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Kurzfassung

Eine stationäre, turbulente Strömung mit freier Oberfläche bei großen Reynolds-Zahlen
und Froude-Zahlen nahe dem kritischen Wert 1 wird betrachtet. Die spezielle Koppelung
der beiden Grenzübergänge erlaubt eine Analyse frei von Turbulenzmodellierung.

Im ersten Teil der Dissertation werden wellige Wassersprünge in offener Kanalströ-
mung über horizontalem Boden mittels der Methode der mehrfachen Variablen, an-
gewendet auf die Reynolds-Gleichungen, untersucht. Die Lösung beschreibt die Stö-
rung erster Ordnung der freien Oberfläche. Der Vergleich der freien Oberflächenstörung
mit der Lösung einer erweiterten stationären Version der Korteweg–de Vries (KdV)-
Gleichung bestätigt deren gleichmäßige Gültigkeit. Außerdem wird der Grenzübergang
verschwindender Bodenneigung bei fixierter Froude- und Reynolds-Zahl betrachtet. Die
resultierende erweiterte KdV-Gleichung wird als Anfangswert- sowie als Zweipunkt-
Randwertproblem gelöst. Letzteres entspricht dem Übergang zu voll-ausgebildeter Strö-
mung weit stromab. Der Vergleich mit Experimenten zeigt passable Übereinstimmung.

Im zweiten Teil werden wellige Wassersprünge in turbulenter achsensymmetrischer
Strömung mit freier Oberfläche über horizontalem Boden untersucht. Die Oberflächen-
auslenkung wird durch eine neue Version der erweiterten KdV-Gleichung beschrieben,
welche unter der Voraussetzung großer Sprungradien als gleichmäßig gültige Differenzi-
algleichung hergeleitet wurde. Die Gleichung gilt sowohl für Quell- als auch für Senken-
strömung. In beiden Fällen liefert die numerische Lösung der Gleichung als Anfangs-
wertproblem wellige Sprünge. Weit stromab des Sprunges führt jedoch Reibung zum
Absturz der Lösung. Die Betrachtung reibungsfreier Quellströmung zeigt, dass wellige
Wassersprünge bei großen Radien existieren und erneut durch eine erweiterte KdV-
Gleichung beschrieben werden. Verglichen zu turbulenter Strömung ist die Gültigkeit
der Lösungen auf einen kleinen Bereich nahe dem Beginn des Sprunges begrenzt. Wellige
Wassersprünge in reibungsfreier Senkenströmung sind nicht möglich.



Abstract

Steady turbulent free-surface flow in the limit of very large Reynolds numbers and
Froude numbers close to the critical value 1 is considered. A specific coupling of the
two limiting processes assures an analysis free of turbulence modelling.

In part one of the thesis, undular hydraulic jumps in open-channel flow with a hor-
izontal bottom are investigated employing a multiple-scales analysis of the Reynolds
equations. The multiple-scales solution describing the first-order perturbation of the
free-surface elevation is compared with the numerical solution of an extended steady-
state version of the Korteweg–de Vries (KdV) equation, confirming the uniform validity
of this non-linear third-order ODE. Furthermore, the limiting process of a vanishing bot-
tom slope is analysed by keeping the Froude and Reynolds numbers fixed. The resulting
extended KdV equation is solved as both initial value and two-point boundary-value
problem, the latter representing the transition to fully developed flow far downstream.
Comparing the theory with experimental data shows reasonable agreement.

In part two, undular hydraulic jumps in turbulent axisymmetric free-surface flow
over a horizontal bottom are studied. Provided the jump’s origin is located at very
large radii, the free surface is described by a new version of an extended KdV equation,
derived as a uniformly valid differential equation. The same equation is valid for both
turbulent source and sink flow. In both cases, undular solutions of the extended KdV
equation are obtained from numerically solving the equation as an initial value problem.
However, far downstream of the jump, friction enforces a breakdown of the solutions. By
considering inviscid axisymmetric source flow, undular jumps are shown to be possible
at large radii, and the surface is described by another version of an extended KdV
equation. Compared to turbulent flow, the solution’s validity is limited to moderate
distances from the origin of the jump. Undular hydraulic jumps in inviscid sink flow
are not possible.
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Undular hydraulic jumps in
open-channel flow



Chapter 1

Introduction

In hydraulics, the transition from slightly supercritical to subcritical free-surface flow
followed by a wave train with slowly decaying amplitude (see Fig. 1.1) is known as the
undular hydraulic jump, cf. [9], p. 439, [14], p. 45, or [23], p. 215. A two-dimensional
transition is typically observed in rectangular channels if the upstream Froude number
is between unity and about 1.2, [35, 43]. However, undular hydraulic jumps associated
with so-called lateral shock waves may occur for upstream Froude numbers as large as
1.7, cf. [13, 35, 40].

The characteristics of undular hydraulic jumps were extensively studied experimen-
tally in both horizontal and inclined channels. In particular, the experiments focused
on the effect of developed and developing flow [38], the comparison of wide and narrow
channels [39], as well as the effect of the channel slope [21].

Numerical solutions of the full equations of motion were established by Schneider et
al. [50], using a finite volume method together with an asymptotic iteration procedure to
determine the undular shape of the free surface. Rostami et al. [44] applied the volume
of fluid method in a numerical analysis of the undular jump. Both numerical studies
showed good agreement with experimental data and little influence of the employed
turbulence models.

In an asymptotic analysis of the undular hydraulic jump in steady turbulent open-
channel flow, Grillhofer and Schneider [22] considered a fully developed1 near-critical

1In the present study, the term ‘fully developed flow’ is defined as common in the literature of fluid
mechanics, i.e. a flow in the state of mechanical equilibrium where the shear stress balances the
streamwise component of the gravity force. In hydraulics, however, a flow is often called ‘fully
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Figure 1.1: The undular hydraulic jump in a laboratory experiment [10], flow
from left to right; upstream: Froude number Frr = 1.35 (see (2.4) for the
definition), Reynolds number Re = q/ν = 1.1 · 105.

reference state far upstream. Provided the volume flow rate and the depth of the
reference state are known for a given bottom slope, the analysis could be kept free
of turbulence modelling. In a subsequent analysis, Jurisits and Schneider [28] allowed
for small deviations of the reference state from a fully developed flow and derived
an extended version of the Korteweg–de Vries (KdV) equation, describing the free-
surface elevation of near-critical flow in inclined channels. Steinrück [52] investigated the
undular jump by performing a multiple-scales analysis of the basic equations, proving
the uniform validity of the extended KdV equation derived in [28]. Comparing solutions
of the extended KdV equation with experimental data and numerical solutions of the
Reynolds-averaged Navier–Stokes equations showed good agreement, [21, 22, 28, 29,
52].

All previous theoretical studies considered inclined bottoms with the basic assump-
tions of a small deviation from fully developed flow in the reference state. For the
particular case of a horizontal bottom, however, these assumptions cannot be satisfied
as such a fully developed state does not exist. Thus, the undular hydraulic jump in
steady turbulent open-channel flow over a horizontal bottom deserves special consider-
ation, cf. [37].

developed’ as soon as the boundary layer, which develops at the bottom, has reached the free
surface.



Chapter 2

Horizontal bottom

2.1 Problem formulation
We consider steady turbulent near-critical open-channel flow over horizontal bottoms
with very large Reynolds numbers. Surface tension will be neglected as it is known
to play a minor role in rivers or hydraulic structures with turbulent flow, see [5, 6],
or [11], p. 265. The Cartesian coordinate system is chosen such that the x-axis is in
the bottom plane, while the y-axis points upwards, see Fig. 2.1. The corresponding
velocity components are u and v, respectively. The time-averaged flow is assumed to be
two-dimensional with given volume flow rate per unit width, q. Time-averaged quan-
tities are denoted by an overbar and fluctuations around the average by a prime. The
time-averaged height of the free surface above the bottom plane is h̄(x). The coordinate

ūr

y

x

h̄r

5g

ū(0, y)

0

h̄(x)

Figure 2.1: The stationary undular hydraulic jump in turbulent open-channel
flow over horizontal surfaces.
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system’s origin is located at the position where the first wave of the undular jump orig-
inates from the slightly supercritical inflow. This upstream state is chosen as reference
state (subscript r), with the free-surface height h̄r = h̄(0) and the volumetric mean
velocity ūr = q/h̄r serving as a reference length and a reference velocity, respectively.
The pressure p is referred to the hydrostatic pressure at the bottom of the channel in
the reference state, ρgh̄r, where ρ is the constant fluid density and g is the acceleration
due to gravity. The Reynolds stresses u�2, v�2 and u�v� are referred to the square of the
reference friction velocity, u2

τ,r, where uτ =
�

τ̄w/ρ with the averaged wall shear stress
τ̄w at the channel bottom.

Analogue to the analysis by Steinrück [52], non-dimensional variables are introduced
as follows:

X = δ
x

h̄r
, Y = y

h̄r
, H̄ = h̄

h̄r
, Ū = ū

ūr
, V̄ = δ−1 v̄

ūr
,

P̄ = p̄

ρgh̄r
, Uτ = uτ

uτ,r
, U �2 = u�2

u2
τ,r

, V �2 = V �2

u2
τ,r

, U �V � = u�v�

u2
τ,r

.

(2.1)

with the small parameter δ introduced to contract the longitudinal coordinate in the
asymptotic expansion, see below.

The continuity equation of incompressible flow in non-dimensional form reads

ŪX + V̄Y = 0 , (2.2)

where the subscripts X and Y denote partial derivatives with respect to X and Y ,
respectively.

For very large Reynolds numbers, the flow field may be divided into a viscous wall
layer adjacent to the channel bottom and a non-viscous defect layer that forms the
bulk of the flow field [47], p. 522. As the viscous wall layer is known to have universal
properties, cf. [47], p. 524, it suffices to consider only the defect layer in what follows.
Then, the equations of motion are

δFr2
r (Ū ŪX + V̄ ŪY ) = −δP̄X − Fr2

τ,r(δU �2
X + U �V �

Y ) , (2.3a)

δ2Fr2
r (Ū V̄X + V̄ V̄Y ) = −P̄Y − 1 − Fr2

τ,r(δU �V �
X + V �2

Y ) , (2.3b)

where the reference Froude numbers are defined as

Frr := ūr�
gh̄r

, Frτ,r := uτ,r�
gh̄r

. (2.4)
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For large Reynolds numbers, the effects of friction are known to be small. Hence, it will
be assumed that the friction Froude number is very small, while Frr is slightly above
the critical value 1, cf. (2.13) and (2.11), respectively.

The system of basic equations (2.2), (2.3a) and (2.3b) is to be solved subject to
appropriate boundary conditions. At the bottom, the conventional boundary condition
for the lateral velocity, i.e.

V̄ (X, 0) = 0 , (2.5)

is prescribed. Matching with the viscous wall layer yields the boundary condition for
U �V � at the bottom, i.e.

− U �V � = U2
τ as Y → 0 . (2.6)

A coupling condition for Uτ and H̄ is obtained by making use of the logarithmic ex-
pression for the velocity in the defect layer [47], p. 544, which reads in the present
non-dimensional variables, cf. [28]:

Ū(X, H̄) = Frτ,r

Frr
Uτ

� 1
κ

ln(Reτ,rUτ H̄) + C+ + C̄(X)
�

, (2.7a)

C̄(X) =
H̄�

0

�
Frr

Frτ,rUτ

ŪY − 1
κY

�
dY . (2.7b)

The Reynolds number is defined in terms of the reference friction velocity,

Reτ,r := uτ,rh̄r

ν
, (2.8)

with ν denoting the constant kinematic viscosity. In (2.7a), κ is the v. Kàrmàn constant
and C+ is another empirical constant. It will turn out that neither one of these constants
will appear in the final result. At the free surface, conventional kinematic and dynamic
boundary conditions are imposed. Thus, a streamline defines the averaged interface in
the averaged velocity field, i.e.

V̄ (X, H̄) = Ū(X, H̄)H̄X , (2.9)

and continuity of stresses is expressed by the relations�
P̄ (X, H̄) + Fr2

τ,r U �2(X, H̄)
�
δH̄X − Fr2

τ,r U �V �(X, H̄) = 0 , (2.10a)�
P̄ (X, H̄) + Fr2

τ,r V �2(X, H̄)
�

− Fr2
τ,r U �V �(X, H̄) δH̄X = 0 . (2.10b)
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2.2 Multiple-scales analysis
A multiple-scales analysis represents a suitable means to treat the slowly changing
amplitude and wavelength together with the fast oscillations of an undular hydraulic
jump [52, 53], [48], p. 228. Following [52], a small perturbation parameter ε is introduced
according to the relation

Frr = 1 + 3
2ε , ε � 1, (2.11)

and the contraction parameter is defined as

δ = 3ε1/2, (2.12)

where the coefficients 3/2 and 3 serve for later convenience. As mentioned above, the
reference state’s deviation from a fully developed flow cannot be assumed to be small as
such a state does not exist for a horizontal bottom. Incorporating this fact and aiming
at an analysis free of turbulence modelling but still includes friction effects requires the
coupling between the two small parameters ε and Frτ,r according to

Fr2
τ,r = Bε3, B = const = O(1), (2.13)

such that the velocity defect appears in the equations of O(ε3/2), see (2.20). Note that
the particular coupling (2.13) represents an essential modification of the analysis in
[52], where Fr2

τ,r = O(ε2) was assumed, and thus the velocity defect appeared in the
equations of O(ε).

The multiple-scales analysis is performed by substituting the original contracted
coordinate X by a fast and a slow variable ξ and Ω, respectively, and introducing the
spatially slowly changing wave number

ω(Ω) = dξ

dX
= 1

ε1/2
dΩ
dX

. (2.14)

Thus, all unknowns depend on both length scales, e.g. H̄ = H̄(ξ, Ω), and are defined to
have period 1 with respect to the fast variable ξ. Derivatives with respect to X become
a sum of two partial derivatives, i.e.

d
dX

= ω

�
∂

∂ξ
+ ε1/2 ∂

∂Ω

�
. (2.15)
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The dependent variables are now expanded in terms of powers of ε, e.g.

Ū(ξ, Ω, Y ) = U0 + εU1(ξ, Ω, Y ) + ε3/2U3/2(ξ, Ω, Y ) + ε2U2(ξ, Ω, Y ) + ε5/2U5/2(ξ, Ω, Y ) + . . . ,

H̄(ξ, Ω) = H0 + εH1(ξ, Ω) + ε3/2H3/2(ξ, Ω) + ε2H2(ξ, Ω) + ε5/2H5/2(ξ, Ω) + . . . ,

(2.16)

for the non-dimensional velocity in X-direction, and height of the free surface, respec-
tively, neglecting terms of order ε3 and smaller.

Expanding the governing equations and boundary conditions accordingly, the leading-
order terms represent the basic state:

U0 = 1, V0 = 0, P0 = 1 − Y, H0 = 1. (2.17)

The leading order of the Reynolds shear stress is assumed to be of the form

(U �V �)0 = Y − 1 + ΔU �V �(Y ) , (2.18)

where the term ΔU �V �(Y ) = O(1) allows for a deviation of the reference state from the
linear profile of a fully developed flow. Of course, the term ΔU �V �(Y ) has to comply
with the boundary conditions at the bottom and the free surface, i.e. ΔU �V �(0) =
ΔU �V �(1) = 0. To avoid turbulence modelling in Ch. 3, a condition for the derivative
of the deviation at the free surface will be given in (3.9). Note that (U �V �)0 does not
appear in the leading order of the equation of motion, (2.3a), since the term is multiplied
with Fr2

τ,r, and thus shifted to a higher order.
Performing the analysis as described in [52, 53]1 yields

U1 = −H1, V1 = ωH1,ξY, P1 = H1, (2.19)

as O(ε) results, and from the equations of O(ε3/2) follows

U3/2 = −H3/2 +
√

BΔU(Y ), V3/2 = ω(H1,Ω + H3/2,ξ)Y, P3/2 = H3/2. (2.20)

The subscripts ξ and Ω denote partial derivatives with respect to ξ and Ω, respectively.
The term ΔU(Y ) in (2.20) represents the velocity defect in the reference state. With

1Formally the results of O(ε) and of O(ε3/2) are the same as in [52, 53], except that in the present
analysis the velocity defect term appears in U3/2 instead of U1. However, in [52, 53] the results of
O(ε3/2) are not given explicitly. Instead, it is stated that the subscript ‘1’ of the O(ε) results is to
be replaced by ‘3/2’, without mentioning the term containing H1,Ω in the result of V3/2.



2.2 Multiple-scales analysis 9

flows close to separation being excluded, the velocity defect is of the order of the friction
velocity [47], p. 536, i.e. Ūr(Y ) = 1 + Frτ,r ΔU(Y ) with ΔU(Y ) = O(1), in accordance
with the first equation of (2.20). Since a volumetric mean value has been chosen as
reference velocity, the integral of ΔU(Y ) over the whole channel cross section vanishes
per definitionem. As a consequence, ΔU(Y ) will not appear in the final result of the
analysis.

