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Zusammenfassung

Mit der weiter andauernden Skalierung von Halbleiterbauelementen in den Nanometerbereich
erhoht sich die Wahrscheinlichkeit eines Ausfalls der Funktionalitat aufgrund einzelner Punkt-
defekte oder Parameterfluktuationen stetig. Daher spielt die Simulation von Bauelementen in
der Halbleiterindustrie zur Optimierung von Entwiirfen und Prozessen vor der eigentlichen Pro-
duktion eine wichtige Rolle in der Vorhersage der Lebensdauer eines Bauelements. In diesem
Kontext befasst sich die vorliegende Arbeit mit dem Einfluss der Modellierung des Transports
von Ladungstriagern auf die Genauigkeit der Vorhersage von Lebensdauern bei vorliegen von
Bias Temperature Instabilitdt (BTI) oder Degeneration durch heifse Ladungstrager (HCD).

Zu diesem Zweck wurde ein Vierzustandsmodell basierend auf der Theorie von nicht ra-
diativen mehrphononen (NMP) Ubergiangen implementiert. Mit Hilfe dieses Modells ldsst sich
BTI studieren. Weiters muss beachtet werden, dass in skalierten Bauelementen mit Abmes-
sungen von wenigen Nanometern die typischen Dotierkonzentrationen nur mehr von wenigen
Dotieratomen hergestellt werden. Dies wiederum fitihrt zu nicht mehr vernachléssigbaren Fluk-
tuationen im elektrostatischen Potential innerhalb des Bauteils. Daher muss die Granularitit
der Dotierung und die statistische Verteilung von Dotieratomen sowie der Punktdefekte bei
der Simulation berticksichtigt werden. Um dies zu bewerkstelligen, wurde ein entsprechendes
Modell (random discrete dopant model) in den Drift-Diffusions Simulator Minimos-NT imple-
mentiert. In einem ersten Schritt um BTI in p-Kanal MOSFETs bei erhohter Temperatur besser
zu verstehen, wurden Messdaten mit Hilfe der direct-current-current-voltage Methode nach
Bias Temperatur Stress aufgenommen und erfolgreich mit dem erwdhnten Vierzustandsmodell
reproduziert. Dabei wurde selbiges mit dem Modell von Shockley, Read und Hall (SRH) ver-
sucht. Es konnte gezeigt werden, dass die Messdaten mit dem SRH Modell nicht vollstandig re-
produziert werden kénnen. Dieses Ergebnis ist tibereinstimmend mit der Literatur, wo gezeigt
wurde, dass ein SRH Modell die experimentell gefundenen charakteristischen Zeitkonstan-
ten nach Bias Temperatur Stress nicht reproduzieren kann. In der Literatur wurde unter
Anderem auch von einer starken Korrelation zwischen Gate- und Drainstrom nach Bias Tem-
peratur Stress berichtet. Im Zuge dieser Arbeit wurde versucht dies zu erklaren. Zuerst wurde
versucht diese Korrelation und die beobachtete starke Reduktion des Gatestromes tber den
Einfluss einer elektrostatischen Interaktion zwischen den statistisch verteilten Dotieratomen
und Punktdefekte auf den direkten Tunnelstrom zu erkldren. Jedoch konnte die gemessene
starke Reduktion des Gatestomes so nicht reproduziert werden. Stattdessen konnte jedoch
erfolgreich gezeigt werden, dass ein NMP basiertes Tunnelmodell alle gemessenen Vorgange
sowie die beobachteten Zeitkonstanten erklart. Dies zeigt, dass ein NMP basiertes Modell ein
gute Wahl zur Vorhersage der Bauteillebensdauer ist. Jedoch, muss um eine Vorhersage der
Lebensdauer treffen zu kénnen noch die Schwellenspannungsdrift eines einzelnen Punktdefek-
tes erfolgreich reproduziert werden. Dazu wurden MOSFETs mit kleiner Gateflache statistisch
untersucht und die kumulative Verteilung der einzelnen Schwellenspannungsdriften eines De-
fektes unter Berticksichtigung von diskreten Dotieratomen beobachtet. In diesen Experimenten
kAdnnen ebenso die charakteristischen Zeitkonstanten des LadungstrAogeraustausches, ab-
hAongig vom verwendeten Modell, gefunden werden. Es wurde herausgefunden, dass eine
Berticksichtigung der Potentialfluktuationen alleine nicht ausreicht um die Verteilung der
Schwellenspannungsdriften von einzelnen Defekten zu erklaren. Hierftir sind weitere Unter-
suchungen notwendig.

ii
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Fur Untersuchungen zur Bauteildegeneration durch heife Ladungstrager wird eine genaue
Kentniss der Energieverteilung der Ladungstriager benAdtigt. Dazu muss die Boltzmanntrans-
portgleichung gelost werden. In dieser Arbeit wurde dazu der Simulator ViennaSHE benutzt.
Zum Zwecke des Vergleichs mit Momenten-basierten Simulatoren sowie zur Evaluierung von
HCD Modellen wurde dieser Simulator erweitert. Die Erweiterungen bestanden aus einem
Quantenkorrekturmodell, Varibilititsmodellen um Potentialfluktuationen zu berticksichtigen,
dem klassischen SRH Modell sowie dem eingangs erwahnten Vierzustandsmodell. Zusatzlich
wurde das erweiterte Vecchi Modell zur vollen Bandstrukturabbildung in ViennaSHE imple-
mentiert. Mit all diesen Erweiterungen kann ViennaSHE dazu benutzt werden um frische
als auch bereits degradierte Bauelemente auf deren Zuverldssigkeit zu untersuchen. Dabei
kann sowohl BTI als auch HCD oder spéter beide zusammen analysiert werden. Um HCD
fur diverse Bauelemente studieren zu kénnen wurde im Zuge dieser Arbeit ein HCD Mod-
ell entwickelt und auch in ViennaSHE implementiert. Dieses Modell wurde erfolgreich mit
Hilfe von HCD Messdaten auf n-Kanal MOSFETSs verschiedener Kanalldngen unter diversen
Stressbedingungen mit einem einzigen Satz an Modellparametern validiert. Zusatzlich konnte
gezeigt werden, dass Elektron-Elektron Streuung unter Umstdnden nur in Langkanal MOS-
FETs vernachlassigt werden kann. Dieses Ergebnis steht damit im Widerspruch zu ktirzlich
veroffentlichten Arbeiten.
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Abstract

With the scaling of semiconductor devices down to the nanometer regime, the probability of
functional failure due to single point defects or parameter fluctuations steadily increases. In
this respect the simulation of semiconductor devices provides an important ingredient for the
optimization of device designs and for the assessment of device lifetimes before production. In
this context, this work investigates the influence of the charge carrier transport model on the
accuracy of bias temperature instability and hot-carrier degradation models in MOS devices.

For this purpose, a four-state defect model based on a non-radiative multi phonon (NMP)
theory is implemented to study the bias temperature instability. However, the doping concen-
trations typically used in nano-scale devices correspond to only a small number of dopants
in the channel, leading to fluctuations of the electrostatic potential. Thus, the granularity
of the doping cannot be ignored in these devices. To study the bias temperature instability
in the presence of fluctuations of the electrostatic potential, the advanced drift diffusion de-
vice simulator Minimos-NT is employed. In a first effort to understand the bias temperature
instability in p-channel MOSFETs at elevated temperatures, data from direct-current-current-
voltage measurements is successfully reproduced using a four-state defect model. Differences
between the four-state defect model and the commonly employed trapping model from Shock-
ley, Read and Hall (SRH) have been investigated showing that the SRH model is incapable of
reproducing the measurement data. This is in good agreement with the literature, where it
has been extensively shown that a model based on SRH theory cannot reproduce the char-
acteristic time constants found in BTI recovery traces. Upon inspection of recorded recovery
traces after bias temperature stress in n-channel MOSFETs it is found that the gate current
is strongly correlated with the drain current (recovery trace). Using a random discrete dopant
model and non-equilibrium greens functions it is shown that direct tunnelling cannot explain
the magnitude of the gate current reduction. Instead it is found that trap-assisted tunnelling,
modelled using NMP theory, is the cause of this correlation. This shows that an NMP-based
theory of the bias temperature instability can both explain characteristic time constants ex-
perimentally found in the drain and the gate current after bias temperature stress as well as
the overall threshold voltage shift. These findings imply that for an accurate lifetime predic-
tion an NMP-based theory is a good choice. However, in order to obtain an accurate lifetime
prediction information on the threshold voltage shift caused by a single discrete trap created
during bias temperature stress needs to be investigated. To this end small area MOSFETSs have
been investigated on a statistical basis using random discrete doping in order to determine the
cumulative distribution function (CFD) of threshold voltage shifts caused by random discrete
charged traps as well as their characteristic capture and emission times. It is found that the
experimentally observed CFDs of the threshold voltage shifts caused by single charged traps
cannot be reproduced using Minimos-NT by considering potential fluctuations alone. Thus
further investigations into this subject are needed.

Since the study of hot-carrier degradation requires exact information on the energy distri-
bution of charge carriers, a solution of the Boltzmann transport equation is necessary. For
detailed investigations into hot-carrier degradation, ViennaSHE, a device simulator based on a
spherical harmonics expansion (SHE) of the Boltzmann transport equation, has been extended
in the course of this thesis. To compare SHE to moment-based transport models, quantum
correction models, variability caused by random discrete dopants, the classical SRH trapping

iv
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theory as well as a four state degradation model based on non-radiative multi-phonon the-
ory are incorporated into the simulator. These additions to ViennaSHE allow to evaluate the
device characteristics of virgin as well as degraded devices under hot-carrier or bias temper-
ature stress or both. Additionally, ViennaSHE is extended by the extended Vecchi full-band
model in order to accurately model the charge carrier transport in the presence of high electric
fields. For the simulation of hot-carrier degradation in MOSFETSs, a new hot-carrier model is
developed and implemented into ViennaSHE. This hot-carrier model is successfully validated
for multiple stress conditions against measurement using a unique set of model parameters.
In the discussion of the new model the importance of the various ingredients for hot-carrier
modelling are investigated and discussed. Additionally, it is shown that electron-electron scat-
tering is paramount for a successful reproduction of the measurement data for short-channel
devices. In this context it is also found that electron-electron scattering may only be neglected
in long-channel devices. These results contradict recent findings in the literature, where it
was suggested that electron-electron scattering in the context of hot-carrier degradation can
be neglected.
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You live and learn.
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Abandon all hope, you who enter
here.

(Dante Alighieri)

1 Introduction

The ongoing trend in the semiconductor industry towards ever smaller devices has lead to ever
faster digital circuits at decreasing cost. However, scaling devices down to the nano-meter
regime increases the probability of functional failure due to single point defects or parametric
fluctuations, such as fluctuations in the doping. Single point defects are studied in reliability,
whereas parametric fluctuations are often referred to as variability. The widespread and readily
available drift diffusion (DD) model and its first-order quantum corrected versions have often
been used to assess both reliability [1] and variability in nano-scale devices, often despite better
knowledge or lack of alternatives [2]. The challange in selecting the appropriate transport
model lies in the exact definition of the problem to be assessed and the quantities of interest.
In reliability as well as in variability, one is interested in changes in device parameters, such
as the absolute threshold voltage shift in MOSFETs, due to charges in the semiconductor
and the insulator of the device. Variability, however often needs to be accounted for when
investigating reliability. This is the case in sub-100 nm node devices, where fluctuations of
the doping cannot be ignored anymore [3,4]. For example, in nano-scale FinFets the discrete
nature of the doping needs to be accounted for since on average there are only very few dopant
atoms in the channel of the device. Additionally, in order to avoid unphysically overestimation
of carrier concentrations in nano-scale devices, first-order quantum correction models [5-7] or
solutions of the Schrédinger-Poisson equation are required. Identifying and capturing essential
quantum mechanical effects in a charge transport model, which needs to be computationally
efficient and accurate at the same time is challanging.

Considering device degradation, two effects have received wider attention of reliability re-
searchers and engineers alike: the bias temperature instability (BTI) and hot-carrier degrada-
tion (HCD). BTI is mainly attributed to oxide defects sensitive to temperature and the electric
field. HCD, on the other hand, is attributed to highly energetic carriers, which impinge on the
oxide-semiconductor interface in MOSFETS, thereby generating interface defects. Most studies
investigating reliability on nano-scale devices are either strongly based on measurement data
or on oversimplified device or degradation models. The selection of an appropriate transport
model to be coupled with a reliability model is highly dependent on the device design and the
degradation effect of interest. For example, when investigating BTI for a nano-scale FinFet [8],
carrier confinement and variability of the doping are crucial, whereas, e.g. on a planar 500 nm
n-channel MOSFET a classic DD simulation is often sufficient. However, if one is interested
in understanding HCD, the drift diffusion transport model has proven to be insufficient in any
device, since HCD requires exact modelling of the energy distribution of the charge carriers.

Due to the delicate relation of transport-, reliability-models and variability Chapter 2 gives an
overview of charge transport models and solution methods based on the Schrédinger equation
and Boltzmann’s Transport equation (BTE). In this chapter various transport models, the basic
assumptions during their derivation as well as solution methods is be discussed. Since modern
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hot-carrier degradation models require a solution of the BTE, the spherical harmonics expan-
sion (SHE) method is used to solve the BTE in a time efficient manner. Chapter 3 describes
the spherical harmonics expansion of the Boltzmann transport equation, the derivation of the
respective equations for the expansion coefficients and its numeric implementation. In Chapter
4 first-order quantum correction methods, especially the density gradient (DG) model [9], are
briefly discussed. The density gradient model is required in order to efficiently assess variability
due to random discrete dopants. This is the focus of Chapter 5, which is mainly concerned with
the AV, variability of single discrete oxide traps in the presence of random discrete dopants.
Additionally, it will be shown that a first-order quantum corrected drift diffusion transport
model is insufficient to capture the distribution of AV}, steps caused by single point defects
in planar nano-scale MOSFETs. Chapter 6 describes the typical setups for simulation and
measurement of the bias temperature instability. Additionally, the latest model for BTI and
the appropriate selection of a transport model for BTI are discussed. The chapter ends with
an investigation of BTI in p-channel MOSFETSs, using an integrated poly-heater technology,
at high temperatures. The differences of the current BTI model to the standard SRH model
as well as the general deficits of the SRH model will be shown. The last chapter (Chapter
7) is exclusively about HCD. Important characteristics of HCD are discussed, followed by an
exhaustive explanation of our current HCD model. Additionally, suitable transport models for
the simulation of HCD in MOSFETs are discussed. It is shown that SHE is at present the better
BTE solution technique, compared to Monte Carlo approaches, in the context of HCD. Finally
the application of the current HCD model using distribution functions obtained by SHE for two
different devices and four different stress conditions is be discussed.
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Die Moglichkeit einer mechanischen
Erkiérung der ganzen Natur ist nicht
bewiesen, ja, dass wir dieses Ziel
vollkornmen erreichen werden, kaum
denkbar.

(Ludwig Boltzmann)

2 Charge Carrier Transport

Modelling the transport of charge carriers in a crystal, eg. silicon, containing artificially in-
troduced impurities, ie. dopands, to modify the electrical conductance of the crystal is not an
easy task. In order to fully describe the many-particle system, where r denotes the positions
of the electrons and R denotes the positions of the ions, one needs to employ

(_h2v2 — LZ
2m0 " 2M0
+ Hoion(r, R) + Ho_a(r) + .. .>\Il(r, R) = ihd, ¥ (r, R), 2.1

v%{ + Hionfion (R)

which is the time-dependent Schrodinger equation of the full many-particle system. In the
above equation various interactions between the ions and electrons, such as the interactions
between ions is given by the operator Hioy—ion (7, R), between electrons and ions is described
by H ¢ _ion(r, R) and electron-electron scattering is described by H¢_¢ (7, R). At present it
is practically impossible to solve the many-particle Schrédinger equation even for only a few
atoms. Thus the usual approach to this is to decouple the electron-system and the system of
lattice atoms by the separation Ansatz

‘I’(’I’, R) = w(r)'wion(R)7

where the wave function v only describes the system of electrons and i, only describes the
lattice. Inserting this into Equation (2.1) one obtains

2m0

2
<_ Z f vz + Z ‘/ion(wi) + Hel—ion('ra R) + Hel—el(T)> ﬂ)(ra R) = Eelw(ra R)7

2

<_ Z 27;%@ V%{ + Z V:al(xi) + Eel) wion(R) - Eionwion(R)v

7 (2

where Vion(x;) and Vi(x;) are the ionic or electronic background potentials seen by the elec-
trons or ions. To reduce this set of equations further, the ions are assumed to only slowly oscil-
late around their mean lattice position and the Schrodinger equation for the ions is not solved
(jellium model). The main argument of this approach is based on the assumption that the mass
of an ion M is much larger than the mass of an electron m, which means that the ions are much
slower in their movement than the electrons. The approximation itself is often referred to as the
‘adiabatic approximation’ or Born-Oppenheimer-Approximation [10]. A thorough justification
and investigation of the Born-Oppenheimer-Approximation is beyond the scope of this work
and can be found in [11]. In order to reduce the many-particle Schrédinger equation for the
electrons to a more tractable single particle equation the Hartree-Fock-Approximation and the
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Slater-Approximation are applied [12]. The Schréodinger equation under these approximations
for a single electron state in a homogeneous semiconductor reads

2
<_2thOV2 + V(ZE) + (Pout(wa t) + Hscatter(wa t)) W% t) = Zhatw(w7 t) (2.2)
where 1) (x,t) is now a single electron wave function representing the whole ensemble of elec-
trons, pout(, t) is the external electrostatic potential and all other particle-particle interactions
have been summarized in Hgatter- In order to obtain a semi-classical approximation in the spe-
cial case of a periodic lattice Equation (2.2) has to be transformed such that the potential of the
ions does not explicitly appear in the equation. This is done by solving Equation (2.2) without
any scattering Hgcatter and time dependence [12, 13],

2
(—hv2 + V(m)> Y(x, k) = B(k)y(x, k), (2.3)
2m0

and inserting the solution back into Equation (2.2), where the reciprocal wave vector k and
the ionic potential V(ar:) (jellium-model for semiconductors) have been introduced [12, 14]. A
solution ¢ (x, k) to Equation (2.3) is easily obtained by using plane-waves and Bloch-functions
[15] to account for the periodicity in the lattice. Additionally the solution to Equation (2.3) gives
the relation F, (k) for the vth band. E, (k) is often referred to as the dispersion relation and is
only dependent on the type of semiconductor. By introducing the operator E, (—iV,), where

Eu<_ivzc>w(xa k) = Eu(kﬁ/}(fﬂ, k)
according to [12], one can transform Equation (2.2) into
( Eu(_iva:) +®out ("177 t) + Hscatter<xa k))lb(w, k, t) = ’ihaﬂﬂ(ﬂ}, k, t)- (2.4)
———

2
—jﬁovu\/(m)

The Hamilton operators used in Equation (2.4) form the basis of all transport models that are
described in the course of this thesis. Often Equation (2.4) is arbitrarily separated into two
equations, one for all bands (valence bands) below and one for all conduction bands above the
center of the band gap. Next a new quasi-particle, the hole, is introduced in the equation for
all valence bands. A hole represents an unoccupied state and thus has a positive elementary
charge associated with it. This is done, since the valence bands contain many electrons occu-
pying the bands. Thus it is easier to describe the flow of the empty states instead. For a proper
definition of holes refer to [12].

2.1 Band structure

In Equation (2.4) the kinetic energy operator and the periodic lattice potential have been re-
placed by the dispersion relations E, (k) for v bands. This enables us to treat an electron in a
lattice as a free quasi-electron, where the first derivative of F, (k) is related to the momentum
p, and therefore the group velocity (cf. Equation (2.15)) and the second derivative of F, (k) is
related to the effective mass tensor m;,

P, = movy = %VkEu(k), 2.5)
o PE(k)
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In order to efficiently compute the electron and hole densities from Equation (2.16) the density
of states (DOS) g, (F) is needed. The DOS can be calculated from the dispersion relation E, (k)
using [12]

g (E) = (;)3 /Bd(E — B, (k))dk, (2.7)

where B denotes the first Brillouin Zone (BZ) [14, 16, 17] (cf. Figure 2.1) in the band structure,
shown for silicon in Figure 2.2, of the semiconductor. Most often in the analysis of semicon-
ductors, the bands are separated in the middle of the band gap into conduction and valence
bands for electrons and holes respectively. Thus also the DOS has to be separated into a DOS
for electrons ¢"(F) and holes g5 (F). The so obtained DOS for silicon is shown in Figure 2.1.

Upon combining the definitions of the distribution function (Equation (2.16) and the DOS
(Equation (2.7) one arrives at

n= / fLgn(E)E, p= / g (E)dE, 2.8

to calculate the macroscopic electron n and hole p concentrations. As will become clearer later,
n and p are moments of their respective BTE.

Figure 2.1: Left: The first Brillouin zone (BZ) of silicon. The lines and points of symmetry are
shown in red (on the edge of the BZ) and green (within the BZ). Right: The band structure of
silicon from [18] calculated using a non-local pseudpotential method, which neglects spin-orbit
interaction [19]. The conduction band edge is indicated by the blue line, whereas the red line
indicates the valence band edge. The bandstructure as obtained by a parabolic approximation
is also shown (purple).

Parabolic Band Approximation

From Figure 2.1 one can easily deduce that, in the important case of silicon, there is no
simple analytic expression for the bandstructure. This poses a fundamental problem for many
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Figure 2.2: The density of states (DOS) and group velocity for relaxed silicon used for the
solution of the bipolar BTE.

approximations and solution techniques of the BTE, Monte Carlo methods being a notable
exception. Thus analytic approximations for the bandstructure are sought. One of them is
the parabolic band approximation. The main argument justifying this approximation is that
for low and moderate fields the electrons still occupy states close to the band minimum. The
parabolic band approximation is obtained by expanding the dispersion relation F, (k) into a
Taylor series. Upon evaluating the series for k at the lowest energy E one obtains

10%E, (k)
E, (k) =~ E,(ky; o E||?, 2.9
o) % By uin®) 15 =502 | gy ¥ 2.9

=Ec,v
where the first term on the right hand side is a constant energy to account for the distance
between the conduction band edge and the choice of the reference energy F,.f = 0 (cf. Figure
2.3). If the minimum energy is to be found at k = 0 then the above equation reduces to
n2| |k

- I”
By (k) ~ B,(0) + =5 . 2.10)

where the effective mass tensor (cf. Equation (2.6)) is assumed to be isotropic and scalar.
However, in silicon this is not the case (cf. Figure 2.1) and the effective mass m* is not isotropic
as assumed in the equations above. For the conduction band in silicon, Equation (2.10) is often
reduced to

B2 (k2 k2 k2
Ek)~Ec+ — | 2+ -2L 4+ 2|, (2.11)
2 \my my m,

where m;, m, and m, are the components of the effective mass tensor m* and we restricted
ourselves to a single effective band. Often the simple relation Equation (2.10) is favored over
Equation (2.11), since a scalar k can be used instead of a vectorial k thereby simplifying
the analysis. This can be achieved by the Herring-Vogt transform [20] without any further
assumptions through a linear coordinate transform in k-space.
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Figure 2.3: Sketch of the parabolic band approximation in a 1D device.

Kane’s Model

The parabolic band approximation is often used up to high energies at high fields were it
obviously fails to predict the correct band structure (cf. Figure 2.1). In order to improve this
the parabolic band approximation has been extended [21] to account for the non-parabolicity
in the band structure by introducing the factor « for the first (conduction or valence) band as
follows:

h2k?

E(R)[1+aB(k)] = 5. 2.12)

where o = 0.5 is a good choice for electrons in silicon.

2.2 The Boltzmann Transport Equation

The Boltzmann Transport equation (BTE) has been originally developed by Ludwig Boltzmann
to statistically describe transport of atoms and molecules (particles) of an idealized diluted gas.
The BTE describes the transport by two processes, namely free streaming and scattering. In
order to use the BTE to describe transport of an electron gas in a semiconductor, the BTE for
diluted gases needs to be modified. First the free streaming of the charge carriers in the lattice
is described by the equations of motion (Newton’s law)

h@tk =F and ata: =7, (2.13)

where the relation p = ik and the band structure is used. Second, to describe the collisions
between electrons in the electron gas, we will use quantum mechanical perturbation theory
(Fermi’s Golden Rule). It has to be noted that in the classical framework of the BTE, where
Heisenbergs uncertainty principle is being neglected, one could directly track position and
momentum of each electron. However, this tracking of each single particle in a classical
approach is currently infeasible. Instead we will modify the BTE as stated above, by rederiving
the BTE using Equation (2.4). Although the derivation of the BTE has been covered in many
works before, its derivation will nevertheless be repeated from [12, 13] for the sake of clarity.
For this purpose we need to define a distribution function f(x, k, t) of the carriers in real- and
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Scatter event

Figure 2.4: Illustration of the move-
ment of an electron through a 2D - Free
semiconductor. The BTE treats the streaming
free streaming (blue lines) classically
and the scattering events (red crosses) F
quantum-mechanically.

reciprocal-space. The distribution function f(x, k, t) is defined such that

dN = (272T)3f(:n, k,t)d*zd’k (2.14)
is the number of particles (electrons or holes) in the infinitesimal small volume dBrd3k in
the six-dimensional phase-space. The distribution function is a semi-classical concept, since it
assumes that both position and momentum of a particle can be measured to arbitrary accuracy
at the same time. In order to introduce the semi-classical concept into the Hamiltonians of
Equation (2.4), we treat the electrons as classical particles governed by classical mechanics in
the time intervals they do not scatter with other particles. Thus the external force exerted on a
single electron is

F(z,t) = 0y hk = —|q| Vapout(x, ).
=p

The group velocity vg (k) can then be calculated [12] as

Vi
vg (k) = ?El,(k:)
Starting from the definition of the density matrix
p($1,$2,t) :¢($1,t)'¢($2,t) (2.15)

we define the distribution function as the Fourier transformed density matrix

flx, k,t) = /exp(—ikz~az)p(931,932,t)d3k:. (2.16)

This definition is compatible with the previous definition in Equation (2.14), since the density
matrix describes a statistical ensemble of quantum states in real space. In order to transform
the density matrix to the phase space, a Fourier transform needs to be carried out. To asses
the time evolution of the density matrix we utilize the Liouville-Von-Neumann equation,

(H(x1) — H(x2))p(x1, X2, 1) = Oyp(21, 22, 1), (2.17)
=ihoip(x1, T2,t) + (Ey(—iVa,) — E,(—iVg,) (2.18)
- onut(ml’t) +<Pout(w2,t))P(fB1,$2,t) = 0, (2.19)
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where the simplified and approximated Hamilton-Operators from Equation (2.4) have been
used. Scattering will be neglected for the time being, since it will be treated as a perturbation
later. After a transformation of coordinates,

1 /
T =3 (1 +x2), o ==z —x, (2.20)

the operators can be linearized by assuming that each electron is sharply distributed in k-space
and that the electrostatic potential changes over & are small compared to the changes of the
electronic wavefunction over x

_Soout(xla t) + Soout(x% t) ~ va:@out((xQ + 171)/2, t) : (172 + "171) = - w@out(wy t) ' (2.21)
——————

=F(z)/q
E, (=iVg,) — E,(—iVyg,) = ihvg(—ivm/) -V (2.22)
Inserting the above approximations into Equation (2.17) one obtains:
ihop(z, x' t) + ihvg (—=iV g )Vap(z, x' t)+h 'F(x) -« p(z,2',t) = 0. (2.23)

Finally, a Fourier transformation of the equation above is carried out and one obtains after a
few algebraic rearrangements the well known homogeneous BTE for the vth band

O f" (, K, t) + Y (@, k) - Ve f* (, K, t) — b~ F(a,t) - Vi f" (@, k, t) = 0, (2.24)
:,C{f”(;ch,t)}

where L{ f"(x, k,t)} is the free-streaming operator. In order to incorporate scattering processes
a semi-classical perturbation term Q{ f”(«, k,t)} on the right hand side of the BTE is required

atfy(xﬁ k, t) + Ug(xa k) : vmfy(xa k, t) - h_lF(wv t) ' kay(x7 k, t) - Q{fy(w7 k, t)} (2.25)

:E{fu(kavt)}

Q{f¥(x,k,t)} is obtained by perturbation theory and modeled using a statistical description
of each scattering process. In the BTE the operator £{ f"(x, k,t)} describes the classical free-
streaming of the carriers in between scattering events which are described by the scattering
operator Q{ f”(x, k,t)} (cf. Figure 2.4).

