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Abstract
The cumulative thesis is concerned with the development of numerical simulation models
for slack belt drives. For this sake, classic Lagrangian finite elements are inefficient as
they require uniform meshes or frequent re-meshing. Additionally, they are prone to
produce spurious numeric oscillations because of the ever recurring motion of nodal points
across the contact zone boundaries. The mixed Eulerian–Lagrangian (MEL) kinematic
description overcomes these deficiencies by means of a transformation that replaces the
axial material coordinate with a spatial one, which is aligned with the primary direction
of axial motion.

In continuation of previous research, we apply the MEL approach for the first time to
the benchmark problem of a two-pulley belt drive. The introduction of a problem-specific
compound coordinate system with a looped spatial coordinate allows to decouple the
gross axial motion of material particles in circumferential direction from the transverse
deflections of the belt. Finite elements based on this novel description reside at fixed
points of the looped Eulerian coordinate, while material is transported through the mesh
in axial direction.

We consider planar string and rod models of the belt and verify the finite element
simulations against semi-analytic reference solutions, as obtained through numerical
integration of the corresponding boundary value problems. A spatial parametrisation of
the primary fields facilitates the deduction of the governing system of ordinary differential
equations, which is later restated in a form accessible to standard purpose solvers. We
seek slack static configurations of the belt in frictionless contact with the pulleys, simulate
the quasistatic transient run up or compute the steady-state motion. In regard to the
latter, a novel iterative concept is developed that avoids the time consuming simulation
of the transient motion and enables a direct solution of the stationary problem in the
finite element framework. The assumed Coulomb dry friction law amounts to a belt
creep theory type of solution in the contact domains. In general, the iterative augmented
Lagrangian multiplier method is the preferred strategy to enforce the contact constraints
in the finite element schemes, but it fails in certain cases owing to the particularities of
the contact response of the employed structural theories; then, the inherently simpler
penalty regularisation method is used instead.

In the framework of the industrial cooperation project LaLaBand, funded by the
Austrian Research Promotion Agency, grant number 861493, we develop a shell finite
element model in MEL kinematic description for the simulation of the phenomenon of
lateral run-off in a slack steel belt drive with account for the geometric imperfections of the
belt as well as the tilting motion of the steering drum. Coulomb dry friction is replaced
with an elastic contact model for simplicity and increased robustness of the scheme. The
construction of consistent finite element approximations in the MEL formulation for
the shell requires the introduction of various extended shape functions to satisfy the C1

continuity condition. The successful validation of the shell finite element model against a
series of physical experiments concludes the application oriented part of the research.
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Kurzfassung
Die vorliegende kumulative Dissertation befasst sich mit der Entwicklung strukturmechani-
scher Simulationsmodelle für schwach gespannte Riemen- und Bandtriebe, für die sich die
übliche Lagrange’sche kinematische Beschreibung als ineffizient erweist. Im Kontext der
Methode der finiten Elemente erzwingt die strikte Bindung von Knoten und materiellen
Punkten eine Mitführung der Knotenpunkte in Umfangsrichtung. Dieser axiale Transport
ist ineffizient, weil er ein feines Diskretisierungsniveau für das gesamte Modell erfordert
(für einen Umlauf durchläuft jeder Punkt die Kontaktzonen), und zudem einen stark
veränderlichen Zeitverlauf der mitbewegten Zustandsgrößen bewirkt, der von numerischen
Störungen zufolge des Ein- und Austritts von Knotenpunkten in den Kontaktbereich
überlagert ist.

Die ursprünglich für axial bewegte Strukturen mit einfacher Geometrie eingeführte
Euler–Lagrange’sche Beschreibung (engl. Abk. MEL für „mixed Eulerian–Lagrangian“)
hat diese Nachteile nicht. Sie beruht auf einer gemischten Parametrisierung des Lagevek-
tors mithilfe einer in Hauptbewegungsrichtung der Struktur ausgerichteten räumlichen
Koordinate und einer der Dimension des Raumes entsprechenden Anzahl von materiellen
Koordinaten, die die Deformationen in transversaler Richtung erfassen. Dieser Koordina-
tenwechsel erlaubt die Konstruktion problemspezifischer finite Elemente Modelle mit in
Fortbewegungsrichtung fixierten Elementen, die vom Material durchflossen werden.

Im Rahmen der Dissertation wird die MEL kinematische Beschreibung weiterentwickelt
und erstmalig für schwach gespannte Riemen- und Bandtriebe adaptiert. Um die axiale
Bewegung in der Hauptrichtung von den Deformationen in transversaler Richtung zu
trennen, wird eine geschlossene, der Geometrie des Riementriebes angepasste, räumli-
che Koordinate eingeführt. Es werden verschiedene finite Elemente Modelle auf Basis
klassischer strukturmechanischer Theorien für Seile und Balken zur Lösung folgender
Problemstellungen entworfen: der statisch auf den Scheiben hängende Riemen, das qua-
sistatische (langsame) Anlaufen und die stationäre (eingelaufene) Bewegung. Letztere
kann mithilfe eines neu entwickelten Lösungskonzepts für finite Elemente direkt bestimmt
werden, d.h. ohne zeitintensive Simulation der transienten Phase. Die iterative Methode
der erweiterten Lagrange Multiplizierer zur Modellierung der Coulomb’schen Reibung
scheitert zum Teil an numerischen Schwierigkeiten im Zusammenhang mit dem speziellen
Verhalten klassischer Balkentheorien in Kontaktproblemen; in solchen Fällen wird auf die
einfachere Strategie mit Straftermen (Penalty) zurückgegriffen.

Semi-analytische Vergleichslösungen durch numerische Integration der entsprechenden
Randwertprobleme werden zur Validierung der Simulationsergebnisse herangezogen und
tragen, insbesondere im Hinblick auf die Besonderheiten im Kontaktbereich, zu einem
tieferen Verständnis der Mechanik bei. Der explizit vollzogene Koordinatenwechsel von
der materiellen zu einer räumlichen Koordinate betont den Unterschied zwischen den
beiden Perspektiven und erlaubt eine zeitinvariante Darstellung des stationären Problems
als System gewöhnlicher Differentialgleichungen.

Im Rahmen des von der Österreichischen Forschungsförderungsgesellschaft FFG finan-
zierten Industrieprojektes LaLaBand, Identifikationsnummer 861493, wird ein Schalen
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finite Elemente Modell zur Simulation des lateralen Laufverhaltens von schwach gespann-
ten Prozesstahlbändern entwickelt. Geometrische Imperfektionen des Stahlbandes führen
im Betrieb zum lateralen Verlaufen auf den Trommeln, d.h. zu einem Ablaufen in Richtung
der Trommelachsen. Das mittels Experimenten am Teststand validierte Simulationspro-
gramm erlaubt eine Identifikation der kritischen Imperfektionen und trägt zur Entwicklung
verbesserter Regelsysteme bei.
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1. Introduction and scientific context
The function of countless mechanical systems such as bicycles, band-saws, cable-cars,
audio-cassettes or conveyor systems to name but a few, relies on the operation of axially
moving structures like: chains, cables, tapes or belts. Owing to this richness of different
applications and the long standing tradition of research on axially moving structures, the
available literature on this topic is rather extensive: from classic contributions concerned
with transmission belt drives in the framework of Reynold’s belt creep theory [1, 2] or
Firbank’s shear-theory for rubber belts with tensile cords [3], vibration studies on band-saw
blades [4] or stability of moving beams [5], to research on Schallamach detachment waves
in drives with high friction coefficient [6] and simulations of metal forming processes [7,
8], reeling analyses of composite oil pipes [9, 10] or the tailhook-catching of a plane on an
aircraft carrier with an arresting cable system [11].