H1(ξ, Ω), H3/2(ξ, Ω) and ω(Ω) remain undetermined in the framework of equations
of O(ε) and O(ε3/2). Investigation of the following orders O(ε2) and O(ε5/2) leads to
the solvability conditions

ω2H1,ξξξ + H1,ξ(H1 − 1) = 0 , (2.21)

and

ω2H3/2,ξξ + H3/2H1 − H3/2 = r , (2.22a)

ωrξ = −3ω2(ωH1,ξξ)Ω − ωH1,Ω(H1 − 1) − B/9 , (2.22b)

for H1 and H3/2, respectively.
Integrating (2.21) with respect to ξ, multiplying the result with H1,ξ and integrating

with respect to ξ once again yields

3ω2
�

∂H1

∂ξ

�2

= p(H1; R, S) , (2.23)

with the polynomial

p(H1; R, S) := −H3
1 + 3H2

1 + 6R(Ω)H1 + S(Ω) , (2.24)

where R(Ω) and S(Ω) are slowly changing functions of integration. In order to derive
equations for R(Ω) and S(Ω), the solvability conditions (2.21) and (2.22) are manipu-
lated and combined as described in [52], leading to

ω
dR

dΩ = −B

9 , (2.25a)

ω
dS

dΩ = B

9

1�
0

H1dξ . (2.25b)

Aiming at an analytical solution of H1(ξ, Ω), it will be convenient to represent the
third-order polynomial defined in (2.24) in terms of its three ordered roots h1 ≤ h2 ≤ h3,
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i.e. p(H1; R, S) = [H1 − h1(R, S)][H1 − h2(R, S)][h3(R, S) − H1]. Differential equations
for the three roots can be deduced from (2.25) by applying the algebraic relations
between R(Ω), S(Ω) and h1(Ω), h2(Ω), h3(Ω), summarised in Appendix A. Moreover,
we have to use the fact that the integral from 0 to 1 with respect to ξ corresponds to
twice the integral from h2 to h3 (i.e. a half period) with respect to H1. Thus, with the
definition

Ij =
h3�

h2

Hj
1dH1�

(H1 − h1)(H1 − h2)(h3 − H1)
, j = 0, 1, (2.26)

the ODEs for the roots are

dh1

dΩ = 4B√
3

I1 − I0h1

(h1 − h2)(h1 − h3)
, (2.27a)

dh2

dΩ = 4B√
3

I1 − I0h2

(h2 − h3)(h2 − h1)
, (2.27b)

dh3

dΩ = 4B√
3

I1 − I0h3

(h3 − h1)(h3 − h2)
. (2.27c)

Note that one of the three ODEs is redundant since the relation h1 + h2 + h3 = 3 holds.
The integrals (2.26) can be expressed analytically [51], i.e.

I0 = 2K(m)√
h3 − h1

, (2.28a)

I1 = 2√
h3 − h1

[h1K(m) + (h3 − h1)E(m)] , (2.28b)

with K(m) and E(m) denoting the complete elliptic integral of the first and second
kind, respectively, and the parameter m being defined as m = (h3 − h2)/(h3 − h1); cf.
[1], p. 569. In Ch. 3 the letter m will denote the control parameter for the analysis of
the limiting process of a vanishing bottom slope.

In the course of deriving an analytical expression for H1(ξ, Ω), (2.23) is used twice.
First, by means of a definite integral to obtain an analytical expression for ω(Ω), and
second, by means of an indefinite integral to obtain the final result for H1(ξ, Ω). There-
fore, integration of (2.23) over one period by making use of the above mentioned relation
between the integrals with respect to ξ and H1, together with (2.28a), gives for the wave
number

ω(Ω) =
√

h3 − h1

4
√

3K(m)
. (2.29)
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Furthermore, following, e.g., Drazin and Johnson [17], pp. 26–29, the indefinite integra-
tion of (2.23) yields the classical cnoidal wave solution for the free-surface elevation,

H1(ξ, Ω) = h2 + (h3 − h2)cn2 [2K(m)(ξ − ξr)|m] , (2.30)

where cn is the cnoidal Jacobian elliptic function, see [1], Ch. 16. The constant of
integration, ξr, is chosen such that H1(ξ = 0, Ω = 0) = H1(X = 0) = 0, i.e.

ξr = sgn[H1,X(0)]
2K(m) cn−1

 �
h2

h2 − h3

������ m

������
Ω=0

, (2.31)

with sgn[x] := 1 if x ≥ 0, and sgn[x] := −1 if x < 0; cf. [27], p. 53. H1,X(0) is the initial
slope of the free-surface elevation in terms of the original coordinate X.

The free-surface elevation in terms of the original coordinate, H1(X), is found by
the following solution procedure. First, the roots h1, h2, h3 are determined by solving
(2.27). Therefore, initial conditions are derived from the algebraic relations between the
roots, and R, S, given in Appendix A, (A.10–A.12), by substituting R(0) = H1,XX(0)
and S(0) = (1/2)H2

1,X(0). H1,XX(0) is the initial curvature of the free-surface elevation.
With the solution for the three roots, both ω(Ω) and H1(ξ, Ω) are determined according
to (2.29) and (2.30), respectively. According to (2.14), the fast and slow variables are not
independent of each other. Thus, H1(ξ, Ω) may be rewritten as H1(Ω) using ξ = Ω/ε1/2.
Eventually, the original coordinate X follows from

X = 1
ε1/2

Ω�
0

dΩ
ω(Ω) , (2.32)

which relates H1(X) to H1(Ω).

2.3 Uniformly valid differential equation
A different approach than a multiple-scales analysis was chosen by Grillhofer and Schnei-
der [22] and Jurisits and Schneider [28], by deriving a uniformly valid differential equa-
tion. Performing an asymptotic analysis of the governing equations given in Sec. 2.1 in
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the same manner as described in [22, 28] means to introduce the relations (2.11–2.13)
and expand all dependent variables in terms of small values of ε, e.g.

H̄(X) = 1 + εH1(X) + ε2H2(X) + . . . ,

Ū(X, Y ) = 1 + εU1(X, Y ) + ε2U2(X, Y ) + . . . ,

P̄ (X, Y ) = 1 − Y + εP1(X, Y ) + ε2P2(X, Y ) + . . . ,

(2.33)

neglecting terms of order ε3 and smaller. Note that here (2.17) and (2.18), i.e. the basic
state, are used as leading-order terms. The following relationships are the results of the
first-order equations:

U1 = −H1 + ε1/2
√

BΔU(Y ) , V1 = H1,XY, P1 = H1. (2.34)

The second term of U1 containing the velocity defect is half an order of magnitude
smaller than the rest of the O(ε) results. This is permitted in the course of deriving a
uniformly valid differential equation.

The free-surface elevation H1(X) remains free in the framework of the first-order
equations and is to be determined from a solvability condition of the second-order
equations. Performing the analysis as described in [22, 28], the second-order equations
resulting from the momentum equation in X-direction, (2.3a), and from the kinematic
boundary condition, (2.9), are compatible if

H1,XXX + H1,X(H1 − 1) = −γ , (2.35)

with
γ = B

9 ε1/2 =
Fr2

τ,r

9ε5/2 . (2.36)

The non-linear third-order ODE (2.35) is known [28] as a steady-state version of an
extended Korteweg–de Vries (KdV) equation describing the free-surface elevation as a
function of the contracted longitudinal coordinate X. The constant extension γ on the
right-hand side represents the deviation of the reference state from a fully developed
flow.

Integrating (2.35) twice yields the system of first-order ODEs

3H2
1,X = −H3

1 + 3H2
1 + 6RH1 + S, (2.37a)

RX = −γ, (2.37b)

SX = γH1, (2.37c)



2.4 Results and discussion 13

where R and S are functions of integration, cf. [51].
Following [52], the system of ODEs (2.37) may serve as starting point of a multiple-

scales analysis as discussed in the preceding section. Thus, the fast and slow variable
ξ and Ω, respectively, together with the wave number ω(Ω) according to (2.14) are
introduced. Then, H1(ξ, Ω), R(ξ, Ω) and S(ξ, Ω) are assumed to be periodic functions
with period 1 with respect to ξ. Applying the relation (2.15) to the system of ODEs
(2.37) and strictly separating the orders O(1) and O(ε1/2) gives R = R(Ω) and S = S(Ω)
as leading-order results from (2.37b) and (2.37c), respectively. Moreover, the leading
order of (2.37a) turns into (2.23). The O(ε1/2) terms of (2.37b) and (2.37c) give (2.25a)
and (2.25b), respectively.

Thus, the multiple-scales analysis of (2.37) results in the same set of differential
equations (2.23–2.29) as the multiple-scales analysis of the basic equations. This proves
that (2.37) and consequently the extended KdV equation (2.35) are uniformly valid,
i.e. valid on both fast and slow scales.

2.4 Results and discussion
The system of ODEs (2.27) as well as the extended KdV equation (2.35) may be solved
numerically using the standard function ode45 of the commercial software package
Matlab R2018b. The solution of (2.27) is obtained prescribing a maximum step size
of 2 · 10−6, and the default values for the relative and absolute error tolerances of 10−3

and 10−6, respectively. Equation (2.35) is solved with a maximum step size of 10−3, a
relative error tolerance of 10−4, and an absolute error tolerance of 10−8.

2.4.1 Comparison between solutions of the multiple-scales
analysis and the extended KdV equation

In Fig. 2.2 the multiple-scales solution according to (2.30) is compared with the numeri-
cal solution of the extended KdV equation (2.35), subject to equal initial conditions and
parameter values. Both solutions are in excellent agreement for quite a large distance.
At X ≈ 27.6, the real roots h1 and h2 coalesce. This point confines the region of possible
multiple-scales solutions [29]. A little bit downstream, the numerical solution of (2.35)
experiences a breakdown, approaching the singular point Xs as H1 ∼ −12/(Xs − X)2.
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However, the two solutions start to deviate from each other already before the last
wave crest, raising the question of what happens in this particular region. The answer
may be found in the behaviour of the roots h1 and h2. As the green curve comes closer
to the end of the region of possible multiple-scales solutions, h1 and h2 approach each
other, i.e. h2 − h1 → 0. This leads to a singularity in (2.27a) and (2.27b), violating the
request that both sides of the equation are of the same order of magnitude. Moreover,
a singularity implies that the roots are no longer slowly changing. Thus, the multiple-
scales solution is not valid in this region, and the validity condition reads

1
h2 − h1

= O(1). (2.38)

X

H1

multiple-scales solution, (2.30)

numerical solution of (2.35)

Xs0 5 10 15 20 25 30 35 40
-2

-1

0
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2

3

4

5

h3

h2

h1

Figure 2.2: Comparison of a numerical solution of the extended KdV equation,
(2.35), with the corresponding multiple-scales solution, (2.30), for Frr = 1.0044
and Frτ,r = 1.1 · 10−4, i.e. ε = 2.9 · 10−3, γ = 3 · 10−3. Initial conditions:
H1(0) = 0, H1,X(0) = −0.1, H1,XX(0) = 0.6.
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2.4.2 Comparison with the theory of inclined bottoms

Jurisits and Schneider [28] investigated undular hydraulic jumps arising in non-developed
turbulent free-surface flows over slightly inclined surfaces, i.e. bottom slope α = O(ε2).
Based on the assumptions Fr2

τ,r = O(ε2) and a small deviation of the reference state
from a fully developed flow, they derived the extended KdV equation

H1,XXX + H1,X(H1 − 1) = βH1 − γ , (2.39)

with
β =

Fr2
τ,r

3ε3/2 , γ =
Fr2

τ,r − α

9ε5/2 . (2.40)

Equation (2.39) is a uniformly valid differential equation, [52], with β and γ represent-
ing the effect of dissipation and the deviation from a fully developed reference state,
respectively.

As mentioned above, the case of a horizontal bottom is not included in the theory of
undular hydraulic jumps over inclined bottoms. However, for the sake of comparison we
shall now consider (2.39) with α = 0 and Frτ,r according to (2.13), i.e. (2.39) represents
(2.35) extended by the linear dissipation term βH1 = O(ε3/2).

Both (2.35) and (2.39) are solved numerically, using the function ode45 of Matlab
R2018b with a maximum step size of 10−3, a relative error tolerance of 10−4 and an
absolute error tolerance of 10−8. In Fig. 2.3 the numerical solutions of (2.35) and (2.39)
are compared using three different values for the initial curvature H1,XX(0). The initial
value and initial slope of the free surface as well as Frr and Frτ,r remain fixed. The
smallest initial curvature of H1,XX(0) = 0.1 (dashed lines) leads to small differences
between the solutions of (2.35) and (2.39). With a larger value H1,XX(0) = 0.8 (dash-
dotted lines) the solution of (2.39) develops three wave crests before a breakdown,
while the solution of (2.35) breaks down immediately after the first wave crest. With
an initial curvature as large as H1,XX(0) = 1 (solid lines), the solution of (2.35) develops
a second wave crest. However, for the same case the solution of (2.39) leads to double
the amount of crests.

This comparison shows that even if βH1 in (2.39) is of O(ε3/2) and should drop out of
the equation, i.e. leading to (2.35), the term seems to be essential for the development
of undulations when moderate initial curvature values are prescribed. Thus, for undular
jumps originating from a flow with a mild free-surface curvature, in a first approach,
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Figure 2.3: Numerical solutions of the extended KdV equation for horizontal
bottoms, (2.35), and for inclined bottoms, (2.39), shown as black and coloured
lines, respectively, for Frr = 1.12, Frτ,r = 1.89 · 10−2, α = 0. Initial condi-
tions: H1(0) = 0, H1,X(0) = 2.2 · 10−2; dashed: H1,XX(0) = 0.1, dash-dotted:
H1,XX(0) = 0.8, solid: H1,XX(0) = 1.

the theory of [28] may be applied even to horizontal bottoms by using the modified
order of magnitude of Fr2

τ,r = O(ε3).

2.4.3 Comparison with experimental data

A comparison between the theory and experimental measurements requires the knowl-
edge of both Froude numbers at the toe of the undular jump experiment, that is, Frr

and Frτ,r. With the measured discharge per unit width q and the averaged height of the
free surface in the reference state h̄r, the Froude number is Frr = q/

�
gh̄3

r . The friction
Froude number is determined via the definition of the local friction coefficient

cf := 2 u2
τ

ū2
m

= 2Fr2
τ

Fr2 , (2.41)
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with ūm = q/h̄ being the local time-averaged volumetric mean velocity. Further, cf may
be computed from the friction law of plane channel flow according to [20], p. 594,�

2
cf

= 1
κ

ln
��

cf

2 ReD

�
+ D, (2.42)

with the v. Kàrmàn constant κ = 0.41 and the empirical constant D = −0.08 (for
smooth walls). The Reynolds number

ReD := ūmDh

ν
, (2.43)

is defined in terms of the hydraulic diameter Dh, see e.g. [47], p. 103. For open-channel
flows with channel width b, the hydraulic diameter is Dh = 4h̄b/(2h̄ + b).

Generally, applying the concept of the hydraulic diameter would require the use of
the friction law of circular pipe flow, i.e. (2.42) with D = 0.27, cf. [20], p. 527. In the
experiments used for comparison, however, the ratio h̄/b is relatively small, and thus
the friction law (2.42) with the empirical constant for plane channel flow, D = −0.08,
will be used to compute cf .

Only very few experiments of the undular hydraulic jump over a horizontal bot-
tom with detailed measurement of the surface elevation are available in the literature.
Reinauer and Hager [43] conducted their experiment at Frr = 1.36, which reportedly
represents the limiting case to wave breaking. Gotoh et al. [21] presented a horizontal
experiment with Frr = 1.5. Both experiments will not be used here since the Froude
numbers are relatively large and the similarity parameter B, representing a measure
for the validity of the present theory, is smaller than the corresponding perturbation
parameter ε. The experiment by Chanson [12], CD1, with b = 0.5 m and the measured
values q = 9.14 · 10−2 m2/s and h̄r = 81 mm leads to Frr = 1.266 and Frτ,r = 5.54 · 10−2

(i.e. ε = 0.177, B = 0.23), and seems to be the most suitable for comparison with the
present theory. However, note that the experimental configuration leads to a value of
B which is rather of order ε than of order 1, and, furthermore, a recirculation bub-
ble below the first wave crest was observed, whereas flow reversal is excluded in the
present analysis. Thus, only modest agreement between measurements and theoretical
predictions should be expected.

In Fig. 2.4 numerical solutions of the extended KdV equation (2.35) are compared
with surface elevation measurements of [12]. The numerical solutions of (2.35) are
obtained by keeping the initial values of the surface elevation, and surface slope fixed
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Figure 2.4: Comparison of experimental data [12] (black squares) for Frr =
1.266 and Frτ,r = 5.54·10−2 (i.e. ε = 0.177, γ = 0.025) with numerical solutions
of the extended KdV equation (2.35). Initial conditions: H1(0) = 0, H1,X(0) =
γ; blue: H1,XX(0) = 0.57, green: H1,XX(0) = 1.1, red: H1,XX(0) = 1.51.

while altering the initial curvature H1,XX(0). The resulting curves are shifted along the
straight line H1 = γX such that the first wave crest corresponds to the experimental
data. The solution due to the lowest initial curvature, i.e. the blue curve, shows good
agreement in terms of the first wave amplitude but breaks down immediately afterwards.
Increasing H1,XX(0) leads to the development of a second crest (green curve). A solution
with three crests, reasonably approximating the wavelengths between first and second,
as well as second and third measured crests, is found with H1,XX(0) = 1.513, i.e. the
red curve. However, for the latter case, the predicted amplitudes are too large.