The force F(x,t) due to a gradient of the electrostatic potential or the band edges in the
absence of magnetic fields is given by

F($7t) = _qvmsoout(ma t) = _VIB(:‘:EC/V + |q| g0($, t)(ib)), (2.26)

where |q| is the sign-less elementary charge g, p(x,t) the electrostatic potential and E¢ y the
band edge energy for either electrons or holes. Since the electrostatic potential is needed in
order to compute the force exerted on each charge carrier, one needs to solve Poisson’s equation
and the BTE for electrons and holes self-consistently. The full system of equations thus reads,

V- (e(x)Ve(x,t)) = |q| (n —p + C),
Oufy + 0" Vafy + 1 F-Vify = Q"{fi} —=T™{f}. [},

=c{fy} (2.27)
Oufy + 0P Vafy — 'F-Nify = Q{7 = TP{f) £},
=L{f}
9
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where additional scattering terms I’ n/p {f¥, Iy } have been added to account for recombination
and generation of electrons and holes. Since each BTE, without further approximations, has to
be solved in three spatial and three phase space dimensions in addition to the time dimension, a
direct discretization of the full system would lead to prohibitive memory and computational time
requirements for many applications. Thus further approximations or alternative discretization
schemes have to be employed to solve the system of equations.

2.2.1 Scattering

In this section a short introduction into modelling the scattering term Q{f”(x, k,t)} on the
right hand side of Equation (2.25) is given. While traveling through the lattice the electrons
interact with the lattice or other electrons. Such interactions, where the electrons change their
momentum, are termed scattering events. Considering an infinitesimal small volume d>kd>z
in phase space (cf. Figure 2.5), the electrons can either scatter into or out of this volume. Thus
the scattering operator is normally split into an in-scattering and out-scattering operator as
follows:

Q{fy(ma k, t)} = Qin{fy(ma k, t)} - Qout{fz/(x’ k, t)}

The transitions in and out of an infinitesimal small volume d>kd3x in phase space do not occur

Figure 2.5: Illustration of scatter- k A
ing events in phase space. Shown
is a group of electrons mov-
ing from an infinitesimal volume
d®kdz at time t in phase space
to d®k'd®sz’ at time t 4 dr, where
the out-scattering of electrons is
depicted using blue arrows, in-
scattering is illustrated by red ar-
rows and free streaming is indi-
cated with a green arrow.

instantly. Nevertheless they are often modeled as an instant transition via a rate of expected
scattering charge carriers per second. Additionally it is assumed that the scattering occurs at
a certain point in real space and is a local event. For each flavor of scattering there is a rate
of transitions S”(k,k’,t) from k to k' in the phase space. An incomplete list of interactions
considered in this work can be found in Table 2.1. Note that in a homogeneous semiconductor
the scattering rate does not depend on the spatial location of the electron. This simplifies the
evaluation of the scattering terms. In order for an electron to scatter, the initial state must
be occupied by an electron and the final state must be empty by virtue of Pauli’s exclusion
principle. With all of the above the scattering operator is often modelled as

]- / 1 / v
Q{fy(ilf,k,t)} = W,Z/Bsy(k 7k7t)f (CC,’C 7t)(1 - f (w7k7t)>
Y Qn{ (@, )}
— SV (kK ) f (2, ke, t) (1 — f (2, K1) d°K, (2.28)
Qout{ fv (a,k,t)}

10
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where the integral runs over the first Brillouin zone. In thermal equilibrium Equation (2.28) as
scattering operator in the BTE yields the Fermi-Dirac distribution

1
1 exp (Zof-Ee )

where Er is the Fermi-level and equals the chemical potential ¢ known from thermodynamics
[12]. The computational burden to evaluate the integral in Equation (2.28) can strongly depend
on how the bandstructure is resolved and becomes easier to evaluate with the parabolic band
approximation. Nevertheless, upon solving the BTE the term f”(z,k’,t)(1 — f“(x, k,t)) in
Equation (2.28) might prove to be too challenging for a certain numerical BTE solver. Thus the
Pauli exclusion principle is often dropped and the scattering operator reduces to

[V (x, k,t) = (2.29)

1
O{f"(x, k,t)} = BZ/S”(k’,k,t)f”(m,k’,t)
(2m)? — J
— SY(k, K ) f (x, k, t)d°K (2.30)
and therefore gives the Maxwell-Boltzmann distribution as equilibrium distribution function

E, (k) — EF) .

2.31
kTt (2.31)

fY(x, k,t) = exp (—
The integral in Equation (2.30) is easier to evaluate than Equation (2.28), especially when using
the parabolic band approximation and forms the basis of many important approximations, such
as the relaxation time approximation (RTA) [22]. Dropping Pauli’s exclusion principle is clearly
justified if (1 — f¥(x, k,t)) = 1 and thus f"(x, k,t)) < 1, which is only true for low electron
(hole) concentrations and non degenerate semiconductors. Thus dropping Pauli’s exclusion
principle in Equation (2.28) is often termed low density approximation.

Interaction Elastic/Inelastic | References
Acoustic Phonon Scattering | Approx. Elastic [23-25]
Optical Phonon Scattering Inelastic [23-25]
Impurity Scattering Approx. Elastic | [23,25,26]
Impact Ionization Inelastic [25,27]
Electron-Electron Scattering Inelastic [28]

Table 2.1: A list of particle interactions considered in this thesis including references to the
used models for the respective scattering rates.

2.2.2 Recombination and Generation

The scattering operator as described in Section 2.2.1 does not consider electron-hole recombi-
nation (cf. Equation (2.25)). In order to be able to consider recombination/generation processes
the BTE needs to be split into a BTE for electrons and holes respectively. Since recombina-
tion/generation models can be quite complex [29], we first restrict this section to the most
simple two-state defect (cf. Figure 2.6), where only a single function over time, namely the
trap occupancy fX(t) and trap level E1 are needed to describe the state of the defect. Ad-
ditionally it will be assumed that there are enough electrons and holes that are either spin
up or spin down, such that the trap occupancy is independent of the electron spin. In case

11
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Figure 2.6: Left: The trap occupancy is governed by a first order rate equation and two
transition rates 712 and 721, which are obtained from the four recombination/generation rates
shown in the band diagram. The defect can become charged (state 2) by either capturing an
electron from the conduction band or by emitting a hole to the valence band and vice versa.
Right: The two state model of a defect located within the band gap (Ev < ET < Ec). Only in
state two does the defect carry a charge, which needs to be considered upon solving Poisson’s
equation.

the spin cannot be neglected, the trap occupancy needs to be split into its spin components,
@) = fr up T JT. down- With these assumptions the macroscopic rate equation for the trap
occupancy reads [12, 30]

DfE(t) = /B(l — /1) (Ry (k) f;, = GL(R)(1 = f;)) (2.32)

T21

+ f1(t) (RE(K) fy — G (k) (1 = £;)) d°F,

T12

where G7(k) and GV (k) are the number of generated electrons and holes per second per
d3k, R"(k) and R} (k) are the number of recombined electrons and holes per second per d>k.
Putting all of the above together, the recombination operators I'P/ n{fr. Iy } for electrons and
holes, which have been introduced in Equation (2.27), read

PR = o 3 [ GRRF (1= £2) = RR)( = F(0) S 2.33)
IR = a3 [ GO = FR(O)1 = ) = RUR) SO, 2.34)

where Nt is the trap concentration. Dropping the sum over all bands in the equations above,
the recombination rates for electrons and holes are [30, 31]

R} (k) =0"0"(k) and RP(k)=oPvP(k), (2.35)

where ¢” and oP are experimentally determined capture cross sections and v™ and v? reaction
velocities. From detailed balance [12, 31] the generation rates can be determined

G (k) = o™v" (k) exp <ET]€_B1;L(I€)> (2.36)
GP(k) = oPvP (k) exp (W) : (2.37)
B4L

12
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2.3 The Method of Moments

In order to fully analyze semiconductor devices such as metal-oxide-semiconductor field-effect
transistors (MOSFET), one needs to solve a coupled system of equations consisting of the
Poisson equation and the BTE for electrons and holes. A direct discretization yields a system
of equations in seven dimensions. Thus simpler models, which at least capture the essential
features of the BTE are often used. One of these methods by which plenty of charge transport
models can be obtained is the method of moments [32, 33]. The jth moment of the BTE is
defined as

(xj) =/ij-f(w,k,t)d?’kij/lgkjf(w,k,t)d:”k, (2.38)

where x; is the jth weight function and p; is the prefactor of the jth weight function. Table
2.2 lists a few important moments of the distribution function. It is important to note that the
moments of the distribution function infer no assumptions and are used to obtain macroscopic
quantities often employed in the analysis of the performance of semiconductor devices. To

Moment X Formula Macroscopic Quantity
{x0) Yo =1 1 [,z flx, k,t)d®k norp

<X1> X1 = k hfg €, k t dgk <’U> = Jn/p/q

<X2> X2 = E(k) fB E(k)f(w7k7t)k2d3k <En/p>

Table 2.2: A list of the first few moments of the distribution function, where n and p are the
electron and hole concentrations, J™/? is the current density and <E”/ P) is the average carrier
energy for electrons and holes respectively.

obtain equations for the moments of the BTE, such as the drift diffusion (DD) model, the BTE
is multiplied by increasing orders of the wave vector k and a scalar prefactor p and afterwards
integrated over the Brillouin zone

/zan (atf(a:,k,t)+E{f(m,k,t)})d3k:/BX]- Q{f(x, k,t)} d®k + R. (2.39)

In order to analytically evaluate the integrals over the free-streaming operator and the scattering
operator further assumptions are necessary. Since the integral over the free streaming operator
in Equation (2.39) would lead to a tensor equation for odd weight functions, identified by an
odd index 7, a further assumption is needed. This assumption has to be chosen such that all
tensors after integration on the left-hand side of Equation (2.39) are diagonal with equal entries
along the diagonal. It turns out that it is sufficient to decompose the distribution function into
a symmetric and antisymmetric part,

f(kavt) fs(il:,k},t) —I—fA(CB,k,t),
fs(m, k,t) = fs(x, —k,1),
falm, =k, t) = —fa(z, k 1),

and assume that the symmetric part is isotropic,

fs(il:,k,t) = fS(w’ Hkﬁ”,t),
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as well as

|fA(w7k7t)| < |fs(ﬂ$,k,t)|

which yields a single unique equation per moment [34]. These assumptions are termed diffusion
approximation, since it assumes that diffusion of carriers dominates over carrier drift, caused by
an electric field. To analytically evaluate the right hand side of Equation (2.39), the relaxation
time approximation (RTA) is often utilized. The main assumption of the RTA is that due to
scattering the distribution function will relax exponentially into the equilibrium distribution
function feq(x, k, 1),

6 @ kt) + Ok g = LB ED @0
B

Ts

where the transition is characterized by a scattering process dependent relaxation time con-
stant 74 [22]. This approximation also implies, as can be shown [22], that the relaxation time
constants of various scattering processes can be added up to a single time constant as follows:

1 1 1

==+ = +...

Ts  T1 T2
After employing all of the assumptions, detailed above, one will obtain an infinite enumerable
number of equations. The equation for the jth moment will always contain the 7 + 1 moment.
Thus the array of equations needs to be terminated by replacing the equation for the 5 + 1
moment with an analytic formula. Such an analytic formula is termed closure condition, which
is also the major drawback of any transport model obtained through the method of moments.

2.3.1 The Drift Diffusion Model

The drift diffusion (DD) model is one of the simplest and earliest numerically used and inves-
tigated charge transport models [35]. It is obtained by employing the parabolic band approx-
imation (cf. Section 2.1) under the additional assumption of a single conduction and a single
valence band. Evaluating the first two moments of the BTE one obtains,

(xo0) = O — |a| " VJ, — R =0, (2.40)
(x0) = 0w +|a| ' VI, + R =0, 2.41)
(x1) = Tm0Jn, — || TmksV - (nTy) +m*J, =0, (2.42)
x1) = 0 Jp + || ks V - (pT}) — m*J, =0, (2.43)
where
3nkgT1i
<mﬁﬂ&m=—§i\mhﬂzﬂ:%, (2.44)

is used as a closure condition, 7y, is the momentum relaxation time constant, 7;, and 7}, are the
electron and hole temperatures respectively and R is a scalar term accounting for electron/hole
recombination and generation. In order to further simplify the DD model, the influence of the
time derivative of the current density is often neglected, which is justified if the frequency of the
electric field F is two times lower than the plasma frequency [36]. Thus, including Poisson’s

14



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thek,

L]
lio
nowledge

b

L]
|
r ki

M You

equation to calculate the electric field, the DD model reads

V- (e(®)Ve) =g/ (n—p+ C), (2.45)
lq| On — VI, = |q| R, (2.46)
la| Owp + VI, = —|q| R, (2.47)
a7 lal . _
I, = - kg [ V(nTy) + 2 E | =|qunE + |q| D0aVn, (2.48)
B —_—— ——
\_;’-/ drift term diffusion term
a7 B lal .\ B
Jp=— ks (~V@IL) + E | =ld pmpE || DpVp, (2.49)
~—— B
Hp

where the electron i, and hole mobilities p,, the thermal voltage Vr = kg7i,/|q| and the
Einstein relation

Dn/p = VT,UJn/p

have been used. Upon employing this method, one looses exact information regarding the
kinetic energy and momentum (k) of the charge carriers and their distribution. Although
various material, field and doping dependent models for carrier mobilities have been developed
[35], the DD model still suffers from many of the assumptions needed in the course of its
derivation. As such, a consequence of setting the lattice temperature and carrier temperature
equal is that carrier diffusion will be underestimated by the model. Additionally, by employing
the equipartition theorem or its enhancement, the homogeneous energy balance equation [34],
to calculate the average carrier energy it is not possible to describe effects of rapidly changing
electric fields. Thus it is for example not possible to explain the phenomenon of velocity
overshoot [37] and energy transport phenomena using the DD model. Nevertheless, because of
its ease to comprehend and compact formulation, the DD model is the best known and most
widely used charge transport model today.

2.3.2 The Hydrodynamic Model

The hydrodynamic model (HD), first developed by [32, 33], is derived like the DD model by
employing the method of moments. Instead of using only the first two moments of the BTE,
the HD model uses the first three moments in order to incorporate spatial dependencies on the
average carrier energy, thereby adding two new unknowns and at least one new parameter.
As a closure condition Fourier’s law is used for the fourth moment. In addition the initial
assumption that

’fA(w7k7t)’ < ’fS<x7k7t)’7

is dropped in the HD model, which reads

V- (e(@)Ve) =la| (n —p+C), (2.50)

omn—|q ' VJ,—R=0, (2.51)

TmOtdn — || pnnE — pnkgV(nTy) — Jp = Tm ]q|71 (Jn® Jnn_l), (2.52)
V-(nSn)Jr@t(nw)—E-Jn+n(w—wo)*751 =0, (2.53)
nSu + /™" (w + kpTu) T + K(Th) VT, = 0, (2.54)
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for electrons. There x is given by the Wiedemann-Franz law, 7g is the energy relaxation time,

nSy is the carrier heat flux (third moment), w is the average carrier energy and wy is the

equilibrium average carrier energy. For holes a similar set of equations is obtained. A simplified

version of the HD model, the energy transport model, can be obtained by assuming that
3kpTy

Tmld P (Jp@Jan ) 20 and w~ 5 (2.55)

The benefit of the HD model over the DD model is, that it can describe velocity overshoot,
although it can only cover processes which can be explained by employing heated Maxwellian
distribution functions. Upon investigating this property of the HD model it was found that one
can observe an artificial velocity overshoot for decreasing electric fields too [38]. Sadly, it was
also found that this is due to the truncation after the 4th moment in the construction of the
model and thus an intrinsic property of the HD model [38]. Additionally, the HD model tends
to overestimate the number of carriers in the bulk of MOSFETs. In addition to all that the
equations of the HD model are strongly hyperbolic, which makes them numerically challenging
to solve for arbitrary device geometries.

2.3.3 Higher Order Models

Higher order charge transport models have been developed in hope to overcome the limitations
of the hydrodynamic model. The most notable one is the Six Moments model, where the closure
condition is obtained through an empirical relation [39]. Although higher order models capture
more of the essential physics described by the BTE they also tend to be more complex, have
more parameters and are harder to understand, derive and implement. The increased com-
plexity in these models often, despite successfully describing many transport effects observed
in semiconductors, trades off the benefit of the more accurate description.

2.4 The Monte Carlo Method

The Monte Carlo method itself is a stochastic algorithm to solve integral equations [25,40,41].
Since the BTE can be formally transformed into an integral equation, the Monte Carlo (MC)
method provides a way to solve the BTE. The main idea of the MC method for the BTE is
to simulate the flow (cf. Figure 2.4) of a statistically representative ensemble of particles by
following the path of each single particle. In between scattering events each particle propagates
freely according to

h@tk =F and 8{/33 =7, (256)

while scattering events are determined stochastically and occur instantly. In order to deter-
mine the instance of a scattering event one starts from the formally integrated BTE. From
this form one can, through algebraic transformations, obtain the conditional probability den-
sity p(x, k,v,to + T|xo, ko, v0,tp) to find a particle (electron or hole), without being scat-
tered, in state (x, k,v) at time ¢y + T after it has been at time ¢y in state (xo, ko, ). Now
p(xo, ko, o, to|x, k,v,tog + T) is evaluated using random numbers to determine whether or not
a particle is scattered, giving the method its name and characteristics (cf. Figure 2.7). It is
important to state that by using the MC method it is possible to directly solve the uncoupled
(no recombination or generation) BTEs for electrons and holes self-consistently with Poisson’s
equation (cf. Equation (2.27)). By virtue of the method it is not necessary to approximate the
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final state (¢, 1)

yes

free streaming

initial state (&, to) select tg —], min(ta, to + T)
= sy L0

no

select final state <@ select scattering

Figure 2.7: A flowchart of the Monte Carlo method for solving the BTE in time 7', where
&= (a:, k, 1/) and ?g is the time at which the next scattering event occurs. Reproduced from [25].

bandstructure E, (k) of the semiconductor and it is indeed straightforward to incorporate the
full dispersion relation into a simulator using the MC method. Additionally, one can directly
obtain f} and fl’j from any MC simulator by averaging over all particles and thus calculate the
moments by evaluating the respective integrals numerically (cf. Section 2.3). This is indeed very
satisfying, since a maximum of physically relevant and accurate information can in principle
be obtained by a minimum of approximations. Nevertheless, approximations to the BTE are
necessary. In order to be able to apply the MC method, the BTE needs to be linearized [25].
This linearization in turn requires one to drop Pauli’s exclusion principle in the scattering
operator and also severely impacts the ability to rigorously implement non-linear scattering
operators such as electron-electron scattering. However, electron-electron scattering in Monte
Carlo based device simulators, using a plethora of approximations, has been implemented for
1D device geometries [42,43]. Additionally, in order for the MC method to yield useful results
very large numbers of particles are required in a simulation, since the accuracy in f"(x, k,t)
exhibits a square root dependence on the number of particles [44]. Large ensembles of parti-
cles in turn lead to a large computational burden, such that significant MC simulations can
take from a few hours up to several workdays or even months to complete. The reason for
this unfortunate property is due to the stochastic nature of any MC method, which can even
be easily observed in simple simulations. In Figure 2.9, the electron distribution function f,
for a n+-n-n+ structure (cf. Figure 2.8) obtained by using the MC simulator MONJU [45] is
presented. The numeric noise towards higher kinetic energies is clearly visible.

200 nm 200 nm 200 nm

Figure 2.8: The exemplary 2D n+-n-n+ structure simulated using MONJU [45]. The structure
is 100 nm wide.
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Figure 2.9: The electron distribution function plotted over the long side of the n+-n-n+ diode,
obtained by full-band MC simulation using MONJU [45]. The numeric noise towards higher
kinetic energies is clearly visible. In the simulation, which took one workday to complete, five
million particles have been used.

2.5 The Spherical Harmonics Expansion Method

Inherent numerical noise in the Monte Carlo solutions of the Boltzmann Transport Equation, as
well as the O(N -1/ 2) dependence of the integration error inherent in Monte Carlo methods has
motivated the development of new techniques to solve Boltzmann’s Transport Equation. Thus
special attention has been devoted to deterministic efforts for solving Boltzmann’s Equation.
A very attractive deterministic method is to expand the distribution function into spherical
harmonics and to project the k-space onto a single energy axis. This way a seven dimensional
system is reduced to a five dimensional system, which does not have the limitations of a
Monte Carlo approach. Nevertheless, a spherical harmonics expansion (SHE) of the BTE is still
challenging [46] and it is, compared to Monte Carlo, difficult to consider as many full-band
effects in the simulation [47] as possible. However, a quite statisfying approach to consider
full-band effects has been found by [48], where current of diodes could be predicted using a
fifth order expansion within an error margin of 8% in saturation compared to the results of
a full-band Monte Carlo simulation. In addition to being free of stochastic noise, a spherical
harmonics expansion allows to straightforward and self-consistently solve the BTE with any
other partial differential equation, especially Poisson’s Equation using a Newton-Raphson solver
[49]. Thus special attention will be paid to the SHE method in Chapter 3 and for hot-carrier
degradation modelling in the last chapter of this thesis.

2.6 Quantum Mechanical Effects - Confinement

Until now purely quantum mechanical effects, such as charge carrier confinement, have not
been addressed. In MOS structures, considered in this work, carrier confinement emerges
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Figure 2.10: The confinement of electrons and the emergence of sub-bands in a exemplary
1D nMOS structure, where * = 0 nm corresponds to the insulator-semiconductor interface.
Shown are the conduction band edge E. and the first sub-band Ef at 7.7 meV as well as the
normalized electron concentrations as obtained by a classical calculation and by a quantum
mechanical one. The model error of a classical calculation can be well seen in the Capacitance-
Voltage curve (inset). For pMOS analog results are obtained. For the calculation the Vienna
Schrodinger Poisson Solver (VSP) [51] has been used.

whenever local potential wells are formed [50]. Deep potential wells cause discrete quantized
energy levels and confine the charge carriers in one or more directions. One of the most widely
recognized case of carrier confinement occurs in all MOSFETs at the semiconductor-insulator
interface, whenever the MOSFET is driven into inversion as shown in Figure 2.10. In this case
the charge carriers are confined in the direction perpendicular to the interface and free to move
in the other two directions, thus forming a two dimensional electron gas [50]. When deriving
the BTE in Section 2.2, the wave character of the electrons was assumed to be negligible in
favor of a classical description of the physical system. In MOS structures with thin insulators
in the range of nanometers, e.g. t,x 1 nm, charge carrier confinement needs to be included
in order to yield an accurate description of the device. For an accurate quantum mechanical
description of carrier confinement the Schrédinger equation

h2
— (2(m*)1v + qV’(m)) i (x) = €’ (x)Y*(x) (2.57)

for a given confining electrostatic potential V/(x) must be solved (self-consistently) with Equa-
tion (2.27), where s is the sub-band index and €’ is the energy eigenvalue. In order to solve
the above equation boundary conditions need to be set for an isolated device. It is natural
to assume vanishing electron wave functions at the boundaries of the semiconductor. If one
is interested in the penetration of the wave function into an oxide in order to calculate direct
tunneling currents [52] this can be achieved by setting a Dirichlet boundary condition at the
boundaries of the oxide not interfacing with a semiconductor, although the method itself is
dependent on the oxide thickness and only justified for thick oxides.
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2.7 Non-Equilibrium Greens Functions Approach

In the course of the derivation of Boltzmann’s transport equation, it was assumed that the
wave nature of the electrons can be neglected. The concept of the BTE, as shown in Figure
2.4, is that during free streaming the electrons are treated as classical particles embedded in
the lattice of fixed positively charged ions. As long as the electrons scatter frequently while
traveling, the phase of their wave function and initial speed is lost, which is true for channels
longer than the coherence length and slowly spatially varying electrostatic potentials. This is
for example not the case when the channel only consists of a few atoms or a single molecule
(biomolecule) [53,54]. In this case a non-equilibrium Schrédinger equation for charge transport
needs to be solved. The formalism most commonly used to solve the Schrédinger equation in
non-equilibrium is refered to as Non-Equilibrium Greens Functions Approach (NEGF) [55]. The
channel, of a MOSFET for example, is then modelled as consisting of a few slices (2D case)
of atoms with contacts in thermal equilibrium on the left and right of the channel (cf. Figure
2.11). The one-particle Schrédinger equation in NEGF formalism then reads

, - Gateinsulator

Q0000000000000 00000e
CO0OLOOCOOOO000eeee06

00000000
00000000

1
P Ll R
Left contact Jeq,L :_ ! One equation per slice feq’ R  Right contact
Figure 2.11: Schematic of a 2D nanoscale MOSFET, consisting of a few atoms, simulated using
NEGF. For every 1D slice (yellow atoms) a Schrédinger equation is assembled and solved. It is

assumed that the contact (red atoms) are in thermal equilibrium.

(EI —-Hg -3, — ¥ —¥s)G=BG =1, and BG<=3X<G", (2.58)

where F is the electron energy, H ¢ is the Hamiltonian for the channel, ¥;, and g are the
self-energies accounting for the left and right contacts, 3g is the self-energy due to scattering,
B is to account for the boundary conditions at the contacts, G is the retarded Green’s function,
G*< is the lesser Green’s function and G is the advanced Green’s function [55,56]. From G=
macroscopic quantities, such as the electron concentration and the current density can be
obtained. The main advantage of NEGF is that the wave character of the electrons is preserved,
which leads to a highly accurate description of nanoscale (~ 10nm) devices. But as soon as
the devices become larger, the matrices in Equation (2.58) become too large for any numerical
solver. In large devices, scattering occurs more frequently, which increases the number of
off-diagonals in Equation (2.58). In addition it is not possible to rigorously consider electron-
electron scattering in the NEGF method. Thus special attention has to be paid to the calculation
of the scattering rates. Nevertheless, NEGF is one of the most accurate methods to describe
charge carrier transport in nanoscale devices as well as direct tunneling in MOS structures [56].
In the course of this thesis NEGF was used to estimate direct tunneling currents, where only
phonon scattering was considered.
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That’s what SHE said.

(Unkown)

3 Spherical Harmonics Expansion

Recent advances in the spherical harmonics expansion (SHE) method of the Boltzmann trans-
port equation (BTE) allow for the accurate solution of the BTE on arbitrary three-dimensional
device geometries [57], full-band effects [48, 58, 59], rare scattering events (e.g. impact ioniza-
tion) [60], carrier-carrier scattering [61], charge carrier recombination/generation [62], small
signal analysis [47, 63], quantum mechanics [49, 64], and hot carrier degradation [46]. The
SHE method has been developed to a point where it is now an attractive alternative to the
common Monte Carlo (MC) method, which has a square root dependence of its accuracy on
CPU time [44]. As discussed in Section 2.4, the Monte Carlo method suffers from inherent
stochastic noise in the solution and the requirement of sufficiently small time steps to achieve
self-consistency with Poisson’s equation. An expansion of the BTE using spherical harmonics
does not impose such restrictions, since it is a deterministic approach. In the course of this
work the SHE simulator ViennaSHE [65] has been extended and used to solve BTE (cf. Equation
(2.27)).

