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Abstract

Within the coordinate reference systems discussed in the previous chapter, location can be de-
scribed. Location data is increasingly becoming available from sensors integrated in urban mobility:
sensors that are attached to travelers or vehicles, or even to fix locations registering travelers or ve-
hicles passing by. This chapter will introduce some tracking technologies and their properties, and
then define the notion of a trajectory, with its critical properties of spatial and temporal granularity
(precision and sampling rate), and accuracy (linked to map matching). In addition, the chapter intro-
duces the two complementary frames of references for tracking urban mobility, the Lagrangian and
the Eulerian, and how to convert between them.
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3.1 Introduction

Tracking urban mobility is key to any smart interaction with mobility, inclusive of
parking. Tracking relies on three components that must interact in some forms:
something that moves, a sensor recognizing and characterizing this movement,
and a connection of the sensor to some computing device, typically on board
or through the Internet (Figure 3.1). The moving object can be, for example, a
person in a market hall, tracked for his/her movement through a CCTV camera
(the sensor ), and their trajectory being analyzed for their shopping behavior in
the marketplace (the computing of information out of data). As another example,
the moving object can be a bus, equipped with a satellite positioning tracker, and
the trajectory being sent to the operator for providing real-time arrival estimates
on displays at bus stops. The same goal can be achieved by a parking sensor
that senses whether a vehicle has moved into a parking slot and reports this
information to a parking guidance system.

Of the three elements in Figure 3.1, the two yellow ones are usually subsumed
as the Internet of Things. The Internet of Things is characterized by sensing
and computing devices that are embedded in everyday objects, including mobile
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Figure 3.1: Something that moves, a sensor recognizing and characterizing this move-
ment, and a connection of the sensor to some computing device, typically through the
Internet.

ones, and connected via the Internet for the transfer of observed data. While
these devices carry unique identifiers, in many applications their location is also
critically important for the interpretation of their collected data. For example, if
a sensor measures air quality, then, for a proper understanding of its reading, it
is necessary to know where this reading has been taken. For a sensor set up
at a fixed location in the city this location might be recorded once, at the time of
set-up. But sensors embedded in mobile objects must synchronize their readings
with the current location of the sensor platform. Therefore, sensors embedded in
mobile objects typically are also observing the mobile object’s location.

A location is always a location with respect to something else. So this loca-
tion can be described only in a reference system (Chapter 2). For example, a
moving vehicle has embedded sensors that track its distances from the vehicle
in front or from the road markings, in order to describe its location in relationship
to these other objects. That same vehicle can also carry a sensor to receive
satellite signals for triangulating its position within an abstract coordinate system
(or you might say, relative to the current locations of the satellites, but then the
definition of a location becomes circular). And again, this vehicle can carry an
RFID chip that communicates with toll bridges, capturing its location as it passes
them. These three examples respectively highlight (1) a dynamic relative refer-
ence frame among other moving objects, (2) an absolute reference frame with
respect to the Earth, and (3) a static relative reference frame with respect to an
anchor location.

This chapter will relate to such reference frames and lay the foundations for
observations in these reference frames. At the end of this chapter you should
be able to distinguish categories of capturing and describing location over time,
which means especially of mobile objects or individuals. You should be aware
of errors that adhere to all measurement data, and sensitivities about location
data. We will conclude by discussing two major applications of tracking data:
travel mode detection and map matching. The framework for collecting, charac-
terizing, and analyzing data discussed in this and the following chapters lays the
foundation for intelligent transportation systems, or ITS. Accordingly, intelligent
transportation systems subsume all efforts to use data to improve the capacity,
safety, and environmental impact of existing transport infrastructure.
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3.2 Internet of Things

The Internet of Things (IoT), defined above as sensing and computing devices
that are embedded in everyday objects, including mobile ones, and connected
via the internet for the transfer of observed data, relies on unique identifiers
for the devices and standard protocols to communicate between these devices
(ITU, 2014). The devices not only sense, but are also often coupled with me-
chanical and digital machines to control the physical environment. Two typical,
and overlapping application domains for the Internet of Things are smart cities
and transport. For these domains, the International Telecommunication Union’s
Study Group 20 is fully dedicated to promote interoperability in the Internet of
Things.1 Similarly, the Open Geospatial Consortium (OGC) is working on an
“open, geospatial-enabled and unified way to interconnect the Internet of Things’
devices, data, and applications over the Web” in what they call the SensorThings
API.2 The emerging OGC standard provides already “a standard way to manage
and retrieve observations and metadata from heterogeneous IoT sensor sys-
tems”.