The comparisons of Figs. 2.3 and 2.4 lead to the conclusion that the solution of (2.35)
strongly depends on the initial curvature, and undular solutions are only possible with
relatively large values. Moreover, the theories of inclined bottom [27, 28, 52] show better
agreement with experiments, even if they were conducted with a horizontal bottom, cf.
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[27], pp. 97–98, and [28], Fig.10.2 Thus, an investigation of the limiting case of the
bottom slope tending to zero, while Frr and Frτ,r remain fixed, seems necessary to gain
a better understanding of the undular hydraulic jump over horizontal surfaces.

2In [27], Fig. 6.6, and [28], Fig. 10, some measurement points are inaccurate, and the measured
maximum of the first wave is cut off. Nevertheless, comparing the theory with the corrected
measurement points shows satisfactory agreement.



Chapter 3

The limiting process of vanishing
bottom slope

3.1 Problem formulation
The theory of undular hydraulic jumps over horizontal bottoms, i.e. solutions of the
extended KdV equation (2.35), performed poorly in the comparison with experimental
data, cf. Sec. 2.4.3. The predicted amplitudes were too large, and extraordinarily large
initial curvature values were needed to obtain undular solutions. Moreover, a compar-
ison with the theory of inclined bottoms, Sec. 2.4.2, showed that the term βH1 in the
extended KdV equation appears favourable for the development of undulations. Thus,
the investigation of the limiting case of the bottom slope tending to zero, [36], appears
promising to gain a better understanding of the undular hydraulic jump over horizontal
bottoms and obtain satisfactory agreement between analysis and experiments.

The assumptions and considerations regarding the flow do not change with respect
to Sec. 2.1, except for a bottom slope α → 0 instead of a horizontal bottom, see
Fig. 3.1. The coordinate system’s origin is located in the region of the undular jump’s
origin. Depending on the position where the boundary conditions are prescribed, the
origin of the undular jump may be slightly downstream or upstream of the reference
state at X = 0, see Sec. 3.4.1 and 3.4.2, respectively. Non-dimensional variables are
introduced according to (2.1). While the continuity equation (2.2) remains unchanged,
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Figure 3.1: The stationary undular hydraulic jump in turbulent open-channel
flow over inclined surfaces.

the equations of motion for the defect layer become

δFr2
r (Ū ŪX + V̄ ŪY ) = −δP̄X + α − Fr2

τ,r(δU �2
X + U �V �

Y ) , (3.1a)

δ2Fr2
r (Ū V̄X + V̄ V̄Y ) = −P̄Y − 1 − Fr2

τ,r(δU �V �
X + V �2

Y ) , (3.1b)

with the Froude numbers defined in (2.4). All boundary and matching conditions (2.5–
2.10) remain unaffected by the introduction of α → 0, see Sec. 2.1 for details.

3.2 Asymptotic analysis
Following [28], the asymptotic analysis of the governing equations is based on a slightly
supercritical reference Froude number and the definition of the contraction parameter
according to (2.11) and (2.12), respectively.

Guided by relationships that apply to fully developed flow, it was assumed in pre-
vious studies [22, 28, 52] that the bottom slope, as well as the friction Froude number,
vanish with vanishing ε. Obviously, that approach is not suitable for studying undular
hydraulic jumps in the limit of vanishing bottom slopes. Thus, the basic idea of the
present analysis is to introduce a coupling between the non-dimensional parameters α,
Frτ,r, ε that satisfies the following three requirements:

1. The limiting process α → 0 ought to be studied with ε fixed.

2. Both terms βH1 and γ are retained on the right-hand side of the extended KdV
equation, cf. (2.39) and (2.40).
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3. Allowing to perform the analysis without the use of any turbulence modelling or
empirical parameters.

These requirements are satisfied by coupling the small parameters α, Frτ,r, ε as follows:

α = Fr2
τ,r(1 − ε3m) = 3Fr2

τ,r m ln(1/ε) + . . . with m → 0 , ε fixed, (3.2)

Fr2
τ,r = Bε5/2−m, (3.3)

where B is a constant of the order 1. Thus, the limiting process of a vanishing bottom
slope is controlled by the coupling parameter m, which is not to be mistaken with the
parameter of elliptic integrals in Sec. 2.2.

The dependent variables are now expanded in terms of small values of ε, cf. (2.33).
The basic state does not change with respect to the case of a horizontal bottom, i.e.
(2.17) and (2.18). The following relationships are obtained for the first-order quantities:

U1 = −H1 + ε(1−2m)/4
√

BΔU(Y ) , V1 = H1,XY, P1 = H1. (3.4)

Without turbulence modelling, the first-order perturbation of the Reynolds shear stresses
can be determined only at the boundaries, i.e.

(U �V �)1(X, 0) = 2H1 , (U �V �)1(X, 1) = −H1[1 + (ΔU �V �)Y (1)] . (3.5)

The first equation in (3.5) is obtained by expanding the logarithmic law up to first-
order terms, using the relation (2.6). The second equation follows from the dynamic
boundary condition at the free surface, (2.10a), neglecting terms of order ε1+m and
smaller.

Analogue to Sec. 2.3, H1(X) is to be determined from a solvability condition of the
second-order equations. Performing the analysis as described in [22, 28], the second-
order perturbation equations resulting from the momentum equation in X-direction,
(3.1a), and from the kinematic boundary condition, (2.9), are compatible if

H1,XXX + H1,X(H1 − 1) = βH1

�
1 + 1

3(ΔU �V �)Y (1)
�

− γ , (3.6)

with
β =

Fr2
τ,r

3ε3/2 = B

3 ε1−m , γ =
Fr2

τ,r − α

9ε5/2 = B

9 ε2m . (3.7)

To obtain an extended KdV equation of the form of (2.39), i.e.

H1,XXX + H1,X(H1 − 1) = βH1 − γ , (3.8)
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it is assumed that
(ΔU �V �)Y (1) � 1 . (3.9)

This assumption corresponds to an upstream flow according to the hydraulic approxi-
mation, as discussed in the next section.

3.3 Hydraulic approximation
A one-dimensional flow approximation together with a hydrostatic pressure distribution
is often called the ‘hydraulic approximation’. Dropping the term H1,XXX in (3.8) leads
to the hydraulic approximation in the limit ε � 1 [27]1:

dH1

dX
= βH1 − γ

H1 − 1 . (3.10)

Obviously, (3.10) becomes singular as the surface elevation approaches the critical value
H1 = 1, where the local Froude number Fr = q/

�
gh̄3 = 1. This shows the inability

of the one-dimensional flow approximation of classical hydraulics, cf. [23], Sec. 3.3, to
describe undular hydraulic jumps. However, it may serve as an approximate solution
for the flow upstream of the jump. An example will be given below. For that purpose
(3.10) is integrated, choosing H1(0) = 0 as boundary condition, to obtain the following
implicit solution for H1(X) in one-dimensional (‘hydraulic’) approximation:

X(H1) = [H1 + (Γ − 1) ln(1 − H1/Γ)]/β , (3.11)

with Γ = γ/β. We shall see that (3.11) may also be used to determine appropriate initial
conditions for (3.8), i.e. initial value H1(Xi), slope H1,X(Xi) and curvature H1,XX(Xi),
for any value X = Xi chosen sufficiently far away from the critical value X = X∗, where
H1 = 1.

If the term H1,XXX were dropped in (3.6) rather than in (3.8), the result would
not be in accord with the hydraulic approximation. Thus, the assumption (3.9) is
consistent with describing the flow upstream of the hydraulic jump with the equations
of the hydraulic approximation.

1The equation given in [27], p. 36, differs from the present one by a coefficient 5/3 in the β-term, due
to an unusual definition of the local friction coefficient, using the reference velocity instead of the
local velocity.
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3.4 Results and discussion
Equation (3.8) may be solved numerically with standard methods, using the commercial
software Matlab R2018b. Solutions of the initial value problem are obtained with the
function ode45, and a relative error tolerance of 10−4, an absolute error tolerance of
10−6, and a maximum step size of 10−4. The two-point boundary-value problem is
solved by means of the function bvp4c, with a relative and absolute error of 10−5 and
10−10, respectively, and a maximum of 105 mesh points.

3.4.1 Numerical solutions of the extended KdV equation in
the limit of vanishing bottom slope

As mentioned above, the purpose of this study is to analyse the behaviour of the
undular hydraulic jump as the bottom slope α → 0, independently from ε and Frτ,r.
In Fig. 3.2 solutions of the extended KdV equation (3.8) with β and γ according to
(3.7) are shown for the fixed values Frr = 1.06 and Frτ,r = 1.5 · 10−2. The bottom
slope at which the reference state would be fully developed is αdev = Fr2

τ,r = 2.25 · 10−4.
Choosing the slope smaller than αdev, e.g. α = 1.84 ·10−4 (black curve), yields a solution
that leads to a pool of liquid with horizontal surface far downstream (‘deep water’), cf.
[28]. Slightly reducing the α value (orange and green curves) leads to solutions with a
breakdown at some distance downstream. With decreasing slope, the number of wave
crests decreases until a single crest with breakdown immediately afterwards remains for
α = 1.74 · 10−4 (red curve). In the case of a horizontal bottom, a breakdown of the
solution is not surprising since a fully developed state, meaning mechanical equilibrium
between friction force and weight force, does not exist. However, it is remarkable that
by reducing the slope by 10−5, which is far beyond the usual measurement uncertainty
in experiments, the solution of (3.8) undergoes a transition from approaching ‘deep
water’ far downstream to only one wave crest with still almost the same amplitude.
Note that by varying α, according to (3.7) only the parameter γ changes, i.e. γ → O(1)
as α → 0. Thus, the damping effect of γ becomes dominant, and undulations are
suppressed.

The black and red dashed curves in Fig. 3.2 represent solutions of (3.11) for α =
1.84 · 10−4 and α = 1.74 · 10−4, respectively. This shows that the position of the critical
state according to the hydraulic approximation at X = X∗ moves upstream as the
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Figure 3.2: Numerical solutions of the extended KdV equation (3.8) for fixed
Froude numbers Frr = 1.06 (ε = 0.04), Frτ,r = 1.5 · 10−2 and very small
bottom slopes. Parameters: β = 9.38 · 10−3, γ according to (3.7) ranging from
γ = 1.42 · 10−2 (α = 1.84 · 10−4) to γ = 1.77 · 10−2 (α = 1.74 · 10−4). Initial
conditions: H1(0) = 0, H1,X(0) = γ, H1,XX(0) = γ2. Dashed lines represent
solutions of the hydraulic approximation (3.11) for α = 1.84 · 10−4 (black) and
α = 1.74 · 10−4 (red).

slope decreases. More precisely, X∗ → [1 − (1 − 1/3ε) ln(1 − 3ε)]/β as α → 0, that
is, X∗ → 6.67 for the chosen values of ε and Frτ,r in Fig. 3.2. As will be discussed in
the next section, it is reasonable to choose an initial point Xi for the solution of (3.8)
in accord with the corresponding solution of (3.11). For the sake of comparison, in
Fig. 3.2 the common initial point for all solid curves is Xi = 0, which is the only point
where all curves according to (3.11) intersect.

3.4.2 Transition to fully developed flow far downstream

However small but different from 0 the bottom slope might be, a fully developed state
far downstream exists provided that Γ > 1. Thus, the current analysis of the limiting
process of vanishing bottom slope includes this special case, which is characterised by
the downstream boundary condition H1 = Γ as X → ∞, cf. [28], or [27], p. 20.
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In Fig. 3.3 the numerical solution of (3.8) as a two-point boundary-value problem
with β = 0.12 and Γ = 1.8 is shown as a red curve. The boundary conditions at the
upstream boundary are obtained by determining the position Xi and the corresponding
slope H1,X(Xi) from (3.11) and (3.10), respectively, for the chosen value H1(Xi) = −3.
The asymptotic downstream boundary condition has to be prescribed sufficiently far
downstream, where the undulations are decayed, and uniform flow is reached. The posi-
tion of this state strongly depends on the numerical values of both β and Γ. For β = 0.12
and Γ = 1.8, X = 100 is sufficiently far downstream to prescribe H1(100) = Γ = 1.8.
However, for different combinations of β and Γ, X = 100 may not be far downstream
enough, see e.g. Fig. 3.4. In general, small β values together with relatively large Γ
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Figure 3.3: Comparison of numerical solutions of the extended KdV equation
(3.8) with β = 0.12, Γ = 1.8, solved as an initial value problem (blue) and
as a two-point boundary-value problem approaching fully developed flow far
downstream (red). Boundary and initial conditions: Two-point boundary-value
problem: H1(−18.46) = −3, H1,X(−18.46) = 0.144, H1(100) = 1.8; Initial
value problem: H1(−18.46) = −3, H1,X(−18.46) = 0.144, H1,XX(−18.46) =
9.01 · 10−2. Dashed line: solution of the hydraulic approximation (3.11).
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values cause more undulations, and thus the downstream boundary condition is to be
prescribed further downstream. Interestingly, the red curve in Fig. 3.3 closely follows the
hydraulic approximation (dashed line) for quite a long distance. Nevertheless, shortly
before the coordinate system’s origin, the solution of (3.8) develops into an undular
hydraulic jump with strongly decaying amplitude. This behaviour indicates that the
extended KdV equation (3.8) is not only uniformly valid downstream of the jump, [52],
but also accurately represents the inflow.

The curvature of the red curve at the initial point Xi = −18.46 is 4.24% larger than
the curvature of the corresponding solution of the hydraulic approximation, (3.11),
at this position. Using the enlarged curvature, together with the initial value and
initial slope prescribed for the two-point boundary-value problem, to solve (3.8) as an
initial value problem yields the blue curve in Fig. 3.3. As discussed in [27], p. 45, the
numerical error always gives rise to a solution of the initial value problem, approaching
the asymptote H1 = βX rather than H1 = Γ as X → ∞. However, the blue curve
initially also closely follows the hydraulic theory’s solution (dashed curve). It appears
that choosing Xi = 0 as the upstream boundary for the two-point boundary-value
problem as well as for the initial value problem, as it was done in previous studies, [27,
28], has to be taken with reservations. As shown in see Fig. 3.3, the solutions of (3.8)
may bifurcate from the one-dimensional hydraulic theory already before X = 0.

In Fig. 3.4 solutions of (3.8) as a two-point boundary-value problem are compared,
prescribing decreasing bottom slope values. Keeping the Froude numbers Frr = 1.15 and
Frτ,r = 8.65·10−2 (i.e. β = 7.89·10−2) fixed, solutions of (3.8) are obtained by altering the
slope from α = 4·10−3 to α = 2·10−3. The decreasing slope results in increasing values of
Γ. For all curves the upstream boundary conditions are obtained by determining Xi and
the corresponding slope H1,X(Xi) from (3.11) for the chosen value H1(Xi) = −3. The
asymptotic downstream boundary condition H1 = Γ is prescribed at X = 450, where a
uniform flow is reached even for the largest used Γ value. The comparison shows that
in contrast to solutions of the initial value problem (cf. Fig. 3.2), a decreasing bottom
slope leads to a rising number of undulations and rising amplitudes. Two reasons are
responsible for this behaviour: First, with decreasing slope, the fully developed state
is reached further downstream. In Fig. 3.4 the blue curve (α = 4 · 10−3) reaches the
fully developed state, i.e. the position where the undulations decay, at X ≈ 100, while
the green curve (α = 2 · 10−3) only at X ≈ 270. Second, an increasing value of Γ
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Figure 3.4: Numerical solutions of the extended KdV equation (3.8) as a two-
point boundary-value problem for decreasing bottom slope. Frr = 1.15, Frτ,r =
8.65 · 10−2, i.e. β = 7.88 · 10−2. Upstream boundary conditions: H1(Xi) = −3,
Xi and H1,X(Xi) according to (3.11) and (3.10), respectively. Downstream
boundary condition H1(450) = Γ. Dashed lines are the corresponding solutions
of the hydraulic approximation (3.11).

corresponds to stronger wave damping, cf. Sec. 3.4.1. Thus, higher amplitudes at the
beginning of the jump are required to reach the fully developed state far downstream
together with this stronger damping.

