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Kurzfassung

In der Regression untersucht man die bedingte Verteilung der Zielvariable gegeben den
Prädiktoren, um z.B. Prognosen zu erhalten. Regression ist einer der meist studierten und
angewandten Gebiet der Statistik. Die Modellierung von hochdimensionalen Daten, insbe-
sonders bei einem nichtlinearern Zusammenhang, ist herausfordernd falls die Anzahl der
Prädiktoren (p) groß ist. Suffiziente Dimensionsreduktion (SDR) ersetzt den hochdimensio-
nalen Prädiktorvektor durch eine niedrigdimensionalere Projektion, ohne Information über
die Zielvariable zu verlieren.
Diese Arbeit entwickelt neue SDR Ansätze, den conditional variance und ensemble con-

ditional variance estimator, für die Identifikation und Schätzung der linearen suffizienten
Reduktion sowohl für den bedingten Erwartungswert alsauch die bedingte Verteilngsfunk-
tion der Zielvariable gegeben den hochdimensionalen Prädiktoren. Für beide Schätzer wird
die Konsistenz bewiesen. Weiters, wird eine neuer Schätzer, der eine Kombination aus suf-
fizienter Dimensionsreduktion und Neuronalen Netzten ist, vorgestellt. Alle drei Schätzer
sind kompetitive im Vergleich zu momentanen state-of-the-art SDR Schätzern.



Abstract

Regression concerns modeling the conditional distribution of a target variable, the response,
given a set of other variables, the predictors. Regression is the most widely used approach in
Statistical applications. As such, it has been extensively studied since the field of Statistics
came to existence. Modeling high-dimensional data is challenging, especially when they are
nonlinearly related. Sufficient dimension reduction (SDR) considers regressions where the
number of predictors (p) is large and replaces the high dimensional predictor by a lower
dimensional reduction (function) without loss of information for the response.

This thesis develops novel SDR approaches, the conditional variance and ensemble con-
ditional variance estimators, for the identification and estimation of linear sufficient reduc-
tions both for the conditional mean and the conditional cumulative distribution function
of the response given the multidimensional predictors. The consistency of both estimators
is shown. Moreover, a combination of sufficient dimension reduction with neural networks
is derived, which leverages the advantages of both in order to predict the response in
the presence of abundant predictors and observations. All three proposed estimators are
competitive with respect to current state-of-the-art methods in SDR methodology.
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1 Introduction

In this chapter, the historic development of SDR are presented. We start by introducing the
concepts of the central and mean subspaces. The former are dimension reduction subspaces
that preserve all the information, whereas the latter is a subset of the former that captures
only the information contained in the conditional mean of the response. Most SDR meth-
ods are inverse regression based, i.e. regressing the predictors on the response, that require
assumptions on the marginal distribution of the predictors or assume knowledge of the fam-
ily of distributions for the response and the predictors, and semiparametric, such as mean
average variance estimation (mave) [XTLZ02], which are based on the forward regression
model of the response on the predictors. The former operate under restrictive assump-
tions and are usually computationally easy to implement. The latter are computationally
more expensive but frequently lead to better estimates of the reduction with the additional
advantage of automatically predicting the response. They also are few in number, with
mave remaining the gold standard so far. This thesis contributes three new forward based
methods: the conditional variance in chapter 2, neural net-sufficient dimension reduction
in chapter 3 and ensemble conditional variance estimation in chapter 4.

We start by defining the notation that is used throughout the thesis in Section 1.1.
In Section 1.2, we review regression problems and the motivation for sufficient dimension
reduction is presented. In Section 1.3 sufficient dimension reduction is defined and the spe-
cial case of linear sufficient dimension reduction is introduced and discussed in Section 1.4,
which leads to the concept of the central subspace SY |X. In Section 1.5 the mean subspace
SE(Y |X) is defined and in Section 1.6 a historic account of sufficient dimension reduction
are presented. In the following sections some important sufficient dimension reduction es-
timation methods are summarized. Finally, in Section 1.16, the contributions of this thesis
are outlined.

1.1 Notation and Preliminaries

Let (Ω,F ,P) be a probability space, throughout we suppose (Y,XT )T has a joint distri-
bution, where Y : Ω → R denotes a univariate response and X : Ω → Rp a p-dimensional
covariate vector with a continuous distribution. We will denote the probability density func-
tion of X by fX (if it exists) and denote its support by supp(fX). Moreover for random
variables X, Y stochastic independence will be denoted as Y ⊥⊥ X. The space Lm(Ω) is the
set of all random variables on the probability space with finite m-th moment. Throughout
F (·|·) is the cumulative distribution function (cdf) of the first argument given the second,
� · � denotes the Frobenius norm for matrices, Euclidean norm for vectors, scalar product
refers to the euclidean scalar product, and ⊥ denotes orthogonality with respect to the
euclidean scalar product. Further ej ∈ Rp denotes the j-th standard basis vector with
zeroes except on the j-th position, ιp = (1, 1, . . . , 1)T ∈ Rp, and Ip = (e1, . . . , ep) ∈ Rp×p is

1



1 Introduction

the p-dimensional identity matrix. For any full rank matrix M, or linear subspace M, we
denote by PM the projection matrix on the column space of the matrix or on the subspace,
i.e. PM = M(MTM)−1MT ∈ Rp×p for M ∈ Rp×q with rank(M) = q 1.

For q ≤ p, let
S(p, q) = {V ∈ Rp×q : VTV = Iq}, (1.1)

denote the Stiefel manifold, that comprizes of all p×q matrices with orthonormal columns.
S(p, q) is compact and dim(S(p, q)) = pq − q(q + 1)/2 = p(q − (q + 1)/2) [see [Boo02] and
Section 2.1 of [Tag11]]. Next the Grassmann manifold, used in the section 4.4.1, is defined
and some properties are presented. Let

Gr(p, k) = S(p, k)/S(k, k) (1.2)

denote the Grassmann manifold, i.e. all k-dimensional subspaces in Rp. The Grassmann
manifold is compact as a quotient space of the compact Stiefle manifold (see (1.1)) and the
dimension is given by dim(Gr(p, k)) = dim(S(p, k)) − dim(S(k, k)) = k(p − (k + 1)/2) −
k(k− (k+1)/2) = k(p−k), for further information see [GH94]. We can identify a subspace
M ∈ Gr(p, k) with the orthogonal projection matrix PM onto this subspace and for an
orthonormal basis B ∈ S(p, k) of M we have

PM = B(BTB)−1BT = BBT = BOOT� �� �
=Ik

BT = (BO)(BO)T

for all orthogonal matrices O ∈ S(k, k).
For anyV ∈ S(p, q), defined in (1.1), we generically denote a basis of the orthogonal com-

plement of its column space span{V}, by U. That is, U ∈ S(p, p−q) such that span{V} ⊥
span{U} and (V,U) an orthonormal base of Rp, i.e. UTV = 0 ∈ R(p−q)×q,UTU = Ip−q.
For any x, s0 ∈ Rp we can always write

x = s0 +PV(x− s0) +PU(x− s0) = s0 +Vr1 +Ur2 (1.3)

where r1 = VT (x− s0) ∈ Rq, r2 = UT (x− s0) ∈ Rp−q.
Further, we use the convention that s0 ∈ supp(fX) is understood to be as s0 is in the

interior of the support since s0 acts as a placeholder for a datapoint Xi which takes values
on the boundary of the support with probability 0.

Next we define a generalized eigenvalue problem.

Definition 1. A generalized eigenvalue problem of two symmetric and positive definite
matrices M1,M2 ∈ Rp×p is defined as finding eigenvectors vj ∈ Rp and the corresponding
eigenvalues λj ∈ R such that

M1vj = λjM2vj for j = 1, . . . , p

M1V = M2VΛ (1.4)

subject to VTM2V = Ip

where (1.4) is the matrix notation with the eigenvectors collected in V = (v1, . . . ,vp) ∈
Rp×p and the eigenvalues in Λ = diag(λ1, . . . , λp), see also [GKC19].
1If the matrix M is not of full rank then the term (MTM)−1 is understood as the generalized inverse.

2



1 Introduction

Remark. A generalized eigenvalue problem (GEV) given by (M1,M2) can be reformulated

as an eigenvalue problem (�M1, Ip)

M1V = M2����
(M

1/2
2 )2

VΛ ⇐⇒ M
−1/2
2 M1M

−1/2
2� �� ��M1

M
1/2
2 V� �� �
=�V

= M
1/2
2 V� �� �
=�V

Λ

⇐⇒ �M1
�V = �VΛ (1.5)

with �M1 = M
−1/2
2 M1M

−1/2
2 and �V = M

1/2
2 V. Therefore given the solution �V of the

eigenvalue problem (�M1, Ip) in (1.5) we can calculate the solution of (1.4) by V = M
−1/2
2

�V.

Moreover �V ∈ S(p, p) since it is the solution of an eigenvalue problem and we can deduce
Ip = �VT �V = VTM2V, i.e. the solution V of (1.4) is orthogonal with respect to the scalar
product induced by M2.

Remark. A generalized eigenvalue problem (GEV) given by (M1,M2) can be rewritten in
terms of the Rayleigh quotient

argmaxR(v) = argmax
vTM1v

vTM2v
⇐⇒ M1v = λM2v (1.6)

i.e. maximizing the quotient is equivalent to finding the eigenvector corresponding to the
maximal eigenvalue of the GEV (the eigenvector corresponding to the smallest eigenvalue
minimizes the quotient). This can be seen by taking the derivative of R(v) and setting it
to 0, i.e.

∇vR(v) = 2
M1v(v

TM2v)− (vTM1v)M2v

(vTM2v)2
= 0 ⇐⇒

M1v(v
TM2v)− (vTM1v)M2v = 0 ⇐⇒

M1v =
vTM1v

vTM2v� �� �
=λ

M2v = λM2v

1.2 Regression and dimension reduction

In this section a brief introduction to regression problems is given. Let (YT ,XT )T ∈ Rd+p

be a random vector with a joint continuous distribution whereY ∈ Rd is called the response
and X ∈ Rp is the predictor vector.

Regression, in the broadest sense, is then the inference about the conditional distribution
of the response Y given the predictors X, i.e. we are interested in the distribution of Y | X.
This is called the forward regression and X|Y is the inverse regression. The conditional
distribution captures all the information about Y given X.

If we are interested in point prediction of Y given a specific value of X = x, measuring
the quality of prediction by the mean squared error, the optimal prediction is given by
the conditional mean E (Y | X). By assuming (YT ,XT )T ∈ L2(Ω) it follows that the first

3



1 Introduction

conditional moment exists [Kus14], and we model the response Y = (Y1, . . . , Yd) via the
predictors X = (X1, . . . , Xp), i.e.

Y = E (Y | X) + (Y − E (Y | X))� �� �
=�̃

= E (Y | X) + #̃ = g(X) + #̃ (1.7)

where E (Y | X) = g(X) = (g1(X), . . . , gd(X))T ∈ Rd, for measurable functions gj : Rp →
R. #̃ = Y−E (Y | X) ∈ Rd is called the residual. By the tower property of the conditional
expectation the residual is conditionally centered, i.e. E(#̃ | X) = 0 and centered E(#̃) =
E(E(#̃ | X)) = 0.

All quantities in (1.7) have finite variance and the residual is uncorrelated to E (Y | X) =
g(X), i.e. E(#̃g(X)T ) = E(E(#̃ | X)g(X)T ) = 0 ∈ Rd×d. In general the components of the
residual are not independent, if they are independent then (1.7) describes d independent
regression problems.

In this work we assume from now on that the response is scalar, i.e. d = 1 and Y = Y1 =
Y . The error term #̃ in (1.7) may still depend on X (see for example model (1.28) where
the conditional variance of the residual, i.e. Var(Y −E(Y | X) | X) is a function of X) so in
general we do not have X ⊥⊥ #̃. If X ⊥⊥ #̃, we are in the classic setting with homoskedastic
errors since the conditional variance equals the unconditional one and is therefore constant,
i.e. X ⊥⊥ #̃ implies Var(Y | X) = Var(Y ). Further if X is independent of the residuals then
X enters Y only through the first conditional moment E(Y | X), see Sections 1.4 and 1.5.
The conditional expectation E(Y | X) = g(X) is called the regression or link function.

In applications we are often interested in estimating g from an independent and identically
distributed sample (Yi,Xi)

n
i=1 from model (1.7). In general, this is not a feasible task

without further assumptions on g, or simplification through parametrization.
The former leads to a non-parametric problem where the search space is infinite dimen-

sional, e.g. C2(Rp) if we assume g is twice continuously differentiable.
The most prominent example of the latter approach is the linear regression model with

homoskedastic error, which sets g(x) = α+ βTX, with α ∈ R and β ∈ Rp. This modeling
assumption drastically reduces the complexity of the problem since the search space is
reduced to the finite dimensional space Rp+1 from an infinite dimensional space.

Furthermore, if the dimension p of the covariate vector X is large, and we only assume
only smoothness or differentiability of the link function g, we face the curse of dimensionality
in nonparametric regression. A high dimensional input space, like Rp or [0, 1]p, is sparsely
populated by the samples (Yi,Xi) if p is large. This sparsity causes problems in estimating
g if a parametric model is not assumed. If only smoothness is assumed, we can draw
inference only from points nearby. Informally, in order to estimate g(x) only points z with
distance less than 1/m to x , i.e. z ∈ Rp : �x − z� ≤ 1/m, are relevant. Even when the
sample size is very large, for common p values, the local neighborhoods about a point will
contain very few, if any, observations with high probability. In mathematical terms this
can be seen by considering the p dimensional hypercube [0, 1]p. If we want to place evenly
spaced points in the hypercube the number of points required increases exponentially in
p, i.e. to place evenly spaced points in [0, 1]p with distance 1/m to each other requires

4



1 Introduction

(m + 1)p points. Therefore, the estimation of the link function g becomes intractable for
large p.

A possible solution to the curse of dimensionality is dimension reduction, where we
replace X = (X1, . . . , Xp)

T ∈ Rp by a lower dimensional input R(X) ∈ Rk with R : Rp →
Rk and k << p, prior to estimating the forward regression link function. If the reduction is
such that we do not lose relevant information, we call the reduction a sufficient reduction
and we can circumvent the curse of dimensionality. That is, we regress Y on the low
dimensional input R(X). In general the reduction function R(·) can be linear or non-linear.
Assume for example that Y = sin(�X�)+# with X ∈ Rp, then the reduction R(X) = �X� ∈
R would reduce the estimation problem to a one dimensional non-parametric regression for
any p without loss of information. An example for a linear reduction is the model given by
Y = exp(X1) + #, where the linear reduction is given by R(X) = eT1 X = X1.
Moreover if the dimension of the covariate vector is reduced to k = 1, 2 then it is also

possible to visualize the data by a scatter plot. This may be quite helpful in determining
the appropriate techniques or methods for estimating the forward regression. Therefore
dimension reduction is an important tool for high dimensional, especially non-parametric,
regression problems in (1.7).

Nevertheless there are caveats, in real problems where only a sample (Yi,Xi)
n
i=1 is given

and we do not know if there is a useful reduction function R(·), how it looks like, and the
dimension k of the reduced input is also unknown. The first problem can only be solved by
assuming that there exists a reduction function whereas the other ones can be solved by
also considering the regression function R(·) as part of the regression problem, i.e. estimate
R(·) from the sample such that we do not lose information about the target Y .

Dimension reduction can therefore be seen as a data preprocessing step. For example
we will assume that the sample (Yi,Xi)

n
i=1 is from a model for which a linear reduction

function R(X) = BTX exists. Then the following steps can be used to tackle the regression
in (1.7).

(a) Estimate the dimension k and the corresponding reduction B ∈ Rp×k from the data

(Yi,Xi)
n
i=1 and set �Xi = �BTXi ∈ Rk̂

(b) Solve the original regression problem by using any regression technique for the reduced
data (Yi, �Xi)

n
i=1

1.3 Sufficient Dimension Reduction

In this section the notion of a sufficient reduction R(·) : Rp → Rk with k << p is formal-
ized. In the previous section we motivated the use of dimension reduction for regressions
with high dimensional covariates (i.e. p being large). A sufficient reduction reduces the
dimensionality of the predictor X at no information loss on the response Y . This will be
formalized by the sufficiency of the reduction.

Definition 2. A measurable function R : Rp → Rk is called a reduction function if k ≤ p.

5



1 Introduction

Therefore any function such that the image space has lower dimension than the input
space is considered as a reduction function. If k = p then no real reduction takes place, so
R is just a reparametrization. The classic context for dimension reduction is if p is large
(i.e. p ≥ 10) and k is relatively small (e.g., k ≤ 3). Next we define a sufficient reduction
for a regression.

Definition 3. A measurable function R : Rp → Rk is called a sufficient reduction if and
only if it is a reduction function and the response Y is conditionally independent of X given
R(X), i.e.

Y ⊥⊥ X | R(X) (1.8)

This definition states that a reduction function R is sufficient for Y when R(X) contains
the same information about Y as X does. In consequence, R(X) is sufficient for modeling
the response Y (see [Coo07]). Next a slightly different definition is presented to facilitate
intuition, which we call sufficient dimension reduction model.

Definition 4. Let the response Y be given by

Y = gcs(R(X), #), (1.9)

where X is independent of #, # ∈ R is a random variable, R(·) : Rp → Rk with k ≤ p is a
reduction function, and gcs is an unknown non-constant function.

In the model given by (1.9) the function R is a sufficient reduction since X ⊥⊥ #, i.e. given
R(X) the response Y depends only on # which is independent of X and definition (1.8)
holds.

Theorem 1. Suppose (Y,XT )T ∈ Rp+1 has a joint continuous distribution, then (1.8) and
(1.9) are equivalent.

Remark. The proof of Theorem (1) is based on Theorem 1 of [ZZ10] who showed this
Theorem for linear reductions, R(X) = BTX.

Proof of Theorem 1. If we assume model (1.9) it is easy to see that (1.8) holds since # ⊥⊥ X,
therefore given R(X) the response Y depends only on #.

If we assume (1.8), then the definition of conditional independence (see for example [Li18]
chapter 2 corollary 2.1 or [HJ17] page 460) yields

FY |X(y|x) = P (Y ≤ y | X = x) = P (Y ≤ y | X = x, R(X) = R(x))

= P (Y ≤ y|R(X) = R(x)) = FY |R(X)(y|R(x))

for a fixed but arbitrary x ∈ Rp. Then let # ∼ U(0, 1) be independent of X and set

Ỹ = F−1
Y |R(X)(#|R(x))

where F−1
Y |R(X)(z|R(x)) is the generalized inverse (see [KR15]) of the cdf FY |R(X)(y|R(x)),

i.e.

F−1
Y |R(X)(z|R(x)) = inf{y : FY |R(X)(y|R(x)) ≥ z}

6
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Then we have that (Y | X = x) = (Ỹ | X = x) in distribution by the inversion method
for generating random variables, see [Kol08]. Further Ỹ = gcs(R(X), #) with # ⊥⊥ X and
gcs(R(X), #) = F−1

Y |R(X)(#|R(x)), which completes the proof.

An example of (1.9) is given by

Y = log(1 +XTMX)# (1.10)

with M ∈ Rp×p a positive definite matrix and X ⊥⊥ # ∼ N(0, 1). The sufficient reduction
is given by the quadratic form R(X) = XTMX ∈ R whereas a linear sufficient reduction
is only possible with k = p, i.e. R(X) = IpX = X.

Nevertheless the problem of estimating a non-linear sufficient reduction is in general quite
hard or infeasible without further modeling assumptions, see [Coo07, Sec. 8.3]. For more
information see [BF15] where this is considered under the assumption that the family of
distributions of X | Y is known.

Using the so called kernel trick, i.e. embedding the covariate vector X into a higher
dimensional space through a basis or kernel functions (for further information see [BJM06],
[HSS08], [MRT12], and [SS18]) a non-linear sufficient reduction can be rewritten as a linear
reduction. For example in the model given by (1.10) we can define a new covariate vector
by adding all products XjXu to the original covariate vector

Z = (X1, . . . , Xp, X1X2, X1X3, . . . , XpXp−1, X
2
1 , . . . , X

2
p )

T ∈ Rp+p(p+1)/2

For simplicity assume that M = Ip in model (1.10), then the regression Y onto Z permits
a linear sufficient reduction given by R(Z) = BTZ =

�p
j=1X

2
j = XTMX with B =

(0, 0, . . . , 0, ιp) ∈ Rp+p(p+1)/2, i.e. the vector with 0 except the last p entries containing 1.
For more information about non-linear sufficient dimension reductions see [LLC13].

1.4 Linear Sufficient Dimension Reduction- the central subspace

In this section we focus on linear reductions, i.e. R(X) = BTX, that are a special case of
the reductions in section 1.3 and definition (1.8). The goal of linear sufficient dimension
reduction (SDR) is to find the central subspace SY |X ⊆ Rp, i.e. a linear subspace such
that the projection of the covariate vector X onto SY |X, i.e. PSY |XX, induces no loss of
information about the response Y . In [Coo98c] page 103 equation (6.3) a linear dimension
reduction subspace is defined as:

Definition 5. A linear subspace S ⊆ Rp is called a linear dimension reduction space if for
any basis B ∈ Rp×k of S the response Y is conditionally independent of X given BTX, i.e.

Y ⊥⊥ X | BTX (1.11)

Then the central subspace SY |X is defined as the intersection of all linear dimension
reduction subspaces, see [Coo98c].
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Definition 6. The central subspace SY |X is the intersection of all linear dimension reduc-
tion subspaces,

SY |X = ∩{S : S is a dimension reduction subspace} (1.12)

The next question is under which assumptions a central subspace SY |X exists and if it is
unique. The second question is answered in Proposition 6.2 of [Coo98c], which states that if
a central subspace SY |X for the regression Y onto X exists, then it is unique. The existence
is related to the question if the intersection of dimension reduction subspaces is guaranteed
to be a dimension reduction subspace again. Cook answered the question negatively, i.e.
without further assumptions the existence is not guaranteed, by an explicit example. Let
X = (X1, X2)

T ∈ R2 be uniformly distributed on the unit circle {x ∈ R2 : �x� = 1}
and set Y = X2

1 + # for a demeaned random variable # ⊥⊥ X. Since the support of the
distribution of X is concentrated on the unit circle, it holds X2

1 + X2
2 = 1. Therefore

Y = X2
1 + # = 1 − X2

2 + # and we conclude that span{(1, 0)T } and span{(0, 1)T } are
both dimension reduction subspaces but the intersection of both is {0} which is clearly
not an dimension reduction subspace. In this example there exists no central subspace
SY |X because the two dimensional covariate vector X is concentrated on a one dimensional

manifold. We can see this by letting U ∼ U([0, 2π]) and X = (cos(U), sin(U))T , then X is
inherently one dimensional. This means the distribution of X is not absolutely continuous
with respect to the two dimensional Lebesgue measure since the whole probability mass
of X is concentrated on the unit circle which has measure 0 with respect to the Lebesgue
measure on R2.

In general, in order to guarantee the existence of SY |X, further assumptions are required.
There are several ways to guarantee the existence of the central subspace SY |X. One way
would be to place assumptions on the distribution of X. In light of the previous example,
Proposition 6.4 in [Coo98c] states that if X has a density fX (i.e. the distribution is
absolutely continuous with respect to the Lebesgue measure on Rp) with convex support
supp(fX), then there exists a unique SY |X.
For further discussions about the existence of SY |X see [Coo98c, CL95, CC02].

Next we define the central subspace model

Definition 7. Let the response Y be given by

Y = gcs(B
TX, #), (1.13)

where X is independent of #, has a density fX with convex support, and with a positive
definite variance-covariance matrix, Var(X) = Σx, # ∈ R is a mean zero random variable
with finite Var(#) = E



#2
�
= η2, gcs is an unknown continuous non-constant function, and

B = (b1, ...,bk) ∈ Rp×k of rank k ≤ p.

The independence of # yields, that (1.13) is equivalent to

F (Y | X) = F (Y | BTX), (1.14)

That is, Y is statistically independent of X when BTX is given and replacing X by BTX
induces no loss of information for the regression of Y on X. Furthermore in model (1.13)

8



1 Introduction

it holds that

span{B} = SY |X (1.15)

since, given BTX, Y depends only on # which is independent of X. Therefore, definition
(1.11) holds for span{B} and, since gcs : Rk → R is non-constant in each argument,
span{B} is also the smallest dimension reduction subspace. That is, for all dimension
reduction sub-spaces S of model (1.13), span{B} ⊆ S and from (1.12) we can conclude
(1.15). In this thesis we assume model (1.13) which implies that the central subspace
SY |X = span{B} exists and is therefore unique (see [Coo98c, Prop. 6.2 and 6.4]).

The matrix B in (1.13) is not identifiable and only its span is. This leads to the Grass-
mann manifold as the appropriate search space for SY |X. Let B̃ = BR be the QR decom-

position of any matrix B̃ ∈ Rp×k with rank(B̃) = k, i.e. B ∈ S(p, k) and R ∈ Rk×k an
upper triangular matrix. Then for any model (1.13) given by g̃cs and B̃, we can write

Y = g̃cs(B̃
TX, #) = g̃cs(R

TBTX, #) = gcs(B
TX, #)

with gcs(·, ·) = g̃cs(R
T ·, ·). Therefore for a given model (1.13) (i.e. g̃cs and B̃) we can find

an equivalent model with gcs and B where B ∈ S(p, k).
An explicit example is X = (X1, . . . , Xp)

T ∈ Rp, B̃ = (c1e1, c2e2) ∈ Rp×2 with constants
c1, c2 ∈ R/{0} and g̃cs : R2 × R → R with g̃cs((z1, z2)

T , u) = z1z2 + u, then we have

Y = g̃cs(B̃
TX, #) = c1c2X1X2 + #

=
c1c2
4



(X1 +X2)

2 − (X1 −X2)
2
�
+ # = gcs(B

TX, #) (1.16)

where the second equality in (1.16) is due to the polarization identity and the third by
definition of gcs((z1, z2)

T , u) = (c1c2)/2


z21 − z22

�
+ u and B = (b1,b2)/

√
2 ∈ S(p, 2) with

b1 = (1, 1, 0, . . .)T ∈ Rp, b2 = (1,−1, 0, . . .)T ∈ Rp. Then Y can be represented by g̃cs, B̃
or equivalently by gcs,B but B̃ �= B. Nevertheless span{B̃} = span{B} = SY |X is unique,
i.e. since in model (1.13) the function gcs is unspecified and unknown we can always absorb
the orthogonalization of B into the function gcs without leaving the model class (1.13).

An interesting observation in (1.16) is that the functional form of gcs depends on the
particular basis of span{B}. This might be an interesting line of further research, since

sufficient dimension reduction (SDR) is used as a first step to get an estimate �SY |X and

afterwards the forward regression is estimated from the reduced data set (Yi, �BTXi)
n
i=1

where the particular basis �B of �SY |X can be chosen arbitrarily. If one uses generalized

additive models (i.e. Y =
�k

j=1 gj(Xj) + # for more information see [HT90], [Woo08],
and [HTFF04]) and the back-fitting algorithm to estimate the forward regression then the
basis B and gcs in (1.16) might be beneficial compared to B̃ and g̃cs since the former has an
additive structure whereas the latter has only an interaction term that can not be estimated
by generalized additive models.
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Without loss of generality, we can always assume B ∈ S(p, k) in definition (1.11) and
model (1.13). As only span{B} is unique, the search space for estimating SY |X is the
Grassmann manifold Gr(p, k) that results in a unique parameter of interest in model (1.13).
Nevertheless we will focus mostly on S(p, k) in this work since often it is more convenient
and allows better interpretation.
With analogue computations as above, i.e. absorbing any transformation into the un-

known link function, the following scaling property can be deduced (see [Coo98c, Li18]).

Theorem 2. Assume model (1.13) holds, and let s ∈ Rp, O ∈ Rp×p be a non singular
matrix, and set Z = OX+ s, then

SY |Z = O−TSY |X (1.17)

1.5 The mean subspace

In some cases, the problem is to estimate the mean subspace, denoted by SE(Y |X). Imposing
an additiver error term in model (1.13), yields the mean subspace model.

Definition 8. Suppose (Y,XT )T has a joint continuous distribution, where Y ∈ R denotes
a univariate response and X ∈ Rp a p-dimensional covariate vector. We assume that the
dependence of Y and X is modelled by

Y = g(BTX) + #, (1.18)

where X is independent of #, has a density fX with convex support, with positive definite
variance-covariance matrix, Var(X) = Σx, # ∈ R is a mean zero random variable with
finite Var(#) = E



#2
�
= η2 < ∞, g is an unknown continuous non-constant function, and

B = (b1, ...,bk) ∈ Rp×k of rank k ≤ p.

In model (1.18), span{B} = SE(Y |X) = SY |X, so that the central subspace agrees with the
mean subspace, because of the independence of X and #. If the independence requirement
is replaced with E(# | X) = 0, we still have span{B} = SE(Y |X) due to

E (Y | X) = E


g(BTX) | X�

+ E (# | X)� �� �
=0

= g(BTX) = E


Y | BTX

�
. (1.19)

but the mean subspace can be a proper subset of the central subspace, see example (1.22)
next. A distribution is not uniquely determined by its first moment, therefore it always
holds

SE(Y |X) ⊆ SY |X (1.20)

The mean subspace SE(Y |X) captures all the information in X about Y that is contained
in the first conditional moment E(Y | X), i.e. if we are only interested in the conditional
mean, it suffices to know BTX ∈ Rk instead of X ∈ Rp.
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Another characterisation analogue to (1.11) is given by: For any basis B ∈ Rp×k of
SE(Y |X)

E (Y | X) = E(Y | BTX) (1.21)

Example The following model highlights the difference between the mean subspace

SE(Y |X) and central subspace SY |X. Let, p = 10, k = 2 X = (X1, . . . , X10)
T ∼ N(0, I10),

# ∼ N(0, 1) independent to X, b1 = e1 = (1, 0, 0, . . .)T ∈ R10, b2 = e2 = (0, 1, 0, 0, . . .)T ∈
R10, B = (b1,b2) ∈ R10×2, and the response Y is given by

Y = (bT
1 X)2 + (|bT

2 X|+ 1)# = X2
1 + (|X2|+ 1)# (1.22)

In this model the mean subspace is a proper subset of the central subspace, i.e. span{b1} =
SE(Y |X) ⊂ SY |X = span{B}. To see this we calculate

E (Y | X) = E


(bT

1 X)2 | X�
+ E



(|bT

2 X|+ 1)# | X�� �� �
=(|bT

2 X|+1)E(�|X)=0

= (bT
1 X)2 = E



Y | bT

1 X
�

where the measurablility of (|bT
2 X|+ 1) is with respect to the sigma algebra generated by

X, and the independence of # and X was used for the term that vanished. Further we
conclude Y − E (Y | X) = (|bT

2 X|+ 1)# and the conditional variance is given by

Var (Y | X) = E


(Y − E (Y | X))2 | X�

= E


(|bT

2 X|+ 1)2#2 | X�
= (|bT

2 X|+ 1)2 E(#2 | X)� �� �
=E(�2)=η2

= (|bT
2 X|+ 1)2η2

where the measurability of (|bT
2 X| + 1)2 with respect to the sigma algebra generated by

X, and the independence of # and X were used. Moreover the response Y depends only on

BTX = (X1, X2)
T ∈ R2 so the central subspace is given by SY |X = span{B}.

To summarize, model (1.22) is a regression problem with heteroskedastic errors, i.e.
the conditional first moment E (Y | X) = X2

1 is determined by bT
1 X and the conditional

variance Var (Y | X) = (|X2|+ 1)2η2is determined by bT
2 X.

1.6 A historic account of Sufficient Dimension Reduction

Albeit dimension reduction (i.e. principal component analysis and similar concepts) was
used in a variety of fields before, systematic studies of sufficient dimension reduction (SDR)
in a probabilistic context are, from a historic point of view, quiet novel since the theoretical
foundation of this sub-field of statistics was developed around 1991 by the introduction of
sir [Li91]. To quote R. Dennis Cook from the paper [Coo18]: Interpreted broadly, dimension
reduction has always been a bedrock of statistical thought.
To be precise, ordinary least square estimation, the power house of statistics, can also be

viewed as sufficient dimension reduction (SDR) technique. To see this, let gcs : R×R → R
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with gcs(z, u) = α+ bz+ u with α, b ∈ R and B ∈ Rp, �B� = 1 (i.e. the dimension of the
central subspace is dim(SY |X) = k = 1), then model (1.13) can be written as

Y = g(BTX) + # = α+ bBT����
=β

X+ # = α+ βTX+ # (1.23)

the standard model that is assumed for ordinary least square estimation. Therefore we note
that sufficient dimension reduction is a generalization to the linear regression set-up. In
model (1.23) ordinary least square (OLS) estimation of β performs estimation of the linear
link function and of the sufficient dimension reduction subspace span{B} = span{β} =

SE(Y |X) = SY |X simultaneously. Therefore the ordinary least square estimator (α̂, β̂
T
)T ∈

Rp+1 estimates the parameters α, b of the linear link function through α̂, �β̂� and the SDR
subspace span{B} by span{β̂}. Nevertheless under the assumption of a linear link function
we restrict the dimension of central subspace SY |X (i.e. which equals the mean subspace
SE(Y |X) in model (1.23), see section 1.5) to be 1, i.e. dim(SY |X) = rank(B) = k = 1.
Therefore model (1.23) is to restrictive and narrow to study sufficient dimension reduction.

The next step in the direction of sufficient dimension reduction came from Brillinger
(1977, 1983) where he noted that ordinary least square estimation (OLS, multiple regres-
sion, etc ....), where the link function g in (1.18) that links the response Y to the predictors
X is assumed to be linear, had been applied successfully in a very wide variety of scientific
fields. In his view it was too successful for the narrow assumptions placed on the proba-
bilistic model to derive the ordinary least squares (OLS) estimator. Especially he noted
that often the researchers using ordinary least square estimation were not interested in
the actual values of the estimated coefficients β̂ = (β̂1, . . . , β̂p)

T ∈ Rp but instead drew

conclusion from the relative coefficients, i.e. β̂j/β̂k for 1 ≤ j, k ≤ p. This led him to
investigate the OLS estimator under link violation (i.e. how does ordinary least square
estimation perform under the presence of a nonlinear link function) in the paper [Bri12],
i.e. he studied the model given by

Y = g(α+ bBTX) + # = g(α+ βTX) + # (1.24)

with β = bB ∈ Rp. Model (1.24) is also called single index model (for further information
see [Ich93, HHI93, Rad15, HS89]) and is again a special case of model (1.13) with gcs :
R×R → R and gcs(z, u) = g(α+ bz) + u where α, b ∈ R and B ∈ Rp, �B� = 1. In (1.24)
the dimension of the central subspace SY |X is again 1 = dim(span{B}) = dim(span{β}) =
dim(SY |X) as was the case in the ordinary least squares model in (1.23). His question was:
How does ordinary least square estimation perform under the presence of a nonlinear link
function g in (1.24). In Theorem 1 in [Bri12] it is shown that under the assumption that
X ⊥⊥ # and X ∼ N(µX,Σx) the ordinary least square estimator β̂ from an independent
identical distributed sample of model (1.24) converges in probability to a multiple of the
population quantity, i.e.