The contribution of the cumulative thesis to this lively field of research amounts to
the further development of the mixed Eulerian–Lagrangian (MEL) kinematic description
and its first application to slack belt drives utilizing a unified approach based on classic
structural theories of rods or shells. In continuation of our past research on axially
moving structures, which comprises the establishment of the MEL kinematic formulation
[12, 13], its first applications to idealised belt drive systems [14, 15] and metal forming
processes [8] as well as the study of dynamic oscillations of axially transported planar
rods and strings [16], we implement the MEL kinematic formulation for the first time
in a compound coordinate system that follows the geometric contour of the considered
benchmark problem in a natural way and, thus, allows for an easy parametrisation of large
transverse deflections. At heart, the MEL kinematic description rests upon a coordinate
transformation from the axial material (Lagrangian) coordinate s to a spatial (Eulerian)
coordinate σ; the parametrisation of a point in space is then truly mixed and given by
the Eulerian variable σ and a corresponding number of material coordinates to account
for deflections in transverse direction of the spatial contour.

In regard to finite element modelling for axially moving structures, the MEL approach
allows for the transport of material across element boundaries in the primary direction of
axial motion. In contrast, the nodal points of an element in classic Lagrangian description
are obliged to move with the material particles. This entrained motion is particularly
inefficient for the simulation of slack belt drives with large span width, as it requires a
uniformly fine discretisation to ensure a sufficient resolution of the belt-to-drum contact
at all times (each element passes through the contact domains in the course of a single
revolution of the drive). Moreover, the continuous transport of nodal points across the
contact zone boundaries induces spurious numerical oscillations with a mesh-size dependent
frequency. The change of variable introduced in the MEL approach resolves this issue and
facilitates spatially refined meshes, which increases computational efficiency; see [15] for a
comparison of the different approaches in the example problem of an idealised belt drive.

The MEL formulation falls into the category of the well-known Arbitrary Lagrangian
Eulerian (ALE) approaches. Contrary to traditional forms of ALE, which feature complic-
ated mapping procedures between different parametrisations of the mechanical system [17,
18], the MEL strategy seeks a direct solution in the mixed coordinate space. Furthermore,
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the problem-specific parametrisation with a fixed Eulerian coordinate contributes to the
convergence of simple time-integration routines and avoids the definition of a redundant
set of unknowns, as opposed to modern ALE formulations related to flexible multibody
dynamics [19, 20].

Several articles, which comprise the present thesis, are concerned with different kinds of
rod models. In these papers we assume a Coulomb type of frictional contact to govern the
belt-to-pulley interaction. In general, we refer to [21] for a review of established contact
models and to [22] concerning the implementation in the finite element context. Here,
we pursue an augmented Lagrangian strategy following the return-mapping algorithm
originally proposed in [23], but employ the inherently simpler penalty regularisation
approach in case the augmented procedure fails due to certain numerical difficulties, to be
discussed in Sect. 6.3. Whenever feasible, semi-analytic solutions via numerical integration
of the governing boundary value problem are computed to verify the corresponding finite
element simulations and to provide a profound understanding for the behaviour of the
classic structural theories; special attention is paid to the contact response in the presence
of Coulomb dry friction. The primary distinctive features of the studies in the framework
of planar rod theory in comparison to the ones available in the literature regarding
analytical strategies, see [24, 25], as well as finite element modelling, see [26, 27], are:

• the MEL kinematic description in a compound coordinate system

• the focus on slack configurations with account for large transverse deflections in the
field of gravity

• the rigorous unified approach to model the looped belt as a continuous structure

• the compound spatial parametrisation of variables in the boundary value problems,
which accentuates the differences between the descriptions with spatial, hybrid and
material coordinates

Beyond that, we develop a three-dimensional shell finite element model, see Paper E , to
simulate the lateral run-off of a slack steel-conveyor belt in the framework of the industrial
cooperation project LaLaBand, funded by the Austrian Research Promotion Agency
(FFG), grant number 861493. This advanced formulation accounts for misaligned drum
axes and geometric imperfections of the belt, which are introduced as intrinsic strains
in the reference configuration, see [28, 29], employs a simplified elastic contact model
in resemblance of belt-shear theory, see [30, 31], and requires extended shape functions
to fulfil the C1 continuity condition in the MEL kinematic description, see Sect. 7.2. It
combines these features in an application-oriented scheme that allows for a justifiably
accurate simulation of the lateral run-off in the – owing to the extreme membrane stiffness
of a thin steel structure – adverse parameter range of a steel conveyor belt.
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2. Problem statement and research goals

The work comprising this cumulative thesis continues the research and development of the
mixed Eulerian–Lagrangian kinematic (MEL) approach, originally proposed to surmount
the inherent deficiencies encountered when relying on the classic material (Lagrangian)
description for the simulation of axially moving structures. In particular, it aims for an
implementation of the MEL description in the benchmark problem of a slack two-pulley
belt drive, depicted in Fig. 1. Corresponding finite element formulations and, if feasible,
analytic strategies are developed following a unified approach based on different structural
theories for the looped belt.

Simulation results obtained for planar rod problems of varying complexity are insightful
regarding the general mechanics of slack belt drives and yet simple enough to be verified by
means of semi-analytic reference solutions. This provides a solid basis for the development
of an advanced shell finite element scheme aimed at the simulation of the lateral run-off
of a steel belt drive with account for geometric imperfections and misaligned drum axes
in the framework of the industrial research project LaLaBand.

To outline the methodical foundation of the thesis, we shall address the structural
theories in the usual material (Lagrangian) description in Sect. 3 and Sect. 4, proceed
with the MEL kinematic formulation for the belt drive problem in Sect. 5, explain the
numerical treatment of frictional contact in Sect. 6, and conclude with a discussion of
some finite element related aspects in Sect. 7. The five refereed contributions, which
comprise the thesis (four journal publications and one book chapter) are shortly discussed
in Sect. 8, where also the contribution of the author of the dissertation is presented in
brief.

3. Geometrically nonlinear theory of rods in plane

We consider a planar rod as a one-dimensional continuum of material particles that is
parametrised with the material arc coordinate s ∈ [0, L] and placed in the xy-plane with
Cartesian basis {i, j} and normal direction k = i × j. With the out-of-plane motion
being constrained, we formally assign three degrees of freedom (two translations and one
rotation) to each material particle. For the derivations ahead, we employ the following
conventions: Greek indices take the values α = {1, 2}, Einstein’s summation convention
applies to repeated indices, a prime denotes derivatives with respect to s and a dot
corresponds to a total time derivative.

In the tradition of the director formulation for structural theories, see [32–34], we
picture the deformation of a single material particle as a shift of its position from the
undeformed reference state ◦

r to the actual one r further accompanied by a co-rotating,
orthogonal basis eα. The out-of plane direction remains k = e1 × e2 and an angle θ is
introduced to relate the actual basis to the reference one:

e1 = ◦
e1 cos θ + ◦

e2 sin θ, e2 = −◦
e1 sin θ + ◦

e2 cos θ. (1)

3



ζ1
ζ2

s1

s2
s3s4s5

x

y

z
ω

ω

Figure 1: Model of a simple belt drive featuring a slack looped belt and two cylindrical
drums operating at constant speed ω.

For the derivations ahead, it is efficient to define a rotation tensor P:

P = eα
◦
eα + kk, eα = P · ◦

eα (2)

to take care of the finite rotations of the material basis; the extension with the dyadic
product of the out-of-plane direction k ensures regularity. We make use of the notion of
dedicated vectors, to state the derivative and the variation of the rotation tensor:

P� = θ� k × P, δP = δθ k × P. (3)

In the framework of the direct approach [35], the principle of virtual work for a segment
of the rod s0 ≤ s ≤ s1 is determined by the particular choice of particle degrees of freedom:� s1

s0

��
q − ρ r̈

�
· δr +

�
m − I θ̈

�
δθ − δŨ

�
ds +

�
Q · δr + M δθ

�


s1

s0
= 0, (4)

which features the virtual displacements δr and rotations δθ. The virtual work of internal
forces equals the negative variation of an elastic potential Ũ . The distributed external
forces q and moments m pair up with the corresponding inertia terms that feature the
mass per unit reference length ρ and the moment of inertia I, respectively. The planar
force Q(s) and bending moment M(s) act on the boundaries of the considered segment
from the adjacent parts of the rod (s < s0 on the left, s > s1 on the right). After
incorporation of the boundary terms under the integral by means of partial integration,
we argue that the integrand itself must vanish owing to the arbitrariness of variations:�

Q� + q − ρ r̈
�

· δr +
�
M � + m − I θ̈

�
δθ − δŨ + M δθ� + Q · δr� = 0. (5)
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Since the internal forces produce no work in absence of elastic deformations, we specify a
small rigid body motion:

δr = δr̄ + δθ̄ k × r, δθ = δθ̄, (6)

with constant independent variations δr̄ and δθ̄, to obtain the balance equations:

Q� + q = ρ r̈, M � + m + k · �
r� × Q

�
= I θ̈. (7)

Backward-substitution in (5) yields the constitutive relation:

δŨ = Q · �
δr� − δθ k × r�� + M δθ�, (8)

which we now aim to write as a linear form with the variations of independent strain
measures. For this sake, we introduce a promising candidate to account for axial and
shear strains:

Γ = r� − P · ◦
r�, (9)

and study the variation of its components in direction of the material basis vectors:

δΓα = δr� · eα + r� · δeα +
�
δP · ◦

r�� · eα +
�
P · ◦

r�� · δeα. (10)

With (2) and (3), this allows to rewrite (8) as:

δŨ = Qα δΓα + M δθ�, (11)

from which we conclude that the strain energy density is a function of the independent
strain measures:

Γα =
�
r� − P · ◦

r�� · eα, κ = θ�. (12)

For the considered cases with symmetric rectangular cross-sections and small strain
magnitudes, a simple quadratic form suffices:

Ũ = 1
2 a κ2 + 1

2 bα Γ2
α, (13)

where a, bα denote the stiffness coefficients for bending, extension and shear. The
generalised forces are obtained through partial differentiation of the strain energy density:

M = ∂Ũ

∂κ
= a κ, Qα = ∂Ũ

∂Γα
= bα Γα. (14)

This concludes the derivation of the governing set of equations for the Cosserat theory
of shear-deformable rods, which comprises the above constitutive relations, the strain
definitions (12) as well as the balance equations (7). It constitutes the most general
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formulation for the considered kind of planar rod theory with three particle degrees of
freedom. That is to say, extended theories require a different assumption concerning the
kinematic abilities of each material particle. For example, in the framework of the above
utilized director formulation of rods with a co-rotating material basis, a length variation
of the basis vector e2 could be considered as an additional degree of freedom. This would
capacitate the corresponding non-classic rod to exhibit transverse normal strains, which
may have a significant impact in problems involving contact, see [36, 37].

Emanating from the above deduced Cosserat theory of planar rods, we can easily switch
to the alternative theories for unshearable rods or extensible strings by imposing certain
kinematic constraints and considering some of the stiffness coefficients to vanish:

unshearable rod: Γ2 = 0 (15)
extensible string: a = 0, b2 = 0. (16)

The condition Γ2 = 0 constrains transverse shear and ensures that the tangential direction
of the rod axis r� coincides with the normal direction of the cross-section e1. The ideally
flexible string can bear neither bending moments nor transverse forces, which means that
the balance of angular momentum in (7) can be disregarded. Any kinematic constraint
reduces the number of available constitutive relations (14) by one. As a consequence of
constrained transverse shear, the axial strain component simplifies to:

Γ1 =


r�

 − 1, (17)

which is known as Biot strain, as opposed to the Green strain measure:

ε = 1
2

�
r� · r� − 1

�
. (18)

The Biot-type is generally preferred for analytic studies, as it does not require the
introduction of a conjugate generalised force to produce the same virtual work with δε
as the axial force Q1 does with δΓ1. On the other hand, the quadratic nature of the
Green-type makes it advantageous for the implementation in numerical simulation models.
Both measures agree up to first order for small strains.

Semi-analytic solutions for the different belt-drive problems considered in the research
articles are obtained by means of a numerical integration of a closed boundary value
problem. In the context of belt drives, these problems consist of a number of individual
solution segments, which fall into one of three categories: free span, sticking zone or
sliding zone. The matching conditions at each transition point between two segments
constitute the boundary conditions to determine the unknown integration constants as well
as the positions of the transition points themselves (boundaries of each solution segment).
Standard coordinate transformation techniques are used to reformulate the boundary
value problem with unknown boundaries in a form applicable to standard purpose solvers.
Simple homotopy strategies are employed to obtain solutions for problems, which are
numerically ill-conditioned.
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4. Nonlinear theory of shells with geometric imperfections

We refer to [35, 38, 39] for the derivation of the governing equations of classic shells and
focus on the introduction of geometric imperfections as pre-strains in the elastic strain
energy of a Kirchhoff–Love shell, which we specify as a quadratic form:

U = 1
2

�� �
A1 (trE)2 + A2 E · ·E + D1 (trK)2 + D2 K · ·K

�
d

∗
A. (19)

The area element d
∗

A relates to the unstressed initial configuration and the stiffness
coefficients Aα and Dα define the elastic response to a membrane straining and bending
of the structure, respectively. The corresponding strain tensors read:

E = 1
2

�
FT · a · F − ∗a

�
, K = FT · b · F − ∗

b, (20)

with the deformation gradient tensor F as well as the first and second metric tensors a, b
and their counterparts of the initial configuration ∗a,

∗
b.

For the sake of the introduction of geometric imperfections, we view the total deformation
from the initial state to the actual one ∗

r → r as a two-step process ∗
r → ◦

r → r with an
intermediate reference configuration ◦

r, as depicted in Fig. 2. The membrane pre-straining
of the simple rectangular reference configuration ◦

r is accomplished by the deformation
gradient tensor

∗
F that accounts for the stretching of infinitesimal length elements d ∗

s to
elements ds of uniform reference length. In the most general case, we imagine the initial
state ∗

r to be composed of a sequence of arbitrarily shaped plate-stripes. With regard to
steel belt drives, infinitesimal trapezoids suffice to account for a certain pre-tension level
and to model a belt with side edges of different lengths, which is referred to as “camber”
imperfection in practice, see Paper E .

The metric tensors are most concisely stated with the help of planar nabla operators,
which we implicitly define by means of the total differential of a field f :

df = d ∗
r · ∗∇f, df = d ◦

r · ◦∇f, df = dr · ∇f. (21)

The three operators { ∗∇,
◦∇, ∇} feature partial derivatives with respect to the material

coordinates and are dedicated to the undeformed initial configuration, the pre-strained
reference configuration and the deformed state, respectively. The corresponding metric
tensors read:

∗a =
∗∇ ∗

r,
◦a =

◦∇ ◦
r, a = ∇r, (22)

∗
b = − ∗∇ ∗

n,
◦
b = − ◦∇ ◦

n, b = −∇n. (23)

The unshearability constraint imposed by the Kirchhoff–Love theory requires the normal
vector n to remain orthogonal to the deformed surface. This amounts to a C1 continuity
condition for the construction of consistent finite element approximations, which proves
difficult to satisfy in the proposed mixed Eulerian–Lagrangian framework, see Sect. 7.2.
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Figure 2: Introduction of geometric imperfections in the shell model: The initial state ∗
r

comprises a sequence of infinitesimal plate stripes and induces strains in the
rectangular reference configuration ◦

r, which is deformed further to yield the
actual state r. This two-step process is accomplished through a multiplicative
decomposition of the deformation gradient tensor F.

