generated
by mskSig into a final signature for all pairs (x , X) ∈ R. And it will then be possible to
extract the witness computing extWit with the required parameters.

Definition 3.3 (Adaptor Signature Correctness). More formally, Adaptor Signature
Correctness is given if for every security parameter n ∈ N, message m ∈ {0, 1}∗,
keypairs �(skA, pkA, nA, Λ), (skB, pkB, nB, Λ)� ← dKeyGen�1 n , 1 n� with their composite
public key Λ.pk = pkA · pkB and every statement/witness pair (X , x) ← genRel(1 n)
it must hold that:

Pr


verf(m, σfin , Λ.pk) = 1

∧
vrfMskSig(σ̂B, m, pkB, X) = 1

∧
(x∗, X) ∈ R

(x , X) ← genRel(1 n)
σ̃A ← signPt(m, skA, nA, Λ)
σ̃B ← signPt(m, skB, nB, Λ)
σ̂B ← mskSig(σ̃B, x)
σfin ← finSig(σ̃A, σ̃B)
x∗ ← extWit(σfin , σ̃A, σ̂B)


= 1.

25

3. Two-Party Fixed Witness Adaptor Signatures

keyGen(1 n)

1 : x ←$Z∗
p

2 : return (sk := x , pk := gx)

sign(m, sk)

1 : n ←$Z∗
p

2 : R := gn

3 : e := H(m || R || pk)
4 : s := n + e · sk
5 : return σ := (s, R)

verf(m, σ, pk)

1 : (s, R) ← σ

2 : e := H(m || R || pk)
3 : return gs = R · pke

Figure 3.1: Schnorr Signature Scheme as first defined in [44]

3.2 Schnorr-based Instantiation

We start by providing a general instantiation of a Signature Scheme (see definition 2.3):
We assume we have a group G with prime p and generator point g. H is a secure hash
function in the random oracle model as defined in definition 2.4, and m ∈ {0, 1}∗ is a
message.

The reader can see a concrete implementation in fig. 3.1. The Signature Scheme is
called Schnorr Signature Scheme, first defined in [44] and valued for its simplicity and
extensively analyzed security. Due to being patented, its practical use originally was
limited. However, since the patent expired in 2008, the Signature Scheme sees increasing
use in practical applications. cryptocurrencies such as Grin and Beam now use Schnorr
as their primary Signature Scheme. Also, Bitcoin is planning to add Schnorr signatures
as an alternative to the currently used ECDSA signatures. 1

Correctness of the scheme can be derived as follows: As shown in fig. 3.1, verf, line 3, we
need to show that gs = R · pke returns 1 for correct signatures. As s is calculated as
n + e · sk (sign, line 4), when generator g is raised to s, we get gn + e · sk which we
can transform into gn · gsk · e, and finally into R · pke which is the same as the right
side of the equation.

From the regular Schnorr Signature Scheme, we now provide an instantiation for the
two-party case defined in definition 3.1. Note that this two-party variant of the scheme
is what is currently implemented in the Mimblewimble-based cryptocurrencies and will
provide a basis from which we can then build an instantiation for the Two-Party Fixed
Witness Adaptor Signature Scheme.

First, we define an auxiliary function setupCtx to use for the instantiation:

1https://en.bitcoin.it/wiki/BIP_0341

26

https://en.bitcoin.it/wiki/BIP_0341

3.2. Schnorr-based Instantiation

setupCtx(Λ, pkA, RA)

1 : Λ.pk := Λ.pk · pkA

2 : Λ.R := Λ.R · RA

3 : return Λ

This function helps the participants setting up and updating the signature context shared
between them. In fig. 3.2, we show a concrete instantiation of the protocol and procedures.

In dKeyGen, Alice and Bob will each randomly chose their secret key and nonce. They
further require to create a zero-knowledge proof attesting that they had generated their
key before they exchanged any message. These proofs are essential to avoid the rogue
key attacks mentioned earlier. The idea of achieving this using zero-knowledge proofs
of knowledge was introduced by Thomas Ristenpart and Scott Yilek in [40]. Another
secure key generation setup for a Schnorr-based multi-signature protocol was found by
Micali et al. in [30]. However, the protocol requires additional impractical steps such as
splitting signers into individual subgroups S1, S2, · · · of a group G. In our instantiation
of dKeyGen, Alice will initially set up the signature context and send it to Bob, together
with her public key and zk-proof of knowledge. Bob verifies the proof and then proceeds
by adding his parameters to the shared signature context and sending it back to Alice,
together with his parameters, which Alice will verify.

We note here that this is only one possible way of securely computing the parties’
keypairs and nonce values and setting up the shared context. Alternative methods of
generating these values could be employed, depending on the use case. For instance,
one might envision a scenario in which Alice and Bob would like to reuse their keypairs
multiple times and only regenerate the random nonces before each signing process. In
this case, we could split up dKeyGen into two separate protocols. Another scenario is
that both the keypairs and nonce values were generated by a protocol similar to dKeyGen
beforehard. Still, the shared context Λ is not yet set up. In this case, the setupCtx can be
incorporated into the signing protocol, as we shall see in section 3.3. Whatever method
of key generation is used, it must not be vulnerable to rogue key attacks.

signPt and vrfPt are generally similar to the instantiation of the ordinary Schnorr Signature
Scheme. Note, however, that for computing the Schnorr challenge e, the input into
the hash function will be the already combined public key pk and combined nonce
Commitment R, which the participants can read from the context object Λ. This
adjustment affects that the signature shares themselfes are not yet a valid signature
(neither under pk nor under pkA or pkB), and other means that signing can only start
after the context Λ has been fully setup. This property is because to be valid under pk,
the signature shares are missing the other participant’s s value. They are also not valid
under the partial public keys pkA or pkB because the Schnorr challenge is computed
already with the combined values. Therefore we have to introduce the slightly adjusted
vrfPt to be able to verify specifically the partial signatures.

27

3. Two-Party Fixed Witness Adaptor Signatures

dKeyGen�1 n , 1 n�

Alice Bob
1 : skA ←$Z∗

p skB ←$Z∗
p

2 : nA ←$Z∗
p nB ←$Z∗

p

3 : pkA := gskA pkB := gskB

4 : RA := gnA RB := gnB

5 : stA := ∃skA s.t. gskA = pkA stB := ∃skB s.t. gskB = pkB

6 : πA ← PNIZK(skA, stA) πB ← PNIZK(skB, stB)
7 : Λ := �pk := 1p, R := 1p�
8 : Λ ← setupCtx(Λ, pkA, RA)

9 : Λ, pkA, πA

10 : if VNIZK(πA) = 0
11 : return ⊥
12 : Λ ← setupCtx(Λ, pkB, RB)

13 : Λ, pkB, πB

14 : if VNIZK(πB) = 0
15 : return ⊥
16 : return (skA, pkA, nA, Λ) return (skB, pkB, nB, Λ)

signPt(m, skA, nA, Λ)

1 : (R, pk) ← Λ
2 : RA := gnA

3 : e := H(m || R || pk)
4 : sA := nA + skA · e
5 : return σ̃A := (sA, RA, Λ)

vrfPt(σ̃A, m, pkA)

1 : (sA, RA, Λ) ← σ̃A

2 : (pk, R) ← Λ
3 : e := H(m || R || pk)
4 : return gsA = RA · pke

A

finSig(σ̃A, σ̃B)

1 : (sA, RA, Λ) ← σ̃A

2 : (sB, RB, Λ) ← σ̃B

3 : (pk, R) ← Λ
4 : s := sA + sB

5 : σfin := (s, R)
6 : return σfin

Figure 3.2: Two-Party Schnorr Signature Scheme

28

3.3. Protocols

mskSig(σ̃, x)

1 : (s, RA, Λ) ← σ̃

2 : s∗ := s + x
3 : return σ̂ := (s∗, RA, Λ)

vrfMskSig(σ̂A, m, pkA, X)

1 : (sA, RA, Λ) ← σ̂A

2 : (pk, R) ← Λ
3 : e := H(m || R || pk)
4 : return gsA = RA · pke

A · X

extWit(σfin , σ̃A, σ̂B)

1 : (s, R) ← σfin

2 : (sA, RA, Λ) ← σ̃A

3 : (ŝB, RB, Λ) ← σ̂B

4 : sB := s − sA

5 : x := ŝB − sB

6 : return (x)

Figure 3.3: Fixed Witness Adaptor Schnorr Signature Scheme

For a Correctness proof and a generally more extensive explanation of this Two-Party
Schnorr Signature Scheme, we refer the reader to a paper by Maxwell et al. [29].

In fig. 3.3, we further provide a Schnorr-based instantiation for the Fixed Witness
Two-Party Adaptor Signature Scheme as defined in definition 3.2.

mskSig will add a secret witness x to the s value of the signature. Changing the partial
signature this way means that it can’t be verified using vrfPt any longer. Therefore, we
introduce vrfMskSig, which takes as an additional parameter the statement X , which will
be included in the verifier’s equation. Now the function verifies the partial signature’s
validity and that it indeed has been masked with the witness value x , being the discrete
logarithm of X . After obtaining σfin , we can then cleverly unpack the secret x , shown in
the extWit function.

3.3 Protocols
We now formalize two protocols dSign and dAptSign, which will later be used when
constructing Mimblewimble transactions. dSign is a two-party protocol creating a
signature under a composite public key pk = pkA · pkB using the algorithms outlined
in fig. 3.2. dAptSign additionally uses the functionality of fig. 3.3 allowing one party to
mask his partial signature with a secret witness value x, which is then revealed to the
other party by the final signature.

Note that for these protocols, we assume that the secret keys and nonce values used in
the signatures have already been generated beforehand, for example, by running a secure
setup protocol similar to dKeyGen. However, in this case, we furthermore assume that

29

3. Two-Party Fixed Witness Adaptor Signatures

dSign�(m, skA, nA), (m, skB, nB)�

Alice Bob

1 : Λ := {pk := 1p, R := 1p}
2 : Λ ← setupCtx(Λ, gskA , gnA)

3 : Λ, pkA := gskA

4 : Λ ← setupCtx(Λ, gskB , gnB)
5 : σ̃B ← signPt(m, skB, nB, Λ)

6 : σ̃B, Λ, pkB := gskB

7 : if vrfPt(σ̃B, m, pkB) = 0
8 : return ⊥
9 : σ̃A ← signPt(m, skA, nA, Λ)

10 : σ̃A

11 : if vrfPt(σ̃A, m, pkA) = 0
12 : return ⊥
13 : σfin ← finSig(σ̃A, σ̃B) σfin ← finSig(σ̃A, σ̃B)
14 : pk ← Λ.pk pk ← Λ.pk
15 : return (σfin , pk) return (σfin , pk)

Figure 3.4: Instantiation of the dSign protocol.

the signature context Λ has not yet been set up between the parties. The reason for
this is that we are faced with precisely this scenario in the Mimblewimble transaction
protocols, which we shall see later in section 4.2. Both parties input the shared message
m as well as their secret keys and secret nonces. The reader can see the instantiation of
the protocol in fig. 3.4. The protocol outputs a signature σfin to the message m, valid
under the composite public key pk = pkA · pkB. Additionally, to the final signature,
the protocol also outputs the composite public key pk.

The final signature is a valid signature to the message m under the composite public
key pk := pkA · pkB. A verifier knowing the signed message m, the final signature
σfin , and the composite public key pk can now verify the signature using the regular verf
procedure as shown in fig. 3.1.

We now define the dAptSign protocol between Alice and Bob, creating a signature σfin
under the composite public key pk := pkA · pkB. Bob will hide his secret x, which
Alice can extract after completing the signing process. The concrete instantiation can be

30

3.4. Correctness & Security

seen in fig. 3.5. In this protocol, only Bob can call the signature finalization algorithm
finSig for computing the final signature, which is different from the previous protocol, in
which both could do so. The reason for this is that the function requires Bob’s unmasked
partial signature σ̃B as input, which Alice does not know. (Note that this corresponds
to the adapting step of the original definition 2.19) Therefore, one further interaction is
needed to send the final signature to Alice. The protocol outputs (x , (σfin , pk)) for Alice
as she manages to learn x and (σfin , pk) for Bob.

3.4 Correctness & Security

We now prove that the outlined Schnorr-based instantiation is correct, i.e., Adaptor
Signature Correctness holds and is secure with regards to definition 2.8.

3.4.1 Adaptor Signature Correctness

To prove that Adaptor Signature Correctness holds, we have three statements to prove
as given by definition 3.3. First we demonstrate that verf(m, σfin , Λ.pk) = 1 holds in
our Schnorr-based instantiation of the Signature Scheme, where Λ is set up such that
pk = pkA · pkB.

Proof. For this proof, we assume the setup already specified in definition 3.3. The proof
is by showing the equality of the equation checked by the verifier of the final signature
by continuous substitutions on the left side of the equation:

gs = R · pke (3.1)
gsA · gsB (3.2)

gnA + e · skA · gnB + e · skB (3.3)
gnA · pke

A · gnB · pke
B (3.4)

RA · pke
A · RB · pke

B (3.5)
R · pke = R · pke (3.6)

1 = 1 (3.7)

It remains to prove that with the same setup vrfMskSig(σ̂B, m, pkB, X) = 1 and
(X , x) ∈ R for x ← extWit(σfin , σ̃A, σ̂B):

vrfMskSig(σ̂B, m, pkB, X) = 1

31

3. Two-Party Fixed Witness Adaptor Signatures

dAptSign�(m, skA, nA), (m, skB, nB, x)�

Alice Bob

1 : Λ := {pk := 1p, R := 1p}
2 : Λ ← setupCtx(Λ, gskA , gnA)
3 : pkA := gskA

4 : Λ, pkA

5 : Λ ← setupCtx(Λ, gskB , gnB)
6 : σ̃B ← signPt(m, skB, nB, Λ)
7 : σ̂B ← mskSig(σ̃B, x)
8 : pkB := gskB

9 : X := gx

10 : σ̂B, Λ, pkB, X

11 : if vrfMskSig(σ̃B, m, pkB, X) = 0
12 : return ⊥
13 : σ̃A ← signPt(m, skA, nA, Λ)

14 : σ̃A

15 : if vrfPt(σ̃A, m, pkA) = 0
16 : return ⊥
17 : σfin ← finSig(σ̃A, σ̃B)

18 : σfin

19 : pk ← Λ.pk pk ← Λ.pk
20 : if verf(m, σfin, pk) = 0
21 : return ⊥
22 : x ← extWit(σfin , σ̃A, σ̂B)
23 : return (x , (σfin, pk)) return (σfin, pk)

Figure 3.5: Instantiation of the dAptSign protocol.

32

3.4. Correctness & Security

The proof is by continuous substitutions in the equation checked by the verifier:

gσ̂B = RB · pke
B · X (3.8)

gσ̃B + x (3.9)
gnB + skB · e + x (3.10)

gnB · gskB · e + gx (3.11)
RB · pke

B · X = RB · pke
B · X (3.12)

1 = 1 (3.13)

We now continue to prove the last equation required:

(X , x) ∈ R

We do this by showing that x is calculated correctly in extWit: ŝB is the s value in Bob’s
masked partial signature

x = ŝB − (s − sA) (3.14)
ŝB − ((sA + sB) − sA) (3.15)
sB + x − (sB) (3.16)

x = x (3.17)
1 = 1 (3.18)

3.4.2 Security
We have shown that the outlined Signature Scheme is correct. Next, we have to prove its
security. Our goal is to prove security in the malicious setting (as shown in definition 2.8)
that means the adversary might or might not behave as specified by the protocol. For
achieving this, we will prove security for both the dSign and dAptSign protocols in
the hybrid model, which Yehuda Lindell laid out in [26]. In particular, we will use the
fR
zk-model in which we assume that we have access to a constant-round protocol fR

zk that
computes the zero-knowledge proof of knowledge functionality for any NP relation R.
The function is parameterized with a relation R between a witness value x (or potentially
multiple) and a statement X . One party provides the witness statement pair (x , X),
the second the statement X∗. If X = X∗ and (x , X) ∈ R the functionality returns 1,
otherwise 0. More formally:

fR
zk(((x, X), X∗)) =

�
(λ, R(X , x)) if X = X∗

(λ, 0) otherwise

That a constant-round zero-knowledge proof of knowledge exists was proven in [25]. A
secure zero-knowledge proof must fulfill Completeness, Soundness and Zero-Knowledge
properties, which are defined, for instance, in [19].

33

3. Two-Party Fixed Witness Adaptor Signatures

Hybrid functionalities: The parties have access to a trusted third party that computes
the zero-knowledge proof of knowledge functionality fR

zk. R is the relation between a
secret key sk and its public key pk = gsk , for the elliptic curve generator point g. The
participants have to call the functionality in the same order. That means if the prover
first sends the pair (x1, X1) and then (x2, X2) the verifier needs first to send X1 and then
X2.

Proof idea: To construct our simulation proof in the hybrid model, we make some
adjustments to the dSign protocol utilizing the capabilities of the fR

zk functionality. The
adjusted protocol can be seen in fig. 3.6 with the newly added lines marked in blue. We
note here that by making those adjustments to the original protocol, we now no longer
prove security of the original protocol but rather the adjusted one. This circumstance
does not mean that the original protocol is insecure. Still, if one wants to implement
a version of the protocol proven to be secure, it should include the calls added in the
adjusted protocol. The same argument holds for all of the modified protocols from this
section.

In the adjusted protocol, both Alice and Bob will verify the validity of the other party’s
public key and nonce Commitments. They will stop protocol execution in case the peer
sent an invalid value. We assume parties have access to a trusted third party computing
fR
zk which will return 1 if pkA = pk∗

A (where pk∗
A is the public key that Bob received

from Alice) and pkA = gskA . (The same holds for the reversed case)

Theorem 1. Assume we have two key pairs (skA, pkA) and (skB, pkB), which were set up
securely, for instance, with the distributed keygen protocol dKeyGen and a hash function
H(·) modeled in the random oracle model. Then dSign securely computes a signature
σfin under the composite public key pk := pkA · pkB in the fR

zk-model.

Proof. We proof the protocol’s security by constructing a simulator S who is given output
(σfin , pk) from a TTP (trusted third party) that securely computes the protocol in the
ideal world upon receiving Alice and Bob’s inputs. The simulator’s task will be to extract
the inputs used by A such that he can call the TTP and receive the outputs. From this
output, the simulator S has to construct a transcript that is indistinguishable from a
protocol transcript in the real world in which a deterministic polynomial adversary A
controls the corrupted party. The simulator uses the calls to fR

zk to do this. Furthermore,
we assume that the message m is known to both Alice and Bob. All other inputs
(including public keys) are only known to the respective party at the start of the protocol.
We have to prove two cases: Alice is the corrupted party and one in which Bob is the
corrupted party.

Alice is corrupted: Simulator S works as follows:

1. S invokes A, receives and saves (skA, pkA), as well as (nA, RA) that A sends to fR
zk.

34

3.4. Correctness & Security

dSign�(m, skA, nA), (m, skB, nB)�

Alice Bob

1 : Λ := {pk := 1p, R := 1p}
2 : Λ ← setupCtx(Λ, gskA , gnA)
3 : fR

zk((skA, pkA))
4 : fR

zk((nA, RA))

5 : Λ, pkA, RA

6 : Λ ← setupCtx(Λ, gskB , gnB)
7 : σ̃B ← signPt(m, skB, nB, Λ)
8 : if fR

zk(pkA) = 0 ∨
fR
zk(Λ.R) = 0

9 : return ⊥
10 : fR

zk((skB, pkB))
11 : fR

zk((nB, RB))

12 : σ̃B, Λ, pkB

13 : if fR
zk(pkB) = 0 ∨

fR
zk(Λ.R · R−1

A) = 0
14 : return ⊥
15 : if vrfPt(σ̃B, m, pkB) = 0
16 : return ⊥
17 : σ̃A ← signPt(m, skA, nA, Λ)

18 : σ̃A

19 : if vrfPt(σ̃A, m, pkA) = 0
20 : return ⊥
21 : σfin ← finSig(σ̃A, σ̃B) σfin ← finSig(σ̃A, σ̃B)
22 : pk ← Λ.pk pk ← Λ.pk
23 : return (σfin, pk) return (σfin, pk)

Figure 3.6: Adjustment to the dSign protocol seen in fig. 3.4

35

3. Two-Party Fixed Witness Adaptor Signatures

2. Next S receives the message (Λ, pk∗
A, R∗

A) as sent to Bob by A. If pk∗
A �= pkA or

R∗
A �= RA, S externally sends abort to the TTP computing dSign and outputs whatever

A outputs, otherwise he will send the inputs (m, skA, nA) and receive back (σfin , pk).

3. S now calculates pkB, RB and σ̃B as follows:

(s, R) ← σfin

pkB := pk · pk−1
A

RB := R · R−1
A

Λ ← setupCtx(Λ, pkB, RB)
σ̃A ← signPt(m, skA, nA, Λ)

(sA, RA, Λ) ← σ̃A

sB := s − sA

σ̃B := (sB, RB, Λ)

4. After having done the calculations S is able to send Λ, σ̃B, pkB to A as if coming from
Bob.

5. When A calls fR
zk and fR

zk (as the verifier) S checks equality with pkB (respective RB)
and thereafter sends back either 0 or 1.

