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Abstract

This chapter describes a simple method for parking occupancy detection and an automatic parking
slot delineation method using CCTV images. These methods will be presented in the form of MATLAB
tutorials with code snippets to allow the interested reader to implement the method and obtain results
on a sample dataset. The first tutorial will involve fine-tuning a pre-trained deep neural network for
vehicle detection in a sequence of CCTV camera images to determine the occupancy of the parking
spaces. In the second tutorial, we perform spatio-temporal analysis of the detections made by a
state-of-the-art deep learning object detector (Faster-RCNN) for automatic parking slot delineation.
The dataset and the code is made public at https://github.com/DebadityaRMIT/Parking.
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11.1 Introduction

Smart parking technologies are an indispensable part of urbanization to facili-
tate a congestion-free traffic flow. The advantages include less emissions and
less waiting periods for drivers. These facts have motivated the research com-
munity to develop smart parking technologies, and real-time parking occupancy
detection has become one of the key elements for the design of tomorrow’s smart
cities. While different sensor technologies exist for occupancy detection, they are
usually expensive and require regular maintenance. The vision-based methods
for parking occupancy detection provide an economical yet reliable alternative to
the costly counter-based and sensor-based counterparts.

The rest of the section describes the motivation, related works and challenges
of parking occupancy detection and automatic delineation of parking spaces us-
ing deep learning. Section 11.2 provides a brief overview on the definitions and
the theory of machine learning in general. This is followed by introducing the
deep learning architectures used for occupancy classification and parking space
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detection. Additionally, the details of the dataset are presented in this section.
Section 11.3 presents the first tutorial where a deep learning image classifier is
fine-tuning to perform parking occupancy detection. Also, several deep learning
architectures are compared based on their performances and run-times. Sec-
tion 11.4 presents the second tutorial where a deep learning object detector is
used to perform automatic parking slot delineation. Subsequently, the model
performance is improved by using spatio-temporal and statistical analysis of the
detection. Section 11.5 concludes the observations of the tutorial.

11.1.1 Parking Occupancy Detection Using Vision-based Methods

The vision-based methods consist of cheap cameras to cover the whole parking
area. The closed-circuit television (CCTV) cameras used for surveillance can
also be used for occupancy detection. The images taken from these cameras
are subsequently processed to provide the occupancy information. For a com-
prehensive review of other sensors for parking occupancy detection the reader
is redirected to Chapter 10.

There are two challenges that limit the broad applicability of the vision-based
methods. The first challenge is the low detection accuracy of vision-based meth-
ods as compared to the count-based or sensor-based methods (Amato et al.,
2017). This lack of precision for vision-based methods can be linked to many
factors, such as diverse appearances of the vehicles, environmental factors such
as shadows, reflections and haze (due to sun and rain), occlusion by other vehi-
cles (or other objects) in the line-of-view and distortion due to the oblique view of
the cameras.

The second challenge is the delineation of the parking slots in the images. This
delineation is not necessary for counter-based methods as the number of parking
slots are fixed, and for sensor-based methods each parking slot is physically
visited once to install the sensor. A parking area can be covered by several
cameras, and perhaps hundreds of cameras for on-street parking. Manually
labeling each parking slot is a laborious task. Moreover, the parking boundaries
can change from time-to-time. Another related challenge arises in areas where
the parking slots are not marked, especially in low- and middle-income countries
such as India. An equally important challenge is the detection of improperly or
illegally parked vehicles, e.g., when a vehicle is parked on the markings between
two spaces or when several cars are parked in a large parking space designated
for buses. Therefore, automatic ways to delineate the parking slot boundaries (or
parking zones for unmarked parking areas) is highly desirable for smart parking
solutions.

Robust image representations help in the accurate detection of the parking
slots, and the recent deep learning methods have showed promising results in
this aspect (Amato et al., 2017; Acharya et al., 2018). Therefore, in the next
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sub-section we discuss the background of parking occupancy detection and au-
tomatic parking slot delineation using deep learning. The relevant definitions
and theory related to the understanding of deep learning can be found in Section
11.2.

11.1.1.1 Parking Occupancy Detection Using Deep Learning

Parking occupancy detection is usually formulated as an image classification
problem, where each image is either empty or occupied by a vehicle. Image clas-
sification follows a standard pipeline of feature extraction, and comparing the ex-
tracted feature with features belonging to different classes. In the past these im-
ages features were hand-crafted (or engineered) and showed poor performance
for “unseen” examples. For instance, de Almeida et al. (2015) generated a ro-
bust dataset containing parking of different parking slots and used hand-crafted
textural descriptors, such as Local Phase Quantization (LPQ) to perform parking
occupancy detection. They report an accuracy of over 99 % while validating with
the images from the same dataset, and around 89 % while testing with images of
a different dataset. Other such examples of parking detection with hand-crafted
images features includes the works of True (2007), Ichihashi et al. (2009) and
del Postigo et al. (2015).

With the advances in machine learning algorithms, especially the recent deep
learning and convolutional neural networks (CNNs), the feature extraction from
the images have been automated, and state-of-the-art accuracies in image clas-
sification are reported. In the context of parking occupancy classification with
CNNs, several past works (Valipour et al., 2016; Amato et al., 2016, 2017; Acharya
et al., 2018) report excellent performance. These studies achieve greater than
99 % accuracy for the task of occupancy detection when being validated with un-
seen samples from the “same” dataset. The performance of the models on un-
seen samples from a “different” dataset is around 90 %–96 %. This improvement
in the “generalizing” ability (or adaptability to unseen examples) of the CNNs
demonstrates the robustness of the learnt features compared to the hard-crafted
features.