The three kinds of deformation gradient tensors, which relate to the deformation steps
visualised in Fig. 2, are stated as:

∗
F =

� ∗∇ ◦
r

�T
,

◦
F =

� ◦∇r
�T

, F =
� ∗∇r

�T
. (24)

It is noteworthy that the specification of
∗
F already suffices to recover the metric ∗a and, as

demonstrated in the following, to substitute the differential operator
∗∇. Thus, we do not

require an explicit representation of the initial state ∗
r, which we cannot provide for an

incompatible choice anyway. To relate the above tensors, we evaluate the total differential
of the position vectors of the actual and the reference state following (21):

dr = d ∗
r · ∗∇r = d ◦

r · ◦∇r, d ◦
r = d ∗

r · ∗∇ ◦
r, (25)

which, after substitution of the second in the first formula, yields the multiplicative
decomposition of the total deformation gradient tensor, see [28, 29]:

F =
◦
F · ∗

F. (26)

This formal decoupling of different parts of the complete deformation presents an easy way
to incorporate geometric imperfections by means of intrinsic strains in a reference config-
uration ◦

r, which, owing to its simple prescribed shape, is well suited for parametrisation
with material coordinates. In all studies on belt drives conducted so far, we assumed the
initial configuration ∗

r of the belt to be flat; an initial curvature as additional imperfection
could be easily incorporated by a nontrivial choice for

∗
b.
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5. Mixed Eulerian–Lagrangian kinematic description of a belt
drive

As the most general case studied so far, we shall focus on the mixed kinematic description
for the three-dimensional belt drive setup used for parametrisation of shell finite elements
in Paper E ; the corresponding descriptions for the planar problems studied in the other
articles follow by analogy. That said, the MEL-parametrisation of the position vector of
the shell r is actually best illustrated with a planar projection of the belt drive system, see
Fig. 3. The origin of the Cartesian spatial system {i, j, k} is placed in the centre between
the two drums. The key to the MEL-description lies in an alternative parametrisation of
space featuring the circumferential spatial coordinate σ as well as the transverse deflection
ν and the lateral (out-of-plane) deflection z; the latter two describe a displacement in
planes orthogonal to coordinate lines of σ. The corresponding unit directions {tg, ng, k}
constitute an orthonormal basis. In this compound coordinate system, which alternates
between two outer polar (cylindrical) and two inner Cartesian regions, the position vector
of a material point of the shell reads:

r(σ, ζ) = g(σ) + ν(σ, ζ) ng + z(σ, ζ) k, (27)

where g(σ) follows the contour of a deflection-less belt, i.e. the geometric contour of the
drive with length Lgeom = 2H + 2Rπ, where R and H denote the drum radius and the
drum centre-to-centre distance, respectively. Hence, instead of a parametrisation with the
usual Lagrangian coordinate pair {s, ζ}, the MEL description (27) defines r as a function
of the looped spatial coordinate σ and the material width-coordinate ζ. Technically, this
modification rests upon a coordinate transformation from the axial material coordinate s
to its spatial counterpart σ:

s = S(σ, ζ). (28)

In the context of finite element kinematics this means that {s, ν, z} are considered
as primary unknowns for which appropriate finite element approximations need to be
constructed, whereas {σ, ζ} serve as parametrisation coordinates with correspondence to
the local finite element coordinates {q2, q1}, respectively.

The elastic strain energy (19) is defined in terms of material derivatives of the primary
variables:

◦
∂s{s, ν, z} = ∂{s, ν, z}

∂s






ζ=const

,
◦
∂ζ{s, ν, z} = ∂{s, ν, z}

∂ζ






s=const

, (29)

with the operator
◦
∂, as opposed to its Eulerian–Lagrangian counterpart ∂:

∂σ{s, ν, z} = ∂{s, ν, z}
∂σ






ζ=const

, ∂ζ{s, ν, z} = ∂{s, ν, z}
∂ζ






σ=const

. (30)
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Figure 3: Mixed parametrisation of the shell position vector r featuring the spatial cir-
cumferential coordinate σ and the material width-coordinate ζ.

Likewise, we denote the total (material) and the local (spatial) time derivatives as:

◦
∂t{s, ν, z} = ∂{s, ν, z}

∂t






s,ζ=const

, ∂t{s, ν, z} = ∂{s, ν, z}
∂t






σ,ζ=const

, (31)

such that the total derivative of any field in MEL description can be split up into a
convective and a local term, for example:

◦
∂ts = 0 =

◦
∂tS = ∂σS

◦
∂tσ + ∂tS. (32)

In the special case of a steady state with constant material transport rate ∂tS = −c and
a stationary distribution of material particles (time-invariance of ∂σS), we can integrate
this equation in time with the initial condition S(σ, ζ, 0) = ξ to obtain:

S = ξ − ∂σξ
◦
∂tσ t = ξ − c t. (33)

For the particular choice σ = ξ, this kind of transformation to a time-invariant variable ξ
is frequently applied in the literature for the analytical treatment of steady-state problems,
see [40]. The above formulation emphasizes the difference of parametrisation with a truly
spatial coordinate σ, in contrast to a hybrid coordinate ξ that inherits the stretching of
material length elements (∂ξS = 1).

In order to write the components of the metric tensors in terms of the derivatives with
respect to the mixed parametrisation coordinates (30), we deduce some transformation
formulas: ◦

∂ss = 1 =
◦
∂sS = ∂σS

◦
∂sσ + ∂ζS

◦
∂sζ,

◦
∂ζs = 0 =

◦
∂ζS = ∂σS

◦
∂ζσ + ∂ζS

◦
∂ζζ,

(34)
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which, due to
◦
∂sζ = 0 and

◦
∂ζζ = 1, simplifies to:

◦
∂sσ = (∂σS)−1,

◦
∂ζσ = −(∂σS)−1 ∂ζS. (35)

With the material derivatives of the deflection variables {ν, z} in analogy to (34):

◦
∂sν = ∂σν

∂σS
,

◦
∂ζν = ∂ζν − ∂ζS

∂σS
,

◦
∂sz = ∂σz

∂σS
,

◦
∂ζz = ∂ζz − ∂ζS

∂σS
, (36)

the sought-after material derivatives of the position vector r expand to:

◦
∂sr = (1 + αν) 1

∂σS
tg + ∂σν

∂σS
ng + ∂σz

∂σS
k,

◦
∂ζr = − (1 + αν) ∂ζS

∂σS
tg +

�
∂ζν − ∂ζS

∂σS
∂σν

	
ng +

�
∂ζz − ∂ζS

∂σS
∂σz

	
k.

(37)

Here, we have introduced the piecewise constant α to denote the derivatives of the unit
vectors {tg, ng} of the geometric contour g, see Fig. 3:

∂σg = tg, ∂σtg = −α ng, ∂σng = α tg. (38)

In particular, α = 0 holds in the Cartesian and α = 1/R holds in the polar domains of
the compound coordinate system. That is to say: α introduces a discontinuity of the
metric at the coordinate transition lines, where σ switches from Cartesian to polar or
vice versa. This poses a problem for the construction of consistent finite element ansatz
functions, which need to fulfil the C1 continuity requirement, i.e. the approximation of
the position vector must be continuous up to (and including) its first order derivatives
(37). The problem is overcome by means of augmented finite element approximations, see
the concluding remarks in Sect. 7.2.

6. Contact modelling for belt drives

This section features a discussion of the different approaches to model contact in the
proposed finite element schemes. It closes with some remarks regarding the behaviour of
constrained structural theories in problems of solid contact.

6.1. Augmented Lagrangian multiplier approach for dry friction contact

The here studied problem of a looped belt in frictional contact with two rigid cylindrical
drums may be formulated as a constrained variational problem: The principle of virtual
work is accompanied by constraints, usually stated as Kuhn–Tucker conditions, see [22],
to enforce the Coulomb frictional model.

The two traditional strategies to reach an unconstrained formulation that is accessible
to standard finite element solvers are: the penalty regularisation method and the Lagrange
multiplier method. The penalty regularisation procedure invokes high contributions to
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the total energy in case of a violation of the contact constraints. It is easy to implement
and preserves the small bandwidth structure of the finite element system of equations,
but it is inherently approximate and has a limited practical accuracy as high penalty
factors induce numerical ill-conditioning. The Lagrangian multiplier method on the other
hand incorporates the constraints directly into an extended system of equations. The
introduction of the Lagrange multipliers enables an identical fulfilment of the contact
constraints, but proves numerically inefficient owing to the enlarged system of equations
and the loss of its favourable symmetric structure.