6. Eventually S will receive σ̃A
∗ from A and finally output whatever A outputs.

We now show that the joint output distribution in the ideal model with S is identically
distributed to the joint distribution in a real execution in the fR

zk-hybrid model with A.
We consider three phases : (1) Alice sends (skA, pkA) as well as (nA, RA) to fR

zk and
(Λ, pkA, RA) to Bob. (2) Bob sends pkA and Λ.R to fR

zk as the verifier, and (skB, pkB),
(nB, RB) to fR

zk as the prover. Afterward, he sends (σ̃B, Λ, pkB) to Alice. (3) Alice sends
pkB and RB to fR

zk as the verifier and σ̃A to Bob. Finally, we will have to show that the
simulators output is indistinguishable from that of A.

• Phase 1 Since A is required to be deterministic, the distribution is identical to what
one would expect in an actual execution.

• Phase 2 As S managed to calculate Bobs σ̃B, pkB, RB, as if they would be expected
in a real execution from the final (σfin , pk), we can conclude that the transcript of this
phase must be computationally indistinguishable from a real transcript.

• Phase 3 The messages sent by the deterministic A have to be identically distributed
to a real execution. Therefore the transcript produced by this phase again has to be
indistinguishable.

• Regarding the protocol output, we note that if the adversary deviates from the protocol
specification, the simulator will notice it, halt, and output whatever A outputs. If A
behaves correctly, S will play the protocol until the end and finally output whatever

36

3.4. Correctness & Security

A outputs. So both in the case that A acts honestly and if he does not, A’s and S’s
outputs will be indistinguishable.

We have shown that the distributions of transcript messages are indistinguishable in
every phase of the protocol if Alice is corrupted.

Bob is corrupted: Simulator S works as follows:

1. S starts by sampling skA, nA ←$Z∗∗ and proceeds by setting up the initial signature
context as defined by the protocol:

Λ := {pk := 1, R := 1}
Λ ← setupCtx(Λ, gskA , gnA)

2. S now invokes A and sends (Λ, pkA, RA) as if coming from Alice.

3. When A calls fR
zk (as verifier), S checks equality to the parameters he sent in step 1

and returns either 1 or 0. When A calls fR
zk((skB, pkB)) and fR

zk((nB, RB)) the simulator
saves those values to its memory.

4. Now S externally sends the inputs (m, skB, nB) to the TTP and receives back (σfin , pk)

5. When A queries H(m || RA · RB || pkA · pkB) during the signPt call, S sends back
e∗ such that:

σfin = nA + skA · e∗ + nB + skB · e∗

e∗ = σfin − nA − nB
skA + skB

6. S receives (σ̃B, Λ, pkB) from A. He verifies the values sent to him by comparing them
with pkB and RB from its memory. If the simulator finds the values invalid, or if he
doesn’t receive any values at all, he will send abort to the TTP and output whatever A
outputs.

7. S calculates σ̃A ← signPt(m, skA, nA, Λ) as defined in the protocol and then sends it
to A as if coming from Alice and finally outputs whatever A outputs.

Again we argue why the transcript is indistinguishable from the real one for each of the
three phases laid out before:

• Phase 1: The values (pkA, RA) sent by S to A only depend on Alice’s input parameters
(and to some extent on the public elliptic curve parameters). As A does not know pkA or
RA yet, he has no way of determining for two public keys, pkA, pk∗

A, which is the correct
one (other than guessing).

• Phase 2: When A calls fR
zk with the proper parameters sent to him, he will still

receive 1 back, or 0 otherwise, which is the same as would be expected in an actual

37

3. Two-Party Fixed Witness Adaptor Signatures

execution. The hash function H(·) is expected to output a random value for the Schnorr
challenge as it is defined in the random oracle model. In the simulated case, S calculates
the output value from the final signature that depends on Alice’s and Bob’s input values
of which at least Alice input is chosen randomly by S. As dependent on random tape,
the calculation output will be distributed uniformly across the possible values and is
therefore indistinguishable from a real hash function output. Furthermore, A can not
recover the original input from the hash output. Imagine that he would be able to do
so. He would then be able to guess the correct input from any hash output and thereby
break the hash function’s Pre-image Resistance property. The remaining messages are
identical to what would be expected in a real execution due to the deterministic nature
of A.

• Phase 3: The simulator will verify the values sent to him by A and will halt and
output ⊥ if he sends something invalid, which is again identical to what is expected in
a real execution. In this case, A must not receive (σfin , pk) in the ideal setting, which
is modeled by S sending abort to the TTP. Otherwise, S will calculate his part of the
partial signature as defined by the protocol. Therefore, it will be found to be valid by A
and will complete to σfin with finSig, because of the fixed, calculated Schnorr challenge
S computed in Phase 2.

• If A behaves dishonestly at any point of the protocol, then the simulator will notice,
sent abort to the TTP, and output whatever A outputs. If the adversary behaves as
defined in the protocol specification, the protocol will be played until the end, after
which S again outputs whatever A outputs. Therefore, in any case, the outputs must be
indistinguishable from the adversary’s output in a real execution.

We have managed to show that in the case that Bob is corrupted, the transcript is
indistinguishable from a real transcript. Therefore, we can conclude that the transcript
output will be indistinguishable from a real one in all cases and have thereby proven that
the protocol dSign is secure in the fR

zk-model and theorem theorem 1 must hold.

We now do the same for dAptSign: Again, we adjust the protocol with calls to fR
zk, note

that we now have one additional call fR
zk, for the pair (x , X). The relation R is equally

defined as in the previous proof. The adjusted protocol can be seen in fig. 3.7.

Theorem 2. Assume we have two key pairs (skA, pkA) and (skB, pkB) which were set
up securely as, for instance, with the distributed keygen protocol dKeyGen and a hash
function H(·) modeled in the random oracle model. Additionally, we have a pair (x , X)
in the relation X = gx for which x was chosen randomly. Then dAptSign securely
computes a signature σfin under the composite public key pk := pkA · pkB after which
x is revealed to Alice, in the fR

zk-model.

Proof. We proof the security of dAptSign by constructing a simulator S which is given
the output (σfin , pk) (resp. (x , (σfin , pk))) from a TTP that securely computes the protocol
in the ideal world after receiving the inputs from Alice and Bob. The simulator’s task

38

3.4. Correctness & Security

dAptSign�(m, skA, nA), (m, skB, nB, x)�

Alice Bob

1 : fR
zk((skA, pkA))

2 : fR
zk((nA, RA))

3 : Λ := {pk := 1p, R := 1p}
4 : Λ ← setupCtx(Λ, gskA , gnA)

5 : Λ, pkA, RA

6 : if fR
zk(pkA) = 0 ∨

fR
zk(Λ.R) = 0

7 : return ⊥
8 : fR

zk((skB, pkB))
9 : fR

zk((nB, RB))
10 : fR

zk((x , X))
11 : Λ ← setupCtx(Λ, gskB , gnB)
12 : σ̃B ← signPt(m, skB, nB, Λ)
13 : σ̂B ← mskSig(σ̃B, x)
14 : pkB := gskB

15 : X := gx

16 : σ̃B, Λ, pkB, X

17 : if vrfMskSig(σ̃B, m, pkB, X) = 0
18 : return ⊥
19 : if fR

zk(pkB) = 0 ∨
fR
zk(Λ.R · R−1

A) = 0 ∨
fR
zk(X) = 0 ∨

20 : return ⊥
21 : σ̃A ← signPt(m, skA, nA, Λ)

22 : σ̃A

23 : if vrfPt(σ̃A, m, pkA) = 0
24 : return ⊥
25 : σfin ← finSig(σ̃A, σ̃B)

26 : σfin

27 : pk ← Λ.pk pk ← Λ.pk
28 : if verf(m, σfin, pk) = 0
29 : return ⊥
30 : x ← extWit(σfin , σ̃A, σ̂B)
31 : return (x , (σfin, pk)) return (σfin, pk)

Figure 3.7: Adjustments to the dAptSign protocol seen in fig. 3.5

39

3. Two-Party Fixed Witness Adaptor Signatures

again is to extract the adversary’s inputs and send them to the trusted third party to
receive the protocol outputs and construct a transcript that is indistinguishable from
the protocol transcript in the real world from this output. The simulator uses the calls
to fR

zk to do this. As in the proof before, we assume the message m is known to both
participants. All other inputs (including public keys) are only known to the respective
party at the start of the protocol. We prove that the transcript is indistinguishable in
case Alice is corrupted as well as in the case that Bob is corrupted.

Alice is corrupted: Simulator S works as follows:

1. S invokes A. When A internally calls fR
zk and fR

zk S saves (skA, pkA) and (nA, RB) to
its memory.

2. S receives (Λ, pk∗
A, pk∗

B) from A. S checks the equalities pk∗
A = pkA and R∗

A = RA
as well as checking pkA = gskA and RA = gnA . If any of those checks fail, or he doesn’t
receive some of the values at all, S sends abort to the TTP and outputs whatever A
outputs. Otherwise, he sends (m, skA, nA) to the TTP and receives (x , (σfin , pk)).

3. Again S calculates σ̃B, pkB, RB and finalizes the context Λ as follows:

(s, R) ← σfin

pkB := pk · pk−1
A

RB := R · R−1
A

Λ ← setupCtx(Λ, pkB, RB)
σ̃A ← signPt(m, skA, nA, Λ)

(sA, RA, Λ) ← σ̃A

sB := s − sA

σ̃B := (sB, RB, Λ)

4. S calculates s∗
B := sB + x (extracted from the TTP output) from which he sets

σ̂B := (s∗
B, RB, Λ).

5. S sends (σ̂B, Λ, pkB, X := gx) as if coming from Bob.

6. When A calls fR
zk the simulator compares the parameters send by A to the real one,

in case he sent a invalid value S returns 0, otherwise 1.

7. S receives σ̃A
∗ from A and in any case outputs whatever A outputs.

The phases are similar to the ones defined in section 3.4.2, with the only two adjustments
being that a) in Phase 2 Bob additionally sends X to Alice and b) we introduce a new
Phase 4 in which Bob sends σfin to Alice. Yet for the sake of completeness, we write
the full proof in the following: (1) Alice sends (skA, pkA) as well as (nA, RA) to fR

zk and
(Λ, pkA, RA) to Bob. (2) Bob sends pkA and Λ.R to fR

zk as the verifier, and (skB, pkB),
(nB, RB) to fR

zk as the prover. Afterward, he sends (σ̃B, Λ, pkB, X) to Alice. (3) Alice
sends pkB and RB to fR

zk as the verifier and σ̃A to Bob. (4) Bob sends the final signature

40

3.4. Correctness & Security

σfin to Alice. They both output (σfin , pk) and Alice additionally outputs x. Finally,
again we have to show that the simulator’s protocol output is equivalent to A’s expected
execution.

We now again argue why the transcript of each phase has to be indistinguishable from a
real transcript:

• Phase 1: As A is required to be deterministic, we can conclude that this phase’s
transcript must be indistinguishable from a real transcript.

• Phase 2: In this phase, S sends X := gx to A for which the simulator received x
from the TTP, therefore it will resamble the value that would have been expected in a
real execution.

• Phase 3: The transcript in this phase must be indistinguishable for the same reasons
already laid out in Phase 1.

• Phase 4: Now, A expects to receive σfin , from which he can extract the witness x.
Indeed he will receive σfin as S has received from the TTP, which would have been
expected in an actual execution. Furthermore, it must hold that A will be able to extract
the correct x using the extWit procedure, as the simulator calculated X = gx in step 5.

• In that case that A behaves dishonestly and at any time of the protocol by sending
invalid (or no) values to the simulator, he will detect this, abort the further protocol
execution, and output whatever A outputs. Similarly, in the case that A behaves honestly,
the protocol is played until the end, after which S outputs whatever A outputs. So in
both cases, the outputs will be equivalent to what is expected in a real execution.

We have shown that in the case that Alice is corrupt, S’s simulated transcript is indeed
distributed equally to a real execution and is thereby computationally indistinguishable.

Bob is corrupted: Simulator S works as follows:

1. S starts by sampling skA, nA ←$Z∗∗ and proceeds by setting up the initial signature
context as described in the protocol:

Λ := {pk := 1, R := 1}
Λ ← setupCtx(Λ, gskA , gnA)

2. S now invokes A and sends (Λ, pkA, RA) as if coming from Alice.

3. When A calls fR
zk (as the verifier) S checks for equality with the values sent by him

and returns either 0 or 1. Once A sends (skB, pkB), (nB, RB), (x , X) internally to fR
zk as

the prover, S saves them to his memory.

4. S sends (m, skA, nA, x) to the TTP and receives (σfin , pk).

41

3. Two-Party Fixed Witness Adaptor Signatures

5. When A queries H(·) the simulator again sets the output to e∗ calculated with the
following steps already seen in the previous proof:

σfin = nA + skA · e∗ + nB + skB · e∗

e∗ = σfin − nA − nB
skA + skB

6. S receives (σ̂B
∗, pk∗

B, Λ, X∗) from A and verifies those values checking equality with
the ones stored in its memory. If the equality checks succeed, S sends continue to the
TTP, otherwise he sends abort and outputs whatever A outputs.
7. The simulator now calculates σ̃A as defined by the protocol using the signPt procedure
and sends the result to A as if coming from Alice.
8. Finally S will receive σ∗

fin from A and in any case output whatever A outputs.
Again we argue why the transcript is indistinguishable in phases 1–4:
• Phase 1: As argued in section 3.4.2, in this phase, the adversary will receive some
public, nonce Commitment, and signature context. As he does not know Alice’s actual
inputs, he has no way of knowing if the values received are the correct ones fitting with
Alice’s inputs, other than by guessing.
• Phase 2: As argued before, with the hash function modeled in the random oracle, its
output is expected to be randomly distributed. As S’s computation to create the hash
output relies on randomly chosen values (skA, nA), we can conclude that the output is
distributed indistinguishably from a real hash output. Further, A must not know the
original input value by seeing the hash output he receives as he then would also be able
to break the Pre-image Resistance property of the hash function.
• Phase 3: S will verify the equality of A’s values with the variables saved to its memory
before. In case he sent invalid values A should not receive the final outputs (σfin , pk),
which is modeled by sending abort to the TTP. The same behavior is expected in a real
execution when Alice calls fR

zk and receives a 0 bit. σ̃A must be indistinguishable from a
real execution because it was calculated by S exactly as of protocol definition.
• Phase 4: In this phase, S is expected to receive σ∗

fin from A after which S will output
whatever A outputs, which must be indistinguishable from a real execution because of
the deterministic adversary.
• Again, in both the case that A deviates from protocol specification and follows it, S
will output whatever A outputs, therefore being equal to the expected output from A in
an actual execution.
We have shown that the transcript produced by S in an ideal world with access to a
TTP computing dAptSign is indistinguishable from a transcript produced during a real
execution both in the case that Alice and that Bob is corrupted. By managing to show
this, we have proven that the protocol is secure in fR

zk-model and theorem 2 therefore
holds.

42

CHAPTER 4
Adaptor Signature Based Atomic

Swaps Between Bitcoin and a
Mimblewimble Based

Cryptocurrency

This section will first define procedures and protocols to construct Mimblewimble trans-
actions and prove their security. The formalizations will be similar to those found by
Fuchsbauer et al. in their cryptographic investigation of the Mimblewimble protocol [17].
In particular, the final transaction output from our protocols should be a valid transac-
tion as by the definitions of Fuchsbauer et al. As we will only focus on the transaction
building protocol, the notions of cut through, transaction merging, coin minting (coinbase
transactions), and publishing transactions to the ledger, all discussed in section 2.4 and
formalized by Fuchsbauer et al. in [17], will not be the topic of this formalization.

As an extension to the regular transaction protocol Mimblewimble Transaction Scheme,
which we will define first, we will additionally define two further schemes: The first of
them titled Extended Mimblewimble Transaction Scheme, will provide additional functions
to create and spend coins owned by two keys instead of just one, thereby enabling coins
owned by multiple parties, which is similar to a mutlisig address in Bitcoin [3]. The
second extended definition is called Contract Mimblewimble Transaction Scheme, in
which we further add algorithms that allow embedding primitive smart contracts to the
transaction building protocol. Both the Extended Mimblewimble Transaction Scheme and
Contract Mimblewimble Transaction Scheme are constructed to provide the functionality
that is later needed to build the final Atomic Swap protocol, which we will introduce
in section 4.5.

We will proceed by providing an instantiation of the three transaction schemes in sec-

43

4. Adaptor Signature Based Atomic Swaps Between Bitcoin and a Mimblewimble
Based Cryptocurrency

tion 4.2, which can be implemented and deployed on a Mimblewimble-based cryptocur-
rency such as Beam or Grin. In section 4.3, we define two-party protocols from the
outlined schemes to construct Mimblewimble transactions. Section 4.4 shows the proofs
that the formalizations are correct and the protocols secure in the malicious setting as
shown in definition 2.8. Finally, in section 4.5, we describe an Atomic Swap protocol from
these building blocks, allowing two parties to securely and trustlessly swap funds from a
Mimblewimble-based blockchain with those on another blockchain, such as Bitcoin.

4.1 Definitions
As we have already discussed in section 2.4 for creating a transaction in Mimblewimble,
it is immanent that both the sender and receiver collaborate and exchange messages via
a secure channel. To construct the transaction protocol, we assume that we have access
to a Two-Party Signature Scheme ΦMP as described in definition 3.1, a Range Proof
System as shown in definition 2.14 such as Bulletproofs, as described in section 2.3.2 and
a homomorphic Commitment Scheme COM as defined in definition 2.6 such as Pedersen
Commitments seen in definition 2.7.

Fuchsbauer et al. have defined three procedures, Send, Rcv, and Ldgr, regarding creating
a transaction. Send called by the sender will create a pre-transaction, Rcv takes the
pre-transaction and adds the receiver’s output and Ldgr (again called by the sender)
verifies and publishes the final transaction to the blockchain ledger. As we have already
pointed out in this thesis, we won’t discuss the transaction publishing phase. Therefore
we will not cover the publishing functionality of the Ldgr procedure. However, we will
use the verification capabilities of the algorithm. That means the transactions created
by our protocol must be compatible with the MW.Ver(1 n , tx) functionality formalized
by Fuchsbauer et at. and internally used by Ldgr. We can, however, assume that a
transaction tx for which MW.Ver(1 n , tx) = 1 holds, could be published to the ledger
using the Ldgr algorithm. (Given the inputs used in the transaction are present and
unspent on the ledger)

Originally Fuchsbauer et al. have defined the creation of a Mimblewimble transaction
as a two-step, two-party protocol. A sender owning a set of input coins calls Send to
create an initial pre-transaction signed already by the sender and then forwarded to the
fund receiver. The receiver then calls Rcv to add his output coins with the correct value.
His signature is then aggregated with the sender’s signature and thereby finalizing the
transaction tx . Any party (knowing the final tx) can now call Ldgr to verify and publish
the transaction to the ledger.

We now want to motivate why in the following, we found it necessary to redefine some of
the algorithms already laid out by Fuchsbauer et al. The main reason is that we are using
the notion of two-party signatures as of definition 3.1 instead of aggregatable signatures,
which are employed in their paper. While aggregatable signatures are a similar concept to
the two-party signatures, we can find some essential differences. Ultimately, the two-party

44

4.1. Definitions

signatures is, as we shall see, the more appropriate and secure choice for the formalization.
First of all, we need to define the notion of an Aggregatable Signature Scheme:

Definition 4.1 (Aggregatable Signature Scheme). A Signature Scheme Φ can be called
aggregatable if for two signatures σ1 and σ2, valid for a message m under the public keys
pk1 and pk2 we can construct an aggregated signature σa valid for the same message m
under the composite public key pka = pk1 · pk2

In the Schnorr Signature Scheme, we can only aggregate signatures by primitively
concatenating the individual signatures like σ1 || σ2. The verifier would then check the
validity of σ1 and σ2 independently under the public keys pk1, pk2 and finally check if
pka = pk1 · pk2 [17].
The reason why we can not simply add up the signatures is the following: Recall the
structure of a Schnorr signature (s, R), imagine we would try to create an aggregated
signature like σa = (s1 + s2, R1 · R2), then this would not be a valid signature anymore.
s is calculated as s = n + e · sk where e = H(m || R || pk). As we have changed the
nonce Commitment R and the public key pk in our aggregated signature the Schnorr
challenge e will be different from the one used by the individual signers, thereby making
the verification algorithm return 0. We can fix this issue by having the individual signers
use the final composite R and pk for their Schnorr challenge calculation, which is exactly
what we are doing in the Schnorr-based instantiation of the Two-Party Signature Scheme
in fig. 3.2. This detail, however, introduces the necessity for an initial setup phase in
which the parties exchange messages to compute R and pk from their shares. Using
the two-party Schnorr model instead of the aggregated Schnorr, we save space, as we
only need to store one single signature instead of multiple. Further, we also only need
to store the final public key pk and disregard the public key shares. We also note that
the two-party version is currently implemented in Grin and Beam in practice.1 Finally,
there is another critical advantage that comes with the two-party Schnorr approach. For
the peers to start the signing process, the final composite pk and nonce Commitment
R need to be known. That also entails that the flow pointed out in [17], in which the
transaction sender starts the signing process, and the receiver completes it is no longer
possible. Instead, the signing process can only start with the receiver’s turn. We need
to introduce a third round. The sender receives the partially signed pre-transaction
from the receiver, adds his partial signature and only now can finalize the signature and
thereby the transaction. While having to add an additional round would seem like an
inconvenience at first, we discover that we avoid being vulnerable to a Transaction Sniff
Attack by doing so.