To obtain a numerical solution of the extended KdV equation as a two-point boundary-
value problem is not straightforward. Whether Matlab finds a solution or not strongly
depends on the initial guess. Especially, to find solutions for small values of α, e.g. the
red curve in Fig. 3.4, can be rather cumbersome. Thus, the solution procedure will be
described in what follows. First, the parameters β and Γ = γ/β are computed from the
desired values of Frr, Frτ,r and α according to (3.7). In the next step a first approximate
solution of (3.8) has to be computed starting from a uniform initialization, i.e. H1 ≡ Γ.
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For that purpose, it might be necessary to choose β larger than the desired value while
keeping Γ unchanged. For the red curve in Fig. 3.4 one may choose β = 0.35 and Γ = 2.
The resulting curve will have few undulations, similar to the blue curve in Fig. 3.4, and
will serve as an initial guess for the next computation. In the following steps, the value
of β is successively decreased until the target value (β = 7.88 · 10−2 for the red curve) is
reached, always using the solution of the previous step as the initial guess for the next
step. The number of undulations will continuously increase. At some point, the com-
putational domain may has to be extended to guarantee that the boundary condition
H1 = Γ is prescribed sufficiently far downstream of the decaying undulations.

3.4.3 Comparison with experimental data

The experiment by Chanson [12], CD1, with Frr = 1.266 and Frτ,r = 5.54 ·10−2, and the
experiment by Reinauer and Hager [43], Fig. 11a, with Frr = 1.447 and Frτ,r = 6.07 ·
10−2 are chosen for comparison with the present theory. The friction Froude numbers
are determined from the relations (2.41–2.43). Both experiments were performed in
horizontal channels. Since the present analysis is based on vanishing but non-zero
bottom slope, a small but finite value α = 10−8 is used for the comparisons.

In Fig. 3.5 the measured surface elevation [12] is represented by squares. Chanson
[12] indicates an uncertainty in the measurement of the volume flow rate q of about
2%. Therefore, solutions of (3.8) were first obtained for a parameter set corresponding
to q = 9.14 · 10−2 m2/s as reported by Chanson [12] (blue solid curve), and then for
parameters corresponding to a 2% smaller volume flow rate (red solid curve). Both
the blue and red solid curves are shifted along the corresponding solution of (3.11), i.e.
the blue and red dashed line, respectively, such that the first wave crest is in accord
with the experimental data. Whereas the first wave crests of both solid curves are
almost identical, the successive crests show significant differences, especially concerning
the wavelength. Reasonable agreement between experimental data and the solution of
the extended KdV equation (3.8) is obtained only by incorporating the measurement
uncertainty. This indicates the sensitivity of the surface elevation with respect to small
changes in the volume flow rate, as already observed in [22, 28].

In Fig. 3.6 the black squares represent the experimental data obtained by Reinauer
and Hager [43], presented as white squares in their Fig. 11a. While the authors re-
ferred to the third measurement point and reported Frr = 1.36, we refer to the second
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Figure 3.5: Comparison of solutions of the extended KdV equation (3.8) with
experimental data considering measurement uncertainties. Squares: Measured
surface elevation [12] in a horizontal channel of width b = 0.5 m, h̄r = 81 mm,
q = 9.14 · 10−2 m2/s ± 2% ⇒ Frr = 1.266 ± 2%, Frτ,r = 5.54 · 10−2 ± 1.8%.
Dashed lines: solutions of the hydraulic approximation (3.11). Solid lines:
Numerical solutions of (3.8) for the initial conditions H1(0) = 0, H1,X(0) = γ,
H1,XX(0) = 0.2. Blue curves: Frr = 1.266, Frτ,r = 5.54 · 10−2, i.e. ε = 0.177,
β = 1.37 · 10−2, γ = 2.58 · 10−2. Red curves: Frr = 1.266 − 2%, Frτ,r =
5.54 · 10−2 − 1.8%, i.e. ε = 0.160, β = 1.53 · 10−2, γ = 3.19 · 10−2.

measurement point in order to compare also the inflow behaviour, and thus obtain
Frr = 1.447, cf. [28], Fig. 10. The solid line shows the numerical solution of (3.8),
prescribing the initial value and initial slope in accord with the hydraulic approxima-
tion (3.11) and the initial curvature 20% larger than the corresponding value according
to (3.11). Both experimental data and numerical solution of (3.8) initially follow the
hydraulic approximation, indicated by the dashed line. After some distance, the undu-
lar jump develops, and the shape of the first wave crest is well approximated by the
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Figure 3.6: Comparison of the surface observed by [43] (squares) with a nu-
merical solution of the extended KdV equation (3.8) (solid line). The ex-
perimental data b = 0.5 m, h̄r = 105 mm, q = 0.154 m2/s correspond to
Frr = 1.447 (ε = 0.298), Frτ,r = 6.07 · 10−2 and the parameters β = 7.55 · 10−3,
γ = 8.44 · 10−3 used for solving (3.8) with the initial conditions H1(0) = 0,
H1,X(0) = γ, H1,XX(0) = 1.2γ(γ − β) = 9.01 · 10−6.

solid line, except for the sharp peak. However, Reinauer and Hager stated that this
experiment represented the limiting case to the first wave crest’s incipient breaking, a
phenomenon that is excluded in the current theory. Computation of the angle between
the three measurement points at the first crest from the original data, i.e. height h̄

at a position x, both in metres, yields an angle of 120.88°. This value is in excellent
agreement with the theoretical angle of 120° enclosed between the two tangents at the
crest of a breaking wave, see [34], Sec. 14.50.



Chapter 4

Conclusions of Part I

In this part of the thesis, we investigated the undular hydraulic jump in steady turbulent
open-channel flow in the limit of very large Reynolds numbers and Froude numbers close
to the critical value 1. Both a horizontal bottom and a bottom in the limit of vanishing
slope were considered. The first-order results remain free of turbulence modelling by
restricting the investigation to a specific parameter regime characterised by an order 1
coupling parameter B. In the case of a vanishing bottom slope, the inflow is prescribed
according to the hydraulic approximation, i.e. (3.11).

To investigate the flow over a horizontal bottom, a multiple-scales analysis was per-
formed analogous to [52]. The results show that the extended KdV equation, (2.35),
where the constant extension represents the deviation of the reference state from a fully
developed flow, is uniformly valid. However, the comparison of numerical solutions of
(2.35) with the theory of undular hydraulic jumps over inclined bottoms [28] demon-
strates that undular solutions of (2.35) are only possible by prescribing extraordinarily
large initial curvatures. A linear second extension term representing dissipation seems
essential in the extended KdV equation to obtain undular jump solutions with moder-
ate initial curvature values, cf. (2.39). In comparison with experimental data [12] the
numerical solutions of (2.35) predicted too large amplitudes.

To gain more insight into the undular hydraulic jump, the limiting process of a
vanishing bottom slope α was analysed. Introducing the control parameter m → 0
according to (3.2) and (3.3), allowed to perform the limiting process α → 0 by keeping
the Froude and Reynolds numbers fixed. The main result of the asymptotic analysis of
near-critical flow is the extended KdV equation (3.8) with the two extension parameters



4 Conclusions of Part I 33

according to (3.7). Numerical solutions of (3.8) as an initial value problem were analysed
by solely altering the bottom slope. As α decreases, wave damping becomes stronger,
and the number of undulations decreases until, eventually, one single wave crest with
immediate breakdown afterwards remains. Interestingly, solving (3.8) as a two-point
boundary-value problem with the asymptotic boundary condition of fully developed
flow far downstream shows entirely different behaviour. With decreasing α, the number
of undulations and their amplitudes rise due to the combination of stronger damping
and a fully developed state, which is reached further downstream. The analysis shows
further that upstream of the jump, the solution of (3.8) is in accord with the one-
dimensional hydraulic approximation (3.11). This suggests to chose an initial point for
the solution of (3.8) sufficiently far upstream of the jump, and with initial conditions
according to (3.11), in order to minimise the error introduced by unrealistic upstream
conditions. Using extremely small slope values, e.g. α = 10−8, models very well the
case of a horizontal bottom and yields undular jump solutions by prescribing moderate
initial curvatures. The comparison of numerical solutions of (3.8) with experimental
data, [12], turned out to be rather sensitive to relatively small uncertainties in the
measurements. The comparison with an experiment conducted with marginal wave
breaking, [43], showed that the inflow, as well as the first wave, were well represented
by the solution of (3.8), except for the measured sharp peak. Given the remarkable
fact that the analytical results are free of empirical constants, the agreement between
theory and experiments can be considered satisfactory.



Part II

Undular hydraulic jumps in
axisymmetric flow



Chapter 5

Introduction

The classical circular hydraulic jump (without undulations) is a phenomenon occurring
in everyday life, e.g. when a jet of liquid impinges on a horizontal plate and spreads
radially. Therefore, it is often referred to as the ‘kitchen sink problem’ and first found
attention by Lord Rayleigh [42] as early as in 1914, who observed the jump in his exper-
iments. In the past century, various aspects of the circular hydraulic jump have been
examined both experimentally and theoretically, and in recent times also numerically.

Viscosity has been shown to be essential for the development of the classical circular
jump, and thus considering inviscid flow is a rather strong oversimplification [2, 16].
Most theoretical studies are dedicated to the prediction of the jump radius. Therefore,
applying the hydraulic approximation seems to be a suitable approach, cf. [2, 16, 30,
54]. Assuming the jump to be a discontinuity between the supercritical and the sub-
critical flow regimes, Bohr et al. [2] defined jump conditions and determined the jump
radius by taking into account the radius of the edge of the bottom plate. The jump
conditions were extended by Kasimov [30] considering the effect of surface tension.
In a comprehensive analysis, Watson [58] studied the thin film upstream of the jump
by the boundary layer equations and derived a similarity solution. Jump conditions
were defined by distinguishing between hydraulic jumps occurring before and after the
boundary layer reaches the free surface. Moreover, while most studies consider laminar
hydraulic jumps, Watson analysed both laminar and turbulent flow by introducing an
eddy viscosity. However, compared with experiments, the laminar flow solution showed
better agreement than the solution for turbulent flow.

Laminar circular hydraulic jumps are generally divided into type I and type II jumps
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[3]. Type I jumps are characterised by a recirculation bubble attached to the wall just
below the jump. The separation occurs due to the abrupt increase of the hydrostatic
pressure at the jump, [32]. In type II jumps, additionally to the recirculation bubble at
the wall, a second eddy appears on the free surface, commonly called surface roller. The
surface roller is essentially associated with surface tension and may be observed if the
downstream flow depth is relatively large, and thus the transition from super- to sub-
critical flow causes a strong curvature of the free surface [59]. If the downstream depth
is further increased, it will become higher than the surface roller, and the transition
will appear as a double jump, [8, 32].

In a surface tension dominated flow, oscillating capillary waves develop upstream of
the circular jump [4, 15, 24]. Bush and Aristoff [7] extended Watson’s theory, [58], by a
correction term taking into account surface tension. Their comparison with experiments
showed that surface tension effects are generally weak in laboratory settings and become
more important in jumps of small radius and height.

In highly viscous liquids, symmetry-breaking hydraulic jumps may occur as steady
as well as time-dependent, i.e. rotating, structures. In their experimental analysis of
increasing downstream flow depth, Bohr et al. [3] observed hexagonal rotating jumps
as the final stage before the jumps disappeared. Stationary polygonal jumps such as a
pentagon were reported by Ellegaard et al. [18]. In both studies, the symmetry-breaking
jumps are characterised by sharp corners that carry large radial flow rates, while the
structures’ sides generate resistance to the flow. A new class of even more irregular
structures restricted to a very narrow parameter regime was presented by Bush et al.
[8]. This class includes jumps of the shape of cat-eyes, three- and four-leaf clovers, and
butterflies, the latter exhibiting only a single symmetry plane. All symmetry-breaking
structures emerge exclusively from circular type II jumps and show a clear dependence
on surface tension as they relax to circular jumps if a surfactant is added, [8]. Also,
Kasimov [30] observed that increasing surface tension acts destabilizing on the laminar
circular jump, possibly causing the transition to symmetry-breaking instabilities.

Surface tension dominated circular jumps have been experimentally observed by
Mathur et al. [33] when molten iron droplets impinged on a solid substrate and solidified
into cup-shaped containers of femtoliter capacity.

The present part of the thesis addresses undular hydraulic jumps in steady axisym-
metric flow, which are hardly discussed in the literature. Ishigai et al. [26] showed
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sketches of the different types of observed circular hydraulic jumps (Fig. 7 in [26])
depending on the upstream Froude number Fr, indicating an undular transition if
1 < Fr < 2. However, Craik et al. [15] reported that in their transient experiments
where a tank slowly got filled by a jet of liquid impinging on the bottom plate, the un-
dular jump was never observed while the following types shown in [26] did occur. The
laminar internal circular jump was investigated by Thorpe and Kavc̆ic̆ [55] introducing
a saline solution at a constant flow rate through a tube into a tank filled with fresh
water. They observed an undular transition during the initial stage, such as reported in
[26]. Due to the stratified flow, surface tension plays a minor role, and undulations can
develop, in contrast to experiments with a free surface as e.g. in [15]. This conclusion
is supported by the analysis of Fernandez-Feria et al. [19] who compared numerical
solutions of the Navier–Stokes equations by considering and neglecting surface tension.
Their results show undular circular jumps by neglecting surface tension even for up-
stream Froude numbers 7.6 < Fr < 9.4. However, the undulations were suppressed by
taking surface tension effects into account.

Undular hydraulic jumps with curved front can also be observed in natural en-
vironments. Figure 5.1 shows the photograph of an undular hydraulic jump with a
concave front, formed when rainwater was flowing over the pavement across the street
towards the manhole. A photograph of an undular jump with a convex front is shown
in Fig. 5.2, where artistic obstacles in a flume triggered the curved undular hydraulic
jump. Throughout the thesis’s development, these photographs served as motivation
for the investigation, as concave and convex undular jumps are expected to occur in
near-critical axisymmetric source and sink flow, see Ch. 8 and 9, respectively. How-
ever, both phenomena were observed outside of laboratory settings with an irregular
curvature radius and inclined bottoms. In contrast, the analysis in this thesis will be
restricted to axisymmetric flow over horizontal surfaces.

To the author’s knowledge, the circular undular hydraulic jump in turbulent free-
surface flow has neither been observed in laboratory experiments nor has it ever been
analysed theoretically or numerically. The present part of the thesis is dedicated to
answering under which conditions such a flow phenomenon may occur.
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Figure 5.1: Observation of an undular hydraulic jump with concave front. Pho-
tograph taken by R. Kolda in Vienna, Austria on 7 March 2009.

Figure 5.2: Observation of an undular hydraulic jump with convex front. Pho-
tograph taken by H. Steinrück in Karlsruhe, Germany on 24 March 2010.



Chapter 6

Hydraulic approximation

We consider steady turbulent axisymmetric free-surface flow over a horizontal bottom,
see Fig. 6.1. Cylindrical coordinates are introduced, with r and z in radial and vertical
direction, respectively. An overbar denotes a time-averaged quantity. In the following,
surface tension will be neglected as it plays a minor role in hydraulic structures with
turbulent flow, see [11], p. 265.

The hydraulic approximation is a one-dimensional flow approximation considering
a hydrostatic pressure distribution, cf. [2, 16, 54, 56]. We know from previous studies,
[22, 27, 36], that the hydraulic approximation is incapable of representing an undular
jump, cf. also Sec. 3.3. Nevertheless, it may give valuable insight into the upstream
flow behaviour and the differences between plane and axisymmetric flow. Thus, the
continuity equation reads

rh̄ūm = Q = const , (6.1)
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Figure 6.1: The hydraulic approximation of axisymmetric free-surface flow over
a horizontal bottom.
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where ūm(r) is the local volumetric mean velocity and Q denotes the volume flow rate
per unit azimuth angle. The equation of motion in radial direction is

ūm
dūm

dr
+ g

dh̄

dr
= −cf

2
ū2

m

h̄
, (6.2)

using a hydrostatic pressure distribution p̄ = ρg(h̄ − z), and the effect of friction rep-
resented by the friction coefficient cf = 2τ̄w/ρū2

m. The local Froude number is defined
as

Fr(r) := Q

r
�

gh̄3
. (6.3)

Combination of (6.1–6.3) leads to the differential equation for the local Froude number,

dFr
dr

= Fr3

2(Fr2 − 1)

1
r

Fr2 + 2
Fr2 − 3cf

2

�
g

Q2

�1/3

(rFr)2/3

 , (6.4)

which has a singularity at Fr = 1.

6.1 Inviscid flow
With a sufficiently large Reynolds number, corresponding to a very small friction co-
efficient, the flow can be assumed as inviscid. In the framework of the hydraulic ap-
proximation the inviscid flow condition, cf � h̄/r, follows from (6.4) by substituting
Q2/g = Fr2r2h̄3 according to (6.3). With that condition satisfied, the last term in (6.4)
drops out, and the equation reduces to

dFr
dr

= 1
r

Fr(Fr2 + 2)
2(Fr2 − 1)

. (6.5)

Integration yields an implicit relation for the local Froude number, i.e.

r

r∗ = (2 + Fr2)3/2

3
√

3Fr
. (6.6)

The asterisk refers to the critical state, where Fr = 1. Note that (6.6) is ‘universal’
as it is free of parameters describing the upstream state. A near-critical version of the
hydraulic approximation is obtained by expanding (6.6) for |Fr − 1| � 1. The result is

Fr = 1 ±
�

3
2



r

r∗ − 1
�

, (6.7)
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with the positive and negative signs corresponding to the supercritical and subcritical
branches, respectively. In Ch. 7 solutions of both (6.6) and (6.7) will be used for com-
parison with a theory for undular hydraulic jumps in near-critical inviscid axisymmetric
source flow, see Figs. 7.2 and 7.3.