In the context of urban mobility – the overlap between smart cities and trans-
portation, and a prime example of a heterogeneous system – the Internet of
Things provides the observations to connect:

• people to needs, including vehicles;

• vehicles to vehicles;

• vehicles to infrastructure.

In each of these categories a range of relevant applications relies increasingly
on the Internet of Things technology.

3.2.1 People to Needs

Computing devices in the hands of people – their smartphones, tablets, laptops,
wearables, and other connected computing devices – are typically equipped with
a range of sensors, and they are connected to the Internet. These devices en-
able a range of applications connecting people to their needs. Applications rele-
vant for mobility can facilitate more efficient mobility services or even reduce the
demand for mobility.

A prominent category of applications that reduce the demand for mobility are
those supporting work or study online. An employer working from home does
not need to commute, and a school kid in an online teaching program does not

1https://www.itu.int/en/ITU-T/studygroups/2017-2020/20/Pages/default.aspx
2https://www.ogc.org/standards/sensorthings – OGC, 2015/2017
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require a parent (or a bus) to bring them to school. They achieve their needs
without the need to move. Behind these applications there are usually cloud-
based platforms that track the identity (and for this purpose also often the loca-
tion) of their users. Another category of applications is concerned with the co-
ordination between people. Colleagues that commute together (“ride-sharing”)
reduce the demand for vehicles on the road; the basis for this coordination is a
cloud-based platform that matches requests based on their locations and travel
times. Demand-responsive public transport solutions fall into this category as
well. They are based on tracking the location, occupancy, and actual travel com-
mitments of vehicles and the location and travel demand of people in order to
provide real-time matching. Even mass transport can be improved by Internet of
Things technologies, for example, by tracking the occupancy of vehicles on the
road and estimating people’s current travel demand, or by tracking the location
of vehicles on the road and estimating their arrival times (Verma et al., 2020).

3.2.2 Vehicles and Vehicles

Nowadays, vehicles carry an increasing number of sensors, most of which en-
sure road safety and enable autonomous driving. While autonomy, in the first
instance, relies fully on decisions made by computational devices on board the a
vehicle, autonomous driving can become even smarter by connecting this vehicle
with other vehicles or the infrastructure. Connected autonomous vehicles (CAV)
allow for greater situational awareness of the individual vehicle, supporting ad-
vanced driver assistance / advanced autonomous driving systems, for example,
speed adaptation or early braking fed by greater foresight or sight around street
corners. CAV also allows for cooperation (cooperative intelligent transportation
systems, C-ITS), such as vehicle platooning, or cooperative parking systems.
Cooperative ITS have two additional challenges compared to autonomous deci-
sion making:

• One is the certainty that the collaborator behaves as expected. If hetero-
geneous agents cooperate, communication is a basic requirement, but is
susceptible to communication failures (e.g., one agent reporting velocity in
mph, the other taking it for km/h). Thus, certainty is a matter of agreeing
on standardized protocols and exchange languages (Zheng et al., 2015).

• The other challenge is the trust that the collaborator is acting in the mutual
interest of all. Any system of heterogeneous agents, in principle, is suscep-
tible to deception (e.g., by agents seeking their own advantage in traffic, or
by agents with malicious intent). Trust is therefore a matter of cybersecu-
rity and more difficult to address. Among the approaches to establish trust
between agents are: looking for redundancy and assessing all evidence
(Shafer, 1976; Truelove et al., 2017), or, vice versa, demanding proof of
location (Amoretti et al., 2018).
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At the time of writing this book, two vehicle-to-vehicle communication systems
(V2V) are competing for the same frequency spectrum: the Wi-Fi based dedi-
cated short-range communication (DSRC), and the cellular based 5G. DSRC is
an open standard with a range of about 300 m, while 5G is licensed (with fees to
operators) and has a slightly larger range (500 m) and shorter latency, but also
a shorter shelf life and a significant reliance on infrastructure. While the devel-
opment of V2V communication systems has been stalled by these two mutually
incompatible systems competing worldwide, we put this debate aside and work
with the principles of V2V communication.

