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Abstract

This chapter provides an overview of technologies and methodologies for navigation in urban envi-
ronments. It covers a range of technologies including wireless sensors, inertial and feature based
that can be used either alone or within an integration. This chapter also discusses the brief principles
of multi-sensor integration and outlines commonly used methodologies and approaches.
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4.1 Introduction

Navigation is defined as the process of planning an object’s position or trajec-
tory using geometry, radio signals, etc. Therefore, navigation as a process, may
involve estimating the object’s position on earth, and/or guiding it through the
course so that the object reaches the target destination. The importance and
relevance of navigation and associated technologies has grown manifold in the
last few years, so much so that not only almost all of the modern day cars are
equipped with navigation systems, even the cheapest mobile phones in the mar-
ket now offer navigation technologies at minuscule costs. The availability of af-
fordable hardware and associated navigation technologies has made it possible
for an average consumer to benefit from these technologies. This has been made
possible primarily by the advent of Global Navigation Satellite Systems (GNSS).
Today, these navigation systems are being used for day-to-day activities such as
finding driving directions or vehicle tracking, as well as in advanced and complex
applications such as driverless cars and robotic platforms.

The early navigators relied on ground landmarks and/or celestial observations
for locating themselves and finding their way at sea. Another technology that
was commonly used in the early navigation was dead reckoning (DR). The DR
technique estimates the current position relative to the previous known position
by keeping track of the distance traveled (or velocity measurement) and direc-
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tion of movement. Inertial sensors, first conceived in the early 19" century were
commonly used for DR. The earliest inertial sensors were mechanical in nature,
but were later transformed to strapdown systems with advancements in micro-
processor technology in the 20" century. As will be explained later, the position
estimated using DR techniques diverges from the true position over time due
to an accumulation of errors. It is due to the accumulation of errors that iner-
tial sensors cannot provide a navigation solution on their own for an extended
duration.

The development of radio technology paved the way for the development of
terrestrial radio-navigation systems during the mid-20t" century. LORAN (Long
Range Navigation) and Omega were the first radio-navigation systems to be de-
veloped, with Omega being the first worldwide radio-navigation system to be-
come operational in the 1970s. Although Omega was decommissioned in 1997,
LORAN-C continued operations in the US until it was turned off in 2010. The
Russian counterparts of LORAN and Omega called Chayka and Alpha RSDN-
20, respectively, were also developed around the same time as the ones in the
US. Although Chayka was operational at least until 2014, some reports suggest
that RSDN-20 continues to be operational to this day.

The interest in terrestrial radio-navigation systems saw a sharp decline with
the arrival of satellite radio-navigation in the early 2000s. Recently, there has
been a renewed interest in terrestrial radio-navigation systems fueled primar-
ily by the vulnerabilities of satellite radio-navigation (i.e. GNSS), leading to the
development of e-LORAN (Enhanced LORAN). The US and South Korea have
already initiated efforts to deploy e-LORAN to complement the GNSS.

The modern day navigation systems are primarily powered by satellite based
radio-navigation, collectively called GNSS. GNSS based navigation uses radio
signals that are transmitted by the GNSS satellites, and received by the receivers
(installed on cars, mobile phones, etc.) on the earth’s surface. Using the infor-
mation from these radio signals and satellite orbits, a receiver can estimate its
position (and therefore, the position of the platform on which it is installed) almost
in real-time. The US-based Global Positioning System (GPS) was the first GNSS
system worldwide. The first GPS satellite was launched in 1978 and the system
became operational in 1995. Following the success of the GPS and to reduce
reliance on the US based GPS, other countries followed suit and started devel-
oping their own navigation systems. As of today, the GNSS satellite constellation
includes the Global Positioning System (GPS) satellites by the United States,
the GLONASS (Global Navigation Satellite System) by Russia, Galileo by the
European Union (EU), Beidou by China, and other regional systems such as the
QZSS (Quasi-Zenith Satellite System) by Japan, and the most recent one being
the IRNSS (Indian Regional Navigation Satellite System) by India. Combined
together, there are a total of about 132 GNSS satellites in operation as of date
which includes 31 GPS (as on February 20, 2020), 23 GLONASS, 22 Galileo,
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44 Beidou, 4 QZSS and 8 IRNSS satellites. A typical modern day navigation
system (including recent mobile phones) can make use of all or some of these
constellations to provide ubiquitous navigation solutions anywhere on the earth.

