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Abstract

The dynamics of swarms or networks is conventionally modelled using Graph-theoretical con-

cepts. In this regard the n−dimensional state dynamics of each agent is described by a set

of n ordinary differential equations (ODEs). Consequently, assuming the network consists of

N agents, this directly leads to a nN−dimensional overall dynamic system where the dimen-

sion alters with the number of agents. In other words, describing swarm dynamics by ODEs,

especially with a huge number of participants, may lead to unmanageable system represen-

tations and unclear properties. Now, it can easily be shown that there is, e.g., a structural

equivalence between the fundamental consensus protocol of a multi-agent system (MAS) and

the semi-discretised heat equation. In particular this is valid if, on the one hand, the topology

of the network is represented by a so-called path graph, and on the other hand, the partial

differential equation (PDE) is defined on an 1-dimensional spatial domain. Now, the present

work generally deals with the formation control of MASs where the underlying dynamic flocking

model is based on continuous problem formulations. In this context descriptions of distributed-

parameter system (DPS) governed by the PDEs of the coupled diffusion-convection-reaction

system (DCRS) or the coupled modified, viscous Burgers’ equation (MVBE) are used to model

the overall system dynamics.

The first part of the thesis addresses a theoretical discussion about the continuous modelling

methodology. In this context, it systematically works out necessary steps which allow the

transformation of the swarm model from a parabolic PDE to a discrete representation described

by graph-theoretical considerations, and vice versa. From this, it is important to point out that

the introduction of a variable length for the spatial domain of the PDE system plays a crucial

role for both, the overall flocking dynamics as well as the single agent dynamics. Furthermore,

it is shown that the length of the real-valued domain can directly be linked to the discrete

number of agents forming the MAS.

The second part of this work develops a two degrees of freedom (2DOF) control synthesis

consisting of a feedforward (FF) term and an observer-based tracking controller. Both are

utilised based on the continuous formulation and the controller synthesis uses fundamental ideas

in terms of controller design but the presented work extends and re-thinks them especially for

coupled PDEs. While the FF design and the linked motion planning process take advantage of

the flatness properties of parabolic PDEs, the error feedback controller and the associated state

observer design are based on the so-called Backstepping approach. However, in this work the

basic backstepping methods are extended in the manner that formulations established for PDEs
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of uncoupled DPS may still apply for PDEs of coupled systems. Subsequently an appropriate

2-step transformation process, including discretisation methods such as the finite difference

method (FDM), is introduced which ensures that the protocols and control algorithms can be

employed on discrete systems with Graph-theoretical background.

For this, the last part shows results from various and extensive simulation studies. They

are conducted, first, to verify that the developed modelling approach is really applicable for

discrete dynamic network systems, and second, the simulations results enhance the presented

2DOF controller design techniques for coupled PDE. Apart from that, the final sections of the

thesis describe the set-up and the implementation of a test bed. This was installed from scratch

in terms of hardware as well as in software during the author’s research activities at the Chair

of Automatic Control, Kiel University. The test rig allows to perform real-time experiments

with a small swarm of robots. Furthermore, in view of the presented modelling approach it

can serve as simulator for experiments with DPSs. Conducted tests with a swarm of 11 small

caterpillar robots support and validate the claims of the presented theoretical achievements.

Both, the simulation studies and the experimental results, show that the formulated goals are

achieved and substantiate the robustness of the derived control architecture.
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Kurzzusammenfassung

Die Dynamik von Schwärmen oder Netzwerke wird meist mithilfe von graphentheoretischen

Konzepten modelliert. In diesem Zusammenhang wird die Zustandsdynamik eines jeden einzel-

nen Agenten durch ein System von n gewöhnlichen Differentialgleichungen beschrieben. Ange-

nommen das Netzwerk besteht aus N Agenten, dann folgt daraus ein nN−dimensionales dyna-

misches Gesamtsystem, wobei sich die Dimension mit der Anzahl der Agenten ändert. Mit an-

deren Worten, diese Art der Beschreibung von Netzwerken kann, speziell für eine große Anzahl

von Agenten, sehr schnell zu unhandlichen Systemrepräsentationen führen deren Eigenschaften

nur sehr aufwendig überprüfbar sind. Jedoch kann sehr einfach gezeigt werden, dass eine struk-

turelle Äquivalenz zwischen dem fundamentalen Konsensprotokoll eines Multiagenten-Systems

und der semi-diskretisierten Wärmeleitungsgleichung besteht, wenn einerseits die Topologie des

Netzwerks durch einen Pfad-Graph repräsentiert werden kann und andererseits die partielle

Differentialgleichung auf einer eindimensionalen örtlichen Domäne definiert ist. Die vorliegende

Arbeit beschäftigt sich mit der Formationsregelung von Multiagenten-Systemen, wobei das zu-

grundeliegende dynamische Schwarmmodell auf einer kontinuierlichen Formulierung basiert. In

diesem Zusammenhang werden Beschreibungen von verteilt-parametrischen Systemen, im spe-

ziellen die von gekoppelten Diffusion-Konvektion-Reaktions-Systemen oder die der gekoppelten

modifizierten, viskosen Burgers-Gleichung, verwendet um die Dynamik des Gesamtsystems zu

modellieren.

Der erste Teil dieser Doktorarbeit thematisiert eine theoretische Auseinandersetzung mit Be-

zug auf die kontinuierliche Modellierungsmethodik. In diesem Kontext werden systematisch

notwendige Schritte ausgearbeitet, die die Hin- und Rücktransformation des Schwarmmodells

zwischen einer parabolischen partiellen Differentialgleichung und einer diskreten Repräsentation

basierend auf graphentheoretischen Aspekten ermöglicht. Dabei ist es wichtig hervorzuheben,

dass die Einführung einer variablen Länge der örtlichen Domäne der partiellen Differential-

gleichung eine wichtige Rolle, sowohl für die übergeordnete Schwarmdynamik als auch die

(Eigen-)Dynamik der einzelnen Agenten, spielt. Weiteres wird gezeigt, dass man die varia-

ble Länge der reellwertigen Domäne direkt mit der Anzahl der Agenten, die gemeinsam das

Multiagenten-System bilden, verknüpfen kann.

Im zweiten Teil der Arbeit geht es um die Synthese einer 2-Freiheitsgrade-Regelung, bestehend

aus einer Vorsteuerung und einer Beobachter-basierten Folgeregelung. Beide Regelungsanteile

nutzen Konzepte basierend auf der kontinuierlichen Formulierung und verwenden fundamentale

Strategien in Hinblick auf den Regelungsentwurf. Jedoch werden in dieser Arbeit diese Themen
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im Speziellen für gekoppelte partielle Differentialgleichungen erweitert bzw. neu überdacht.

Während sich der Entwurfsprozess der Vorsteuerung und die dazugehörende Bewegungspla-

nung die Eigenschaften der Flachheit zu Nutze macht, basiert die Fehlerregelung und der damit

verknüpfte Entwurf des Zustandsbeobachters auf der sogenannten Backstepping-Methodik. Es

werden die grundlegenden Backstepping-Techniken in dem Sinne erweitert, sodass Formulie-

rungen, die für partielle Differentialgleichungen nicht gekoppelter verteilt-parametrischer Sys-

teme etabliert sind, auch auf Gleichungen gekoppelter Systeme angewendet werden können.

In weiterer Folge wird ein entsprechender 2-Schritt-Prozess eingeführt, der unter anderem Dis-

kretisierungsverfahren wie die Finite Differenzen Methode beinhaltet, und damit sicherstellt,

dass die Protokolle und Regelalgorithmen auf die diskreten Systeme mit graphentheoretischen

Hintergrund angewendet werden können.

Der letzte Teil zeigt die Resultate verschiedener ausgiebiger Simulationsstudien. Diese wur-

den durchgeführt um unter anderem die Anwendbarkeit des entwickelten Modellierungsan-

satzes auf diskrete Netzwerksysteme zu verifizieren. Weiteres unterstützen die Simulationsre-

sultate die präsentierten Techniken für den Entwurf der 2-Freiheitsgrade-Regelung gekoppel-

ter verteilt-parametrischer Systeme. Außerdem beschreiben die finalen Abschnitte der Arbeit

den Aufbau und die Implementierung eines Versuchsfeldes. Dieses wurde im Rahmen der For-

schungstätigkeiten am Lehrstuhl für Regelungstechnik an der Christian-Albrechts-Universität

von Grund auf, sowohl in Hardware als auch in Software, installiert. Das Testfeld ermöglicht die

Ausführung von Echtzeit-Experimenten mit Roboterschwärmen. In Hinblick auf die vorgestell-

te Modellierungsmethodik kann es als Simulator für Experimente mit verteilt-parametrischen

Systemen dienen. Die mit einem Schwarm bestehend aus 11 Miniatur-Raupenrobotern durch-

geführten Tests untermauern und validieren die Aussagen der präsentierten theoretischen Er-

gebnisse. Beide Praktiken, sowohl die Simulationsstudien und als auch die experimentellen

Tests, zeigen, dass die formulierten Ziele erreicht werden und stellen die Robustheit der abge-

leiteten Reglerarchitektur unter Beweis.
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Chapter 1

Introduction

This work addresses the two major research areas multi-agent systems (MASs) and so-called

distributed-parameter systems (DPSs). More precisely, it combines the continuous modelling

description and control theory based on partial differential equations (PDEs) with the inherently

discrete aspects of swarm and flocking theory. For this, the chapter moves forward step by step

carefully, starting with preliminary discussions on some nomenclature, modelling concepts, and

the goals and objectives of this work.

1.1 Swarms, Flocks, and Multi-Agent Systems

Generally, no matter what term is used, i.e., either swarms, flocks, networks, or MASs, they

have something some common features. All consist of interconnected dynamic subsystems

which share information. Therefore the expressions may be used synonymously in certain

idioms. However, MASs are characterised by the following statements [68, 93].

❼ Multi means many – therefore a system, consisting of many participants;

❼ the participants are called Agents ;

❼ each agent has particular properties and is autonomous;

❼ between the agents a connection, communication, or another kind of exchange may exist;

❼ the agents can solve tasks in a collective manner;

❼ the agents have only a local focus;

❼ one main goal is decentralisation – there exists no central instance.

During the exertion of the collective task the individual agents can occupy different roles [46].

Roughly speaking they can be called
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(a) Biological systems.

(engineering.stanford.edu/)

(b) Kilobots - Wrench formation.

(ssr.seas.harvard.edu/kilobots)

(c) Technical systems.

(www.pinterest.co.uk)

(d) Social network.

(www.cloud467.com)

Figure 1.1: Some hands-on examples of MASs.

❼ passive agents, if they have no real goal or task;

❼ active agents, if they peruse elementary goals or perform simple algorithms;

❼ cognitive agents, if they solve complex problems.

This elementary characteristics can be found in various areas in nature as well as in the human

being’s daily life of the 21st century. A few examples are pictured in Figure 1.1. As for many

other technical aspects biology serves here as a role model for robotics or other technical systems

and opens up a wide field of applications. Among others, the most common are consensus and

synchronisation problems, decision making, crowd dynamics, formation control, cooperative

multi-vehicle control, machine learning or complex oscillators networks [68, 67, 65, 53, 19, 12,

20, 11].

1.2 Modelling Approaches for Multi-Agent Systems

In literature many concepts and approaches are documented how MASs can be modelled or

described in a formal language, e.g., in robotics potential theory is a common concept to
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coordinate groups [51]. However, instead of going through individual modelling approaches

subsequently a more abstract point of view is taken, which allows to formulate three different

modelling concepts.

(i). Behaviour models:

In 1987 a paper which deals with artificial life simulations was published in the proceedings

of a conference for Computer Graphics by Craig Reynolds [73]. He named the application

Boids referring to a bird-like object and it was fundamental for the simulation of flocking

behaviour. The Boids in their simplest version follow three fundamental rules:

❼ cohesion: move towards the mean position of your local neighbours

❼ separation: avoid crowds, keep distance from your local neighbours

❼ alignment : head along the average direction of your local neighbours.

The program was successfully used in many practical applications reaching from movies

and computer games to information visualisation and task optimisation [63, 5, 16, 78]. In

[7] behaviour-based formation control enables a team of multi-robots to reach navigational

goals.

(ii). Discrete models:

This modelling approach is most common and widespread concept to abstract the flock-

ing behaviour. One of the main reasons for the broad acceptance is that these models

are inherently supported by Graph theory, see a.o., [66, 67, 53]. As an example, let

us assume that an agent can identified by a so-called vertex, which shall be abbrevi-

ated by vi. Moreover, each agent i shall be assigned with a state x for each coor-

dinate. Assume each state may evolve with time, then this leads to the state vector

xm(t) = [xm(v1, t), x
m(v2, t), · · · xm(vN, t)]

T ∈ RN where m stands for the mth coordi-

nate. Considering n coordinates, i.e., m = {1, . . . , n}, then the nN−dimensional state can

be written as x(t) = [x1(t), x2(t), · · · xn(t)]
T
and its autonomous, linear, time-variant

(LTV) swarm dynamics is represented by

d

dt


x1(t)

x2(t)
...

xn(t)

 =


M11(t) M12(t) · · · M1n(t)

M21(t) M22(t) · · · M2n(t)
...

...
. . .

...

Mn1(t) Mn2(t) · · · Mnn(t)



x1(t)

x2(t)
...

xn(t)

 ,

for t > t0 and with the initial condition (IC) x(t0) = x0 ∈ R(nN). If M jk(t) = 0n,n for

j = k the system is called uncoupled. In this case the swarm dynamics of each coordinate

m is independent of each other and can be treated separately. In all others cases the

swarm dynamics is called a coupled system. From a Graph theoretical point of view the

sub-matrices M jk(t) are defined by the set of edges which defines the topology of the

connection between the agents.
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x1

x2

z (1)

(2)

(3)
(4)

. . .

. . .

(N-1)

(N)

Figure 1.2: Formation profile of 11 agents in the x1, x2 -plane; • refer to the leader agents, • denote

the followers.

(iii). Continuous models

An alternative formalism to discrete models are mathematical descriptions of MASs in

terms of DPSs governed by PDEs. Over the last years this approach gathers the interest

and attention of various research groups and is topic in many publications, a.o., [21,

29, 30, 59, 55, 71, 69, 23, 13, 25]. The fundamental idea is schematically illustrated in

Figure 1.2 where 11 agents in a so-called leader-follower configuration are deployed in the

{x1, x2}−plane. There are two types of agents and both refer to active and collaborative

roles. However, leader agents may have to fulfil more sophisticated tasks than follower

agents. By moving from the discrete set of agents denoted by coloured dots to an agent

continuum the formation is visualized by the black line. Thereby, the spatial coordinate z

is introduced and may being interpreted as a virtual communication path. With this, let

us assume the swarm dynamics can be modelled by a so-called diffusion-reaction system

(DRS) system with two states which, can be written as

∂tx(z, t) = A∂2
zx(z, t) + C(z, t)x(z, t) , z ∈ (0, )

x(0, t) = 0n ,

x( , t) = 0n ,

for t > t0 and the IC x(z, t0) = x0(z) ∈ R2. Here the first equation, representing the

system dynamics, consists of a diffusion part with constant diagonal matrix A and a

reaction part with the parameter matrix C which may evolve with space z and time t.

The latter two equations impose Dirichlet boundary conditions (BCs). The formation

for the agent continuum is then obtained by the superposition of the solution x(z, t) =

[x1(z, t), x2(z, t)]
T
of the PDE in each coordinate 1 and 2, respectively. Now, with an

appropriate procedure it is possible to transform the z−distributed state x(z, t) into

a set of discrete states {x(v1, t),x(v2, t), . . . ,x(vN, t)} attached to the vertices vi with
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i = {1, 2 . . . ,N}, or formally written as

x(z, t)
Transformation
=========⇒ x(vi, t) .

In general, the state space or the solution space for a PDEs are vector spaces of

functions, e.g. Sobolev spaces, which are infinite-dimensional. In contrast to that

ordinary differential equations (ODEs) are generally finite dimensional. Consequently,

when applying the so-called Early-Lumping approach to a PDE the system is approx-

imated by a high-dimensional ODE [58]. However when dealing with swarms this is

the other way round. Dealing with swarms the continuous models may be interpreted

as an approximation for the discrete modelling approach. It is fundamental for the

further understanding that the entire motivation and way of proceeding is inverted for

the work with swarm dynamics. Here the basis is the dynamic model of a MAS, which

consists of a discrete number of participants, and it is approximated by a (set of) PDE(s)

which refer(s) to an infinite-dimensional system representation. The consequences of this

characteristic is worked out step by step in the upcoming chapters.

1.3 Goals, Objectives and Outline of the Thesis

As discussed above, modelling swarm dynamics of MASs by using continuous descriptions is

recognised as a potential alternative formalism over discrete concepts for many years. However,

to the best knowledge of the author of this thesis it is difficult to find a real application which

proofs evidence of this theoretical idea. As a consequence the overall goal of the thesis is to

show that DPSs governed by PDEs may be appropriate models for MASs, especially in case

of a big number of participants. On top of that, it shall be demonstrated that DPSs theory

in terms of controller and observer synthesis can be utilised in order to establish formation

control algorithms. The claim is proven and validated in practice by establishing a real-time

experiment with a swarm of caterpillar robots.

Apart from that the thesis sets certain objectives to reach the overall goal. Thus, consider the

following targets.

❼ The continuous modelling approach shall be generally independent of the number of

agents.

❼ Moreover, it shall grant individual dynamic properties of each agent. More precisely

speaking, the requirements on the dynamics of the agents shall not increase as the number

of agents increases.

❼ The so-called backstepping technique for DPS shall be applied for error tracking control

and observer design. So far only a few scientific work groups have implemented the

algorithms on real-time experiments [8, 42]. This thesis shall enhance the well-researched

theory for practical use.
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❼ Backstepping for coupled systems is currently one of the top research topics within the

PDE and control community [89, 41]. Therefore in the associated chapter the author

suggests a very different approach compared to the latest theoretical work in this area.

The approach shall be verified by simulation studies.

The ambitious goal and the set objectives directly correlate with the structure of the thesis.

Thus, Chapter 2 starts with some aspects on Graph theory which is the elementary tool frame-

work for the abstraction of swarm behaviour and subsequently modelling flocking dynamics in

discrete states. From this, the following sections motivate the model description in a continuous

formalism and discuss prospects to transit from the discrete approach to the continuous one

and vice-versa. In this context the chapter introduces the so-called inverse design approach.

Chapter 3 elaborates the continuous problem formulation of multi-agent (MA) dynamics using

parabolic PDE from a very general view to the specific description of a diffusion-convection-

reaction system (DCRS) and the modified, viscous Burgers’ equation (MVBE). For the rest

of the thesis these two models represent the investigated swarm dynamics in terms of the

previously mentioned inverse design approach. This includes the concept of boundary control

as well as the evaluation of formation profiles in case of constant model parameters. Furthermore

they are discussed in the upcoming chapters in the context of control and observer design.

Consequently, Chapter 4 deals with the feedforward (FF) part of the so-called two degrees of

freedom (2DOF) controller concept. For this, the flatness properties of the investigated PDEs

are used to derive motion planning algorithms by formal state and input parametrisation.

Subsequently the approach is formally proven by rigorous convergence analysis of the governed

recursive formalism. Comments on appropriate trajectory assignment close this chapter.

Connecting to the previous ideas Chapter 5 addresses the feedback (FB) component of the

controller as well as associated observer techniques. Thus, the so-called backstepping method

is utilised for DPSs governed by both, uncoupled and coupled PDEs. Especially for a huge

family of coupled PDEs the developed scheme allows a simplified design procedure. This is a

real novelty in this field and generalises results from previous research, e.g. published in [3].

Each claim is followed by a theoretical analysis which is thoroughly conducted by making use

of Lyapunov methods and ensures exponential stability properties.

After closing the theoretical parts Chapter 6 presents an extensive simulation study with four

different scenarios as well as a real-time experiment where a swarm of caterpillar robots are

deployed. In particular, the first two simulation cases deal with swarm dynamics governed

by uncoupled PDEs, whereas the second scenario includes non-linear (NL) behaviour. The

other two simulation studies verify the developed 2DOFs control approach for coupled PDEs.

Eventually the real-time implementation is able to validate both, the continuous modelling

approach as well as the flatness-based motion planning combined with the backstepping-based

tracking controller.

The final chapter provides a summary and conclusion of the thesis. Apart from that it proposes

and indicates aspects for future work and further research topics on formation control of MASs.
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1.4 Remarks on Notation

It is of high interest to the author to keep the notation compact, consistent, and unique through-

out the entire thesis. This shall support the readability for a broad audience and readership.

Therefore, the List of Symbols starting at page XIII describes all used expressions and abbrevi-

ations. Appendix C clarifies the mathematical background and formal constructs. Apart from

that some notational conventions are summarised in the following for the reader’s convenience.

❼ The italic subscript is exclusively reserved to identify an agent quantity. Thus, (·)i is
used to describe a symbol for the i−th agent. The number of agents is denoted by N.

The superscript index (·)m refers to quantities of the m−th coordinate. The number of

coordinates is n.

❼ Bold symbols indicate vectors or vector-valued functions, e.g. v, x(z, t). For matrices

or matrix-valued functions capital letters are used. Elements of these multi-dimensional

constructs are indicated by a single or double superscripts, e.g. vj is an element of a

vector, and mjk is an element of a matrix, respectively.

❼ The partial derivative of order α and β of a function f(z, t) with respect to z and t is

denoted by ∂α
z ∂

β
t f(z, t) = ∂α+βf(z, t)/ ∂zα∂tβ . The notation ∂α

t f(t) = dαf(t)
dtα

stands

for the derivative of order α of a function f(t) with respect to t. Moreover assume a

function g(z, s, t) with two independent variables in space and the last in time, then the

abbreviation d
dz
g(z, z, t) = ∂zg(z, s, t)|z=s + ∂sg(z, s, t)z=s stands for the total derivative

with respect to z.

❼ Symbols with a top bar are referred to steady state situations, a hat symbolises estima-

tions, and symbols attached with a superscripted asterisk are desired values. Furthermore,

symbols with the non-italic subscript (·)c or (·)o belong to control- or observer-related

quantities, respectively.
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Chapter 2

Graph Theory and Continuum Models

for Multi-Agent Systems

The following sections discuss the abstraction process of a networked system and motivate its

discrete and continuous modelling concepts. This deliberately guides the readership to the

intended inverse design approach.

2.1 Abstraction and Discrete Models for Multi-Agent

Systems

A natural and classic approach to abstract the complexity of a network consisting of a number

of participants is to sketch them as labelled circles and draw lines between them. The lines

are a vivid but simple way to visualise the explicit connections among the participants. With

the resulting mesh of circles and lines it is possible to study the overall picture from a more

conceptual perspective. Following this path the abstraction process leads to a discrete setup

and thus a discrete problem formulation which is well supported by the mathematical concept

of the so-called graph theory. Its scope offers broad and established tools to deal with the

discrete nature of MASs. The unambiguous approach allows to abstract the interaction between

the agents and copes with a rich family of explicit and specific problems such as formation

control. The following discussion focusses on elementary constructs of graph theory and is

highly oriented towards the statements in [53] and [6].

2.1.1 Graph Theory Fundamentals

Let G be a finite, undirected, simple graph, or short graph, which is built upon a pair of sets V

and E. First, the set V is assumed to consist of a finite number of elements. Each element i is

called a vertex and assigned with an arbitrary identification, denoted as vi ∈ V to distinguish
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the elements from each other1. Hence, a set V with N elements is represented by

V = {v1, v2, . . . , vN} . (2.1)

From this, the deduced set E is introduced, which is synthesised by 2-elements subsets of V.

Then E ⊆ V2 consists of elements of the form {vi, vj} ∈ E such that i = 1, 2, . . . ,N and i = j.

The elements {vi, vj} are called edges, short eij = {vi, vj}, of the graph and they establish a

sort of connection between vi and vj, which is formally expressed by vi ∼ vj. The cardinality

of E is abbreviated as |E| = E. Simple graphs only allow one connection, either directed or

undirected, between two nodes in contrary to multigraphs which permit multiple edges and

loops. A loop is an edge which connects a vertex to itself. In case the edges are associated

with a certain direction, then eij is defined as the ordered pair (vi, vj) ⊆ V × V and the graph

is labelled as a directed graph. Consequently a finite, directed or undirected, simple graph or

multigraph G may be formally defined as the pair G = (V, E), or often denoted conveniently as

G(V, E).
Remark 2.1. In the following the discussion mainly concentrates on finite, undirected, simple

graphs since in this work graph theory is mainly used to motivate a modelling approach for

MASs based on an agent continuum model. Even though the presented concepts and notions

can be extended in the context of finite, directed multigraphs as well. The interested reader is

referred to [53].

Since the definition of a graph is derived from a set-theoretical perspective it qualifies

for vivid graphical interpretations. Vertices are commonly drawn as dots (•) and edges

as curves ( ), which connect two vertices. For example the graph G1(V1, E1) sketched

in Fig. 2.1a is built upon the set V1 = {v1, v2, v3, v4, v5} of five vertices and six edges

E1 = {{v1, v2}, {v2, v3}, {v3, v4}, {v4, v5}, {v2, v4}, {v2, v5}}. The other graph Ĝ1(V1, Ê1) drawn

in (b) of Figure 2.1 shows a directed multigraph with set of edges Ê1 as ordered pairs according

to the drawing. Here it has to be said that the edges (v5, v2) and (v5, v2) have distinct labels.

Therefore are appointed with their own identity and are considered as different connections.

Without their own label they could have been treated as one single connection. The illustration

motivates to derive further attributes and properties of graphs. Obviously, from the point of

view of vertex v1 there is a connection to vertex v2, but it has no more other edges. However,

vertex v1 is connected to all other vertices. Therefore, if a relationship between two vertices

vi ∼ vj exists, they are called adjacent or they are ’neighbours’ in some sense. At the same

time the edge eij is called incident with the two involved vertices vi and vj. From this, it is

convenient to consolidate all neighbours of a vertex to the subset

Nbr(i) = {vj ∈ V | eij ∈ E} ⊆ V (2.2)

which is denoted as the neighbourhood of vertex vi. It is obvious that for undirected graphs the

neighbourhood is symmetric in the sense that

vi ∈ Nbr(j) ⇔ vj ∈ Nbr(i) (2.3)

1In some literature an element is called a node and consequently indicated by the symbol ni, e.g. in [55].
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v1 v2

v3 v4

v5
{v1, v2}

{v2, v3}

{v3, v4}

{v2, v4}

{v2, v5}

{v4, v5}

(a) Simple graph G1(V1, E1).

v1 v2

v3 v4

v5
(v1, v2)

(v1, v1)

(v3, v2)

(v3, v4)

(v2, v4)

(v5, v2)

(v5, v2)

(v4, v5) (v5, v4)

(v4, v4)

(b) Multigraph Ĝ1(V1, Ê1).

Figure 2.1: Graphical illustrations of finite graphs with five vertices; an undirected, simple graph with

six edges in (a) and a directed multigraph in (b). The multigraph contains two loops for vertices v1

and v4 and multiple edges connect the pairs of vertices v2 ∼ v5 and v4 ∼ v5.

is applied. Moreover, the cardinality of the neighbourhood

|Nbr(i)| = d (vi) (2.4)

is referred as the degree d of the given vertex vi. In this context a node with degree zero, i.e.,

d (vi) = 0, is called isolated. The introduced properties inspire to have a closer look on the

edges and ask, if there exists an indirect connection between two vertices vi and vj via other

edges when they are not adjacent or equivalently vj /∈ Nbr(i). Therefore, a sequence of distinct

vertices and edges is called a path P of finite length m, e.g., assigned as

vP0 , e
P
01, v

P
1 , e

P
12, v

P
2 , . . . , v

P
m−1, e

P
m−1,m, v

P
m , (2.5)

when the vertices vPk and vPk+1 are adjacent for each k ∈ {0, 1, . . . m− 1}. Moreover, note the

following definition.

Definition 2.1 (Graph isomorphism [6]). An isomorphism between two graphs G(V, E) and

Ĝ(V̂, Ê) is a bijective function f : V → V̂ mapping the vertex sets, such that

eij = {vi, vj} ∈ E ⇔ êij = {f(vi), f(vj)} ∈ Ê (2.6)

applies. If an isomorphism between two graphs exists, then they are called isomorphic and in

the following this is denoted as G Ĝ.

Isomorphism between graphs can be described as an edge-preserving bijection. From an graph

theoretical point of view isomorphic graphs can be treated equally, only the vertices may have

a different identification or indexing order.

With this the following attributes for pairs of vertices and some classifications of graphs are

deduced [53]:
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❼ The vertices vP0 and vPm are referred as end vertices of the path P . Contrary, vi = vPk
with k ∈ {1, . . . m− 1} are named as inner vertices.

❼ Two vertices vi and vj are called connected, if there exists a finite path (2.5) with the end

vertices vP0 = vi and vPm = vj.

❼ A cycle is a closed path. It has equal end vertices vP0 = vPm, but distinct inner vertices.

❼ A graph G(V, E) is called connected when each pair of vertices in V is connected; a graph

is disconnected, if the assertion is not applicable.

❼ A graph with V = {v1, v2, . . . , vN} is called a

– Complete graph KN(V, EK) if a vertex is neighbour of every other vertex, or EK = V2.

– Path graph, if and only if it is isomorphic to the graph PN(V, EP) with eij ∈ EP and

j = i+ 1 for i = 1, 2, . . . ,N− 1 .

– N-Cycle graph CN(V, EC) if it consists of a single cycle.

– Forest graph FN(V, EF) if it has no cycles.

– Star graph SN(V, ES) with eij ∈ ES if and only if i = 1 or j = 1.

Some of these common graphs are illustrated in Figure 2.2 with seven vertices. In view of

MASs consisting of agents with different roles it is necessary to analyse subsets of graphs and

introduce operations among them. For this reason let Gs(S, Es) with S ⊆ V and Es = {{vi, vj} ∈
E | vi, vj ∈ S} ⊆ E be a subgraph of G(V, E). If S = V is applied it is called a spanning subgraph

[6]. Hence the boundary of a subgraph ∂Gs is defined as

∂Gs(S, Es) = G
∂S
(∂S, Es) = (∂S, {{vi, vj} ∈ E | vi, vj ∈ ∂S}) (2.7)

with the set of boundary vertices ∂S = {vi ∈ V \ S : ∃vj ∈ S s.t. {vi, vj} ∈ E}. The union of

the subgraph and its boundary, i.e.,

Gs(S, Es) = ∂Gs(S, Es) ∪ Gs(S, Es) (2.8)

is the closure of the subgraph Gs.

Remark 2.2 (Weighted graphs [53]). For networks it is essential to describe the relationship

between its members mathematically or to assign properties to its connections. This leads to

so-called weighted graphs. In accordance to the notions above the definition of a graph G(V, E)
is extended by a function w : E×R+

t0 → R, which assigns a numerical value to each edge eij for

t ≥ t0. Consequently, in the following the ordered triple (V, E, w) stands for a weighted graph,

labelled as G(V, E, w).
Remark 2.3 (Time-invariant graphs). A graph G(V, E) is called time-invariant (TI), if the set

of edges E does not change with time. Additionally in case of weighted graphs G(V, E, w), the
weight w assigned to an edge eij ∈ E is TI, i.e., w(eij, t) = w(eij).
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(c) 7−Cycle graph.
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(d) Star graph.

Figure 2.2: Examples of some standard graphs with seven vertices each edges according to the class

of graph.

Generally, graphs can be classified in many ways. In this work paths defined as subgraphs

P(S, EP) for some host graph G(V, E) play a crucial role. Among others, paths or path graphs

benefit from the following features:

❼ a path graph with at least two vertices is connected, has no cycles and has N− 1 edges;

❼ the end vertices vi ∈ ∂S have degree 1, the inner vertices vi ∈ S \ ∂S have degree 2;

❼ a path is a tree with d(vi) ≤ 2, and hence inherits the properties of trees,

❼ a linear forest is the disjoint union of path graphs.

Furthermore it is worth to have a closer look at paths, where all vertices of the host graph are

involved, meaning S = V.

Definition 2.2 (Hamiltonian path and Hamiltonian cycle [6]). A Hamiltonian path PH(V, EP)
is a path in an undirected or directed graph that visits each vertex vi ∈ V, i = 1, 2 . . . |V| exactly
once, i.e., a spanning path. In case the end vertices of the Hamiltonian path are adjacent, then

the Hamiltonian path is a spanning cycle and it is called a Hamiltonian cycle CH(V, EC).
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v1 v2

v3 v4

v5

P5(N, EP )

n1

n2

n3n4

n5

f : V1 → N

v1 ⇔ n1
v2 ⇔ n2
v3 ⇔ n5
v4 ⇔ n4
v5 ⇔ n3

Figure 2.3: A spanning subgraph Gs1(V1, Es1) of the host graph G1(V1, E1) with edges ( ) drawn

in orange; the spanning subgraph is a Hamiltonian path and hence isomorphic to the path graph

P5(N, EP) Gs1(V1, Es1) with five vertices. The associated isomorphism is given as the bijection f .

Definition 2.3 (Traceable graph and Hamiltonian graph [6]). A traceable graph Gt(V, E) is a

graph that contains a Hamiltonian path PH(V, EP). A Hamiltonian graph GH(V, E) is a graph

that possesses a Hamiltonian cycle CH(V, EC). Consequently a Hamiltonian graph is traceable,

but the converse does not hold in general.

In Figure 2.3 a Hamiltonian path is sketched as a spanning subgraph Gs1(V1, Es1) of the host

graph G1(V1, E1) initially depicted in Figure 2.1. The edge set of the Hamiltonian path is drawn

in orange. Moreover, the illustration highlights the isomorphism between path graphs and

states the bijective function for the given example. The graphs drawn in Figures 2.2a to 2.2c

are obviously traceable, additionally Figure 2.2a and Figure 2.2c show Hamiltonian graphs. As

a consequence for a traceable graph Gt(V, E) the following useful corollary can be verified.

Corollary 2.1. If a graph Gt(V, E) is traceable then there exists a spanning subgraph Gs(V, Es) ⊆
Gt(V, E) which is a path graph. This means the path is a Hamiltonian path.

This completes a very brief introduction to graph theory fundamentals. As a summary, graphs

can be characterised as constructions composed of a finite number of abstract objects repre-

sented as vertices, which might interact with each other. Interactions are referred as edges

between the objects. Even though this representation comes very natural, graphs can be dis-

cussed from a linear algebra point of view as well. The latter approach gives powerful tools to

handle graphs in a very compact and systematic way. Therefore the following section introduces

important matrix representations of graphs.

2.1.2 Matrix Representations of Graphs

For the attributes degree, adjacency, and incidency corresponding matrix associations can be

derived intuitively. The latter is significant for the discussion of (arbitrarily) oriented graphs.

First, the degree matrix is the listing of the degree of each vertex vi in a diagonal matrix of the
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v1 v2

v3 v4

v5
(v1, v2)

(v2, v3)

(v3, v4)

(v4, v2)

(v2, v5)

(v4, v5)

Figure 2.4: Graph G1 that has been oriented as Go
1 .

form

Δ(G) =


d(v1) 0 · · · 0

0 d(v2) · · · 0
...

...
. . .

...

0 0 · · · d(vN)

 . (2.9)

Secondly, the neighbourhood of each vertex vi is summarized in the row i of the adjacency

matrix. The entries of the matrix are obtained according to

A(G)ij =
1 if vj ∈ Nbr(i), or equivalently eij ∈ E ,

0 otherwise.
(2.10)

This means if vertex i is adjacent to vertex j, i.e., vi ∼ vj, the entry A(G)ij is 1. From (2.3)

it can be determined that the adjacency matrix is symmetric and is of dimension N× N, with

N = |V|. Moreover it has zeros at the main diagonal. As an example the degree matrix and

adjacency matrix for the graph given in Figure 2.3 can be written as

Δ(G) =


1 0 0 0 0

0 4 0 0 0

0 0 2 0 0

0 0 0 3 0

0 0 0 0 2

 and A(G) =


0 1 0 0 0

1 0 1 1 1

0 1 0 1 0

0 1 1 0 1

0 1 0 1 0

 . (2.11)

The last of the three initially named matrices, the incidence matrix, is similar to the adjacency

matrix but is constructed from the perspective of the edges of a graph. For this, it is necessary

to arbitrarily assign an orientation to the edges in case the graph is undirected. The orientation

turns the edges into a set of ordered pairs (vi, vj) ∈ Eo ⊂ V × V where vi is named as tail and

vj is known as the head of the edge. Then the N × E−incidence matrix D of the arbitrarily

orientated graph Go with N vertices and E edges is defined as

D(Go) = [dij] , where dij =




−1 if vi is the tail of edge eij ∈ Eo ,

1 if vi is the head of edge eij ∈ Eo ,

0 otherwise.

(2.12)
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Fig. 2.4 basically shows the graph G1(V1, E1), previously depicted in Fig. 2.1, but now orientated

as Go
1(V1, E

o
1) and its incidence matrix is given by

D(Go
1) =


−1 0 0 0 0 0

1 −1 0 1 −1 0

0 1 −1 0 0 0

0 0 1 −1 0 −1

0 0 0 0 1 1

 . (2.13)

With this basic matrix representations it is possible to construct the so-called graph Laplacian.

This matrix plays an crucial role in formation control of MASs, especially when agreement

shall be reached on a certain property within a network, e.g., a joint value of a state variable.

Depending on the properties of the graph it can be derived in different ways. For undirected

graphs the graph Laplacian can be deduced from the first two matrices (2.9) and (2.10) discussed

above by simply computing

L(G) = Δ(G)− A(G) . (2.14)

As an example the graph Laplacian of the undirected graph illustrated in Fig. 2.1 can be

determined as

L(G) =


1 −1 0 0 0

−1 4 −1 −1 −1

0 −1 2 −1 0

0 −1 −1 3 −1

0 −1 0 −1 2

 . (2.15)

An alternative way allows to calculate the graph Laplacian for undirected, but arbitrarily

oriented, graphs by making use of the incidence matrix (2.12) and

L(G) = D(Go)D(Go)T . (2.16)

At this state it has to be pointed out that L(G) is obviously independent from the orientation

of the edges since (2.14) does not require any related information. Therefore and for conve-

nience the notation D(G) = D(Go) may be applied for arbitrarily oriented graphs. The second

definition (2.16) allows to extend the framework with the weighted graph Laplacian denoted as

Lw(G, t) = D(G)W (E, t)D(G)T . (2.17)

Here, the E × E diagonal matrix W (E, t) holds the weights wij = w(eij, t) of each edge eij of

the underlying graph G(V, E) with the cardinality of the set of edges |E| = E.

2.1.3 Modelling Multi-Agent Dynamics based on Graph Theory

The graph theoretical fundamentals discussed above qualify to abstract a MAS from its complex

coherence to its elementary structure and properties. In this context an agent i is assumed to be
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represented subsequently by a vertex vi of a graph G(V, E). An agent may hold properties which

vary with time and thus is assigned with the state vector x(vi, t). This is formally expressed

by the mapping

x : V× [t0,∞] → Rn (2.18)

for t ≥ t0 and the initial state value is denoted as x(vi, t0) = x0(vi). Moreover, the agent vi may

share properties with its neighbouring agents represented by vjk ∈ Nbr(i) with k = 1, . . . , d(vi).

Consequently, the edges eijk define a mesh of interaction among the agents. Assuming that the

properties of the agent change with time the dynamics of state vector x(vi, t) is modelled as a

simple integrator

∂tx(vi, t) = ui(t,x(vi, t),x(vj1 , t), . . . ,x(vjr , t)) , v{j1,...,jr} ∈ Nbr(i) , (2.19)

with the input ui(t,x(vi, t),x(vj1 , t), . . . ,x(vjr , t)), whereas r is an abbreviation for the degree

d(vi). In the following the inputs of the agents are often denoted as input protocol or simply

protocol. For instance, if the components of the state variable x(vi, t) refer to a physical position

of the agent in the n−dimensional plane, the protocol u defines the velocity of the agent in

each dimension.

Remark 2.4. Generally the x−dynamics can be freely assigned or can be even set up inde-

pendently for each agent. In the context of a swarm of mobile robots it stands to reason that

integrator dynamics as introduced in (2.19) or a double integrator

∂2
tx(vi, t) = ui(t,x(vi, t),x(vj1 , t), . . . ,x(vjr , t)) , v{j1,...,jr} ∈ Nbr(i) , (2.20)

where the input protocol ui defines the acceleration of the agent, give appropriate dynamic

models.

Moreover, assume the operator

L(x)(vi, t) := −Li(G) ◦ [x(v1, t),x(v2, t), . . .x(vN, t)]T (2.21)

wherein the operation ◦ stands for the Hadamard product and the notation Li(G) denotes the
i−th row of the graph Laplacian matrix of the underlying graph G and i = 1, 2, . . . ,N. Then

the choice of the input protocol ui(t,x(vi, t),x(vj1 , t), . . . ,x(vjr , t)) = L(x)(vi, t) leads to the

so-called (graph) Laplacian control

∂tx(vi, t) = L(x)(vi, t) =
vj∈Nbr(i)

(x(vj, t)− x(vi, t)) , vi ∈ V (2.22)

with proper initial condition x(vi, t0) = x0(vi) ∈ Rn. As a descriptive example the Laplacian

control evaluated for the 7−cycle graph C7(V, EC) given in Figure 2.2c and the derived graph
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Laplacian matrix

L(Gc) =



2 −1 0 0 0 0 −1

−1 2 −1 0 0 0 0

0 −1 2 −1 0 0 0

0 0 −1 2 −1 0 0

0 0 0 −1 2 −1 0

0 0 0 0 −1 2 −1

−1 0 0 0 0 −1 2


(2.23)

gives

∂tx(v1, t) = x(v2, t)− 2x(v1, t) + x(v7, t) ,

∂tx(v2, t) = x(v3, t)− 2x(v2, t) + x(v1, t) ,

...
...

...

∂tx(v6, t) = x(v7, t)− 2x(v6, t) + x(v5, t) ,

∂tx(v7, t) = x(v1, t)− 2x(v7, t) + x(v6, t) .

vi ∈ V (2.24)

This set of expressions forms a system of Nn = 7n ODEs. Hence it is evident that every further

agent adds an additional set of n equations to the system.

Now let S = Gs(S, Es) be a non-empty, connected subgraph of G(V, E) as introduced in Sec. 2.1.1

and ∂S = ∂Gs(S, Es) its boundary graph. With this, it is assumed that the subgraphs Sl and Sf

and their associated set of vertices Sl and Sf are constructed in a way to meet the characteristics

Sl = ∂Sf and Sl ∪ Sf = G, respectively. This introduces a graph-theoretical representation of

the so-called leader-follower concept, which is a common approach to design control algorithms

for MASs. Therefore, the subscripts l and f stand for leader agent and follower agent. When

the concept is applied to the path graph Gp(V, Ep) illustrated in Fig. 2.2b Laplacian control

leads to

∂tx(vi, t) = x(vi+1, t)− 2x(vi, t) + x(vi−1, t) , ∀vi ∈ Sf (2.25)

∂tx(v1, t) = x(v2, t)− x(v1, t) ,

∂tx(v7, t) = x(v6, t)− x(v7, t) .
{v1, v7} ∈ Sl (2.26)

Focusing on the expressions in (2.24) and (2.25) the analogy to discretisation methods such as

the finite difference method (FDM) seems natural. The right-hand side of each expression (2.24)

and (2.25) directly implements the pattern of the approximation of the second derivative when

using second-order central differences. The structure of the right-hand side of (2.26) resem-

bles the forward and backward finite difference method to approximate first order derivatives.

This, combined with the self-induced integrator dynamics on the left-hand side of the equations

describes a similar scheme compared to the approximation of PDEs using appropriate discreti-

sation algorithms. Especially when PDEs of so-called parabolic type are semi-discretised by

the FDM they render a system of ODEs of equivalent format. In this context the structure of
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(2.26) does not match, but only resembles comparable Neumann boundary conditions. For this

reason it could be convenient to refrain from the integrator for the leader agents but provide

them with external input signals u1(t) and u7(t), respectively. This leads to

x(v2, t)− x(v1, t) = u1(t) ,

x(v6, t)− x(v7, t) = u7(t) .
{v1, v7} ∈ Sl , {v2, v6} ∈ Sf (2.27)

which is a possible discrete pattern of non-homogeneous Neumann boundary conditions in

the framework of semi-discretised PDEs. In this case the set of equations in (2.27) directly

determines the trajectories of the leader agents x(v1, t) and x(v7, t). Alternatively, it might

be preferable to keep up the integrator dynamics amongst all agents. In this case the external

input signals directly determine the velocity of the leader agents according to the dynamic

(boundary) conditions

∂tx(v1, t) = u1(t) ,

∂tx(v7, t) = u7(t) .
{v1, v7} ∈ Sl (2.28)

Remark 2.5. The independent and unrestricted setup of conditional equations for the leader

agents in (2.27) and (2.28) invites to formulate more general conditions. In fact establish the

expressions

p1∂
k
t x(v1, t) = q1x(v2, t)− r1x(v1, t) + u1(t) ,

pN∂
k
t x(vN , t) = qNx(vN−1, t)− rNx(vN, t) + uN(t) ,

{v1, vN} ∈ Sl , {v2, vN−1} ∈ Sf

(2.29)

with appropriate parameters k ∈ N, {pj, qj, rj} ∈ R, and the external inputs uj(t) , j ∈ {1,N},
respectively, a discrete arrangement for classic boundary conditions of PDEs including the ex-

tension of dynamic conditions. By way of example p1 = q1 = 0 and r1 = 1 renders for

leader agent 1 an inhomogeneous Dirichlet boundary condition, while pN = 0, qN = 1 and

rN = 1, |rN| < ∞ defines for leader agent N a discrete match of the so-called Robin boundary

condition in the classical sense of distributed parameter systems.

Obviously the free design of the input ui applied to the agent dynamics (2.19) and the in

principle independent assignment of the boundary conditions (see Remark 2.5) motivates to

choose other analogous discrete arrangements of established distributed parameter systems.

For instance the equivalent feedback of a diffusion-reaction system can be written as

∂tx(vi, t) = aL(x)(vi, t) + c(vi, t)x(vi, t) , ∀vi ∈ Sf (2.30)

with constant diffusion coefficient a and time-variant, agent-dependent reaction coefficient

c(vi, t). Otherwise, if a double integrator dynamics is preferred over a single one, the com-

bination with Laplacian control leads to

∂2
tx(vi, t) = −v2L(x)(vi, t) , ∀vi ∈ Sf . (2.31)
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This set of ODEs builds an analogue to the semi-discretised PDE of the homogeneous wave

equation. Then the constant parameter v is related to the so-called wave velocity.

Retrospectively, the initially mentioned proposition was the abstraction and simplification of

the nature of complex networks and systems with various participants. Graph theory is a

chapter within mathematics which strongly supports the abstraction process of networks and

offers tools and concepts for many arising problems and applications. Though, the analogies

between the mathematical representations in form of ODEs and the structure of certain semi-

discretised distributed parameter systems invite to pursue the abstraction process even further,

especially for networks with large numbers of agents. With this observations it is worth to have

a closer look at the relationship between discrete models based on graph-theoretical concepts

and continuous models represented by PDEs. Following this objective it is essential to study

and derive preliminaries, which allow the transition from continuous to discrete models or

vice versa, and consequently embed the discrete set-up into an appropriate framework. A

comprehensive conceptional treatise will introduce theories and methods to MA control, which

are actually established for PDE-based controller and observer design. This further inspires a

so-called inverse design approach and its motivation is discussed in the following paragraphs.

2.2 Motivating Continuum Models for Multi-Agent Sys-

tems

Following the previous section the agent dynamics can be described by a system of ODEs, where

the order of the system is inherently defined by the number of agents N times the number of

states n for each agent. As a consequence, the modelling of the dynamical behaviour of large

scale networks results in high order representations in form of coupled ordinary differential

equations. Analysis, scalability, controller, and observer design may suffer from the increasing

order and the resulting mathematical complexity. The theoretical transfer to an infinite number

of agents N → ∞ would render hypothetically a system of coupled ODEs of infinite order and

thus motivates a continuous reformulation of certain classes of problems, e.g. [71, 72]. Even

though this thought experiment will be modified in this section the main idea remains. The

perspective leads to a modelling process using distributed parameter systems governed by PDEs.

With this, it would reveal the possibility to follow controller and observer concepts and conduct

stability analysis based on control theory for PDEs. Since for real applications any computation

hardware, e.g. a central processing unit (CPU), can only deal with finite dimensional systems

and real time applications require finite computation time a suitable implementation strategy,

which sufficiently approximates the spatial continuous expressions, is necessary by all means.

Here, model-based control theory of distributed parameter systems distinguishes between the

so-called Early lumping and Late lumping approach. While the former already approximates

the underlying model within the spatial domain before the actual controller or observer design,

the latter stalls this action to the very last step of the development process. Especially the late
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lumping concept involves some handy consequences for the controller and observer design for

networks. Among others, algorithms designed in a spatially continuous way bring along the

following upsides:

❼ The designed algorithms are independent of the number of participants since they are

constructed for an infinite dimensional system.

❼ In principle, the designed algorithms are independent of the underlying communication

topology, i.e., the adjacency of the agents.

The choice of the spatial approximation method defines a finite number of states and con-

sequently their neighbourhood within the discretised spatial domain. Referring the states to

properties of participants within a network, a swarm, or a MAS, the approximation step in-

duces a (pseudo-)graph-theoretical interpretation. Though, the approximation of the spatial

domain or appropriate discretisation methods, receptively, do not close the gap completely

between control theory based on graphs and based on DPSs governed by PDEs. As derived

in Section 2.1.1, in principle, a graph is defined as a pair of sets and a PDE is valid on some

continuous domain with all its associated features. Moreover, in most cases the spatial domain

completely looses its physical meaning when put in conjunction with swarms or networks, and

hence requires some reinterpretation. The other way round is not satisfying either. As already

mentioned above, the journey from control concepts based on graphs to control theory for PDEs

can not be accomplished by just introducing a transfer from a finite number to infinite number

of agents. Here a key argument is that this process does not maintain the dynamic properties

of the single agent. Consequently, this drives the motivation to rethink the linking between

the two theories in order to overcome some inconsistencies and to discuss preliminaries and

conditions, which allow to formulate related representations.

For this purpose first the initial situation and requirements for both theories are discussed before

connection both approaches. The objective of this process is to find missing ingredients which

can patch discrepancies between the theories. In the following, statements for discrete models

based on graph-theoretical concepts make use of the preliminary notions derived in section

2.1. The required properties to perform control theory for distributed parameter system are

introduced below by studying the family of DCRSs briefly.

2.2.1 Comparison between Discrete and Continuum Models

First, let us recall the construction of graphs. Generally speaking a graph consists of a set of

vertices V and a set of edges E. Among other additional definitions, a vertex can be assigned

with properties, e.g., similarly to (2.18), but here with only one single, time-varying state

xi(t) = x(vi, t) for each vertex vi ∈ V, defined as the mapping

xi : vi × [t0,∞] → R (2.32)
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This means, in case of N agents and each of them is assigned with a state, the entire vertex

set is mapped to a suitable Vector space, e.g., (RN, · ). In order to describe the temporal

evolution of the states xi an input protocol ui is applied to define a dynamical system for t > t0
by means of

∂xi(t)

∂t
= ui(t, xi, xj1 , . . . , xjr) , v{j1,...,jr}

∈ Nbr(i) , (2.33)

with IC xi,0 = xi(vi, t0). Moreover the protocol ui and its derivatives ∂ui/∂xk , k = i, j1 . . . jr,

are assumed continuous on [t0, t0+ τ ]× I with I ⊆ Rr+1. From this it gets clear, that the set of

edges E influences the possible structure of the protocol ui. If it depends on other vertices, then

only adjacent vertices vi ∼ vj are involved and r can be identified as the degree of the vertex vi,

i.e., r = d[vi]. In general external inputs can be introduced for any vertex, though in practice

this devalues the nature of the favoured distributed intelligence of swarms, its autonomous

dynamics and the objective of decentralised control algorithms. With this, control theory for

linear systems or even non-linear systems can be applied to this sort of problems. Moreover, the

study of the underlying graph and the usage of sub-disciplines, such as algebraic and spectral

graph theory, enhances analysis and gives access to a more structured approach in terms of

eigenvalues, stability and all other associated algebraic objects to graphs [53, 6].

Second, in this work a state x = x(z, t) in a spatially continuous formulation and t > t0
is assumed as a mapping from subsets of an m−dimensional, real coordinate space Rm with

Euclidean structure in form of

x : [0, 1]× [0, 2]× · · · × [0, m]× [t0,∞] → X , (2.34)

whereas [0, k] , k = 1, 2 . . .m define some finite intervals on R and X stands for an appropriate

function space or Hilbert space, respectively, e.g., the Lebesgue space (L2, · L2) or the Sobolev

spaces (Hk, · Hk). Analogous to above the dynamic behaviour of the state x(z, t) is described

by the definition of a dynamical system. In this case one might draw upon a system with some

physical meaning, e.g., the DCRS written as

∂x(z, t)

∂t
= ∇ · (a∇x(z, t))

diffusion

−∇ · (vx(z, t))
convection

+ r(t, z, x(z, t))

reaction

(2.35)

with IC x(z, t0) = x0(z). The spatial coordinates shall have equal length . Then (2.35) is

defined on (z, t) ∈ (0, )m × R+
t0 , where the notation (0, ) ⊂ R stands for an open interval in

space. Furthermore,

∇ =
∂

∂z1
,
∂

∂z2
, . . . ,

∂

∂zm

T

(2.36)

denotes the gradient on the m−dimensional Euclidean space and a stands for the diffusion

coefficient. The vector v ∈ Rm describes the vector field of the convection and the function r

expresses a reaction term in a general way. For convenience it is presumed that a and v are
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independent of z and the reaction term follows the LTV ansatz r(t, z, , x(z, t)) = r(z, t)x(z, t).