In principle, applications using V2V communication pursue decentralized so-
lutions, or solutions found between and agreed by peers (Duckham, 2013), com-
pared to centralized solutions that are decreed by a central authority. An exam-
ple of a decentralized application is a speed adaptation system: If vehicles share
information with vehicles following them that they are about to brake, then the
vehicles that are behind can use this information to adapt their speed early, and
to coordinate their slowing down times with each other to achieve a smoother
traffic flow. No central authority is required – as any central authority would be
overwhelmed by the task of optimizing traffic flow at this level. Centralized ap-
plications rely on the sensors on board vehicles as well, which presumes other
forms of vehicle communications (vehicle to infrastructure, see 3.2.3). An exam-
ple for such a centralized application – one where a centralized authority provides
benefits from its global overview of traffic – is an internet-enabled car navigation
system that is able to reroute vehicles in case of road congestion or closures
ahead. In this case, no V2V communication is required. Thus, applications using
V2V communication are typically operating locally instead of globally. As a con-
sequence they are achieving locally optimal solutions, but not globally optimal
solutions: the vehicles (or drivers) operate with limited knowledge.

Since V2V communication is supporting mostly local applications, the commu-
nication can be managed to become spatially and temporally sensitive: broad-
casting can be limited to certain ranges and time frames. Several communica-
tion strategies have been suggested in the literature. Flooding is the most simple
one: every vehicle that receives a message instantaneously re-broadcasts the
message. To limit this to local applications, flooding can be limited to a certain
range or area: only vehicles that are within this range or area would rebroad-
cast. Other strategies have been designed to reduce the large redundancy of
the flooding strategy but still cover all the vehicles in the intended area, among
them, a probabilistic strategy (only a certain percentage of vehicles re-broadcast)
and a distance-based strategy (only distant vehicles in the communication range
re-broadcast). Also, to maintain a message over certain time frames, and in-
form vehicles that enter the range or area late, these strategies can be applied
periodically.
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In the context of this book, we are mostly interested in V2V applications that
have an impact on parking pressure. These are applications that improve trans-
port capacity such that there are fewer vehicles on the road, and applications
that support cooperative parking behavior. Other applications, such as for safer
or for smoother driving will be neglected.

An obvious example of such applications is cooperative parking in a large car
park, where some vehicles are leaving their parking spot and others are search-
ing for a parking spot. If a vehicle leaving the car park broadcasts the freed
parking spot to vehicles nearby then the searching vehicles receiving these mes-
sages can take this information into consideration in their own search strategy.
Simulations have shown that cooperative parking in such an opportunistic man-
ner, i.e., with no booking mechanisms through a central authority, reduces the
search time for vehicles (Aliedani et al., 2016; Aliedani and Loke, 2019). Since
this cooperation relies on the vehicles’ abilities to locate themselves (in relation
to the free(d) parking spots), and these abilities are degraded in indoor environ-
ments such as parking garages, others have worked on localization in parking
garages to improve cooperative parking (Balzano and Vitale, 2017).

3.2.3 Vehicles and Infrastructure

Communication technologies such as the Wi-Fi based DSRC and the cellular
based 5G can also establish communication channels to base stations installed
at fixed locations in the infrastructure. Strictly speaking, cellular-based 5G is
bound to such base stations anyway, although, in the narrow sense of vehicle-to-
infrastructure (V2I) communication the infrastructure partner is one that interacts
with traffic or vehicles directly.