While GNSS remains the default and the most common navigation technology
being used today on almost all platforms including aerial, terrestrial and ma-
rine, it is prone to various vulnerabilities such as spoofing and jamming. Even
when there is no threat of spoofing or jamming, GNSS requires a clear line of
sight between the receiver and satellites, and therefore, fails in indoor and other
occluded environments such as dense urban regions or under a tree canopy.
Furthermore, the signals received by a GNSS receiver in an urban environment
are often corrupted by multipath, leading to significant reduction in navigational
accuracy. Consider an example shown in Figure 4.1 where two GNSS receivers
R, and R, are installed. The receiver R, is in a relatively open environment,
while R, is installed in a typical urban environment consisting of urban canyons.
The signals from two of the satellites, S; and Sy, can reach R; directly, while the
signals from the same satellites to R, are obstructed by buildings. Some of these
signals may reach R, but after undergoing multiple reflections from various sur-
faces, they cause multipath errors. The GNSS signals cannot penetrate buildings
and, hence, a user at R, may be rendered incapable of navigation using GNSS
only. It is because of these major reasons that developing a robust navigation
system remains one of the most important and challenging problems for urban
mobility to this day.

To mitigate some of the limitations of GNSS, it is often integrated with com-
plementary technologies and/or sensors, some of which include inertial sensors,
vision sensors such as cameras, and even LiDAR (Light Detection and Ranging),
to name a few. Modern day inertial sensors include a triaxial gyroscope, triaxial
accelerometer, triaxial magnetometer, and other optional temperature and pres-
sure sensors. The DR principle may be used to derive the navigation solution
using inertial sensors, that provide the accelerations and rotation rates around
the body axis. The vision sensors including cameras and LiDAR can provide in-
formation about the location of landmarks, which can then be used to estimate
one’s position and provide the navigation solution. The expectation from such an
integration is that the complementary sensor/technology will provide the naviga-
tion solution in the partial (or extended) absence of the GNSS. At the heart of this
integration of one or more sensors with the GNSS, lies an estimation framework
that fuses the observations from multiple sensors including the GNSS, to yield a
navigation solution. This estimation framework may utilize knowledge about the
characteristics of the observations from each sensor, platform behavior, and the
operating environment to yield the navigation solution. Kalman Filter (KF) (and
its variants) have been the popular choice of the estimation framework since they
were first proposed in the 1960s. The KF became popular after its application
in trajectory estimation for the Apollo program and was ultimately incorporated
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Figure 4.1: GNSS navigation in urban environments.

in the Apollo navigation computer. Even today, different variants of KF are being
used in many commercial navigation systems. To overcome the assumptions of
KFs (discussed in the later part of this chapter), many new filters and estimation
frameworks have been proposed. While it is not possible to cover all estima-
tion frameworks within this chapter, the overall philosophy and broad concepts of
these frameworks are discussed. This chapter will also touch upon some recent
and upcoming trends and navigation technologies (in Section 4.4) and discuss
how these technologies are expected to help mitigate some of the major chal-
lenges of the navigation community. A summary of this chapter and conclusions
are given in Section 4.5.