3.1 Theory

The main idea of the SHE method is to expand the distribution function f”(x, k, t) into spherical
harmonics (SH)

Ny P" (cos(8)) cos(mep), if m >0,

c
3.1
Ny P ™ (cos(0)) sin(—my), if m <0, S0

}/l,m(a 90) = {

where P/"(x) are the associated Legendre polynomials, [ > 0 is the order, m is the sub-order
index bounded by —/ < m < [, and N, ,, are normalization factors given by

\/ 2L if m=0,
Nim =

mo 2A4+D)(I—|m])!
= 27r(z)4(r\m‘,\)f‘ , i m#0.

The spherical harmonics form an orthonormal basis since
T 2
/ Yi,m}/}’,m’ sm(@)dgpd& = 5l,l’5m,m’7
0 —

=d2

=

where the Kronecker delta d,;, = 1 if and only if a = b, else it equates to zero. Additionally,
the shorthands 3? and df) have been introduced. With the above definition of the spherical
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harmonics, the truncated expansion of the distribution function f(x, k,t) is

L l
F@,kt) 2> " frm(@, e, 6)Yim(6, ), (3.2)

=0 m=-—1

where the order [/ is bounded by the maximum expansion order (I < L), € is the energy, 6
and ¢ are the spherical angles of the spherical harmonics Y}, [47,59, 64, 66]. Additionally,
the expansion of the distribution function in spherical harmonics on equi-energy surfaces
implicitly assumes a bijective mapping F(k) (cf. Chapter 2) between energy and wave vector.
An exhaustive treatment of the derivation of the BTE expanded in spherical harmonics can be
found in [47]. For the sake of clarity the derivation will be briefly summarized in here. In order
to avoid notational clutter, the band index v will be dropped in this chapter entirely, since the
projection on spherical harmonics does not change anything regarding the band index. With
this, any physical quantity X can be expanded into SH on equi-energy surfaces using

L l
X33 Xim(€)Yim(0, ). (3.3)

=0 m=-1

The expansion coefficients for any quantity X on equi-energy surfaces are then found as [47,67]

1
= /B Vi (6(k), ()X (2, k)S(c — E(k))d*k
:%nmﬁwx@x@awwga@aL 5.4)

where 0§ is the Dirac delta. Projecting the distribution function f(x, k,t) using Equation (3.4)
one obtains the expansion coefficients f; ,, as

fom = s /B Vi (00k), 0(k)) f (. K, )0 (c — E(k))dk

(27)
o
The generalized density of states Z (¢, 0, ¢) for a single spin direction in the absence of magnetic
fields transformed to spherical coordinates is

m(g,(p)f($,k(E,G,gO),t)Z(E,@,QD)dQ, (35)

21 k|12 O]kl

2(e,6,0) = (2m)3  Oe

(3.6)

Due to the integration over the spherical angles the generalized density of states differs by a
factor of 47 from the conventional density of states.
3.1.1 Expansion of the Free-Streaming Operator

In order to obtain a set of equations for the expansion coefficients up to order L, the BTE
is multiplied by the generalized density of states (cf. Equation (3.6)), Y;,,, and afterwards
integrated over the unit sphere. Hence, a spherical harmonics expansion of the BTE,

Of(@, k,t) +vg(x, k) -V f(x, k,t) — F(z,t) Vi f(x, k,t) = Q{f(z, k, 1)} - T, (3.7
L{f(zk,t)}
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to find the unknown expansion coefficients f; ,,, reads

Vi 0. 0)(BTE} 2(c.0, 0)do. 5.8)

More precisely,

[ Yimdis (@, t)3(e — (k)

B

+ [ Yin{(@ k)3 ~ B 3.9)
B

:Anm@w@xwaw@—ﬂmm%

where the recombination term I' will be treated separatly in Section 3.5 and the time-dependent
term will be discussed in detail later. In a second step the expansion 3.2 as well as a spherical
harmonics expansion for the density of states are used in Equation (3.9) in order to find the
equations per spatial location «, energy ¢, order [ and m [47,67]. Assuming that Z(e, 0, ¢) =
Z(€) the equations for the expansion coefficients fullfilling the BTE read term by term [67],

O f (@, ke, ) = O, 7{ Vi f (@, e, ) Z(€)dY, 5.10)
vy (z, k) Vaf(z, k1) = Vo %Yl,mf(az, €, t)vg(€)Z(€)dS2, (3.11)
jl,m(mrert)
(“)jl m(:l?, €, t)
F(xz,t) - Vif(x, k,t) = F(x,t)- <8 - Al,m) , (3.12)
€
- 1 Y m, oYy m
Al —thkH < 50 eg + sin(9)8gpe@> fZ(e)dS, (3.13)

where ey and e, are the unit vectors in the space spanned by the spherical harmonics. Whilst
the time-dependent term can be projected in a straight-forward manner, the free streaming
operator L{f(x, k,t)} is commonly split into two separate contributions. These two contribu-
tions are then also separatly transformed. The first contribution (cf. Equation (3.12)) is often
referred to as the diffusion term, since it can be expressed as the divergence of a generalized
current density 7, ,, (x,€,t). The definition of the generalized current density is very convenient
since the current density of charge carriers is obtained by

1
J(:B,t) = m /jo’o(m,e,t)dE. (314)

The second contribution to the transformed free streaming operator is referred to as the drift
term, since this term contains the force F' and no spatial derivative.

3.1.2 Expansion of the Scattering-Streaming Operator

The scattering operator Q{ f(«, k,t)} is split into an in-scattering and an out-scattering term,

Q{f(:l), k’t)} = Qin{f(x’ k7t)} - Qout{f(:nv k’t)}‘ (3.15)

23



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thek,

L]
lio
nowledge

b

L]
1
r

M You

Each term is then transformed to spherical coordinates on equi-energy surfaces by

]fylm )0l f(x, k, 1)} Z(e, 0, 0)dS2. (3.16)

Utilizing the low-density approximation [68] for the scattering operators in Equation (2.30) the
transformation simplifies to

Q" {f(z, k, 1)} = ?{Yl,mz(ﬁ) %U(k(ﬁlﬁ"w'),k(ﬁﬁyw))f(x,G',t)Z(él)dQ'dQ, (3.17)
QM f(x, k, 1)} = jl{YZ,mZ(@ fa(k(e,@,go),k(e'ﬁ', O f(x, e, ) Z(e)dY dQ, (3.18)

where it was assumed that the charge carrier is scattered from energy € to e. The physics of the
scattering process itself are summarized in the function . In this framework, the scattering
process is considered to be elastic if ¢ = ¢, else it is an inelastic process. If the scattering
operators are assumed to be velocity randomizing [68], i.e. the projected rates o do not depend
on the angles, the projection can be simplified further to yield

Qin{f(ac, k,t)} = o(€,e) %Ylva(e)%f(m,e',t)Z(e’)dQ’dQ, (3.19)
QM f(x, k,t)} = o(e, ) j{YLmZ(e) 7{ [z, e, t)Z(e)dY d. (3.20)

This can be considerably simplified by inserting the projection of the generalized density of
states,

Zim(€ szm (6,0, 0)d9, (3.21)

into Equation (3.22). After a few algebraic operations the scattering operators finally can be
reduced to read,

Q" f(, 1)} = o(e',€) ;4 YimZ(©) 74 f(, 1) Z()dede

1 .
— %a(e/, €) Z1m () Z(€) fir g (€, )80, 180, = O s 1o (3.22)
Qout{f(wy k,t)} = 0'(67 5/) leva(E) f f(:l), G,t)Z(E,)dQIdQ
1
_ Yia(e €)Z0,0(€") Z(€) fir ymr (6, 1)81,0 Oy = Qs 1 (3.23)
0,0

3.2 The H-Transform

The spherical harmonics expansion applied to the BTE yields a set of equations for the unknown
expansion coefficients f;,, in real space and energy. For the assembly of this set of equations,
numeric stabilization techniques, such as the H-transform [68, 69], are needed [67]. The H-
transform is a linear transformation of coordinates, where the kinetic energy e is translated to
the total energy H by

(3.24)

gl la| p(x,t), for electrons,
" le+|q| ez, t), for holes.
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Figure 3.1: Sketch of the H-grid after an H-transform. The grid starts (black lines) at the band
edge (thick red line) and is uniformly spaced.

The electrostatic potential ¢(x,t) used in the transformation is obtained from a solution of
Poisson’s equation (cf. Figure 3.1). In a SHE of the BTE, the H-transform is used to eliminate
the derivative with respect to energy in Equation (3.12), rendering the set of equations numer-
ically stable. Although the H-transform simplifies the free streaming operator, it unfortunately
results in a potential-dependent energy grid, which needs to be recalculated during each itera-
tion of the self-consistent solution process. Thus, with the H-transform and Equation (3.2) the
full Boltzmann Transport Equation by collecting each term from Equation (3.10) to Equation
(3.13) for either electrons or holes at (x, H,t) reads

’or o) fl
Z(le,rj:’?atfl,mﬁ_ Zl7m 4 - VzJ lm flm F. Al mflm)

prpe bmo ot OH

" (3.25)

S Zy o (H)o(H', H ZOO Zoo(H o (H, H' Zl’m

YO’OVEN;( ot (D (H' s H) 20 fom = Zoso (H') o (HL B ZE57 i)
where the shorthands

Zzl,liénl(E) = j{Yl',m'Yl,mZ(e)dQ, (3.26)
‘7;:;21/(6) = %Y’,m’vg}/l,mz(e)dgv (327)
' m! 1 8Y/ / 8Y/ m’
Al ey = Ul Yy Z(€)dS2 3.28
0= e (oo + s YimZ 00 .28

from [47,67] have been used.

3.3 Discretization

To numerically solve the set of equations presented in Section 3.1 they need to be discretized.
In the course of this work the finite volume method (FVM) [35] has been used for the space
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spanned by the spatial coordinates and the total energy. Although it is possible to discretize
the energy space by non-equidistant grids, equidistant grids are used here for simplicity. Upon
discretization the expansion coefficients (cf. Equation (3.2)) are usually split into an even and
odd part

ff;m(ﬂz’,H,t), if [ is even,

(3.29)
fl?m(m7H7 t)7 1fl is Odd7

fLm(a:, H, t) = {

where the even part fl‘fm yields densities, such as the electron concentration, and the odd part
11, vields fluxes, such as the current density (cf. Section 2.3). This is necessary since the
Cc;ntinuity equations, which involve the odd parts of the distribution function, need proper
stabilization [70].

Figure 3.2: The sparsity pattern of the sys- S eei ol
tem matrix, where dashed red lines have ‘
been added to visualize the submatrices.
The sparsity pattern of the system matrix
with all terms excluding the time derivative
assembled is shown. As can be seen, the
submatrix S°° has no off-diagonals, since
no odd unkown couples with another odd
unkown. This allows to eliminate the odd-
order unknowns from the equation system
as demonstrated in [71]. Columns

Rows
wn
0]

8

When splitting the BTE (cf. Equation (3.25)) into equations for odd and even unkowns an
interesting pattern in the system matrix of the SHE equations emerges (cf. Figure 3.2). The
system matrix for the BTE can be split into four submatrices, depending on the coupling they
discribe. The matrix which contains couplings between even unkowns is S°. The submatrix
that couples even with odd unkowns is S and so forth. It is interesting to note that, since
elastic and inelastic scattering operators only couple even unkowns with even unkowns, the
submatrix S°°, which couples odd unkowns with odd unkowns, is a diagonal matrix. This
allows for the use of the Schur-complement to compress the matrix to the size of the submatrix
S [71]. This dramatically reduces the number of unkowns to be solved for to the size of S,
which makes the system of equations much smaller and thus easier to solve on a common
workstation. The structure of the system matrix is shown in Figure 3.3 and clearly visual-
izes the dependence of the SHE equations via the H-grid on the electrostatic potential. An
exhaustive explanation of the discretized set of equations can be found in [67].

3.4 Full-band Effects

In Monte Carlo simulators full-band effects can be integrated without further approximations
in a straight-forward fashion [25]. For a SHE of the BTE this is not possible, since the general-
ized density of states is only well-defined if there is a bijective mapping between k and energy
per band (cf. Equation (3.6)). For silicon there is no straight-forward bijective mapping be-
tween energy and wave vector (cf. Figure 2.1) and thus approximations need to be applied. The
simplest approximation for silicon is the parabolic band approximation or the Modena model
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Calculate H-Grid l Done l

Y
Postprocessing
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Y
Eliminate Odd Unkowns > Solve & Update

Figure 3.3: A flowchart of the SHE method. In every iteration Poissons equation is assembled
first. After this the H-grid is built for the assembly of the equations for even and odd unkowns.
Before solving the system of equations and reevaluating the potential and carrier concentra-
tions, the size of the system matrix is reduced by elimination of odd-order unkowns [71]. This
is repeated until changes in the potential are smaller than a given value.

together with the Herring-Vogt transform, both of which are bijective. Aside from these two
approximations, other ways to include full-band effects have been investigated and are sum-
marized in [47]. In this work the anisotropic band model and the extended Vecchi model will be
explained briefly. Both band models deliver the same amount of accuracy, whilst the extended
Vecchi model requires less computational resources. A third technique to cover full-band ef-
fects is described in [47]. In this model the first conduction band an anisotropic model is used,
whilst for higher bands an isotropic model is employed. During the derivation of said model,
the assumption of isotropic vallies for higher bands, generally throughout the derivation of the
extended Vecchi model, is delayed to the last moment of the derivation. However, this third
technique is more complex then the extended Vecchi model and will not be further discussed
in this work in favour of the simpler extended Vecchi model.

3.4.1 The Anisotropic Band Model

The anisotropic band model, developed by [72], was an attempt to increase the accuracy of the
Modena model by taking the anisotropic nature of the bandstructure into account. The main
idea of the anisotropic band model is to expand the inverse dispersion relation k(e, 6, ) for all
bands per valley n into spherical harmonics,

L l

ki (e,0,0) =D Y Kl Yim(0, ), (3.30)

=0 m=—1
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where the expansion coefficients £}’ ~are obtained by Least-Squares fitting [73, 74] to the
real bandstructure. This expansiori can then be inserted into Equation (3.6) to obtain the
anisotropic density of states for the SHE equations. Although being numerically quite chal-
lenging, the model only delivers moderate accuracy as shown in [47] and was thus not used in
the course of this thesis.

3.4.2 The extended Vecchi Model

Building upon the Herring-Vogt transformed elliptic dispersion, Vecchi et al. [58] modified this
model by using the full density of states and group velocity (cf. Figure 2.2), but still assuming an
isotropic and parabolic dispersion relation. This model has been subsequently extended by Jin
et al. [48], such that the resulting quantities, e.g. drift velocity, match better with the results
from a full-band Monte Carlo simulaton than the original band model [58]. The derivation
of the extended Vecchi model starts from the Herring-Vogt transformed density of states and
group velocity

/ _ c, v
gv(E) and vy(E) =,/ —Tv (3.31)

where m, is the conductivity effective mass and m/] is the DOS effective mass. Now the gener-
alized density of states Z is approximated such that 0||k||/0e disappears
_ 2||k[[*Olk]| _ O(gv(E)vs(E))

P50 e T e (8.5

This assumption is only justified by numerical results and shows the same quality as the
anisotropic band model, but requires significantly less computational time. Due to its minimal
runtime penalty, this full-band model for SHE has been employed in the course of this thesis.

3.5 Recombination and Generation

In Section 2.2.2 recombination/generation has been discussed for a single two-state defect
located energetically within the bandgap, better known as the SRH model [31]. This model has
been incorporated into the bipolar spherical harmonics expansion of the BTE [62]. Thus the
electron and hole BTE are now coupled by a recombination term I' and the solution f(t) of
Equation (2.32) per trap level E7. The recombination operators re/ "{ fn, fp} for electrons and
holes are

D s ) = (;VWT)?, /B Gr (k) 201 — fo) — RP(K)(L— FE() fud®,  (3.33)
TP o} = (éff)?, /B Go(k) (1 — FE()(L— f,) — RP(R) FA(E) fodP, 3.34

where Nt is the trap concentration. The expansion into spherical harmonics using Equation
(3.3), Equation (3.4) as well as the H-transfrom gives

P o fo b = NpZ7(H) (G“(H)fTu ~ Tl ~ R - fT>f;}m> S0, (3.35)

Fp{fm fp}l,m = NTZP(H) <GP(H)(Y;O — fT)(l — flzjm) — Rp(H)fol;?m> 51,05177”. (3.36)

28



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thek,

]
10
ledge

know

L]
1
r

Occupancy (1)
0.2 0.4 qTﬁ' 0.8

0.1 1.8

Figure 3.4: Trap occupancy in a NPN-transistor, where the gate potential is 0.7 V and V. =
0.1 V. Note that the base of the transistor has been named ‘Gate’.

To provide an example of the implementation of the above equations, a 2D NPN-transistor
in steady state has been simulated with a trap density of 10! cm™3 and a single trap level
at 0.1 eV away from the center of the bandgap. The domain has been discretized using an
orthonormal grid with 3600 vertices. The doping was set to Np = 10'% cm ™2 in both n-doped
regions and Ny = 10'6 cm™3 in the p-doped center. The gate potential was set to 0.7 V and V.
to 0.1 V. The resulting trap occupancy is shown in Figure 3.4.

3.6 Time-dependent SHE of the BTE

First results for a time-dependent SHE using the H-transform have been reported in [75].
However, the additional derivative,

Of(x, H,t) Of(w, H,t) OH

T OH ot
_ Of(x, H,1) 0p Of(x, H,1)
== T |q 5 BH (3.37)

resulting from the H-transform was not considered in [75] and first reported in [49]. As stated,
in a SHE of the BTE the H-transform is used to eliminate the derivative with respect to energy
in the free streaming operator.

When applying the finite volume method in the energy space, the additional coupling terms
read

. /H7T 0 Ofi(Hy, i) Zi(Hy)

= 14 OH
Api [T O fi(Hp, trs1) Zi(Ha)
= +|q] At/ By dH
A % an )t Zz Hn - iHn—yt Zz Hn—
— 41l ASO filHn1, k1) Zi(Hny1) — fi( Hn—1, th1) Zi( 1)7 3.38)
t 2
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where the subscript 7 denotes the ith spatial grid point and n is the nth energy grid point
(cf. Figure 3.7). The energy space is discretized using equidistant sampling points, that is
H, — H,_1 = AH, where AH is the distance between two adjacent energy grid points. For
integration H," and H,, are used and defined as

Hf = (H,+ H,11)/2, (3.39)
H, = (H,+ H,1)/2. (3.40)

Although it is possible to discretize the energy space by non-equidistant grids here, we use
equidistant grids for simplicity. The additional term on the right hand side of Equation (3.38)
couples neighboring energies for even and odd-order unknowns in the system matrix S

See Seo fe B be
<Soe Soo> <f0> - <bo> I (341)
N————

S

where f/° are the even and odd unkowns respectively, b%° is the right hand side for even and
odd unkowns, S is the upper left sub-matrix coupling even unknowns to even unknowns,
and S°° is the lower right sub-matrix coupling odd-order unknowns with odd-order unknowns,
and so forth. In a SHE of the stationary BTE the sub-matrix S°° is a diagonal matrix. This
makes it possible to reduce the number of unknowns considerably using the Schur-complement
(S — 8§°°(8°°)~18°°)x° = b° — §°°(8°°)~1b° as shown in [71]. When assembling the time
derivative the coupling of energies introduced by Equation (3.38) for even-order unknowns
appearing in S is similar to any coupling an elastic scattering operator would introduce. But
the coupling of the energies for the odd-order unknowns from Equation (3.38), showing up in
S§°°, destroys the diagonal sub-matrix structure of S°°. This in turn increases the effort to
eliminate the odd-order unknowns [71], since one has to carry out multiple line operations to
restore the diagonal structure of S°° in order to reduce the number of unknowns as it is done
in a SHE for the time independent BTE (cf. Figure 3.5). To account for the time derivative of the
expansion coefficients in the expanded BTE, we first assemble the stationary BTE and include
Equation (3.38). Thus, the additional derivative for the total energy H in Equation (3.37) is
accounted for. Now, assuming a known solution f; of the SHE equations at time ¢, the fully
assembled SHE equations for the next time t;,1 = t; + At without 0, f /P are given as

J J
Sy i = by (3.42)
where j denotes the jth iteration of the non-linear solver (e.g. Newton-Raphson). In order to
assemble the time derivative for ¢;;, we use the implicit Euler scheme, although other more

complex higher-order methods are available [76]. After a few algebraic transformations this
yields

. T .
At <S{€+1 + At) =Atby | + [, (3.43)

where I is the unit matrix. Thus, one can assemble the system of SHE-BTE equations in
each iteration of any non-linear solver as before and then include the time derivative by simple
algebraic manipulations of the assembled stationary system of equations.
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Figure 3.5: The sparsity pattern of the system matrix before and after diagonalizing S°°,
where dashed red lines have been added to visualize the submatrices. On the left hand side the
sparsity pattern of the system matrix with all terms (left figure), including the time derivative,
assembled is shown. As can be seen the submatrix S°° has non-zero offdiagonals, which
prohibit the elimination of the odd-order unknowns. Through simple line operations the system
matrix can be transformed such that S°° is a diagonal matrix again. This allows to eliminate
the odd-order unknowns from the equation system as demonstrated in [71].

3.6.1 Comparison to Drift Diffusion

A comparison of the time derivative in the BTE and in the drift diffusion equations can be
made by reproducing and exploring the origins of plasma oscillations. In this section the
mathematical coherences between plasma oscillations as described by the BTE and by the drift
diffusion model are compared.

Oscillations of the whole electron plasma in a semiconductor occur when electrons are shifted
out of their equilibrium position around the fixed ions. Upon relaxation back into their re-
spective equilibrium positions, the electrons oscillate around their equilibrium position. The
characteristic frequency of plasma oscillations in a semiconductor is

ng>?
w =
P KM

where n is the carrier concentration, m, is the electron mass and in this section here x is used
to denote the dielectric constant. For silicon wy, is usually on the order of 1 THz. We expect to
see a peak in the real part of the admittance of a semiconductor device at the plasma frequency
[36]. In the following we will use this fact to asses various assumptions for simulations using
SHE and a stability analysis and show why the plasma frequency is important to test these
assumptions. As stated, upon solving the time-dependent BTE using SHE and the H-transform
one has to include an additional term in the time derivative (cf. Equation (3.37)) due to the H-
transform. This term couples neighboring energies for even and odd-order unknowns. In
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particular, the coupling of the energies for the odd-order unknowns destroys the diagonal sub-
matrix structure. One possible way to solve this is to diagonalize the sub-matrix for odd-order
unknowns by a suitable algorithm before applying the algorithm from [71]. Nevertheless, this
transformation renders a required stability analysis intractable. Another possibility to solve
this problem is to assume that the potential change over time (cf. Equation (3.37)) as well as the
gradient of the distribution function over energy are sufficiently small, effectively eliminating
the couplings of the energies for the even and odd-order unknowns. As will be shown, a
physically sound way to solve the problem of additional couplings for odd-order unknowns is
to assume that the time derivative in the equations for the odd-order unknowns is sufficiently
small. More precisely,

q ASOZ o o
2‘A|.EMA7§( i,k—l—l(Hn-H) - fi, k—l—l(Hn—l)) ~ 0.

-1
ATH(f e — o) £
In order to assess the physical meaning of the above assumption we take a look at the drift dif-
fusion model and show that neglecting the time derivative for odd-order unknowns is equivalent
to neglecting the acceleration term

TmOrJ (3.44)

in the drift diffusion model, where J is the current density and 7, is the moment relaxation
time. This assumption is equal to neglecting plasma oscillations and was shown to be valid
for frequencies up to the plasma frequency [36]. For the drift diffusion model only the first two
moments of the BTE are used, where closure is obtained by assuming equivalence of carrier
temperature 7, and lattice temperature 7;,. The moments of the distribution function are
calculated using

(i) = /B bk = w, /B K fdd, 3.45)

where j is the jth moment, v); denotes the jth weight function and p; is the jth prefactor. To
obtain equations for the moments of the BTE, such as the drift diffusion model, the BTE is
multiplied by increasing integer exponent of the wave vector k and a scalar prefactor w and
afterwards integrated over the Brillouin zone. The first two moments of the BTE read

=1 = Ak =
bo=1 = (go) /Bf n
o1 = bk = (1) :h/kad?’k

:h(/kaed%ju/ka"d%) =J/q,

=0

where 7 is the electron density. The integral over the even part cancels out due to the sym-
metry of the first Brillouin zone. Thus, the current density is associated with the odd part or
asymmetry of the distribution function. Applying the method of moments, assuming parabolic
bands, and approximating the scattering operator Q{ f} using the relaxation time approxima-
tion (RTA), one obtains the drift diffusion model [22]. Repeated from chapter 2 Section 2.3.1,
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the drift diffusion model with acceleration term, excluding Poisson’s equation, reads

Yo =0mn — || ' V-J, = —R, (3.46)
Y1 =m0y — |d| TmksYV - (nT1,) + m*J, =0, (3.47)
with 9y, = / ko fd’k = 0y / kfod’k (3.48)
B B
with the mobility i, = |q| 7m/m*, R the scalar recombination term from R"{f", fP}, m* is

the effective mass and kp the Boltzmann constant. As derived above the current density is
associated with the odd part of the distribution function and thus also with the odd expansion
orders in a spherical harmonics expansion. Thus neglecting the acceleration term in the DD
model is equivalent to neglecting the time derivative of the odd part of the distribution function.

3.6.2 Stability

Even if the time derivative has been correctly implemented, numerical stability issues might
still araise and lead to numeric artifacts in the simulation results [77]. At least a guideline, for
how small Az for spatial, AH for energy space and At for temporal discretization have to be in
order to avoid any numeric artifacts, is required. To investigate the numerical stability of the
time-dependent SHE-BTE a von Neumann analysis for electrons is carried out. The analysis for
holes is done in the same way, yielding the same results and thus not shown here. Since the full
numeric system is too complex and analytically intractable, we need to simplify matters. Thus,
in the following we neglect plasma oscillations in the calculations to avoid the time derivative
of the odd unknowns in the SHE. To keep the equations in the stability analysis as simple
as possible, the finite volume method (FVM) in the 1D case under bulk conditions for silicon
(cf. Figure 3.7) is used. Thus the force F', the generalized density of states Z as well as the
group velocity v(k) are assumed to be spatially constant. To avoid notational clutter we use a
superscript (0) to mark odd-order unknowns, indices and variables. The same is done for even-
order unkowns (superscript e). We also drop the indices [, m, I’,m’ including the summation
over these indices as well as the arguments to the distribution function. Additionally, we
consider only elastic, velocity randomizing scattering processes and neglect the Pauli principle
to further simplify the analysis. To summarize, we condense the scattering operator to

c®, for even-orders

c°, for odd orders,

1
m(s(ﬂ% Ei, Ee) Z(Ef) 1m0 00m: 0 — s(x, By, E3) Z(E;)0,000 10m/ m) = {

)
in-scattering out-scattering

where Yo is the first spherical harmonic, s is the scattering rate. Inelastic processes are
not considered in the stability analysis. This assumption is needed to decouple the equations
with respect to the total energy, which in turn leads to a tractable number of equations.
Following [47, 66] the expanded and discretized BTE in a single spatial dimension (cf. Figure
3.7) for odd expansion orders reads

(e} Ae’+ € € Be7+ (] (] O ro
O f° + Ar (fi+1,k+1 -1 k+1) + Ec (fi,k+1 + fi+1,k+1) =CJir1/2, b+
~0
e, — Be,+
(0] € (] (] (] O rO
O+ A (Ffper = Fion k) + 5 (o h1 + St k1) = CF 12 mg1s
~0
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where fff ;. is the even unknown expansion coefficient for /,m at vertex ¢ in the kth time step
and [, is the same for odd unknowns for I',m'. Note that in the equations above we have
neglected the acceleration term by setting the time derivative for odd unknowns to zero. For
even-orders the expanded BTE in 1D reads

_ 1 1
A (ff e = foR) — BYNI la] Agp; AL (fi k1 (Hpg1) = £ 1 (Hn—1))
N——————
=y =k ®
Ae, + A&~ B + B& —
+ Az zp+1/2,k;+1 N ff—1/2,k+1 T T ff—l/z, k+1 7 T f+1/2,k;+1 = Cefikﬂ-

Here it was assumed that f7, ., (H,+1) can be written as f; k+1Xi and Y = Y — x~, where
Xi are measures of how strong the distribution function increases/decreases over energy. In
the above equations the shorthands

+

Hn [
A/ E _/ JﬁnT (Tix1/2, Hn)dH, (3.49)

n

Hyy
Be/oE = AL (24410, Hy)dH, (3.50)
Hy

have been used for even and odd-orders, where A and j are the shorthands from Equation
(3.26) for integrals over spherical harmonics. In this discretization A¢/%% accounts for the
projected diffusion term in the free streaming operator of the BTE, whereas B%%¥ is the
projected drift term and thus dependent on the driving force (electric field). Since we are
assuming a homogeneous material and a constant driving force, we have A%+ = A% ~, B&+ =
B®~, A>T = A%~ and B> = B . With the simplified system given above, a von Neumann
stability analysis is possible. For this we
(i) eliminate the odd unknowns in the equation for the even unknowns,
(ii) Fourier transform the obtained equation in space to transform spatial offsets into phase
factors and
(iii) express the gain G as a function of Az and At.
The Fourier transforms, where j is the imaginary unit, of fff . and f;j , read GFF*e exp (—jif)
and GFF° exp (—j10) respectively, where G is the gain. Thus one obtains, after a few algebraic
transformations, the gain

5 — (a°b® + a®b°) cos(6) + (a°b° — a°b®) sin(6))?