An example of such an interaction is a traffic light that communicates its sig-
nal phase and timing information to approaching vehicles. In response, the ap-
proaching vehicles can optimize their fuel consumption by adapting their speeds
early (Rakha and Kamalanathsharma, 2011). A more advanced example consid-
ers bi-directional communication at traffic lights. This way, a smart controller in
the traffic light can optimize the traffic flow based on the number of approaching
vehicles from various incoming directions (Bento et al., 2012). Plenty of similar
applications can be thought of. They all concern coordination bound to a loca-
tion or neighborhood, such as informing about roadside or surface conditions,
ephemeral events on the immediate road network neighborhood, or condition
of the supporting infrastructure. One example of this is the dynamic realloca-
tion of lanes depending on the current traffic demand: the lane direction can be
quickly switched in response to a controller in the roadside infrastructure that ob-
serves traffic sensors and optimizes road use (Hausknecht et al., 2011): these
instantaneous switches either need dynamic signage (for human drivers) or V2I
communication (for CAV).
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Parking is another example where knowledge bound to a location and an inter-
action via V2I is beneficial. Parking lots and parking garages are prime cases for
a smart infrastructure that guides vehicles to empty (or allocated) parking spots.
The occupancy of parking spaces can be observed by sensors (Chapter 10).
Then, a controller in the infrastructure can take these observations and the re-
quests from vehicles searching for a parking space and optimize the allocation
of spaces (Geng and Cassandras, 2012) (Chapter 9). In this way, automated
valet parking becomes feasible Löper et al. (2013); Banzhaf et al. (2017): a CAV,
arriving at the valet bay of the parking garage, lets the passengers disembark,
and is then guided by V2I to an allocated parking space inside the garage. When
the passengers later return to the valet bay, they “call” their vehicle through an
app. In order to succeed, both the vehicle and the infrastructure are not only
communicating with each other (as are the passengers, through their app), but
are also sensor-rich platforms: the vehicle, for its autonomous driving, and the
garage, for observing the occupancy of its parking spaces. A first trial has been
demonstrated successfully in a parking garage in Stuttgart in 2019.

3.3 Tracking by Sensors

A large variety of sensors are applied to track what moves in urban spaces. One
dimensional barcodes and two-dimensional QR codes are applied mostly to track
parcels and goods in urban logistics. Both of these are identifiers. Their location
is typically determined by stationary scanners. Using this method, parcels can
be checked in at certain stages of their journey. But localization also works in
reverse: If the QR code is mounted at a fixed (known) location, then a mobile
scanner’s location can be determined. For example, security personnel on their
inspection rounds can check in at fixed locations, documenting their presence at
particular times.

Radio-frequency identification (RFID) technology applies a similar philosophy
but since it is radio-driven it does not need line-of-sight with a reader. RFID
identification tags use electromagnetic fields to automatically identify and thus,
track objects. RFID technology is used in contactless credit cards (where the
location of the pay station is recorded) or in contactless smart public transport
cards (where the location of the reader is recorded, and the fare is typically de-
termined). Similarly, electronic toll collection works with active RFID readers: A
vehicle equipped with an RFID tag passing the stationary reader is registered
with its location and time.

Social media have become a prominent source of tracking users. Although
Twitter had turned off (optional) precise georeferencing of messages in June
2019, it still allows usage of references to coarse and nearby places. Other social
media, such as Foursquare, offers their users to check-in to places and share
this location within their network. The distinction between ‘location’ and ‘place’
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is important though. We use location so far as a representation of a position in
a spatial reference frame (in the form of coordinates), typically derived by some
measurements, such as satellite positioning. And we use place here for common
language references, typically names of places, names of businesses at places,
or postal addresses, which would need to be translated into coordinates in a
spatial reference frame by a process called georeferencing.

Vision sensors, prominently among them, CCTV cameras, are also applied in
urban tracking. Some applications settle for counting moving objects (pedestri-
ans, cars) at particular locations. An example is the City of Melbourne’s (Aus-
tralia) pedestrian counting system, which provides open data3. Other applica-
tions track moving objects in scenes in order to determine flow or density param-
eters (Wang et al., 2014). Yet other applications aim at identifying individuals.
Identification of vehicles is often done through number plate recognition, and
identification of pedestrians through face recognition (Parkhi et al., 2015).

Wi-Fi networks can be used to track connected devices in two ways: by passive
and by active tracking. In passive tracking (or device positioning) the smartphone
listens, on each channel, for Wi-Fi access points around, including their individual
signal strength, and triangulates between these access points. In active tracking
(or network positioning), the smartphones’ regular probe requests, which include
their MAC address, are registered by the Wi-Fi access points. In this way, the
network can track a device, which can then be used for movement analysis (Ruiz-
Ruiz et al., 2014). Other radio-based positioning technologies work similarly in
principle, such as Bluetooth, Ultra-Wide Band (UWB), and GSM (3G, 4G, 5G).