4.2 Navigation Technologies: An Overview and Comparison

Modern day navigation technologies can be classified into three broad cate-
gories. The first class of navigation technology makes use of proprioceptive
sensor observations to perform navigation. Some examples of such types of sen-
sors include odometers, accelerometers, gyroscopes, compass, magnetome-
ters, barometers and more. Such systems rely on internal observations such as
turning rate (gyroscope), velocity/acceleration (accelerometers), magnetic vari-
ation (compass/magnetometer), pressure variation (barometer), wheel rotation
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(odometer) etc. to perform navigation. Essentially, this form of navigation comes
under the purview of DR. The second class of technology uses specially de-
signed radio signals for navigation. This includes satellite based navigation (i.e.
GNSS), terrestrial radio-navigation such as LORAN and modern terrestrial sys-
tem Locata, and even signals that were not originally intended for navigation,
including Wi-Fi, 3G/4G telecommunication signals, and even the upcoming 5G
signals. The third class of navigation technology relies on observing and detect-
ing distinct features in the operating environment (such as lines, edges, or cor-
ners) from multiple locations of the observer and then using these ‘observations’
to assist the user in navigation. These three classes of navigation technologies
are discussed in the following sections and a qualitative comparison of the same
is presented.

4.2.1 Proprioceptive Sensor Observations

Proprioceptive sensors, by definition, record observations that are ‘internal’ to a
system. A navigation system that relies on proprioceptive sensors is oblivious
to the external features or environment around it and uses only the internal ob-
servations for navigation. These internal observations may include acceleration,
turn-rate, wheel rotation rate etc. The observations are sent to an estimation
framework that derives the navigation solution. Some of the commonly used
sensors include accelerometers, gyroscopes, and odometers. An accelerometer
measures the acceleration of a body, a gyroscope measures the rate of rotation,
while an odometer measures the distance traveled by a wheeled vehicle. An in-
tegration of appropriate combination of these sensors, combined with a suitable
estimation framework can yield the navigation solution of a moving vehicle, with
respect to a local origin, from where the vehicle started moving. At each instant
of time, &, the vehicle estimates the distance vector from the instant £ — 1 to &
using the sensor observations. The resulting position at any instant, &, can be
computed from the position at k£ — 1 and the displacement vector. This is demon-
strated in Figure 4.2, where the red line denotes the estimated displacement
vector.

It is obvious from the demonstration in Figure 4.2 that the ‘quality’ of the es-
timated trajectory or vehicle position is dependent on the sampling rate of the
sensors, as well as, the maneuvers undertaken by the vehicle. Using a sensor
with a relatively low sampling rate on a highly maneuverable vehicle would lead
to an inaccurate representation of the trajectory undertaken by the vehicle. An
Inertial Measurement Unit (IMU) is one of the most commonly used sensors that
integrates triaxial accelerometers and triaxial gyroscopes in a single unit. While
an IMU yields only the raw sensor observations, AHRS (Attitude Heading Ref-
erence System) includes a filter, in addition to an IMU, that processes the raw
observations to yield the platform position, orientation, or velocity. While in the
early days inertial sensors were quite large and mechanical in nature, modern
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Figure 4.2: Navigation using proprioceptive sensors.

day sensors can be of the size of a few microns, such as the ones used in mod-
ern day smartphones and hand-held devices. In terms of cost and performance,
modern day inertial sensors can range from costing a few dollars that may drift
by hundreds of meters in a few minutes, to costing over a million dollars that drift
less than 1—-2km in one day.

Given the initial vehicle position, accelerations and vehicle turn rate (in three
directions), the displacement vector, and the final vehicle position can be es-
timated using Newtonian kinematic equations. This principle of navigation is
commonly referred to as DR and was the earliest form of navigation adopted by
sailors. Although the principle is relatively simple in theory, it suffers from various
practical limitations. The major limitation is the corruption of sensor observations
with errors, which get accumulated over time as they get integrated through the
kinematic equations, causing the estimated vehicle position to drift from its ‘true’
position. It is primarily because of this reason that DR cannot be used for an
extended period, and is often combined with complementary sensors that can
help contain the drifts caused by the errors in inertial sensors.

4.2.2 Using External Signals

The use of external signals for navigation dates back to the early 20" century
when radio technology was just being adopted across the world. The early ‘ex-
ternal signals’ based navigation systems made use of terrestrial signals, such
as LORAN and Omega. While very few terrestrial navigation systems remain
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operational today, satellite based radio navigation has become quite popular re-
cently. As shown in Figure 4.3, a satellite based navigation system comprises
three major components: the Control segment, the Space segment, and the User
segment.