6.2 Constant friction coefficient
In a first approximation the friction coefficient in (6.4) is assumed to be constant.
Equation (6.4) describes spiral curves, cf. [2, 16], with the focal point at the critical
state Fr = 1 and the radius

rs =
�

8Q2

cf 3g

�1/5

. (6.8)

Thus, the singularity position only depends on the constant values of the discharge Q

and the friction coefficient cf .
Referring to the focal point, (6.4) can be rewritten in terms of the non-dimensional

radius R̂ = r/rs:
dFr
dR̂

= Fr3

2(Fr2 − 1)

�
1
R̂

Fr2 + 2
Fr2 − 3(FrR̂)2/3

�
. (6.9)

Equation (6.9) is again free of parameters describing the upstream state, and thus its
solutions are a universal family of curves of the local Froude number Fr(R̂), see Fig. 6.2.
The curves shown in Fig. 6.2 were determined by transforming Fr and R̂ in (6.9) into
the polar coordinates ξ and φ according to

R̂ = 1 + ξ cosφ , Fr = 1 + ξ sinφ , (6.10)

and integrating in both clockwise and counter-clockwise direction starting from the
critical point, where Fr(r∗) = 1 and R̂∗ = r∗/rs ranges from 0.35 to 0.95.

The enumerator on the right-hand side of (6.9) is zero if

R̂ =
�

(2 + Fr2)3

27Fr8

�1/5

, (6.11)

which is a relation for the position where the sub- and supercritical branches of the
integral curves reach their minima and maxima, respectively. The dash-dotted curve in
Fig. 6.2 is plotted according to (6.11). The close-up illustrates the continuous spiralling
towards the focal point at Fr = 1, R̂ = 1. Due to the lack of asymptotic states as
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Figure 6.2: Universal family of curves (solid lines) of the hydraulic approxima-
tion of axisymmetric flow with constant friction coefficient, (6.9). Along the
dash-dotted line, i.e. the solution of (6.11), the sub- and supercritical branches
of the solid curves reach their minimum and maximum values, respectively.

R̂ → ∞, the spiralling also continues away from the focal point, cf. [2]. Following the
subcritical branches of the integral curves, with increasing R̂ each of them will eventually
turn around, as shown for the innermost curve (R̂∗ = 0.95). These turnarounds confine
the regions of possible subcritical flow solutions along each particular integral curve.
Following the integral curves in a counter-clockwise direction past these turnarounds
leads to a rapidly changing Froude number. This violates the hydraulic approximation’s
basic assumption of a slowly varying flow, similar to the invalidity at the critical state,
where dFr/dR̂ diverges. Thus, a branch with such large gradients must be considered
as beyond the theory’s validity limits.

Instead of referring to the singular point rs, one may refer to the critical radius r∗,
i.e. the leftmost radius R̂∗ of each curve in Fig. 6.2. Figure 6.3 shows the solid curves
of Fig. 6.2 by referring to r∗. This means that a curve with a certain value of R̂∗ in
Fig. 6.2 corresponds to the curve with rs/r∗ = 1/R̂∗ in Fig. 6.3. In the representation of



6.2 Constant friction coefficient 43

r/r∗

Fr

1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1/0.75
1/0.65 1/0.55 1/0.45

rs/r∗ = 1/0.35

1/0.95

1/0.85

Figure 6.3: Diagram of the hydraulic approximation of axisymmetric flow with
constant friction coefficient referring to the critical radius r∗. Solid lines: Solu-
tions of the hydraulic approximation (6.9) for various values of rs/r∗. Dashed
line: Inviscid flow solution (6.6), cf. [56], Fig. 2b.

Fig. 6.3, for a fixed discharge, each solid curve corresponds to a different value of cf , with
cf decreasing as rs/r∗ increases, cf. (6.8). The dashed line represents the inviscid flow
solution, (6.6), and encloses all possible solid curves as rs/r∗ increases. The smaller the
value of cf , the closer the corresponding sub- and supercritical branches of the solid curve
approach the dashed curve. However, due to the cumulative effect of friction also in this
diagram, the subcritical branches approach a critical state, as shown for the innermost
curve (rs/r∗ = 1/0.95) at r/r∗ ≈ 2.9. The comparison between the inviscid flow solution
and curves considering friction in Fig. 6.3 shows that the cumulative friction effect acts
stronger on the supercritical branches than on the subcritical branches.



6.3 Variable friction coefficient 44

6.3 Variable friction coefficient
Considering a variable friction coefficient cf(r) requires the use of a friction law. Due
to the lack of a friction law for turbulent axisymmetric free-surface flow, it is state of
the art to use the concept of the hydraulic diameter Dh, which is in this case Dh = 4h̄,
see e.g. [47], p. 103. Therefore, the friction law of turbulent pipe flow is applied, i.e.
(2.42) with the empirical constant D = 0.27, [20], p. 527.

Although the concept of hydraulic diameter is widely used, it should be applied with
caution. For Couette–Poiseuille flows, Gersten and Herwig [20], p. 575, introduced the
equivalent diameter Dae to be used as characteristic length for the Reynolds number,
in order to apply the friction law of pipe flow. However, Dae differs from Dh by a
factor depending on the flow, e.g. for plane channel flow Dae = 0.87Dh. For tubes
with non-circular cross section Idelchik [25], p. 97, suggested to multiply the friction
coefficient according to (2.42) with D = 0.27 by a correction factor based on empirical
investigations. Schneider [49] derived a friction law for fully developed turbulent open-
channel flow, which is of the same form as (2.42) but with a different value of the
constant D.

None of the above-mentioned approaches seems to be more suitable for the present
axisymmetric free-surface flow than the classical concept of hydraulic diameter. Thus,
we shall continue by applying (2.42) and (2.43). Introducing cf(rs) according to (6.8),
and evaluating ReD at rs, (2.42) becomes

�
rs

5g

Q2

�1/6

= 1
κ

ln
 4

ν

�
Q8

rs
11g

�1/6
 + D, (6.12)

i.e. an implicit relation to determine the radius of the singular point rs for chosen values
of Q and ν. Combining (6.1–6.3) and introducing the non-dimensional radius R̂ = r/rs

leads to
dFr
dR̂

= Fr3

2(Fr2 − 1)

�
1
R̂

Fr2 + 2
Fr2 − 3cf(R̂)

cf(1) (FrR̂)2/3
�

, (6.13)

with cf(1) being the friction coefficient at the singular point R̂ = 1. Note that the ratio
cf(R̂)/cf(1) is the only difference with respect to the equation for cf = const, (6.9). This
means that the error between considering a variable and a constant friction coefficient
decreases as the singular point is approached and vanishes at R̂ = 1.
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Due to the dependence of rs and thus cf(1) on Q and ν, the universality of the
equation for Fr(R̂) is lost. A family of solutions of (6.13) may be determined for a
specific combination of Q and ν. A discharge of Q = 0.2 m3/s appears meaningful for
technical applications and will be used in Figs. 6.4 and 6.5, together with the viscosity
ν = 10−6 m2/s of water at a temperature of 20◦ [57], p. 154. In Fig. 6.4 the family
of solutions of (6.13) shown as solid lines, is compared with the universal family of
solutions of (6.9), shown as dashed lines. In this comparison the dashed lines correspond
to a constant friction coefficient cf(1) = 5 · 10−3. The deviations between the solid and
dashed lines with the same value of R̂∗ in the vicinity of the singular point are relatively
small as shown in Fig. 6.4. This is due to cf(R̂)/cf(1) being close to unity in this region.
However, with increasing radius, the ratio cf(R̂)/cf(1) rises as shown by the red line
in Fig. 6.5. The solid and dashed black curves with R̂∗ = 0.95 remain close to each
other even at the position of their turnaround since the variable friction coefficient at

R̂
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Figure 6.4: Comparison of the universal family of solutions of the hydraulic
approximation with constant cf (dashed), (6.9), and the family of solutions of
the hydraulic approximation with variable cf (solid), (6.13), for Q = 0.2 m3/s
and ν = 10−6 m2/s, i.e. rs = 12.13 m.
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Figure 6.5: Comparison of solutions of the hydraulic approximation with con-
stant cf (dashed), (6.9), and variable cf (solid), (6.13), at large radii, for
Q = 0.2 m3/s and ν = 10−6 m2/s; black curves, scale on the left. Friction
coefficient ratio cf(R̂)/cf(1) with cf(1) = 5 · 10−3; red curve, scale on the right.

this position (R̂ ≈ 23) differs only slightly from cf(1), i.e. cf/cf(1) ≈ 1.2. For R̂∗ = 0.9,
the turnaround positions of the solid and the dashed curves differ considerably because
at the radius R̂ ≈ 40 the ratio cf/cf(1) ≈ 2.7 is not close unity anymore, shifting the
turnaround to a larger radius.

The present comparison leads to the conclusion that a constant friction coefficient,
and thus the universal family of solutions of (6.9) are a good approximation as long as
R̂ = O(1). Moreover, Fig. 6.4 shows that near-critical flow, as it will be considered in
the following chapters, is very well approximated by cf = const.



Chapter 7

Near-critical inviscid axisymmetric
source flow

7.1 Problem formulation
In plane flow, e.g. in open channels, the undular hydraulic jump is inherently associated
with dissipation and cannot exist in inviscid flow [22]. In the present chapter, we shall
see that in the case of axisymmetric flow, the situation changes, and the governing
equations of inviscid flow permit an undular hydraulic jump under certain conditions.
A condition how small the friction Froude number, corresponding to a large Reynolds
number, has to be such that the flow can be considered as inviscid will be given in
Sec. 8.3.3. Consequently, steady near-critical inviscid source flow with a free surface
over a horizontal bottom is considered, see Fig. 7.1. The assumption of negligible
surface tension will be justified by a large Weber number in Sec. 7.3.1. The cylindrical
coordinates r and z are introduced with the corresponding velocity components u and
w, respectively. It is assumed that a circular undular hydraulic jump may arise at a
relatively large jump radius such that, in leading order, the flow behaves like plane
free-surface flow, cf. [22, 28]. Therefore, the reference radius rr, being the position of
the toe of the jump, is assumed to be sufficiently large. A more detailed description of
what ‘sufficiently large’ means will be given below.

Non-dimensional variables are introduced analogue to Sec. 2.1 by referring to the
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Figure 7.1: The stationary undular hydraulic jump in inviscid axisymmetric
free-surface flow over a horizontal bottom.

reference state and using the small contraction parameter δ � 1:

R = δ
r

hr
, Z = z

hr
, H = h

hr
, U = u

ur
, W = δ−1 w

ur
, P = p

ρghr
. (7.1)

The reference velocity is defined as ur := Q/rrhr. The continuity equation of incom-
pressible flow in non-dimensional form reads

U/R + UR + WZ = 0 , (7.2)

with the subscripts R and Z denoting partial derivatives with respect to R and Z,
respectively. The Euler equations in non-dimensional form are

Fr2
r (UUR + WUZ) = −PR , (7.3a)

δ2Fr2
r (UWR + WWZ) = −PZ − 1 , (7.3b)

with the reference Froude number

Frr = Q

rr
�

gh3
r

. (7.4)

The system of equations (7.2), (7.3a) and (7.3b) is to be solved subject to appropriate
boundary conditions. At the bottom, a vanishing vertical velocity is prescribed,

W (R, 0) = 0 . (7.5)

At the free surface, the interface is defined by a streamline,

W (R, H) = U(R, H)HR , (7.6)

and the pressure is set to zero,
P (R, H) = 0 . (7.7)
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7.2 Asymptotic analysis
The asymptotic analysis of the governing equations is performed inspired by previous
studies of the undular jump, [22, 28]. Thus, the slightly supercritical reference Froude
number and the contraction parameter are defined according to (2.11) and (2.12), re-
spectively. As mentioned above, the reference radius is assumed to be large, i.e.

Rr = R̃ε−n, R̃ = const = O(1) , (7.8)

with 2 ≤ n ≤ 5/2. The order of magnitude of Rr is carefully chosen such that the terms
due to axisymmetric flow will affect the final result only weakly or, at most, as an order
1 effect. Further, the non-dimensional radius is decomposed in

R = Rr + η with dR = dη . (7.9)

All dependent variables are expanded in terms of powers of ε:

H(η) = 1 + εH1(η) + ε2H2(η) + . . . ,

U(η, Z) = 1 + εU1(η, Z) + ε2U2(η, Z) + . . . ,

W (η, Z) = εW1(η, Z) + ε2W2(η, Z) + . . . ,

P (η, Z) = 1 − Z + εP1(η, Z) + ε2P2(η, Z) + . . . ,

(7.10)

neglecting terms of order ε3 and smaller. Note that here the basic state, (2.17), is used
as leading-order terms with Y and V replaced by the present vertical coordinate Z and
velocity component W , respectively. The following relationships are the results of the
first-order equations:

U1 = c1(Z) − H1 , W1 = H1,ηZ , P1 = H1 . (7.11)

The subscript η denotes the derivative with respect to η. The free-surface elevation
H1(η) remains undetermined in the framework of first-order equations. The function
of integration c1(Z) defines the velocity profile and can be chosen freely as it will not
affect the final result for H1. Since the reference velocity ur is defined as the volumetric
mean velocity, the integral of c1(Z) has to vanish:� 1

0
c1(Z) dZ = 0 . (7.12)
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In the case of potential flow, the additional condition of an irrotational velocity field
has to be satisfied. In the present non-dimensional variables this means ∂U1/∂Z = 0.
Together with the integral condition (7.12), the function of integration becomes c1(Z) ≡
0. However, the potential flow solution is not the only possible velocity distribution,
and thus another type of flow may lead to a different result for c1.

Due to the choice of 2 ≤ n ≤ 5/2 in (7.8), the term U/R in the continuity equation
(7.2) does neither affect the leading-order nor the first-order results. Following [28],
a solvability condition for H1(η) may be derived from the second-order equations by
considering terms that are of O(ε2) or half an order of magnitude smaller, i.e. O(ε5/2).
Thus, depending on the particular choice of Rr’s order of magnitude, the term U/R

appears differently in the second-order continuity equation, i.e.

U/R = εn/R̃ + . . . , (7.13)

neglecting terms of order ε3 and smaller.
Performing the analysis of the second-order equations as described in [28], the Euler

equation in radial direction, (7.3a), and the kinematic boundary condition, (8.4), are
compatible if

H1,ηηη + H1,η(H1 − 1) = εn−2/3R̃ . (7.14)

Equation (7.14) is an extended steady-state version of the KdV equation. The constant
right-hand side stems from the term U/R in the continuity equation, cf. (7.13), and
represents the effect due to axisymmetric flow. If n = 5/2, i.e. Rr = O(ε−5/2), the
right-hand side is of the order ε1/2. If n = 2, the smaller reference radius enhances the
effect due to axisymmetric flow, and the right-hand side of (7.14) is of the order 1.

The extended KdV equation is to be solved for appropriate initial conditions. At
the reference state η = 0 the initial value is H1(0) = 0. The initial slope and curvature
may be chosen according to the hydraulic approximation, cf. Sec. 6.1. Therefore, we
will use the relation between the local Froude number and H1(η), i.e.

Fr(η) = 1 + 3ε(1 − H1)/2 , (7.15)

which follows from introducing the expanded variables according to (7.10) into the
definition of Fr according to (6.3). Further, the near-critical hydraulic approximation
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of inviscid axisymmetric flow, (6.7), is transformed by referring to rr instead of r∗, using
the relation (7.15), and expanding for ε � 1, resulting in

H1 = 1 ∓
�

1 + 2εn−2η/3R̃ , (7.16a)

H1,η = εn−2

3R̃(H1 − 1)
, (7.16b)

H1,ηη = − ε2n−4

(3R̃)2(H1 − 1)3 . (7.16c)

The upper and lower sign in (7.16a) corresponds to the super- and subcritical branch,
respectively. Both (6.7) and (7.16a) are near-critical hydraulic approximations. They
differ from each other due to the different reference states, i.e. Fr = 1 at r = r∗ for (6.7)
and H1 = 0 at η = 0 (r = rr) for (7.16a). Note that (7.16b) is equal to (7.14) without
the term H1,ηηη, meaning that the extended KdV equation without the third-order term
is equivalent to the near-critical hydraulic approximation.

It follows from (7.16a) that the condition H1 = O(1) for the validity of the asymptotic
expansion is only satisfied if

εn−2η = O(1) . (7.17)

Thus, the range of validity for n = 5/2 is η = O(ε−1/2), while it reduces to η = O(1)
for n = 2.