Another radio-based tracking method, however, uses only one-directional com-
munication: the Global Navigation Satellite Systems, or GNSS (see Chapter 2).
These systems rely on triangulation methods based on satellite signals. Re-
ceivers for satellite signals come in many shapes; prominent to urban mobility
are trackers (GNSS tracking device and SIM card, attached to a moving object)
and smartphones. The receivers used in urban mobility are relatively cheaper
and have inaccurate antennas, such that, for example, autonomously driven cars
cannot rely only on GNSS for their localization. But for the purposes of tracking
movements, traffic, and route planning this accuracy is sufficient. GNSS be-
longs to a category of passive tracking methods since the positioning happens
on board the mobile sensor platform (e.g., smartphone). Navigation systems on
board vehicles, working with off-line maps, can access those GNSS localizations
directly. But many other uses of the tracking data, including online navigation
systems, require the integration of localizations of many moving agents (people
or vehicles) in real-time, and in these cases, the locally produced tracking data
has to be shared with a platform via a mobile internet. Other uses for track-
ing data are fleet management, car insurance, electronic logbooks, live alerts
(speeding, servicing, area violations), or automatic emergency calls.

3http://www.pedestrian.melbourne.vic.gov.au/
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3.4 Tracking Data Reference Frames

Moving objects can be observed theoretically in two ways: from a stationary view-
point as the objects pass by, or from an accompanying viewpoint (Laube, 2014;
Both et al., 2012). This categorization is borrowed from fluid dynamics, where
the two viewpoints have been labelled the Lagrangian and the Eulerian frames of
reference (Hirt et al., 1974; Bennett, 2006). The sensors discussed above fall in
one or the other category, and thus, these two concepts will help us to categorize
and better understand the observations in urban traffic management, including
parking.

3.4.1 Lagrangian Frame of Reference

In the Lagrangian frame of reference, the observer follows an individual particle
(in a fluid) as it moves through space and time. Consider now the particle being
an object in urban traffic. Then the Lagrangian observer would follow this object
and record its locations over time. The result is a trajectory.

Lagrangian observations are typically discrete, i.e., taken at certain points in
time, but those observations should be frequent enough to reconstruct the contin-
uous movement (x, y, t) for any t. If this frequency is lacking, the reconstruction
becomes ambiguous with regard to (x, y). This discussion on frequency and
ambiguity is relevant in the context of map matching, which is the reconstruction
of a movement along a transport network on a map. In order to avoid ambigu-
ity, observations are often made at regular intervals (e.g., GNSS recordings of a
smartphone every 5 seconds) or in adaptive sampling rates (e.g., GNSS records
only if the smartphone has been moved).

3.4.2 Eulerian Frame of Reference

In the Eulerian frame of reference, the observer focuses on specific locations
in space through which a particle (in a fluid) passes. Consider again, the par-
ticle being an object in urban traffic. Then the Eulerian observer will register
the passing of this object at a particular location. Tracking the number of vehi-
cles crossing an intersection, automatic toll collection, or a pedestrian counting
system are examples of Eulerian observations.

Eulerian observations, since they are taken at fixed checkpoints, are typically
made by sensors installed in the environment, such as beam counters, smart
card terminals, RFID readers, CCTV cameras, or the vehicle counting sensors in
traffic control systems (e.g., the induction loops of SCATS, https://www.scats.
com.au/). These sensors observe continuously.
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3.4.3 Eulerian-Lagrangian Transformations

Often observations exist in one reference frame, but interpretations are sought
in another reference frame. In this situation transformations between the two ref-
erence frames are required (Hirt et al., 1974; Wang et al., 2016). Chapter 2 has
already introduced coordinate transformations between two coordinate reference
systems but here we extend this conversion to transformations of observations
in Eulerian and Lagrangian frames of reference.

Eulerian to Lagrangian transformations require recombining trajectories from
traffic counts or flow data. Since elementary information about identity has been
lost in the counts in a Eulerian reference frame, this transformation can only
come up with an estimation of likely or representative trajectories. For example,
a shopping mall that wishes to guide movement by popular routes. Tracking
individuals may be infeasible due to privacy concerns (or privacy legislation), but
the shopping mall operator can count the flows from one sub-area to another, for
example, by installing beam counters. The density of traffic at particular beam
counters can be reconstructed to identify popular routes.