For the following attack to be possible, we need to assume that the channel between
the sender (Alice) and receiver (Bob) has been compromised therefore can no longer be
considered secure. We show that under this assumption, the formalization laid out by
Fuchsbauer et al. would be vulnerable to the Transaction Sniff Attack. In contrast our
formalization would still be secure.

1https://tinyurl.com/y63hc4ua

45

https://tinyurl.com/y63hc4ua

4. Adaptor Signature Based Atomic Swaps Between Bitcoin and a Mimblewimble
Based Cryptocurrency

4.1.1 Transaction Sniff Attack
Imagine a sender Alice and receiver Bob. Alice owns three Mimblewimble coins and wants
to send one of them to Bob to pay for Bob’s service. They start the transaction-building
process and communicate via a channel that they assume to be secure. However, in
reality, the channel they are using is insecure, and attacker A has managed to compromise
it and is secretly listening to every message exchanged between the two. With the notions
defined by Fuchsbauer et al., Alice starts the protocol by running ptx ← Send(·) and
sending ptx to Bob via the channel. Bob has received ptx from Alice but decides to
wait with the protocol continuation because of some urgent task. In the meantime,
the malicious attacker managed to sniff ptx sent by Alice. Already containing Alice’s
signature, all the attacker has to do is guess the value Alice might want to send, create
an output coin with that value, add his signature, aggregate it with Alice and broadcast
the final transaction to the network. Since the range of possible amounts that Alice
might want to transfer is limited, it is trivial for the attacker to guess it in polynomial
time. When now Bob comes back to finalize the transaction, he will discover that he is
unable to continue with the protocol, as the transactions input coins are already spent
and are now in possession of the attacker.

Starting the signing process only at the receiver’s turn and introducing a third-round
solves this issue because Alice adds the signature for her input coins only at the last step.
Using the Two-Party Signature Scheme instead of an Aggregatable Signature Scheme
forces us to make this change because of the additional setup phase required. Even if the
attacker were able to sniff one of the pre-transactions exchanged between the parties,
because Alice will only ever add the signature for her input coins at the end of the
protocol, the attacker would not be able to compute a valid transaction.

We now define the standard Mimblewimble Transaction Scheme that intuitively allows a
sender to transfer value stored in a Mimblewimble coin to a receiver. To improve the
readability of our following formalizations, we introduce a wrapper spC that represents a
spendable coin and contains a reference to the coin Commitment C , range proof π, and
its (secret) spending information of the coins value v and blinding factor r .

spC := {C , v, r , π}

If we want to indicate that a spendable coin is used as an output coin in a transaction,
we write spC∗.

Definition 4.2 (Mimblewimble Transaction Scheme). A Mimblewimble Transaction
Scheme MW [COM , ΦMP , ΠRP] with Commitment Scheme COM , Two-Party Signature
Scheme ΦMP , and Range Proof System ΠRP consists of the following tuple of procedures:

MW [COM , ΦMP , ΠRP] := (spendCoins, recvCoins, finTx, verfTx)

• (ptx , spC∗
A, (skA, nA)) ← spendCoins([spC], p, t): The spendCoins algorithm is a DPT

function called by the sending party to initiate the spending of some input coins. As

46

4.1. Definitions

input, it takes a list of spendable coins [spC] and a value p which should be transferred
to the receiver. Optionally a sender can pass a block height t to make this transaction
only valid after a specific time. It outputs a pre-transaction ptx which can be sent to a
receiver, Alice’s spendable change output coin spC∗

A as well as the senders signing key
and secret nonce (skA, nA) later used in the transaction signing process.

• (ptx∗, spC∗
B) ← recvCoins(ptx , p): The receiveCoins algorithm is a DPT routine called

by the receiver and takes as input a pre-transaction ptx and a fund value p. It will output
a modified pre-transaction ptx∗ and Bob’s new spendable output coin spC∗

B, added to
the transaction. At this stage, the transaction already has to be partially signed by the
receiver.

• tx ← finTx(ptx, skA, nA): The finalize algorithm is a DPT routine called by the
transaction sender that takes as input a pre-transaction ptx and the senders signing key
skA and nonce nA. The function will output a finalized signed transaction tx .

• {1, 0} ← verfTx(tx): The verification algorithm is the same as defined in the paper
by Fuchsbauer et al. [17], we still add it here for completeness. Note that in their work,
one can find it under the name MW.Ver. We rename it here to verf to fit with our naming
scheme. If an invalid transaction is passed to the routine, it will output 0, 1 otherwise.
Informally the algorithm verifies four conditions:

1. Condition 1: Every input and output coin only appears once in the transaction.

2. Condition 2: The union of input and output coins is the empty set.

3. Condition 3: For every output coin, the range proof verifies.

4. Condition 4: The transaction signature verifies with the excess value of the transaction
as the public key, which is calculated by summing up the output coins and subtracting
the input coins. (See section 2.4)

We say a Mimblewimble Transaction Scheme is correct if the verification algorithm
verfTx returns 1 upon providing a transaction that is well balanced and contains a valid
signature. More formally:

Definition 4.3 (Transaction Scheme Correctness). For any transaction fund value p and
list of spendable input coins [spC] with combined value v ≥ p the following must hold:

Pr

 verfTx(tx) = 1

p ≤ 	i < n

i := 0(spCi.v)
(ptx , ·, (skA, nA)) ← spendCoins([spC], v, ⊥)
(ptx∗, ·) ← recvCoins(ptx , p)
tx ← finTx(ptx∗, skA, nA)

 = 1.

In the following, we define the Extended Mimblewimble Transaction Scheme, which
intuitively extends the previous scheme with shared coin ownership functionalities,
similar to multisignature addresses available in Bitcoin.

47

4. Adaptor Signature Based Atomic Swaps Between Bitcoin and a Mimblewimble
Based Cryptocurrency

Definition 4.4 (Extended Mimblewimble Transaction Scheme). An extended Mim-
blewimble Transaction Scheme MW ext[COM , ΦMP , ΠRP −MP] is an extension to MW
with the following three distributed protocols:

MW ext[COM , ΦMP , ΠRP −MP] :=
MW [COM , ΦMP , ΠRP −MP] || (dSndCoins, dRcvCoins, dFinTx)

Note that for this scheme, we require a Two-Party Range Proof System ΠRP −MP as
shown in definition 2.15. Specifically, we need the system to provide a distributed proof
computation protocol dRanPrf .

• �(ptx , spC∗
A, (skA, nA)), (ptx , spC∗

C , (skC , nC))�
← dSndCoins�([spCA], p, t), ([spCC], p)�: The distributed coin spending algorithm takes
as input a list of spendable input coins for which ownership is shared between Alice
and Carol. Assume that both Alice and Carol own a coin C, then we have two blinding
factors rA, rC , where rA is known only to Alice and rC only to Carol. Both blinding
factors are required to spend the coin. Again optionally a block height t can be given to
time lock the transaction. Similar to the single party version of the function its outputs
are a pre-transaction ptx and change coin for each party spC∗

A (resp. spC∗
C), and their

signing information.

• �(ptx∗, pspC∗
B), (ptx∗, pspC∗

C)� ← dRcvCoins�(ptx , p), ()�: The distributed coin re-
ceive procedure takes as input a pre-transaction ptx and a value p which should be
transferred with the transaction. The distributed algorithm will generate an output coin
with value v, owned by both Bob and Carol (each knowing only a share of the coin
Commitment’s blinding factor). The output will be an updated pre-transaction ptx∗,
and the spendable shared output coins for each party pspC∗

B (resp. pspC∗
C). Note that

the newly generated output coin can only be spent by both parties cooperating, as each
share of the blinding factor is strictly required. We note here that creating more complex
schemes in which a coin is spendable by knowing N out M keys would be possible by
implementing Shamir’s Secret Sharing algorithm, which can be found in [45].

• �tx , tx� ← dFinTx�(ptx , skA, nA), (ptx , skC , nC)�: The distributed finalized transac-
tion protocol has to be used to create a transaction spending a shared coin (i.e., the
transaction was created with the dSndCoins algorithm). In this case, we require signing
information from both Alice and Carol.

Correctness is given very similarly to the standard scheme:

Definition 4.5 (Extended Transaction Scheme Correctness). For any list of spendable
coins [spC] with total value v greater than the transaction fund value p and split blinding

48

4.1. Definitions

factors ([rA], [rC]), the following must hold:

Pr

 verfTx(tx) = 1

p ≤ 	i < n
i := 0(spCi.v)

�(ptx , ·, (skA, nA)), (ptx, (skC , nC))� ←
dSndCoins�([spCA], p, ⊥), ([spCC], p)�
�(ptx∗, ·)(ptx∗, ·)� ← dRcvCoins�(ptx , p), ()�
tx ← dFinTx�(ptx∗, skA, nA), (ptx∗, skC , nC)�

 = 1.

We define the Contract Mimblewimble Transaction Scheme, which will extend the scheme
with additional algorithms to create primitive contracts between the sending and receiving
party.

Definition 4.6 (Contract Mimblewimble Transaction Scheme). The contract version of
the Mimblewimble Transaction Scheme updates the Extended Mimblewimble Transaction
Scheme by providing a modified version of the single party receive routine and the
distributed finalize transaction protocol.

MW apt[COM , ΦMP , ΠRP −MP] :=
MW ext[COM , ΦMP , ΠRP −MP] || (aptRcvCoins, dapFnTx)

• (ptx∗, spC∗
B, σ̃B) ← aptRcvCoins(ptx , p, x): The contract variant of the receive function

takes an additional input, a secret witness value x, hidden in the transaction signature
and extracted by the other party after the completion of the protocol. Note that the
routine also returns Bob’s unmasked partial signature. The reason for this is that we
later need the unmasked version to complete the signature and finalze the transaction.
By not sharing this unmasked signature with Alice, Bob is the one who gets to finalize
the transaction, which is different from the simpler protocol and is a crucial feature
necessary for our Atomic Swap protocol. We want to stress here that aptRcvCoins is
only a single-party algorithm. We can only use it if we’re going to create an output coin
owned by a single receiver. It would, of course, be conceivable also to define a distributed
version similar to dRcvCoins of this functionality, allowing two receivers (or one of the
two) to hide secret witness values, extractable later by the sender(s). However, as for the
following protocols, such functionality is not needed, we omit it here.

• � ˜σAB, tx� ← dapFnTx�(ptx∗, skA, nA, X), (ptx∗, skB, nB, σ̃B)�: The finalize transac-
tion algorithm’s contract variant is a distributed protocol between the sender(s) and
receiver. Additionally to the pre-transaction ptx∗, the senders need to input their signing
information. Bob needs to input the unmasked version of his partial signature as it
is required for transaction completion. This protocol could also be implemented as a
three-party protocol with two senders controlling a shared coin and a third receiver.
However, in our case, which we will describe later in section 4.3, one of the two senders
is also the receiver. We allowed ourselves to model this protocol as being between only
two parties to simplify the formalization. In this version of the protocol, only Bob can
finalize the transaction, which is different from finTx and dFinTx. The reason for that
is that for the Atomic Swap execution, Bob needs to be the one in control of building

49

4. Adaptor Signature Based Atomic Swaps Between Bitcoin and a Mimblewimble
Based Cryptocurrency

the final transaction. If Alice were to build the final transaction before Bob, she will
extract the witness value before the transaction has been published, which in the Atomic
Swap scenario would mean she could steal the funds stored on the other chain. That is
why the protocol does not return the final transaction tx to Alice. Instead, the protocol
will output the sender’s partial signature, which Alice can later use to extract the final
transaction’s witness value.

Similar to before, we define Correctness for the adapted scheme:

Definition 4.7 (Contract Transaction Scheme Correctness). For any transaction fund
value p and list of input coins [spC] with combined value v ≥ p and any witness value
x ∈ Z∗

p, the following must hold:

Pr

 verfTx(tx) = 1

p ≤ 	i < n

i := 0(spCi.v)
(ptx , spC∗

A, (skA, nA)) ← spendCoins([spC], p, ⊥)
(ptx∗, spC∗

B, σ̃B) ← aptRcvCoins(ptx, p, x)
� ˜σAC , tx� ← dapFnTx�(ptx∗, skA, nA, X), (ptx∗, skC , nC , σ̃B)�

 = 1.

4.2 Instantiation

This section will provide an instantiation of the Transaction Scheme definitions found
in definition 4.2, definition 4.4, and definition 4.6. One can implement the instantiations
in a cryptocurrency based on the Mimblewimble protocol such as Beam and Grin.

4.2.1 Mimblewimble Transaction Scheme

First, we provide an instantiation of the simplest form of a transaction in which a sender
wants to transfer some value p to a receiver. For the protocol’s execution we assume
to have access to a homomorphic Commitment Scheme such as Pedersen Commitment
COM , shown in definition 2.7. Furthermore, we require a Range Proof System ΠRP as
described in definition 2.14 and a Two-Party Signature Scheme ΦMP as of definition 3.1.

To make the pseudocode for the transaction protocol easier to read, we first introduce
two auxiliary functions createCoin and createTx. The coin creation function will take
as input a value v and a blinding factor r . It will create and output a new spendable
coin spC already containing a range proof π attesting to the statement that the coins
value v is within the valid range as defined for the blockchain. The transaction creation
algorithm createTx takes as input a message m, a list of input coins [Cinp], a list of output
coins [Cout], a list of range proofs [π], a signature context Λ, a list of Commitments [C],
a signature σ, and a lock time t and will collect the input data into a transaction object.

50

4.2. Instantiation

createCoin(v, r)

1 : C ← commit(v, r)
2 : π ← ranPrf(C, v, r)
3 : return (C , r , v, π)

createTx(m, [Cinp], [Cout], [π], Λ, [C], σ)

1 : return (
m := m,

inp := [Cinp],
out := [Cout],
Π := [π],
Λ := Λ,

com := [C],
σ := σ,

t := t)

In fig. 4.1 and fig. 4.2, we provide an instantiation of the Mimblewimble Transaction
Scheme using the auxiliary functions provided before.

In the spendCoins function the sender creates his change output coin, which is the
difference between the value stored in his input coins and the value transferred to a
receiver. He sets up the signature context with his parameters and gets a pre-transaction
ptx , newly created spendable output coin spCA, and a signing key skA and secret nonce
nA as output. The pre-transaction can then be sent to a receiver. Note that, as we have
already explained earlier, our instantiation differs from the one described by Fuchsbauer
et al. [17] in that the sender does not yet sign the transaction during spendCoins, because
we are using a Two-Party Signature Scheme (see definition 3.1) instead of an aggregatable
signature scheme (see definition 4.1).

In recvCoins, the receiver of a pre-transaction will verify the senders proof πB , create his
output coin CB

out , add his parameters to the signature context and then create his partial
signature σ̃B. The function returns an updated version of the pre-transaction ptx that
the receiver can send back to the sender, and the newly created spendable output spCB.

Now in finTx, the original sender will validate the updated pre-transaction ptx sent to
him by the receiver. If he finds it as valid, he will only now create his partial signature
and finally finalize the two partial signatures into the final composite one, with which he
can then build the final transaction.

4.2.2 Extended Mimblewimble Transaction Scheme

Figure 4.3 shows an instantiation of the dSndCoins function of the Extended Mim-
blewimble Transaction Scheme. We have an array of spendable input coins, which keys
are shared between two parties Alice and Carol. We use Carol here to not confuse this
party with the receiver, which we previously called Bob. Although Carol and Bob could
be the same person, they do not necessarily have to be.

51

4. Adaptor Signature Based Atomic Swaps Between Bitcoin and a Mimblewimble
Based Cryptocurrency

spendCoins([spC], p, t)

1 : v ←
i < n�
i := 0

(spCi.v)

2 : if p > v return ⊥
3 : if ∃ i �= j : spC[i] = spC[j] return ⊥
4 : m := {0, 1}∗

5 : (r∗
A, nA) ←$Z∗

p

6 : spC∗
A ← createCoin(v − p, r∗

A)
7 : {CA

out , r∗
A, vA, πA} ← spC∗

A

8 : skA := r∗
A −

i < n�
i := 0

(spCi.r)

9 : Λ := {pk := 1p, R := 1p}
10 : Λ ← setupCtx(Λ, gskA , gnA)
11 : ptx ← createTx(m, spC.C , [CA

out], [πA], Λ, [gskA], ∅)
12 : return (ptx , spC∗

A, (skA, nA))

recvCoins(ptx , p)

1 : (m, inp, out, Π, Λ, com, ∅, t) ← ptx
2 : if vrfRanPrf(Π[0], out[0]) = 0
3 : return ⊥
4 : (r∗

B, nB) ←$Z∗
p

5 : spC∗
B ← createCoin(p, r∗

B)
6 : {CB

out , r∗
B, vB, πB} ← spC∗

B

7 : skB := r∗
B

8 : Λ ← setupCtx(Λ, gskB , gnB)
9 : σ̃B ← signPt(m, skB, nB, Λ)

10 : ptx ← createTx(m, inp, out || CB
out , Π || πB, Λ, com || gskB , σ̃B)

11 : return (ptx , spC∗
B)

Figure 4.1: Instantiation of Mimblewimble Transaction Scheme part 1.

52

4.2. Instantiation

finTx(ptx , skA, nA)

1 : (m, inp, out, Π, Λ, com, σ̃B, t) ← ptx
2 : if vrfRanPrf(Π[1], out[1]) = 0
3 : return ⊥
4 : if vrfPt(σ̃B, m, com[1]) = 0
5 : return ⊥
6 : σ̃A ← signPt(m, skA, nA, Λ)
7 : σfin ← finSig(σ̃A, σ̃B)
8 : tx ← createTx(m, inp, out, Π, Λ, com, σfin)
9 : return tx

verfTx(tx)

1 : (m, inp, out, Π, Λ, com, σ, t) ← tx

2 : E =
�

(out) −
�

(inp)

3 : return (∀ i �= j : inp[i] �= inp[j] ∧ out[i] �= out[j]) and
inp ∪ out = ∅ and (∀ i : vrfRanPrf(Π[i], out[i])) and verf(m, σ, E)

Figure 4.2: Instantiation of Mimblewimble Transaction Scheme part 2.

The protocol starts with both Alice and Carol creating her change outputs with values
vA and vC . Alice then creates the initial pre-transaction ptx and sends it to Carol, who
verifies Alice’s output, adds her outputs and parameters, and sends back ptx , which Alice
verifies. The protocol returns ptx to both parties, which can then be transmitted to the
receiver by any of the two parties, as well as the secret signing information (skA, nA),
(skC , nC).

53

dSndCoins�([pspCA], p, t), ([pspCC], p)�

Alice Carol

1 : v ←
i < n�
i := 0

(spCi.v) v ←
i < n�
i := 0

(spCi.v)

2 : if p > v ∨ ∃ i �= j : pspCA[i] = pspCA[j] if p > v ∨ ∃ i �= j : pspCA[i] = pspCA[j]
3 : return ⊥ return ⊥
4 : vrem = v − p
5 : vA, vC ← {0, vrem} s.t. vA + vC = vrem

6 : vC

7 : m := {0, 1}∗

8 : (r∗
A, nA) ←$Z∗

p (r∗
C , nC) ←$Z∗

p

9 : spC∗
A ← createCoin(vA, r∗

A) spC∗
C ← createCoin(vC , r∗

C)
10 : {CA

out , r∗
A, vA, πA} ← spC∗

A {CC
out , r∗

C , vC , πC } ← spC∗
C

11 : skA := r∗
A −

�
[rA] skC := r∗

C −
�

[rC]
12 : Λ := {pk := 1p, R := 1p}
13 : Λ ← setupCtx(Λ, gskA , gnA)
14 : ptx ←

createTx(m, [Cinp], [CA
out], [πA], Λ, [gnA], ∅)

15 : ptx

16 : (m, inp, out, Π, Λ, com, t) ← ptx
17 : if vrfRanPrf(Π[0], out[0]) = 0
18 : return ⊥
19 : Λ ← setupCtx(Λ, gskC , gnC)
20 : ptx � ← createTx(m, inp, out || CC

out , π || πC , Λ, com || gnC , ∅)

21 : ptx �

22 : if vrfRanPrf(ptx �.Π[1], ptx �.out[1]) = 0
23 : return ⊥
24 : return (ptx �, spC∗

A, (skA, nA)) return (ptx �, spC∗
C , (skC , nC))

Figure 4.3: Extended Mimblewimble Transaction Scheme - dSndCoins

54

4.2. Instantiation

Figure 4.4 shows an instantiation of the dRcvCoins function of the Extended Mim-
blewimble Transaction Scheme. Calling this protocol, two receivers, Bob and Carol, want
to create a receiving shared coin Csh

out with value p and key shares (rA, rC). The protocol
starts by both receivers verifying the sender’s output(s). Bob begins by creating a coin
with fund value p and his share of the newly created blinding factor and sends it over to
Carol. Carol finalizes the shared coin by adding a Commitment to her blinding factor
to the coin and sends it back, together with the commitment. Bob verifies the updated
shared coin’s validity, after which the two parties engage in two two-party protocols
to create their partial signature and coin range proof. Finally, they make the updated
pre-transaction ptx which can be sent back to the transaction sender.