Parking occupancy classification using CNNs can be done in two ways. The
first approach involves fine-tuning a pre-trained CNN, like the approaches of
Valipour et al. (2016); Amato et al. (2016, 2017). A pre-trained CNN contains
the weights of a network that is trained on millions of images and is suitable for
classification of several hundreds of classes. These pre-trained CNNs usually
require weeks to train on graphics processing units (GPU) and perhaps can take
years to train on normal CPUs. Therefore, using pre-trained networks saves the
effort of training a network from scratch and can easily be adaptable to a partic-
ular problem by transfer learning.
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However, the pre-trained networks are not suitable for a two-class classifi-
cation task, like parking occupancy, where a class is either “empty” or “occu-
pied”. Therefore, to adapt to the classification problem, we fine-tune the CNN by
with some example images (often a couple of thousands) to adapt the weights
of the network for the specific classification task. This is performed by back-
propagating the loss using an objective loss function. For a classification task,
cross-categorical loss is usually used. However, one of the disadvantages of this
method is the computational power required for the fine-tuning process. It can
take several minutes on GPU or several hours for fine-tuning a network with a
couple of thousand images.

The second approach involves extraction of the image features using a pre-
trained CNN and then performing classification using support vector machines
(SVM), like the approach followed by Acharya et al. (2018). SVMs are a kind
of machine learning algorithms that project the features into higher dimensional
feature spaces to find the optimum hyperplane that separates the classes. This
approach of training is faster as compared to fine-tuning the CNNs and the whole
training can be performed with CPU within minutes. This reduction in the training
time is due to the elimination of the back-propagation, and because the training
time of SVM is considerably less (few seconds for couple of thousand samples).
For a CPU-friendly MATLAB tutorial of this CNN + SVM method please follow our
previous work (Acharya et al., 2018) which is available at https://github.com/
debaditya-unimelb/real-time-car-parking-occupancy.

We present the fine-tuning approaches in Section 11.3. Additionally, we com-
pare the performance in terms of precision and computational times of different
CNN architectures. This information will help the audience to decide the trade-off
between performance and computational need to check the suitability for real-
time applications.

11.1.1.2 Delineation of the Parking Slots Using Deep Learning

Delineation of parking slots (knowing the locations of the parking slots) is re-
quired prior to accurate parking occupancy detection. Currently, delineation is
performed manually (Cai et al., 2019; Khan et al., 2019; Sairam et al., 2020; Paidi
et al., 2020). These studies use deep learning-based object detectors such as
Faster-RCNN (Ren et al., 2015) to detect the vehicles, subsequently, compare
the location of the detections with the manually delineated parking slots to esti-
mate the occupancy.

To eliminate the manual delineation of parking slots, some researchers (Ah-
mad et al., 2019; Ding and Yang, 2019) have used automatic object detectors
to detect the vacant and the occupied parking slots directly in the images using
Faster-RCNN, Mask-RCNN (He et al., 2017), Retina-Net (Lin et al., 2017), and
YOLO (Redmon and Farhadi, 2018). However, such methods do not take into
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account the actual number of the parking slots available in the area, rather they
report the number of detections (both empty and occupied) made by the object
detector. Because these object detectors always miss some of the parking slots,
the parking estimates might not be practical for all applications. Moreover, object
detection pipeline involves localizing the objects in the images. This particu-
lar step is computationally expensive as the system has to process thousands
of proposals to identify the correct detection. For instance, one forward pass
through ResNet50 (He et al., 2016) for image classification needs approximately
0.1 seconds on CPU, and processing the same image with the same ResNet50
in Faster-RCNN framework on CPU needs around 12 seconds in MATLAB.

Differently, there are few other approaches that perform automatic parking slot
delineation. Vítek and Melničuk (2018) propose an automatic method of delin-
eation of the parking spaces in a multi-camera framework using histograms of
oriented gradients (HOG) and a sliding window to perform vehicle space classi-
fication using SVM. The authors do not report the detection accuracies, and in
addition the HOG features are susceptible to lighting changes. Nieto et al. (2018)
use satellite images to manually register the parking slots and use an input of the
number of parking slots to automatically delineate the parking slots. However, the
method is not completely automatic as it needs input from a skilled operator to
actually count the number of parking slots and for entering three common points
(ground control points).

Another research direction of automatic delineation of parking slots can be
found in the works of Jung et al. (2009); Suhr and Jung (2013); Zhang et al.
(2018), however they are vehicle-centric and rely on the cameras installed in the
vehicles to detect the parking slot marking automatically. However, such methods
have not been applied yet for parking slot delineation from fixed cameras, and
are a future research direction.

11.1.2 Contributions

The following are the main contributions of the chapter:

• A pre-trained CNN is fine-tuned with the PKLot dataset for parking occu-
pancy detection, and is tested with a Barry Street dataset. Different CNN
architectures are compared in terms of their accuracies and run-times to
demonstrate the suitability for real-time applications on both CPU and GPU.

• A novel off-line method is proposed for automatic parking slot delineation
by performing spatio-temporal analysis of the detected vehicles using state-
of-the-art object detector Faster-RCNN (Ren et al., 2015). Compared to the
previous approaches, the proposed pipeline eliminates the requirement of
localizing the objects on-line, and generates parking slots that would have
been otherwise be manually delineated. This off-line method eliminates
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the requirement of localizing the vehicles, and reduces the object detec-
tion problem to an image classification problem that significantly reduces
the computational requirements. We present the approach and the related
tutorial in Section 11.4 to prove the concept.

Section 11.2 introduces the prerequisites of the tutorials, such as definitions,
related theory, software toolboxes and subsequently the dataset. Section 11.3
demonstrates fine-tuning a pre-trained network, and compares different network
architectures in terms of achievable accuracies with the sample dataset and the
run-times. Section 11.4 demonstrates the automatic parking slot delineation us-
ing a vehicle detector. Section 11.5 concludes the finding of the tutorial.

