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Abstract

Mapping urban parking spaces helps drivers to reduce their search and cruising for parking, thus
reducing traffic, reducing emissions, and reducing total travel times. Mapped urban parking spaces
can also be monitored for real-time occupancy information. But while many cities in Asia, Africa,
and Latin America are experiencing a strong increase of private car use on the roads, they typically
lack such reliable information regarding on-street parking spaces. Hence, in this chapter we explore
globally applicable mapping methods for on-street parking locations, as a first step towards smart
parking (for an alternative approach see Chapter 11).
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13.1 Introduction

The necessity to cruise for parking in urban centers leads to extended trip times
and causes extra congestion up to 30 percent of total traffic flows (Shoup, 2017;
Shoaeb et al., 2016; Hansen, 2018; Bischoff and Nagel, 2017; Chai et al., 2019;
Brooke et al., 2018; Bischoff et al., 2019). Cruising for parking is caused by
the scarcity of public parking capacity in the urban centers (Shoup, 2017), and
further increases due to a lack of information about parking spaces in common
navigation systems (Benenson et al., 2008; Bischoff and Nagel, 2017). The first
step towards providing this information is mapping the public parking spaces in
cities. But map information regarding parking spaces is often missing or incom-
plete for a whole range of reasons, such as lack of funding or commitment of
mapping authorities to capture parking spaces, or lack of common agreement of
what constitutes a parking space (see Chapter 8.1 for the variety of their nature:
marked or unmarked, on-street or off-street, dedicated or grabbed, legal or ille-
gal). One way of approaching the challenge of globally mapping urban parking
spaces is therefore crowd-sourcing (Coric and Gruteser, 2013; Bock et al., 2019;
Di Martino et al., 2019).
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Recently, crowd-sourced trajectory data are becoming popular in intelligent
transportation systems (ITS) and science due to vast range of applications in
the transport domain. This kind of data is attractive particularly in countries with
lacking public infrastructure, such as India. Hence, in this chapter we will dis-
cuss whether crowd-sourced trajectory data can be used to extract parking in-
formation. We will provide a brief overview about existing research in mapping
of parking spaces. Then we will discuss about crowd-sourcing based trajectory
data, and the applicability of trajectory data in the context of parking information
extraction. We will then provide two case studies to demonstrate the novelty of
mapping parking spaces using only crowd-sourced trajectory data. We will con-
clude by discussing the future potential of existing methodologies in the context
of parking information extraction from crowd-source trajectory data.

13.2 Literature Review

Authoritative mapping of on-street parking spots, e.g., by city councils1 or by
mapping technology firms such as Google Maps, are lengthy and costly pro-
cesses (Coric and Gruteser, 2013), and are typically limited to marked parking
spaces, which is only a subset of all parking opportunities in a city. Parking
information can be captured using dedicated infrastructures. As an example,
the SFpark project2 where sensors were placed under the pavement beneath
the marked parking spaces. Another example is the PARKNET project (Mathur
et al., 2010), which captured information on marked parking spaces using ultra-
sonic sensors and GNSS (Global Navigation Satellite Systems) units on floating
vehicles (Mathur et al., 2010).

However there are alternative methods for mapping parking spaces focusing
on a crowd-sourcing based globally applicable solutions. These methods uti-
lize moving vehicles equipped with proximity sensors (e.g., ultrasonic sensors,
or electromagnetic sensors) to detect parked vehicles. The vehicles are also
equipped with units to record the vehicle’s coordinates and time-stamps. This
spatio-temporal data can be used to identify whether the vehicle was stationary
or moving at a time. When the vehicle is stationary, the recorded location con-
tains the information of a parking space. Crowd-sourcing removes the costs of
dedicated infrastructure for parking related data collection, and enables to more
comprehensively track where people actually park in the city. One such crowd-
sourcing approach (Coric and Gruteser, 2013) uses collected data for identifica-
tion of legal and illegal on-street parking spaces. Rinne et al. (2014) provided a
detail discussion on the pros and cons of crowd-sourcing based parking informa-
tion collection and concluded as a promising approach to help users when ded-
icated infrastructure based sensors are unavailable. Many smart parking apps

1https://data.melbourne.vic.gov.au/ – City of Melbourne
2https://bit.ly/399SLA6 – San Francisco Municipal Transportation Agency, May 2018
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use crowd-sourced GNSS trajectory data, and motivate smartphone users to vol-
untarily share parking related information from smartphone users (Kopeckỳ and
Domingue, 2012). Farkas and Lendák (2015) investigated the effect of crowd-
sourcing activities for urban parking scenario and presented as a case study
using a multi-agent simulation. The goal of the simulation was to investigate the
role of parking occupancy information on assisting drivers. Simulation results
reveals that 30 % participation in crowd-sourcing leads to 14 % shorter cruising
time.