GNSS i \ Space
satellite > Y P
F . segment
1 N .l \
5 Ry .

Control Fa Ny

segment User

segment

Earth

Figure 4.3: Three broad segments of GNSS.

The Space segment comprises a satellite constellation which transmits radio
signals to the users on the ground. The control segment is responsible for proper
operation of the space segment and includes a network of monitor and control
stations. These stations maintain the satellite orbits, track satellites, upload nav-
igational data and maintain the satellite status. The user segment consists of
the GNSS receivers that make use of the information received from the satellites
to estimate their navigation solution. A vehicle/platform on Earth uses specially
designed signals transmitted by four or more satellites, to compute its navigation
solution using multilateration. In general, GNSS signals consist of a carrier, a
ranging code, and navigation data. Accordingly, a user can either use the carrier
phase or pseudorange observations to estimate the user’s position. The naviga-
tion data provides the satellite ephemeris, clock bias parameters, satellite health
status, and other information that is used in position estimation.

The first step in position estimation using GNSS is to derive the satellite po-
sition in an earth fixed coordinate system using the satellite ephemeris informa-
tion. This is followed by a pseudorange or carrier phase model that makes use
of either the pseudorange or the carrier phase (derived from either the ranging
code or the carrier signal) and satellite position to estimate the user position.
The quality of the GNSS solution is dependent on the receiver’s antenna, choice
of signals used (code based vs. carrier phase observations) and processing
methodology adopted. In general, low-cost GNSS receivers can achieve accu-
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racy in the order of ~ 5 m, while high end GNSS receivers that use multiple
frequencies and different corrections can achieve accuracies of the order of a
few centimeters. Although the GNSS has become ubiquitous and navigation us-
ing this technology has become quite easy, it suffers from two major limitations.
Firstly, GNSS is prone to spoofing and jamming and many instances have been
reported across the world where the GNSS was intentionally or unintentionally
jammed or spoofed. This limitation poses a risk to the user, in the sense that
the user may be intentionally denied access to the GNSS by jamming the GNSS
signals, or the user may be ‘mis-directed’ by spoofing the signals. The sec-
ond limitation of this system is that GNSS signals require a direct line of sight
between the satellite and receiver antennas. This condition cannot always be
fulfilled due to obstruction caused by trees or buildings in urban environments.
This limitation is so severe that it is becoming increasingly difficult to use GNSS
in urban environments, due to the expansion of urban canyons, tunnels, under-
ground/covered spaces (e.g. parking). Hence, GNSS alone may not be capable
of meeting the navigational requirements of a majority of the users in a mod-
ern day environment. GNSS is therefore integrated with other complementary
sensors or technologies, and the commonly used sensors for this purpose are
inertial sensors.

GNSS is more suitable for long-term solutions, while inertial sensors can pro-
vide short-term solutions. An integration of these two technologies helps to over-
come the limitations of each of them. For example, a vehicle passing through a
tunnel may be denied GNSS due to unavailability of direct line of sight, whereas
inertial sensors can provide a short-term navigation solution. When the vehicle
emerges from the tunnel, GNSS signals can be re-acquired and the navigation
solution can be maintained. For navigation in indoor and other GNSS-denied
environments, various other types of signals are also being used these days, in-
cluding but not limited to Wi-Fi, cellular signals, AM/FM signals, Ultra-Wide Band
(UWB), and more. Signals such as Wi-Fi, cellular and AM/FM, collectively re-
ferred to as Signals of Opportunity (SoOP), were not originally intended for navi-
gational purposes, but are now being applied in navigation. The common disad-
vantage of using SoOP is the low precision of the navigation solution (typically
~50—-100 m) offered by them that limits their usability in demanding navigational
applications.