11.2 Prerequisites

In this section, we start by presenting the theory and definitions that are used
throughout the tutorials. For completeness, we have repeated some of the re-
lated theory already presented at the beginning of the chapter. Subsequently,
we introduce the software and toolboxes required running the tutorials. Lastly,
we describe the dataset that we used for the tutorials, which we made public.

11.2.1 Definitions and Theory

Machine learning are a set of computer algorithms that build a mathematical
model based on a training data, which can be used to make predictions or deci-
sions of unseen data based on learnt representation of the features. Neural net-
works and deep learning are included in this class of algorithms. Machine learn-
ing can be broadly classified as supervised machine learning, un-supervised
machine learning and reinforcement learning. In this chapter we use supervised
machine learning approaches, where we provide the samples of training data
with their respective labels (ground truth annotations).

Neural networks are networks inspired from the biological neural networks of
the brain and are composed of artificial neurons (containing weights and biases)
to perform many complex operations, such as classification. These networks
learn a feature representation automatically and eliminate the manual feature se-
lection process. These networks are composed of connected layers, where each
layer contains many neurons and the training process involves back-propagation
by minimizing an objective loss function.

Deep learning refers to the machine learning algorithms which deal with neu-
ral networks that contain many layers of neurons. Adding increased depth to the
neural networks provide the networks ability to perceive complex operations that
are not possible by their “shallow” counterparts. Recently, deep convolutional
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neural networks have achieved the state-of-the-art accuracies in classification
and object recognition tasks, sometimes even surpassed the human ability.

CNNs consists of many layers of image “convolutions” containing learnable
kernels that convolute the whole image and hence create a hierarchy of in-
creasing complex image features. These image features are learnt automatically
thereby eliminating the need of fragile hand-engineered image features. These
learnt image features are unique representations of the images, and are often
used for image classification and object detection. In this chapter we have used
many CNN architectures, v.i.z. AlexNet (Krizhevsky et al., 2012), GoogleNet
(Szegedy et al., 2015), MobileNet v2 (Sandler et al., 2018), ResNet50 (He et al.,
2016), SqueezeNet (Iandola et al., 2016) and VGG-16 (Simonyan and Zisser-
man, 2014). We selected these networks to demonstrate the effects of network
run-time and the achievable accuracy with limited training data. For the scope of
the tutorials we only explain ResNet50 in the following lines.

Pre-trained networks are trained with millions of images of publicly available
image datasets containing different classes. The training can take a couple of
weeks, depending on the network architecture and training data. To save the
immense training effort before using deep networks, these pre-trained models
are often used for other tasks by fine-tuning them.

Fine-tuning refers to the process of training a pre-trained network with rela-
tively small examples to adapt to a different task. This is achieved by the process
called transfer learning.

Transfer learning is the process of applying learnt knowledge in one domain
to solve a different but related problem. For instance, a pre-trained network
trained to perform image classification of thousands of classes that contain vehi-
cles, cats, and dogs can be used to differentiate between types of insects, a task
that it was not trained to do.

Training data refers to the samples that are used during training the model.

Test data refers to the sample that needs to be classified.

Over-fitting refers to a condition where the classification accuracy of the trained
model is excellent on the training data, but its performance is poor on test data.
Therefore, during the training process, a validation data is generated as a subset
of training data which is used for evaluating the accuracy of the trained model
independently.

Loss function also known as cost function or objective loss function that we
try to minimize during the learning process by back-propagating. The simplest
form of this function is the difference between observed and the actual values.
For classification problems, a cross-entropy loss function is often used.

Back-propagation refers to the process of propagating the gradients from
output to input to update the weights of the network for the intended operation.
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The back-propagation is achieved by using an optimizer, and the weights of the
neurons are updated using a hyper-parameter called learning rate.

Optimizers are the iterative methods of optimizing the loss function by calcu-
lating the gradients (or rate of change). They connect the weights of the individual
neurons with the loss function with the help of a learning rate. The objective here
is to reach the global minima or the minimum possible value of the loss func-
tion. The most commonly used optimizer is stochastic gradient descent and its
variants.

Learning rate refers to the rate of update of the gradients for each individual
neuron throughout the network. A higher learning rate might help to reach min-
ima fast, but can end in local minima. The target of the optimization is to reach
the global minima, and hence learning rate is one of the key training parameters
of a neural network.

Epoch refers to the training interval when the neural network is trained with
one complete dataset. Usually, a neural network needs to be trained on several
epochs of data before it converges to an optimal solution.

Learning curve refers to the graphical representation of the model learning
with the amount of training data. This curve often contains the training loss,
validation loss, training accuracy and validation accuracy, and is used to identify
whether the model is over-fitting.

ResNet50. One of the challenges of deep CNNs and deep learning in gen-
eral is the problem of vanishing gradients, where the gradients during the back-
propagation becomes infinitely small for the shallow layers. To address this chal-
lenge, residual networks have been proposed in the literature, and ResNet50 is
a variant of a deep residual network, as shown in Figure 11.1.
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Figure 11.1: The architecture of ResNet50 containing 50 layers. Stages 1-4 contain
blocks of length 3, 4, 6 and 3 respectively, where each block consists of three convolutional
layers.

The main innovation in this architecture is the presence of the “skip connec-
tions” or the identity mapping (orange curved lines on the top of blocks), where
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the output of a previous block is connected to the next block. This skip connec-
tion, helps to alleviate the vanishing gradient problem by skipping one or more
layers. The result is a deep network with the state-of-the-art accuracy in image
classification. The input to the network is an image of 224 x 244 pixels and the
output is a 1000-dimensional feature vector.