Q12 = , (3.51)
< (y —2)?
where
5 =c°c®At™2(a%a® + b°b° 4 °(c® — At™ + yx At
y :a02be2 + CLe2(a02 e 2)
+2a%a° (0°V° + c°(c® — At~ + yxAt))
+ (0°0° 4 (¢ — At™H + At 1yy))?,
2 =2(a®b° + a®b°)(aa® 4 b°b° + °(c® — At 4 yyAtTY)
cos(#) + 2a°a’b°b° cos (),
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and

. A8 + B + o A9 + BO +
0= = (3.52)
. AS + B¢ + R A© + B% +
be = - 00 = - (3.53)
Ax 2 Ax 2

In order to have numeric stability of the time-discretized SHE-BTE in the von Neumann sense
[78], the following relation must be fulfilled

Gl <1 |G <1, (3.54)

which states that any frequencies propagated by the BTE must not be amplified. For the lowest
expansion order L = 1 the stability condition reduces to At > 0, since for the lowest order we
have ¢ = 0 and B = B’ = 0 due to the H-transform. For L > 1, the stability condition reduces
to

(2 —x)
At < , if < 2, 3.55
— a° (ae _ ae) + bo (be _ ae) + cec® yXx ( )
At > 0, otherwise, (3.56)
provided that
c®>0and c® <0. (3.57)

These conditions are naturally fulfilled due to the M-matrix property of the SHE equations for
the lowest expansion order L = 1. In the limit of no driving force,

B =0and B°* =0 and ~v =0, (3.58)

or sufficiently small driving force

Aei‘
Be:l: ’
1B < =

|A°F]

d BO:l:

(3.59)

the stability condition reduces to

(3.60)

At < (Q_VX)/CQ7 1f7X < 27
> 0, else,

where ¢ is usually of the order of the density of states. Even though the above relation has
been derived using a number of simplifying assumptions, it can be used as a rough guideline
to choose At.

3.6.3 Energy Grid Interpolation

Aside from the usual stability concerns regarding hyperbolic partial differential equations dis-
cretized using the finite volume method, the H-transform poses another restriction to the max-
imum At¢. When considering the time-dependent BTE, the old solution f(x, H,t;) from time
step ¢, has to be transferred from (x, H*) to a new grid (x, H**1) (cf. Figure 3.6). Convergence
problems and numerical artifacts arise whenever a value of the old distribution function on
(x, H*) cannot be transferred/interpolated to a point on the new grid (x, H**!), because there
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Figure 3.6: The transfer of the old distribution function at time t; from (x, H*) (top graph)
to a new grid (z, H kH) (bottom graph) during the iterations of the non-linear solver. If the
change in the electrostatic potential ¢ is larger than AH/ |q| there are grid points (red dots) in
the new grid (red grid lines) for which there is no value of the old distribution function at time
t;, available to be transferred from the old grid (question marks).

is no value of the old distribution function available at that particular energy. This problem is
always present, whenever the potential from time tj, to ¢ = t; + At changes by more than

— AN (3.61)

where AH has to be carefully chosen. One can now either choose AH large enough to ac-
commodate a predicted potential change Ay within a time step and accept the inaccuracies
in the distribution function introduced by this choice, or choose the boundary conditions for
the Poisson equation and the subsequent time steps carefully in order not to violate Equation
(3.61). This is very unsatisfying, since it is for example not possible to apply step functions
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as boundary conditions, with steps larger than Ay. However, in case one is interested in the
small signal response, a linearization of the free streaming operator of the BTE around the bias
point [47] should be used instead of the time-dependent BTE to avoid the condition in Equation
(3.61).

Even if the condition in Equation (3.61) is not violated, the distribution function f(x, H k k)
needs to be transferred to the new grid such that the macroscopic quantities, that is charge
carrier concentration and charge carrier current, are not modified by the interpolation of f from
(x, H*) to (x, H**1). Thus, the charge carrier density and current density are not modified by
the interpolation of f from (x, H*) to (, H**1). Since the even part of the distribution function
completely defines the charge carrier concentration and the odd part defines the charge carrier
current, the even part is transferred such that

fo(x, H* ) Z(H*) = f(a, H* 1) Z2(HY) (3.62)

holds for the conservation of the carrier density. Likewise the new odd part f°(x, H**! ¢ )
is independently renormalized such that

fo(z, H* 1)) Z(H"yug(H®) = f(x, H¥ ) Z(H* Vo  (HF) (3.63)

is fullfilled, in order to keep the current density constant. However, interpolation errors will
occur during the transfer of the old solution onto the new H-grid, even if the condition in
Equation (3.61) is fulfilled. Since the band edge is shifted by the potential during a single
timestep, the first energy grid point (H* = 0) closest to the band edge will be shifted under the
new band edge or a grid point below the old band edge (H k = —1) will be shifted above the
new band edge. In the first case a sample point for the distribution function is lost. In the
second case a new energy grid point for which there is no old distribution function available
will be obtained. This effect cannot be mitigated when the H-transform is employed. The error
introduced by this is quantified by

fe/o(:m Hk-i—l’ tk)Z(Hk—i-l)
At ’

(3.64)

3.6.4 Probable Violation of Gauss’ Law

As stated in the previous section, it is currently not possible to avoid errors during energy grid
interpolation. To better understand the implications of this, the discretized SHE-BTE equations
per energy grid point, for a three-point stencil are investigated. In Figure 3.7 a homogeneous,
uniformly discretized three-point stencil for a single spatial dimension is shown. The system
of equations for this simple three point stencil will be derived and evaluated in the following.
Assuming that the even unkowns on the left and right point of this three point stencil are fixed
by dirichlet boundary conditions, only the even expansion coefficient f;’ in the center and
the two odd unkowns on the two edges f;  need to be determined. To simplify matters, a
first-order expansion (L = 1) and elastic s7cattering is assumed. Thus we are left with three
unkowns, the even unkown f(i]’o, the odd unknown on the left edge ffol/ ? and the odd unknown

551/ % on the right edge. For these unkowns the equations of any point on the H-grid read

. X AA . . i— AA : 3 i
V20, fi, > xvl—l/QZI—l/szOl/? i Jv1+1/2zl+1/2f151/2 =0, (3.65)
VZi_l/Q@tfﬁ)l/Q AAJ? Wi 1/2 7= 1/2f1 1 Aﬁx i=1/2 i— 1/2f1 Sfl 1/2 V, (3.66)
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where V' is the box volume, Z is the generalized density of states, v is the group velocity, S is
the elastic scattering term and the interface area A between two points connected by an edge
is assumed to be equal to unity. Introducing a = (AAx)/(2V), neglecting the time derivatives
of the odd-order unkowns for the sake of argument and using a Backward-Euler scheme one
obtains

iri i,old gi,old i,old fi,old
Z fo,o -Z fo,o _ Z fo,o
At At
N————

Energy grid interpolation error
Ap; fi(Hny1,tir1) Zi(Hny1) — filtHp—1,tk11) Zi(Hp—1)
At 2

_ a2§— Ly 1/2 7i-1/2,i-1/2 yi-1/2 (f(i),o - (1)51)

g

+q

@SR (i) (3.68)

B

where the quantities form the previous timestep are highlighted by the superscript old and the
energy grid interpolation error has been considered. Since it will be important when considering
the time derivative, it is shown how to obtain the familiar charge conservation law (Gauss Law).
Integration of the above equation over energy from H = 0 to infinity yields term by term,

oyn; — (D1 + Dz)ﬁi 4+ 04+ Dongq1 + 2(D1 + DQ)ni — Din;—1 =0, (3.69)

where D are transport coefficients and

oo zi,old f[i),gld
AU S 3.70
/0 At " (3.70)
* Ap; fi(Hny1,thes1) Zi(Huyr) — fitHp—1, i) Zi(Hp -
¢ Aﬁ fi(Hnt1,tk41) Zi(Hn11) . JilHp—1,tk 1) Zi( 1)dH:O. 3.71)
0

If there is no interpolation error at all, i.e. #; = 0, one would obtain the familiar charge
conversation law

om' — Din'~t + (D1 + Do)n! — Don'™t =0, (3.72)

instead. From this it is clear that any energy grid interpolation error leads to artifacts (n) in
the charge carrier density.

Figure 3.7: Illustration of a staggered three n+1 !
point stencil in a single spatial dimension. ¢ ¢
The even unknowns are assembled on the I I
vertices (blue circles), whereas the odd un- , 4 ! i—1/2 ! i+1/2
| ¢ I
I

knowns are assembled on the edges. Addi- n ‘ I
tionally for each vertex there is an equidis- U AH
tant grid (green circles) for the total energy !
of the charge carriers over which the distri- ’ n—1 ’ ‘I
bution function is resolved. | I |
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Figure 3.8: A schematic of the 1D domain used. In this experiment a Gaussian disturbance
in the electron density was introduced close to the left terminal (LT) by raising the energy
distribution function uniformly over energy. The carriers then drift, caused by the electric
field, towards the right terminal (RT) and diffuse in all directions.

3.6.5 The Shockley-Haynes Experiment

To assess the derived results we added the time derivative of the BTE to the open source
simulator ViennaSHE [65]. In the first numerical experiment, similar to the famous Shockley-
Haynes experiment in [79], the drift and diffusion of minority carriers in a p-type silicon resistor
5 um long under carrier-phonon and impurity scattering were investigated. The Shockley-
Haynes experiment was selected, since throughout the whole simulation the potential and thus
the H-grid remain virtually unchanged, provided that the distortion in the carrier concentration
remains small. Assuming symmetry in two axis, the simulation was carried out in a single
dimension using a Az of 10 nm. Additionally, to have the low-field conditions required for
the estimation of the low-field mobility, we chose an uniform electric field of 0.5kV /cm. In
this initial configuration we artificially introduced, at time zero, a Gaussian disturbance in the
electron density (cf. Figure 3.8), such that changes in the electric field over time can be safely
neglected. This was accomplished by uniformly raising the electron distribution function over
the energy such to reach the desired electron density. Then a time-dependent simulation with
a stepping of At = 10 ps was carried out. Since changes in the electric field have been kept
neglected, the displacement current was neglected too. In the first few hundred picoseconds
the high energy carriers diffuse strongly. Thus, at first most electrons diffuse out of the left
terminal before being accelerated towards the right terminal by the small electric field (cf. Figure
3.9). To see most of the diffusion in the current, the disturbance has been placed close to the
left terminal (cf. Figure 3.10). After 700 ps the carrier drift dominates and the current through
the right terminal peaks. One can also calculate the low field mobility from this experiment
by observing the velocity of the electron peak towards the right contact. In the presented
experiment we obtained an electron mobility of 1430 cm/Vs with an uncertainty of £20 cm/Vs
due to the discretization.
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Figure 3.9: The electron
current over time in a p-
type resistor (cf. Figure
3.8) for the left (LT) and the
right terminal (RT). In good
approximation it can be
said that the current at the
left terminal corresponds
to the diffusion and the
current at the right ter-
minal corresponds to the
drift of the electrons. It
is also noticeable that the
electron current at the left
terminal is higher for drift
diffusion compared to a
SHE solution of the BTE.

Figure 3.10: The electron
concentration in a p-type
resistor for various times.
At time ¢t = 0Os a Gaus-
sian disturbance is intro-
duced and observed over
time. In the first few time
steps (At = 10ps) the car-
riers strongly diffuse, be-
fore gaining enough mo-
mentum towards the right
terminal (5pum).
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Das ist nicht nur nicht richtig, es ist
nicht einmal falsch.

(Wolfang Pauli)

4 Quantum Correction Methods

In Section 2.6 and Section 2.7 purely quantum mechanical effects and quantum transport have
been briefly discussed. During the derivation of the BTE, purely quantum mechanical effects
such as confinement have been ignored. As stated in Section 2.6, a Schrédinger equation for the
confined electron gas has to be solved in order to obtain the correct electron density. Solving the
Schroédinger equation (cf. Equation (2.57)) self-consistently with the BTE for electrons and holes
as well as Poisson’s equation might be computationally too demanding. Thus, approximations
are sought, which at least capture the most important characteristics of confinement and
quantum transport. Since having the physically correct electron concentration at the interface
of any MOS structure is of highest importance, the effect of carrier confinement should be
correctly reproduced by any approximation. One of the first approximations to be used was
the improved modified local density approximation (IMLDA) [7] and its predecessor MLDA [80].
Both methods are based on solutions of the Schrédinger equation for an infinitely wide square
well potential, where IMLDA also takes the electric field normal to the oxide-semiconductor
interface into account. Nevertheless, IMLDA can only be used to obtain a corrected electron
or hole density at the interface of MOS structures, where carrier confinement occurs. As will
be shown later in this work, the important case of screening of a single fixed point charge in
a semiconductor or insulator needs to be correctly and generically described. The model to
describe carrier confinement considered in this work is the density gradient approximation.

4.1 The Density Gradient Model

A method, other than IMLDA, to describe carrier confinement in arbitrary potential wells is
called ‘density gradient’ model (DG) [5,81-83], which is a first-order quantum-correction model.
Density gradient uses, as its names suggests, the gradient of the carrier densities to describe
carrier confinement by locally modifying the electrostatic potential through a correction poten-
tial «v. Nevertheless, neither the charge carrier wave functions nor the sub band structure can
be obtained by this approach, although it might be possible to assess direct tunneling using
DG [83]. The equations for the correction potential are derived from Wigner’s equation, where
it is assumed that any effects associated with Fermi-Dirac statistics and many-body effects can
be safely neglected. Additionally, the effective mass and parabolic band approximations are
used and it is assumed that the described electron gas has an infinite extent. The correction
potential y(x, t) reads [82,83]

@)= — (v2 (@,1) — —— (Vap(a t))2> @.1)

NEs 12)\kBTLm* 2L 2kBTL SR ’ .

where ) is a fitting parameter, which is determined by comparing the carrier density in a MOS
structure to the carrier density obtained by the solution of Equation (2.57). Since the electric
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field E = —V_¢ can be undefined at abrupt potential steps, the electrostatic potential ¢ is
replaced, in the above equation, by ¢ + -, yielding

h2

ety = =T (viso(m,t) V()

2
T 12\kgTLm* (Vap(z,t) + Vay(z,t)) ) . 4.2

2kp1r,

which is fine for this first order model, since the error in 7 is of second order. This correction
potential has to be calculated separately for each carrier type and added to the electrostatic
potential for and only for the respective charge carrier transport equation.

4.2 The First-Order Quantum Corrected Drift Diffusion Model

The density gradient model is first applied to the drift diffusion model (cf. Section 2.3.1), where
in thermal equilibrium the electron concentration is given by

Ec_ —In
n = Ncexp </€BSDTL7> . (4.3)

Inserting the above relation into Equation (4.2) yields

h2
B 12\, kT, m},

B h? V2y/n
6\ kpT1im}, vn ’

Tn = (4.4)

1
<Vm2 In(n?) + §(Vw ln(n))2> =
which gave the model its name ‘density gradient’.
Applying the model to the drift diffusion equations, the quantum corrected drift diffusion
equations now read:

V.- (eVy) =ld (n—p+C), (4.5)
| On — VJn = [q| R, (4.6)
lq| dp + VI, = — || R, 4.7)

Jn = —|d| V(e + ) + |a| DaVn, 4.8)
Jp = —a| upVa (e + ) — lal DpVp, (4.9)
h2 2 2 2
n = 75y .7 % n — x xIn , 4.1
T TN ks Toms, <Vw‘p TV Sy, (V= Ve ) (410
h2 2 2 1 2
= - . 4.11

4.3 The First-Oder Quantum Corrected SHE of the BTE

The density gradient model has been previously successfully introduced into a full-band Monte
Carlo simulator [84]. Introducing quantum correction potentials in a SHE of the BTE influences
the step in which the H-grid is calculated, shown in Figure 3.3, quite strongly. First the
discretization of the H-space needs to be split for electrons and holes, since different correction
potentials are applied for electrons and holes respectively. When evaluating the recombination
terms (cf. Section 3.5), care must be taken to only use the distribution function directly or the
charge carrier concentrations, but not the quantum corrected electrostatic potential in order

42



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thek,

L]
lio
nowledge

b

L]
|
r ki

M You

to avoid mistakes. Incorporating the quantum correction potentials

K2 1
n=-——— [ Vo4 V3, — Vo + Vv )? 4.12
T = Ton ks Ty, ( 2P+ VY 2kBTL( #+ Vo) > (4.12)
___ P V2o 4+ Y2y, — — (Ve + Vayp)? (4.13)
T W i ST A R '

for electrons and holes respectively leads to a modified H-transform

gl la| [p(x,t) + yn(x,t)], for electrons 4.14)
€+ ’q’ [SO("B') t) + ’YP("I% t)]a for hOIeS’
where the force F' is calculated per charge carrier using
Fr(w,t) = —Va(£Ec F [d] [o(x, 1) + n(x,1)]), (4.15)
Fy(x,t) = —=Va(+Ev T [a] [p(2, 1) + (2, 1)])- (4.16)

4.4 Discretization

Various authors [85-89] reported numeric instabilities, when directly applying the finite vol-
ume method to Equation (4.2) using drift diffusion and thus developed various discretization
schemes for DG and developed higher resolution schemes. An almost complete list of schemes
is given in [9]. In this work only two discretization schemes, suggested by [9], will be discussed.
The first discretization is called the simplified scheme, which simply neglects the second or-
der term in Equation (4.2) and exhibits numeric stability. The ‘full scheme’, is the second
discretization of Equation (4.2). In this scheme Equation (4.4) is used instead of Equation
(4.2). In the course of this thesis, both schemes, have been implemented in ViennaSHE [65].
The simplified and full scheme have been implemented into the device simulator MinimosNT
by [90]. In all implementations convergence of the non-linear solver has been achieved without
any problems for the full and the simplified scheme. Although the simplified scheme often lead
to faster convergence for the non-linear solver, when used in a Gummel-loop with the spherical
harmonics expanded BTE.

4.4.1 The Simple Scheme
Following [9], the second order terms in Equation (4.2) are neglected yielding,
y(zx, t) = _m (V2p(z,t) + Viy(z, 1)) (4.17)
’ 12 \kgTym* * ® ’ ® ’ ’ '

in a homogeneous semiconductor. Directly applying a finite volume discretization gives

'_leAij( v — s — ) 4.18)
= T V; 2 dyy P800 ,

where V; is the volume of the box around vertex i, A;; are the interfaces and d;; are the
distances between vertices ¢ and j. Additionally it has been assumed that the semiconductor
is homogeneous.
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4.4.2 The Full Scheme

In the full scheme, Equation (4.2) is replaced by Equation (4.4). Thus the equations for electrons
and holes to be discretized are

h? V2\/n(zx,t)
6AnkTLm), \/n(x,t)
R ViVp(,t)

6ApEBTLmy  \/p(,t)

(4.19)

Wp(wﬂ t) =

(4.20)

Yn(x, t) =

Applying the finite volume method yields

h? 1 Aij AVaALZ]
o - Vg, 4.21
Tt = T A kg T Vi 2 <ﬁn +-21)

( i _ 1) , (4.22)
VDi

which can result in convergence problems, since changes in the electrostatic potential result in
exponential changes in the charge carrier concentrations. To mitigate this one can approximate
the charge carrier concentrations using Boltzmann statistics and thus obtains

h? 1 Aij Cit Y@=
ni=———— -1, 4.23
T, GARkBTLm;‘L Vi ; dij (eXp ( 2 ( )

h? 1 Aij Cit+Y— i
= 1), 4.24
. Gx oL V, Ejj 0 <exp< 5 (4.24)

5 i
o h? 1 Ajj
T BN kaTLmy Vi £ dy

where it was assumed that the semiconductor is homogeneous.

4.5 Boundary Conditions

There are at least three possible choices of boundary conditions. Systematic research was, for
example, conducted in this area by [9, 90], where all kinds of conditions, such as

v=f  Dirichlet, (4.25)
g% = f  von Neumann and (4.26)
0
oy + ﬂ% =f Robin (4.27)

boundary conditions have been tested, where d is the normal vector of the oxide semicon-
ductor interface, «, § and f need to be reasonably chosen. At the boundaries of the device
or semiconductor segments which do not border to an insulator segment Dirichlet conditions
with v, = 7, = 0, have always been employed throughout the literature. Whereas various
types of boundary conditions at semiconductor-insulator interfaces have been tested, includ-
ing Dirichlet, von Neuman and Robin conditions. It is necessary to find boundary conditions
for semiconductor-insulator interfaces with which it is possible to correct the electrostatic po-
tential such, that the carrier concentrations calculated by the transport model yield the same
as predicted by the Schrodinger equation (cf. Section 2.6). It was shown that Robin boundary
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Figure 4.1: Calibration results for a density gradient model for quantum corrected drift dif-
fusion, implemented in MinimosNT, to a solution of the Schrédinger-Poisson equation, using
VSP [51]. In this case the fit has been obtained using a 1D NMOS structure, Robin boundary
conditions at the silicon-silicon-dioxide-interface, an acceptor doping of 3 - 10'7 cm ™3, an oxide
thickness of 1 nm and a uniform grid spacing (orthonormal grid) of 0.1 nm. A second fit using
a grid spacing of 1 nm and 2 nm are shown to illustrate the grid spacing dependence of density
gradient. The parameters have been previously published in [90].

Gate contact

Figure 4.2: The boundary condi-
Insulator tions applied for density gradient in
a 2D MOS structure. The Dirich-
let conditions, where the correction
potential vanishes, are drawn in
== Tunneling BC. green. If tunneling is not consid-
ered, Robin conditions are used at
the interface (shown in red). In case
tunneling is assessed using den-
sity gradient, the Robin condition
is replaced by a Dirichlet condition
(termed Tunneling in the graph) at
Bulk contact the insulator-gate interface.

=== Dirichlet BC.
== Robin BC.

conditions prove to be the best choice at semiconductor-insulator interfaces, since they allow
the best fit with the carrier concentration obtained from a solution of the Schrédinger equa-
tion [90]. Subsequently Robin boundary conditions at semiconductor-insulator interfaces for
Equation (4.2) are used throughout this thesis (cf. Figure 4.2). However, it was found on [91]
that upon solving Equation (4.2) for insulator segments too, it has been suggested that it is
possible to assess direct tunneling. Nevertheless, in the course of this thesis this feature of the
DG model was not used since a more powerful technique, namely NEGF, is available to assess
direct tunneling currents through oxides in MOS structures.

45



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thek,

L]
lio
nowledge

b

L]
|
r ki

M You

6 X ].017 T T T T T T T 2 X 1017 T T T T T T T
Density Gradient ---©--- Density Gradient ---©---
5% 1017 } Schrédinger i Schrédinger
—~4x 1017} - —~
7 7
E3x10'7} - = 1x107 ¢ -
= ' =
=2x10'7} - @
1x 107§ -
O X 100 1 1 1 1 1 0 X 100 1 1 1 1 1 1
01 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
Distance from the Interface (nm) Distance from the Interface (nm)

Figure 4.3: Results of the calibration of the DG model to a first-order SHE [65] using a
solution of the Schrodinger-Poisson equation obtained via VSP [51]. Left: The fit for electrons
has been obtained using a 1D NMOS structure, Robin boundary conditions at the silicon-
silicon-dioxide-interface, an acceptor doping of 3 x 10'" cm™3, an oxide thickness of 1 nm and
a uniform grid spacing (orthonormal grid) of 0.1 nm. Right: The fit for holes has been obtained
using exactly the same device as for electrons but instead of an acceptor doping a donor doping
of 3 x 10'" cm ™ has been used. The parameters are given in Table 4.1

4.6 Cadlibration

Whether or not DG reproduces confinement correctly largely depends on the boundary condi-
tions, the mesh spacing and the parameters )\, for electrons and A, for holes. As stated in the
last section, Robin boundary conditions at insulator-semiconductor interfaces have proven to
be best suited since they deliver the best fit with the carrier concentrations obtained from a
solution of the Schrodinger equation (cf. Section 2.6).

4.6.1 Cadlibration for the Drift Diffusion Model

In Figure 4.1 the results of a fit, with a density gradient quantum corrected drift diffusion
model, for electrons are shown for various grid spacings. This figure clarifies the need for
a finely spaced grid for simulation, when using a quantum correction model. In Figure 4.4
Capacitance-Voltage curves, obtained by density gradient and a Schrédinger-Poisson solver,
for n- and p-channel 1D MOS structures for various dopings are shown and compared [90].
Since density gradient does not exhibit a free, doping dependent parameter, a set of parameters
only works for a certain bulk doping [5]. This is the main disadvantage of density gradient.
Another requirement of density gradient, as for any Schrodinger-Poisson solver, is that the grid
needs to be in the sub-nanometer regime in order to fully refine the 2D electron gas in a MOS
structure, as demonstrated in Figure 4.1.