β̂ → cβ in probability as the sample size n goes to infinity (1.25)

for some c ∈ R. This result answered the question why the ordinary least squares estimator
is so successful even if the link function is miss-specified, especially when it is used to drew
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conclusions from the relative coefficients β̂j/β̂k → βj/βk since they converge in probability
to the true ratios if the constant c in (1.25) is nonzero (see model (1.28)). Further, from
a sufficient dimension reduction viewpoint, it shows that asymptotically the ordinary least
squares estimator β̂ consistently estimates one direction of the central subspace SY |X, i.e.

span{β̂} ⊂ SY |X as the sample size n goes to infinity.

Duan and Li in [LD89] extended the result of [Bri12] to the model given by

Y = g(α+ βTX, #) (1.26)

which is again a special case of model (1.13) with gcs : R×R → R, gcs(z, u) = g(α+ bz, u)
where α, b ∈ R and β = bB ∈ Rp. Model (1.26) is a generalization of (1.24) without an
additive error structure where the one dimensional central subspace SY |X is spanned by
β, i.e. span{β} = span{B} = SY |X with dim(span{β}) = k = 1. Theorem 2.1 of [LD89]
states that under model (1.26) and the so called linearity condition

E


bTX|βTX

�
is linear in βTX for all b ∈ Rp (1.27)

the statement in (1.25) holds for some c ∈ R. The linearity condition given in (1.27) holds
for the normal distribution and for distributions in the elliptically contoured family (i.e. if
(1.27) holds for all β then X has an elliptically contoured distribution and the other way
round, see [Eat86] and [Li18] page 14 and chapter 7 corollary 7.1). The distribution of a
random vector X ∈ Rp falls in the elliptically contoured family if its characteristic function
φX−µ(b) = E(exp (ibT (X− µ))) fulfills the functional equation φX−µ(b) = ψ(bTΣb) for
all b ∈ Rp, for some location parameter µ ∈ Rp, some positive definite matrix Σ ∈ Rp×p,
and some function ψ. Another point of view on elliptically contoured distributions is that
the contour lines of the density are elliptical. For more information about the elliptically
contoured distributions see [CHS81].

Remark. Note that (1.27) must be fulfilled for the β given by model (1.26) but since
in practice we do not know β we will require that (1.27) holds for all possible β. The
linearity condition or linear design condition (i.e. if (1.27) is extended to β ∈ S(p, k))
in (1.27) will be quite important later on in the history of sufficient dimension reduction
techniques and should be viewed as a weakening of the assumption that the predictors X
are normal distributed. Nevertheless it is still a restrictive assumption that rules out most
of the distributions for X but [DF84] showed that when X is high dimensional, projections
of X are approximately normal distributed. Furthermore in [HL93] it is shown that if X is
high dimensional, then E(X | BTX) is approximately linear in the conditioning argument
if B ∈ S(p, k) with k << p. Moreover [SL18] showed that the conditional expectation in
(1.27) is linear for p → ∞ (i.e. X ∈ Rp bein high dimensional) if X has a density with
respect to the Lebesgue-measure, certain moments are close to the Gaussian moments, and
some further technical integrability conditions are satisfied. These statements justifies the
assumption of the linear design condition (LDC) since βTX and bTX can be regarded as
projections. Furthermore p >> k (i.e. p being much larger than k and k being quite small)
is exactly the set-up that linear sufficient dimension reduction (linear SDR) is about, since
we want to replace a high dimensional covariate vector X by a much lower dimensional
projection.
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Remark. Nevertheless there is the caveat that the proportionality constant c of the result
(1.25) in models (1.24) and (1.26) can be 0, i.e. asymptotically span{β̂} = {0}. To see
this, let X = (X1, . . . , Xp)

T ∼ N(0, Ip), # ∼ N(0, 1) independent of X, β = e1 ∈ S(p, 1),
and let

Y = g(βTX) + σ(βTX)# (1.28)

for a even function g : R → R (i.e g(z) = g(−z)) and a measurable function σ : R → R.
This model fits into model (1.26) and for the constant function σ(·) = σ the model is
a special case of (1.24). In both configurations model (1.28) fulfills all assumptions such
that (1.25) holds. Let X = (X1, . . . ,Xn)

T ∈ Rn×p and Y = (Y1, . . . , Yn)
T ∈ Rn be an i.i.d.

sample of model (1.28), then the ordinary least squares estimator β̂ converges asymptotically
to

β̂ =

X TX �−1X TY =

�
1

n

n�
i=1

XiX
T
i

�−1
1

n

n�
i=1

XiYi −→ (1.29)

Var (X)−1� �� �
=Ip

cov (X, Y ) = cov (X, Y ) almost surely as n → ∞

since by the strong law of large numbers and E(X) = 0 it holds
�n

i=1XiX
T
i /n → Var(X)

and
�n

i=1XiYi/n → cov(X, Y ) almost surely. The covariance is given by

cov (X, Y ) = cov


X, g(βTX)

�
+ cov



X, σ(βTX)#

�
= E



Xg(βTX)

�� �� �
(E(X1g(X1)),E(X2g(X2)),...,E(Xpg(X1)))

+ E


Xσ(βTX)#

�� �� �
E
�
Xσ(βT

X)E(�|X)
� = 0 (1.30)

where the first equality is by inserting model (1.28), the second by E(X) = 0. The second
term in (1.30) vanishes due to E(# | X) = E(#) = 0 by X ⊥⊥ #. The first term in (1.30)
vanishes since the first component X1 ∼ N(0, 1) has an even density on a symmetric domain
and h(z) = zg(z) being odd, therefore E(X1g(X1)) = 0 and for the other components

E(Xjg(X1)) = E(Xj)� �� �
=0

E(g(X1)) = 0 for 2 ≤ j ≤ p

due to the independence of the components of a multivariate normal if the covariance is Ip,
which yields that the first term in (1.30) is 0.
Therefore we have β̂ → 0 �= β almost surely and we can conclude that the proportionality

constant c in (1.25) must be 0.

The next step in the direction of modern sufficient dimension reduction (SDR) was the
development of projection pursuit regression methods which is a generalization of general-
ized additive models (for further details see [HT90], [Woo08], and [HTFF04]). Projection
pursuit regression is again a special case of the model (1.13) where B = (b1, . . . ,br) ∈ Rp×r

with �bj� = 1 and gcs : Rr × R → R gcs(B
T z, u) =

�r
j=1 gj(b

T
j z) + u with z ∈ Rp and
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functions gj : R → R. The model for projection pursuit regression is given by

Y = gcs(B
TX, #) =

r�
j=1

gj(b
T
j X) + # (1.31)

where the functions gj and bj are estimated recursively, for more information see [FS81],
[HTFF04], and [KG12]. Nevertheless the intend of projection pursuit regression is only
to estimate the link function gcs in model (1.13) if an additive error structure is assumed
by a superposition of r function and not to find lower dimensional projections BTX that
induce no loss of information, i.e. the number of projections r is allowed to exceed p. That
is r serves as a complexity parameter of the model and for r → ∞ model (1.31) becomes
a universal approximator for functions with domain Rp (i.e. limr→∞

�r
j=1 gj(b

T
j z) ≈ g(z)

for any function g : Rp → R). In practice the number r is chosen by cross-validation or a
forward-step-wise criterion and often r is determined to be quite low, i.e. r << p, so that
projection pursuit regression performs dimension reduction nevertheless.

1.7 Overview of SDR methods

The first method targeting the linear sufficient reduction in the general regression model
F (Y | X) = F (Y | BTX), where F signifies the conditional cumulative distribution func-
tion of Y given the conditioning argument, was sliced inverse regression (sir, [Li91]). sir,
as well as most sufficient dimension reduction (sdr) methods, is based on the inverse re-
gression of X on the response Y . These include sliced average variance estimation (save,
[Coo00]), parametric inverse regression (pir, [BC01]), principal fitted components (pfc,
[CF08]), directional regression (dr, [LW07a]), and contour regression (cr, [LZC05a]). Fur-
ther, there are model (likelihood) based sufficient dimension reduction methods, overlap-
ping with the inverse regression based methods, such as likelihood acquired directions (lad,
[CF09]), which mostly require assumptions on the conditional X | Y or joint distribution
and are researched in [Coo07, CF09, BF15, BDF16]. A recent overview of sdr methods
can be found in [Yin, MZ13, Li18].

These methods require varying assumptions on either the joint distribution of (Y,XT )
T
,

or the conditional distribution of X | Y , limiting their applicability. A different approach
focuses on the forward regression of Y on X in order to extract the reduction. The first
such method, principal Hessian directions (phd), was introduced by [Li92] and was further
developed by [Coo98a] and [CL02, CL04]. Minimum average variance estimation (mave)
was introduced by [XTLZ02] and was generalized in [Xia07, WX08]. Conditional variance
estimation (cve in chapter 2, [FB21a]) is the most recent addition to the forward regression
sdr methodology. These estimators require minimal assumptions on the smoothness of the
joint distribution and frequently enjoy better estimation accuracy but at the expense of
higher computational cost. Among those, the most prominent so far has been the minimum
average variance estimation (mave) [XTLZ02].

15



1 Introduction

1.8 Inverse Regression

The first method, sliced inverse regression (sir), that can be characterized as a pure suffi-
cient dimension reduction (SDR) technique based on a probabilistic model, i.e. model (1.13),
with the intend of estimating SY |X was introduced by Ker-Chau Li in 1991 in his famous
paper [Li91]. Sliced inverse regression (sir) is based on the so called inverse regression
problem where we regress X on Y , i.e. E(X|Y ). Theorem 3 gives the explanation why the
inverse regression is useful in the dimension reduction context.

Theorem 3. Assume model (1.13) and the linear design condition (LDC) in (1.27), i.e.
E(X | BTX) is linear in the conditioning argument, where B is given in (1.13), then

Σ−1
x span{E(X|Y )− E(X)} ⊆ SY |X almost surely (1.32)

Proof of Theorem 3. Let Z = Σ
−1/2
x (X−E(X)) be the standardized predictors (i.e. Σ

−1/2
x

is the inverse of the symmetric matrix root of Var(X) = Σx) and by the tower property of
the conditional expectation, # ⊥⊥ X, and the linear design condition (LDC), it holds

E(Z|Y ) = E


E(Z | BTZ, #)|Y �

= E

�E(Z | BTZ)� �� �
=ABTZ

|Y

� = ABTE(Z|Y ) (1.33)

where all equalities are in almost sure sense. Then the projection Theorem for Hilbert
spaces yields

A = cov(Z,BTZ)Var(BTZ)−1 = Var(Z)B


BTVar(Z)B

�−1
= B(BTB)−1 (1.34)

since Var(Z) = Ip and inserting (1.34) into (1.33) yields

E(Z|Y ) = B(BTB)−1BTE(Z|Y ) = PBE(Z|Y )

and we conclude E(Z|Y ) ∈ SY |Z and by Theorem 2 it holds SY |Z = Σ
1/2
x SY |X. Therefore

Σ−1
x E(X− E(X)|Y ) ∈ SY |X almost surely

Corollary 4. Under the assumptions of Theorem 3, it holds

span{Var (E(X− E(X)|Y ))} = span{E(X− E(X)|Y = y) : y ∈ supp(Y )}

Proof. Let V ∈ S(p, k) be a orthonormal basis of a linear subspace S ⊆ Rp, i.e. span{V} =
S. If a random variable Z ∈ span{V} ⊆ Rp almost surely, then it holds that

Z = Pspan{V}Z almost surely
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since Pspan{V}⊥Z = 0 almost surely. Therefore

Z = Pspan{V}Z = VVTZ� �� �
=Z̃

= VZ̃ almost surely

and applying the variance operator on both side yields

Var(Z) = VVar(Z̃)VT ,

i.e. span{Var(Z)} = span{V}. Setting Z = E(X−E(X)|Y ) and S = span{E(X−E(X)|Y =
y) : y ∈ supp(Y )} (which is a linear subspace by definition of the span and therefore
permits a basis V of S) yields the result.

Theorem 3 and corrolary 4 are the foundation of most first order sufficient dimen-
sion reduction (SDR) methods that relay on the inverse problem (i.e. regressing X =
(X1, . . . , Xp)

T ∈ Rp on Y and the name first order inverse regression refers to the fact
that only the first conditional moment of the inverse regression is used). They state that
the inverse regression function E(X|Y ) ranges in the central subspace SY |X, and therefore
given an estimate for E(X|Y ) and its variance, we can estimate a part of SY |X. This has
the advantage that it circumvents part of the course of dimensionality since the inverse re-
gression problem consists actually of p one dimensional regression problems, i.e. E(Xj |Y )
for j = 1, . . . , p. Nevertheless there is the caveat that there is no guarantee that one can
estimate the whole central subspace SY |X exhaustively since Theorem 3 states only that
Var (E(X− E(X)|Y )) spans a subset of SY |X. In the extreme case, i.e. if E(X|Y ) is con-
stant with respect to Y , we would have Var (E(X− E(X)|Y )) = 0 ∈ Rp×p. To see this,
consider the example in the next remark.

Remark. Let U = (U1, . . . , Up)
T ∼ U([−1, 1]p) be uniformly distributed on the p dimen-

sional cube with independent components, and set Y = U2
1 , i.e. span{(1, 0, . . .)T } = SY |X.

Then due to independence it holds E(Uj |Y ) = E(Uj) = 0 for j = 2, . . . , p and calculate

E(U1|Y = y) = E

−√

y1{U1<0} +
√
y1{U1>0}

�
= (−√

y +
√
y)0.5 = 0.

Therefore E(X|Y ) = 0 and Var(E(X|Y )) = 0 ∈ Rp×p. This example can be generalized to
even link functions and symmetric distributions, therefore inverse regression methods based
on Theorem 3 cannot estimate the central subspace SY |X exhaustively in such settings.

1.9 Sliced Inverse Regression (sir)

Assume (Yi,Xi)
n
i=1 is an i.i.d. sample from model (1.13) and assume the linear design

condition (LDC) given by (1.27). Then the sir [Li91] algorithm is given by

(a) Standardize Zi = �Σ−1/2

x (Xi−X̄) where X̄ = (1/n)
�n

i=1Xi and �Σx = (1/n)
�n

i=1(Xi−
X̄)(Xi − X̄)T .

17
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(b) Divide the range of Y into H ∈ N slices Ih = (qh−1, qh] for h = 1, . . . ,H (often
empirical quantiles are used for qh such that there are approximately equal number
of Yi in each slice) and let nh = #{i : Yi ∈ Ih}, i.e. the number of observations Yi
that fall into slice Ih

(c) Calculate the averages Z̄h = (1/nh)
�

i:Yi∈Ih Zi ≈ E(Z|Y ∈ Ih)

(d) Calculate the empirical variance matrix of X̄h, i.e.

�M1 =
H�

h=1

(nh/n)Z̄hZ̄
T
h ≈ Var (E(Z|Y ))

(e) Calculate the spectral decomposition of �M1 and set �B = �Σ−1/2

x (b̂1, . . . , b̂k) where b̂j

for j = 1, . . . , k are the eigenvectors of �M1 corresponding to the k largest eigenvalues

Remark. The number of slices H and the intervals Ih are tuning parameters but [Li91]
showed that the algorithm estimates span{Var (E(X− E(X)|Y ))} consistently with rate
1/

√
n no matter how H and Ih is chosen (even in the worst case if there are only two

points in each interval) but the asymptotic variance may be inflated by a bad choice of the
tuning parameters. A reasonable choice proposed by Li is Ih = (F−1

Y ((h−1)/H), F−1
Y (h/H)]

where FY denotes the cumulative distribution function (cdf) of Y and for the implemen-
tation we use the empirical distribution function FY,n(y) = (1/n)

�n
i=1 1{Yi≤y} instead of

FY . This corresponds to choosing qh as the empirical quantiles.

Further, note that the dimension k = dim(SY |X) of the central subspace is assumed to
be known. In practice this is not the case and there are test for the dimension k based on
asymptotic results. The most widely used one, due to its simplicity, is based on the fact that
if X is normal distributed then n(p−k)λ̄p−k follows a chi-squared distribution χ2 with (p−
k)(H−k−1) degrees of freedom (see [Li91]) where λ̄p−k = (1/(p−k))

�p
j=k+1 λj with λj the

eigenvalues in descending order of �M1 in the sir algorithm; i.e. under the null hypothesis
that model (1.13) with k = rank(B) holds the average of the p − k smallest eigenvalues
(their population counterparts are 0 due to Theorem 3 and corrolary 4) is asymptotically
chi-squared distributed. This can be used to perform an sequential test procedure for the
dimension k = rank(B) = dim(SY |X) in model (1.13). For further methods of estimating
k see [Coo98c], [BC01].

Remark. Note that if H = n, i.e. the number of slices H equals the sample size n such
that in each slice Ih there is only one point Yi, then Sliced Inverse Regression recovers the
principal components.

Next a reformulation of the sir algorithm in terms of a generalized eigenvalue (1.4)
problem is presented.
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Remark. Note that Theorem 3 and corrolary 4 can be formulated as a generalized eigen-
value problem. Let M1 = Var (E(X− E(X)|Y )), then Σ−1

x span{M1} = span{Σ−1
x M1} ⊆

SY |X = span{B} with dim(SY |X) = rank(B) = k, therefore Σ−1
x M1 has at most k eigen-

vectors vj with eigenvalues λj �= 0 (for simplicity assume for the moment that there
exist exactly k eigenvectors with eigenvalue not equal to 0, i.e. assume exhaustiveness
span{Σ−1

x M1} = SY |X). Then span{Σ−1
x M1} = span{v1, . . . ,vk} = SY |X and

Σ−1
x M1v = λv ⇐⇒ M1v = λΣxv for j ≤ k (1.35)

Moreover the final step (e) in the sir algorithm can be formulated through an generalized

eigenvalue problem as defined in (1.4) with M1 = �Var (E(X− E(X)|Y )) ,M2 = �Σx, i.e. we
replace the population quantities in (1.35) by their estimates. Note also that applying the

transformation given by (1.5) corresponds to standardizing X by setting Zi = �Σ−1/2

x (Xi−X̄)
in the sir algorithm.

1.10 Likelihood based sdr

The development of the sliced inverse regression (sir) method and Theorem 3 gave rise to
the likelihood based methods such as principal fitted components pfc [CF08] or likelihood
acquired directions lad [CF09], for a more detailed overview see [Coo07]. They are based
on the the inverse regression X|Y , but instead of assuming the linear design condition
(LDC) given by (1.27), it is directly assumed that X|Y follows a parametric model, e.g.
X|Y = y ∼ N(µy,Δy) with µy = µ + Bνy. If Δy = σ2Ip, then the errors are called
isotropic.

Then the regression is fitted by maximum likelihood or other methods depending on the
model assumptions, and the estimator for the central subspace is given by �SY |X = span{�B}
with �B the maximum likelihood estimate for B. Depending on the concrete assumptions
placed on νy and Δy the resulting methods are:

• Principal components: Isotropic errors and no specific structure for νy.

• Isotropic pfc: Isotropic errors and νy = γ (fy − E(fy)) with fy = (f1(y), . . . , fr(y))
T ∈

Rr a known-vector valued function of y and ν ∈ Rk×r a rank r matrix with unre-
stricted coefficients such that k ≤ min(p, r).

• Structured pfc: νy is modeled as above but the error structure has a linear structure
and is independent of y, i.e. Δy =

�m
l=1wlMl with known matrizes Ml.

• pfc: νy modeled as above and with an error structure independent of y, i.e. Δy = Δ.

• lad: A general structure for µy and Δy but requires a categorical response Y , for
more details see [CF09].

1.11 Sliced Average Variance Estimation (save)

To overcome the disadvantage of non-exhaustiveness of SIR, [CW91] developed the so called
sliced average variance estimation (save). It is a second order inverse regression method
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that is exhaustive, i.e. can recover the whole central subspace SY |X, if the linear design
condition (LDC), (1.27), and constant conditional variance assumption (CCV), (1.36), and
some mild regularity are fulfilled. save targets the second conditional moment, i.e. the
conditional variance Var(X|Y ).

The constant conditional variance assumption (CCV) holds if and only if

Var(X | BTX) is a nonrandom matrix for all B ∈ S(p, k) (1.36)

i.e. constant in the conditioning argument.

Note that the multivariate normal distribution N(µ,Σ) fulfills the linear design condition
(LDC), (1.27), and constant conditional variance assumption (CCV), (1.36).

Theorem 5 gives the theoretical motivation of the save method.

Theorem 5. Assume model (1.13), the linear design condition (LDC) in (1.27), and the
constant conditional variance condition (CCV) in (1.36). Then

span{Σx − Var(X|Y )} ⊆ ΣxSY |X

The proof can be found in [CW91] or in [Li18] Theorem 5.1. If Theorem 5 and Theorem 2

are applied with Z = Σ
−1/2
x (X− E(X)) we get

span{Ip − Var(Z|Y )} ⊆ SY |Z = Σ
1/2
x SY |X (1.37)

Equation (1.37) will be used as the estimation equation of save on the population level.
The sliced average variance estimation (save) algorithm is given by

Let (Yi,Xi)
n
i=1 be an i.i.d. sample from model (1.13), assume the linear design condition

(LDC) given by (1.27) and the constant conditional variance condition in (1.36). Then the
save [CW91] algorithm is given by

(a) Standardize Zi = �Σ−1/2

x (Xi−X̄) where X̄ = (1/n)
�n

i=1Xi and �Σx = (1/n)
�n

i=1(Xi−
X̄)(Xi − X̄)T .

(b) Divide the range of Y into H ∈ N slices Ih = (qh−1, qh] for h = 1, . . . , H, discretize
Y via Ỹ =

�H
h=1 h1{Y ∈Ih}, and set nh =

�n
i=1 1{Ỹi=h} = #{i : Ỹi = h} = #{i : Yi ∈

Ih}.
(c) For each slice h calculate the sample conditional variance of Var(Z|Ỹ = h) by

�Var(Z|Ỹ = h) =

�n
i=1 ZiZ

T
i 1{Ỹi=h}�n

i=1 1{Ỹi=h}
=

1

nh

n�
i=1

ZiZ
T
i 1{Ỹi=h} =

1

nh

�
i:Yi∈Ih

ZiZ
T
i

(d) Calculate the matrix

�M1 =
1

H

H�
h=1

nh

�
Ip − �Var(Z|Ỹ = h)

�2
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(e) Calculate the spectral decomposition of �M1 and set �B = �Σ−1/2

x (b̂1, . . . , b̂k) where b̂j

for j = 1, . . . , k are the eigenvectors of �M1 corresponding to the k largest eigenvalues

Remark. Step (e) in the save algorithm is exactly the same as in the sir algorithm except

that the matrix �M1 is different, therefore it can be rewritten as an generalized eigenvalue
problem (GEV) (see (1.4)) given by (�M1, �Σx). As for sir the dimension k = dim(SY |X) =
rank(B) is assumed to be known in the algorithm but there are a number of asymptotic test
and methods to estimate it. For further information see [CW91, Coo00, CY01, SCW07,
BY11, Li18].

1.12 Other sdr methods

So far the most prominent sufficient dimension reduction techniques based on inverse re-
gression like sir and save have been discussed. We have seen that all of them can be
interpreted as a generalized eigenvalue problem (GEV) (M1,M2) with different matrices
M1 and M2 determining the methods on the population level, e.g. M1 = Var(E(X|Y ))
and M2 = Var(X) for sir. Moreover different estimation methods for the corresponding
population quantities can be deployed resulting in a number of different estimators for the
central subspace SY |X. There are a number of other methods based on inverse regression
that can be casted into the generalized eigenvalue framework. Not all of them will be
presented in such detail as sir and save but table 1.1 gives an overview of the different as-
sumptions and matrizes M1 and M2 of the generalized eigenvalue problem that determines
the methods. In table 1.1 the linear design condition given by (1.27) is abbreviated by
LDC and the constant conditional variance condition given in (1.36) by CCV. Moreover cr
stands for contour regression [LZC05b, Li18], dr for directional regression [LW07b, Li18]),
and phd for principal Hessian direction [Li92, Coo98c, Li18] which was further developed

by [Coo98a, CL02, CL04]. Further in table 1.1 we set Z = Σ
−1/2
x (X−E(X)), the tilde over-

set represents an independent copy of the corresponding quantity, i.e. Z̃ is an independent
copy of Z, and δ > 0 denotes a small constant. Note that except for phd all methods in
table 1.1 are based on the inverse regression of X on Y (phd is included for completeness
since it can also be formulated as an generalized eigenvalue problem).

Table 1.1: sdr techniques as GEV (M1,M2) as in (1.4)

Assumptions Method M1 M2

pca Σx Ip
LDC sir Var(E(X | Y )) Σx

LDC pfc ΣE(X|Y ) Σx

LDC, CCV save Σx − Var(X|Y ) Σx

LDC, CCV cr
�
2Ip − 2E

�
ZZT ||Y − Ỹ | < δ

�
− 2E

�
ZZ̃T ||Y − Ỹ | < δ

��2
Σx

LDC, CCV dr E
�
(Z− Z̃)(Z− Z̃)T |Y, Ỹ

�
− 2Ip Σx

LDC, CCV phd E


(Y − E(Y ))ZZT

�
Σx
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1.13 Principal Hessian Direction (phd)

Principal Hessian direction (phd) is a sufficient dimension reduction technique based on
the forward regression developed by [Li92] and later refined by [Coo98b] and [CL02, CL04].
Assume model (1.18), i.e. E(Y | X) = E(Y | BTX), then phd is based on the observation
given in (1.38).

H(x) =
∂2E(Y | X = x)

∂x∂xT
=

∂2E(Y | BTX = BTx)

∂x∂xT
= B

∂2E(Y | BTX = BTx)

∂(BTx)∂(xTB)
BT (1.38)

Therefore we can conclude span{H(x)} ⊆ span{B} = SY |X and the same holds true for

E(H(X)). Then set Z = Σ
−1/2
x (X − E(X)) and under the assumption that Z is normal

distributed Li showed using Stein’s Lemma that

span{E(H(X))} = span{E 

(Y − E(Y ))ZZT

�} ⊆ span{B} = SY |Z

The phd estimator is then defined as the first k = dim(SY |X) = rank(B) eigenvectors

of the generalized eigenvalue problem (GEV) given by M1 = E


(Y − E(Y ))ZZT

�
and

M2 = Σx where all expectations are replaced by sample averages.

1.14 Minimum Average Variance Estimation (mave)

So far except from principal Hessian direction (phd) all sufficient dimension reduction
methods presented are based on the inverse regression given by Theorem 3. This Theorem
assures the connection of the inverse regression to the central subspace SY |X under the
linear design condition (LDC). Therefore if we want to get rid of the LDC the inverse
regression cannot be used anymore. In [XTLZ02] the mimum average variance estimator
(mave) for SE(Y |X), which is based on the forward regression in (1.18) with E(# | X) = 0
is proposed.

The target function of mimum average variance estimator (mave) on the population
level is given by

T (V) = E(Y − E(Y |VTX))2 = E

�E[(Y − E(Y |VTX))2|VTX]� �� �
=σ2(VTX)

� (1.39)

= E(σ2(VTX)) (1.40)

for V ∈ S(p, k).
Theorem 6. Assume model (1.18) holds then we have

span{B} := span{argminV∈S(p,k) T (V)} (1.41)

for T (V) defined in (1.40).
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Proof of Theorem 6. From Y = g(BTX) + # in (1.18) it follows

T (V) = E


g(BTX)− E(Y |VTX)

�2
+ 2E



[g(BTX)− E(Y |VTX)]#

�
+ Var(#)

= E


g(BTX)− E(Y |VTX)

�2
+ Var(#) ≥ Var(#) (1.42)

since E


[g(BTX)− E(Y |VTX)]#

�
= E

[g(BTX)− E(Y |VTX)]E (# | X)� �� �
=0

 = 0 due to

E(# | X) = 0.

(1.42) and the discussion about the search space for sufficient dimension reduction in
(1.2), yield

T (V) = Var(#) = η2

for all V such that span{V} = span{B}. For all V such that span{V} �= span{B} it holds
E(Y |VTX) �= g(BTX) and

T (V) = E


g(BTX)− E(Y |VTX)

�2
+ Var(#) > Var(#) = η2

This completes the proof.

For the estimation of SE(Y |X) = span{B} from an i.i.d. sample (Yi,Xi)
n
i=1 of model (1.18)

we replace the target function T (V) in Theorem 6 by an estimate Tn(V), whereV ∈ S(p, k).
A local linear expansion of E(Yi | VTXi) around X0 yields

E(Yi | VTXi) ≈ a+ bTVT (Xi −X0), (1.43)

where a = g(VTX0) ∈ R, b = ∇g(VTX0) ∈ Rk. Therefore we obtain the following
approximation for σ2(VTX0) in (1.40),

σ2(VTX0) ≈
n�

i=1

(Yi − E(Y | VTX))2wi,0 ≈
n�

i=1

(Yi − a− bTVT (Xi −X0))
2wi,0

for some weights wi,0 that sum to 1 (
�

iwi,0 = 1). The weights play a crucial role in the
estimation. They are given by

wi,0(V) :=
K

�
VT (Xi−X0)

h

�
�

l K
�
VT (Xl−X0)

h

� , (1.44)

for a k dimensional kernel K(·), and a bandwidth h ∈ R+.
It is common to set K(·) = K̃(� · �2) for a monotone decreasing univariate kernel

K̃(·) : R → R+, since [XTLZ02] suggested that the weights depend only on the distance of
VT (Xl−X0) (the further V

TXi is away from VTX0 the worse the linear expansion is and
the less weight we assign).

23



1 Introduction

Then, an estimator for σ2(VTX0) in (1.40) is given by

σ̂2(VTX0) := min
a,b

n�
i=1

(Yi − a− bTVT (Xi −X0))
2wi,0(V) (1.45)

and the target function T (V) is estimated by

Tn(V) =
1

n

n�
j=1

σ̂2(VTXj) =
1

n
min

aj ,bj :j=1,..,n

�
j

�
i

(Yi − aj − bj
TVT (Xi −Xj))

2wi,j(V)

(1.46)

where the weights are given in (1.44). The Gaussian kernel is usually used with bandwidth
satisfying h = hn ∝ n−1/(4+k), as typically done in nonparametric function estimation, in
order to obtain optimal asymptotic properties.
Then SE(Y |X) = span{B} is estimated by

�SE(Y |X) := span{argminVS(p,k) Tn(V)}.

1.15 Outer product gradient (opg)

The opg estimator [XTLZ02], introduced in the same paper as mave, is conceptually
similar to phd and mave. The theoretical motivation is given by

Theorem 7. Assume model (1.18) and let

Σ∇ = E

∇g(BTX)∇g(BTX)T

�
where E(Y | X = x) = E(Y | BTx) = g(BTx). Then span{Σ∇} = span{B}
Proof of Theorem 7. From model (1.18) we have E(Y | X = x) = E(Y | BTx) = g(BTx)
and taking the derivative, yields

∇xg(B
Tx) = ∇BTxg(B

Tx)
∂(BTx)

∂x
= ∇g(BTx)B

and therefore we conclude

Σ∇ = E

∇xg(B

TX)∇xg(B
TX)T

�
= BE


∇g(BTx)∇g(BTx)T
�
BT

which completes the proof.

For V = Ip in (1.46) calculate (aj ,b
T
j )

n
j=1 by solving the optimization given in (1.46).

Then bj is an estimate for ∇g(BTXj) and set

�Σ∇ :=
1

n

n�
j=1

bjb
T
j (1.47)

as an estimator for Σ∇ in Theorem 7.

Then the Outer product gradient (opg) estimator for SE(Y |X) = span{B} is defined as

the span of the first k eigenvectors of �Σ∇.
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Remark. The opg estimator can be used as initial value for the optimization procedure of
the mave.

1.16 Contributions of the thesis

The contributions of this thesis are described next. The methodology and results formed
the basis for three papers of the author, [FB21a, FB21b, KFB21]. All three papers were
supervised by Prof. Efstathia Bura. The third paper is joint work with Daniel Kapla, a
PhD colleague, with equally divided contributions.
First the novel conditional variance estimator cve is presented in Chapter 2. cve is a

sufficient dimension reduction method that is consistent for the mean subspace SE(Y |X) =
span{B} in model (1.18) under weak regularity assumptions. As mave, it differentiates
itself from most other inverse regression based sdr methods, as it is based on the forward
model Y = g(BTX) + # with an additive error term in (1.18). The conditional variance
estimator cve differs from other approaches, including mave, in that it only targets the
span{B} and does not require an explicit form or estimation of the link function g. As
a result, it requires weaker assumptions on its smoothness. Further, the accuracy and
performance of the novel cve estimator is demonstrated via simulations and in data appli-
cations, which indicate that cve is mostly on par or better than mave, the gold standard
in sufficient dimension reduction so far.
In Chapter 3, the novel nn − sdr estimator is presented. Most forward regression sdr

methods that exhibit excellent estimation performance, like mave and cve, are usable
for relatively small predictor dimensions, p, and sample sizes, n. When both p and n
increase substantially, their computation can spread over days or weeks, thus rendering
them infeasible in practice. The nn− sdr estimator combines forward regression sdr with
neural networks in order to remove the limitation of small p and n. nn−sdr is a two stage
estimator that carries out simultaneous sufficient dimension reduction and neural network
learning of the link function in model (1.18). First we fit an arbitrary neural net to the
data, and in the second stage we refine the estimate with a specific architecture using a
bottleneck. The premise of the two stage nn−sdr estimator is conceptually similar to mave
with the difference that we use neural nets as universal function approximators instead of
nonparametric local linear smoothing methods. The advantage of this approach is that it
retains the accuracy of state of the art sdr methods while it can be easily deployed to large
scale regressions frequently encountered in applications as is demonstrated via simulations
and data examples. It also obtains predictions at nearly no additional computational cost
compared to fully non-parametric methods used for predictions in mave and cve. Further,
the extension of the proposed nn − sdr estimator to online learning, where new data are
dynamically added, is straightforward.
In Chapter 4, the novel ensemble conditional variance estimator ecve is presented. ecve

uses the idea of ensembles, i.e. families of functions that are rich enough in a certain sense,
to extend the cve for the mean subspace SE(Y |X) to the central subspace SY |X. ecve is
shown to be a consistent estimator for span{B} = SY |X in model (1.13). Moreover, the
performance of ecve is compared via simulations and data examples against the state of
the art estimation method, central subspace mean average variance estimation csmave, for
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the central subspace SY |X. The accuracy of ecve is mostly on par or better than csmave,
which is the extension of mave.
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2 Conditional Variance Estimation for the
mean subspace

In this chapter we introduce the novel conditional variance estimator for estimating the
mean subspace SE(Y |X), see Section 1.5, for the model (1.18). The estimator is based on a
new approach or target function that is, to the best knowledge of the author, never seen
before in the literature.
Throughout the chapter we refer to the following assumptions as needed.