Coric and Gruteser (2013) utilized crowd-sourcing to identify illegal parking
spaces in the on-street parking maps without the assumptions of existing park-
ing map database. Recently, vehicles are many times equipped with parking
sensors in order to assist drivers during the end of cruising. Coric and Gruteser
(2013) have utilized such vehicles in a roaming condition equipped with park-
ing sensors to detect a parked vehicle along-with the roaming vehicle’s locations
with time-stamps. The recorded locations and time-stamps of the roaming ve-
hicle thus becomes a GNSS trajectory data. Legality of the parking space is
evaluated using a centralized server that needs several sensor measurements
from the same location. In order to achieve their goal, Coric and Gruteser (2013)
used crowd-sourcing to collect a large dataset of roaming vehicle’s trajectory.
Such crowd-sourced GNSS trajectory data have been also used earlier by data
mining researchers to infer road maps (Biagioni and Eriksson, 2012; Liu et al.,
2012), demonstrating that this data source is accurate enough for high-detail ur-
ban mapping (Haklay, 2010) and again, to track or predict the occupancy of park-
ing spaces (Zheng et al., 2015). Thus we can be certain about the importance
of crowd-sourced GNSS trajectory data, or simply trajectory data. In the upcom-
ing sections, we will discuss about some of the unexplored concepts in order to
map parking spaces only from trajectory data. The organization of the chapter
is as follows: We will discuss certain characteristics of a trajectory dataset in
Section 13.3. In Section 13.4, we will discuss different methods to utilize a tra-
jectory dataset for extracting parking related information. In those methods, we
will discuss the independence of dedicated infrastructure. We will then present a
case study with a real world trajectory dataset collected using crowd-sourcing in
Section 13.5.

13.3 Crowd-sourced Trajectory Datasets

A GNSS trajectory data set contains records of the discrete positions of the mo-
bile sensing device over time. The sensing device – for example a smartphone
– is typically carried by a person or a vehicle. Hence, the typical structure of a
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trajectory is:

λ1, φ1, t1

λ2, φ2, t2

. . .

λn, φn, tn

with positions recorded in geographic longitude λi and latitude φi, and time ti
recorded in the local time zone (converted from GPS time). This trajectory starts
at t1, when the device is switched on, and stops at tn, when the device is switched
off. An optional parameter in a trajectory data set is the trip ID, separating the
trajectories of the same sensing device over time into trips. The device separates
trips by the turning on or turning off of the sensing. Hence, a trajectory can record
a whole trip as defined in Chapter 3, subsuming all mobility between two longer
stationary activities (Das and Winter, 2016), or parts of a trip, or more than a trip,
all labeled by one trip ID. For example, a trajectory can be recorded by tuples
where j represents the trip ID and k the time instance:

{(λk, φk, tk)j}.

In addition, the trajectory of the mobile sensing device can be shared, and thus,
trajectory datasets from multiple devices can be crowd-sourced through plat-
forms. In this case, a second additional identifier i is introduced, characterizing
the sensing device that had collected a specific trajectory:

{(λj.k, φj.k, tj.k)i}.

Trajectory data can be recorded traveling with any switched-on tracking appli-
cation, such as a smartphone navigation app, a dedicated vehicle navigation
service, or a vehicle’s black box (Zheng et al., 2008).

13.3.1 Multi-modality of a Trip

A crowd-sourced trajectory dataset consists of multiple trips. Trip data collected
by tracking devices on board vehicles is vehicle-only by nature, i.e., uni-modal.
Both the first record of a uni-modal trip (approximating the origin of a trip) and
the last record of a the same trip (approximating the destination of a trip) contain
valuable information of parking spaces. For example, the presence at the same
location between the last record of one trajectory and the first record of the next
trajectory implies the possibility of the vehicle having been in a parking location in
the time interval between these records. A single trip of a trajectory dataset can
also be multi-modal depending upon the user’s mobility activities while collecting
the data (e.g., walking to the parked car, driving and parking, and walking to
the destination). The recording of multi-modal trips is done by a person-bound
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device (such as a smartphone running a navigation app). It can capture the
person’s movements while being on board of the vehicle, but also their walking,
their travel on other modes, and even their stationary activity locations. Parking
locations can be found from the changes of modes in such multi-modal trajectory
from drive to walk or from walk to drive. Since data collection depends on the
travelers’ switching on their navigation (or tracking) service, parts of trips or even
full trips may not be covered. Also, because travelers tend to switch off when the
service is no longer needed – either because they approach their destination, or
because they enter environments they are familiar with – ends of trips may not
be fully covered. Many trips seem to stop mid-trip because the smartphone (or
the navigation service on the smartphone) has been switched off. Still, there is
a correlation between trips and parking spaces that we will explore in collected
trajectory data.