With this, the introduction of the Laplace-Operator

∇ ·∇ = ∇2 =
∂2

∂z12
+

∂2

∂z22
+ · · ·+ ∂2

∂zm2
=

m

i=1

∂2

∂zi2
(2.37)

and additionally setting m = 1 simplifies (2.35) to the PDE of a 1−dimensional DCRS

∂x(z, t)

∂t
= a

∂2x(z, t)

∂z2
− v

∂x(z, t)

∂z
+ r(z, t)x(z, t) (2.38a)

for (z, t) = (0, ) × (t0,∞] and with the initial state x(z, t0) = x0(z). For a unique solution of

the PDE it is necessary to define boundary conditions which include equations for the state at

z = 0 and z = . Having in mind that (2.38a) serves as a model for a network it seems natural

to preserve the time derivative over the entire spatial domain (cf. Remark 2.5 in Section 2.1.3).

In combination with so-called Neumann boundaries it leads to

∂x(0, t)

∂t
= ν0

∂x(0, t)

∂z
,

∂x( , t)

∂t
= −ν

∂x( , t)

∂z
,

(2.38b)

with some arbitrary parameters ν0, ν ∈ R.

Finally, comparing the set-up of (2.32) and (2.33) with the problem formulation of (2.34) and

(2.38) reveals the following picture. Obviously any attempt to reconcile these two represen-

tations demands to put attention to the domain of definition regarding the state mappings

(2.32) and (2.34), and as a consequence it requires the focus on graph-theoretical (differential)

operators, e.g. Laplacian control (2.22), as well as linear partial differential operators of DPSs.

Neglecting derivatives of the time domain and concentrating on the spatial domain, the latter

can be formally defined as

D(α)(x)(z, t) :=
|α|≤l

aα(z, t)
∂αx(z, t)

∂zα
(2.39)

with the order l of the operator, the vector z defined on the open domain z ∈ Z ⊂ Rm, and

the multi-index α = (α1, α2, . . . , αm). The functions aα(z, t) are assumed to be continuous in

space and time. The length of the multi-index is given by |α| = α1 + α2 + · · ·+ αm.

Remark 2.6. In general (partial) differential operators, such as gradients, divergence, or curl

can be generalised and naturally extended to formulations independent from any coordinate

system. This leads to definitions on differentiable manifolds or even more generalised mathe-

matical objects [43]. Although this is not an objective for the discussion in this thesis, it could

be an interesting approach to study the relationship between differentiable manifolds and graphs,

since the latter are constructed from a set-theoretical angle only. This idea is supported by the

fact that in the vast majority the spatial domains are not linked to any physical meaning when

continuous models get associated with MASs. In this work the formulation of differential oper-

ators for the spatial domain requires at least an Euclidean space of dimension m. However, for

simplicity but without loss of generality it shall be set to m = 1 for the following.
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In the same manner (differential) operators for discrete configurations can be embedded in an

equivalent formalism expressed as

D(x)(vi, t) :=
vi∼vj

a(vj, t)d(x(vi, t), x(vj, t)) (2.40)

with vi ∈ V(Gs) and vj ∈ V(Gs) as a vertex within the closure of the underlying subgraph Gs and

the smooth functions d ∈ C0(R2). The coefficients a(vj, t) stand for continuous functions in

time for every adjacent vertex vj. Obviously vi and consequently vj must have degree greater

than zero, i.e., d(vi) > 0 , d(vj) > 0 with (2.3) and (2.4). Thus both are non-isolated vertices

and consequently isolated vertices are ignored. This explains the definition of the operator on

states assigned to a subgraph Gs of a given host graph G. It is comparable to the definition of

differential operators for sufficiently smooth functions on open intervals as in (2.39).

As hinted at the beginning of this section there are stated strategies to transit between the

formulations [71, 55]. On the one hand the proposal arises to tend the number of agents to

infinity in order to converge from a discrete formulation to a continuous model. On the other

hand, obviously appropriate approximation methods applied on PDEs render a system of ODEs

of finite order. The following two paragraphs shall discuss these strategies in more detail and

extend or adjust them if appropriate. The goal is to close some gaps between the representations

by defining missing preliminaries and adding or modifying conditions and methods to these

strategies . In this context going from continuous to discrete seems trivial. Defining rules

for extracting a finite set V from [0, ]m and the approximation of operators which induces

neighbourhood and adjacencies seems a promising path without too many barriers. Therefore

in the following clause the discussion advances with semi-discretisation methods of PDEs.

2.2.2 Semi-discretisation – Transition from Continuum to Discrete

Models

As discussed above, in this thesis models of distributed parameters systems are mainly used to

design controllers based on PDEs and then apply them to a swarm with a finite number of agents

by appropriate approximation of the differential operators on the spatial domain. Typically

discretisation methods are used to compute numerical solutions of PDEs. In this context it is

distinguished between semi- and full-discretisation. While the former approximates the spatial

domain only, the latter applies a discrete estimation scheme to time derivatives as well. Among

others, widespread discretisation methods are the following [35].

❼ Finite element method (FEM): The method splits the domain into a finite number of

parts of simpler structure, called elements. This renders a system of equations which are

easier to handle than the original, infinite dimensional formulation. The solution of these

equations approximates the solution of the initial problem.



2.2 Motivating Continuum Models for Multi-Agent Systems 25

z
z1 z2 z3 zN−1 zN

Δz
0

Figure 2.5: Equidistant discretisation points for the FDM.

❼ Finite volume method (FVM): Here the domain is subdivided into a finite number of

small cells or volumes. Methods of first order derive equations which allow to compute

the temporal evolution of mean values within the cells.

❼ Finite difference method (FDM): The main purpose of this method is the approximation

of derivatives by means of finite differences. For this the discretisation of a function is

performed mostly at equidistant points within the underlying domain. It is distinguished

between the so-called central FDM and forward or backward FDM, respectively.

In this work only the FDM is investigated since from a graph-theoretical point of view agents

are referred to vertices within the network model. This fits to the nature of the FDM since

it deals with points within the spatial domain. Besides that, the domain has no real physical

meaning when it comes to continuous models for swarms or MASs.

Therefore, suppose the DCRS introduced in (2.38) shall be approximated on N points, each

point representing a vertex of an induced MAS. Then the FDM performed for the spatial

domain [0, ] ⊂ R leads to the system of ODEs

∂x(zi, t)

∂t
= a

x(zi+1, t)− 2x(zi, t) + x(zi−1, t)

Δz2
− v

x(zi+1, t)− x(zi−1, t)

2Δz

+ r(zi, t)x(zi, t) , i = 2, 3 . . . ,N− 1

∂x(z1, t)

∂t
= ν0

x(z2, t)− x(z1, t)

Δz
,

∂x(zN, t)

∂t
= −ν

x(zN, t)− x(zN−1, t)

Δz
,

(2.41)

with the equidistant discretisation points zi and the discretisation step size Δz defined as

Δz = /(N− 1) > 0. The structure of the domain is briefly sketched in Figure 2.5. With this,

the infinite dimensional DCRS defined on [0, ]×R+
t0 with R+

t0 = {t ∈ R : t > t0} is approximated

by a system of ODEs of order N at the points

Z = {zi | zi = (i− 1)Δz ∧ i = 1, . . . ,N} ⊂ [0, ] ⊂ R . (2.42)

Basically this set represents coordinates of a coordinate system which models the 1-dimensional

Euclidean space R. Recalling Laplacian control it is obvious that (2.41) with the particular

parameter setting a/Δz2 = 1 and v = r(vi, t) = 0 emulates the structure of (2.25) and (2.26).
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From this it gets essential that semi-discretised distributed parameter systems, e.g., as given in

(2.41), can only be applied to a given host graph G(V, E) when each coordinate zi ∈ Z can get

associated in an appropriate way with a vertex vk ∈ S of a subgraph Gs(S, Es) ⊆ G. Moreover,

the edge set Es has to resemble the adjacencies induced by the FDM. These two conditions

motivate the formal mapping

φ : Z → S(Gs) φ(zi) = vk i ∈ {1, 2, . . .N} , k ∈ {1, 2, . . . |S|}. (2.43)

At the first sight this function looks trivial, though it is necessary since the coordinates zi ∈ Z

and the vertices vk ∈ S have completely different algebraic features. For instance the handy

abbreviation zi = (i− 1)Δz yields the recursion

zi = zi−1 +Δz , (2.44)

though summation as an arithmetic operation does not make sense for vertices which are

abstract objects but not numbers. If the function (2.43) can be constructed to be bijective,

which can be accomplished for a spanning subgraph Gs with N = |V| = |S| < ∞ by all means,

then there exists a mapping from the vertex set S(Gs) to the state space of x in equivalent

fashion as stated in (2.32). From this follows

x(zi, t) = x(φ−1(vk), t) = x̌(vk, t) and x(vk, t) := x̌(vk, t) . (2.45)

For convenience the symbol for the state variable shall be preserved. Additionally to bijectivity

φ needs to satisfy

{vj, vk} ⇔ zi = φ−1(vj) ∧ zi+1 = φ−1(vk) , ∀i = 1, 2, · · · ,N− 1 . (2.46)

This basically ensures that neighbouring coordinates in Z are mapped to adjacent vertices of

the spanning subgraph Gs(N, Es). Generally speaking, this induces a edge set of a path graph.

With j = i and k = i+ 1 (2.46) can be rewritten as

∂x(vi, t)

∂t
= ã(N, ) [x(vi+1, t)− 2x(vi, t) + x(vi−1, t)]− ṽ(N, ) [x(vi+1, t)− x(vi−1, t)] /2

+ r(vi, t)x(vi, t) ,

∂x(v1, t)

∂t
= ν̃0(N, ) [x(v2, t)− x(v1, t)] ,

∂x(vN, t)

∂t
= −ν̃ (N, ) [x(vN, t)− x(vN−1, t)] ,

(2.47)

with the abbreviations

ã(N, ) = a
(N− 1)2

2
, ṽ(N, ) = v

N− 1
, and ν̃{0, }(N, ) = ν{0, }

N− 1
. (2.48)

Comparing the semi-discretised equations (2.47) with the configuration in (2.25) and (2.26) it

can be concluded that the central finite difference method for the second derivative applies the
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same scheme as Laplacian control does for a path graph. Though, a main remaining difference

is that the leading coefficients in (2.47) depend on N as well as the length of the spatial

domain of the underlying PDE. For this reason one may request a constant discretisation step

size Δz, which is independent of the number of discretisation points N or number of agents,

respectively. Following this path the request for the condition Δz
!
= 1 implies

= N = N− 1 . (2.49)

Therefore, taking (2.49) into account the length of the spatial domain varies with N instead of

the discretisation step size Δz. Note, in case of a finite number of agents the length N is still

finite. Then the pattern simplifies to (2.47) to

∂x(vi, t)

∂t
= a [x(vi+1, t)− 2x(vi, t) + x(vi−1, t)]− v [x(vi+1, t)− x(vi−1, t)] /2

+ r(vi, t)x(vi, t) ,

∂x(v1, t)

∂t
= ν0 [x(v2, t)− x(v1, t)] ,

∂x(vN, t)

∂t
= −ν

N
[x(vN, t)− x(vN−1, t)] .

(2.50)

From the discussion above it can be concluded that this 2-step process, FDM together with

an appropriate mapping of the form (2.43), applied to the distributed parameter system (2.38)

renders an input protocol. For instance the right hand side of (2.50) forms a protocol in the

sense of (2.33) for the state variable x(vi, t) which, e.g., can be assigned to an agent of a MAS.

Since the number of states applied to an agent is irrelevant to the discretisation and mapping

process this concept can be extended to DPS governed by coupled PDE. Consequently, note

the following theorem which covers a whole family of DCRSs.

Theorem 2.1. Consider the coupled diffusion-convection-reaction system

∂x(z, t)

∂t
= A(z, t)

∂2x(z, t)

∂z2
− B(z, t)

∂x(z, t)

∂z
+ C(z, t)x(z, t) , (2.51a)

defined on the domain (z, t) ∈ DN,t0 = (0, N)× R+
t0 and for the state vector x(z, t) ∈

C2,2 (DN,t0 ;Rn) with the coefficient matrices {A(z, t), B(z, t), C(z, t)} ∈ C0,0 (DN,t0 ;Rn×n). Fur-

thermore, consider the boundary conditions

∂x(0, t)

∂t
= P0(t)

∂x(0, t)

∂z
+Q0(t)x(0, t) ,

∂x( N, t)

∂t
= −P

N
(t)

∂x( N, t)

∂z
+Q

N
(t)x(0, t) ,

(2.51b)

with {P0(t), P N
(t), Q0(t), Q N

(t)} ∈ C0 R+
t0 ;R

n×n and the initial state x(z, t0) = x0(z). Then

❼ the central finite difference method (FDM) with the order of accuracy of O (Δz2) for the

differential operators ∂α

∂zα
, α ∈ {1, 2} on the open interval (0, N), and
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❼ the forward and backward finite difference method (FDM) with the order of accuracy of

O (Δz) for the boundary conditions at z = 0 and z = N;

applied to the given system (2.51) at the discretisation points zi ∈ Z according to (2.42) and

Δz := 1, i.e., N = N− 1, together with the bijective mapping

φ : Z → V(PN) ⇒ φ(zi) = vi i ∈ {1, 2, . . . |V|} , (2.52)

render an input protocol of the form u(vi, t,x(vi−1, t),x(vi, t),x(vi+1, t)), which is built upon

the underlying path graph PN(V, EP) with |V| = N. Thus, it holds

zi = φ−1(vi) and ei,i+1 = {vi, vi+1} ∈ EP , (2.53)

for i = 1, 2, . . . ,N− 1.

Note, obviously there exists an isomorphism between the path graph PN in (2.52) and the

spanning subgraph Gs in (2.43), (cf. Definition 2.1). This allows to set k = i in (2.46) and

subsequently motivates (2.53). Therefore, a comprehensive proof of Theorem 2.1 is omitted

since it follows in principle in an identical way the exposition before. Basically, the theorem

presumes that the stated model (2.51) is defined spatially on the real interval [0, N]. For this,

it explains the structure of the resulting graph through FDM discretisation. In detail, the

function (2.52) defines the set of vertices V and FDM the structure of the set of edges EP .
However, sometimes it is the case that a graph is given and one might ask if a sequence of

discretised state variables with an associated protocol can be assigned to the given host graph.

So when the perspective is inverted, i.e. to originate from a given graph, the following corollary

can be derived for DCRSs.

Theorem 2.2. Let G(V, E) be a given host graph and x a state vector which origins from

a diffusion-convection-reaction system of the form (2.51). Moreover, consider a subsequent

discretisation of x by means of an appropriate FDM which renders an input protocol u respecting

(2.53). Then the state x(vi, t) can be assigned to the vertices vi ∈ V of a spanning subgraph

P(V, EP) ⊆ G(V, E), if and only if G is traceable. The subgraph involved is a Hamiltonian path

PH(V, EP) of the host graph G.

Proof. The theorem is proven by contradiction. Therefore, assume G is not traceable. The

application of the input protocol u which respects (2.53), demands that there exists at least one

isomorphic spanning subgraph Gs(S, Es) ⊆ G(V, E) where every vertex vi ∈ V, i = 1, . . . ,N− 1 is

adjacent to vi+1. However, then Gs(S, Es) contains a spanning path which stands in contradiction

to the assumption that the host graph G is not traceable.

Influence of the Length of the Domain on the Eigenvalues

The correlation of the length of the spatial domain with the number of agents N makes it

necessary to investigate its impact on the continuous formulation and compare it with the
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discrete set-up. In the following the focus is on both, the properties of the swarm dynamics

as well as the dynamics of the single agent. Recalling (2.38) and the convenient assumptions

v = 0, r(vi, t) = r and ν = ν0 = ν
N
allows the compact notation

∂x

∂t
= Ax (2.54a)

with the linear, time-invariant (LTI) operator

A =

a ∂2

∂z2
+ r 0 0

0 ν ∂
∂z

0

0 0 −ν ∂
∂z

 , and the state x(z, t) =

x1

x2

x3

 =

 x(z, t)

x(0, t)

x( N, t)

 . (2.54b)

Using the state space X = L2(0, N)× R2 equipped with the inner product

f , g X = f1, g1 L2 + fT
2 g2 + fT

3 f3 (2.55)

then the domain of definition of the operator A can be written as

D(A) = x ∈ X | ∂2
zx1 ∈ L2(0, N), x1, ∂zx abs. cont., x1(0) = x2, x1( N) = x3 (2.56)

With this, the eigenvalue problem (λE −A)x(z, t) = 03 gives the set of equations

a
∂2x1

∂z2
+ rx1 = λx1 ⇒ ∂2x1

∂z2
=

λ− r

a
x1 = −µ2x1 , (2.57)

ν
∂x2

∂z
= λx2 ⇒ ∂x2

∂z
=

λ

ν
x2 = −aµ2 − r

ν
x2 ,

−ν
∂x3

∂z
= λx3 ⇒ ∂x3

∂z
= −λ

ν
x3 =

aµ2 − r

ν
x3 , and

(2.58)

x1(0) = x2, x1( N) = x3, with the eigenvalues

λ = −aµ2 + r (2.59)

to be determined. The first condition (2.57) for x1 is obviously fulfilled by trigonometric

functions and their derivatives according to

x1 = A cos(µz) +B sin(µz)

∂x1

∂z
= µ(−A sin(µz) +B cos(µz))

∂2x1

∂z2
= −µ2(A cos(µz) +B sin(µz)) = −µ2x1 .

(2.60)

With this, the other two equations in (2.58) provide the conditions

x2 = A

∂x2

∂z
= µB

 ⇒ µB +
aµ2 − r

ν
A = 0

x3 = A cos(µ N) +B sin(µ N)

∂x3

∂z
= −µA sin(µ N) + µB cos(µ N)

 ⇒

µA+ B
aµ2 − r

ν
sin(µ N) + A

aµ2 − r

ν
− µB cos(µ N) = 0 (2.61)
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which can be written in matrix form as

aµ2−r
ν

µ
aµ2−r

ν
cos(µ N) + µ sin(µ N)

aµ2−r
ν

sin(µ N)− µ cos(µ N)

M(µ, N)

A

B
= 0 (2.62)

The existence of a non-trivial solution for A and B requires det(M(µ, N)) = 0. This gives

aµ2 − r

ν

2

sin(µ N)− 2µ
aµ2 − r

ν
cos(µ N)− µ2 sin(µ N)

!
= 0 (2.63)

and consequently

tan(µ N) = 2µν
aµ2 − r

(aµ2 − r)2 − µ2ν2
= h(µ) (2.64)

for cos(µ N) = 0. Further arrangement yields the non-linear characteristic equation

tan(µk N) = 2
ν

a

µk − r
aµk

(µk − r
aµk

)2 − ν2

a2

(2.65)

for µk, k ∈ N0, in dependence of the parameter setting a, ν, and r and the length of the domain

N.

This allows to compare the distribution of the eigenvalues for Laplacian control as defined in

(2.22) and applied on a path graph with the eigenvalues of (2.54). More precisely, on the one

hand, the investigated Laplacian control multiplied with the factor a gives

∂x(vi, t)

∂t
= a(x(vi+1, t)− 2x(vi, t) + x(vi−1, t)) , for i = 2, . . . ,N− 1 ,

∂x(v1, t)

∂t
= a(x(v2, t)− x(v1, t)) , and

∂x(vN, t)

∂t
= −a(x(vN, t)− x(vN−1, t)) .

(2.66a)

The eigenvalues can be computed as

λL
k = 2a(cos(kπ/N)− 1) , k = 0, 1, . . . ,N− 1 . (2.66b)

At this point the interested reader is referred to [53] and [15] where the derivation of eigenvalues

for special graphs is discussed in detail. Then on the other hand, the special choice a = ν and

r = 0 simplifies (2.54) and subsequently (2.65), which results in a simple form of a diffusion

system as

∂x(z, t)

∂t
= a

∂2x(z, t)

∂z2

∂x(0, t)

∂t
= a

∂x(0, t)

∂z
,

∂x( N, t)

∂t
= −a

∂x( N, t)

∂z
,

(2.67a)
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Figure 2.6: Graphical interpretation of the non-linear conditional equation (2.67b) with N = 10 and

a = 1. The intersections are possible solutions µk.

and its appertaining eigenvalues

λDS
k = −aµ2

k , with tan(µk N) = 2
µk

µ2
k − 1

, k ∈ N0, and N = N− 1. (2.67b)

The two equations (2.66b) and (2.67b) provide λL,DS
0 = 0 and λL,DS

k < 0 , k ∈ N. A graphical

representation of the non-linear condition in (2.67b) is presented in Figure 2.6 for N = 10 and

a = 1. By means of the illustration it can be concluded that the largest eigenvalue, i.e., λDS
1

tends to zero with increasing N. This motivates the linearisation of the equations. On the one

hand, the non-linear equation (2.67b) and subsequently λDS
1 can be estimated by

µ1 N − π ≈ −2µ1 ⇒ λDS
1 ≈ −aπ2/(N + 1)2 , (2.68)

whereas tan(µ N) is linearised around µ1 = π/ N and the rational function2 h around µ1 = 0.

On the other hand, (2.66b) can be approximated around 0 by the quadratic term

λL
1 = 2a (cos(π/N)− 1) ≈ −aπ2/N2 , (2.69)

This approximation confirms some properties of the diffusion system (DS) and allows further

analysis.

2The linearisation of h around µ1 = 0 allows a better analytic comparison between λDS
1 and λL

1 than the

approximation at µ1 = π/ N. Moreover, the developments around 0 and π/ N approach each other for increasing

N.
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Figure 2.7: Comparisons of the distribution of the biggest five eigenvalues between the diffusion system

(2.67a) and the operator (2.21) applied on a path graph depending on the number of vertices N.

❼ First, diffusion or Laplacian control have a zero eigenvalue and are inherently stable. The

steady state is defined by their initial condition, i.e., x̄(z) = N

0
x(z, t0)dz/ N for the

diffusion system and x̄(vi) =
N
i=1 x(vi, t0)/N for Laplacian control.

❼ The stability properties are characterised by the largest eigenvalue λL
1 , λ

DS
1 < 0. The

stability properties may be further adjusted by the coefficient a.

❼ However, the swarm dynamics for both, the discrete and continuous formulation, slows

down proportionally with ∼ 1/N2. Note, for the limit N → ∞ all eigenvalues λL
k , λ

DS
k

tend to zero. From a practical point of view this behaviour is obvious since the limit to

infinity means infinite participants for the MAS and an infinite spatial domain for the

DS, respectively.

❼ In contradiction to that the agent dynamics is invariant under the discretisation process

since the discretisation step is set constant Δz = 1, i.e., the agent dynamics is independent

of N.

Note, Figure 2.7a show the ratios ρk = λL
k /λ

DS
k , k = 1, . . . , k over the number of agents

N. Apart from the points mentioned above two further aspects can be concluded from the

presented plots. First, ρ1 converges to the approximated ratio N2/(N + 1)2 governed by (2.68)

and (2.69), respectively, with increasing N. Second, the ratio ρ1 of the largest eigenvalues, which

define the overall dynamics of each system, approaches 1 from below. However the ratio of the

higher modes alter in this matter. Subsequently this means that the fastest eigenmode of the

discrete formulation is always faster than the fastest eigenmode of the continuous formulation.

A plausible reason for this behaviour can give the discretisation scheme of the FDM, which

renders the sequence of Laplacian control of an undirected, unweighted path graph. In the

sense of the FDM the discretisation pattern is an approximation for the differential operator
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in (2.67a) of second order of accuracy but the approximation of the boundary conditions is of

first error order. Thus, the complete approximation must be considered of first error order only

which is lower than order of the spatial derivative of the DS. This results in a slightly faster

first eigenmode for the discrete system than for the corresponding continuous formulation, but

simultaneously to a more volatile behaviour at the boundaries.

An overview of the discretisation pattern for different orders of accuracy are given in Table A.1

for central FDM and in Table A.2 for forward and backward FDM. Moreover, Figure 2.7b gives

an appropriate comparison between the five biggest eigenvalues λDS
k and λL

k , k = {0, 1, . . . , 4}
for a various number of agents N. It shows that the continuous formulation (2.67a), with

choice of only 11 agents, already gives a reasonable dynamic representation of the operator

(2.21) when it is applied to an undirected, unweighted path graph. With this, the following

proposition shall summarize the results of the discussion above.

Proposition 2.3. Assume the differential operator A of a DS of the form

A =

 ∂2

∂z2
0 0

0 ∂
∂z

0

0 0 − ∂
∂z

 with the state vector x =

 x(z, t)

x(0, t)

x( N, t)

 , (2.70)

and its domain of definition D(A) = {x ∈ X | ∂2
zx1 ∈ L2(0, N), x1, ∂zx abs. cont., x1(0) = x2,

x1( N) = x3} with N = N − 1. Then the FDM with properties according to Theorem 2.1 and

an appropriate function φ equivalent to (2.52) transforms Ax into the discrete operator

L(x) := −L(P)x (2.71)

with the state vector x = [x1(t), x2(t), . . . , xN(t)]
T and where L(P) stands for the graph Lapla-

cian matrix (2.14) of an underlying simple, undirected, and unweighted path graph P(V, EP)
with |V| = N. For increasing N the largest N eigenvalues λi ≤ 0, i = 0, 1, · · · ,N − 1 of oper-

ator A converge to the eigenvalues of operator L. Moreover all eigenvalues of both operators

converge to 0 for N → ∞.

Proof. The convergence claim between the two operators cannot be shown analytically since

the computation of the eigenvalues of the DS require the solution of a transcendental equation

(2.67b). Only numerical methods allow the verify the statement up to a certain number af

agents. Therefore, Figure 2.8 shows that the normalised Euclidean norm of the relative error

between the eigenvalues of the DS and Laplacian control satisfies

1

N + 1
eλ(N + 1) 2 <

1

N
eλ(N) 2 (2.72)

with eλ(N) 2 = N−1
k=1 (1− λL

k /λ
DS
k )

2
. Here it is computed from N = 5 up to 104 which is

numerically quite challenging. However, in the following it is shown that all eigenvalues of A
and L converge to 0 in case of the limit N → ∞. Note, considering (2.66b) for the eigenvalues

for Laplacian this leads to

lim
N→∞

λL
k = 2a lim

N→∞
(cos(kπ/N)− 1) = 2a(1− 1) = 0 . (2.73)
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Figure 2.8: Normalised Euclidean norm of the relative error between λDS
k and λL

k .

Moreover, respecting the image set of arctan, then obviously it follows

lim
N→∞

λDS
k = −a lim

N→∞

arctan 2µk

µ2
k−1

2

(N− 1)2
= 0 . (2.74)

In summary, Proposition 2.3 pictures the situation for a sole DS with the defined boundary

conditions. In other words, it bridges the definition between the differential operator of a DS

defined on real intervals in continuous space with a discrete operator, i.e., Laplacian control,

for path graphs. If the requirement – mapping to a analogous graph theoretical object – is

neglected, the transfer from derivatives in continuous space to discrete operators for a certain

subclass of graphs can be generalised by the following definition.

Proposition 2.4. Partial derivatives of the order of α, written as

D(α)(x)(z, t) =
∂αx(z, t)

∂zα
(2.75)

and defined on the open interval (0,N− 1), are transformed into the discrete operators

l
kD(α)(x)(vi, t) =

l

j=k

a(α)(vi+j) (x(vi+j, t)− x(vi, t)) (2.76)

by means of a proper vertex mapping φ according to (2.52) and appropriate central, forward, or

backward FDMs which define the coefficients a(α)(vi+j). With the discretisation step Δz := 1

the parameters k, l ∈ Z denote the {k, l}−nearest neighbour topology for the vertices vi in the

sense of

φ−1(vi+j)− φ−1(vi) = j j = k, k ∓ 1, . . . , l ± 1, l. (2.77)
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Figure 2.9: Graphical representation of a host graph G(V, E) which defines a 2−nearest neighbour

topology for the inner vertices vi ∈ Sf(Gs) ⊂ V.

Moreover the resulting underlying subgraph Gs(S, Es) is traceable and has to satisfy

|l − k| = d(vi) . (2.78)

with d(vi) as the degree (2.4) of the vertex vi ∈ S.

Here it has to be said that Proposition 2.4 directly follows from the definition of the FDM, the

definition of d(vi), and the bijective properties of the function φ for a traceable subgraph. The

parameters a(α)(vi+j) can be obtained from Table A.1 and Table A.2 up to the 4th derivative

and 4th order of accuracy. By construction the coefficients fulfil

l

j=k

a(α)(vi+j) = 0 . (2.79)

Obviously in case of l = −k it follows d(vi) = 2l and the topology is simply denoted as l−nearest

neighbour. As an example Figure 2.9 shows a host graph with G(V, E) with a corresponding

subgraph Gs. For the configuration it holds that G = Gs ∪ ∂Gs = Gs. The vertices which are

element of the subgraph vi ∈ Sf ⊂ V form a 2−nearest neighbour topology. Thus, by means of
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central FDM and an appropriate formal, bijective mapping φ the operator

2
−2D(4)(x)(vi, t) :=

2

j=−2

a(4)(vi+j) (x(vi+j, t)− x(vi, t)) , ∀vi ∈ Sf . (2.80)

may be defined for the subgraph Gs which approximates the 4th derivative in space of the state

variable x with an accuracy order of O (Δz2). The parameter a(4)(vi+j) are constructed by

means of Table A.1. Here it is pointed out that the domain of definition includes the state

variables x(vi+j, t) with vi+j ∈ Sf(Gs) ∪ Sl(∂G) = V(Gs). With this the operator can be written

as the mapping

2
−2D(4) : C−1,m({Sf ∪ Sl} × R+

t0
;R+

t0
) → C−1,m(Sf × R+

t0
;R+

t0
) (2.81)

with a sufficiently smooth state variable x(vi, t) with respect to time. The general notion of the

classification of functions in this thesis, e.g. C−1,m(Ω × R+
t0 ;R

+
t0), is discussed Appendix C.2.

Similarly

±2
0D(α) : C−1,m(S(∂Gs)× R+

t0
;R+

t0
) → C−1,m(Sl × R+

t0
;R+

t0
) (2.82)

defines an operator for the states of the boundary vertices vi ∈ Sl by using the forward the

backward FDM. For the given example the subgraph ∂Gs is illustrated at the bottom of Fig-

ure 2.9. Depending on the choice of α ∈ {1, 2} it either approximates the first derivative

in space with second order accuracy or the second derivative with order of accuracy O (Δz).

Again, appropriate parameters a(α)(vi+j) can be constructed with Table A.2.

In order to sum up the latest achievements one may recall the starting point and objective of

this section. In general the section discusses the transfer from continuum models to discrete

models for the application on MASs. This scenario starts with a given distributed parameter

system defined on some finite interval [0, N]. Related theories of infinite dimensional systems

allow to design algorithms for system stabilisation or state observation and conduct associated

stability analysis. Discretisation methods, such as FDM, approximate differential operators

and lead to (semi-)discretised PDEs. Generally, with this the systems are transformed to a set

of ODEs which estimate the continuous formulation on a predefined finite number of points.

Here, they form a subset Z of the interval [0, N]. Moreover, in this paragraph it was shown the

introduction of a formal bijective mapping φ is necessary to continue the rigorous transfer from

discrete coordinates zi ∈ Z to vertices vi ∈ V of the rendered graph G(V, E). In this context it

was worked out that the mapping characterises the vertex set V and the discretisation method

formally defines the edge set E. When particularly using a real interval for the spatial domain,

this render graphs which contain a Hamiltonian path, when the 2-step discretisation process is

applied to the family of DCRSs. Viewed from the opposite perspective the vertices of a given

graph can only be assigned with the discretised state of a DCRS when the graph is traceable.

In order to establish structural and consequently dynamic equivalence between the continuum

and discrete models the condition Δz = 1 for the discretisation step must hold. This leads to

the preliminary that the given distributed parameters system has to be defined on the interval
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[0,N − 1] with N as the number of agents. For the special case of a DS it was shown that

the largest eigenvalues of the discretised operator converge to those of the differential operator

defined on the interval [0,N− 1] as N increases. Interestingly for the DS the discrete operator

is built upon the so-called Laplacian matrix, an elementary graph theoretical construct.

Finally it can be concluded that discretisation methods, such as FDM, together with an ap-

propriate formal mapping φ forms a consistent path for the transition from continuum models

to discrete models. In this context the discrete states are associated with properties of vertices

and again, a vertex stands for an agent of a MAS. For the objective of the thesis this is a

sufficient concept to design control algorithms in continuous formulation and apply them to

a discrete set of wheeled robots. However, so far this approach does not cover the linkage

between the continuous and the discrete setup from a modelling perspective. Furthermore, the

discussion still left behind graph theoretical concepts such as the weight of an edge w(eij, t) and

it is limited to a special class of graphs. In other words, following this strategy for distributed

parameter systems with boundary conditions defined on an finite interval within the Euclidean

space always renders traceable or similar graphs, but others, e.g. trees, are not covered with

this concept. Here the definition of PDEs on very abstract mathematical objects as hinted in

Remark 2.6 seems an interesting approach. Yet, these thoughts are no objective of the thesis.

Consequently, the next section only gives an brief overview of approaches which try to mimic

operations in the field of vector analysis such as gradient, divergence, and curl on the discrete

nature of graphs. The main discussion of the next section leads to the alternative approach,

which deals with the approximation of discrete swarm dynamics by continuous formulations.

This leads to the complete opposite point of view as pictured in the current section. There-

fore, the following paragraphs especially shall link some general properties of graphs to the

continuous formulation of DCRSs.

2.2.3 Series Expansion – Transition from Discrete to Continuum

Models

Establishing calculus for and on graphs is an approach which is researched mainly by institutes

of mathematics, see an overview in [83]. Generally there are different methods to embed

differential operators on graphs. The interested reader is referred to the literature discussing

the following concepts

❼ PDEs defined on the edges [47, 48, 49],

❼ PDEs defined on the vertices [84],

❼ PDEs defined on the vertices and edges [27, 28].

However, this section mainly deals with the approximation of the (discrete) system dynamics

of a MAS by using a continuous formulation. For this, the starting point shall be a generic
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host graph G(V, E) with the vertex set V and the edge set E. Moreover, let us assume the

time-invariant weights w(eij, t) are connected to each edge. Now, for the transition from the

discrete to the continuous formulation it is necessary to define a function which introduces a

virtual variable along a path. This is followed by the definition of the function ζ : V × V →
{− ,−Δz(N− 2), . . . ,−Δz, 0,Δz, . . . ,Δz(N− 2), }

ζ(vi, vj) = (j − i)Δz , vi, vj ∈ V (2.83)

with 1 ≤ j, i ≤ N, and Δz = /(N − 1) > 0. This introduces a relative signed coordinate to

the pair of vertices vi and vj. Obviously, applying the absolute value to (2.83) features the

properties

|ζ(vi, vj)| = 0 ⇔ vi = vj ,

|ζ(vi, vj)| = |ζ(vj, vi)| , and

|ζ(vi, vk
)| ≤ |ζ(vi, vj)|+ |ζ(vj, vk

)|
(2.84)

and therefore |ζ(vi, vj)| introduces a metric. Here, the proof is omitted since it is trivial for

the preliminaries of Δz and the indices i, j. With this, note the bijective function z : V →
{0,Δz, 2Δz, . . . , }

z(vi) = ζ(v1, vi) = (i− 1)Δz = zi , v1, vi ∈ V (2.85)

which sorts the vertices in a monotonously increasing order dependent on its index i. This

motivates the change of the state variables into the form

C−1,m V× R+
t0
;R+

t0

n
x(vi, t) = x(z−1((i− 1)Δz), t) =

x̌((i − 1)Δz, t) = x̌(zi, t) ∈ (C−1,m(Z × R+
t0
;R+

t0
))n . (2.86)

with Z defined by (2.42). Since this process does not modify the state vector itself the redefini-

tion x(zi, t) := x̌(zi, t) preserves the labelling of the state. Comparing the discussion with the

function definition (2.43) the connection

z(vi) := φ−1(vi) and φ(z(vi)) = φ(zi) = vi := z−1((i− 1)Δz) , (2.87)

respectively, is obvious. As an example the change is graphically illustrated in Figure 2.10 for

a path graph with seven vertices,

Now, let us omit one step in the transfer to the continuous formulation. Assume that there

exists a classical smooth solution for the associated continuous formulation which allows to

derive the Taylor series expansion around zi. In particularly, this allows the second order

approximation of the state vector x for every z ∈ [0, ]. Formally this can be written as

x(z, t) = x(zi, t) +
∂x(zi, t)

∂z
(z − zi) +

∂2x(zi, t)

∂z2
(z − zi)

2

2
+O (z − zi)

3 (2.88)
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Figure 2.10: A path graph P7 where the state association is transformed by (2.86) from the vertices

vi = φ(zi) to the virtual communication path variable zi = z(vi).

Applying the transformation (2.86) to the protocol (2.30) with the Laplacian operator (2.22)

and consequently utilising the series expansion (2.88), then this gives the approximation

∂tx(zi, t) ≈
φ(zj)∈Nbr(i)

a
∂2x(zi, t)

∂z2
(zj − zi)

2

2
+

∂x(zi, t)

∂z
(zj − zi) + c(zi, t)x(zi, t) . (2.89)

Now, assuming the host graph G(V, E) is traceable, then with Definition 2.3 there exists a Hamil-

tonian path and consequently an isomorphic sub graph PN which is a spanning path. Finally

for PN the neighbouring vertices are φ(zj) = vj ∈ Nbr(i) = {vi+1, vi−1} and the approximation

(2.89) leads to

∂tx(zi, t) ≈ a
∂2x(zi, t)

∂z2
(Δz)2 + c(zi, t)x(zi, t) . (2.90)

With this it is obvious to interpret z as the virtual communication path variable with N discrete

and equidistant values in [0, ] and Δz as the discretisation step. As discussed in Section 2.2.2,

linking the length of the spatial domain to the number of agents N, see (2.49) and subsequently

Δz := 1, allows to compare (2.90) with the PDE of a DRS3. This illustrates, that the discrete

and continuum model can be formally exchanged at any zi = (i− 1)Δz with an error O (Δz4).

This motivates further comments on the discrete-continuous modelling relationship.

Remark 2.7. The introduction of the Taylor series formally allows to connect continuous

formulations with the discrete description of the agent dynamics when the expansion is evaluated

at the specific spatial coordinates zi. Then the linkage explicitly appoints the discrete states by

approximated continuous states, which are sufficiently smooth along the communication path

variable z. A subsequent transformation back from the discrete points zi, i = {1, . . . ,N} to the

3Assume v = 0 in (2.38a)
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continuous domain z ∈ [0, ] can be pictured as a kind of blurring process from discrete points

zi → z. For this reason the concept of continuous models is particularly suited for networks,

swarms, or MASs with a high number N of participants since the blurring distance Δz = 1 gets

relatively small compared to the length of the spatial domain = N = N− 1.

The same procedure can be applied for the boundary conditions. In this case it is convenient

to consider the generalised conditions summarised in (2.29) of Remark 2.5. Exercising a proper

redefinition of the coefficients pj, qj and rj , j ∈ {0, N} and performing a first order series

expansion one obtains

p0∂
k
t x(0, t) ≈ q0x(0, t) + r0∂zx(0, t) + u0(t) ,

p
N
∂k
t x( N, t) ≈ q

N
x( N, t) + r

N
∂zx( N, t) + u

N
(t) .

(2.91)

Again, with the appropriate choice of the parameters k ∈ N, {pj, qj, rj} ∈ R, and the external

inputs uj(t) it is possible to render the classic boundary conditions for distributed parameter

system, i.e., Dirichlet, Neumann and mixed conditions as well as the extension to dynamic

conditions,

With the results from above it is possible to derive a continuous model, e.g., a PDE formulation,

which approximates the initial discrete setup modelled by means of graph theoretical reflections.

The latter context mainly involves the vertex and edge sets. In comparison the following shall

include weights wij assigned to the edges as introduced in Remark 2.2 as well as weights ci
associated with the vertices similarly introduced in [27, 28] as vertex measures. Consequently

let us recall integrator dynamics applied to graph Laplacian control with a reaction component

again. For the follower agents this gives

∂tx(vi, t) = Lw(x)(vi, t) + c(vi, t)x(vi, t) , ∀vi ∈ Sf (2.92)

which is similar to (2.30) but an edge weighted graph Laplacian Lw(x) instead of L(x) with

the leading coefficient a. Now, let us recall the definition of the incidence matrix (2.12) and

the the evaluation formula of the weighted graph Laplacian matrix Lw(P) (2.17). With this,

consider the arbitrarily oriented N × (N − 1) incidence matrix of a path graph (Po
N) and the

(N− 1)× (N− 1) diagonal weight matrix

D(Po
N) =



1 0 0 · · · 0

−1 1 0 · · · 0

0 −1 1
. . .

...

0 0 −1
. . . 0

...
...

. . . . . . 1

0 0 · · · 0 −1


, W (EP) =


w12 0 · · · 0

0 w23
. . .

...
...

. . . . . . 0

0 · · · 0 wN−1,N

 (2.93)
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with wij = w(eij). Then the weighted graph Laplacian matrix Lw(P) is evaluated to

L(P) =



w12 −w12 0 0 · · · 0

−w12 w12 + w23 −w23 0 · · · 0

0 −w23 w23 + w34 −w34
. . .

...

0 0 −w34
. . . . . . 0

...
...

. . . . . . wN−2,N−1 + wN−1,N −wN−1,N

0 0 · · · 0 −wN−1,N wN−1,N


(2.94)

and protocol (2.92) leads to

∂tx(v1, t) = w12(x(v2, t)− x(v1, t))

∂tx(vi, t) = wi,i+1x(vi+1, t)− (wi,i+1 + wi−1,i − c(vi, t)) x(vi, t) + wi−1,ix(vi−1, t)

∂tx(v N
, t) = wN−1,N(x(vN−1, t)− x(vN, t)) .

(2.95)

Comparing the pattern with the equations of the semi-discretised DCRS (2.50) by second error

order FDM then coefficients can be mapped by

a
!
=

wi,i+1 + wi−1,i

2
= w̄i−1,i+1 ,

v
!
= − (wi,i+1 − wi−1,i) = −Δwi−1,i+1 ,

r(vi, t)
!
= c(vi, t)

(2.96)

Obviously the reaction term coefficient r is directly mapped to the vertex weight c(vi, t). Note,

if c(vi, t) > 0 it can be labelled as a source and for c(vi, t) < 0 it shall be named as a sink vertex.

Moreover, since a and v are formulated as constants in (2.50) for this case the conditions above

are only fulfilled for constant weights, meaning wi,i+1 = w = a, i = 1, . . .N − 1, and v = 0.

However, allowing vertex dependent coefficients the diffusion coefficient a(vi) is mapped to the

mean value of the involved weights and the convection coefficient v(vi) to the difference of

the weights. This coincides pretty well with the definition of the so-called directional derivative

Dw,vj of a function and the related w−Laplacian operator ∇w in [83, 84]. There these operators

are defined as

Dw,vj(x)(vi, t) := (x(vj, t)− x(vi, t))
w(eij, t)

dw(vi, t)
(2.97)

∇w(x)(vi, t) :=
vj∈Nbr(i)

(x(vj, t)− x(vi, t))
w(eij, t)

dw(vi, t)
(2.98)

The degree dw(vi, t) is defined as the summed weights vj∈Nbr(i)w(eij, t). Assuming a path

graph and inserting the series approximation (2.88) into the (vi → zi)− transformed operator
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(2.98) then it can be written as

∇w(x)(zi, t) ≈ 1

2

∂2x(zi, t)

∂z2
+

∂x(zi, t)

∂z

w(ei,i+1, t)

dw(vi, t)

+
1

2

∂2x(zi, t)

∂z2
− ∂x(zi, t)

∂z

w(ei−1,i, t)

dw(vi, t)

=
1

2

∂2x(zi, t)

∂z2
+

w(eii+1, t)− w(ei−1,i, t)

w(eii+1, t) + w(ei−1,i, t)

∂x(zi, t)

∂z

(2.99)

where Δz = 1 is considered. With this ∇w(x) can be interpreted as the weight normalised

graph Laplacian operator.

These expositions finalise the discussion for the transfer from a discrete setup to the a continuous

modelling approach. Here, the first key element is the transformation from vertices vi to discrete

spatial coordinates zi as introduced in (2.86). Moreover, the introduction of the Taylor series

expansion allows to approximate the discrete setup by means of a continuous formulation

which coincides at z = zi with certain error order accuracy. Last but not least, in this work

a rigorous transfer to a continuous spatial domain is described a thought experiment without

any mathematical considerations. One has to undergo a kind of blurring process to move from

discrete points zi ∈ Z, with Z defined in (2.42) to a continuous spatial domain [0, N]. Thus, the

next paragraphs motivate the so-called inverse design approach which basically starts already

with the continuous formulation.

2.3 Inverse Design Approach

The previous two sections confirm that there is an equivalence between dynamic models of MASs

with discrete nature and the models of distributed parameter systems described by PDEs under

suitable assumptions. In general the modelling process follows abstraction steps from a network

consisting of a number of agents to a mathematical representation in from of state variables.

These stand for the features of the agents. The formal structure of the interaction between

the agents and their dynamical behaviour is usually expressed by differential equations. The

continuous model approach adds a further abstraction step since it results in a mathematical

representation which is technically independent of the communication topology and the number

of agents. However, it must be said that the structure of the network is limited when explicit

discretisation methods apply. At the beginning of Section 2.2 the early and late lumping

approaches were briefly discussed in terms of the consecutive modelling and control design steps.

Apparently the investigated modelling procedure is the reverse of the early lumping approach

in traditional control theory for DPSs. More precisely, in this work a MAS consisting of a

discrete number of states is approximated by a continuous formulation, but the early lumping

approach approximates continuum models by using discretisation methods. In contrast to that,

the controller or observer synthesis for MASs which are modelled by continuous formulations

can be represented as the process illustrated in Figure 2.11. Interestingly, this design concept
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Figure 2.11: Concept of the inverse design approach: Starting with a continuous modelling approach,

followed by controller and observer design and synthesis. As a last step the developed algorithms are

discretised and applied to the MAS.

follows exactly the late lumping policy. With this insight it is understandable to step back

from the sophisticated abstraction process. For networks without a-priori given protocols it is

possible to impose a certain desired behaviour instead by assigned an appropriate PDE model.

The subsequently proposed inverse design approach instantly introduces a continuous model

for the MAS in form of a distributed parameter system with inherent boundary conditions and

proper initial conditions. The determination induces both, the dynamic model of the agents

with respect to time as well as the input protocol, cf. (2.19) and (2.22). Though the continuous

set-up does not schedule any type of communication topology. For instance, considering a

swarm of wheeled robots the commitment to model the swarm dynamics in the 2-dimensional

(2D) plane by means of the parabolic partial differential equation

∂x(z, t)

∂t
= a

∂2x(z, t)

∂z2
+ b

∂x(z, t)

∂z
+ cx(z, t) , z ∈ (0, N) , (2.100)

with dynamic inhomogeneous boundary conditions

∂x(0, t)

∂t
= u0(t) ,

∂x( N, t)

∂t
= u

N
(t) ,

(2.101)

and x(z, t0) = x0(z) induces a simple integrator model for the temporal dynamics of each

single agent, including the leader and the anchor agent at the boundaries. According to the

established input protocol the spatial dynamics of the swarm behaves equivalent to a physical

DCRS. However, in general any type of partial differential equation may be considered for each

coordinate xm(z, t) ,m = 1 . . . n of the state vector

x(z, t) = x1(z, t), x2(z, t), . . . , xn(z, t)
T

(2.102)

individually. Moreover they may be coupled systems or may be de-coupled from each other.

Recalling the MAS example of wheeled robots in the 2D plane (n = 2) the left-hand side

of (2.100) and (2.101) represents the velocity in each coordinate of the follower agents and
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the leader agents, respectively. The input protocol on the right-hand side is modelled by a

decoupled system, meaning that the spatial dynamics of one coordinate xm(z, t) is completely

independent from the other coordinates xp(z, t) with m = p.

In this thesis the discussion focuses exclusively on parabolic distributed parameter systems

for both the uncoupled system as well as some particular cases with coupled representations.

Consequently, the following chapter deals with the problem formulation of continuous models

for MAS of both types. It starts with a short classification of the parabolic type of PDE and is

followed by a very generic ansatz of the problem formulation. With this, some specific models

are derived for both, coupled and uncoupled systems.
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Chapter 3

Continuous Problem Formulation for

Multi-Agent Dynamics

The previous chapter motivates to use continuous models in order to describe the dynamic

behaviour of swarms or MASs. It gives an introduction to some preliminary graph theoretical

aspects and shows step by step the existence of equivalent patterns between a discrete mathe-

matical description in form of a set coupled ODEs and the approximation by using continuous

models of DPSs. Therefore the following paragraphs introduce parabolic partial differential

equations for the abstraction and the modelling of MA dynamics. Starting with a brief classifi-

cation of the parabolic type of PDE the chapter works out some particular problems for both,

coupled systems limited to specific properties as well as uncoupled systems.

3.1 Parabolic Partial Differential Equations

Note, the following discussion is based on an elaboration in [57]. Generally the classification

of partial differential equation is important to characterise their dynamic behaviour in view

of suitable control and observer design concepts. For studying the classification of distributed

parameter systems let us consider the semi-linear PDE of second order, i.e.,

a11(z, t)
∂2x(z, t)

∂z2
+ 2a12(z, t)

∂2x(z, t)

∂z∂t
+ a22(z, t)

∂2x(z, t)

∂t2
+ b1

∂x(z, t)

∂z
+ b2

∂x(z, t)

∂t

+ f(z, t, x(z, t)) = 0

(3.1)

with the independent spatial coordinate z and temporal coordinate t. The task to find a

solution x(z, t) of (3.1) that satisfies certain conditions given on a curve on the (z, t)-surface is

known in literature as the Cauchy problem. Assuming the solution x(z, t) with regular values

of ∂x(z, t)/∂t and ∂x(z, t)/∂z on the curve Γ : (z, t) = (α(s), β(s)), s ∈ R, starts with initial

values according to the functions

x(z, t)|Γ = h(s),
∂x(z, t)

∂z Γ

= ψ(s),
∂x(z, t)

∂t Γ

= φ(s) , (3.2)
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then the total differentials reads

dh(s) =
∂x(z, t)

∂z
dz +

∂x(z, t)

∂t
dt = ψ(s)dz + φ(s)dt , (3.3)

dψ(s) =
∂2x(z, t)

∂z2
dz +

∂2x(z, t)

∂t∂z
dt ,

dφ(s) =
∂2x(z, t)

∂z∂t
dt+

∂2x(z, t)

∂t2
dz .

(3.4)

Here (3.3) expresses the obvious condition that only two of three functions (3.2) can be assigned

independently. Considering (3.4) a solution x(z, t) of (3.1) on the curve (3.2) has to fulfil the

set of equations
a11(z, t) 2a12(z, t) a22(z, t)

dz dt 0

0 dz dt


=:A


∂2x(z,t)

∂z2

∂2x(z,t)
∂t∂z

∂2x(z,t)
∂t2

 =


−b1

∂x(z,t)
∂z

− b2
∂x(z,t)

∂t
− f(z, t)x(z, t)

dψ(s)

dφ(s)

 (3.5)

and the solution is unique if the determinant of A satisfies det(A) = 0. More precisely det(A) =

a11(z, t)dz
2 − 2a12(z, t)dzdt + a22(z, t)dt

2 = 0 defines the conditional equation of the so-called

characteristic curve

dt

dz
=

a12(z, t)± a212(z, t)− a11(z, t) .a22(z, t)

a11(z, t)
(3.6)

With a212(z, t)−a11(z, t)a22(z, t) = 0 and b2(z, t) = 0 the partial differential equations is known as

parabolic. Obviously (3.1) can always be classified as parabolic in case of a22(z, t) = a12(z, t) =

0. In the upcoming section the problem formulation starts with a generic parabolic arrangement

and is subsequently specified to certain problems which are further investigated for formation

control of MASs.

3.1.1 General Continuous Problem Formulation using Parabolic

Partial Differential Equations

A generic formulation of a parabolic partial differential equation is given by

∂x(z, t)

∂t
=D(z)

∂2x(z, t)

∂z2
− ∂ [V (z, t,x)x(z, t)]

∂z
+ r(z, t,x), (z, t) ∈ Ω( N, t0) (3.7)

with Ω( N, t0) := (0, N) × R+
t0 and the state vector x(z, t) = [x1(z, t), x2(z, t), . . . , xn(z, t)]T ,

n ≥ 1 as the number of coordinates, and the initial condition

x(z, t0) = x0(z) . (3.8)

The inhomogeneous or dynamic boundary conditions

φ1(t,x(0, t), ∂zx(0, t), ∂tx(0, t)) = u0(t) ,

φ2(t,x( N, t), ∂zx( N, t), ∂tx( N, t)) = u
N
(t) ,

t > t0 (3.9)
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respectively, define how boundary control inputs uj(t) = [u1
j(t), u

2
j(t), . . . , u

n
j (t)]

T , j = 0, N,

for the n coordinates enter the system. The diagonal matrix D(z) defined as

D(z) =


d1(z) 0 · · · 0

0 d2(z) · · · 0
...

...
. . .

...

0 0 · · · dn(z)

 (3.10)

stands for the diffusion coefficients and the matrix V (z, t,x) defines the convective contribu-

tion. The term r(z, t,x) can be interpreted as a distributed reaction process. Let us assume

that x∗(z, t) with its proper initial state x∗(z, t0) is a trajectory of (3.7) for the boundary

inputs u0(t) = u∗
0(t) and u

N
(t) = u∗

N
(t). Moreover ∂zx

∗(z, t) is the corresponding deriva-

tive with respect to z. Then the linearisation of the NL problem (3.7) around the trajectory

{x∗(z, t),u∗
0(t),u

∗
N
(t)} gives the LTV parabolic differential equation

∂Δx(z, t)

∂t
=A(z)

∂2Δx(z, t)

∂z2
− V (z, t,x∗)

∂Δx(z, t)

∂z

+ R(z, t,x∗)− Ṽ (z, t,x∗, ∂zx
∗) Δx(z, t) ,

(3.11)

for the domain (z, t) ∈ Ω( N, t0) and Δx(z, t) = x(z, t)− x∗(z, t). Its initial state is

Δx(z, t0) = x0(z)− x∗(z, t0) (3.12)

and the coefficient matrices are given by

A(z) = D(z) ,

R(z, t,x∗) =
∂r(z, t,x)

∂x x=x∗
, and

Ṽ (z, t,x∗, ∂zx
∗) =

∂V (z, t,x)

∂z
+

∂

∂x

∂V (z, t,x)

∂z
· x∗(z, t)

+
∂

∂x
(V (z, t,x)) · ∂x

∗(z, t)
∂z x=x∗

.