(A.1). Model Y = g(BTX)+# holds with Y ∈ R, g : Rk → R non constant in all arguments,
B = (b1, ...,bk) ∈ Rp×k of rank k ≤ p, X ∈ Rp independent from #, the distribution of X is
absolute continuous with respect to the Lebesgue measure in Rp, the support of the density
fX is convex, Var(X) = Σx is positive definite, E(#) = 0, Var(#) = η2 < ∞.

(A.2). The link function g and the density fX : Rp → [0,∞) of X are twice continuously
differentiable.

(A.3). E(|Y |8) < ∞.

(A.4). supp(fX) is compact.

Remark. The mean subspace and the central subspace agree in this model, i.e. span{B} =
SE(Y |X) = SY |X due to X independent to #. Assumption (A.1) guarantees the existence and
uniqueness of span{B}, i.e. the mean subspace, by proposition 6.4 in [Coo98c]. Assumption
(A.4) is not as restrictive as it might seem. In Proposition 11 of [YLC08] it is shown that
there is a compact set S ⊂ Rp such that the mean subspace of model (1.18) is the same as
the mean subspace of Y = g(BTX|S) + #, where X|S = X1{X∈S} and 1A is the indicator

function of A. Further S can be assumed to be an ellipsoid and for all �S ⊇ S the same
assertion holds true.

2.1 Motivation and Definitions

Definition 9. For an integer q with q ≤ p and any V ∈ S(p, q), we define

L̃(V, s0) = Var(Y | X ∈ s0 + span{V}), (2.1)

where s0 ∈ supp(fX) is a shifting point.

Definition 10. For V ∈ S(p, q), we define the objective function,

L(V) =

	
Rp

L̃(V,x)fX(x)dx = E
�
L̃(V,X)

�
. (2.2)
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2 Conditional Variance Estimation for the mean subspace

L(V) in (2.2) is the objective function on the population level for the estimator we
propose for the span of B in (1.18) and Theorem 9 provides the statistical motivation for
the objective function (2.2) of the conditional variance estimator. First in Theorem 8 we
derive that both population based functions (2.1) and (2.2) are well defined.

Theorem 8. Let X be a p-dimensional continuous random vector with density fX(x),
s0 ∈ supp(fX) ⊂ Rp, and V ∈ S(p, q) defined in (1.1).

(a) Under assumption (A.2), it holds that

fX|X∈s0+span{V}(r1) =
fX(s0 +Vr1)


Rq fX(s0 +Vr)dr
(2.3)

is a proper density of X conditioned on X ∈ s0 + span{V} that is concentrated on
the affine subspace s0 + span{V}.

(b) Under assumptions (A.1), (A.2) and (A.4) it holds that L̃(V, s0) in (2.1) and L(V)
in (2.2) are well defined and continuous. Moreover, it holds

L̃(V, s0) = µ2(V, s0)− µ1(V, s0)
2 + η2 (2.4)

where

µl(V, s0) =

	
Rq

g(BT s0 +BTVr1)
l fX(s0 +Vr1)


Rq fX(s0 +Vr)dr
dr1 =

t(l)(V, s0)

t(0)(V, s0)
(2.5)

with

t(l)(V, s0) =

	
Rq

g(BT s0 +BTVr1)
lfX(s0 +Vr1)dr1. (2.6)

Proof of Theorem 8. For part (a), note that (Rp,B(Rp)), where B(Rp) denotes the Borel
sets on Rp, is a Polish space which guarantees the existence of the regular conditional
probability of X | X ∈ s0 + span{V} by Theorem 3.1 of [LJFR04], see also [Fad85].
Further the measure is concentrated on s0 + span{V} ∩ supp(fX) ⊂ Rp and is given by
(2.3) due to the orthogonal decomposition (1.3) and Definition 8.38 and Theorem 8.39 of
[Kar93].
Furthermore, we can calculate explicitly:

P(X ≤ x | X ∈ s0 + span{V}) = lim
h↓0

pr({X ≤ x} ∩ {X ∈ s0 + spanh{V}})
pr(X ∈ s0 + spanh{V}) (2.7)

where spanh{V} = {x ∈ Rp : d(V, 0) = �x − PVx�2 ≤ h}. Using the orthogonal
decomposition (1.3) and writing W = (V,U) ∈ S(p, p) (i.e. WWT = Ip). Inserting
x = s0 +VVT (x− s0) +UUT (x− s0) = s0 +WWT (x− s0) to obtain the second equality
below

P(X ∈ s0 + spanh{V}) =
	
s0+spanh{V}

fX(x)dx (2.8)

=

	
s0+spanh{V}

fX(s0 +W WT (x− s0)� �� �
=r=(r1,r2)T∈Rp

)dx =

28



2 Conditional Variance Estimation for the mean subspace

with dr = dx due to the integral transformation rule (i.e. the Jacobi determinant of shifting
and multiplying with an orthogonal matrix is 1). Further note that

x ∈ s0 + spanh{V} ⇐⇒ h ≥ d(V, s0) = �(x− s0)− PV����
=VVT

(x− s0)� (2.9)

= �VVT (x− s0) +UUT (x− s0)−VVT


VVT (x− s0) +UUT (x− s0)

� �2
= �UUT (x− s0)� �� �

r2

�2 = �r2�2

due to VTU = 0 and the fact that multiplying with an orthonormal matrix U does not
change the norm. Inserting (2.9) in (2.8) obtains

P(X ∈ s0 + spanh{V}) =
	
{r1∈Rq ,r2∈Rp−q}∩{�r2�2≤h}

fX(s0 +Wr)dr (2.10)

=

	
Rq

	
�r2�2≤h

fX(s0 +Vr1 +Ur2)dr2dr1

= h(p−q)/2

	
Rq

	
�r̃2�2≤1

fX(s0 +Vr1 + h1/2Ur̃2)dr̃2dr1

where the second equality is due to Fubini’s Theorem and the last equality follows due to
the substitution r2/h

1/2 = r̃2 and {�r2�2 ≤ h} = {�r2/h1/2�2 ≤ 1} = {�r̃2�2 ≤ 1}.
With the same calculations the numerator of (2.7) equals

pr({X ≤ x} ∩ {X ∈ s0 + spanh{V}}) =
	
{z≤x}∩{z∈s0+spanh{V}}

fX(z)dz (2.11)

=

	 y1

−∞
...

	 yq

−∞

	
�r2�2≤h

fX(s0 +Vr1 +Ur2)dr2dr1

= h(p−q)/2

	 y1

−∞
...

	 yq

−∞

	
�r̃2�2≤1

fX(s0 +Vr1 + h1/2Ur̃2)dr̃2dr1

where (y1, ..., yq)
T = VT (x−s0). Observe that if x−s0 ranges in the orthogonal complement

of span{V}, i.e. (y1, ..., yq)T = 0 by (2.9) and therefore the cdf is constant (i.e. the density
is concentrated on s0 + span{V} ∩ supp(fX)). Substituting the numerator (2.11) and
denominator (2.10) into (2.7) yields

lim
h↓0


 y1
−∞ ...


 yq
−∞



�r̃2�2≤1 fX(s0 +Vr1 + h1/2Ur̃2)dr̃2dr1


Rq



�r̃2�2≤1 fX(s0 +Vr1 + h1/2Ur̃2)dr̃2dr1

(2.12)

A quotient converges if numerator and denominator converge and the denominator con-
verges to a non zero constant. Therefore we will argue by the dominated convergence
Theorem that this is the case. Due to (A.4) (i.e. supp(fX) is compact) all integrals are
over compact sets (i.e. this is suppressed in the notation). Due to (A.2) the integrand is
continuous and therefore can be bounded by supx∈supp(fX) fX(x) < ∞ (i.e. a continuous
function attains a finite maximum on a compact set). Since the integrals are over compact
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2 Conditional Variance Estimation for the mean subspace

sets supx∈supp(fX) fX(x) is an integrable dominating function and the dominated conver-
gence Theorem can be applied to pass the limit limh↓0 under the integral and due to the
continuity of fX also inside the function argument, i.e. for the denominator we get

lim
h↓0

	
Rq

	
�r̃2�2≤1

fX(s0 +Vr1 + h1/2Ur̃2)dr̃2dr1 (2.13)

=

	
Rq

	
�r̃2�2≤1

fX(s0 +Vr1 + lim
h↓0

h1/2Ur̃2� �� �
=0

)dr̃2dr1

=

	
Rq

fX(s0 +Vr1)dr1� �� �
=t(0)(V,s0)

�	
�r̃2�2≤1

dr̃2

�
> 0

Further note that t(0)(V, s0) > 0 due to continuity of fX, s0 ∈ supp(fX) (which is meant
as s0 being in the interior of the support), and the support being convex (i.e. in a small
neighbourhood around s0 the density is strictly positive due to continuity).

With exactly the same reasoning we obtain for the numerator

lim
h↓0

	 y1

−∞
...

	 yq

−∞

	
�r̃2�2≤1

fX(s0 +Vr1 + h1/2Ur̃2)dr̃2dr1 (2.14)

=

	 y1

−∞
...

	 yq

−∞
fX(s0 +Vr1)dr1

�	
�r̃2�2≤1

dr̃2

�

Finally plugging in (2.13) and (2.14) into (2.12) yields

P(X ≤ x | X ∈ s0 + span{V}) =

 y1
−∞ ...


 yq
−∞ fX(s0 +Vr1)dr1


Rq fX(s0 +Vr1)dr1
(2.15)

where (y1, ..., yq)
T = VT (x− s0). Note that fX|X∈s0+span{V}(x) defined in (2.3) full fills

P(X ≤ x | X ∈ s0 + span{V}) =
	 y1

−∞
...

	 yq

−∞
fX|X∈s0+span{V}(r)drs

and thus is the density of X | X ∈ s0 + span{V}. This completes the proof of part (a).

Next we show part (b) of the Theorem. Due to the independence of X and # in (1.18),
Var(Y | X ∈ s0+span{V}) = Var(g(BTX) | X ∈ s0+span{V})+Var(#). Using (2.3) and
Var(Y | Z) = E(Y 2 | Z)− E(Y | Z)2, we obtain (2.4).

The parameter integral [Heu95],

t(l)(V, s0) =

	
Rq

g(BT s0 +BTVr)lfX(s0 +Vr)dr =

	
Rq

g̃(V, s0, r)dr

is well defined and continuous if (1) g̃(V, s0, ·) is integrable for all V ∈ S(p, q), s0 ∈
supp(fX), (2) g̃(·, ·, r) is continuous for all r, and (3) there exists an integrable dominating
function of g̃ that does not depend on V and s0 [see [Heu95, p. 101]].
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2 Conditional Variance Estimation for the mean subspace

Furthermore t(l)(V, s0) =


K g̃(V, s0, r)dr for some compact set K since supp(fX) is

compact due to (A.4). The function g̃(V, s0, r) is continuous in all inputs by the continuity
of g and fX due to (A.2), and therefore it attains a maximum. In consequence, all three
conditions are satisfied so that t(l)(V, s0) is well defined and continuous.

Next µl(V, s0) = t(l)(V, s0)/t
(0)(V, s0) is continuous since t(0)(V, s0) > 0 for all s0 ∈

supp(fX) by the analogue argument as in part (a). Then, L̃(V, s0) in (2.4) is continuous.
Since L(V) is a parameter integral, it is well defined and continuous following the same
arguments as above.

Theorem 8 (a) establishes that (2.3) is a proper density. Since X has a continuous
distribution, the set {ω ∈ Ω : X(ω) ∈ s0 + span{V}} has probability 0 if q < p, but
Theorem 8 (b) shows that L̃(V, s0) in (2.1) and L(V) in (2.2), are well-defined using the
concept of regular conditional probability [LJFR04] and can be expressed by using (2.3).

Next, Theorem 9 provides the motivation for the objective function given in (2.2) and
why it can be used to identify SE(Y |X) = span{B} in model (1.18)

Theorem 9. Suppose V = (v1, ...,vq) ∈ S(p, q) and q ∈ {1, . . . , p}. Under assumptions
(A.1), (A.2) and (A.4),

(a) For all s0 ∈ supp(fX) and V such that there exist u ∈ {1, ..., q} with vu ∈ span{B},
L̃(V, s0) > Var(#) = η2 and L(V) > η2.

(b) For all s0 ∈ supp(fX) and span{V} ⊥ span{B}, L̃(V, s0) = η2 and L(V) = η2.

Proof of Theorem 9. Let s0 ∈ supp(fX).By (2.1) and the independence of X and # we
obtain L̃(V, s0) = Var



g(BTX) + # | s0 + span{V}� = Var



g(BTX) | s0 + span{V}� +

Var(#). Moreover X ∈ s0 + span{V} ⇐⇒ X = s0 +PV(X− s0) yields

L̃(V, s0) = Var


g(BTX) | X = s0 +VVT (X− s0)

�
+ Var(#)

= Var


g(BT s0 +BTVVT (X− s0)) | X = s0 +VVT (X− s0)

�
+ η2 ≥ η2

(2.16)

If BTV �= 0 we can conclude that Var(BTVVT (X − s0)) = BTVVTVar(X)VVTB has
at least one component with positive variance since Var(X) > 0. Since g is nonconstant
in every argument g(BT s0 + BTVVT (X − s0)) in (2.16) has strictly positive variance,
therefore if BTV �= 0, it holds L̃(V, s0) > η2. If BTV = 0, it holds BTVVT (X − s0) = 0
and therefore L̃(V, s0) = η2 since the first term in (2.16) is the variance of a constant and
therefore 0. Since s0 is arbitrary yet constant, the statements for L(V) follow.

Alternatively one could use (2.4) and Jensen’s inequality to proof the statement of The-
orem 9. Observe that by (2.4) we have

L̃(V, s0) = µ2(V, s0)− µ1(V, s0)
2 + η2 ≥ η2 (2.17)

since µ2(V, s0)−µ1(V, s0)
2 ≥ 0 due to Jensen inequality. To see this, write R ∼ f̃R(r1) =

fX(s0 +Vr1)/


Rq fX(s0 +Vr)dr and Z = g(BT s0 +BTVR), then by Jensen µ2(V, s0) =

E(Z2) ≥ E(Z)2 = µ1(V, s0)
2
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If BTV = 0 we have

µl(V, s0) =

	
Rq

g(BT s0 +

=0� �� �
BTVr1)

l fX(s0 +Vr1)

Rq fX(s0 +Vr)dr

dr1 = g(BT s0)
l

and it follows µ2(V, s0)− µ1(V, s0)
2 = g(BT s0)

2 − g(BT s0)
2 = 0, therefore L̃(V, s0) = η2.

Then note that equality in Jensen’s inequality for a strictly convex function is only achieved
if the integrand Z = g(BT s0 + BTVR)l is a constant random variable. If BTV �= 0 and
since g(·) is non constant in every argument and the density fX(s0+Vr1)/



Rq fX(s0+Vr)dr

is non degenerate, we have Z a nondegenerate random variable and Jensen inequality holds
strictly, i.e. µ2(V, s0)−µ1(V, s0)

2 > 0. Therefore if BTV �= 0 we have L̃(V, s0) > η2. Since
s0 is arbitrary yet constant and the monotony of the expectation operator, the statements
for L(V) follow.

Theorem 9 also has an intuitive geometrical interpretation for the proposed method. If
X is not random, the deterministic function Y = g(BTX) is constant in all directions
orthogonal to B and varies in all other directions. If randomness is introduced, as in model
(1.18), then the variation in Y stems only from # in all directions orthogonal to B. In all
other directions the variation comprizes of the sum of the variation of # and of g(BTX).
In consequence, the objective function (2.2) captures the variation of Y as X varies in the
column space of V and is minimized in the directions orthogonal to B. A more thorough
intuitive explanation is given in Section 2.3 via an toy example.

We have shown that the objective function L(V) in (2.2) is well defined and continuous
in Section 2.1. Let

Vq = argminV∈S(p,q) L(V). (2.18)

Vq is well defined as the minimizer of a continuous function over the compact set S(p, q).
Nevertheless, Vq is not unique since for all orthogonal O ∈ Rq×q such that OOT = Iq,
L(VO) = L(V) as L(V) depends on V only through span{V}. Therefore (2.18) is unique
as an optimization over the Grassmann manifold (1.2) by the uniquness of span{B} given
by Assumption (A.1) and proposition 6.4 in [Coo98c].
Further, we can view (2.2) also as a function from the Grassmann manifold to [0,R). To

see this, suppose V ∈ S(p, q) is an arbitrary basis of a subspace M ∈ Gr(p, q). We can
identify M through the projection PM = VVT .
Let again W = (V,U) ∈ S(p, p) given by the orthogonal decomposition given in (1.3)
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(i.e. x = WWTx = Vr1 +Ur2), then by the Fubini-Tornelli Theorem we obtain

t̃(l)(PM, s0) =

	
supp(fX)

g(BT s0 +BTPMx)lfX(s0 +PMx)dx (2.19)

=

	
supp(fX)

g(BT s0 +BTPMW WTx� �� �
=(r1,r2)T

)lfX(s0 +PMW WTx� �� �
=(r1,r2)T

)dx

=

	
supp(fX)∩Rq

	
supp(fX)∩Rp−q

g(BT s0 +BTPM(Vr1 +Ur2))
lfX(s0 +PM(Vr1 +Ur2))dr2dr1

=

	
supp(fX)∩Rp−q

g(BT s0 +BTVr1)
lfX(s0 +Vr1)dr1� �� �

=t(l)(V,s0)

�	
supp(fX)∩Rp−q

dr2

�

= t(l)(V, s0)

�	
supp(fX)∩Rp−q

dr2

�

Therefore t̃(l)(PM, s0)/t̃
(0)(PM, s0) = t(l)(V, s0)/t

(0)(V, s0) and µl(·, s0) in (2.5) can also
be viewed as a function from Gr(p, q) to R. If the optimization (2.18) is over Gr(p, q), the
objective function (2.2) has a unique minimum at span{B}⊥ by Theorem 9. Therefore B
is not uniquely identifiable but its span{B} is.

Corollary 10 follows directly from Theorem 9 and provides the means for identifying the
linear projections of the predictors satisfying (1.18).

Corollary 10. Under the assumptions (A.1), (A.2), and (A.3) the solution of the optimi-
sation problem Vq in (2.18) is well defined. Let k = dim(span{B}) and q = p− k,

(a) span{Vq} = span{B}⊥

(b) span{Vq}⊥ = span{B}
We next define the estimation equation on the population level for the sufficient reduction

space, span{B}, in (1.18), which is motivated by Theorem 9 and Corollary 10 (b).

Definition 11. The estimation equation of the Conditional Variance Estimator cve
on the population level is given by any basis Bp−q of span{Vq}⊥. That is, the cve of B is
any Bp−q such that

span{Bp−q} = span{Vq}⊥ (2.20)

When q = p − k, where k = rank(B) in (1.18), then the cve obtains the population
span{B}. Alternatively, we can also target B directly by maximizing the objective function
L(V). The downside of this approach is that X needs to be standardized (see toy example
in Section 2.3) requiring the inversion of Σx. Our choice of targeting the orthogonal
complement avoids the inversion of Σx, and the estimation algorithm in Section 2.6 can
formally be applied to regressions with p > n or p ≈ n, where n denotes the sample size.
Nevertheless, since the focus of this thesis is on a classic sufficient dimension reduction
setting with n > p, we do not explore this further. Additionally, targeting the complement
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2 Conditional Variance Estimation for the mean subspace

has theoretical advantages. The proof of Theorem 12 reveals that the convergence rate is
faster if q = dim(V) increases.

We conclude this Section in the next remark highlighting the difference of cve to mave
as both are based on a conditional variance.

Remark. The difference of cve to mave is that the objective function of cve on the
population level is given by (2.2), whereas for mave it is given by (1.40). Both are based
on a conditional variance of the response, but mave conditions on the projection VTX and
cve conditions on X only ranging in a subspace s0+span{V}. Moreover, mave estimates
the forward model and reduction simultaneously using local linear smoothing and targets
the reduction B in model (1.18) directly whereas cve targets the orthogonal complement,
i.e. span{B}⊥ and circumvents the estimation of the forward model..

2.2 Estimation of cve

So far we have defined the estimation equation on the population level in (2.20). To
calculate the Conditional Variance Estimator from a sample of model (1.18) we replace the
objective function, (2.2), in (2.18) by an estimate. This Section describes the estimation of
the objective function (2.2) and the definition of the cve estimator is given in Definition 15.
The replacement of the unknown quantities g and fX in (2.5), contained in the objective
function (2.2), by standard nonparametric kernel estimates is unsuitable for the sufficient
dimension reduction task since the goal is to avoid a nonparametric estimation over a high
input dimension suffering from the curse of dimensionality. Therefore, we opted to use the
kernel estimation approach, described below, considering the structure of the conditioning
subspaces since this results in the effective dimension p− q (which is substantially smaller
than p, if k is small) over which the nonparametric smoothing takes place.

Assume (Yi,X
T
i )

T
i=1,...,n is an independent identical distributed sample from model (1.18).

For V ∈ S(p, q) and s0 ∈ supp(fX), we define

di(V, s0) = �Xi −Ps0+span{V}Xi�2 = �Xi − s0�2 − �Xi − s0,VVT (Xi − s0)�
= �(Ip −VVT )(Xi − s0)�2 = �PU(Xi − s0)�2 (2.21)

where �·, ·� is the usual inner product in Rp, PV = VVT and PU = Ip − PV using the
orthogonal decomposition given by (1.3).

Let hn ∈ R+ be a sequence of bandwidths and we call the set Ss0,V = {x ∈ Rp :
�x − Ps0+span{V}x�2 ≤ hn} a slice that depends on both the shifting point s0 and the
matrix V. hn represent the squared width of a slice around the subspace s0 + span{V}
and fulfills the following assumptions.

(H.1). For n → ∞, hn → 0

(H.2). For n → ∞, nh
(p−q)/2
n → ∞

Remark. (H.1) will guarantee that the bias goes to 0 and (H.2) that the variance does as
well. For obtaining the consistency of the proposed estimator (H.2) will be strengthened to

log(n)/nh
(p−q)/2
n → 0.
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2 Conditional Variance Estimation for the mean subspace

Let K be a function satisfying the following assumptions.

(K.1). K : [0,∞) → [0,∞) is a non increasing and continuous function, so that |K(z)| ≤
M1, with



Rq K(�r�2)dr < ∞ for q ≤ p− 1.

(K.2). There exist positive finite constants L1 and L2 such that the kernel K satisfies one
of the following:

(1) K(u) = 0 for |u| > L2 and for all u, ũ it holds |K(u)−K(ũ)| ≤ L1|u− ũ|
(2) K(u) is differentiable with |∂uK(u)| ≤ L1 and for some ν > 1 it holds |∂uK(u)| ≤

L1|u|−ν for |u| > L2

Examples of functions that satisfy (K.1) and (K.2) include the Gaussian,K(z) = c exp(−z2/2),
the exponential,K(z) = c exp(−z), and the squared Epanechnikov kernel,K(z) = cmax{(1−
z2), 0}2 (i.e. polynomial kernels), where c is a constant. The rectangular, K(z) = cI(z ≤ 1),
does not fulfill the assumptions but will be mentioned for intuitive explanations. A list of
further kernel functions is given in [Par61, Table 1].

2.2.1 The estimator of L(V)

Definition 12. For i = 1, . . . , n, we define

wi(V, s0) =
K

�
di(V,s0)

hn

�
�n

j=1K
�
dj(V,s0)

hn

� (2.22)

Definition 13. The sample based estimate of L̃(V, s0) is defined as

L̃n(V, s0) =

n�
i=1

wi(V, s0)(Yi − ȳ1(V, s0))
2 = ȳ2(V, s0)− ȳ1(V, s0)

2 (2.23)

where ȳl(V, s0) =
�n

i=1wi(V, s0)Y
l
i , l = 1, 2.

Definition 14. The estimate of the objective function L(V) in (2.2) is defined as

Ln(V) =
1

n

n�
i=1

L̃n(V,Xi), (2.24)

where each data point Xi is a shifting point.

To obtain insight, see also Section 2.3, as to the choice of L̃n(V, s0) in (2.23), let us
consider the rectangular kernel, K(z) = 1{z≤1}. In this case, L̃n(V, s0) computes the

empirical variance of the Yi’s corresponding to the Xi’s that are no further than
√
hn away

from the affine space s0 + span{V}, i.e., di(V, s0) = �Xi − Ps0+span{V}Xi�2 ≤ hn. If a

smooth kernel is used, such as the Gaussian in our simulation studies, then L̃n(V, s0) is
also smooth, which allows the computation of gradients required to solve the optimization
problem.
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2.2.2 Weighted estimation of L(V)

In this section, we describe a slight adaptation of the estimation of the target function
(2.2) that accounts for the fact that in the different slices, Ss0,V = {x ∈ Rp : �x −
Ps0+span{V}x�2 ≤ hn}, usually there are different amount of points.

In the estimation of L(V) two different weighting schemes are used:

(a) Within a slice. The weights are defined in (2.22) and are used to calculate (2.23).

(b) Between slices. Equal weights 1/n are used to calculate (2.24).

The choice of weights can be potentially influential. Especially the between weighting
scheme can further be refined by assigning more weight to slices with more points. This
can be realized by altering (2.24) to

L(w)
n (V) =

n�
i=1

w̃(V,Xi)L̃n(V,Xi), with (2.25)

w̃(V,Xi) =

�n
j=1K(dj(V,Xi)/hn)− 1�n
l,u=1K(dl(V,Xu)/hn)− n

=

�n
j=1,j �=iK(dj(V,Xi)/hn)�n
l,u=1,l �=uK(dl(V,Xu)/hn)

(2.26)

For example, if a rectangular kernel is used,
�n

j=1,j �=iK(dj(V,Xi)/hn) is the number

of Xj (j �= i) points in the slice corresponding to L̃n(V,Xi). Therefore this slice gets
higher weight, if the number of Xj points in this slice, SXi,V, is larger. That is, the more
observations we use for estimating L(V,Xi) the better its accuracy. The denominator in
(2.26) guarantees the weights w̃(V,Xi) sum up to one.

If (2.24) is replaced by (2.25) in Definition 15, the resulting estimator is called weighted
conditional variance estimator.

2.3 Intuition of cve via an toy example

In this section we provide an intuitive explanation of the proposed method and demonstrate
how the sample version (2.24) of the objective function (2.2) estimates the orthogonal
complement of B in (1.18) via an example. We consider a bivariate normal predictor vector,
X = (X1, X2)

T ∼ N(0,Σx). We generate the response from Y = g(BTX) + # = X1 + #,
with # ∼ N(0, η2) independent of X with η = 0.1. In this setting, k = 1, B = (1, 0)T ,
g(z) = z ∈ R in model (1.18), i.e. B is aligned with the first coordinate axis. Further, we
set Σx = I2 for convenience.
First we draw a sample of size n = 100 and plot the Xi, i = 1, . . . , n in Figure 2.1,

where the color of the points are determined by their corresponding Yi values, i.e. the low
Yi values are assigned blue and the higher the Yi value the more red the points are. In
the direction of B, i.e. first axis left to right, the color has high variation, whereas in the
direction (0, 1), i.e. second axis up and down, the color has low variation only due to the
error term #.

For a given direction V ∈ R2 we demonstrate the concept of (2.23), the left panel
of Figure 2.1 uses V = B = (1, 0)T and the right panel V = (0, 1)T ⊥ B both with
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2 Conditional Variance Estimation for the mean subspace

shift point s0 = (0, 0)T denoted as black cross. The subspace s0 + span{V}, i.e. one
dimensional line, is indicated via the black arrow and the black dotted lines represent the
slice {x ∈ Rp : �x − Ps0+span{V}x�2 ≤ hn}. For each point Xi, di(V, s0) in (2.21) is the
squared distance to the subspace s0+span{V} and, if the rectangular kernelK(z) = 1{|z|≤1}
is used, K(di(V, s0)/hn) is 0 for points outside of the slice and 1 inside. Then L̃n(V, s0) in
(2.23) calculates the empirical variance of the Yi values whose Xi values fall into the slice.
In the left panel V is aligned with B which yields L̃n(V, s0) = 1.034, i.e. the color in the
slice is very heterogeneous and has high variation, whereas in the left panel V is orthogonal
to B resulting in L̃n(V, s0) = 0.11, i.e. the color in the slice is very homogeneous with low
variation.
Since one slice uses only a fraction of the data and the variation in one slice only depends

on the alignment of the direction V to B but not on the shifting point s0, as long as the
slice is not too sparsely populated by samples, it is useful to average (2.23) over different
shifting points s0 in order to use all data available. A convenient choice for shift points are
the datapoints Xi, therefore we average over all Xi in (2.24) to form the final estimate of
the objective function.
The population quantity in (2.1) is given if the width of the slice, hn, is infinitesimal

small and X ranges only in the subspace s0 + span{V}, i.e. we have infinitely many Xi

points that are directly on the line spanned by the black arrow. Then in the right panel
(2.1) calculates Var(#) = η2 and in the left panel Var(Y | X ∈ s0 + span{V}) + Var(#).
This demonstrates Theorem 9.

Moreover, for this toy model we can calculate (2.2) explicitly via (2.3) and (2.5). We
calculate for an arbitrary Σx to demonstrate that the argmin of (2.2) is always orthogonal
to B but the argmax can be influenced by the covariance matrix. With these specifications,
(2.5) becomes

µl(V, s0) =

	
R
(BT s0 +BTVr)lfX|X∈s0+span{V}(r)dr (2.27)

Dropping the terms that do not contain r in (2.3) yields

fX|X∈s0+span{V}(r) ∝ fX(s0 +Vr) ∝ exp

�
−1

2
(s0 + rV)TΣ−1

x (s0 + rV)

�
∝ exp

�
−1

2



2rVTΣ−1

x s0 + r2VTΣ−1
x V

��
= exp

�
− 1

2σ2



2rσ2VTΣ−1

x s0 + r2
��

∝ exp

�
− 1

2σ2
(r − α)2

�
, (2.28)

where σ2 = 1/(VTΣ−1
x V), α = −σ2VTΣ−1

x s0 and the symbol ∝ stands for proportional
to. Letting ψ(z) denote the density of a standard normal variable, (2.28) obtains

fX|X∈s0+span{V}(r) =
1

σ
ψ

�
r − α

σ

�
(2.29)

for V, s0 ∈ R2×1. Inserting (2.29) in (2.27) yields	
R
(BT s0 +BTVr)l

1

σ
ψ

�
r − α

σ

�
dr =

�
BT s0 +BTVα l = 1

(BT s0)
2 + 2(BT s0)(B

TV)α+ (BTV)2(σ2 + α2) l = 2
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2 Conditional Variance Estimation for the mean subspace

Figure 2.1: Plot of the Xi samples from toy model with n = 100, the color of the points
are determined by their corresponding Yi values, i.e. the low Yi values are
assigned blue and the higher the Yi value the more red the points are. For the
left panel V = B = (1, 0)T , and for the right panel V = (0, 1)T ⊥ B both with
shift point s0 = (0, 0)T denoted as black cross. The subspace s0 + span{V}
is indicated via the black arrow and the black dotted lines represent the slice
{x ∈ Rp : �x−Ps0+span{V}x�2 ≤ hn}.
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Using (2.4) and (2.2), yields L̃(V, s0) = µ2(V, s0) − µ1(V, s0)
2 + η2 = (BTV)2σ2 + η2,

so that

L(V) = E
�
L̃(V,X)

�
= (BTV)2σ2 + η2 =

(BTV)2

VTΣ−1
x V

+ η2 (2.30)

From (2.30) we can easily see that L(V) attains its minimum at V ⊥ B. Also, if Σx = I2,
the maximum of L(V) is attained at V = B. To visualize the behavior of L̃n(V) as the
sample size increases, we parametrize V by V(θ) = (cos(θ), sin(θ))T , θ ∈ [0, π]. Since
B = (1, 0)T , the minimum of L(V) is at V(π/2) = (0, 1)T , which is orthogonal to B.

The true L(V(θ)) and its estimates Ln(V(θ)) are plotted for samples of different sizes
n in Figure 2.2. Ln(V(θ)) approximates L(V) fast and attains its minimum close to the
same value as L(V), even for n = 10, for this specific sample.

As an aside, we note that assumption (A.4) is violated in this example, which suggests
that the proposed estimator of conditional variance estimation probably applies under
weaker assumptions (see remark below assumption (A.4)).
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Ln(V) versus L(V)
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Figure 2.2: Solid black line is L(V(θ)) = cos(θ)2 + 0.12, colored is Ln(V(θ)), θ ∈ [0, π],
n = 10, 50, 100, 500. The vertical black line is at θ = π/2

Alternatively, we can calculate the target function of the toy model Y = BTX+ # with
X ∼ N(0,Σ) a p-dimensional covariate vector independent to # ∼ N(0, η2), and B ∈ Rp.
Let V ∈ S(p, q) and U ∈ S(p, p− q) with V ⊥ U, then

L̃(V, s0) = Var(Y | X ∈ s0 + span{V}) = Var(BTX | UTX = UT s0) + η2

= BTVar(X | UTX = UT s0)B+ η2 = BT


Σ−ΣU(UTΣU)−1UTΣ

�
B+ η2

where the last equality follows from the properties of the normal distribution, i.e.

X | UTX ∼ N(. . . ,Σ−ΣU(UTΣU)−1UTΣ).
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Equation (3) of Appendix A in [CF09] states for any full rank matrix M, we have

V(VTMV)−1VT +M−1U(UTM−1U)−1UTM−1 = M−1

Using the equation above with M = Σ−1,yields

L̃(V, s0) = BT


Σ−ΣU(UTΣU)−1UTΣ

�
B+ η2

= BTV(VTΣ−1V)−1VTB+ η2

which agrees with (2.30) for p = 2. Further, since in this model L̃(V, s0) does not depend
on s0 (i.e. the variance of a conditional normal distribution is constant with respect to the

conditioning argument) we have L(V) = E
�
L̃(V,X)

�
= L̃(V, s0).

Connection of cve to lad: Using formula Equation (3) of Appendix A in [CF09],
which is a building stone in the proofs of Prop 1 and 2 of [CF09] used to formulate the
lad estimator (see Section 1.10), is a tool to calculate the target function of cve on the
population level for the toy model with linear link function and normal distributed X.

2.4 Bandwidth selection

The performance of conditional variance estimation depends crucially on the choice of the
bandwidth sequence hn that controls the bias-variance trade-off if the mean squared error
is used as measure for accuracy, in the sense that the smaller hn is, the lower the bias and
the higher the variance and vice versa. Furthermore, the choice of hn depends on p, q, the
sample size n, and the distribution of X. We assume throughout the bandwidth satisfies
assumptions (H.1) and (H.2). We will use Lemma 11 to derive a possible bandwidth rule.

Lemma 11. Let M be a p× p positive definite matrix. Then,

tr(M)

p
= argmins>0 �M− sIp� (2.31)

Proof. Let U be the p× p matrix whose columns are the eigenvectors of M corresponding
to its eigenvalues λ1 ≥ . . . ≥ λp > 0. Then, M = Udiag(λ1, ..., λp)U

T , which implies
�M− sIp�22 = �diag(λ1, ..., λp)− sIp�2 =

�p
l=1(λl− s)2. Taking the derivative with respect

to s, setting it to 0 and solving for s obtains (2.31), since
�p

l=1 λl = tr(M).