It may be worth mentioning that if Rr were chosen to be of O(ε−3/2), the resulting
solvability condition and the results of the hydraulic approximation are of a different
form than (7.14) and (7.16), respectively. Nevertheless, the validity condition (7.17) is
still applicable. Consequently, an area of validity of η = O(ε1/2) is too small to be of
practical interest.

7.3 Results and discussion
The extended KdV equation (7.14) is solved numerically as an initial value problem with
standard methods, using the commercial software Matlab R2018b. For both n = 5/2
and n = 2, solutions are obtained with the function ode45, a relative and absolute error
tolerance of 10−4 and 10−8, respectively, and a maximum step size of 10−4.
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7.3.1 Undular jumps at a reference radius of O(ε−5/2)

Solving (7.14) with n = 5/2 and the initial value, slope and curvature being in ac-
cord with the supercritical branch of the near-critical hydraulic approximation (7.16)
in the reference state (η = 0) yields an undular jump solution. In Fig. 7.2a) the black
curve representing the solution of (7.14) shows a distinct transition from supercritical
to subcritical (H1 > 1) flow within the first two undulations. Initially following the blue
supercritical branch of the near-critical hydraulic approximation, (7.16a), downstream
of the transition, the black curve oscillates around the blue subcritical branch of (7.16a)
as it is typical for undular hydraulic jumps. Note that the form of the extended KdV
equation for both inviscid axisymmetric flow (7.14) with n = 5/2 and for open-channel
flow over a horizontal bottom (2.35) is conspicuously similar. In both cases, the right-
hand side is a constant of order ε1/2, yet with a different sign. As we have seen in
Fig. 2.4, for a negative right-hand side in (2.35) extremely large initial curvatures are
required to obtain undular solutions. It is therefore remarkable to observe in Fig. 7.2a)
that a positive right-hand side in (7.14) permits undular solutions without perturbing
the reference state according to (7.16). Considering the origin of the extension terms
in (2.35) and (7.14), we may conclude that in (2.35) the effect of friction is counter-
productive, while the effect due to axisymmetric flow in (7.14) acts enhancing for the
development of undular jumps. Both effects will be combined in Sec. 8.3.1.

The red curve in Fig. 7.2a) depicts the solution of the full hydraulic approximation
(6.6) in terms of H1(η), i.e. referring to rr instead of r∗, and using the definition of the
local Froude number in terms of the non-dimensional variables with H = 1 + εH1:

Fr(η) = Frr

(1 + εnη/R̃)(1 + εH1)3/2 . (7.18)

The denominator is not expanded since the full hydraulic approximation is valid for
any Froude number and radius, and hence εH1 � 1 as well as εnη � 1 are allowed.
Equation (7.18) is applicable for 2 ≤ n ≤ 5/2 and will also be used for n = 2 in the
next section.

In Fig. 7.2b) the curves of Fig. 7.2a) are illustrated in the same colors but in terms
of the local Froude number Fr. The radial coordinate is referred to the critical radius;
see the bottom scale. The radial limits of the diagram correspond to the limits in terms
of η; see the top scale. The green curve represents the solution of the near-critical
hydraulic approximation according to (6.7). The different reference states of the two
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Figure 7.2: Results of an undular hydraulic jump in inviscid axisymmetric flow
with Rr = O(ε−5/2); ε = 0.1 (Frr = 1.15), R̃ = 0.7. a) Non-dimensional
surface elevation, H1, b) Local Froude number, Fr. Black: Numerical solution
of the extended KdV equation (7.14) for initial conditions according to the
hydraulic approximation (7.16) with n = 5/2, i.e. H1(0) = 0, H1,η(0) = −0.15,
H1,ηη(0) = 2.27 · 10−2. Red: Full hydraulic approximation according to (6.6).
Super- (dashed) and subcritical (dotted) branch of the near-critical hydraulic
approximation according to (7.16a) in blue, and according to (6.7) in green.
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near-critical hydraulic approximations, i.e. Fr = 1 at r = r∗ for the green curve and
Fr = Frr at η = 0 (r = rr) for the blue curve, are clearly distinguishable. In order to
plot the solution of (7.14), the critical radius is required. Due to r/r∗ = R/R∗ the non-
dimensional critical radius R∗ = 218.4 is determined from (6.6) using the parameter
values of the reference state Frr = 1.15 and Rr = 221.4, corresponding to ε = 0.1 and
R̃ = 0.7. The dashed vertical line indicates the validity condition ε1/2η = O(1) and
restricts the validity of the results to the region of the first six to seven undulations.

To give an idea of which dimensional relations can be expected from the parameters
of Fig. 7.2, i.e. Frr = 1.15 and Rr = 221.4, the reference values will be computed. A
discharge per unit azimuth angle Q = 10 l/s = 10−2 m3/s is chosen to obtain reference
values that are reasonable for applications. Therefore, from (7.1) and (7.4) follows
hr = 11 mm, rr = 2.501 m, and consequently ur = 0.37 m/s. From R∗ = 218.4 follows
a critical radius of r∗ = 2.468 m that is located only a few centimetres upstream of the
reference state. The small distance between r∗ and rr is not surprising since according to
the universal hydraulic approximation of inviscid flow, (6.6), any near-critical state can
only be located in the vicinity of the unique critical state, see the dashed line in Fig. 6.3.
Using the density ρ = 998.2 kg/m3 and surface tension σ = 72.7 · 10−3 N/m of water at
a temperature of 20 ◦C [57], pp. 154–156, yields a Weber number Wer := ρu2

r hr/σ = 21
in the reference state. Such a large Weber number points out the weak effect of surface
tension and justifies its negligence. For comparison, the same discharge of Q = 10 l/s
with a slightly larger Froude number Frr = 1.3 and Rr = 54.9 (i.e. R̃ = 0.98) yields
hr = 18 mm, rr = 1 m, ur = 0.55 m/s, r∗ = 0.953 m, and Wer = 76.

7.3.2 Undular jumps at a reference radius of O(ε−2)

Choosing the reference radius of O(ε−2) means moving closer towards the axis of the
cylindrical coordinate system. For the same parameters as used in Fig. 7.2, ε = 0.1
(Frr = 1.15) and R̃ = 0.7, the non-dimensional reference radius is Rr = 70. Choosing
again Q = 10 l/s to obtain realistic reference values leads to hr = 17 mm, rr = 1.254 m
and ur = 0.47 m/s. Thus, the reference state is shifted to half the radius with respect to
the case of the same Froude number and Rr = O(ε−5/2). The critical radius is R∗ = 69.1
and consequently r∗ = 1.237 m.

Solving the extended KdV equation (7.14) with n = 2, with initial conditions ac-
cording to the supercritical branch of the near-critical hydraulic approximation (7.16)
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Figure 7.3: Results of an undular hydraulic jump in inviscid axisymmetric flow
with Rr = O(ε−2); ε = 0.1 (Frr = 1.15), R̃ = 0.7. a) Non-dimensional surface
elevation, H1, b) Local Froude number, Fr. Black: Numerical solution of the
extended KdV equation (7.14) for initial conditions according to the hydraulic
approximation (7.16) with n = 2, i.e. H1(0) = 0, H1,η(0) = −0.48, H1,ηη(0) =
0.23. Red: Full hydraulic approximation according to (6.6). Super- (dashed)
and subcritical (dotted) branch of the near-critical hydraulic approximation
according to (7.16a) in blue, and according to (6.7) in green.
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yields again an undular jump, shown as black curve in Fig. 7.3a). However, the con-
dition η = O(1), indicated by the vertical dashed line, restricts the solution’s validity
to the first few undulations. For larger values of η also the blue near-critical hydraulic
approximation deviates strongly from the full hydraulic approximation in red.

The validity limit becomes even more visible in the diagram of the local Froude
number, Fig. 7.3b). With each successive wave crest, Fr decreases rapidly and even
becomes negative at r/r∗ ≈ 1.37. This state is, of course, unphysical. Already before,
the flow is far from near-critical, which violates the basic assumption of the asymptotic
theory. With the present choice of Rr = O(ε−2) the distance between the reference
radius and the critical radius, rr − r∗, is strongly decreased with respect to Rr =
O(ε−5/2), cf. the distance between the vertical lines η = 0 and r/r∗ = 1 in Figs. 7.2 and
7.3. Thus, in Fig. 7.3b) the blue and the green curve almost coincide.



Chapter 8

Near-critical turbulent
axisymmetric source flow

8.1 Problem formulation
In this chapter, we will investigate undular hydraulic jumps in steady near-critical
turbulent axisymmetric source flow over a horizontal bottom, see Fig. 8.1. The con-
siderations of Ch. 7 regarding surface tension, the cylindrical coordinate system, and
the reference state are adopted. By applying a Reynolds decomposition [41], p. 83, to
the turbulent flow quantities, time-averaged quantities are denoted by an overbar and
fluctuations around the average by a prime. Analogue to (2.1), the non-dimensional
variables are introduced by referring to the reference state:

R = δ
r

h̄r
, Z = z

h̄r
, H̄ = h̄

h̄r
, Ū = ū

ūr
, W̄ = δ−1 w̄

ūr
,

P̄ = p̄

ρgh̄r
, Uτ = uτ

uτ,r
, U �2 = u�2

u2
τ,r

, W �2 = w�2

u2
τ,r

, U �W � = u�w�

u2
τ,r

.

(8.1)

The continuity equation of incompressible flow in non-dimensional form reads

Ū/R + ŪR + W̄Z = 0 . (8.2)

In the defect layer, the equations of motion in non-dimensional form are

δFr2
r (Ū ŪR + W̄ ŪZ) = −δP̄R − Fr2

τ,r

�
δ(U �2

R + U �2/R) + U �W �
Z

�
, (8.3a)

δ2Fr2
r (ŪW̄R + W̄W̄Z) = −P̄Z − 1 − Fr2

τ,r

�
δ(U �W �

R + U �W �/R) + W �2
Z

�
, (8.3b)
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ūr

z

r

h̄r

5g
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Figure 8.1: The stationary undular hydraulic jump in turbulent axisymmetric
free-surface flow over a horizontal bottom.

with the reference Froude numbers defined as in (2.4) and accordingly (7.4).
The governing equations (8.2), (8.3a) and (8.3b) are to be solved subject to appro-

priate boundary and matching conditions. At the bottom, the defect layer is matched
with the viscous wall layer. According to Schlichting and Gersten [47], Sec. 20.1.2, the
logarithmic velocity law for plane flow also holds for the present turbulent axisymmet-
ric flow. Therefore, the conditions given in Sec. 2.1, i.e. (2.5–2.8), are prescribed by
substituting X with R, Y with Z, and V with W . The same substitution is applied
to the boundary conditions at the free surface, (2.9–2.10). The kinematic boundary
condition then becomes

W̄ (R, H̄) = Ū(R, H̄)H̄R , (8.4)

and the dynamic boundary conditions read�
P̄ (R, H̄) + Fr2

τ,r U �2(R, H̄)
�

δH̄R − Fr2
τ,r U �W �(R, H̄) = 0 , (8.5a)�

P̄ (R, H̄) + Fr2
τ,r W �2(R, H̄)

�
− Fr2

τ,r U �W �(R, H̄) δH̄R = 0 . (8.5b)

8.2 Asymptotic analysis
The asymptotic analysis of the governing equations of near-critical axisymmetric tur-
bulent flow represents a combination of the analysis of plane turbulent flow in Sec. 2.2
and the analysis of axisymmetric inviscid flow in Sec. 7.2. Thus, the near-critical ref-
erence Froude number, the contraction parameter, and the reference friction Froude
number are defined according to (2.11–2.13), respectively. The non-dimensional radius
is decomposed as in (7.9) with the large non-dimensional reference radius according to
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(7.8) and 2 ≤ n ≤ 5/2. All dependent variables are expanded in terms of powers of ε,
e.g.

H̄(η) = 1 + εH1(η) + ε2H2(η) + . . . , (8.6)

for the non-dimensional height of the free surface, neglecting terms of order ε3 and
smaller. The leading-order terms represent the reference state and are identical to the
inviscid flow case, see (7.10). As discussed in Ch. 2, due to the horizontal bottom, a
fully developed flow neither exists in the reference state nor anywhere else. Thus, the
leading-order Reynolds shear stress is assumed to be of the same form as in (2.18), i.e.

(U �W �)0 = Z − 1 + ΔU �W �(Z) , (8.7)

with the term ΔU �W �(Z) = O(1) representing the deviation of the reference state from
the linear profile of a fully developed flow. In order to satisfy the boundary conditions
at the bottom and at the free surface, ΔU �W �(0) = ΔU �W �(1) = 0 holds. The results
of the analysis of the first-order equations are

U1 = −H1 + ε1/2
√

BΔU(Z) , W1 = H1,ηZ , P1 = H1 , (8.8)

with ΔU(Z) = O(1) being the velocity defect in the reference state.
From the comparison between the hydraulic approximation of axisymmetric inviscid

and viscous flow, Fig. 6.3, we know that even weak friction effects accumulate and
eventually lead to a breakdown of the flow, indicated by a turnaround of the spiral
curve. To incorporate this effect, the present analysis aims at deriving a uniformly
valid differential equation, representing the initial behaviour of the undular jump and
the breakdown far downstream. Therefore, the denominator of the term Ū/R in the
continuity equation, which first appears in the second-order equations, will not be
expanded as in (7.13), such that the term reads

Ū/R = εn 1 + εU1 + . . .

R̃ + εnη
, (8.9)

allowing for εnη � 1.
The analysis of the second-order equations is again performed as described in [28],

and the equation of motion in radial direction, (8.3a), and the adapted kinematic bound-
ary condition, (2.9), i.e. (8.4) by introducing overbars over the dependent variables, are
compatible if

H1,ηηη + H1,η(H1 − 1) = f(η; n) − γ , (8.10)
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with
f(η; n) = εn−2

3(R̃ + εnη)
, (8.11)

and the constant γ according to (2.36). The solvability condition (8.10) is a steady-
state version of an extended KdV equation with two extension terms on the right-hand
side. The first term represents the effect of axisymmetric flow and slowly decays with
increasing distance from the reference state. The constant γ = O(ε1/2) represents the
effect of friction in terms of the reference state’s deviation from a fully developed flow.

In the case of n = 5/2, i.e. Rr = O(ε−5/2), both terms on the right-hand side of (8.10)
are of O(ε1/2) and counteract each other. At η = 0, the right-hand side’s sign depends
on the particular values of the order 1 constants R̃ and B. Initially, the right-hand side
is either positive if BR̃ < 3, or negative if BR̃ > 3. These two distinctions will play
an essential role in the analysis of possible undular solutions of (8.10) in Sec. 8.3.1.
For BR̃ = 3, the right-hand side vanishes at η = 0, and (8.10) turns into the classical
KdV equation [17], p. 21. In the case of n = 2, i.e. Rr = O(ε−2), the effect due to
axisymmetric flow becomes enhanced and the first extension term in (8.10) is of O(1)
while γ is unchanged. This implies a positive right-hand side at η = 0 for any values of
B and R̃.

A near-critical hydraulic approximation for εnη � 1 is derived from the full hydraulic
approximation (6.4) using the relations (2.41) and (7.15), and expanding for ε � 1:

H1,η(H1 − 1) = εn−2/3R̃ − γ. (8.12)

Since (8.12) is only valid for εnη � 1, the near-critical hydraulic approximation may
serve to determine appropriate initial conditions for (8.10) but does not deliver insight
into the downstream behaviour of the extended KdV equation’s solution.

As we will see in Sec. 8.3, the solution of the extended KdV equation (8.10) oscillates
around the subcritical branch of the solution of (8.10) without the third-order term,
i.e.

H1 = 1 ∓
�

1 − 2γη + 2
3ε2 ln



1 + εnη

R̃

�
, (8.13a)

H1,η = f(η; n) − γ

H1 − 1 , (8.13b)

H1,ηη = −(f(η; n) − γ)2

(H1 − 1)3 , (8.13c)
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using the lower sign in (8.13a). We will refer to (8.13) as the hydraulic approximation
of the extended KdV equation (8.10). Note that for εnη � 1, (8.13a) is very well
approximated by the solution of (8.12), see Fig. 8.2.