UWB technology is gaining prominence as an alternative or complement to the
GNSS for navigation in partially GNSS denied or indoor environments. UWB is a
radio technology designed for short range and high bandwidth applications and
operates in the 3.1 to 10.6 GHz frequency range. Use of UWB for localization or
navigation requires a master and a slave combination. The master UWB node
may be installed at a known location and the slave UWB node is carried by the
vehicle/user. This master-slave UWB combination can be used to estimate the
range between these nodes, using either Time of Arrival (ToA) or Return Trip
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Time (RTT) observations. ToA methods measure the time of arrival at the slave
node, while RTT methods measure the total time taken for the pulse to travel from
the master to the slave and back to the master. Unlike RTT methods, ToA based
methods require the master and receiver clocks to be perfectly synchronized and,
therefore, RTT based methods are a popular choice for range estimation. As
demonstrated in Figure 4.4, the user position (equipped with slave node) can be
estimated once the range from the slave to three or more master nodes is known.
Typical UWB sensors can cost ~50—100 USD and offer an accuracy range of
~2cm, therefore, allow the user position to be estimated with an accuracy of of
better than ~ 10cm.

) Master
’ UWB -3

Master |

Figure 4.4: Navigation in GNSS-denied environment using UWB.

A UWB system requires all master UWBs to possess unique identifiers that
identify it. The accuracy of the user is also dependent on the geometry of the
network formed by these sensors, and hence, care must be taken to design ‘opti-
mal’ networks that yield the best possible accuracy to the user. The use of UWBs
has been successfully demonstrated in indoor environments, even in indoor/un-
derground parking spaces where GNSS is absent. There have been efforts to
integrate UWBs with GNSS to allow a seamless transition to a user when transit-
ing from indoor to outdoor environments. Although UWB technology has proven
to yield sufficiently high accuracies, it is limited by the short range of the sensors,
investment and efforts required in setting up a sufficiently large infrastructure and
poor penetration of UWB devices in the mass consumer market. Furthermore,
the presence of a large number of master and/or slave nodes within the same
environment is shown to cause network congestion, which causes significant
drops in the communication range and hence severely affects the user’s naviga-
tion. Despite these limitations, UWB technology can be used in limited indoor
environments such as underground/indoor parking spaces, or the other specific
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areas where stringent navigational accuracy requirements are required to be met
in the absence of GNSS.

4.2.3 Using Environmental Features

A unique characteristic of the urban environments is the presence of distinct ar-
tificial features, using which a user can locate himself/herself. This principle of
navigation using environmental features is quite similar to the navigation process
that humans and other animals use on a day-to-day basis. It is, then obvious,
that a navigation system that relies on environmental features needs at least
one sensor that can capture information about the surrounding environment, ex-
tract useful features, and sequentially track those features to locate itself as it is
navigating through a feature rich environment (for example, urban cities). Such a
sensor could be a camera that can capture highly detailed semantic information
or a LiDAR sensor that can record detailed geometric information. Figure 4.5
demonstrates an example of navigating using environmental features.

Figure 4.5: Urban navigation using environmental features.

Different types of distinct features are available in a typical urban environment,
such as the ones demonstrated in figure 4.5. Some of the features that may be
useful in navigation are marked in red. A vehicle senses the surrounding envi-
ronment, extracts useful features, and tracks these features as it moves along.
Given an initial starting point, the location of these features is first estimated in
a user defined coordinate system. As the vehicle moves to the next location,
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these features are tracked and used to estimate the new vehicle position. Ad-
ditionally, new features that may be visible to the vehicle from the new position
are also added to the estimation process. This process continues, and the lo-
cation of the features and vehicle position may be estimated simultaneously. To
ensure that the features are georeferenced, and the vehicle position is estimated
in a global coordinate system (such as the World Geodetic System 1984), the
initial vehicle position and orientation must be initialized with respect to this sys-
tem. This approach of navigation using environmental features comes under the
purview of simultaneous localization and mapping (SLAM) or odometry, depend-
ing on whether a map of the environment is simultaneously constructed or not.
SLAM approaches attempt to construct a map of the environment, while simul-
taneously estimating the vehicle position. On the other hand, odometry using
cameras (called Visual Odometry) or camera and inertial sensors (called Visual
Inertial Odometry (VIO)), or even LiDAR odometry, focuses only on estimating
the vehicle trajectory and does not consider simultaneously mapping the envi-
ronment. Map matching is another technique that has been quite popular for
localization in indoor/outdoor environments. Map matching methods require the
user to have access to a precise map of the environment in advance. The user
derived position is ‘matched’ to one of the features on the map, thereby assisting
the user in improving its own position on the map.