(3.13)

The linearised boundary conditions follow to

Λ1(t)Δx(0, t) + Λ1
z(t)∂zΔx(0, t) + Λ1

t (t)∂tΔx(0, t) = Δu0(t) ,

Λ2(t)Δx( N, t) + Λ2
z(t)∂zΔx( N, t) + Λ2

t (t)∂tΔx( N, t) = Δu
N
(t) ,

(3.14)

with the coefficient matrices

Λj(t) =
∂φj

∂x
(t,x(z, t), ∂zx(z, t), ∂tx(z, t)) x=x∗

∂zx=∂zx
∗

∂tx=∂tx
∗

,

Λj
z(t) =

∂φj

∂(∂zx)
(t,x(z, t), ∂zx(z, t), ∂tx(z, t)) x=x∗

∂zx=∂zx
∗

∂tx=∂tx
∗

,

Λj
t(t) =

∂φj

∂(∂tx)
(t,x(z, t), ∂zx(z, t), ∂tx(z, t)) x=x∗

∂zx=∂zx
∗

∂tx=∂tx
∗

,

z ∈ {0, N} (3.15)
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and the inputs

Δuj(t) = uj(t)− u∗
j(t) (3.16)

for j = {0, N}. Depending on the choice of V and r the generic problem formulation (3.7) can

be reduced to the following families of parabolic PDEs, which are frequently examined in this

work. It should be noted that the real time application to be considered later is a swarm of

wheeled robots which operate in 2D domain described by x1− and x2− positions. Consequently,

but without loss of generality the dimension of the state vector is n = 2 and the associated

coefficients matrices are of 2× 2.

Linear, Time-variant Diffusion-Convection-Reaction System

With the assumptions V (z, t,x) = B(z, t), r(z, t,x) = [C(z, t) + ∂zB(z, t)]x(z, t), and a con-

stant diffusion coefficient matrix D(z) = A the PDE (3.7) can be reduced to the linear DCRS

∂x(z, t)

∂t
=A

∂2x(z, t)

∂z2
− B(z, t)

∂x(z, t)

∂z
+ C(z, t)x(z, t), (z, t) ∈ Ω( N, t0) (3.17)

defined on a 1-dimensional spatial domain z with initial state according to (3.8) and linear

boundary conditions equivalently to (3.14).

Assuming B(z, t) = diag [(b11(z, t), · · · , bnn(z, t)] to be diagonal (3.17) can be transformed into a

new system to eliminate the convection term B(z, t)∂zx(z, t). A coordinate change by following

the so-called Hopf-Cole state transformation

x(z, t) → χ(z, t) := T−1(z, t)x(z, t) , with T (z, t) = exp (Λ(z, t))

and Λ(z, t) = A−1
z

0

B(s, t)

2
ds ,

(3.18)

transforms the distributed parameters system (3.25) into the coupled linear, time-variant

Diffusion-Reaction-System (DR)

∂χ(z, t)

∂t
= A

∂2χ(z, t)

∂z2
+ Γ(z, t)χ(z, t) (3.19)

with the transformed coefficient matrix of the reaction term

Γ(z, t) = T−1(z, t)C(z, t)T (z, t)− A(∂zΛ(z, t))
2 + A∂2

zΛ(z, t)− ∂tΛ(z, t). (3.20)

Remark 3.8. Note, that a constant matrix B̄ = diag [b11, b22] leads to a transformation matrix

T (z) which only evolves in space, i.e.,

T (z) = exp (Λ(z)) = exp
1

2
A−1B̄z . (3.21)

Consequently, in this case a constant coefficient matrix C(z, t) := C̄ is transformed into the

spatially varying matrix Γ(z) = T−1(z)C̄T (z)− B̄A−1B̄/4.
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Modified, Viscous Burgers’ Equation

With V (z, t,x) = B(z, t)X(z, t)/2, where X is defined as the state matrix in diagonal form

X(z, t) := diag [x(z, t)] =


x1(z, t) 0 · · · 0

0 x2(z, t) · · · 0
...

...
. . .

...

0 0 · · · xn(z, t)

 , (3.22)

r(z, t,x) = [C(z, t) + ∂zB(z, t)X(z, t)/2]x(z, t), and the constant diagonal matrix D(z) = A,

then (3.7) yields the MVBE

∂x(z, t)

∂t
=A

∂2x(z, t)

∂z2
− B(z, t)X(z, t)

∂x(z, t)

∂z
+ C(z, t)x(z, t), (z, t) ∈ Ω( N, t0).

(3.23)

with the coefficient matrix B(z, t) for the non-linear term X(z, t)∂zx(z, t). Note that

∂zX(z, t)x(z, t) = X(z, t)∂zx(z, t) holds true. Again, the initial and boundary conditions

can be written in a very generic way as defined in (3.8) and (3.9). The linearisation according

to (3.11) applied to the Burgers’ equation (BE) results in

∂Δx(z, t)

∂t
= A

∂2Δx(z, t)

∂z2
− B(z, t)X∗(z, t)

∂Δx(z, t)

∂z

+ (C(z, t)− B(z, t)∂zX
∗(z, t))Δx(z, t) , (3.24)

with the state vector Δx(z, t) = x(z, t) − x∗(z, t), its proper initial state Δx(z, t0) defined in

(3.14), and the linear boundary conditions in accordance with the equations (3.14) −(3.16).

Remark 3.9. Note, the linearisation of (3.23) around a desired trajectory leads to a coupled

DCRS (3.17) with coefficient matrices for the convection and reaction term which evolve in space

and time. This applies even for constant B(z, t) := B̄ and C(z, t) := C̄. In case of diagonal

B(z, t) (3.24) can be simplified to the coupled linear, time-variant DRS (3.19) by making use of

the Hopf-Cole transformation.

In the following some properties on the system matrices A, B(z, t), and C(z, t) of the derived

distributed parameters systems have to be considered for further proceedings such as stability

analysis, steady states and control theoretical design concepts.

Assumption 3.1. The parameter matrices A, B, and C in (3.17), and (3.23) shall satisfy the

following conditions:

(i). The entries aii, i = 1 . . . n of the diagonal diffusion matrix A are positive constants.

Moreover, they are bounded with ā and a, and shall be arranged in descending order

according to ∞ > ā > a11 > a22 > · · · > ann > a > 0.
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(ii). The parameter coefficient matrix B of the convection term in (3.17) and of the semi-linear

term in (3.23) shall be in CG1,αB Ω N, t0 ;Rn×n for αB ∈ [1, 2]. Moreover, assume

ν ∈ Rn with ν 2 = 1 then B shall either fulfil νTB(z, t)ν ≥ 0 or νTB(z, t)ν ≤ 0 over

the entire domain (z, t) ∈ Ω( N, t0).

(iii). The reaction parameter matrix C shall have elements of CG0,αC Ω N, t0 ;Rn×n for

αC ∈ [1, 2].

Note, for the appropriate formulation of the function classes with two variables see Defini-

tion 3.12 in Appendix C.2.

Remark 3.10. Assuming A, B, and C in (3.17)-(3.23) as diagonal matrices leads to a simpli-

fied problem formulation, where the PDE of each state coordinate xi(z, t) is completely indepen-

dent of all other coordinates xj(z, t), with j = i. In other words the MA dynamics is uncoupled

in each state coordinate xi(z, t).

Remark 3.11. In this work the analysis of the MA dynamics is focused on the 2-dimensional

plane, which represents, e.g., a swarm of wheeled robots, a fleet of unmanned ground vehicles, or

other objects or distributed processes which can be characterized by a 2-dimensional (2D) state

vector x(z, t). As a consequence, though without loss of generality, the number of coordinates

is set to n = 2. Furthermore, if no other statement is present it is assumed that x(z, t) ∈
L2 Ω N, t0 ;R2 .

The following paragraph deals with continuous problem formulation when the state coordinates

xi are independent of each other as hinted in Remark 3.10). In this case the MA dynamics may

be represented by a scalar-valued distributed parameter system for each coordinate i.

3.1.2 Scalar Continuous Problem Formulation using Parabolic Par-

tial Differential Equations

For the sake of completeness and for a comprehensive clarification of the nomenclature the

problem formulations derived in Section 3.1.1 are presented for the scalar state x in the following

paragraphs.

Scalar Linear, Time-variant Diffusion-Convection-Reaction System

From (3.17) the uncoupled, and hence, scalar-valued DCRS can be written as

∂x(z, t)

∂t
= a

∂2x(z, t)

∂z2
− b(z, t)

∂x(z, t)

∂z
+ c(z, t)x(z, t) , (z, t) ∈ Ω( N, t0). (3.25)

This structure always can be reduced to a simpler form by eliminating the convection term

b(z, t)∂zx(z, t). A coordinate change by following the Hopf-Cole state transformation

x(z, t) → χ(z, t) := exp (−λ(z, t))x(z, t) and λ(z, t) =
z

0

b(s, t)

2a
ds (3.26)
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transforms the distributed parameters system (3.25) into the linear, time-variant DRS

∂χ(z, t)

∂t
= a

∂2χ(z, t)

∂z2
+ γ(z, t)χ(z, t) (3.27)

with the transformed coefficient of the reaction term

γ(z, t) = c(z, t)− a(∂zλ(z, t))
2 + a∂2

zλ(z, t)− ∂tλ(z, t). (3.28)

Scalar Modified, Viscous Burgers’ Equation

The scalar-valued formulation of the semi-linear viscous Burgers Equation can be deduced from

(3.23) as

∂x(z, t)

∂t
= a

∂2x(z, t)

∂z2
− b(z, t)x(z, t)

∂x(z, t)

∂z
+ c(z, t)x(z, t) , (z, t) ∈ Ω( N, t0) (3.29)

Especially for the formulation of tracking control problems it is necessary to derive the lineari-

sation of this type of non-linear distributed parameters system around a desired trajectory x∗

and its derivative ∂tx
∗. With this and the introduction of the state Δx(z, t) = x(z, t)− x∗(z, t)

the linearisation of the modified viscous Burgers’ equation leads to a DCRS of the form

∂Δx(z, t)

∂t
= a

∂2Δx(z, t)

∂z2
− β(z, t)

∂Δx(z, t)

∂z
+ γ(z, t)Δx(z, t) , (3.30)

which is equivalent to (3.25). The yielding parameter coefficients comply with

β(z, t) = b(z, t)x∗(z, t) ,

γ(z, t) = c(z, t)− b(z, t)∂zx
∗(z, t) .

(3.31)

Obviously, recalling the discussion from above the linearised system (3.30) can be reduced to a

DRS by utilizing the Hopf-Cole transformation (3.26).

3.1.3 Boundary Control

The generic BCs φ1 and φ2 in equation (3.9) define the control inputs uj(t) = [u1
j(t), u

2
j(t), . . . ,

un
j (t)]

T , j = 0, N of the MA dynamics for all n ≥ 1 coordinates. In the following the control

inputs ui
0 and ui

N
of each coordinate are assumed to depend only on the state xi and its

derivatives with respect to t or z of the same coordinate i. They shall be independent of all

other states xj or their derivatives ∂zx
j and ∂tx

j, respectively, for coordinates j = i. As a

consequence, it sufficient to proceed with the boundary condition of one single coordinate i.

For simplicity the index i is neglected in the further statements. Moreover, for controller design

of MASs especially the commonly known Dirichlet BC as well as dynamic BCs are well suited,

and hence, discussed in the following paragraph.
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Dirichlet Boundary Conditions

Introducing Dirichlet BCs, i.e,

x(0, t) = u0(t), x( N, t) = u
N
(t) (3.32)

implies that the control inputs enforce a certain state of the agents, which are located at the

boundaries of the virtual communication path z ∈ {0, N}. In the sense of a mobile agent, e.g.,

a wheel-based robot, this means that the control inputs impose a certain position x(0, t) and

x( N, t) of the boundary agents.

Obviously this defines a different dynamical behaviour compared to the dynamics of the other

agents along z ∈ (0, N). The latter are modelled as integrators, i.e., generally defined by the

left-hand side of equation (3.7). The integrators are characterised by the right-hand side of

the parabolic PDE, e.g., the uncoupled DCRS (3.25). The approach to standardise or, e.g., to

mimic Laplacian control the dynamics of the boundary agents at z = 0 and z = N with the

dynamical behaviour of all other agents along z ∈ (0, N), leads to dynamic BCs.

Dynamic Boundary Conditions

As encouraged above, the choice of dynamic boundary conditions, defined as

∂tx(0, t) = u0(t), ∂tx( N, t) = u
N
(t) , (3.33)

harmonises the dynamics of all agents along the communication path z ∈ [0, N]. In this case

all agents are modelled as integrators. Particularly in (3.33) the control inputs are assigned

to the integrator models of the boundary agents at z = {0, N}. Pragmatically speaking, this

means that the protocol and the control inputs impose a request which is set equal to time

derivative ∂tx of the agent continuum. From a physical point of view the control input signal

is equivalent to a requested velocity v(z, t) = ∂tx(z, t) of the agents.

3.2 Formation Profiles with Constant Model Parameters

A formation or formation profile of a MAS is defined as a certain arrangement or a specific

state of equilibrium of the agents. In context of mobile wheeled robots a formation is a desired

deployment of the robots in the 2D space. As a consequence, this demands the steady state

solutions for1 t ≥ t̄, with some t̄ ∈ R+
t0 , of the investigated continuous models. Subsequently,

the evaluation of desired formation profiles is discussed for the coupled and uncoupled DCRS

and MVBE, respectively. The stationary perspective demands ∂tx
i(z, t)

!
= 0 with constant

model parameters for t ≥ t̄, which results in boundary value problems of ordinary differential

1This covers a stationary starting profile which requires t ≤ t0 as well. Just assume a theoretically reversed

timeline, i.e. t → −t, and t̄ = t0.
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equations. The choice of model parameters combined with the set-up of the boundary values

define the steady state solutions of the underlying dynamic models. Hence, the coefficients of

the PDE and its boundary values can be used to design desired shapes for formation control.

The following sections deal with solutions of the stationary problems for the class of PDE

discussed above with constant coefficients.

Steady States of the Coupled Diffusion-Convection-Reaction System

The stationary problem of the linear, time-variant DCRS defined in Section 3.1.1 but with

constant coefficient matrices can be written as

A∂2
z x̄(z)− B̄∂zx̄(z) + C̄x̄(z) = 02 , x̄(z) = x̄1(z) x̄2(z)

T
(3.34a)

and the boundary conditions may be chosen by

x̄(0) = x̄a , x̄( N) = x̄l . (3.34b)

At this stage it is pointed out that even for dynamic BCs the boundary values are imposed by

the couple {x̄a, x̄l} according to (3.34b) since they directly influence the steady solution and

consequently the formation profile. Moreover, it is assumed that the coefficient matrix A for

the diffusion term is positive definite and the coefficients of the matrices of the convection and

reaction term are independent of the spatial domain z and set constant to C̄ := C(z, t) and

B̄ := B(z, t) for t ≥ t̄. Therefore, they have the following structure

A =
a11 0

0 a22
, B̄ =

b11 b12

b21 b22
, and C̄ =

c11 c12

c21 c22
. (3.35)

Let us introduce the state vector

ȳ(z) =
ȳ1(z)

ȳ2(z)
=

x̄(z)

∂zx̄(z)
(3.36)

and substitute it into the stationary equation (3.34a). Then it can be written as the system of

linear ODEs of first order

I2 0

0 A

Λ

∂zȳ1(z)

∂zȳ2(z)
=

02,2 I2
−C̄ B̄

M

ȳ1(z)

ȳ2(z)
(3.37)

with Λ,M ∈ R4×4. With this, let us formulate the algebraic eigenvalue problem for the matrix

M̄ = Λ−1M as

(νΛ−M)v =


ν 0 −1 0

0 ν 0 −1

c11 c12 a11ν − b11 −b12

c21 c22 −b21 a22ν − b22

v = 04 (3.38)
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with the eigenvalue ν and its corresponding eigenvector v. Assuming l ≤ 4 disjunct eigenvalues

νj, with equal algebraic and geometric multiplicity µj,
l
j=1 = µj = 4, then the eigenvectors

vjk = v1jk , v
2
jk
, v3jk , v

4
jk

T
, k = 1 . . . µj, j = 1 . . . l are linearly independent and provide an

eigenbasis for R4. Then the general solution of the system of first order ODEs can be written

as

ȳ(z) =
l

j=1

vj1 + vj2z + · · ·+ vjµj
zµj−1 exp(νjz) . (3.39)

Considering (3.36) and relabelling the first two entries of vjk according to

κjk =
κ1
jk

κ2
jk

=
v1jk
v2jk

, (3.40)

the general solution of the initial problem (3.34) has the same structure as (3.39), i.e.,

x̄(z) =
l

j=1

κj1 + κj2z + · · ·+ κjµj
zµj−1 exp(νjz) . (3.41)

With this, the eigenvalues νj can be determined as the four roots of the characteristic polynomial

p4ν
4 + p3ν

3 + p2ν
2 + p1ν + p0 = 0 , (3.42)

which follows from the determinate of the 2× 2 block matrix [79]

det(νΛ−M) = det
νI2 −I2
C̄ νA− B̄

= det(ν2A− νB̄ + C̄)

= (a11(ν2)− b11ν + c11)(a22(ν2)− b22ν + c22)− (b12ν − c12)(b21ν − c21)
!
= 0 . (3.43)

In (3.42) the coefficients pm, m = 0, . . . , 4 are given by

p4 = a11a22 ,

p3 = −a22b11 − a11b22 ,

p2 = b11b22 − b12b21 + a11c22 + a22c11 ,

p1 = −b11c22 − b22c11 + b12c21 + b21c12 ,

p0 = c11c22 − c12c21 .

(3.44)

Remark 3.12. In the following the discussion is focused on parameter combinations for the

matrices (3.35) which lead to l = 4 disjunct eigenvalues νj for the matrix M̄ , i.e, each eigenvalue

shall have single algebraic multiplicity µj = 1. For the sake of simplicity the subscript k is

neglected for the eigenvectors vj = vj1 and consequently κj = κj1 with j = 1 . . . 4.

Taking Remark 3.12 into account the characteristic equation (3.42) has four disjunct solu-

tions j = 1, ..., 4 which are either real-valued νj ∈ R or appear as conjugated complex pairs
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{νj, ν∗
j } ∈ C. In this case each eigenvalue νj and its corresponding eigenvector vj provide a

fundamental solution ȳj(z) = vj exp(νjz) for (3.37). With this, the general solution (3.41) for

the boundary problem (3.34) can be expressed as

x̄(z) =
4

j=1

κj exp(νjz) . (3.45)

The determination of κj, j = 1, . . . , 4, of dimension 2 require the consideration of the eigenvalue

problem (3.38) and the boundary values (3.34b). Substituting the eigenvalues νj into (3.38)

and considering (3.40) one can derive the dependencies

κ2
j =

a11(νj)
2 − b11νj + c11

b12νj − c12
κ1
j = f(νj)κ

1
j , with b12νj − c12 = 0 , or (3.46)

κ1
j =

a22(νj)
2 − b22νj + c22

b21νj − c21
κ2
j = g(νj)κ

2
j , with b21νj − c21 = 0 , (3.47)

respectively, between the components of each vector κj. As a consequence this motivates the

ansatz

κj = κ1
j

1

f(νj)
= κ2

j

g(νj)

1
j = 1 . . . 4 . (3.48)

The remaining scaling of the vectors can be determined from the boundary conditions (3.34b)

which provide the equations

x̄a = κ1 + κ2 + κ3 + κ4

x̄l = κ1 exp(ν1 N) + κ2 exp(ν2 N) + κ2 exp(ν3 N) + κ4 exp(ν4 N) .
(3.49)

This leads to the inhomogeneous system of algebraic equations
x̄1
a

x̄2
a

x̄1
l

x̄2
l

 =


1 1 1 1

f(ν1) f(ν2) f(ν3) f(ν4)

exp(ν1 N) exp(ν2 N) exp(ν3 N) exp(ν4 N)

f(ν1) exp(ν1 N) f(ν2) exp(ν2 N) f(ν3) exp(ν3 N) f(ν4) exp(ν4 N)


M


κ1
1

κ1
2

κ1
3

κ1
4

 .

(3.50)

Since f(νj) and g(νj) are non-linear for a positive definite coefficient matrix A and νj are

assumed to be disjoint, see Remark 3.12, the coefficient matrix is regular2. Consequently, let

the boundary values x̄a and x̄l be chosen appropriately so that they satisfy

rank(M) = rank M x̄a

x̄l

= 4 . (3.51)

Then there exists a unique solution for [κ1
1 κ

1
2 κ

1
3 κ

1
4]

T
. Further investigations and explicit deriva-

tions of steady state profiles are summarised in Appendix B.1.

2The first three lines of M are obviously linear independent. The fourth line is surly no linear combination

of the first three lines. Similar thoughts apply to the columns.
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Steady States of the Scalar Diffusion-Convection-Reaction System

The discussion of steady states for uncoupled, i.e., scalar parabolic systems can be found, e.g.,

in [30]. Therefore the following paragraphs shall give an comprehensive summary.

The model equation of an scalar DCRS as introduced in Section 3.1.2 can be evaluated for the

stationary case equivalent to the discussion before. This leads to

a∂2
z x̄(z)− b̄∂zx̄(z) + c̄x̄(z) = 0 , (3.52)

with positive diffusion coefficient a > 0 as well as constant parameter b̄ := b(z, t) and c̄ := c(z, t)

for some t ≥ t̄. Moreover, boundary conditions of the form

x̄(0) = x̄a , x̄( N) = x̄l (3.53)

are necessary to compute a unique solution for (3.52). The ansatz with exponential eigenfunc-

tions φ(z) = κ exp(νz) yields the generic analytic solution

x̄(z) = κ1 exp(ν1z) + κ2 exp(ν2z) (3.54)

with generally complex (conjugate) parameters κj and νj. Considering the eigenfunction φ and

utilising ∂k
zφ(z) = νkφ(z), k = 1, 2 the characteristic equation of (3.52) can be written as

aν2 − b̄ν + c̄ = 0 , (3.55)

which is satisfied by the two solutions

ν1,2 =
b̄

2a
± b̄2

4a2
− c̄

a
=

b̄

2a
± ı

√
γ̄

2a
. (3.56)

Respecting a > 0 different cases have to be distinguished depending on the sign of the term

γ̄ = 4ac̄− b̄2. When the expression is positive, i.e., γ̄ > 0, the two solutions ν1,2 form a complex

conjugated pair and the ansatz (3.54) can be written as

x̄(z) = κ1 exp(ν1z) + κ∗
1 exp(ν

∗
1z) = exp (σz) (kc cos(µz) + ks sin(µz)) (3.57)

with the parameters κ1 = (kc − ıks)/2, κ2 = κ∗
1, and ν1,2 = σ ± ıµ with σ = b̄/(2a) and

µ =
√
γ̄/(2a). In case of γ̄ < 0 the solutions (3.56) of the characteristic equation are real

valued and satisfy ν1,2 = σ±µ. Redefining the constants κ1 = (kc + ks)/2 and κ2 = (kc − ks)/2

yields

x̄(z) =
1

2
(kc + ks) exp(ν1z) +

1

2
(kc − ks) exp(ν2z) = exp(σz)(kc cosh(µz) + ks sinh(µz)) .

(3.58)

For the special case γ̄ = 0 and consequently ν1,2 = σ = b̄/(2a) the ansatz

x̄(z) = exp(σz) (k0 + k1z) (3.59)

is applicable. The choice of boundary conditions defined in (3.53) renders a system of two

conditional equations for the coefficients kc and ks, or k0 and k1, respectively. Their further

analysis is carried out in Appendix B.2.
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(a) Line formation.

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x̄1(z)
x̄
2
(z
)

(b) Circle formation.

Figure 3.1: Examples of (normalised) formation profiles for the uncoupled DRS. The plots show a

simple line formation in (a) and a circular profile in (b).

Remark 3.13. Recalling the investigations on the equivalence between the scalar DCRS and the

scalar DRS of the form (3.25) and (3.27), respectively the same correspondence may be applied

for the steady states. The determination of a steady state solution for (3.52) is equivalent to

problem

a∂2
z χ̄(z) + γ̄χ̄(z) = 0 ,

χ̄(0) = x̄a ,

χ̄( N) = exp (−σ N)x̄l .

(3.60)

where γ̄ is exactly the transformed reaction term coefficient (3.28) when all parameters are

chosen to be constant. Moreover, the term exp(σz) represents the Hopf-Cole-transformation

(3.26) with the correspondence x̄(z) = exp (σz)χ̄(z). Therefore the ansatz for the steady state

solution of (3.60) is given by

χ̄(z) = exp (−σz) (κ1 exp(ν1z) + κ2 exp(ν2z)) = κ1 exp(ıµz) + κ2 exp(−ıµz) (3.61)

As an example a simple line formation and a circular profile are pictured in Figure 3.1. The

line formation follows from the ansatz (3.59) for each of both coordinates x̄1 and x̄2 and their

subsequent superposition in the 2D space. Accordingly, the circular shape can be established by

the overlay of two steady state solutions derived in (3.57). The parameters for the underlying

boundary value problem (3.52) are summarised in Table 3.1. With this it is easy to see that

the setting of x̄a and x̄l to ±1 or 0, respectively, as well as N = 1 normalise the deployment

shapes inside the 2D plane.
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Table 3.1: Parameters of the line and circular formation profiles with N = 1.

Profile Coord. a b̄ c̄ x̄a x̄l

Line
(1) : 1 0 0 −1 1

(2) : 1 0 0 1 −1

Circle
(1) : 1 0 4π2 1 −1

(2) : 1 0 4π2 0 0

Table 3.2: Parameters of the U- and Z-shaped formation profiles with N = 1.

Profile Coord. a b̄ c̄ x̄a x̄l

U-shape
(1) : 1 20 0 −1 −1

(2) : 1 0 4π2 1 −1

Z-shape
(1) : 1 20 0 0 0

(2) : 1 0 4π2 1 −1

Steady States of the Modified Viscous Burgers’ Equation

The discussion about stationary formation profiles of the MVBE leads to the boundary value

problem

A∂2
z x̄(z)− B̄x̄(z)∂zx̄(z) + C̄x̄(z) = 02 , (3.62)

x̄(0) = x̄a , x̄( N) = x̄l (3.63)

with positive definite diffusion coefficient matrix A, constant coefficient matrix B̄ := B(z, t) for

the semi-linear term as well as constant reaction parameter matrix C̄ := C(z, t) for t ≥ t̄ with

some t̄ ∈ R+
t0 . The corresponding scalar-valued problem can be written as

a∂2
z x̄(z)− b̄x̄(z)∂zx̄(z) + c̄x̄(z) = 0 , (3.64)

x̄(0) = x̄a , x̄( N) = x̄l (3.65)

with positive and constant diffusion coefficient a and the constant coefficients b̄ and c̄. In general

no analytic solution can be derived for non-linear boundary value problems, i.e., neither for

(3.62) nor for (3.64). Possible solutions may be calculated by means of suitable software tools for

numerical computing. Figure 3.2 shows examples of possible formation profiles for uncoupled

PDEs. In particular, a DRS is applied to coordinate x̄1 which is combined with a MVBE in

coordinate x̄2. Analysing the parameter configuration in Table 3.2 clearly illustrates that the

modification of the boundary values x̄a and x̄l can lead to completely different deployments.

Again, the specific setting of x̄a and x̄l to ±1 or 0, and N = 1 normalises the shape of the

steady state formation profiles geometrically inside the (x1, x2)−plane.

This closes the discussion regarding continuous problem formulation for MAS dynamics and the

explicit computation of steady state formation profiles in case of constant model parameters.
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(a) U-shaped formation.
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(b) Z-shaped formation.

Figure 3.2: Examples of (normalised) formation profiles for the modified viscous BE. The plots show

a formation like the letter U in (a) and a Z-shaped profile in (b).

The following two chapters develop a so-called 2DOF control strategy whereas the upcoming

paragraph cope with the first part including feedforward control (FFC) and desired trajectory

assignment.
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Chapter 4

Motion Planning for the Agent

Continuum

For the problem formulation (3.7) a 2DOF control concept is considered, which is composed

of a flatness-based FF control approach and a backstepping based control for the tracking

error dynamics. This chapter particularly concentrates on the design of the FF term, i.e.

control inputs u∗
0 and u∗

N
which, when applied to the system (3.7), can realise a desired state

trajectory x∗. In terms of MAS the FF control part shall guide the agents along x∗ from a

starting deployment x̄t0 to a different target formation profile x̄t0+τy within the finite time

interval τy. This requires to introduce a so-called flat output y which allows a formal state

and input parametrisation of the system state x and the inputs u0 and u
N
, respectively. This

methodology originally comes from differential flatness, a concept introduced by Fliess and

co-workers [22] for finite-dimensional linear and non-linear systems. It allows to compute the

systems states and the control inputs in terms of the flat output and its time derivatives up to a

certain order β +1. Therefore the following states the property for finite-dimensional dynamic

systems in a formal way.

Definition 4.4. A dynamic system ẋ = f (x,u) is called differentially flat, if there exists

a flat output y = θ (x,u) with dimy = dimu so that x = θx y, ẏ, . . . ,y(β) and u =

θu y, ẏ, . . . ,y(β+1) .

However, the approach was eventually transferred to infinite-dimensional systems governed by

PDE, e.g., see [75, 77, 54]. Based on this, the formal state and input parametrisation strategy

reduces the entire FF control synthesis to the design problem of a desired trajectory y∗.

4.1 Formal State and Input Parametrisation for Parabolic

Partial Differential Equations

In the following a formal parametrisation of the state x and the inputs u0, u N
in terms of a

so-called flat output is determined. Building upon earlier works such as [1, 52], [54]−[61] as
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well as [76, 77], subsequently two inputs on opposite boundaries of the domain are considered

and integrated into the formal integration approach. For this, the parabolic PDE in (3.7) is

solved for ∂2
zx(z, t) and integrated twice with respect to z. Consequently the formal integration

of (3.7) for 0 ≤ z ≤ ξ yields

∂zx(z, t) = ∂zx(ξ, t)−
ξ

z

f(σ, t,x, ∂tx, ∂σx) dσ . (4.1)

with ∂zx(ξ, t) := ∂zx(z, t)|z=ξ and

f(z, t,x, ∂tx, ∂zx) = D−1(z) (∂tx(z, t)− ∂z [V (z, t,x)x(z, t)]− r(z, t,x)) (4.2)

Integrating (4.1) again gives the implicit formula

x(z, t) = x(ξ, t) + ∂zx(ξ, t)(z − ξ) +
ξ

z

ξ

η

f(σ, t,x, ∂tx, ∂σx) dσ dη (4.3)

for the calculation of the state vector x. Furthermore, applying the same procedure for

ξ ≤ z ≤ N leads to

∂zx(z, t) = ∂zx(ξ, t) +
z

ξ

f(σ, t,x, ∂tx, ∂σx) dσ (4.4)

x(z, t) = x(ξ, t) + ∂zx(ξ, t)(z − ξ) +
z

ξ

η

ξ

f(σ, t,x, ∂tx, ∂σx) dσ dη , (4.5)

which is the identical expression when the boundaries of the integrals in (4.1) and (4.3) are

interchanged appropriately. Thus implicit formal parametrisations for x(z, t) and ∂zx(z, t) are

given by

x(z, t) = y0(t) + y1(t)(z − ξ) +
z

ξ

η

ξ

f(σ, t,x, ∂tx, ∂σx) dσ dη (4.6a)

∂zx(z, t) = y1(t) +
z

ξ

f(σ, t,x, ∂tx, ∂σx) dσ (4.6b)

with the so-called flat output

[y0(t), y1(t)]
T = [x(ξ, t) , ∂zx(ξ, t)]

T . (4.7)

At this stage it has to be pointed out that for the following sequences of functions it is presumed

that their limits exist and they are uniformly convergent. With this it is possible to render the

implicit parametrisation (4.6) explicit and derive a recursive algorithm. For a rigorous proof the

assumptions need to be verified subsequently for specific assignments of f . Therefore, consider

the sequences of functions (xm(z, t))m∈N, (∂txm(z, t))m∈N, and (∂zxm(z, t))m∈N with their limits

lim
m→∞

xm(z, t) = x(z, t) ,

lim
m→∞

∂txm(z, t) = ∂tx(z, t) ,

lim
m→∞

∂zxm(z, t) = ∂zx(z, t) .

(4.8)
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With respect to the definition of f in (4.2), assume the terms V (z, t,x) and r(z, t,x) are

continuous in x. Moreover, as mentioned above consider the sequences (4.8) as well as

lim
m→∞

r(z, t,xm) = r(z, t,x) ,

lim
m→∞

V (z, t,xm) = V (z, t,x) ,

lim
m→∞

∂zV (z, t,xm) = ∂zV (z, t,x) ,

(4.9)

all to be uniformly convergent. Then the substitution of (4.2) into (4.6) gives

lim
m→∞

∂zxm(z, t) = y1(t) +
z

ξ

f σ, t, lim
m→∞

xm, lim
m→∞

∂txm, lim
m→∞

∂σxm dσ

=y1(t) + lim
m→∞

z

ξ

f (σ, t,xm, ∂txm, ∂σxm) dσ ,

lim
m→∞

xm(z, t) = y0(t) + y1(t)(z − ξ)

+
z

ξ

η

ξ

f σ, t, lim
m→∞

xm, lim
m→∞

∂txm, lim
m→∞

∂σxm dσ dη

=y0(t) + y1(t)(z − ξ) + lim
m→∞

z

ξ

η

ξ

f (σ, t,xm, ∂txm, ∂σxm) dσ dη .

(4.10)

Furthermore, this and the assignment of the initial values x1(z, t) = y0(t) + y1(t)(z − ξ),

∂zx1(z, t) = y1(t) allows to construct the recursive algorithm

xm(z, t) =
z

ξ

η

ξ

f(σ, t,xm−1, ∂txm−1, ∂σxm−1) dσ dη ,

∂zxm(z, t) =
z

ξ

f(σ, t,xm−1, ∂txm−1, ∂σxm−1) dσ

(4.11)

for m ≥ 2. Respecting uniform convergence of the sequences (4.8) the time derivative can

be computed by formal differentiation either of the the limiting value x(z, t) or directly by

applying the operation to xm(z, t). In this context the inputs for dynamic boundary control

may be written as

u0(t) = ∂t lim
m→∞

xm(0, t) = lim
m→∞

∂txm(0, t) , (4.12a)

u
N
(t) = ∂t lim

m→∞
xm( N, t) = lim

m→∞
∂txm( N, t) . (4.12b)

In contrast to the ansatz (4.8) where uniformly convergent sequences are applied, additional

properties on V (z, t,x) and r(z, t,x) allow an alternative approach using series to solve the

implicit equations (4.6). As before, convergence properties are assumed for the ansatz to

derive the recursive algorithm. Afterwards the hypothesis need to be proven for the particular
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assignments of f . Thus, presume the infinite sums

x(z, t) =
∞

m=0

xm(z, t) , (4.13a)

∂tx(z, t) =
∞

m=0

∂txm(z, t) , (4.13b)

∂zx(z, t) =
∞

m=0

∂zxm(z, t) , (4.13c)

to be uniformly convergent and look at the following premise.

Assumption 4.2. Respecting (4.2) assume V (z, t,x) and r(z, t,x) are defined such that f

satisfies

f z, t,
∞

m=2

xm−2,
∞

m=2

∂txm−2,
∞

m=2

∂zxm−1

=
∞

m=2

gm (z, t,x0, . . . ,xm−2, ∂txm−2, ∂zx1, . . . , ∂zxm−1)

(4.14)

and the series on the right hand side of (4.14) is uniformly convergent. If f is linear in x, ∂tx

and ∂zx then obviously f = gm = g and g may be written as g (z, t,xm−2, ∂txm−2, ∂zxm−1).

Then the substitution of (4.13) into (4.6) gives

∞

m=0

xm(z, t) = y0(t) + y1(t)(z − ξ)

+
z

ξ

η

ξ

f σ, t,
∞

m=0

xm,
∞

m=0

∂txm,
∞

m=0

∂σxm dσ dη ,

∞

m=0

∂zxm(z, t) = y1(t) +
z

ξ

f σ, t,
∞

m=0

xm,
∞

m=0

∂txm,
∞

m=0

∂σxm dσ .

(4.15)

and allows the assignment of the initial series coefficients

x0(z, t) = y0(t) , ∂zx0(z, t) = 0 ,

x1(z, t) = y1(t)(z − ξ) , ∂zx1(z, t) = y1(t) .
(4.16)
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From this, and taking Assumption 4.2 into account the recursive part may be written as

∞

m=2

xm(z, t) =
z

ξ

η

ξ

f σ, t,
∞

m=0

xm,
∞

m=0

∂txm,
∞

m=1

∂σxm dσ dη

=
z

ξ

η

ξ

f σ, t,
∞

m=2

xm−2,
∞

m=2

∂txm−2,
∞

m=2

∂σxm−1 dσ dη

=
∞

m=2

z

ξ

η

ξ

gm(σ, t,x0, . . . ,xm−2, ∂txm−2, ∂σx1, . . . , ∂σxm−1) dσ dη ,

∞

m=2

∂zxm(z, t) =
z

ξ

f σ, t,
∞

m=0

xm,
∞

m=0

∂txm,
∞

m=1

∂σxm dσ

=
z

ξ

f σ, t,
∞

m=2

xm−2,
∞

m=2

∂txm−2,
∞

m=2

∂σxm−1 dσ

=
∞

m=2

z

ξ

gm(σ, t,x0, . . . ,xm−2, ∂txm−2, ∂σx1, . . . , ∂σxm−1) dσ .

(4.17)

This motivates the recursive computation of the series coefficients xm summarised by the for-

malism

xm(z, t) =
z

ξ

η

ξ

gm(σ, t,x0, . . . ,xm−2, ∂txm−2, ∂σx1, . . . , ∂σxm−1) dσ dη ,

∂zxm(z, t) =
z

ξ

gm(σ, t,x0, . . . ,xm−2, ∂txm−2, ∂σx1, . . . , ∂σxm−1) dσ

(4.18)

for m ≥ 2 together with the initial series coefficients according to (4.16). With this, the control

inputs for Dirichlet boundary conditions are inherently given by

u0(t) =
∞

m=0

xm(0, t) , (4.19a)

u
N
(t) =

∞

m=0

xm( N, t) . (4.19b)

Again, assuming uniform convergence of the series (4.13) the determination of ∂tx can be

achieved by formal differentiation of the infinite sum (4.13a) or by deriving it from each single

series coefficient xm. As a consequence the inputs for dynamic boundary control can be written

as

u0(t) = ∂t

∞

m=0

xm(0, t) =
∞

m=0

∂txm(0, t) , (4.20a)

u
N
(t) = ∂t

∞

m=0

xm( N, t) =
∞

m=0

∂txm( N, t) . (4.20b)
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Note, from (4.18) follows for the state vector x at the spatial position z = ξ

x(ξ, t) = x0(ξ, t) = y0(t)

∂zx(ξ, t) = ∂zx1(ξ, t) = y1(t)
(4.21)

and obviously

xm(ξ, t) = 0 for m ≥ 1 ,

∂zxm(ξ, t) = 0 for m = 0 and m ≥ 2 .
(4.22)

The analysis (4.6)−(4.20) reveals that both, the state x and the inputs u{0, } are for-

mally parametrised by the temporal output function (4.7), or so-called flat output y(t) =

[y0(t), y1(t)]
T . As mentioned before the FF control design is therefore reduced to a trajectory

planning problem of the components y0 and y1. This leads to two further points for the

discussion in the following paragraphs. First, it is necessary to proof uniform convergence for

the determined parametrisations. Here this is conducted for the series ansatz (4.13) since f

respects Assumption 4.2 when the terms V (z, t,x) and r(z, t,x) are defined explicitly for the

DCRS or the MVBE, respectively. The analysis imposes requirements for the assignment of

desired trajectories y∗ and the coefficient matrices of the PDEs given by (3.17) and (3.23).

Second, the planning of admissible trajectories for the flat output is worked out subsequently.

Therefore, the further discussion addresses the uniform and absolute convergence of (4.13) for

the investigated systems.

4.2 Convergence Analysis

In the following convergence analysis is basically conducted in equivalent fashion as published

in previous work, such as [55, 59]. However this approach focuses on a scalar spatial domain z

but it extends the formalism for coupled parabolic PDEs. Moreover, in the following the flat

output may be assigned at any arbitrary position ξ within the spatial domain [0, N]. It is not

necessarily fixed to the spatial boundary as in [62, 55]. Regardless of that, the achievements of

the corresponding literature demand that the components yj, j = 0, 1 of the flat output y are

presumed in so-called Gevrey classes G
δyj
αyj

R+
t0 ;R

n as well as the coefficient matrices B and C

being in the space CG0,α{B,C} Ω N, t0 ;Rn×n , respectively. The mathematical introduction of

Gevrey classes for scalar and matrix-valued functions can be found in Appendix C.2. Moreover

consider Theorem 3.17 and Corollary 3.5 which state upper bound estimations for functions in

in two independent arguments, i.e., the domain (z, t). Therefore the next sections discuss the

analysis of (4.13) regarding uniform and absolute convergence in appropriate Gevrey classes for

the coupled DCRS and the coupled MVBE, starting with the former in the following section.
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4.2.1 Absolute and Uniform Convergence Analysis for the Coupled

Diffusion-Convection-Reaction System

Observing the recursive formalism (4.18) together with Assumption 4.2 and the PDE (3.17) of

the coupled linear, time-variant DCRS the function g is formally equal to f . Consequently, it

can be set to

g(z, t,xm−2, ∂txm−2, ∂zxm−1) = A−1 [∂txm−2(z, t) +B(z, t)∂zxm−1(z, t)

−C(z, t)xm−2(z, t)] . (4.23)

With this the computation of the series coefficients xm(z, t) , ∂zxm(z, t) ,m ≥ 2 is given by

xm(z, t) = A−1
z

ξ

η

ξ

∂txm−2(σ, t) +B(σ, t)∂σxm−1(σ, t)− C(σ, t)xm−2(σ, t) dσ dη ,

∂zxm(z, t) = A−1
z

ξ

∂txm−2(σ, t) +B(σ, t)∂σxm−1(σ, t)− C(σ, t)xm−2(σ, t) dσ .

(4.24)

Obviously both, xm(z, t) and ∂zxm(z, t), depend on the time derivative ∂txm−2(z, t). Therefore

the convergence analysis of (4.13) requires a formulation of an upper bound for the growth of

the time derivatives of each xm(z, t) up to an arbitrary order k. From this, the absolute and

uniform convergence of the series (4.13) can be shown by analysing the growth of the series

coefficients. For this it is necessary to define norms for the states x(z, t) and the coefficient

matrices, i.e., A, B, and C. Therefore one should examine the appropriate definitions and

lemmas in Appendix C of the appendix. With this, note the following theorem.

Theorem 4.5. Let B ∈ CG0,αB Ω N, t0 ;Rn×n , C ∈ CG0,αC Ω N, t0 ;Rn×n and yj ∈
G

δyj
αyj

R+
t0 ;R

n , j = 0, 1 with αB, αC , αyj
≥ 1, then for m ∈ N and g given by (4.23) the series

coefficients (4.18) satisfy

supR+
t0
∂k
t xm ∞(z) ≤ δk+m((k +m− 1)!)αlm

|z − ξ|m
m!

(4.25a)

supR+
t0
∂k
t ∂zxm ∞(z) ≤ δk+m((k +m− 1)!)αlm

|z − ξ|m−1

(m− 1)!
(4.25b)

with supR+
t0
( · ) ∞(z) defined in (C.4), δ = max δB, δC , δy0

, δy1
, α = max αB, αC , αy0

, αy1

and

lm = A−1
∞

m−2lm−2

δ(m− 1)α
+

lm−1

(m− 1)α
, m ≥ 3 (4.26)

with l1 = 1, l2 = 3 A−1
∞, and m = 1 + m−α. Particularly, the series (4.13) converges

absolutely and uniformly if 1 ≤ α ≤ 2 for all |z − ξ| < ρ, where

ρ =
∞, 1 ≤ α < 2

(κh(κ))−1 , α = 2 ,
(4.27)
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with κ = A−1
∞ δ > 0 and

h(κ) = max


√
2

κ
+

3√
2
,

1

2
√
3
+

1

12
+

1 +
√
6√

6κ

 . (4.28)

Obviously, the convergence radius is infinite as long as 1 ≤ α < 2, and is finite and dependent

on the constant κ for the particular case α = 2.

Proof. In the following Theorem 4.5 is proven by induction. First, it is shown that (4.25) holds

for m = 1, 2. Second, the inequalities (4.25) are proven for m + 1 with the assumption that

they hold for m. For this, please note some useful Theorems and Lemmas in Appendix C.3.

Starting with the estimation for x1 and considering (4.18) as well as y1 ∈ Gδ
α R+

t0 ;R
n ⊇

G
δy1
αy1

R+
t0 ;R

n , then this trivially yields

supR+
t0
∂k
t x1 ∞(z) = supR+

t0
∂k
t y1(t)(z − ξ) ∞

≤ supR+
t0
∂k
t y1(t) ∞ |(z − ξ)| ≤ δk+1(k!)αl1 |z − ξ| ,

(4.29a)

supR+
t0
∂k
t ∂zx1 ∞(z) = supR+

t0
∂k
t y1(t) ∞ ≤ δk+1(k!)αl1 . (4.29b)

and consequently confirms (4.25) for m = 1. Proceeding with m = 2 the upper bound estima-

tion for the coefficient x2(z, t) in (4.18) can be written as

supR+
t0
∂k
t x2 ∞(z) ≤ supR+

t0
A−1

z

ξ

η

ξ

∂k+1
t x0(σ, t) + ∂k

t [B(σ, t)∂σx1(σ, t)]

+ ∂k
t [C(σ, t)x0(σ, t)] dσ dη

∞

≤ A−1
∞

z

ξ

η

ξ

supR+
t0
∂k+1
t y0(t) ∞ + supR+

t0
∂k
t [B(σ, t)y1(t)] ∞

+ supR+
t0
∂k
t [C(σ, t)y0(t)] ∞dσ dη

(4.30)

with A−1
∞ defined as the maximum absolute row sum of the matrix A−1. Note, the maximum

absolute row sum is sub-multiplicative. From this the integrands are investigated individually,

i.e., applying the Leibniz rule (C.20) to the term supR+
t0
∂k
t [C(σ, t)y0(t)] ∞, and considering

C ∈ CG0,α Ω N, t0 ;Rn×n and y0 ∈ Gδ
α R+

t0 ;R
n , respectively. Moreover, respecting the

upper bounds (C.9), (C.19) as well as (C.23), then this yields

supR+
t0
∂k
t [C(σ, t)y0(t)] ∞

(C.9)

≤
k

j=0

k

j
supΩ∂

k−j
t C(σ, t) ∞ supR+

t0
∂j
ty0(t) ∞

(C.19), (C.12) (C.23)

≤ δk+2

k

j=0

k

j
((k − j)!j!)α ≤ δk+2 ((k + 1)!)α ,

(4.31)
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since δC , δy0
≤ δ and αC , αy0

≤ α. The same estimation applies to supR+
t0
∂k
t [B(σ, t)y1(t)] ∞

with y1(t) = ∂σx1σ and to supR+
t0
∂k+1
t x0(σ, t) ∞ = supR+

t0
∂k+1
t y0(t) ∞ when δB, δy0,1

≤ δ

and αB, αy0,1
≤ α are taken into account. Consequently, utilising (4.31) three times and

reinserting the expressions in (4.30) gives

supR+
t0
∂k
t x2 ∞(z) ≤ 3δk+2 ((k + 1)!)α A−1

∞
(z − ξ)2

2

≤ δk+2 ((k + 1)!)α l2
|z − ξ|2

2

(4.32)

which confirms (4.25a) for m = 2. The same procedure can be applied to the spatial derivative

∂zx2. This yields

supR+
t0
∂k
t ∂zx2 ∞(z) ≤ A−1

∞

z

ξ

supR+
t0
∂k+1
t y0(t) ∞

+ supR+
t0
∂k
t [B(σ, t)y1(t)] ∞ + supR+

t0
∂k
t [C(σ, t)y0(t)] ∞dσ

≤ δk+2 ((k + 1)!)α l2 |z − ξ|

(4.33)

which is in accordance to (4.25b) for m = 2. Assume (4.25) holds for some m ∈ N. Then for

the induction step from m to m+1, ∀m ≥ 2 the upper bound for the k−time derivative of the

series coefficients xm+1 is given by

supR+
t0
∂k
t xm+1 ∞(z) ≤ A−1

∞

z

ξ

η

ξ

supR+
t0
∂k+1
t xm−1(σ, t) ∞

+ supR+
t0
∂k
t [B(σ, t)∂σxm(σ, t)] ∞ + supR+

t0
∂k
t [C(σ, t)xm−1(σ, t)] ∞dσ dη (4.34)

Again the differentiation of the addends is treated separately. Therefore, as conducted before

the Leibniz rule for the term supR+
t0
∂k
t [C(σ, t)xm−1(σ, t)] ∞ together with the primary as-

sumption (4.25a) for xm−1, m ≥ 2, the consideration of C ∈ CG0,α Ω N, t0 ;Rn×n , and the

upper bounds (C.19) and (C.23) provide the estimation

supR+
t0
∂k
t [C(σ, t)xm−1(σ, t)] ∞

≤
k

j=0

k

j
supΩ∂

k−j
t C(σ, t) ∞ supR+

t0
∂j
txm−1(σ, t) ∞

(C.19), (4.25a)

≤ δk+mlm−1

k

j=0

k

j
((k − j)!)α((j +m− 2)!)α

|σ − ξ|m−1

(m− 1)!

(C.23)

≤ δk+mlm−1
(k +m− 1)!

m− 1

α |σ − ξ|m−1

(m− 1)!
.

(4.35)



70 4 Motion Planning for the Agent Continuum

With this and the assumption that (4.25b) holds true for m ≥ 1 the convective term

supR+
t0
∂k
t [B(σ, t)∂σxm(σ, t)] ∞ can be treated in equivalent fashion. As a consequence the

second term in (4.34) yields

supR+
t0
∂k
t [B(σ, t)∂σxm(σ, t)] ∞

≤
k

j=0

k

j
supΩ∂

k−j
t B(σ, t) ∞ supR+

t0
∂j
t ∂σxm(σ, t) ∞

(C.16), (4.25a)

≤ δk+m+1lm

k

j=0

k

j
((k − j)!)α((j +m− 1)!)α

|σ − ξ|m−1

(m− 1)!

(C.23)

≤ δk+m+1lm
(k +m)!

m

α |σ − ξ|m−1

(m− 1)!
.

(4.36)

Next, reinserting the upper bound of supR+
t0
∂k+1
t xm−1(σ, t) ∞ which directly follows from

(4.25a) for m ≥ 2, together with the estimations (4.35) and (4.36) leads to

supR+
t0
∂k
t xm+1 ∞(z) ≤ δk+m+1 A−1

∞ lm−1
((k +m− 1)!)α

δ
1 +

1

(m− 1)α

+lm
((k+m)!)α

mα

z

ξ

η

ξ

|σ − ξ|m−1

(m− 1)!
dσ dη

(C.25)

≤ δk+m+1((k +m)!)α A−1
∞

lm−1

δ(k +m)α
1 +

1

(m− 1)α
+

lm
mα

|z − ξ|m+1

(m+ 1)!

≤ δk+m+1((k +m)!)α A−1
∞

m−1lm−1

δmα
+

lm
mα

|z − ξ|m+1

(m+ 1)!

≤ δk+m+1((k +m)!)αlm+1
|z − ξ|m+1

(m+ 1)!
.

(4.37)

Here it is necessary to utilise the auxiliary theorem (C.25) for the integration with k ≥ 0 and

the recursion lm+1 = A−1
∞

m−1lm−1

δmα + lm
mα . Obviously the assumption (4.25a) for m+1 and

(4.37) are equivalent. Taking (4.29) and (4.32) into account this means (4.25) holds ∀m ∈ N
and consequently proves the inequalities (4.25a) and (4.25b) by induction.

With this the evaluation of the convergence radius follows. Making use of (4.25a) with k = 0
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allows to bound (4.13) from above by a power series according to

supR+
t0
x ∞(z) ≤

∞

m=0

supR+
t0
xm ∞(z)

≤ supR+
t0
x0(z, t) ∞ +

∞

m=1

δm((m− 1)!)αlm
|z − ξ|m

m!

≤ δ(1 + |z − ξ|) + 3 A−1
∞ δ2

|z − ξ|2
2

+
∞

m=3

δm
((m− 1)!)α

m!
lm

pm

|z − ξ|m .

(4.38)

Note, for the latter expression l1 = 1, l2 = 3 A−1
∞ is applied and starting index of the power

series changes from m = 1 to m = 3. For estimation of the growth of the coefficients pm, m ≥ 3,

consider the following lemma.

Lemma 4.6. The recursion lm defined in (4.26) satisfies

lm ≤ A−1
∞

m−1 h(κ)m−1

((m− 1)!)
α
2

, m ≥ 3 (4.39)

with κ = A−1
∞ δ > 0, h(κ) given by (4.28), and 1 ≤ α ≤ 2.

The proof of Lemma 4.6 is achieved by mathematical induction again.

Proof. One may start with the base case which requires the computation of l3. Consider α ≥ 1

and take the initial values l1 = 1, l2 = 3 A−1
∞ as well as m = 1 +m−α into account. Then

l3 satisfies the estimation (4.39) as follows

l3 = A−1
∞

1l1
δ2α

+
l2
2α

= A−1
∞

(1 + 1−α)

δ2α
+

3 A−1
∞

2α

= A−1
∞

2 2

2α κ
+

3

2α
≤ A−1

∞
2 2

κ
√
2 2

α
2

+
3√
2 2

α
2

≤ ( A−1
∞)

2

(2)
α
2

√
2

κ
+

3√
2

≤ A−1
∞

2 h(κ)2

(2)
α
2

⇒ h(κ) ≥
√
2

κ
+

3√
2
.