The oscillations of the extended KdV equation’s solution around the subcritical
branch of (8.13a) have amplitudes of order 1. Thus, to determine the validity limits
for the asymptotic results, it suffices to analyse the behaviour of the subcritical branch
of (8.13a). Figure 8.2 shows that this branch (dotted line) first increases up to the
position

ηm = R̃ε−n



εn−5/2 3
BR̃

− 1
�

, (8.14)

where H1 reaches its maximum. Downstream of ηm, H1 decreases and approaches a
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Figure 8.2: The dotted and dashed line shows the subcritical and supercriti-
cal branch, respectively, of the hydraulic approximation of the extended KdV
equation, (8.13a), with n = 5/2. The solution of the near-critical hydraulic
approximation, (8.12), for n = 5/2 is shown as solid line. The parameter values
ε = 0.08, R̃ = 0.75, B = 2 correspond to C = −1.77, ηm = 414, ηs = 1060.
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singularity at ηs as

H1 = 1 ∓ 1
ε

����2
3 ln

�
1 + εnη/R̃

1 + εnηs/R̃

�
, (8.15)

with the lower sign corresponding to the subcritical branch. A physical interpretation
may be that upstream of ηm the effect due to axisymmetric flow dominates the effect
due to friction, and vice versa downstream of ηm. In Fig. 8.2 solutions of (8.12) and
(8.13a) are presented for n = 5/2. For n = 2 the solutions show the same qualitative
behaviour, and thus the conclusions may be adopted. The condition for the validity
of the asymptotic expansion is H1 = O(1). However, for n = 5/2 it turns out that
this leads to the validity condition BR̃/3 = 1, which is just the case of vanishing right-
hand side of the extended KdV equation (8.10) at η = 0, and does not permit undular
solutions. Therefore, the weaker condition H1 = O(ε−1/2) is prescribed. Consequently,
applying H1(ηm) = O(ε−1/2) to (8.13a) yields the validity condition

ε5/2−n BR̃

3 = 1 + ε1/2C , |C| = const = O(1) . (8.16)

For n = 5/2, C ≶ 0 defines whether the right-hand side of (8.10) is positive or
negative at η = 0. The combination of (8.14) and (8.16) gives ηm = −CR̃ε−2 + . . . .
Thus, C ≶ 0 corresponds to ηm ≷ 0, meaning that the reference state (η = 0) lies either
upstream or downstream of the position where the subcritical branch of H1 according
to (8.13a) reaches its maximum.

For n = 2, the condition (8.16) requires that the product of the order 1 parameters
BR̃ = O(ε−1/2). Strictly speaking, this violates the basic assumptions of an asymptotic
treatment. However, in the present framework of the derivation of a uniformly valid
differential equation, deviations of half an order of magnitude are tolerated.

8.3 Results and discussion
The extended KdV equation (8.10) may be solved numerically as an initial value prob-
lem with standard methods, using the commercial software Matlab R2018b. For both
n = 5/2 and n = 2 solutions are obtained with the function ode45, a relative error
tolerance of 10−4, an absolute error tolerance of 10−8, and a maximum step size of
10−4.
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8.3.1 Undular jumps at a reference radius of O(ε−5/2)

A solution of the extended KdV equation (8.10) with n = 5/2 is shown as black curve
in Fig. 8.3a). The solution is obtained without any perturbation of the reference state,
meaning initial conditions at η = 0 exactly according to the blue dashed supercritical
branch of (8.13). Initially the black curve closely follows the supercritical branch of the
hydraulic approximation of (8.10), i.e. (8.13a). However, after some distance an undular
jump with oscillations around the blue dotted subcritical branch of (8.13a) develops.
The red solution of the full hydraulic approximation is determined by integrating (6.9)
in terms of polar coordinates, as described in Sec. 6.2. The reference state with Frr and
R̂r = (BR̃/3)3/5(1−12ε/5) is used as starting point for the integration in both clockwise
and counter-clockwise direction. In order to plot the solution of (6.9) in terms of H1

in Fig. 8.3a), the relation (7.18) is applied. The deviation between the red and the
blue dashed curve in the reference state stems from the expansion of (6.9) for ε � 1 to
obtain the near-critical hydraulic approximation (8.13a), and thus vanishes as ε → 0.

In Fig. 8.3b) the black solution of the extended KdV equation (8.10) in terms of the
local Froude number shows that the transition from super- to subcritical flow happens
within the first two undulations. The radial coordinate is referred to the critical radius;
see the bottom scale. The radial limits of the diagram correspond to the limits in terms
of η; see the top scale. The solutions of (8.10) and (8.13a), both equations were derived
for near-critical flow, are plotted in terms of Fr by applying the relation

Fr(η) = 1 + 3ε(1 − H1)/2
1 + εnη/R̃

, (8.17)

which is (7.18) expanded for ε � 1 but allowing for εnη = O(1). Due to the η-term
in the denominator of (8.17), with increasing distance from the reference state, the
oscillations’ amplitude decays in terms of Fr while it remains almost constant in terms
of H1.

This effect becomes visible by comparing the behaviour of the black solution of the
extended KdV equation at large radii in terms of H1 and Fr shown in Fig. 8.4a) and
b), respectively. Due to the strongly skewed scales of the abscissa and the ordinate,
individual oscillations are hardly distinguishable. The solution of (8.10) appears as a
thick black bar. Moreover, the relation (8.17) implies that along the allegedly super-
critical (blue dashed) branch of (8.13a) the local Froude number is larger than unity
only for a small part of the solution, see Fig. 8.4b). The dependence of the local Froude
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Figure 8.3: Initial behaviour of an undular hydraulic jump in turbulent ax-
isymmetric flow with Rr = O(ε−5/2); ε = 0.08 (Frr = 1.12), R̃ = 0.75,
B = 2, i.e. C = −1.77. a) Non-dimensional surface elevation, H1, b) Local
Froude number, Fr. Black: Numerical solution of the extended KdV equation
(8.10) for initial conditions according to (8.13) with n = 5/2, i.e. H1(0) = 0,
H1,η(0) = −6.29 · 10−2, H1,ηη(0) = 3.95 · 10−3. Red: Full hydraulic approxima-
tion according to (6.9). Blue dashed and dotted: Super- and subcritical branch,
respectively, of the hydraulic approximation of the extended KdV equation,
(8.13a).
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Figure 8.4: Behaviour of an undular hydraulic jump in turbulent axisymmetric
flow with Rr = O(ε−5/2) at large radii; ε = 0.08 (Frr = 1.12), R̃ = 0.75,
B = 2, i.e. C = −1.77, ηm = 414. a) Non-dimensional surface elevation,
H1, b) Local Froude number, Fr. Black: Numerical solution of the extended
KdV equation (8.10) for initial conditions according to (8.13) with n = 5/2,
i.e. H1(0) = 0, H1,η(0) = −6.29 · 10−2, H1,ηη(0) = 3.95 · 10−3. Red: Full
hydraulic approximation according to (6.9). Blue dashed and dotted: Super-
and subcritical branch, respectively, of the hydraulic approximation of the
extended KdV equation, (8.13a).
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number on the radial coordinate η also impacts the validity of the present theory for
near-critical turbulent axisymmetric flow. While the solution of (8.10) in terms of H1

remains of order 1, the solution in terms of Fr exceeds the limit of near-critical flow,
indicated by the horizontal dashed line for the local perturbation parameter that is
determined by substituting Frr with Fr(η) in (2.11).

However, the extended KdV equation’s solution strongly depends on the parameter
values ε, R̃, and B. The solution’s sensitivity becomes evident in Fig. 8.5, where
only slightly changed parameters with respect to Fig. 8.4 yield a solution that is much
closer to the validity limit for near-critical flow. Moreover, in Fig. 8.5b) the agreement
between the blue dotted subcritical branch of the hydraulic approximation and the red
full hydraulic approximation is truly remarkable. The reference values of Figs. 8.4 and
8.5 are listed in Table 8.1 for the discharge Q = 2.3 m3/s, which was chosen to obtain
appropriately large Reynolds numbers. In both figures the characteristic behaviour of
the solutions of the extended KdV equation is comparable. The black curves oscillate
around the corresponding subcritical branch of (8.13a) almost up to the position where
the dashed and dotted branches of (8.13a) coalesce. Shortly before the coalescence
the solutions of the extended KdV equation break down, which is to be interpreted
as the plate edge, cf. [46]. The singularity at ηs is approached by the black curve as
H1 = −12/(ηs − η)2, in the same way as in the case of near-critical turbulent open-
channel flow over a horizontal bottom, see Sec. 2.4.1. Since the local Reynolds number
is inversely proportional to the radius, at the position of the breakdown Re = Q/rν

decays to 4.1 · 104 and 2.0 · 104 in Fig. 8.4 and 8.5, respectively.
As discussed at the end of Sec. 8.2, the reference state is located either far upstream

or far downstream of the position ηm where the solution of (8.13a) reaches its extremum,
depending on BR̃ ≶ 3, equivalent to C ≶ 0. This strongly affects the solution of (8.10).
While in Figs. 8.3, 8.4, 8.5 the parameters correspond to C < 0, in Fig. 8.6 the parame-
ters are chosen such that C = 2.5 > 0. Thus, the reference state is just upstream of the
position where the blue sub- and supercritical branches of (8.13a) coalesce. Moreover,
the reference state is located downstream of the full hydraulic approximation’s spiral
point, according to (6.9), shown in red. Solving the extended KdV equation (8.10) for
initial conditions exactly according to the supercritical branch of (8.13) yields a break-
down shortly after the reference state, shown as a black dashed curve. Increasing the
initial curvature by 20% only shifts the breakdown further downstream; see the black
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Figure 8.5: Behaviour of an undular hydraulic jump in turbulent axisymmetric
flow with Rr = O(ε−5/2) at large radii; ε = 0.067 (Frr = 1.1), R̃ = 0.8,
B = 2.4, i.e. C = −1.39, ηm = 392. a) Non-dimensional surface elevation,
H1, b) Local Froude number, Fr. Black: Numerical solution of the extended
KdV equation (8.10) for initial conditions according to (8.13) with n = 5/2,
i.e. H1(0) = 0, H1,η(0) = −3.87 · 10−2, H1,ηη(0) = 1.50 · 10−3. Red: Full
hydraulic approximation according to (6.9). Blue dashed and dotted: Super-
and subcritical branch, respectively, of the hydraulic approximation of the
extended KdV equation, (8.13a).
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Figure 8.6: Numerical solutions of the extended KdV equation (8.10) with
n = 5/2, for ε = 0.08 (Frr = 1.12), R̃ = 1.71, B = 3, i.e. C = 2.5. Initial con-
ditions: H1(0) = 0, H1,η(0) = 3.91 · 10−2; black dashed: H1,ηη(0) = 1.53 · 10−3,
black dash-dotted: H1,ηη(0) = 1.83 · 10−3, black solid: H1,ηη(0) = 2.29 · 10−3.
Red: Full hydraulic approximation according to (6.9). Blue dashed and dotted:
Super- and subcritical branch, respectively, of the hydraulic approximation of
the extended KdV equation, (8.13a).

dash-dotted curve. Increasing H1,ηη(0) by as much as 50%, a single wave crest develops
with immediate breakdown afterwards. Note that for C > 0, the extended KdV equa-
tion (8.10) with a negative right-hand side is of a very similar form as in the case of
near-critical open-channel flow over a horizontal bottom, cf. (2.35). Thus, the solutions
are similar, and regardless of the value of Frr, extremely large initial curvatures are
necessary to obtain undulations at all, cf. Fig. 2.4.

The analysis of the results for C ≶ 0 shows that C < 0 corresponds to a reference
state in the region where the effect due to axisymmetric flow is dominant, which en-
hances the development of undular jumps as in the case of inviscid axisymmetric flow,
cf. Sec. 7.3.1. However, as η increases the solution of the extended KdV equation (8.10)
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Fig. 8.4 Fig. 8.5 Fig. 8.7 Fig. 8.8
Frr 1.12 1.10 1.10 1.20
Frτ,r 3.20 · 10−2 2.67 · 10−2 3.22 · 10−2 8.29 · 10−2

Rr 4.14 · 102 6.97 · 102 4.95 · 102 7.31 · 101

Rer 6.64 · 104 4.56 · 104 5.61 · 104 4.02 · 104

Reτ,r 1.90 · 103 1.11 · 103 1.64 · 103 2.77 · 103

h̄r 7.10 cm 5.60 cm 6.42 cm 4.85 cm
rr 34.66 m 50.39 m 41.03 m 3.24 m
ūr 0.94 m/s 0.82 m/s 0.87 m/s 0.83 m/s

Table 8.1: Non-dimensional and dimensional reference values of the Figs. 8.4,
8.5, 8.7, corresponding to Q = 2.3 m3/s and ν = 10−6 m2/s. The values for
Fig. 8.8 correspond to Q = 0.13 m3/s.

reaches the region η > ηm of dominant friction effects, which ultimately force a break-
down, see Figs. 8.4 and 8.5. For C > 0, the reference state is located in the region where
the dominant friction effects tend to suppress the development of an undular jump as
in the case of turbulent open-channel flow over horizontal bottoms, cf. Sec. 2.4.3.

8.3.2 Undular jumps at a reference radius of O(ε−2)

From a smaller reference radius of O(ε−2) follows that for η = 0 the two extension terms
on the right-hand side of the extended KdV equation (8.10) are of different orders of
magnitude. This implies that according to (8.14) for any combination of R̃ and B,
the reference state is located upstream of ηm, in the region where the effect due to
axisymmetric flow is dominant and promotes the development of undular jumps. In
Fig. 8.7a) and b) a solution of (8.10) with n = 2 is shown as black curve in terms of
H1 and Fr, respectively. The black curve in Fig. 8.7b) stays close to the limit of near-
critical flow indicated by the horizontal dashed line, showing the solution’s uniform
validity over a large distance from the reference state.

The characteristics of the black curves are the same as in the case of Rr = O(ε−5/2).
Past the transition from super- to subcritical flow, the extended KdV equation’s solution
oscillates around the blue dotted subcritical branch of (8.13a). With increasing distance
from the reference state, the effect of axisymmetric flow decays, and friction becomes
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Figure 8.7: Behaviour of an undular hydraulic jump in turbulent axisymmet-
ric flow with Rr = O(ε−2) at large radii; ε = 0.067 (Frr = 1.1), R̃ = 2.2,
B = 3.5, i.e. C = −1.31, ηm = 252. a) Non-dimensional surface elevation,
H1, b) Local Froude number, Fr. Black: Numerical solution of the extended
KdV equation (8.10) for initial conditions according to (8.13) with n = 2, i.e.
H1(0) = 0, H1,η(0) = −5.11 · 10−2, H1,ηη(0) = 2.61 · 10−3. Red: Full hydraulic
approximation according to (6.9). Blue dashed and dotted: Super- and sub-
critical branch, respectively, of the hydraulic approximation of the extended
KdV equation, (8.13a).
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Figure 8.8: Behaviour of an undular hydraulic jump in turbulent axisymmetric
flow with Rr = O(ε−2) at large radii; ε = 0.13 (Frr = 1.2), R̃ = 1.3, B = 2.9,
i.e. C = −1.48, ηm = 86. a) Non-dimensional surface elevation, H1, b) Local
Froude number, Fr. Black: Numerical solution of the extended KdV equation
(8.10) for initial conditions according to (8.13) with n = 2, i.e. H1(0) = 0,
H1,η(0) = −0.14, H1,ηη(0) = 1.93 · 10−2. Red: Full hydraulic approximation
according to (6.9). Blue dashed and dotted: Super- and subcritical branch,
respectively, of the hydraulic approximation of the extended KdV equation,
(8.13a).
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dominant, eventually leading to a breakdown.
The relatively small Froude number Frr = 1.1 used in Fig. 8.7 requires a large

discharge to obtain a large Reynolds number in the reference state. Therefore, the
reference values in the third column of Table 8.1 are given for Q = 2.3 m3/s, but a
reference radius of about 40 m appears unfeasible for practical applications. However,
by increasing the reference Froude number to Frr = 1.2, a much smaller discharge
Q = 0.13 m3/s is sufficient to maintain a large Reynolds number but rr is significantly
reduced to a realistic value of rr = 3.24 m, see the last column in Table 8.1. The
corresponding solution of the extended KdV equation (8.10) is shown as black curve in
Fig. 8.8.

In Fig. 8.8 the perturbation parameter in the reference state is doubled with respect
to Fig. 8.7. As a consequence, already the first wave violates the previously introduced
validity limit |ε(η)| = 0.4, see the horizontal dashed line in Fig. 8.8b). Nevertheless,
this case shows that undular solutions are possible for parameters corresponding to
reference values that are close to the estimated values (rr ≈ 2 ÷ 3 m) of the observation
shown in Fig. 5.1. The large supercritical region upstream of the jump, visible in the
photograph, seems to be caused by the slightly inclined street. Thus, it cannot be
represented by the present version of the extended KdV equation, (8.10), derived for
horizontal bottoms. The critical radius, below which no free-surface flow is possible,
is r∗ = 3.13 m in Fig. 8.8 and r∗ = 40.44 m in Fig. 8.7. Thus, a vertically impinging
jet, often considered as the source of the flow, seems unrealistic in the present case.
However, a large circular slit nozzle may be an appropriate way to realise the flow, cf.
[31].

8.3.3 Comparison between undular hydraulic jumps in
turbulent and inviscid axisymmetric flow

In the present theory of undular jumps in turbulent axisymmetric flow over horizontal
bottoms, the effect of friction is assumed to be small, i.e. Fr2

τ,r = O(ε3), which stems
from the analysis of plane turbulent flow over horizontal bottoms in Sec. 2.2. With
increasing distance from the reference state, the effect of friction accumulates and gains
dominance. In comparison to the theory for turbulent flow, the theory of undular jumps
in inviscid axisymmetric flow in Ch. 7 corresponds to Fr2

τ,r = O(ε7/2) or smaller. The
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inspection of the equations then shows that friction effects are too small to appear
in the analysis of terms up to order ε2. The difference between the solutions of both
theories shall be explored for Rr = O(ε−5/2) in the following. However, for Rr = O(ε−2)
the results may be adopted qualitatively.