Navigation systems that make use of environmental features have found appli-
cations in mapping and/or navigating indoor environments and exploration mis-
sions. A key advantage of such approaches is that they do not require any prior
infrastructure setup, except sensors on the vehicle platform. However, such an
approach is successful only if there are sufficiently distinct features available in
an environment. For example, SLAM or VIO may not work successfully in long
hallways, that may be devoid of any distinct features. Similar to DR approaches,
this method also suffers from drift due to accumulation of errors in the sensor
observations. Hence, various techniques are deployed to constrain these drifts,
which includes loop closures followed by an optimization (e.g. bundle adjust-
ment) and/or inclusion of absolute positioning systems such as GNSS. Unlike
the earlier navigation technologies, systems using features for navigation can
be computationally expensive, due to the computational complexity involved in
feature detection, feature tracking and optimization.

4.2.4 Qualitative Comparative Analysis

The last few years have witnessed a proliferation of different sensors that are
being used in navigation technologies. This is primarily due to the increasing
demand for navigation solutions and the increasing role of navigation (and map-
ping) technologies in possibly all sectors and aspects of life including but not lim-
ited to transportation, construction, mining, and exploration, urban management,
disaster management, etc. As of today, a significantly large number of people
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are using one or other navigation technologies. While most everyday users are
satisfied with low-cost GNSS sensors (that may be installed in smartphones),
various advanced applications require the use of complementary sensors to de-
velop robust solutions. It is therefore, important for a user to understand the
limitations of each of these technologies, and possibly, have an understanding of
the performance offered by these technologies before they are integrated into a
system.

To assess and compare the strengths and weaknesses of each of the naviga-
tion approaches, five different parameters have been chosen: accuracy, cover-
age, stability of the navigation solution, dependence on infrastructure, and com-
putational complexity. Accuracy here refers to the closeness of the estimated
solution to the ‘true’ value, while coverage refers to the area over which the nav-
igation solution can be estimated. Stability of the solution refers to the ability
of the navigation technology to maintain the estimated solution over a period
of time. Dependence on infrastructure attempts to qualitatively assess the in-
vestment required for making the solution work and the computation complexity
attempts to compare the computational infrastructure needed for achieving the
desired solution. A broad comparison of various navigation technologies in terms
of coverage and accuracy is presented in Figure 4.6.

Coverage

High

Extended period Short period

Using Environmental Features

Extended period Short period

Low DR/Proprioceptive Sensors

_

, Accuracy
Low High

Figure 4.6: Accuracy versus coverage: Comparison of navigation solutions.

The technologies that make use of external signals for navigation cover the
broadest spectrum on the coverage-accuracy plot. GNSS is capable of providing
global coverage to the extent that it can be used ubiquitously, while also provid-
ing high navigational accuracies. This makes them a good candidate for use in
a wide variety of applications. On the other hand, UWB technology can provide
high localization accuracy comparable with the GNSS but is limited to local areas
only. Other signals such as 4G/5G, AM/FM etc. that fall under the broad category
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of SoOP provide a broader coverage as compared to UWB, but have significantly
poorer accuracy. Terrestrial signals, such as LORAN, provide higher coverage
and better accuracy compared to the SoOP, but also require higher investment in
terms of infrastructure and maintenance. In contrast, technologies based on pro-
prioceptive sensors and use of environmental features provide lower coverage,
and accuracies ranging from low to high, depending on the optimization tech-
niques used and time period over which the solution is used. Over an extended
period of usage, the accuracy of both feature based and proprioceptive sensor
based technologies tends to degrade due to accumulation of errors, causing the
solution to drift.