(4.40)

The latter inequality holds true with respect to (4.28). With this and the consideration of
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(4.26) for m ≥ 3 again the induction step for the proof of (4.6) can be written as

lm+1 = A−1
∞

m−1lm−1

δmα
+

lm
mα

≤ A−1
∞

m
h(κ)m

m−1h(κ)
−2

κmα((m− 2)!)
α
2

+
h(κ)−1

mα((m− 1)!)
α
2

≤ A−1
∞

m h(κ)m

(m!)
α
2

1 +
1

(m− 1)α
(m− 1)

α
2

κm
α
2

h(κ)−2 +
1

m
α
2

h(κ)−1

≤ A−1
∞

m h(κ)m

(m!)
α
2

×

1

κ

(m− 1)
α
2

m
α
2

+
1

m
α
2 (m− 1)

α
2

h(κ)−2 +
1

m
α
2

h(κ)−1 .

(4.41)

Note, since (m− 1)
α
2 /m

α
2 ≤ 1, 1/(m

α
2 (m− 1)

α
2 ) ≤ 1/

√
6, and 1/m

α
2 ≤ 1/

√
3 for m ≥ 3 , α ≥ 1

the recursion (4.26) can be further bounded from above by

lm+1 ≤ A−1
∞

m h(κ)m

(m!)
α
2

1 +
√
6√

6κ
h(κ)−2 +

1√
3
h(κ)−1

≤1

(4.42)

which defines the quadratic equation

h(κ)2 − 1√
3
h(κ)− 1 +

√
6√

6κ
≥ 0 . (4.43)

Its positive solution leads to the inequality

h(κ) ≥ 1

2
√
3
+

1

12
+

1 +
√
6√

6κ
(4.44)

which is satisfied when the definition of h in (4.28) is taken into account.

Consequently, utilising Lemma 4.6 the coefficients pm in (4.38) are bounded from above by

pm = δm
(m− 1)!)α

m!
lm ≤ A−1

∞
m−1

δm
(m− 1)!)α

m!

h(κ)m−1

((m− 1)!)
α
2

≤ δ(κh(κ))m−1 ((m− 1)!)
α
2

m!

(4.45)

Pursuing the d’Alembert ratio test (C.28) as in [55] the convergence radius for the series (4.38)

with powers of |z − ξ| can be derived by

ρq = lim
m→∞

pm
pm+1

= (κh(κ))−1 lim
m→∞

((m− 1)!)
α
2

m!

(m+ 1)!

(m!)
α
2

= (κh(κ))−1 lim
m→∞

m+ 1

m
α
2

=
∞, 1 ≤ α < 2

(κh(κ))−1 , α = 2 ,

(4.46)

which confirms (4.27) and consequently closes the proof of Theorem 4.5.
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Remark 4.14. The convergence analysis for the series ∞
m=0 ∂txm(z, t) allows the same con-

clusion as for (4.13), i.e., absolute and uniform convergence with infinite radius for 1 ≤ α < 2.

With this it follows

∂tx(z, t) = ∂t

∞

m=0

xm(z, t) =
∞

m=0

∂txm(z, t) . (4.47)

Note that this result allows to interchange the sum with derivative operator in (4.20).

4.2.2 Absolute and Uniform Convergence Analysis for the Coupled

Modified, Viscous Burgers’ Equation

Let us recall the coupled MVBE which was introduced in (3.23) and consequently determines

f as

f(z, t,x, ∂tx, ∂zx) = A−1 [∂tx(z, t) +B(z, t)X(z, t)∂zx(z, t)− C(z, t)x(z, t)] (4.48)

with the diagonal matrix X = diag [x1, · · · , xn]. Due to the term X(z, t)∂zx(z, t) the determi-

nation of gm in (4.18) requires a more detailed analysis than that for the coupled DCRS in the

paragraph before. Thus, inserting the series (4.13) in (4.48) and considering Theorem 3.24 for

the non-linear term leads to

f σ, t,
∞

m=2

xm−2,
∞

m=2

∂txm−2,
∞

m=2

∂zxm−1

= A−1

∞

m=2

∂txm−2(z, t) +B(z, t)
∞

m=2

Xm−2(z, t)
∞

m=2

∂zxm−1(z, t)

−C(z, t)
∞

m=2

xm−2(z, t)

= A−1

∞

m=2

∂txm−2(z, t) +B(z, t)
∞

m=2

m−2

q=0

Xm−2−q(z, t)∂zxq+1(z, t)

−C(z, t)
∞

m=2

xm−2(z, t)

=
∞

m=2

A−1 ∂txm−2(z, t) +B(z, t)
m−2

q=0

Xm−2−q(z, t)∂zxq+1(z, t)

− C(z, t)xm−2(z, t)

(4.49)
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with Xk = diag [x1
k, . . . , x

n
k ]. As a result the function gm for the coupled MVBE can be written

as

gm (z, t,x0, . . . ,xm−2, ∂txm−2, ∂zx1, . . . , ∂zxm−1) = A−1 ∂txm−2(z, t)

+B(z, t)
m−2

q=0

Xm−2−q(z, t)∂zxq+1(z, t)− C(z, t)xm−2(z, t) . (4.50)

Applying the results from above let us look at the following theorem.

Theorem 4.7. Let B ∈ CG0,αB Ω N, t0 ;Rn×n , C ∈ CG0,αC Ω N, t0 ;Rn×n and yj ∈
G

δyj
αyj

R+
t0 ;R

n , j = 0, 1 with αB, αC , αyj
≥ 1, then for m ∈ N and gm given by (4.50) the series

coefficients (4.18) satisfy

supR+
t0
∂k
t xm ∞(z) ≤ δk+m ((k + 2m− 2)!)α lm

|z − ξ|m
m!

(4.51a)

supR+
t0
∂k
t ∂zxm ∞(z) ≤ δk+m ((k + 2m− 2)!)α lm

|z − ξ|m−1

(m− 1)!
(4.51b)

with supR+
t0
( · ) ∞(z) defined in (C.4), δ = max δB, δC , δy0

, δy1
, α = max αB, αC , αy0

, αy1

and

lm = A−1
∞

m−2lm−2

δ(2m− 4)α(2m− 3)α(2m− 2)α
+

δlm−1

(2m− 3)α(2m− 2)α
+

m−3

q=0

lm−2−qlq+1

(2m− 5)α(2m− 4)α(2m− 3)α(2m− 2)α
2m− 6

2q

−α
m− 2

q
,

(4.52)

for m ≥ 3, with l1 = 1, l2 = A−1
∞ (2 + δ)/2α, and m = 1 + (2m − 1)−α. Particularly, the

series (4.13) converges absolutely and uniformly if 1 ≤ α ≤ 2 for all |z − ξ| < ρ, where

ρ = A−1
∞ δ h A−1

∞ , δ
−1

, 1 ≤ α ≤ 2 , (4.53)

with

h A−1
∞ , δ = max 2 + δ ,

1

A−1
∞ δ

+
1

2 A−1
∞

+ δ +
δ2

2
,

δ

6
+

δ2

36
+

4

A−1
∞ δ

+
1

2
.

(4.54)

Proof. Theorem 4.7 is proven by induction. The induction start for m = 1 is omitted since it
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is equal to the analysis in (4.29). Thus, first it is shown that (4.51) holds for m = 2, i.e.,

supR+
t0
∂k
t x2 ∞(z) ≤ supR+

t0
A−1

z

ξ

η

ξ

∂k+1
t x0(σ, t)

+ ∂k
t [B(σ, t)X0(σ, t)∂σx1(σ, t)] + ∂k

t [C(σ, t)x0(σ, t)] dσ dη
∞

≤ A−1
∞

z

ξ

η

ξ

supR+
t0
∂k+1
t y0(t) ∞

+ supR+
t0
∂k
t [B(σ, t)Y0(t)y1(t)] ∞ + supR+

t0
∂k
t [C(σ, t)y0(t)] ∞dσ dη .

(4.55)

Considering (4.16) it directly follows Y0(t) = diag [y10(t), . . . , y
n
0 (t)] = X0(σ, t) and y1(t) =

∂σx1(σ, t), respectively. The first and the last term inside the double integral were already

analysed in the previous section, e.g. see (4.31). Thus, notice the upper bound estimation

using Leibnitz’s differentiation rule (C.20)

supR+
t0
∂k
t [B(σ, t)X0(σ, t)∂σx1(σ, t)] ∞

≤
k

j=0

k

j
supΩ∂

k−j
t B(σ, t) ∞ supR+

t0
∂j
t [Y0(t)y1(t)] ∞

≤
k

j=0

k

j
supΩ∂

k−j
t B(σ, t) ∞×

j

i=0

j

i
supR+

t0
∂j−i
t Y0(t) ∞ supR+

t0
∂i
ty1(t) ∞

(4.56a)

and moreover applying (C.23) gives

supR+
t0
∂k
t [B(σ, t)X0(σ, t)∂σx1(σ, t)] ∞

≤ δk+3

k

j=0

k

j
((k − j)!)α

j

i=0

j

i
((j − i)!)α(i!)α

≤ δk+3

k

j=0

k

j
((k − j)!)α((j + 1)!)α

≤ δk+3 ((k + 2)!)α

2α
.

(4.56b)

With this and utilising (4.31) twice the estimate for x2 leads to

supR+
t0
∂k
t x2 ∞(z) ≤ A−1

∞ δk+2 2(k + 1)!α + δ
(k + 2)!α

2α
(z − ξ)2

2

≤ A−1
∞ δk+2((k + 2)!)α

2 + δ

2α
|z − ξ|2

2
≤ δk+2(k + 2)!αl2

|z − ξ|2
2

,

(4.57)

which completes the base case of the proof by mathematical induction. The second step aims

to show that the estimate (4.51a) holds for the next natural number m+ 1 provided that it is
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satisfied for m. Therefore the following terms under the double integral

supR+
t0
∂k
t xm+1 ∞(z) ≤ A−1

∞

z

ξ

η

ξ

supR+
t0
∂k+1
t xm−1(σ, t) ∞

+ supR+
t0
∂k
t [B(σ, t)

m−1

q=0

Xm−1−q(σ, t)∂σxq+1(σ, t)] ∞

+ supR+
t0
∂k
t [C(σ, t)xm−1(σ, t)] ∞dσ dη

(4.58)

≤ A−1
∞

z

ξ

η

ξ

supR+
t0
∂k+1
t xm−1(σ, t) ∞

+ supR+
t0
∂k
t [B(σ, t)

m−2

q=0

Xm−1−q(σ, t)∂σxq+1(σ, t)] ∞

+ supR+
t0
∂k
t [B(σ, t)X0(σ, t)∂σxm(σ, t)] ∞

+ supR+
t0
∂k
t [C(σ, t)xm−1(σ, t)] ∞dσ dη

require a more detailed analysis. In (4.58) the sum is separated into two parts since X0(σ, t) =

Y0(t) demands different treatment compared to Xm(σ, t), m ≥ 1. Starting with the last expres-

sion of the double integral it can be estimated by

supR+
t0
∂k
t [C(σ, t)xm−1(σ, t)] ∞

≤
k

j=0

k

j
supΩ∂

k−j
t C(σ, t) ∞ supR+

t0
∂j
txm−1(σ, t) ∞

(C.19), (4.51a)

≤ δk+mlm−1

k

j=0

k

j
((k − j)!)α(j + 2m− 4!)α

|σ − ξ|m−1

(m− 1)!

(C.23)

≤ δk+mlm−1
((k + 2m− 3)!)α

(2m− 3)α
|σ − ξ|m−1

(m− 1)!
.

(4.59)

when making use of (C.19), (4.51a), and (C.23). Similarly the term involving X0(σ, t) can be
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bounded by

supR+
t0
∂k
t [B(σ, t)X0(σ, t)∂σxm(σ, t)] ∞

≤
k

j=0

k

j
supΩ∂

k−j
t B(σ, t) ∞×

j

i=0

j

i
supR+

t0
∂j−i
t Y0(t) ∞ supR+

t0
∂i
t∂σxm(σ, t) ∞

(C.16), (4.51b)

≤ δk+m+2lm

k

j=0

k

j
((k − j)!)α×

j

i=0

j

i
((j − i)!)α((i+ 2m− 2)!)α

|σ − ξ|m−1

(m− 1)!

(C.23)

≤ δk+m+2lm

k

j=0

k

j

((k − j)!)α((j + 2m− 1)!)α

(2m− 1)α
|σ − ξ|m−1

(m− 1)!

(4.60)

(C.23)

≤ δk+m+2lm
((k + 2m)!)α

(2m− 1)α(2m)α
|σ − ξ|m−1

(m− 1)!

when having a look at the estimation (4.51b) for the spatial derivative of xm−1. The term with

the sum over q can be analysed by investigating the addends. Therefore applying the general

Leibnitz rule (C.20) twice gives the cascaded sum

supR+
t0
∂k
t [B(σ, t)Xm−1−q(σ, t)∂σxq+1(σ, t)] ∞

≤
k

j=0

k

j
supΩ∂

k−j
t B(σ, t) ∞×

j

i=0

j

i
supR+

t0
∂j−i
t Xm−1−q(σ, t) ∞ supR+

t0
∂i
t∂σxq+1(σ, t) ∞ .

(4.61)

Again, reinserting the assumed estimations (4.51), applying the boundary (C.19) for B, and
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utilising the inequality (C.23) leads to

k

j=0

k

j
supΩ∂

k−j
t B ∞

j

i=0

j

i
supR+

t0
∂j−i
t Xm−1−q ∞(σ) supR+

t0
∂i
t∂σxq+1 ∞(σ)

(4.51), (C.19)

≤ δk+m+1lm−1−qlq+1

k

j=0

k

j
((k − j)!)α×

j

i=0

j

i
((j − i+ 2m− 4− 2q)!)α((i+ 2q)!)α

|σ − ξ|m−1

(m− 1− q)!q!

(C.23)

≤ δk+m+1lm−1−qlq+1

k

j=0

k

j
((k − j)!)α×

(2m− 4− 2q)!(2q)!(j + 2m− 3)!

(2m− 3)!

α
m− 1

q

|σ − ξ|m−1

(m− 1)!

≤ δk+m+1lm−1−qlq+1

k

j=0

k

j

((k − j)!)α((j + 2m− 3)!)α

(2m− 3)α
×

2m− 4

2q

−α
m− 1

q

|σ − ξ|m−1

(m− 1)!

(C.23)

≤ δk+m+1lm−1−qlq+1
((k + 2m− 2)!)α

(2m− 3)α(2m− 2)α
×

2m− 4

2q

−α
m− 1

q

|σ − ξ|m−1

(m− 1)!
.

(4.62)

Furthermore, the associated norm of the k + 1−th time derivative of xm−1 obviously satisfies

the inequality

supR+
t0
∂k+1
t xm−1(σ, t) ∞ ≤ δk+m((k + 2m− 3)!)αlm−1

|σ − ξ|m−1

(m− 1)!
(4.63)

just by respecting (4.51a). Now, by combining the bounds (4.59)−(4.63) and inserting them

in (4.58) allows to further proceed with the induction step of the growth estimation (4.51a).

Respecting the identity (C.25) and the abbreviation m = 1+ (2m− 1)−α (4.58) can be further
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estimated as

supR+
t0
∂k
t xm+1 ∞(z)

≤ δk+m+1 A−1
∞ lm−1

((k + 2m− 3)!)α

δ
1 +

1

(2m− 3)α

+ lm
δ((k + 2m)!)α

(2m− 1)α(2m)α
+

m−2

q=0

lm−1−qlq+1
((k + 2m− 2)!)α

(2m− 3)α(2m− 2)α
×

2m− 4

2q

−α
m− 1

q

z

ξ

η

ξ

|σ − ξ|m−1

(m− 1)!
dσ dη

≤ δk+m+1((k + 2m)!)α A−1
∞

m−1lm−1

δ(k + 2m− 2)α(k + 2m− 1)α(k + 2m)α

+
δlm

(2m− 1)α(2m)α
+

m−2

q=0

lm−1−qlq+1

(2m− 3)α(2m− 2)α(k + 2m− 1)α(k + 2m)α
×

2m− 4

2q

−α
m− 1

q

|z − ξ|m+1

(m+ 1)!
.

(4.64a)

Since k ≥ 0 it can be set to k = 0 in the denominators of the squared bracket. This allows to

write the bound in the compact form

supR+
t0
∂k
t xm+1 ∞(z)

≤ δk+m+1((k + 2m)!)α A−1
∞

m−1lm−1

δ(2m− 2)α(2m− 1)α(2m)α

+
δlm

(2m− 1)α(2m)α
+

m−2

q=0

lm−1−qlq+1

(2m− 3)α(2m− 2)α(2m− 1)α(2m)α
×

2m− 4

2q

−α
m− 1

q

|z − ξ|m+1

(m+ 1)!

≤ δk+m+1((k + 2m)!)αlm+1
|z − ξ|m+1

(m+ 1)!
.

(4.64b)

which completes the proof for the state estimate (4.51a). The bound for the spatial derivative

supR+
t0
∂k
t ∂zxm+1 ∞(z) can be verified in equivalent fashion just by considering single integra-

tion instead of double integration in (4.57) as well as utilising Lemma (C.26) instead of (C.25)

in (4.64a).

With this the radius of convergence can be determined by setting k = 0 in (4.51a). This allows

to bound the infinite series (4.13) with general coefficients xm by a formal power series in
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|z − ξ|. Hence, consider

supR+
t0
x ∞(z) ≤

∞

m=0

supR+
t0
xm ∞(z) ≤ supR+

t0
x0(z, t) ∞+

∞

m=1

δm((2m− 2)!)αlm
|z − ξ|m

m!
≤ δ +

∞

m=1

δm
((2m− 2)!)α

m!
lm

pm

|z − ξ|m .
(4.65)

As shown for the linear case above it is possible to find an upper bound for the coefficients pm.

Therefore, note the following inequality.

Lemma 4.8. The coefficients lm defined in (4.26) satisfy

lm ≤ ( A−1
∞)m−1 (m− 1)!

((2m− 2)!)α
h A−1

∞ , δ
m−1

, m ≥ 1 (4.66)

with h ( A−1
∞ , δ) given by (4.54) and 1 ≤ α ≤ 2.

Proof. Note, since the recursion (4.52) for lm and m ≥ 3 depends on all previous lq , q ∈
{1, . . .m − 1} Lemma 4.8 is defined for m ≥ 1 and consequently needs to be proven from

m = 1 onward. However the case m = 1 is trivial and therefore omitted. Consequently the

mathematical induction starts with the cases m = 2 and m = 3, respectively. The two cases

lead to following, i.e.,

l2 = A−1
∞

2 + δ

2α
≤ A−1

∞
1!

(2!)α
h A−1

∞ , δ (4.67)

⇒ h A−1
∞ , δ ≥ 2 + δ , (4.68)

l3 = A−1
∞

1l1
δ24α

+
δl2
12α

+
(l1)

2

24α

= A−1
∞

1 + 1−α

δ24α
+

A−1
∞ (2δ + δ2)

24α
+

1

24α

≤ A−1
∞

2δ−1 + 1 + 2 A−1 δ + A−1
∞ δ2

(4!)α

≤ A−1 2

∞
2!

(4!)α
1

A−1
∞ δ

+
1

2 A−1
∞

+ δ +
δ2

2

≤ A−1 2

∞
2!

(4!)α
h A−1

∞ , δ
2

(4.69)

⇒ h A−1
∞ , δ ≥ 1

A−1
∞ δ

+
1

2 A−1
∞

+ δ +
δ2

2
. (4.70)

With respect to (4.54) for the function h this satisfies the inequalities (4.68) and (4.70), respec-

tively, and consequently confirms the starting cases l2 and l3. Conducting the step from m to
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m+ 1 gives the estimation

lm+1 = A−1
∞

m−1lm−1

δ(2m− 2)α(2m− 1)α(2m)α
+

δlm
(2m− 1)α(2m)α

+
m−2

q=0

lm−1−qlq+1

(2m− 3)α(2m− 2)α(2m− 1)α(2m)α
2m− 4

2q

−α
m− 1

q

≤ A−1 m

∞
m−1(2m− 3)α(m− 2)!

A−1
∞ δ((2m)!)α

h A−1
∞ , δ

m−2

+
δ(m− 1)!

((2m)!)α
h A−1

∞ , δ
m−1

+
m−2

q=0

(m− 2− q)!q!

((2m)!)α
m− 1

q
h A−1

∞ , δ
m−2

≤ A−1 m

∞
m!

((2m)!)α
h A−1

∞ , δ
m (2m− 3)α + 1

A−1
∞ δm(m− 1)

h A−1
∞ , δ

−2

+
δ

m
h A−1

∞ , δ
−1

+
m−2

q=0

1

m(m− 1− q)
h A−1

∞ , δ
−2

.

(4.71)

Note, since ((2m − 3)α + 1)/(m(m − 1)) ≤ 4, 1/m ≤ 1/3 and m−2
q=0 1/(m(m − 1 − q)) ≤ 1/2

for m ≥ 3, 1 ≤ α ≤ 2 the recursion (4.26) can be further bounded from above by

lm+1 ≤ A−1 m

∞
m!

((2m)!)α
h A−1

∞ , δ
m ×

δ

3
h A−1

∞ , δ
−1

+
4

A−1
∞ δ

+
1

2
h A−1

∞ , δ
−2

≤1

(4.72)

which defines the quadratic equation

h A−1
∞ , δ

2 − δ

3
h A−1

∞ , δ − 4

A−1
∞ δ

+
1

2
≥ 0 . (4.73)

The positive solution can be written as

h A−1
∞ , δ ≥ δ

6
+

δ2

36
+

4

A−1
∞ δ

+
1

2
. (4.74)

Again, the inequality for h ( A−1
∞ , δ) holds true when (4.54) is taking into account and

eventually completes the proof for Lemma 4.8.

With this and as suggested in [55] by taking the Cauchy-Hadamard Theorem 3.22 into account

the convergence radius for the series (4.38) with powers of |z − ξ| can be derived as

ρq =
1

lim sup
m→∞

m |pm|
= δ−1 lim sup

m→∞

((2m− 2)!)α

m!
lm

− 1
m

= δ−1 lim
m→∞

m
√
m A−1

∞ h A−1
∞ , δ

1−m
m = A−1

∞ δh A−1
∞ , δ

−1

(4.75)

for α ∈ [1, 2] which is actually claimed in (4.53).
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This completes the convergence analysis for the investigated coupled PDEs. For uncoupled

parabolic systems the formal state and input parametrisation is a well researched field. There-

fore, the next section sketches a brief summary on this topic.

4.2.3 Absolute and Uniform Convergence Analysis for the Scalar

Diffusion-Convection-Reaction System and the Scalar Modi-

fied, Viscous Burgers’ Equation

This paragraph shall give some results from recent literature concerning the convergence analy-

sis of flatness based state and input parametrisation for the scalar DCRS and the scalar MVBE.

As already mentioned above the FFC concept of this chapter is based upon previous contribu-

tions such as [1, 52], [54]−[61] and [76, 77]. Therefore the proofs of the following theorems are

omitted and may be studied in the corresponding referenced work. At this stage it has to be

pointed out that in most contributions the flat output was assumed to be at the domain bound-

aries, i.e. ξ = 0 or ξ = N. However in this work the flat output may be assigned to any fixed

but arbitrary position ξ ∈ [0, N]. Moreover the formal integration procedure and subsequent

analysis, i.e. (4.1) to (4.22), can be borrowed for uncoupled systems in scalar-valued form.

Furthermore, in case of the scalar MVBE the entire discussion of Section 4.2.2, including

Theorem 4.7 and Lemma 4.8, can be directly translated to the uncoupled case by setting the

dimension n = 1 and by replacing vector- and matrix-valued definitions and expressions with

scalar-valued terms. Though in case of the scalar DCRS the approach can be simplified when

considering certain assumptions. Therefore, let us recall the PDE (3.25) and the fact that it

can reduced to an equivalent DRS (3.27) by utilising (3.26). Then the infinite series (4.13) can

be written in scalar-valued form as

x(z, t) = exp (λ(z, t))χ(z, t) = exp (λ(z, t))
∞

m=0

χm(z, t) . (4.76)

This shows that the computation process and subsequent convergence analysis may be per-

formed in the transformed state χ(z, t). Since the recursive formula (4.18) of DRSs does not

need to deal with spatial derivatives the first two coefficients can be combined and this finally

results in the simplified algorithm

χ0(z, t) = y0(t) + y1(t)(z − ξ) ,

χm(z, t) =
1

a

z

ξ

η

ξ

(∂tχm−1(σ, t)− γ(σ, t)χm−1(σ, t)) dσ dη , m ≥ 1 .
(4.77)

with the flat output y(t) = [y0(t), y1(t)]
T = exp(−λ(ξ, t)) [x(ξ, t), ∂zx(ξ, t)]

T . With this modi-

fications it is possible to verify the following theorem for the scalar DRS (3.27).

Theorem 4.9 (Absolute and uniform convergence of formal state and input parametrisation

for a DRS [55]). Let γ ∈ CG0,αγ Ω N, t0 ;R and yj ∈ G
δyj
αyj

R+
t0 ;R , j = 0, 1 with α ≥ 1.
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Then the series coefficient χm in (4.77) satisfies

supR+
t0

∂k
t χm (z) ≤ δk+m+1 ((k +m)!)α lm

|z − ξ|2m
(2m)!

+
|z − ξ|2m+1

(2m+ 1)!
. (4.78)

with δ = max {δγ, δy1 , δy2}, α = max {αγ, αy0 , αy1} and

lm =

 1, m = 0

1
am

m
p=1 1 + 1

pα
, m ≥ 1 .

(4.79)

Particularly, the series (4.13) converges absolutely and uniformly if 1 ≤ α ≤ 2 for all |z − ξ| <
ρ, where

ρ =
∞, 1 ≤ α < 2

2
a
√
δ
, α = 2 .

(4.80)

Remark 4.15. With reference to (3.28) and λ(z, t) =
z

0
b(s,t)
2a

ds it can be concluded that the

convection term coefficient b of an appropriate DCRS has to be continuous in z and it has to

be an element of an appropriate Gevrey class with respect to time t.

Remark 4.16. Bearing in mind the discussion in Section 3.1.1 it is possible to reduce a coupled

DCRS but with diagonal B to an equivalent DRS comparable to the uncoupled case. Thus,

assuming an adapted definition of norms and function spaces for vector-valued systems, e.g.

see Appendix C.1, then the simplified recursive computation (4.77) and the general statement

of Theorem 4.9 are valid for the class of coupled diffusion-reaction problems as well.

In the following paragraph the discussion focuses on the remaining trajectory planning problem.

As stated in the introduction of the chapter the FF control part shall guide the agents along x∗

from a starting profile x̄t0 to a different target deployment x̄t0+τy within a finite time interval

τy. For this it is necessary to design and construct desirable trajectories y∗(t) for the flat

output y and to plan corresponding temporal paths B∗(z, t) and C∗(z, t) for the matrix-valued

parameter functions B and C.

4.3 Trajectory Assignment for the Flat Output and

Time-Varying Parameters

Desired trajectories y∗
j(t) for the components of the flat output yj, j = 0, 1 are assigned as

y∗
j(t) = y∗

j,t0
+ y∗

j,t0+τy − y∗
j,t0

Φτy ,ωy (t− t0) . (4.81)

Here, the Gevrey class function Φτy ,ωy ∈ G
δy
αy R+

t0 ;R , αy ∈ (1, 2] is locally non-analytic, i.e.,

∂k
t Φτy ,ωy(t)|t∈{0,τy} = 0, ∀k ≥ 1 while Φτy ,ωy(0) = 0 and Φτy ,ωy(τy) = 1. For a more detailed
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analysis of Gevrey classes and its properties the reader is referred to Definition 3.10 and in

addition to the work [74]. The constants y∗
j,t0

= y∗
j(t) for t ≤ t0 and y∗

i,t0+τy = y∗
i (t), for

t ≥ t0 + τy may be derived from the steady state analysis of the underlying continuous model

as

y∗
0,t0

= x̄t0 ξ; B̄(ξ), C̄(ξ), x̄a, x̄l ,

y∗
0,t0+τy = x̄t0+τy ξ; B̄(ξ), C̄(ξ), x̄a, x̄l ,

y∗
1,t0

= ∂zx̄t0 ξ; B̄(ξ), C̄(ξ), x̄a, x̄l ,

y∗
1,t0+τy = ∂zx̄t0+τy ξ; B̄(ξ), C̄(ξ), x̄a, x̄l .

(4.82)

The parameters x̄a and x̄l define the steady states of the anchor and the leader agent for t ≤ t0
and t ≥ t0 + τyi

, respectively. Finally, a similar time-variant selection for the desired temporal

evolution of each element of the matrix-valued parameter functions B and C, i.e.,

bij∗(z, t) = b̄ijt0(z) + b̄ijt0+τbij
(z)− b̄ijt0(z) Φτ

bij
,ω

bij
(t− t0)

cij∗(z, t) = c̄ijt0(z) + c̄ijt0+τcij
(z)− c̄ijt0(z) Φτ

cij
,ω

cij
(t− t0)

(4.83)

enables the possibility to connect two different formation profiles within the time range τy.

Obviously, for this the Gevrey functions Φτbij ,ωbij
∈ GδB

αB
R+

t0 ;R and Φτcij ,ωcij
∈ GδC

αC
R+

t0 ;R
of the model coefficients need to fulfil the timing constraint 0 < {τbij τcij} ≤ τy, i, j ∈ {1, 2}.
With this, recall that a particular steady state parameter configuration for t ≥ t0 + τy (or

t ≤ t0) refers to a rich set of steady states of the underlying PDE. Example solutions of the

corresponding stationary problem were discussed in Section 3.2 and Appendix B for constant

parameter matrices B̄ and C̄ which do not evolve in space.

In summary the construction of desired trajectories for the flat output according to (4.81) as well

as the temporal assignment for the model parameters in (4.83) closes the stated planning prob-

lem. Together with the formal state and input parametrisation developed above in Section 4.1

this establishes a powerful framework for guided transitions between desired deployments of

MAs. More precisely, the procedure allows to design and realize desired state trajectories

x∗(z, t) which allows the MAS to move between different stationary formation profiles, e.g., a

starting deployment x̄t0(z) to a target deployment x̄t0+τy(z), within the finite time interval τy.

The necessary FF terms of the control inputs are inherently given by u∗
0(t) = ∂tx

∗(0, t) and

u∗
N
(t) = ∂tx

∗( N, t), and may be derived from (4.12).

The following copes with observer based feedback control which, e.g., is unconditionally nec-

essary when agents approach an unstable steady state profile. For this, a concept for coupled

PDEs is elaborated in detail based on the so-called backstepping approach.
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Chapter 5

Observer based Tracking Control for

Multi-Agent Systems

In Chapter 4 the focus of the discussion has been laid on the FF part of the 2DOF control

design and so the upcoming paragraphs deal with the development of the tracking error control

approach. For this, the main objective is to establish the so-called backstepping technique for

controlling a MAS based on models featuring PDEs. Here the main idea of backstepping is to

formulate a target system dynamics with known stability properties and then provide a dynamic

correspondence to the actual given problem. In other words a Volterra integral transformation

of second kind and its inverse establish a two-way linkage which has to ensure that the problem

PDE with its associated boundary conditions approaches the exponentially stable target system.

Since the backstepping technique naturally derives algorithms for boundary control this concept

inherently supports the introduced leader-follower-topology of the MAS. In the following the

main leader agent, or short leader, is meant to be at the boundary z = N and the so-called

anchor agent, or short anchor, is located at z = 0. However, this convention is not mandatory

and may be swapped if required. Since in the following sections some novelties concerning the

backstepping for coupled PDEs are presented this chapter is a key part for this thesis. Thus,

note the overviewing discourse on backstepping for PDEs in the following paragraphs.

In general the backstepping technique is a well established control design concept which is very

closely linked to Prof. Miroslav Krstic at University of California, San Diego. In the early

90’s the theory was initially developed as a non-linear control design technique for ODEs [44].

However in 2004 the approach has been extended to distributed parameters system [80] and

since then it is well-researched topic a for wide range of classes of PDEs. From the early stages

the articles [82, 81] are worth to mention where backstepping based boundary control was the

main objective. Based on these papers different research groups extended the concept in various

directions. For instance in [54, 60] and [61] backstepping is discussed in combination with flat-

ness. A key potential of this approach is that it enables the design of 2DOF controllers which

are pursued in this work. Non-linear PDEs were covered e.g. in [56], and higher-dimensional

spatial domains are explicitly investigated in [61] or [86]. Backstepping based state estimation
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by means of a general Luenberger observer ansatz [94] and appropriate approximation algo-

rithms in order to recursively solve the implicit solution of the arising transformation kernel

were the main objectives in e.g., [38, 39].

Backstepping applied to MASs is surely one of the latter research topics. It comes naturally

with the crossover approach of modelling swarm dynamics by means of distributed parameter

systems instead of, e.g., using fundamental graph theory as in [53]. Moreover backstepping for

PDEs is predestined for the design of boundary controller and thus the methodology inherently

supports the leader-follower agent topology. It is fair to say that the investigations in [30] and

[59] paved the way for other researchers, such as the contributions by the author of this thesis

[23, 24, 25, 26] or from other research groups with the publications [71? ] and very recently

[91]. In this context the journal articles [8, 25] stand out since they show backstepping based

controller design applied to a real time experiments. To the author’s current knowledge [25] is

not only a novelty for a MAS-application but for PDE-backstepping with dynamic BCs.

For future topics regarding backstepping control of distributed parameter systems the author

of this thesis sees three main topics. They can be named as

❼ backstepping based tracking error control and state estimation of coupled PDEs,

❼ in-domain backstepping control, and

❼ bilateral backstepping control, where two collaborating actuators are configured at the

opposite boundaries of the spatial domain.

The latter was discussed in [87] for the first time and extended recently in [14]. In-domain

backstepping controller design was topic in [90] and [92], and in [26] it was a key novelty for the

observer design of a Burgers-type PDE. Without proof the author of this work wants to venture

with the claim that bilateral and in-domain backstepping are conceptionally related very closely.

It seems they consolidate in similar way as duality does for controller and observer design,

meaning bilateral controller design is equivalently to in-domain observer design and vice-versa.

First hints to this proposition are provided in the work in [14], where the authors managed

to put bilateral controller design and observer design with in-domain measurements under a

common umbrella. Recently this concept is extended in [40] for coupled PDEs. Bilateral and

in-domain backstepping are promising approaches for real applications. In the author’s opinion

bilateral backstepping has the main advantage that it allows to design fail-safe controllers and

observers. Two collaborating actuators or sensors in combination with switching algorithms

may compensate single hardware failures. Moreover, control signals may decrease in magnitude

while they can still provide the same dynamic behaviour. Therefore, on the one hand hardware

may be get smaller since less energy is required for actuation. However, on the other hand,

applying an collaborating actuation or sensing system may increase costs and maintenance

for real applications. When using in-domain backstepping one should benefit from increased

stability properties or smaller kernels of the Volterra transformation and consequently smaller

gains while having the same stability properties as with conventional backstepping. Probably
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the drawback is that in-domain actuators and sensors need to be of a special type or variant.

More precisely speaking, they have to support actuating on or measuring, respectively, the

state x and the spatial derivative ∂zx at the same time. This may be hardly the case for most

applications, tough it would be easily applicable for controlling swarms and MASs.

Backstepping based boundary control and state estimation of coupled system are two of the

main topic of recent research within the PDE community. When dealing with coupled PDEs

and backstepping one gets faced with sophisticated equations for the kernel of the Volterra

transformation which cannot be solved trivially due to non-commutative matrix multiplications.

Here, various contributions deal with DCRSs, e.g., in [88, 89, 17], and pursue the approach

to keep the target system as simple as possible equipped with partly arbitrary parameters

for design purposes. They shall at least theoretically allow a free of choice setting of the

convergence rate. Unfortunately the approach leads to rather complex kernel equations which,

among others, depend on the complexity of the underlying problem. Contemporary work

tends to increase this complexity by adding higher requirements to the parameter matrices

of the problem formulation, starting with constant and equal (scalar) diffusion and moving

to constant but different diffusion parameters [3, 2, 70]. From this, complexity is increased

by making parameter matrices evolving in space [88, 89], including time-varying properties in

[41] and even considering partial integro-differential equations (PIDEs) in [17, 18, 40]. At this

state it shall be pointed out that one of the first published approaches concerning coupled

PDEs and backstepping differs from the described concept. More precisely in [4] the authors

put constraints on the properties of the target system and try to formulate conditions for its

parameters which ensure stability. However, the mentioned contribution limits the concept to

problems with constant parameters and leaving out convection entirely. As a fact this work and

the mentioned restriction was the major inspiration for the upcoming investigations where the

approach of [4] is generalised for DCRSs with uncoupled but distinct diffusion parameters and

fully coupled convection and reaction terms whereas the latter two parameter matrices may

evolve in time and space. Moreover the following concept supports all major kinds of boundary

conditions, i.e., Dirichlet, Neumann, Robin as well as first order integrators as introduced in

this work. Another big encouragement to this idea has been [32] which discusses as similar

approach for coupled semi-linear sub-diffusion systems. It is fair to say that the developed

concept does not work for any arbitrary parameter setting, even though it covers a huge set of

coupled DCRSs.

Next, the following section develop a backstepping based error tracking controller and a corre-

sponding observer algorithm which estimates the state information.
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5.1 Backstepping based Boundary Control for a Class of

Coupled Parabolic Partial Differential Equations

For the following let us recall the distributed parameter systems introduced in Section 3.1.

First, consider the PDE of a coupled DCRS written as

∂tx(z, t) = A∂2
zx(z, t)−B(z, t)∂zx(z, t) + C(z, t)x(z, t) (5.1a)

and second, the coupled MVBE formulated as

∂tx(z, t) = A∂2
zx(z, t)−B(z, t)X(z, t)∂zx(z, t) + C(z, t)x(z, t) . (5.1b)

Both are defined on the domain (z, t) ∈ Ω( N, t0) and have either Dirichlet BCs

x(0, t) = u0(t) , x( N, t) = u
N
(t) (5.1c)

or dynamic BCs

∂tx(0, t) = u0(t) , ∂tx( N, t) = u
N
(t) . (5.1d)

A proper IC is defined by x(z, t0) = x0(z). At this point it is referred to Assumption 3.1 for

recalling the properties of the parameter matrix A and the matrix-valued functions B and C.

Since this work deals with a 2DOF control concept it is necessary to design the feedback part

for the so-called tracking error dynamics. In this context the tracking error is defined as the

difference between the actual state and the desired state derived by formal state parametrisation

derived in Chapter 4. Therefore, look at the next section for the determination of the tracking

error system and the backstepping based design process.

5.1.1 Backstepping based Boundary Control

As mentioned above for the 2DOF control concept it is necessary to formulate the feedback

control problem in terms of the error state

x̃c(z, t) = x(z, t)− x∗(z, t) . (5.2)

With this and taking (5.1a) into account this leads to a linear, time-variant DCRS in the error

state as well. Contrary (5.1b) evaluates to the semi-linear system

∂tx̃c(z, t) = A∂2
z x̃c(z, t)− B(z, t) (X(z, t)∂zx(z, t)−X∗(z, t)∂zx

∗(z, t))

+ C(z, t)x̃c(z, t) .
(5.3)

Assuming small tracking errors, i.e, x̃c 2 ≈ 0 and ∂zx̃c 2 ≈ 0, the linearisation around the

desired trajectory {x∗, ∂zx
∗} as introduced in (3.24) formally leads to a DCRS as well and may

be written as

∂tx̃c(z, t) = A∂2
z x̃c(z, t)− B(z, t)X∗(z, t)∂zx̃c(z, t)

+ (C(z, t)− B(z, t)∂zX
∗(z, t)) x̃c(z, t) .

(5.4)
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Since the desired state x∗ and its derivative ∂zx
∗ can be pre-described the tracking error

systems can always be rewritten as an equivalent DCRS. Thus, for the subsequent discussion

let us concentrate on the representative distributed parameter system

∂tx̃c(z, t) = A∂2
z x̃c(z, t)− B(z, t)∂zx̃c(z, t) + C(z, t)x̃c(z, t), (5.5a)

for (z, t) ∈ Ω( N, t0) and the Dirichlet BCs

x̃c(0, t) = Δu0(t) , x̃c( N, t) = Δu
N
(t) (5.5b)

or dynamic BCs

∂tx̃c(0, t) = Δu0(t) , ∂tx̃c( N, t) = Δu
N
(t) , (5.5c)

respectively. The IC is inherently given by x̃c(z, t0) = x̃c,0(z) = x0(z)− x∗
0(z) and the control

inputs follow from Δu0(t) = u0(t)−u∗
0(t) and Δu

N
(t) = u

N
(t)−u∗

N
(t). Now, the backstepping

technique shall establish a dynamical linkage between the error state x̃c and an target state w

by means of the Volterra integral transformation of the second kind

w(z, t) = x̃c(z, t)−
z

0

K(z, s, t)x̃c(s, t) ds (5.6)

and its inverse transformation

x̃c(z, t) = w(z, t) +
z

0

G(z, s, t)w(s, t) ds . (5.7)

The so-called backstepping kernelsK and G shall be matrix-valuedC2−functions in z and s and

are defined on the triangular spatial domain (z, s) ∈ DK( N) := {(z, s) ∈ R2 | z ∈ [0, N] , s ∈
[0, z]} which is illustrated in Figure 5.1a. At this stage it is pointed out that the introduced

setup addresses fully coupled convection terms in context with the backstepping approach. As

far as known to the author and for the time being this is only covered in [89]. Substituting

(5.7) into (5.6) leads to

0n =
z

0

G(z, s, t)w(s, t) ds−
z

0

K(z, s, t) w(s, t) +
s

0

G(s, p, t)w(p, t) dp ds

=
z

0

[G(z, s, t)−K(z, s, t)]w(s, t) ds−
z

0

s

0

K(z, s, t)G(s, p, t)w(p, t) dp ds .

(5.8)

Changing the order of the integration and subsequent swapping the variable names for s and

p, i.e.,
z

0

s

0
F (s, p) dp ds =

z

0

z

s
F (p, s) dp ds gives

0n =
z

0

G(z, s, t)−K(z, s, t)−
z

s

K(z, p, t)G(p, s, t) dp w(s, t) ds . (5.9)

Since this has to hold for every z ∈ [0, N] the kernels K and G are connected by

G(z, s, t)−K(z, s, t) =
z

s

K(z, p, t)G(p, s, t) dp . (5.10)
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Figure 5.1: The triangular spatial domains of the backstepping kernel-PDE for tracking control: (a)

in the (z, s)−plane for K and (b) in the scattering coordinates (α, β) for the transformed kernel K.

The size of the triangles varies with the length N and therefore with the number of agents N.

Similarly, when (5.6) is substituted into (5.7) it gives the equivalent relationship

G(z, s, t)−K(z, s, t) =
z

s

G(z, p, t)K(p, s, t) dp . (5.11)

For the target state w assume the following PIDE

∂tw(z, t) = A∂2
zw(z, t)−B(z, t)∂zw(z, t)− (D(t)−M(z, t))w(z, t)

+ F (z, t)w(0, t) +
z

0

H(z, s, t)x̃c(s, t) ds,
(5.12a)

for (z, t) ∈ Ω( N, t0) and with the Dirichlet BCs

w(0, t) = 0n , w( N, t) = 0n (5.12b)

in case the tracking error system is formulated with (5.5b), or the dynamic BCs

∂tw(0, t) = − (D(t)−M(0, t))w(0, t) ,

∂tw( N, t) = − (D(t)−M( N, t))w( N, t)
(5.12c)

when (5.5c) applies for the corresponding error system. Respecting the integral transformation

(5.6) the initial state follows from w(z, t0) = w0(z) = x̃c,0(z) − z

0
K0(z, s)x̃c,0(s) ds with the

matrix K0(z, s) defined as the backstepping kernel K at t = t0. In (5.12a) the matrices A

and B are directly deduced from the error system (5.5a). For the reaction term the matrix

D shall be diagonal and positive definite for every t ∈ R+
t0 . However, it will have to meet
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further requirements to ensure stability properties which are discussed in the following sections.

Furthermore, in (5.12a) the matrix-valued functions M and F , and the integral kernel H are

compensation terms which, again, are explicitly set in the upcoming paragraphs where the

equations of the backstepping kernel K are derived in detail.

Before discussing the determination of the kernel equation two comments concerning notation

are in order. First, assume the separation of the matrix M into the two parts

M(z, t) = Md(z, t) +M c(z, t) (5.13)

where Md notes the diagonal term Md(z, t) = diag [m11(z, t),m22(z, t) . . . ,mnn(z, t)] and M c

has the form

M c(z, t) =


0 m12(z, t) · · · m1n(z, t)

m21(z, t) 0 · · · m2n(z, t)
...

...
. . .

...

mn1(z) mn2(z, t) · · · 0

 . (5.14)

Remark 5.17. In the following for every arbitrary matrix X ∈ Rn×n the notation Xd defines

the diagonal part of X, Xc stands for the coupling part which has zeros as diagonal elements,

Xs denotes the symmetric part, and Xa the anti-symmetric part. Note, assume X, Y ∈ Rn×n

then

Z = XdY − Y Xd = XdY c − Y cXd = Zc (5.15)

holds true, i.e., the result of the given difference has zero diagonal. Furthermore, the symmetric

and anti-symmetric parts of Z can be written as

Zs = XdY a − Y aXd (5.16)

Za = XdY s − Y sXd . (5.17)

Proof. The proof of (5.15) is trivial since diagonal matrices are commutative in multiplication.

Consequently the difference cancels out the diagonal part, i.e.,

Xd Y d + Y c − Y d + Y c Xd = XdY d − Y dXd +XdY c − Y cXd =

XdY c − Y cXd
(5.18)

Furthermore, respect the properties of a symmetric matrix (Zs)T = Zs and of an anti-symmetric

matrix (Za)T = −Za. Then it can be shown that the difference (5.16) must be symmetric by

XdY a − Y aXd T
= (Y a)T Xd T − Xd T

(Y a)T = −Y aXd +XdY a (5.19)

In equivalent fashion it can be proven that the difference (5.17) has to be anti-symmetric.
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Second, the integral term in (5.12a) is written in terms of the error state x̃c to keep the

expression short. However by making use of the inverse transformation (5.7) it always may be

written in target coordinates w as

z

0

H(z, s, t)x̃c(s, t) ds =
z

0

H(z, s, t)w(s, t) ds

+
z

0

H(z, s, t)
s

0

G(s, p, t)w(p, t) dp ds

=
z

0

H(z, s, t) +
z

s

H(z, p, t)G(p, s, t) dp w(s, t) ds .

(5.20)

Subsequently, the next paragraph examines the derivation of the kernel equations and discusses

two specializations which vastly simplify the composition of a solution of the kernel K.

5.1.2 Determination of the Backstepping Integral Kernel

As a next step to design the feedback controller it is necessary to derive the equations for the

backstepping kernel. Thus, let us recall the Volterra integral transformation (5.6) and consider

the following derivations in space and time

∂tw(z, t) = ∂tx̃c(z, t)−
z

0

∂tK(z, s, t)x̃c(s, t) ds−
z

0

K(z, s, t)∂tx̃c(s, t) ds , (5.21)

∂zw(z, t) = ∂zx̃c(z, t)−K(z, z, t)x̃c(z, t)−
z

0

∂zK(z, s, t)x̃c(s, t) ds , (5.22)

∂2
zw(z, t) = ∂2

z x̃c(z, t)− d

dz
K(z, z, t)x̃c(z, t)−K(z, z, t)∂zx̃c(z, t)

− ∂zK(z, z, t)x̃c(z, t)−
z

0

∂2
zK(z, s, t)x̃c(s, t) ds

(5.23)

with the total spatial derivative d
dz
K(z, z, t) = [∂zK(z, s, t) + ∂sK(z, s, t)] |z=s. Substituting the

expressions (5.21)-(5.23) into the PIDE of the target system (5.12) and respecting the control

error dynamics (5.5a) leads to

−
z

0

∂tK(z, s, t)x̃c(s, t) ds−
z

0

K(z, s, t)∂tx̃c(s, t) ds = − A
d

dz
K(z, z, t)

+ A∂zK(z, z, t)−B(z, t)K(z, z, t) +D(t)−M(z, t) + C(z, t) x̃c(z, t)

− AK(z, z, t)∂zx̃c(z, t) + F (z, t)x̃c(0, t)

+
z

0

H(z, s, t)− A∂2
zK(z, s, t) +B(z, t)∂zK(z, s, t)

+ (D(t)−M(z, t))K(z, s, t) x̃c(s, t)ds .

(5.24)
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Again, considering the error dynamics (5.5a) within the integral on the left hand side and

subsequent sorting of the terms gives

0 =
z

0

K(z, s, t) A∂2
s x̃c(s, t)−B(s, t)∂sx̃c(s, t) + C(s, t)x̃c(s, t) ds

− A
d

dz
K(z, z, t) + A∂zK(z, z, t)−B(z, t)K(z, z, t) +D(t)−M(z, t)

+ C(z, t) x̃c(z, t)− AK(z, z, t)∂zx̃c(z, t) + F (z, t)x̃c(0, t)

+
z

0

H(z, s, t) + ∂tK(z, s, t)− A∂2
zK(z, s, t) +B(z, t)∂zK(z, s, t)

+ (D(t)−M(z, t))K(z, s, t) x̃c(s, t)ds .

(5.25)

From this, two times partial integration of the term

z

0

K(z, s, t)A∂2
s x̃c(s, t) ds = K(z, s, t)A∂sx̃c(s, t)− ∂sK(z, s, t)Ax̃c(s, t)

s=z

s=0

+
z

0

∂2
sK(z, s, t)Ax̃c(s, t) ds ,

(5.26)

one time partial integration of the expression

z

0

K(z, s, t)B(s, t)∂sx̃c(s, t) ds = K(z, s, t)B(s, t)x̃c(s, t)
s=z

s=0

−
z

0

∂sK(z, s, t)B(s, t) +K(z, s, t)∂sB(s, t) x̃c(s, t) ds ,

(5.27)

and recognising the resulting terms in (5.25) allows to write the equation as

0 = − A
d

dz
K(z, z, t) + A∂zK(z, z, t) + ∂sK(z, z, t)A

− B(z, t)K(z, z, t) +K(z, z, t)B(z, t) +D(t)−M(z, t) + C(z, t) x̃c(z, t)

+ F (z, t) + ∂sK(z, 0, t)A+K(z, 0, t)B(0, t) x̃c(0, t)−K(z, 0, t)A∂zx̃c(0, t)

+ K(z, z, t)A− AK(z, z, t) ∂zx̃c(z, t) +
z

0

H(z, s, t) + ∂tK(z, s, t)

− A∂2
zK(z, s, t) + ∂2

sK(z, s, t)A+B(z, t)∂zK(z, s, t) + ∂sK(z, s, t)B(s, t)

+ (D(t)−M(z, t))K(z, s, t) +K(z, s, t) (C(s, t) + ∂sB(s, t)) x̃c(s, t)ds .

(5.28)

Since (5.28) has to be satisfied for all z ∈ [0, N] and t > t0 the kernel K ∈ CG2,2,α(DK( N)×
R+

t0 ;R
n×n) with 1 ≤ α ≤ 2 has to fulfil the PDE

∂tK(z, s, t) = A∂2
zK(z, s, t)− ∂2

sK(z, s, t)A− B(z, t)∂zK(z, s, t)

− ∂sK(z, s, t)B(s, t)− (D(t)−M(z, t))K(z, s, t)

−K(z, s, t) (C(s, t) + ∂sB(s, t))−H(z, s, t)

(5.29a)



94 5 Observer based Tracking Control for Multi-Agent Systems

defined on the open triangular domain (z, s) ∈ [0, N] × [z, N] and for all t ∈ R+
t0 . Setting

F (z, t) = 0n,n in case of Dirichlet BCs (5.1c) and F (z, t) = −∂sK(z, 0, t)A for the dynamic

BCs (5.1d) as well as respecting (5.13) then the BCs of the kernel at z = s ∈ [0, N] and

s = 0, z ∈ [0, N] lead to

A
d

dz
K(z, z, t) + A∂zK(z, z, t) + ∂sK(z, z, t)A = B(z, t)K(z, z, t)

−K(z, z, t)B(z, t)−D(t) +M(z, t)− C(z, t) ,
(5.29b)

K(z, z, t)A = AK(z, z, t) , (5.29c)

K(z, 0, t) = 0n,n . (5.29d)

In view of (5.6) the IC of the kernel at t = t0 has to meet
z

0
K(z, s, t0)x̃c,0(z)ds = x̃c,0(z) −

w0(z). Hence, the explicit assignment K(z, s, t0) = K0(z, s) which shall be consistent with the

BCs (5.29b)-(5.29d), implicitly defines the IC of the target state w0(z).

Remark 5.18. Assuming Neumann boundary conditions for the error system (5.5) the com-

pensation term F demands the setting F (z, t) = K(z, 0, t)B(0, t) and the boundary condition

(5.29d) of the kernel at s = 0 has to be modified to ∂sK(z, 0, t) = 0n,n.