Vice versa, Lagrangian to Eulerian transformations require transforming tra-
jectories into count data. For example, a road authority may have access to
household travel survey data: data where a representative sample of the popu-
lation provides information of their daily travel routines. This data is Lagrangian
in nature. But the road authority might be interested in investigating the traffic
load at specific intersections, and therefore, converts the Lagrangian data into
Eulerian data. A routine way of doing this is using a traffic simulator.

3.5 Properties of Data

The tracking data collected by any technology shows a range of properties that
have been specified as data quality components (Veregin, 2005). Here we dis-
cuss uncertainty, currency, and frequency.

3.5.1 Uncertainty

Measurements can never be exact. This is the reason why measurements are
usually repeated. Repeated measurements allow subsequent statistical post-
processing to balance out random errors (Figure 3.2 left), and also to identify and
filter out outliers. However, uncalibrated instruments can also produce biased
measurements where the mean is no longer a good estimate of the true value
(Figure 3.2 right). Measurements with only random errors are called accurate,
while measurements with low variance are called precise. Note that, in line with
Figure 3.2 on the right, precise measurements can be inaccurate.
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Figure 3.2: Measurements can never be exact. On the left, more accurate but less
precise measurements, on the right less accurate but more precise measurements.

Take, for example, the capacity of a smartphone to position itself under the
open sky, using the signals from the GNSS. A smartphone’s GNSS antenna
takes a large number of uncertain observations (after all, smartphones use cheap
chips) and averages out the random errors. How accurate the result is, i.e.,
how close the result is to the true location of the smartphone, depends on the
impact of systematic errors, such as currently weaker configurations of satel-
lite positions, or multipath effects in urban canyons. Systematic errors cannot
be detected from observations alone, and thus, statistical measures such as
the standard deviation of repeated observations only describe the precision of a
measurement, but not its accuracy. Accordingly, avoiding or controlling system-
atic errors is critical for measurements, because only then is the most prominent
statistical measure, the mean, close to the true value. Your favorite mapping app
shows a blue circle, centered on the mean, and of a size describing the precision
of the measurement. Since mapping apps are commercial services, they are not
too transparent about the meaning of these circles, but it is likely that they are
linked to some confidence interval, which would be computed from the standard
deviation.

3.5.2 Data Currency

Many applications of intelligent transportation systems, such as vehicle control,
depend on real-time data. However, since communication channels are involved
between the observation itself (the sensor), the analysis of the observation (e.g.,
a cloud-based service), and the use of the derived information (e.g., by a vehicle,
or by a driver), real-time operations can only be realized with some latency. In
the above example of a mapping app, if the sight to satellites is lost for a while
– for example, because a pedestrian walks under dense tree foliage, or a car
drives through a tunnel – the smartphone can only show the last known position,
which over time gets more and more out-of-date. Hence, data currency has to
be actively tracked and considered in the design of applications.
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3.5.3 Frequency

Many observations in intelligent transportation systems are not made continu-
ously, but with regular or irregular frequency, or the sampling rate. For example,
smartphone navigation apps sample the position of a smartphone every couple
of seconds – the exact intervals may adapt to current speed and travel mode. A
public transport smartcard tracks a person’s movement only with check-in and
check-out. Frequency has an impact on the interpretation of observations. If,
for example, a car’s location is known every ten minutes, the route it has trav-
eled can be reconstructed only with some ambiguity. Accordingly, frequency is
considered as another data quality component.

3.6 Privacy Implications of Transport Data

Politico titled a story in 2018: “Google is building a City of the Future in Toronto.
Would Anyone Want to Live There?” The story refers to Sidewalk Labs’ (Al-
phabet’s smart city arm) of Toronto’s eastern waterfront redevelopment, which
is based on free and fast Wi-Fi in order to track everything that moves and their
activities. From a service provisioning perspective, developments like the one
above, or LinkNYC’s Hudson Yard redevelopment, open new opportunities for
intelligent mobility. Resistance in the population, on the other hand, comes from
the potential secondary use of the data, and hence lack of trust. The jury is out
on whether these developments move towards smart cities or surveillance cities.