If the predictors are multivariate normal, their joint density is approximated byN(µX, σ2Ip)
by Lemma 11, with σ2 = tr(Σx)/p. This results in no bandwidth dependence on V and
leads to a rule for bandwidth selection, as follows.
Under X ∼ Np(µX, σ2Ip), �Xi = Xi − Xj ∼ Np(0, 2σ

2Ip) for i �= j, where we suppress
the dependence on j for notational convenience. Since all data are used as shifting points,
di(V,Xj) = �Xi −Xj�2 − (Xi −Xj)

TVVT (Xi −Xj) = ��Xi�2 − �XT
i VVT �Xi. Let

nObs = E
�
#{i ∈ {1, ..., n} : �Xi ∈ spanh{V}}

�
= 1 + (n− 1)P(d1(V,X2) ≤ h) = 1 + (n− 1)P(��X�2 − �XTVVT �X ≤ h) (2.32)
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where spanh{V} = {x ∈ Rp : �x − Pspan{V}x�2 ≤ h} and �X = X − X∗, with X∗ an
independent copy of X. nObs is the expected number of points in a slice. Given a user
specified value for nObs, h is the solution to (2.32).
Let x ∈ Rp. For any V ∈ S(p, q) in (1.1), there exists an orthonormal basis U ∈

Rp×(p−q) of span{V}⊥ such that x = Vr1 +Ur2, by (1.3). Then, �X = VR1 +UR2, with
R1 = VT �X ∼ N(0, 2σ2Iq),R2 = UT �X ∼ N(0, 2σ2Ip−q), and �XTVVT �X = �R1�2 and

��X�2 = �R1�2 + �R2�2. Therefore,

P
�
��X�2 − �XTVVT �X ≤ h

�
= P(�R2�2 ≤ h) = χp−q

�
h

2σ2

�
, (2.33)

where χp−q is the cumulative distribution function of a chi-squared random variable with
p− q degrees of freedom. Plugging (2.33) in (2.32) obtains

nObs = 1 + (n− 1)χp−q

�
h

2σ2

�
. (2.34)

Solving (2.34) for h and Lemma 11 yield

hn(nObs) = χ−1
p−q

�
nObs− 1

n− 1

�
2tr(�Σx)

p
, (2.35)

where �Σx =
�

i(Xi − X̄)(Xi − X̄)T /n and X̄ =
�

iXi/n.
In order to ascertain hn satisfies (H.1) and (H.2), a reasonable choice is to set nObs =

γ(n) for a function γ(·) with γ(n) → ∞, γ(n)/n ≤ 1 and γ(n)/n → 0. For example,
nObs = γ(n) = nβ with β ∈ (0, 1) can be used.

Alternatively, a plug-in bandwidth based on rule-of-thumb rules of the form csn−1/(4+k),
where s is an estimate of scale and c a number close to 1, such as Silverman’s (c = 1.06,
s =standard deviation) or Scott’s (c = 1, s =standard deviation), used in nonparametric
density estimation [see [Sil86]], is

hn = 1.22
2tr(�Σx)

p

�
n−1/(4+p−q)

�2
. (2.36)

The term 2tr(�ΣX)/p can be interpreted as the variance of Xi − Xj and p − q is the true
dimension k. We use 1.2 as c based on empirical evidence from simulations. Since both
(2.35) and (2.36) yield satisfactory results, we opted against cross validation for bandwidth
selection because of the computational burden involved, and used the bandwidth in (2.36)
in simulations and data analyses.

2.5 Consistency of cve

In this chapter some asymptotic results and the consistency of cve are presented. Theorem
12 states the conditions under which Ln(V) in (2.24) converges uniformly in probability
to its population counterpart in (2.2). This result will lead to the consistency of cve in
Theorem 13.
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Theorem 12. Under (A.1), (A.2), (A.3), (A.4), (K.1), (K.2), (H.1), a2n = log(n)/nh
(p−q)/2
n =

o(1) , and an/h
(p−q)/2
n = O(1),

sup
V∈S(p,q)

|Ln(V)− L(V)| → 0 in probability as n → ∞ (2.37)

The proof of Theorems 12 and 13 are deferred to chapter 4 due to historical reasons.
Both proofs represent a main part of the theoretical contributions of this thesis but since
the inception of cve we already worked out the generalisation presented in chapter 4.
Theorems 12 is a special cases of Theorem 25 and follows immediately from it if the ensemble
only containing the identity function is used.

Definition 15. The sample based Conditional Variance Estimator �Bp−q is any basis

of span{�Vq}⊥ where �Vq = argminV∈S(p,q) Ln(V).

Next we establish the consistency of the conditional variance estimator. The uniform
convergence in probability of the sample objective function in (2.24) is a sufficient condi-
tion for obtaining the consistency of �Vq = argminV∈S(p,q) Ln(V), as uniform convergence
in probability of a random function implies convergence in probability of the minimizer
of Ln(V) to the minimizer of the limit function. The main theoretical result follows in
Theorem 13 which establishes the consistency of cve.

Theorem 13. Under (A.1), (A.2), (A.3), (A.4), (K.1), (K.2), (H.1), a2n = log(n)/nh
(p−q)/2
n =

o(1), and an/h
(p−q)/2
n = O(1), span{�Bk} is a consistent estimator for span{B} in model

(1.18); i.e.,
�P�Bk

−PB� → 0 in probability as n → ∞.

The proof of Theorem 13 follows immediately from Theorem 26.

2.6 Optimization Algorithm

A Stiefel manifold optimization algorithm is used to obtain the solution of the sample ver-
sion of the optimization problem (2.18). To calculate �Vq in (15), a curvilinear search is
carried out [WY13, WY10, Tag11], which is similar to gradient descent. First an arbitrary
starting value V(0) is selected by drawing a p×q matrix from the invariant measure; i.e., the
distribution that corresponds to the uniform, on S(p, q), see [Chi03]. The Q-component of
the QR decomposition of a p× q matrix with independent standard normal entries follows
the invariant measure [Chi94]. The step-size τ > 0, the step size reduction factor γ ∈ (0, 1),
and tolerance tol > 0 are fixed at the outset.
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Result: V(end)

Initialize: V(0), τ = 1, tol = 10−3, γ = 0.5 error = tol + 1, maxit = 50, count = 0;
while error > tol and count ≤ maxit do

• G = ∇VLn(V
(j)) ∈ Rp×q, W = GVT −VGT

• V(j+1) = (Ip + τW)−1(Ip − τW)V(j)

• error = �V(j)V(j)T −V(j+1)V(j+1)T �/√2q

if Ln(V
(j+1)) > Ln(V

(j)) then

V(j+1) ← V(j); τ ← τγ; error ← tol + 1
else

count ← count + 1
τ ← τ

γ

end

end
Algorithm 1: Curvilinear search

Under mild regularity conditions on the objective function, [WY13] showed that the
sequence generated by the algorithm converges to a stationary point if the Armijo-Wolfe
conditions [NW06] are used for determining the stepsize τ .
The Armijo-Wolfe conditions require the evaluation of the gradient for each potential

step size until one is found that fulfills the conditions and the step is accepted, i.e. for the
determination of one step size the gradient has to be evaluated multiple times. Since for the
conditional variance estimator, the gradient computation incurs the highest computational
cost, we use simpler conditions to determine the step size. Specifically, we simply require
the step decrease the objective function, otherwise the step size τ is decreased by the
factor γ ∈ (0, 1). If a step size is accepted we increase the starting step size for the next
iteration by the factor 1/γ. These simplified conditions are computationally less expensive
and exhibit same behavior as the Armijo-Wolfe conditions in the simulations. Further we
capped the maximum number of steps at maxit = 50 steps, since the algorithm converged
in about 10 iterations in all our simulations.

The algorithm is repeated for m arbitrary V(0) starting values drawn from the invariant
measure on S(p, q). Among those, the value at which Ln in (2.24) is minimal is selected as�Vq.
The algorithm requires the computation of the gradient of Ln(V) in (2.24) or (2.25).

We compute the gradient of the objective function for the Gaussian kernel in Theorems 14
and 15. The Gaussian kernel is the default kernel we use in the implementation of the
estimation algorithm in the R code that accompanies this manuscript.

Theorem 14. Let K(z) = exp (−z2/2) be the Gaussian kernel. Then, the gradient of
L̃n(V, s0) in (2.23) is given by

∇VL̃n(V, s0) =
1

h2n

n�
i=1

(L̃n(V, s0)− (Yi − ȳ1(V, s0))
2)widi∇Vdi(V, s0) ∈ Rp×q,
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and the gradient of Ln(V) in (2.24) is

∇VLn(V) =
1

n

n�
i=1

∇VL̃n(V,Xi).

with wi = w(V,Xi) in (2.22).

Proof of Theorem 14. The Gaussian kernel K satisfies ∂zK(z) = −zK(z). From (2.22) and
(2.23) we have L̃n = ȳ2 − ȳ21 where ȳl =

�
iwiY

l
i , l = 1, 2. We let Kj = K(dj(V, s0)/hn),

suppress the dependence on V and s0 and write wi = Ki/
�

j Kj . Then, ∇VKi =

(−1/h2n)Kidi∇Vdi and∇Vwi = −
�
Kidi∇Vdi(

�
j Kj)−Ki

�
j Kjdj∇Vdj

�
/(hn

�
j Kj)

2.

Next,

∇Vȳl = − 1

h2n

�
i

Y l
i

�
Kidi∇Vdi −Ki(

�
j Kjdj∇Vdj)

�
(
�

j Kj)2

= − 1

h2n

�
i

Y l
i wi

di∇Vdi −
�
j

wjdj∇Vdj


= − 1

h2n

�
i

Y l
i widi∇Vdi −

�
j

Y l
jwj

�
i

widi∇Vdi

 = − 1

h2n

�
i

(Y l
i − ȳl)widi∇Vdi

(2.38)

Then,∇VL̃n = ∇Vȳ2−2ȳ1∇Vȳ1, and inserting∇Vȳl from (2.38) yields∇VL̃n = (−1/h2n)
�

i(Y
2
i −

ȳ2 − 2ȳ1(Yi − ȳ1))widi∇Vdi = (1/h2n)(
�

i

�
L̃n − (Yi − ȳ1)

2
�
widi∇Vdi), since Y 2

i − ȳ2 −
2ȳ1(Yi − ȳ1) = (Yi − ȳ1)

2 − L̃n.

The weighted version of conditional variance estimation in Section 2.2.2 is expected to
increase the accuracy of the estimator for unevenly spaced data. When (2.25) and the gra-
dient in (2.39) are used in the optimisation algorithm, we refer to the estimator as weighted
conditional variance estimation. If (2.25) and the gradient

�n
i=1 w̃(V,Xi)∇VL̃n(V,Xi) is

used; i.e., the first summand in (2.39) is dropped, we refer to it as partially weighted condi-
tional variance estimation. For both, we replace G in algorithm 1 with the corresponding
gradient derived in Theorem 15.

Theorem 15. Let K(z) = exp (−z2/2) be the Gaussian kernel. Then, the gradient of

L
(w)
n (V) in (2.25) is given by

∇VL(w)
n (V) =

n�
i=1

�
∇Vw̃(V,Xi)L̃n(V,Xi) + w̃(V,Xi)∇VL̃n(V,Xi)

�
, (2.39)

where ∇VL̃n(V,Xi) is given in Theorem 14. Furthermore,

∇Vw̃(V,Xi) = − 1

h2n

�
j

 Kj,i�n
l,u=1Kl,u

dj,i∇Vdj,i − w̃i

n�
l,u=1

Kl,u�n
o,s=1Ko,s

dl,u∇Vdl,u


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2 Conditional Variance Estimation for the mean subspace

with w̃i = w̃(V,Xi) in (2.26), Kj,i = K(dj(V,Xi)/hn), and dj,i = dj(V,Xi) given in
(2.21).

The proof of Theorem 15 is analogue to the proof of Theorem 14 and will not be presented.
cve has computational complexity of O(mmaxitpqn2) as can be seen by Theorem 14

since for each entry of the p × q dimensional gradient a double sum with both indices
ranging over 1, . . . , n has to be evaluated, and for the m starting values maximal maxit
iterations are used. The formulas of the gradient are straightforward to implement but
there is no closed form solution available due to the nonlinear nature, i.e. the argument
V is inside of the nonlinear kernel. The cve method is efficiently implemented in the R

package CVarE [KF21] available at cran. Nevertheless, for usual sample sizes the efficient
mave implementation in the R package [WY19] is usually a bit faster but the difference in
the speed advantage is not dramatic. Moreover, the computational complexity of cve can
be controlled by the number of arbitrary starting values for the curvilinear search used in
the optimization procedure.

2.7 Simulations

2.7.1 Simulation Study: Demonstrating the consistency

Moreover we explore the consistency of the conditional variance estimator (cve) through
a simulation study. The model is given by:

Y = (bT
1 X)(bT

2 X) + 0.5# (2.40)

where p = 12, k = 2, X ∼ N(0, I12), # ∼ N(0, 1) independent of X,
b1 = (1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0)T /61/2 ∈ R12, and b2 = (1,−1, 1,−1, 1,−1, 0, 0, 0, 0, 0, 0)T /61/2 ∈

R12.
The conditional variance estimator is compared with the forward model based sufficient

dimension reduction methods, meanMAVE (meanMAVE) [XTLZ02], central subspace MAVE
(csMAVE) [WX08] and pHd [Li92, CL02], and the inverse regression based method, SIR
[Li91]. Central subspace MAVE (csMAVE) assumes model (1.13) Y = g(BTX, #), which is
a much more general model than (1.18). The reference methods meanMAVE and csMAVE are
implemented in the R package MAVE, pHd and SIR are implemented in the dr package.
The dimension k = 2 and q = 10 are assumed to be known throughout. The Conditional
Variance estimator is used with four different choices for the bandwidth hn, they will
be denoted CVE1, CVE2, CVE3 and CVE4. The first three use the bandwidth choice
proposed in (2.35), i.e. hn(nObs) = 2χ−1

p−q((nObs− 1)/(n− 1))tr(ΣX)/p with nObs = n4/5

for CVE1, nObs = n2/3 for CVE2, and nObs = n1/2 for CVE3. The bandwidth for CVE4
is given by the plug-in rule (2.36), i.e. hn = 2(tr(ΣX)/p)(1.2/n1/(4+p−q))2 where tr(ΣX) is
estimated as the trace of the maximum likelihood estimate of the covariance-matrix ΣX.

The simulation is performed by:
For a given sample size n, 100 i.i.d samples (Yi,X

T
i )

j
i=1,...,n for j = 1, .., 100 are drawn

from (2.40), then for each method B is estimated from sample j and then errj,n = ��B�BT −
BBT �/(2k)1/2 is calculated. This is done for sample sizes (25, 50, 100, 200, 300, 400, 600, 800)
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2 Conditional Variance Estimation for the mean subspace

and Figure 2.3 displays the distribution of errj,n for increasing n for the different methods.
Figure 2.3 indicates that except from SIR all methods are consistent in model (2.40). In

Figure 2.3: Estimation error distribution plotted over n =
(25, 50, 100, 200, 300, 400, 600, 800) for the different methods

Figure 2.4 the log(ērrn) values are plotted against log(n) where ērrn =
�100

j=1 errj,n/100

is an estimate for E(��B�BT − BBT �)/√2k. If the mean error E(��B�BT − BBT �) ≈ Cnα

decays with a power law, then one expects to see lines in Figure 2.4. Figure 2.4 indicates
that for large n the rate of convergence is similar for all methods and that meanMAVE has
the lowest mean estimation error for n > 50.
To get a clearer picture we repeat the simulations with model 2.40 from above for CVE4

(denoted as CVE), meanMAVE, and pHd with increased sample sizes in Figure 2.5,
i.e. n ∈ {25, 50, 100, 200, 300, 400, 600, 800, 1000, 1500, 2000}. Figure 2.5 displays log(ērrn)

against log(n) and for n = 2000 (log(2000) ≈ 7.6) CVE achieves a slightly lower mean esti-
mation error than meanMAVE. Moreover, Figure 2.5 could indicate that CVE has a slightly
faster convergence rate than meanMAVE for certain models.

2.7.2 Simulations to evaluate estimation accuarcy

We compare the estimation accuracy of conditional variance estimation with the forward
model based sufficient dimension reduction methods, mean outer product gradient esti-
mation (meanOPG), mean minimum average variance estimation (meanMAVE) [WY19], re-
fined outer product gradient (rOPG), refined minimum average variance estimation (rmave)
[XTLZ02, Li18], and principal Hessian directions (pHd) [Li92, CL02], and the inverse re-
gression based methods, sliced inverse regression (SIR) [Li91] and sliced average variance
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Figure 2.4: log(ērrn) for different method plotted against log(n) for n ∈
(25, 50, 100, 200, 300, 400, 600, 800)

Figure 2.5: log(ērrn) for CVE4, meanMAVE, and pHd against log(n) for n ∈
(25, 50, 100, 200, 300, 400, 600, 800, 1000, 1500, 2000)
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estimation (SAVE) [CW91]. The dimension k is assumed to be known throughout.
We report results for conditional variance estimation using the “plug-in” bandwidth in

(2.36) and three different conditional variance estimation versions, cve, wCVE, and rCVE.
cve is obtained by usingm = 10 arbitrary starting values in the optimization algorithm and
optimizing (2.24) as described in Section 2.6. rCVE, or refined weighted CVE, is obtained by
setting the starting value V(0) at the optimizer of cve, and using (2.25) in the optimization
algorithm in Section 2.6 with the partially weighted gradient as described in Section 2.2.2.
wCVE, or weighted CVE, is obtained by optimizing (2.25) with partially weighted gradient
as described in Sections 2.2.2 and 2.6. Methods rOPG and rmave refer to the original
refined outer product gradient and refined minimum average variance estimation algorithms
published in [XTLZ02]. They are implemented using the R code in [Li18] with number
of iterations nit = 25, since the algorithm is seen to converge by 25. The dr package
is used for the SIR, SAVE and pHd calculations, and the MAVE package for mean outer
product gradient estimation (meanOPG) and mean minimum average variance estimation
(meanMAVE). The source code for conditional variance estimation can be downloaded from
https://git.art-ist.cc/daniel/CVE and is also available in the R package CVarE.
Table 2.1 lists the seven models (M1-M7) we consider. Throughout, we set p = 20,

b1 = (1, 1, 1, 1, 1, 1, 0, ..., 0)T /
√
6, b2 = (1,−1, 1,−1, 1,−1, 0, ..., 0)T /

√
6 ∈ Rp for M1-M5.

For M6, b1 = e1,b2 = e2 and b3 = ep, and for M7 b1,b2,b3 are the same as in M6
and b4 = e3, where ej denotes the p-vector with jth element equal to 1 and all others
are 0. The error term # is independent of X for all models. In M2, M3, M4, M5 and
M6, # ∼ N(0, 1). For M1 and M7, # has a generalized normal distribution GN(a, b, c)
with densitiy f�(z) = c/(2bΓ(1/c)) exp((|z−a|/b)c), see [Nad05] with location 0 and shape-
parameter 0.5 for M1, and shape-parameter 1 for M7 (Laplace distribution). For both the
scale-parameter is chosen such that Var(#) = 0.25.

Table 2.1: Models

Name Model X distribution # distribution k n

M1 Y = cos(bT
1 X) + # X ∼ Np(0,Σ) GN(0,

�
1/2, 0.5) 1 100

M2 Y = cos(bT
1 X) + 0.5# X ∼ λZ1p +Np(0, Ip) N(0, 1) 1 100

M3 Y = 2 log(|bT
1 X|+ 2) + 0.5# X ∼ Np(0, Ip) N(0, 1) 1 100

M4 Y = (bT
1 X)/(0.5 + (1.5 + bT

2 X)2) + 0.5# X ∼ Np(0,Σ) N(0, 1) 2 200
M5 Y = cos(πbT

1 X)(bT
2 X+ 1)2 + 0.5# X ∼ U([0, 1]p) N(0, 1) 2 200

M6 Y = (bT
1 X)2 + (bT

2 X)2 + (bT
3 X)2 + 0.5# X ∼ Np(0, Ip) N(0, 1) 3 200

M7 Y = (bT
1 X)(bT

2 X)2 + (bT
3 X)(bT

4 X) + # X ∼ t3(Ip) GN(0,
�

1/Γ(6), 1) 4 400

The variance-covariance structure of X in models M1 and M4 satisfies Σi,j = 0.5|i−j|

for i, j = 1, . . . , p. In M5, X is uniform with independent entries on the p-dimensional
hyper-cube. In M7, X is multivariate t-distributed with 3 degrees of freedom. The link
functions of M4 and M7 are studied in [XTLZ02], but we use p = 20 instead of 10 and a non
identity covariance structure for M4 and the t-distribution instead of normal for M7. In
M2, Z ∼ 2Bernoulli(pmix)− 1 ∈ {−1, 1}, where 1q = (1, 1, ..., 1)T ∈ Rq, mixing probability
pmix ∈ [0, 1] and dispersion parameter λ > 0. For 0 < pmix < 1, X has a mixture normal
distribution, where pmix is the relative mode height and λ is a measure of mode distance.

We set q = p − k and generate r = 100 replications of models M1 - M7. We estimate
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2 Conditional Variance Estimation for the mean subspace

B using the ten sufficient dimension reduction methods. The accuracy of the estimates is
assessed using err = �PB − P�B�/√2k, which lies in the interval [0, 1]. The factor

√
2k

normalizes the distance, with values closer to zero indicating better agreement and values
closer to one indicating strong disagreement. This is a consequence of �PB − P�B�2 =
�PB�2 − 2tr(PBP�B) + �P�B�2 ≤ �PB�2 + �P�B�2 = tr(P2

B) + tr(P2�B) = 2tr(Ik) = 2k since

tr(PBP�B) ≥ 0 for projections.
In Table 2.2 the mean and standard deviation of err for M1 - M7 are reported. In

particular, for M2, pmix = 0.3 and λ = 1. The smallest error values are boldfaced. In
models M1, M2 and M3, the conditional variance estimator is the best performer, with
its refined version as close second. In M4, M5 and M6, any of the four versions of mave
performs better than the cve. For model M7 the results of rOPG and rmave are not reported
because the code frequently produces an error message that a matrix is not invertible.
Among the rest, the weighted version of cve, wCVE, attains the minimum error.

Sliced inverse regression (SIR) and sliced average variance estimation (SAVE) are not
competitive throughout our experiments. Sliced inverse regression (SIR), in particular, is
expected to fail in models M1-M3, and M6 since E(Y | X) is even.
In Figure 2.6, box-plots for all combinations of pmix ∈ {0.3, 0.4, 0.5} and λ ∈ {0, 0.5, 1, 1.5}

are presented. The reference methods are restricted to meanOPG and meanMAVE, since the
others are not competitive. Conditional variance estimation performs better than all com-
peting methods and is the only method with consistently smaller errors when the two modes
are further apart (λ ≥ 1) regardless of the mixing probability pmix. The performance of
both meanOPG and meanMAVE worsens as one moves from left to right row-wise. The mix-
ing probability, pmix, has no noticeable effect on the performance of any method; i.e., the
plots are very similar column-wise. In sum, meanMAVE’s performance deteriorates as the
bimodality of the predictor distribution becomes more distinct. In contrast, conditional
variance estimation is unaffected and appears to have an advantage over meanMAVE when
the predictors have mixture distributions, the link function is even about the midpoint of
the two modes, and B is not orthogonal to the line connecting the two modes. Conditional
variance estimation is the only method that estimates the mean subspace reliably in model
M2 (err ≈ 0.4 to 0.5), whereas meanMAVE misses it completely (err ≈ 1). These results in-
dicate that conditional variance estimation is often approximately on par, and can perform
much better than meanMAVE depending on the predictor distribution and the link function.

Furthermore we estimate the dimension k via cross-validation, following the approach in
[XTLZ02] , with

k̂ = argminl=1,...,pCV (l) = argminl=1,...,p

�
i(Yi − ĝ−i(�BT

l Xi))
2

n
, (2.41)

where ĝ−i(·) is computed from the data (Yj , �BT
l Xj)j=1,...,n;j �=i using multivariate adaptive

regression splines [Fri91] in the R-package mda, and �Bl = �V⊥
p−l is any basis of the orthogonal

complement of �Vp−l = argminV∈S(p,p−l) Ln(V). For a given l, we calculate �Bl from the

whole data set and predict Yi by Ŷi,l = ĝ−i(�BT
l Xi). For l = p, �Bp = Ip. The results

for the seven models are reported in Table 2.3. The cve based dimension estimation is
the most accurate in models M1, M2, M3, and M6 and differs slightly from that of mave
in M7. mave performs better in M4 and M5, completely misses the true dimension in
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Table 2.2: Mean and standard deviation of estimation errors

Model CVE wCVE rCVE meanOPG rOPG meanMAVE rmave phd sir save

M1
mean 0.3827 0.4414 0.4051 0.6220 0.9876 0.5099 0.9840 0.8278 0.9875 0.9788
sd 0.1269 0.1595 0.1329 0.1879 0.0223 0.1800 0.0295 0.1206 0.0243 0.0334

M2
mean 0.4572 0.4992 0.4658 0.8987 0.9332 0.8905 0.9242 0.9000 0.9783 0.9781
sd 0.1038 0.1524 0.0989 0.0908 0.0683 0.0983 0.0897 0.0735 0.0278 0.0318

M3
mean 0.6282 0.7509 0.6371 0.7847 0.9644 0.7576 0.9674 0.6964 0.9647 0.9519
sd 0.2354 0.2262 0.2181 0.2201 0.0667 0.2435 0.0609 0.1626 0.0587 0.0650

M4
mean 0.5663 0.5897 0.5554 0.4071 0.4026 0.4361 0.3905 0.7772 0.5824 0.9727
sd 0.1239 0.1246 0.1298 0.0814 0.0609 0.0997 0.0584 0.0662 0.0951 0.0202

M5
mean 0.4429 0.5604 0.4779 0.4058 0.3737 0.3929 0.3750 0.7329 0.6374 0.9730
sd 0.0891 0.1233 0.0976 0.1022 0.0680 0.0894 0.0871 0.0832 0.0968 0.0186

M6
mean 0.3828 0.3027 0.3230 0.1827 0.4632 0.1656 0.4863 0.4978 0.9129 0.8236
sd 0.1006 0.0748 0.1098 0.0289 0.1717 0.0252 0.1676 0.0601 0.0420 0.0518

M7
mean 0.6856 0.5050 0.5651 0.5694 NA 0.5482 NA 0.8536 0.8133 0.8699
sd 0.0588 0.0862 0.0879 0.1122 NA 0.1271 NA 0.0354 0.0341 0.0342
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Figure 2.6: M2, p = 20, n = 100
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M2 and misses it most of the time in M3. Thus, the dimension estimation performance
of cve and mave agrees with the estimation accuracy of the true subspace in Table 2.2,
cve estimates the dimension more accurately even in model M6, where it exhibits worse
subspace estimation performance, and overall appears to be more accurate.

Table 2.3: Number of times dimension k is correctly estimated in 100 replications

M1 M2 M3 M4 M5 M6 M7

cve 83 41 88 62 46 74 19
mave 67 0 14 76 60 57 21

We carried out many simulation experiments for an array of combinations of link func-
tions, sufficient reduction matrices B and their ranks, as well as predictor and error dis-
tributions. All reported and unreported results indicate that the difference in performance
of the two methods, cve and mean mave, can be attributed to both the form of the link
function and the marginal predictor distribution. We observed that when the link function
had a bounded first order derivative, cve often outperformed meanMAVE across predictor
distributions. In the opposite case, mave performed mostly better. Also, when the predic-
tors have a bimodal distribution with well separated modes and the link function is even,
regardless of whether its derivative is bounded, cve outperforms meanMAVE. In the other
settings for the generated data, both methods were roughly on par.

2.8 Data Analysis

Three data sets are analyzed: the Hitters data in the R package ISLR, which was also ana-
lyzed by [XTLZ02], the Boston Housing data in the R package mlbench, and the Concrete
data from the MAVE package. The reference method is meanMAVE from the MAVE package in
R and the cve is calculated using m = 50 and maxit = 10 in the optimization algorithm 1
in Section 2.6. The estimation of the dimension is based on (2.41) in Section 2.7.

Following [XTLZ02], we remove 7 outliers from the Hitters data set leading to a sample
size of 256. The response is Y = log(salary) and the 16 continuous predictors are the game
statistics of players in the Major League Baseball league in the seasons 1986 and 1987.
Further information can be found in https://www.rdocumentation.org/packages/ISLR/

versions/1.2/topics/Hitters.
The Boston Housing data set contains 506 census tracts on 14 variables from the 1970

census. The response is medv, the median value of owner-occupied homes in USD 1000’s.
The factor variable chas is removed from the data set for the analysis so that the re-
sponse is modeled by the remaining 12 continous predictors. The description of the vari-
ables can be found in https://www.rdocumentation.org/packages/mlbench/versions/

2.1-1/topics/BostonHousing.
The Concrete data set contains 1030 instances on 9 continuous variables The response

is concrete compressive strength. Concrete strength is very important in civil engineering
and is a highly nonlinear function of age and ingredients. The description of the variables
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can be found in https://www.rdocumentation.org/packages/MAVE/versions/1.3.10/

topics/Concrete.
For all three data sets we standardize both the predictors and the response by subtracting

the mean and rescaling column-wise so that each variable has unit variance. The data
sets are analyzed using 10 fold cross-validation to calculate an unbiased estimate of the
prediction error [Sto74] for our method , cve, and its main competitor meanMAVE using the
MAVE package. The dimension for each method is estimated with (2.41) on the trainings
set and we then fit a forward regression model on the training set replacing the original
with the reduced predictors using multivariate adaptive regression splines [Fri91] using the
R package mda and calculate the prediction error on the test set for both methods. The
dimension estimates of cve and MAVE mostly disagree.
The mean and standard deviation of the 10-fold cross-validation prediction errors are

reported in Table 2.4. Since the response is standardized, the values in Table 2.4 are in the
range of 0 to 1, with smaller values indicating better predictive performance. cve performs
slightly worse than mean MAVE in the Hitters data set, slightly better in the Boston Housing
and better in the Concrete data set analysis.

Table 2.4: Mean and standard deviation (in parenthesis) of standardized out of sample
prediction errors for the three data sets

Method Hitters Housing Concrete

cve 0.216 0.260 0.361
(0.101) (0.331) (0.206)

mave 0.203 0.299 0.417
(0.083) (0.382) (0.348)

2.8.1 Hitters Data Analysis as in [XTLZ02]

Additionally, we reconstruct the analysis of the Hitters data in [XTLZ02], which does not
account for the out-of-sample prediction error as in Section 2.8 but uses the whole sample
for estimation of B and its rank. Only the dimension k is estimated with leave-one-out
cross validation.

Table 2.5 reports the average cross validation mean squared error CV (k) in (2.41) using
the whole data set over k = 1, . . . , 5. Both conditional variance estimation and mean
minimum average variance estimation estimate the dimension to be 2.

Table 2.5: Mean cross-validation error

k 1 2 3 4 5

cve 0.308 0.218 0.275 0.327 0.371
mave 0.370 0.277 0.339 0.413 0.440

We plot the response against the estimated directions in Figure 2.7. Both exhibit the
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Figure 2.7: Y against �bT
1 X and �bT

2 X

same pattern: the response appears to be linear in one direction and quadratic in the
second. The difference is that the linear pattern is clearer in the second cve direction and
the quadratic pattern exhibits increasing variance in the first mave direction.

Based on the scatterplots in Figure 2.7, we fit the same models for both. For conditional
variance estimation, the fitted regression is

Ŷ = 0.39578 + 0.33724(�bT
1 X)− 0.08066(�bT

1 X)2 + 0.29126(�bT
2 X) (2.42)

with R2 = 0.7975, and for minimum average variance estimation

Ŷ = 0.39051 + 1.32529(�bT
1 X)− 0.55328(�bT

1 X)2 + 0.49546(�bT
2 X) (2.43)

with R2 = 0.7859. Both models (2.42) and (2.43) have about the same fit as measured by
R2. The in sample performance of the two methods is practically the same for the Hitters
data.
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2.9 Discussion

In this chapter the novel conditional variance estimator (cve) for the mean subspace
SE(Y |X) is introduced. We present its geometrical and theoretical foundation, show its
consistency and propose an estimation algorithm with assured convergence. cve requires
the forward model (1.18), Y = g(BTX) + #, holds and weak assumptions on the response
and the covariates.
Minimum average variance estimation (mave) [XTLZ02] is the state of the art sdr

method for the mean subspace and is the natural competitor. It estimates the sufficient
dimension reduction targeting both the reduction and the link function g in (1.18). cve
targets only the reduction and does not require estimation of the link function, which may
explain why it has an advantage over mave in some regression settings.

In Section 2.7 the performance of cve is demonstrated via Simulations. They show that
cve is roughly on par to mave for most models and can yield substantial improvements in
others. For example in the bimodal M2, cve exhibits similar performance across different
link functions (cos, exp, etc) for fixed λ, whereas the performance of mave is very uneven
for M2 in Section 2.7. cve is more accurate than mave when the link function is even and
the predictor distribution is bimodal throughout our simulation studies. Moreover, cve
does not require the inversion of the predictor covariance matrix and can be applied to
regressions with p ≈ n or p > n. The performance in such setting has not been explored
and is a future line of research together with establishing more asymptotic properties like
the rate of convergence or asymptotic distributions.
The theoretical challenge in deriving the statistical properties of conditional variance

estimation arises from the novelty of its definition that involves random non i.i.d. weights
that depend on the parameter to be estimated.

54



3 Neural Net SDR for the mean subspace

Most forward regression sdr methods, e.g. mave and cve, are usable in relatively small p
and n regression problems. When both p and n increase substantially, their computation
can spread over days or weeks, thus rendering them infeasible in practice. Nowadays, many
data applications easily exceed these thresholds.

In this Chapter 3 the novel nn−sdr estimator for the mean subspace SE(Y |X) = span{B}
in (1.18) is introduced. The nn − sdr estimator combines forward regression sdr with
neural networks in order to remove the limitation of small p and n. We propose a two
stage nn− sdr estimator that carries out simultaneous sufficient dimension reduction and
neural network learning.

Neural nets have become the “go-to” data analysis method in nearly all scientific fields
due to their successful application, especially, for large sample sizes and input dimension
in regression problems [Spe91, AKG19], image recognition [PHPP18, LB98, Fas02], speech
recognition [AL91, KJB08] and many more applications [GBC16].

First we fit an arbitrary neural net to the data, and in the second stage we refine the
estimate with a specific architecture using a bottleneck. The premise of the two stage
nn− sdr estimator is conceptually similar to mave with the difference that we use neural
nets as universal function approximators compared to nonparametric local linear smoothing
methods. The advantage of this approach is that it retains the accuracy of state of the art
sdr methods while it can be easily deployed to large scale datasets frequently encountered
in applications. It also obtains predictions at nearly no additional computational cost
compared to fully non-parametric methods used in mave and cve. Further, the extension
of the proposed nn − sdr estimator to online learning, where new data are dynamically
added, is straightforward.
In Section 3.1 we present neural nets and the notation used throughout. In Section 3.2

we propose the novel two stage estimator and in Section 3.3 describe the algorithm. Then
in Sections 3.4, 3.5 we draw the analogy to existing sdr methods and demonstrate its
performance in Sections 3.6, 3.7, and 3.8 via simulations and data examples.