55

dRcvCoins�(ptx, p), ()�

Bob Carol

1 : (m, inp, out, Π, Λ, com, ∅, t) ← ptx
2 : foreach out as (i => Cout) foreach out as (i => Cout)
3 : if vrfRanPrf(Π[i], Cout [i]) = 0 if vrfRanPrf(Π[i], Cout [i]) = 0
4 : return ⊥ return ⊥
5 : (r∗

B, nB) ←$Z∗
p

6 : (Csh
out , ·, ·, ·) ← createCoin(p, r∗

B)
7 : skB := r∗

B

8 :
ptx , Csh

out−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
9 : (r∗

C , nC) ←$Z∗
p

10 : skC := r∗
C

11 : Csh
out

� := Csh
out · grC

12 : ptx � := ptx
13 : ptx �.out[] := Csh

out
�

14 :
ptx �, gskC

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
15 : {· · · Csh

out
�} ← ptx �.out

16 : if Csh
out

� �= Csh
out · gskC

17 : return ⊥
18 : πBC ← dRanPrf�(Csh

out
�
, p, skB), ·� πBC ← dRanPrf�(Csh

out
�
, p, skC), ·�

19 : pspC∗
B := {Csh

out , p, r∗
B, πBC } pspC∗

C := {Csh
out , p, r∗

C , πBC }
20 : (˜σBC , pkBC) ← dSign�(m, skB, nB), ·� (˜σBC , pkBC) ← dSign�·, (m, skC , nC)�
21 : (·, ·, Λ∗) ← ˜σBC (·, ·, Λ∗) ← ˜σBC

22 : Λ� ← setupCtx(Λ, Λ∗.pk, Λ∗.R) Λ� ← setupCtx(Λ, Λ∗.pk, Λ∗.R)
23 : ptx∗ ← ptx∗ ←
24 : createTx(m, inp, out || Csh

out
�
, Π || πBC , Λ�, com || pkBC , ˜σBC) createTx(m, inp, out || Csh

out
�
, Π || πBC , Λ�, com || pkBC , ˜σBC)

25 : return (ptx∗, pspC∗
B) return (ptx∗, pspC∗

C)

Figure 4.4: Extended Mimblewimble Transaction Scheme - dRcvCoins

56

4.3. Protocols

dFinTx�(ptx, skA, nA), (ptx , skC , nC)�

Alice Carol

1 : (m, inp, out, Π, Λ, com, σ̃B, t) ← ptx (m, inp, out, Π, Λ, com, σ̃B, t) ← ptx
2 : if vrfRanPrf(Π[1], out[1]) = 0 if vrfRanPrf(Π[1], out[1]) = 0
3 : return ⊥ return ⊥
4 : if vrfPt(σ̃B, m, com[1]) = 0 if vrfPt(σ̃B, m, com[1]) = 0
5 : return ⊥ return ⊥
6 : ˜σAC ← dSign�(m, skA, nA), ·� ˜σAC ← dSign�·, (m, skC , nC)�
7 : σfin ← finSig(σ̃B, ˜σAC) σfin ← finSig(σ̃B, ˜σAC)
8 : tx ← createTx(m, inp, out, Π, Λ, com, σfin) tx ← createTx(m, inp, out, Π, Λ, com, σfin)
9 : return tx return tx

Figure 4.5: Extended Mimblewimble Transaction Scheme - dFinTx

Finally, fig. 4.5 shows the implementation of the dFinTx protocol. Running this protocol,
the two transaction senders, each owning a share of the input coins keys, will cooperate
to produce a signature share valid under their input coins and change outputs. They can
combine the partial signatures into the final one and finalize the transaction.

4.2.3 Contract Mimblewimble Transaction Scheme

Figure 4.6 shows an instantiation of the aptRcvCoins algorithm. Before updating the
pre-transaction ptx, Bob masks his partial signature with the witness value x. The
procedure then returns the pre-transaction ptx containing Bob’s masked partial signature
and the statement X , a Commitment to the witness value x .

In fig. 4.7, we show the updated distributed version of the transaction finalization protocol.
Again Alice verifies the pre-transaction ptx received by Bob and then cooperates with
Bob in the dSign protocol to build the partial signature for their shared coin. Note that
Alice cannot finalize the signature (and consequently the transaction) as she only knows
Bob’s masked signature share (σ̂B), but not the original one (σ̃B), which is needed for
the finSig function. Therefore, Bob completes the transaction and outputs it, while Alice
outputs ˜σAB to retrieve x .

4.3 Protocols

This section specifies three protocols to build Mimblewimble transactions from the
definitions found in section 4.1. Later in section 4.4, we will prove the security of these
protocols, and finally, in section 4.5, we will utilize them to build the Atomic Swap.

57

4. Adaptor Signature Based Atomic Swaps Between Bitcoin and a Mimblewimble
Based Cryptocurrency

aptRcvCoins(ptx , p, x)

1 : (m, inp, out, Π, Λ, com, ∅, t) ← ptx
2 : if vrfRanPrf(Π[0], out[0]) = 0
3 : return ⊥
4 : (r∗

B, nB) ←$Z∗
p

5 : (CB
out , πB) ← createCoin(p, r∗

B)
6 : skB := r∗

B

7 : Λ ← setupCtx(Λ, gskB , gnB)
8 : σ̃B ← signPt(m, skB, Λ.pk, Λ.R)
9 : σ̂B ← mskSig(σ̃B, x)

10 : ptx ← createTx(m, inp, out || CB
out , Π || πB, Λ, com || gnB , σ̂B)

11 : return (ptx , (CB
out , r∗

B), σ̃B)

Figure 4.6: Contract Mimblewimble Transaction Scheme - aptRcvCoins.

dapFnTx�(ptx , skA, nA, X), (ptx , skB, nB, σ̃B)�

Alice Bob

1 : (m, inp, out, Π, Λ, com, σ̂B, t) ← ptx (m, inp, out, Π, Λ, com, σ̂B, t) ← ptx
2 : if vrfRanPrf(Π[1], out[1]) = 0
3 : return ⊥
4 : if vrfMskSig(σ̃B, m, com[1], X) = 0
5 : return ⊥
6 : ˜σAB ← dSign�(m, skA, nA), ·� ˜σAB ← dSign�(m, skB, nB), ·�
7 : σfin ← finSig(˜σAC , σ̃B)
8 : tx ← createTx(m, inp, out, Π, Λ, com, σfin)
9 : return ˜σAB return tx

Figure 4.7: Adapted Extended Mimblewimble Transaction Scheme - dapFnTx.

58

4.3. Protocols

dBuildMWTx�([spC], p, t), (p)�

Alice Bob

1 : (ptx , spC∗
A, (skA, nA))

← spendCoins([spC], p, t)

2 : ptx

3 : (ptx �, spC∗
B) ← recvCoins(ptx , p)

4 : ptx �

5 : tx ← finTx(ptx �, skA, nA)

6 : tx

7 : return (tx , spC∗
A) return (tx, spC∗

B)

Figure 4.8: dBuildMWTx two-party protocol to build a new transaction

4.3.1 Simple Mimblewimble Transaction - dBuildMWTx
dBuildMWTx is a protocol between a sender and receiver that builds a Mimblewimble
transaction transferring the value p from the sender to a receiver for a Mimblewimble
Transaction Scheme as described in definition 4.2. It takes as input a list of spendable
coins [spC], a transaction value p, and an optional timelock t from the sender, the same
transaction value p from the receiver, and uses the functions defined earlier to output a
valid transaction tx as well as the newly spendable coins to both parties.

�(tx , spC∗
A), (tx , spC∗

B)� ← dBuildMWTx�(spC∗, p, t), (p)�

Figure 4.8 shows the implementation of the protocol.

4.3.2 Shared Output Mimblewimble Transaction - dsharedOutMWTx
dsharedOutMWTx is a protocol between a sender and a receiver. It builds a Mim-
blewimble transaction transferring value from a sender for the Extended Mimblewimble
Transaction Scheme from definition 4.4. However, instead of simply sending value to a
receiver, it sends it to a shared coin, for which both the sender and receiver know one
part of the opening. As input, it again takes a list of spendable coins [spC], a transaction
value p and an optional timelock t from the sender, and the same transaction value p
from the receiver. It outputs the final transaction tx to both parties, Alice will receive
her spendable change output spC∗

A and both parties will receive their part of the shared
spendable coin pspC∗

A, pspC∗
B.

59

4. Adaptor Signature Based Atomic Swaps Between Bitcoin and a Mimblewimble
Based Cryptocurrency

dsharedOutMWTx�([spC], p, t), ()�

Alice Bob

1 : (ptx , spC∗
A, (skA, nA))

← spendCoins([spC], p, t)

2 : ptx

3 : (ptx �, pspC∗
A) (ptx �, pspC∗

B)
← dRcvCoins�(ptx , p), ·� ← dRcvCoins�·, ()�

4 : tx ← finTx(ptx �, skA, nA)

5 : tx

6 : return (tx , spC∗
A, pspC∗

A) return (tx, pspC∗
B)

Figure 4.9: dsharedOutMWTx two-party protocol to build a new transaction with a
shared output

�(tx , spC∗
A, pspC∗

A), (tx , pspC∗
B)� ← dsharedOutMWTx�([spC], p, t), ()�

One use case of this transaction protocol is to lock funds between two users, which can
then only be redeemed by both parties cooperating.

Figure 4.9 shows the implementation of the protocol.

4.3.3 Shared Input Mimblewimble Transaction dsharedInpMWTx
dsharedInpMWTx is a protocol between a sender and a receiver. It builds a Mim-
blewimble transaction transferring value from a coin shared between two parties to a
receiver again for the Extended Mimblewimble Transaction Scheme outlined in defini-
tion 4.4 As input, it takes a list of partial spendable coins [pspCA], a transaction value
p, an optional timelock t from the sender, and the other part of the shared spendable
coins pspCB. It takes the same transaction value p from the receiver. It outputs a final
transaction tx to both parties and the new outputs spC∗

A, spC∗
B to the respective owner.

�(tx , spC∗
A), (tx, spC∗

B)� ← dsharedInpMWTx�([pspCA], p, t), ([pspCB], p)�

The protocol can be used to redeem funds that are locked created with the
dsharedInpMWTx protocol.

Figure 4.10 shows the implementation of the protocol.

60

4.4. Correctness & Security

dsharedInpMWTx�([pspCA], p, t), ([pspCB], p)�

Alice Bob

1 : (ptx , spC∗
A, (skA, nA)) (ptx , (skB, nB))

← dSndCoins�([pspCA], p, t), ·� ← dSndCoins�([pspCB], p, t), ·�
2 : (ptx �, spC∗

B) ← recvCoins(ptx , p)

3 : ptx �

4 : tx ← dFinTx�(ptx �, skA, nA), ·� tx ← dFinTx�(ptx �, skB, nB), ·�
5 : return (tx , spC∗

A) return (tx, spC∗
B)

Figure 4.10: dsharedOutMWTx two-party protocol to build a new transaction from a
shared output

4.3.4 Contract Mimblewimble Transaction - dcontractMWTx
dcontractMWTx is a protocol between a sender and a receiver for the Contract Mim-
blewimble Transaction Scheme shown in definition 4.6. Similar to the dsharedInpMWTx
it spends an input coin which is shared between the sender and receiver. Additionally,
we utilize the adapted signature protocol from definition 3.2 to let the receiver hide a
secret witness value x in the transaction signature, which the sender can extract from
the final transaction, thereby allowing the execution of a primitive contract.

�(tx, spC∗
A, x), (tx , spC∗

B)� ← dcontractMWTx�([pspCA], p, t, X)([pspCB], p, x)�

Figure 4.11 shows the implementation of the protocol.

4.4 Correctness & Security
In this section, we will prove the orrectness and security of the instantiation described
in section 4.2. We start by proving Transaction Scheme Correctness, Extended Transaction
Scheme Correctness, and Adapted Transaction Scheme Correctness for the three outlined
transaction schemes MW , MW ext, and MW apt. We then show that all protocols described
in section 4.3 are secure in the malicious models as defined in definition 2.8.

4.4.1 Correctness
We will argue Transaction Scheme Correctness follows from Correctness of the Commit-
ment Scheme COM , Two-Party Signature Scheme Φ and the Correctness of the Range
Proof System ΠRP used in the transaction protocol. If the transaction was constructed

61

4. Adaptor Signature Based Atomic Swaps Between Bitcoin and a Mimblewimble
Based Cryptocurrency

dcontractMWTx�([pspCA], p, t, X)([pspCB], p, x)�

Alice Bob

1 : (ptx , spC∗
A, (skA, nA)) (ptx , (skB, nB))

← dSndCoins�([pspCA], p, t), ·� ← dSndCoins�([pspCB], p, t), ·�
2 : (ptx �, spC∗

B, σ̃B)
← aptRcvCoins(ptx , p, x)

3 : ptx �, X �

4 : if X �= ⊥ ∧ X �= X �

5 : return ⊥
6 : σ̂B ← ptx �.σ
7 : ˜σAB tx

← dapFnTx�(ptx �, skA, nA, X), ·� ← dapFnTx�·, (ptx �, skB, nB, σ̃B)�

8 : tx

9 : x ← extWit(tx .σ, ˜σAB, σ̂B)
10 : return (tx, spC∗

A, x) return (tx, spC∗
B)

Figure 4.11: dcontractMWTx two-party protocol to build a primitive contract trans-
action

correctly (that is, by calling the procedures spendCoins, recvCoins, finTx, the distributed
variants dSndCoins, dRcvCoins, dFinTx or the adapted ones aptRcvCoins, dapFnTx
with valid inputs) it must follow that the final transaction has correct commitments,
range proofs, and a valid signature, and verfTx will therefore return 1. We construct the
following theorem:

Theorem 3. Transaction Scheme Correctness, Extended Transaction Scheme Correctness
or Adapted Transaction Scheme Correctness for a transaction system MW [COM , Φ, ΠRP],
MW ext[COM , Φ, ΠRP] or MW apt[COM , Φ, ΠRP] holds if the underlying Commitment
Scheme COM , Two-Party Signature Scheme ΦMP and Range Proof System ΠRP are
correct.

Proof. We assume there are two honest participants Alice and Bob. There exists a list
of input coins [Cinp] with blinding factors [ri] and values [vi] wrapped inside a list [spC]
known to Alice and some amount p which Alice wants to transfer to Bob. For Transaction
Scheme Correctness to hold verfTx(tx) must return 1 with overwhelming probability for
the two parties creating the transaction tx in the following three steps:

1. (ptx , (skA, nA)) ← spendCoins([spC], p, ⊥)

62

4.4. Correctness & Security

2. ptx∗ ← recvCoins(ptx , p)

3. tx ← finTx(ptx∗, skA, nA)

We recall the conditions for verfTx(tx) to return 1 found in definition 4.2 and show that
each of them must hold:

Condition 1 and 2 both must hold if the participants are honest, that is, compute their
coins as given by protocol definition and provide valid input parameters. If the sending
party provides duplicate inputs, the check at the beginning of the spendCoins procedure
will fail and return ⊥ and thereby halting the protocol. The blinding factors to the
output coins created in spendCoins and recvCoins are generated randomly, which means
a duplication can only appear with negligible probability.

Condition 3 follows from the implementation of the createCoin function called in spendCoins
as well as recvCoins. In the procedure, a range proof is computed for the new coin C with
value v and blinding factor r as π ← ranPrf(C, v, r). Given that our Range Proof System
ΠRP system has to be correct vrfRanPrf(π, C) = 1 must hold for all coins created with
the createCoin routine. Therefore Condition 3 must hold if the transaction is computed
honestly.

For condition 4 we must look at how the secret keys skA, and skB are constructed. From
the instantiation of spendCoins, we can see that Alice’s share will be skA := r∗

A − 	n
i = 0[rA],

where r∗
A is the blinding factor to her output and [rA] are the blinding factors to her

input coins. Bob’s secret key is constructed like skB := r∗
B, so it corresponds to his

output’s blinding factor. From the construction of the Two-Party Signature Scheme
in definition 3.1, we know that, therefore, the final signature will be valid under the
following public key:

E
 := gskA · gskB

Given how the secret keys are constructed, we arrive at:

E
 := gr∗
A ·

n�
i = 0

[g−rA] · grB

If we can show that the excess value E computed in verfTx is the same as above,
verf(m, σ, pk) = 1 must hold, and therefore condition 3 would be proven. We show
this by a stepwise conversion of the initial equation computing E until we arrive at the

63

4. Adaptor Signature Based Atomic Swaps Between Bitcoin and a Mimblewimble
Based Cryptocurrency

equation for E
:

E = E
 (4.1)
n�

i = 0
out −

n�
i = 0

inp − hf = gr∗
A ·

n�
i = 0

[g−rA] · grB − hf (4.2)

CA
out · CB

out ·
n�

i = 0
[(Cinp)−1] · h−f = (4.3)

(gr∗
A · hv − p) · (gr∗

B · hp) ·
n�

i = 0
[(g−rA , h−vi)] · h−f = (4.4)

gr∗
A · gr∗

B ·
n�

i = 0
g−rA = gr∗

A · gr∗
B ·

n�
i = 0

g−rA (4.5)

1 = 1 (4.6)

From step 5.3 to 5.4, we replace every coin C by its instantiation for a Pedersen Commit-
ment C = gr · hv .

From step 5.4 to 5.5, we rely on the fact that if Alice is honest v = 	 vi + f , therefore
also (v − p) + p = 	 vi must hold. We can infer that hv − p · hp · 	 h−vi · hf

must cancel out. Otherwise, the transaction would either create or burn value, which is
not allowed and in which case verfTx should again return 0.

We have shown that conditions 1-4 must hold for a valid transaction and conclude that
Transaction Scheme Correctness holds for MW [COM , ΠRP , ΦMP].

We will now argue that the same derivation holds for Extended Transaction Scheme
Correctness and Adapted Transaction Scheme Correctness.

Condition 1-2 again follow trivially from the construction of dSndCoins and
dRcvCoins for the same reasons we have already laid out in the previous proof.

dSndCoins, dRcvCoins, aptRcvCoins all rely on the same createCoin routine to create
output coins. Thereby condition 3 also holds for valid transactions with the same
argument as for the previous proof.

In Extended Transaction Scheme Correctness, the blinding factors for the input coins
[Cinp] are shared. However, we can quickly reduce this case to the proof for the regular
case: In dSndCoins, Alice and Carol construct their secret keys as follows:

skA := r∗
A −

n�
i = 0

rA (4.7)

skC := r∗
C −

n�
i = 0

rC (4.8)

skA and skC are then inputs to dFinTx in which a partial signature ˜σAC is calculated
by both Alice and Carol signing with their secret key. Recall the case we have proven

64

4.4. Correctness & Security

above, in which we have a single secret key skA: We can split skA into arbitrarily chosen
shares (skA)1, (skA)2 with skA = (skA)1 + (skA)2. By the definition of the Two-Party
Signature Scheme definition 3.1, the combined signature from (skA)1, (skA)2 will be valid
under gskA . Thereby we can treat skA and skC from spendCoins as arbitrary shares of a
combined skAC . It follows from the additive homomorphic property of the elliptic curve
that a signature valid under gskAC must also be valid under gskA · gskC . The case of two
receivers calling dRcvCoins is symmetric. From this, we can conclude that condition 4
must also hold for the Extended Transaction Scheme.
Now for the Adapted Extended Transaction Scheme the same argument holds. The only
difference in this scheme is that in dapFnTx Bob (instead of Alice) will call finSig, as
only he knows his unmasked partial signature σ̃B . However, the signature’s construction
remains unchanged. Therefore the reduction we provided before must hold for the
same reasons. We have thereby proven that if COM , ΠRP , ΦMP are correct and the
participants behave honestly (that is, providing valid inputs and calling the respective
routines in the given order), verfTx(tx) will return 1 for the resulting transaction tx and
therefore theorem 3 holds.

4.4.2 A note on rogue-key attacks:
In section 3.1, we mentioned that we need to take special care in the key generation phase
in a Two-Party Signature Scheme. Otherwise the protocol might be vulnerable against
rogue-key attacks in which one of the party’s public keys is computed as a function of the
other. We see that we do not take this into account in all of the protocols laid out in this
section. As for the receiving party, it will always be possible to generate his keypair as a
function of the sender’s public key. We now show how attempting a rogue-key attack in
Mimblewimble would play out and why it does not threaten the security of our scheme:
Imagine we have an attacker A who knows the value v of some coin C = gr · hv present
in the unspent output list of the blockchain. He could then compute pkA = C · (hv)−1.
For the rogue-key attack to succeed, A would now create a transaction spending C and
choose his output coin pubkey as pkB = pk−1

A with the attempt of canceling out Alice’s
key. However, recalling the structure of Mimblewimble transactions the participants sign
the excess value E = inp − out, where inp and out is the input and output coins list.
Therefore, making the public keys cancel out A would instead have to choose his key
as pkB := pkA. Given this setup (a transaction which spends the coin C = pkA · hv

to C∗ = pkB · hv), the excess value E would calculate like pkA · pkB
−1. By the

prior definition of pkB as pkA the excess calculation would look like pkA · pkA
−1, which

would cancel out and allow the adversary to forge a signature. However, since we chose
pkB as simply pkA and pkA = gr (from the original Pedersen Commitment) the new
output coin C∗ would be identical to the input coin C, and the transaction therefore
spend a coin to itself. Recalling the instantiation of the transaction verification algorithm
verfTx defined by Fuchsbauer et al. [17], which we laid out in fig. 4.2, we see that the
union between input and output coin list must be empty. Otherwise, the transaction
will not verify. Therefore, even though the attacker could create a forged signature for
this transaction, it would still be invalid as by definition of the transaction verification

65

4. Adaptor Signature Based Atomic Swaps Between Bitcoin and a Mimblewimble
Based Cryptocurrency

algorithm. We further consider the case in which the attacker would try to add a fee f
to the transaction to steal value from a coin. In this case, the newly created output coin
would be pkB · hv−f . Now the output coin is no longer identical to the input coin, yet
the input and output values still cancel out due to the fee, and by the definition of pkB
the two public keys must as well still cancel out, allowing for a forged signature. However,
in this scenario, A is faced with the problem that he does not have a valid range proof
for this new output coin. To compute such a proof, he would need to know the original r
of pkA = gr , which he doesn’t. Therefore it is again impossible for him the create a
valid transaction, even though he would be able to forge the transaction signature. We
conclude that all possible rogue-key attacks on Mimblewimble are prevented through
transaction verification, and we, therefore, do not have to take other special care in the
key generation phase to avoid them.