In principle, societies – always trailing behind technological developments –
have to develop legal licensing frameworks and social licensing frameworks for
the use of data that impacts privacy. Legal frameworks protect the fundamental
values and ethical norms of a society, and are, thus, required to protect the
weaker party, or the vulnerable members of the community. It does not help
that data has become global while legal frameworks are still formed at national
levels. Legal frameworks can demand of making data anonymous before re-
use. Anonymous data, however, has also been shown to be susceptible to re-
identification (Culnane et al., 2019), such that stronger regulations are needed.
Social licenses, in contrast, are licenses given by individuals on the use of their
data (Carter et al., 2015). Social licenses imply, first, that the individual is –
legally and technically – the owner of their own data, i.e., can control its use.
Then the individual might give selective permissions (consent) for uses of their
data proposed by a data custodian. This consent of the owner for producing
intelligent (transport) services has also been called co-creation.
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3.7 Trips, Segmentation, and Map Matching

Motorized forms of mobility in the city always require some multi-modality. A
person has to at least walk to a (private or public) vehicle, and from the vehicle to
their destination. Further mixes are possible, for example, a person taking public
transport may transfer between vehicles or modes. In urban transportation we
call a movement between two stationary activities a trip (Das and Winter, 2016).
Hence, a trip consists of a sequence of movements in specific travel modes that
are taken with no intended interruption for a planned activity, i.e., including wait
times. Correspondingly, a day can be partitioned into trips and activities between
these trips.

Trips and activities between these trips are also the common units of house-
hold integrated travel and activity surveys (Roddis et al., 2019; Stopher et al.,
2007). The survey data is rather abstract – a typical entry would be, for a mem-
ber of a household: “7:00 a.m.–7:30 a.m. travel from home to work”. Trajectory
data from intelligent transportation systems can provide more details about this
trip (Carrion et al., 2014), by splitting the trip into individual segments, for ex-
ample, by travel modes, and breaks, including wait times. This process of travel
mode detection produces segments (of single modes) by some common proper-
ties in the trajectory. As it is based on actual trajectory data, it typically provides
more accurate data than the surveys themselves (Bricka and Bhat, 2006; Zhao
et al., 2015). For example, the trip above could be captured by high-frequency
GNSS and inertial sensor observations on a participant’s smartphone and then
interpreted by segments of “7:02 a.m.–7:11 a.m. walking; 7:11 a.m.–7:13 a.m.
stationary near/at a bus stop (waiting); 7:13 a.m.–7:24 a.m. on a bus on Line
76; 7:24 a.m.–7:26 a.m. walking”. An integration of this data with public trans-
port real-time tracking data could additionally reveal the specific bus or vehicle,
which, according to smartcard data interpretation, was crowded at that time. Fur-
ther refinements are possible, although not often needed in intelligent transporta-
tion systems. For example, the waiting time may have involved some wandering
around to cope with the cold weather. The segmentation process is also, in prin-
ciple, a hierarchical one, since each segment can be split into further segments
in more detail. For example, embarking a bus – switching travel mode from walk-
ing to riding on a bus – does not happen in an instant, but could be split into
queuing, embarking, ticketing, and walking to a seat (Das and Winter, 2016).

3.7.1 Mode Detection

Partitioning and labelling the segments of a trip by travel mode are often the first
steps of semantic trajectory analysis, which in general aims to attach meaning to
connected sequences of (x, y, t) triplets forming a trajectory (Parent et al., 2013).
To identify a segment of a particular travel mode commonly high-frequency GNSS
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observations on a traveler’s smartphone are available (sequences of (x, y, t)).
Additional inertial sensor observations or compass measurements enrich the in-
terpretation process and reduce its uncertainty.

Mode detection can be divided into the steps of detecting discontinuities in the
trajectory (indicating modal change), and then labelling the segments by travel
modes or activities. According to this order of processing, real-time mode detec-
tion is more challenging because of the real-time detection of a discontinuity.

The labelling of a segment can be formulated analytically. For example, a fuzzy
set classification method uses rules such as “if the movement along a segment
between two stops is never going faster than 5 kilometers per hour, and generally
located on sidewalks, then this is walking” (Das and Winter, 2018). Other mode
detection methods leave it to (deep) machine learning to detect travel modes
from trajectory characteristics (Soares et al., 2019; Nikolic and Bierlaire, 2017).
Explicit characteristics are usually as below:

• the speed of traveling, although speed alone is ambiguous in urban mobil-
ity;

• stop locations, e.g., at traffic lights or at bus stops;

• acceleration patterns, distinguishing, for example, a heavy vehicle from a
light vehicle;

• noise patterns, e.g., of a private car, a bicycle, or a bus;

• space traveled through, e.g., road space, sidewalks, pedestrian zones, or
light rail tracks;

• public transport schedules, and ideally real-time tracking data of public
transport vehicles to compensate for deviations from the schedule;

• and land use at the start and end of the segment in order to estimate activ-
ities.