As can be seen in Figure 4.7, a significant investment is needed in terms of
infrastructure development and maintenance to be able to use external signals
(such as GNSS or UWB) for navigation. In contrast, proprioceptive sensor based
solutions require the least amount of infrastructure, but they also offer poor so-
lution stability over extended periods of time. Extraction and tracking of useful
features from the surrounding environment can be quite computationally expen-
sive and therefore, a significant investment in terms of computational resources
is needed for feature based navigation. Another implication of the higher compu-
tational complexity is that the navigation solution may not be available to a user
in real-time, which may be a critical requirement in certain applications. Although
each of the navigation solutions have their own advantages and limitations, many
of the limitations, at least in terms of accuracy, coverage and solution stability can
be overcome by a suitable integration of complementary technologies at cost of
increased complexity and higher financial investment.

Infrastructure Solution Computational
Dependence Stability Complexity

High Medium Low

Figure 4.7: Qualitative comparison of navigation systems.
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4.3 Sensor Fusion for Navigation

At the heart of a navigation system is a navigation processor (e.g. a filter) that
takes the raw observations from one or more sensors as input and provides an
estimate of the vehicle state, including position and velocity. Over the years that
many different types of processing filters and architectures have been proposed,
each with their own advantages and limitations. The Kalman Filter, originally
proposed in the 1960s, has enjoyed quite a significant amount of popularity and
remains one of the popular choices for estimation even today. The KF employs a
predictor-corrector architecture to sequentially process the sensor observations
and generate the state estimates of a moving platform (e.g., car, pedestrian).
The predictor component of the KF generally uses a kinematic motion model to
predict the state vector, given an initial state estimate and inertial sensor ob-
servations. This motion model should represent the platform characteristics and
maneuvering capabilities. The predicted state estimate is then passed to the cor-
rector component of the KF that makes use of the predicted state, sensor obser-
vations (e.g., GNSS, LiDAR, camera), and a measurement model to update the
predicted state and generate the corrected state estimate, along with the sensor
biases. The employed measurement model represents the relationship between
the platform state that needs to be estimated, and the sensor observations. The
sensor biases, thus estimated, are generally fed back to the KF to correct the
sensor observations, and the whole process repeats itself. A simplified graphical
representation of this method is represented in Figure 4.8.

Inertial sensor Measurements from

) Output
ohservations external sensor

‘|, Time Update l Measurement Update

Initial
estimates

Measurement Updated
Model estimates

Motion Model

Figure 4.8: A generic predictor-corrector framework employed in navigation processors.

Feedback !

The traditional KF made various simplifying assumptions such as linear mo-
tion and measurement models, uncorrelated measurement and process noise,
Gaussian nature of the noise etc. Therefore, various filters have been developed
over the years, that employ a similar predictor-corrector framework but attempt to
overcome the limitations of the conventional KF. Extended Kalman Filter (EKF)
can be suitably employed when the non-linearity in motion and/or measurement
models is not very high. Unscented Kalman Filter (UKF) performs better than
EKF and KF in case of highly non-linear motion and/or measurement models,
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while assuming the noise to be Gaussian in nature. Particle filters are one of
the most generic forms of KF that do not make any assumption about noise dis-
tribution and do not assume the models to be linear. There are multiple other
variants of each of these filters that tackle other assumptions such as colored
noise or correlated errors. The architecture of the employed filter is dependent
on the types of sensors integrated in a multi-sensor platform, and therefore, mul-
tiple variants of these filters exist. For example, EKF is generally suitable for
a GNSS/IMU integration, while SLAM or odometry based filters are needed for
integration of camera and/or LiDAR sensors. These days graph based meth-
ods (e.g., Belief Propagation) are gaining popularity for vehicle navigation and/or
tracking applications. Nevertheless, the basic architecture of a multi-sensor plat-
form for navigation is depicted in Figure 4.9.

GNSS
observations )
»l« Feedback
€ ===
MU I
Accelerometers I
Specific force Navigation Navigation
e o e e o Processor solution
Gyros
A Odometer
Magnetometer | : - Barometer
—J ————— = Camera
: LiDAR
' SoOP etc.

Figure 4.9: Generic multi-sensor fusion architecture for navigation.