4.4.3 Security

We now want to prove security in the malicious setting as described in definition 2.8 for
the protocols defined in section 4.3. Again we show that the distributed protocols are
secure in the hybrid fR

zk-model as already explained in section 3.4.2. We start by proving
security of the simple transaction protocol dBuildMWTx.

Hybrid functionalities: The parties have access to a trusted third party computing the
zero-knowledge proof of knowledge functionalities fR1

zk , fR2
zk , and fR2∗

zk . R1 is the relation
between a secret key sk and its public key pk = gsk for the elliptic curve generator
point g. R2 is the relation between two private inputs r , v, and its Pedersen Commitment
C = gr · hv for two adjacent generators g, h as defined in definition 2.7. We shorten the
prover’s call to provide spC because it is a wrapper containing the coin Commitment, and
its openings. R2∗ is the same as R2 just for a list of secrets inputs [(r , v)] and its list of
Commitments [C]. Again to shorten the prover’s calls we simplify the call to fR2∗

zk ([spC]).

Proof Idea: We extend the protocol dBuildMWTx instantiated in section 4.3 with
the following calls to the zero-knowledge proof of knowledge functionalities as depicted
in fig. 4.12. Again as already pointed out in the previous section, we must make
adjustments to the protocol to prove their security. That, in turn, does not mean that
the original protocols are insecure. We add calls to make a security proof of this sort
possible. When one implements these protocols with security in mind, one should also
implement the additional calls added with the adjusted versions. The same holds for all
modified protocols throughout this section.

Theorem 4. Let COM be a correct and secure Pedersen Commitment Scheme, ΠRP

be a correct and secure Range Proof System, and ΦMP be a secure and correct Two-
Party Signature Scheme. dBuildMWTx securely computes a Mimblewimble transaction
transferring the value p from a sender (denoted as Alice) to a receiver (denoted as Bob)
in the hybrid fR1

zk , fR2
zk , fR2∗

zk -model.

66

4.4. Correctness & Security

dBuildMWTx�([spC], p, t), (p)�

Alice Bob

1 : fR2∗
zk ([spC])

2 : (ptx , spC∗
A, (skA, nA))

3 : ← spendCoins([spC], p, t)
4 : fR1

zk ((skA, gskA))
5 : fR1

zk ((nA, gnA))
6 : fR2

zk (spC∗
A)

7 : ptx

8 : if fR2∗
zk (tx .inp) = 0

9 : return ⊥
10 : if fR1

zk (tx .Λ.pk) = 0
11 : return ⊥
12 : if fR1

zk (tx .Λ.R) = 0
13 : return ⊥
14 : if fR2

zk (tx .out[0]) = 0
15 : return ⊥
16 : (ptx �, spC∗

B) ← recvCoins(ptx , p)
17 : fR2

zk (spC∗
B)

18 : ptx �

19 : if fR2
zk (tx .out[1]) = 0

20 : return ⊥
21 : tx ← finTx(ptx �, skA, nA)

22 : tx

23 : return (tx , spC∗
A) return (tx, spC∗

B)

Figure 4.12: Extension of dBuildMWTx (fig. 4.8) in the hybrid model

67

4. Adaptor Signature Based Atomic Swaps Between Bitcoin and a Mimblewimble
Based Cryptocurrency

Proof. We proof the security of dBuildMWTx by constructing a simulator S with access
to a TTP computing the protocol in the ideal setting upon receiving the participants’
inputs. For this, the simulator has to extract the inputs used by the adversary. The
TTP returns the outputs (tx , spC∗

A) (resp. (tx , spC∗
B)) from which he has to construct an

indistinguishable transcript from a real world’s protocol transcript. The simulator uses
the calls to fR1

zk , fR2
zk , fR2∗

zk to achieve this. We prove that the transcript is indistinguishable
when either Alice or Bob is corrupt and controlled by a deterministic polynomial adversary
A.

Alice is corrupt: Simulator S works as follows:

1. S invokes A, and once it calls fR2∗
zk , fR1

zk fR2
zk saves the values [spC], skA, nA, spC∗

A to its
memory.

2. S calculates the transaction value p as follows:

v =
i < n�
i := 0

(spCi.v)

p = v − spC∗
A.v

3. S receives ptx from A and checks for every transaction input i if ptx .inp[i] = spC[i].C,
and that tx .out = [spC∗

A.C]. He also compares tx .Λ.pk = gskA , tx .Λ.R = gnA ,
tx .π[0] = spC∗

A.π and tx .com[0] = gskA . If any of the equalities are invalid S sends
abort to the TTP computing dBuildMWTx and returns whatever A returns. Otherwise,
he extracts t = tx .t and sends the inputs ([spC], p, t) to the TTP and receives back the
outputs (tx , spC∗

A).

4. The simulator’s task is now to construct ptx
, which he can achieve in the following
steps:

a) He takes the signature context Λ and final signature σfin from the final transaction
Λ = tx.Λ and σfin = tx .σ.

b) He computes the adversaries partial signature as σ̃A ← signPt(m, skA, nA, Λ)

c) He further computes:

pk ← Λ.pk
pkA = gskA

(sA, RA, Λ) ← σ̃A

(s, R) ← σfin

sB = s − sA

RB = R · R−1
A

pkB = pk · pk−1
A

σ̃B = (sB, RB, Λ)

68

4.4. Correctness & Security

d) He other takes values from the final transaction:

CB
out = tx .out[1]
πB = tx .π[1]

CB = tx.com[1]

e) Now he can compute ptx
 ← createTx(m, inp, out || CB
out , Π || πB, Λ, com || CB, σ̃B)

Finally, S will send ptx
 as if coming from Bob and sends continue to the TTP.

5. When A calls fR2
zk he checks equality to CB

out and returns either 0 or 1.

6. Eventually, A will send a tx
, after which the simulator will output whatever A outputs.

Next we need to prove that S’s transcript is indistinguishable from a real one in every
protocol phase. We separate between the following three phases: Phase 1: Alice sends
her input coins, signing key and nonce, and her change output coin to fR1

zk and fR2
zk and

sends the pre-transaction ptx to Bob. Phase 2: Bob calls fR1
zk and fR2

zk as the verifier, after
which he calls fR2

zk as the prover and proceeds by sending the updated pre-transaction
ptx
 to Alice. Phase 3: Alice calls fR2

zk as the verifier and sends back the final transaction
tx to Bob, which they then output. Finally, S’s output needs to be indistinguishable
from that of A in a real execution.

• Phase 1 : Due to A’s deterministic nature, we can conclude that this phase has to be
indistinguishable as there is not yet any simulation required.

• Phase 2 : If any of the values that A sends to the trusted party computing the
zero-knowledge proofs of knowledge are different from the value that A sends in the
pre-transaction S’s equality checks will fail. In this case, he will halt the simulated
protocol and return whatever A outputs, which would be expected in a real execution.
We further argue that the updated pre-transaction ptx
 is identical to the pre-transaction
expected in a real execution by Bob. The signatures σ̃A and σ̃B have to add up to
σfin , which is the final signature. S can read σfin from the transaction in the output
he received from the TTP. He can further calculate the adversaries’ signatures because
he knows their signing secrets. From those two values, he can then compute the value
that σ̃B must have such that it will complete to σfin when added to Alice’s share of the
signature. All other values S needs to build ptx
 he can read from the final transaction
tx . Therefore ptx
 is identical to one that would be expected in a real execution.

• Phase 3 : When A calls fR2
zk as the verifier, S can check equality with the correct value

and return 0 or 1, which is what would be expected in a real execution.

We have managed to show that in the case that Alice is corrupted, the simulated transcript
is indistinguishable from a transcript that the protocol would produce in a real execution.

Bob is corrupt: Simulator S works as follows:

69

4. Adaptor Signature Based Atomic Swaps Between Bitcoin and a Mimblewimble
Based Cryptocurrency

1. S computes one (or multiple) input coins as follows:

r , v ←$Z∗
p

spC ← createCoin(r , v)

He chooses p randomly and sets t = ⊥. Now he can call spendCoins and get:

(ptx , spC∗
A, (skA, nA)) ← spendCoins([spC], p, t)

2. The simulator invokes A and sends ptx as if coming from Alice.

3. When A calls fR1
zk , fR2

zk , fR2∗
zk as the verifier, S checks equality with the values he sent

earlier and returns either 0 or 1. The adversary proceeds by calling fR2
zk (spC∗

B), S saves
spC∗

B , and extracts p = spC∗
B.v He then calls the TTP computing dBuildMWTx with

the input p and receives (tx , spC∗
B).

4. Next, A sends an updated pre-transaction ptx
. S verifies that the output coin added
by A matches with spC∗

B . If it does not, he sends abort to the TTP and outputs whatever
A outputs. Otherwise, S computes the following values from the signature context Λ
provided in the final transaction and Λ
 provided by A:

pkB = Λ
.pk · gskA −1

RB = Λ
.R · gnA −1

pkA = Λ.pk · pk−1
B

RA = Λ.R · R−1
B

5. The simulator rewinds to the first step of the simulation. Instead of choosing the
values for the pre-transaction, he now uses tx .inp as the pre-transaction input values,
tx .out[0] as the single output value, tx .Π[0] as the single range proof value, and tx .com[0]
as the single value in the field storing the commitments. Furthermore, he constructs the
initial signature context as given by protocol specification:

Λ := {pk = 1, R = 1}
Λ ← setupCtx(Λ, pkA, RA)

And again sends the pre-transaction to A as if coming from Alice.

6. The simulator repeats the steps until step 5, where he rewinded earlier. Now instead
of rewinding S sends continue to the TTP and sends tx as if coming from Alice, and
finally outputs whatever A outputs.

Again we now claim that the simulation is indistinguishable from a real execution. Note
that we need to consider the message sent before and after the rewind.

70

4.4. Correctness & Security

• Phase 1: In the first iteration, the simulator constructs the input values [spC] from
random values and chooses a random transaction value p. S creates the pre-transaction
using those computed values rather than the real ones. We claim that the adversary
cannot distinguish the chosen from the real coin commitments (except with negligible
probability). If we assume that he would be able to do so, that means he could distinguish
for two commitments C1 = gr1 · hv , C2 = gr2 · hv� which one commits to v, from
which follows that he could break the hiding property of the Perdersen Commitment. Not
being able to extract the coin values, the adversary has no chance of knowing if they are
correct at this point. For the same reasons S’s pre-transaction after the rewind will be
indistinguishable from a real one. However, this time the pre-transaction is constructed
from the real tx that S received from the TTP. Therefore the pre-transaction is identical
to a pre-transaction that would be expected in a real execution. The calls to fR1

zk , fR2
zk and

fR2∗
zk also behave identically as what would be expected in a real execution.

• Phase 2: This phase is identical to what would be expected in a real execution because
the adversary is deterministic.

• Phase 3: The transaction sent to A in this phase is the one received from the TTP
and is therefore identical to what would have been sent in a real execution, given A
sends correct values. (Otherwise, the execution would have halted). We like to emphasize
that in the case that we wouldn’t have done the rewind step, A could distinguish the
transcript from the real one. That is because he can identify differences in the inputs,
outputs, proofs, and commitments and the signature context of the final transaction
tx and the pre-transaction ptx sent in the first phase. For instance, inputs which are
spent in the last transaction are not present in the pre-transaction. However, due to the
rewinding step S manages to construct the correct pre-transaction, which will finalize
into tx such that A again has no chance of distinguishing the two transcripts.

• Regarding protocol outputs, if the adversary misbehaves at any point by sending
invalid (or no) values, the simulator will notice, halt the protocol, and return whatever
A returns. If A behaves honestly, S would run the protocol simulation until the end and
then again output whatever A outputs. In both cases, the output would be the same as
expected from A in a real execution.

We have managed to show that the transcripts produced by S in the case that Alice and in
the case that Bob is corrupt are both indistinguishable from a transcript produced during
a real execution and can therefore conclude that the protocol is secure and theorem 4
holds.

Before we can continue to prove the security of the three other protocols
dsharedInpMWTx, dsharedOutMWTx, dcontractMWTx, we first have to prove
that all the protocols run as part of those executions are secure. That is we have to show
security for dSndCoins, dRcvCoins, dFinTx, dapFnTx.

71

4. Adaptor Signature Based Atomic Swaps Between Bitcoin and a Mimblewimble
Based Cryptocurrency

We start with the proof for dSndCoins which is called inside dsharedInpMWTx, as
well as dcontractMWTx.

Hybrid functionalities: For this proof, we need to extend our hybrid model. As
previously, the parties have access to a trusted third party computing the zero-knowledge
proof of knowledge functionalities fR1

zk , fR2
zk and fR2∗

zk . Additionally, we introduce fR3
zk ,

whereas R3 is the relation between a value v, two secrets rA, rC and the Commitment
C = hv · grA · grC . This means that for R3 we have two provers, one of them having
to provide rA, the other rC . Both will have to give the Commitment C and the value v.
Both parties can then call the protocol again as the verifier providing the Commitment
C∗ and receiving 1 if C∗ = CA = CC (whereas CA is the commitment received from Bob
as the prover, resp. for Carol) vA = vC and C∗ = hv· · grA · grC . A proof system that
would support such a relation is zk-SNARKS as can be seen in [7]. To simplify the call
made by the prover, we write fR3

zk (pspC) as pspC is, just like spC, a wrapper around C, r ,
v. As for R2, we again allow calling the protocol with an array of inputs by calling fR3∗

zk

Proof Idea: We extend the protocol dSndCoins instantiated in section 4.2 with
the following calls to the zero-knowledge proof of knowledge functionalities, as shown
in fig. 4.13.

Theorem 5. Let COM be a correct and secure Pedersen Commitment Scheme, ΠRP be
a correct and secure Range Proof System and ΦMP be a secure and correct Two-Party
Signature Scheme, then dSndCoins securely computes a Mimblewimble pre-transaction
ptx
 spending a coin Csh

out owned by the two parties in the hybrid fR1
zk ,fR2

zk ,fR3
zk -model.

Proof. The proof strategy is the same as already mentioned in the previous proof
for theorem 4.

Alice is corrupted: Simulator S works as follows:

1. S invokes A and saves [pspCA], spC∗
A, skA, nA when he calls fR1,2,3

zk

2. The simulator then receives ptx from A and compares the input coins, output coin,
proof and signature context values with what he has stored in the first step. If any of
those are not equal S sends abort to the TTP and outputs ⊥. Otherwise, he extracts
p := 	[pspCA.v] − spC∗

A.v as well as t := ptx .t and sends the inputs ([pspCA], p, t) to
the TTP to receive the outputs (ptx
, spC∗

A, (skA, nA)).

3. S sends ptx
 to A as if coming from Carol and sends continue to the TTP to make A
receive the outputs in the ideal setting.

4. When A calls fR1,2,3
zk as the verifier he compares the values to what he has sent in ptx

and returns either 0 or 1.

5. Finally, the simulator outputs whatever A outputs.

We separate between the following three phases: Phase 1: Alice sends her partially
owned inputs coins, newly created output coins, as well as her signing secrets to fR1,2,3

zk

72

4.4. Correctness & Security

dSndCoins�([pspCA], p, t), ([pspCC], p)�

Alice Carol

1 : fR3∗
zk ([pspCA]) fR3∗

zk ([pspCC])
2 : · · ·
3 : fR2

zk (spC∗
A)

4 : fR1
zk ((skA, gskA))

5 : fR1
zk ((nA, gnA))

6 : ptx

7 : if fR3∗
zk (ptx .inp) = 0

8 : return ⊥
9 : fR2

zk (ptx .out[0]) = 0
10 : return ⊥
11 : if fR1

zk (Λ.pk) = 0
12 : return ⊥
13 : if fR1

zk (Λ.R) = 0
14 : return ⊥
15 : · · ·
16 : fR2

zk (spC∗
C)

17 : fR1
zk ((skC , gskC))

18 : fR1
zk ((nC , gnC))

19 : ptx �

20 : if fR3∗
zk (ptx �.inp) = 0

21 : return ⊥
22 : if fR2

zk (ptx �.out[1]) = 0
23 : return ⊥
24 : {pk, R} ← ptx �.Λ
25 : if fR1

zk (pk · pk−1
A) = 0

26 : return ⊥
27 : if fR1

zk (R · R−1
A) = 0

28 : return ⊥
29 : return (ptx �, spC∗

A, (skA, nA)) return (ptx �, spC∗
C , (skC , nC))

Figure 4.13: Extension of dSndCoins (fig. 4.3) in the hybrid model

73

4. Adaptor Signature Based Atomic Swaps Between Bitcoin and a Mimblewimble
Based Cryptocurrency

and sends ptx . Carol sends her partially owned input coins to fR3
zk Phase 2: Carol calls

R1,2,3 as the verifier constructs her output coin and signing secrets, now calls R1,2 as the
prover and sends the updated ptx
 to Alice. Phase 3: Alice calls R1,2,3 as the verifier.
Again the output returned by S must be indistinguishable from that of A in a real
execution.

We now argue why each phase is indistinguishable from a real execution if Alice is
corrupted.

• Phase 1 : No simulation is required in this phase. We, therefore, conclude that it is
indistinguishable from a real execution due to the deterministic nature of A.

• Phase 2 : If A tried to cheat by providing invalid values in ptx, the equalities that S
checks will fail and will lead him to halt the protocol and return, which is the same as
expected in a real execution. S then sends ptx
 to A, which he received from the TTP
and therefore has to be identically distributed as in a real execution.

• Phase 3 : Again, if A tries to cheat by sending an invalid value, he will receive a 0 bit,
which would also happen in the real execution.

• In the case that A would deviate from the protocol specification, and in the case that
he follows it, S will always output whatever A outputs, which has to be indistinguishable
from what is expected in a real execution.

As the transcript is identically distributed to a transcript of a real protocol execution, we
conclude that the simulation, in this case, is perfect.

Carol is corrupt: Simulator S works as follows:

1. S invokes A and saves [pspCC] when the adversary calls fR3∗
zk

2. The simulator then chooses rA, r∗
A, p ←$Z∗

p and sets
pspCA := {C := pspCC .C, r := rA, v := pspCC .v}. He then proceeds by building ptx
as given by the protocol specification with the chosen values and [pspCA] and sends it to
A as if coming from Alice.

3. When Carol calls fR1,2,3
zk as the verifier, S checks the passed values for equality and

returns either 0 or 1. As soon as Carol calls fR2
zk (spCC) S will extract pspC∗

C .v and finally
call the TTP with inputs ([pspCC], p) to receive ptx
, spC∗

C , (skC , nC).

4. Now the simulator rewinds to step 1 and constructs the actual ptx from ptx
 as follows:

{m, inp, out, Π, Λ, com, ∅, t} ← ptx

pkA := ptx
.Λ.pk · gskC −1

RA := ptx
.Λ.R · gnC −1

Λ∗ := {pk := pkA, R := RA}
ptx := createTx(m, inp, out[0], Π[0], Λ∗, com[0], ∅)

74

4.4. Correctness & Security

he then sends again ptx as if coming from Carol and continues as before.

5. When A sends ptx
, he compares its inputs, outputs, proofs, and signature context
to ptx
 received from the trusted third party and sends abort to the TTP and returns
whatever A returns if any do not match. Otherwise, he sends continue to the TTP and
again outputs whatever A outputs.

We again show that the transcript produced by the simulator is computationally indistin-
guishable from a real transcript in each phase.

• Phase 1 : In the first iteration (before the rewind), the pre-transaction that is sent
to A will be constructed from randomly chosen values except for the transaction inputs
given by the Commitments in [pspCC]. Due to the hiding property of the Pedersen
Commitment the adversary cannot determine if the correct value p has been used to
construct the output coin, even though he knows the right value for p but does not know
the blinding factor r∗

A. A does know the correct values for the input coins from [pspCC].
Thereby S must use the Commitments extracted from [pspCC] to build the transaction.
Otherwise, one could detect the simulation. In the second iteration (after the rewind),
S sends the same ptx, which would be expected in a real execution which is therefore
identically distributed.

• Phase 2 : When A calls fR1,2,3
zk he will receive 0 or 1 again identically to what is

expected in a real execution.

• Phase 3 : If A sends invalid input, output, proof, or context values, in the final
pre-transaction ptx
 the simulator detects this and returns. Otherwise the protocol
concludes.

• Both in the case in which A behaves as of protocol specification and where he deviates,
S will always output whatever A outputs, making the simulator’s output indistinguishable
from what would be expected in a real scenario.

We have managed to show that the simulator S can produce an indistinguishable transcript
both in the case that Alice and in that Carol is corrupted and conclude that dSndCoins
is secure in the fR1

zk ,fR2
zk ,fR3

zk -model and theorem 5 holds.

We continue by proofing the security of the dRcvCoins, which is called inside the
dsharedOutMWTx protocol.