Faster-RCNN (Ren et al., 2015) is an object detection algorithm that performs
the task of localizing objects on the images and its subsequent classification.
This algorithm needs a CNN as its backbone for operation, and is shown in Fig-
ure 11.2. The CNN extracts features and generates a feature map using the
“activation_40_relu” layer. This feature map serves as the input to the Region
Proposal Network (RPN) that generates the object proposals. The RPN searches
for potential objects throughout the image at regularly gridded anchor points us-
ing anchor boxes of different shapes and sizes. The object proposals from RPN
are used to create Region of Interest (ROI) pooling on the feature map to extract
the features of the potential objects. The final bounding boxes and the classes
are predicted using a bounding box regressor and a softmax classifier.
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Figure 11.2: The architecture of Faster-RCNN containing a ResNet50 backbone.

t-SNE algorithm is a non-linear dimensionality reduction algorithms that is
used for visualization of the higher dimensional data, and is often used to assess
the quality of the features for the task at hand.

11.2.2 MATLAB and Toolboxes

The tutorials are intended to run on MATLAB 2020a, although the code can run
in MATLAB versions higher than 2018a. Additional toolboxes might be required
to run the experiments that include the computer vision toolbox, statistics and
machine learning toolbox, deep learning toolbox, signal processing toolbox and
automated driving toolbox. For running the live script smoothly, please ensure
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that you increase the Java heap memory of MATLAB, as demonstrated at the
start of the live script.

11.2.3 Dataset Description

The code is made available at Github (https://github.com/DebadityaRMIT/
Parking). The provided file is in form of a MATLAB live script (.mlx file) that
contains all the outputs embedded within the script. Therefore, the user can
view the results of the experiment without running the experiments. By changing
the default configurations, an interested reader can run the tutorials online. For
running the experiments, the data (including the code) can be downloaded from
Figshare (https://rmit.figshare.com/ndownloader/files/24753887). Three
datasets, namely BarryStreetData, PKLotSampled and PKLotSegmentedSam-
pled, along with the trained models and supporting files are present in the archive.
Figure 11.3 shows the training and the test datasets.

Training Dataset

PKLot Sampled

389 labelled Images

1500 Occupied

PKLot

1500 Empty

Test Dataset

100 labelled Images

Barry Street

??

Resolution: 1000 x 663
Resolution: 1280 x 720

Segmented

Figure 11.3: The training and the test datasets. The CNNs are trained with the PKLot
dataset and are tested entirely on the Barry Street dataset.

BarryStreetData was captured by the authors from the rooftop of the Faculty
of Business and Economics Building, The University of Melbourne, and shows
on-street parking spaces along Barry Street, Melbourne. This dataset was taken
by a camera at different intervals throughout the day (except by night) having
an image resolution of 1000 x 663 pixels. We created a subset of the dataset
containing 100 images for these tutorials. This serves as our test data throughout
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the tutorials. We also provide the ground truth annotations of the parking slots
delineations (28 slots) and the occupancy (2800) for evaluating the accuracy.

PKLotSampled contains 279 randomly sampled images (having a resolution
of 1280 x 720 pixels) from original PKLot dataset (de Almeida et al., 2015)) and
an additional 90 images that have been rotated to remove the dataset bias, to-
taling the number of images to 389. Dataset bias often happens due to the
presence of a particular pattern in the training dataset, and in turn biases the
classifier to make wrong predictions on unseen data. In the current context,
the vehicles in the PKLot dataset (parking area PUCPR) were parked only in
up-down orientation. Therefore, we rotated them to make the orientation of the
vehicles left-right. The ground truth annotations of the parking slot delineations
are provided for fine-tuning the vehicle detector using Faster-RCNN.

PKLotSegmentedSampled contains 3000 randomly sampled (1500 empty
and 1500 occupied) image crops from the original PKLot dataset of varied reso-
lutions ranging from 32 x 39 pixels to 68 x 63 pixels. These images are used to
fine-tune the CNNs.

11.3 Tutorial 1: Parking Occupancy Detection by Fine-tuning
a Pre-trained CNN

Figure 11.4 shows the pipeline of the tutorial, where we will fine-tune CNNs (pre-
trained with ImageNet dataset) with 3000 segmented images of PKLot dataset.
We will demonstrate the fine-tuning process for ResNet50 in Section 11.3.1. Sub-
sequently, we will test the fine-tuned ResNet50 with the Barry Street dataset to
check the generalizing (adaptability to other dataset) ability of the CNN in Section
11.3.2. Also, we benchmark the accuracies of different CNN architectures and
report their run-times in Section 11.3.3.

ImageNet

Pre-trained CNNs 
with ImageNet 

PKLot Sampled

Barry Street Classification
Empty Occupied

Fine-tuned CNNs
(AlexNet, GoogleNet, MobileNet v2, Resnet50, 

SqueezeNet, VGG-16)

Fine-tuning

Occupied

Empty

?

Transfer Learning

Figure 11.4: The pipeline of Tutorial 1, where we fine-tune a pre-trained CNN with the
PKLot dataset and test with the Barry Street dataset.
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11.3.1 Fine-tune ResNet50 Network with the PKLot Dataset

1 TrainOnline = false;
2 .
3 .
4 else
5 load('TrainedDetectorResnet50.mat');
6 load('trainingInfoResnet50.mat');

By default, “TrainOnline” is set as false, and therefore, the fine-tuned CNN is
loaded directly without performing fine-tuning online. This option can be changed
to perform the training online. GPU should be used for fine-tuning the network
and it takes around 30 minutes (in NVIDIA Tesla P100).

“TrainOnline” being set to true, we start by loading pre-trained ResNet50 and
the segmented images into an image datastore. A datastore contains the list of
the file-names, and does not actually load the images into memory. The data-
store also creates labels automatically based on folder names. For instance,
it creates “Empty” and “Occupied” labels for each image automatically. Subse-
quently, we split the images into training (70 %) and validation sets (30 %) using
the following lines of codes:

1 % load the pre-trained model in the workspace
2 load('Resnet50FeatureExtractor.mat');
3

4 % Create image datastore from folder and label by folder name
5 imds = imageDatastore([pwd '/PKLotSegmentedSampled/'], ...
6 'IncludeSubfolders',true, 'LabelSource','foldernames');
7

8 % Randomly split the trainig set (70%) and the validation set (30%)
9 [imdsTrain,imdsValidation] = splitEachLabel(imds,0.7,'randomized');

The pre-trained ResNet50 contains 1000 classes, and currently it is unsuitable
for making occupancy predictions. Therefore, we need to replace the classifi-
cation and the fully-connected layers with the two classes which correspond to
“Empty” or “Occupied”. Subsequently, we extract the connections of the newly
created graph and connect them to form a new CNN.