The augmented Lagrangian multiplier method combines the essential features of the two
classic approaches and circumvents their drawbacks. At heart, it is a slightly extended
penalty regularisation scheme that is accompanied by an outer-loop aimed at solving
the original Lagrange multiplier problem by means of an iterative update of Lagrange
multiplier estimates. The different variants of the augmented Lagrangian procedure
employed for the treatment of Coulomb frictional contact in our research are based on
the algorithm presented in Tab. 1 and originally proposed in [23]. It features rules for
the detection of the contact state, the evaluation of the contact tractions as well as the
update of the Lagrange multiplier estimates. Contact detection, which amounts to the
evaluation of the penetration depth γ, is trivial for the pairing of a rigid cylindrical drum
with a belt wrapped around it, but is generally considered one of the primary challenges
of contact modelling, again see [22]. A positive penetration γ of the belt into the drum
surface invokes a contact pressure τγ with a penalty factor Pγ .

The tangential contact is resolved by means of a return-mapping algorithm that is
frequently applied to problems of frictional contact and metal plasticity, see for example
[41]. It introduces an auxiliary traction vector ∗

τ under the assumption of stick to evaluate
the friction criterion Φ (yield function). If Φ < 0 holds, i.e. the trial-state remains within
the Coulomb friction cone (yield surface), ∗

τ ⊥ equals the actual traction. Sliding is detected
with Φ ≥ 0 and the return-mapping scheme is invoked to ensure that τ ⊥ comes to rest on
the friction cone; the unit direction e of the auxiliary vector ∗

τ ⊥ determines the sliding
direction. It is noteworthy that the above introduced frictional tractions τ ⊥ are aligned
with the tangential displacements u and, thus, point in opposite direction of the physical
tractions; obviously, this holds for ∗

τ ⊥ and λ⊥ alike.

normal contact sticking contact sliding contact
detection γ > 0 Φ < 0 Φ ≥ 0
evaluation τγ = λγ + Pγγ τ ⊥ = ∗

τ ⊥ τ ⊥ = ητγe

update λγ ← λγ + Pγγ λ⊥ ← λ⊥ + P⊥u λ⊥ ← ητγe

with Φ = | ∗
τ ⊥| − ητγ ,

∗
τ ⊥ = λ⊥ + P⊥u, e =

∗
τ ⊥

|∗
τ ⊥|

Table 1: Contact detection, evaluation and update scheme for the augmented Lagrangian
modelling strategy
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The update of the Lagrangian multiplier estimates λγ and λ⊥ resembles a simple fixed
point iteration scheme. The current estimates augment the penalty formulation of the
traction components and are regarded constant in the principle of virtual work that
features the contact contributions:

δVγ =
��

γ>0

τγ δγ J dσ dζ, δV⊥ =
��

γ>0

τ ⊥ · δu J dσ dζ, (39)

which are written as variations of potentials and feature the Jacobian determinant J ,
whose specification depends on whether the contact forces should be counted per unit of
reference area or per unit of actual area. For the lack of a better term, we refer to Vγ and
V⊥ as “potentials” owing to their immediate connection to the virtual work of the contact
forces, however: V⊥ is non-conservative with the source of energy dissipation relating to
either Reynold’s belt creep theory in case of dry friction contact or Firbank’s shear theory
in case of the regularised elastic contact model discussed in Sect. 6.2. In addition, contact
establishment is detected with γ > 0 to exclude non-contacting areas, which means that
the derivative ∂Vγ/∂γ is not unique at the boundary γ = 0.

The numerical solution of the variational problem via Newton iterations and the update
of Lagrangian multiplier estimates alternate each other to obtain the solution for a single
load or time increment by means of convergence of the fixed point iteration scheme.
However, in some cases divergence is likely and a satisfactory convergence rate is difficult
to achieve. In particular, the here studied belt drive problems prove challenging owing
to the particularities of the contact response of constrained structural theories, to be
discussed in Sect. 6.3, as well as due to the adverse parameter setting of a slack belt with
high membrane stiffness. Though modifications to the basic scheme to remedy these issues
are reported in the literature [42], we either revert to the basic penalty regularisation
method or employ alternative integration rules in axial direction to promote convergence,
see Sect. 7.3. The corresponding penalty regularisation scheme is easy to retrieve from
Tab. 1 by setting λγ = λ⊥ = 0.

6.2. Regularised elastic contact model for steel belt drives

Convergence of the augmented Lagrangian contact approach, as presented at the 2019
annual meeting of GAMM, see [43], is difficult to achieve in the parameter range of a
slack steel belt. Therefore, we propose a simplified elastic contact model with full neglect
of sliding friction. It is based on the notion of an elastic interlayer to transfer the contact
forces between deformable belt and rigid drums and resembles the practically relevant
case of drums with a polymer wrapping. The good correspondence to the experimental
results obtained for steel-to-steel contact, as reported in Paper E , justifies the usage of
this substitutional model as a numerically robust alternative to other approaches that
aim at the exact enforcement of the dry friction contact constraints.

The effective stiffness coefficients of the intermediate layer, which are determined
through a study of simple deformation cases of a sample piece depicted in Fig. 4 under
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the assumption of small strains and a linear elastic constitutive behaviour, are inverse
proportional to the layer thickness d. Hence, the elastic response in case of a thin layer
with the contact potentials:

Vγ = 1
2

��
γ>0

P γ2 J dσ dζ, V⊥ = 1
2

��
γ>0

P⊥ u · u J dσ dζ, (40)

is closely related to a penalty regularisation procedure to enforce a pure-stick solution;
the stiffness coefficients of the wrapping P and P⊥ relate to penalty factors.

Contrary to the classic penalty regularisation, we need to account for the transport of
the shear deformations of the interlayer in axial direction (the wrapping is transported
with the drum). This gives rise to convective terms in the partial differential equation for
the field of the tangential deformations in mixed kinematic description u = u(σ, ζ):

∂tu =
� ◦
∂tr − ◦

∂tR
�

⊥ − ∂σu
◦
∂tσ, (41)

where ⊥ denotes a projection of 3D-vectors onto the tangential contact plane and R
represents the position vector of the dedicated point on the drum surface that coincided
with the shell position vector r at the instance of contact establishment. The notion of
dedicated particles whose different trajectories determine the deformation of the interlayer
is sometimes referred to as brush-model in the literature [31]. The above advection problem
is responsible for the axial motion of the belt as it introduces the prescribed angular
velocity via | ◦

∂tR| = ω. The additional convective term on the right would be absent in
the case of dry-friction contact, that is to say: the sliding velocity of a single point is fully
determined by the difference of the velocities of the dedicated particles. A semi-implicit
finite difference scheme with a finite time step Δt is applied to incorporate the above
advection problem into the finite element system of equations.

p
d

γ

dA

f
du

dA

a) b)

Figure 4: Simple deformation cases of a sample piece of the elastic interlayer with thickness
d to conclude on the effective stiffness coefficients.
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6.3. Remarks on the treatment of contact problems with constrained
structural theories

Constrained theories of structures exhibit a distinct behaviour when applied to solid
contact problems that does not always conform to the corresponding response of the solid
continuum body. This comes as no surprise, as the classic theories in the framework of
the asymptotic approach are obtained for the free part of the structure in a safe distance
to the boundaries; the so-called edge layer requires a different series expansion, see [44,
45]. Hence, when pursuing a unified approach to model the belt in the free span regions
as well as the contact zones with a single constrained theory, we must be aware that the
structure may not produce consistent results at the boundaries between the domains.

It is well known that both the Cosserat theory of rods as well as the corresponding
unshearable theory, obtained by imposing the constraint of shear-rigidity (15), produce an
unphysical distribution of the contact pressure τγ in proximity to the points of first and
last contact as compared to the solution of the contact problem for the elastic continuum,
see [25, 46, 47]. In particular, τγ should vanish at the contact zone boundaries, but it
remains finite for the Cosserat theory, see Paper D, and becomes unbounded for the
unshearable theory, see Paper A; the Kirchhoff–Love shell behaves just like the unshearable
rod, see Paper E . The discontinuity of the transverse force arising for the unshearable
theory is illustrated in Fig. 5a for the geometrically linearised problem of an initially
straight rod that is pre-tensioned with an axial force F and stands in frictionless contact
with a rigid stamp, see Paper A for the solution in the framework of the incremental
rod theory [35]; the corresponding solution for the Cosserat theory is visualised in Fig.
5b. Research conducted for different types of constrained rod theories revealed that the
neglect of transverse normal strains of the above classic theories is responsible for the
peculiar normal contact response. In other words: The incorporation of transverse normal
strains in an extended theory, which in the context of the director formulation of rods
relates to a length variation of the transverse unit vector e2 in (1), permits a consistent
distribution of the normal contact pressure, see [36, 37].