Equations (5.29) reveal that commutative multiplication between the coefficient matrices A, B

and the kernel K would largely simplify the construction of solutions for K. Moreover, since

A is diagonal it is desirable to construct a diagonal backstepping kernel K at the boundary

z = s, i.e. K(z, z, t) = Kd(z, z, t) = diag [k11(z, z, t), . . . , knn(z, z, t)]. In other words imposing

the diagonal kernel Kd at z = s then the matrix-valued function M is enforced to the setting

M(z, t) = Cc(z, t) +Kd(z, z, t)B(z, t)− B(z, t)Kd(z, z, t) , (5.30)

and for diagonal B(z, t) = Bd(z, t) to

M(z, t) = Cc(z, t) , (5.31)

whereas Cc is the coupling part of C. Note that for diagonal kernel at z = s the term

Kd(z, z, t)B(z, t)− B(z, t)Kd(z, z, t) has coupling format, see Remark 5.17 for details. In this

case this means M = M c and Md = 0n,n. With this (5.29c) is satisfied trivially and (5.29b)

simplifies to

d

dz
Kd(z, z, t) = −1

2
A−1 D(t) + Cd(z, t) . (5.32)

Here Cd stands for the remaining diagonal part of C. Integrating (5.32) and subsequent sub-

stitution in (5.30) together with Remark 5.17 gives the explicit formulation

M(z, t) = Cc(z, t) +
z

2
A−1D(t)Bc(z, t)− Bc(z, t)A−1D(t)

− 1

2

z

0

A−1Cd(s, t)Bc(z, t)−Bc(z, t)A−1Cd(s, t) ds .
(5.33)
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Remark 5.19. The kernel G for the inverse backstepping transformation (5.7) can be deduced

in similar fashion as K above. Then the PDE for G can be written as

∂tG(z, s, t) = A∂2
zG(z, s, t)− ∂2

sG(z, s, t)A− B(z, t)∂zG(z, s, t)

− ∂sG(z, s, t)B(s, t) + C(z, t)G(z, s, t)

+G(z, s, t) (D(t)−M(s, t)− ∂sB(s, t))− J(z, s, t)

(5.34a)

with the boundary conditions

A
d

dz
G(z, z, t) + A∂zG(z, z, t) + ∂sG(z, z, t)A = B(z, t)G(z, z, t)

−G(z, z, t)B(z, t)−D(t) +M(z, t)− C(z, t) ,

G(z, z, t)A = AG(z, z, t) ,

G(z, 0, t) = 0n,n, .

(5.34b)

Here the matrix M is identical to the expression in (5.30) and was initially introduced in the

PIDE of the target system (5.12a). The term J(z, s, t) has a similar task as H(z, s, t) in

(5.29a). Both act as compensation terms to simplify their corresponding PDE. However they

are not independent from each other, which leads to the following definition.

Definition 5.5. Consider the matrix-valued compensation terms H(z, s, t) and J(z, s, t). The

former is associated to the PDE (5.29a) for the determination of the kernel K, and the latter

corresponds to the PDE (5.34a) which defines the kernel G of the related inverse backstepping

transformation. The terms H and J are connected by the so-called transversal compensation

condition (TCC) with respect to their backstepping kernels K and G, respectively. More pre-

cisely, they have to satisfy

J(z, s, t)−H(z, s, t) =
z

s

[J(z, p, t)K(p, s, t) +G(z, p, t)H(p, s, t)] dp . (5.35)

The entire discussion of the derivation of the inverse kernel and the TCC is conducted in

Section 5.1.3. The interested reader is especially referred to D.2 where (5.35) is proven for the

two different types of compensations which are presented in the following sections of this work.

As an intermediate summary, it can be stated that with (5.31) or (5.33), respectively, the

compensation term M only depends on the parameter setting of the error system (5.5a) and

the design coefficients of D. In this context the diagonal elements of D remain as degrees

of freedom which allow to adjust appropriate stability properties. Furthermore the matrix-

valued compensation M ensures that the kernel can be imposed to a diagonal form at the

boundary z = s. However, this discussion still leaves behind the analysis of the kernel PDE

(5.29a) with an appropriate setting of H. Therefore two particular cases are investigated in

the following paragraphs. Both concepts have the common goal to simplify the kernel PDE in

a way that it allows to use solutions and algorithms established for the computation of kernels

arsing for DPSs governed by uncoupled PDEs. The first type of compensation aims for the

goal to compensate the coupling terms. Then this allows to impose a diagonal kernel over
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the entire spatial domain. The design is based on the results in [3, 4, 70]. Though, here the

concept largely extends and generalises the idea for non-constant parameter configurations and

dynamic BCs. The second approach tries to modify the non-commutative terms which involve

spatial derivatives into expressions with scalar coefficients.

Coupling Compensation

As mentioned above this approach imposes a backstepping kernel with diagonal structure. With

this (5.29a) can be formulated as

∂tK
d(z, s, t) = A ∂2

zK
d(z, s, t)− ∂2

sK
d(z, s, t) −Bd(z, t)∂zK

d(z, s, t)

− Bd(s, t)∂sK
d(z, s, t)− D(t) + Cd(s, t) + ∂sB

d(s, t) Kd(z, s, t) ,
(5.36)

This demands a compensation term H defined as

H(z, s, t) = −Bc(z, t)∂zK
d(z, s, t)− ∂sK

d(z, s, t)Bc(s, t)

+M c(z, t)Kd(z, s, t)−Kd(z, s, t) (Cc(s, t) + ∂sB
c(s, t))

(5.37)

and the matrix M is given by the setting (5.30). From here all matrices and matrix valued

functions are diagonal and consequently the multiplication operation is commutative. Applying

the Hopf-Cole-transformation as introduced in Section 3.1.1, with the transformation matrix

T (z, s, t) = exp (Λ(z, t)− Λ(s, t)) and its argument Λ(z, t) = (A−1/2)
z

0
Bd(p, t)dp, the PDE

of the transformed kernel K̆d(z, s, t) = T (z, s, t)Kd(z, s, t) can be rewritten as

∂tK̆
d(z, s, t) = A ∂2

zK̆
d(z, s, t)− ∂2

sK̆
d(z, s, t) − Γ(z, s, t)K̆d(z, s, t) (5.38)

with Γ(z, s, t) = D(t) + Cd(s, t) + ∂sB
d(s, t) + A (∂zΛ(z, t))

2 + A (∂sΛ(s, t))
2 − A∂2

zΛ(z, t) −
A∂2

sΛ(s, t) + ∂tΛ(z, t) − ∂tΛ(s, t). With this it is easy to see that Γ is diagonal as well, i.e.,

Γ(z, s, t) = diag [γ11(z, s, t), . . . , γnn(z, s, t)]. As a consequence the kernel PDE may be solved

independently for each element. Therefore, noting that T (z, z, t) = In the uncoupled trans-

formed kernel-PDEs can be formulated as

∂tk̆ii(z, s, t) = aii ∂2
z k̆ii(z, s, t)− ∂2

s k̆ii(z, s, t) − γii(z, s, t)k̆ii(z, s, t)

d

dz
k̆ii(z, z, t) = − 1

2aii
(dii(t) + cii(z, t))

k̆ii(z, 0, t) = 0

(5.39)

with i = 1, . . . , n . Here the established methods developed for uncoupled backstepping con-

troller design given distributed parameter systems can be applied to (5.39) in order to solve

the kernel equations, e.g. see [55]. Thus, the scattering coordinates

α = z + s and β = z − s (5.40)
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are introduced, so that k̆(z, s, t) = k̆ α+β
2
, α−β

2
, t = k (α(z, s), β(z, s), t). With this the spa-

tial domain adapts to DK( N) := {(α, β) ∈ R2 |α ∈ [β, 2 N − β], β ∈ [0, N]} and is shown in

Figure 5.1b. The differential operators modify to

∂

∂z
=

∂

∂α
+

∂

∂β
,

∂2

∂z2
=

∂2

∂α2
+ 2

∂

∂α

∂

∂β
+

∂2

∂β2
,

∂

∂s
=

∂

∂α
− ∂

∂β
,

∂2

∂s2
=

∂2

∂α2
− 2

∂

∂α

∂

∂β
+

∂2

∂β2
.

(5.41)

Neglecting the double indices in (5.39) for simplicity and applying the coordinate change trans-

forms the equations into the integrable form

∂tk(α, β, t) = 4a∂α∂βk(α, β, t)− γ
α + β

2
,
α− β

2
, t k(α, β, t) ,

k(α, 0, t) = − 1

4a

α

β

d(t) + c
q

2
, t dq ,

k(α, α, t) = 0 .

(5.42)

Under the assumption c ∈ CG0,δ Ω N, t0 ;R and γ ∈ CG0,0,δ DK( N)× R+
t0 ;R with

1 ≤ δ ≤ 2 a strong solution can be determined by applying the formal integration method.

Therefore, integrating spatially twice gives the implicit solution

k(α, β, t) = − 1

4a

α

β

d(t) + c
q

2
, t dq

+
1

4a

α

β

β

0

∂tk(q, p, t) + γ
q + p

2
,
q − p

2
, t k(q, p, t) dpdq .

(5.43)

which can be solved by recursive algorithms, e.g., successive approximation [38]. Assuming

that the solution of the kernel can be formulated as the infinite functional series

k(α, β, t) =
∞

m=1

km(α, β, t) (5.44)

with the terms computed according to

k1(α, β, t) = − 1

4a

α

β

d(t) + c
q

2
, t dq (5.45a)

and

km(α, β, t) =
1

4a

α

β

β

0

∂tkm−1(q, p, t) + γ
q + p

2
,
q − p

2
, t km−1(q, p, t) dpdq (5.45b)

form > 1, it can be shown that (5.44) is absolutely and uniformly convergent. Here, the proof is

omitted and the interested reader is referred to the corresponding methods in [38, 39, 55] applied

to control error systems with Dirichlet BCs. At this state it is pointed out that for dynamic

BCs it is necessary to evaluate the first and second order of the derivative with respect to s
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for the determination of controller gains, e.g., see [23]. Considering the differential operators

(5.42) the first derivative can be computed analytically by

∂sk̆(z, s, t) = ∂αk(α, β, t)− ∂βk(α, β, t) (5.46)

whereas ∂αk can be governed by single integration of (5.42) with respect to β and ∂βk by

formal differentiation of (5.43) with respect to β. Due to linearity both functions can be in-

cluded in the recursive calculation of k and therefore ∂sk̆ already derived in parallel. The

second derivative with respect to s as well as the differentiation to t needs to be computed

by numerical methods. Finally, applying the inverse of the Hopf-Cole-Transformation, i.e.,

K(z, s, t) = T−1(z, s, t)K̆(z, s, t) with T−1(z, s, t) = exp (Λ(s, t)− Λ(z, t)) the kernel K is ob-

tained for further evaluation and for the remaining steps in terms of the controller design

process. Derivatives of K follow from formal differentiation of the Hopf-Cole-Transformation

accordingly.

Non-commutative Compensation

The second and alternative approach dissolves the non-commutativity of the kernel-PDE by

means of substituting the matrix-valued parameter A and parameter function B with a scalar

counterpart. By means of the abbreviations ΔA = A− aIn, ΔB(z, t) = B(z, t)− b(z, t)In, and

MAB(z, t) = M(z, t)− Cc(z, t) the compensations terms are set to

H(z, s, t) = ΔA∂2
zK(z, s, t)− ∂2

sK(z, s, t)ΔA−ΔB(z, t)∂zK(z, s, t)

− ∂sK(z, s, t)ΔB(s, t)−K(z, s, t)∂sΔB(s, t) +MAB(z, t)K(z, s, t) ,
(5.47)

M(z, t) = 2ΔA
d

dz
Kd(z, z, t) +Kd(z, z, t)B(z, t)−B(z, t)Kd(z, z, t) + Cc(z, t) . (5.48)

Then the kernel dynamics can be expressed as

∂tK(z, s, t) = a ∂2
zK(z, s, t)− ∂2

sK(z, s, t) − b(z, t)∂zK(z, s, t)

− b(s, t)∂sK(z, s, t)− (D(t)− Cc(z, t))K(z, s, t)

−K(z, s, t) (C(s, t) + ∂sb(s, t)In) .

(5.49)

Equivalently to the discussion above in Section 5.1.2, applying the Hopf-Cole-transformation

with the scalar rule τ(z, s, t) = exp (λ(z, t)− λ(s, t)) and its argument λ(z, t) = 1
2a

z

0
b(p, t)dp,

allows the PDE to be formulated as

∂tK̆(z, s, t) = a ∂2
zK̆(z, s, t)− ∂2

sK̆(z, s, t) − (D(t)− Cc(z, t)) K̆(z, s, t)

− K̆(z, s, t)Γ(z, s, t)
(5.50)

with Γ(z, s, t) = C(s, t) + ∂sb(s, t) + a (∂zλ(z, t))
2 + a (∂sλ(s, t))

2 − a∂2
zλ(z, t) − a∂2

sλ(s, t) +

∂tλ(z, t)− ∂tλ(s, t) In. Making use of τ(z, z, t) = 1 the associated uncoupled boundary condi-

tions derive to

d

dz
K̆(z, z, t) = − 1

2a
D(t) + Cd(z, t)

K̆(z, 0, t) = 0 .
(5.51)
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In scattering coordinates (α, β) the implicit solution of the kernel K̆(z, s, t) = K̆ α+β
2
, α−β

2
, t =

K (α(z, s), β(z, s), t) may be written as

K(α, β, t) = − 1

4a

α

β

D(t) + Cd q

2
, t dq +

1

4a

α

β

β

0

∂tK(q, p, t)

+ D(t)− Cc q + p

2
K(q, p, t) + K(q, p, t)Γ

q + p

2
,
q − p

2
, t dpdq .

(5.52)

Again, assuming recursive computation methods the solution of the kernel can be formulated

as the infinite functional series K(α, β, t) = ∞
m=1 Km(α, β, t) with the terms

K1(α, β, t) = − 1

4a

α

β

D(t) + Cd q

2
, t dq (5.53a)

Km(α, β, t) =
1

4a

α

β

β

0

∂tKm−1(q, p, t) + D(t)− Cc q + p

2
Km−1(q, p, t)

+ Km−1(q, p, t)Γ
q + p

2
,
q − p

2
, t dpdq , m > 1 .

(5.53b)

It can be shown that the series is absolutely and uniformly convergent. The proof may be

conducted equivalently as for scalar systems. However the supremum of scalar functions may

be exchanged by the induced operator max−norm as introduced in Definition 3.8. Therefore

again, a detailed discussion on the convergence as well as further manipulation to obtain the

kernel K and its derivatives with respect to s and t are refrained. The interested reader is

referred to the remarks and literature mentioned above at the end of Section 5.1.2.

As a brief summary two compensation methods were introduced which explicitly define the

matrix-valued function M and the integral kernel H, i.e., the compensation terms of the target

system (5.12a). On the one hand, the coupling compensation concept enforces an diagonal

kernel over the entire spatial domain and therefore demands the compensation of the coupling

parts of the convection and reaction terms. On the other hand, the non-commutative compen-

sation approach establishes scalar parameter values for the expressions with spatial derivatives.

Depending on the parameter configuration of the error system (5.5) one approach may outper-

form the other. Apart from that, it has to be shown that the appropriate adjustment of the

parameter matrix D allows the definition of an exponential stable target system (5.12) which

includes the compensation terms M and H. Therefore in the next section the discussion is

carried forward regarding stability properties of the target system and consequently ensuring

closed loop stability of the error system.

5.1.3 Stability of the Tracking Error System

Basically the stability of the closed loop control error system is proven in two steps. First, the

boundedness of the backstepping kernels K and G is mandatory to ensure stability. Second,

the stability properties of the target system directly influence the stability of the tracking error

system. In this context the boundedness for K is inherently given since in Section 5.1.2 it
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is shown that strong solutions exists for the two investigated cases. By means of (5.10) and

(5.11), respectively, the boundedness of G may be directly deduced from the boundedness of

K. More precisely, by applying the triangle inequality this leads to

ϕK(t)− ϕG(t) ≤ ϕK(t)ϕG(t) N and ϕG(t)− ϕK(t) ≤ ϕG(t)ϕK(t) N

→ ϕK(t) = ϕG(t) (5.54)

with ϕK(t) = maxDK( N) K(z, s, t)
2
and ϕG(t) = maxDG( N) G(z, s, t)

2
, see (C.10) for details.

With this, the proof of the stability of the target system in appropriate spaces is the topic of

the discussion in the next paragraphs.

Stability of the Target System for Dirichlet Boundary Conditions

Note, in this section w ∈ L2 Ω N, t0 ;Rn with the L2−norm

w
L2(t) =

N

0

wT (z, t)w(z, t)dz

1
2

. (5.55)

is considered as a suitable state space for the target system. With this and respecting the

following definition of functions stability properties are analysed subsequently. As already

indicated above the time function ϕG(t) stands for the spectral norm of the backstepping

kernel G(z, s, t) of the inverse transformation (5.7) for every fixed time t ∈ R+
t0 and ϕH(t)

denotes the spectral norm of the integral kernel H(z, s, t) of the target system (5.12) again for

every fixed time t ∈ R+
t0 . Both define upper bounds for the spatial domain DK( N). In general

for these statements and all upcoming expressions regarding the mentioned spectral norms see

Definition 3.9 in the Appendix. For details on the definition of maxDK( N) ·
2
which applies

to matrix-valued functions in two spatial variables see (C.10); for matrix-valued functions in

a single spatial variable see (C.11). Moreover, note that M s and Bs indicate the symmetric

parts of the corresponding matrices M and B. With this the following theorem is formulated

accordingly.

Theorem 5.10. Let D(t) be diagonal in (5.12a) and let ν ∈ Rn/{0n}. If D fulfils the inequality

νTD(t)ν ≥ νT M s(z, t) +
1

2
∂zB

s(z, t)− 1

4
Ba(z, t)A−1Ba(z, t) νT

+ ϕH(t)
N√
2
+ ϕG(t)

N
2

2
+ λmin(t) ν 2

2 (5.56)

for all (z, t) ∈ Ω( N, t0) and for some λmin(t) > 0 with t > t0, then the zero equilibrium of the

target system dynamics (5.12a) with boundary conditions (5.12b) is exponentially stable in the

norm ·
L2 , i.e., there exists a constant ρ > 0 so that the inequality

w
L2(t) ≤ ρ w

L2(t0) exp (−κc(t, t0)) (5.57)

holds true with κc(t, t0) =
t

t0
λmin(τ)dτ .
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Proof. For the following stability analysis consider the Lyapunov functional

V1(t) =
1

2
w

2

L2(t) =
1

2

N

0

w(z, t)Tw(z, t) dz . (5.58)

Then with (5.12a) the time derivative of V gives

V̇1(t) =
N

0

wT (z, t)∂tw(z, t) dz = −
N

0

wT (z, t) (D(t)−M(z, t))w(z, t) dz

+
N

0

wT (z, t) A∂2
zw(z, t)− B(z, t)∂zw(z, t) dz

+
N

0

wT (z, t)
z

0

H(z, s, t)x̃c(s, t) ds dz .

(5.59)

At this point the matrix B is decomposed into its symmetric and antisymmetric part, i.e.,

B(z, t) = Bs(z, t) + Ba(z, t). Then partially integrating the expressions which include the

parameter matrix A and the symmetric part Bs of B gives

N

0

wT (z, t)A∂2
zw(z, t) dz = wT (z, t)A∂zw(z, t) N

0
−

N

0

∂zw
T (z, t)A∂zw(z, t) dz , (5.60)

N

0

wT (z, t)Bs(z, t)∂zw(z, t) dz =
1

2
wT (z, t)Bs(z, t)w(z, t) N

0

− 1

2

N

0

wT (z, t)∂zB
s(z, t)w(z, t) dz .

(5.61)

Moreover, the term involving the antisymmetric part Ba of B can be bounded by making use

of the Young’s inequality (C.35) as

N

0

wT (z, t)Ba(z, t)∂zw(z, t) dz ≤ 1

2

N

0

∂zw
T (z, t)P∂zw(z, t) dz

− 1

2

N

0

wT (z, t)Ba(z, t)P−1Ba(z, t)w(z, t) dz . (5.62)

with (Ba)T = −Ba and P = diag [r11, r22, . . . , rnn] > 0. Further conditions on P are developed

appropriately in the upcoming paragraphs. This and taking Dirichlet boundaries in (5.60) and

(5.61) into account modifies the expression to

V̇1(t) ≤ −
N

0

∂zw
T (z, t) A− 1

2
P ∂zw(z, t) dz −

N

0

wT (z, t) D(t)−M(z, t)

− 1

2
∂zB

s(z, t) +
1

2
Ba(z, t)P−1Ba(z, t) w(z, t)dz

+
N

0

wT (z, t)
z

0

H(z, s, t)x̃c(s, t) ds dz .

(5.63)
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At last, the term which involves the integral kernel H can be estimated by making use of the

Cauchy-Schwarz inequality (C.38) to obtain

N

0

wT (z, t)
z

0

H(z, s, t)x̃c(s, t) ds dz ≤
N

0

wT (z, t)
z

0

H(z, s, t)x̃c(s, t) ds dz

≤
N

0

z

0

x̃c(s, t)
THT (z, s, t) ds

z

0

H(z, s, t)x̃c(s, t) ds dz

1
2

×

N

0

wT (z, t)w(z, t) dz

1
2

.

(5.64)

From this, and making use of the abbreviation y(z, s, t) = H(z, s, t)x̃c(s, t) the first factor in

(5.64) can be further estimated by

z

0

x̃c(s, t)
THT (z, s, t) ds

z

0

H(z, s, t)x̃c(s, t) ds =
z

0

yT (z, s, t) ds
z

0

y(z, s, t) ds

=
z

0
y1(z, s, t) ds · · · z

0
yn(z, s, t) ds


z

0
y1(z, s, t) ds

...
z

0
yn(z, s, t) ds


= Σn

j=1

z

0

yj(z, s, t) ds
2

≤ Σn
j=1

z

0

|1|2 ds
z

0

yj(z, s, t)
2
ds

= z
z

0

Σn
j=1 yj(z, s, t)

2
ds = z

z

0

yT (z, s, t)y(z, s, t) ds

= z
z

0

x̃T
c (s, t)H

T (z, s, t)H(z, s, t)x̃c(s, t) ds ≤ z
z

0

H(z, s, t)x̃c(s, t)
2
2 ds

≤ maxDK( N) H(z, s, t)
2

2

(ϕH(t))2

z
z

0

x̃c(s, t)
2
2 ds ≤ (ϕH(t))

2 z x̃c
2

L2(t) .

(5.65)

Consequently, considering (5.65) in (5.64) leads to

N

0

wT (z, t)
z

0

H(z, s, t)x̃c(s, t) ds dz ≤ ϕH(t) x̃c L2(t) w
L2(t)

N

0

z dz

1
2

≤ ϕH(t)
N√
2

x̃c L2(t) w
L2(t) .

(5.66)

Furthermore, assuming bounded backstepping kernels and applying the Minkowski inequality

to (5.7), then x̃c L2(t) can be estimated by

x̃c(z, t) L2 ≤ w(z, t)
L2 +

z

0

G(z, s, t)w(s, t) ds
L2

. (5.67)

Here, the latter term can be further bounded by making use of the Cauchy-Schwarz inequality
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and applying the bound (5.65) again, i.e.,

z

0

G(z, s, t)w(s, t) ds
L2

=
N

0

z

0

wT (s, t)GT (z, s, t) ds
z

0

G(z, s, t)w(s, t) ds dz

1
2

≤ maxDK( N) G(z, s, t)
2

ϕG(t)

N

0

z

0

wT (s, t) ds
z

0

w(s, t) ds dz

1
2

≤ ϕG(t)
N√
2

w
L2(t) .

(5.68)

With this the inequality x̃c L2(t) ≤ 1 + ϕG(t) N/
√
2 w

L2(t) holds true. Considering this,

the upper bound (5.66) can be finally written as

N

0

wT (z, t)
z

0

H(z, s, t)x̃c(s, t) ds dz ≤ ϕH(t)
N√
2
+ ϕG(t)

N
2

2
w

2

L2(t) . (5.69)

Inserting (5.69) in (5.63) V̇ can be further estimated by

V̇1(t) ≤ −
N

0

∂zw
T (z, t) A− 1

2
P ∂zw(z, t) dz −

N

0

wT (z, t) D(t)−M(z, t)

− 1

2
∂zB

s(z, t) +
1

2
Ba(z, t)P−1Ba(z, t) w(z, t)dz

+ ϕH(t)
N√
2
+ ϕG(t)

N
2

2
w

2

L2(t) .

(5.70)

With this, it is clear that requirements on the parameter matrix P and the matrix valued

functions D have to be derived in order to ensure exponential stability of the target system

(5.12a) with Dirichlet BCs. Obviously P has to fulfil

νT A− 1

2
P ν ≥ 0 → νTPν ≤ 2νTAν (5.71)

ν ∈ Rn/{0n}. Obviously (5.71) is fulfilled by P = 2A which is always applicable since the diffu-

sion matrix A is preliminarily assumed to be positive definite. Since νTM(z, t)ν = νTM s(z, t)ν

the last term requires that

νT D(t)−M s(z, t)− 1

2
∂zB

s(z, t) +
1

4
Ba(z, t)A−1Ba(z, t) ν ≥

λmin(t) + ϕH(t)
N√
2
+ ϕG(t)

N
2

2
ν 2

2

(5.72)

for all ν ∈ Rn/{0n} and with λmin(t) > 0 for all t ∈ R+
t0 . However this can not be guaranteed in

general and depends on the parameter configuration of the given error system (5.5). Therefore

consider the assumption (5.56) of Theorem 5.10 which implicitly fulfils the inequality (5.72),
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then the rate of change of the Lyapunov functional (5.58) along a solution of (5.12a) to (5.12b)

respects the upper bound

V̇1(t) ≤ −λmin(t) w
L2(t) ≤ −2λmin(t)V1(t) (5.73)

which is equivalent to

V1(t) ≤ V1(t0) exp −2
t

t0

λmin(τ)dτ . (5.74)

This gives a proposition for the stability properties of the target dynamics (5.12a) with BCs

(5.12b). In other words, taking (5.55) the Lyapunov functional (5.58) is obviously bounded by

ρ−

2
w 2

L2 (t) ≤ V1(t) ≤ ρ+

2
w 2

L2 (t) , (5.75)

e.g., trivially with ρ+ = ρ− = 1. This, together with (5.74) allows to deduce the sequence of

inequalities

w 2
L2 (t) ≤ 2V1(t) ≤ 2V1(t0) exp (−2κc(t, t0)) ≤ w 2

L2 (t0) exp (−2κc(t, t0)) (5.76)

which implies (5.57) of Theorem 5.10 with the setting ρ = 1.

Next, exponential stability is analysed in the Sobolev spaceH1. For this consider again Dirichlet

BCs and assumew ∈ H1
0 Ω N, t0 ;Rn = w ∈ H1 Ω N, t0 ;Rn |w(0, t) = w( N, t) = 0n .

By taking Lemma 3.25 into account the norm for the given space can be defined as

w
H1

0
(t) =

N

0

∂zw
T (z, t)∂zw(z, t)dz

1
2

. (5.77)

Theorem 5.11. Let D(t) be diagonal in (5.12a)and let ν ∈ Rn/{0n}. If D fulfils the inequality

νTD(t)ν ≥ νT M s(z, t) +
1

2
B(z, t)A−1BT (z, t) +

1

2
∂zM(z, t)A−1∂zM

T (z, t) ν

+ νT 2 N
2A+ ϕ2

H(t) 1 + ϕG(t)
N√
2

2

N
4A−1 ν + λmin(t) ν 2

2 (5.78)

for all (z, t) ∈ Ω( N, t0) and for some λmin(t) > 0 with t > t0, then the zero equilibrium of the

target system dynamics (5.12a) with boundary conditions (5.12b) is exponentially stable in the

norm ·
H1

0
, i.e., there exists a constant ρ > 0 so that the inequality

w
H1

0
(t) ≤ ρ w

H1
0
(t0) exp (−κc(t, t0)) (5.79)

holds true with κc(t, t0) =
t

t0
λmin(τ)dτ .

Again, in (5.78) the scalar time function ϕ(·)(t) denotes the spatial maximum of the induced

operator norm, e.g., ϕH(t) = maxDK( N) H(z, s, t)
2
.



5.1 Backstepping based Boundary Control for a Class of Coupled Parabolic PDEs 105

Proof. Consider the Lyapunov functional

V2(t) =
1

2
w

2

H1
0
(t) =

1

2

N

0

∂zw(z, t)T∂zw(z, t) dz . (5.80)

Then the time derivative of V2 gives

V̇2(t) =
N

0

∂zw
T (z, t)∂t∂zw(z, t) dz = ∂zw

T (z, t)∂tw(z, t) N

0

−
N

0

∂2
zw

T (z, t)∂tw(z, t) dz

= −
N

0

∂2
zw

T (z, t)A∂2
zw(z, t) dz −

N

0

∂2
zw

T (z, t)
z

0

H(z, s, t)x̃c(s, t) ds dz

+
N

0

∂2
zw

T (z, t) (B(z, t)∂zw(z, t) + (D(t)−M(z, t))w(z, t)) dz

(5.81)

by using partial integration and taking ∂tw(0, t) = ∂tw( N, t) = 0n into account since Dirichlet

conditions are considered. The latter terms require further partial integration and upper bound

estimations. Therefore integrating by parts gives

N

0

∂2
zw

T (z, t) (D(t)−M(z, t))w(z, t) dz = ∂zw
T (z, t) (D(t)−M(z, t))w(z, t) N

0

−
N

0

∂zw
T (z, t) (D(t)−M s(z, t)) ∂zw(z, t) dz

+
N

0

∂zw
T (z, t)∂zM(z, t)w(z, t) dz .

(5.82)

Here the term involving ∂zM(z, t) is further analysed by applying Young’s and the Poincaré

inequalities, i.e., (C.35) and (C.40), respectively. This yields

N

0

∂zw
T (z, t)∂zM(z, t)w(z, t) dz ≤ 1

2

N

0

w(z, t)TPw(z, t) dz

+
1

2

N

0

∂zw(z, t)T∂zM(z, t)P−1∂zM
T (z, t)∂zw(z, t) dz

≤
N

0

∂zw(z, t)T
1

2
∂zM(z, t)P−1∂zM

T (z, t) + 2 N
2P ∂zw(z, t) dz

+ Nw( N, t)
TPw( N, t)

(5.83)

with P = diag [r11, r22, . . . , rnn] > 0. Similarly, the term in (5.81) involving the convection part

can be bounded by

N

0

∂2
zw

T (z, t)B(z, t)∂zw(z, t) dz ≤ 1

2

N

0

∂2
zw(z, t)TQ∂2

zw(z, t) dz

+
1

2

N

0

∂zw(z, t)TB(z, t)Q−1BT (z, t)∂zw(z, t) dz ,

(5.84)
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again with diagonal Q > 0. This leaves the estimation of the integral part of target PIDE.

Equivalently to (5.64) and (5.69) the upper bound can be derived by using the Cauchy-Schwartz

inequality (C.38). Here additionally Young’s (C.35) and the Poincaré inequality (C.40) have

to be taken into account, so that

N

0

∂2
zw

T (z, t)
z

0

H(z, s, t)x̃c(s, t) ds dz

≤ϕH(t)
N√
2
+ ϕG(t)

N
2

2
w

L2(t) ∂2
zw L2(t)

≤ϕ2
H(t) 1 + ϕG(t)

N√
2

2
N
2

4

N

0

w(z, t)TR−1w(z, t) dz

+
1

2

N

0

∂2
zw(z, t)TR∂2

zw(z, t) dz

≤ϕ2
H(t) 1 + ϕG(t)

N√
2

2
N
3

2
2 N

N

0

∂zw(z, t)TR−1∂zw(z, t) dz

+w( N, t)
TR−1w( N, t) +

1

2

N

0

∂2
zw(z, t)TR∂2

zw(z, t) dz .

(5.85)

with diagonal R > 0. In the following and for convenience reasons let us assume R = Q = P >

0. Then by means of the analysis from (5.82) to (5.85) and considering that the states at the

boundaries vanish due to Dirichlet conditions the time derivative of the Lyapunov functional

(5.80) can be be bounded by

V̇2(t) ≤ −
N

0

∂2
zw

T (z, t) (A− P ) ∂2
zw(z, t) dz −

N

0

∂zw
T (z, t) D(t)−M s(z, t)

− 1

2
B(z, t)P−1BT (z, t)− 1

2
∂zM(z, t)P−1∂zM

T (z, t)− 2 N
2P

− ϕ2
H(t) 1 + ϕG(t)

N√
2

2

N
4P−1 ∂zw(z, t)dz .

(5.86)

Obviously exponential stability requires the parameter setting

νT (A− P )ν ≥ 0 → νTPν ≤ νTAν > 0 (5.87)

for all ν ∈ Rn/{0n}, and with this the matrix D has to fulfil the condition

νTD(t)ν > νT M s(z, t) +
1

2
B(z, t)A−1BT (z, t) +

1

2
∂zM(z, t)A−1∂zM

T (z, t) ν

+ νT 2 N
2A+ ϕ2

H(t) 1 + ϕG(t)
N√
2

2

N
4A−1 ν . (5.88)

However this is fulfilled when the conditional inequality (5.78) is taking it into account. Con-

sequently, considering (5.80) and (5.78) the time derivative of the Lyapunov functional V2(t)

respects the upper bound

V̇2(t) ≤ −λmin(t) w
H1

0
(t) ≤ −2λmin(t)V2(t) . (5.89)
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Moreover, the Lyapunov functional V2(t) can obviously be bounded by making use of the norm

(5.77), c.f. (5.58) and (5.75). Then this, together with (5.89) allows to deduce the inequality

w 2
H1

0
(t) ≤ w 2

H1
0
(t0) exp −2

t

t0

λmin(τ)dτ (5.90)

which proves the exponential stability in the Sobolev space H1 for Dirichlet conditions when

(5.78) applies.

Corollary 5.2. Assume inequality (5.78) is fulfilled, then the zero equilibrium of the target

system dynamics (5.12a) is point-wise exponentially stable in the max−norm · ∞ , i.e., there

exists a constant σ > 0 so that the inequality

max
z∈(0, N)

|w| (t) ≤ σ w H1
0
(t0) exp (−κc(t, t0)) (5.91)

holds true with κc(t, t0) =
t

t0
λmin(τ)dτ and f 2

H1
0
= ∂zf

2

L2 for f ∈ H1
0 Ω N, t0 ;Rn .

Proof. Making use of Young’s inequality (C.35), Agmon’s inequality (C.43), and the Poincaré

inequality (C.39) and taking the verifications of Theorem 5.11 into account the following esti-

mation holds true

max
z∈(0, N)

|w(z, t)|2 ≤ w(0) 2
2 (t) + 2 w

L2(t) ∂zw L2(t) ≤ w
2

L2(t) + ∂zw
2

L2(t)

≤ (1 + 4 N
2) w 2

H1
0
(t) ≤ (1 + 4 N

2) w 2
H1

0
(t0) exp (−2κc(t, t0)) . (5.92)

With this, obviously inequality (5.91) is satisfied with σ = 1 + 4 N
2.

Stability of the Target System for Dynamic Boundary Conditions

The stability analysis for dynamic BCs is closely related to the discussion conducted for Dirichlet

BCs,i.e., w ∈ H1
0 Ω N, t0 ;Rn , covered by Theorem 5.11. The major differences are that

for dynamic BCs the state vector does not vanish obligatorily at the boundary and there is a

non-trivial inhomogeneity F (z, t) in the PIDE of the target state. Thus, the stability analysis

is performed in the space X = H1 Ω N, t0 ;Rn equipped with the inner product

f 1,f 2 X = f 1(0)
Tf 2(0) + f 1( N)

Tf 2( N) + f 1,f 2 L2 + ∂zf 1, ∂zf 2 L2 (5.93)

which induces the norm f X = f ,f = f(0) 2
2 + f( N)

2
2 + f

2

L2 + ∂zf
2

L2

1
2
.

Theorem 5.12. Let D(t) be diagonal in (5.12a) and let ν ∈ Rn/{0n}. If D fulfils the inequality

νTD(t)ν ≥ νT M s(z, t) +
3

4
∂zM(z, t)A−1∂zM

T (z, t) +B(z, t)A−1BT (z, t) ν

+ νT ϕ2
H(t) 1 + ϕG(t)

N√
2

2
3 N

4

2
A−1 +

4

3
N
2A ν + λmin(t) ν 2

2 , (5.94a)
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for z ∈ (0, N) and at the boundaries z ∈ {0, N} the condition

νTD(t)ν > νTM s(z, t)ν + λmin(t) ν 2
2 (5.94b)

holds true for some λmin(t) > 0 and t > t0, then the zero equilibrium of the target system

dynamics (5.12a) with boundary conditions (5.12c) is exponentially stable in the norm · X ,

i.e., there exists a constant σ > 0 so that the inequality

w X (t) ≤ σ w X (t0) exp (−κc(t, t0)) (5.95)

holds true with κc(t, t0) =
t

t0
λmin(τ)dτ .

Subsequently, note the verification of Theorem 5.12.

Proof. For the stability analysis consider the Lyapunov functional

V3(t) =
r

2
w(0) 2

2 (t) +
r

2
w( N)

2
2 (t) +

1

2
∂zw

2

L2(t) (5.96)

with the parameter r > 0. With this, the time derivative of V3 gives

V̇3(t) = rwT (0, t)∂tw(0, t) + rwT ( N, t)∂tw( N, t) +
N

0

∂zw
T (z, t)∂t∂zw(z, t) dz

=− rwT (0, t) (D(t)−M(0, t))w(0, t)− rwT ( N, t) (D(t)−M( N, t))w( N, t)

− ∂zw
T (z, t)∂tw(z, t) N

0
−

N

0

∂2
zw

T (z, t)∂tw(z, t) dz

=− rwT (0, t) (D(t)−M(0, t))w(0, t)− rwT ( N, t) (D(t)−M( N, t))w( N, t)

− ∂zw
T (z, t)∂tw(z, t) N

0
−

N

0

∂2
zw

T (z, t)A∂2
zw(z, t) dz

+
N

0

∂2
zw

T (z, t) (B(z, t)∂zw(z, t) + (D(t)−M(z, t))w(z, t)) dz

+
N

0

∂2
zw

T (z, t)F (z, t)w(0, t) dz−
N

0

∂2
zw

T (z, t)
z

0

H(z, s, t)x̃c(s, t) ds dz .

(5.97)

At this point the verification is taking advantage of the proof of Theorem 5.11, i.e., substituting

the estimations (5.82) and (5.83) into (5.97) then the latter modifies to

V̇3(t) ≤ −rwT (0, t)Ds
0(t)w(0, t)−wT ( N, t) rDs

N
(t)− NP w( N, t)

−
N

0

∂2
zw

T (z, t)A∂2
zw(z, t) dz +

N

0

∂2
zw

T (z, t)B(z, t)∂zw(z, t) dz

−
N

0

∂zw
T (z, t) D(t)−M s(z, t)− 1

2
∂zM(z, t)P−1∂zM

T (z, t)

− 2 N
2P ∂zw(z, t)dz +

N

0

∂2
zw

T (z, t)F (z, t)w(0, t) dz

−
N

0

∂2
zw

T (z, t)
z

0

H(z, s, t)x̃c(s, t) ds dz

(5.98)
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with the abbreviations Ds
0(t) = D(t)−M s(0, t), Ds

N
(t) = D(t)−M s( N, t), and diagonal matrix

P > 0. Equivalently, considering (5.84) as well as (5.85) leads to

V̇3(t) ≤ −rwT (0, t)Ds
0(t)w(0, t)−wT ( N, t) rDs

N
(t)− NP w( N, t)

−
N

0

∂2
zw

T (z, t) A− 1

2
P ∂2

zw(z, t) dz −
N

0

∂zw
T (z, t) D(t)−M s(z, t)

− 2 N
2P − 1

2
∂zM(z, t)P−1∂zM

T (z, t)− 1

2
B(z, t)P−1BT (z, t) ∂zw(z, t)dz

+
N

0

∂2
zw

T (z, t)F (z, t)w(0, t) dz −
N

0

∂2
zw

T (z, t)
z

0

H(z, s, t)x̃c(s, t) ds dz

≤ −rwT (0, t)Ds
0(t)w(0, t)

−wT ( N, t) rDs
N
(t)− NP − ϕ2

H(t) 1 + ϕG(t)
N√
2

2
N
3

2
P−1 w( N, t)

−
N

0

∂zw
T (z, t) D(t)−M s(z, t)− 1

2
∂zM(z, t)P−1∂zM

T (z, t)− 2 N
2P

− 1

2
B(z, t)P−1BT (z, t)− ϕ2

H(t) 1 + ϕG(t)
N√
2

2

N
4P−1 ∂zw(z, t)dz

−
N

0

∂2
zw

T (z, t) (A− P ) ∂2
zw(z, t) dz +

N

0

∂2
zw

T (z, t)F (z, t)w(0, t) dz .

(5.99)

From this, again applying the Cauchy-Schwarz inequality (C.37) to the compensation term at

the boundary z = 0 leads to the estimation

N

0

∂2
zw

T (z, t)F (z, t)w(0, t) dz ≤
N

0

∂2
zw(z, t)

2
F (z, t)w(0, t) 2 dz

≤
N

0

∂2
zw(z, t)T∂2

zw(z, t)
1
2 wT (0, t)F T (z, t)F (z, t)w(0, t)

1
2 dz .

(5.100)

Since the matrix F T (z, t)F (z, t) is symmetric and positive semi-definite for every fixed (z, t) ∈
Ω N, t0 making use of the Young’s inequality (C.35) further leads to

N

0

∂2
zw

T (z, t)F (z, t)w(0, t) dz ≤ 1

2

N

0

∂2
zw

T (z, t)P∂2
zw(z, t) dz

+wT (0, t)ΘP (t)w(0, t)

(5.101)

with ΘP (t) =
1
2

N

0
F T (z, t)P−1F (z, t) dz ≥ 0 and the identical weighting matrix P > 0 as used
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above. Respecting (5.101) in (5.98) V̇3 can be further estimated by

V̇3(t) ≤ −wT (0, t) (rDs
0(t)−ΘP (t))w(0, t)−wT ( N, t) rDs

N
(t)− NP

− ϕ2
H(t) 1 + ϕG(t)

N√
2

2
N
3

2
P−1 w( N, t)

−
N

0

∂zw
T (z, t) D(t)−M s(z, t)− 2 N

2P − 1

2
∂zM(z, t)P−1∂zM

T (z, t)

− 1

2
B(z, t)P−1BT (z, t)− ϕ2

H(t) 1 + ϕG(t)
N√
2

2

N
4P−1 ∂zw(z, t)dz

−
N

0

∂2
zw

T (z, t) A− 3

2
P ∂2

zw(z, t) dz

(5.102)

With this, obviously requirements for the weighting matrix P , the parameter r, and the matrix-

valued function D have to be derived in order to ensure exponential stability of the Lyapunov

functional V3. As a consequence P has to fulfil

νT A− 3

2
P ν ≥ 0 =⇒ 0 < P ≤ 2

3
A . (5.103)

Note, (5.103) can be fulfilled certainly since the diffusion matrix A is positive definite. Moreover,

setting the requirements for the parameter r to

νT (rDs
0(t)−ΘP (t))ν ≥ rλmin(t) ν 2

2 > 0 and

νT rDs
N
(t)−ΨP (t) ν ≥ rλmin(t) ν 2

2 > 0
=⇒

r ≥ rmin = max
νTΘP (t)ν

νTDs
0(t)ν − λmin(t) ν 2

2

,
νTΨP (t)ν

νTDs
N
(t)ν − λmin(t) ν 2

2

, ε (5.104)

for all ν ∈ Rn/ {0n} , ε > 0 and with ΨP (t) = ϕ2
H(t) 1 + ϕG(t) N√

2

2
N
3

2
P−1. Clearly (5.104)

demands νTDs
0(t)ν > λmin(t) ν 2

2 and νTDs
N
(t)ν > λmin(t) ν 2

2 which is covered by the

assumption (5.94b). Finally the remaining integral term in (5.102) requires that

νTD(t)ν > νT M s(z, t) + 2 N
2P +

1

2
∂zM(z, t)P−1∂zM

T (z, t)

+
1

2
B(z, t)P−1BT (z, t) + ϕ2

H(t) 1 + ϕG(t)
N√
2

2

N
4P−1 ν . (5.105)

This again depends on the parameter configuration of the given error system (5.5). Therefore

consider the assumption (5.94) of Theorem 5.12 which implicitly fulfils the inequality (5.103) by

making use of the setting P = 2A/3. With this the rate of change of the Lyapunov functional

(5.96) along a solution of (5.12) fulfils

V̇3(t) ≤ −rλmin(t)w
T (0, t)w(0, t)− rλmin(t)w

T ( N, t)w( N, t)

− λmin(t)
N

0

∂zw
T (z, t)∂zw(z, t) dz ≤ −2λmin(t)V3(t)

(5.106)
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or

V (t) ≤ V (t0) exp −2
t

t0

λmin(τ)dτ . (5.107)

Next, acknowledging the definition of the norm · X allows to bound the Lyapunov functional

V3 by

σ−

2
w 2

X (t) ≤ V3(t) ≤ σ+

2
w 2

X (t) (5.108)

with σ+ > σ− > 0. Obviously σ+ follows directly from the definition (5.96) and can be

set to, e.g. σ+ = max {1, r}. The determination of σ− requires the splitting ∂zw L2 =

(1 − q) ∂zw L2 + q ∂zw L2 with 1 > q > 0 and the consideration of the Poincaré inequality

(C.40) written in the form

∂zw
2

L2(t) ≥
1

4 N
2 w

2

L2(t)−
1

2 N

w(0) 2
2 (t) . (5.109)

Applying these to (5.96) gives

V3(t) =
r

2
w(0) 2

2 (t) +
r

2
w( N)

2
2 (t) +

1− q

2
∂zw

2

L2(t) +
q

2
∂zw

2

L2(t)

≥ 1

2
r − q

2 N

w(0) 2
2 (t) +

r

2
w( N)

2
2 (t) +

1− q

2
∂zw

2

L2(t)

+
q

8 N
2 w

2

L2(t)

≥ σ−

2
w X (t)

(5.110)

and consequently leads to σ− = min r − q/(2 N), r, 1− q, q/(4 N
2) . With this and still re-

specting (5.107) combined with the analysis of the weighting matrix P and the parameter r as

conducted above in (5.103) and (5.104) the sequence

w 2
X (t) ≤ 2

σ−V3(t) ≤ 2

σ−V3(t0) exp (−2κc(t, t0)) ≤ σ+

σ− w 2
X (t0) exp (−2κc(t, t0))

(5.111)

verifies the claim raised in Theorem 5.12 with σ = σ+/σ−.

The following corollary implies point-wise exponential stability of the target state w with

dynamic boundary conditions.

Corollary 5.3. Assume inequality (5.94) is fulfilled, then the zero equilibrium of the target

system dynamics (5.12a) is point-wise exponentially stable in the max−norm · ∞ , i.e., there

exists a constant σ > 0 so that the inequality

max
z∈(0, N)

|w| (t) ≤ σ w X (t0) exp (−κc(t, t0)) (5.112)

holds true with κc(t, t0) =
t

t0
λmin(τ)dτ and f 2

X = f(0) 2
2 + f( N)

2
2 + f

2

L2 + ∂zf
2

L2

for f ∈ H1 Ω N, t0 ;Rn .
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Proof. Making use of Young’s (C.35) and Agmon’s inequality (C.43), and taking the verifica-

tions of Theorem 5.12 into account the following estimation holds

max
z∈(0, N)

|w(z, t)|2 ≤ w(0) 2
2 (t) + 2 w

L2(t) ∂zw L2(t) ≤ w(0) 2
2 (t)

+ w
2

L2(t) + ∂zw
2

L2(t) ≤ w 2
X (t) ≤ σ w 2

X (t0) exp (−2κc(t, t0)) . (5.113)

With this, it is clear that inequality (5.112) is satisfied with σ as analysed above in the proof

of Theorem 5.12.

Remark 5.20. Obviously Theorem 5.12 and Corollary 5.3 apply for the one dimensional case,

i.e w = w and D = d as well. It is well documented, e.g. in [23, 30], that for n = 1, the DCRS

with dynamic boundary conditions is exponentially stable in the norm · X without structural

limitations. More precisely the compensations terms M(z, t) and H(z, s, t) can be set identical

to zero matrix.

This finalises the stability analysis of the chosen target dynamics (5.12). In summary the

n−dimensional target state w is exponentially stable in the space L2 and H1
0 for Dirichlet BCs

and for dynamic BCs in space the X = H1 with its inner product (5.93), if the associated

inequalities for the tuning parameter matrix D(t) with corresponding setting of the compen-

sation terms H(z, s, t) and M(z, t) are satisfied. Moreover, point-wise exponentially stability

can be shown for both types of BCs. From literature it is known that for the scalar case the

target state w satisfies the stability properties in the w X without any compensation terms.

The convergence rate may be adjusted by the diagonal matrix-valued parameter function D or

the scalar valued parameter function d respectively. From this, recalling that the backstepping

kernel respect the norm(s) ϕK(t) = maxDK( N) K
2
(t) and ϕG(t) = maxDK( N) G

2
(t) let us in-

troduce the constants lG ≤ 1+sup
t∈R+

t0

ϕG(t) N/
√
2 and lK ≤ 1+sup

t∈R+
t0

ϕK(t) N/
√
2, for their

determination cf. (5.68). Then it is possible to deduce the following sequence of estimations

x̃c L2 (t) ≤ lG w L2 (t) ≤ lGσ w L2 (t0) exp (−2κc(t, t0))

≤ lG
lK
σ x̃c L2 (t0) exp (−2κc(t, t0)) (5.114)

exemplarily for the norm · L2 . Obviously the procedure can be repeated for H1
0 and X with

appropriate constants lG and lK, respectively. Then this allows to conclude that the closed loop

of the error system inherits the stability properties of the target system. As a consequence

this means that the statements from Theorems 5.10 to 5.12 and Corollaries 5.2 and 5.3 can be

directly applied to the control error system.

With this, the following paragraph deals with the computation of the control inputs Δu0 and

Δu
N
for feedback control of the tracking error.

5.1.4 Determination of the Boundary Control Inputs

Next, the control law for Δu0(t) is deduced by inserting (5.6) and, depending on the BCs,

(5.12b) or (5.12c) into the first BC of either (5.5b) or (5.5c), respectively. For Dirichlet condi-
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tions the control law for z = 0 is trivially set to

Δu0(t) = 0n . (5.115)

and for dynamic BCs the simple algorithm

Δu0(t) = ∂tx̃c(0, t) = −D0(t)w(0, t) = −D0(t)x̃c(0, t) , (5.116)

can be derived with D0(t) = D(t) − M(0, t) . This may be interpreted as impressing a first

order (coupled) error dynamics at z = 0 . The associated agent is called the anchor because

practically the control algorithm only depends on its own control error x̃c(0, t) and therefore is

completely independent of state of the agents. In comparison the feedback control Δu
N
(t) is

determined as

Δu
N
(t) = x̃c( N, t) =

N

0

K( N, s, t)x̃c(s, t) ds (5.117)

by utilising (5.6) and w( N, t) = 0n in case of Dirichlet conditions. For dynamic BCs the

determination of Δu
N
(t) is more sophisticated since the time derivative of (5.6) has to be

evaluated at z = N and the boundary does not vanish, i.e.

Δu
N
(t) = ∂tx̃c( N, t) = ∂tw( N, t) +

d

dt

N

0

K( N, s, t)x̃c(s, t) ds

= −D
N
(t)w( N, t) +

N

0

∂tK( N, s, t)x̃c(s, t) ds+
N

0

K( N, s, t)∂tx̃c(s, t) ds

=
N

0

(∂tK( N, s, t) +D
N
(t)K( N, s, t) +K( N, s, t)C(s, t)) x̃c(s, t) ds

−D
N
(t)x̃c( N, t) +

N

0

K( N, s, t)A∂
2
s x̃c(s, t)−K( N, s, t)B(s, t)∂sx̃c(s, t) ds .

(5.118)

Here, the partial integration of the last two terms gives

N

0

K( N, s, t)A∂
2
s x̃c(s, t) ds = [K( N, s, t)A∂sx̃c(s, t)]

N

0

− [∂sK( N, s, t)Ax̃c(s, t)]
N

0 +
N

0

∂2
sK( N, s, t)Ax̃c(s, t) ds

= K( N, N, t)A∂zx̃c( N, t)− ∂sK( N, N, t)Ax̃c( N, t)

+ ∂sK( N, 0, t)Ax̃c(0, t) +
N

0

∂2
sK( N, s, t)Ax̃c(s, t) ds

N

0

K( N, s, t)B(s, t)∂sx̃c(s, t) ds = K( N, N, t)B( N, t)x̃c( N, t)

−
N

0

∂sK( N, s, t)B(s, t)x̃c(s, t) ds−
N

0

K( N, s, t)∂sB(s, t)x̃c(s, t) ds

(5.119)
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and allows us to write the feedback law as

Δu
N
(t) = − [D

N
(t) + ∂sK( N, N, t)A+K( N, N, t)B( N, t)] x̃c( N, t)

+K( N, N, t)A∂zx̃c( N, t) + ∂sK( N, 0, t)Ax̃c(0, t)

+
N

0

∂tK( N, s, t) + ∂2
sK( N, s, t)A+ ∂sK( N, s, t)B(s, t)

+D
N
(t)K( N, s, t) +K( N, s, t) (C(s, t) + ∂sB(s, t))] x̃c(s, t)ds .

(5.120)

Clearly the dependency of x̃c(s, t) in the integral over the entire spatial domain in (5.117) or

(5.120), respectively, motivates the labelling leader agent at z = N. In summary the feedback

control inputs Δu0(t) and Δu
N
(t) evidently depend on the dynamic behaviour of the error

state x̃c and the integral kernel K evaluated at z = 0 and z = N. Apparently the leader has

to have the knowledge of the control error state of all agents of a MAS. However, in order to

ensure independence throughout the follower agents it is not intended that the leader agent gets

measurements from all other agents. This motivates the development of estimation algorithm

and thus, this is topic of the next paragraphs.

5.2 Backstepping based Luenberger-type Observer for

a Class of Coupled Parabolic Partial Differential

Equations

In general a Luenberger-type observer consists of two parts. First, a copy of the plant, and

second, one or more output injections. Therefore note the following ansatz for an observer of a

coupled DCRS

∂tx̂(z, t) = A∂2
z x̂(z, t)−B(z, t)x̂(z, t) + C(z, t)x̂(z, t)

+ Φ(z, t) (x( N, t)− x̂( N, t)) + Ψ(z, t) (∂zx( N, t)− ∂zx̂( N, t)) ,
(5.121a)

and that of a coupled MVBE

∂tx̂(z, t) = A∂2
z x̂(z, t)−B(z, t)X̂(z, t)x̂(z, t) + C(z, t)x̂(z, t)

+ Φ(z, t) (x( N, t)− x̂( N, t)) + Ψ(z, t) (∂zx( N, t)− ∂zx̂( N, t))
(5.121b)

both for the domain (z, t) ∈ Ω( N, t0). The correction part consists of two output injections

with the matrix-valued observer gains Φ and Ψ. Moreover, consider either

x̂(0, t) = u0(t) ,

x̂( N, t) = u
N
(t) .