3.1 The Multi Layer Perceptron (MLP)

In this section we briefly review the concept of a Multi Layer Perceptron (MLP [Gur97,
MP43, GBC16, JWHT14]) and introduce the corresponding notation.

An MLP is the concatenation of layers. Each layer consists of simple functions f (l)(x) =
φ(W(l)x + b(l)), where W(l) is a matrix of weights, b(l) is the bias vector of layer l, and
together they form an affine transformation, on which the activation function φ(·) is applied
component-wise. The formal definition is provided next.

55



3 Neural Net SDR for the mean subspace

Definition 16. A Multi Layer Perceptron (MLP) with N layers from Rp → R is a function
with the following structure

fMLPN
(x;Θ) = f (N) ◦ f (N−1) ◦ ... ◦ f (1)(x) (3.1)

where Θ = (W1,b1, . . . ,WN ,bN ) and the l-th layer is given by

f (l)(x;W(l),b(l)) = φ(l)(W(l)x+ b(l))

with weights W(l) ∈ Rnl×nl−1 , bias b(l) ∈ Rnl , and a non-constant, continuous activation
function φ(l) : R → R that is applied component-wise.

The notation Θ = (W1,b1, . . . ,WN ,bN ) means that all parameters of an MLP are col-

lected in vectorised form into the vectorΘ = (vec(W1),b1, . . . , vec(WN ),bN ) ∈ R
�N

j=1 nl−1nl+nl ,
where the operation vec : Rnl−1×nl → Rnl−1nl stacks the columns of a matrix one after an-
other.
The first layer that receives the input x is called the input layer, and the last layer is the

output layer. All other layers are called hidden layers. A widely used activation function
is the so called ReLU (Rectified Linear Unit) given by

φReLU(x) = max(0, x).

The ReLu activation function will be used throughout this paper. Other popular choices
include sigmoid functions like the tangens-hyperbolicus.
Figure 3.1 depicts a 3 layer MLP, fMLP3(x;Θ), with input dimension 4; i.e., x = (x1, . . . , x4)

T ∈
R4. The first layer f (1) has output dimension 6, or 6 so called neurons, W1 ∈ R6×4,b1 ∈ R6.
The second layer, f (2), has 4 neurons with W2 ∈ R4×6,b2 ∈ R4, and the output layer, f (3),
has 1 neuron with W3 ∈ R1×4,b2 ∈ R. The arrows represent the weights of the layer. At
each node (neuron), the bias is added before the activation function φ(l) is applied.
The universal approximator theorem [Hor91, Thm 3] established that Multi Layer Per-

ceptrons (MLPs) are universal approximators of functions. Theorem 16, which asserts that
any continuously differentiable function can be approximated arbitrarily close on compact
sets by an MLP, reproduces it.

Theorem 16. Let MLP∞ be the set of all one layer MLP’s with arbitrarily many neurons
in the first layer and the activation function φ is non-constant and bounded, then MLP∞ is
uniformly m dense in Cm(Rp) on compact sets, where Cm(Rp) is the space of all m-times
differentiable functions on Rp.

An application of Theorem 16 withm = 1, yields that for g(BTx) ∈ C1(Rp) of model (1.18),
for every arbitrary compact set K ⊂ Rp and for all ν > 0, there exists a one layer MLP

fMLP1(·;Θ) such that

sup
x∈K


|g(BTx)− fMLP1(x;Θ)|+ �∇xg(B
Tx)−∇xfMLP1(x;Θ)�� ≤ ν

Therefore, the conditional expectation E(Y | X = x) = g(BTx) and its gradients can
be approximated arbitrarily close on compact sets by a one layer MLP. This serves as the
motivation for the proposed estimation procedure in Section 3.2.
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Input Hidden1 Hidden2 Output

f (1) f (2) f (3)

h(0) h(1) h(2) h(3)

x ŷ
fMLP3

Figure 3.1: Example Architecture of a 3 Layer MLP.

3.2 nn− sdr Estimator

Theorems 7 and 6 present two ways of identifying B in model (1.18) at the population
level. They serve as the motivation for the proposed nn− sdr estimator.
For V ∈ S(p, k), recall T (V) in (1.40) is the target function at the population level for

mave and identifies SE(Y |X) as shown in Theorem 6.
Next we define the three different neural nets we use in the proposed estimators.

Definition 17. Using the notation for MLP’s in Section 3.1, we define

gNN OPG(x;Θ1) = fMLP1(x;Θ1) : Rp → R (3.2)

gNN wrap(x;Θ2) = fMLP1(x;Θ2) : Rk → R (3.3)

gnn(x; (V,Θ2)) = gNN wrap(V
Tx;Θ2) : Rp → R (3.4)

where V ∈ S(p, k) is given in (1.1).

Our estimation method is run in two stages. The first uses gNN OPG(x;Θ1) in (3.2) as an
estimator for E(Y | X = x) in Theorem 7 . The second, or, refinement stage estimates g in
model (1.18) with gNN wrap(x;Θ2) in (3.3) and g(BTx) in model (1.18) with gnn(x; (V,Θ2))
in (3.4). Both (3.2) and (3.4) are used to estimate E(Y | X = x) but the latter uses the
specific structure of model (1.18) for refinement.
The MLP in (3.4) is the same as in (3.3) save for an additional input layer with the iden-

tity as the activation function; i.e., φ(1)(x) = x. Further, the first layer forms a bottleneck,
as depicted in Figure 3.2, since VTx ∈ Rk with k � p. (3.2) serves as an estimate for
E(Y | X = x) = g(BTx) : Rp → R, (3.3) for g : Rk → R, and (3.4) is a refined estimate
of g(BTx) in model (1.18). The bottleneck of the MLP in (3.4) is conceptually similar to
autoencoders [see, e.g., [KW19, Kra91]] with the important difference that the latter are

57



3 Neural Net SDR for the mean subspace

analogous to nonlinear principal components and unsupervised; that is, independent of the
response.

Figure 3.2 illustrates the MLP in (3.4) with input dimension p = 4, x = (x1, . . . , x4)
T ∈ R4.

The first layer represents the 2-dimensional linear reduction V ∈ S(4, 2) and the rest of
the network coincides with (3.3).
For the proposed estimator, we can use any MLP that has more neurons than p in the first

hidden layer in (3.2) and (3.3). For the sake of simplicity we opted for a 1 layer MLP with
512 neurons as default, since this gave satisfactory results in simulations. Further, the per-
formance in simulations was robust against different architectures if sufficient regularisation
is applied via dropout in the training of the MLP [see [SHK+14]].

Input Reduction Hidden1 Hidden2 Output

x VTx ŷ
gNN wrap

x ŷ
gnn

Figure 3.2: Illustration of gnn in (3.4)

3.2.1 Initial Estimator

We assume (Yi,X
T
i )i=1,...,n is a random sample from the joint distribution of Y and X given

by model (1.18). Let

TNN OPG(Θ1) =
1

n

n�
i=1

L (Yi, gNN OPG(Xi;Θ1)) (3.5)

be the objective function for the initial estimator, where L : R × R → [0,∞) is a loss
function. The training of the initial MLP in (3.2) is carried out by minimizing the objective
function in (3.5), �Θ1 = argminΘ1

TNN OPG(Θ1) (3.6)

The resulting gNN OPG(x, �Θ1) is an estimate of E(Y | X = x) = g(BTx) in model (1.18) if
the squared error loss,

L(x, y) = (x− y)2 , (3.7)
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is used.
We set bi = ∇xgNN OPG(Xi, �Θ1) ∈ Rp where �Θ1 is defined in (3.6), which is an estimate

for ∇g(BTXi) ∈ Rp. We let

�ΣNN OPG =
1

n

n�
j=1

bjbj
T ∈ Rp×p (3.8)

that is an estimator for Σ∇ in Theorem 7. The NN OPG estimator is defined as

�BNN OPG = (v1, . . . ,vk) ∈ S(p, k) (3.9)

where v1, . . . ,vk are the first k eigenvectors of (3.8).
By Theorem 7, under model (1.18), span{Σ∇} = span{B} = SE(Y |X). If we assume that

(3.8) is a consistent estimator for Σ∇ in Theorem 7, then the NN OPG estimator in (3.9) is
consistent for SE(Y |X) in model (1.18). �BNN OPG in (3.9) is used as an initial starting value

for the optimization in (3.11) in order to obtain the refined estimator �Bnn.
The loss function L is determined by model (1.18) and the conditional distribution of

Y | X. If the response Y and predictors X are continuous and the error term in (1.18) has
a conditional Gaussian distribution, then the squared error loss function corresponds to the
likelihood function. If Y is Bernoulli or multinomial distributed, then the cross entropy loss
function can be used, and if Y is Poisson distributed then the deviance is the natural choice
for the loss function. In general, the loss function is the relevant part of the likelihood in
the conditional distribution of Y | X and agrees with the loss function in generalized linear
models for conditional distributions in the exponential family.

3.2.2 Refinement Estimator

The second stage is the refinement of the initial estimator in (3.9). The NN OPG estimator
is obtained via the gradient of the trained MLP in (3.2). The training of the function
gNN OPG : Rp → R in (3.6) suffers from the curse of dimensionality if the input dimension is
large. In this case, the accuracy of the estimation of (3.8) is adversely affected as learning
a nonlinear function and its gradient with a high dimensional input space is difficult. The
refinement procedure explicitly incorporates the defining assumption of model (1.18) that
a lower dimension projection of the input, BTX, can replace the original input X. This is
realised via the function gnn in (3.4).

Definition 18. The target function for the refinement estimator is given by

Tnn(V,Θ2) =
1

n

n�
i=1

L (Yi, gnn(Xi; (V;Θ2))) (3.10)

where L : R× R → [0,∞) is a loss function, and V ∈ S(p, k). Further, we set��Bnn, �Θ2

�
= argminV∈S(p,k),Θ2

Tnn(V,Θ2) (3.11)

and the nn− sdr refinement estimator is given by �Bnn.
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The simultaneous optimization with respect to V and Θ2 in (3.11) corresponds to simul-
taneous estimation of the sufficient reduction B and the link function g in model (1.18).
The partially trained function Tnn(·, �Θ2) is an estimate for (1.39) if the squared error loss
function (3.7) is used.

Under squared error loss, if (3.3) is a consistent estimator for g in (1.18), then Tnn(·, �Θ2) is
consistent for T (V) in (1.39). By Theorem 6, SE(Y |X) = span{B} = span{argminV∈S(p,k) T (V)}
and the expectation would be that, subject to regularity conditions, the nn refinement es-
timator is consistent.
Nevertheless, proving the consistency of (3.9) and the refinement estimator �Bnn in (3.11)

requires neural nets consistently estimate any function g from a sample of model (1.18).
To the best of the authors’ knowledge there is no such result available in the literature.

The optimization in (3.11) is solved via stochastic gradient descent training [see Sec-
tion 3.3 or any other first order training algorithm for neural nets]. These algorithms
require a starting value for the parameters, (V,Θ2), to be trained. In simulations the
accuracy of the refined estimate �Bnn in (3.11) was very sensitive to the initialization of V.
We conjecture that a consistent estimator for B in (1.18), such as (3.9), is required in order
to obtain a consistent estimate from the refinement procedure in (3.11).

3.3 Algorithm

In this section the algorithm to obtain the estimates �BNN OPG in (3.9) and �Bnn in (3.11) are
described. Both estimators depend on training a MLP using tensorflow [AAB+15] with an
R interface provided by the R-package [AT20] used to implement them.

For training the neuronal networks we use the RMSProp [Geo12] algorithm which is a
variant of the (mini-batch) stochastic gradient descent (SGD) algorithm [Bot98] (see also:
[GBC16] and [AT20]).
For regularisation during the training, we apply dropout with a rate of 0.4 (see [SHK+14])

after each fully connected hidden layer, i.e. during each update step in the training proce-
dure the nodes are randomly set to 0 with probability 0.4.

For a sample (Yi,X
T
i )

T
i=1,...,n fix natural numbers m ≤ n, ep where the former is called

batch size and the later number of epochs. Let fMLPN
(x;Θ) be an N -layer MLP and the

objective function is given by

T (Θ) =
1

n

n�
i=1

L (Yi, fMLPN
(Xi;Θ))

A rough outline of stochastic gradient descent (SGD) is given by
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Result: �Θ(end)
= argminΘ T (Θ)

Initialize: Θ(0)

for u ∈ {1, . . . , ep} do
for j ∈ {1, . . . , �n/m�} do

Determine the step sizes τ ∈ Rdim(Θ) by RMSProp

Θ(k+1) = Θ(k) + diag(τ)
�min(jm,n)

l=(j−1)m+1∇ΘL(Yl, fMLPN
(Xl;Θ

(k)))

end

Shuffle the dataset (Yi,X
T
i )

T
i=1,...,n randomly

end
Algorithm 2: Stochastic gradient descent outline

If the sample size n is not a multiple of the batch size m, then in the last run of the inner
loop the sum of gradients is extended to n. Further if there are restrictions placed on some
of the parameters (as is the case for V ∈ S(p, k) in (3.4), the projection back on the Stiefel
manifold in (1.1) is done via a standard Polar decomposition), the corresponding part of
the parameter vector Θ is projected back to the restricted set after applying the update
step.

Further an important feature of stochastic gradient descent training is that the complex-
ity is linear in the sample size n if the number of epochs ep and the batch size m are chosen
independently of n. Moreover, for large sample sizes n we observed in simulations that less
epochs ep suffice to find well trained neural nets.

The proposed nn estimator for the mean subspace is a two stage procedure.

Stage 1: Obtain the �BNN OPG estimator in (3.9) by solving the optimization in (3.6). This is
done via the stochastic gradient descent (SGD) algorithm with random initialization

of the starting value Θ
(0)
1 to obtain the estimate �Θ1 = (�WNN OPG

1 , �bNN OPG
1 ) in (3.6)

Stage 2: Solve the optimization in (3.11) via the stochastic gradient descent (SGD) algo-

rithm. The initial parameters of gnn in (3.4) are set to (�BNN OPG,Θ
(0)
2 ) where Θ

(0)
2 =

(�WNN OPG
1

�BNN OPG, �bNN OPG
1 ).

In the second stage, we use the weights and bias obtained by training gNN OPG in (3.2) as
initialization for the parameters of gNN wrap in (3.3) and �BNN OPG as initial value for V ∈
S(p, k) in (3.4).
This two stage initialization scheme is important for the performance of the proposed

estimator since a random initialization of the parameters of the second stage yielded much
worse results.

3.4 Analogy of nn− sdr estimation to mave

The optimization in (1.45) corresponds to local linear smoothing of E(Yi | VTXi) with
weights given in (1.44). After the local linear estimates âj , b̂j in (1.46) are obtained,
assume that the weights in (1.44) are given by wi,j(V) = 1 if i = j and 0 if i �= j. Then,
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the target function of mave in (1.46) can be written as

Tn(V) =
1

n

n�
j=1

σ̂2(VTXj) =
1

n

�
i

�
Yi − �E(Yi | VTXi)

�2
=

1

n

�
i

L
�
Yi, �E(Yi | VTXi)

�
(3.12)

where L is the squared error loss and �E(Yi | VTXi) the local linear smooth. Under this
simplifying assumption, (3.12) is the same as (1.39) except that the conditional expectation
is estimated via local linear smoothing in mave as opposed to neural nets for nn in (3.11).

3.5 Analogy of NN OPG to opg

The opg estimator estimates Σ∇ in Theorem 7 via local linear smoothing of ∇g(BTXi).
Specifically, if V = Ip in (1.46), we let (aj ,bj

T )nj=1 denote the solutions of the optimization

in (1.46). Then, bj is an estimate for ∇g(BTXj) and

�Σ∇ =
1

n

n�
j=1

bjbj
T (3.13)

is an estimator for Σ∇ in Theorem 7.

Definition 19. The outer product gradient (opg) estimator for SE(Y |X) = span{B} is
defined as

�Bopg = (v1, . . . ,vk) (3.14)

where v1, . . . ,vk are the first k eigenvectors of (3.13).

3.6 Simulations for nn− sdr

We compare the estimation accuracy of nn estimation with the forward model based suffi-
cient dimension reduction methods, andmean outer product gradient estimation (meanOPG),
mean minimum average variance estimation (meanMAVE [XTLZ02]) and conditional vari-
ance estimator (cve) [FB21a] introduced in Chapter 2. The first two, meanOPG and
meanMAVE, are implemented in the R-package [WY19], and cve in the R package CVarE

[KF21].
We report results for three architectures for gNN OPG and gNN wrap used in nn estimation.

The first is a single layer MLP with 128 hidden neurons, the second has 512 and the third is
a two layer MLP with 48 hidden neurons each. The results were largely undifferentiated for
hidden neuron values between 128 and 512. For the two layer MLP, we obtained similar
results for more than 48 neurons, which is already a small number. All three architectures
use dropout (see [SHK+14]) with probability 0.41 after each fully connected hidden layer

1Dropout rates ranging from 0 to 0.6 were tried and 0.4 was found to yield the best accuracy in reduction
estimation.
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except in the reduction layer of the gnn. All architectures in (3.2) are trained in (3.6) with
ep = 200 epochs and batch size m = 32. The refinement training in (3.11) uses ep = 400
epochs and again batch size m = 32. We use the estimation algorithm in Section 3.3.
The code is available at https://git.art-ist.cc/daniel/NNSDR.

We consider the same six models (M1-M6) as in Section 2.7.2 of Chapter 2, which
are reproduced in Table 3.1. We set p = 20 throughout. For M1-M5, we let b1 =
(1, 1, 1, 1, 1, 1, 0, ..., 0)T /

√
6, b2 = (1,−1, 1,−1, 1,−1, 0, ..., 0)T /

√
6 ∈ Rp. For M6, b1 =

e1,b2 = e2 and b3 = ep, where ej denotes the p-vector with jth element equal to 1 and all
others are 0. In M7, the first three columns are the identity vectors and b4 = (2e4+e5)/

√
5

which is taken from [FTAW20]. The error term # is independent of X for all models. In
M2, M3, M4, M5 and M6, # ∼ N(0, 1). For M1, # has a generalized normal distribu-
tion GN(a, b, c) with densitiy f�(z) = c/(2bΓ(1/c)) exp((|z − a|/b)c) [see [Nad05]], with
location 0 and shape-parameter 0.5 for M1, and the scale-parameter is chosen such that
Var(#) = 0.25. The dimension k is assumed to be known throughout.

Table 3.1: Models

Name Model X distribution # distribution k n

M1 Y = cos(bT
1 X) + # X ∼ Np(0,Σ) GN(0,

�
1/2, 0.5) 1 100

M2 Y = cos(bT
1 X) + 0.5# X ∼ Z1p +Np(0, Ip) N(0, 1) 1 100

M3 Y = 2 log(|bT
1 X|+ 2) + 0.5# X ∼ Np(0, Ip) N(0, 1) 1 100

M4 Y = (bT
1 X)/(0.5 + (1.5 + bT

2 X)2) + 0.5# X ∼ Np(0,Σ) N(0, 1) 2 200
M5 Y = cos(πbT

1 X)(bT
2 X+ 1)2 + 0.5# X ∼ U([0, 1]p) N(0, 1) 2 200

M6 Y = (bT
1 X)2 + (bT

2 X)2 + (bT
3 X)2 + 0.5# X ∼ Np(0, Ip) N(0, 1) 3 200

M7 Y = 10 sin(π(b1
TX)(b2

TX)) + 20(b3
TX− 0.5)2 + 53/2b4

TX+ 5# X ∼ U([0, 1]p) N(0, 1) 4 600

The variance-covariance structure of X in models M1 and M4 satisfies Σi,j = 0.5|i−j| for
i, j = 1, . . . , p. In M5, X is uniform with independent entries on the p-dimensional hyper-
cube. The link functions of M4 is studied in [XTLZ02], but we use p = 20 instead of 10 and
a non identity covariance structure for M4. In M2, Z ∼ 2Bernoulli(0.3)−1 ∈ {−1, 1}, where
1q = (1, 1, ..., 1)T ∈ Rq, this yields that X has a mixture normal distribution with a mixture
probability of 0.3. M7 is a challenging four dimensional model studied in [FTAW20].

As in Chapter 2, we generate r = 100 replications of models M1 - M7 and estimate B
using the different sufficient dimension reduction methods. The accuracy of the estimates
is assessed using

err =
�PB −P�B�√

2k
, (3.15)

which lies in the interval [0, 1]. The factor
√
2k normalizes the distance, with values closer

to zero indicating better agreement and values closer to one indicating strong disagreement.
We report the average err and their standard deviations in Table 3.2. All three network

architectures, nn128 − sdr, nn512, nn48,48 yield similar results, highlighting the robustness
of the method with respect to the architecture. We choose nn512 as our default setup for
the following simulations in Section 3.7. For M1 and M2, cve yields the most accurate
estimation of the reduction B, followed by the nn− sdr estimators. opg and mave show
the worst performance for the first two models. In M3, the nn− sdr estimators are on par
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Table 3.2: Mean and standard deviation of estimation errors for M1-M7

Model opg mave cve nn128 nn512 nn48,48

M1 mean 0.605 0.535 0.396 0.450 0.460 0.502
(sd) (0.179) (0.207) (0.108) (0.126) (0.152) (0.200)

M2 mean 0.918 0.910 0.455 0.635 0.619 0.752
(sd) (0.079) (0.094) (0.090) (0.177) (0.187) (0.174)

M3 mean 0.754 0.702 0.594 0.608 0.578 0.628
(sd) (0.216) (0.258) (0.209) (0.211) (0.196) (0.228)

M4 mean 0.431 0.435 0.572 0.408 0.413 0.413
(sd) (0.095) (0.099) (0.131) (0.088) (0.082) (0.073)

M5 mean 0.415 0.422 0.441 0.547 0.554 0.601
(sd) (0.103) (0.117) (0.085) (0.137) (0.158) (0.139)

M6 mean 0.181 0.160 0.420 0.133 0.122 0.147
(sd) (0.027) (0.022) (0.111) (0.015) (0.013) (0.017)

M7 mean 0.641 0.637 0.791 0.698 0.654 0.687
(sd) (0.074) (0.071) (0.032) (0.051) (0.074) (0.068)

Table 3.3: Mean and standard deviation of out of sample-prediction errors for M1-M7

Model opg mave cve nn128 nn512 nn48,48

M1 mean 0.523 0.427 0.364 0.409 0.421 0.422
(sd) (0.218) (0.144) (0.059) (0.134) (0.187) (0.172)

M2 mean 0.736 0.738 0.396 0.476 0.506 0.535
(sd) (0.145) (0.092) (0.044) (0.086) (0.111) (0.110)

M3 mean 0.525 0.518 0.432 0.417 0.430 0.410
(sd) (0.110) (0.107) (0.083) (0.092) (0.089) (0.088)

M4 mean 0.711 0.713 0.647 0.438 0.497 0.470
(sd) (0.089) (0.104) (0.096) (0.071) (0.135) (0.062)

M5 mean 0.462 0.461 0.440 0.494 0.482 0.555
(sd) (0.051) (0.046) (0.043) (0.109) (0.103) (0.099)

M6 mean 0.838 0.765 2.354 0.782 0.612 1.216
(sd) (0.177) (0.228) (0.914) (0.117) (0.081) (0.224)

M7 mean 33.112 33.066 33.884 33.955 35.272 34.136
(sd) (1.961) (1.973) (1.752) (1.910) (2.383) (1.836)
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with cve and opg, whereas mave exhibits the worst performance. In M4, the nn − sdr
estimators are on par with opg, mave, while cve is slightly worse than the rest. In M5,
opg and mave are the most accurate, with cve nearly on par. For M6, the nn − sdr
estimators yield the best results followed by opg and mave. M7 is challenging for all
methods, with mave, opg, and nn512 − sdr the best performing three.
The nn512 − sdr estimator is better or on par with opg, mave, and cve except for M5.

This is not surprising in the case of nn− sdr and opg/mave as they are built on a similar
idea. The main difference is that mave uses local linear smoothing instead of neural nets.

Furthermore, in Table 3.3 we report the mean and standard deviation for the out of
sample prediction errors in M1-M7 over r = 100 replications. For each data set and
replication, we sampled a test set with sample size 1000 from each model and predicted
the response Y via the predict function in R for opg, mave, and cve. For nn − sdr,
the predictions are given by gnn(Xnew, (�Bnn, �Θ1)) in (3.4). For M1 and M2, cve gives
the smallest out of sample prediction errors, followed by the nn − sdr estimators which
outperform both opg and mave. For M3, all three nn − sdr estimators are better or on
par with cve and outperform opg and mave. In M4, nn− sdr outperforms all, with cve
the next best. For M5, cve performs better than all other. Interestingly, in M6 cve and
nn48,48 − sdr do not work well in terms of prediction accuracy. In M7, mave performs the
best followed by opg and cve, but the nn− sdr estimators trail closely.

In sum, for relatively small to medium samples with few predictors (p = 20), nn − sdr
exhibits approximately similar and sometimes better performance than its sdr competitors.

3.7 Large sample size simulation for nn− sdr

In this section we simulate data from models M6 and M7 in Section 3.6 and increase both
the number of predictors p and the sample size n. We monitor the estimation accuracy by
err in (3.15) as in Section 3.6, the out of sample prediction error and the required time for
the estimation of a reduction.
We examined two simulation settings. In the first, we simulated from model M7 using

the same p = 20 and increased the sample size significantly (n = 2u, u = 7, 9, 11, 13). The
results are displayed in Table 3.4. We do not report values for n = 2048, 8192 for cve as
the runtime is too long. For n ∈ {128, 512}, mave is on par with nn512 − sdr, whereas for
n = 2048, 8192, nn512 − sdr is slightly more accurate.
To explore how simultaneous growth of the sample size and the number of predictors af-

fect performance, the second simulation revisits M6, where we successively increase both the
sample size n and p. The sample sizes considered are n ∈ {1000, 4000, 16000, 64000, 256000}
with corresponding p ∈ {32, 63, 126, 253, 506}, which is roughly p ∝ √

n. We observed that
for larger sample sizes, fewer epochs in the training phase of the neural net suffice. To
demonstrate this, the number of epochs was reduced as n and p increased, as follows.
For (n, p) = (1000, 32), 200 and 400 epochs were used in the two steps of the refined nn,
respectively, and at each subsequent setting, epoch numbers were halved.

The results of this simulation are shown in Table 3.5, which reports the mean and
standard deviation (in parentheses) over 10 repetitions of err in (3.15), the out of sample
prediction errors, and the runtime as measured internally via the user time obtained by the
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R function system.time(). The advantage of nn emerges in Table 3.5. As both n and p
grow, mave is no longer computable in realistic time. For example, for n = 64000, p = 253,
one calculation for mave takes about 12 hours to complete. Hence, we report only one
value for err and prediction error. In contrast, nn takes about 9 minutes to complete one
run for the same setting and about 28 minutes to complete one run for n = 256000, p = 506.
For n = 1000, 4000, 16000, and p = 32, 63, 126, nn − sdr exhibits slightly higher values of
estimation error and lower values of out-of-sample prediction error than mave.

The mean runtimes of the two methods are plotted against the sample size in Figure 3.3.
We see that the runtime for mave explodes to exceed 12 hours only for one dataset at
sample size 64000. On the other hand, nn computes in reasonable time.
Thus, nn− sdr is the only forward model based sdr method that is applicable to truly

large data while obtaining small estimation and out-of-sample prediction errors. Moreover,
for smaller data sets, both in terms of n and p, it maintains competitive performance.

Table 3.4: Mean and standard deviation (in parentheses) of estimation error for model M7

n opg mave cve nn512

128 mean 0.802 0.797 0.834 0.801
(sd) (0.02768) (0.03561) (0.02567) (0.03541)

512 mean 0.691 0.683 0.778 0.697
(sd) (0.05700) (0.05923) (0.03528) (0.03639)

2048 mean 0.233 0.253 0.209
(sd) (0.03161) (0.07841) (0.06000)

8192 mean 0.102 0.107 0.082
(sd) (0.00738) (0.00935) (0.00722)

3.8 Data Analysis

We analyze three data sets. The first in Section 3.8.1 is of relatively small sample size
n = 506 and number of predictors p = 12, the second in Section 3.8.2 is of large n = 21613
and small p = 16, and the third in Section 3.8.3 is of very large n = 382168 and small to
medium p = 40.

3.8.1 Boston Housing

In this section we apply the refined nn estimator on the Boston Housing data and compare
its performance with the other two mean subspace SDR methods, mave and cve. This
data set has been extensively used as a benchmark for assessing regression methods [see,
for example, [JWHT13]], and is available in the R-package mlbench. The data comprise of
506 instances of 14 variables from the 1970 Boston census, 13 of which are continuous. The
binary variable chas, indexing proximity to the Charles river, is omitted from the analysis
since all three methods operate under the assumption of continuous predictors. The target
variable is the median value of owner-occupied homes, medv, in $1,000. The 12 predictors
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Table 3.5: Mean and standard deviation (in parentheses) of err, out of sample prediction
error, and runtime for model M6.

n p Method err MPE time [sec]

1000 32 mave 0.0626 0.393 5.48
(0.003) (0.028) (0.031)

nn512 0.0547 0.343 48.65
(0.004) (0.021) (0.700)

4000 63 mave 0.0445 0.351 71.20
(0.002) (0.019) (0.842)

nn512 0.0496 0.313 91.35
(0.003) (0.016) (0.822)

16000 126 mave 0.0323 0.337 1416.14
(0.001) (0.016) (34.367)

nn512 0.0631 0.329 215.78
(0.002) (0.025) (1.793)

64000 253 mave 0.023 0.325 ∼ 12h
(0) 0 (0) 0 (0) 0

nn512 0.095 0.387 542.26
(0.001) (0.019) (2.934)

256000 506 nn512 0.153 0.568 1673.03
(0.003) (0.028) (6.650)

0 Only one repetition was run as it takes about 12 hours.

are crim (per capita crime rate by town), zn (proportion of residential land zoned for lots
over 25,000 sq.ft), indus (proportion of non-retail business acres per town), nox (nitric
oxides concentration (parts per 10 million)), rm (average number of rooms per dwelling),
age (proportion of owner-occupied units built prior to 1940), dis (weighted distances to five
Boston employment centres), rad (index of accessibility to radial highways), tax (full-value
property-tax rate per $10,000), ptratio (pupil-teacher ratio by town), lstat (percentage of
lower status of the population), and b stands for 1000(B−0.63)2 where B is the proportion
of blacks by town.
We set the dimension of the reduction B to two; i.e., k = 2, for all three methods

and compute prediction errors using squared error loss and leave-one-out cross validation.
The nn with one layer and 512 neurons is fitted on the n − 1 training data and compute
the predicted value for the left out data point. Both cve and mave were applied to the
standardized training data. The mean and standard deviation (in parentheses) of the 506
prediction errors are displayed in Table 3.6 2. The cve method results in the smallest
prediction error followed by nn− sdr, which, on the other hand, has the smallest standard
error. mave is the least accurate. The analysis for k = 1 yielded similar results. In this

2In Table 3.6 the out of sample prediction errors are non standardized (the reduction is estimated from
the standardized training set but the predictions of the response are on the original scale) in contrast to
the values reported in Table 2.4 in Chapter 2
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Figure 3.3: Runtime comparison of mave against nn512 with equivalent estimation perfor-
mance.
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example of small n-small p, nonparametric methods are expected to do well, which is what
we observe for cve followed by mave. Nevertheless, the performance of the large sample
nn− sdr method is roughly on par with both.

Table 3.6: Leave-One-Out Cross Validation Prediction errors with reduction dimension k =
2.

mave cve nn512

mean 18.762 16.148 18.006
(sd) (63.136) (63.500) (41.739)

3.8.2 KC Housing

Further, we compare nn estimation to mave using the kc house data set in the R package
mave. The data set contains 21613 observations on 20 variables. The target variable is
price, the price of a sold house. We use 16 predictors after omitting id, date, and zip

code: bedrooms (number of bedrooms), bathrooms (number of bathrooms), sqft living

(square footage of the living room(, sqrt log (square footage of the log), floors (total
floors in the house), waterfront (whether the house has a view a waterfront(1: yes, 0:
not)), view (unknown), condtion (condition of the house), grade (unknown), sqft above

(square footage of house apart from basement), sqft basement (square footage of the
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basement), yr built (built year), yr renovated (year when the house was renovated),
lat (latitude coordinate), long (longitude coordinate), sqft living15 (living room area in
2015(implies some renovations)), sqrt lot15 (lot area in 2015(implies some renovations)).

We perform 10-fold cross-validation in order to obtain an unbiased estimate of the out
of sample prediction error. We set k = 1 and report the average fraction of the mean
squared prediction error divided by the variance of the response on the test set, as well as
its standard error, in Table 3.7. Our nn− sdr estimator has out of sample mean squared
error that is about half the variance of the response on the test set, whereas mave’s is less
than 2 percent lower than the variance of the response. This means that the nn − sdr
regression explains roughly half of the total variance in the response whereas mave hardly
explains any. Further, even though the mave reduction is estimated in roughly the same
time as nn−sdr, in 6 out of the 10 folds the predict function for mave produces an error.
We also report the 10-fold cross-validated prediction error for cve, which yields the best
result as it explains more than 70% of the total variance in the response but could not be
computed, in its current implementation, on a personal computer. 3

The coefficients of the reductions are given in Table 3.8. nn− sdr extracts information
from all variables as it places non-zero weights of varying size on all. mave, on the other
hand, selects waterfront and the co-linear sqft living, sqft above, sqft basement

(sqft living = sqft above + sqft basement) and drops all other variables. Moreover,
it allocates the same weight to the collinear variables with opposite signs, effectively dis-
counting all three and ultimately declaring only waterfront relevant.

These results indicate that mave breaks down in the analysis of this data set. Since
sqft living = sqft above + sqft basement, we dropped sqft basement to investigate
the effect of collinearity. In Figure 3.4, we plot the response versus the mave reduction com-
puted on all predictors in the left panel, versus the mave reduction without sqft basement

and versus the nn−sdr reduction in the right panel. The reduced predictors are strikingly
different. The nn−sdr reduction is smooth and captures a clear nonlinear heteroskedastic
relationship with price. The plot in the left panel captures the failure of mave to extract
the predictive information in the predictors, as no apparent pattern emerges. Moreover,
the data are arbitrarily split in the groups defined by the binary waterfront variable.
Once the collinearity is removed, mave captures the relationship between Y and X but
nevertheless it again splits the data into two new arbitrary classes for the renovated and
non-renovated houses. This variable takes either value 0 (not renovated) or the renovation
year that ranges between 1934 and 2015. The black points in the middle panel correspond
to 0 and red to the period 1934-2015.
We further draw attention to the semblance of the data clouds across the two categories

in the middle panel and the nn−sdr reduction in the right panel. Both mave and nn−sdr
discover the same pattern, with the correlation coefficients of mave and nn−sdr reductions
being 0.82 and 0.85, albeit mave introduces an artificial split in the data.