4.6.2 Cadlibration for a SHE of the BTE

This section is devoted to the calibration of density gradient in ViennaSHE [65]. To this end
Robin-Boundary conditions and the simple scheme have been implemented and a comparison
with VSP [51] has been carried out in weak inversion. The parameters of the fit are given in
Table 4.1 and the resulting calibration is shown in Figure 4.3.
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Carrier Type ‘ e} ‘ B ‘ /
Electrons | —61.3V/m | —11.4-107° V | 0.0
Holes —36.9V/m | —8.3-107°V | 0.0

Table 4.1: Robin boundary condition parameters for density gradient and SHE. The parameters
have been obtained by manual optimization using VSP [51].
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p-channel
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Figure 4.4: Capacitance-Voltage curves for various channel dopings in 1D MOS structures,
obtained by a DG solution compared to a solution obtained using VSP [51]. Well visible is the
increasing discrepancy between DG and a real Schrodinger-Poisson solution for dopings above
and below Np = 107 em™3, for which the Robin boundary condition coefficients have been
fitted to the Schrodinger-Poisson solution. For comparison the CV-curves obtained using plain
drift diffusion are shown in black. The fitting parameters used with MinimosNT have been
previously published in [90].
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5 Variability

In the full system of equations (cf. Equation (2.27) in Chapter 2) the fixed charges expressed
as a charge density on the right hand side of Poisson’s equation are modelled as macroscopic
densities. All charges, whether they arise from doping, the free carriers or traps have so
far been viewed as macroscopic quantities, neglecting their granular nature. This approach
is well-applicable as long as the number of charged particles is large enough, which is the
case for semiconductor devices with characteristic lengths larger than devices of the 100 nm
node [3]. The influence of the granular, random nature of the donor and acceptor atoms in
sub-100 nm node field effect devices has been well investigated by [3,92, 93] and many others.
Often, the study of this kind of granularity is called the study of random discrete dopants
(RDD). The granularity itself stems from the device fabrication, during which the dopants are
implanted into the silicon substrate resulting in a Poisson distribution of dopants per unit
volume. In deca-nanometer devices the natural random, non-smooth distribution of dopants
can lead to significant inter-device variability of important parameters such as the threshold
voltage Vj. Nevertheless, random discrete dopants are not the only source of variability. In
sub-100 nm field effect devices, trapped charges also have to be viewed as discrete, since they
can electrostatically interact with the dopants in the channel [4], giving rise to the different
variability in AV;;, in degraded MOSFETs. Yet another source of variability emerges in small
area metal contacts [94], since the granularity of the metal (MGG) becomes apparent: a volume
of metal in a semiconductor device consists, due to fabrication, of multiple grains. The work
function of the grains is statistically distributed and is usually assumed to follow a normal
distribution. In field effect devices, this is important if a metal gate instead of a highly doped
poly-silicon gate is used, which is the case for the sub-32 nm nodes [94].

In the course of this thesis RDD and random discrete traps have been investigated since
both are essential to describe the ‘step heights’ seen in AV}, recovery traces [4,95], especially
after bias temperature stress. MGG is important to correctly assess the variability of device
parameters of sub-100 nm metal-gate MOSFETs and has thus been implemented into the sim-
ulator MinimosNT for evaluation purposes. It was found that MGG has negligable impact on
the threshold voltage shifts caused by discrete oxide traps close to the semiconductor interface.
Therefore, MGG is not considered in the remainder of this chapter.

5.1 Random Discrete Dopands

As stated above, in sub-100 nm field effect devices, the discreteness of the dopant atoms cannot
be ignored anymore. In modern semiconductor devices, the semiconductor doping is introduced
by ‘Gon implatation’. In this technique the semiconductor material is bombarded by ionized
dopant atoms. Upon hitting the target material the dopant atoms are randomly scattered by
the lattice atoms of the semiconductor. Thus, to obtain the positions of the dopant atoms, in an
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ion-shell model of the atom, one can either directly use the data from a process simulation or
discretize the given macroscopic doping density (Ny and /Np) and calculate the dopant positions
by a straight-forward Monte Carlo algorithm [95, 96].

5.1.1 Random Discrete Dopands Algorithm

In this thesis the Monte Carlo approach to the placement of random discrete dopants is chosen.
The algorithm works as follows (cf. Figure 5.1). First the expected number of dopants 7; is
calculated per cell ¢ using n; = V; x N;, where N; is the dopant concentration and V; is the
volume of the cell. Next, the actual number of dopants of the ith cell is obtained by drawing a
Poisson distributed (n; being the mean value) random number n;, which is the total number of
dopants in that cell. In a third step the positions of each of the n; dopants are determined by
drawing random numbers for each spatial direction under the condition that each position must
be located within the boundaries of the cell. Since in Poisson’s equation charge densities are
needed, equivalent charge densities have to be calculated from the positions of the dopants.
When using a finite volume discretization for Poisson’s equation this is done by finding the
vertex with the shortest distance to each dopant and counting the number of dopants (j)
associated with each vertex (cf. Figure 5.2). Then, after the dual grid has been calculated, the
new donor/acceptor concentrations per volume in the dual grid is calculated by dividing the
number of dopants j associated with the vertex at the center of the finite volume by the volume.
The precision of this algorithm strongly depends on the resolution of the grid. In [93] it has
been shown that a grid with a spacing below 1 nm is sufficient to capture the mean value of the
threshold voltage variability due to RDD in field effect devices. This results in a §jittered’, finely
resolved doping, which is suitable for simulation of RDD with conventional device simulators
employing Poisson’s equation.
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Figure 5.2: Illustration of the ran-
domization algorithm, in a single
cell, detailed in the text. The dual
grid is shown in red. The green ar-
rows depict the assignment of the
dopants to the respective vertices.

5.1.2 Screening Charges

Considering single point charges in the numerical solution of the Poisson equation a problem
emerges. Since the potential of a point charge located at r( is ¢o(r — 7¢), this would result
in an infinite number of charge carriers screening the point charge (cf. Figure 5.3). Certainly
this behavior is unphysical and an artifact of a classical or semi-classical system description,
since the point charge serves as a potential well for charge carriers and thus can be screened
by a few electrons or holes occupying discrete eigenenergies as described by the Schroédinger
equation. Additionally, a semi-classical description of point charges is highly dependent on the
grid spacing. Thus in a semi-classical system description correction methods are required. In
the literature two approaches can be found to eliminate the artificial screening effect and to
make the results of the simulation fairly independent of the grid spacing. In the first approach
the Fourier transformed charge density of the point charge is calculated and formally split into
a long range and a ‘short range’ part per finite volume :

p(r) =qd(r) = qV; ! Z exp(—ik-r) + Z exp(—ik-7) | = pshort () + Plong (7, (5.1)
k<kec k>ke

where k. is the cut-off radius in reciprocal space. Using the screening length of the Conwell-
Weisskopf model [97] k. is determined using

k. = kN'/3, (5.2)

where N is either the donor or acceptor concentration and x = 2 is empirically chosen. This
model is termed ‘Long-Range’ model since only the long range part piong () is considered on
the right hand side of Poisson’s equation, thus eliminating the artificial screening [6]. The
Long-Range model works well [6, 98], but the question remains whether x = 2 is a reasonable
choice. Additionally, the Long-Range model does not feature any quantum correction, which
is needed for sub-100 nm field effect devices. Thus the Long-Range model will not be further
used or discussed in this thesis. A good replacement, which features first-order quantum
correction (carrier confinement) for semi-classical transport models, is the density gradient
model (DG) (cf. Section 4.1) [93]. A density gradient first-order quantum correction features a
set of parameters (A, «, ) which need to be determined. Calibration of the DG model is usually
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Figure 5.3: The potential ¢ (left figure) and the electron concentration n (right figure) around a
single point charge embedded in pure silicon obtained by a DD or SHE simulation in equilibrium
are shown. Without any correction of the coloumb potential a semi-classical simulator will
predict an infinite amount of electrons around the point charge.
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Figure 5.4: The potential ¢ (left figure) and the electron concentration n (right figure) around
a single point charge embedded in pure silicon obtained by a quantum-corrected DD or SHE
simulation in equilibrium are shown. A grid independent correction of the coloumb potential
is achieved via the density gradient model, such that only the long range part piong(r) of the
coloumb potential enters Poisson’s equation. In the figure v denotes the quantum correction
potential and ¢ + +y is the quantum corrected potential.

done using an accurate description of the carrier confinement by the Schrodinger equation.
This eliminates the need for empirically determined parameters. When employing the density
gradient model, the results also become independent of the grid spacing. Nevertheless, the grid
needs to be resolved finer than 1 nm in order to capture the effects of carrier confinement and
discrete dopant screening (cf. Figure 5.3).
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Figure 5.5: The discrete doping in an n-doped 50 nm long, 10 nm times 10 nm wide resistor
with idealized ohmic contacts. The initial doping Np = 10?%cm ™ concentration was assumed

to be uniform.
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Figure 5.6: A surface plot of equal electron concentrations in equilibrium (all terminals are
grounded). The simulation has been carried out at room temperature using MinimosNT. The
dopant distribution is shown in Figure 5.5. The grid is orthogonal and regular with a spacing
of 0.5 nm.

5.1.3 Simulation Results using the Drift Diffusion Model

The algorithms laid out in the sections before have been implemented into the simulator Min-
imosNT [90]. First, in order to investigate the grid dependence of the results, a simple n-type
10 nm x 10 nm x 100 nm nanoscale resistor is simulated (cf. Figure 5.5 and Figure 5.6). Due
to the fluctuations of the doping, the potential is expected to be spatially fluctuating as well,
resulting in charge carrier rich and charge carrier deprived areas. This leads to fluctuations in
device parameters (resistivity) from device to device, although macroscopically they are exactly
the same. But due to the small characteristic lengths the doping cannot be viewed macroscop-
ically. Thus hundreds of microscopically different devices have to be investigated in order to
asses the inter-device distribution of parameters in any nano-scale devices.

Percolation Paths

Upon investigation of the influence of random discrete dopants with the density gradient model
as quantum correction for the drift diffusion model to a MOSFET a new effect emerges. In
sub-100 nm channel length MOSFETSs, there are only few dopants in the channel leading to
considerable potential fluctuations. Thus the inversion condition becomes a function of the
spatial locations of the discrete dopants and leads to the formation to current percolation paths
(cf. Figure 5.7). This in turn leads to substantial fluctuations in the /4 — V;; -characteristic and
consequently to fluctuations of the threshold voltage from device to device (cf. Figure 5.8).
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Figure 5.7: The percolation path (in green) in a
MOSFET in weak inversion and equi-potential
surfaces. Due to the potential fluctuations the
conditions for charge carrier inversion is only
fulfilled in certain regions of the channel, caus-
ing dominant current paths. Donor dopants are
rendered as blue balls and acceptor dopants as
golden balls.
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Figure 5.8: Histogram of the distribution of the threshold voltage in a MOSFET composed
of 500 microscopically different devices. A Gaussian distribution of V};, has been fitted to the
data. The standard deviation is above 30 mV. In order to circumvent this large deviation in the
threshold voltage the utilization of a delta-doping has been put forward [99].

5.2 Random Discrete Traps

Recent studies have demonstrated that in modern deca-nanometer devices the variability due
to random discrete dopants (RDD) and oxide defects has become critical in the context of
reliability [100-103]. For instance, discrete charges in the oxide or at the interface lead to
the occurrence of potentially huge AV}, shifts due to the non-uniform current flow in the
channel (Figure 5.10). RDD needs to be considered when investigating the ‘step heights’ in
the drain current and threshold voltage observed in field effect devices under bias temperature
or hot carrier stress. Most studies have considered either fixed positive/negative charges or
described charge capture into a fixed number of defects by standard SRH trapping kinetics
[104], where the goal is to explain the statistical distribution of AV}, shifts in an ensemble of
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Figure 5.9: The cumulative distribution functions (CDF) of AV}, over gate overdrive for 500
different microscopic p-channel MOSFETs due to RDD only (no traps). Clearly visible is the
large deviation in maximum step-heights of the CDFs over gate overdrive. This is due to the
emergence of new percolation paths with higher gate overdrive.

devices (cf. Figure 5.9).

In this section the mere electrostatic effects of random discrete charges (traps) and random
dopants on the drain current are discussed. A discussion on the actual number of available
defects in a time-dependent manner and their activation process itself is delayed to Chapter 6.

5.2.1 Single Trap

The effect of a single charged oxide defect on the drain current in a MOSFET can be explained
without considering the time dependence of its occupancy and has been studied in depth using
a first-order quantum corrected drift diffusion model [103]. Depending on the spatial location
of the trap the resulting AV}, that is its ‘step height’, varies. In the course of this thesis,
together with the author of [90], this was investigated for planar devices.

In order to obtain the spatial dependence of the AV}, for a single defect for a single micro-
scopic device (constant dopant configuration), first a discrete random dopant configuration is
determined (cf. Section 5.1.1) for the planar MOSFET under investigation. Then for each posi-
tion of a single discrete elementary oxide charge in a predefined grid a single device simulation
is carried out to determine the /g — V;; curve. At last these Iy — V, curves are compared to the
Iq — V4 curve for the device without any oxide charges. In Figure 5.11 the AV}, maps for a
planar p-channel MOS, with a channel doping of Np = 10" ¢cm™3, a channel length and width
of 35 nm and an effective oxide thickness (EOT) of 1 nm silicon-dioxide are shown. The AV},
maps are a practical tool to show the trap position dependence of the AV}, caused by a single
elementary charge, however they are not suitable to compare simulation and measurement. For
this the cumulative distribution function, obtained by considering a statistical representative
ensemble of devices, of the individual step heights is used. In order to obtain the cumulative
distribution of the step-heights of a statistically representative sample of microscopic devices
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Figure 5.10: The percolation path in a selected microscopic MOSFET due to random discrete
dopants and equi-potential surfaces. In sub-figure A there are no oxide traps and a single
percolation path dominates. Upon the the formation of a fully charged trap right above the
dominant percolation path, the device is switched off and the dominant percolation path van-
ishes (sub-figure B) leading to a huge AV;,. When an oxide trap is being charged next to the
percolation path (sub-figure C), the trap has a negligibly small influence on the current flow
and causes only a small AV;,. Sub-figure D shows the formation of six fully charged traps
perpendicular to the current flow. In such a case the device becomes much harder to switch
on.

ki

has to be simulated. In Figure 5.12 the cumulative distribution function of the ‘step heights
for a single trap in a p-channel MOSFET is plotted. From the plot the dependence of the step-
height maximum on gate bias and channel doping is clearly visible. Figure 5.13 finally shows
that in order to describe the occurrence of large steps in V}; a microscopic description of the
doping is necessary by comparing the CDFs for RDD and continuous doping.

5.2.2 Multiple Traps

In real devices there are often a number of oxide traps. In sub-deca micrometer devices the
oxide volumes are so small that only a few traps, if any, can be observed in a single device [105].
When considering multiple traps and RDD the question arises whether or not two discrete traps
have an influence on the AV}, caused by one another [4]. It was found by [106] that two or more
traps act independent of each other, at least electrostatically. The CDFs of AV, for multiple
traps are comparatively plotted in Figure 5.14.
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Figure 5.11: Spatial distribution of AV}, in 35 nm x 35 nm p-channel MOSFET, with a channel
doping of Np = 10'® ecm™3. To generate these maps 1500 simulations of Iq — Vg curves with
Vias = 1mV have been carried out, where in each simulation the elementary point charge has
been moved along the channel surface and was located directly at the interface.

5.2.3 Mobility

Comparing simulation data (DG and DD), to measurement data it was observed that the dop-
ing dependent mobility model needs to be slightly adjusted. Most authors have used constant
homogeneous mobilities in their random dopant studies, see for example [107]. It was later
found in [98, 108] through classical Monte Carlo simulations that random discrete dopants
not only cause potential fluctuations, but also spatial fluctuations in the scattering rates. For
moments based charge transport models it was shown by [109] that it is sufficient to adjust the
doping dependent mobility model parameters such that the bulk-mobility of a resistor is the
same when simulated with continuous and discrete doping. In the course of this thesis it was
found that this is not quite correct. It is possible to reproduce measured mean and standard
deviation in V4, due to random discrete dopants only [110]. However, it was found impossi-
ble to reproduce measurements taken on an ensemble of p-channel MOSFETs by simulation
with quantum corrected drift diffusion taking into account discrete traps and random discrete
dopants. The devices were p-channel MOSFET with a channel doping of Np = 10" ¢cm ™3 pro-
duced by imec. The measurements have been taken with great care to ensure that only a single
trap is created per device. The microscopic device for simulation was calibrated to the mean
I4 — Vi curve of the undegraded imec devices. From both sets of data, namely measurement
and simulation, the cumulative distribution functions of distinct step heights are shown in

56



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thek,

L]
lio
nowledge

b

L]
|
r ki

M You

1-CDF (1)

1-CDF (1)

0.1 ¢ Np = 1017 cm 2 0.1 Np = 108 cm—24

0.0V — 0.0V
-0.2V — -0.2V -

0.01 f “0-5V — { o001} 05V~ .
-0.8V — -0.8V - “
-1.0V — -1.0V -
-1.2V — -1.2V -

0.001 L L L L 0.001 L L L L L

0 5 10 15 20 25 30 0 5 10 15 20 25
AVip (mV) AVip (mV)

Figure 5.12: The CDF of the AV}, in a 35 nm x 35 nm p-channel MOSFET due to a single trap
for two distinct channel dopings. It can be seen that a higher channel doping results in bigger
AV, steps for a single charge at the interface. This is due to the increasing number of dopants
in the channel, when the average channel doping is higher. Each graph is composed from
a thousand different simulations using MinimosNT to have a statistically meaningful sample
size.
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Figure 5.13: The data from Figure 5.12 at V, = V};, compared to the step heights obtained
if the doping is continuous and not discrete. Clearly visible is the need for RDD in order
to correctly describe the large dispersion in step heights, which cannot be obtained using
a continuous doping. It is also remarkable that the macroscopic doping concentration has
virtually no influence on the maximum step height for continuous channel doping. Each graph
is composed from a thousand different simulations using MinimosNT.

Figure 5.15. To highlight the amplification of the defect impact due to the random dopants and
to be able to compare MOSFETs of slightly different geometries, we normalize the step height
by the theoretical value obtained through the charge-sheet approximation assuming that each
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Figure 5.14: The cumulative distribution of step heights for multiple evenly distributed traps
in a 35 nm p-channel MOSFET with a channel doping of Np = 10'® cm™3. It is obvious that
the maximum step height increases with the number of traps. More interestingly no AV;y
step above 30 mV could be observed even for 21 oxide traps, which corresponds to a trap
concentration of 1.7 - 10" cm 3.

trap is located directly at the interface:

= AViyne with 19 = (5.3)

q
Cox’

where Coy is the nominal gate oxide capacitance. Surprisingly the simulation cannot reproduce
the measurement by a factor of 5 in 7,. This suggests that the purely electrostatic picture
to determine step heights is not entirely correct as previously reported, for example in [98].
Not even the largest step heights, caused by a single trap, can be reproduced. Large step
heights are, in the simulation, due to huge fluctuations in the potential leading to a dominant
percolation, which can be ‘blocked’ by a single trap causing a huge step in drain current.
Recalling that AV}, is estimated by comparing /4 — V; curves or by calculating AV;;, from
measured steps in the drain current A/4 by a SPICE level 1 model [111], the only parameter that
has not been accounted for is charge carrier mobility u. As stated initially, in [98] it was shown
that a quantum corrected drift diffusion simulation underestimates the standard deviation
in current fluctuations caused by random discrete dopants or random discrete charges by
at least 20%, when compared to solutions obtained from a calibrated Monte Carlo simulator
incorporating RDD. Thus deviations seen in Figure 5.15 can be minimized by incorporating
fluctuations in mobility on a macroscopic level or ionized impurity scattering on a microscopic
level. This deviation of 20% explains the difference between measurement and simulation using
DD and DG models.
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Figure 5.15: Comparison of simulation (solid lines) and measurement data (dashed lines) for
a p-channel MOSFET with a single occupied trap, where AV}, has been normalized using the
charge sheet approximation. Various CDFs as a function of gate overdrive as well as the CDF
for 21 traps from Figure 5.14 are plotted. None of the simulation data, even the one for 21
traps, are close to the measurement and are off by a factor 5. This is a hint that the purely
electrostatic picture to determine step heights is not entirely correct. The measurement data
has been provided by imec.

5.3 Random Discrete Doping and a SHE of the BTE

To test the hypothesis from Section 5.2.3 the density gradient quantum correction model as
well as the random discrete dopant algorithm detailed in Section 5.1.1 have been employed. As
a proof of concept a n-channel MOSFET in inversion has been simulated using ViennaSHE [65]
(cf. Figure 5.16).
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Figure 5.16: A 25 nm n-channel MOSFET simulated using SHE, density gradient and random
discrete doping in inversion. The MOSFET featured a channel doping of Np = 5 x 10*® cm ™3
and an effective oxide thickness of 1 nm. The potential fluctuations are clearly visible.
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Es hat doch keiner eine Ahnung was
da wirklich im Oxid vor sich geht.

(Franz Schanovsky)

6 Bias Temperature Instability

The Bias Temperature Instability (BTI) is a time, temperature and electric field dependent
effect encountered in metal-oxide-semiconductor (MOS) field effect devices, leading to a drift
in the threshold voltage Vi [29, 112, 113] (cf. Figure 6.1). The drift in threshold voltage is
usually measured as a drift in drain /4 or source I current over time. Depending on the gate
voltage V, it is either referred to as negative BTI (NBTI), if V, < 0, or as positive BTI (PBTI), if
Ve > 0. It has been established that BTI is due to the formation of chargeable defects inside
the gate insulator or directly at the interface of the gate insulator in MOS devices, especially
MOSFETs [29, 114, 115]. The exact influence of temperature, oxide field and stress time on
the time evolution of AV};, has been established by carefully designed experiments, which will
be briefly introduced in Section 6.1. Any diffrences in the setup lead to a misinterpration of
the measurement data and unreproducability (by other researchers) of the experiment [116].
A typical BTI experiment (cf. Figure 6.2) involves a temperature-controlled environment, fast
voltage and if possible temperature transients as well as fast and highly accurate measurement
equipment [117]. For simulation of BTI, it is important to design the simulation such that the
input (voltages, temperature, stress time, etc.) over time is as close as possible to the design
of the experiment in order to avoid any errors. In this chapter the intricacies involved in
numerically assessing BTI and numerically reproducing measurement results will be laid out.

Figure 6.1: Threshold voltage
drifts at elevated temperatures
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>
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various stress gate voltages. Dur-

ing recovery the gate voltage was
kept at the nominal threshold
voltage. Between the end of stress
and the first measurement point
in recovery is a delay of 1 ms.
For comparison a fit of the Two-
Stage model to the data (lines) is
also shown. Most evident is the
asymmetry in time between stress

10" 1 10 10' 10° 10" 10° 10% and recovery. Data are taken
Stress Time ¢ (s) Relaxation/Recovery Time ¢t (s) from [118].

61



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thek,

10
edge

b

nowl

L]
|
r ki

M You

The origins and physical descriptions for BTI available so far will be briefly summarized in
Section 6.2. For an exhaustive discussion of the physical background, historic BTI models and
mathematical modelling the reader is referred to [29,112,113]. Historically the role of hydrogen
in the gate oxide is of high importance. Nevertheless, this work will not cover the influence
of hydrogen in the gate oxide on the degradation. Details on the influence of the hydrogen
concentration in the oxide on BTI is for example given in [119, 120].

6.1 Measurement Techniques

For an explanation of many BTI experiments it is instructive to introduce one often employed
basic element of a BTI experiment first. In this work this basic element is termed a single ‘stress-
relax’ cycle for BTI (cf. Figure 6.2). Before the experiment starts, the fresh device is characterized
by measuring the Iy — V., Iq — Vg or capacitance-voltage curves, while taking great care
not to significantly change the device characteristics by prematurely BTI stressing the device.
However, stressing the pristine device in this inital characterisation stage is often unavoidable.
For the experiment itself the drain voltage Vj is often regulated to be as small as possible to
guarantee low field conditions. Nevertheless, constraints imposed by the measurement setup
often require a higher Vj, to for example, minimise noise in the measurement data. Whenever
one is assesing homogenous BTI and not interested in the V}; shift either during stress or
relaxation, then Vj is often chosen to be at zero volts during the respective phase. While
the gate voltage V; is precisely controlled to cycle between stress and relaxation, the drain
current can be recorded to measure the threshold voltage deviation AV;y,. If a fast heater,
such as a poly-heater device [121], is available it is also possible to cycle the temperature in
the same fashion. In a setup where the temperature can be cycled, the device temperature
during stress T is usually much lower than the relaxation temperature 7;. The relaxation gate
voltage V; is normally chosen to be equal to the nominal threshold voltage V;}o. Next the gate
voltage is set to the stress value, where V; normally corresponds to strong inversion for a well
defined time {5 (stress). After bias temperature stress the gate voltage is, ideally instantly, set
back to its relaxation value (relax/measurement) and kept there for a given time ¢, until the
experiment ends. During this stress-relax cycle the drain current is recorded and compared to
the inital measurement taken before the experiment. Due to the fast transient nature of BTI
often a logarithmic time-stepping in the recording of the drain current is chosen to capture the
transient behavior of the drain current right after bias or temperature changes. Additionally,
most often one is restricted by the measurement range and bandwidth of the equipment and
can only measure the drain current over the recovery time (recovery trace). In this work, BTI is
defined as the set of gate voltages V;; and device temperatures 7', which cause a change in the
threshold voltage V), in a given time. Thus we define bias temperature stress as an increase
in threshold voltage |AV}y| and drain current shift |Al4| over time. Relaxation is defined as a
decreasing threshold voltage |AV4y,| and drain current shift |[Al;| over time bringing the actual
threshold voltage V4, closer to its nominal value Viyg.

6.1.1 Measure Stress Measure Technique

The measure stress measure (MSM) technique is a succession of multiple stress and Iy —
Ve, measurement cycles [122]. First an initial I — V, curve is measured on the fresh device.
Then the device is subjected to bias temperature stress for ¢; seconds. Right after stress a
final Iy — V; curve is taken. Note that during the measurement of the final /g — V, curve
the device unavoidably relaxes. This cycle can be repeated many times in order to measure
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Figure 6.2: A typical setup for a single stress-relax cycle at constant drain voltage and tem-
perature. In such an experiment, the drain potential Vj is usually regulated to be as small as
possible (low field conditions). The gate voltage V}, is regulated to cycle between stress, recovery
and measurement phases. If a fast heater, such as an integrated poly-heater [121], is available
the temperature can also be switched reliably and fast. Initially, V; is kept at the relaxation
voltage, V;, to measure the undegraded drain current /4 (measure).

the degradation over various stress times. In an extended MSM measurement one records
several relaxation phases after single exponentially growing stress phases, where the device
temperature is kept constant during the whole experiment. The actual extended experiment,
for bias stress, is shown in Figure 6.3. In the MSM technique the threshold voltage shift
is obtained by comparing the measured drain current at a certain gate voltage against an
initially measured /4 — V,; curve. This is possible since the gate voltage for relaxation is chosen
to be equal close to the nominal threshold voltage. Additionally, it is also a possibility to
record a fast Iy — V, curve just before or during switching the gate voltage from V5 to V.
In [123] it was shown that the MSM technique is quite insensitive to mobility changes induced
by stress. Nevertheless, it was also shown that the mobility variations induced are linearly
dependent on temperature. This dependence has to be taken into account, when comparing
MSM measurements taken at different device temperatures.

6.1.2 On-the-Fly Technique

The on-the-fly (OTF) technique is a method of extracting the threshold voltage shift from the
recorded drain current with different levels of accuracy and not a separate measurement setup.
In OTF the first recorded drain current under stress conditions at a fixed drain voltage is
used as a reference to determine the threshold voltage shift. However, due to an inherently
unavoidable delay between the onset of stress and the first recorded drain current there will
always be an error in the reference drain voltage. Thus one is obliged to keep this delay in
the first measurement point as small as possible in order to minimize this systematic error.
This is also the major drawback of any OTF method. To extract the threshold voltage shift
induced by operating the device under stress conditions, usually a SPICE Level 1 model is used
[116, 124, 125]. In the simplest method (OTF1), the drain voltage V3 and the SPICE parameter
0 are assumed to be small and the effective mobility p.g (SPICE parameter) is assumed to be
constant throughout the experiment. With these assumptions the threshold voltage shift AV;y
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Figure 6.3: The basic setup of a measure stress measure experiment. Initially the device is
characterized and at least an Iy — V, curve at a fixed drain voltage is measured (green). Then
the device is periodically switched between stress (red) and relax (blue) conditions, while the
drain current is being measured. With each new stress cycle the stress time { is increased
exponentially. If a poly-heater device is available, it is possible to accelerate the recovery by
switching to higher temperatures during recovery, else the device temperature is kept at a
predefined stress level throughout the experiment.

in the OFT1 method can be obtained by

Iqy — 1y

AVh ~
! Iqo

(Ve — Vino) , 6.1)

where 14 is the reference drain current and V}y is the threshold voltage corresponding to /.
Since the OTF1 method cannot, due to the assumptions made, predict or at least compensate
for mobility changes, other OTF methods [126] have been developed. Nevertheless, all of them
suffer from the unavoidable measurement delay between stress and the first measurement point
Iq0. In addition, all OTF methods also feature the inherent modelling error of the employed
SPICE models to determine AV;,. An example of recorded stress and recovery traces using
the OTF method is shown in Figure 6.1. However, due to the inherent errors in OTF data the
MSM-method and variants thereof are often used, especially when one is only interested in the
recovery traces.