13.3.2 Labeled with Transport Mode

Trip data may be labeled with the mode of transport. For a labeled car-only trip
data, identification of parking spaces is straight-forward: Start points and end
points of trips can be identified by the temporal gaps between trips, and these
two points of a trip indicate a parking space within the accuracy of GNSS. On
the other-hand, trip data recorded by a person bound device can be labeled with
car and walk as mode of transport. Since these trips are in principle multi-modal,
one can only assume that where a person enters a car (switching from walking
to driving) or gets out of a car (switching from driving to walking) – the change
points (Dabiri et al., 2019) – the car is in a parking position.

13.3.3 Unlabeled with Transport Mode

Only a few published trajectory datasets are labeled, and this motivates re-
searchers to investigate the utilities of unlabeled trajectory data (Zheng et al.,
2008; Cottrill et al., 2013). However, identification of change points from an un-
labeled multi-modal trajectory data is not straight forward. Multi-modal trajec-
tory data collected in the field is unlabeled and requires a travel mode detec-
tion first. Travel mode detection techniques require classification algorithms that
are trained with feature values (e.g., velocity, acceleration, and change of direc-
tion) that are either extracted from the trips of a trajectory dataset, or potentially
sourced from further sensor readings such as an accelerometer, a compass, or
an inertial measurement unit (Jahangiri and Rakha, 2015; Etemad et al., 2018;
Dabiri et al., 2019; Zheng et al., 2008). The travel mode detection algorithm thus
identify the change points after estimating travel modes in unlabeled trips. Travel
mode detection is done after:

1. extracting salient feature values (e.g., velocity, acceleration, and change of
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direction) from a trajectory data, and

2. training a classification algorithm using the extracted feature values (Etemad
et al., 2018; Dabiri et al., 2019)).

If parking related transportation modes (i.e., driving a car, walking), and thus,
change points, be detected from unlabeled trajectory data reliably, these identi-
fied change points can be also used to map parking spaces.

Let us assume there are a total of I trips in a crowd-sourced trajectory dataset,
I ≥ 1. A trip can contain a number J of data points, J ≥ 2. Let the trip i

have J i number of data points, then the jth data point of trip i contains the
tuple < xi

j , y
i
j , t

i
j , tr

i
j ,m

i
j >, where xi

j is (usually) the longitude, yi
j is (usually)

the latitude, tij is the timestamp of the location recording, tri
j is the trip id (i in

this case), and mj is the mode of transport used when arriving at jth data point,
1 ≤ j ≤ J i. Hence, if a mode change happens at the jth data point, then
mi

j 6= mi
j+1, and j becomes a change point. A trip i may contain multiple change

points, collected in Ci, the set of all change points of trip i. Ci contains the tuples
longitude and latitude of change points. Thus, C = C1 ∪ . . . ∪ Ci ∪ . . . CI for all
change points in I.

13.3.4 Salient Features of a Trip

In this section we will discuss about the salient features of a trajectory dataset.
Features are extracted to build a training dataset from a trajectory dataset with
a number I of trips in order to classify unlabeled data points. According to the
previous research, three such salient features are velocity (vj), acceleration (aj),
and change of direction (drj). At each data point, these derived features are
defined as follows for trip i:

vi
j =

√
(xi

j − xi
j−1)2 + (yi

j − yi
j−1)2

tij − tij−1
(13.1)

ai
j =

vi
j − vi

j−1

tij − tij−1
(13.2)

dri
j = tan−1 y

i
j − yi

j−1

xi
j − xi

j−1
− tan−1 y

i
j+1 − yi

j

xi
j+1 − xi

j

(13.3)

where 2 ≤ j ≤ J i for vi
j , 2 ≤ j ≤ J i for dri

j , and 3 ≤ j ≤ J i for ai
j .

13.4 Mapping of Parking Spaces Using Multi-modal Trips

We have already discussed how to extract parking spaces from a car-only trip
data. In this section, we will focus on multi-modal trips labeled with transport
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modes (either recorded manually, or predicted using mode detection techniques).
Theoretically, for multi-modal trips, we can divide the set of change points (C) into
two categories: the walk-to-car change points at the start of a car-part of the trip,
and car-to-walk change points as the end of a car-part of the trip. A multi-modal
trip can contain a single or multiple change points.