In Table 3.8, we also provide the coefficients of the last two eigenvectors, corresponding
to the two smallest eigenvalues in decreasing order, of the sample covariance matrix of
the predictors. The next to last places most of the weight on waterfront and the last
on sqft living and sqft above, sqft basement. Moreover, the vector of coefficients of

3The cve values were computed on the Vienna Scientific Cluster (VSC).
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Figure 3.4: Reduced data versus response of the kc house data for mave and nn512.

the mave reduction based on all predictors in the first column seems to be the sum of the
last and the down-weighted second to last eigenvectors of the sample covariance matrix
of X. This relates to the fact that the sample covariance matrix of X is singular of rank
16 = p − 1. Thus, the last eigenvector dominates all others and largely agrees with the
mave reduction coefficients. We investigate the effect of collinearity on mave and cve in
Section 3.8.2.1.

Table 3.7: Ten-fold Cross Validation Relative Prediction errors with reduction dimension
k = 1.

mave cve nn512

mean 0.982 0.296 0.527
(sd) (0.035) (0.149) (0.043)

3.8.2.1 The case of singular Σx

We consider the effect of collinear predictors on the sufficient dimension reduction tech-
niques mave, cve, and nn − sdr. We assume that Σx = Var(X) is singular and show
that, in this case, the mean subspace is not uniquely identifiable 4.
Let U be a basis of the nullspace of Σx, consisting of the eigenvectors that correspond

to the 0 eigenvalue. Without loss of generality, we assume the eigenspace of U to be one
dimensional. Then UTX = c is constant and we can write

Y = g(BTX+ c− c) + # = gc((B+U)TX) + # (3.16)

= gc(B̃
TX) + # (3.17)

where gc(x) = g(x − c) fulfills all assumptions of the link function in model (1.18) and
B̃ = B + U. If span{U} ⊂ span{B}, then span{B} = span{B̃} and the mean subspace

4In this case the density fX does not have a convex support on Rp which is required in assumption (A.1) in
Section 2 and guarantees the existence and uniqueness of the mean subspace SE(Y |X) via proposition 6.4
in [Coo98c]

70



3 Neural Net SDR for the mean subspace

Table 3.8: Estimated linear reductions for the kc house data data set. Z are the remain-
ing 16 predictors when dropping sqft basement from X. The last column
v17(X), v16(X) are the PCA coefficients corresponding to the last two smallest
eigenvalue of Var(X) for un-scaled X.

B̂mave(X) B̂mave(Z) B̂nn512(X) v17(X) v16(X)

bedrooms 0.000 -0.015 -0.171 0.000 -0.005
bathrooms 0.000 0.050 0.057 0.000 -0.001
sqft living 0.577 0.000 0.099 0.577 0.000
sqft lot 0.000 0.000 0.000 0.000 0.000
floors 0.000 0.036 0.098 0.000 0.000
waterfront 0.036 0.330 0.485 0.000 -0.999
view 0.000 0.047 0.787 0.000 0.046
condition 0.000 0.042 0.152 0.000 0.002
grade 0.000 0.124 0.204 0.000 -0.003
sqft above -0.577 0.000 0.080 -0.577 0.000
sqft basement -0.577 0.112 -0.577 0.000
yr built 0.000 -0.003 -0.031 0.000 0.000
yr renovated 0.000 0.004 0.051 0.000 0.000
lat 0.000 0.925 -0.001 0.000 -0.011
long 0.000 -0.107 0.007 0.000 -0.016
sqft living15 0.000 0.000 0.079 0.000 0.000
sqft lot15 0.000 0.000 -0.001 0.000 0.000

is unique. Otherwise, both span{B} and span{B̃} are dimension reduction subspaces but
span{B̃} �= span{B}.

Most sdr approaches, including mave [XTLZ02, Cond. 3(a), p. 386] and cve [FB21a,
Cond. A.1 , p. 3 ] require X have a density with convex support; that is, its variance-
covariance is positive definite. It appears that mave is more sensitive to the violation of
this assumption as compared to cve.
To demonstrate this we present a small simulation study in the presence of near collinear-

ity. Let X = (X1, . . . , Xp)
T with (X2, . . . , Xp) ∼ N(0, Ip−1) and X1 = −0.5(X2 +

X3) + 0.001Z, where Z ∼ N(0, 1) and is independent of (X2, . . . , Xp). Then, U =
(2, 1, 1, 0, . . . , 0)/

√
6 ≈ (0.816, 0.408, 0.408, 0, . . . , 0) is the eigenvector of Σx correspond-

ing to the smallest eigenvalue.
Let p = 10 and Y = (BTX)2 + 0.5#, where # ∼ N(0, 1) is independent from X and

B = e4 the fourth standard basis vector. We draw 100 random samples (Yi,X
T
i )

T
i=1,...,n of

size n = 100 from this model and calculate the mave, cve and nn512 estimators of B. The
median, mean and standard deviation of the estimation errors for the subspace in (3.15)
are reported in Table 3.9.
For example, one of the Bmave estimates is (0.815, 0.404, 0.402, −0.102, 0,0, −0.001,

−0.006, 0.003, −0.008) with associated error 0.995. We can clearly see that mave estimates
U instead of B, and most mave estimates follow the same pattern. On the other hand,
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Table 3.9: Ten-fold Cross Validation Relative Prediction errors mean and standard devia-
tion (in brackets) with strong collinearity in the predictors.

mave cve nn512

mean 0.917 0.164 0.101
median 0.999 0.162 0.096

(sd) (0.256) (0.057) (0.032)

one of the Bcve estimates is (0.013, −0.007, −0.018, −0.99, 0.015, −0.004, −0.046, −0.13,
0.015, −0.021), with associated error 0.143 and one of the Bnn512 estimates is (−0.007,
−0.002, −0.074, −0.995, 0.013, 0.004, −0.035, −0.047, 0.026, −0.031), with associated
error 0.103. cve and nn− sdr stays clear of U and correctly identifies the true B.
In this example, in particular, mave seems to focus solely on estimating U instead of

B. This does not hold in general. We offer an explanation by setting c = αc in (3.16) for
a scalar α. Following the rationale below (3.16), B̃ = B + αU is a reduction for any α.
Since mave, cve and nn− sdr work with B̃ ∈ S(p, k), α determines the weight placed on
U relative to B. For large α, U dominates the reduction B̃ and mave fails to identify the
mean subspace. In contrast, cve and nn− sdr remains robust in its ability to accurately
estimate the reduction B.

We conjecture that mave’s vulnerability is numerical in nature and relates to the imple-
mentation algorithm in the mave package since the solution of the least square problem
used in mave is not unique anymore if Var(X) is singular. We also conjecture that cve
and nn− sdr are more robust than mave.

3.8.3 Beijing Air Quality Data

The Beijing Multi-Site Air-Quality Data [ZGD+17] available at the UCI machine learning
repository5 includes hourly air pollutants data from 12 nationally-controlled air-quality
monitoring sites in Beijing. The air-quality data are from the Beijing Municipal Environ-
mental Monitoring Center. The meteorological data in each air-quality site are matched
with the nearest weather station from the China Meteorological Administration. After
removing missing data entries, the data contains 382168 complete measurements.

The target PM2.5[ug/m
3] is the concentration of particle matter in the air with less than

2.5 micrometres in diameter.
The predictors are year, month, day, hour, SO2 (SO2 concentration [ug/m3]), NO2 (NO2

concentration [ug/m3]), CO (CO concentration [ug/m3]), O3 (O3 concentration [ug/m3]),
TEMP (temperature [C◦]), PRES (pressure [hPa]), DEWP (dew point temperature [C◦]), RAIN
(precipitation [mm]), wd (wind direction), WSPM (wind speed [m/s]), station (name of the
air-quality monitoring site). The two categorical variables wd and station, with 16 and 12
categories, respectively, are converted to 26 dummy variables, resulting in 40 predictors.

We included the categorical variables to demonstrate that nn− sdr can handle dummy
variables even though it is not designed for this. Given the large sample size we used 2

5https://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data
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epochs for the first stage and 3 for the second refinement stage of the training. Due to
the large sample size mave and cve are infeasible to compute while nn − sdr executes
in less than 3 minutes per fold run on the CPU of personal computer. As a comparison,
we included the linear model (lm) as well as the Multivariate Adaptive Regression Splines
(mars, [Fri91, HR17]), as both can be applied to large regressions, provided p < n and are
computationally efficient.
In Table 3.10, the mean of the 10-fold cross validation prediction errors is reported.

The linear model exhibits the worst performance, as expected. nn − sdr improves upon
the linear model for all choices of dimension we examined, beats mars for k = 3, 4 and
obtains the minimum MSPE for k = 4. Thus, not only is nn− sdr the best method with
respect to predictive accuracy, but it also provides an assessment of the true structural
dimension of the relationship (k = 4) between the response and the predictors. This
confirms the improved performance of mars, a multivariate nonparametric fitting method,
over the linear model and points to the nonlinearity of the relationship.

Table 3.10: 10-Fold Cross Validation Mean Squared Prediction errors.

lm mars nn512 − sdr nn512 − sdr nn512 − sdr nn512 − sdr
k = 1 k = 2 k = 3 k = 4

mean 1829 1628 1746 1654 1604 1526
(sd) (20.8) (24.9) (19.9) (18.8) (24.0) (59.3)
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In this chapter we introduce the extension of cve to the exhaustive ensemble conditional
variance estimator ecve for the central subspace SY |X (see section 1.4), which is a superset
of SE(Y |X), i.e.

SE(Y |X) ⊆ SY |X
Since the introduction of the concept of central mean subspace in [CL02], several papers
made gradual contributions to establish a road path from the central mean to the central
subspace [see [YL11] for a list]. [YL11] recognized that these approaches pointed to the same
direction: if one can estimate the central mean subspace of E(f(X) | Y ) for sufficiently
many functions f , then one can recover the central subspace. They then proposed and
studied families of functions, which they called ensembles, that were rich enough to obtain
the desired outcome.
Throughout this chapter we assume model (1.13). The idea is to apply cve to identify the

mean subspaces of transformed responses f(Y ), with f function elements of an ensemble,
and then combine them to form the central subspace SY |X.

4.1 Ensembles

[YL11] introduced ensembles as a device to extend mean subspace SDR methods to central
subspace ones. The ensemble approach of combining mean subspaces to span the central
subspace comprises of two components: (a) a rich family of functions of transformations for
the response and (b) a sampling mechanism for drawing the functions from the ensemble
to ascertain coverage of the central subspace. To distinguish between families of functions
and ensembles, [YL11] use the term parametric ensemble, which we also use herein.

Definition 20. Let F be a family of measurable functions from supp(Y ) ⊂ R to R, then
F is called an ensemble. If F is a parametric family of measurable functions which is
measurable with respect to the index, i.e. F = {ft : t ∈ ΩT } for some index set ΩT , F is
called parametric ensemble.

Let F be an ensemble and set f(Y ) where Y is given by model (1.13). We call SE(f(Y )|X)

the mean subspace of the transformed random variable f(Y ), as defined in (1.21), i.e.

E (f(Y ) | X) = E(f(Y )|PSE(f(Y )|X)
X)

An ensemble F must be rich enough to be useful, therefore, following [YL11], we define.

Definition 21. An ensemble F characterises SY |X, if

span{SE(ft(Y )|X) : ft ∈ F} = SY |X (4.1)
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As an example of an ensemble F that can characterise the central subspace SY |X, we
consider the parametric ensemble F = {ft : t ∈ ΩT } = {exp(it·) : t ∈ R}, i.e. ft(·) =
exp(it·) and ΩT = R. Then

E(ft(Y ) | X) = E (exp(itY ) | X) .

is the conditional characteristic function evaluated at t. By varying over the parametric
ensemble F , i.e. over t ∈ R, we analyze the whole conditional characteristic function. The
characteristic function determines a distribution uniquely and we expect to fully recover
the conditional distribution of Y | X and therefore also the central subspace SY |X, i.e.

span{SE(ft(Y )|X) : ft ∈ F} = span{SE(exp(itY )|X) : t ∈ R} = SY |X

[YL11] provide a list of parametric ensembles F , that can characterize SY |X under some
mild regularity assumptions.

Characteristic ensemble F = {ft : t ∈ ΩT } = {exp(it·) : t ∈ R}
Indicator ensemble F = {1{z≤t} : t ∈ R} , i.e. span{SE(ft(Y )|X) : ft ∈ F} describes the

conditional cumulative distribution function (cdf)

Kernel ensemble F = {h−1K ((z − t)/h) : t ∈ R, h > 0}, where K is a kernel suitable for
density estimation, i.e. span{SE(ft(Y )|X) : ft ∈ F} describes the conditional density

Polynomial ensemble F = {zt : t = 1, 2, 3, ...} , i.e. span{SE(ft(Y )|X) : ft ∈ F} describes
the conditional moment generating function

Box-Cox ensemble F = {(zt − 1)/t : t �= 0} ∪ {log(z) : t = 0} Box-Cox Transforms

Wavelet ensemble Haar Wavelets

The intuition is as follows: the characteristic and the indicator ensembles describe the
conditional characteristic and distribution function of Y | X, respectively, which always
exist and determine the distribution uniquely. If the conditional density function fY |X of
the response Y exists, then the kernel ensemble can characterise the conditional distribution
Y | X. Further if the conditional moment generating function, which is determined by all
conditional moments, exists then the polynomial ensemble can characterise SY |X.

Theorem 17, which is Theorem 2.1 of [YL11], establishes when an ensemble F is rich
enough to characterise SY |X. Let B = {1A : A is a borel set in supp(Y )} be the set of
indicator function on supp(Y ) and L2(FY ) = {f(Y ) : E(f(Y )2) < ∞} be the set of square
integrable random variables with respect to the distribution FY of the response Y , that are
measurable with respect to the sigma field generated by Y .

Theorem 17. If F ⊆ L2(FY ) is dense in B ⊆ L2(FY ) then the ensemble F can charac-
terises the central subspace SY |X.
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4 Ensemble Conditional Variance Estimation

[YL11] used the ensemble device to extended minimum average variance estimation
(mave), which targets the mean subspace, to its ensemble version that estimates the central
subspace SY |X consistently.

Theorem 18 shows that finitely many functions of an ensemble F are sufficient to char-
acterise the central subspace SY |X. The caveat is that we do not now which finite subset
of F is sufficient.

Theorem 18. If a parametric ensemble F characterises SY |X, then there exist finitely
many functions ft ∈ F with t = 1, . . . ,m and m ∈ N such that

span{SE(ft(Y )|X) : t ∈ 1, . . . ,m} = SY |X

Proof: Let k = dim(SY |X) ≤ p and note that dim(SE(ft(Y )|X)) = kt ≤ k since F charac-
terises SY |X. If kt = 0 then we can leave out SE(ft(Y )|X) = {0} in (4.1). If kt �= 0, then
kt ≥ 1 and {0} ⊂ SE(ft(Y )|X) ⊆ Rp is at least a one dimensional linear subspace. Then if
there are infinitely many SE(ft(Y )|X) �= {0} (i.e. kt �= 0) and they span SY |X then infinitely
many SE(ft(Y )|X) must span the same subspace, otherwise we obtain the contradiction

dim


span{SE(ft(Y )|X) : t ∈ ΩT }

�
> k = dim(SY |X)

4.2 Motivation of ecve

Throughout this chapter we refer to the following assumptions as needed.

(E.1). Model Y = gcs(B
TX, #) holds with Y ∈ R, gcs : Rk × R → R non constant in the

first argument, B = (b1, ...,bk) ∈ S(p, k), X ∈ Rp independent from #, the distribution of
X is absolutely continuous with respect to the Lebesgue measure in Rp, supp(fX) is convex,
and Var(X) = Σx is positive definite.

(E.2). The density fX : Rp → [0,∞) of X is twice continuously differentiable with compact
support supp(fX).

(E.3). For a parametric ensemble F its index set ΩT is endowed with a probability measure
FT such that for all t ∈ ΩT : SE(ft(Y )|X) �= {0}

PFT

�
{t̃ ∈ ΩT : SE(ft̃(Y )|X = SE(ft(Y )|X)}

�
> 0

(E.4). For an ensemble F we assume that for all f ∈ F the conditional expectation

E (f(Y ) | X)

is twice continuously differentiable in the conditioning argument. Further for all f ∈ F

E(|f(Y )|8) < ∞
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Remark. Assumptions (E.1) to (E.4) relate to (A.1) to (A.4) in Section 2 as follows.

• Assumption (E.1) is analogous to (A.1) and assures that SY |X = span{B} exists
and is unique. Furthermore, it allows the mean subspace to be a proper subset of the
central subspace, i.e. SE(Y |X) � SY |X.

• Assumption (E.2) is analogous to (A.2)

• Assumption (E.3) is a generic assumption since it states that the set of indices that
characterise the central subspace SY |X is not a null set. In practice, the choice of the
probability measure FT on the index set ΩT of a parametric ensemble F can always
guarantee the fulfillment of this assumption.

• (E.4) replaces (A.2) that the link function g in model (1.18) is twice continuously
differentiable and (A.3) that the response Y has finite 8th moment. If the character-
istic or indicator ensemble are used (E.4) states that the conditional characteristic or
distribution function are twice continuously differentiable. The existence of the 8th
moments are automatically fulfilled due to the boundedness of the complex exponential
and indicator function.

Definition 22. For q ≤ p ∈ N, f ∈ F , and any V ∈ S(p, q), we define

L̃(V, s0, f) = Var (f(Y ) | X ∈ s0 + span{V}) (4.2)

where s0 ∈ supp(fX) is a shifting point.

Definition 23. Let F be a parametric ensemble and FT a probability measure on the index
set ΩT . For q ≤ p, and any V ∈ S(p, q), we define

LF (V) =

	
ΩT

	
Rp

L̃(V,x, ft)dFX(x)dFT (t) (4.3)

= Et∼FT

�
EX

�
L̃(V,X, ft)

��
= Et∼FT

(L∗(V, ft)),

where FX is the cumulative distribution function (cdf) of X, with

L∗(V, ft) = EX

�
L̃(V,X, ft)

�
. (4.4)

For the identity function, ft0(z) = z, (4.4) is the target function of conditional variance
estimation given in (2.2) and (4.2) is the same as (2.1). Further if the random variable
t is concentrated on one point t0, i.e. t ∼ δt0 , that corresponds to the identity function
ft0(z) = z, then the ensemble conditional variance estimator (ecve) coincides with the
conditional variance estimator (cve).

Furthermore, the following holds:

Theorem 19. Assume (E.1) holds. Let �B be a basis of SE(ft(Y )|X), i.e. span{�B} =
SE(ft(Y )|X) ⊆ SY |X = span{B}, then for any f ∈ F for which assumption (E.4) holds,

f(Y ) = g(�BTX) + #̃ (4.5)

with E(#̃ | X) = 0 and g : Rkt → R a twice continuously differentiable function, where
kt = dim(SE(ft(Y )|X)).
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4 Ensemble Conditional Variance Estimation

Theorem 19 obtains that (4.5) has the same form as the forward model (1.18) assumed
in cve with the difference that only E(#̃ | X) = 0 and not independence of X and the error
#̃ is required.

Proof of Theorem 19.

f(Y ) = E (f(Y ) | X) + f(Y )− E (f(Y ) | X)� �� �
�̃

= E (f(Y ) | X) + #̃

= E
�
f(Y )|�BTX

�
� �� �

g(�BTX)

+#̃ = g(�BTX) + #̃

By the tower property of the conditional expectation it holds E(#̃ | X) = E(f(Y ) |
X) − E(E(f(Y ) | X) | X) = E(f(Y ) | X) − E(f(Y ) | X) = 0. The differentiability follows
directly from (E.4).

Theorem 20. Assume (E.1) and (E.2) hold. Let F be a parametric ensemble, s0 ∈
supp(fX) ⊂ Rp, V ∈ S(p, q) defined in (1.1). Let f such that the requirements in as-
sumption (E.4) hold and E(#̃2 | X = x) = h(x), where #̃ is given in (4.5), is continuous.
Then,

L̃(V, s0, f) = µ2(V, s0, f)− µ1(V, s0, f)
2 + h̃(V, s0, f) (4.6)

where

µl(V, s0, f) =

	
Rq

g(�BT s0 + �BTVr1)
l fX(s0 +Vr1)


Rq fX(s0 +Vr)dr
dr1 =

t(l)(V, s0, f)

t(0)(V, s0)

with f(Y ) = g(B̃TX) + #̃ decomposed as in (4.5), t(l)(V, s0, f) of the decomposed response
f(Y ) is defined in (2.6)1, and

h̃(V, s0, f) = Var(#̃ | X ∈ s0 + span{V}) = E(#̃2 | X ∈ s0 + span{V})
=

	
supp(fX)∩Rq

h(s0 +Vr1)fX(s0 +Vr1)dr1/

	
Rq

fX(s0 +Vr)dr. (4.7)

Further,

Vt
q = argminV∈S(p,q) L

∗(V, ft) (4.8)

is well defined, where L∗(V, ft) given in (4.4) is well defined and continuous, and

SE(ft(Y )|X) = span{Vt
q}⊥, (4.9)

that is, the conditional variance estimator of the transformed response ft(Y ) identifies
SE(ft(Y )|X).

1For l = 0 we have that t(0)(V, s0) =
�
Rq g(�BT s0 + �BTVr1)

0fX(s0 +Vr1)dr1 =
�
Rq fX(s0 +Vr1)dr1 does

not depend on f
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Proof of Theorem 20. By assumption (E.1) it holds Y = gcs(B
TX, #) with # ⊥⊥ X. Assume

f ∈ F for which assumption (E.4) holds and let �B be a basis of SE(ft(Y )|X), i.e. span{�B} =
SE(ft(Y )|X) ⊆ SY |X = span{B}. Then, by Theorem 19,

f(Y ) = g(�BTX) + #̃ (4.10)

with E(#̃ | X) = 0 and g twice continuously differentiable. Then

L̃(V, s0, f) = Var (f(Y ) | X ∈ s0 + span{V})
= Var

�
g(�BTX) | X ∈ s0 + span{V}

�
+ 2cov

�
#̃, g(�BTX) | X ∈ s0 + span{V}

�
+Var (#̃ | X ∈ s0 + span{V})

= Var
�
g(�BTX) | X ∈ s0 + span{V}

�
+ Var (#̃ | X ∈ s0 + span{V}) (4.11)

The covariance term in (4.11) vanishes since the sigma field generated by X is larger than
the one generated by X ∈ s0+span{V}, then the tower property of conditional expectation
yields

cov
�
#̃, g(�BTX) | X ∈ s0 + span{V}

�
= E

E(#̃ | X)� �� �
=0

g(�BTX) | X ∈ s0 + span{V}


−E
�
g(�BTX) | X ∈ s0 + span{V}

�
E

E(#̃ | X)� �� �
=0

| X ∈ s0 + span{V}
 = 0

The first term in (4.11) can be handled as in Theorem 8, i.e. Var
�
g(�BTX) | X ∈ s0 + span{V}

�
=

µ2(V, s0, f)−µ1(V, s0, f)
2 is well defined and continuous and attains the minimum of 0 for

all s0 ∈ supp(fX) if V ⊥ B̃. To obtain (4.6) and (4.7) , let E(#̃2 | X = x) = h(x). Then,

Var(#̃ | X ∈ s0 + span{V}) = E(#̃2 | X ∈ s0 + span{V})
= E(E(#̃2 | X)� �� �

=h(X)

| X ∈ s0 + span{V}) (4.12)

=

	
supp(fX)∩Rq

h(s0 +Vr1)fX(s0 +Vr1)dr1/t
(0)(V, s0, f) = h̃(V, s0, f)

where the first equality is due to E(#̃ | X) = 0, the second follows from the tower property
of the conditional expectation, the third from Theorem 8 (a), and the last is a defining
equation of h̃(V, s0, f). Therefore (4.4) is well defined and continuous by an analogously
argument as in the proof of Theorem 8. Moreover, (4.8) exists as the minimizer of a
continuous function over the compact set S(p, q).

Then

L∗(V, f) = Es0∼X



µ2(V, s0, f)− µ1(V, s0, f)

2
�
+ Es0∼X (Var (#̃ | X ∈ s0 + span{V}))

(4.13)
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where s0 ∼ X signifies that s0 is distributed as X and the expectation is with respect to
the distribution of s0. It now suffices to show that the second term on the right hand side
of (4.13) is constant with respect to V.
By the law of total variance,

Var(#̃) = E (Var(#̃ | X ∈ s0 + span{V})) + Var (E(#̃ | X ∈ s0 + span{V})) ⇐⇒
Var(#̃) = E (Var(#̃ | X ∈ s0 + span{V})) (4.14)

since E(#̃ | X ∈ s0 + span{V}) = E(E(#̃ | X)� �� �
=0

| X ∈ s0 + span{V}) = 0. Inserting (4.14)

into (4.13) obtains

L∗(V, ft) = E


µ2(V,X, ft)− µ1(V,X, ft)

2
�
+ Var(#̃) (4.15)

where E


µ2(V,X, ft)− µ1(V,X, ft)

2
�
is as in Theorem 9. Therefore, it is well defined,

continuous and attains the minimum of 0 for V ⊥ �B.

Remark. For a more detailed notation for obtaining (4.14), let X̃ be an independent copy
of X. Then the vector (XT , X̃T , #)T ∈ R2p+1 drives all the stochasticity in (4.14) and

E (Var(#̃ | X ∈ s0 + span{V})) = EX̃

�
Var(#̃|UT (X− X̃) = 0, X̃ = s0

�
where U ⊥ V.

In Chapter 2, model (1.18) was assumed; i.e., Y = g(BTX)+# with # ⊥⊥ X, which implies
SE(Y |X) = span{B} = SY |X. There we showed that the conditional variance estimator
(cve) can identify SE(Y |X) at the population level.

Theorem 20 extends this result to obtain that the conditional variance estimator (cve)
identifies the mean subspace SE(Y |X) also in models of the form Y = g(BTX) + #̃, where #̃
is simply conditionally centered and not necessarily independent from X. This allows cve
to apply to problems where the mean subspace is a proper subset of the central subspace,
i.e. SE(Y |X) � SY |X.
Next we define the ensemble conditional variance estimator (ecve) for a parametric

ensemble F which characterises the central subspace SY |X. Following the ensemble mini-
mum average variance estimation formulation in [YL11], we extend the original objective
function by integrating over the index random variable t ∼ FT in (4.3) that indexes the
ensemble F as [YL11].

Definition 21. The estimation equation of Ensemble Conditional Variance Estima-
tor with respect to the ensemble F on the population level is any basis Bp−q,F of span{Vq}⊥,
where

Vq = argminV∈S(p,q) LF (V). (4.16)

Theorem 22. Assume (E.1), (E.2), (E.3), (E.4), and supt∈ΩT
|ft(Y )| < M < ∞ hold.

Let F be a parametric ensemble with continuous functions that characterizes SY |X, with
k = dim(SY |X), and V ∈ S(p, q) defined in (1.1), with q = p − k. Then Vq in (4.16) is
well defined and

SY |X = span{Vq}⊥. (4.17)
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Proof of Theorem 22. Under assumptions (E.1), (E.2), and (E.3), (4.3) is well defined and
continuous by using supt∈ΩT

|ft(Y )| < M < ∞ and analogous arguments to those in the
proof of Theorem 8. Therefore, (4.16) exists as a minimizer of a continuous function over
the compact set S(p, q).

To show SY |X = span{Vq}⊥, let S̃ �= SY |X with dim(S̃) = dim(SY |X) = k, further let Z ∈
Rp×(p−k) be an orthonormal base of S̃⊥. Then we assume LF (Z) = minV ∈S(p,p−k) LF (V)
and show a contradiction.

By (4.8) and (4.9) in Theorem 20, L∗(V, ft), considered as a function from Rp×(p−kt),
is minimized by an orthonormal base of S⊥

E(ft(Y )|X) with dimensions p × (p − kt) where

kt = dim(SE(ft(Y )|X)) ≤ k. Then from (E.1), i.e. SE(ft(Y )|X) ⊆ SY |X = span{B} and the

proof of Theorem 20 we see that L∗(V, ft) as a function from Rp×(p−k) is minimized by an
orthonormal base U ∈ Rp×(p−k) of span{B}⊥.
Since S̃ = span{Z} �= span{U} = SY |X, we can rearrange the bases U = (U1,U2)

and Z = (Z1,Z2) such that span{U1} = span{Z1} and span{U2} �= span{Z2}. Since F
characterises SY |X, the set A = {t ∈ ΩT : span{U2} ⊆ SE(ft(Y )|X)} is non empty and by
(E.3) A is not a null set with respect to the probability measure FT .

Thus, we obtain the following contradiction

min
V ∈S(p,p−k)

LF (V) = LF (Z) = Et∼FT
(L∗(Z, ft))

=

	
A
L∗(Z, ft)� �� �
>L∗(U,ft)

dFT (t) +

	
Ac

L∗(Z, ft)� �� �
=L∗(U,ft)

dFT (t) > Et∼FT
(L∗(U, ft))

4.3 Estimation of ecve

Assume (Yi,X
T
i )

T
i=1,...,n is an i.i.d. sample from model (1.13). We use di(V, s0) as in (2.21)

and wi(V, s0) as in (2.22) and let

ȳl(V, s0, f) =
n�

i=1

wi(V, s0)f(Yi)
l for l = 1, 2 (4.18)

The sample based estimate of L̃(V, s0, f) is defined as

L̃n(V, s0, f) = ȳ2(V, s0, f)− ȳ1(V, s0, f)
2 (4.19)

The estimate of the objective function L∗
F (V, f) in (4.3) is defined as

L∗
n(V, f) =

1

n

n�
i=1

L̃n(V,Xi, f), (4.20)

where each data point Xi is a shifting point. For a parametric ensemble F = {ft : t ∈ ΩT }
and (tj)j=1,...,mn an i.i.d. sample from FT with limn→∞mn = ∞, the final estimate of the
objective function in (4.3) is given by

Ln,F (V) =
1

mn

mn�
j=1

L∗
n(V, ftj ) (4.21)
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Definition 23. The ecve is defined to be any basis of span{V̂q}⊥, where

V̂q = argminV∈S(p,q) Ln,F (V). (4.22)

The same algorithm as in section 2.6 is used to solve the optimization problem (4.22),
which requires the gradient of (4.21). Theorem 24 provides the gradient when a Gaussian
kernel is used.

Theorem 24. The gradient of L̃n(V, s0, f) in (4.19) is given by

∇VL̃n(V, s0, f) =
1

h2n

n�
i=1

(L̃n(V, s0, f)− (f(Yi)− ȳ1(V, s0, f))
2)widi∇Vdi(V, s0) ∈ Rp×q,

and the gradient of Ln,F (V) in (4.21) is

∇VLn,F (V) =
1

nmn

n�
i=1

mn�
j=1

∇VL̃n(V,Xi, ftj ).

The proof of Theorem 24 is analogue to the proof of Theorem 14.
For the choice of the bandwidth we use the same plug-in rule as in cve in Section 2.4,

see (2.36).

4.4 Consistency of ecve

The consistency of ecve derives from the consistency of cve [FB21a] that targets a specific
SE(ft(Y )|X) and the fact that we can recover SY |X from SE(ft(Y )|X) across all transformations
ft ∈ F = {ft : t ∈ ΩT } for an ensemble that characterizes SY |X. This is achieved in
sequential steps from Theorem 25, which is the main building block, to Theorem 28. The
proofs are technical and lengthy, and, thus, are given in Section 4.4.1.

Theorem 25. Assume conditions (E.1), (E.2), (E.4), (K.1), (K.2), (H.1) hold, a2n =

log(n)/nh
(p−q)/2
n = o(1), and an/h

(p−q)/2
n = O(1). Let F be a parametric ensemble such

that E(|#̃|l | X = x) is continuous for l = 1, . . . , 4, and the second conditional moment is
twice continuously differentiable, where #̃ is given by Theorem 19. Then, L∗

n(V, f), defined
in (4.20), converges uniformly in probability to L∗(V, f) in (4.4) for all f ∈ F ; i.e.,

sup
V∈S(p,q)

|L∗
n(V, f)− L∗(V, f)| −→ 0 in probability as n → ∞.

Next, Theorem 26 shows that ensemble conditional variance estimator is consistent for
SE(ft(Y )|X) for any transformation f .

Theorem 26. Under the same conditions as Theorem 25, the conditional variance esti-
mator span{�Bt

kt
} estimates SE(ft(Y )|X) consistently, for ft ∈ F . That is,

�P�Bt
kt

−PSE(ft(Y )|X)
� → 0 in probability as n → ∞.
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where �Bt
kt

is any basis of span{�Vt
kt
}⊥ with

�Vt
kt = argminV∈S(p,q) L

∗
n(V, ft).

with q = p− kt and kt = dim(SE(ft(Y )|X)).

A straightforward application of Theorem 26, using the identity function, obtains that
SE(Y |X) can be consistently estimated by cve. We present a short juxtaposition of the
assumptions in chapter 2 and 4. Assumption (A.1) corresponds to the more general as-
sumption (E.1) in Section 4.2, i.e. (E.1) is more general, and encapsulates the model
Y = g(BTX) + #̃ with E(#̃ | X) = 0, showing that cve is consistent even if the mean
subspace is a proper subset of the central subspace. (A.2), (A.3) correspond to assumption
(E.2), (E.4). Assumption (E.3) can be removed in the context of the trivial ensemble.
In total, if (A.1), (A.2), (A.3), and (A.4) hold, then (E.1), (E.2), and (E.4) hold for the
univariate ensemble containing the identity function

Theorem 27. Assume the conditions of Theorem 25 hold. Let F be a parametric ensemble
such that supt∈ΩT

|ft(Y )| < M < ∞ almost surely, and let the index random variable t ∼ FT

be independent from the data (Yi,Xi)i=1,...,n. Then Ln,F (V), defined in (4.21), converges
uniformly in probability to LF (V) in (4.3); i.e.,

sup
V∈S(p,q)

|Ln,F (V)− LF (V)| −→ 0 in probability as n → ∞.

The assumption supt∈ΩT
|ft(Y )| < M < ∞ in Theorem 27 is trivially satisfied by the ele-

ments of the characteristic and indicator ensembles. Further the assumption an/h
(p−q)/2
n =

O(1) used for the truncation step in the proof of Theorem 25 can be dropped since obviously
no truncation is needed.
The rate of convergence of mn is not characterized in Theorem 27. In the simulation

studies of Sections 4.5.2, we find that mn should be chosen to be very small relative to the
sample size n, roughly at the rate of log(n).

The consistency of the ensemble cve is shown in Theorem 28.

Theorem 28. Assume the conditions of Theorem 25 and (E.3) hold. Let F be a parametric
ensemble that characterizes SY |X and whose members satisfy supt∈ΩT

|ft(Y )| < M < ∞
almost surely. Also, assume the index random variable t ∼ FT is independent from the data
(Yi,Xi)i=1,...,n. Then, the ensemble conditional variance estimator (ecve) is a consistent

estimator for SY |X. That is, for any basis �Bp−q,F of span{�Vq}⊥, where �Vq is defined in
(4.22) with q = p− k and k = dim(SY |X),

�P�Bp−q,F
−PSY |X� −→ 0 in probability as n → ∞,

where PM denotes the orthogonal projection onto the range space of the matrix or linear
subspace M.
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4.4.1 Proofs

Road-map for the proof of consistency.