6.1.3 Direct Current Current Voltage

First introduced in [127] and [128], the direct-current-current-voltage (DCIV) method is used
to directly monitor the defect density by measuring the bulk current [}, which is the result
of the carrier recombination in the oxide and at the silicon-oxide interface (cf. Figure 6.4). In
order to monitor the stress induced degradation, DCIV experiments [127, 128] are performed
on fresh devices before and after stress using a drain voltage V4 high enough to forward bias
the pn junctions. When assessing bias temperature stress, a DCIV experiment is conducted
before and after stress to compare the defect densities before and after stress.
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Figure 6.4: In this example, the DCIV method is used to asses the threshold voltage shift
caused by bias temperature stress in a single stress pulse. Before stress a DCIV curve is
recorded. In a single DCIV measurement the device is swept from accumulation to inversion
by changing the gate voltage, while the source/drain pn junctions are forward biased. This
forward bias allows the injection of minority carriers into the space charge region, where they
may recombine with an oxide trap, causing a measurable bulk current. Then the drain and
source voltages are switched to low field conditions. At the same time the gate voltage is kept
at the stress level. Right after stress another DCIV measurement is carried out. By comparing
the post-stress and the pre-stress DCIV curves one can, using a suitable model, obtain the
concentration of interface, oxide or border traps.

6.1.4 Time Dependent Defect Spectroscopy

Time dependent defect spectroscopy (TDDS) is a data analysis technique to assess border traps
in the oxides of MOSFETs, where the devices need to be sufficiently small in order to be able
to discriminate different traps [105]. Figure 6.5 shows the AV}, recovery traces recorded after
bias temperature stress on a small area (L x W = 2 um x 160 nm) n-channel MOSFET. The
only assumption TDDS does require is that the step-height and emission time of a single
defect/charge carrier trap in the oxide (cf. Chapter 4) uniquely characterizes a particular trap.
The technique itself works as follows: First a statistical significant number of subsequent
‘stress-relax’ cycles on a single device at a certain but fixed drain voltage are recorded for a
certain but fixed stress temperature. The recovery traces can then be compared by accounting
for the residual degradation from the previous relax phase. Inspecting AV}, over recovery
time from each relaxation phase and employing the initial assumption that each trap can be
uniquely identified by a characteristic step-height one is able to calculate the characteristic time
constant, e.g. the emission time 7, [129]. In Figure 6.6 the extraction technique is illustrated.
Furthermore, TDDS can be used to produce so called discrete Capture-Emission-Time (CET)
maps [29]. To this end, the TDDS method shown in Figure 6.6 is not only applied to the recovery
traces but also to the AV}, recorded during the stress phase of the stress-relax experiments.
Then by identifying the various traps by the individual step heights they cause it is possible to
combine these two TDDS maps to a single discrete CET map.
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Figure 6.5: Five recovery traces from a stress-relax experiment. The experiment has been
carried out in a temperature controlled environment on a n-channel MOSFET, where the AV,
has been calculated from Ay using an initial /4 — Ve curve. Multiple of these traces are used to
identify the capture and emission times of single traps. The data has been provided by Michael
Waltl.

6.2 Models for the Bias Temperature Instability

As stated in the beginning of this chapter, BTI is, as its name suggests, a gate voltage, de-
vice temperature and time dependent threshold voltage shift AV;y,, which indicates a charge
buildup in the oxide of the investigated MOS structures. As the magnitude of AV}, over stress
time ¢35 can be expressed by a power law [130, 131], this spawned a debate over the correct
power law exponent. At this stage of research recovery after bias temperature stress has only
been superficially investigated and the reaction-diffusion (RD) models [130, 132] could explain
the published measurement data. All flavours of the RD models assume a charge buildup
at the semiconductor-oxide-interface through hydrogen-based reaction and diffusion. It was
soon noticed that the measurement techniques and all time transients differ from publication
to publication and that time delays and transients need to be well defined. Additionally, mea-
surement and AV}, extraction techniques for BTI have been investigated [123]. Utilizing well
defined experiments the quantitative relations between stress time, recovery time, device tem-
perature and gate bias or oxide field can be identified. As such it was, for example, found that
AV, depends quadratically on the magnitude of the oxide field. However, the authors of [115]
had to introduce a permanent component of BTI, due to the limited recovery time in the ex-
periments. This permanent component is still under debate and is necessary to reproduce
recovery traces, due to the stark asymmetry of stress and recovery over time as can also be
seen in Figure 6.1. By asymmetry we mean that the recovery of 1 mV of AV}, after BTI stress
takes longer than the buildup of 1 mV of AV, during stress, provided the device temperature
is kept constant. Thus when applying a model to experimentally recorded AV}, data, the data
outside the measurement window is accounted for by a permanent non-recoverable component
although a plateau of recovery has to date never been, reproducibly, observed [133]. With the
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Figure 6.6: Assembly of a TDDS map from drain current measurements during device relax-
ation. All recorded recovery traces are plotted on the same time axis, where 0 s corresponds
to the onset of relaxation. Then the characteristic step-heights are identified by an algorithm
published in [129]. Each step-height corresponds to a capture/emission event and its time of
occurance and step-height are marked (diamonds) in a map (lower figure). Clusters of points
in this map most likely correspond to the same trap. This way single traps and their time
constants can be identified. Taken from [129].

published amount of data, it was finally conclusively found that any reaction diffusion model,
particularily on the microscopic scale, cannot possibly explain all the observed BTI charac-
teristics [112]. Finally, with the emergence of time dependent defect spectroscopy (TDDS), it
was possible to investigate the charge capture and emission of single defects in small-area
MOSFETs and to identify a multiphonon process as the charge exchange process between the
substrate and the defects in the oxide.

In the course of this thesis three different models for BTI have been implemented into the
drift diffusion simulator MinimosNT. First a simple two well model, second the Two-Stage-
Model [134] and last a four state non-radiative multiphonon (NMP) model [4]. In contrast to
the four-state NMP model alone, which can reproduce the recoverable component, the Two-
Stage-Model predicts both the recoverable and the permanent component of BTI. Thus, the
four-state NMP model is often combined with a two well model, since the two well model is
used to reproduce the permanent component of BTI. The permanent degradation is usually
modelled as a buildup of interface states, whereas the recoverable component is modelled as
formation and annealing of oxide traps. Thus the two well model describes the time evolution
of Nj;, whilst the four-state NMP model describes the time evolution of N,. The Two-Stage
model, in contrast to the other two models, includes a description of N, (recoverable) and Nj;
(permanent) over time. Since the four state NMP model combined with the two well model can
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Figure 6.7: A phenomenological model for BTI. In the precursor state 1 the defect is neutral
and can, by being thermally activated, undergo a transition into the active trapping state 2,
where it can capture and emit charge carriers. The energy barrier which must be overcome by
the defect can, in this model, be lowered by an oxide field. In this model the parameters v and
v must be found experimentally.

explain more BTI characteristics than the other two models alone, this is the model which will
be explained in detail.

6.2.1 Phenomenological Models

In order to model the weak temperature and the quadratic oxide field dependence of the charge
capture process causing the threshold voltage shifts many phenomenological models have been
developed. In addition to that many authors, e.g. [135], tried to explain the charge capture
process by extending the successful SRH [136] trapping model with a tunneling coefficient to
account for the fact that a charge trapping defect is not necessarily located directly at the oxide
interface. However, it was shown that these models cannot sufficiently explain the physics
involved in BTI [113], especially the capture and emission time constants found using TDDS.
Nevertheless, a double-well model serves as a good example how interface defects caused by
BTI can be modelled. Starting from the SRH model introduced in Section 2.2.2, one can explain
the formation of new defects causing a shift in threshold voltage by introducing a model for the
trap concentration V. To capture the oxide field dependence and the temperature dependence
of the formation and annealing of defects an Arrhenius-type law is often employed. In a two-
well model for Ny, a defect can be in two states. It can either be active, where trapping and
detrapping of charge carriers is governed by SRH statistics (charge trapping), or inactive, where
transitions are modelled by defect reaction rates. The barrier height F, determining the defect
reactions rates is assumed to be oxide field dependent and temperature activated. For the
model in Figure 6.7 the defect reaction rates are

k12 = vo exp (—(Ea — 7| Eox])/ (k1)) 6.2)
ko1 = vo exp (—(Ea — Ea + 29| Eox|)/(k8TL)) | 6.3)
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where 1y ~ 1013 s ' is the attempt frequency.

Another often employed approach is to explain the defect buildup by initially electrical inac-
tive traps and hole trapping instead. To this end the trap is assumed to reside in the oxide,
a distance 7 away from the semiconductor-oxide interface and the trapping kinetics are de-
scribed by the SRH model and elastic tunneling [137]. The modified SRH rates per trap read

k1o = KPR\ (zr, Eox) and  koy = k5PN (2p, Eoy), (6.4)

where the function A denotes the elastic tunneling coefficient, usually a modified WKB approx-
imation [138-140], depending on the depth of the trap and on the oxide field energy barrier.
In [113] it has been shown that these simple models are insufficient to describe all the ob-
served characteristics of BTI, especially those found by time dependent defect spectroscopy on
nanoscale devices.

6.2.2 Non-radiative Multiphonon Transitions

The first researchers to extend the SRH theory [136] formulated a charge trapping theory
which was loosely based on non-radiative multiphonon transitions (NMP) [141]. These models
considered charge carrier tunneling and a thermally activated, oxide field dependent process
as demonstrated in the previous section [142]. In this model [142] the capture and emission
time constants, which are obtained from the reaction rates using Markov-Chain theory [143],
read

Ne [B.—E o
Te = To €Xp <mT> — exp < 2 v+ la| o Fo 0(Ec — Et)) , (6.5)
x0) D kgTr,
A(zT)
E,+ E — E
Te = T0 eXp (m) eXp ( a + ¢ ’q‘ T OXG(Et - EV)) 5 (66)
i) kBTL

A(zT)

where Ej} is the trap level, Ec and Fvy are the respective band edges and 6 denotes the Heaviside
function [113]. When fitting this model to capture and emission times obtained through TDDS
it was realized that one can either obtain a fit for 7. or 7. but not for both [113]. Since none of
the above models can fully capture the findings obtained by TDDS experiments a new model
was required [29]. This new model has been fully based on non-radiative multiphonon theory,
which shall be explained in the following.

Basic Theory

The non-radiative multiphonon theory is based on the possible scattering between multiple
phonons with a single electron, which eventually gets trapped in the process. It is theorized
that this particular electron can, depending on the configuration and bonds of the surrounding
atoms, not only emit photons to loose this gained energy, but now has sufficent energy to
occupy a previously unoccupied state (charge trapping). What the atomic configuration at the
defect site is, is still not completely clear [112]. In order to derive the reaction rates necessary
to describe the charge trapping process a plenty of approximations to the full Schrodinger
equation (cf. Equation (2.1)) describing the many particle problem are required. First the Born-
Approximation is applied to separate the equation into two loosely coupled equations: one for
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the system of electrons and one for the system of nuclei. Per electron ¢ and nucleus j the
system of equations is

(Eel + Hion—ion(R) + Helfion(ra R) + Helfel(r)) Qbi('ry R) - VZ(R)%(T, R)a (6.7)
(Bion + Vi(R)) ¢i7(R) = Eij¢is(R), (6.8)

where V;(R) denotes the adiabatic potential, which corresponds to the energy of a certain
atomic configuration and ¢;; is the vibrational wave function corresponding to the states ¢ and
I. Next, to describe the complex scattering process, first order time-dependent perturbation
theory and the Franck-Condon approximation [144, 145] are applied. Putting all these approx-
imations together the reaction rates between the electronic state %, the electronic state j and
the respective states [ and J of the nuclei can be written as [146]

kij = Aijfij (6.9)

where
Aij = 20h7 (| V|95) |2 (6.10)

is the electronic matrix element, V" is the adiabatic perturbation operator, (1| is the electronic
wave function corresponding to state i. In Equation (6.9) f;; is the so-called lineshape function
which formally equates to,

fij = avg; (Z ir|d;.0)126 (Eir — EjJ)) , 6.11)
7

where the operator avg denotes the thermal average operator over all initial states of the nuclei
I. The lineshape function describes the likelihood of a transition from the nuclei state / to J
and the electronic matrix element describes the electronic transition probability. In the NMP
theory both need to be non-vanishing in order to have a defect reaction. For the lineshape
function to be non-vanishing the energies of the final and initial state need to be very close.
In Equation (6.11) this has been approximated by the Dirac-Delta. Thus the Franck-Condon
factor |(¢ir|¢;s)|? is interpreted as a transition probability, determined by the overlap of the
two vibrational wave functions ¢;; and ¢;; (cf. Figure 6.8). The lineshape function, its formal
derivation, numeric evaluation using data from density functional theory (DFT) calculations
and subsequent approximations to Equation (6.11) have been extensively discussed previously
[112]. For the following discussion the classic approximation of the line shape function is
briefly summarized. Parameterizing the adiabatic potentials (cf. Figure 6.8) using the reaction
coordinate concept [147] yields

Vi(q) = cilqg — @) + d;, (6.12)
Vi(q) = ¢j(q — ¢;)* + dj, (6.13)

where c is the curvature, d is the potential offset, ¢; and ¢; denote the positions of the adiabatic
potentials (cf. Figure 6.8). Additionally, d; —d; is usually expressed as a function of AE = F—F}
to fit into the conventions used when describing the energy bands in semiconductors. Using
the parameterized potentials to find the intersection points (IP) ¢; and g2 (cf. Figure 6.8) of
the adiabatic potentials and the classic approximation of the line shape function in the high
temperature limit [112] one obtains

ciqf Ci‘l%
_ \/67 CXP " &1L I EXP\ " reTy 6.14)
2vrksTy \ lcin — cjlan — qj — @) ez —¢j(ee — a5 — @)| | '

fij
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Figure 6.8: Definition of the parameterized adiabatic potentials V; and V;. Upon parameter-
izing the adiabatic potential V;(R), it is possible to analytically calculate the classic transition
barriers AV;; and the intersection points ¢; and g2, where usually one intersection point dom-
inates the lineshape function (here ¢;).

where ¢; and ¢» are the intersection points between V;(q) and Vj(¢). Depending on the ac-
tual parameters of the adiabatic potentials V; and Vj, multiple further approximations are
possible to obtain simpler formulae for the lineshape function. The barrier heights from the
parameterized potentials, which have been used in the previous equation are

2
(s — ;)2 ) CdNes s —
AV, = 606 qz>2<li \/m(dz 4;)(ci/c, 1)) 615

(Ci/Cj — 1) Cj Cj(Qj - qi)2
2
:(R;g%(liR\/Sthr(E;hft)(Rg—l)) , 6.16)

where the parametrisation with ¢;/c; = R? and the Huang and Rhys factor Shw = ¢;(q; — ¢;)?,
often found in the literature, has been employed.

Depending on the location of the intersection between V; and V; two cases of phonon coupling
can be distinguished. When the dominant intersection point ¢; (cf. Figure 6.8) is located
between the minima of the potentials (¢; < g1 < g;) the process is referred to as strong phonon
coupling, otherwise it is referred to as weak phonon coupling [113].

Evaluation of Transition Rates in Semiconductors

To obtain useful transition rates for semiconductors, where a continuum of energy levels must
be considered, an integration over the electronic energy is necessary. Employing the definition
of the density of states (cf. Equation (2.7)) the rates for capturing a hole (or emitting an electron)
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from/to the valence or conduction band reads

Ey
k‘lg = I/p/ g(E)(l — fp(:li, E,t))Alg(E,l‘T)flg(E — Et)dE

e AE
—i—l/n/ g(E)(l — fn(CC,E,t))Alg(E, .%'T)flg(E—Et)dE. (6.17)
¢ AE

The rate for absorbing an electron (or emmiting a hole) from/to the valence or conduction band
reads

Ev
k‘gl = Vp /_OO g(E)fp(m,E,t)Agl(E,CCT)fgl(Et — E)dE
AE

+Vn/ g(E)f”(a:,E,t)A21(E,xT)f21(w)dE_ (6.18)
¢ AE

For repetitive evaluation it is often beneficial to approximate the energy barrier (Equation (6.15))
by expanding Equation (6.15) into a Taylor series about AFE up to the quadratic term,

Shw RAE RAFE?

AVig =~ .
PEOTR?E T 14 R T 4She

(6.19)

Now, in order to evaluate the transition rates numerically, the electronic matrix elements A;;
need to be evaluated. The evaluation of these functions strongly depends on the quantities
available from the employed transport model. Thus when using a Schrédinger-Poisson solver
together with the transport model one can directly evaluate integrals of the electronic wave
functions. For semi-classic transport models, such as SHE or the drift diffusion model, one
needs to suitably approximate the electronic matrix elements. Assuming that the wave function
of the trapped charge carrier is strongly localized around the defect site, one can approximate
the electronic matrix element by an energy dependent tunneling coefficient and a prefactor,
usually a WKB-approximation of charge carrier tunneling [113]. All factors, which are not
dependent on energy can be pulled out of the integrand and are summarized in the parameter
0p. Having a solution of the Boltzmann Transport equation, the integrals (cf. Equation (6.17)
and Equation (6.18)) can be directly evaluated. However, for moment based transport models
further assumptions regarding the density of states and the energy distribution functions are
necessary. For drift diffusion models Maxwellian distribution functions and a parabolic band
are usually assumed. With these approximations the non-radiative multiphonon transition

rates read
kiy = opexp | —— | oP pex AV
12 = 0p €Xp o thP €XP kpTt
x AVio E, — E.+ Ep
+ og exp <_$T> U1 exXp (— kBTL> exp <_Iﬂ3;1 (6.20)
i o x P e AVis o Ei+FE, — FErp
=opexp|—— v xp | — xp| ———————
21 0 €Xp o thP €XP kpTt p kTl
x AVia
+ op exp <_$T> Ui eXp (— kBTL> (6.21)
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Stress Relaxation

Figure 6.9: Schematic representation of the adiabatic potentials used to define transition rates
for a defect with three states. During stress an NMP transition from state 1 to state 2’ is very
likely (bold arrow). In relaxation, when there is a small oxide field, the reverse reaction (from
2’ to 1) is more likely. However, the likelihood for the defect to undergo a structural relaxation
(red potentials) does not change with the oxide field (relaxation/stress). Once the defect has
undergone a transition from state 2’ to state 2 (structural relaxation) it cannot, in this model,
directly exchange charges with the substrate.

6.2.3 Structural Relaxation

In [121] the strong temperature dependence of BTI was explicitly shown. Also in TDDS mea-
surements an oxide field independent, but temperature dependent regime was found [105]. To
account for these findings it was theorized that this is due to a structural relaxation of the
nuclei forming the defect site after the non-radiative multiphonon transition took place. Due
to structural relaxation the effective energy barriers for a subsequent NMP transition change.
Such a mechanism can also explain the strongly temperature dependent recovery, where a high
temperature accelerates the recovery. It was theorized and investigated by [148] that a dimer
configuration or a hydrogen bridge can be broken by capturing a hole (or emitting an electron)
by an NMP transition and that the resulting configuration can structurally relax such that the
inverse NMP transition becomes less likely (cf. Figure 6.9). It is assumed that the process of
structural relaxation is solely dependent on the temperature. Thus the transition rates are
modelled using an Arrhenius law,

Eo Eoor
koo = 1y exp <_kB2T2L> and koo = 1pexp <— kB2121L> , (6.22)

where Fo9 and Fyy are the constant barriers and 1y = 1013 s_l. Structural relaxation was
shown to be essential to describe DCIV experiments [149, 150] and the possible field indepen-
dence of charge emission times 7, found in TDDS data.

6.2.4 The four State NMP Model

NMP as a charge capture and emisson process as well as structural relaxation have been
combined by [151] into a four state model (cf. Figure 6.11 and Figure 6.10), which was shown
to successfully describe the capture and emission time constants found in TDDS experiments.
The model is constructed such that a defect can in each state either exchange charges with
the substrate or undergo structural relaxation. However, it is noteworthy that this model does
not attempt to explain the step-heights of single defects. Instead the AV}, contribution of
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Figure 6.10: Definition of the adiabatic potentials for the oxide trap model from [151]. The
sketch shows a finite state diagram for a single defect close to the valence band. State 1 is the
stable and electrically neutral precursor state. Via an NMP transition (intersection between blue
and red parabolas) the defect goes into state 2’ and the defect becomes charged but remains
meta-stable. A defect in state 2’ can, upon the emission of a hole, undergo a transition back to
the neutral and stable precursor state 1. The charge carrier exchange processes are modeled
using NMP theory.

each defect is attributed to the interaction between the charged defect and the random discrete
dopants in the channel underneath the defect (cf. Chapter 4). In order to determine whether
or not a defect is charged, a system of equations describing the state transitions per defect are
required. To this end, the framework of first-order continuous-time Markov-Chains [143] can
be directly applied [29]. A single defect can only be in one state at a time. More precisely X;(t)
is the random variable for state 7 at time ¢, which is exactly 1 if the defect is in the ith state
and 0 otherwise. The condition that any defect has to be in any of its N states, where N is a
finite integer number, can be expressed by

N
> Xi(t) = 1. (6.23)

Next, the probabilities for state transitions need to be defined. Since a transition from ¢ to j
depends on the occupation probabilities X;(¢) and X;(t), where X;(t) = 1 and X,(t) = 0, one
can only define conditional probabilities. Formally, for an infinitesimal small time step dt the
conditional transition probability from state ¢ to j reads,

P(X;(t+dt) = 1|X;(t) = 1) = kijdt + O(dt), where CllngO(dt) =0. (6.24)
—

In the above equation kj; are the transition rates, which have been covered in the preceding
sections. Inserting Equation (6.24) into Equation (6.23) and defining that

pi(t) = P(X;(t+dt) =1|X;(t) = 1) (6.25)
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Figure 6.11: The oxide trap model from [151]. The figure shows a finite state diagram for a
single defect, in which state 1 is the stable and electrically neutral precursor state. The charge
carrier exchange processes with the substrate are modeled using NMP theory. Upon hole
capture (red arrow from state 1 to state 2') the defect becomes positively charged but remains
meta-stable. A defect in state 2’ can, upon the emission of a hole, undergo a transition back to
the neutral and stable precursor state 1. Alternatively, a defect in state 2’ can undergo the slow
process of structural relaxation, become stable and stay positively charged (state 2). In state 2
the defect can either go back into state 2’ or can emit a hole, thus becoming electrically neutral
and return to state 1’. In state 1’ the defect is neutral and can either undergo a transition into
the stable precursor state 1 by structural relaxation or can capture a hole and thus change
into the stable positively charged state 2.

is the probability for the defect to stay in a certain state, one obtains
p;(t + dt) = k;jdtp;(t) — kjidtp;(t). (6.26)
Equation (6.26) can now be written as
Oepj(t) = kijpi(t) — kjip;(t). (6.27)

In addition Equation (6.23) can be reexpressed to

N
> pilt) =1 (6.28)

Equation (6.27) and Equation (6.28) yield N + 1 equations for N unknowns p;(t). Since the
system is overdetermined one can ommit a single equation from the equation system. The p;(t)
are occupancy probabilities, which determine the probability of the defect to be in state ¢. Thus
the X,(t) are at a single instance in time either 1 or 0 with the probability p;(f). Sometimes
one is only interested in the expecation values of the occupancies. Consequently, applying the
expectation operator E{} to Equation (6.27) and Equation (6.28) one obtains

Opj(t) = kijpi(t) — kjipj(t) = Ouf;(t) = kij fi(t) — kyjifi (1), (6.29)

N N
E {in(t) = 1} =Y filt) =1, (6.30)

where E{X;(t)} = fi(t), meaning that f;(¢) can have any value between zero and one. It is
usually referred to as occupancy of state % (cf. Chapter 2).
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Evaluation of the Four State Model for the Drift Diffusion Model

Putting all of the above together, one is able to write down the system of equations for the four
state NMP model from Figure 6.11 and Figure 6.10. The full, time averaged system for the drift
diffusion model reads,

24 / n € /
kiy = ooX(@T)vl pexp (—kS;L) + oo A(zT)vi, Ne exp (— k]ﬁl) , (6.31)
€21 n €971
ko = UOA(mT)vthV exp (_kBTL> + oo A(zT)v,nexp <— kBTL> , (6.32)
€272 €22/
koo = — koo = — 6.33
219 1y exp ( k?BTL> , K22 vy eXp ( kBTL> ) ( )
€11/ €11
ki1 = — ki = — 6.34
11 vy €xp < kBTL> , K111 = Vg exp ( kBTL) ) ( )
fvl n EC/
kyo = ao)\(xT)vfhpexp (— k};ﬁ) + oo A(zT)v{, Ne exp <— kBlj%L) , (6.35)
€51/ n €51
ko = UOA(xT)vthv exp (— k]j%L> + oo A(zT)v,nexp <— k;%L) , (6.36)
1= fi+ fo+ fo+ fr, (6.37)
Oif1 = ko for + kv fir — (ki + k) fi, (6.38)
Ofo = ki fi + ko fo — (ko + kar2) for, (6.39)
Oifa = koo for + ko fir — (koo + kovr) fo, (6.40)
Ocfrr = kv fi+ ko fo — (ki + ku2) frr, (6.41)

where 1y ~ 1013 /s, A(z7) denotes the tunneling coefficient and superscripts v and ¢ have been
added to account for electron and hole dependent parameters, respectively. This system of
equations has more than ten parameters per band edge. One parameter set is the position
of the defect in the oxide, where only the trap depth zT directly enters the equations, which
together with the dopant positions determines the step-height by electrostatic interaction. The
parameters mainly determining the capture and emission times are the energy barriers (cf. Fig-
ure 6.11), the trap depth zT, the Huang-Rhys factors Shw, S'fw’ as well as the curvature ratios
R and R'. All other quantities in the equation system are either fixed values, such as the band
weights N. and N,, or directly obtained from the transport model.