Hybrid functionalities: Again, the parties have access to a trusted third party com-
puting the zero-knowledge proof of knowledge functionalities fR1

zk , fR2
zk , and fR2∗

zk . For this
proof, we do not need R3 as defined in the previous proof. However, we extend the model
with two other protocols which have already been proven secure. We extend our model
including the dSign protocol, proven to be secure in section 3.4 and the dRanPrf for
which one can find a secure protocol in [24].

75

4. Adaptor Signature Based Atomic Swaps Between Bitcoin and a Mimblewimble
Based Cryptocurrency

dRcvCoins�(ptx, p), ()�

Bob Carol

1 : · · ·
2 : fR2

zk ((Csh
out , (p, r∗

B)))

3 : ptx , Csh
out

4 : if fR2
zk (Csh

out) = 0
5 : return ⊥
6 : · · ·
7 : fR1

zk ((skC , gskC))

8 : ptx �, gskC

9 : if fR1
zk (gskC) = 0

10 : return ⊥
11 : · · · · · ·
12 : πBC ← dRanPrf�(Csh

out
�
, p, skB), ·� πBC ← dRanPrf�(Csh

out
�
, p, skC), ·�

13 : (˜σBC , pkBC) ← (˜σBC , pkBC) ←
dSign�(m, skB, nB), ·� dSign�·, (m, skC , nC)�

14 : · · · · · ·
15 : return (ptx∗, pspC∗

B) return (ptx∗, pspC∗
C)

Figure 4.14: Extension of dRcvCoins (fig. 4.4) in the hybrid model

Proof idea: We extend the protocol dRcvCoins instantiated in section 4.2 with the
following calls to the zero-knowledge proof of knowledge functionalities as outlined
in fig. 4.14.

Theorem 6. Let COM be a correct and secure Pedersen Commitment Scheme, ΠRP −MP

be a correct and secure Two-Party Range Proof System, and ΦMP be a secure and correct
Two-Party Signature Scheme, then dRcvCoins securely updates a Mimblewimble pre-
transaction by creating a new output coin Csh

out

 for which the key is shared between two

parties Bob and Carol in the fR1
zk ,fR2

zk ,dSign,dRanPrf -model.

Proof. The proof strategy again is as specified in the proof for theorem 4.

Bob is corrupted: Simulator S works as follows:

1. S invokes A and saves (Csh
out , (p, r∗

B)) when the adversary calls fR2
zk .

76

4.4. Correctness & Security

2. A sends (ptx, Csh
out) to Alice. The simulator then compares Csh

out with the values saved
in its memory and sends abort to the TTP, halts the protocol, and outputs whatever
A outputs if they don’t match. Otherwise, he sends (ptx , p) to the TTP computing
recvCoins and receives the results (ptx∗, pspC∗

B).

3. S proceeds by taking the last output Csh
out

 from ptx∗.out and computes gskC := Csh
out

 · Csh
out

−1.
The simulator computes ptx
 by adding Csh

out

 to ptx sending it together with gskC to A

as if coming from Carol and sends continue to the TTP.

4. When A calls fR1
zk as the verifier S checks equality with the correct value and returns

either 0 or 1.

5. When the adversary calls dRanPrf , the simulator saves skB to its memory and
returns the last element of ptx∗.Π as received from the TTP.

6. For the call to dSign, the simulator returns the ptx .σ as the signature and gskB · gskC

as the public key.

7. S concludes by outputting whatever A outputs.

We find the following phases: Phase 1: Bob calls fR2
zk and sends ptx to Carol. Phase 2:

Carol calls fR2
zk as the verifier, adds her public key to the Commitment and sends back an

updated pre-transaction and her public key. Phase 3: Bob calls fR1
zk as the verifier, and

the parties call the trusted third parties computing dRanPrf and dSign. Finally, we
again have to show that the simulator’s output is indistinguishable from that of A in a
real execution.

We argue that in this case, the simulation is perfect. That is the transcript produced by
S is identically distributed as a transcript produced during a real execution.

• Phase 1 : No simulation is done during this phase, and the transcript is thereby
indistinguishable from a real one simply by the deterministic nature of A.

• Phase 2 : In case A sends an invalid value for Csh
out the execution will stop, which is

the same as would happen in a real execution. The simulator proceeds by sending the
updated pre-transaction and the extracted value for gskC , exactly as would be expected
from honest Carol.

• Phase 3 : A will receive 0 or 1 to the call to fR1
zk as in the real execution, depending on

if he sends a valid or invalid value. In the case that A behaves dishonestly, S will notice
and halt the protocol. If he instead acts honestly, the simulator will simulate the protocol
until the end. S will return whatever A returns making the output indistinguishable
from an output produced by A in a real execution.

Carol is corrupted: The simulator works as follows:

1. Since Carol does not have any inputs in this protocol, S can send ∅ to the TTP to
receive (ptx∗, spC∗

C), from which he extracts Carol’s blinding factor (and secret key) as
skC := spC∗

C .r . He can now create the initial shared coin Csh
out by taking the last output

77

4. Adaptor Signature Based Atomic Swaps Between Bitcoin and a Mimblewimble
Based Cryptocurrency

of ptx∗.out as Csh
out

 and calculating Csh
out := Csh

out

 · gskC −1. he can further create the

initial pre-transaction by removing the last entry of the output coin list, last entry of the
proof list, and signature from ptx∗.

2. S invokes A and sends ptx , Csh
out (as calculated in step 1) as if coming from Bob.

3. When A calls fR2
zk as the verifier, the simulator checks equality with what he sent in

the last step and returns 0 or 1.

4. The adversary then sends the updated ptx
 which the simulator validates by checking if
the last entry in ptx
.out equals Csh

out

. If they don’t S will send abort to the TTP halting

the execution and returning whatever A returns. Otherwise, he will send continue.

5. Upon the adversary calling dRanPrf , the simulator will return the proof at the last
position in the proofs array of ptx∗.Π received from the TTP.

6. The simulator then extracts p := pspC∗
C and computes pkB := Csh

out · hv−1 and
returns ptx∗.σ and sk∗

C · pkB when A calls dSign.

7. The simulation completes with S outputting whatever A outputs.

We now argue why in each of the three phases, the transcript produced by S is indistin-
guishable from a real transcript.

• Phase 1 : Because S can call the TTP already in the first step, he can receive the
protocol outputs instantly. The simulator can then extract Carol’s secret key skC from
Carol’s pspC∗

C output, which must also be her blinding factor in Csh
out

. He, therefore, can
reconstruct Csh

out which would have been sent by Bob in a real execution, by subtracting
Carol’s part from the output, which is present in ptx∗.out. S is further able to reconstruct
the ptx , which would have been sent by Bob in a real execution by removing the values
from ptx∗ which get added at a later point in the protocol. Therefore the transcript in
this phase is exactly how it would be expected in a real execution.

• Phase 2 : If A tries do cheat by sending an invalid value to fR2
zk as the verifier, he will

receive 0 as a response and 1 otherwise, which is identical to what would happen in a
real execution. Similarly, the execution will halt if A sends invalid values as ptx
 and
gskC , again how it would happen in a real execution.

• Phase 3 : S is able to read the output values for πBC and ˜σBC from ptx∗. He further
is able to calculate pkBC as he knows gskC and can reconstruct pkB from Csh

out . Therefore,
the simulation again is perfect also in this phase.

• Regarding protocol outputs, the simulator will again detect if A deviates from the
protocol specification at any point and will output whatever A outputs in any case,
making the protocol output indistinguishable from one produced during a real execution.

Both in the case, Bob and Carol are corrupted, S can produce a transcript indistinguish-
able from a transcript produced with a real execution. Therefore, we can conclude that
the protocol is secure in the fR1

zk ,fR2
zk ,dSign,dRanPrf -model, and theorem 6 holds.

78

4.4. Correctness & Security

We claim that the security proof of the protocols dFinTx and dapFnTx can be reduced
to the proof for dSign as all interaction between the two parties happens in the call to
dSign. We have already proven the security of dSign in section 3.4 and can reuse the
simulator for the protocols dFinTx and dapFnTx.

We can now continue to prove the security of the protocols found in section 4.3. We start
with dsharedOutMWTx.

Hybrid functionalities: For this proof, we again assume access to a trusted third party
computing the zero-knowledge proof of knowledge functionalities fR1

zk , fR2
zk and fR3∗

zk , with
the three relations defined as in previous proofs. We further require a trusted third-party
computing dRcvCoins, which we have already proven to be secure in the hybrid model.

We extend the protocol dsharedOutMWTx instantiated in section 4.3 with the
following calls to the zero-knowledge proof of knowledge functionalities shown in fig. 4.15.

Theorem 7. Let COM be a correct and secure Pedersen Commitment Scheme, ΠRP

be a correct and secure Range Proof System and ΦMP be a secure and correct Two-
Party Signature Scheme, then dsharedOutMWTx securely computes a Mimblewimble
transaction with a output coin Csh

out

 which spending secret is shared between Alice and

Bob.

Proof. The proof strategy is again as defined in the proof for theorem 4.

Alice is corrupted: Simulator S works as follows:

1. S invokes A and saves [spC], skA, nA and spC∗
A to its memory.

2. A sends ptx from which S extracts t := ptx .t.
He further extracts p := 	 spCi.v − spC∗

A.v. S verifies that the values ptx .inp, ptx .out,
ptx .π and ptx .Λ correspond to what he has saved to its memory. In case this verification
fails he sends abort to the TTP and outputs whatever A outputs.

3. S sends ([spC], p, t) to the TTP and receives (tx , spC∗
A, pspCA).

4. When A calls dRcvCoins, S verifies that ptx and p passed by A are correct and
only then forwards them to the TTP to receive (ptx
, pspC∗

A) which he then sends to
A. Otherwise, he returns ⊥ to A and sends abort to the TTP, and halts the protocol
returning whatever A returns.

5. S sends continue to TTP. Eventually, A sends tx, after which S outputs whatever A
outputs.

It is easy to see that the simulation is perfect as every simulated message exchanged
between the party is identical to what is expected in a real execution. Also, if the
adversary cheats (by sending an invalid ptx), this is noticed by the simulator, who then
halts the protocol and outputs whatever A outputs, which is again what would be
expected in a real protocol execution.

Bob is corrupted: Simulator works as follows:

79

4. Adaptor Signature Based Atomic Swaps Between Bitcoin and a Mimblewimble
Based Cryptocurrency

dsharedOutMWTx�([spC], p, t), ()�

Alice Bob

1 : fR3∗
zk ([spC])

2 : (ptx , spC∗
A, (skA, nA))

← spendCoins([spC], p, t)
3 : fR2

zk (spC∗
A)

4 : fR1
zk ((skA, gskA))

5 : fR1
zk ((nA, gnA))

6 : ptx

7 : if fR3∗
zk (ptx .inp) = 0

8 : return ⊥
9 : if fR2

zk (ptx .out[0]) = 0
10 : return ⊥
11 : if fR1

zk (ptx .Λ.pk) = 0
12 : return ⊥
13 : if fR1

zk (ptx .Λ.R) = 0
14 : return ⊥
15 : (ptx �, pspC∗

A) (ptx �, pspC∗
B)

← dRcvCoins�(ptx , p), ·� ← dRcvCoins�·, ()�
16 : tx ← finTx(ptx �, skA, nA)

17 : tx

18 : return (tx , spC∗
A, pspC∗

A) return (tx, pspC∗
B)

Figure 4.15: Extension of dsharedOutMWTx(fig. 4.9) in the hybrid model

80

4.4. Correctness & Security

1. S invokes A and sends () to the TTP to receive the outputs (tx, pspC∗
B)

2. S now has the following challenge: A first expects the first pre-transaction ptx coming
from Alice, which should not have any signature, only one output (Alice change output),
and only a partially set up signature context Λ. To achieve this, S clones tx into ptx
removes the last output coin (and proof) and sets the signature field to ∅. The simulator
can now construct the partially set up signature context as follows:

skA, nA ←$Z∗
p

Λ
 := {pk := gskA , gnA}
He then sets ptx .Λ := Λ
 and sends ptx to A as if coming from Alice.

3. When A calls fR1,2,3
zk as the verifier S compares the values with what he sent in step 1

in ptx and returns either 0 or 1.

4. A will call dRcvCoins, upon which S calls the TTP computing dRcvCoins to
receive ptx
, pspC∗

B, which S then returns to A.

5. Finally, S sends tx as if coming from Alice and outputs whatever A outputs.

It is easy to see that S’s tx sent in the last step is exactly what would be expected in a real
execution as the TTP has computed it. When A tries to cheat by sending invalid values
to fR1,2,3

zk he will receive 0, as would be the case in a real execution. ptx
 must resemble
ptx∗ from a real execution because it is computed by the trusted third-party computing
dRcvCoins. Therefore the only thing that remains to show is that ptx constructed by
the simulator is indistinguishable from a ptx exchanged in a real transcript. We note
that skA and nA in a real execution are uniformly distributed values in Z∗

p. Consequently,
gskA and gnA are uniformly distributed in G. By construction of S, this must also hold
in the simulated case. Therefore the signature context built in step 2 for ptx must be
indistinguishable from a real one, which means that the ptx is indistinguishable, as the
rest of the values are taken from tx as computed by the TTP. We must also note that
even when A receives ptx
 and tx later in the protocol, he has no way of realizing that
tx was constructed by S. This follows from the fact that the final R and pk in the final
signature context of ptx
 and tx is composed of three values: Λ = pkA1 · pkA2 · pkB
(similar for R). A only learns one of Alice’s public keys (from step 2) and knows his own
but does not know anything about Alice’s second key pair. Therefore he has no way
of learning that the final pk was not computed as of protocol specification. The same
argument holds for R.

We have shown that the simulator S can produce an indistinguishable transcript both in
the case that Alice and Bob are corrupted and conclude that dsharedOutMWTx is
secure in the fR1

zk ,fR2
zk ,fR3

zk ,dRcvCoins-model, and consequently theorem 7 holds.

Next, we proof security for dsharedInpMWTx.

Hybrid functionalities: For this proof, it is enough to give the parties access to a
trusted third party computing the dSndCoins and the dFinTx protocol. Further calls

81

4. Adaptor Signature Based Atomic Swaps Between Bitcoin and a Mimblewimble
Based Cryptocurrency

to a zero-knowledge proof of knowledge functionality are not needed. That means that
we do not have to extend to original protocol instantiation seen in fig. 4.10 any further.

Theorem 8. Let COM be a correct and secure Pedersen Commitment Scheme, ΠRP −MP

a correct and secure Two-Party Range Proof system, and ΦMP be a secure and cor-
rect Two-Party Signature Scheme, then dRcvCoins securely computes a Mimewimble
transaction spending an input coin Csh

out shared between Alice and Bob in the hybrid
dSndCoins, dFinTx-model

Proof. The proof strategy is as defined in the proof for theorem 4.

Alice is corrupted: Simulator S works as follows:

1. S invokes A and saves [pspCA], p and t when A calls dSndCoins.

2. He then forwards those values as the inputs to the TTP computing dSndCoins and
receives (ptx , spC∗

A, (skA, nA)), which he returns to A. He proceeds by sending the inputs
([pspCA], p, t) to the TTP computing dsharedInpMWTx and receives (tx, spC∗

B).

3. The simulator now has the challenge to construct a ptx
, which is partially signed. The
final signature is composed of A + B1 + B2, where B2 is the signature share from Bob’s
output coins and A + B1 are the signature shares from the shared input coin. ptx
 has
to contain the partial signature B2, such that the partial signature verification algorithm
verifies and such that when combined with the signatures A and B1, it will complete
into the final signature tx .σ. Therefore the only way for the simulator to create a valid
simulation is to calculate the actual value for the B2 signature, which is challenging since
he does not know skB and nB. However, he knows the final signature σfin := tx .σ and
he can create the signature A as σ̃A ← signPt(tx .m, skA, nA, tx .Λ). S can recompute
the value for the B2 signature as follows:

a) S chooses (skB

, nB

) ←$Z∗
p

b) He then computes a temporary σ̃B

 ← signPt(tx .m, skB

, nB

, tx.Λ)

c) He clones tx into ptx
 and sets ptx
.σ := σ̃B

d) Now the simulator calls the TTP computing dFinTx with the inputs ptx
, skA, nA
to receive tx

e) Note that the signature in tx
 now contains a signature composed of A + B1 + B2’,
where B2’ is the partial signature computed in step b. Therefore now it is possible to

82

4.4. Correctness & Security

recompute the value of the partial signature for B1 as follows:

(s
, R
) ← tx

(sA, RA, Λ) ← σ̃A

(sB

, RB

, Λ) ← σ̃B

sB1 := s
 − sA − sB

RB1 := R
 · RA
−1 · RB

−1

σ̃B1 := {sB1, RB1, Λ}

f) S now has the correct values for the signatures A and B1 and can therefore recompute
the right value for the partial signature B2 from tx .σ with the same calculation as shown
in the previous step

4. S can now construct ptx
 by again cloning tx and setting ptx
.σ := σ̃B2. The simulator
will rewind the call to the TTP computing dFinTx and send ptx
 to A as if coming from
Bob.

5. When A calls dFinTx S will forward the inputs to the TTP party computing dFinTx,
return the TTP outputs to A and finally output whatever A outputs.

As only ptx
 is constructed by S, it is the only value for which we have to prove
indistinguishability. We have already shown that tx ’s final signature is composed of three
parts A, B1, and B2. Through the calculations laid out the simulator can recompute the
actual value of B2, as it would be in real execution, which must make ptx
 identical to
what would be sent by an honest Bob in a real execution.

Bob is corrupted: Simulation, in this case, is trivial, as there is no message sent from
Alice to Bob, and S doesn’t need to extract any inputs. Therefore, a perfect simulation
is achieved by forwarding the inputs sent by A to the TTP computing dSndCoins and
dFinTx and finally outputting whatever A outputs.

We have managed to construct a simulator in the case the Alice and Bob are corrupted,
which produced a protocol transcript indistinguishable from a real one and therefore
conclude, that dsharedInpMWTx is secure in the dSndCoins,dFinTx-model, and the-
orem 8 must hold.

We now move to the final proof, proving security of dcontractMWTx:

Hybrid functionalities: We prove the security of dcontractMWTx in the hybrid
model in which the participants have access to a trusted third party computing dSndCoins
and dapFnTx. We again require access to a trusted third party computing the zero-
knowledge proof of knowledge functionality fR1

zk , with R1 being defined equally in previous
proofs.

Proof idea: We extend the original dcontractMWTx with a single call to fR1
zk from

Alice and Bob. On Bob’s side, we extend the protocol with the following call at the

83

4. Adaptor Signature Based Atomic Swaps Between Bitcoin and a Mimblewimble
Based Cryptocurrency

beginning of the protocol: fR1
zk ((x, gx)). On Alice side, we add the following verification

at line 2 of the protocol: If fR1
zk (X) = 0 return ⊥.

Theorem 9. Let COM be a correct and secure Pedersen Commitment Scheme, ΠRP −MP

be a correct and secure Two-Party Range Proof System, and ΦMP be a secure and
correct Two-Party Signature Scheme, then dcontractMWTx securely computes a
Mimblewimble transaction transferring value from a shared input coin Csh

out to Bob, while
at the same time revealing a secret witness value x to Alice, for which she knows X = gx .

Proof. The proof strategy is as defined in the proof for theorem 4.

Alice is corrupted: Simulator S works as follows:

1. S invokes A and saves the inputs [pspCA], p and t when the adversary calls dSndCoins.

2. He forwards the inputs received in step 1 to the TTP computing dSndCoins to
receive the outputs (ptx , spC∗

A, (skA, pkA)), which he then forwards to A as the protocol
results.

3. When A calls fR1
zk as the verifier, S saves X to his memory and sends the inputs

([pspCA], p, t, X) to the TTP computing dcontractMWTx to receive the outputs (tx ,
spC∗

A, x).

4. As in the previous proof, the simulator now has the task to construct a pre-transaction
ptx
 with a partial signature B2 of A, B1, B2. The simulator can compute σ̃B in the same
way as we laid out in the previous proof, we still lay it out here again for completeness:

a) S chooses (skB

, nB

) ←$Z∗
p

b) He then computes a temporary σ̃B

 ← signPt(tx .m, skB

, nB

, tx.Λ)

c) He clones tx into ptx
 and sets ptx
.σ := σ̃B

d) Now the simulator calls the TTP computing dFinTx with the inputs ptx
, skA, nA
to receive tx

e) Note that the signature in tx
 now contains a signature composed of A + B1 + B2’,
where B2’ is the partial signature computed in step b. Therefore now it is possible to
recompute the value of the partial signature for B1 as follows:

(s
, R
) ← tx

(sA, RA, Λ) ← σ̃A

(sB

, RB

, Λ) ← σ̃B

sB1 := s
 − sA − sB

RB1 := R
 · RA
−1 · RB

−1

σ̃B1 := {sB1, RB1, Λ}

84

4.5. Atomic Swap Protocol

f) S now has the correct values for the signatures A and B1 and can therefore recompute
the right value for the partial signature B2 from tx .σ with the same calculation as shown
in the previous step

Note, however, that in this case, A expects a masked partial signature σ̂B which will
verify with the masked partial signature verification routine passing X . S can easily
calculate the masked signature by running σ̂B ← mskSig(σ̃B1, x) and constructing ptx

by cloning tx and setting the signature field to σ̂B. Finally, S sends (ptx
, X) to A as if
coming from Bob.

5. When A calls dapFnTx, S forwards the inputs to the TTP computing dapFnTx and
returns the TTP outputs to A. If the output returned to the adversary was not ⊥, the
simulator will send tx to A as if coming from Bob, send continue to the TTP computing
dcontractMWTx, and output whatever A outputs.