An important area of research in developing such multi-sensor platforms is
developing a robust navigation processor that is capable of handling sensor ob-
servations from multiple sensors such as GNSS, IMU, Odometer, Camera, or Li-
DAR. The complexity of the processor is dependent on the chosen set of sensors,
the environment where the platform is expected to operate, deliverables of the
processor (trajectory and/or map, etc.) and other application requirements such
as expected accuracy, real-time versus post-processed solution, etc. Therefore,
designing a robust navigation processor is a non-trivial and complex process that
requires an ingenious combination of science and art.
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4.4 Upcoming Trends in Localization and Navigation

The growing realization of the benefits of the navigation technologies has al-
lowed them to be used in a wide variety of applications, to the extent that many
modern day consumer electronics and some daily use items are now equipped
with one or the other navigation technology. For example, GNSS has become
synonymous with smartphones and smartwatches, and cars are now equipped
with GNSS sensors. A whole new industry based on location based services has
sprung up that is providing new solutions. This chapter identifies three broad up-
coming trends in the area of localization of navigation. Firstly, there has been a
rise in the types of signals that can now be used for navigation. For example,
the newest 5G signals can provide a much better localization solution compared
to their predecessors. Smartphones can now receive and process carrier phase
observations, making them much more powerful and precise. The newer Wi-Fi
standards are being designed to provide improved range estimates between the
router and the Wi-Fi device (e.g., smartphone) using RTT methods, to enable im-
proved navigation of these devices in indoor environments. Technologies such
as UWB, Zigbee, or Dedicated Short Range Communication (DSRC) are gain-
ing popularity for their navigational assistance capabilities. Secondly, there has
been a tremendous development in designing better, robust and efficient navi-
gation processors capable of integrating various complementary sensors. Deep
learning architectures are now being investigated for their potential in provid-
ing navigation estimates and have shown significant promise. Efficient graphical
SLAM approaches have been in the works for quite some time and are becoming
mature. Thirdly, due to the proliferation of users relying on navigation technolo-
gies and availability of a wealth of signals, there is an increasing emphasis on
developing cooperative solutions wherein, different users assist the neighboring
users in localization and navigation. Since, some of the users may be better
placed in terms of navigational capabilities, they may assist their neighbors (e.g.,
other cars in the vicinity of a car) who may not be so fortunate or capable (in
terms of available navigational accuracy) by sharing their own information and
some knowledge about their neighbors. This also opens up the doors for cooper-
ation among different types of platforms, for example, Unmanned Aerial Vehicles
(UAVs) assisting ground vehicles in navigating complex terrain.

4.5 Summary and Conclusions

Navigation has evolved from the days of relying on landmarks/celestial observa-
tions or DR to using multiple ubiquitous signals and integrated multi-sensor sys-
tems utilizing a wide variety of sensors. This chapter provided a brief overview of
the navigation technologies currently available and being used across the world,
and discussed the challenges and limitations of each of these technologies. Fur-
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ther, the chapter briefly explained the broad principles involved in integration of
complementary sensors to develop robust navigation systems. While existing
technologies are quite capable of providing navigation solutions in complex ur-
ban environments, challenges still exist, primarily in developing efficient naviga-
tion processors that can make the best possible use of complementary sensors.
Therefore, developing novel filters and estimation frameworks has been an im-
portant research area for quite some time and will continue to be so in the near
future. The sensors will improve over time, and more signals may become avail-
able in the future, but these signals and sensors can be best utilized only when
efficient and robust navigation processors are available.

4.6 Further Reading

While this chapter has provided a broad overview of a field, | provide also a
suggested reading list for those who want to go deeper and explore in more
detail (Abbas et al., 2019; Atia and Waslander, 2019; Chang et al., 2019; Chao
et al., 2020; Feng et al., 2020; Gabela et al., 2019; Gao et al., 2016; Goel et al.,
2017; Guo et al., 2019; Hashemi and Karimi, 2014; Li et al., 2019; Maaref and
Kassas, 2020; Masiero et al., 2020; Mohamed et al., 2019; Retscher et al., 2020;
Williams, 1992; Zafari et al., 2019).
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