The coupling of normal and tangential contact forces in the sliding region for the
Coulomb frictional model induces concentrated contributions in the tangential component
τ ⊥ close to the run-off edge, where the belt leaves the contact zone; the tangential
deformation u exhibits corresponding peaks for the regularised elastic model described
in Sect. 6.2. Fine time steps and a locally refined mesh are required to resolve these
particularities, which is crucial owing to their immediate connection to a membrane
straining of the belt. In addition, the high gradients of the contact tractions at the contact
zone boundaries present a hindrance for the convergence of the iterative augmented
Lagrangian multiplier method, see Sect. 6.1; modified integration rules alleviate this issue
to some degree, see Sect. 7.3.

Though rod-to-surface frictional contact problems are not considered here, it is worth
mentioning another peculiarity arising in case of a partial transverse sliding motion of an
unshearable rod: As reported in [48], the solution in the slip zone of a heavy semi-infinite
Bernoulli–Euler beam resting on a rough plane surface with transverse loading at the tip
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Figure 5: Geometrically linearised problem of a rod in contact with a rigid stamp and
pre-tensioned by an axial force F : a) Unshearable rod theory: The normal
contact response features a constant pressure τγ in the interior and concentrated
contributions P at the boundaries; b) Cosserat theory: The contact pressure τγ

is maximal at the boundaries and tends to Dirac-discontinuities in the limiting
case of vanishing shear compliance.

features an infinite number of self-similar solution regimes with alternating direction of
the frictional force. The practical example of inhomogeneous cooling of long rails on a
rough surface after thermal treatment is considered in [49], and [50] establishes the same
kind of solution for an axially moving beam travelling across a rough surface.

Another aspect worth mentioning is the impact of the action line of frictional forces on
the solution of the belt drive problem, see [51–53]. The account for an eccentric action of
the tangential tractions gives rise to distributed bending moments m �= 0 in the balance
equation (7) of the rod theory. For simplicity and justified by the thinness of the belt in
the considered examples, we assume the frictional forces to act on the centre fibre.

7. Finite element related aspects
In this section we address the actual computation of finite element solutions, remark on the
construction of consistent finite element approximations and discuss the implementation
of mixed integration rules to remedy certain numerical issues.

7.1. Finite element solution of the contact problem
In the most general case, we seek a stationary value of the Lagrangian L:

δL = δU + δW + δVγ + δV⊥ − δT = 0 (42)

which corresponds to the formulation of Hamilton’s principle for stationary processes [54].
Owing to the automatic conservation of mass in the considered belt drive problems, the
above formula remains unchanged upon introduction of the MEL kinematic description;
corresponding modifications are necessary for open systems with changeable mass, see
[55, 56]. The contributions of the persistent inertia terms introduced through the kinetic
energy T are neglected frequently, in which case we simply seek a minimum of the total

16



potential energy comprising the elastic strain energy U , the potential of gravity W as well
as the contact potentials for normal contact Vγ and tangential contact V⊥.

The equations for increments of the nodal degrees of freedom in the displacement
based MEL finite element framework are solved with a standard Newton algorithm.
Static configurations of the hanging belt (no drum rotation, ω = 0) are computed with a
homotopy procedure that follows the solution path from tight configurations with negligible
transverse deflections to slack states with weak belt-tension and large sag. The quasistatic
transient motion is simulated as a sequence of minima of the total potential energy;
prescribed increments of the drum rotation ωΔt transport the belt in axial direction.

The belt has adopted a stationary state, if its deformed configurations at different times
t1 and t2 are visually indistinguishable, while the particles keep travelling through this
statically deflected state with a constant rate of material transport. In the proposed
mixed Eulerian-Lagrangian finite element kinematic description, this corresponds to
time-invariant solution in the primary variables.

7.2. Construction of finite element approximations
The approximations for the two-node rod finite element models are based on the linear
combination of nodal variables with the cubic ansatz functions:

ψ1(ξ) = 1
4(ξ − 1)2 (ξ + 2), ψ2(ξ) = 1

4(ξ − 1)2 (ξ + 1),

ψ3(ξ) = 1
4(ξ + 1)2 (−ξ + 2), ψ4(ξ) = 1

4(ξ + 1)2 (ξ − 1).
(43)

The shape functions with odd indices relate to the value of a primary unknown at the
nodal points ξ = ±1 and those with even indices define the nodal derivatives with respect
to the local coordinate ξ. The total number of degrees of freedom of a single element
depends on the employed structural theory.

The corresponding bi-cubic polynomials, originally proposed in [57] for plate bending
problems, for the discretisation of a field in the shell finite element model can be constructed
as products of these elementary functions. For example, Fig. 6 depicts the four ansatz
functions for the first node with local coordinates q1 = q2 = −1 in the shell model, defined
as:

Ψ1 = ψ1(q1) ψ1(q2), Ψ2 = ψ2(q1) ψ1(q2),
Ψ3 = ψ1(q1) ψ2(q2), Ψ4 = ψ2(q1) ψ2(q2),

(44)

which, in order of appearance, correspond to the value of the field itself, its first derivative
with respect to q1 and q2 as well as the mixed second order derivative. The latter is not
strictly required for satisfaction of the C1 continuity constraint imposed by the Kirchhoff–
Love theory, but guarantees that any bi-cubic polynomial can be approximated and, thus,
contributes to the completeness of the approximation, see [35, 58]. A single four-node
shell finite element with the primary variables {s, ν, z} features a total of 4 × 4 × 3 = 48
degrees of freedom.
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Figure 6: Basic bi-cubic shape functions Ψi of the first nodal point constructed as products
of the elementary cubic polynomials ψi.

The originally provided C1 continuity is lost as a consequence of the MEL kinematic
description owing to a discontinuity of the metric of the compound coordinate system.
Specifically, the derivatives of the unit vectors tg and ng become discontinuous at the
coordinate transitions of the circumferential coordinate σ, see Fig. 3. Extended approxim-
ations based on the above basic ansatz functions are constructed to overcome this issue.
The presence of the width coordinate ζ significantly complicates this process for the shell
model of the belt. As an inconvenient side effect, the augmented approximations become
quadratic in the nodal unknowns, which makes the computation of analytic derivatives
cumbersome.

7.3. Evaluation of element energies and mixed integration rules

As usual, numerical integration routines are applied for the evaluation of finite element
contributions to the total potential energy. Though preferred for accuracy reasons in
general, see [59], application of Gaussian quadrature rules in axial direction is problematic,
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because it promotes membrane locking and endangers the convergence of the contact
forces in the augmented Lagrangian scheme. Both issues are a consequence of the limited
kinematic abilities of the finite element approximations. As a thorough remedy, we
shall consider an enriched kinematic approach based on the isogeometric analysis in the
future, see [60, 61]; here we rely on the comparatively simple countermeasure of modified
integration schemes.

To illustrate the numerical phenomenon of membrane locking, we study the deformation
of an initially straight leaf spring to a semi-circle of the same length:

◦
r = s i, r = R sin

�
s

R

	
i + R

�
cos

�
s

R

	
− 1

	
j, s ∈ [0, Rπ] . (45)

The axial strains, see (17), vanish identically

Γ1 =


r�

 − 1 = 0, (46)

but the corresponding Cartesian finite element approximation with a single element in
the domain of the local coordinate ξ ∈ [−1, 1] with the basic cubic shape functions (43)
fails to reproduce this result. From Fig. 7 we conclude that the axial strains are best
sampled at the coordinates ξ = {−1, 0, 1}, which corresponds to the Simpson quadrature
rule; three points are required to avoid spurious deformations (hour-glassing because of
the under-constraining).