(5.121c)

in case of Dirichlet BCs or in particular the two ODEs

∂tx̂(0, t) = u0(t) + Φ0(t) (x(0, t)− x̂(0, t)) ,

∂tx̂( N, t) = u
N
(t) + Φ

N
(t) (x( N, t)− x̂( N, t)) .

(5.121d)
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for the dynamic boundary conditions at z = 0 and z = N, respectively. A proper initial

condition may be given by x̂(z, t0) = x̂0(z). The boundary control concept introduced in

Section 5.1 requires state information along the entire spatial domain. Therefore it is necessary

to establish an estimation algorithm which allows to reproduce the state information from

boundary measurements only. Thus, the next paragraphs deal with the determination of an

appropriate error system and the observer design process based on the backstepping technique.

5.2.1 Backstepping based Observer Design with Boundary Output

Injection

Generally the backstepping based design process for tracking control and for a Luenberger-type

observer are very similar. Therefore let us introduce observer error state

x̃o(z, t) = x(z, t)− x̂(z, t) . (5.122)

With this, obviously the error system of the DCRS can be written as

∂tx̃o(z, t) = A∂2
z x̃o(z, t)− B(z, t)x̃o(z, t) + C(z, t)x̃o(z, t)

− Φ(z, t)x̃o( N, t)−Ψ(z, t)∂zx̃o( N, t)
(5.123a)

which is defined on the domain (z, t) ∈ Ω( N, t0). The boundaries are either formulated as

Dirichlet BCs

x̃o(0, t) = 0n ,

x̃o( N, t) = 0n ,
(5.123b)

or as dynamic BCs

∂tx̃o(0, t) = −Φ0(t)x̃o(0, t) ,

∂tx̃o( N, t) = −Φ
N
(t)x̃o( N, t) ,

(5.123c)

and the initial condition is set to x̃o(z, t0) = x̃o,0(z). From this the focus shall be on the

linearisation of the error system of the MVBE which leads to

∂tx̃o(z, t) = A∂2
z x̃o(z, t)− B(z, t)X̂(z, t)∂zx̃o(z, t)

+ C(z, t)−B(z, t)∂zX̂(z, t) x̃o(z, t)−Φ(z, t)x̃o( N, t)−Ψ(z, t)∂zx̃o( N, t) .
(5.124)

Obviously the convection and reaction term in (5.124) depend on the currently estimated state

x̂ and its spatial derivative ∂zx̂. Since observer state values cannot be pre-determined the

estimation algorithm requires cyclic update methods to compute the time-variant observer

gains. This is one of the major distinction compared with the tracking control design approach.

For the latter the linearised terms depend on the desired state x∗ and its spatial derivative ∂zx
∗,

which can be clearly computed in advance (cf. the linearised control error system (5.4)).
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Remark 5.21. Instead of estimating the state value x it is possible to design an observer for

the tracking control error x̃c = x − x∗. With this obviously the state value can be observed

by x̂ = x∗ + ê, where ê stands for the estimation of the tracking control error. Even though

this approach is not further pursued in this work it can be easily demonstrated that this concept

would avoid additional computational costs for an observer implementation of the problem PDE

(5.1b).

Apart from this and keeping this computational burden in mind, again, it is sufficient to

consider the linear, time-variant parabolic system (5.123a), either with Dirichlet BCs (5.123b)

or dynamic BCs (5.123c), respectively. From a structural point of view, i.e., the determination

of the matrix-valued observer gains Φ and Ψ, this covers both, the observer error dynamics

of a DCRS as well as of the linearised error system of the MVBE. Here, the backstepping

transformation, again, a Volterra integral transformation of the second kind,

x̃o(z, t) = v(z, t)−
N

z

L(z, s, t)v(s, t) ds (5.125)

and its inverse transformation

v(z, t) = x̃o(z, t) +
N

z

S(z, s, t)x̃o(s, t) ds , (5.126)

shall dynamically connect the error state x̃o and the target state v. The backstepping kernels

L and S are matrix-valued C2− functions in z and s. They are defined on the triangular

spatial domain (z, s) ∈ DL( N) := {(z, s) ∈ R2 | z ∈ [0, N] , s ∈ [z, N]} which is illustrated in

Figure 5.2a.

Remark 5.22. There is a linkage between the backstepping kernels L and S. More precisely

and equivalently to (5.10) and (5.11) the kernels are connected via

S(z, s, t)− L(z, s, t) =
z

s

S(z, p, t)L(p, s, t) dp , (5.127)

or

L(z, s, t)− S(z, s, t) =
z

s

L(z, p, t)S(p, s, t) dp . (5.128)

Let us assume that the dynamics of the target state v can be written as the PIDE

∂tv(z, t) = A∂2
zv(z, t)−B(z, t)∂zv(z, t)− (E(t)−N(z, t))v(z, t)

−
N

z

Q(z, s, t)x̃o(s, t) ds,
(5.129a)

with either Dirichlet conditions

v(0, t) = 0n , and

v( N, t) = 0n ,
(5.129b)
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s

z

N

N

2 N

s = N

z = 0

z = s

DL( N)
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z = s

z = 0

s = N

DL( N)

(b)

Figure 5.2: The triangular spatial domains of the backstepping kernel-PDE for the Luenberger-type

observer: (a) in the (z, s)−plane for L and (b) in the scattering coordinates (α, β) for the transformed

kernel L. The size of the triangles varies with the length parameter N and therefore with the number

of agents N.

or dynamic BCs

∂tv(0, t) = −(E(t)−N(0, t))(t)v(0, t) , and

∂tv( N, t) = −(E(t)−N( N, t))v( N, t) ,
(5.129c)

respectively, and the initial condition v(z, t0) = v0(z). In (5.129a) clearly the matrices A and

B can be directly read from the error system (5.123a). The matrix E shall be diagonal, be

positive definite for t > t0, and will have to meet specific requirements to ensure stability of

the target system. Furthermore, the matrix-valued function N and the integral kernel Q are

introduced for compensation purposes. A thorough specification and characterisation of the

design and compensation parameters is topic of the upcoming paragraphs starting with the

determination of the equations for the backstepping kernel L.

5.2.2 Determination of the Backstepping Integral Kernel and the

Observer Gains

As mentioned above the construction of a backstepping based observer demands the explicit

knowledge of the integral kernel L. Similar to Section 5.1.2 two specific cases are analysed

which support straightforward solutions of the arising kernel-PDE. For this, let us substitute
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the derivations in space and time of (5.125), written as

∂tx̃o(z, t) = ∂tv(z, t)−
N

z

∂tL(z, s, t)v(s, t) ds−
N

z

L(z, s, t)∂tv(s, t) ds , (5.130)

∂zx̃o(z, t) = ∂zv(z, t) + L(z, z, t)v(z, t)−
N

z

∂zL(z, s, t)v(s, t) ds , (5.131)

∂2
z x̃o(z, t) = ∂2

zv(z, t) +
d

dz
L(z, z, t)v + L(z, z, t)∂zv(z, t)

+ ∂zL(z, z, t)v(z, t)−
N

z

∂2
zL(z, s, t)v(s, t) ds ,

(5.132)

into the observer error system (5.123a). After combining some terms this gives

−
N

z

∂tL(z, s, t)v(s, t) ds−
N

z

L(z, s, t)∂tv(s, t) ds = AL(z, z, t)∂zv(z, t)

+ A
d

dz
L(z, z, t) + A∂zL(z, z, t)−B(z, t)L(z, z, t) + E(t)−N(z, t)

+ C(z, t) v(z, t)− Φ(z, t) + Ψ(z, t)L( N, N, t) v( N, t)−Ψ(z, t)∂zv( N, t)

+
N

z

− A∂2
zL(z, s, t) + B(z, t)∂zL(z, s, t)− C(z, t)L(z, s, t) v(s, t)ds

+
N

z

Q(z, s, t)x̃o(s, t)ds .

(5.133)

Inserting the PIDE (5.129a) on the left hand side of equation (5.133) and subsequently sum-

marising all terms on the right hand side results in

0 =
N

z

L(z, s, t) A∂2
sv(s, t)−B(z, t)∂sv(s, t) ds+ AL(z, z, t)∂zv(z, t)

+ A
d

dz
L(z, z, t) + A∂zL(z, z, t)−B(z, t)L(z, z, t) + E(t)−N(z, t)

+ C(z, t) v(z, t)− Φ(z, t) + Ψ(z, t)L( N, N, t) v( N, t)−Ψ(z, t)∂zv( N, t)

+
N

z

∂tL(z, s, t)− A∂2
zL(z, s, t) +B(z, t)∂zL(z, s, t)− C(z, t)L(z, s, t)

− L(z, s, t) (E(t)−N(s, t)) v(s, t)ds+
N

z

Q(z, s, t)x̃o(s, t)ds

−
N

z

N

s

L(z, s, t)Q(s, p, t)x̃o(p, t)dp ds .

(5.134)

Furthermore, integration by parts of the diffusion and convection terms leads to

N

z

L(z, s, t)A∂2
sv(s, t) ds = [L(z, s, t)A∂sv(s, t)]

s= N

s=z

− [∂sL(z, s, t)Av(s, t)]
s= N

s=z +
N

z

∂2
sL(z, s, t)Av(s, t) ds ,

(5.135)
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as well as

N

z

L(z, s, t)B(s, t)∂sv(s, t) ds = [L(z, s, t)B(s, t)v(s, t)]s= N

s=z

−
N

z

[∂sL(z, s, t)B(s, t) + L(z, s, t)∂sB(s, t)]v(s, t) ds .

(5.136)

Moreover, changing the order of the double integration of the last term in (5.134) accord-

ing to N

z
N

s
F (s, p) dp ds = N

z

s

z
F (p, s) dp ds = − N

z

z

s
F (p, s) dp ds and inserting the two

intermediate expressions (5.135) and (5.136) allows to rewrite the conditional equation as

0n = A
d

dz
L(z, z, t) + A∂zL(z, z, t) + ∂sL(z, z, t)A− B(z, t)L(z, z, t)

+ L(z, z, t)B(z, t) + E(t)−N(z, t) + C(z, t) v(z, t)

+ L(z, N, t)A−Ψ(z, t) ∂zv( N, t) + AL(z, z, t)− L(z, z, t)A ∂zv(z, t)

− Φ(z, t) + Ψ(z, t)L( N, N, t) + ∂sL(z, N, t)A+ L(z, N, t)B( N, t) v( N, t)

+
N

z

∂tL(z, s, t)− A∂2
zL(z, s, t) + ∂2

sL(z, s, t)A+B(z, t)∂zL(z, s, t)

+ ∂sL(z, s, t)B(s, t)− L(z, s, t) (E(t)−N(s, t)− ∂sB(s, t))

− C(z, t)L(z, s, t) v(s, t)ds

+
N

z

Q(z, s, t)+
z

s

L(z, p, t)Q(p, s, t)dp x̃o(s, t)ds .

(5.137)

At this stage the situation is similar to the derivation of the PDE for the inverse kernel G of the

backstepping based tracking control design in Section D.1. In particular compare the current

discussion with (D.19) and (D.20). Here, extending the integral over s with ±P (z, s, t)v(s, t)

in (5.137) one can formulate the condition

N

z

Q(z, s, t) +
z

s

L(z, p, t)Q(p, s, t)dp x̃o(s, t)ds =
N

z

P (z, s, t)v(s, t)ds (5.138)

Making use of the inverse backstepping transformation (5.126) allows to modify the condition

to

N

z

Q(z, s, t)− P (z, s, t) +
z

s

L(z, p, t)Q(p, s, t)dp x̃o(s, t)ds

−
N

z

N

s

P (z, s, t)S(s, p, t)x̃o(p, t)dp ds = 0n ,

(5.139)

and the subsequent change of the order of the double integral leads to

N

z

Q(z, s, t)− P (z, s, t) +
z

s

L(z, p, t)Q(p, s, t)dp x̃o(s, t)ds

+
z

s

P (z, p, t)S(p, s, t)dp x̃o(s, t)ds .

(5.140)
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Since (5.140) has to hold for every z ∈ (0, N) one can derive the transversal compensation

condition of the backstepping kernels for the observer equations as

P (z, s, t)−Q(z, s, t) =
z

s

[P (z, p, t)S(p, s, t) + L(z, p, t)Q(p, s, t)] dp . (5.141)

Next, in (5.137) evaluating the terms with v( N, t) and ∂zv( N, t) and considering that the

target system has Dirichlet BCs, this leads to the explicit formulations

Φ(z, t) = 0n,n ,

Ψ(z, t) = L(z, N, t)A ,
(5.142)

for the observer gains. In case of dynamic BCs these gains can be determined as

Φ(z, t) = −L(z, N, t)AL( N, N, t)− ∂sL(z, N, t)A− L(z, N, t)B( N, t) , (5.143a)

Ψ(z, t) = L(z, N, t)A . (5.143b)

Moreover, the combination of the dynamic boundary conditions (5.129c) with the evaluation

of the backstepping transformation (5.125) and its derivatives (5.130) at the boundaries z = 0

and z = N leads to

∂tx̃o(0, t) +
N

0

∂tL(0, s, t)v(s, t) ds+
N

0

L(0, s, t)∂tv(s, t) ds =

− (E(t)−N(0, t)) x̃o(0, t) +
N

0

L(0, s, t)v(s, t) ds ,

(5.144)

∂tx̃o( N, t) = − (E(t)−N( N, t)) x̃o( N, t) . (5.145)

The first equation can be written as

∂tx̃o(0, t) = − (E(t)−N(0, t)) x̃o(0, t)−
N

0

L(0, s, t)∂tv(s, t) ds

−
N

0

[∂tL(0, s, t) + (E(t)−N(0, t))L(0, s, t)]v(s, t) ds .

(5.146)

Comparing (5.145) and (5.146) with the boundary conditions (5.123c) of the observer error

system leads to the remaining observer gains

Φ0(t) = E(t)−N(0, t)

Φ
N
(t) = E(t)−N( N, t) ,

and the boundary conditions for the kernel at z = 0

L(0, s, t) = ∂tL(0, s, t) = 0n,n . (5.147)
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With this and taking (5.137) into account one obtains the set of kernel equations

∂tL(z, s, t) = A∂2
zL(z, s, t)− ∂2

sL(z, s, t)A−B(z, t)∂zL(z, s, t)

− ∂sL(z, s, t)B(s, t) + C(z, t)L(z, s, t)

+ L(z, s, t) (E(t)−N(s, t)− ∂sB(s, t))− P (z, s, t) ,

(5.148)

A
d

dz
L(z, z, t) + A∂zL(z, z, t) + ∂sL(z, z, t)A = B(z, t)L(z, z, t)

− L(z, z, t)B(z, t)− E(t) +N(z, t)− C(z, t) ,

L(z, z, t)A = AL(z, z, t) ,

L(0, s, t) = 0n,n .

(5.149)

Remark 5.23. The equations of the backstepping kernel S for the inverse transformation

(5.126) can be derived in similar fashion as the equations of the backstepping kernel (5.29)

for the transformation of the tracking controller in Section 5.1.2. The PDE with corresponding

BCs read

∂tS(z, s, t) = A∂2
zS(z, s, t)− ∂2

sS(z, s, t)A−B(z, t)∂zS(z, s, t)

− ∂sS(z, s, t)B(s, t)− (E(t)−N(z, t))S(z, s, t)

− S(z, s, t) (C(s, t) + ∂sB(s, t))−Q(z, s, t) ,

(5.150)

A
d

dz
S(z, z, t) + A∂zS(z, z, t) + ∂sS(z, z, t)A = B(z, t)S(z, z, t)

− S(z, z, t)B(z, t)− E(t) +N(z, t)− C(z, t) ,

S(z, z, t)A = AS(z, z, t) ,

S(0, s, t) = 0n,n .

(5.151)

In the following the discussion is directed to two specific types of compensations. They allow

to solve the kernel equations with methods which are comprehensively investigated in recent

literature. At this stage the interested reader is referred to Section 5.1.2.

Coupling Compensation

Imposing diagonal backstepping kernel L(z, s, t) = Ld(z, s, t) over the entire spatial domain

(z, s) ∈ DL( N) leads to the compensation terms

N(z, t) = N c(z, t) = Ld(z, z, t)B(z, t)− B(z, t)Ld(z, z, t) + Cc(z, t) , (5.152)

P (z, s, t) = −Bc(z, t)∂zL
d(z, s, t)− ∂sL

d(z, s, t)Bc(s, t)

+ Cc(z, t)Ld(z, s, t)− Ld(z, s, t) (N c(s, t) + ∂sB
c(s, t)) .

(5.153)
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Similar to the coupling compensation discussion in Section 5.1.2 for the control design the

uncoupled equations can be written element-wise as

∂tlii(z, s, t) = aii ∂2
z lii(z, s, t)− ∂2

s lii(z, s, t) − bii(z, t)∂zlii(z, s, t)

− bii(s, t)∂slii(z, s, t) + (eii(t) + cii(s, t)− ∂sbii(s, t)) (z, s, t)lii(z, s, t) ,

d

dz
lii(z, z, t) = − 1

2aii
(eii(t) + cii(z, t)) ,

lii(z, 0, t) = 0 .

(5.154)

Applying the Hopf-Cole-transformation and subsequent transfer into scattering coordinates

allows to rewrite the PDE in a integrable form. This allows to solve each kernel element

by means of recursive algorithms. A more detailed description has been dispensed since this

pattern is already a standard procedure in literature, e.g. [55], and is equivalent to the remarks

of the associated analysis in Section 5.1.2.

Non-commutative Compensation

Alternatively the goal of the following approach is to compensate the non-commutativity of the

kernel-PDE (5.148). More precisely speaking, the setting of the compensation terms

N(z, t) = 2ΔA
d

dz
Ld(z, z, t) + Ld(z, z, t)B(z, t)−B(z, t)Ld(z, z, t) + Cc(z, t) , (5.155)

P (z, s, t) = ΔA∂2
zL(z, s, t)− ∂2

sL(z, s, t)ΔA−ΔB(z, t)∂zL(z, s, t)

− ∂sL(z, s, t)ΔB(s, t)− L(z, s, t) (NAB(s, t) + ∂sΔB(s, t)) .
(5.156)

with the the abbreviations ΔA = A − aIn, ΔB(z, t) = B(z, t) − b(z, t)In, and NAB(z, t) =

N(z, t)− Cc(z, t) allows to write the kernel-PDE as

∂tL(z, s, t) = a ∂2
zL(z, s, t)− ∂2

sL(z, s, t) − b(z, t)∂zL(z, s, t)

− b(s, t)∂sL(z, s, t) + (E(t)− Cc(z, t))L(z, s, t)

+ L(z, s, t) (C(s, t)− ∂sb(s, t)In) ,

(5.157)

where the parameter matrix A and the matrix-valued function B are substituted by a scalar

parameter a and a scalar function b. Moreover, the boundary conditions are uncoupled as

stated above in (5.154). Again, a further discussion is omitted since standard procedures allow

to solve the kernel equations as stated.

5.2.3 Stability of the Observer Error System

As discussed for control design in Section 5.1.3 the closed loop stability of the observer error

system demands the boundedness of the backstepping kernels L and S and the stability of the

target system (5.129). The former is inherently given since by referring to the the discussion

above strong solutions exist for L and S. The latter requirement is topic of the next two

sections.
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Stability of the Target System for Dirichlet Boundary Conditions

Note the following two Theorems.

Theorem 5.13. Let E(t) be diagonal in (5.129a) and let ν ∈ Rn/{0n}. If E fulfils the inequality

νTE(t)ν ≥ νT N s(z, t) +
1

2
∂zB

s(z, t)− 1

4
Ba(z, t)A−1Ba(z, t) νT

+ ϕP(t)
N√
2
+ ϕS(t)

N
2

2
+ µmin(t) ν 2

2 (5.158)

for all (z, t) ∈ Ω( N, t0) and for some µmin(t) > 0 with t > t0, then the zero equilibrium of the

target system dynamics (5.129a) with boundary conditions (5.129b) is exponentially stable in

the norm ·
L2 , i.e., there exists a constant ρ > 0 so that the inequality

v
L2(t) ≤ ρ v

L2(t0) exp (−κo(t, t0)) (5.159)

holds true with κo(t, t0) =
t

t0
µmin(τ)dτ .

Theorem 5.14. Let E(t) be diagonal in (5.129a) and let ν ∈ Rn/{0n}. If E fulfils the inequality

νTE(t)ν ≥ νT N s(z, t) +
1

2
B(z, t)A−1BT (z, t) +

1

2
∂zN(z, t)A−1∂zN

T (z, t) ν

+ νT 2 N
2A+ ϕ2

P(t) 1 + ϕS(t)
N√
2

2

N
4A−1 ν + µmin(t) ν 2

2 (5.160)

for all (z, t) ∈ Ω( N, t0) and for some µmin(t) > 0 with t > t0, then the zero equilibrium of the

target system dynamics (5.129a) with boundary conditions (5.129b) is exponentially stable in

the norm ·
H1

0
as defined in (5.77) , i.e., there exists a constant ρ > 0 so that the inequality

v
H1

0
(t) ≤ ρ v

H1
0
(t0) exp (−κo(t, t0)) (5.161)

holds true with κo(t, t0) =
t

t0
µmin(τ)dτ .

Obviously there is a correlation between the labelling of matrices and functions introduced for

the design of the tracking controller and the Luenberger-type observer. Consider the corre-

spondence list

Lyapunov functionals: Vi ←→ Wi , Target state: w ←→ v ,

Parameter matrix: D ←→ E , Compensation matrix: M ←→ N ,

Compensation kernel: H ←→ P , (Inverse) Compensation kernel: J ←→ Q ,

Backstepping kernel: K ←→ L , (Inverse) Backstepping kernel: G ←→ S ,

and note the following paragraph.
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Proof. Generally the verifications of Theorems 5.13 and 5.14 is shortened since the proofs

are equivalent to the analysis done for Theorems 5.10 and 5.11 concerning the stability of

the tracking error controller. The only difference is the upper bound estimation of the term

including ϕP(t) and ϕS(t) which is performed briefly. For this, utilising the backstepping

transformation (5.125) and transversal compensation condition of the observer (5.141) the term

equivalent to (5.64) can be formulated as

N

0

vT (z, t)
N

z

Q(z, s, t)x̃o(s, t) ds dz

=
N

0

vT (z, t)
N

z

Q(z, s, t) v(s, t)−
N

s

L(z, p, t)v(p, t) dp ds dz

=
N

0

vT (z, t)
N

z

Q(z, s, t) +
z

s

Q(z, p, t)L(p, s, t) dp v(s, t) ds dz

=
N

0

vT (z, t)
N

z

P (z, s, t)−
z

s

P (z, p, t)S(p, s, t) dp v(s, t) ds dz .

(5.162)

From this, equivalently to (5.69) the upper bound estimation holds true

N

0

vT (z, t)
N

z

Q(z, s, t)x̃o(s, t) ds dz

≤ ϕP(t)
N√
2
+ ϕS(t)

N
2

2
)

N

0

vT (z, t)
N

z

v(s, t) ds dz .

(5.163)

Stability of the Target System for Dynamic Boundary Conditions

Consider the following Theorem and Corollary for a stability statement with dynamic BCs in

the space X = H1 Ω N, t0 ;Rn with the norm induced by the inner product (5.93).

Theorem 5.15. Let E(t) be diagonal in (5.129a) and let ν ∈ Rn/{0n}. If E fulfils the inequality

νTE(t)ν ≥ νT N s(z, t) +
3

4
∂zN(z, t)A−1∂zN

T (z, t) +B(z, t)A−1BT (z, t) ν

+ νT ϕ2
P(t) 1 + ϕS(t)

N√
2

2
3 N

4

2
A−1 +

4

3
N
2A ν + µmin(t) ν 2

2 , (5.164a)

for z ∈ (0, N) and at the boundaries z ∈ {0, N} the condition

νTE(t)ν > νTN s(z, t)ν + µmin(t) ν 2
2 , (5.164b)

holds true for some λmin(t) > 0 and t > t0, then the zero equilibrium of the target system

dynamics (5.129a) with boundary conditions (5.129c) is exponentially stable in the norm · X,

i.e., there exists a constant σ > 0 so that the inequality

v X (t) ≤ σ v X (t0) exp (−κo(t, t0)) (5.165)
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holds true with κo(t, t0) =
t

t0
µmin(τ)dτ and v 2

X (t) = v(0) 2
2 (t) + v( N)

2
2 (t) + v

2

L2(t) +

∂zv
2

L2(t).

Corollary 5.4. Assume inequality (5.164) is fulfilled, then the zero equilibrium of the target

system dynamics (5.129a) is point-wise exponentially stable in the max−norm · ∞ , i.e.,

there exists a constant σ > 0 so that the inequality

max
z∈(0, N)

|v(z, t)| ≤ σ v X (t0) exp (−κo(t, t0)) (5.166)

holds true with κo(t, t0) =
t

t0
µmin(τ)dτ and for v ∈ H1 Ω N, t0 ;Rn .

Proof. Here, the formal evidence of Theorem 5.15 and (5.4) is omitted since it is completely

equivalent to the proof of Theorem 5.12 in view of the Lyapunov functional

W3(t) =
r

2
v(0) 2

2 (t) +
r

2
v( N)

2
2 (t) +

1

2
∂zv

2

L2(t) (5.167)

with positive parameter r > 0. The same applies to the analysis required for Corollary 5.4

which is identical to discussion already for conducted Corollary 5.3.

Remark 5.24. It is clear that Theorem 5.15 and Corollary 5.4 also apply for the case n = 1

and consequently v = v. However, e.g. in [23, 30], it is shown that the one dimensional DCRS

with dynamic boundary conditions is exponentially stable in the norm · X without structural

limitations. For the compensations terms this means N(z, t) = P (z, s, t) = 0n,n.

In the following an extensive simulations study enhances the presented backstepping approach

for PDEs with dynamic boundary conditions. Both, coupled and uncoupled scenarios shall

demonstrate the 2DOF control concept which combines the FF developed in Chapter 4 and

the observer-based tracking control part of the discussion above.
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Chapter 6

Simulation Studies and Real Time

Experiment

In this chapter the discussed concept for MASs and the developed control methods shall be

verified by means of extensive simulations studies. On top of that the continuous modelling

concept as well as the backstepping control approach in general is validated experimentally for

an uncoupled formation scenario processed with a small swarm of caterpillar robots in a real

time test-bed. While simulation studies of MAS based on PDE formulations are published occa-

sionally, e.g., in [56, 30, 23, 26, 24, 91], a specific real time validation has been only performed

in [25]. In the following the discussion recalls the discussion of Section 2.2 and Section 2.3

which leads to a discretisation and mapping process of the continuous model formulation and

its synthesis in terms of the 2DOF control and Luenberger-type observer development. The four

following simulation scenarios cover continuous model formulations of an uncoupled DRS, an

uncoupled MVBE, and a coupled DRS which finally is extended to a coupled DCRS model. All

four scenarios utilise dynamic boundary conditions. Last but not least the uncoupled Diffusion-

Reaction case is validated in a real time experiment. With this let us start with the preparation

of the simulation scenarios by semi-discretisation of the PDE formulations and the associated

algorithms.

6.1 Semi-Discretisation of the Continuous Synthesis by

FDM

The subsequent simulations scenarios evaluate on the one hand the PDE-based (inverse) design

approach for dynamic models of MAS and on the other hand the 2DOF control concept based

on a FF part utilising flatness properties and a FB part where backstepping for distributed

parameter systems is the main motivator. For this, let us assume each agent is assigned with

a 2−dimensional state x = [x1 x2]
T
. In general the interpretation or physical meaning of the

states is arbitrary. However let us assume that x1 and x2 are coordinates in the 2D plane since
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this is the actual meaning for the real time validation experiment which shall match the first

simulation scenarios.

Next, let us recall the concept worked out in Section 2.2 and especially in Section 2.2.2. There

the discussion leads to a 2−step process in order to transform the continuous model of MAS to

a corresponding discrete form which is based on Graph theoretical concepts. In summary, first,

the PDE model is spatially discretised, e.g., by FDM and the discretisation step Δz = N

N−1
.

Second, the bijective function φ, defined in (2.52), formally maps the discretisation points zi,

i = 1, 2 . . . ,N to the vertices vi of the underlying graph representation of the MAS. For instance

the state vector x undergoes the transformation

x(z, t)
FDM
====⇒ x(zi, t)

zi=φ−1(vi)
=======⇒ x(φ−1(vi), t) := x(vi, t) (6.1)

with the abbreviation zi = (i−1)Δz and the function φ : Z → S(Gs). Here, the domain Z is the

set of discretisation points, see (2.42), and the range S(Gs) is the set of vertices of the associated

underlying subgraph. As a consequence all analytical functions involved in the controller or

observer design process have to be spatially discretised and mapped accordingly. The following

list just represents an short excerpt, e.g.,

B(z, t) → B(vi, t) C(z, t) → C(vi, t)

K(z, s, t) → K(vi, vj, t) L(z, s, t) → L(vi, vj, t)

∂sK(z, s, t) → ∂sK(vi, vj, t) ∂sL(z, s, t) → ∂sL(vi, vj, t)

At this stage it is referred to (5.46), where ∂sK(z, s, t) is computed analytically. However, for

instance the second order spatial derivative of the backstepping kernel ∂2
sK(z, s, t) as well as

the spatial derivatives of the continuous model formulations (3.17) and (3.23) are required for

observer applications but are not available in an analytical way. Therefore numerical differen-

tiation is applied, which, e.g., leads to

∂2
sK(z, s, t) = ∂s (∂sK(z, s, t)) → l

kD(1)(∂sK)(vi, vj, t)

with l
kD(α) defined by (2.76) as the discrete differential operator for central, forward and back-

ward FDM. At this point it has to be emphasised that the determination of the actual type and

order of the FDM defines and induces the mandatory network topology for the distribution of

the states and consequently the necessary edge set of the underlying subgraph representation.

For this, let us assume a next neighbour or 1−nearest neighbour topology for state distribution

which sets the operator 1
−1D(1) and 1

−1D(2) for all follower agents, 1
0D(1) for the anchor agent, and

0
−1D(1) for the leader agent. In this case the process induces a path graph PN representation.

Remark 6.25. The terminology regarding network topology explicitly refers to state distribution

and is chosen on purpose. Parameter values may be time-dependent and therefore they need to

be synchronised with all participating agents. This may lead to a more complex overall topology

and underlying subgraph representation. Time synchronisation can be accomplished, e.g., by an

external instance which sends trigger signals, or by means of another internal MAS which is
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(e) Resulting N-cycle graph CN.

Figure 6.1: Graph representations for state distribution of a swarm of N = 11 agents. The path graph

in (a) is induced by discretisation and mapping process. The star graph shown in (b) results from the

backstepping-based controller design without state estimation. The overlap of these graphs leads to

the graph depicted in (c). The illustrations in (d) and (e) show simplified representations when state

estimation is applicable for FBC.

utilised for parameter distribution. In literature it is denoted as a so-called exogenous system.

For instance, in [26] the reaction term coefficient cm is set up as an independent DRS which

allows rather complex parameter evolution in time and space, i.e. throughout all agents. Since

parameters are purely information and no physical dynamics is involved no disruption is expected

apart from possible communication delays or message losses. As a consequence, when modelling

the parameter distribution as a stable DRS it is sufficient to control the exogenous system in

open-loop only. In this case the network topology which is induced for state distribution is

preserved and consequently defines the overall topology.

A graphical illustration for a path graph with N = 11 is sketched in Figure 6.1a. Utilising
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appropriate coefficients for central FDM from Table A.1 the transformation of the PDE of a

DCRS leads to

∂tx(vi, t) = A (x(vi+1, t)− 2x(vi, t) + x(vi−1, t))− B(vi, t)

2
(x(vi+1, t)− x(vi−1, t))

+ C(vi, t)x(vi, t) ,
(6.2)

and the discrete formulation of the MVBE is written as

∂tx(vi, t) = A (x(vi+1, t)− 2x(vi, t) + x(vi−1, t))

− B(vi, t)

2
X(vi, t) (x(vi+1, t)− x(vi−1, t)) + C(vi, t)x(vi, t) ,

(6.3)

with i = {2, . . . ,N − 1}. Moreover, the IC may be obtained by x(vi, t0) = x0(vi) →x0(z).

Considering dynamic BCs the transferred formulation of the anchor and leader agent,

∂tx(v1, t) = u0(t) ,

∂tx(vN, t) = u
N
(t) ,

(6.4)

is induced by the associated discretisation and mapping of the analytical formulation of their

control inputs. Therefore, by applying the 2−step transformation process on (5.116) and (5.120)

the processed formulation of the control inputs can be written as

u0(t) = u∗
0(t)− (D(t)−M(v1, t)) x̃c(v1, t) , (6.5a)

u
N
(t) = u∗

N
(t)−KN(t)x̃c(vN, t) +KN,N−1(t) (x̃c(vN, t)− x̃c(vN−1, t))

+K1(t)x̃c(v1, t) +
N

i=1

KS(vi, t)x̃c(vi, t)
(6.5b)

whereas the gain abbreviations for the input of the leader agent are set to

KN(t) = D(t)−M(vN, t) + ∂sK(vN, vN, t)A+K(vN, vN, t)B(vN, t) ,

KN,N−1(t) = K(vN, vN, t)A ,

K1(t) = ∂sK(vN, v1, t)A ,

(6.6a)

and

KS(vi, t) = ∂tK(vN, vi, t) +
1

−1D(1)(∂sK)(vN, vi, t)A+ ∂sK(vN, vi, t)B(vi, t)

+ (D(t)−M(vN, t))K(vN, vi, t) +K(vN, vi, t) (C(vi, t) + ∂sB(vi, t)) ,
(6.6b)

respectively. From the leader protocol in (6.5) it is obvious that the formulation demands

an additional subgraph representation due to the leader-follower configuration. More precisely

speaking the backstepping based control law induces a star graph SN which is show exemplarily

in Figure 6.1b. Together with the path graph representation discussed above this forms a

rather complex subgraph Gs,N for |V| = N. The structure is briefly sketched in Figure 6.1c.

This demands a sophisticated network topology which in general is the main motivator for the



6.1 Semi-Discretisation of the Continuous Synthesis by FDM 131

design of state estimators. With this, let us transform the observer equations into the spatially

discretised form

∂tx̂(v1, t) = u0(t) + (E(t)−N(v1, t)) yv1
(t)− x̂(v1, t) ,

∂tx̂(vi, t) = A (x̂(vi+1, t)− 2x̂(vi, t) + x̂(vi−1, t))− B(vi, t)

2
(x̂(vi+1, t)− x̂(vi−1, t))

+ C(vi, t)x̂(vi, t) + Φ(vi, t) yvN
(t)− x̂(vN, t)

+ Ψ(vi, t) yvN,vN−1
(t)− 0

−1D(1)(x̂)(vN, t) ,

∂tx̂(vN, t) = u
N
(t) + (E(t)−N(vN, t)) yvN

(t)− x̂(vN, t)

(6.7)

with the three measurements yv1
(t) = x(v1, t), yvN

(t) = x(vN, t), and yvN,vN−1
(t) = ∂zx(vN, t).

In case ∂zx(vN, t) cannot be measured directly the latter measurement may be approximated

by yvN,vN−1
(t) = 0

−1D(1)(x)(vN, t) = x(vN, t) − x(vN−1, t). For completeness the transformed

observer PDE for a MVBE is written as

∂tx̂(vi, t) = A (x̂(vi+1, t)− 2x̂(vi, t) + x̂(vi−1, t))

− B(vi, t)

2
X(vi, t) (x̂(vi+1, t)− x̂(vi−1, t)) + C(vi, t)x̂(vi, t)

+ Φ(vi, t) yvN
(t)− x̂(vN, t) + Ψ(vi, t) yvN,vN−1

(t)− 0
−1D(1)(x̂)(vN, t) .

(6.8)

With this, replacing the state vector with the estimated state vector in the leader protocol

(6.5), i.e., x → x̂, simplifies the required topology of the communication network enormously.

Basically it is defined by the measurement setup of the associated estimation algorithm. From

the measurements applied to (6.7) or (6.8) one can easily derive the simplified graph repre-

sentation plotted in Figure 6.1d. Combined with the path graph in Figure 6.1a this leads to

a N-cycle graph CN which is exemplarily depicted in (6.1e). Obviously the representation is

more readable and the presence of an state estimation algorithm leads to a slimmer network

topology.

Remark 6.26. Applying Dirichlet BCs instead of dynamic conditions would not change the

graph representation when the system lacks state estimation. Again, the combined graph would

result in the rather complex subgraph shown in (6.1c). However including a backstepping based

observer algorithm into the feedback control loop would not add any mandatory communication

paths to the graph representation induced due to numerical differentiation by FDM. The resulting

graph would remain as the path graph shown in (6.1a).

Basically this section finishes the theoretical preparation in order to conduct the following

comprehensive simulation studies and real time experiments. Therefore, in the following let us

focus on four challenging scenarios with various formations transitions of a simulated swarm of

agents.
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6.2 Simulation Scenarios

In the following an extensive simulations study shall verify the general concept of formation

control of MASs by means of a continuous model description. Apart from that the studies shall

gain evidence for the design of a 2DOF controller and an observer algorithm based on methods

which are actually developed for distributed parameter systems. For the latter the scenarios

shall serve as first feasibility study of the flatness-based FFC discussed in Chapter 4 and the

backstepping-based FBC including the Luenberger-type observer design shown in Chapter 5.

Both concepts are developed for coupled parabolic PDEs. From this, for a qualifying discussion

of the simulations results it is useful to define the discretised L2−norms of important error

variables, e.g.,

x̃c L2(t) :=
N

i=1

(x(vi, t)− x∗(vi, t))
T (x(vi, t)− x∗(vi, t))

1
2

, (6.9a)

x̃o L2(t) :=
N

i=1

(x(vi, t)− x̂(vi, t))
T (x(vi, t)− x̂(vi, t))

1
2

, (6.9b)

x̃c − x̃o L2(t) :=
N

i=1

(x̂(vi, t)− x∗(vi, t))
T (x̂(vi, t)− x∗(vi, t))

1
2

, (6.9c)

where the latter stands for the discrete L2−norm of the estimated control error which is applied

to the leader protocol (6.5) in case of an observer-based FBC approach.

Next, it follows a discussion about the simulation results of the first scenario where a simulated

MAS performs two successive formation transitions. There the swarm dynamics is modelled as

an uncoupled DRS.

6.2.1 Simulation Results for an Uncoupled DRS Model

The results of the first scenario are shown as a 3D plot in Figure 6.2. It illustrates the simulated

state vectors x(vi, t) of a swarm of 11 agents whereas the MAS dynamic is modelled by a

continuous formulation governed from an uncoupled DRS. At this point it is worth to mention

that all simulation scenarios start in a line configuration and successively transit to various

other steady state formation profiles. For instance, for this scenario the deployment moves to

a half circle and finally to a circular shaped profile. The scenario benefits from an observer-

based tracking controller in order to stabilise the control error between the simulated states

and the desired target states. The simulation time for each transition was set to τ = 0.8 N
2 s =

0.8(N−1)2 s = 80 s whereas the entire simulation time is configured to Tsim = 200 s which leaves

some additional time to underline the theoretically verified stability property. The cycle time

of the applied observer algorithm was set to 10ms and is denoted as observer cycle time in the

following. In equivalent manner the controller cycle time defines the frequency of the execution

of the controller algorithm. It is slowed down for the simulation scenario to 30ms in order
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Figure 6.2: Simulation result of formation transitions for an MAS modelled as an uncoupled DRS.

Simulation time is Tsim = 200 s, observer cycle time is set to τo = 10ms, control cycle time is set to

τc = 3τo, and the (x1, x2) coordinates are illustrated in cm. The anchor agent is indicated as ◦ and

the leader agent as×. Followers are denoted as •.

Table 6.1: Parameter values for an uncoupled DRS scenario with τ = 80 s. Geometric values are given

in cm.

t = 0 s t = τ t = 2τ

Coord. a c̄∗ x̄∗
a x̄∗

l c̄∗ x̄∗
a x̄∗

l c̄∗ x̄∗
a x̄∗

l

x1: 0.5 0 0 0 a π2

N
2 0 0 a 4π2

( N+1)2
−150 −150 cos 2π N

N+1

x2: 0.5 0 −150 150 a π2

N
2 −150 150 a 4π2

( N+1)2
0 −150 sin 2π N

N+1

to demonstrate the robustness of the backstepping controller. Additionally an initial observer

estimation error x̃o at t = t0 = 0 s is introduced in order to analyse the transient behaviour.

The system parameters of the continuous DRS model and the steady state values of the anchor

and leader agent are listed in Table 6.1. Regarding the final circular steady state formation

profile it is worth to mention that the ( N + 1)−dependency of the parameter c and the leader

position x̄l at t = 2τ allows to deploy the leader and anchor agent without collision at the
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Figure 6.3: Steady state profiles in the (x1, x2)-plane: (a) A line as starting deployment, (b) a half

circle as intermediate profile, and (c) a circular shape as final formation. Bright colours (•,•) indicate

desired values and dark colours (•,•) simulated values.

predefined steady state situation. In other words, the circle is not closed and consequently,

leader and anchor do not overlap at t = 2τ . At this stage the reader who is interested in steady

state evaluation of uncoupled DRSs is referred to Section 3.2 as well as Appendix B.2.

With this, the plots in Figure 6.3 show both simulated and desired state values for the starting

line deployment, the intermediate half circle, and the final configuration at t = Tsim. Assuming

nominal observer states x̂(vi, 0) = x∗(vi, 0) and simulated state values placed off from the

nominal line at t = 0 s , i.e., x(vi, 0) = x∗(vi, 0) + x̃c(vi, 0), Figure 6.3a clearly depicts the

initial state error. This procedure matches situations which are faced in real time experiments.

The almost exact matching of the simulated state x with the desired state x∗ in Figure 6.3b

proofs that the control strategy copes with the irritation at the beginning of the simulation and

Figure 6.3c shows that the observer-based tracking controller stabilises the unstable circular

profile. Moreover, the remaining offset between the simulated state and the desired state reveals

that the backstepping stabilisation cannot compensate the control error ideally and reminds of

a conventional state or P−controller, respectively.

Motion planning and Feedforward Control

The next two figures show results particularly for the flatness-based motion planning and FFC.

Figure 6.4a depicts desired trajectories x∗ of the agent states for coordinate 1 and Figure 6.4b

those of coordinate 2. The grey shadowed surface illustrates the synthesis in continuous de-

scription in terms of the spatial domain z ∈ [0, N]. Considering both plots in Figure 6.4 one

can easily imagine the temporal transformation from the line configuration at t = 0 s to the

subsequent circular shapes which are formed by means of an overlap of sin− and cos−functions.

For this, the parameter value for the associated spatial period is listed in Table 6.1. The de-
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(a) Desired trajectories for coordinate x1.
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(b) Desired trajectories for coordinate x2.

Figure 6.4: Desired trajectories x∗ for the planning period t ∈ [0, 160] s computed by means of formal

state parametrisation of a scalar DRS, see Section 4.1. The grey lines ( ) show the nominal

trajectories for 11 agents, the green lines ( , ) shall symbolise the steady states situations at

t = t̄ ∈ {0 s, 80 s, 160 s} according to the applied motion planning procedure.
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Figure 6.5: Desired and planned trajectories for the motion planning period t ∈ [0, 160] s: (a) Desired

trajectories {y∗m0 , y∗m1 } of the components ym of the flat output; (b) planned FF control inputs

{u∗m0 , u∗m
N
} for dynamic BCs. Green solid lines ( ) show trajectories for coordinate m = 1 and

black dashed lines ( ) indicate time functions for coordinate m = 2.

sired state vector x∗(z, t) of the representing DRS is calculated according to the developed

motion planning concept in Chapter 4. In particular the recursive algorithm (4.23) of the

series ansatz is used together with the trajectory assignments (4.81) and (4.83), respectively.

Here, the bell-shaped function (C.13) is utilised to govern the Gevrey function Φτy ,ωy and

Φτc,ωc . For this simulation scenario the Gevrey order is chosen as αy = αC = 1.05 with a

planning horizon of τy = τc = 0.8(N − 1)2 s = 80 s per formation transition. With this,

the flatness-based motion planning approach leads to the desired trajectories y∗m0 and y∗m1 for

the flat output ym(t) = [ym0 (t), y
m
1 (t)]

T = [xm(ξ, t), ∂zx
m(ξ, t)]T presented in Figure 6.5a with

ξ = N/2 = (N − 1)/2. Moreover, when making use of (4.20) the results of the FF control

inputs are displayed in (6.5b). Here it is worth to mention that in the plots coordinate 1 is

illustrated by a solid green line and graphs for coordinate 2 are plotted as dashed black lines.

Observer-based Tracking Control

While the last paragraph dealt with results concerning motion planning and FFC the following

discussion focuses on FB and error tracking control. As already mentioned in this scenario the

control loop is equipped with a Luenberger-type state observer. The design concept applied is

worked out in Chapter 5. However for this simulation it is scaled down to individual uncoupled

problems. This configuration leads to the a graph representation shown in Figure 6.1c.

As a first, Figure 6.6 presents the control inputs as well as the control error x̃c for both

coordinates m ∈ {1, 2}. All plots clearly show the initial settling time of the injected observer

error. During the first 15 s the backstepping-based error tracking controller is disabled which

leads to almost constant control errors for both, the leader agent and the anchor agent. As soon
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(b) Control error of the cognitive agents.

Figure 6.6: Feedback control inputs and errors for the entire simulation period t ∈ [0, 200] s: (a) Track-

ing or feedback control inputs Δum0 (t) of the anchor and Δum
N
(t) of the leader; (b) coordinate-wise

position errors x̃mc (v1, t) of the anchor and x̃mc (vN, t) of the leader. Again, green solid lines ( )

illustrates values for coordinate m = 1 and black dashed lines ( ) for coordinate m = 2.

as the control loop is closed on the one hand relatively high control inputs ensure stability of

the entire swarm formation and on the other hand general tracking of the desired states. The

upper plots in Figure 6.6a and Figure 6.6b refer to results from the anchor agent. Recalling the

discussion regarding (5.116) PT1−behaviour is claimed by design for the tracking error x̃m
c (vi, t)

of the anchor. It is fair to say that the related plots substantiate this analysis. While the control

inputs of the anchor quickly converge to zero the lower plot in Figure 6.6a shows that the leader

agent works quite intensively to keep the entire swarm on track. Moreover Figure 6.6b reveals

that it seems the leader cannot hold its position during the formation transition but it stabilises

at the desired steady state situations at t = 80 s and t = 160 s. The additional simulation time

up to 200 s clearly indicates an remaining tracking error which is subsequently discussed in

detail.

The following plots in Figure 6.7 outline the involved error values. Figure 6.7a shows the

temporal evolution of euclidean distance between the desired and simulated position for each

agent. The figure gives a lot of additional information, which shall be briefly listed in the

following.

❼ Since the starting line profile is stable the initial error gets compensated for the follower

agents without tracking control in place.

❼ The anchor just compensates its initial error and from then it is stable in all coordinates

throughout the entire simulation.

❼ The error distance gets much larger for all other agents during the transition from the

half circle to the circular shape. This happens since the coefficient of the reaction term
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(c) L2−norm of the observer error.
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(d) L2−norm of the estimated control error.

Figure 6.7: Absolute position errors and component-wise error norms in cm: (a) Temporal evo-

lution of the agent’s position error |x̃c(vi, t)| = x(vi, t)− x∗(vi, t) 2 as euclidean distance in the

(x1, x2)−plane; (b) discrete L2−norm of the error x̃mc (vi, t) between simulated state and desired state;

(c) discrete L2−norm of the error x̃mo (vi, t) between simulated state and estimated state gained from

the observer; (d) discrete L2−norm of the error between the estimated observer state and the desired

state. The L2−norms are computed according to (6.9) for each coordinate m = {1, 2} individually.

Green solid lines ( ) show the norms for m = 1 and black dashed lines ( ) for m = 2.

increases with time and so does the instability of the steady state formation profile, cf.

the parameter values for c in Table 6.1.

❼ The final error distance reminds of a function which consists of a polynomial part and an

additional |sin|−part.

For the latter point one can conclude that the remaining error distance has two origins. First,

the continuous design approach induces an error since the PDE formulation is an approxima-

tion of the simulated MAS represented by a N−dimensional set of ODEs. Consequently, the
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computed steady states x∗ of the continuous system are as well an approximation and do not

necessarily match the steady states of the discrete system. This effect decreases when the num-

ber of agents N increases. However, as already discussed before the tracking controller can be

compared with a traditional P−control algorithm. Therefore the desired error dynamics defined

by the target system (5.12) is reached entirely for all agents. This may introduce an additional

remaining offset to the desired steady state values. Figures 6.7b to 6.7d depict different discre-

tised L2− norms for each coordinate individually. Here it can be said, that the illustration of

the norm of the control error x̃c in Figure 6.7b supports the statements from above. Moreover,

in Figure 6.7c it is important to see that the L2− norm of the observation error x̃c rapidly

recovers from the initial error and converges to zero. An interesting plot is shown in 6.7d where

the norm of the estimated control error is sketched for each coordinate. At the beginning it is

clearly dominated by the observation error and later by the actual control error. Therefore it

does make sense to disable the tracking controller until state estimation is settled to a certain

level. For this note the small peaks after 15 s in Figure 6.7b and Figure 6.7d.

The last plots of the simulation results give an impression of the magnitudes for the tracking

controller and state observer. Here, it has to be pointed out that for this simulation scenario

the numerical results of controller and observer design are completely identical for coordinate 1

and 2. Note, the system parameters a and c in Table 6.1 are equal and the tuning parameters

are set to constant values, i.e., dm(t) = dm = 0.15 and em(t) = em = 0.30 for both coordinates.

Thus, Figure 6.8a sketches the controller gains which consider the control errors distributed

over all agents of the MAS. Contrarily, Figure 6.8b presents the time functions km
1 (t) and

km
N (t) which respect the errors for the anchor and leader agent individually, as well as km

N,N−1(t)

which corrects the estimated error between the leader agent and its neighbouring follower agent

represented by index N − 1. Here the controller gains are computed according to the analysis

above in (6.6). Furthermore, Figure 6.8c and Figure 6.8d present the distributed gain values

for the Luenberger-type state observer. Here φm, the scalar equivalent of the matrix Φ in (6.7)

and (6.8), considers the error of the leader’s state estimation x̃m
o (vN, t) = xm(vN, t)− x̂m(vN, t).

Furthermore, ψm, again the corresponding scalar observer gain of Ψ, amplifies the error increase

between the leader agent and its next neighbour, i.e., Δx̃m
o (vN, t) = x̃m

o (vN, t) − x̃m
o (vN−1, t).

In general it can be stated that the magnitudes of all gains increase with time. This again is

related to the increasing reaction term parameter c. Having a look at the steady state situations

which are indicated by the green lines in Figure 6.8a, (c) and (d) the trained eye can identify

curves which are very typical for the backstepping approach with parabolic PDEs. They can

be constructed by modified Bessel functions of order one. For details the interested reader is

referred to, e.g, [80].

The next simulation scenario copes with an underlying uncoupled MVBE model in one coor-

dinate. Apart from dealing with non-linearities it leads to interesting results for comparison

since system and simulation parameters are changed enormously and state observation is left

out completely.
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Figure 6.8: Control and observer gains: (a) (Discretely) distributed control gain according to (6.6a)

which amplifies the control error x̃mc of every agent; amplified errors are summed up to form a control

input signal. (b) individual control gains according to (6.6b) which respect the control error of the

anchor, the control error of the leader and the control error of the state difference between the leader

and its next follower; (c) observer gain according to (5.143a) which injects the estimation error x̃mo into

the estimation algorithm; (d) observer gain according to (5.143b) which aims to correct the estimation

error Δx̃mo . In the 3D-plots green lines ( , ) indicate steady state situations in the sense of

the applied motion planning procedure.

6.2.2 Simulation Results for an Uncoupled MVBE Model

Numerical results of the second scenario are presented in Figure 6.9. It shows in 3D the

simulation of the state vector x associated to 21 agents whereas the MAS dynamics is modelled

by a MVBE for coordinate 1 and by a DRS for coordinate 2. As already mentioned above the

deployment always starts in a line configuration, then it successively moves to an U−shaped

steady state formation profile and later to a profile which is reminiscent of an ∞−symbol.

The scenario benefits from tracking control without state observation in order to stabilise the

control error between the simulated states and the desired target states. Each transition lasts
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Figure 6.9: Simulation result of formation transitions for an MAS modelled as an uncoupled MVBE.

Simulation time is Tsim = 480 s, control cycle time is set to τc = 100ms and the (x1, x2) coordinates

are illustrated in cm. The anchor agent is indicated as ◦ and the leader agent as×. Followers are

denoted as •.

Table 6.2: Parameter values for an uncoupled MVBE scenario with τ = 200 s. Geometric values are

given in cm.

t = 0 s t = τ t = 2τ

Coord. a b c x̄a x̄l c x̄a x̄l c x̄a x̄l

x1: 1.0 a 18
x̄A N

0 150 −150 0 150 −150 a 60

N
2 0 0

x2: 1.0 0 0 0 0 a4π2

N
2 −150 −150 a4π2

N
2 0 0

τ = 0.5(N − 1)2 s = 200 s whereas the entire simulation time is set to Tsim = 480 s in order

to conclude on stability properties. The cycle time of the simulation itself is set to 20ms and

the cycle period of the controller is configured to 100ms which allows to test the robustness of

the backstepping approach. Additionally an initial position error x̃c at t = 0 s shall emulate a

behaviour as it would be the case in a real time experiment. Furthermore, Table 6.2 summarises

the system parameters of the continuous models and values of the anchor and leader agent for

steady state computation.
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Figure 6.10: Steady state profiles in the (x1, x2)-plane: (a) A line as starting deployment, (b) an

intermediate formation where the agents are deployed in an U−shape, and (c) an ∞−symbol as final

formation. Bright colours (•,•) stand for desired values and dark colours (•,•) for simulated values.