1 numClasses = 2; % Number of classes: Occupied and Empty
2

3 % replace the classification and the fully connected layers
4 lgraph = replaceLayer(lgraph,learnableLayer.Name,newLearnableLayer);
5 lgraph = replaceLayer(lgraph,classLayer.Name,newClassLayer);
6

7 % extract connections of the new graph
8 connections = lgraph.Connections;
9
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10 % connect graph and new layers
11 lgraph = createLgraphUsingConnections(layers,connections);

To reduce over-fitting and to improve the generalization ability of the CNN,
data augmentation is performed on the fine-tuning dataset. Data augmentation
involves transforming the fine-tuning images without changing the total number of
images for each epoch. Here we perform two transformations: 1) reflection along
X and Y axes, and 2) change the X and Y scales of the images. Also, we need
to resize the fine-tuning images according to the input size of the CNN, which
is fixed for each CNN architecture. Subsequently, we generate the validation
dataset to validate the performance of the CNN.

1 % set range of chaging the scales of the images along X and Y axes
2 scaleRange = [0.9 1.1];
3

4 % define a data augmenter with steps to perform
5 imageAugmenter = imageDataAugmenter( ...
6 .
7 .
8 'RandYScale',scaleRange);
9

10 % define augmented fine-tuning dataset
11 augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain, ...
12 'DataAugmentation',imageAugmenter);

In the next step we start the fine-tuning process by setting up the training
options. We set the optimizer to stochastic gradient descent with momentum
with an initial learning rate of 0.005 that we reduce at every 5 epochs by a factor
of 0.5. The maximum number of epochs is set to 20. This high initial learning
rate helps the model to converge fast, otherwise it might have taken more epochs
to reach the same level of performance. We reduce the learning rate slowly to
avoid reaching the gradient descent to a local minima. We also set the batch
size as 10 (this depends on the memory of the GPU). Increasing the batch size
speeds up the fine-tuning, however, higher learning rate should be used, as large
batch size usually provides a strong regularization. Also, we shuffle the training
data at every epoch to remove any dataset bias due to image sequences. To
check the performance of the fine-tuning we set the validation frequency as 3.
We could perhaps use a higher frequency, but that would slow the fine-tuning
process without any improvement.

1 % define validation frequency
2 valFrequency = 3;
3

4 % set fine-tuning options
5 options = trainingOptions('sgdm', ... % stochastic gradient ...

descent with momentum
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6 'MiniBatchSize',10, ... % number of samples to train together
7 'MaxEpochs',20, ... % maximum number of epochs
8 'InitialLearnRate',5e-3, ... % learning rate
9 'Shuffle','every-epoch', ... % shuffle data to reduce over-fitting

10 'LearnRateDropFactor', 0.5, ... % factor to reduce learning rate
11 'LearnRateDropPeriod', 5, ... % epoch after learning rate dropped
12 .
13 .
14 % Fine-tune the newly created CNN and save training information
15 [net,traininfo] = trainNetwork(augimdsTrain,lgraph,options);

Fine-tuning approximately takes 30 minutes to complete on GPU, and we can
now plot the training loss and accuracy curves, where the variable “traininfo” con-
tains the details of the training. After post-processing the data, we can visualize
the curves using the following lines:

1 plot(TrainLoss, 'lineWidth', 2); hold on; % to show two plots
2 plot (ValidationLoss, 'lineWidth', 2)
3 legend('Training loss', 'Validation loss')
4 xlabel('Epochs'); ylabel('Loss');
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Figure 11.5: Training curves of the fine-tuning process. (a) The fine-tuning and validation
loss vs epoch. (b) The fine-tuning and validation accuracy vs epochs.

11.3.2 Test the Fine-tuned Network with the Barry Street Dataset

We have fine-tuned the CNN in the previous step, and now we will test it with the
Barry Street dataset. By default RunOnline is set to false, therefore, the results
of classification are loaded into the workspace without running the CNN on-line.
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1 RunOnline = false;
2 .
3 .
4 else
5 load('BarryStreetTestResults.mat');

“RunOnline” being set to true will read the 100 Barry Street images and will
crop out individual 28 parking slots of each image. Subsequently, these cropped
images will be passed to the fine-tuned CNN for classification. We start by set-
ting path to the directory of the Barry Street images. Note that the variable
“pwd” refers to present working directory in MATLAB. In the next step we load
the ground truth of the Barry Street dataset containing the occupancy status
(2800) and delineation of the parking slots (28). These delineations are in form
of bounding boxes (variable “ParkingSlots”) that are used to crop the individual
parking slots. A bounding box is defined by [x, y, w, h], where [x, y] represents
one corner of the box, and w and h denote the width and height of the box. These
cropped images are further resized to suit the input size of the CNN. Running
on-line the classification should take around 4 minutes on CPU to complete, or
approximately 2.5 seconds for each image (for classifying 28 parking slots). On
a GPU the whole process takes a couple of seconds. The results of the classifi-
cation are saved in the variable “YPred” and the classification scores are saved
in variable “probs”. Subsequently, we check the accuracy of the classification by
comparing YPred with “AnnotationTable”, where variable AnnotationTable con-
tains the ground truth parking occupancy. In the last step we plot the confusion
matrix and visualize some of the wrongly classified image.