The ability of a displacement based finite element scheme to accurately predict certain
strain states depends on the level of distortion with respect to the element’s undeformed
reference state. In regard to the MEL finite elements in the compound coordinate system,
see Fig. 3, the phenomenon of membrane locking is most pronounced in proximity to
coordinate transition points, where the finite element parametrisation switches between
Cartesian and polar; i.e. initially curved polar elements are straightened and initially
straight Cartesian elements in the contact zone are bent to fit the drum’s curvature. Since
the shell finite elements essentially retain their initial shape in lateral direction, it is
appropriate to resolve the width direction with the standard three-point Gauss rule. The
proposed mixed integration scheme for the membrane energy of a shell finite element is
presented in Fig. 8a. It resembles more evolved MITC-strategies that feature independent
interpolations for the strains, which are connected to the displacement derived strains at
so-called tying points, see [62].

The standard integration routine to evaluate the work contributions of the contact
forces (39) in the shell model is a 2 × 2 Gaussian quadrature rule. Lagrange multiplier
estimates and the information concerning the frictional contact state are stored for every
integration point. However, in regard to the above mentioned convergence issues, the
mixed integration rule depicted in Fig. 8b, which employs the trapezoidal rule to place
the integration points on the element edges, is advantageous with the following reasoning:
The kinematic limitations of the element ansatz functions prevent the perfect adhesion to
the drum surface (γ = 0) in the interior of an element, see Fig. 7a, whereas evaluation at
the element edges in axial direction allows for a compliant deformation, thanks to the
immediate connection of γ to the nodal variables.
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Figure 7: On the phenomenon of membrane locking: a) Simple deformation of an initially
straight leaf spring to a semi-circle and its approximation by means of a single
Cartesian finite element; b) to reproduce the analytic solution Γ1 = 0 most
accurately, the finite element strains are best sampled at the points ξ = {−1, 0, 1},
which corresponds to the Simpson rule of integration.
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Figure 8: Mixed integration rules: a) Simpson rule in axial direction and three-point
Gauss formula in lateral direction for the membrane energy; b) trapezoidal rule
and two-point Gauss formula in lateral direction for the contact potentials.

The contact resolution with the two-point Gauss scheme in width direction in the shell
model is less critical, because of the essentially straight line of contact in this direction.
Naturally, in case of a significant misalignment of element edges and drum surface in
lateral direction, for example due to a large tilting motion of the drum or a profiled drum
shape, the integration scheme should be adapted accordingly.
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8. Summary of the journal articles

8.1. Paper A

Flexible belt hanging on two pulleys: Contact problem at non-material kinematic
description
Yury Vetyukov, Evgenii Oborin, Jakob Scheidl,
Michael Krommer, Christian Schmidrathner

International Journal of Solids and Structures
https://doi.org/10.1016/j.ijsolstr.2019.03.034

In this publication, we establish the MEL kinematic formulation of rod finite elements in
the benchmark problem of a planar two-pulley belt drive, which requires the definition
of extended finite element approximations to compensate for the discontinuous metric
of the compound coordinate system. The discussion is limited to the static solution of
the belt hanging in frictionless contact with the circular pulleys. The normal contact
response is modelled with a standard penalty regularisation scheme and the phenomenon of
membrane locking in proximity to the coordinate transitions of the compound coordinate
system is observed for coarse finite element discretisation levels. A novel solution obtained
through numerical integration of the corresponding symmetric boundary value problem and
comparative simulations with standard Lagrangian finite elements demonstrate consistency
and numerical efficiency of the MEL scheme.

Jakob Scheidl is responsible for: writing of the original draft; numerical validation; para-
meter studies and comparative computations; visualisation and presentation of the results
at the GAMM annual conference 2018, see [63].

8.2. Paper B

Motion of a friction belt drive at mixed kinematic description
Jakob Scheidl International Journal of Solids and Structures

https://doi.org/10.1016/j.ijsolstr.2020.05.001

In continuation of the research covered in Paper A, we simulate the transient axial motion
of the belt with MEL finite elements based on the structural model of an extensible
string. Full transient dynamics are disregarded in the proposed quasistatic scheme, but
stationary inertia contributions that persist after the transient effects have subsided are
considered. The augmented Lagrangian procedure is employed to treat the Coulomb
frictional contact, which amounts to a belt creep theory type of solution in the pulley
contact zones. The finite element results are verified against semi-analytic solutions
obtained for the stationary motion problem. In resemblance of the compound coordinate
system of the MEL description, the boundary value problem utilizes a piecewise spatial
parametrisation of the primary variables; the formulation is easily extendable to multi-
pulley belt drive problems.

Jakob Scheidl is the sole author.
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8.3. Paper C
Steady motion of a belt in frictional contact with a rotating pulley
Jakob Scheidl, Yury Vetyukov Dynamics and Control of Advanced

Structures and Machines
https://doi.org/10.1007/978-3-030-79325-8_18

In this peer-reviewed book chapter, we introduce a novel concept to seek the stationary
finite element solution of an axially moving structure directly, that is, without the need
to run through a transient process. In particular, we study the planar problem of a
belt that is transported over a single pulley while passing through an open domain at a
constant material transport rate. We employ the standard transformation formula (33)
to reach a time-invariant parametrisation for the finite element scheme. The applied
Cosserat theory of rods avoids discontinuous jumps of the transverse force and, thus,
contributes to the convergence of the iterative augmented Lagrangian contact procedure
to treat the Coulomb dry friction contact. In an effort to ease the solution process, we
assume a belt creep theory kind of solution from the very beginning and impose the
position of the stick-to-slip transition point directly, in contrast to the usual approach
with prescribed angular velocity of the pulley. Cartesian and polar parametrisations of
the primary variables are used to formulate the corresponding boundary value problem,
which is restated with normalised coordinates to make it accessible to standard purpose
solvers. Finite element simulations are validated against the quasi-converged semi-analytic
solutions.

Jakob Scheidl is responsible for: writing of the original draft; derivation of the analytic
boundary value problem and its numerical solution; parameter studies involved in the
validation of the finite element scheme.

8.4. Paper D
Steady motion of a slack belt drive: Dynamics of a beam in frictional contact with
rotating pulleys
Jakob Scheidl, Yury Vetyukov ASME Journal of Applied Mechanics

https://doi.org/10.1115/1.4048317

This article adapts the novel steady-state solution concept, originally proposed in Paper
C , to the standard benchmark problem of the planar two-pulley belt drive, previously
considered in Paper A in terms of the static deflection problem and Paper B with regard
to the transient quasistatic motion. In analogy to Paper C , we employ the Cosserat theory
of rods, assume a belt creep theory type of solution, and apply the iterative augmented
Lagrangian procedure to treat Coulomb frictional contact in the MEL finite element
framework. As concluded from the semi-analytic reference solution of the boundary value
problem, prescribing the stick-to-slip transition points on both drums amounts to an
overdetermined system of equations. In response to this observation, we seek the finite
element solution by means of an iterative strategy involving an auxiliary problem that
reduces to the original one upon fulfilment of a matching condition. The publication
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features a rigorous validation of the finite element scheme in comparison to the semi-
analytic results, extensive parameter studies and remarks on the construction of consistent
finite element approximations for Cosserat rods in the MEL kinematic description.

Jakob Scheidl is responsible for: writing of the original draft; implementation of the
steady-state solution concept and the Cosserat theory of rods in the existing MEL finite
element model of the two-pulley belt drive; derivation and numerical integration of
the corresponding boundary value problem; validation of the finite element scheme in
comparison to the semi-analytic results; execution of parameter studies.