In this proof, only ptx
 and X sent in Bob’s first message to Alice is constructed by S.
All other values are directly forwarded from a trusted third party and must therefore
trivially be indistinguishable from the real execution. As S knows x, constructing the
real value of X is simply calculating gx . That ptx
 is the same as expected in a real
execution must hold because the simulator was able to reconstruct the original signature
shares from the final signature and by the fact that S knows x and can therefore call
mskSig as given by the protocol specification.

Bob is corrupted: Again finding a perfect simulator is trivial in this case as there are
no messages are sent directly from Alice to Bob, and S doesn’t need to extract any inputs.
Whenever A calls one of the trusted third parties to compute a hybrid functionality, S
externally forwards the call to the TTP and returns the result to A.

We have managed to construct a simulator producing a transcript indistinguishable
from a real one both in the case that Alice and Bob are corrupted and controlled by a
deterministic adversary A. Therefore, we conclude that dcontractMWTx is secure in
the dSndCoins, dapFnTx, fR1

zk -model and theorem 9 must hold.

4.5 Atomic Swap Protocol
With the outlined Contract Mimblewimble Transaction Scheme from definition 4.6 and
protocols from section 4.3, we can now construct an Atomic Swap protocol with another
cryptocurrency. This thesis will explain a swap with Bitcoin, as at present, Bitcoin is
the most widely adopted cryptocurrency. To abstract away from the details of different
Bitcoin implementations, we define here the minimal DPT functions that we require for
our Atomic Swap. These functionalities are inherent to the Bitcoin functionality and
thus supported in all implementations. We define the following three DPT functions
(lockBtcScript, verifyLock, spendBtc).

• (spk) ← lockBtcScript(pkA, pkB, X , t): The locking script function lets Bob construct
a Bitcoin script only spendable by Alice if she receives the discrete logarithm x of X with

85

4. Adaptor Signature Based Atomic Swaps Between Bitcoin and a Mimblewimble
Based Cryptocurrency

X = gx . Additionally, the procedure requires Bob’s public key pkB and a timelock t
(given as a block number) as input, allowing Bob to reclaim his funds after some time if
the Atomic Swap was not completed successfully. The function will create and return a
Bitcoin script spk to which Bob can send funds using a P2SH transaction. To spend this
output, Alice will have to provide a multi-signature under her public key pkA and X ,
which she can provide, once acquired x . Malavolta et al. in [27] described an alternative
secure way of constructing a locking mechanism on Bitcoin. In their construction the
two parties cooperate to build an initial signature for the spending transaction which
is not yet valid as it is missing some witness value x, only known to one of the two
parties. Once the second party gets hold of the witness value they can complete the
signature and finalize the transaction. Comparing their solution to the more primitive
multi-signature script, it achieves greater privacy (from the outside, the lock output looks
like a standard P2PKH output), and needs only a single signature, therefore less space for
the unlocking transaction. However, the construction is slightly more complex in ECDSA
signatures, which are at present the only Signature Scheme available on Bitcoin. Even
though the structure by Malavolta et al. would also be applicable in our case, because of
the additional complexity involved and since the focus of this thesis is the Mimblewimble
side of the swap, we decided to implement the more straightforward script-based locking
mechanism in our proof of concept implementation.

• {1, 0} ← verifyLock(pkA, pkB, X , v, t, ψlock): The lock verification algorithm takes as
input Alice and Bob public keys and the statement X and the UTXO ψlock. The function
will compute the Bitcoin lock script spk as created by lockBtcScript check equality with
ψlock, and if the value locked under the UTXO equals v. Upon successful verification,
the function returns 1, otherwise 0.

• tx ← spendBtc(inp, out, sk): The spend Bitcoin functionality is a wrapper around
the buildTransaction, signTransaction defined in section 2.2.1. It constructs and signs a
transaction spending the UTXOs given in inp and creates the fresh UTXOs in out. It
returns a signed transaction which then can be broadcast.

In the following, we describe the phases of an Atomic Swap protocol executed between
two parties, one owning funds on a Bitcoin-like cryptocurrency and the other on a
Mimblewimble-based one. As both of the currently most prominent implementations of
the Mimblewimble protocol operate on the secp256k1 elliptic curve (which is also the
curve that Bitcoin uses), we, therefore, assume a secp256k1-based implementation of
the Mimblewimble protocol. For a Mimblewimble-based implementation that operates
on a different curve, additional considerations would have to be made to guarantee the
protocol’s security. In the setup phase (see section 4.5), the two parties agree on the
swap parameters: the exchange rates, the amount being swapped and the timeout for the
refunding. In the locking phase (see section 4.5.1), the goal is to lock up the funds on
both chains, such that they can either be redeemable by the other party in case the swap
was successful or be refunded to the original owners in case the trade has failed. The
precondition for running the locking phase is that the parties have completed the setup
phase. In the execution phase (see section 4.5.2), the two parties cooperate to redeem the

86

4.5. Atomic Swap Protocol

funds locked by the other parties. The peers can only enter this phase after completing
the locking step. When the funds are redeemed on both sides, the swap is considered
successfully completed. In case the execution phase fails, for instance, if one party
stops cooperating, the exchange is considered failed, and we enter the refunding phase
(see section 4.5.3). A unique security requirement here is that the funds are refunded
to their original owners on both sides only in case of failure. If the swap completes on
one side but then can’t be completed on the other side, one party would lose all of their
value, therefore we must make sure that this case is an impossibility.

Setup Phase

We assume Alice owns Mimblewimble coins [spC] with the total value vmw, and Bob
owns Bitcoin locked in some UTXO ψ with a value of vbtc and secret spending key skbtc.
Before the protocol can start, the two parties must agree on the value they want to swap,
the exchange rate of the currencies, and a time after which we should cancel the swap.
After agreeing, the following variables are defined and known by both Alice and Bob:

• 1 n A security parameter.

• abtc The amount of Bitcoin Bob will swap to Alice.

• amw The amount of the Mimblewimble coin Alice will swap to Bob.

• tbtc The locktime as a block height for the Bitcoin side.

• tmw The locktime as a block height for the Mimblewimble side.

We collect this shared variables in an initial swap state W:

W := {1 n , abtc, amw, tbtc, tmw}

In practice, we need to consider that exchange rates might fluctuate. Furthermore
timeouts have to be calculated separately for each chain. The problems with cross-chain
payments are discussed by Tairi et al. in [46]. They propose using a fixed exchange rate
for each day and using real-world timeout like one day and then calculating the specific
block numbers by taking blockchain’s average block time into account. Alternatively, if
the chains allow it, we could use a real-world Unix timestamp as a timeout instead of
a block height. In our setup, we can also fix the exchange rate at the beginning of the
protocol, which stays unchanged during protocol execution. Suppose the exchange rate
fluctuates and one party is negatively impacted. In that case, they could still decide stop
cooperating, which means the coins would be returned to the original owners after the
timeout.

There is furthermore the problem of transaction fees, which we do not consider for this
formalization. Depending on the current network load, the participants need to agree on
a fee that they are willing to pay for each network. It needs to be considered that if fees
are picked too low, it might take time for transactions to be confirmed, and the swap
will take longer. If they are picked high, the participants will lose value.

87

4. Adaptor Signature Based Atomic Swaps Between Bitcoin and a Mimblewimble
Based Cryptocurrency

4.5.1 Locking phase
We formalize the protocol lockSwp in fig. 4.16. The protocol takes as input the shared
swap state W from both parties. From Alice, her Mimblewimble input coins [spC] with
the summed up value vmw is furthermore required as an input. From Bob, we require a
list of UTXO’s [ψ] he wants to spend. He also needs to provide their spending keys [skbtc]
and their sum of total value vbtc, although one could also read this from the blockchain.

The protocol starts with both parties creating and exchanging keys. Bob now makes two
new Bitcoin outputs ψlock and ψB, one of these is the locked Bitcoins that Alice might
retrieve later (or Bob after time tbtc has passed), and the other Bob’s change output.
(Difference between what is stored in the input UTXO and what should be sent to Alice).
After Bob has published the transaction sending value to the new outputs, he will provide
Alice with the statement X under which the Bitcoins are locked together with Alice’s
public key. Alice can now verify that the funds on the Bitcoin side are indeed correctly
locked. After that, she will collaborate with Bob to spend her Mimblewimble coins into
an output shared by both parties. Both parties immediately collaborate again to spend
this shared coin back to Alice with a timelock of tmw. It is immanent that Alice does
not publish the first transaction (A -> AB) before the time-locked refund transaction
(AB -> A) was signed. Otherwise, funds are locked in the shared output without the
possibility of a refund if Bob refuses to cooperate. The locking protocol concludes with
the funds locked up in both chains and ready to be swapped and outputs the updated
swap state W to both parties. Additionally, it outputs Alice’s part pspC∗

A of the locked
Mimblewimble coin, her change output on the Mimblewimble side spC∗

A, her secret key
skA for the Bitcoin side, and spCA

, which is a refund coin, only valid after tmw. Bob
also outputs his part pspC∗

B of the locked Mimblewimble coin, his change output on the
Bitcoin side ψB and the secret witness value x, which shall be revealed to Alice in the
execution phase.

88

lockSwp�(W, [spC], vmw)(W, [ψ], [skbtc], vbtc)�

Alice Bob

1 : {abtc, amw, tbtc, tmw} ← W {abtc, amw, tbtc, tmw} ← W
2 : (skA, pkA) ← keyGen(1 n) (skB, pkB) ← keyGen(1 n)
3 : (x , X) ← keyGen(1 n)

4 :
pkA−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

5 :
pkB←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

6 : spk ← lockBtcScript(pkA, X , pkB, tbtc)
7 : ψlock ← createUTXO(abtc, spk)
8 : ψB ← createUTXO(vbtc − abtc, pkB)
9 : txbtc ← spendBtc([ψ], [ψlock, ψB], [skbtc])

10 : publishBTC([txbtc])
11 : W := W ∪ (X , ψlock)

12 :
X , ψlock←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

13 : if verifyLock(pkA, pkB, X , abtc, tbtc, ψlock) = 0
14 : return ⊥
15 : W := W ∪ (X , ψlock)
16 : (txmw

fnd , spC∗
A, pspC∗

A) (pspC∗
B)

← dsharedOutMWTx�([spC], amw, ⊥), ·� ← dsharedOutMWTx�·, (amw)�
17 : (txmw

rfnd , spCA
�) txmw

rfnd

← dsharedInpMWTx�(pspC∗
A, amw, tmw), ·� ← dsharedInpMWTx�·, (pspC∗

B, amw)�
18 : publishMW([txmw

fnd , txmw
rfnd])

19 : return (W , pspC∗
A, spC∗

A, skA, spCA
�) return (W, pspC∗

B, ψB , x)

Figure 4.16: Atomic Swap - lockSwp.

89

4. Adaptor Signature Based Atomic Swaps Between Bitcoin and a Mimblewimble
Based Cryptocurrency

4.5.2 Execution Phase
First, we need to define an additional auxiliary function verfTime with the following
interface:

{0, 1} ← verfTime(C , t)

This function will verify that there is sufficient time left to execute the Atomic Swap
protocol. As input, it takes a chain parameter C (in our case, this could be either BTC
or MW) and a block height t. The routine will verify that the current height of the
blockchain is marginally below t. If this is the case, it will return 1 or 0 otherwise. How
much time exactly should be left for the function to return 1 is implementation-specific
and could be set to, for instance, one day. We now define a protocol execSwap to
execute the Atomic Swap between some amount abtc on the Bitcoin side, and some
amount on the Mimblewimble side amw. The reader can find an instantiation of the
protocol in fig. 4.17. We assume the participants have successfully run the lockSwp
protocol, and both know the updated swap state W as returned by the setup protocol.
Both parties need to provide their part of the locked Mimblewimble coins as input to
the protocol. Additionally, Alice needs to provide her secret key for the Bitcoin side skA
and Bob the private witness value x . The protocol starts with both parties checking that
there is enough time left to complete the protocol. After the check, they will run the
dcontractMWTx protocol in which they spend the locked Mimblewimble output to
Bob while at the same time revealing x to Alice. Alice can now publish the transaction
to the Mimblewimble network, concluding the swap on the Mimblewimble side, as Bob is
now in complete control of the funds. Knowing x , Alice now creates a new UTXO where
she then sends the funds from the Bitcoin lock. After publishing this transaction to the
Bitcoin network, Alice is in full possession of the Bitcoin side’s swapped funds, and the
Atomic Swap is completed. The protocol outputs their newly created output/coin to each
party. We note here that after completion of the swap on the Mimblewimble side, Alice
is possible to redeem her Bitcoin. However, she still has to construct the transaction
and get it mined on the network. Otherwise, if she would take too long and the timeout
block height is reached, Bob could still try to refund his coins, even though he already
received the funds on the Mimblewimble side. Therefore, it is crucial to pick long enough
timeouts and check how much time is left again before running the execution protocol.

90

execSwap�(W , pspC∗
A, skA), (W , pspC∗

B, x)�

Alice Bob

1 : (amw, abtc, tmw, tbtc, ψlock, X) ← W (amw, abtc, tmw, tbtc) ← W
2 : if verfTime(BT C, tbtc) = 0 ∨ verfTime(MW, tmw) = 0 if verfTime(BT C, tbtc) = 0 ∨ verfTime(MW, tmw) = 0
3 : return ⊥ return ⊥
4 : (txmw, ∅, x) (txmw, spC∗

B)
← dcontractMWTx�(pspC∗

A, amw, ⊥, X), ·� ← dcontractMWTx�·, (pspC∗
B, amw, x)�

5 : publishMW(txmw)
6 : (skA

�, pkA
�) ← keyGen(1 n)

7 : ψA ← createUTXO(abtc, pkA
�)

8 : txbtc ← spendBtc([ψlock], [ψA], [skA, x])
9 : publishBTC(txbtc

∗)
10 : return (ψA) return (spC∗

B)

Figure 4.17: Atomic Swap - execSwap.

91

4. Adaptor Signature Based Atomic Swaps Between Bitcoin and a Mimblewimble
Based Cryptocurrency

4.5.3 Refunding phase
If one party refused to cooperate, or goes offline the coins can be returned to the original
owner. Bob can spend the locked output with his private key skB on the Bitcoin side
after the timeout tbtc has passed. He can then construct and sign a transaction spending
the output to a new UTXO in his full possession. He even could prepare this transaction
upfront and broadcast it. Once the block number hits tbtc, the transaction will become
valid and get mined. Again we stress the importance of using appropriate timeouts. If a
timeout is too short, the swap might get canceled if there are some delays. If the timeout
is too long, the funds might be locked for an unnecessary amount of time.

On the Mimblewimble side, the second transaction spending the shared output back to
Alice guarantees that her funds are returned to her after the timeout tmw hits. For this
reason, it is so vital that Alice publishes both the fund and refund transaction at the
same time. If she would post the funding transaction first, Bob could refuse to cooperate
for the refund transaction, in which case the funds would stay in the locking output
only retrievable if both parties cooperate. If the swap executes successfully, the refund
transaction would get discarded by miners, as it is no longer valid even after the timeout
tmw.

CHAPTER 5
Implementation

We have developed an open-source prototype implementation1 of the Atomic Swap
protocol outlined in section 4.5 in the Rust programming language between Bitcoin and
the Grin cryptocurrency. On the Grin side, we have been using the official grin-wallet2.
On the Bitcoin side, the rust-bitcoin3 library for the basic wallet functionality. We
chose the programming language Rust because the official libraries available for the Grin
cryptocurrency are also written in Rust. Before implementing the swapping protocol,
we first had to implement the transaction protocols outlined in section 4.3, which also
required implementing a Schnorr-based version of our Two-Party Fixed Witness Signature
Scheme shown in section 3.2. The most challenging part of this task was to make our
construction and especially the returned transactions compatible with the main library,
such that miners would accept them. In achieving this, it was necessary to analyze the
transaction structure used by the official library and occasionally ask questions to the
Grin developers. On the Bitcoin side of the Swap, we had to implement the locking script,
unlocking and refunding transaction. A particular challenge was getting the sigScript
into the correct format such that the signed Bitcoin transactions would verify and be
accepted by the network. We discovered two shortcomings in the grin-wallet library
during development, so we used our local forked version of this library to address those
shortcomings. We then submitted both changes to the library as pull requests.4,5 During
development, we actively engaged with the Grin community and the maintainers of
the Rust Bitcoin library. Our implementation sends JSON-RPC6 requests to a locally
running Bitcoin Core and Grin Core node to query blockchain state, submit, and verify
transactions. Communication between the two parties happens via a TCP channel. As a

1https://github.com/jafalter/mw-btc-swap
2https://github.com/mimblewimble/grin-wallet
3https://github.com/rust-bitcoin/rust-bitcoin
4https://github.com/mimblewimble/grin-wallet/pull/565
5https://github.com/mimblewimble/grin-wallet/pull/557
6https://www.jsonrpc.org/

93

https://github.com/jafalter/mw-btc-swap
https://github.com/mimblewimble/grin-wallet
https://github.com/rust-bitcoin/rust-bitcoin
https://github.com/mimblewimble/grin-wallet/pull/565
https://github.com/mimblewimble/grin-wallet/pull/557
https://www.jsonrpc.org/

5. Implementation

preparational step for this thesis, we investigated the Bulletproofs library used by the
Grin source code, which included a complete byte analysis of the range proof output7

that also got merged to the official Grin documentation. Furthermore, we built the first
ever complete implementation of Bulletproofs range proofs in plain Javascript and made
it available to the public on Github8.

The developed Atomic Swap program is executable via the command line and accepts
the following commands:

• init: The init command is run during the setup phase of the Atomic Swap. It creates
a new swap slate consisting of a public file containing information about the offered
currency, exchange rate, connection details, and other general parameters and a private
file in which secret keys and nonce values are stored. The creator can share the public
file with an interested party to execute a swap.

• import: The import command is run during the Atomic Swap setup phase and allows
importing of funds both on the Bitcoin and the Grin side. Note that both parties need to
import funds with a value of at least the desired value to be swapped before the protocol
can continue.

• accept: An interested party executes the accept command during the setup phase.
It imports the public slate file shared by the offering party and creates the individual
private slate file, to which funds can be imported.

• listen: The listen command concludes the setup phase on the offerer’s side and starts
a TCP server to which peers can connect. The precondition for this command to execute
is that the offered funds have been successfully imported into the swap slate.

• lock: The lock command starts the locking phase of the Atomic Swap. It is executed
by the accepting party, while the offering party must already be listening on a TCP
server. Again the command will verify that enough funds have been imported and will
otherwise exit with an error. During this phase, funds will be locked up on both chains
as specified in section 4.5.1. Private and public slate files will be updated during this
command to allow swap execution to be initiated.

• execute: The execute command runs the execution phase of the Atomic Swap sec-
tion 4.5.2, unlocking the funds locked during the locking phase and transferring the coins
to their new owners. Again it has to be run by the accepting party while the offering
party is still listening on a TCP server. Before the execution starts, the program will
check on both chains if enough time is left to finish the swap before the timeout expires.
If not enough time is left in at least one of the two blockchains, the program will exit
with an error.

• cancel: The cancel command returns funds that have been locked during the locking
phase to the original owners. The accepting party will execute the command while the

7https://tinyurl.com/auv2bnmy
8https://github.com/jafalter/bulletproof-js

94

https://tinyurl.com/auv2bnmy
https://github.com/jafalter/bulletproof-js

5.1. Implementation Bitcoin side

1 : OP_IF

2 : < refund_time >

3 : OP_CHECKLOCKT IMEV ERIFY

4 : OP_DROP

5 : < refund_pub_key >

6 : OP_CHECKSIGV ERIFY

7 : OP_ELSE

8 : 2 < recv_pub_key > < X > 2 OP_CHECKMULTISIGV ERIFY

9 : OP_ENDIF

Figure 5.1: Bitcoin locking script.

offering party is listening on a TCP server. Running the cancel protocol is only allowed
as soon as the timeout has been hit on both blockchains. Trying to run the command
earlier will result in an error.

5.1 Implementation Bitcoin side

On the Bitcoin side, we have used a P2SH address to implement the locking mechanism.
In a practical setting, we note that it would be recommended to use a more efficient
P2WSH9 (Pay to Witness Script Hash) address instead. Because of the implementation
just being a prototype, we went with the slightly simpler P2SH version. However, one
can also use the same script with a P2WSH address. Figure 5.1 shows the locking script
used on the Bitcoin side. The script has two execution paths, depending on the number
on the stack when the OP_IF command executes. To make it evaluate to true, one
would have to push any number other than 0 to the stack. To make it evaluate to false,
one would have to push the number 0 to the stack. If OP_IF evaluates to true, we
execute the refunding code. OP_CHECKLOCKTIMEVERIFY will cause the script to
fail unless the nLockTime on the transaction is equal or greater than the value passed
in <refund_time>. This condition makes sure that this part of the script will only be
executable after a specific time, such that refunding is not possible prematurely (Note
here that one has to set the nLockTime of the transaction, which guarantees that it can
only be mined after a particular time). If the OP_IF evaluates to false, we execute the
script’s redemption path in which Alice needs to provide a valid signature under her
public key and the statement X to Bobs witness value x .

9https://bitcoincore.org/en/segwit_wallet_dev/

95

https://bitcoincore.org/en/segwit_wallet_dev/

5. Implementation

5.2 Implementation Grin side
On the Grin side, we have implemented the transaction protocols specified in section 4.3.
Again all communication between the transacting parties happens via a secure TCP
channel. For creating two-party Bulletproof range proofs, we used the implementation
of grinswap10, which runs a three-round protocol between the two parties using the
secp256k1-zkp11 library for range proof computation.