13.4.1 Single Change Point Trips

The trips with single change point (SCP) have only one sub-trip with travel mode
labeled with car, and only one sub-trip with travel mode labeled with walk. SCP
trips can have either a walk-to-car (CS) or a car-to-walk (CE) change points
where {CE ∪ CS} ⊂ C.

Sub-trips and change points of two SCP trips i and k (k 6= i) are illustrated in
Figure 13.1. A parking space is a region with a finite area. The area of a parking
space can vary depending on its category from a few square meters (street side
marked parking space) to a few hundred square meters (parking lot). There are
multiple incoming and outgoing trips from a parking space. Hence, if a region
with finite area contains multiple change points from different SCP trips, we can
say that a valid parking space has been identified. Thus, a valid parking space
with finite area P contains at least one Ci

E and one Ck
S :{

Ci
E ∪ Ck

S

}
⊂ P. (13.4)

Figure 13.1: Sub-trips and change points of two SCP trips i and k.

13.4.2 Multiple Change Point Trips

Change points are separate different modes of travel in a multi-modal trip. Multi-
ple change points can be found in a multi-modal trip if there are multiple sub-trips
of different travel modes. These trips are defined as multiple change point trips
(or MCP trips). Let Cl

W C and Cl
CW be change points for car-to-walk and walk-to-

car respectively in an MCP trip l. Clearly, Cl
W C ⊂ P and Cl

CW ⊂ P if the person
walking returns to the same vehicle, and thus, the vehicle was surely parked all
the time at the location characterized by the two observations Cl

W C and Cl
CW .

Sub-trips and change points of such a trip l are shown in Figure 13.2. In the
absence of measurement errors:

Cl
CW = Cl

W C . (13.5)
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Figure 13.2: Sub-trips and change points of a multiple change point trip l.

13.4.3 Effect of Measurement Error

A trajectory records the continuous movement of a mobile object in discrete time
(Ranacher et al., 2016b). Hence there is a possible source of error in the col-
lected data caused by noise or systematic effects of the positioning observations,
such as GNSS (Ranacher et al., 2016a). Due to this error, two recorded point
locations of a same geographic point location are not guaranteed to have equal
coordinates. This measurement error is often modeled as the Gaussian noise
in the measurement N(0,Σ), where Σ is the variance-covariance matrix of the
measurement error:

Σ =
[
σ2

x σxy

σyx σ2
y

]
.

Let us understand this with an example, and let us assume σx = σy = σ for
simplicity. Let O1 and O2 be two positioning observations from the same location,
recorded at different times and/or using different devices. As the measurement
error is normally distributed, in the absence of systematic errors the true location
of the device(s) can be expected to be with a likelihood of 99.7 % within a circle of
a radius of 3 σ. Thus, Figure 13.3 illustrates possible situations for two recorded
locations O1 and O2 that have actually the same true location:

• In the worst case, ‖O1 −O2‖ = 6σ, with the circles meeting in one point.

• In the average case, ‖O1−O2‖ < 6σ, indicating some overlap of the circles
less than the area of the either circle.

• In the best case (but with a likelihood of 0), O1 = O2, indicating coinciding
O1 and O2 as in Equation 13.5.

Figure 13.3: Three possible case scenarios for two recorded points with same true lati-
tude and longitude.
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13.5 Case Study with GeoLife Data

We have prepared a case study with the labeled GNSS trajectories collected in
the GeoLife project (Zheng et al., 2011). This dataset has 75 trips with 130,973
data points that are labeled with both parking related transportation modes: walk
and car. We have used Google Maps and two APIs from the Google cloud plat-
form3: Places API, and Street View Static API for the case study. These APIs are
used to extract the locations of valid parking point locations P with additional in-
formation (e.g., the type of parking space). The value of the measurement error’s
standard deviation σ is not provided in the GeoLife dataset, hence, let us assume
this σ as 10 meters (Merry and Bettinger, 2019; Ranacher et al., 2016a). In this
section, we will discuss about different techniques to identify parking spaces and
the type of the parking space (e.g., off-street or on-street) by querying an existing
map-database (e.g., Google Maps).

13.5.1 Single Change Point Trips

A valid parking location is observed by above methods by a point P , and is stored
in a map database by a point location. Practically however, a parking space is
an area P bigger than a point, and P can contain any number of different obser-
vations P , or map references P . For each parking point location in the Google
Maps database, we have estimated a parking space P by constructing the small-
est convex hull that contains P in a map. Nodes of this smallest convex hull are
typically on the nearest road segment. We will investigate whether change points
of SCP trips (Ci

E and Ck
S) are likely to fall inside P as described in Equation 13.4

such that:

P ∩C(Ci
E , 3σ) 6= ∅

P ∩C(Ck
S , 3σ) 6= ∅ (13.6)

where C(C, 3σ) represents a circle with center C and radius 3σ.