1 % set the directory containing the Barry Street dataset
2 imageName = dir(fullfile(pwd,'BarryStreetData\', '*.JPG'));
3

4 % load Barry St occupancy and parking slot delineation ground truth
5 load('GroundTruthBarryStreet.mat')
6

7 % crop individual parking slots from the Barry Street image
8 cropImage = imcrop(BarryStreetImage, ParkingSlots(m,:));
9

10 % resize each cropped image to suit the input size of CNN
11 imdsIm = imresize(cropImage, inputSize(1:2));
12

13 % Predict the occupancy status using the fine-tuned CNN.
14 [YPred(count),probs(count,:)] = classify(net,imdsIm);
15

16 % plot the confusion matrix
17 plotconfusion (categorical(AnnotationTable), YPred);

From Figure 11.6 we observe that only one occupied parking slot is classified
as empty, and 21 empty slots have been wrongly classified as occupied. There-
fore, the fine-tuned CNN is slightly less precise while classifying empty parking
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Figure 11.6: The confusion matrix of the classification, showing that the overall accuracy
is 99.2 %. The mis-classifications are largely due to wrong classifications of empty parking
spaces as occupied ones (21 instances).
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Figure 11.7: Some of the wrongly classified image patches with their respective classifi-
cation scores.

slots. Upon visualizing some of the wrongly classified parking slots in Figure
11.7 we observe most of them contain a part of a vehicle inside the image crop.
Also, it is observed that the images that does not contain the vehicles have low
classification scores. Finally, we visualize the occupancy of the parking slots in
Figure 11.8.
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Occupied slots: 24

Empty slots: 4

Figure 11.8: The visualization of the parking occupancy, where red colour denotes the
occupied and green colour denotes vacant spaces.

11.3.3 Time and Accuracy Benchmarking Using Different CNN Architec-
tures

In this section we compare different CNN architectures in terms of their runtime
and accuracies achievable to help the audience choosing the right architecture
for their needs. For the experiments, an i7 5600U CPU @ 2.6 GHz was used,
and the GPU was NVIDIA Tesla P100 with 12 GB of memory. Note we used only
one core of the CPU for the experiments. We compared ResNet50 with AlexNet,
GoogleNet, MobileNet v2, SqueezeNet and VGG-16.

Table 11.1 shows the accuracy achieved by fine-tuning different CNN archi-
tectures, and their run-times and train-times with GPU. It is observed that the
generalizing ability of all the fine-tuned networks are excellent, however, we see
lower accuracies for AlexNet, MobileNetv2 and VGG-16 networks. In terms of
run-time we see SqueezeNet is the fastest one, and the slowest one being the
VGG-16 network. Note these run-times are average times and include overheads
such as reading files from the disk and cropping images. Therefore, SqueezeNet
can process approximately 50 parking lots in just one second via CPU alone with
99.2 % accuracy. In regard to training time, all of the CNN are fine-tuned under 10
minutes on the GPU. Note that different learning rates were used for fine-tuning
the different networks.
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Table 11.1: The comparison of the achievable accuracy and the run-times for different
CNN architectures by fine-tuning the networks on GPU. The fine-tuning data were the
PKLot segmented images, and test data was Barry Street data.

Network Accuracy Run-time on Train time on Base learning
CPU (msec) GPU (min:sec) rate

AlexNet 97.3 % 33.6 1:46 0.001
GoogleNet 99.2 % 55.4 6:27 0.001

MobileNet v2 98.6 % 62.7 9:23 0.005
ResNet50 99.2 % 100.1 8:09 0.005

SqueezeNet 99.2 % 19.3 2:42 0.005
VGG-16 98.5 % 400.0 4:56 0.001

11.4 Tutorial 2: Automatic Parking Slot Delineation Using Deep
Learning

In Tutorial 1, we have used the ground truth delineations of the parking slots in
the images. As shown in Figure 11.9, in this tutorial we describe a novel method
to for automatic parking delineation of Barry Street data by fine-tuning the Faster-
RCNN object detector with the PKLot dataset. This delineation is performed us-
ing spatio-temporal analysis of the detected vehicles in the Barry Street dataset.
We detect vehicles in Barry Street images for many frames, and then cluster the
detections to individual parking slots using a robust density-based clustering al-
gorithm (Ester et al., 1996). Subsequently, we estimate the coordinates of the
parking slots by weighing the coordinates of the individual detections with the
scores of the detections. Further we refine and improve the coordinates of the
parking slot delineations using the statistics of all the detections.

11.4.1 Assumptions and Limitations

The key assumption of the method is that the vehicle detections made by Faster-
RCNN will cluster more often in the actual parking slots, as compared to other
parts of the image, such as on the roads. This is a valid assumption as the
vehicles are parked longer than they are actually on the road. Therefore, we
should be able to estimate individual parking slots by combining all the detec-
tions in each cluster. The second assumption of the method is that a vehicle
takes around 80 % space of the parking slot. Therefore, each parking slot is ap-
proximately 1.2 times the length of the parked vehicle. The last assumption is
that the size of the parking slots remains approximately the same throughout the
camera view.

Coming to the limitations of the assumptions made. Some of the parking slots
might be missed as a result of low parking rate. For instance, the vehicles might
be parked less often in reserved parking slots (like for people with special needs),
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Fine-tuned Faster-RCNN

PKLot labelled images

Barry Street images

Barry Street detections

ImageNet

Pre-trained CNN

Figure 11.9: The pipeline of Tutorial 2, where we use a fine-tuned Faster-RCNN object
detector to automatically delineate the parking slots.

or parking slots that are far from the entrance of the parking area. Additionally,
dense traffic during peak hours might also result in several detections on road.
Although these detections might not form dense clusters as compared to the
actual parking slots, the possibility of delineation of parking slots on roads cannot
be neglected. Lastly, for a very oblique view of the cameras, the vehicles that are
far away from the camera appear smaller than the vehicles that are closer.