1. Theorem 19 shows that we can decompose the transformed response f(Y ) = g(�BTX)+
#̃ such that it fits into the framework of cve in chapter 2.

2. Theorem 20 shows that cve can identify SE(ft(Y )|X) on the population level, i.e.

SE(ft(Y )|X) = span{argminV∈S(p,q) L∗(V, ft)}⊥.
3. Theorem 22 states that the target function LF (V) of ecve identifies SY |X on the

population level if F characterises SY |X, i.e. SY |X = span{argminV∈S(p,q) LF (V)}⊥

4. Suppose f is a fixed arbitrary element of F and by Theorem 19

Ỹi = f(Yi) = g(�BTXi) + #̃i (4.23)

with span{�B} = SE(Ỹ |X) = SE(f(Y )|X). Condition (E.4) yields that g is twice contin-

uously differentiable, and E(|Ỹ |8) < ∞.

5. Since f is fixed, we suppress the dependence on the transformation f in the notation
of t(l)(V, s0, f) = t(l)(V, s0) given in (2.6), h̃(V, s0, f) = h̃(V, s0) given in (4.7),
L̃(V, s0, f) = L̃(V, s0) given in (4.2), and their corresponding sample counterparts
for convenience till the proof of Theorem 252. We set

t(l)n (V, s0) = t(l)n (V, s0, f) =
1

nh
(p−q)/2
n

n�
i=1

K

�
di(V, s0)

hn

�
Ỹ l
i , (4.24)

which is the sample version of (2.6) for l = 0, 1, 2. Eqn. (4.18) can be expressed as

ȳl(V, s0) =

n�
i=1

wi(V, s0)Ỹ
l
i =

t
(l)
n (V, s0)

t
(0)
n (V, s0)

. (4.25)

6. The strategy is to show uniform convergence in probability of t
(l)
n (V, s0) to its pop-

ulation counterpart t(l)(V, s0)
3 in lemma 34, i.e. supV∈S(p,q),s0∈supp(fX) |t(l)n (V, s0)−

t(l)(V, s0)| → 0 in probability.

This will be done via the inequality

sup
V∈S(p,q),s0∈supp(fX)

|t(l)n (V, s0)− t(l)(V, s0)| ≤ sup
V,s0

|t(l)n (V, s0)− E(t(l)n (V, s0))|

+ sup
V,s0

|E(t(l)n (V, s0))− t(l)(V, s0)|.

2To be precise, only in the proof of Theorem 27 the dependence on the transformation f is relevant since
before we just have an arbitrary but fixed function f .

3For l = 2 the population counterpart is t(2)(V, s0, f) + h̃(V, s0, f)t
(0)(V, s0) due to Ỹ 2

i = g(�BTXi)
2 +

2g(�BTXi)�̃i+�̃i
2, i.e. the cross term vanishes but the �̃i

2 term yields the additional h̃(V, s0, f)t
(0)(V, s0).
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The first term on the right hand side above deals with the random fluctuations of

t
(l)
n (V, s0) about its expectation. Lemma 32 shows that this converges to 0 using the
Bernstein inequality (4.30).

The second term on the right hand side is a bias, i.e. the difference between ex-
pectation and population quantity. This term will be handled in lemma 33 using
traditional techniques from kernel density estimation.

7. Lemmas 29, 30, and 31 are auxiliary lemmas.

8. Lemma 35 is an auxiliary lemma used in the proof of Theorem 36.

9. Theorem 36 yields that

ȳl(V, s0) = t(l)n (V, s0)/t
(0)
n (V, s0) → µl(V, s0) = t(l)(V, s0)/t

(0)(V, s0)

uniformly in probability4 by utilizing lemma 34, the continuity of t
(l)
n (V, s0) on

S(p, q)×{x : fX(x) > 0} due to the kernel being continuous by (K.1), and lemma 35.

Furthermore, it yields that (4.19) converges to (4.2), i.e. L̃n(V, s0) → L̃(V, s0),
uniformly in probability.

10. Theorem 37 is Theorem 2 of [Jen69] or [MMW+63, p. 40], which will be used in the
proof of Theorems 25 and 27.

11. Theorem 25 shows that the target function L∗
n(V, f) defined in (4.4) of cve converges

uniformly in V ∈ S(p, q) to L∗(V, f), defined in (4.4), in probability

12. Theorem 26 establish that cve estimates SE(ft(Y )|X) consistently by utilizing the
uniform convergence in probability of its target function L∗

n(V, f) defined in (4.4).

13. Theorem 27 establishes that the target function Ln,F (V) defined in (4.21) of ecve
converges uniformly in V ∈ S(p, q) to LF (V), defined in (4.3), in probability.

The proof uses the Markov inequality, Fatou’s lemma by means of the assumption
supt∈ΩT

|ft(Y )| < M < ∞, and Theorem 26.

14. Theorem 28 shows that ecve estimates SY |X consistently by utilizing the uniform
convergence in probability of its target function shown in Theorem 27.

First we introduce notation and auxiliary lemmas for the proof of Theorem 25. We suppose
all assumptions of Theorem 25 hold. We generically use the letter “C” to denote constants.

Lemma 29. Assume the conditions of Theorem 25 hold. For a continuous function g, we

let Zn(V, s0) =

�

i g(Xi)
lK(di(V, s0)/hn)

�
/(nh

(p−q)/2
n ). Then,

E (Zn(V, s0)) =

	
supp(fX)∩Rp−q

K(�r2�2)
	
supp(fX)∩Rq

g̃(r1, h
1/2
n r2)dr1dr2

4For l = 2 we again get the extra term, i.e. ȳ2(V, s0) → µ2(V, s0) + h̃(V, s0) as explained in point 6 of
the road-map.
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where g̃(r1, r2) = g(s0 +Vr1 +Ur2)
lfX(s0 +Vr1 +Ur2).

Proof of Lemma 29. By (1.3), �PU(x− s0)�2 = �Ur2�2 = �r2�2. Further

E (Zn(V, s0)) =
1

h
(p−q)/2
n

	
supp(fX)

g(x)lK(�PU(x− s0)/h
1/2
n �2)fX(x)dx

=
1

h
(p−q)/2
n

	
supp(fX)∩Rp−q

	
supp(fX)∩Rq

g(s0 +Vr1 +Ur2)
lK(�r2/h1/2n �2)×

fX(s0 +Vr1 +Ur2)dr1dr2

=

	
supp(fX)∩Rp−q

K(�r2�2)
	
supp(fX)∩Rq

g(s0 +Vr1 + h1/2n Ur2)
lfX(s0 +Vr1 + h1/2n Ur2)dr1dr2

where the substitution r̃2 = r2/h
1/2
n , dr2 = h

(p−q)/2
n dr̃2 was used to obtain the last equality.

Lemma 30. Assume the conditions of Theorem 25 hold. Then, there exists a constant
C > 0, such that

Var
�
nh(p−q)/2

n t(l)n (V, s0)
�
≤ nh(p−q)/2

n C

for n > n0 and t
(l)
n (V, s0), l = 0, 1, 2, in (4.24).

Proof of Lemma 30. Since a continuous function attains a finite maximum over a compact
set, supx∈supp(fX) |g(�BTx)| < ∞. Therefore,

|Ỹi| ≤ |g(�BTXi)|+ |#̃i| ≤ sup
x∈supp(fX)

|g(�BTx)|+ |#̃i| = C + |#̃i|

and |Ỹi|2l ≤
�2l

u=0



2l
u

�
Cu|#̃i|2l−u. Since (Ỹi,Xi) are i.i.d.,

Var
�
nh(p−q)/2

n t(l)n (V, s0)
�
= nVar

�
Ỹ lK

�
di(V, s0)

hn

��
≤ nE

�
Ỹ 2lK2

�
di(V, s0)

hn

��
= nE

�
|Ỹ |2lK2

�
di(V, s0)

hn

��
≤ n

2l�
u=0

�
2l

u

�
CuE

�
|#̃i|2l−uK2

�
di(V, s0)

hn

��

= n

2l�
u=0

�
2l

u

�
CuE

�
E(|#̃i|2l−u | Xi)K

2

�
di(V, s0)

hn

��
(4.26)

for l = 0, 1, 2. Let E(|#̃i|2l−u | Xi) = g2l−u(Xi) for a continuous (by assumption) func-
tion g2l−u(·) with finite moments for l = 0, 1, 2 by the compactness of supp(fX). Using
Lemma 29 with

Zn(V, s0) =
1

nh
(p−q)/2
n

�
i

g2l−u(Xi)K
2 (di(V, s0)/hn) ,
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where K2(·) fulfills (K.1), we calculate

E
�
E(|#̃i|2l−u | Xi)K

2

�
di(V, s0)

hn

��
= h(p−q)/2

n E(Zn(V, s0))

= h(p−q)/2
n

	
supp(fX)∩Rp−q

K2(�r2�2)×	
supp(fX)∩Rq

g2l−u(s0 +Vr1 + h1/2n Ur2)fX(s0 +Vr1 + h1/2n Ur2)dr1dr2 (4.27)

≤ h(p−q)/2
n C

since all integrands in (4.27) are continuous and over compact sets by (E.2) and the conti-
nuity of g2l−u(·) and K(·), so that the integral can be upper bounded by a finite constant
C. Inserting (4.27) into (4.26) yields

Var
�
nh(p−q)/2

n t(l)n (V, s0)
�
≤ nh(p−q)/2

n

2l�
u=0

�
2l

u

�
CuC� �� �

=C

= nh(p−q)/2
n C (4.28)

In Lemma 31 we show that di(V, s0) in (2.21) is Lipschitz in its inputs under assumption
(E.2).

Lemma 31. Under assumption (E.2) there exists a constant 0 < C2 < ∞ such that for all
δ > 0 and V,Vj ∈ S(p, q) with �PV − PVj� < δ and for all s0, sj ∈ supp(fX) ⊂ Rp with
�s0 − sj� < δ,

|di(V, s0)− di(Vj , sj)| ≤ C2δ

for di(V, s0) given by (2.21)

Proof of Lemma 31.

|di(V, s0)− di(Vj , sj)| ≤
!!�Xi − s0�2 − �Xi − sj�2

!!+!!�Xi − s0,PV(Xi − s0)� − �Xi − sj ,PVj (Xi − sj)�
!! = I1 + I2 (4.29)

where �·, ·� is the scalar product in Rp. We bound the first term on the right hand side of
(4.29) as follows using �Xi� ≤ supz∈supp(fX) �z� = C1 < ∞ with probability 1 by (E.2).

I1 =
!!�Xi − s0�2 − �Xi − sj�2

!! ≤ 2 |�Xi, s0 − sj�|+
!!�s0�2 − �sj�2

!!
≤ 2�Xi��s0 − sj�+ 2C1�s0 − sj� ≤ 2C1δ + 2C1δ = 4C1δ

by Cauchy-Schwartz and the reverse triangular inequality for which
!!�s0�2 − �sj�2

!! =
|�s0� − �sj�| (�s0�+ �sj�) ≤ �s0 − sj�2C1. The second term in (4.29) satisfies

I2 ≤
!!�Xi, (PV −PVj )Xi�

!!+ 2
!!�Xi,PVs0 −PVjsj�

!!+ !!�s0,PVs0� − �sj ,PVjsj�
!!

≤ �Xi�2�PV −PVj�+ 2�Xi�
  PV(s0 − sj) + (PV −PVj )sj

  + |�s0 − sj ,PVs0�|+!!�sj ,PVs0 −PVjsj�
!! ≤ C2

1δ + 2C1(δ + C1δ) + C1δ + C1(δ + C1δ) = 4C1δ + 4C2
1δ

Collecting all constants into C2 (i.e. C2 = 8C1 + 4C2
1 ) yields the result.
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To show Theorem 25 and Lemma 32, we use the Bernstein inequality [S.N27]. Let
{Zi, i = 1, 2, . . .}, be an independent sequence of bounded random variables with |Zi| ≤ b.
Let Sn =

�n
i=1 Zi, En = E(Sn) and Vn = Var(Sn). Then,

P (|Sn − En| > t) < 2 exp

�
− t2/2

Vn + bt/3

�
(4.30)

Assumption (K.2) yields
|K(u)−K(u�)| ≤ K∗(u�)δ (4.31)

for all u, u� with |u − u�| < δ ≤ L2 and K∗(·) is a bounded and integrable kernel function
[see [Han08]]. Specifically, if condition (1) of (K.2) holds, then K∗(u) = L11{|u|≤2L2}. If
condition (2) holds, then K∗(u) = L11{|u|≤2L2} + 1{|u|>2L2}|u− L2|−ν .

Let A = S(p, q)×supp(fX). In Lemma 32 and 33 we show that (4.24) converges uniformly
in probability to (2.6) by showing that the variance and bias terms vanish uniformly in
probability, respectively.

Lemma 32. Under the assumptions of Theorem 25,

sup
V×s0∈A

!!!t(l)n (V, s0)− E
�
t(l)n (V, s0)

�!!! = OP (an), l = 0, 1, 2 (4.32)

Proof of Lemma 32. The proof proceeds in 3 steps: (i) truncation, (ii) discretization by
covering A = S(p, q)×supp(fX), and (iii) application of Bernstein’s inequality (4.30). If the

function f in (4.23) is bounded, the truncation step and the assumption an/h
(p−q)/2
n = O(1)

are not needed.
(i) We let τn = a−1

n and truncate Ỹ l
i by τn as follows. We let

t
(l)
n,trc(V, s0) = (1/nh(p−q)/2

n )
�
i

K(�PU(Xi − s0)�2/hn)Ỹ l
i 1{|Ỹi|l≤τn} (4.33)

be the truncated version of (4.24) and R̃
(l)
n = (1/nh

(p−q)/2
n )

�
i |Ỹi|l1{|Ỹi|l>τn} be the re-

mainder of (4.24). Therefore R
(l)
n (V, s0) = t

(l)
n (V, s0)− t

(l)
n,trc(V, s0) ≤ M1R̃

(l)
n due to (K.1)

and

sup
V×s0∈A

!!!t(l)n (V, s0)− E
�
t(l)n (V, s0)

�!!! ≤ M1(R̃
(l)
n + ER̃(l)

n )

+ sup
V×s0∈A

!!!t(l)n,trc(V, s0)− E
�
t
(l)
n,trc(V, s0)

�!!!
(4.34)

By Cauchy-Schwartz and the Markov inequality, P(|Z| > t) = P(Z4 > t4) ≤ E(Z4)/t4, we
obtain

ER̃(l)
n =

1

h
(p−q)/2
n

E
�
|Ỹi|l1{|Ỹi|l>τn}

�
≤ 1

h
(p−q)/2
n

�
E(|Ỹi|2l)

�
P(|Ỹi|l > τn)

≤ 1

h
(p−q)/2
n

�
E(|Ỹi|2l)

�
E(|Ỹi|4l)
a−4
n

�1/2

= o(an), (4.35)
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where the last equality uses the assumption an/h
(p−q)/2
n = O(1) and the expectations are

finite due to (E.4) for l = 0, 1, 2. No truncation is needed for l = 0 or if Ỹi = f(Yi) ≤
supf∈F |f(Yi)| < C < ∞.
Therefore, the first two terms of the right hand side of (4.34) converge to 0 in probability

with rate an by (4.35) and Markov’s inequality. From this point on, Ỹi will denote the
truncated version Ỹi1{|Ỹi|≤τn} and we do not distinguish the truncated from the untruncated

tn(V, s0) since this truncation results in an error of magnitude an.
(ii) For the discretization step we cover the compact set A = S(p, q)×supp(fX) by finitely

many balls, which is possible by (E.2) and the compactness of S(p, q). Let δn = anhn and
Aj = {V : �PV − PVj� ≤ δn} × {s : �s − sj� ≤ δn} be a cover of A with ball centers

Vj × sj . Then, A ⊂ �N
j=1Aj and the number of balls can be bounded by N ≤ C δ−d

n δ−p
n

for some constant C ∈ (0,∞), where d = dim(S(p, q)) = pq− q(q+1)/2. Let V× s0 ∈ Aj .
Then by Lemma 31 there exists 0 < C2 < ∞, such that

|di(V, s0)− di(Vj , sj)| ≤ C2δn (4.36)

for di in (2.21). Under (K.2), which implies (4.31), inequality (4.36) yields!!!!K �
di(V, s0)

hn

�
−K

�
di(Vj , sj)

hn

�!!!! ≤ K∗
�
di(Vj , sj)

hn

�
C2an (4.37)

for V × s0 ∈ Aj and K∗(·) an integrable and bounded function.

Define r
(l)
n (Vj , sj) = (1/nh

(p−q)/2
n )

�n
i=1K

∗(di(Vj , sj)/hn)|Ỹi|l. For notational conve-
nience we next drop the dependence on l and j and observe that (4.37) yields

|t(l)n (V, s0)− t(l)n (Vj , sj)| ≤ C2anr
(l)
n (Vj , sj) (4.38)

Since K∗ fulfills (K.1) except for continuity, an analogous argument as in the proof of

Lemma 29 yields that E
�
r
(l)
n (Vj , sj)

�
< ∞. By subtracting and adding t

(l)
n (Vj , sj),

E(t(l)n (Vj , sj)), the triangular inequality, (4.38) and integrability of rln, we obtain!!!t(l)n (V, s0)− E
�
t(l)n (V, s0)

�!!! ≤ !!!t(l)n (V, s0)− t(l)n (Vj , sj)
!!!+ !!!E�

t(l)n (Vj , sj)− t(l)n (V, s0)
�!!!

+
!!!t(l)n (Vj , sj)− E

�
t(l)n (Vj , sj)

�!!! ≤ C2an (|rn|+ |E (rn) |) +
!!!t(l)n (Vj , sj)− E

�
t(l)n (Vj , sj)

�!!!
≤ C2an(|rn − E(rn)|+ 2|E(rn)|) +

!!!t(l)n (Vj , sj)− E
�
t(l)n (Vj , sj)

�!!!
≤ 2C3an + |rn − E(rn)|+

!!!t(l)n (Vj , sj)− E
�
t(l)n (Vj , sj)

�!!! (4.39)

for any constant C3 > C2E(r
(l)
n (Vj , sj)) and n such that C2an ≤ 1, since a2n = o(1), which

in turn yields that there exists 0 < C3 < ∞ such that (4.39) holds.
Since supx∈A f(x) = max1≤j≤N supx∈Aj

f(x) ≤ �N
j=1 supx∈Aj

f(x) for any cover of A

89



4 Ensemble Conditional Variance Estimation

and continuous function f ,

P( sup
V×s0∈A

|t(l)n (V, s0)− E
�
t(l)n (V, s0)

�
| > 3C3an)

≤
N�
j=1

P( sup
V×s0∈Aj

|t(l)n (V, s0)− E
�
t(l)n (V, s0)

�
| > 3C3an)

≤ N max
1≤j≤N

P( sup
V×s0∈Aj

|t(l)n (V, s0)− E
�
t(l)n (V, s0)

�
| > 3C3an) (4.40)

≤ N

�
max

1≤j≤N
P(|t(l)n (Vj , sj)− E

�
t(l)n (Vj , sj)

�
| > C3an) + max

1≤j≤N
P(|rn − E(rn)| > C3an)

�
≤

C δ−(d+p)

�
max

1≤j≤N
P(|t(l)n (Vj , sj)− E

�
t(l)n (Vj , sj)

�
| > C3an) + max

1≤j≤N
P(|rn − E(rn)| > C3an)

�
by the subadditivity of probability for the first inequality and (4.39) for the third inequality
above, where the last inequality is due to N ≤ C δ−d

n δ−p
n for a cover of A.

Finally, we bound the first and second term in the last line of (4.40) by the Bernstein
inequality (4.30). For the first term in the last line of (4.40), let Zi = Y l

i K(di(Vj , sj)/hn)

and Sn =
�

i Zi = nh
(p−q)/2
n t

(l)
n (Vj , sj). Then, Zi are independent with |Zi| ≤ b =

M1τn = M1/an by (K.1) and the truncation step (i). For Vn = Var(Sn), Lemma 30 yields

nh
(p−q)/2
n C ≥ Vn with C > 0, and set t = C3annh

(p−q)/2
n . The Bernstein inequality (4.30)

yields

P
�!!!t(l)n (Vj , sj)− E

�
t(l)n (Vj , sj)

�!!! > C3an

�
< 2 exp

� −t2/2

Vn + bt/3

�
≤

2 exp

�
− (1/2)C2

3a
2
nn

2h
(p−q)
n

nh
(p−q)/2
n C + (1/3)M1τnC3annh

(p−q)/2
n )

�
≤ 2 exp

�
−(1/2)C3 log(n)

C/C3 +M1/3

�
= 2n−γ(C3)

where a2n = log(n)/(nh
(p−q)/2
n ) and γ(C3) = C3 (2(C/C3 +M1/3))

−1 that is an increasing
function that can be made arbitrarily large by increasing C3.

For the second term in the last line of (4.40), set Zi = Y l
i K

∗(di(Vj , sj)/hn) in (4.30)
and proceed similarly to obtain

P
�!!!r(l)n (Vj , sj)− E

�
r(l)n (Vj , sj)

�!!! > C3an

�
< 2n

− (1/2)C3
C/C3+(1/3)M2 = 2n−γ(C3)

By (H.1), h
(p−q)/4
n ≤ 1 for n large and (H.2) implies 1/(nh

(p−q)/2
n ) ≤ 1 for n large, therefore

h−1
n ≤ n2/(p−q) ≤ n2 since p − q ≥ 1. Then, δ−1

n = (anhn)
−1 ≤ n1/2h−1

n h
(p−q)/4
n ≤ n5/2.

Therefore, (4.40) is smaller than 4C δ
−(d+p)
n n−γ(C3) ≤ 4Cn5(d+p)/2−γ(C3). For C3 large

enough, we have 5(d + p)/2 − γ(C3) < 0 and n5(d+p)/2−γ(C3) → 0. This completes the
proof.

If we assume |Ỹi| < M2 < ∞ almost surely, the requirement an/h
(p−q)/2
n = O(1) for the

bandwidth can be dropped and the truncation step of the proof of Lemma 32 is no longer
necessary.
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Lemma 33. Assume the conditions of Theorem 25, and


Rp−q K(�r2�2)dr2 = 1 hold, then

sup
V×s0∈A

!!!t(l)(V, s0) + 1{l=2}h̃(V, s0)t
(0)(V, s0)− E

�
t(l)n (V, s0)

�!!! = O(hn), l = 0, 1, 2

(4.41)
where t(l)(V, s0) and h̃(V, s0) are defined in Theorem 20.

Proof of Lemma 33. Let g̃(r1, r2) = g(�BT s0+ �BTVr1+ �BTUr2)
lfX(s0+Vr1+Ur2), where

r1, r2 satisfy the orthogonal decomposition (1.3).

E
�
t(0)n (V, s0)

�
= E (K(di(V, s0)/hn)) /h

(p−q)/2
n

E(t(1)n (V, s0)) = E
�
K(di(V, s0)/hn)g(�BTXi)

�
/h(p−q)/2

n

+ E

K(di(V, s0)/hn)E(#̃i | X)� �� �
=0

 /h(p−q)/2
n

E(t(2)n (V, s0)) = E
�
K(di(V, s0)/hn)g(�BTXi)

2
�
/h(p−q)/2

n

+ 2E

K(di(V, s0)/hn)g(�BTXi)E(#̃i | X)� �� �
=0

 /h(p−q)/2
n

+ E

�K(di(V, s0)/hn)E(#̃2i | X)� �� �
=h(Xi)

� /h(p−q)/2
n

Then

E
�
t(l)n (V, s0)

�
=

	
Rp−q

K(�r2�2)
	
Rp

g̃(r1, hn
1/2r2)dr1dr2 (4.42)

holds by Lemma 29 for l = 0, 1. Plugging in (4.42) the second order Taylor expansion
for some ξ in the neighborhood of 0, g̃(r1, hn

1/2r2) = g̃(r1, 0) + hn
1/2∇r2 g̃(r1, 0)

T r2 +
hnr

T
2 ∇2

r2 g̃(r1, ξ)r2, yields

E
�
t(l)n (V, s0)

�
=

	
Rq

g̃(r1, 0)dr1 +
�
hn

�	
Rq

∇r2 g̃(r1, 0)dr1

�T 	
Rp−q

K(�r2�2)r2dr2+

hn
1

2

	
Rp−q

K(�r2�2)
	
Rp

rT2 ∇2
r2 g̃(r1, ξ)r2dr1dr2 = t(l)(V, s0) + hn

1

2
R(V, s0)

since


Rq g̃(r1, 0)dr1 = t(l)(V, s0) and



Rp−q K(�r2�2)r2dr2 = 0 ∈ Rp−q due to K(� · �2)

being even. Let R(V, s0) =


Rp−q K(�r2�2)



Rp r

T
2 ∇2

r2 g̃(r1, ξ)r2dr1dr2. By (E.4) and (E.2),
|rT2 ∇2

r2 g̃(r1, ξ)r2| ≤ C�r2�2 for C = supx,y �∇2
r2 g̃(x,y)� < ∞, since a continuous function

over a compact set is bounded. Then, R(V, s0) ≤ CC4



Rp−q K(�r2�2)�r2�2dr2 < ∞ for

some C4 > 0, since the integral over r1 is over a compact set by (E.2).
For l = 2, Ỹ 2

i = g2i + 2gi#̃i + #̃2i with gi = g(�BTXi), and this case can be handled
completely analogue as for l = 0, 1. The term #̃2i yields the extra term

1{l=2}h̃(V, s0)t
(0)(V, s0) = 1{l=2}

	
supp(fX)∩Rq

h(s0 +Vr1)fX(s0 +Vr1)dr1
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with h(x) = E(#̃2 | X = x) given in Theorem 20.

Lemma 34 follows directly from Lemmas 32 and 33 and the triangle inequality.

Lemma 34. Suppose (E.1), (E.2), (E.3), (E.4), (K.1), (K.2), (H.1) hold. If a2n =

log(n)/nh
(p−q)/2
n = o(1), and an/h

(p−q)/2
n = O(1), then for l = 0, 1, 2

sup
V×s0∈A

!!!t(l)(V, s0) + 1{l=2}h̃(V, s0)t
(0)(V, s0)− t(l)n (V, s0)

!!! = OP (an + hn)

Next we present lemma 35 that will be used in the proof of Theorem 36.

Lemma 35. Let A ⊆ X be a bounded set and fn(x), from an Euclideaqn space X to R, be
a sequence of continuous functions. Further let An ↑ A be an increasing sequence of sets
such that the Hausdorff distance |An −A| → 0 for n → ∞. Then

lim
n→∞ sup

x∈An

fn(x) = lim
n→∞ sup

x∈A
fn(x)

Proof of lemma 35. Since An ⊆ A, we have supx∈An
fn(x) ≤ supx∈A fn(x). For the other

inequality, let ν > 0 and denote sn = supx∈An
fn(x) and s∗n = supx∈A fn(x). Note that by

the continuity of fn and definition of the supremum there exists a sequence x∗m,n ∈ A such
that fn(x

∗
m,n) ↑ s∗n for m → ∞. Especially there is a integer M such that |fn(x∗m,n)− s∗n| <

ν/2 for m > M . Fix some m > M and write x∗n = x∗m,n.
Moreover, by the continuity of fn at x∗n, there is a δ > 0 such that |fn(x)−fn(x

∗
n)| < ν/2

for all x with |x−x∗n| < δ. Then choose n so large that |An−A| < δ, therefore there exists
xn ∈ An such that |xn−x∗n| < δ and by the continuity of fn it holds s∗n−fn(xn) = |fn(x∗n)−
fn(xn)| < ν. Rearranging yields supx∈A fn(x)− ν = s∗n − ν < fn(xn) ≤ supx∈An

fn(x) and
since ν was arbitrary the other inequality follows, completing the proof.

Theorem 36. Suppose (E.1), (E.2), (E.3), (E.4), (K.1), (K.2), (H.1) hold. Let a2n =

log(n)/nh
(p−q)/2
n = o(1), an/h

(p−q)/2
n = O(1), then

sup
V×s0∈A

!!!ȳl(V, s0)− µl(V, s0)− 1{l=2}h̃(V, s0)
!!! = oP (1), l = 1, 2

and
sup

V×s0∈A

!!!L̃n(V, s0)− L̃(V, s0)
!!! = oP (1) (4.43)

where ȳl(V, s0), µl(V, s0), L̃n(V, s0) and L̃(V, s0) are defined in (4.18), (2.5), (4.19) and
(4.6), respectively.

Proof of Theorem 36. Let δn = infV×s0∈An t
(0)(V, s0), where t(0)(V, s0) is defined in (2.6),

and An = S(p, q) × {x ∈ supp(fX) : |x − ∂supp(fX)| ≥ bn}, where ∂C denotes the
boundary of the set C and |x−C| = infr∈C |x− r|, for a sequence bn → 0 so that δ−1

n (an+
hn) → 0 for any bandwidth hn that satisfies the assumptions. Note that t(0)(V, s0) =

supp(fX)∩Rq fX(s0 + Vr1)dr1 > 0 if fX(s0) > 0 by the convex support of the continuous

density (see proof of Theorem 8). t(0)(V, s0) can only be 0 if fX(s0) = 0, i.e. s0 ∈ ∂supp(fX)
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and the directions V are tangential to the boundary (i.e. think of the support being a circle
and s0 being on the boundary and V tangential, then t(0)(V, s0) = 0 since we integrate
only over one boundary point of the support of fX), therefore δn → 0 as n → ∞. Then,

ȳl(V, s0) =
t
(l)
n (V, s0)

t
(0)
n (V, s0)

=
t
(l)
n (V, s0)/t

(0)(V, s0)

t
(0)
n (V, s0)/t(0)(V, s0)

(4.44)

We consider the numerator and enumerator of (4.44) separately. By Lemma 34

sup
V×s0∈An

!!!!! t(0)n (V, s0)

t(0)(V, s0)
− 1

!!!!! ≤ supA |t(0)n (V, s0)− t(0)(V, s0)|
infAn t

(0)(V, s0)
= OP (δ

−1
n (an + hn))

sup
V×s0∈An

!!!!! t(l)n (V, s0)

t(0)(V, s0)
− µl(V, s0)

!!!!! ≤ supA |t(l)n (V, s0)− t(l)(V, s0)|
infAn t

(0)(V, s0)
= OP (δ

−1
n (an + hn)),

Then An ↑ A = S(p, q)×supp(fX) and Corollary 5.3 of [Tuz20], yield An → A with respect

to the Hausdorff distance, by (K.1) t
(l)
n is continuous, by the proof of Theorem 8 t(l) is

continuous, and applying Lemma 35, yields

lim
n→∞ sup

V×s0∈An

!!!!! t(l)n (V, s0)

t(0)(V, s0)
− µl(V, s0)

!!!!! = lim
n→∞ sup

V×s0∈A

!!!!! t(l)n (V, s0)

t(0)(V, s0)
− µl(V, s0)

!!!!!
Substituting in (4.44), we obtain uniformly in V, s0

ȳl(V, s0) =
t
(l)
n (V, s0)/t

(0)(V, s0)

t
(0)
n (V, s0)/t(0)(V, s0)

=
µl +OP (δ

−1
n (an + hn))

1 +OP (δ
−1
n (an + hn))

= µl +OP (δ
−1
n (an + hn)).

The case l = 2, can be handled analogously and by Lemma 34 yields the extra term

ȳ2(V, s0) = t
(2)
n (V, s0)/t

(0)
n (V, s0) →

�
t(2)(V, s0) + h̃(V, s0)t

(0)(V, s0)
�
/t(0)(V, s0) = µ2(V, s0)+

h̃(V, s0). This shows the first statement of Theorem 36, i.e. ȳl(V, s0) converges uniformly
in probability to its population counterpart.
Further, to obtain the second statement (4.43), note that

sup
V,s0

|ȳ1(V, s0)
2 − µ1(V, s0)

2| ≤ sup
V,s0

|ȳ1(V, s0)− µ1(V, s0)| sup
V,s0

|ȳ1(V, s0) + µ1(V, s0)|

where the first term on the right hand side goes to 0 in probability by the first statment of
the theorem. The second term is bounded in probability since

µ1(V, s0) =



g(s0 +Vr)fX(s0 +Vr)dr


fX(s0 +Vr)dr
≤ sup

x∈supp(fX)
|g(x)| = C < ∞

with a finite constant C by continuity of g (E.4) and compact support of the density
(E.2). By the first statement ȳ1(V, s0) → µ1(V, s0) uniformly in probability, therefore
supV,s0 |ȳ1(V, s0)| ≤ C + δ with high probability if n is sufficiently large.
Then (4.43) follows from (4.6).
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Next we present Theorem 37 given in Theorem 2 of [Jen69] in [MMW+63, p. 40], which
will be used in the proof of Theorems 25 and 27.

Theorem 37. Let f be a function on X × Θ where X is a Euclidean space and Θ is a
compact subset of a Euclidean space. Let f(x,θ) be a continuous function of θ for each
x and a measurable function of x for each θ . Assume also that f(x,θ) < h(x) for all x
and θ, where h is integrable with respect to a probability distribution function F on X . Let
X1, . . . ,Xn be an independent and identical distributed sample of F , then

1

n

n�
j=1

f(Xi,θ) −→ E (f(X1,θ)) uniformly over θ ∈ Θ almost surely as n → ∞

Proof of Theorem 25. By (4.20) and (4.3),

|L∗
n(V, f)− L∗(V, f)| ≤

!!!!! 1n �
i

�
L̃n(V,Xi, f)− L̃(V,Xi, f)

�!!!!!
+

!!!!! 1n �
i

�
L̃(V,Xi, f)− E(L̃(V,X, f))

�!!!!! (4.45)

By Theorem 36,!!!!! 1n �
i

L̃n(V,Xi, f)− L̃(V,Xi, f)

!!!!! ≤ sup
V×s0∈A

!!!L̃n(V, s0, f)− L̃(V, s0, f)
!!! = oP (1) (4.46)

For the second term in (4.45) we apply Theorem 37 with f(Xi,V) = L̃(V,Xi, f) where
V ∈ S(p, q) ⊆ Rpq is a compact subset of Euclidean space. By Theorems 19 and 20
µ2(V, s0, f)− µ1(V, s0, f)

2 + Var(#̃ | X ∈ s0 + span{V}), and by (E.2) and (E.4) we have
C = supx∈supp(fX) |g(x)|l < ∞ since a continuous function attains a finite maximum over
a compact set. Therefore,

µl(V, s0, f) =



g(s0 +Vr)lfX(s0 +Vr)dr


fX(s0 +Vr)dr
≤ C < ∞

, and analogue for

Var(#̃ | X ∈ s0+span{V}) =


supp(fX)∩Rq h(s0 +Vr1)fX(s0 +Vr1)dr1


Rq fX(s0 +Vr)dr
≤ sup

x∈supp(fX)
|h(x)| < ∞

with h(x) continuous by the assumptions of Theorem 25. Therefore L̃(V,Xi, f) is upper
bounded by a constant which is integrable and therefore Theorem 37 yields that the second
term in (4.45) converges uniformly to 0 almost surely.