Figure 13.4 is representing one valid parking space extracted from Google
Maps as an example where CS and CE are observations (with their uncertainty
areas) of multiple SCP trips, satisfying Equation 13.6.

13.5.2 Multiple Change Point Trips

In the absence of measurement errors, Cl
CW and Cl

W C are the same geographic
locations in Equation 13.5. Let σ2 be the measurement error variance for trip
l. Hence, σ is the radius of circles that indicate the possible region of the true
location, centered at Cl

CW and Cl
W C . Thus two recorded points with same true

3https://developers.google.com/maps/documentation/api-picker
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Figure 13.4: Mapped parking spaces using SCP trips of GeoLife trajectory data.

location can be found in the overlapping region of the two circles. In the worst
case scenario (Figure 13.3), the recorded points are away from each other by a
distance of 6 times of σ with ≈ 98 % probability. Thus we get the constraints for
validating the same parking spaces recorded twice:

Cl
W C − Cl

CW ≤ 6σ. (13.7)

Equation 13.5 satisfies if Equation 13.7 holds true for the trip l. Thus we can
conclude that a parking space P is found using change points Cl

CW and Cl
W C of

trip l.

A map is presented in Figure 13.5 to show the true locations of parking spaces
as extracted from Google Maps4 as well as the locations of change points of MCP
trips (CCW and CW C) extracted from the GeoLife dataset. The radius of the blue
circle is chosen to be smaller to illustrate that these two change points are coin-
ciding in the map, indicating that the vehicle was stationary at that point. Thus it
should be a parking space further supported by Figure 13.5 where change points
are found inside a valid parking space P . Thus change points of crowd-sourced
MCP trips can be used to identify unmapped parking spaces.

4https://developers.google.com/maps/documentation/api-picker
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N

Valid parking space
CCW of a MCP trip
CWC of the same trip

2 km

Figure 13.5: Mapped parking spaces using MCP trips of GeoLife trajectory data.

13.6 Reflection on Indian Traffic

Many cities in India have incomplete information on parking spaces due to lack
of dedicated parking infrastructure. Hence, the applicability of crowd-sourced
trajectory data for such cities in India can be beneficial for users and less costly
than authoritative infrastructure. For illustration purposes, the model presented
above has been applied to volunteered trajectory data collected from the social
activities in the city of Kolkata, the former capital of India (Figure 13.6). The
green P are the parking locations collected again from some trajectories in the
Google Maps database. Change points are often overlapping with the mapped
parking spaces indicating the validity of the model. This pattern can be seen in
many social activity places, e.g., the Avani Riverside Mall (a shopping mall), Park
Street (a tourist place), and Howrah station (one of the largest railway stations in
east India). Many of these parking spaces are not mapped even in the Google
Maps database, concluding the future potential of the model.

However, availability of crowd-sourced trajectory data is subject to question
in the Indian context. Willingness of the crowd towards participation in crowd-
sourcing to produce maps, as well as then to utilize parking information also re-
quires further investigation. Effectiveness of the method also depends on other
aspects, e.g., the enforcement regimes on traffic regulations. For example, if
sharing of trajectory data means that also illegal parking is captured, and that
parking fines for this illegal parking may be levied, people may abstain from shar-
ing their own trajectory information. However, the potential of crowd-sourcing
remains unquestionable irrespective of the crowd’s willingness.
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Jawaharlal Nehru Road

Park Street

Grand Trunk Road

Vidyasagar Setu

AJC Bose Road

Howrah Station

Avani Riverside Mall

Rabindra SetuN

Change point of a SCP trip
Change point of an MCP trip
Valid Parking

1 km

Figure 13.6: Reflection of the model in Kolkata, India.

13.7 Conclusions

In this chapter, we have discussed about different methodologies for parking
space identification from crowd-sourced trajectory data. We have shown that
these trajectory data are capable of mapping parking spaces and addressed
the underlying challenges while doing so. Trajectory data those are labeled
with transport mode can be used to identify change points. We have discussed
about how these change points in a trip can be further used for mapping parking
spaces. These change points can be used in a map database to extract details
about parking spaces.

In future work, it will be required to predict the category of parking without
using a map database. Future work should investigate the robustness of existing
methodologies in the context of mapping parking spaces from crowd-sourced
data. In future, there is a scope of important research on calculating the parking
time of a car inside a parking space without interfering with the privacy of a user.
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