As already laid out in section 4.5, to lock the Mimblewimble side’s funds, the two parties
first engage in a dsharedOutMWTx, and then a time-locked dsharedInpMWTx
transaction refunding the coins to the original owner. The timelock on the Grin side
can be achieved by setting the transaction’s respective kernel feature. The program
saves the refunding transaction to the slate file for later use. In the execution phase the
dcontractMWTx transaction protocol is run. The result is broadcast to the network
sending the Grin to its new owner while revealing the witness value x to Alice, who can
now build a valid spending script for the Bitcoin side.

5.3 Evaluation
We successfully managed to run the full protocol between Alice owning Grin and Bob
owning Bitcoin on the Bitcoin and Grin testnets. In transaction
10536404873e6ae133afde600b5630d6a00f3be0b9dde01a248c6f13a00b3a4b12, which was
mined in block 193714813 of the Bitcoin testnet 0.000016 BTC were locked in the lock
address 2NCJDq4YRQ9C83fgvepMqU2D9kE4x7h36Ji14. On the Grin side our lock
transaction locking 0.1 GRN was mined in block 71859415 sending funds to the lock
Commitment
08c2e1a98f5fd328cc67b7df5ab9fdee9cf0c1c1f166d5d08a02a578945fdf607616. In the execu-
tion phase the locked funds on the Grin side were sent to Bob
(09ef66334dc2e4c74732dafda8af3c32494eed5b23beb483d29d7ef32bf5c3ebb817) in a con-
tract transaction mined in block 71859618. Executing the contract allowed Alice to unlock
her funds on the Bitcoin side in the transaction
aa2ab77482841571b6413c68de681830c61527bc6a90ef1781d6208d151fea1019, which was
mined in block 193715020 on the Bitcoin testnet. We can reduce the protocol’s execution
time to the time it takes for the individual transactions to be mined on the networks.

10https://github.com/vault713/grinswap
11https://github.com/mimblewimble/secp256k1-zkp
12https://tinyurl.com/pend7sdk
13https://tinyurl.com/7jmryv47
14https://tinyurl.com/2sz8munw
15https://floonet.grinscan.net/block/718594
16https://tinyurl.com/y7ed5za5
17https://tinyurl.com/ychtyf8v
18https://floonet.grinscan.net/block/718596
19https://tinyurl.com/45ysh9e4
20https://tinyurl.com/fddeahk8

96

https://github.com/vault713/grinswap
https://github.com/mimblewimble/secp256k1-zkp
https://tinyurl.com/pend7sdk
https://tinyurl.com/7jmryv47
https://tinyurl.com/2sz8munw
https://floonet.grinscan.net/block/718594
https://tinyurl.com/y7ed5za5
https://tinyurl.com/ychtyf8v
https://floonet.grinscan.net/block/718596
https://tinyurl.com/45ysh9e4
https://tinyurl.com/fddeahk8

5.3. Evaluation

Therefore depends on the current network load and the miner’s fee included with the
transaction, as transactions are prioritized according to their fees [23]. It is unavoidable
to estimate fees according to the current network load and the Atomic Swap timeout
in a practical setting. Otherwise, a redeeming transaction may stay unconfirmed until
the timeout expires. Then the second party could try to refund the locked funds with
a higher fee, outspending the redeeming transaction. Another time-consuming process
that we noticed when running our implementation is the validation of locked funds on
the Bitcoin side. The reason for this comes from the way Bitcoin wallets handle the
importing of new funds. When importing a new address into a Bitcoin Core node, one
has to rescan the blockchain, a process that can take up to one hour or longer. it would
be possible to import the address without performing a rescan. However, if the funding
transaction was mined in a block before we execute the import command, we would
miss the transaction, and the address would therefore appear empty. A faster solution
would be, for instance, to use the API of a block explorer such as Blockstream.info21.
However, this would introduce a trusted third party to the protocol, which is generally
to be avoided.

21https://blockstream.info/

97

https://blockstream.info/

CHAPTER 6
Related Work and Future

Research

Related Work. Maurice Herlihy [21] describes how hashed timelock contracts can be
leveraged to build Atomic Swaps between cryptocurrencies that have at least some basic
scripting capabilities. In a hashed timelock contract, the hash pre-image x of h = H(x),
where H(·) is a hash function, serves as the secret contract value that makes the swap
possible. Fuchsbauer et al. [17] conduct a complete security analysis of the Mimblewimble
protocol, which forms the basis for chapter 3. Betarte et al. [9] work towards making
implementations of the Mimblewimble protocol formally verifiable. In 2016 Andrew Poel-
stra published his specification of the Mimblewimble protocol in [37] and has managed
to expand on the ideas posted in the original writing [22] by Jedusor. In the following
year, Poelstra further introduced the notion of Scriptless Scripts [38], showing how one
can build primitive contracts just by using cryptography alone. Poelstra’s ideas were
formalized as Adaptor signatures as a standalone cryptographic primitive by Aumayr et
al. in [4]. Poelstra’s insights on Scriptless Scripts and the formalization by Aumayr et al.
together form the basis for our construction of the Two-Party Fixed Witness Adaptor
Signature Scheme in chapter 3.
Joël Gugger constructs a cross-chain Atomic Swap between Monero and Bitcoin in [20].
Just like Mimblewimble-based crypto coins, Monero1 is a privacy-enhancing cryptocur-
rency that lacks scripting capabilities and even lacks timelocking capabilities (which do
exist in Mimblewimble). An extensive introduction into the Monero protocol can be
found in the Zero to Monero Paper [2]. In Gugger’s protocol, the Monero funds are locked
in an address shared between the two trading parties. On the Bitcoin side, funds are
locked so that spending them will reveal the missing key for the Monero side, therefore
unlocking the Monero funds for the second party. The author was forced to make some
special considerations since the two cryptocurrencies operate on two different elliptic

1https://www.getmonero.org/

99

https://www.getmonero.org/

6. Related Work and Future Research

curves. Apoorvaa Deshpande and Maurice Herlihy define the privacy properties of an
Atomic Swap protocol and demonstrate the privacy improvements brought upon by using
Adaptor Signatures. [13]

Future Research. Erkan Tairi et al. have demonstrated in [46] how to construct
Payment channel hubs as a solution to scalability issues of blockchain technologies. With
their approach relying solely on Scriptless Scripts, it would be interesting to explore the
feasibility of such a construction on a Mimblewimble-based cryptocurrency by utilizing
the contract transactions outlined in our research. A. Faz-Hernandez et al. examine
the possibility of hash functions that output an elliptic curve point for multiple elliptic
curves, including secp256k1 [15]. Based on this work, one could research if more elaborate
contracts such as hashed timelock contracts are made possible on Mimblewimble with
such a hash function. This solution could also help to solve the difficulties that arise
when the two cryptocurrencies between which the exchange happens operate on different
curves as is the case in the work by Joël Gugger [20]. Finally, another interesting
research topic would be the construction of a cross-chain Atomic Swap between two
cryptocurrencies both lacking scripting functionality. For instance by combining our
protocol with the construction by Gugger [20] to build Atomic Swaps between Monero
and a Mimblewimble-based cryptocurrency.

100

CHAPTER 7
Conclusion

This thesis aimed to investigate the possibilities of building an Atomic Swap protocol
without relying on scripting or smart contract features. Defining such a protocol is
critical for improving the interoperability between privacy-enhancing cryptocurrencies
that lack those features and other crypto assets. Enabling interoperability means that
one can integrate those currencies into decentralized exchanges such as Uniswap1. This is
especially important because privacy-enhancing cryptocurrencies often can not be listed
on centralized exchanges due to regulatory requirements.2
In chapter 3, we described a Schnorr-based two-party variant of the Adaptor Signature
Scheme, a concept first formalized by Aumayr et al. in [4] and proved its correctness and
security. This Signature Scheme can be used to build simple contracts in a two-party
setting that are based solely on cryptography. The final signatures are regular Schnorr
signatures. Therefore they can be used in any system built on the Schnorr Signature
Scheme.
Chapter 4 started out with the formalization of four different types of Mimblewim-
ble transaction schemes and laid out two-party protocols for their construction. We
have proven that our transactions are compatible with the formal definitions of the
Mimblewimble system found by Fuchsbauer et al. [17]. We presented the hypothetical
Transaction Sniff Attack (see section 4.1.1), which allows an adversary to steal funds
if the channel between the honest transaction sender and receiver would be broken.
We then showed that substituting the notion of an Aggregatable Signature Scheme
with a Two-Party Signature Scheme prevents this attack and improves Mimblewimble’s
security model. Furthermore, we investigated the possibility of rogue-key attacks in a
Mimblewimble-based system and have demonstrated the infeasibility of such an attack
in section 4.4.2. The chapter concluded by presenting a complete Atomic Swap protocol
between Bitcoin and a Mimblewimble-based cryptocurrency using the transaction schemes

1https://uniswap.org/
2https://tinyurl.com/bf42xxpj

101

https://uniswap.org/
https://tinyurl.com/bf42xxpj

7. Conclusion

defined before. Running this protocol allows two parties to securely swap funds between
the two blockchains without the need for a trusted intermediary.
In chapter 5, we presented our open-source proof of concept of the Atomic Swap protocol
described in the previous chapter. We successfully evaluated our implementation by de-
ploying and executing it on the testnets of the two cryptocurrencies. Developers can build
upon our solution to provide trustless swaps between a Bitcoin and a Mimblewimble-based
cryptocurrency to their users.

102

List of Figures

2.1 A decoded Bitcoin transaction . 11
2.2 Original transaction building process . 19
2.3 Salvaged transaction protocol by Fuchsbauer et al. [17] 20

3.1 Schnorr Signature Scheme as first defined in [44] 26
3.2 Two-Party Schnorr Signature Scheme . 28
3.3 Fixed Witness Adaptor Schnorr Signature Scheme 29
3.4 Instantiation of the dSign protocol. 30
3.5 Instantiation of the dAptSign protocol. 32
3.6 Adjustment to the dSign protocol seen in fig. 3.4 35
3.7 Adjustments to the dAptSign protocol seen in fig. 3.5 39

4.1 Instantiation of Mimblewimble Transaction Scheme part 1. 52
4.2 Instantiation of Mimblewimble Transaction Scheme part 2. 53
4.3 Extended Mimblewimble Transaction Scheme - dSndCoins 54
4.4 Extended Mimblewimble Transaction Scheme - dRcvCoins 56
4.5 Extended Mimblewimble Transaction Scheme - dFinTx 57
4.6 Contract Mimblewimble Transaction Scheme - aptRcvCoins. 58
4.7 Adapted Extended Mimblewimble Transaction Scheme - dapFnTx. . . . 58
4.8 dBuildMWTx two-party protocol to build a new transaction 59
4.9 dsharedOutMWTx two-party protocol to build a new transaction with a

shared output . 60
4.10 dsharedOutMWTx two-party protocol to build a new transaction from a

shared output . 61
4.11 dcontractMWTx two-party protocol to build a primitive contract transac-

tion . 62
4.12 Extension of dBuildMWTx (fig. 4.8) in the hybrid model 67
4.13 Extension of dSndCoins (fig. 4.3) in the hybrid model 73
4.14 Extension of dRcvCoins (fig. 4.4) in the hybrid model 76
4.15 Extension of dsharedOutMWTx(fig. 4.9) in the hybrid model 80
4.16 Atomic Swap - lockSwp. 89
4.17 Atomic Swap - execSwap. 91

5.1 Bitcoin locking script. 95

103

Bibliography

[1] S. Al-Kuwari, J. H. Davenport, and R. J. Bradford. Cryptographic hash functions:
recent design trends and security notions. IACR Cryptology ePrint Archive, 2011:565,
2011.

[2] K. M. Alonso et al. Zero to monero, 2020. https://web.getmonero.org/
library/Zero-to-Monero-2-0-0.pdf.

[3] A. M. Antonopoulos. Mastering Bitcoin: unlocking digital cryptocurrencies. 2014.
https://github.com/bitcoinbook/bitcoinbook.

[4] L. Aumayr, O. Ersoy, A. Erwig, S. Faust, K. Hostakova, M. Maffei, P. Moreno-
Sanchez, and S. Riahi. Generalized bitcoin-compatible channels. Cryptology ePrint
Archive, Report 2020/476, 2020. https://eprint.iacr.org/2020/476.

[5] A. Back. Bitcoins with homomorphic value. https://bitcointalk.org/index.
php?topic=305791.0, 2013.

[6] S. Barber, X. Boyen, E. Shi, and E. Uzun. Bitter to better—how to make bitcoin
a better currency. In International conference on financial cryptography and data
security, pages 399–414, 2012.

[7] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza. Snarks for c:
Verifying program executions succinctly and in zero knowledge. In Annual cryptology
conference, pages 90–108, 2013.

[8] J. Benaloh and M. De Mare. One-way accumulators: A decentralized alternative to
digital signatures. In Workshop on the Theory and Application of of Cryptographic
Techniques, pages 274–285, 1993.

[9] G. Betarte, M. Cristiá, C. Luna, A. a. n. Silveira, and D. Zanarini. Towards a
formally verified implementation of the mimblewimble cryptocurrency protocol.
arXiv preprint arXiv:1907.01688, 2019.

[10] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. From extractable collision
resistance to succinct non-interactive arguments of knowledge, and back again. In
Proceedings of the 3rd Innovations in Theoretical Computer Science Conference,
pages 326–349, 2012.

105

https://web.getmonero.org/library/Zero-to-Monero-2-0-0.pdf
https://web.getmonero.org/library/Zero-to-Monero-2-0-0.pdf
https://github.com/bitcoinbook/bitcoinbook
 https://eprint.iacr.org/2020/476
https://bitcointalk.org/index.php?topic=305791.0
https://bitcointalk.org/index.php?topic=305791.0

[11] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. Bulletproofs:
Short proofs for confidential transactions and more. In 2018 IEEE Symposium on
Security and Privacy (SP), pages 315–334, 2018.

[12] S. Delgado-Segura, C. Pérez-Sola, G. Navarro-Arribas, and J. Herrera-Joancomartí.
Analysis of the bitcoin utxo set. In International Conference on Financial Cryptog-
raphy and Data Security, pages 78–91, 2018.

[13] A. Deshpande and M. Herlihy. Privacy-preserving cross-chain atomic swaps. In
International Conference on Financial Cryptography and Data Security, pages 540–
549, 2020.

[14] C. Egger, P. Moreno-Sanchez, and M. Maffei. Atomic multi-channel updates with
constant collateral in bitcoin-compatible payment-channel networks. In Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security,
pages 801–815, 2019.

[15] A. Faz-Hernandez, S. Scott, N. Sullivan, R. Wahby, and C. Wood. Hashing to
elliptic curves. Network Working Group, 2020. https://tools.ietf.org/id/
draft-irtf-cfrg-hash-to-curve-06.html.

[16] U. Feige, A. Fiat, and A. Shamir. Zero-knowledge proofs of identity. Journal of
cryptology, 1(2):77–94, 1988.

[17] G. Fuchsbauer, M. Orr ù , and Y. Seurin. Aggregate cash systems: a cryptographic
investigation of mimblewimble. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pages 657–689, 2019.

[18] S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM Journal on Computing, 17(2):281–308, 1988.

[19] J. Groth. Short pairing-based non-interactive zero-knowledge arguments. In Inter-
national Conference on the Theory and Application of Cryptology and Information
Security, pages 321–340, 2010.

[20] J. Gugger. Bitcoin–monero cross-chain atomic swap. Cryptology ePrint Archive,
Report 2020/1126, 2020. https://eprint.iacr.org/2020/1126.

[21] M. Herlihy. Atomic cross-chain swaps. In Proceedings of the 2018 ACM symposium
on principles of distributed computing, pages 245–254, 2018.

[22] T. E. Jedusor. Mimblewimble. https://download.wpsoftware.net/
bitcoin/wizardry/mimblewimble.txt, 2016.

[23] S. Kasahara and J. Kawahara. Effect of bitcoin fee on transaction-confirmation
process. arXiv preprint arXiv:1604.00103, 2016.

106

https://tools.ietf.org/id/draft-irtf-cfrg-hash-to-curve-06.html
https://tools.ietf.org/id/draft-irtf-cfrg-hash-to-curve-06.html
https://eprint.iacr.org/2020/1126
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.txt
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.txt

[24] D. Klinec and V. Matyas. Privacy-friendly monero transaction signing on a hardware
wallet, extended version. 2020. https://eprint.iacr.org/2020/281.

[25] Y. Lindell. A note on constant-round zero-knowledge proofs of knowledge. Journal
of cryptology, 26(4):638–654, 2013.

[26] Y. Lindell. How to simulate it–a tutorial on the simulation proof technique. In
Tutorials on the Foundations of Cryptography, pages 277–346. 2017.

[27] G. Malavolta, P. Moreno-Sanchez, C. Schneidewind, A. Kate, and M. Maffei. Anony-
mous multi-hop locks for blockchain scalability and interoperability. In 26th Annual
Network and Distributed System Security Symposium, NDSS, 2019.

[28] G. Maxwell. Coinjoin: Bitcoin privacy for the real world. 2013. https://
bitcointalk.org/index.php?topic=279249.0.

[29] G. Maxwell, A. Poelstra, Y. Seurin, and P. Wuille. Simple schnorr multi-signatures
with applications to bitcoin. Designs, Codes and Cryptography, 87(9):2139–2164,
2019.

[30] S. Micali, K. Ohta, and L. Reyzin. Accountable-subgroup multisignatures. In
Proceedings of the 8th ACM Conference on Computer and Communications Security,
pages 245–254, 2001.

[31] I. Miers. Blockchain privacy: Equal parts theory and practice. 2019. https:
//tinyurl.com/knrsja7x.

[32] E. Morais, T. Koens, C. Van Wijk, and A. Koren. A survey on zero knowledge range
proofs and applications. SN Applied Sciences, 1(8):1–17, 2019.

[33] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008. https:
//nakamotoinstitute.org/bitcoin/.

[34] S. Noether. Ring signature confidential transactions for monero. Cryptology ePrint
Archive, Report 2015/1098, 2015. https://eprint.iacr.org/2015/1098.

[35] S. Noether, A. Mackenzie, et al. Ring confidential transactions. Ledger, 1:1–18, 2016.

[36] T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing. In Annual international cryptology conference, pages 129–140, 1991.

[37] A. Poelstra. Mimblewimble. https://download.wpsoftware.net/bitcoin/
wizardry/mimblewimble.pdf, 2016.

[38] A. Poelstra. Scriptless scripts. https://download.wpsoftware.net/
bitcoin/wizardry/mw-slides/2017-03-mit-bitcoin-expo/slides.
pdf, 2017.

107

https://eprint.iacr.org/2020/281
https://bitcointalk.org/index.php?topic=279249.0
https://bitcointalk.org/index.php?topic=279249.0
https://tinyurl.com/knrsja7x
https://tinyurl.com/knrsja7x
https://nakamotoinstitute.org/bitcoin/
https://nakamotoinstitute.org/bitcoin/
https://eprint.iacr.org/2015/1098
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mw-slides/2017-03-mit-bitcoin-expo/slides.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mw-slides/2017-03-mit-bitcoin-expo/slides.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mw-slides/2017-03-mit-bitcoin-expo/slides.pdf

[39] F. Reid and M. Harrigan. An analysis of anonymity in the bitcoin system. In
Security and privacy in social networks, pages 197–223. 2013.

[40] T. Ristenpart and S. Yilek. The power of proofs-of-possession: Securing multiparty
signatures against rogue-key attacks. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages 228–245, 2007.

[41] T. Ruffing, P. Moreno-Sanchez, and A. Kate. Coinshuffle: Practical decentralized
coin mixing for bitcoin. In European Symposium on Research in Computer Security,
pages 345–364, 2014.

[42] T. Ruffing, P. Moreno-Sanchez, and A. Kate. P2p mixing and unlinkable bitcoin
transactions. In NDSS, pages 1–15, 2017.

[43] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza.
Zerocash: Decentralized anonymous payments from bitcoin. In IEEE Symposium
on Security and Privacy, pages 459–474, 2014.

[44] C.-P. Schnorr. Efficient identification and signatures for smart cards. In Conference
on the Theory and Application of Cryptology, pages 239–252, 1989.

[45] A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,
1979.

[46] E. Tairi, P. Moreno-Sanchez, and M. Maffei. A2l: Anonymous atomic locks for
scalability and interoperability in payment channel hubs. Cryptology ePrint Archive,
Report 2019/589, 2019. https://eprint.iacr.org/2019/589.

108

https://eprint.iacr.org/2019/589

	Kurzfassung
	Abstract
	Contents
	Introduction
	Preliminaries
	General Notation and Definitions
	Bitcoin
	Privacy-enhancing Cryptocurrencies
	Mimblewimble
	Scriptless Scripts

	Two-Party Fixed Witness Adaptor Signatures
	Definitions
	Schnorr-based Instantiation
	Protocols
	Correctness & Security

	Adaptor Signature Based Atomic Swaps Between Bitcoin and a Mimblewimble Based Cryptocurrency
	Definitions
	Instantiation
	Protocols
	Correctness & Security
	Atomic Swap Protocol

	Implementation
	Implementation Bitcoin side
	Implementation Grin side
	Evaluation

	Related Work and Future Research
	Conclusion
	List of Figures
	Bibliography