Evaluation of Trap Charge and Recombination Terms

The trapping model is also tightly coupled to the transport model via the trapped charge and
charge recombination. The trapped charge (J; is computed via

Qt = £q| (Xor + X2) or E{Q¢} = % q (for + f2), (6.42)

where the sign of the charge depends on the type of trap, which can either be donor- or acceptor-
like. The recombination per defect can be straightforwardly generalized from Section 2.2.2 and
read

1
T =) ) > /B ki1 (1= pa)(1 = f)gn — konpa (1 — p1) £ gnd®k,  (6.43)
defects v
1
Fp{f;:’ f;} = Z W Z /B k2/1p2/(1 —pl)(l — f;)gp — k12/p1(1 — pz/)f;gpd?’k, (6.44)
defects v
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for an acceptor-like defect. For a moment based transport model the above relations simplify
to

R"= Y kipi(1 = py)n — kyipa (1 = p1)n, (6.45)
defects

RP = > kyupy (1= p1)p — krapi(1 = po)p. (6.46)
defects

Evaluation of Capture and Emission Times

For comparison with experiment, the capture and emission times 7. and 7, need to be cal-
culated. Since the four state NMP model has been derived using first-order continuous-time
Markov-Chain theory one can use the concept of first passage times from the theory. In the
four state model, there are two pathways for charge capture and emission. Charge capture
either proceeds via state 1’ or 2/. Thus, following [113], we define the capture and emission

times as
1 2! 1 2/
o= Tc(/ )TC( )/ ’ . = Te(/ )Te( )/ ’ (6.47)
TC(I ) + 70(2 ) TC(l ) + TC(2 )
where the first passage times 7.(1"), 7.(1’) and 7.(2), 7.(2') are
ki1 + ki + kg o k1o + ko + ko
1) = ’ (2 = : (6.48)
(1) k11:kyio «(2) k19 kgro
kqs k1 Koy ko kor koo
(1)) = 1+ R + 21’ o(2)) = 21 + Koo + 22 (6.49)
kyr1koys ko koo

6.3 Implementation and Requirements

Each defect model, which can be derived based on first-order continuous-time Markov-Chains
[143], can be stochastically interpreted. Thus two possibilities to solve the system of equations
for the four-state NMP model as well as the SRH model [29] (cf. Chapter 2) are investigated here.
The first possibility is to use a kinetic Monte Carlo algorithm to directly solve for the stochastic
occupancies X;(¢) via the occupancy probabilities p;(t), whereas the second one is to solve
for the occupancies f;(t) (cf. Section 6.2.4). One can choose, depending on the particular
task, between those two methods independent of the choice for a particular transport model
or BTE solving technique. Irrespective of the actual (non-linear) solver used for the transport
model, the program flow stays essentially the same and is shown in Figure 6.12. In case the
time-averaged occupancies are of interest a straight forward assembly of the equations and the
application of a linear solver suffice. For the kinetic Monte Carlo method, one first calculates
the transition rates kj; between the currently occupied state I, ie. Xj(t9) = 1, to all other
possible states j. Then two uniformly distributed random numbers r; and r2 between zero and
one are drawn. Using random number 7; the time to the next state transition event,

1 1
At=—1In <> with a; =Y kyj, (6.50)
j

ay ™
is calculated such that X;(tg + At) = 0 and X ({9 + At) = 1, where J is the final state.

Afterwards, the final state J needs to be selected. For this one iterates, in arbitrary order, over
all possible transitions j, where k7;/a; are summed up until the random number 73 is smaller
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Figure 6.12: A flowchart for the implementation of NMP trapping models with suitable trans-
port models. The transport model is, with the exception of the trapped charge and the recom-
bination term, independent of the trapping model. This allows to use different techniques to
solve the trapping model for the occupancies. When one solves for the stochastic occupancies
a kinetic Monte Carlo algorithm can be used.

than the current sum. The final rate k;;/a; in the summation determines the final state J.
The advantage of solving for the stochastic occupancies lies in the greater depth of information
on the actual trapping event. By virtue of the algorithm trap self-interaction can be mitigated.
This advantage however is then traded-off against the possibility to effectively use the simulator
in a mixed-mode simulator and the possibility to carry out a small-signal analysis.

6.3.1 Self-Consistent Solutions

The set of equations shown in the last sections are exponentially dependent on the electro-
static potential, which can be obtained by solving Poisson’s equations. Additionally, Poisson’s
equation is tightly coupled to the transport model from which the quantities to calculate the
NMP transition rates are obtained. The most pressing problem in the case of NMP transitions
is the strong potential dependence of the NMP model, which results in self-interaction of the
trap when solving for the occupancies f;(t). Since the occupancies f;(t) can take any value
between zero and one, the trapped charge can also take all values between =+ |q| and zero.
These fractional charges are added to the charge density in the Poisson equation and thus
change the local electric field at the defect site, which in turn can cause a significant change in
the transition rates and thus the capture and emission times. This tight coupling of quantities
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Figure 6.13: For each trap in one of 200 simulated microscopic devices with random discrete
doping (left figure) and continuous doping (right figure), the occupancy after 100 s of bias
temperature stress is shown (color coded). It can be seen that traps with large emission
time constants, which correspond to a more permanent degradation, are occupied. Here the
capture time constants have been chosen to be within the stress time in order to demonstrate
saturation. Additionally, it can be seen in the left figure that with random discrete doping the
capture and emission time constants are more spread out, compared to continuous doping.

for self-consistency results in convergence problems of the non-linear solver, which is in the
course of this thesis a Gummel-Iterator or a Newton-Raphson algorithm. However, solving for
the time averaged occupancies does allow to effectively use the simulator in mixed-mode and
the possibility to carry out a small-signal analysis, provided the full Jacobian is known. To
demonstrate this, MinimosNT with a first-order quantum corrected drift difftusion model and
the four-state NMP model (solving for f;(¢)) have been used to simulate the time evolution of
2600 microscopically different defects [4]. The quantum correction has been accounted for by
utilizing the density gradient model (cf. Chapter 4). To demonstrate the influence of potential
fluctuations on the time constants predicted by the model, random discrete dopants have been
considered too (cf. Figure 6.13). At last, Figure 6.14 shows the probabilities of self-interaction.
However, as we have shown in [4] (cf. Figure 6.14) the error due to trap self-interaction is small
and the validity of the simulation can be assessed. Nevertheless, if one is only interested in
the evaluation of the capture and emission time of a single defect, self-consistency is often ne-
glected and the trapping model can be evaluated after the transport model has been evaluated,
without any coupling between trapping and transport model. Thus the system of equations for
each defect described by an NMP based model is usually solved as a post processing step to the
transport model whenever possible. Nevertheless, for example in the case of inhomogenous BTI
this is not possible and one might need to utilize a KMC technique to solve the set of governing
equations per trap.

6.3.2 Parameter Dispersion

All bonds between atoms in an amorphous structure, such as the gate oxides used in MOSFETs,
are of different configuration and exhibit, for example, great disparity in bond lengths. Thus
the parameters of the trapping models used to describe BTI are not fixed but statistically
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Figure 6.14: Left: The probability of a single self interacting trap to be occupied over stress
time. The red curve is the occupancy for a self-consistent solution entering fractional charges
leading to a trap self interaction during the charging process. As a reference the blue curve
shows the expected charging behavior of the trap according to first-order kinetics. Right: The
cumulative distribution function for the time it takes each trap to change its occupancy from
10% of its initial value to 90% of its final value on a log-scale (inset) for the whole ensemble of
discrete traps in 200 simulations of a 35 nm pMOSFET with an EOT of 1 nm. Since significantly
more than 90% of all 2600 traps exhibit the expected first-oder behavior, the influence of the
self interacting traps is small. For simulation the drift diffusion simulator MinimosNT with
density gradient for quantum correction and random discrete traps (four-state model) and
dopants have been used.

distributed. Without any prior knowledge of the defect site configuration and its precursor
configuration many parameters have to be estimated within physically reasonable bounds. An
example for the four-state NMP model is given in Table 6.1. These parameters have also been
used for the self-interaction example in the previous section. It is generally assumed that
all parameters follow a Gaussian distribution, which is fully characterized by its respective
mean value and standard deviation. For the simulation of an ensemble of traps, the same
algorithm as for random discrete dopants is used to estimate the number of traps via a Poisson
distribution, their spatial location via an uniform distribution and the parameter set for each
defect via a Gaussian distribution. This approach, however, is not taken to describe TDDS
data [105].

6.3.3 Suitable Transport Models

Having a generalized algorithm for first-order time continuous Markov-Chain based BTI model
(cf. Figure 6.12) the question remains: Which transport model is best suited to study BTI?
Straightforwardly, any physical model which to sufficent accuracy describes the physical pro-
cess underlying the unperturbed (no BTI) operation of a particular device is best suited to study
BTI in that particular device. This is due to the nature of the NMP based models, which are, up
to the inherent model error due to the assumptions made in the derivation, only as accurate as
the physical device model, which delivers the necessary quantities, such as the electric field,
the energy distribution function, charge carrier concentrations, lattice temperature and so on.
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Parameter | Mean Value ;1 | Standard Deviation o

FEi 0.6 eV 0.1eV

E{ 0.75 eV 0.1eV

R 0.5 0.01

S 0.6 0.01

R 0.8 0.01

S’ 0.6 0.01

€T2 0.5eV 0.05 eV
€171 0.8 eV 0.05 eV
€979 0.5eV 0.05 eV

Table 6.1: Example mean values and standard deviations for the Gaussian distributed pa-
rameters of the four-state NMP model (Figure 6.11) used for demonstration purposes. The trap
levels F; (that is di) and E{ (that is dy/) have the largest standard deviations, which results in
a few traps being more likely in state 1’ than in state 1 before stress.

Quantum corrected drift diffusion simulators, like MinimosNT, are well suited to study BTI in
MOSFETs where the density gradient model is sufficent to describe carrier confinement, pro-
vided the drain voltage is low enough to guarantee low field transport [4]. However, for devices
with pronounced quantum mehcanical effects, such as small diameter nanowires, SiGe MOS-
FETs [152] or nanoscale MOS structures, often Schrédinger-Poisson solvers are best suited if
there is no transport, since they most accurately describe the device. Fortunately, Boltzmann
Equation solvers, such as SHE, are only necessary in non-equilibrium if the charge carrier
energy distribution functions for the device under BTI stress cannot be suitably approximated
by a Maxwellian distributions anymore. In research this however is seldom the case, since BTI
can be well studied, when there is little to no current flow in the device. Nevertheless, for device
engineering the effect of BTI during usual use conditions, e.g. inhomogenous BTI, is of utmost
importance to make lifetime predictions.

6.4 Model Evaluation on pMOSFETs using the Direct Current Current Voltage
Method

In this section a comparison of the SRH model and the four state NMP model using direct cur-
rent current voltage (DCIV) experiments at various temperatures, conducted using the poly-
heater technology [153], will be presented. To this end p-type metal-oxide-semiconductor
field-effect transistors (pMOSFETSs) are studied using the DCIV method before and after bias
temperature stress. The ability of the SRH model and the four state NMP model to meaningfully
reproduce the acquired DCIV data is compared. It is demonstrated that the SRH model cannot
capture the detailed features of the data and that the more detailed four state NMP model is
required.

6.4.1 Experimental Setup

For the measurement pMOSFETs with 30 nm thick silicon-dioxide as gate dielectric have been
used. All pMOSFETs have been integrated with the polyheater technology presented in [153]
in order to be able to locally heat the devices up to 500 °C. To monitor the stress induced
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Figure 6.15: Time line of a single BTI experiment involving DCIV. From top to bottom the
timline of the temperature, gate voltage and drain voltage is shown. In each plot the abscissa
has been placed such that it does not interfere with the plot and thus does not correspond to
zero on the ordinate. For each stress temperature 7T a fresh device was used. Prior to stress
an initial DCIV curve was recorded at room temperature. Afterwards the device was heated
by integrated polyheaters almost instantly to the stress temperature 73, while a gate voltage of
—20 V was applied. With the end of the bias temperature stress phase the device was cooled
down to room temperature (RT). At the end of the cool down phase a DCIV experiment on the
degraded device was performed at room temperature (cf. right side of the lower part of the
figure).

degradation, DCIV experiments [127, 128] were performed on fresh devices before and after
stress using a drain voltage V4 of 0.35 V to forward bias the pn junctions. For each stress
temperature a fresh device was stressed for ¢ = 10 s by applying a gate voltage of -20 V
(Vs = =20V and Eox ~ 6.7 MV /cm). After 10 s of stress the devices were cooled down for
lgelay = 200s to room temperature at a gate voltage of -20 V (cf. Figure 6.15) in order to
minimize the relaxation during cool down [154] (degradation quenching). With the end of the
cool down phase a DCIV curve for the stressed device was recorded.

6.4.2 Comparison of SRH and the four State NMP Model

The standard SRH model for interface traps and the previously introduced four state NMP
model for BTI were used to describe the measurement data in order to compare their ability
to reflect the (N)BTI stress dependent DCIV data. For the extraction all recombination centers,
i.e. stress induced defects, were assumed to be at or near the silicon-oxide interface. During
DCIV experiments the bulk current is directly proportional to the number of recombination
events [127], simplifying the analysis considerably. It is important to note that any carrier
recombination in the bulk, especially at the pn junctions, would cause a constant bulk current

82



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thek,

10
edge

b

nowl

L]
|
r ki

M You

Positive

Charge Metastable
Exchange

with Structural
Substrate Relaxation
Neutral } é Positive
Stable Stable
a 2]
@
Figure 6.16: The four state NMP model

from [151]. As a first approximation we
Sauctural % } Eggﬁggge omitted state 1’ and transitions from/to
1] S e ® oyen|  this state for the DCIV experiments

Metastale (gray shaded).

during the DCIV experiment. Since we did not observe a shift of the measured DCIV curves
along the ordinate within the accuracy of the measurement equipment we can safely assume
negligible carrier recombination in the bulk. Geometrical effects could be safely neglected, since
large devices with a 30 nm thick gate dielectric and a nominal gate length larger than 100 nm
were used. To assess the ability of the SRH model to reflect the DCIV measurement data, the
formula originally derived in [155] was used. It reads

0.5 /G3mni (exp (3 (Bs, — Fr,)) — 1)

R= : 6.51
exp (6 (Epp — Epn) /2) cosh (5U§) cosh (5Ug"1) ( )

U§ = ¢s +In (\/5,00) — (Er, + Er,) /2, (6.52)
Ut = (Ey — E) In (\/o,00) , (6.53)

where n; is the intrinsic carrier concentration, Ey, and EF,, are the quasi Fermi levels for
electrons and holes respectively, Fj is the intrinsic energy, o, and o, are the constant hole
and electron capture cross sections, ¢ is the surface potential, and § = (kBTL)_l. In the
analysis transitions from/to state 1’ are neglected to obtain a simplified approximation to the
full model. Further it was assumed that the DCIV experiment itself does not stress the device
any further. This assumption was experimentally justified by comparing DCIV curves for
various measurement durations, i.e. different slopes of the gate voltage applied, whereas the
measurements yielded the same DCIV curves. With the stated simplification the derivation of a
compact analytical version of the carrier recombination rate for the multistate NMP model can
be undertaken. By defining effective rates the three remaining defect states have been reduced
to only two equvialent states. The effective rates are [156],

k1orkoro ko1 koo
kig = ———-~— d ko = —————=—. 6.54
2 ko + ko o 17 kgt + ko ( )

Employing Maxwell-Boltzmann statistics and applying the assumptions discussed above to the
first-order differential for the four state NMP model one obtains

Oif =kan(1—f)—kiaf =0, (6.55)

for the occupancy of a trap. Using the definition of the recombination rate for holes R? in
steady state and inserting the solution of (6.55), gives an analytical formula in the framework
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Figure 6.17: For higher

stress temperatures the 2.5 ' ' 31'5 o0
peak in [}, is larger and the 9| 205 °C —
curve is broader towards 245 °C —
negative gate voltages ~ 1.5} 180 °C —— A
(black arrow), whereas = 120 °C —
the slope for V; > —0.5V i: 1 Before Stress
remains nearly constant. = 05

Also noteworthy is the

reproduceable  shoulder 0

towards negative gate

voltages for a stress _O'?1.5 _I1 _0I_5 E) 0.5
temperature of 315°C. Ve (V)

of a multistate NMP model for carrier recombination

2 P
B koo koo (ni — np) TpOnU Uiy,

R N (6.56)
N = exp (Ber2) kaarnoyvly, + exp (Bean) kyopopvl),

+exp (B(—E; + €12 + By — e7ar)) koranio, vy,

+ exp (B(E; + €21 — Ey — eror)) kaarniopvl) (6.57)

where v{} and vtph are the electron and hole carrier velocities, o, and 0, are the constant electron
and hole capture cross sections. For all simulations the constant capture cross sections o,
and o), were fixed to a value of 2.0 x 10716 cm? for the SRH and the multistate NMP model.
DCIV curves measured for various stress temperatures, which have been normalized to the
peak value for Tgiess & 245°C for comparison, are shown in Figure 6.17. The maximum
value of the bulk current [}, increases with higher stress temperatures as expected. Also
noteworthy is the broadening of the bell-shaped DCIV curve towards negative gate voltages,
whereas there is almost no broadening towards positive gate voltages (cf. Figure 6.17 for V; >
—0.5V). This indicates that traps with higher effective activation energies are becoming active
trapping centers at higher stress temperatures. A fit of the SRH model [136] for the post-stress
measurement data is shown in Figure 6.18. It can be seen that the SRH model can reproduce
the DCIV curve only for certain stress temperatures (in this case Tgiress ~ 240°C), but not for a
wide range of stress temperatures. Especially for stress temperatures above 315°C, when the
DCIV bell-shaped curve develops a shoulder towards negative gate voltages, the SRH model
cannot reproduce the experimental data as shown in Figure 6.19. Noteworthy is the fact, as
seen in Figure 6.19, that the post-stress DCIV curve changes its shape for stress temperatures
above 315°C. This is why the SRH model, for which the recombination current exhibits a
cosh™* shape (cf. (6.51)) for all temperatures [155], cannot reproduce the experimental data
anymore. In contrast to the SRH model the four state NMP model can give excellent fits to the
data for all stress temperatures as shown in Figure 6.20. This can be attributed to the fact that
the reduced four state NMP model additionally considers structural relaxation (cf. Figure 6.16
and Figure 6.22). To understand why structural relaxation can explain the additional shoulder
above a stress temperature of 315°C in our data, we reformulated the carrier recombination
formulae in the four-state NMP model (6.56) and for the SRH model (6.52) such that both
formulas have the same structure. The carrier recombination rate for both models has the
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Figure 6.18: Fits of the
standard SRH model to the
post-stress DCIV curves
for various stress tem-
peratures. Especially
for higher stress tempera-
tures, such as 315°C, the
standard SRH model can-
not reproduce the shape
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Figure 6.19: Same as in Figure 6.18 but for higher stress temperatures. At very high stress
temperatures the post-stress DCIV curve develops a characteristic shoulder. The SRH model
cannot predict any of the three DCIV curves, since it cannot reproduce the characteristic
shoulder.
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Figure 6.20: In contrast
to the fit for the SRH
model (cf. Figure 6.18), the
NMP model can explain
the post-stress DCIV data
for all stress temperatures
used. Remarkable is the
ability of the NMP model to
reproduce the DCIV curve
for a stress temperature of
315 °C with high accuracy.
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Figure 6.21: For high stress temperatures it is possible to reproduce the post-stress DCIV
data with good accuracy. Even the characteristic shoulder, best seen for Tytress = 420 °C, can
be fitted with excellent accuracy.

following structure

(nf — np) opon vV,
mh(n+n) + 1) (p+p1)’

(6.58)

where 7,, and 7, are the carrier lifetimes for electrons and holes and o}, and 0, are the capture
cross sections for electrons and holes, respectively. These parameters are model-dependent.
For the SRH model the capture cross sections have fixed values, where

ol =0, =2.0x 1070 cm?, (6.59)

o), = 0p =2.0 x 107% cm®. (6.60)

In contrast, the four-state NMP model gives

o = exp (Bex1) S exp (Bex1) 6.61)
koorkoro v2exp (—Pexean)
a; _ €xp (5612’)0 _ €xXp (5612/) . (6.62)

kookao 7 v2exp(—Begyeys) ¥

Furthermore, the carrier lifetimes differ strongly between the SRH model and the multistate
NMP model [151]. Thus it can be stated that the effective capture cross sections of the multistate
NMP model are device temperature, oxide field and parameter dependent, while those of the
SRH model are always constant. By adjusting the energy barriers (€22 and €y/2) describing
the structural relaxation (cf. Figure 6.9 and Figure 6.16) it is possible to perfectly fit the DCIV
curves measured after high temperature stress (cf Figure 6.21). Figure 6.22 depicts how the
shoulder, for stress temperatures above 315°C, can be described using a multistate NMP
model. If structural relaxation is neglected (cf state 2 in Figure 6.16) one obtains a standard
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NMP model [157,158]. For the standard NMP model the energy barriers (€29 and €9/2) describing
the structural relaxation are zero. Thus the effective capture cross sections of the standard
NMP model reduce to

,  exp(fBean) ,  exp(Bery)

n=————0n=exp(Bey1)0on, and o, = op = exp (Be1) op. (6.63)
koor koo koor koo
11 11

This reduction of the multistate NMP model results in a less pronounced temperature depen-
dence [29] and in the loss of two degrees of freedom for parameter extraction.
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Figure 6.22: When the exchange of charge carriers with the substrate dominates the recom-
bination current exhibits a bell-shaped curve towards negative gate voltages. Whereas when
structural relaxation dominates the recombination current exhibits a bell-shaped curve to-
wards positive gate voltages. The weighted sum of these two partial recombination currents
gives a bell shaped curve with an additional shoulder [149].

The investigation of the capability of the SRH and NMP model to explain DCIV measurements
of pMOS devices after NBTI stress at various stress temperatures shows the importance of
structural relaxation for a proper description of recombination currents. A moderate agreement
between model and measurement data could be obtained with the conventional SRH model.

6.5 Results on Trap-Assisted Tunneling

In 2012 Toledano et al. [159] showed that there is a correlation between gate and drain current
fluctuations in MOSFETs. Figure 6.23 shows a portion of the experimental data. Interestingly
the difference between high and low gate current is 80% of the gate current maximum and
temperature independent. Due to the correlation with the drain current it is concluded that
the charged trap significantly changes the tunneling current. A possible explanation is that the
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Figure 6.23: Left: Gate I, and drain current /4 simultanously recorded on a n-channel
MOSFET with an EOT of 2.3 nm [159]. It is clear that gate and drain current are strongly
correlated. Whenever a trap becomes occupied (low drain current) the gate current is decreased
as well. In total the gate current is reduced by nearly 80%. Right: A schematic of the two
tunneling processes to explain the experimental data (left). The total tunneling gate current
is composed of direct tunneling (DT) and trap-assisted tunneling (TAT). On the far right, the
assumption of a purely electrostatic interaction between the direct tunneling current and the
trap occupancy is depicted.

charged trap changes the local potential such that the number of charge carriers, which tunnel
through the oxide, is reduced by 80%. This would also explain the temperature independence of
the reduction, inherent in direct tunneling. Another explanation is that the tunneling current
is a trap assisted NMP process. In [160] we explored whether the experimental data could
be reproduced by assuming that an occupied trap reduces the direct tunneling current by
purely electrostatic interaction. To assess whether or not this is correct, we first simulated the
electrostatics of the n-channel MOSFET. For this we used the 3D density gradient and drift
diffusion simulator MinimosNT and additionally considered random dopants. The simulations
were done per device, once without and once with a single discrete trapped charge in the oxide
(cf. Chapter 5). Our sample size consisted of 201 microscopically different devices, i.e. different
dopant positions. Then 1D potential profiles (normal to the semiconductor-oxide interface)
were extracted in 1 nm increments. These profiles were then loaded into our NEGF (cf. Chapter
2) simulator, VSP [51], in order to calculate the relative change in the gate current (direct
tunneling) Al,/I,. The relative tunneling current change Al, /I, was obtained by comparing
the tunneling currents for the devices without trap to the devices with trap. In Figure 6.24 (left)
a normalized map of the local Al /I, over the whole gate area is shown. The map shows high
local changes in the vicinity of the trap. However, as the histogram in Figure 6.24 (right) shows,
we could hardly find a dopant-trap configuration for which the total change in tunneling current
exceeded 1%. This is in stark contrast with the experimentally reproducibly found decrease of
80% in I,.

Thus trap-assisted tunneling in the context of the presented four-state NMP model has been
(successfully) explored [161]. Extending the four-state NMP model (cf. Figure 6.25) by tak-
ing interactions with the poly-gate into account, the experimental data could be reproduced
(cf. Figure 6.26). In this extended model one has to differentiate whether the charge carrier to be
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Figure 6.24: Left: Map of local Al,/I, (1 nm increments) due to the charging of a single
trap for a particular random discrete doping. High changes in the direct tunneling current in
the vicinity of the trap are visible. The contour line corresponds to a one percent change in
the local gate current. Nevertheless, the total gate current does not change by more than two
percent [160]. Right: Histogram of A/, /I, for active and inactive traps exhibiting a log-normal
distribution (solid line). From this data it is clear that the reduction of the direct tunneling
current due to active traps is unlikely to be decreased by more than 2% [160].

trapped originated from the poly-gate or the substrate. Nevertheless, the basic rate equations
do not change. However, the source of the quantities and the tunneling distances are differ-
ent. In order to correctly evaluate the capture 7. and emission times 7, for the trap-assisted
tunneling current the charge state (whether or not the defect is charged) in the modified model
had to be taken into account. In the course of the evaluation of the five-state NMP model it was
found that the weak temperature dependence of the time constants is due to the weak electron-
phonon coupling (small NMP transition barriers) needed to reproduce the measurement data
(cf. Figure 6.26 right top). For details on the model, the reader is referred to [161].
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process with the poly-gate.
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Figure 6.26: Left: A fit of the five-state NMP model for trap-assisted tunneling (cf. Figure
6.25) to the experimental data from [159]. The top figure illustrates the weak temperature
dependence of the trap-assisted tunneling process, due to weak electron-phonon coupling. The
lower figure shows the exponential dependence of the tunneling current on the gate voltage.
Right: A fit of the model to the characteristic time constants of the tunneling process (cf. Figure
6.23). The capture and emission time constants can be reproduced quite well. The model can
thus represent the temperature and oxide field dependence of the tunneling current as well as
the experimentally observed characteristic time constants.
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Let’s perfect the current HCD model
before we mate it with the BTl model.

(Stanislav Tyaginov)

7 Hot Carrier Degradation

Hot-carrier degradation (HCD) is a change in the device parameters, such as drain current
Aly, threshold voltage V4, and on-resistance R, in MOSFETSs operating at high lateral (along
the channel) electric fields. HCD was initially only attributed to a defect buildup in the oxide
caused by hot charge carriers. However, it was found that colder charge carriers, that are
carriers with a low average energy, can also cause hot-carrier degradation [162]. Nevertheless,
our latest [163] as well as older HCD models [164] include the assumption that hot charge
carriers, which have gained sufficient kinetic energy, scatter with passivated dangling bonds
at the interface, causing the bond to break. However, newer models include the additional
assumption that multiple colder carriers can also cause these bonds to be dissociated. This
rupture in turn creates P}, centers at the semiconductor-oxide interface [165, 166], which
capture and emit charge carriers, thereby distorting important device characteristics such as
e.g. drain current and threshold voltage (cf. Figure 7.1). In contrast to bias temperature
instability (BTI), however, hot-carrier degradation is best observed at high electric fields along
the channel. Whereas BTI is best observed at high gate voltages and negligibly small lateral
electric fields, such that low field conditions in the direction of charge carrier transport are
met. It is adopted that oxide defects and border traps play a crucial role in BTI modeling,
where the charge trapping kinetics are described by non-radiative multiphonon theory [29]. In
HCD modeling, however, it is assumed that P}, centers created by hot carriers can be described
by standard SRH theory and that oxide defects can be safely neglected. Nevertheless, oxide
defects were shown to be present in devices subjected to hot-carrier stress [167]. For instance,
in [168, 169] it has been demonstrated that charging of different types of traps can lead to a
change of sign in Alq ji,. Thus, in [169] first the Aly ji, increases followed by a reduction
in Alq 1, at longer stress times. Such a turned-around effect of the threshold voltage, which
is attributed to the interplay of hole trapping by bulk oxide traps and electron capture at the
interface has been reported in [167].