Next, Figure 6.10 shows three plots, each with 21 simulated and desired state values at steady

state situations in terms of their formation profile. Figure 6.10a shows the starting deploy-

ment at t = 0 s where the simulated state values are positioned off from the nominal line, i.e.

x(vi, 0) = x∗(vi, 0) + x̃c(vi, 0). This is followed by the intermediate U−shape at t = τ and

sketched in Figure 6.10b. The subplot clearly shows that the control strategy can compen-

sate the initial irritation. Finally, reaching the ∞−symbol at t = 2τ challenges the tracking

controller harder than the intermediate profile. However, as pictured in Figure 6.10c it can

maintain a stable behaviour at least until t = Tsim.

Motion Planning and Feedforward Control

As in the simulation scenario before, the following two figures present results of computations

related to motion planning and FFC. Thus, Figure 6.11a shows the nominal states x∗ for co-

ordinate 1 and Figure 6.11b those of coordinate 2. Again, the grey surface gives an impression

of the result in continuous description of the underlying MVBE and DCRS, respectively. Fig-

ure 6.11a illustrates a steep slope in the middle of the spatial domain towards the temporal end.

This is known as a shock-like profile which is typical for the Burgers’ equation. Figure 6.11b

shows the state trajectories of the DRS from a linear to a sin- function. Geometric parameters

are listed in Table 6.2. As discussed above, the flatness-based concept in Chapter 4 is exploited

for the computation of the desired state vector x∗(z, t). In particular the Gevrey functions

Φτy ,ωy and Φτc,ωc implemented by (C.13) use the parameter setting αy = 1.20, αC = 1.15

for coordinate 1 and αy = 1.05, αC = 1.10 for coordinate 2. The timing is equally set to

τy = τc = 0.5(N − 1)2 = 200 s per formation transition. Here, desired trajectories {y∗m0 , y∗m1 }
for the components ym(t) = [ym0 (t)y

m
1 (t)]

T of the flat output are illustrated in Figure 6.12a and
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(a) Desired trajectories for coordinate x1.
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(b) Desired trajectories for coordinate x2.

Figure 6.11: Desired trajectories x∗ for the planning period t ∈ [0, 400] s. They are computed by

means of formal state parametrisation of a scalar MVBE, see Section 4.1. The grey lines ( ) show

the nominal trajectories for 21 agents, the green lines ( , ) shall symbolise the steady states

situations at t = t̄ ∈ {0 s, 200 s, 400 s} according to the applied motion planning procedure.
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(b) Feed forward control inputs.

Figure 6.12: Desired and planned trajectories for the motion planning period t ∈ [0, 400] s: (a) Desired

trajectories {y∗m0 , y∗m1 } of the components ym of the flat output; (b) planned FF control inputs

{u∗m0 , u∗m
N
} for dynamic BCs. Green solid lines ( ) show trajectories for coordinate m = 1 and

black dashed lines ( ) indicate time functions for coordinate m = 2.

results of the FF control inputs are plotted in (6.12b) for both coordinates.

Measurement-based Tracking Control

For this scenario the following paragraph discusses FB and error tracking control without the

presence of a state estimator. The resulting graph representation for this simulation study is

relatively complex and is sketched in Figure 6.1c. Equivalent to the analysis above Figure 6.13a

and Figure 6.13b present the graphs of the leader and anchor agent related values for both

coordinates m ∈ {1, 2}. Since no state estimation is in place the error tracking algorithm is

enabled right from the beginning of the simulation. Basically the plots in Figure 6.13 indicate

three things. First, the anchor shows its typical PT1−behaviour due to the induced initial

tracking error. Second, the tracking controller is mostly challenged by coordinate 1 which is

based on the non-linear MVBE. And third, the leader control signal of coordinate 2 includes

high frequencies. The latter observation gets clear when the setting of the tuning parameter

is taken into account. For scenario 2 it set to the constant value dm = 45/(N − 1)2 for both

coordinates. In relative numbers this is a three times higher value compared to the setting of

the DRS in scenario 1. Due to the strong compensation the leader errors remain in a moderate

range. Coming back to the second point it has to be emphasised that for the controller design

the MVBE has to be linearised around the pair {x∗1, ∂zx
∗1} which raises the requirement

x̃1
c(z, t)∂zx̃

1
c(z, t) ≈ 0, see (5.3)ff. for details. Recalling the shock-like behaviour of the desired

state x∗1 shown in Figure 6.11a it is clear that the precondition is tough to meet. Consequently

this tests the robustness of the closed system already by design. From the author’s experience

the closed loop is not robust enough and may get unstable easily when state estimation is

included. However as shown in [26] the integration of an additional in-domain measurement
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(b) Control error of the cognitive agents.

Figure 6.13: Feedback control inputs and errors for the entire simulation period t ∈ [0, 480] s: (a) Track-

ing or feedback control inputs Δum0 (t) of the anchor and Δum
N
(t) of the leader; (b) coordinate-wise

position errors x̃mc (v1, t) of the anchor and x̃mc (vN, t) of the leader. Again, green solid lines ( )

illustrates values for coordinate m = 1 and black dashed lines ( ) for coordinate m = 2.

1
5

9
13

17
21

0
80

160
240

320
400

480

0

10

20

30

i
t in s

|x̃
c
(v

i,
t)
|

(a) Distance error of all N agents.

0 80 160 240 320 400 480
0

20

40

60

80

t in s

x̃
m c

L
2
(t
)

(b) L2− norm of the control error.

Figure 6.14: Absolute position errors and component-wise error norms in cm: (a) Temporal evo-

lution of the agent’s position error |x̃c(vi, t)| = x(vi, t)− x∗(vi, t) 2 as euclidean distance in the

(x1, x2)−plane; (b) discrete L2−norm of the error x̃mc (vi, t) between simulated state and desired state.

The L2− norm is computed according to (6.9) for each coordinate m = {1, 2} individually. Green

solid lines ( ) show the norms for m = 1 and black dashed lines ( ) for m = 2.

point allows to stabilise the configuration in a robust way. In recent literature, such as [14],

the technique is labelled as domain folding.

The next two plots in Figure 6.14 deal with the analysis of the control errors x̃c. Equivalently to

above Figure 6.14a shows the temporal evolution of euclidean distance between the simulated

and desired state values for each agent. The interpretation is conducted similar as before, i.e.
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❼ the initial error gets compensated for all agents,

❼ the anchor just needs to compensate its initial error,

❼ the error distance gets larger as the coefficient of the reaction term increases, cf. the

parameter c in Table 6.2.

❼ the final error distance is dominated by the agents with an index close to (N− 1)/2 due

to the shock-like target profile which induces high demands at z = N/2, cf Figure 6.11a.

Obviously the discrete L2− norms of the control error, shown Figure 6.14b for each coordinate

individually, supports this analysis by all means. Apart from that the plot allows an interesting

comparison with Figure 6.7b discussed for the simulation scenario beforehand. Note, that x2 of

the current scenario moves from a linear steady state profile to an intermediate cos−deployment

and ends up in a sin−function in space. These two latter steady states matches the complete

final steady state situation of coordinate 1 and 2 of the first scenario. Now, the comparison

of the L2− norm of coordinate 2, plotted by a dashed black line in Figure 6.14b, with the

graphs in Figure 6.7b allows the confirmation of an important fact. The relatively higher

tuning parameter d2 in the current scenario and the larger number of agents (here 21 agents

vs. 11 beforehand) cause much lower L2− norm values for the control error, i.e. smaller overall

position errors. At this stage it is pointed out again that the continuous problem formulation,

especially the determination of the desired steady state formation profiles, can be interpreted

as an approximation for the swarm dynamics of a MAS which consists of a discrete number of

agents.

The closing plots of the simulation study show the numerical results of the controller gains

for coordinate 1 and 2. Thus, Figure 6.15a and Figure 6.15c depict the gains covering the

control error of all agents of the MAS, and Figure 6.15b and Figure 6.15d sketch gains which

consider particular control errors, especially for the anchor, the leader agent, and the difference

of the control error of the leader agent and its next neighbour within the chained network

topology. For details to the individual computation of km
1 , k

m
N , and km

N,N−1 see (6.6). Again, in

Figure 6.15a and Figure 6.15c green lines indicate at the steady state situations. The plot in

Figure 6.15a is dominated by the parameters induced due to the linearisation process around

{x∗1, ∂zx
∗1}. This leads to parameter values which depend on the target state and its spatial

derivative. They consequently evolve in space and time, cf. (5.4)ff. As already hinted above,

for the latter of the two 3D plots one might identify the typical curves of the backstepping

approach with parabolic PDEs, see [80]. Here the comparison to Figure 6.8a and Figure 6.8b

of the first simulation study draws an interesting picture and extends the analysis from above.

Although in the current study the tuning parameter d2 = 45/(N− 1)2 is three times higher in

relative figures and the diffusion coefficient a is twice as big compared to value in the previous

study the magnitudes of the gains remain in the same numerical decade. This can be explained

because the current simulation scenario deals with 21 agents compared to 11 agents in the

previous. As a consequence it can be approximately assumed that the swarm dynamics of the
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Figure 6.15: Controller gains: (a) and (c) (Discretely) distributed control gain for each coordinate

according to (6.6a) which amplifies the control error x̃mc of every agent; amplified errors are summed

up to form a control input signal. (b) and (d) individual control gains for each coordinate according

to (6.6b) which respect the control error of the anchor, the control error of the leader and the control

error of the ’state difference’ between the leader and its next follower. In the 3D-plots green lines

( , ) indicate steady state situations in the sense of the applied motion planning procedure.

current situation is four times slower compared to the first simulation study (just by comparing

the factor (N− 1)2). With this, absolute figures of the controller parameters can be four times

smaller in the current scenario compared to the previous one in order to make a equivalent

comparison. This means, even though the gains are similar in absolute figures the swarm as a

system experiences a much higher amplification of the associated error values. A more detailed

and systematic approach on this topic such as the difference between swarm and agent dynamics

is conduced in Section 2.2.

The upcoming two simulation studies deal with a coupled DRS and a coupled DCRS as the

underlying model of the MAS dynamics. Just by design this leads to a rather complex setup

and sophisticated analysis process in the next paragraphs.
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Figure 6.16: Simulation result of formation transitions for an MAS modelled as a coupled DRS.

Simulation time is Tsim = 120 s, control cycle time is set to τc = 30ms, and the (x1, x2) coordinates

are illustrated in cm. The anchor agent is indicated as ◦ and the leader agent as×. Followers are

denoted as •.

6.2.3 Simulation Results of a Coupled DRS Model

In the following a scenario is presented which uses a model dynamics described by a PDE of

a coupled DRS. Figure 6.16 shows the simulated state vector x associated to N = 21 agents.

As with the other scenarios the starting configuration of the agents is a straight line, then they

move to a rather complex steady state which has the shape of a kind of an open ellipse. The

scenario has tracking control enabled which benefits from an observer-based estimation of all

state variables. The transition lasts τ = 0.5(N − 1)2 s = 200 s however the entire simulation

time is set to Tsim = 240 s in order to allow a statement about stability. The cycle time of the

observer is set to 20ms, but the cycle period of the controller is configured five times slower

to challenge the robustness of the utilised backstepping approach for coupled PDEs. Again,

an initial position error imitates real time behaviour. Moreover, Table 6.3 states the system

parameters of the coupled DRS and the steady state values of the anchor and leader agent for

t = 0 s and t = τ . Here it is worth to mention that the parameters are very similar to those of

the first scenario where the agent move to a circular shape. The only difference is the number

of agents, the modification of the diffusion parameter for coordinate 2 to a22 = 1.2a11, and the
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Table 6.3: Parameter values for the coupled DRS scenario with τ = 200 s and h = 2π N/( N + 1).

Diffusion parameters are chosen as a11 = 0.5 and a22 = 0.6. Geometric values are given in cm.

t = 0 s t = τ

Coord. C̄∗ x̄∗
a x̄∗

l C̄∗ x̄∗
a x̄∗

l

x1

x2
: 02,2

0

−150

0

150

a11 1
9
a11

1
9
a22 a22

4(π/ N)
2 −150

0

−150 cos (h)

−150 sin (h)

−100 0 100

−100

0

100

x̄1(vi, t)

x̄
2
(v

i,
t)

(a) Starting line profile.

−300 −200 −100 0 100 200 300

x̄1(vi, t)

(b) Final shape.

Figure 6.17: Steady state profiles in the (x1, x2)-plane: (a) A line as starting deployment and (b) an

open ellipse as final formation. Colour grey (•) stand for desired values and black symbols (•) for

simulated values.

coupling of the reaction term which is expressed by the non-diagonal elements of C̄∗ at t = τ ,

i.e. c12 = c11/9, c21 = c22/9. These adaptions result in a completely different steady state

formation profile compared to the uncoupled scenario. It is pictured in Figure 6.17 or more

precisely speaking, the starting line with the initial error is shown in 6.17a and the final steady

state is depicted in 6.17b.

Motion Planning and Feedforward Control

As in the equivalent sections above the next two figures give impressions to the applied motion

planning and FFC. For this, Figure 6.18 shows the desired temporal evolution of the states

x∗ for both coordinates. As usual in this part of the analysis, the grey surface imitates the

result in continuous description. Moreover, the plots in Figure 6.18a and Figure 6.18b show

state trajectories which guide the MAS from a line configuration to a steady state deploy-

ment build upon sin− and cos−functions. In this context the applied flatness-based motion

planning algorithm utilises the Gevrey functions Φτy ,ωy and ΦτC ,ωC
implemented by (C.13)

with the parameter setting αy = αC = 1.05 in both coordinates. The timing parameters are
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(a) Desired trajectories for coordinate x1.

1
3

5
7

9
11

13
15

17
19

21

0

40

80

120

160

200

−200

−100

0

100

200

i

t in s

x
∗2
(v

i,
t)

(b) Desired trajectories for coordinate x2.

Figure 6.18: Desired trajectories x∗ for the planning period t ∈ [0, 200] s computed by means of

formal state parametrisation of a coupled DRS, see Section 4.1. The grey lines ( ) show the

nominal trajectories for 21 agents, the green lines ( ) shall symbolise the steady states situations

at t = t̄ ∈ {0 s, 200 s} according to the continuous motion planning procedure.
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(b) Feed forward control inputs.

Figure 6.19: Desired and planned trajectories for the motion planning period t ∈ [0, 200] s: (a) Desired

trajectories {y∗m0 , y∗m1 } of the components ym of the flat output; (b) planned FF control inputs

{u∗m0 , u∗m
N
} for dynamic BCs. Green solid lines ( ) stand for coordinate m = 1 and black dashed

lines ( ) for coordinate m = 2.

equally set to τy = τC = 200 s. The interested reader is referred to Chapter 4 for details.

For completeness the plots in the subsequent graphics show the computed desired trajectories

y∗m(t) = [y∗m0 (t), y∗m1 (t)]T of the flat output y in Figure 6.19a and results of the FF control

inputs in Figure 6.19b.

Observer-based Tracking Control utilising Coupling Compensation

As stated above observer-based FBC is applied to the current scenario. For this the coupling

compensation strategy allows to formulate scalar equations for the computation of the involved

backstepping kernels. Figure 6.20 shows the resulting FB control inputs and the corresponding

tracking errors of the leader and anchor agent, respectively. Obviously the magnitudes of

the inputs and errors are similar compared with the previous scenarios. In other words, the

entire concept preserves the limits of the actuator dynamics although the number of agents is

changed and the coupled swarm dynamics is controlled by means of uncoupled backstepping

kernel equations. Moreover, it has to be said that the feedback controller is firstly enabled

after 30 s when the initial observer error is settled to a moderate level. For a deeper analysis

different values considering tracking and observation errors of the complete swarm are depicted

in Figure 6.21. Both, the individual distance error in Figure 6.21a and the discrete L2− norm of

the control error in Figure 6.21b give a picture which is comparable to the experienced results

above. The peaks after t ≥ 30 s clearly originate from the self-induced initial position error,

which challenges both, the controller and the observer. This can be seen in the remaining

subplots as well. First, the discrete L2− norm of the observer error is shown in Figure 6.21c,

and second, Figure 6.21d illustrates the discrete L2− norm of the estimated control error. It

is important to keep in mind that the individual estimated control errors are the values which
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(a) Tracking control inputs.
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(b) Control error of the cognitive agents.

Figure 6.20: Feedback control inputs and errors for the entire simulation period t ∈ [0, 240] s: (a) Track-

ing or feedback control inputs Δum0 (t) of the anchor and Δum
N
(t) of the leader; (b) coordinate-wise

position errors x̃mc (v1, t) of the anchor and x̃mc (vN, t) of the leader. Again, green solid lines ( )

refer to coordinate m = 1 and black dashed lines ( ) to coordinate m = 2.

are applied to the actual control algorithm.

Now, for the design and configuration of the backstepping-based FBC with coupling compen-

sation one can rely on the sufficient inequality (5.94) which ensures exponential stability in

the norm induced by (5.93) and in case of dynamic boundary conditions. For this particular

scenario the inequality can be written as

νTD(t)ν ≥ νT M s(z, t) + ϕ2
H(t) 1 + ϕG(t)

N√
2

2

N
4A−1 ν + λmin ν 2

2 , (6.10)

since M s(z, t) := M s(t) = 1
2

Cc(t) + (Cc)T (t) is independent of z and B(z, t) = 0n,n. More-

over, note that H(z, s, t) = Cc(t)Kd(z, s, t)−Kd(z, s, t)Cc(t) and consequently the matrix

HT (z, s, t)H(z, s, t) =
(c12(t))

2
0

0 (c21(t))
2 k11(z, s, t)− k22(z, s, t)

2
(6.11)

is diagonal and positive semi-definite for all (z, s, t) ∈ DK( N)×R+

t0
. With this and (C.10) the

upper bound ϕH(t) can be identified as

ϕH(t) = maxDK( N) H
2
(t) = max

(z,s)∈DK( N)
λ(HT (z, s, t)H(z, s, t))

= max{|c12(t)| , |c21(t)|} × max
(z,s)∈DK( N)

k11(z, s, t)− k22(z, s, t) .
(6.12)

Now, considering (5.45a) obviously the setting

1

a11
d11(t) + c11(t) =

1

a22
d22(t) + c22(t) = const. (6.13)
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Figure 6.21: Absolute position errors and component-wise error norms in cm according to (6.9):

(a) Temporal evolution of the agent’s position error |x̃c(vi, t)| = x(vi, t)− x∗(vi, t) 2 as euclidean

distance in the (x1, x2)−plane; (b) discrete L2−norm of the error x̃mc (vi, t) between simulated state and

desired state; (c) discrete L2−norm of the error x̃mo (vi, t) between simulated state and estimated state

gained from the Luenberger-type observer; (d) discrete L2−norm of the error between the estimated

observer state and the desired state. The L2− norms are computed for each coordinate m = {1, 2}
individually. For these, green solid lines ( ) refer to the norms related to coordinate 1 and black

dashed lines ( ) to coordinate 2.

leads to equal and time-invariant kernel elements k11(z, s) = k22(z, s) and consequently to

ϕH(t) = 0. However, considering the parameter setting in Table 6.3 the coupling part of the

coefficient matrix C obviously fulfils νTCc(t)ν ≤ νTCc∗(τ)ν and therefore t = τ is considered

as the worst case setting. This motivates a design with time-invariant matrix D, i.e. (d11 +

c11(τ))/a11 = (d22+ c22(τ))/a22 which results in ϕH(t ≥ τ) = 0. Neglecting dynamic effects, i.e.

kmm d
dt
kmm for t ∈ (0, τ), the inequality (6.10) simplifies for design purposes to

dmin ≥ λmax(C
c∗(τ)) + λmin(t) (6.14)
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and ensures exponential stability for t ≥ τ . Stability check during the transition is done

numerically in simulation since estimations like |kmm| ≤ ρ exp(2ρz), for some ρ > 0, as stated

in [80] are not appropriate for this case. These inequalities prove the boundedness of the

kernel but they do not make any real statement of the maximum absolute value of the kernel.

Therefore the numerical setting D = diag [0.0436, 0.0524] ensures λmin ≥ 15/(N− 1)2 = 0.0375

for t ≥ τ . The computed controller gains for this scenario are shown in Figure 6.22. Due to

the increased number of agents all magnitudes are at a moderate level. Comparing the plots

in Figure 6.22a and Figure 6.22b which only amplifies errors of coordinate 1 with Figure 6.22e

and Figure 6.22f, where only errors of coordinate 2 are taken into account, the values of the

latter two subplots are slightly bigger. Since the stationary values of the kernels k11 and k22

are equal by design these deviations origin from the different system parameter setting which

is taken into account for the computation of the controller gains (6.5). Furthermore, this is the

reason why the control gains plotted in Figure 6.22c and Figure 6.22d are not identical to zero.

These introduce a cross-coupling between the tracking errors of one coordinate to the control

input signal of the other coordinate. More precisely speaking, the gain values in Figure 6.22c

amplify the tracking control error x̃2
c(vi, t) and adds it to the computation of the input signal

Δu1
N
(t), and the same applies to the gain values shown in Figure 6.22d.

With this, the same design procedure as above applies for the configuration of the observer

setting. Referring to (5.164) and ϕP(t ≥ τ) = 0 with (e11 + c11(τ))/a11 = (e22 + c22(τ))/a22 the

simplified inequality can be written as

emin ≥ µmax(C
c∗(τ)) + µmin(t) (6.15)

and guarantees exponential stability for the observer when the final steady state is reached

at t = τ . Especially the setting E = diag [0.0811, 0.0974] results in µmin ≥ 0.0750 for t ≥ τ .

Results of the observer gains are presented in Figure 6.23. Again, due to the different parameter

system setting of the diffusion term one can observe increased magnitudes in the gains of

coordinate 2 which are printed in the subplots Figure 6.23c and Figure 6.23d compared to

those of coordinate 2 illustrated in Figure 6.23a and Figure 6.23b. However, here no cross-

coupling distributed gains are applicable since (5.143) does not involve the system parameter

matrix C which is responsible for the coupling phenomenon in this scenario. Overall the values

remain at a similar level as already shown in the first scenario with state estimation.

This closes the third simulation scenario. The next simulation study is based on the current

one but adds more system complexity. Apart from that the non-commutative compensation

strategy replaces the coupling compensation procedure utilised in this section.
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(e) Distributed control gain respecting x̃2
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Figure 6.22: Controller gains: (a) (Discretely) distributed control gain and (b) individual control

gains, they respect control errors of coordinate 1 in order to compute the control signal Δu1{0, N};
(c) and (d) are distributed control gains which consider control errors from the other coordinate;

(e) distributed control gain and (f) individual control gains, both respecting x̃2c to provide Δu2{0, N}.
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(d) Observer gain respecting 0
−1D(1)(x̃2

o)(vN, t).

Figure 6.23: Observer gains: (a) (Discretely) distributed observer gain which amplifies the observer

error of the leader agent x̃1o(vN, t) and (b) respects the observer error difference (x̃1o(vN, t)−x̃1o(vN−1, t))

between the leader agent and its next neighbour; (c) (discretely) distributed observer gain which

considers x̃2o(vN, t), and finally (d) takes (x̃2o(vN, t)− x̃2o(vN+1, t)) into account.

6.2.4 Simulation Results of a Coupled DCRS Model

The last simulation scenario is similar to the previous one, though it adds additional coupling

in form of a time-variant convection term and the number of agents is reduced to N = 11.

Therefore the matrix B is configured at steady states as

B∗(0) = 02,2 ,

B∗(τ) =
0 − 1

3 N

− 1
3 N

0
.

(6.16)

Equivalently to the design for C the matrix-valued parameters are temporally connected by

means of a the Gevrey function (C.13), i.e. B(t) = B∗(0) + ΦτB ,ωB
(B∗(τ)− B∗(0)). The other

system parameters remain the same as the set-up before and are outlined in Table 6.3. More-

over feedback control follows the non-commutative compensation strategy instead of coupling

compensation and it forgoes state observation but uses measurements of the states. With this,
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Figure 6.24: Simulation result of formation transitions for an MAS modelled as a coupled DCRS.

Simulation time is Tsim = 120 s, control cycle time is set to τc = 30ms, and the (x1, x2) coordinates

are illustrated in cm. Again, the symbol◦ denotes the anchor agent,×the leader agent and followers

are indicated as •.

Figure 6.24 shows the simulations results. It can be observed that the applied feedback control

strategy is able to stabilise the transition between the two configured steady states. Moreover,

comparing the current final profile pictured in Figure 6.25 and the previous one in Figure 6.17

it is clear that the additional coupling by means of the convection term together with the

reduced number of agents leads to a stretched or clinched profile in the directions x1 and x2.

Interestingly convection terms lead to similar examinations in context with uncoupled systems,

see Remark 3.13 for details. However, recalling (3.50) and the associated discussion for coupled

systems in Appendix B.1 the length of the domain always influences the complete shape of the

steady states in all directions. Since N = N − 1 the reduced number of agents changes the

image of the final profile as well.

Motion Planning and Feedforward Control

The following two figures picture important results regarding the FF part of the 2DOF con-

troller. Particularly Figure 6.26a and Figure 6.26b show the desired trajectories of the cor-

responding state from a linear deployment to some combination of sin− and cos−functions.
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Figure 6.25: Steady state profiles in the (x1, x2)-plane: (a) A line as starting deployment and (b) an

open ellipse as final formation. Colour grey (•) denotes desired values and black symbols (•) stand

for simulated values.

The choice of the Gevrey functions for the flat output Φτy ,ωy , and the parameters ΦτB ,ωB
and,

especially for this case, ΦτC ,ωC
remain as in the preceding scenario. The same applies to the

parameter setting αy = αB = αC = 1.05 and τy = τB = τC = 80 s. However, here it has to

be pointed out that in this case the complete algorithm (4.18) with both integrals is required

for the computation of the desired trajectories. Therefore it is fair to say that especially this

scenario verifies the flatness-based motion planning approach which is developed in Chapter 4

for coupled parabolic PDEs. For this, the plots in Figure 6.27a show the corresponding de-

sired trajectories ym(t) = [ym0 (t), y
m
1 (t)]

T of the flat output y and Figure 6.27b pictures the

associated FF control inputs.

Measurement-based Tracking Control utilising Non-Commutative Compensation

The presence of the convection term as well as the non-commutative compensation strategy

requires M to be set to

M(z, t) = 2 (A− aI2)
d

dz
Kd(z, z, t)

+ Kd(z, z, t)Bc(t)− Bc(t)Kd(z, z, t) + Cc(t) .
(6.17)

Note, since B∗ is chosen to be symmetric and taking Remark 5.17 into account the term

Kd(z, z, t)Bc(t)−Bc(t)Kd(z, z, t) = − 1

3 N

k11(z, z, t)− k22(z, z, t)
0 1

−1 0
. (6.18)

is certainly antisymmetric for this scenario. Referring to (5.51) and applying the condition

d11(t) + c11(t) = d22(t) + c22(t) for the design matrix D(t) then even the entire part induced
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(a) Desired trajectories for coordinate x1.
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(b) Desired trajectories for coordinate x2.

Figure 6.26: Desired trajectories x∗ for the planning period t ∈ [0, 80] s computed by means of formal

state parametrisation of a coupled DRS, see Section 4.1. The grey lines ( ) show the nominal

trajectories for 11 agents, the green lines ( ) shall symbolise the steady states situations at

t = t̄ = {0 s, 80 s} according to the applied motion planning procedure.
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(b) Feed forward control inputs.

Figure 6.27: Desired and planned trajectories for the motion planning period t ∈ [0, 80] s: (a) Desired

trajectories {y∗m0 , y∗m1 } of the components ym of the flat output; (b) planned FF control inputs

{u∗m0 , u∗m
N
} for dynamic BCs. Green solid lines ( ) stand for coordinate m = 1 and black dashed

lines ( ) for coordinate m = 2.

by convection completely disappears. Now, with setting a := min {a11, a22} the compensation

matrix M(z, t) is simplified to

M(z, t) := M(t) = − (A/amin − I2) D(t) + Cd(t) + Cc(t) (6.19)

whereas the first term, i.e. the diagonal part, is clearly negative semi-definite due to the choice

of a = amin. Moreover, obviously it holds ∂zM(z, t) = 02,2.

Now paying attention to the compensation kernel H and taking the current analysis into ac-

count, then (5.47) can be written as

H(z, s, t) = ΔA∂2
zK(z, s, t)− ∂2

sK(z, s, t)ΔA−ΔB(t)∂zK(z, s, t)

− ∂sK(z, s, t)ΔB(t) + 2ΔA
d

dz
Kd(z, z, t)K(z, s, t) . (6.20)

For this no other obvious assumption may be introduced apart from the setting ΔB(t) = B(t)

since B has zero diagonal. However, similarly to the previous scenario the overall parameter

configuration at t = τ is considered as the worst case setting. Thus, again the design matrix

is configured with constant diagonal elements which fulfil d11 + c11(τ) = d22 + c22(τ) and

consequently ∂zM(z, t) = 02,2 for t ≥ τ . Then with ϕB(t) = max[0, N] B(z, t)
2
the conditional

inequality (5.94) for design purposes may be simplified to

dmin ≥ λmax (M
s(τ)) +

3

4amin

ϕ2
B(τ) + ϕ2

H(τ) 1 + ϕG(t)
N√
2

2
3 N

4

2amin

+ λmin(t) . (6.21)

Since (5.94) can not be solved directly and it is (only) sufficient but it does not not say anything

about necessity the configuration for this scenario uses a kind of trial and error approach. More
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Figure 6.28: Feedback control inputs and errors for the entire simulation period t ∈ [0, 120] s: (a) Track-

ing or feedback control inputs Δum0 (t) of the anchor and Δum
N
(t) of the leader; (b) coordinate-wise

position errors x̃mc (v1, t) of the anchor and x̃mc (vN, t) of the leader. As mentioned above, green solid

lines ( ) refer to coordinate m = 1 and black dashed lines ( ) to coordinate m = 2.

precisely the setting dmin := 0.40+ 3ϕ2
B(τ)/(4amin) obviously leads to positive convergence rate

for this scenario and stabilises the tracking error of the transition. The relatively high setting

compared to the previous scenarios may explain the oscillating feedback control inputs of the

leader agent illustrated in Figure 6.28a. Apart from that it can be said that the randomly

induced initial error challenges the control algorithm most in terms of absolute figures. Since

this is of less importance for the analysis Figure 6.28 cuts off the initial values. Moreover, since

the starting profile, i.e., the line configuration, is stable a time varying gain with D(0) = 02,2
would allow to reduce the control value at the beginning of the simulation. Furthermore

Figure 6.28a indicates the exponential stability of the anchor agent. The control error of

the leader agent remains in the range as experienced with the previous studies. The overall

control performance can be assessed by looking at Figure 6.29. Pondering over the reduced

number of agents, the relatively high setting of the design parameter, the P-control nature of

backstepping, and the additional coupling due to convection it is an acceptable result. On the

one hand the remaining control error would benefit from higher design parameters. However,

on the other hand control input signals may tend even more oscillations.

For completeness the next two figures show all involved controller gains. Figure 6.30 summaries

the gains which are responsible to determine the feedback control signals Δu1
{0, N}(t). Recalling

(6.5b) the computation of the feedback control inputs can separated into two parts, one con-

sidering the control errors of x1 and the other the control errors of x2. With this, obviously the

controller gains plotted in the Figures 6.30a and 6.30b amplify the control errors of coordinate

1 and the gains in Figure 6.30c and Figure 6.30d refer to x̃2
c . This can be equivalently analysed

for Figure 6.31. The determination of the feedback signals Δu2
{0, N}(t) is a combination of am-

plifying x̃1
c by gains illustrated in Figure 6.31a and Figure 6.31b and taking the control error of
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Figure 6.29: Absolute position errors and component-wise error norms in cm according to (6.9):

(a) Temporal evolution of the agent’s position error |x̃c(vi, t)| = x(vi, t)− x∗(vi, t) 2 as euclidean

distance in the (x1, x2)−plane; (b) discrete L2−norm of the error x̃mc (vi, t) between simulated state

and desired state. The L2− norm is computed for each coordinate m = {1, 2} individually. For this,

the green solid line ( ) refers to coordinate 1 and the black dashed line ( ) to coordinate 2.

coordinate 2 into account by means of the gains plotted in Figure 6.31c and Figure 6.31d. In

general it has to be said, that the self-induced gains k11 and k22 are much larger compared to

the cross-gains k12 and k21. This clearly can be explained by the configured parameter setting.

Apart from that it is interesting to see that for the individual gains the consideration of the

anchor agents, i.e., k11
1 and k22

1 weigh most, but the control error of the anchor agent is actually

always the smallest due to its individual exponential convergence, see (6.5a).

This finalises the examination and analysis of the presented modelling concept and the devel-

oped control approach by means of simulation studies. In detail, four scenarios, whereas two

system descriptions governed from uncoupled PDEs and two from coupled PDEs, verify the

approach. Moreover the studies show the power of the discussed backstepping control approach

for coupled systems. Next a real-time experiment with a swarm of robots shall validate and

enhance the verification of the presented ideas.
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Figure 6.30: Controller gains for coordinate 1: (a) and (b) consider the control error x̃1
c and (c) and

(d) amplify the control error x̃2
c .
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Figure 6.31: Controller gains for coordinate 2: (a) and (b) consider the control error x̃1
c and (c) and

(d) amplify the control error x̃2
c .
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6.3 Application Results in a Real Time Test Bed Envi-

ronment

In the following experimental results are presented for the proposed trajectory planning and

tracking control scheme for the formation control of a MAS. In general the results and analysis

is based on the publication [25]. It is a fair ambition to mention that to the best knowledge of

the author this represents the first real-time implementation of the backstepping methodology

for formation control of MASs using parabolic continuum models. The tests were performed by

means a laboratory test rig at the Chair of Automatic Control, Kiel University. The author of

this work was in charge of the analysis, design, and establishment of the entire test bed. The

setup of the experimental scenario basically matches the configuration of the simulation study

presented in Section 6.2.1. However, in order to explicitly conduct the transitions experimen-

tally it was necessary to shift the starting line configuration from 0 cm to 150 cm in coordinate

1. Thus, for completeness the next section briefly discusses an approach where this kind of

relocation of formation profiles is achieved without adding other theoretical complexity.

6.3.1 Relocating Formation Profiles

Typically formation profiles of DCRSs are arranged around some centre point in the (x1, x2)-

plane by construction, mostly about the origin. In order to achieve a relocation of the profile

it is proposed to add the state xe of a so-called exogenous system to the state x. Therefore,

modelling the exogenous system in terms of the uncoupled diffusion system (heat equation)

∂txe(z, t) = Ae∂
2
zxe(z, t) ,

∂txe(0, t) = w0(t), ∂txe( N, t) = w
N
(t) ,

xe(z, t0) = xe,0(z) ,

(6.22)

with diagonal and positive definite Ae, allows to introduce the shifted state xs(z, t) = xe(z, t)+

x(z, t). With this corresponding formation profiles can be formulated by means of the steady

states x̄s(z) = x̄e(z) + x̄(z). Note that the steady states x̄e(z) for (6.22) are given by x̄e(z) =

p0 + p1z with p0 = x̄e(0) and p1 = (x̄e( N)− x̄e(0)) / N with the values x̄m
e (0), x̄

m
e ( N) being

freely assigned [23, 25]. With this, the dynamics of the shifted state directly follows from

inserting x = xs − xe into the corresponding continuum model equation, e.g. considering a

DCRS it leads to

∂txs(z, t) = A∂2
zxs(z, t) + ΔA∂2

zxe(z, t)− B(z, t) (∂zxs(z, t)− ∂zxe(z, t))

+ C(z, t) (xs(z, t)− xe(z, t))

∂txs(0, t) = u∗
0(t) +w0(t) + Δu0(t) ,

∂txs( N, t) = u∗
N
(t) +w

N
(t) + Δu

N
(t) ,

xs(z, t0) = x0(z) + xe,0(z) ,

(6.23)



166 6 Simulation Studies and Real Time Experiment

with diagonal ΔA = Ae − A. In view of motion planning the strategy discussed in Chapter 4

can be deduced in a straightforward way. With this, finite time transition between steady

state solutions of (6.22) can be realized by interpreting the boundary values w0(t) = w∗
0(t) and

w
N
(t) = w∗

N
(t) as FF control signals and assigning their temporal path in suitable fashion, e.g.,

again by exploiting the flatness property of the heat equation (6.22). With this it is fair to say

that the FF controls w∗
0(t) and w∗

N
(t) provide the open-loop state evolution xe(z, t) = x∗

e(z, t).

Consequently the shifted tracking error fulfils

x̃c(z, t) = x(z, t)− x∗(z, t)

= x(z, t) + xe(z, t)− (x∗(z, t) + x∗
e(z, t))

= xs(z, t)− x∗
s(z, t).

As a result, the measurement-based feedback control design applies in the relocated setting

without any modification. Hence, subsequently no distinction is made between the shifted

state and the state defined originally, meaning redefining xs := x for simplification purposes.

The original state x is obtained by the simple setting xe(z, t) = 0n.

Remark 6.27. As described in Remark 6.25, similar thoughts regarding the distribution of

time-dependent parameter values can be transferred to the current discussion. By adding the

exogenous system (6.22) a decentralised distribution of the relocation profile is allowed since the

stable heat equation does not necessarily need a FB control part. As a consequence this again

preserves the overall network topology. The dynamics of (6.22) can be adjusted by setting the

parameter values for Ae appropriately since they directly influence the eigenvalues of the system.

With this, the state of any agent associated with the vertex vi, i ∈ {1, 2, . . . ,N}, is described in

terms of the four states, i.e.,[x1, x1
e , x

2, x2
e](vi, t), when planar motion in the (x1, x2)-domain is

taken into account.

Next, applying the 2-step transformation to (6.23), i.e. FDM and the appropriate mapping to

the set of vertices of the underlying subgraph, leads to the discrete MAS scheme

∂tx(vi, t) = A (x(vi+1, t)− 2x(vi, t) + x(vi−1, t))

− B(vi, t)

2
((x(vi+1, t)− x(vi−1, t))− (xe(vi+1, t)− xe(vi−1, t)))

+C(vi, t) (x(vi, t)− xe(vi, t)) + ΔA (xe(vi+1, t)− 2xe(vi, t) + xe(vi−1, t))

∂tx(v1, t) = u∗
0(t) +w∗

0(t) + Δu0(t) ,

∂tx(vN, t) = u∗
N
(t) +w∗

N
(t) + Δu

N
(t) ,

x(vi, t0) = x0(vi) + xe,0(vi) .

(6.24)

From (6.24) it is clear that the agents need to share the extended state information [x, xe]
T .

However, for the special case A = Ae , B(vi, t) = 0n,n the agents only require x from their

network neighbours to compute the protocol.

Before actual results are discussed in detail the next section gives an overview of the test bed

developed for the validation of suitable MAS control concepts.
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Type Features

Processor ARM Cortex-M4F 120MHz

RAM 2× 64kB

Flash 512kB

Communication USB, nRF24, Bluetooth

Motors 2 DC motors with 75 : 1 gearbox

Periphery

6 axis IMU, 2 LEDs, Buzzer,

Magnetic quadrature encoders,

IR sensors, Arduino header, etc.

Dimensions approx. 10cm × 10cm × 4cm

Figure 6.32: The agent: a caterpillar robot [85].

6.3.2 Multi Robot Test Rig and Software System

Basically the environment for testing MASs is built upon small caterpillar robots which are

shown Figure 6.32. Additionally, next to the picture the basic features of the robot are listed

in order to give an impression of the available computational power and memory capacity,

the equipped actuators and sensors, and the featured network communication. The robot was

developed by Prof. Styger and his group at Lucerne University of Applied Sciences and Arts.

Remark 6.28. It should be pointed that the operated caterpillar robot represents a non-

holonomic system. More precisely speaking, its three degrees of freedom (3DOF) kinematic

model has the form

ẋ1
r = vr cos(φr) ,

ẋ2
r = vr sin(φr) ,

φ̇r = ωr ,

with the two inputs vr and ωr. Here vr stands for the translational velocity and ωr denotes

the angular velocity which defines the orientation of the robot φr in the 2D plane. Clearly the

kinematic model has to satisfy the constraint ẋ2
r = ẋ1

r tan(φr). This non-holonomic behaviour

somehow stands in contrast to the modelling assumptions, where the agents are in principle

represented as ideal geometric points. Moreover, the robot itself has an underlying kinematic

control loop since the actual physical inputs are the angular velocities of the left and right belt

drive (ωL , ωR) and in further consequence the two DC motors. Obviously the physical inputs

can be set by

ωR =
2vr + Lωr

Dw

,

ωR =
2vr − Lωr

Dw

with Dw as the diameter of the wheels for the drive belt and L is the shortest distance between

the left and right wheels.



168 6 Simulation Studies and Real Time Experiment

Figure 6.33: Basic scheme of the mobile robot test rig.

As a consequence this provides a significant challenge for the developed 2DOF controllers to

compensate these deviations from ideal behaviour, hence imposing a benchmark for robustness

analysis.

The real-time implementation of the measurement-based 2DOF control concept as introduced

in Chapter 4 and Chapter 5 requires the access of the state vector x of each robot agent.

Here, the state vector represents the euclidean coordinates in the 2D space (x1, x2). A suitable

hard- and software environment has been set up to address the requirements and which allows

to perform controlled transitions between different formations including their relocation from

the origin. The employed environment is schematically depicted in Figure 6.33 and basically

consists of the following four main subsystems:

(1) Top-mounted camera system for optical position detection.

(2) Computing unit for OpenCV application [9].

(3) Development board with a radio module.

(4) Caterpillar robots equipped with Augmented Reality Codes, University of Córdoba

(ArUco Codes) [31].

In the test environment a single camera mounted on the ceiling is utilised for position measure-

ment. The camera is connected to a work station which runs an image processing application.

The developed software benefits from the OpenCV and the so-called ArUco C++ libraries [64].

The latter is used to detect the individual AruCo codes which are fixed on top of each agent
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Hardware

BSW

Firmware . . . + FreeRTOS + PEx Components + HW-Driver + . . .

TASK

APPL Task

APPL

#include asw.h

SH

DBG Task

DRIVE

TACHO

DRIVE Task

RNET

COMM Task

BATT

BUZZ

DAPP

ID

IND

KF

MAF

MOT

MTX

NVM

PID

REFL

Real-time environment (RTE)

ASW
SWC1

#include rte.h

#include rte types.h

SWC2

#include rte.h

#include rte types.h

. . .
SWCn

. . . #include rte.h

#include rte types.h

asw.c

asw.h

Figure 6.34: Overview of the reworked software architecture.

[31]. The image data is processed and is sent via a serial interface to an electronic development

board which is equipped with a radio module. The electronic board runs a software application

which broadcasts messages containing the position information of all agents via radio to the

caterpillar robots. The robots, which can either act as leader or as follower agents, are equipped

with a radio module as well. This allows them to receive the messages over the air. From the

broadcast each robot only extracts the specific position information which is demanded due

to the topology induced by the right hand side (6.24). In other words, this scheme emulates

the topology of the wireless communication which is required to establish the measurement-

based tracking control procedure. The representation of the underlying subgraph is pictured in

Figure 6.1c.

Apart from the hardware installation it is essential for a satisfying test bed performance to de-

velop a well-conceived software system and consequently fast and efficient system components.

Basically three software packages were established:

❼ A C++ OpenCV application for the computing unit which computes local 2D coordinates

and the orientation angle from the ArUco Codes fixed on top of the agents.

❼ An embedded software project for the development board which receives the position data

via serial interface and broadcasts it over the air, and

❼ a rather complex embedded software project for the caterpillar robot.

For the latter a software project for basic functions was already developed by Prof. Styger and

his group at Lucerne University. However, with the given structure and software architecture
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it was not possible to simply extend some functionality which allows to manoeuvrer a swarm of

robots. Therefore a major architectural rework and the development of some additional basic

software components were necessary in order to gain a certain structure and enough flexibility

within the software project of the caterpillar robot. As a consequence, the reworked software

architecture resulted in the block diagram sketched in Figure 6.34. It consists of the three main

blocks, basic software (BSW), runtime environment (RTE), and application software (ASW).

This basic structure is part of the standardized software framework called classic Automotive

Open System Architecture (AUTOSAR) which is successfully implemented in various control

units in Automotive Industry. Here, the RTE is basically a bunch of access functions and it

completely decouples the BSW from the actual application. In principle, this allows to design

ASW just by using the RTE-layer and without knowing the hardware underneath. Apart from

the ASW and RTE, some BSW-components were developed from scratch, e.g.

❼ application (APPL) – running the ASW,

❼ demo application (DAPP) – for writing small test applications,

❼ matrix (MTX) – for matrix manipulations,

❼ Kalman filter (KF) – fast and efficient implementation of a Kalman filter using UD−filter

methods [34],

❼ task (TASK) – configures all tasks and acts as the interface to the real-time operation

system FreeRTOS.

Detailed documentation pages, references and an API Manual of the all BSW-components can

be found on https://sumo-bsw.readthedocs.io/.

In the next paragraphs experimental results are presented for a 2-transition scenario which

allows a comparison between real-time behaviour and experience gained from the simulation

cases above.

6.3.3 Experimental Results

The experimental results for N = 11 caterpillar robots are based on the parameter set sum-

marised in Table 6.1. The formal setup is exactly the same as for the simulation scenario in

Section 6.2.1. The experiment implements the follower protocol (6.2) which is imposed by the

discretization process as described in Section 6.1. Since the parameter setting in Table 6.1

describes a uncoupled DRS the protocol simplifies with B(vi, t) = 0n,n and C(vi, t) may be

considered as diagonal and only evolves in time. For the ease of implementation the time-

variant reaction term cm(vi, t) = cm(t), m = 1, 2, i = 1, . . . , 11 is configured off-line for each

agent. However, the synchronisation of the temporal evolution of the parameter for all agents

is reached through a trigger signal, which is broadcast via radio. The implementation of the
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(d) Mean distance error |x̃c|m(t) for (b).

Figure 6.35: Experimental results for the test scenario: (a) shows the spatial-temporal evolution of

the transition with 2DOF controller including a backstepping-based feedback term; for (b) the 2DOF

controller is evaluated with a proportional error feedback; (c) and (d) show the mean distance error

computed according to (6.25).

leader protocol involves the 2DOF controller consisting of a flatness-based FF term and a

measurement-based backstepping controller according to (6.5) and (6.6), respectively. Again,

all matrices are considered as diagonal and M(vi, t) = 0n,n. Moreover, all time-dependent sys-

tem and design parameters, the FF term and the backstepping gains are configured offline and

are mapped in time online using linear interpolation. It is worth to mention that exactly equal

parameter values are used as they have been derived for the simulation scenario in Section 6.2.1.

Then the parameter values are directly ported to appropriate data types and flashed hard-coded
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Figure 6.36: Snapshots of the transition using the top-mounted camera system.

with the entire software onto the microcontroller of the caterpillar robots. With this, the ob-

tained experimental results are shown in Figure 6.35a for the twofold transition: first from the

initial line configuration passing through the point (−150, 0) cm to an intermediate half circle

formation of radius R = 150 cm within the time interval t ∈ [0, 80] s and secondly to a desired

circle formation of radius R within the time interval t ∈ (80, 160] s. For a striking view of

the steady state situations see also Figure 6.36 which shows snapshots of the camera system

mounted on top of the test bed. For comparison reasons and to illustrate the performance of

the 2DOF control concept in Figure 6.35b additional experimental results are provided which

use a combination of the flatness-based FF control and a proportional error control for both

leader agents and as written in (6.5a). Since the scenario is uncoupled the proportional error

control algorithm can be simplified to Δu0(t) = −Dx̃c(0, t) and Δu
N
(t) = −Dx̃c( , t) with

D = diag [0.15, 0.15]. Furthermore, the mean distance error

|x̃c|m (t) =
1

N

N

i=1

|x̃c(vi, t)| , (6.25)

with |x̃c(vi, t)| = x(vi, t)− x∗(vi, t) 2, between desired and measured position values is shown

in Figure 6.35c and Figure 6.35d. Analysing the results of Figure 6.35 gives a clear picture.

The 2DOF controller including the backstepping-based error feedback is able to stabilise the

transitions while the simple proportional error feedback fails. The latter cannot keep track

of all agents and consequently the desired formation profile falls apart. When backstepping

tracking control is in place the mean error distance remains in the same order as it is for the

associated simulation scenario, see Figure 6.7a for comparison with the individual distance

errors. However, when only the individual proportional error control is applied to the leader

agents the mean distance error clearly diverges with time.

This closes the analysis of the simulation studies and the test-bed experiment. The next chapter

gives a comprehensive retrospective view of the entire thesis and the author presumes to state

possible future topics for the crossover of MASs and modelling and control of DPSs.
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Chapter 7

Conclusion and Outlook

For the retrospect let us summaries the presented work from a slightly wider perspective. After

a brief introduction to the topic the thesis mainly consists of three parts. The first part starting

with Chapter 2 deals with questions regarding the relationship between a discrete formulation

of the MAS dynamics and a continuous description using DPSs governed by PDEs. Here, an

appropriate scheme is worked out which supports the transformation in both directions. More

precisely speaking, it results in a discretisation and subsequent mapping process from a discrete

to a continuous problem formulation and in a reverse mapping and a Taylor series expansion for

the opposite direction. Here the crucial message is that the PDE serves as an approximating

model for the ordinary discrete set-up of the MAS dynamics in terms of ODEs. This is an

alternative perspective compared to the traditional approach when dealing with DPS. Another

important result refers to the varying spatial domain which depends on the number of agents

by N = N− 1. This implicitly sets the discretisation step for FDM to Δz = 1. As a result the

dynamics of a single agent is independent of the number of agents when FDM is applied. In

other words, this preserves the agent dynamics but the dynamic behaviour of the entire MAS

varies with 1/N2 in case the continuous system formulation is of parabolic type. In contrast

to that a fixed spatial domain, i.e. N = = const. preserves the MAS dynamics and the

discretised agent dynamics depends on N2. Moreover, the discussion motivates the so-called

inverse design approach where the dynamic behaviour of the MAS is imposed directly by a

PDE. With this, Chapter 3 formulates the investigated theoretical problems of the thesis. It

starts with a very general PDE formulation. However, eventually the elaboration comes down

to two systems, the coupled DCRS and the coupled MVBE whereas both are defined with

temporal and spatial varying parameters.

From this, the second part copes with the controller and observer synthesis. A 2DOF is devel-

oped consisting of a flatness-based FF term and FB part for tracking error control. The latter

and the observer design is based in the backstepping technique. In Chapter 4 a motion plan-

ning concept is presented which allows to steer the MAS in open loop from a starting formation

profile to a target deployment. Here, the mentioned formation profiles refer to solutions of the

steady state problem of the underlying PDE. The approach allows to connect different steady
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states from different families of PDE by utilising their flatness-based properties. Applying

tracking error control on the one hand permits the modification of the convergence properties

of the swarm dynamics and on the other hand it allows to stabilise and to transit to formation

profiles which are inherently unstable. Here, the backstepping technique is applied to both, to

the controller as well as to the observer design. In this context a framework is formulated in

Chapter 5 which is an alternative approach to the concepts currently found in literature. The

presented concept simplifies the coupled conditional equations which are required to determine

the controller and observer gains. Basically, the complexity is shifted from the kernel equations

to the stability proof. This has the consequence that the resulting equations are similar or

equal to the equations of the uncoupled case. The latter are well researched and documented

over the last years and therefore their handling is considered as state of the art.

For a concluding statement on the presented work let us recall the overall goal of the thesis.

In Section 1.3 the first aim noted is the verification that DPSs governed by PDEs are appro-

priate models for MAS dynamics. As a second, it shall be validated that PDE theories for

controller and observer design can be utilised in order to establish comprehensive formation

control algorithms. At this stage one inevitable referred to Chapter 6 which is the last part

of the thesis. There, an extensive analysis is conducted on four simulations studies and one

real-time application. Without hesitation it can be said that the successful application of the

2DOF control approach on a swarm consisting of 11 caterpillar robots demonstrates the huge

potential of the approach and answers both questions in a very positive way. Moreover, the

demonstration on the embedded real-time system validates the flatness-based as well as the

backstepping theory for PDEs in general. Even though the theory has been well researched

over the last two decades this is still a very rare case for this academic area. Furthermore, the

theoretical work of the first two mentioned parts above and the five investigations in Chapter 6

clearly meet and fulfil the requirements of the self-imposed objectives backing the overall goal

of the thesis.

At this stage it is pointed out that the satisfying outcome of this thesis shall encourage and

incentive for further investigations on several topics. Clearly there exist many ideas related

to the continuous modelling approach for MAS and the associated control strategies. Possible

scenarios, extensions and modifications to the current set-up are:

❼ Adding a backstepping-based Luenberger-type observer to real-time experiment.

❼ Adding an exogenous system for the distribution of system parameters to the real-time

experiment.

❼ Changing the number of agents online, i.e. add an agent to, or remove an agent from the

MAS and validate this scenario by means of the real-time experiment.

❼ Extending the point-to-point relocation of system state to a point-to-line expansion or

deformation by using stable transitions of the exogenous state; validate this scenario by

means of the real-time experiment.
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❼ Changing the order of agent in their network topology online; verify and validate that

the backstepping-basedtracking controller can stabilise this scenario.

❼ Rotating the target state online; verify and validate that the MAS rotates accordingly

and the backstepping-basedtracking controller can stabilise this scenario.

❼ Use periodic boundary conditions, e.g. x(0, t) = x( N, t), ∂zx(0, t) = ∂zx( N, t). Without

proof, applying FDM should result in a N−cycle graph.

❼ Use other discretisation patterns, either higher order FDM or other concepts as finite

volume method (FVM) or finite element method (FEM); verify and validate the given

scenario with the resulting communication topology in simulation and practical applica-

tion.

❼ Use higher dimensional spatial domains to induce more complex communication topolo-

gies; verify and validate the PDE based formation control appraoch of MAS for the

resulting problem formulation in simulation and experiment.

❼ Develop strategies for collision avoidance using the continuous formulation approach.

Apart from the MAS related topics the introduced concept for backstepping concerning coupled

PDEs contains great potential for further investigations. An apparent extension is the formu-

lation for Neumann and Robin BCs and the corresponding stability proofs in the L2−space.