11.4.2 Vehicle Detection Using Faster-RCNN

We start the tutorial by loading a pre-trained Faster-RCNN detector that is trained
on images of highway taken from a camera inside a moving vehicle. This pre-
trained detector performs well to detect vehicles on highways, however, its perfor-
mance to detect vehicles in CCTV images that have been taken from an oblique
view is questionable. Therefore, we will fine-tune this detector with the PKLot
dataset that includes the bounding boxes of the detections.

By default, “train” is set to false and the Faster-RCNN detector fine-tuned with
the PKLot dataset is loaded into the workspace.

1 train = false;
2 .
3 .
4 else
5 load('Fine-tunedFRCNNResnet50.mat'); % load the trained model
6 load('trainingInfoFRCNNResnet50.mat'); % load training info
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Setting “train” to true will start training the Faster-RCNN detector with the
PKLot dataset. We set batch size to 1 to accommodate the model to GPU mem-
ory. We set the Negative Overlap Range to {0 0.3} and Positive Overlap Range
to {0.6 1}. This means that a detection is considered as negative detection when
the Intersect over Union (IoU) falls between 0 and 0.3, and is considered positive
when it falls in the range of 0.6 and 1. The IoU is the area of intersection of two
bounding boxes. The following lines fine-tune the network.
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Figure 11.10: Training curves of Faster-RCNN fine-tuned with the PKLot dataset.

Figure 11.10 shows the training curves. There are 369 images in each epoch,
and we trained the network for 25 epochs, hence resulting in approximately
10000 iterations. We observe that training RMSE continues to improve up to
9000 iterations. Subsequently, we test the fine-tuned network with the Barry
Street images again, and Figure 11.11 shows the results of the detections.

1 options = trainingOptions('sgdm', ...
2 'MiniBatchSize', 1, ...
3 .
4 .
5 % Train an R-CNN object detector
6 [rcnn,traininfo] = trainFasterRCNNObjectDetector(vehicleDataset, ...

detector, options, ...
7 'NegativeOverlapRange', [0 0.3], 'PositiveOverlapRange',[0.6 1]) ...

% train the model
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Figure 11.11: The detections of one Barry Street image with Faster-RCNN fine-tuned
with the PKLot dataset.

Note that the image size of the images in the PKLot dataset is 1280 x 720
pixels, whereas for the Barry Street dataset it is 1000 x 663 pixels. Ideally, we
should use same image size to reduce any bias. Therefore, we pre-process the
Barry Street images to a resolution of 1280 x 720 pixels without distorting the
aspect ratio. This is done by adding the Barry Street images to a blank 1280 x
720 image. We use this image as an input the Faster-RCNN detector.

1 % Preprocess the Barry Street frame (663 x 1000) to original ...
training image size (720 x 1280)

2 BarryStreetImageProcessed = uint8(zeros(720,1280,3));
3 BarryStreetImageProcessed(58:720, 141:1140,:) = BarryStreetImage;
4

5 % Run the trained detector on Barry Street image. This step takes ...
1 minute on \acrshort{cpu} and a second on \acrshort{gpu}.

6 [bboxes,scores] = detect(rcnn,BarryStreetImageProcessed);

The outputs of the detector are the bounding boxes and their respective scores.
From Figure 11.11 we observe that 17 vehicles are detected. However, we notice
that not all the vehicles are detected. Therefore, in the next step we run the fine-
tuned network for all the 100 Barry Street images. Figure 11.12 shows all the
detections, and Figure 11.13 shows the centres of the detections. Subsequently,
we save all the bounding boxes and scores of the detections for post processing.
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Figure 11.12: The detections of all Barry Street images with Faster-RCNN fine-tuned with
the PKLot dataset.

Figure 11.13: The centre of detections of all Barry Street images with Faster-RCNN fine-
tuned with the PKLot dataset.
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Next, we use a robust density-based clustering algorithm (Ester et al., 1996)
to estimate the number of clusters based on the spatial distance between the
neighboring points and the number of occurrences.

1 % Use density-based algorithm
2 idx = dbscan(bboxesTotal,20,4);
3 Classes = unique(idx,'rows');

Ideally the spatial distance should be equal to the standard deviation of the
detections, and is a function of the image size and the size of the detections. We
found this experimentally to be 20 pixels. Also, the threshold for the number of
neighborhood occurrences is set to 4. This value can be set based on the total
number of images the detection is made, which in this case is 100 images. The
output of the function is the number of clusters, and it identifies the number of
parking slots. A total number of 26 clusters were identified by the algorithm. In
the next step we estimate the final bounding boxes of each class by weighing
them with their respective scores. This estimation is achieved by the following
equation, where ∗ represents element-wise multiplications:

Bboxclass = Bbox ∗BboxScore∑
BboxScore

(11.1)

where Bboxclass represents the bounding box of a particular class (parking slot),
Bbox represents the array containing all the bounding boxes of the particular
class, and BboxScore is the matrix containing the respective scores of the Bbox.
This is achieved in the following lines of code:

1 % Estimate the bounding boxes of each class as the parking slot
2 classifiedMean(n,:) = [(classified{n}(:,1)'*classifiedScore{n}) ...
3 .
4 .
5 (classified{n}(:,4)'*classifiedScore{n})/(sum(classifiedScore{n}))];

Figure 11.14 shows the bounding boxes of each classes with their respective
average scores, and Figure 11.15 shows the average precision of the detections.
The average precision with 50 % IoU (also refereed as AP50) is 37 %. This low
average precision is due to a couple of problems. Firstly, the sizes of the detec-
tions are not uniform, for instance see the third row of Figure 11.14. Secondly,
the lengths of the detected parking slots are smaller as compared to the depicted
parking slots, as the detector detects vehicles that are smaller than the parking
slots. Therefore, to improve the delineations of the slots we further post-process
the detections.