In total, supV∈S(p,q) |L∗
n(V, f)− L∗(V, f)| ≤ oP (1) which implies Theorem 25.
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Proof of Theorem 26. We apply [Ame85, Thm 4.1.1] to obtain consistency of the condi-
tional variance estimator. This theorem requires three conditions that guarantee the con-
vergence of the minimizer of a sequence of random functions L∗

n(PV, ft) to the minimizer
of the limiting function L∗(PV, ft); i.e., Pspan{�Bt

kt
}⊥ = argminL∗

n(PV, f) → Pspan{B}⊥ =

argminL∗(PV, ft) in probability. To apply the theorem three conditions have to be met:
(1) The parameter space is compact; (2) L∗

n(PV, ft) is continuous in PV and a measurable
function of the data (Yi,X

T
i )i=1,...,n, and (3) L∗

n(PV, ft) converges uniformly to L∗(PV, ft)
and L∗(PV, ft) attains a unique global minimum at S⊥

E(ft(Y )|X).

Since L∗
n(V, ft) depends on V only through PV = VVT , L∗

n(V, ft) can be considered
as functions on the Grassmann manifold, which is compact, and the same holds true for
L∗(V, ft) by (2.19). Further, L∗

n(V, ft) is by definition a measurable function of the data
and continuous in V if a continuous kernel, such as the Gaussian, is used. Theorem 25
obtains the uniform convergence and Theorem 20 that the minimizer is unique when L(V)
is minimized over the Grassmann manifold G(p, q), since SE(ft(Y )|X) = span{�B} is uniquely

identifiable and so is span{�B}⊥ (i.e. �P
span{�Bt

kt
} − P

span{�B}� = ��Bt
kt
(�Bt

kt
)T − �B�BT � =

�(Ip− �B�BT )− (Ip− �Bt
kt
(�Bt

kt
)T )� = �P

span{�B}⊥ −P
span{�Bt

kt
}⊥�). Thus, all three conditions

are met and the result is obtained.

Proof of Theorem 27. Let (tj)j=1,...,mn be an i.i.d. sample from FT and write

|Ln,F (V)− LF (V)| =
!!!!!! 1

mn

mn�
j=1



L∗
n(V, ftj )− L∗(V, ftj )

�!!!!!!
+

!!!!!! 1

mn

mn�
j=1



L∗(V, ftj )− Et∼FT

(L∗(V, ft)
�!!!!!! (4.47)

Then, supV∈S(p,q) |L∗
n(V, ft)− L∗(V, ft)| ≤ 8M2, by the assumption supt∈ΩT

|ft(Y )| <
M < ∞, and the triangle inequality. That is, L∗

n(V, ft) estimates a variance of a bounded
response ft(Y ) ∈ [−M,M ] and is therefore bounded by the squared range 4M2 of ft(Y ).
The same holds true for L∗(V, ft). Further, 8M2 is an integrable dominant function so
that Fatou’s Lemma applies.

Consider the first term on the right hand side of (4.47) and let δ > 0. By Markov’s and
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triangle inequalities and Fatou’s Lemma,

lim sup
n

P

 sup
V∈S(p,q)

!!!!!! 1

mn

mn�
j=1

L∗
n(V, ftj )− L∗(V, ftj )

!!!!!! > δ


≤ 1

δ
lim sup

n
EFT

E( sup
V∈S(p,q)

!!!!!! 1

mn

mn�
j=1

L∗
n(V, ftj )− L∗(V, ftj )

!!!!!!
 :Markov inequality

≤ 1

δ
lim sup

n
EFT

 1

mn

mn�
j=1

E( sup
V∈S(p,q)

|L∗
n(V, ftj )− L∗(V, ftj )|


=

1

δ
lim sup

n
EFT

�
E( sup

V∈S(p,q)
|L∗

n(V, ftj )− L∗(V, ftj )|)
�

≤ 1

δ
EFT

�
E(lim sup

n
sup

V∈S(p,q)
|L∗

n(V, ftj )− L∗(V, ftj )|
�

=
1

δ
EFT

(E(0)) = 0

since by Theorem 25 it holds lim supn supV∈S(p,q) |L∗
n(V, ftj )− L∗(V, ftj )| = 0.

For the second term on the right hand side of (4.47) we apply Theorem 37 with the
function L∗(V, ftj ). Here V ∈ S(p, q) = Θ ⊆ Rpq, by supt∈ΩT

|ft(Y )| < M < ∞ and
an analogous argument as for the first term in (4.47), Zj(V) = L∗(V, ftj ) < 4M2 which
is integrable. Further, since tj are an i.i.d. sample from FT , Zj(V) is a i.i.d. sequence
of random variables, Zj(V) is continuous in V by Theorem 20 and the parameter space
S(p, q) is compact. Then by Theorem 37,

sup
V∈S(p,q)

!!!!!! 1

mn

mn�
j=1

L∗(V, ftj )− Et∼FT
(L∗(V, ft))

!!!!!! −→ 0 almost surely as n → ∞

if limn→∞mn = ∞.
Putting everything together it follows that supV∈S(p,q) |Ln,F (V)− LF (V)| → 0 in prob-

ability as n → ∞.

Proof of Theorem 28. The proof is directly analogous to the proof of Theorem 26. The
uniform convergence of the target function Ln,F (V) is obtained by Theorem 27. The
minimizer over Gr(p, q) and its uniqueness derive from Theorem 22.

4.5 Simulations

4.5.1 Simulation Study: Influence of mn on ecve

In this section we study, via a sumlation study, the influence of mn, i.e. the number of
functions of the ensemble F used given in (4.21), on the accuracy of ensemble conditional
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variance estimation. In Theorem 27 and 28 the rate of mn → ∞ is unspecified. Therefore
we consider the 2-dimensional regression model

Y = (bT
2 X) + (0.5 + (bT

1 X)2)#, (4.48)

where p = 10, k = 2,X ∼ N(0, I10), # ∼ N(0, 1) independent ofX, b1 = (1, 0, . . . , 0)T ∈ Rp,
and b2 = (0, 1, 0, . . . , 0)T ∈ Rp. Therefore, SE(Y |X) = span{b2} � SY |X = span{B}, with
B = (b1,b2).

The sample size is n = 300 and we varym over a range of values,m ∈ {4, 8, 10, 26, 50, 76, 100}
for the indicator, characteristic, monomial, and Box-Cox ensemble. That is

• Indicator ensemble: Fm,Indicator = {1{x≥qj} : j = 1, . . . ,m}, where qj is the j/(m +
1)th empirical quantile of (Yi)i=1,...,n

• Fourier ensemble: Fm,Fourier = {sin(jx) : j = 1, . . . ,m/2}∪{cos(jx) : j = 1, . . . ,m/2}
• Monomial ensemble: Fm,Monom = {xj : j = 1, . . . ,m}
• BoxCox ensemble: Fm,BoxCox = {(xtj − 1)/tj : tj = 0.1 + 2(j − 1)/(m − 1), j =
1, . . . ,m− 1} ∪ {log(x)}.

For each ensemble we form the ensemble conditional variance estimator and the weighted
version (see Section 2.2.2). For further comparison the main competitor csMAVE is also
included. The results of 100 replication for each method and each m are displayed in Fig-
ure 4.1. For the Fourier basis fewer basis function give the best performance, the indicator
and BoxCox ensemble is quite robust against varying m, and for the monomial ensemble
the results get rapidly worse if m is increased. Further the weighted version improves the
accuracy for all ensembles and F4,Fourier weighted, F8,Indicator weighted, F4,BoxCox weighted are
on par or slightly more accurate than csMAVE.

In sum, the simulation results support a choice of a small m number of basis functions.
Based on this, we set the default value of m to

mn =

�
�log(n)�, if �log(n)� even

�log(n)�+ 1, if �log(n)� odd
(4.49)

in the following simulations in Section 4.5.

4.5.2 Simulation Study: Demonstrating consistency

We continue by exploring the consistency of the conditional variance estimator (cve) and
ensemble conditional variance estimator (ecve) through a simulation study using the same
model (4.48).
We apply seven estimation methods, the first five targeting the central subspace SY |X

and the last two SE(Y |X), as follows.

• SY |X
I: Fourier is ecve: Fmn,Fourier = {sin(jx) : j = 1, . . . ,mn/2} ∪ {cos(jx) : j =

1, . . . ,mn/2}
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Figure 4.1: Box plots of 100 replications of estimation error from model (4.48) with n = 300
over |F| = m = (2, 4, 8, 10, 26, 50, 76, 100) for the different ensembles
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II: Indicator is ecve: Fmn,Indicator = {1{x≥qj} : j = 1, . . . ,mn}, where qj is the
j/(mn + 1)th empirical quantile of (Yi)i=1,...,n

III: Monom is ecve: Fmn,Monom = {xj : j = 1, . . . ,mn}
IV: BoxCox is ecve: Fmn,BoxCox = {(xtj − 1)/tj : tj = 0.1 + 2(j − 1)/(m− 1), j =

1, . . . ,mn − 1} ∪ {log(x)}.
V: csMAVE from [WX08]

• SE(Y |X)

VI: cve of Chapter 2

VII: meanMAVE from [XTLZ02]

The simulation is performed as follows. For a given sample size n, 100 i.i.d samples
(Yi,X

T
i )i=1,...,n are drawn from (4.48). For the first five methods we set k = 2 and estimate

B ∈ R10×2, and for the last two, we set k = 1 and estimate b2 ∈ R10×1 from sample
j = 1, . . . , 100 and errj,n = �B̂B̂T − BBT �/(2k)1/2 is calculated. This is repeated for
sample sizes n = 100, 200, 400, 600, 800, 1000. Figure 4.2 displays the distribution of errj,n
for increasing n for the seven methods. The plots indicate that as the sample size increases
all methods, except the ecve with Monomial and BoxCox ensemble, yield estimates that
are increasingly accurate for their target. In particular, the central subspace methods
Fourier, Indicator ensemble, and csMAVE estimate SY |X = span{B} consistently and both
mean subspace methods estimate SE(Y |X) = span{b2} consistently.

4.5.3 Simulations to evaluate estimation accuracy

In this section the performance of the ecve is studied in simulations. We consider seven
models, (M1-M7) defined in Table 4.1, three different sample sizes {100, 200, 400}, and three
different distributions of the predictor vector X = Σ1/2Z ∈ Rp, where Σ = (Σij)i,j=1,...,p,
Σi,j = 0.5|i−j|. Throughout, p = 10, B are the first k columns of Ip, and # ∼ N(0, 1)
independent of X. As in [WX08], we consider three distributions for Z ∈ Rp: (I) N(0, Ip),
(II) p-dimensional uniform distribution on [−√

3,
√
3]p, i.e. all components of Z are inde-

pendent and uniformly distributed , and (III) a mixture-distribution N(0, Ip) + µ, where
µ = (µ1, . . . , µp)

T ∈ Rp with µj = 2, µk = 0, for k �= j, and j is uniformly distributed on
{1, . . . , p}.

The simple and weighted [see Section 2.2.2] Fourier and Indicator ensembles are used
to form four ensemble conditional variance estimators (ECVE). The monomial and BoxCox
ensembles were also used but did not give satisfactory results and are not reported. From
these two ensembles four ECVE estimators are formed and compared against the reference
method csMAVE [WX08], which is implemented in the R package MAVE. The source code
for conditional variance estimation and its ensemble version is available at https://git.
art-ist.cc/daniel/CVE or in the R-package CVarE.

We set q = p − k and generate r = 100 replicates of models M1-M7 with the specified
distribution of X and sample size n. We estimate B using the four ECVE methods and
csMAVE. The accuracy of the estimates is assessed using err = �PB − P�B�2/√2k ∈ [0, 1],
where PB = B(BTB)−1BT is the orthogonal projection matrix on span{B}. The factor
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Figure 4.2: Estimation error distribution of model (4.48) plotted over n =
(100, 200, 400, 600, 800, 1000) for the seven (I-VII) methods

Table 4.1: Models

Name Model SE(Y |X) SY |X k

M1 Y = 1
bT

1 X
+ 0.2# span{b1} span{b1} 1

M2 Y = cos(2bT
1 X) + cos(bT

2 X) + 0.2# span{b1,b2} span{b1,b2} 2
M3 Y = (bT

2 X) + (0.5 + (bT
1 X)2)# span{b2} span{b1,b2} 2

M4 Y =
bT

1 X

0.5+(1.5+bT
2 X)2

+ (|bT
1 X|+ (bT

2 X)2 + 0.5)# span{b1,b2} span{b1,b2} 2

M5 Y = bT
3 X+ sin(bT

1 X(bT
2 X)2)# span{b3} span{b1,b2,b3} 3

M6 Y = 0.5(bT
1 X)2# span{0} span{b1} 1

M7 Y = cos(bT
1 X− π) + cos(2bT

1 X)# span{b1} span{b1} 1
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4 Ensemble Conditional Variance Estimation

√
2k normalizes the distance, with values closer to zero indicating better agreement and val-

ues closer to one indicating strong disagreement. The results are displayed in Tables 4.2-4.8.
In M1, which is taken from [WX08], the mean subspace agrees with the central subspace,
i.e. SE(Y |X) = SY |X, but due to the unboundedness of the link function g(x) = 1/x most
mean subspace estimation methods, such as SIR, mean MAVE and CVE, fail. In contrast,
all 4 ensemble CVE methods and csMAVE succeed in identifying the minimal dimension
reduction subspace, with ensemble CVE performing slightly better, as can be seen in Ta-
ble 4.2. In particular, Fourier is the best performing method. M2, is a two dimensional
mean subspace model, i.e. SE(Y |X) = SY |X, and in Table 4.3 we see that csMAVE is the
best performing method. M3 is the same as model (4.48) and here the mean subspace is
a proper subset of the central subspace. In Table 4.4 we see that Indicator weighted

and csMAVE are the best performers and are roughly on par. In M4, the two dimensional
mean subspace, which determines also the heteroskedasticity, agrees with the central sub-
space. In Table 4.5 we see that this model is quite challenging for all methods, and only
Indicator weighted and csMAVE give satisfactory results, with Indicator weighted the
clear winner.
In M5, the heteroskedasticity is induced by an interaction term, and the three dimensional

central subspace model is a proper superset of the one dimensional mean subspace. In
Table 4.6 we see that M5 is quite challenging for all five methods, therefore we increase the
sample size n to 800. For M5, the two weighted ensemble conditional variance estimators
are the best performing methods followed by csMAVE.
M6 is a one dimensional pure central subspace model, whereas the mean subspace is 0.

In Table 4.7, we see that for n = 100 the two weighted ECVEs are the best performing
methods and for higher sample sizes csMAVE is slightly more accurate than the ECVE
methods.

In M7 the one dimensional mean subspace agrees with the central subspace, i.e. SE(Y |X) =

SY |X, and the conditional first and second moments, E(Y l | X) for l = 1, 2, are highly
nonlinear and periodic functions of the sufficient reduction. In Table 4.8, we see that all
ensemble conditional variance estimators clearly outperform csMAVE.

4.6 Data Analysis

We apply the ensemble conditional variance estimator and csMAVE to the Boston Housing

data set. This data set has been extensively used as a benchmark for assessing regression
methods [see, for example, [JWHT13]], and is available in the R-package mlbench. The data
contains 506 instances of 14 variables from the 1970 Boston census, 13 of which are contin-
uous. The binary variable chas, indexing proximity to the Charles river, is omitted from
the analysis since ensemble conditional variance estimation operates under the assump-
tion of continuous predictors. The target variable is the median value of owner-occupied
homes, medv, in $1,000. The 12 predictors are crim (per capita crime rate by town), zn
(proportion of residential land zoned for lots over 25,000 sq.ft), indus (proportion of non-
retail business acres per town), nox (nitric oxides concentration (parts per 10 million)),
rm (average number of rooms per dwelling), age (proportion of owner-occupied units built
prior to 1940), dis (weighted distances to five Boston employment centres), rad (index of
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4 Ensemble Conditional Variance Estimation

Table 4.2: Mean and standard deviation (in parenthesis) of estimation errors of M1

Distribution n Fourier Fourier weighted Indicator Indicator weighted csMAVE

I 100 0.172 0.201 0.248 0.265 0.210
(0.047) (0.054) (0.064) (0.063) (0.063)

I 200 0.120 0.142 0.182 0.197 0.128
(0.029) (0.037) (0.045) (0.049) (0.037)

I 400 0.079 0.091 0.126 0.136 0.080
(0.020) (0.024) (0.037) (0.040) (0.024)

II 100 0.174 0.196 0.241 0.254 0.193
(0.038) (0.049) (0.055) (0.056) (0.059)

II 200 0.110 0.127 0.170 0.182 0.121
(0.031) (0.033) (0.043) (0.045) (0.036)

II 400 0.078 0.091 0.122 0.132 0.079
(0.021) (0.026) (0.031) (0.033) (0.020)

III 100 0.187 0.218 0.256 0.263 0.204
(0.045) (0.053) (0.060) (0.058) (0.066)

III 200 0.118 0.137 0.171 0.179 0.118
(0.031) (0.038) (0.043) (0.042) (0.033)

III 400 0.082 0.101 0.127 0.132 0.079
(0.020) (0.029) (0.031) (0.032) (0.022)

Table 4.3: Mean and standard deviation (in parenthesis) of estimation errors of M2

Distribution n Fourier Fourier weighted Indicator Indicator weighted csMAVE

I 100 0.670 0.601 0.629 0.582 0.575
(0.089) (0.135) (0.130) (0.140) (0.176)

I 200 0.478 0.388 0.436 0.407 0.219
(0.201) (0.152) (0.193) (0.162) (0.136)

I 400 0.226 0.201 0.231 0.236 0.098
(0.153) (0.074) (0.127) (0.111) (0.025)

II 100 0.663 0.652 0.687 0.658 0.544
(0.097) (0.104) (0.057) (0.080) (0.176)

II 200 0.525 0.468 0.601 0.539 0.182
(0.171) (0.171) (0.127) (0.148) (0.096)

II 400 0.267 0.307 0.375 0.357 0.087
(0.081) (0.146) (0.154) (0.141) (0.021)

III 100 0.657 0.590 0.530 0.542 0.603
(0.104) (0.148) (0.155) (0.148) (0.193)

III 200 0.421 0.367 0.306 0.336 0.240
(0.203) (0.165) (0.147) (0.151) (0.193)

III 400 0.170 0.170 0.144 0.170 0.089
(0.110) (0.071) (0.053) (0.063) (0.019)
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Table 4.4: Mean and standard deviation (in parenthesis) of estimation errors of M3

Distribution n Fourier Fourier weighted Indicator Indicator weighted csMAVE

I 100 0.744 0.657 0.668 0.561 0.602
(0.056) (0.113) (0.083) (0.142) (0.147)

I 200 0.702 0.472 0.559 0.369 0.374
(0.061) (0.177) (0.147) (0.155) (0.148)

I 400 0.621 0.252 0.408 0.223 0.203
(0.148) (0.102) (0.177) (0.064) (0.061)

II 100 0.751 0.698 0.683 0.570 0.635
(0.041) (0.076) (0.080) (0.136) (0.136)

II 200 0.719 0.521 0.584 0.355 0.387
(0.040) (0.163) (0.111) (0.097) (0.144)

II 400 0.686 0.267 0.452 0.252 0.201
(0.079) (0.084) (0.153) (0.052) (0.045)

III 100 0.739 0.676 0.654 0.563 0.571
(0.073) (0.106) (0.105) (0.150) (0.120)

III 200 0.704 0.546 0.523 0.368 0.330
(0.048) (0.162) (0.171) (0.153) (0.131)

III 400 0.616 0.252 0.297 0.202 0.179
(0.151) (0.113) (0.106) (0.055) (0.042)

Table 4.5: Mean and standard deviation (in parenthesis) of estimation errors of M4

Distribution n Fourier Fourier weighted Indicator Indicator weighted csMAVE

I 100 0.836 0.794 0.774 0.713 0.803
(0.072) (0.076) (0.074) (0.105) (0.087)

I 200 0.820 0.733 0.747 0.545 0.685
(0.066) (0.094) (0.060) (0.150) (0.116)

I 400 0.782 0.633 0.710 0.364 0.534
(0.059) ( 0.142) (0.081) (0.129) (0.155)

II 100 0.839 0.828 0.788 0.751 0.818
(0.067) (0.064) (0.062) (0.095) (0.095)

II 200 0.834 0.781 0.759 0.660 0.701
(0.171) (0.081) (0.040) (0.117) (0.111)

II 400 0.812 0.712 0.739 0.511 0.544
(0.059) (0.097) (0.038) (0.135) (0.151)

III 100 0.838 0.815 0.764 0.706 0.786
(0.074) (0.077) (0.069) (0.108) (0.109)

III 200 0.829 0.761 0.726 0.544 0.676
(0.071) (0.099) (0.083) (0.149) (0.123)

III 400 0.796 0.646 0.669 0.317 0.506
(0.069) (0.139) (0.113) (0.110) (0.146)
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Table 4.6: Mean and standard deviation (in parenthesis) of estimation errors of M5

Distribution n Fourier Fourier weighted Indicator Indicator weighted csMAVE

I 100 0.705 0.682 0.708 0.691 0.709
(0.060) (0.067) (0.060) (0.056) (0.069)

I 200 0.679 0.634 0.688 0.642 0.687
(0.061) (0.054) (0.058) (0.060) (0.073)

I 400 0.644 0.588 0.660 0.591 0.646
(0.050) (0.047) (0.056) (0.061) (0.082)

I 800 0.622 0.543 0.629 0.493 0.553
(0.032) (0.078) (0.035) (0.100) (0.077)

II 100 0.712 0.688 0.713 0.697 0.722
(0.060) (0.069) (0.051) (0.057) (0.054)

II 200 0.693 0.669 0.694 0.669 0.697
(0.058) (0.065) (0.054) (0.057) (0.064)

II 400 0.670 0.614 0.681 0.633 0.687
(0.054) (0.059) (0.052) (0.050) (0.067)

II 800 0.660 0.584 0.672 0.585 0.589
(0.053) (0.045) (0.052) (0.055) (0.074)

III 100 0.706 0.687 0.703 0.691 0.724
(0.062) (0.062) (0.061) (0.061) (0.051)

III 200 0.701 0.655 0.702 0.668 0.703
(0.063) (0.069) (0.058) (0.074) (0.080)

III 400 0.659 0.603 0.664 0.604 0.682
(0.062) (0.072) (0.059) (0.077) (0.081)

III 800 0.657 0.562 0.651 0.513 0.602
(0.064) (0.068) (0.052) (0.109) (0.087)

Table 4.7: Mean and standard deviation (in parenthesis) of estimation errors of M6

Distribution n Fourier Fourier weighted Indicator Indicator weighted csMAVE

I 100 0.304 0.294 0.492 0.299 0.539
(0.092) (0.082) (0.135) (0.087) (0.255)

I 200 0.217 0.213 0.329 0.205 0.194
(0.057) (0.054) (0.107) (0.059) (0.061)

I 400 0.142 0.146 0.199 0.138 0.114
(0.036) ( 0.035) (0.069) (0.039) (0.034)

II 100 0.308 0.293 0.479 0.299 0.488
(0.094) (0.073) (0.129) (0.086) (0.248)

II 200 0.205 0.210 0.321 0.210 0.192
(0.058) (0.057) (0.095) (0.058) (0.061)

II 400 0.144 0.150 0.190 0.142 0.111
(0.039) (0.042) (0.055) (0.045) (0.032)

III 100 0.373 0.375 0.504 0.322 0.562
(0.152) (0.175) (0.143) (0.083) (0.273)

III 200 0.226 0.230 0.340 0.218 0.218
(0.065) (0.070) (0.100) (0.060) (0.083)

III 400 0.149 0.151 0.194 0.146 0.114
(0.039) (0.038) (0.068) (0.042) (0.032)

104



4 Ensemble Conditional Variance Estimation

Table 4.8: Mean and standard deviation (in parenthesis) of estimation errors of M7

Distribution n Fourier Fourier weighted Indicator Indicator weighted csMAVE

I 100 0.273 0.237 0.241 0.252 0.790
(0.169) (0.050) (0.136) (0.158) (0.316)

I 200 0.160 0.159 0.143 0.153 0.425
(0.093) (0.041) (0.083) (0.093) (0.391)

I 400 0.098 0.104 0.088 0.102 0.127
(0.024) ( 0.025) (0.021) (0.093) (0.202)

II 100 0.233 0.260 0.236 0.265 0.902
(0.057) (0.134) (0.142) (0.185) (0.219)

II 200 0.154 0.176 0.145 0.150 0.649
(0.058) (0.124) (0.093) (0.094) (0.414)

II 400 0.097 0.110 0.087 0.099 0.295
(0.025) (0.094) (0.022) (0.093) (0.391)

III 100 0.274 0.303 0.238 0.298 0.933
(0.201) (0.237) (0.160) (0.242) (0.163)

III 200 0.167 0.188 0.159 0.167 0.678
(0.120) (0.159) (0.150) (0.144) (0.408)

III 400 0.100 0.116 0.089 0.112 0.375
(0.023) (0.090) (0.023) (0.129) (0.431)

accessibility to radial highways), tax (full-value property-tax rate per $10,000), ptratio
(pupil-teacher ratio by town), lstat (percentage of lower status of the population), and b

stands for 1000(B − 0.63)2 where B is the proportion of blacks by town.

We analyze these data with the weighted and unweighted Fourier and Indicator ensem-
bles, and csMAVE. We compute unbiased error estimates by leave-one-out cross-validation.
We estimate the sufficient reduction with the five methods from the standardized training
set, estimate the forward model from the reduced training set using mars, multivariate
adaptive regression splines [Fri91], in the R-package mda, and predict the target variable
on the test set. We report results for dimension k = 1. The analysis was repeated setting
k = 2 with similar results. Table 4.9 reports the first quantile, median, mean and third
quantile of the out-of-sample prediction errors. The reductions estimated by the ensemble
CVE methods achieve lower mean and median prediction errors than csMAVE. Also, both
ensemble CVE and csMAVE are approximately on par with the variable selection methods
in [JWHT13, Section 8.3.3].

Table 4.9: Summary statistics of the out of sample prediction errors for the Boston Housing
data obtained by LOO cross validation

Fourier Fourier weighted Indicator Indicator weighted csMAVE

25% quantile 0.766 0.785 0.973 0.916 0.851
median 3.323 3.358 3.844 3.666 4.515
mean 19.971 19.948 19.716 19.583 24.309
75% quantile 11.129 10.660 11.099 10.429 16.521

Moreover, we plot the standardized response medv against the reduced Fourier and
csMAVE predictors, BTX, in Figure 4.3. The sufficient reductions are estimated using the
entire data set. A particular feature of these data is that the response medv appears to
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be truncated as the highest median price of exactly $50,000 is reported in 16 cases. Both
methods pick up similar patterns, which is captured by the relatively high absolute corre-
lation of the coefficients of the two reductions, |�BT

Fourier
�BcsMAVE| = 0.786. The coefficients

of the reductions, �BFourier and �BcsMAVE, are reported in Table 4.10. For the Fourier en-
semble, the variables rm and lstat have the highest influence on the target variable medv.
This agrees with the analysis in [JWHT13, Section 8.3.4] where it was found that these
two variables are by far the most important using different variable selection techniques,
such as random forests and boosted regression trees. In contrast, the reduction estimated
by csMAVE has a lower coefficient for rm and higher ones for crim and rad.

Table 4.10: Rounded coefficients of the estimated reductions for �BFourier and �BcsMAVE from the full Boston

Housing data

crim zn indus nox rm age dis rad tax ptratio b lstat

Fourier 0.21 -0.01 0.04 0.1 -0.62 0.16 0.2 0 0.2 0.27 -0.25 0.57
csMAVE 0.5 -0.05 -0.06 0.14 -0.27 0.11 0.24 -0.43 0.3 0.19 -0.15 0.51

Figure 4.3: Panel A: Y vs. �BT
FourierX. Panel B: Y vs. �BT

csMAVEX

4.7 Discussion

In this chapter, we extended themean subspace conditional variance estimation (cve) to the
ensemble conditional variance estimation (ecve), which exhaustively estimates the central
subspace, by applying the ensemble device introduced by [YL11]. In Section 4.4 we showed
that the new estimator is consistent for the central subspace. The regularity conditions for
consistency require the joint distribution of the target variable and predictors, (Y,XT )T ,
be sufficiently smooth. They are comparable to those under which the main competitor
csMAVE [WX08] is consistent.
We analysed the estimation accuracy of ecve in Section 4.5.3. We found that it is

either on par with csMAVE or that it exhibits substantial performance improvement in
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certain models. We could not characterize the defining features of the models for which
the ensemble conditional variance estimation outperforms csMAVE. This is an interesting
line of further research together with establishing more theoretical results such as the rate
of convergence, estimation of the structural dimension, and the limiting distribution of the
estimator.

ecve identifies the central subspace via the orthogonal complement and thus circumvents
the estimation and inversion of the variance matrix of the predictors X. This renders the
method formally applicable to settings where the sample size n is small or smaller than p,
the number of predictors, and leads to potential future research.

Throughout, the dimension of the central subspace, k = dim(SY |X), is assumed to be
known. The derivation of asymptotic tests for dimension is technically very challenging
due to the lack of closed-form solution and the lack of independence of all quantities in
the calculation. The dimension can be estimated via cross-validation, as in [WX08], or
information criteria.
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5 Conclusion and perspectives for future
work

In this thesis, three novel sufficient dimension reduction methods, conditional variance
estimation (cve) in Chapter 2, neural net sufficient dimension reduction (nn − sdr) in
Chapter 3, and ensemble conditional variance estimation (ecve) in Chapter 4 were intro-
duced. The first two are estimators for the mean subspace SE(Y |X) and the latter is an
estimator for the central subspace SY |X.

The estimators cve and ecve are shown to be consistent estimators for their target under
relatively mild regularity assumptions in Sections 2.5 and 4.4 with the main theoretical
work presented in Section 4.4.1. Moreover, the performance and estimation accuracy of
cve, nn− sdr, and ecve are explored via simulations and data applications. All three are
shown to be competitive against the state-of-the-art sufficient dimension reduction method
minimum average variance estimation mave for the mean subspace and its extension central
subspace minimum average variance estimation to the central subspace. The simulations
also indicate that cve and ecve can yield substantial benefits compared to mave and
central subspace mave in terms of estimation accuracy in certain models. In particular,
for cve, we consider model M2 in Section 2.7.2 where the predictors have a bimodal
distribution, and, for ecve, model M7 in Section 4.5.3 with cyclical heteroskedasticity.
Both estimators are implemented in the R package CVarE.
Possible future work includes further theoretical assessments, e.g. computing the rate

of convergence, asymptotic distributions of the estimators and a consistent approach to
estimate the structural dimension k. The former two are especially interesting to broaden
the understanding and comparison of the proposed estimators to established methods like
mave, for which the rate is known. Moreover, the circumstances where cve or ecve enjoy
a substantial advantage in terms of accuracy could not be fully characterised yet but would
be of practical importance. The proposed methods could probably also be further tuned to
increase estimation accuracy by techniques like adaptive bandwidths or data preprocessing
via screening methods to increase robustness and performance, as is done for the mave
estimator in the R package MAVE. This can be seen in M6 in Section 2.7.2, where the results
of mave implemented in the highly tuned and consistently updated MAVE package differ
substantially from the results obtained by the R code of mave published in [Li18]. Another
interesting line of future research is to apply cve and ecve to regressions where n < p
since formally the algorithm for both does not require the inversion of any matrix and
can be applied in such settings. Furthermore, the author hopes that the novel estimation
idea underpinning both estimators via identifying the reduction through the orthogonal
complement, thus circumventing the inversion of the covariance matrix of the predictors,
can be transferred to other estimation techniques.

nn− sdr combines the classic sufficient dimension reduction approach with neural nets
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to form a novel estimator for the mean subspace. In simulations and data examples it is
shown that nn − sdr is competitive in terms of estimation and prediction accuracy with
mave and cve for data sizes usually considered in the classic sufficient dimension reduction
literature. Further, nn− sdr has the substantial advantage that due to its usage of neural
nets it can also be efficiently applied to regression problems with big sample sizes where
mave and cve are infeasible due to the computational costs. Especially nowadays problems
with huge sample size and predictor dimensions are frequently encountered in applications,
raising the need for sufficient dimension reduction methods that can be used without the
computing power of scientific server clusters. For nn − sdr estimation no consistency
proof is presented due to the theoretical challenges involving neural nets. Nevertheless,
simulations in Sections 3.6 and especially 3.7 indicate that nn−sdr behaves as a consistent
estimator for the mean subspace SE(Y |X). Future lines of research include the development
of statistical theory for the nn − sdr estimator, e.g. showing the consistency and other
asymptotic results as mentioned for cve and ecve. Moreover, the generalization of nn−
sdr for the central subspace would also be of considerable interest. Another interesting
line of future work is to analyze cve and nn − sdr in the presence of collinearity as the
simulations in Section 3.8.2.1 indicate that they are quite robust.

All three proposed methods assume the predictors to be continuous. The incorporation of
categorical predictors would be of considerable interest for real data applications. Especially
for nn−sdr the data applications in Section 3.8.3 point to the direction that these methods
can also handle categorical variables.
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enberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,
Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and
Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on heterogeneous
systems, 2015. Software available from tensorflow.org.

[AKG19] Mahmood Akhtar, Moritz Kraemer, and Lauren Gardner. A dynamic neural
network model for predicting risk of zika in real time. BMC Medicine, 17:171,
09 2019.

[AL91] E. Ambikairajah and S. Lennon. Neural networks for speech recognition. In
Michael F. McTear and Norman Creaney, editors, AI and Cognitive Science
’90, pages 163–177, London, 1991. Springer London.

[Ame85] Takeshi Amemiya. Advanced econometrics. Harvard university press, 1985.

[AT20] JJ Allaire and Yuan Tang. tensorflow: R Interface to ’TensorFlow’, 2020. R
package version 2.2.0.

[BC01] Efstathia Bura and R. Dennis Cook. Estimating the structural dimension of
regressions via parametric inverse regression. Journal of the Royal Statistical
Society. Series B: Statistical Methodology, 63(2):393–410, 2001.

[BDF16] Efstathia Bura, Sabrina Duarte, and Liliana Forzani. Sufficient reductions in
regressions with exponential family inverse predictors. Journal of the American
Statistical Association, 111(515):1313–1329, 2016.

[BF15] Efstathia Bura and Liliana Forzani. Sufficient reductions in regressions with
elliptically contoured inverse predictors. Journal of the American Statistical
Association, 110(509):420–434, 2015.

[BJM06] Peter L. Bartlett, Michael I. Jordan, and Jon D. McAuliffe. Comment. Statist.
Sci., 21(3):341–346, 08 2006.

[Boo02] W. M. Boothby. An Introduction to Differentiable Manifolds and Riemannian
Geometry. Academic Press, 2002.

110



Bibliography
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