Moreover, the presented sufficient inequalities for exponential stability invites one to investigate

the impact of the symmetric and ant-symmetric part of the coefficient matrices as well as the

effect of spatial dependency of the parameter matrices. On top of that one might be eager to

formulate necessary inequalities or conditions.

Obviously there is no limiting factor for future work. From the author’s point of view this

thesis is just the beginning of many more research papers regarding MAS, continuous versus

discrete problem formulation and their relationship, and the presented backstepping concept

for coupled PDEs.
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Appendix A

Finite Difference Method

The following tables list the coefficients of the FDM for the discrete approximation of first,

second and fourth derivative. Moreover, for each order of derivative the table states the order

of accuracy in terms of the approximation error.

Table A.1: Coefficients for the central finite difference quotients.

order of order of
zi−3 zi−2 zi−1 zi zi+1 zi+2 zi+3

derivative accuracy

1st
O Δz2 −1/2 0 1/2

O Δz4 1/12 −2/3 0 2/3 −1/12

2nd
O Δz2 1 −2 1

O Δz4 −1/12 4/3 −5/2 4/3 −1/12

4th
O Δz2 1 −4 6 −4 1

O Δz4 −1/6 2 −13/2 28/3 −13/2 2 −1/6

Table A.2: Coefficients for the forward and backward finite difference quotients. Swap signs of odd

derivatives for the backward approximations.

order of order of
zi zi±1 zi±2 zi±3 zi±4 zi±5 zi±6 zi±7

derivative accuracy

1st

O (Δz) −1 1

O Δz2 −3/2 2 −1/2

O Δz4 −25/12 4 −3 4/3 −1/4

2nd

O (Δz) 1 −2 1

O Δz2 2 −5 4 −1

O Δz4 15/4 −77/6 107/6 −13 61/12 −5/6

4th

O (Δz) 1 −4 6 −4 1

O Δz2 3 −14 26 −24 11 −2

O Δz4 28/3 −111/2 142 −1219/6 176 −185/2 82/3 −7/2
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At this stage it has to be clarified that Table A.1 and Table A.2 are listed as a work of reference

for the interested reader and for the sake of completeness, respectively. Therefore note the

following examples.

Example 1.1. First order derivative approximated by the central finite difference quotient with

fourth order of accuracy.

∂zxi ≈ −xi+2 + 8xi+1 − 8xi−1 + xi−2

12Δz

Example 1.2. Second order derivative approximated by the central finite difference quotient

with second order of accuracy.

∂2
zxi ≈ xi+1 − 2xi + xi−1

Δz2

Example 1.3. Fourth order derivative approximated by the forward finite difference quotient

with forth order of accuracy.

∂4
zxi ≈ 56xi − 333xi+1 + 852xi+2 − 1219xi+3 + 1056xi+4 − 555xi+5 + 164xi+6 − 21xi+7

6Δz4

Example 1.4. First order derivative approximated by the forward finite difference quotient with

first order of accuracy. Signs are swapped with respect to the coefficients listed in Table A.2

∂zxi ≈ xi − xi−1

Δz



179

Appendix B

Analysis of Steady States

This chapter extends the evaluation of steady states from Section 3.2 with explicit determination

of the coefficient vectors κj, j = 1, · · · , 4 in (3.45) for the coupled DCRS as well as kc and ks,

or k0 and k1, respectively in (3.57)-(3.59) for the uncoupled case. Furthermore, for the latter

it features some more examples of 2D stationary formation profiles.

B.1 Steady States of the Coupled DCRS

Let us recall the discussion in Section 3.2 where the boundary value problem

A∂2
z x̄(z)− B̄∂zx̄(z) + C̄x̄(z) = 02 ,

x̄(0) = x̄a , x̄( N) = x̄l

(B.1)

leads to the underlying eigenvalue problem (3.38). With this, assuming two pairs of conjugated

complex valued eigenvalues νj ∈ C, j = 1, · · · , 4 then the ansatz

x̄(z) =
4

j=1

κj exp(νjz) . (B.2)

for the solution of (B.1) can be combined by pairs as

x̄(z) =
2

j=1

exp(σjz) (kc,j cos(θjz) + ks,j sin(θjz)) (B.3)

with ν1,2 = σ1± ıθ1, ν3,4 = σ2± ıθ2, and the definition of the complex constants as κ1 = (kc,1−
ıks,1)/2, κ3 = (kc,2− ıks,2)/2 and κ2 = κ∗

1, κ4 = κ∗
3 respectively. Equivalently, four real valued

solutions νj ∈ R, j = 1, · · · , 4 can be expressed as ν1,2 = σ1±θ1 and ν3,4 = σ2±θ2. Then making

use of the abbreviation of the real-valued constants κ1 = (kc,1 + ks,1)/2, κ2 = (kc,1 − ks,1)/2,

κ3 = (kc,2 + ks,2)/2, and κ4 = (kc,2 − ks,2)/2 the procedure yields

x̄(z) =
2

j=1

exp(σjz) (kc,j cosh(θjz) + ks,j sinh(θjz)) . (B.4)
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For a combination of real-valued solutions ν1,2 ∈ R and conjugated complex solutions ν3,4 ∈ C
of the characteristic equation, it yields a combination of (B.3) and (B.4), which may be written

as

x̄(z) = exp(σ1z) (kc,1 cos(θ1z) + ks,1 sin(θ2z))

+ exp(σ2z) (kc,2 cosh(θ2z) + ks,2 sinh(θ2z)) . (B.5)

Next, the discussion deals with special constraints on the coefficient matrices (3.35).

❼ Assuming a DRS with B̄ = 02,2 the coefficients of odd order of the characteristic equation

simplify to p3 = p1 = 0. Consequently (3.42) is reduced to

p4ν
4 + p2ν

2 + p0 = 0 (B.6)

Obviously, intermediate solutions for ν2 follow from

(ν2)1,2 =
−p2 ± p22 − 4p4p0

2p4
. (B.7)

With the abbreviations ζ = −p2/(2p4) and η = |p22 − 4p4p0|/2p4 this results in νj =

±√
ζ ± ıη in case (ν2)1,2 ∈ C, and νj = ±√

ζ ± η if (ν2)1,2 ∈ R. Similarly to the discussion

above a steady state solution according to (B.3), (B.4), or(B.5) depends on whether the

eigenvalues νj of the matrix M̄ in (3.37) are real or complex valued.

At this stage it has to be pointed out that with reference to (3.46) it holds f(ν1) = f(ν2)

and f(ν3) = f(ν4) since ν2
1 = ν2

2 = (ν2)1 and ν2
3 = ν2

4 = (ν2)2. The same applies to

g(νj). However the rank of matrix M in (3.50) remains 4 since exp(ν1 N) = exp(ν2 N) =

exp(ν3 N) = exp(ν4 N).

❼ Furthermore, let us presume a cascaded system with upper or lower triangular coefficient

matrices B̄ and C̄, meaning b12 = c12 = 0 or b21 = c21 = 0. From (3.43) directly follows

the characteristic equation

(a11ν2 − b11ν + c11)(a22ν2 − b22ν + c22) = 0 . (B.8)

With this, obviously the eigenvalues are given by

ν1,2 =
b11 ± (b11)2 − 4a11c11

2a11
and ν3,4 =

b22 ± (b22)2 − 4a22c22

2a22
. (B.9)

Depending on whether the coefficient matrices are chosen as upper or lower triangular

(3.46) or (3.47) is applicable.
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B.2 Steady States of the Uncoupled DCRS

Again, as derived in Section 3.2 the examination of the stationary case for the uncoupled DCRS

leads to the boundary value problem

a∂2
z x̄(z)− b̄∂zx̄(z) + c̄x̄(z) = 0 , x̄(0) = x̄a , x̄( N) = x̄l . (B.10)

Then, depending on the given parameter set the generic analytic solution

x̄(z) = κ1 exp(ν1z) + κ2 exp(ν2z) (B.11)

leads to different specific representations. Thus, note the discussion for the following cases:

(i) A parameter configuration in (B.10) which fulfils the inequality b̄2 − 4ac̄ < 0 renders the

steady state solution to

x̄(z) = exp (σz) (kc cos(µz) + ks sin(µz)) . (B.12)

The coefficients kc and ks may be evaluated depending on the value of µ = b̄2 − 4ac̄ /(2a)

and the boundary values x̄{a,l} defined in (B.10). With l ∈ N and

❼ µ = lπ/ N the coefficients follow to

kc = x̄a , and ks =
exp (−σ N)x̄l − x̄a cos(µ N)

sin(µ N)
. (B.13)

The special case x̄a = x̄l = 0 and consequently kc = ks = 0 and leads to the trivial

solution x̄(z) = 0.

❼ µ = lπ/ N the boundary values (3.53) have to fulfil x̄l = (−1)l exp (σ N)x̄a and the

coefficients follow to

kc = x̄a , and ks = k (B.14)

with arbitrary amplitude k.

(ii) A positive expression b̄2 − 4ac̄ > 0 leads to a stationary profile expressed by the equation

x̄(z) = exp (σz) (kc cosh(µz) + ks sinh(µz)) (B.15)

and the parameters kc and ks can be evaluated to

kc = x̄a , and

ks =
exp (−σ N)x̄l − x̄a cosh(µ N)

sinh(µ N)
.

(B.16)

(iii) For the special case b̄2 − 4ac̄ = 0 the simplified linear solution

x̄(z) = exp (σz) (k0 + k1z) (B.17)

is applicable. The constant coefficients follow to k0 = x̄a and k1 = (exp (−σ N)x̄l − x̄a) / N.
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Figure B.1: Illustration of steady state solutions of the uncoupled DRS with a fish-shaped formation

profile in (a) and a gull-like formation profile in (b).

Table B.1: Parameters of the formation profiles plotted in Figure B.1 with N = 1.

Profile Coord. a b̄ c̄ x̄a x̄l

Fish
(1) : 1 0 4π2 −1 −1

(2) : 1 0 9π2 1 −1

Gull
(1) : 1 0 −49 −1 1

(2) : 1 0 4π2 1 1

Figure B.1 illustrates a deployment associated with the first case (i) in the subplot (a) and

associated with the first (i) and second case (ii) in the subplot (b). Obviously the last case

(iii) covers straight lines or lines distorted by the exp−term. The Table B.1 summarises the

parameter configuration for the two plots shown in Figure B.1.
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Appendix C

Mathematical Background

C.1 Norms

The convergence analysis performed in Chapter 4 for flatness-based trajectory planning and the

determination of integral kernels in Chapter 5 is based on appropriate norms of functions, either

over the time domain t ∈ R+
t0 , or over the entire domain (z, t) ∈ Ω N, t0 with Ω N, t0 :=

[0, N] × R+
t0 . Therefore consider the following notation of norms for the state trajectories x

which are defined in the function space Ck,l(Ω N, t0 ;Rn) with k, l ∈ N0. In the following the

arguments ( N, t0) are neglected for simplicity.

Definition 3.6. Let x ∈ Ck,l (Ω;R), then

supΩ|x| := sup
(z,t)∈Ω

|x(z, t)| , (C.1)

supR+
t0
|x|(z) := sup

t∈R+
t0

|x(z, t)| . (C.2)

Note, that (C.2) actually defines a function in the coordinate z. However, it renders a norm

with respect to a fixed spatial position z ∈ [0, N]. Coupled distributed parameter systems deal

with multi-dimensional state trajectories x and therefore the norm definitions are extended as

following.

Definition 3.7. Let x ∈ Ck,l (Ω;Rn) with n ∈ N, and consider the subsequent definitions of

norms

supΩx ∞ = supΩx(z, t) ∞ := max
1≤i≤n

sup
(z,t)∈Ω

xi(z, t) , (C.3)

supR+
t0
x ∞(z) = supR+

t0
x(z, t) ∞ := max

1≤i≤n

 sup
t∈R+

t0

xi(z, t)

 . (C.4)

Note that (C.4) is a function in z with supR+
t0
x ∞(z) ∈ C0 ([0, N] ;R) but implements a norm

for every fixed z ∈ [0, N].
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Basically, these norms in Definition 3.7 are based on Definition 3.6, but overlaid with the

maximum norm for vectors. Obviously (C.3) and (C.4) satisfy the inequality

0 ≤ supR+
t0
x ∞(z) ≤ supΩx ∞ . (C.5)

Moreover, the definition of norms for appropriate matrix-valued functions is followed by means

of an equivalent approach. Instead of the maximum norm for vectors the induced operator

max−norm, or maximum absolute row sum of the matrix, is considered. Hence notice the

modification of the introduced norms for matrices.

Definition 3.8. Let F (z, t) ∈ Ck,l (Ω;Rm×n) , m, n ∈ N, and consider the subsequent defini-

tions of norms

supΩF ∞ = supΩF (z, t) ∞ := max
i=1,...,m

n

j=1

sup
(z,t)∈Ω

|fij(z, t)| , (C.6)

supR+
t0
F ∞(z) = supR+

t0
F (z, t) ∞ := max

i=1,...,m

n

j=1

 sup
t∈R+

t0

|fij(z, t)|
 . (C.7)

Note that (C.7) is a function in z with supR+
t0
F ∞(z) ∈ C0 ([0, N] ;R). Moreover, the

induced operator max−norm is sub-multiplicative. Consequently, it holds supΩFH ∞ ≤
supΩF ∞ supΩH ∞ and supR+

t0
FH ∞(z) ≤ supR+

t0
F ∞(z) supR+

t0
H ∞(z).

With this and the property

0 ≤ supR+
t0
F ∞(z) ≤ supΩF ∞ (C.8)

it is possible to deduce the useful inequality

supR+
t0
Fx ∞(z) ≤ supR+

t0
F ∞(z) supR+

t0
x ∞(z) ≤ supΩF ∞ supR+

t0
x ∞(z) . (C.9)

Definition 3.9. Let the spatial domain D( N) be defined in two variables and let its area depend

on N. Moreover, consider the matrix valued functions F (z, s, t) ∈ CGk,l,α D( N)× R+
t0 ;R

m×n

and G(z, t) ∈ CGk,α Ω N, t0 × R+
t0 ;R

m×n , with m,n ∈ N. With this, note the definition of

norms

maxD( N) F
2
(t) = maxD( N) F (z, s, t)

2
:= max

(z,s)∈D( N)
λ(F T (z, s, t)F (z, s, t)) , (C.10)

max[0, N] G
2
(t) = max[0, N] G(z, t)

2
:= max

z∈[0, N]
λ(GT (z, t)G(z, t)) . (C.11)

This represents the largest singular value of the matrix F (z, s, t) or G(z, t), respectively. Note,

in order to be exact λ is a function in t for both (C.10) and (C.11) with λ(t) ∈ C0 R+
t0 ;R .

However, λ is the eigenvalue of the matrix F T (z, s, t)F (z, s, t) or GT (z, t)G(z, t), respectively.

Therefore the definitions render the spectral norm for matrices for every fixed t ∈ R+
t0 and

consequently it is sub-multiplicative.
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C.2 Functions

The so-called Gevrey class functions are essential for the assignment of admissible trajectories

[55]. These allow the design of feedforward controlled transitions between stationary formation

profiles of MAS. Let the set Λ define an open subset of R and let α ≥ 1.

Definition 3.10 (Gevrey class [74]). The function f : Λ → X ⊆ R is in Gδ
α(Λ;X), the Gevrey

class of order α, if f ∈ C∞(Λ;X) and for every compact subset Λ̄ of Λ, there exists a positive

constant δ such that

sup
t∈Λ̄

∂k
t f(t) ≤ δk+1(k!)α (C.12)

∀k ∈ N0.

Two examples of Gevrey functions Φτ,ω : R → [0, 1] according to Definition 3.10 are well

documented in literature. For the following let τ > 0.

Example 3.5 (Gevrey function using bell-shaped functions [1]). This first example is given by

Φτ,ω(t) =




0 t ≤ 0

t

0
φτ,ω(ν)dν

τ

0
φτ,ω(ν)dν

t ∈ (0, τ)

1 t ≥ τ

(C.13)

with φτ,ω(t) defined as

φτ,ω(t) =



exp − 1

1− ν
τ

ν
τ

ω t ∈ (0, τ)

0 t /∈ (0, τ) .

(C.14)

Example 3.6 (Gevrey function using hyperbolic functions [77]). As a second, here the Gevrey

function is written as

Φτ,ω(t) =




0 t ≤ 0

1

2
+

1

2
tanh

2 2 t
τ
− 1

4t
τ

1− t
τ

ω t ∈ (0, τ)

1 t ≥ τ .

(C.15)

Both examples are in the Gevrey class of order α = 1 + 1/ω. For further details see, e.g., [37]

for (C.13) and [76] for (C.15).

In general for matrix (or vector) valued functions F ∈ C∞(Λ;Xm×n), i.e. F : Λ → Xm×n ⊆
Rm×n, each element fij(t), 1 ≤ i ≤ m, 1 ≤ j ≤ n of the matrix-valued function can be treated

independently and in equivalent fashion as introduced in Definition 3.10 for scalar functions.

However, this would lead to a function space of m × n different Gevrey classes of the form

G
δij
αij(Λ;X). Thus, the fact that Gδ

α(Λ;X) ⊆ Gδ
β(Λ;X) for α ≤ β allows to define a common

Gevrey class for vector and matrix valued functions accordingly.
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Definition 3.11 (Class of vector- and matrix-valued Gevrey functions). The function F : Λ →
Xm×n ⊆ Rm×n is in Gδ

α(Λ;X
m×n), m,n ∈ N, the m × n−matrix-valued Gevrey class of order

α, if F ∈ C∞(Λ;Xm×n) and the elements fij are in G
δij
αij(Λ;X) according to Definition 3.10.

Then for every compact subset Λ̄ of Λ the m× n−valued function F satisfies

supt∈Λ̄ ∂k
t F (t) ∞ ≤ δk+1(k!)α , (C.16)

∀k ∈ N0, and with δ = max1≤i≤m
n
j=1 δij and α = max1≤i≤m

1≤j≤n
αij. Here, the notation · ∞

stands for the induced operator max−norm.

Definition 3.12 (Functions with two variables). Assume k, l ∈ N and α ∈ R. Then the

notation CGk,α(Ω×Λ;X) stands for the class of functions f : Ω×Λ → X ⊆ R such that f(·, t) ∈
Ck(Ω;X) for every fixed t ∈ Λ and f(z, ·) ∈ Gδ

α(Λ;X) for every fixed z ∈ Ω. Consequently, by

Ck,l(Ω1 × Ω2;X) the class of functions g : Ω1 × Ω2 → X ⊆ R is characterised, s.t. g(·, s) ∈
Ck(Ω1;X) for every fixed s ∈ Ω2 and g(z, ·) ∈ Cl(Ω2;X) for every fixed z ∈ Ω1.

Definition 3.13 (Functions with three variables). Assume k, l ∈ N and α ∈ R. Then by

CGk,l,α(Ω1 × Ω2 × Λ;X) the class of functions f : Ω1 × Ω2 × Λ → X ⊆ R is denoted s.t.

f(·, s, t) ∈ Ck(Ω;X) for every fixed s ∈ Ω2 and t ∈ Λ; f(z, ·, t) ∈ Cl(Ω;X) for every fixed

z ∈ Ω1 and t ∈ Λ; f(z, s, ·) ∈ Gδ
α(Λ;X) for every fixed z ∈ Ω1 and s ∈ Ω2.

C.3 Useful Theorems and Lemmas

The following Lemmas summarise some intermediate results and support the convergence anal-

ysis in Chapter 4.

Theorem 3.16 (Extreme value theorem [36]). Let Λ̄ be a compact set and let f : Λ̄ → R be a

continuous function. Then f has a maximum (minimum) on Λ̄, that is, there exists a ν ∈ Λ̄

such that f(λ) ≤ f(ν) (f(λ) ≥ f(ν)) ∀λ ∈ Λ̄.

Theorem 3.17 (Upper bound for functions in two variables involving Gevrey classes). Let

f(z, t) be continuous in z ∈ [zl, zr] and be in Gevrey class of order α with respect to t and be

defined on the open subset Λ. Then for every compact subset Λ̄ of Λ the function f can be

bounded by

sup
(z,t)∈D

∂k
t f(z, t) ≤ δk+1(k!)α (C.17)

with D = [zl, zr]× Λ̄.

Proof. Assuming f(z, t) being in CG0,α([zl, zr] × Λ;X) with X ⊆ R implies f(z, t) ∈
C0,∞([zl, zr] × Λ;X). Furthermore, since the interval [zl, zr] and Λ̄ are individually com-

pact the entire domain [zl, zr] × Λ̄ is compact. With this, considering the extreme value

theorem yields that ∂k
t f(z, t) is bounded on every compact subset [zl, zr]× Λ̄, i.e., there exist
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a pair (zk, tk) ∈ [zl, zr]× Λ̄, ∀k ∈ N0, such that sup(z,t)∈[zl,zr]×Λ̄ ∂k
t f(z, t) ≤ ∂k

t f(zk, tk) = mk.

Thus, taking Definition 3.10 into account since f(z, t) is in t element of the Gevrey class of

order α, then there exists a (sufficiently large) constant δ such that the kth−derivative of f

with respect to t can be bounded by (C.17). More precisely δ has to satisfy

k+1
mk

(k!)α
≤ δ < ∞ ∀k ∈ N0 . (C.18)

Corollary 3.5 (Upper bound for matrix-valued functions in two variables involving Gevrey

classes). Let the matrix-valued function F (z, t) be in CG0,α ([zl, zr]× Λ;Xm×n) with elements

fij(z, t) ∈ CG0,αij ([zl, zr]× Λ;X) and considering Definition 3.11. Then, with this and Theo-

rem 3.17 the norm (C.6) of F can be bounded by

sup
(z,t)∈D

∂k
t F (z, t)

∞
≤ δk+1(k!)α (C.19)

with D = [zl, zr]× Λ̄, δ = max1≤i≤m
n
j=1 δij , and α = max1≤i≤m

1≤j≤n
αij.

Lemma 3.18 (Leibnitz rule [10]). Assuming f, g ∈ Cl(R;R), then for k, l ∈ N and t ∈ R it

holds

∂k
t [f(t)g(t)] =

k

l=0

k

l
∂k−l
t f(t)∂l

tg(t) . (C.20)

Lemma 3.19. Combining the identity [52]

k

j=0

k

j
(k − j + n)!(j +m)! =

n!m!(k + n+m+ 1)!

(n+m+ 1)!
(C.21)

for j, k, m, n ∈ N and the inequality [33]

j

aαj ≤
j

aj

α

(C.22)

for α ≥ 1, aj ≥ 0 allows to derive the upper bound estimation

k

j=0

k

j
((k − j + n)!(j +m)!)α ≤ n!m!(k + n+m+ 1)!

(n+m+ 1)!

α

. (C.23)

Lemma 3.20 (Leibnitz integral rule [10]). If the function f ∈ C0,0 ([zl, zr]× [tl, tr] ;R) and

∂zf(z, t) exists, and the functions a, b ∈ C1 ([zl, zr] ;R) remain in the interval tl ≤ t = a(z), t =

b(z) ≤ tr, then for zl ≤ z ≤ zr the differentiation under the integral sign applies

d

dz

b(z)

a(z)

f(z, t) dt = f(z, b(z))
d

dz
b(z)− f(z, a(z))

d

dz
a(z) +

b(z)

a(z)

∂zf(z, t) dt . (C.24)
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Lemma 3.21 (Integral lemmas). Consider z, η, ξ ∈ R and k ∈ N0 then the identities

z

ξ

η

ξ

|σ − ξ|k
k!

dσ dη =
|z − ξ|k+2

(k + 2)!
(C.25)

z

ξ

|σ − ξ|k
k!

dσ =
|z − ξ|k+1

(k + 1)!
(C.26)

hold true.

Proof. In (C.25) the outer absolute value function applied to the integrals does make the

absolute value of the integrands redundant. The proof is trivial for k even, or z, η ≥ ξ,

respectively. For k odd and z, η ≤ ξ note

z

ξ

η

ξ

|σ − ξ|k
k!

dσ dη =
z

ξ

η

ξ

(ξ − σ)k

k!
dσ dη =

(ξ − z)k+2

(k + 2)!
=

|z − ξ|k+2

(k + 2)!
.

Note, that the same procedure may be applied to (C.26).

Theorem 3.22 (Cauchy-Hadamard theorem [50]). Let ∞
m=0 pmz

m be a power series, and let

ρ be its radius of convergence. Then ρ is given by

ρ =
1

lim supm→∞ |pm|1/m
. (C.27)

If ρ = 0, i.e., lim supm→∞ |pm|1/m = ∞, this is to be interpreted that the series is divergent. In

case lim supm→∞ |pm|1/m = 0, and hence ρ = ∞ the series converges absolutely for all z. For

0 < ρ < ∞ the series converges absolutely for |z| < ρ.

Lemma 3.23 (d’Alembert ratio test [36]). Let the coefficients pm of the infinite power se-

ries ∞
m=0 pmz

m satisfy pm = 0, ∀m ≥ m0 ∈ N0 and let the following limit exist. Then the

convergence radius ρ of the power series is given by

ρ = lim
m→∞

pm
pm+1

. (C.28)

Theorem 3.24 (Cauchy Product of absolutely convergent series of functions [50]). Let

the power series a(z) = ∞
m=0 αmz

m, b(z) = ∞
m=0 βmz

m and the function series f(z, t) =
∞
m=0 φm(z, t), g(z, t) =

∞
m=0 ψm(z, t) with supt∈R+

t0
|φm(z, t)| ≤ |αm| |z|m , supt∈R+

t0
|ψm(z, t)| ≤

|βm| |z|m converge absolutely in z on the interval (0, ρ), then the Cauchy product h(z, t) =
∞
m=0 χm(z, t) with χm(z, t) = m

l=0 φm(z, t)ψm−l(z, t) also converges absolutely in z with

convergence radius ρ, and we have

f(z, t)g(z, t) =
∞

m=0

φm(z, t)
∞

m=0

ψm(z, t) =
∞

m=0

m

l=0

φl(z, t)ψm−l(z, t) = h(z, t) (C.29)
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Proof. The result can be verified in two steps. First, absolute convergence has to be shown.

Since a(z) and b(z) are absolutely convergent there exists a constant c with αm ≤ c/ |s|m and

βm ≤ c/ |s|m for 0 < |s| < ρ. With this consider the upper bound estimation

supt∈R+
t0
|χm(s, t)|

|s|m ≤ 1

|s|m
m

l=0

sup
t∈R+

t0

|φl(s, t)| sup
t∈R+

t0

|ψm−l(s, t)|

≤
m

l=0

|αl| |βm−l| ≤ (m+ 1)c2

|s|m . (C.30)

With this and Theorem 3.22 it follows that

lim sup
m→∞

supt∈R+
t0
|χm(s, t)|1/m

|s| ≤ lim sup
m→∞

(m+ 1)1/mc2/m

|s| ≤ 1/ |s| ≤ 1/ρ (C.31)

which proofs that the series of the Cauchy product m
l=0 φm(z, t)ψm−l(z, t) converges abso-

lutely in z on the interval (0, ρ). Consequently, there exists the upper bound estimation

supt∈R+
t0
|χm(z, t)| ≤ |γm| |z|m.

Second, it needs to be proven that the Cauchy product of the function series converges uniformly,

i.e., h(z, t) → f(z, t)g(z, t). However in this case it is more convenient to proof the opposite

direction, that fg uniformly approaches h. Thus, consider the partial sums

fM(z, t) =
M

m=0

φm(z, t) and gM(z, t) =
M

m=0

ψm(z, t) , (C.32)

then for given > 0 there exists m0 < ∞ and it holds

sup
t∈R+

t0

|h(z, t)− fM(z, t)gM(z, t)|

= sup
t∈R+

t0

∞

m=0

m

l=0

φm(z, t)ψm−l(z, t)−
M

m=0

φm(z, t)
M

m=0

ψm(z, t)

= sup
t∈R+

t0

∞

m=0

m

l=0

φm(z, t)ψm−l(z, t)−
M

m=0

m

l=0

ψm(z, t)ψm−l(z, t)

= sup
t∈R+

t0

∞

m=M+1

χm(z, t) ≤
∞

m=M+1

sup
t∈R+

t0

|χm(z, t)| ≤
∞

m=M+1

|γm| |z|m < .

(C.33)

With the given premises ∞
m=M+1 |γm| |z|m gets arbitrary small for sufficiently large M ≥ m0,

and hence

f(z, t)g(z, t) = lim
M→∞

fM(z, t)gM(z, t) = h(z, t) . (C.34)
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C.4 Important Inequalities

Please note [45] for the following discussion on inequalities.

Definition 3.14 (Young’s inequality in its most elementary vectorial version).

uTv ≤ 1

2
uTPu+

1

2
vTP−1v ∀P > 0 . (C.35)

Proof. Assume Q = diag [q11, q22, . . . , qnn] ∈ Rn×n and be positive definite, then

Qu−Q−1v
2

2
= Qu−Q−1v

T
Qu−Q−1v =

= uTQ2u− 2uTv + vT Q2 −1
v ≥ 0

(C.36)

With this and P = Q2 > 0 directly follows (C.35).

Definition 3.15 (Cauchy-Schwarz inequality for standard scalar product). Assume the real

vectors f , g ∈ Rn, then

fTg ≤ f 2 g 2 (C.37)

Definition 3.16 (Integral formulation of the Cauchy-Schwarz inequality). Assume the real

functions f , g ∈ L2 ([0, ] ;Rn), then

0

fT (z)g(z)dz ≤
0

f(z) 2
2 dz

1
2

0

g(z) 2
2 dz

1
2

(C.38)

Lemma 3.25 (Poincaré inequality on a real interval). Let x(z) ∈ H1 ([0, ] ;Rn) and the weight

P ∈ Rn×n be diagonal and positive definite. Then the following inequalities hold

0

xT (z)Px(z)dz ≤ r

r − 1
xT (0)Px(0) +

r2

r − 1
2

0

∂zx
T (z)P∂zx(z)dz , (C.39)

0

xT (z)Px(z)dz ≤ r

r − 1
xT ( )Px( ) +

r2

r − 1
2

0

∂zx
T (z)P∂zx(z)dz . (C.40)

for r > 1.

Proof. The lemma can be verified by considering the partial integration

0

1 · xT (z)Px(z)dz = zxT (z)Px(z)
0
− 2

0

zxT (z)P∂zx(z)dz . (C.41)

Due to

0 ≤ P/rx(z) + z
√
Pr∂zx(z)

2

2
≤ 1

r
x(z)TPx(z) + 2zx(z)TP∂zx(z)

+ rz2∂zx(z)
TP∂zx(z) ,
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or

− 2
0

zxT (z)P∂zx(z)dz ≤ 1

r 0

x(z)TPx(z)dz + r
0

z2∂zx(z)
TP∂zx(z)dz

≤ 1

r 0

x(z)TPx(z)dz + r 2

0

∂zx(z)
TP∂zx(z)dz ,

respectively, follows from (C.41) that

1− 1

r 0

xT (z)Px(z)dz ≤ xT ( )Px( ) + r 2

0

∂zx
T (z)P∂zx(z)dz (C.42)

which confirms (C.40). For the verification of (C.39) consider the identity xT (z)Px(z)
0
=

2
0
xT (z)P∂zx(z)dz. This directly allows to exchange z with (z − ) in (C.41) and the following

estimations and as a result verifies the first inequality.

Lemma 3.26 (Agmon’s inequality on a real interval). For the vector-valued function x(z) ∈
H1 ([0, ] ;Rn) and X = (L2 ([0, ] ;Rn) the following inequalities hold

max
z∈[0, ]

x 2
2 ≤ x(0) 2

2 + x(z) 2
X ∂zx(z)

2
X , (C.43)

max
z∈[0, ]

x 2
2 ≤ x( ) 2

2 + 2 x(z) 2
X ∂zx(z)

2
X . (C.44)

Proof. Again let us start with

x(z) 2 = x(0) 2 + 2
z

0

xT (s)∂sx(s)ds ≤ x(0) 2 + 2
0

xT (s)∂sx(s) ds . (C.45)

Obviously the right hand side does not depend on z, therefore

max
z∈[0, ]

x 2
2 ≤ x(0) 2 + 2

0

xT (z)∂zx(z) dz . (C.46)

Utilising the Cauchy-Schwartz inequality yields (C.43). The second inequality can be derived

in similar fashion.
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Appendix D

Auxiliary Notes for Backstepping based

Control of Coupled Parabolic PDEs

D.1 Kernel Equations for the Inverse Backstepping

Transformation

The upcoming section deals with the determination of the integral kernel G of the inverse

backstepping transformation

x̃c(z, t) = w(z, t) +
z

0

G(z, s, t)w(s, t) ds . (D.1)

for control design purposes. Therefore let us note down its temporal and spatial derivatives as

∂tx̃c(z, t) = ∂tw(z, t) +
z

0

∂tG(z, s, t)w(s, t) ds+
z

0

G(z, s, t)∂tw(s, t) ds , (D.2)

∂zx̃c(z, t) = ∂zw(z, t) +G(z, z, t)w(z, t) +
z

0

∂zG(z, s, t)w(s, t) ds , (D.3)

∂2
z x̃c(z, t) = ∂2

zw(z, t) +
d

dz
G(z, z, t)w(z, t) +G(z, z, t)∂zw(z, t)

+ ∂zG(z, z, t)w(z, t) +
z

0

∂2
zG(z, s, t)w(s, t) ds .

(D.4)

Inserting (D.1)-(D.4) into the PIDE (5.12a) of the target state w, then this leads to

z

0

∂tG(z, s, t)w(s, t) ds+
z

0

G(z, s, t)∂tw(s, t) ds = A
d

dz
G(z, z, t)

+ A∂zG(z, z, t)− B(z, t)G(z, z, t) +D(t)−M(z, t) + C(z, t) w(z, t)

+ AG(z, z, t)∂zw(z, t)− F (z, t)w(0, t)−
z

0

H(z, s, t)x̃c(s, t) ds

+
z

0

A∂2
zK(z, s, t)−B(z, t)∂zG(z, s, t) + C(z, t)G(z, s, t) w(s, t) ds .

(D.5)
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With this, utilising (5.12a) again, and rearranging and collecting the terms on the right hand

side gives

0 = −
z

0

G(z, s, t) A∂2
sw(s, t)− B(s, t)∂sw(s, t)− (D(t)−M(s, t))w(s, t) ds

+ A
d

dz
G(z, z, t)+A∂zG(z, z, t)−B(z, t)G(z, z, t)+D(t)−M(z, t)+C(z, t) w(z, t)

+ AG(z, z, t)∂zw(z, t)−
z

0

G(z, s, t)F (s, t) ds+ F (z, t) w(0, t)

−
z

0

∂tG(z, s, t)−A∂2
zG(z, s, t)+B(z, t)∂zG(z, s, t)−C(z, t)G(z, s, t) w(s, t) ds

−
z

0

H(z, s, t)x̃c(s, t) ds−
z

0

s

0

G(z, s, t)H(s, p, t)x̃c(p, t)dp ds .

(D.6)

Similarly, as conducted in Section 5.1.2 the expressions with ∂2
sw and ∂sw require partial

integration which can be stated as

z

0

G(z, s, t)A∂2
sw(s, t) ds = G(z, s, t)A∂sw(s, t)

s=z

s=0

− ∂sG(z, s, t)Aw(s, t)
s=z

s=0
+

z

0

∂2
sG(z, s, t)Aw(s, t) ds ,

(D.7)

and
z

0

G(z, s, t)B(s, t)∂sw(s, t) ds = G(z, s, t)B(s, t)w(s, t)
s=z

s=0

−
z

0

∂sG(z, s, t)B(s, t) +G(z, s, t)∂sB(s, t) w(s, t) ds .

(D.8)

Acknowledging these results in (D.6) finally leads to

0 = A
d

dz
G(z, z, t) + A∂zG(z, z, t) + ∂sG(z, z, t)A−B(z, t)G(z, z, t)

+G(z, z, t)B(z, t) +D(t)−M(z, t) + C(z, t) w(z, t) +G(z, 0, t)A∂zw(0, t)

−
z

0

G(z, s, t)F (s, t) ds+ F (z, t) + ∂sG(z, 0, t)A+G(z, 0, t)B(0, t) w(0, t)

− G(z, z, t)A− AG(z, z, t) ∂zw(z, t)−
z

0

∂tG(z, s, t)− A∂2
zG(z, s, t)

+ ∂2
sG(z, s, t)A+B(z, t)∂zG(z, s, t) + ∂sG(z, s, t)B(s, t)− C(z, t)G(z, s, t)

−G(z, s, t) (D(t)−M(s, t)− ∂sB(s, t)) w(s, t)ds

−
z

0

H(z, s, t)x̃c(s, t) ds−
z

0

s

0

G(z, s, t)H(s, p, t)x̃c(p, t)dp ds .

(D.9)

The derived equation has to be satisfied for the entire triangular spatial domain (z, s) ∈
DG( N) = DK( N) := {(z, s) ∈ R2 | z ∈ [0, N] , s ∈ [0, z]} and for all t ∈ R+

t0 . With the in-

troduction of the compensation matrix J(z, s, t), as a counterpart to H(z, s, t), the kernel
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equations of the inverse transformation can be written as the following PDE

∂tG(z, s, t) = A∂2
zG(z, s, t)− ∂2

sG(z, s, t)A− B(z, t)∂zG(z, s, t)

− ∂sG(z, s, t)B(s, t) + C(z, t)G(z, s, t)

+G(z, s, t) (D(t)−M(s, t)− ∂sB(s, t))− J(z, s, t) ,

(D.10)

with the boundary conditions

A
d

dz
G(z, z, t) + A∂zG(z, z, t) + ∂sG(z, z, t)A = B(z, t)G(z, z, t)

−G(z, z, t)B(z, t)−D(t) +M(z, t)− C(z, t) ,

G(z, z, t)A = AG(z, z, t) ,

G(z, 0, t) = 0n,n

(D.11)

at z = s and s = 0 and the two further conditions

z

0

G(z, s, t)F (s, t) ds+ F (z, t) + ∂sG(z, 0, t)A = 0n,n , (D.12)

z

0

H(z, s, t)x̃c(s, t) ds−
z

0

J(z, s, t)w(s, t) ds

+
z

0

s

0

G(z, s, t)H(s, p, t)x̃c(p, t)dp ds = 0n .

(D.13)

Obviously, the equations (D.10) and (D.11) match exactly the statements of Remark 5.19. This

leaves behind the two latter conditions which are discussed in the following.

Considering the setting F (z, t) = −∂sK(z, 0, t)A for dynamic BCs the first condition (D.12)

leads to

∂sG(z, 0, t)− ∂sK(z, 0, t) =
z

0

G(z, p, t)∂sK(p, 0, t)dp . (D.14)

This is fulfilled by all means and can be proven easily by utilising the spatial derivative of

(5.11) with respect to s and subsequent determination of the resulting expression at s = 0. The

second condition (D.13) requires a more profound examination which shall be the objective of

the following section.

D.2 Transversal Condition of the Compensation Terms

As discussed in Section 5.1.1 the integral kernels K and G are connected by means of the

Volterra integral transformation of the second kind

w(z, t) = x̃c(z, t)−
z

0

K(z, s, t)x̃c(s, t) ds (D.15)
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or (D.1), respectively. However comparing the PDEs (5.29a) and (D.10) both contain the same

compensation matrix M which depends on the corresponding kernel at the boundary z = s.

More precisely speaking the setting of the matrix M has to fulfil

M(z, t) = 2ΔA
d

dz
Gd(z, z, t) +Gd(z, z, t)Bc(z, t)− Bc(z, t)Gd(z, z, t) + Cc(z, t)

!
= 2ΔA

d

dz
Kd(z, z, t) +Kd(z, z, t)B(z, t)−B(z, t)Kd(z, z, t) + Cc(z, t) ,

(D.16)

when the compensation strategy non-commutative compensation as discussed in Section 5.1.2

is applied. Note, that this covers the setting for the other strategy coupling compensation as

well. Since Kd(z, z, t) and consequently Gd(z, z, t) can be directly determined by the parameter

setting of ΔA, B, and Cc the condition is fulfilled by all means. An alternative way to proof

(D.16) is to evaluate (5.10) and its spatial derivatives at z = s, i.e.,

G(z, z, t) = K(z, z, t) ,

∂zG(z, z, t)− ∂zK(z, z, t) = G(z, z, t)K(z, z, t)

∂sG(z, z, t)− ∂sK(z, z, t) = −G(z, z, t)K(z, z, t)

(D.17)

and consequently

d

dz
G(z, z, t) =

d

dz
K(z, z, t) . (D.18)

At this stage it has to be pointed out that from a diagonal K = Kd it directly follows a diagonal

G = Gd.

Furthermore, the second condition (D.13) needs to be valid for the spatial domain DK( N),

defined as mentioned above, and t ∈ R+
t0 . Applying the backstepping transformation (D.15) to

(D.13) it can be written as

z

0

[J(z, s, t)−H(z, s, t)] x̃c(s, t) ds

=
z

0

s

0

[J(z, s, t)K(s, p, t) +G(z, s, t)H(s, p, t)] x̃c(p, t)dp ds .

(D.19)

By changing the sequence of double integration one can easily derive the equation

J(z, s, t)−H(z, s, t) =
z

s

[J(z, p, t)K(p, s, t) +G(z, p, t)H(p, s, t)] dp . (D.20)

In the following this condition shall be denoted as the transversal compensation condition

(TCC).

From this, it is referred to Page 96 and Page 98 where two different compensation strategies are

introduced and the next paragraphs shall show that (D.20) holds true for both strategies. More

precisely speaking, if a strategy is chosen, it always has to be applied to both kernel equations,

i.e., for the PDEs of K and of G. Then it can be shown that the TCC applies. Therefore
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the following discussion starts with the verification of the TCC for the compensation strategy

coupling compensation.

Due to linearity it is allowed to separate compensation terms M(z, t) = MB(z, t) + MC(z, t),

H(z, s, t) = HB(z, s, t) +HC(z, s, t) and J(z, s, t) = JB(z, s, t) + JC(z, s, t). With this, for sim-

plicity the verification is firstly conducted for terms where the parameter matrix C is involved.

It can simply be reached by the setting B(z, t) := 0n,n. This leads to

MC(z, t) = Cc(z, t)

HC(z, s, t) = MC(z, t)K(z, s, t)−K(z, s, t)Cc(s, t)

JC(z, s, t) = Cc(z, t)G(z, s, t)−G(z, s, t)MC(s, t)

(D.21)

Inserting this into (D.20) gives

Cc(z, t) (G(z, s, t)−K(z, s, t))− (G(z, s, t)−K(z, s, t))Cc(s, t)

=
z

s

(Cc(z, t)G(z, p, t)−G(z, p, t)MC(p, t))K(p, s, t)

+G(z, p, t) (MC(p, t)K(p, s, t)−K(p, s, t)Cc(s, t)) dp

=
z

s

Cc(z, t)G(z, p, t)K(p, s, t)−G(z, p, t)K(p, s, t)Cc(s, t) dp .

(D.22)

Just by rearranging the terms (D.22) can be simplified to

Cc(z, t) G(z, s, t)−K(z, s, t)−
z

s

G(z, p, t)K(p, s, t)dp

= G(z, s, t)−K(z, s, t)−
z

s

G(z, p, t)K(p, s, t)dp Cc(s, t) ,

(D.23)

which is valid for all (z, s, t) ∈ DK( N)×R+
t0 since (5.11) has to be applicable by all means. Next,

the same procedure is applied for terms where the convection parameter matrix B is place. For

this proof it is necessary to compute the spatial derivatives of (5.11), in the following written

as

∂zG(z, s, t)− ∂zK(z, s, t) = G(z, z, t)K(z, s, t) +
z

s

∂zG(z, p, t)K(p, s, t) dp

∂sG(z, s, t)− ∂sK(z, s, t) = −G(z, s, t)K(s, s, t) +
z

s

G(z, p, t)∂sK(p, s, t) dp .

(D.24)

Moreover, for this case the setting C := 0n,n leads to the compensation terms

MB(z, t) = Gd(z, z, t)Bc(z, t)−Bc(z, t)Gd(z, z, t)

= Kd(z, z, t)Bc(z, t)− Bc(z, t)Kd(z, z, t)

HB(z, s, t) = −Bc(z, t)∂zK(z, s, t)− ∂sK(z, s, t)Bc(s, t)

+M c
B(z, t)K(z, s, t)−K(z, s, t)∂sB

c(s, t)

JB(z, s, t) = −Bc(z, t)∂zG(z, s, t)− ∂sG(z, s, t)Bc(s, t)

−G(z, s, t) (M c
B(s, t) + ∂sB

c(s, t)) .

(D.25)
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First, the evaluation of the left hand side of (D.20) gives

JB(z, s, t)−HB(z, s, t) = Bc(z, t) (∂zK(z, s, t)− ∂zG(z, s, t))

+ (∂sK(z, s, t)− ∂sG(z, s, t))Bc(s, t) + (K(z, s, t)−G(z, s, t)) ∂sB
c(s, t)

−M c
B(z, t)K(z, s, t)−G(z, s, t)M c

B(s, t)

= G(z, s, t)Bc(s, t)Kd(s, s, t)−Gd(z, z, t)Bc(z, t)K(z, s, t)

+Bc(z, t) ∂zK(z, s, t)− ∂zG(z, s, t) +Gd(z, z, t)K(z, s, t)

+ ∂sK(z, s, t)− ∂sG(z, s, t)−G(z, s, t)Kd(s, s, t) Bc(s, t)

+ (K(z, s, t)−G(z, s, t)) ∂sB
c(s, t)

(D.26)

and second, the right hand side leads to the expressions

z

s

[JB(z, p, t)K(p, s, t) +G(z, p, t)HB(p, s, t)] dp

= −
z

s

Bc(z, t)∂zG(z, p, t) + ∂pG(z, p, t)Bc(p, t)

−G(z, p, t) M c
B(p, t) + ∂pB

c(p, t) K(p, s, t)dp

−
z

s

G(z, p, t) Bc(p, t)∂pK(p, s, t) + ∂sK(p, s, t)Bc(s, t)

−M c
B(p, t)K(p, s, t) +K(p, s, t)∂sB

c(s, t) dp =

= −Bc(z, t)
z

s

∂zG(z, p, t)K(p, s, t)dp−
z

s

G(z, p, t)∂sK(p, s, t)dpBc(s, t)

−
z

s

G(z, p, t)K(p, s, t)dp ∂sB
c(s, t)−

z

s

G(z, p, t)∂pB
c(p, t)K(p, s, t)

+ ∂pG(z, p, t)Bc(p, t)K(p, s, t) +G(z, p, t)Bc(p, t)∂pK(p, s, t) dp .

(D.27)

By combing (D.26) and (D.27) according to (D.20), and taking (5.11) and the spatial derivatives

(D.24) most of the terms can be compensated. The remaining parts are collected by

Gd(z, z, t)Bc(z, t)K(z, s, t)−G(z, s, t)Bc(s, t)Kd(s, s, t)

=
z

s

∂pG(z, p, t)Bc(p, t)K(p, s, t) +G(z, p, t)∂pB
c(p, t)K(p, s, t)

+G(z, p, t)Bc(p, t)∂pK(p, s, t) dp .

(D.28)

which is satisfied for all (z, s, t) ∈ DK( N) × R+
t0 . Here the evidence is obvious, e.g., assume

F (z, p, s, t) = G(z, p, t)Bc(p, t)K(p, s, t), then clearly by utilising the fundamental theorem of

calculus

F (z, z, s, t)− F (z, s, s, t) =
z

s

∂pF (z, p, s, t)dp (D.29)

and consequently (D.28) holds true. This finalises the verification and gives evidence for the

following statement. If the coupling compensation strategy is applied for the computation of
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the backstepping kernel K and for the calculation of the kernel G, then the compensation terms

H and J fulfil the TCC. Now, the same procedure needs to be performed for the compensation

strategy non-commutative compensation. Therefore, note the following discussion.

Again, the linear properties of the problem allow the verification of the TCC for terms which

deal with diffusion and convection independently. In fact, the discussion for convection can be

omitted since it is identical to the (D.26)-(D.28) when B is exchanged by ΔB. This only leaves

the verification for the diffusion terms involving ΔA. For this, on top of (D.17), (D.18), and

(D.24) further reflections on (5.11) are necessary, i.e. the second spatial derivatives yield

∂2
zG(z, s, t)− ∂2

zK(z, s, t) =
d

dz
G(z, z, t)K(z, s, t) +G(z, z, t)∂zK(z, s, t)

+ ∂zG(z, z, t)K(z, s, t) +
z

s

∂2
zG(z, p, t)K(p, s, t) dp ,

∂2
sG(z, s, t)− ∂2

sK(z, s, t) = −∂sG(z, s, t)K(s, s, t)−G(z, s, t)
d

ds
K(s, s, t)

−G(z, s, t)∂sK(s, s, t) +
z

s

G(z, p, t)∂2
sK(p, s, t) dp .

(D.30)

For this case the compensation terms can be derived from Section 5.1.2 as

MA(z, t) = ΔA
d

dz
Kd(z, z, t) + ΔA∂zK

d(z, z, t) + ∂sK
d(z, z, t)ΔA

= ΔA
d

dz
Gd(z, z, t) + ΔA ∂zG

d(z, z, t) +Kd(z, z, t)Gd(z, z, t)

+ ∂sG
d(z, z, t)−Kd(z, z, t)Gd(z, z, t) ΔA

= ΔA
d

dz
Gd(z, z, t) + ΔA∂zG

d(z, z, t) + ∂sG
d(z, z, t)ΔA ,

HA(z, s, t) = ΔA∂2
zK(z, s, t)− ∂2

sK(z, s, t)ΔA+MA(z, t)K(z, s, t) ,

JA(z, s, t) = ΔA∂2
zG(z, s, t)− ∂2

sG(z, s, t)ΔA−G(z, s, t)MA(s, t) .

(D.31)

First, considering this on the left hand side of (D.20) leads to the expression

JA(z, s, t)−HA(z, s, t) = ΔA ∂2
zG(z, s, t)− ∂2

zK(z, s, t)− d

dz
Gd(z, z, t)K(z, s, t)

− ∂zG
d(z, z, t)K(z, s, t) − ∂2

sG(z, s, t)− ∂2
sK(z, s, t)

+G(z, s, t)
d

ds
Kd(s, s, t) +G(z, s, t)∂sK

d(s, s, t) ΔA

− ∂sG
d(z, z, t)ΔAK(z, s, t)−G(z, s, t)ΔA∂zK

d(s, s, t)

(D.32)

and second, applying the terms to the right hand side of (D.20) as well gives the integral

equation
z

s

[JA(z, p, t)K(p, s, t) +G(z, p, t)HA(p, s, t)] dp

=
z

s

ΔA∂2
zG(z, p, t)− ∂2

pG(z, p, t)ΔA K(p, s, t)dp

+
z

s

G(z, p, t) ΔA∂2
pK(p, s, t)− ∂2

sK(p, s, t)ΔA dp

(D.33)
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Combing the last two expressions and moving all terms to the right hand side the TCC evaluates

to

0n,n = ΔA ∂2
zG(z, s, t)− ∂2

zK(z, s, t)− d

dz
Gd(z, z, t)K(z, s, t)

− ∂zG
d(z, z, t)K(z, s, t)−

z

s

∂2
zG(z, p, t)K(p, s, t)dp

− ∂2
sG(z, s, t)− ∂2

sK(z, s, t) +G(z, s, t)
d

ds
Kd(s, s, t)

+G(z, s, t)∂sK
d(s, s, t) +

z

s

G(z, p, t)∂2
sK(p, s, t)dp ΔA

− ∂sG
d(z, z, t)ΔAK(z, s, t)−G(z, s, t)ΔA∂zK

d(s, s, t)

+
z

s

∂2
pG(z, p, t)ΔAK(p, s, t)−G(z, p, t)ΔA∂2

pK(p, s, t)dp .

(D.34)

By considering (D.30) the terms in the parenthesis can be simplified to ΔAGd(z, z, t)∂zK(z, s, t)+

∂sG(z, s, t)Kd(s, s, t)ΔA. With this, and taking into account that ΔA is diagonal (D.34) can

be written as

∂sG
d(z, z, t)ΔAK(z, s, t) +G(z, s, t)ΔA∂zK

d(s, s, t)

− ∂sG(z, s, t)ΔAKd(s, s, t)−Gd(z, z, t)ΔA∂zK(z, s, t)

=
z

s

∂2
pG(z, p, t)ΔAK(p, s, t)−G(z, p, t)ΔA∂2

pK(p, s, t)dp .

(D.35)

Then, extending the integrand with 0n,n = ∂pG(z, p, t)ΔA∂pK(p, s, t)−∂pG(z, p, t)ΔA∂pK(p, s, t)

allows to split the remaining condition (D.35) into the two identities

∂sG
d(z, z, t)ΔAK(z, s, t)− ∂sG(z, s, t)ΔAKd(s, s, t)

=
z

s

∂2
pG(z, p, t)ΔAK(p, s, t) + ∂pG(z, p, t)ΔA∂pK(p, s, t)dp ,

(D.36)

Gd(z, z, t)ΔA∂zK(z, s, t)−G(z, s, t)ΔA∂zK
d(s, s, t)

=
z

s

G(z, p, t)ΔA∂2
pK(p, s, t) + ∂pG(z, p, t)ΔA∂pK(p, s, t)dp ,

(D.37)

which are obviously fulfilled for all (z, s, t) ∈ DK( N)×R+
t0 by applying the fundamental theorem

of calculus again, c.f. (D.28) and (D.29).

Again, with this it can be concluded that if the strategy non-commutative compensation is

applied for the computation of the backstepping kernel K and for the calculation of the kernel

G then the compensation terms H and J fulfil the TCC.

Now, in summary the evidence of the TCC allows to make further conclusions, i.e., with TCC

satisfied (5.10) or (5.11), respectively, are applicable by all means. This further ensures that the

backstepping transformation (5.6) between the target state w and the error state x̃c together
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with its inverse (5.7) are still valid for both compensation strategies. Moreover, if one of the

kernels is diagonal, then the corresponding kernel of the inverse transformation is diagonal as

well. Finally, it has to be pointed out that the same conclusion applies to the strategies for the

observer design developed in Section 5.2.
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