8.5. Paper E
Mixed Eulerian–Lagrangian shell model for lateral run-off in a steel belt drive and
its experimental validation
Jakob Scheidl, Yury Vetyukov, Christian
Schmidrathner, Klemens Schulmeister, Michael
Proschek

International Journal of Mechanical Sciences
https://doi.org/10.1016/j.ijmecsci.2021.106572

Compliant with the research goals of the industrial research project LaLaBand, this article
covers the implementation and experimental validation of a geometrically nonlinear shell
finite element scheme in the MEL kinematic framework to simulate the lateral run-off of
a slack steel conveyor belt. Essential geometric imperfections of the belt are introduced
as intrinsic strains in the reference configuration and tilting actions of the steering drum
are considered as a means to counteract the lateral run-off. For the sake of computational
efficiency, we employ a substitutional elastic contact model and mixed integration rules to
remedy numerical issues related to membrane locking, the particularities of the contact
response in the unshearable Kirchhoff–Love theory as well as the extreme membrane
stiffness of the thin steel belt. Augmented shape functions are introduced to satisfy the C1

continuity requirement for the MEL parametrisation with the circumferential coordinate
σ and the material width coordinate ζ. Numerical studies are conducted to verify the
convergence of the finite element scheme and to reproduce practically relevant results
with regard to the phenomenon of lateral run-off. The good correspondence to a series of
physical experiments demonstrates the ability of the finite element scheme to accurately
capture the phenomenon of lateral run-off in a steel belt drive.

Jakob Scheidl is responsible for: writing of the original draft; implementation of geometric
imperfections as intrinsic strains; contact modelling; account for misaligned drum axes;
development of a multi-step simulation strategy; extensive code testing and parameter
studies; acquiring and processing of experimental data; development of a validation
strategy for the comparison against physical experiments.
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9. Scientific impact
The cumulative thesis establishes a numerically efficient kinematic description, which
incorporates the mixed Eulerian–Lagrangian approach in a looped compound coordinate
system, for the finite element simulation of slack belt drives. Novel finite element schemes
featuring unified structural models of the belt as a string, a rod or a shell are developed and
validated by means of numerical convergence studies and comparison against semi-analytic
reference solutions or physical experiments. A new concept for the immediate computation
of the steady-state motion in the finite element framework is developed, in an effort to
avoid the time consuming simulation of a transient process.

Various models for the numerical treatment of belt-to-pulley contact in the MEL
framework are introduced. We pursue augmented Lagrangian multiplier or penalty
regularisation strategies to enforce the constraints of Coulomb dry frictional contact
and, in resemblance of belt shear theory, rely on an approximative elastic model for the
numerically challenging simulation of a steel belt drive.

Novel semi-analytic solutions for the statically deflected configuration or the belt at
stationary motion are obtained with account for large transverse deflections in the field
of gravity and persistent inertia effects. The numerical solutions of the boundary value
problems deduced for the different planar theories of rods are computed in a traditional
manner utilizing alternative parametrisation strategies that emphasise the difference of
material (Lagrangian) and spatial (Eulerian) descriptions. The numerical analysis for a
Cosserat type of rod in the limiting case of vanishing shear compliance lets us conclude
on the appropriate boundary conditions for the unshearable theory.

The application oriented part of the research in the framework of the industrial cooper-
ation project LaLaBand focuses on the simulation of the lateral run-off in a slack steel
belt drive. The corresponding shell finite element model is based on the MEL kinematic
description, accounts for intrinsic geometric imperfections of the belt as well as misaligned
drum axes and, as the comparison of simulation results against physical experiments
demonstrates, is capable of an accurate estimation of the lateral run-off. It shall aid the
industrial partner in the improvement of the production process of steel belts and provides
a solid basis for the development of advanced designs for an active control of the lateral
run-off.
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Paper A
Flexible belt hanging on two pulleys: Contact problem at non-material kinematic
description
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Abstract: We propose a non-material finite element scheme for modelling large
deformations of a closed flexible rod supported by two rigid pulleys in the field of
gravity. The mixed Eulerian–Lagrangian kinematic description of circumferential
and transverse displacements is beneficial for simulations of moving belt drives.
The necessary C1 inter-element continuity in a compound coordinate system with
Cartesian and polar domains requires a nonlinear finite element approximation. The
theoretically predicted singular reaction force distribution prevents us from using the
technique of Lagrange multipliers for normal contact. A novel semi-analytical solution
of the static problem based on the integration of the equations of the nonlinear theory
of rods in the free spans as well as in the segments of contact with pulleys is presented
for the sake of validation. We demonstrate the mutual convergence of simulation
results for a benchmark problem and additionally justify them by comparison against
conventional Lagrangian finite element solutions.
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Paper B
Motion of a friction belt drive at mixed kinematic description
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Abstract: We revisit the planar problem of a two-pulley belt drive and extend
an existing mixed Eulerian–Lagrangian finite element framework to simulate the
quasistatic, non-stationary motion. The mixed kinematic description proves beneficial
in the consistent modelling of Coulomb dry friction in the contact domains between
deformable belt and rigid pulleys. In particular, the method of augmented Lagrangian
multipliers is adopted for contact treatment, which relies on the penalty regularisation
to iteratively update estimates for the contact tractions. In addition, a semi-analytic
strategy to compute steady state solutions is presented. Contrary to similar studies
available in the literature, it accounts for gravity, which changes the size of the contact
regions and induces large transverse deflections. The comparative study demonstrates
correspondence of steady state solutions obtained with both approaches. Results
regarding the time evolution of the contact state demonstrate the potential of the
proposed finite element scheme.
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Paper C
Steady motion of a belt in frictional contact with a rotating pulley

TU Wien: Jakob Scheidl, Yury Vetyukov
Dynamics and Control of Advanced Structures and Machines (2021)
https://doi.org/10.1007/978-3-030-79325-8_18

Abstract: The steady state motion of belt drives is studied extensively in the
literature. While traditional models rely on the theory of an extensible string, we aim
to take bending effects into account. In this regard, it is well known that concentrated
contact forces at the points of first and last contact with a pulley arise if shear
deformations are restricted. To circumvent this issue, we utilize a shear deformable,
Cosserat theory of rods. In particular, we study the contour motion of a belt that
is transported over a single, rigid pulley with zones of stick, sliding friction and no
contact. The Coulomb friction law governs the contact between the belt and the
pulley. We present a novel finite element model that allows to obtain the steady state
solution directly. Furthermore, we deduce the corresponding closed boundary value
problem and integrate it numerically. Results obtained for a particular parameter set
demonstrate correspondence of the two approaches.
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Paper D
Steady motion of a slack belt drive: Dynamics of a beam in frictional contact with
rotating pulleys
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Keywords: computational mechanics, dynamics, elasticity, structures

Abstract: We seek the steady state motion of a slack two-pulley belt drive with
the belt modelled as an elastic, shear-deformable rod. Dynamic effects and gravity
induce significant transverse deflections due to the low pre-tension. In analogy to
belt-creep theory, it is assumed that each contact region between the belt and one
of the pulleys consists of a single sticking and a single sliding zone. Based on the
governing equations of the rod theory, we for the first time derive the corresponding
boundary value problem and integrate it numerically. Furthermore, a novel mixed
Eulerian-Lagrangian finite element scheme is developed that iteratively seeks the
steady state solution. Finite element solutions are validated against semi-analytic
results obtained by numerical integration of the boundary value problem. Parameter
studies are conducted to examine solution dependence on the stiffness coefficients
and the belt pre-tension.
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Paper E
Mixed Eulerian–Lagrangian shell model for lateral run-off in a steel belt drive and
its experimental validation
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International Journal of Mechanical Sciences 204 (2021), 106572
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Keywords: Mixed Eulerian–Lagrangian description, Kirchhoff shell, Finite element
analysis, Belt drive mechanics, Elastic contact, Transient analysis

Abstract: A non-material shell finite element model is developed and applied to
the example problem of a slack steel belt moving on two rotating drums. For the
first time in the open literature we demonstrate an approach for predicting the
time evolution of the lateral run-off velocity of the belt in response to its geometric
imperfection and angular drum misalignment. We adopt a novel Eulerian–Lagrangian
kinematic description featuring a mixed parametrisation of the configurational space
with a Eulerian circumferential coordinate and two Lagrangian coordinates for the
transverse and lateral deflections. A nonlinear finite element approximation provides
the necessary C1 inter-element continuity in this compound coordinate system. Using
the model of elastic tangential contact, we account for the convective term in the
local increments of the relative displacement between the contacting surfaces during
the time integration. A thorough convergence study with respect to the mesh and
time step sizes justifies the approach. Together with the successful validation against
the results of a series of physical experiments, this makes the present contribution an
important step towards a model-based controller design.
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