7.1 Measurement Technique

The measurement techniques employed to assess hot-carrier degradation are very similar to
those used for bias temperature instability. The degradation is often measured as a change
in drain current Aly or as a threshold voltage shift AV, [170]. Additionally, recovery of
hot-carrier stressed devices is currently of increasing scientific interest [171]. Measuring the
recovery after hot-carrier stress is very similar to BTI recovery experiments. Recovery can be
observed by switching all voltages to their respective relaxation levels and recording the drain
current as it is done for stress. However, often it is necessary to accelerate recovery to collect
more data points in less time. This can be achieved by switching the device temperature to
higher temperatures while measuring recovery. A typical stress or stress-measure technique
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Figure 7.2: A typical hot-carrier stress cycle. In each hot-carrier stress cycle the device
gate voltage and the drain voltage are chosen such that charge carriers can be sufficiently
accelerated (no low field conditions), while the device temperature is kept constant. These
stress conditions lead to an increase in Nj; along the oxide interface, measurable as a decrease
in drain current. To obtain the drain current degradation AV}, the drain current during stress
is compared to an /4 — V;; curve taken before stress.

to assess HCD is shown in Figure 7.2, where the drain current is recorded for a preset pair
of gate V, and drain voltages Vy at a fixed temperature. Before the hot-carrier experiment
starts, the fresh device is characterized by measuring for example the Iy — V, , Iq — Vq or
CV curves. During this initial measurement great care not to BTI stress the device in this
phase has to be taken. Throughout the hot-carrier experiment the drain current is constantly
recorded, while gate and drain voltage are regulated by a controller to cycle between the various
stress conditions. Hot-carrier stress is defined as the set of voltages (V;;, V) at constant device
temperature, which cause a prominent drain current shift |Al4| or an equivalent absolute
threshold voltage shift |AV;y| in a given time .
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Figure 7.3: Hot-carrier stress assessed as Al at room temperature for various drain voltages.
The data has been recorded for n-channel MOSFETs with an EOT of 16 nm at a gate voltage
of 2.0 V. With increasing drain voltage and thus channel electric field, the hot-carrier induced
damage is increasing (arrow) [174].

7.2 Electric Field Dependence

Experimentally it was confirmed that hot-carrier degradation in MOSFETs is highly electric
field dependent (cf. Figure 7.3) [164, 170, 172], for both short- and long-channel devices. Thus
the influence of the electric field and channel length on HCD is uncorrelated. This is due to
the constant field scaling applied by the industry [173] and can be attributed to the fact that
even a few nanometers of silicon are sufficient for charge carriers to be accelerated or otherwise
high drain currents in scaled devices could not be sustained. The significant lateral field
dependence inspired the first lucky electron model [164], which assumed that the lateral electric
field is the driving force of hot-carrier degradation (field driven paradigm) [164]. Systematic
investigations based on Fowler-Nordheim [175] tunneling stress, hot substrate and channel
charge carriers revealed that the carrier energy rather than the electric field is the driving force
behind hot-carrier degradation (energy driven paradigm) [176, 177]. However, charge pumping
experiments revealed that neither the peak of the electric field nor the peak of average kinetic
carrier energy coincides with the experimentally found maximum of the created interface defect
density Ny [178] (cf. Figure 7.4). Thus, the information on the electric field and average carrier
energy is not enough to adequately evaluate the the hot-carrier induced Nj; profile.

7.3 Temperature Dependence

Contrary to bias temperature instability, hot-carrier stress becomes less detrimental with in-
creasing device temperature (cf. Figure 7.5) in longer channel devices. This relation is inverted
for short channel devices, where hot-carrier stress becomes more severe at elevated tempera-
tures [179]. This channel length dependent influence of temperature on the degradation can
be explained in terms of carrier Kkinetic energy distribution and scattering. As laid out in Chap-
ter 2, charge carriers are accelerated by the electric field in the semiconductor and undergo
scattering events. These events lead to changes in momentum and possibly in a loss/gain
of particle energy. At higher temperatures the intensity of all scattering processes increases,
which results in depopulation of the high energetical fraction of the carrier ensemble. As a
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Figure 7.4: The peak positions of various quantities used to model hot-carrier degradation in
comparison to the extracted Nj; peak at the drain side of a MOSFET channel. The figure shows
that neither the electric field nor the average carrier energy maximum coincide with the Nj;
peak and thus cannot be used as the driving force behind HCD. Adopted from [170].
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Figure 7.5: Hot-carrier degradation expressed as Aly at room temperature and for device
stress temperatures of 25 °C and 75 °C. The data have been recorded for n-channel MOSFETs
with an EOT of 2.5 nm at various gate and drain voltages, where V, = V3. With increasing drain
voltage and thus channel electric field, the hot-carrier induced damage increases. However,
the induced damage decreases with increasing temperature.
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Figure 7.6: Hot-carrier degradation expressed as Alq at room temperature for various drain
voltages and channel lengths. The device under test was an n-channel MOSFETs with an EOT
of 16 nm at a gate voltage of 2.0 V. From the plot it can be seen that the general trend over
drain voltage is the same for various channel lengths. Nevertheless, the distance between the
curves grows with decreasing channel lengths [174].

consequence, increasing lattice temperature causes weakening of hot-carrier degradation.

7.4 Channel Length Dependence

In Figure 7.6 the Al j;, over time during hot-carrier stress in the linear regime of various
n-channel MOSFETs with different channel lengths is shown. From this figure and the liter-
ature [180], it can be concluded that hot-carrier stress is a severe problem in short channel
devices too. This can be explained in terms of the charge carrier energy distribution and
is still an active area of research. As discussed for the temperature dependence, in shorter
channels the charge carriers can accelerate without being scattered as much as in a long
channels. This reduction in the number of scattering events per second in scaled MOSFETs
reinforces the cumulative probability of the carrier ensemble to dissociate Si-H bonds at the
semiconductor-oxide interface, since there are more carriers with sufficient kinetic energy. Ad-
ditionally, electron-electron scattering is more pronounced in shorter channel devices, where
more carriers exceed the threshold to significantly elevate the high energy tail of the distribu-
tion function than in long channel devices. In summary the average number of hot electrons
is increased by electron-electron scattering, which has a significant influence especially for
shorter channel devices, since the carriers scatter less with phonons and impurities.

7.5 Models

To model HCD understanding of the underlying physical mechanisms is naturally required,
where the electric field dependence was explored first. Thus, it is not surprising that early
models where based on the magnitude of the electric field in the channel (field-driven paradigm).
Until today most of the models explained the influence of hot-carriers as a buildup of interface
defects and charges along the semiconductor-oxide interface of MOSFETs, which are often
modeled using SRH kinetics.
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7.5.1 Early Models

One of the first HCD models was the so-called Lucky-Electron model [164]. The model is
based on the assumption that a single carrier (called Tucky electron’) is accelerated by the
electric field such that it gains sufficient energy to overcome the dissociation energy barrier of
a Hydrogen saturated bond at the interface. Additionally, when the lucky electron impinges
on the semiconductor-oxide interface it does so without further collisions and without being
scattered back into the channel. In this field-driven model the hot-carrier degradation is
described as a buildup of interface states ANj; in addition to interface states that have been
active before hot-carrier stress.

Al =R (tvlvd P (‘ a Ami?(E(x)})) ’ 71

where K is a prefactor, ¢ is time since the onset of stress, W is the channel width, F, is the
activation energy, \ is the electron free mean path and max{(E(x)} is the maximum electric
field at the semiconductor-oxide interface. However, it has been shown (cf. Section 7.2) that
HCD is not field driven and that the Lucky-Electron model fails to explain HCD in short channel
devices [181]. From charge pumping experiments [182] the maximum Nj; has been found not
to coincide with the maximum of the electric field along the channel (cf. Figure 7.4). This,
however, contradicts the prediction of the Lucky-Electron model, where maximum Nj; and the
peak of the electric field coincide.

7.5.2 Latest Model

While the first hot-carrier degradation models were based on the channel electric field as the
driving force, it has long been realized that the phenomenon is energy- rather than field-driven
[172,176,177]. Thus, a physics based model requires information on the energy distribution
of the charge carriers. Such a model has first been proposed by the group of Hess [183, 184],
improved by the group of Bravaix [162, 185] and has been constantly further developed in
[174, 186], resulting in the latest carrier energy distribution based model [163], which will be
presented and discussed here.

Bond Breakage Mechanisms

Our physics-based model, as many other models, describes the drain current and the degrada-
tion of other device parameters (e.g. R,,) as the result of a stress induced buildup of interface
defects. Thus, the bond breakage mechanism needs to be addressed first. Contrary to the
Lucky-Electron model the silicon-hydrogen bonds, present in every forming gas annealed de-
vice, are modeled as truncated harmonic oscillators and not by a single bond energy (cf. Figure
7.7). In the truncated harmonic oscillator model of the Si-H bond, charge carriers are assumed
to be able to scatter at the Si-H bond, thereby exchanging energy with the bond and scattering
back into the substrate. If a sufficient amount of energy is transferred to the Si-H bond from
the channel carrier, the bond is ruptured and Nj; increases. This bond breakage mechanism
is termed anti-Bonding (AB) mechanism and corresponds to bond rupture by a single highly
energetic carrier. If the charge carrier, however, does not have enough energy to break the Si-H
bond, it is assumed that this carrier at least increases the vibrational energy of the Si-H bond,
thereby contributing to the multi-vibrational excitation (MVE) process. This situation corre-
sponds to bond dissociation by a series of ‘cold’ carriers [184]. The MVE process is especially
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Figure 7.7: The truncated har-
monic oscillator model of the Si-H
bond used in the derivation of the
HCD model. In this model, the Si-H
bond is intact in state 1 (blue cir-
cle) and in the anti-bonding state
2 (red circle) it is broken. Imping-
ing carrier can induce a vibrational
mode of the bond, thereby exciting
the bond. Once excited to a higher
level, the bond can be more easily
dissociated (i.e. the hydrogen can
overcome the potential barrier sep-
arating the bonded and transport
configurations) either thermally or
by a carrier bombarding the inter-
face. This is because the more the

bond is vibrating, that is the higher BTN

the oscillator level that is occupied, ~*
less energy is needed to rupture the O

Si-H bond. Bonded State ko1 Transport State

important for scaled devices, where only few charge carriers reach kinetic energies beyond the
dissociation energy of the Si-H bond (= 1.5 eV).
The truncated harmonic oscillator can be described by a set of rate equations, which read

ki(nlqu — nl) — k:T(nZ — nifl) — 1ring +piNj% if0<i< N —1,
on; = kyni — kyno — rono —l—poth if 2 = 0, (7.2)
—kinn-1+ knn—2 —rn—1nn—1 +py_1NZ ifi= N —1,

where n; is the occupation number of the ith level, IV is the number of levels, k| and k4 are
the bond deexcitation and excitation rates, p; is the Si-H passivation rate for the 7th level and
r; is the Si-H rupture rate for the ith level. In order to solve this rate equation it is assumed
that there is a large difference in the timescales of the harmonic oscillator transitions and
the passivation/depassivation processes. This assumption is justified by the huge disparity
between phonon and Si-H bond lifetimes. Thus, the rate equation above can be reduced to

O Nit = (Nit, max — Nit)R — N2 P, (7.3)
N-1

o\ N-1 N-1 /4 \m
where R=CY ry (ki) P=Y e with C= Y @) S wa
m m m
which is solved analytically with the initial condition N;;(0) = 0, Ni(¢) > 0 to read

]Vit7 maxR

Ni t) = ’
o(?) R+ /R?+ Nit maxRP + coth(t\/R? + Nit, max RP)

(7.5)

To complete the model, the bond passivation rate p; is modeled using an Arrhenius law with

DPN—-1 = Vpe€xp (— kfi) and p; = 0 for all other levels, where v, = 1013 /s is an attempt
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frequency. The dissociation rate for the :th level with energy F; is

FE,—d E., —F;
kpTr, ’

ri = IaB,i + Vr exp <— (7.6)
where v, is an attempt frequency, while d is the bond dipole moment. This dipole moment
and the dispersion of the activation energy F, are discussed in the next section. I; is the
carrier acceleration integral [183,184,187] which represents the cumulative ability of the carrier
ensemble to break the bonds, whereas the second term models interface state generation via
thermal excitation. In the same fashion, the bond excitation and deexcitation rates are defined
as

kT = Ivve + W' exp <— ) and ]ﬁ = ImvE + W' (7.7)

kgTr,

where w' is the oscillator frequency. The acceleration integral for the anti-bonding process (AB)
is defined as

Inp,i = o9 / FP (@i, B, )" P (E)ol/?(E)[(E —Ea + d- Eox + E;) [ Eret] "dE,  (7.8)
Ewn

=—FEm

where Fy, is a threshold energy for electrons and holes respectively and the integral runs to
infinity for electrons and to negative infinity for holes and E,.f = 1 eV. Note that the exponent
of 11 in the equation above is an emperically found value. For multi-vibrational excitation the
acceleration integral is defined as

Iave = o9 fP (2, B, t)g”/”(E)vg/”(E) [(E - @/)/Eref] dE, (7.9)
Etn =F,,

and not dependent on the current state the oscillator is in. A graphical representation of the
acceleration integral is given in Figure 7.8.

Activation Energy Dispersion and Bond Dipole Moment

The defect precursors (passivated Si-H bonds) at the semiconductor-oxide interface, even in
modern semiconductor devices, are not of the same atomic and energetic configuration. This
is due to the amorphous nature of the employed dielectrics and lattice mismatches at the
interface. Thus, the energy needed to break Si-H bonds is naturally dispersed [188], which is in
our model reflected by a normal distribution of F/,. The mean value of the activation energy was
chosen to be 1.5 eV with a standard deviation of 0.15 eV, in good agreement with experimental
data [171]. The importance of the activation energy dispersion was shown in [163]. Additionally,
the dipole moment d of the bond needs to be accounted for when dissociation occurs from the
ith level [185]. This is done by subtracting d - Eox from the energy F, — E; needed to break
the bond (cf. Equation (7.6)). To account for the dispersion of the activation energy F, a Monte
Carlo method, similar as for random discrete dopands, is used. Since any Monte Carlo method
adds numeric noise to the solution another, deterministic approach can be taken: For example,
assuming that the activation follows a Gaussian distribution one can sample this distribution
using a sufficient number of sample points and calculate weight factors using the Gaussian
distribution. Then for each sample point the model equations are being solved, where every Vi
value is multiplied by the weight factor of the sample point such that the maximum Nj; cannot
be exceeded (normalization).
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Figure 7.8: Exemplary distribution functions and acceleration integrals (shaded area) for
electrons and holes from the middle of an artificial short channel (25 nm) n-channel MOSFET
simulated with ViennaSHE [65] at hot-carrier stress with phonon and impurity scattering only.
Well visible is the importance of the high energy tail for the calculation of the acceleration
integral.

7.6 Requirements for Simulation

For the application of the present hot-carrier model, the evaluation of the acceleration integral
(cf. Equation (7.8)) is necessary. To achieve this, the energy distribution of the charge carriers
is required. In order to obtain the energy distribution, the Boltzmann Transport equation (BTE)
has to be solved, which is challenging in its own right. Unfortunately, HCD is highly sensitive to
the high-energy tail of the distribution, and therefore the modeling of the scattering operator re-
quires special attention. In particular, impact ionization scattering as well as electron-electron
interactions have to be incorporated. For example, it has been shown that the accuracy of the
BTE solution ignoring electron-electron scattering can be seriously impacted [189]. Further-
more, it has been shown that the majority carriers can, in some cases, significantly contribute
to the damage, requiring a coupled solution of the BTE for electrons and holes [174]. Finally,
since an accurate resolution of the energy distribution at high energies is required, information
about the full band structure has to be included into the model. Traditionally, this complicated
problem is approached by using the Monte Carlo method [25], which is computationally- and
time-intensive, particularly when the high-energy tails of the distribution function have to be
resolved in detail [44]. Until a fully functional full-band spherical harmonics expansion (SHE)
simulator with electron-electron scattering incorporated has been available the BTE had to be
solved using the Monte Carlo approach [25]. The main advantages of the MC method are,
that it is a well-known and investigated method, as well suited for the incorporation of the full
dispersion relation (cf. Figure 2.1). However, the MC method is capable of resolving the whole
phase space only at the cost of a square root dependence on the number of particles per mag-
nitude of resolution in the distribution function. Aside from a limited time-scale, Monte Carlo
simulators are not easily extendable to self-consistently solve the BTE, Poisson’s Equation and
the HCD model equations. Additionally, it has been shown that the use of strongly simplified
models derived from approximations of the acceleration integral in moment based simulators
leads to unsatisfactory results [190].
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7.6.1 Importance of the High Energy Tail

Due to enormous computational burden of the MC method to resolve the high energy tail, a
spherical harmonics expansion of the BTE to assess HCD is attractive. Thus, SHE based BTE
solvers, such as ViennaSHE [65], have been developed in hopes to overcome the inadequacies
of the Monte Carlo method. A SHE based simulator can easily be extended to numerically
solve any defect equation self-consistently with the set of SHE-BTE equations. However, the
greatest advantage of a SHE based simulator is that there is no numeric noise whatsoever in
the energy distribution function. Nevertheless, SHE is still a fairly ‘young’ method. This means
that not all possible numeric schemes have been sufficiently explored yet. Additionally, it is
quite challenging to incorporate full-band effects into a SHE based simulator [47]. Neverthe-
less, as a solution technique to the BTE, a spherical harmonic expansion delivers the better
noise/performance trade-off compared to Monte Carlo methods [44, 46].

7.7 Calibration

7.7.1 Experiment

In the course of this thesis our model was calibrated using HCD measurements provided by
imec on 65 nm gate length and 150 nm gate length n-channel MOSFETs with an EOT of 2.5 nm
[163]. The SiON gate oxide has been fabricated using a decoupled plasma nitridation followed
by a post-nitridation anneal. For simulation we employed a device structure generated by the
Sentaurus process simulator and subsequent calibration using MinimosNT and ViennaSHE.
The 65 nm nMOSFET was stressed at V; = Vg = 1.8 Vand V, = Vg = 2.2 V, while the 125 nm
counterpart was subjected to HCD at V; = 09V, V3 =18V and V; = 1.1V, V4 = 22 V.
These combinations of voltages correspond to worst-case conditions typical for short-channel
(65 nm) and relatively long-channel (150 nm) MOSFETSs, respectively. In both cases the ambient
temperature was 298 K. To assess degradation, the linear drain current /4 in inversion under
low field conditions, i.e. small channel electric field, was measured.

7.7.2 Results

In Figure 7.9 the fit of the model to the measurement data for the 65 nm nMOSFET are plotted
disregarding various important ingredients of the model. If any of the mechanisms, such as
MVE or EES, are neglected the measurement data cannot be reproduced by the model. This is
also reflected in the corresponding N;; profiles (cf. Figure 7.10). From the acceleration integrals
for the ground state (cf. Figure 7.9) it can be seen that impact ionization has a negligible effect
on the HCD for this particular device. However, the influence of electron-electron scattering is
massive, as expected for a short channel device. The effect of EES is naturally reflected also
in the Ny profiles, where it causes an increase of Ny, in the center of the channel right under
the gate (cf. Figure 7.10). Interesting features are also the impact of the interaction between
the electric field and the dipole moment as well as the contributions of the single hot carriers
(anti-bonding process) into HCD. Contrary to previous speculations [46], the increase of Nj;
shifted towards the source as compared to the ‘classical’ V;; maximum near the drain, for the
devices considered here, cannot be explained by a prominent majority carrier (hole) contribu-
tion. Instead, the electric field-dipole interaction and the activation energy dispersion seem to
be responsible for this tendency. The later is highly important for a physics based description of
HCD and Figure 7.10 clearly shows the consequence of neglecting the activation energy disper-
sion. Ignoring multi-vibrational excitation or activation energy dispersion does not drastically
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Figure 7.9: Left: The relative Al 1, degradation for the 65 nm n-channel MOSFET stressed
under worst case conditions (lines) compared to the measurement data (diamonds). The influ-
ence of the various ingredients of the model is shown. The degradation predicted by the model
is strongly influenced by electron-electron scattering and single hot carriers (anti-bonding pro-
cesses). Right: Acceleration integrals along the channel (from source to drain at the interface)
with and without considering electron-electron scattering and impact ionization.

change the Vy; profiles, but causes a uniform shift of Al towards lower values (cf. Figure 7.9).
The same line of reasoning applies to the 150 nm nMOSFET, for which experimental data is
properly represented by the simulation resuls. Thus, our model is capable of predicting the
Alq1in degradation for different devices (with various channel lengths) stressed using various
combinations of operating voltages with the same set of model parameters. In Figure 7.11 the
fits, using a single parameter set, for all stress conditions and devices are shown. All the ingre-
dients of the model are necessary to represent the data. However, electron-electron scattering
is most important for shorter channel devices as can be seen in Figure 7.11 for both stress
conditions. A significant contribution from the majority charge carriers is, despite previous
developments [46, 174], not necessary in this particular case to represent the experimental
data for the long and short channel device for all stress conditions. This is due to the strong
unipolar character of the MOSFETSs under investigation, where an insignificant amount of ma-
jority carriers in the channel is typical. For the devices investigated here, the hole contribution
HCD is negligibly small.

7.7.3 Importance of Electron-Electron Scattering

Electron-electron scattering is a two particle process by which one particle gains kinetic en-
ergy from another particle (cf. Figure 7.13), provided that the Kkinetic energy of both particles
exceeds a certain threshold. Thereby it is, especially in short channels, possible to populate
the high energy tails of the distribution function. The elevation of the high energy tail in turn
then increases the probability of a single electron to break, upon interaction, a Si-H bond at
the semiconductor-oxide interface. This has been exhaustively shown by [46, 163, 189] that
solving the BTE without any electron-electron scattering leads to an underestimation of the
hot-carrier degradation. In Figure 7.12 the electron and hole acceleration integrals and the
carrier distribution functions are shown, if only phonon (acoustic and optical) and impurity
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Figure 7.10: Nj; profiles predicted by the model for the 65 nm n-channel MOSFET stressed
under worst case conditions. The source side is located at negative x. Noteworthy is the strong
influence of the dipole moment and the activation energy dispersion, which strongly affect Nj
close to the source side, but shows a smaller influence on the drain current degradation as
compared to electron-electron scattering. The arrow indicates the growing Nj; with increasing
stress time.
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Figure 7.11: Relative drain current degradation as predicted by our model for both the 65 nm
and the 150 nm (gate length) n-channel device for all stress conditions compared to measure-
ment data (diamonds). Both short and long channel devices show a significant dependence
on activation energy dispersion and hot carriers (anti-bonding processes). However, electron-
electron scattering mostly affects only the short channel device.

scattering are considered in comparison to the acceleration integrals obtained by additionally
considering electron-electron scattering. It has been shown that only the effect of impact ion-
ization can, in certain cases, be safely neglected [163]. In Figure 7.14 a few selected electron
distribution functions at the interface are shown for both devices stressed under worst case
conditions. As we demonstrated before, HCD is very sensitive particularly to the high energy
tails of the distribution function, and therefore EES is of great importance in the context of
hot-carrier degradation modeling.
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Figure 7.12: The influence of electron-electron scattering on the acceleration integral. The
distribution functions have been obtained using ViennaSHE and the electron-electron scat-
tering operator therein [61]. The graphical comparison of the acceleration integrals with and
without electron-electron scattering shows the importance of EES for hot-carrier degradation
modelling.

% E o+ Figure 7.13: Electron-electron scattering
\/ by exchange of a virtual phonon. Both
electrons with wave vector k' and k ex-

change a virtual phonon. Through this ex-

change, the wavevector £’ is increased by

q and the wavevector k is decreased by g¢.
Thus the electron associated with k' has

k k—q a higher kinetic energy than the electron
associated with k.
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Figure 7.14: Selected distribution functions with and without electron-electron scattering at
the interface along the channel for the 65 nm and the 150 nm n-channel device (the source to
drain direction is indicated by the arrow). The significance of EES for both channel lengths and
all stress conditions is evident. Due to EES the high energy tails of the distribution functions
are elevated. Also notable are the phonon-cascades visible at smaller energies.
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It's my experience that in modelling
tradeoffs ‘pain’ is conserved.

(Tibor Grasser)

8 Conclusions

Scaling devices down to the nano-meter regime increases the probability of functional failure
due to single point defects or parametric fluctuations, such as fluctuations in the doping. The
effect of single point defects and parametric fluctuations on the figures of merit, such as the
threshold voltage, of MOSFETSs are intertwined. In the first part of this thesis it has been shown
that, in scaled devices, the characteristic discrete threshold voltage shifts caused by charged
single defects (step-heights) is highly dependent on the exact positions of the dopants and
defects in the device. Thus the effect of potential fluctuations caused by the random discrete
doping (RDD) has been assessed first, since in sub-100nm node devices the discreteness of the
doping cannot be ignored anymore. Afterwards, the electrostatic interaction of charged single
point defects and random discrete dopants has been investigated, neglecting the charge reac-
tion kinetics of the single point defects. In these studies it has been shown that an electrostatic
and drift-diffusion-based picture to determine the characteristic step-heights caused by single
defects is insufficient. Subsequently it has been shown that effects other than pure electro-
static influences, such as fluctuations in the charge carrier mobility, need to be taken into
account. In this respect a drift-diffusion-based transport model, even with quantum mechani-
cal corrections, is insufficient to reproduce the step-heights caused by single charged defects.
When taking the trapping kinetics into account, two main modes of defect creation have been
discussed, namely the bias temperature instability (BTI) and hot-carrier degradation (HCD). For
BTI, the modelling of the tremendously electric field and temperature dependent defect creation
as well as the charge trapping kinetics have been discussed. The most accurate model for the
recoverable component of BTI today is the four-state non-radiative multiphonon model, where
it was shown that this model can not only reproduce classic BTI degradation experiments,
but also can explain trap assisted tunneling after bias temperature stress to high accuracy.
Additionally, it has been shown that the electric field dependence of BTI, which is modelled
using a non-radiative multiphonon theory, can lead to problems of trap self-interaction in self-
consistent simulations. This self-interaction is independent of the employed transport model
and has been shown to artificially broaden the distribution of the trapping time constants.
However, it is possible to assess the amount of self-interacting traps by comparing first-order
trapping Kinetics to the trapping kinetics predicted by a self-consistent simulation. Since trap
self-interaction is closely related to the field dependence of the characteristic trapping time
constants, trap self-interaction is not an issue when investigating HCD. In the latest models,
developed in the course of this thesis, standard SRH charge trapping kinetics are assumed for
hot-carrier induced traps which show a weak dependence of the trapping time constants on
the electric field. Contrary to the trapping kinetics of hot-carrier induced defects, the creation
of the same defects is highly dependent on the electric field. However, it has been shown that
defect creation caused by hot carriers is highly sensitive to the kinetic energy of the charge
carriers and cannot be modelled by taking the electric field into account alone. Thus, to inves-
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tigate HCD one needs exact information on the energy distribution of charge carriers. This in
turn requires an efficient method to solve the Boltzmann Transport equation (BTE) for at least
2D devices. As laid out in this thesis, the usual Monte Carlo approach is insufficient for HCD,
due to the inherent numerical noise in the solution. In this respect the deterministic approach
to expand the BTE in spherical harmonics (SHE) has proven to be the method of choice for
investigations into hot-carrier degradation. Finally, employing the SHE-based simulator Vi-
ennaSHE it was exhaustively shown that the developed hot-carrier model can predict HCD in
devices of different channel lengths for various stress conditions.
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9 Outlook

It has been shown to be insufficient to determine the characteristic step-heights caused by
single defects in electrostatic and drift-diffusion-based simulations. Consequently, variability
models for RDD and first order quantum correction models have been integrated for future
investigations into the SHE-based simulator ViennaSHE. The advantage of directly solving the
BTE is that changes in the mobility and charge carrier energy in the presence of RDD can
be directly investigated. This is necessary since in the following [98] one needs to reproduce
the low-field mobility-doping relation found by Caughy and Thomas [191], when using RDD
in a large resistor with a, at least one nanometer, fine mesh. To calibrate the RDD model in
ViennaSHE one should undertake a statistical significant number of simulations with RDD
to find the same resistance in the limit of an infinite large slab of silicon with RDD as one
would find using continuous doping under low-field conditions. In all simulations with RDD
fine meshes are required to correctly resolve the granularity of the doping and leads to a high
computitional demand. Thus, for this investigation the simulator ViennaSHE needs to be
parallelized using MPI [192] and an algebraic multi-grid [193] solver such as Prometheus [194]
is required.
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