We start by calculating the average length and width of the parking slots in the
above lines of code. We interchange the length and the width for the slots whose
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Figure 11.14: Bounding boxes derived from each cluster representing individual parking
slots.

aspect ratio was less than 1. Figure 11.16 shows the visualization of the parking
slots. Later, we calculate the average length and width of the parking slots to be
80 x 60 pixels, and therefore, the average aspect ratio to be 1.33. Next, as per
our assumption (in Section 11.4.1), we increase the length of the parking slots
by 20 %, and therefore, resize all the parking slots to 96 x 60 pixels.

1 for n=1:length(classifiedMean2)
2 if (classifiedMean2(n,3)/classifiedMean2(n,4) > (l/w)) % aspect ...

ratio constraint
3 differenceX = classifiedMean2(n,3) - l*1.2; % 80% assumption
4 .
5 else
6 .
7 classifiedMean2(n,4) = classifiedMean2(n,4) - differenceY;
8 end
9 end

Next we plot Figure 11.17 that shows the average precision of the detections
after post-processing the bounding boxes. We observe an excellent improvement
in the average precision AP50 from 37.1 % to 80.4 %, which is around 116 %
improvement. For reference, the mAP50 (mean average precision for multi-class
objects) of Faster-RCNN is approximately 59 % (Redmon and Farhadi, 2018)
with state-of-the-art feature extractor ResNet-101-FPN.
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Figure 11.15: The average precision of all the bounding boxes delineated by clustering is
0.37.
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Figure 11.16: Visualization of the delineated parking slots after clustering. The length and
width of the bounding boxes having an aspect ration greater than 1 were interchanged.

In the next steps, we visualize the delineated parking slots of Barry Street in
Figure 11.18, and we visualize them along with the ground truth bounding boxes
in Figure 11.19. In these figures we see that all of the detections in the top and
middle row are performed correctly. However, two parking slots in the bottom
row of the parking area are missed. These missed detections can be explained
on the basis of less parked vehicles in those parking slots that resulted in the
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Figure 11.17: The average precision of the bounding boxes after post-processing.

Figure 11.18: The final delineations of the parking slots after post-processing.

lack of detections in those areas (Figures 11.12 and 11.13). Also, the bounding
boxes of two of the detections in the bottom row have inverted dimensions. This
anomaly can be explained based on the presence of the wall that occludes the
vehicles, and hence the change of the dimensions (and hence the aspect ratios)
of the bounding boxes for the detections. The change in the aspect ratio results
in the inversion of the bounding box dimensions during the post-processing.
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Figure 11.19: Visualization of the delineated parking slots and the actual ground truth for
the Barry Street dataset.

Therefore, once the parking slots are delineated, we no longer need the com-
putationally expensive Faster-RCNN for the detections. We can directly use the
delineations to perform classifications with the method explained in the tutorial
in Section 11.3. Therefore, the object detection problem reduces to the prob-
lem of image classification only. This is an advantage of the proposed method
as compared to the methods that perform parking occupancy detection using
Faster-RCNN directly.

11.4.3 Applications to Unmarked Open Parking Spaces

The methodology demonstrated in Tutorial 2 can be extended to unmarked open
parking spaces as well, or in areas where the parking delineations do not exist
(for instance in India). Instead of allocating individual bounding boxes to the
parking slots, we could perhaps allocate continuous “parking zones” where the
vehicles are most likely to park. We can also have information on the orientation
of parking of the vehicles. This continuous parking zone can be broken down
according to the standard sizes of the vehicles plus a buffer zone to calculate
the number of empty parking slots. Figure 11.20 shows a visualization where 4.5
parking spaces could be identified in parking zone 5 using standard parking slot
sizes. Therefore, more exploration in this context is needed and is a promising
research direction.
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Figure 11.20: Visualization of the parking zones for unmarked open parking spaces,
showing the areas where the vehicles are likely to park. Using standard vehicle sizes the
parking occupancy can be estimated.

11.4.4 Training and Testing Time of Faster-RCNN with ResNet50 Back-
bone

The fine-tuning process took approximately 5 hours on a NVIDIA Tesla P100
GPU. It is infeasible to perform the fine-tuning process on CPU. However, once
the model is fine-tuned it can operate with CPU in approximately 55 seconds
(or 0.6 seconds on GPU). Therefore, for the automatic delineation of the parking
slots GPU is not mandatory, and the system can run for a couple of hours on
CPU to produce the results. This computational overhead can be reduced by
using smaller networks like SqueezeNet, however, the accuracy of the detector
might be compromised.

11.5 Conclusions

This chapter presents two tutorials, one for detecting image-based parking occu-
pancy and the other for automatic delineation of the parking slots. In the first tuto-
rial we fine-tune a pre-trained network on a subset of the publicly available PKLot
dataset and checked the generalizing ability of the network by testing with the
Barry Street dataset. Also, we provide insights on the training hyper-parameters,
training and testing times, and accuracies, and visualize some wrong classifica-
tions.
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In the second tutorial we demonstrate a novel method to automatically delin-
eate the parking spaces using a state-of-the-art vehicle detector (Faster-RCNN).
We fine-tuned Faster-RCNN with a subset of the PKLot data and detected vehi-
cles in the Barry Street images. We combined the detections in multiple frames
and performed spatio-temporal analysis of the parking slots to automatically de-
lineate the parking slots. We used a robust density-based clustering algorithm
to find the centre of the parking slots, and then weighted the bounding boxes
according to the detection scores (confidence). We further post-processed the
delineations to improve the detection accuracy and achieve better results than
reported in the literature. We conclude that occlusions can effect the detections
and can reduce the accuracy of automatic delineations of parking slots. More-
over, the results discussed in this tutorial can be extended to unmarked open
parking spaces and points towards an interesting future direction.
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