Mode detection algorithms are challenged by measurement uncertainties. Po-
sitioning uncertainty alone has an impact on (a) detecting stationary activities
(while the observations are showing random movement), (b) first and second
derivatives from positions (x, y, t), i.e., speed and acceleration, which are more
sensitive to positional uncertainty when the GNSS observation frequency is higher,
and (c) the spatial separation between networks (e.g., where tracks go next to
road lanes).

3.7.2 Map Matching

Closely related to mode detection is the challenge of map matching. Map match-
ing addresses the uncertainty in the trajectory data not for estimating the travel
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Figure 3.3: Map matching of the uncertain GNSS positions along a travel route often
goes wrong when you are simply looking for the next road center line.

mode, but for estimating the most likely position of a tracked moving object on the
mode’s network. The conundrum is that map matching seems to require mode
detection being solved first, in order to pick the most appropriate modal travel
network. But mode detection itself is based on estimating the space (or network)
traveled through already. This conundrum is usually circumvented in the litera-
ture by assuming that the travel mode is known. For example, a car navigation
system’s trajectory is a trajectory of a private vehicle, and thus a trajectory of
a movement along a public road network. For these more trivial cases, a large
number of map matching algorithms has been proposed, among them (Newson
and Krumm, 2009; Quddus et al., 2009; White et al., 2000; Brakatsoulas et al.,
2005). If the travel mode is known to change along the trajectory, only combined
approaches lead to meaningful results. But if the travel mode is not known, both
travel mode and map matching have to be estimated at the same time.

Map matching matches the measured positions, which are afflicted with un-
certainty, with their most likely positions on the modal network, in order to infer
the tracked object’s actual path. In principle, if the object is a road vehicle, and
the modal network the road network, one might want to match an observation
(x, y) to the nearest road’s or lane’s center line. But just matching position to the
nearest center line is prone to errors, as the sequence of the identified center
lines may not lead to a realistic path (Figure 3.3). Hence, map matching requires
methods that consider also the likelihood of the identified center lines within the
logic of a travel journey.

One method containing this strategy is the hidden Markov model, HMM, a sta-
tistical model of a Markov process (Newson and Krumm, 2009). A Markov pro-
cess is a sequence of events where the probability of each event depends only
on the state attained in the previous event. For a trajectory in a map matching
process, we can focus on the last “map matched” (visited) location and the next
observed location to estimate the next visited location (Figure 3.4 left), which is
sufficient to construct a realistic path for a trip segment. For the application of a
Hidden Markov Model, first, all of the candidates for next locations are computed,
which are all the nearest map matches for an observation within a reasonable
range (Figure 3.4 center). Finally, the transition probabilities from the last visited
location to all the possible next locations are computed, such that the sum of
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Figure 3.4: The Hidden Markov Model applied to map matching.

all these probabilities equals 1. This transition probability is, in its simplest case,
just a function of the difference between the observed distance (between the blue
points in Figure 3.4) and the traveled path distance (between the yellow point in
Figure 3.4 and the potential next locations). But this function can be made more
complex in order to consider more contextual information in what is a reasonable
path. For example, it can consider inertial sensor or compass observations in
addition to location, the actual speed of the vehicle, and the road speed limits,
as well as the travel patterns of the driver.

Map matching relies on reasonable sampling rates. When sampling rates are
too low, many travel options exist prior to the next observed location, and the
matching process becomes indeterminate. When sampling rates are too high,
the distances measured become very different from the distance traveled, due to
uncertainty in the measurement.

3.8 Conclusion

Location data is increasingly becoming available from sensors integrated in ur-
ban mobility. This chapter has introduced some tracking technologies and their
properties, and then defined the notion of a trajectory with its critical properties
of frequency (sampling rates) and accuracy (linked to map matching). Intelligent
transportation systems rely on tracking data from everything that moves (Zhu
et al., 2019; Guerrero-Ibáñez et al., 2018).
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