In Fig. 8.9 the black curve shows a solution of the extended KdV equation for
turbulent flow, (8.10), with n = 5/2. The initial conditions are chosen to be in accord
with the supercritical branch of the hydraulic approximation (8.13a). For comparison,
the same initial conditions and identical parameter values of ε and R̃ are used to solve
the extended KdV equation of inviscid flow, (7.14), with n = 5/2, shown as orange
curve. The orange curve in Fig. 8.9 develops into an undular jump almost one entire
wavelength before the black curve. For the orange curve, the driving force for the
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Figure 8.9: Comparison between undular jump solutions of the extended KdV
equation of turbulent (black) and inviscid (orange) axisymmetric flow with n =
5/2, i.e. (8.10) and (7.14), respectively; ε = 0.08 (Frr = 1.12), R̃ = 0.75, B = 2.
Initial conditions: H1(0) = 0, H1,η(0) = −6.29 · 10−2, H1,ηη(0) = 3.95 · 10−3.
Blue dotted: Hydraulic approximation of the extended KdV equation (8.10),
i.e. (8.13a). Blue dash-dotted: Near-critical hydraulic approximation (6.7).
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development of an undular jump is the effect due to axisymmetric flow. The small effect
of friction taken into account by the black solution seems to delay the transition from
super- to subcritical flow. Moreover, the wavelength is slightly increased by the presence
of friction, as can be observed by comparing the distance between successive wave crests
of both curves. The orange and black curves both oscillate around the corresponding
blue subcritical branch of the hydraulic approximation, (6.7) and (8.13a), respectively.
Since these two subcritical branches are of different forms, the orange and black curves
diverge as η increases. However, recalling the validity condition, ε1/2η = O(1), for the
theory of inviscid axisymmetric flow with Rr = O(ε−5/2), restricts the comparison to a
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Figure 8.10: Behaviour of the flow at large radii in terms of Fr. Numerical solu-
tion of the extended KdV equation of turbulent (black) and inviscid (orange)
axisymmetric flow with Rr = O(ε−5/2), i.e. (8.10) and (7.14), respectively;
ε = 0.08 (Frr = 1.12), R̃ = 0.75, B = 2. Initial conditions: H1(0) = 0,
H1,η(0) = −6.29 · 10−2, H1,ηη(0) = 3.95 · 10−3. Red solid and dashed: Full hy-
draulic approximation according to (6.9) and (6.6), respectively. Blue dotted:
Hydraulic approximation of the extended KdV equation (8.10), i.e. (8.13a).
Blue dash-dotted: Near-critical hydraulic approximation (6.7).
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region of moderate distance from the reference state. The validity limit is indicated by
the black vertical dashed lines in Figs. 8.9 and 8.10.

In Fig. 8.10 the black and orange solutions of Fig. 8.9 are shown at large radii in
terms of the local Froude number, referring to the mutual reference state at η = 0. Due
to the skewed scales of the abscissa and the ordinate, individual oscillations are hardly
distinguishable. The solutions of the extended KdV equations appear as thick black and
orange bars. The red solid and dashed curve depicts the solution of the full hydraulic
approximation according to (6.9) and (6.6), respectively. Even though the orange curve
is not valid for large η, it is still interesting to compare it with the black solution of
the extended KdV equation (8.10), which was derived as a uniformly valid differential
equation. While minor deviations between the two curves are observed within the
orange curve’s validity region (vertical dashed line), a severe discrepancy occurs farther
downstream. In particular, the substantial divergence between the orange curve and
the red dashed full hydraulic approximation is striking, while the black curve follows
the trend of the red full hydraulic approximation for turbulent flow even beyond the
validity limit (horizontal dashed line). This comparison shows that in the vicinity of
the reference state, friction is of minor relevance, whereas downstream of this region,
the effect of friction slowly accumulates and has to be taken into account.



Chapter 9

Near-critical turbulent
axisymmetric sink flow

9.1 Problem formulation and asymptotic analysis
The investigation of near-critical turbulent sink flow over a horizontal bottom is a co-
herent continuation of the analysis of source flow in the preceding chapter. In turbulent
sink flow, the radial flow direction is towards the axis, see Fig. 9.1. As a consequence,
the governing equations of turbulent source flow (8.2), (8.3) can be adopted by simply
changing the signs of the velocity component in radial direction, Ū , and the Reynolds
shear stress, U �W �. The same holds for the boundary conditions (8.4), (8.5) and the
matching conditions subject to which the governing equations will be solved. Therefore,
analogue to Ch. 8, the conditions (2.5–2.8) are prescribed by substituting X with R, Y

with Z, V with W , and changing the signs of Ū and the Reynolds shear stress.

ūr

z

r

h̄r

5g

ū(rr, z)

0

h̄(r)

rr

Q

Figure 9.1: The stationary undular hydraulic jump in turbulent sink flow over
a horizontal bottom. Flow from right to left.
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The asymptotic analysis is performed analogue to Sec. 8.2 with only a few results
affected by the changing signs. The leading order of the Reynolds shear stress becomes

(U �W �)0 = −Z + 1 + ΔU �W �(Z) , (9.1)

and the first-order result of the vertical velocity component reads

W1 = −H1,ηZ . (9.2)

All other results throughout the analysis remain unchanged. The analysis of the second-
order equations results in a solvability condition, obtained from the equation of motion
in the radial direction and the kinematic boundary condition. In both these equations,
the appearing vertical velocity component W2 has a different sign with respect to source
flow. However, the effect cancels such that the solvability condition is unaffected. Thus,
the extended KdV equation (8.10) of Sec. 8.2, which is valid for both Rr = O(ε−5/2)
and Rr = O(ε−2), is recovered as final result also for turbulent sink flow. Moreover, all
other results, (8.10–8.16), of Sec. 8.2 can be applied.

9.2 Results and discussion
The extended KdV equation (8.10) may be solved numerically as an initial value prob-
lem with standard methods, using the commercial software Matlab R2018b. Solutions
are obtained with the function ode45, a relative error tolerance of 10−4, an absolute
error tolerance of 10−8, and a maximum step size of 10−4. In contrast to source flow,
the computational domain [0, ηend] is to be defined with a negative end value ηend < 0.

In Fig. 9.2a) and b) a numerical solution of (8.10) for turbulent sink flow with
Rr = O(ε−5/2) is shown as black line in terms of the free-surface elevation H1 and the
local Froude number Fr, respectively. The flow direction is from right to left. The
prescribed initial conditions are in accord with the blue dashed supercritical branch of
the hydraulic approximation of the extended KdV equation, (8.13a). The parameters ε,
B and in particular the value of C, which was defined in (8.16), are chosen to be identical
as in Fig. 8.6, where in the case of source flow, C > 0 led to no undular solutions of the
extended KdV equation. However, for the development of an undular hydraulic jump
in sink flow, the opposite flow direction not only permits but requires C > 0, which in
this case corresponds to a reference state upstream of ηm, see Fig. 9.3a). This means
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Figure 9.2: Initial behaviour of an undular jump in turbulent sink flow with
Rr = O(ε−5/2). Flow from right to left; ε = 0.08 (Frr = 1.12), R̃ = 1.71,
B = 3, i.e. C = 2.5. a) Non-dimensional surface elevation, H1, b) Local Froude
number, Fr. Black: Numerical solution of the extended KdV equation (8.10)
for initial conditions according to (8.13), i.e. H1(0) = 0, H1,η(0) = 3.91 · 10−2,
H1,ηη(0) = 1.53 · 10−3. Red: Full hydraulic approximation according to (6.9).
Blue dashed and dotted: Super- and subcritical branch, respectively, of the
hydraulic approximation of the extended KdV equation, (8.13a).
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Figure 9.3: Behaviour of an undular jump in turbulent sink flow with Rr =
O(ε−5/2) far downstream of the reference state. Flow from right to left; ε = 0.08
(Frr = 1.12), R̃ = 1.71, B = 3, i.e. C = 2.5. a) Non-dimensional surface el-
evation, H1, b) Local Froude number, Fr. Black: Numerical solution of the
extended KdV equation (8.10) for initial conditions according to (8.13), i.e.
H1(0) = 0, H1,η(0) = 3.91 · 10−2, H1,ηη(0) = 1.53 · 10−3. Red: Full hydraulic
approximation according to (6.9). Blue dashed and dotted: Super- and sub-
critical branch, respectively, of the hydraulic approximation of the extended
KdV equation, (8.13a).
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that, for instance, the parameter configuration with C < 0 for which undular source
flow solutions of (8.10) are shown in Fig. 8.3 will lead to an immediate breakdown of
the solution of (8.10) in the case of sink flow. In Fig. 9.2 the undular solution of the
extended KdV equation reaches a fully subcritical state after about five undulations.

Figure 9.3 shows the solutions of Fig. 9.2 at large distances from the reference state.
Due to the strongly skewed scales of the abscissa and the ordinate, the solution of
(8.10) appears as a thick black bar rather than as multiple oscillations. Interestingly,
the flow remains well within the limits of near-critical flow, indicated by the horizontal
dashed lines, for a considerable distance from the reference state. At η ≈ −354, the flow
becomes again supercritical. While the free-surface elevation according to Fig. 9.3a)
changes only slightly, the converging flow causes acceleration, and thus a rapidly rising
local Froude number eventually violates the assumption of near-critical flow. The black
curve oscillates around the blue dotted branch of the hydraulic approximation, (8.13a),
until a breakdown at η ≈ −660 occurs, which may be interpreted as supercritical
overflow into a plug hole, cf. [45]. Similar to turbulent source flow, the characteristic
behaviour of a sink flow solution of the extended KdV equation (8.10) with Rr = O(ε−2)
does not change with respect to the sink flow solution with Rr = O(ε−5/2) shown in
Figs. 9.2 and 9.3. Results with Rr = O(ε−2) will thus not be discussed individually.

In Figs. 9.2 and 9.3 the parameters Frr = 1.12, B = 3, R̃ = 1.71 were used. These
parameters together with a discharge Q = 3.5 m3/s yield the reference values h̄r =
6.04 cm, rr = 67.2 m, ūr = 0.86 m/s, and Rer = 5.2 · 104, Reτ,r = 1.8 · 103. The
breakdown occurs at a radius of r ≈ 20.2 m with Re = 1.7 · 105. Like in turbulent
source flow, the large radii are caused by the small reference Froude number, which
requires a large discharge to obtain large values of Rer and Reτ,r. For comparison, with
the same values of B and R̃, but Frr = 1.2, a discharge of Q = 0.5 m3/s suffices to
obtain h̄r = 4.98 cm, rr = 12.0 m, ūr = 0.84 m/s, Rer = 4.2 · 104, Reτ,r = 2.9 · 103. The
breakdown occurs at a radius of r ≈ 3.5 m with Re = 1.4 · 105.

It is interesting to note that whereas undular hydraulic jumps are possible in both
turbulent and inviscid source flow, this is not true for sink flow. From the universal
relation for the local Froude number, (6.6), shown as a dashed curve in Fig. 6.2, follows
that in inviscid flow, a near-critical state exists only in the vicinity of the critical radius
r∗ below which no free-surface flow is possible. Thus, in the case of inviscid axisymmetric
flow, undular hydraulic jumps can only originate from source flow.



Chapter 10

Conclusions of Part II

In this part of the thesis, undular hydraulic jumps in steady axisymmetric free-surface
flow over a horizontal bottom were investigated. The jump was assumed to originate at
a relatively large non-dimensional reference radius Rr from the centre of the cylindrical
coordinate system. Particularly the two cases Rr = O(ε−5/2) and Rr = O(ε−2) with
ε � 1 were examined.

The asymptotic analysis of turbulent axisymmetric source flow in the limit of very
large Reynolds numbers and Froude numbers close to the critical value 1 could be kept
free of turbulence modelling due to a specific coupling of the two limiting processes.
The analysis’s main result is a new version of an extended KdV equation, that is, (8.10),
describing the free-surface elevation. Remarkably, the homogeneous part of (8.10) is
identical to the classical KdV equation for inviscid plane flow. The two extension
terms, however, represent the effect of friction and the effect due to axisymmetric
flow according to (2.36) and (8.11), respectively. By restricting the extension terms’
parameters to a specific regime, (8.10) was derived as a uniformly valid differential
equation describing the free surface over a wide reach from the reference state. However,
the overflow at the plate’s edge far downstream cannot be expected to be accurately
represented by the breakdown of the extended KdV equation’s solution.

Numerical solutions of the extended KdV equation (8.10) were analysed in terms
of the free-surface elevation and in terms of the local Froude number. Undular jump
solutions are obtained if the effect of axisymmetric flow dominates the effect of friction
in the reference state. With increasing distance from the reference state, friction effects
accumulate and eventually force the solution’s breakdown. However, by choosing the
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reference state in the region of dominant friction, the development of an undular jump
is suppressed. The comparison of numerical solutions of (8.10) for both Rr = O(ε−5/2)
and Rr = O(ε−2) revealed a sensitive dependence on the parameters describing the
flow in the reference state, i.e. the Froude number Frr, the friction Froude number
Frτ,r, and Rr. On the one hand, maintaining near-critical flow from the reference state
until the solution’s breakdown is only possible if Frr is very close to 1. On the other
hand, relatively large reference Froude numbers (e.g. Frr = 1.2) are necessary to obtain
undular solutions with parameters corresponding to reasonably small reference radii in
the order of a few metres.

Furthermore, inviscid axisymmetric source flow was analysed in the limit of Froude
numbers close to the critical value 1. It turned out that the velocity profile can be chosen
freely via a function of integration c1(Z), provided c1(Z) = O(1). The velocity profile
does not affect the final result for the surface elevation, i.e. an extended KdV equation,
(7.14), with a constant extension representing the effect due to axisymmetric flow. The
validity of the results is limited to non-dimensional distances from the reference radius
up to η = O(ε−1/2) and η = O(1) for Rr = O(ε−5/2) and Rr = O(ε−2), respectively.

Numerical solutions of (7.14) showed that – in contrast to inviscid plane flow –
undular hydraulic jumps are possible in inviscid axisymmetric flow. Moreover, the
supercritical branch of the hydraulic approximation is prone to develop into an undular
jump. A comparison between solutions of the extended KdV equation for turbulent
and inviscid flow showed that friction is indeed of minor relevance within the latter’s
validity region. However, to accurately describe the flow over a wide reach, friction
must be taken into account. While for the analysis of turbulent flow Fr2

τ,r = O(ε3) was
assumed, the consideration of inviscid flow corresponds to Fr2

τ,r = O(ε7/2) or smaller,
such that friction effects do not appear in the analysis.

An asymptotic analysis of near-critical turbulent sink flow was performed analogue
to the analysis of turbulent source flow. Interestingly, the resulting extended KdV
equation for the free-surface elevation is identical to the case of turbulent source flow,
i.e. (8.10). However, the opposite flow direction has a significant impact as the undular
jump solution of (8.10) inherently remains near-critical for a considerable distance from
the reference state. The continuous acceleration of the flow towards the centre causes
an undular transition from sub- to supercritical flow before the solution breaks down
far downstream.



Appendix A

Algebraic properties of the
polynomial p(H1; R, S)

The following algebraic relations are adopted from [27], p. 24. The polynomial defined
in (2.24), i.e.

p(H1; R, S) := −H3
1 + 3H2

1 + 6RH1 + S , (A.1)

may be written in terms of its ordered roots h1(R, S) ≤ h2(R, S) ≤ h3(R, S) as

p(H1; R, S) = (H1 − h1)(H1 − h2)(h3 − H1) . (A.2)

Whether the roots are real and independent of each other is determined by the discrim-
inant D̄, cf. [1], p. 17,

D̄(R, S) = (1 + 3R + 3S)2 − (1 − 2R)3 , (A.3)

or
D̄(h1, h2, h3) = −[(h1 − h2)(h1 − h3)(h2 − h3)]2/108 . (A.4)

The three roots are real if D̄ ≤ 0 and independent of each other if D̄ < 0. In the case
of real roots, the following relations hold:

h1 + h2 + h3 = 3 , (A.5)

1/h1 + 1/h2 + 1/h3 = −R/S , (A.6)

h1h2h3 = 6S , (A.7)
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or alternatively

R = [h2
2 + h2h3 + h2

3 − 3(h2 + h3)]/6 , (A.8)

S = (3 − h2 − h3)h2h3/6 . (A.9)

The inverse of (A.8) and (A.9) read

h1 = 1 − 2
�

|1 + 2R| cos [(ϕ − (sgn + 1)π/2)/3] , (A.10)

h2 = 1 − 2sgn
�

|1 + 2R| cos [(ϕ + π)/3] , (A.11)

h3 = 1 + 2
�

|1 + 2R| cos [(ϕ + (sgn − 1)π/2)/3] , (A.12)

with the definitions

sgn := sign(1 + 3R + 3S) , (A.13)

cos ϕ := |1 + 3R + 3S|/|1 + 2R|3/2 > 0 . (A.14)
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