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Kurzfassung

In der derzeitigen technologischen Entwicklung ist es für Systeme wichtig die digitale
und physische Welt miteinander zu verbinden. Aus diesem Grund wurden Cyber Phy-
sical Systems (CPS) eingeführt. Diese Systeme können Daten in der physischen Welt
sammeln, in der digitalen Welt die korrekte weitere Vorgehensweise auswählen und diese
Entscheidung zurück in die physische Welt schicken. Ein Beispiel für ein Cyber Physical
System ist ein Smart Grid. Bei einem Smart Grid wird die Energie in einem Stromnetz so
verteilt, dass jeder Benutzer die benötigte Menge an Energie erhält. Oft ist es wichtig den
Entscheidungsprozess eines CPS zu verstehen, um die Ursache für auftretende Probleme
zu finden oder den Entscheidungsprozess einem Benutzer zu erklären, um die Transpa-
renz des Systems zu erhöhen. Die Erweiterung eines CPS, die es ermöglicht getroffene
Entscheidungen zu erklären wird explainable Cyber Physical System (expCPS) genannt.

Ein expCPS basiert auf kausalen Beziehungen, zwischen Objekten in einem System
(z.B.: Solarladestation, Gebäude, . . . ) oder Events (z.B.: fehlender Sonnenschein, weniger
verfügbare Energie,..). Deshalb müssen die folgenden Probleme berücksichtig werden,
wenn ein expCPS entwickelt wird: (1) Welche Formalismen können verwendet werden
um eine kausale Beziehung darzustellen und (2) wie ist es mögliche solche kausalen
Beziehungen automatisiert zu finden?. Derzeit gibt es viele verschiedene Ansätze in
unterschiedlichen Feldern der Wissenschaft, aber in dieser Arbeit liegt der Fokus auf
expCPS basierend auf Semantic Web Technologie und im speziellen in einer Smart Grid
Umgebung.

Um diese Probleme zu lösen, benutzen wir die folgende Methodik: Am Anfang führen
wir eine Literatursuche durch, um Möglichkeiten zu finden, Kausalität darzustellen,
Kausalität automatisch zu sammeln und derzeitige Anwendungsfälle von Kausalität zu
finden. Danach wählen wir aus den gefundenen Algorithmen die besten aus, um Kausali-
tät zu finden, definieren Metriken, um den entsprechenden Algorithmus zu evaluieren
und in einem Framework zu implementieren. Am Ende der Arbeit vergleichen wir die
Implementierung der Algorithmen, um Kausalität zu finden, mithilfe der Metriken, die
zuvor definiert wurden. Für diese Evaluierung werden "controlled experiments"verwendet.
Zuerst wird jeder Algorithmus alleine evaluiert und anschließend werden diese Ergebnisse
verglichen. Daher zeigt die Arbeit verschiedene Möglichkeiten, um Kausalität in einem
expCPS zu repräsentieren und zu finden. Außerdem vergleicht die Arbeit verschiedene
Anwendungsfälle für beide beschriebenen Probleme. Danach werden die optimalen Algo-
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rithmen, um Kausalität zu finden in einem simulierten expCPS evaluiert, um Vor- und
Nachteile aufzuzeigen. Diese Evaluierung findet in der BIFROST Simulations Engine
statt.

Während der Arbeit leisten wir die folgenden Beiträge: Wir stellen eine Übersicht über
wichtige Aspekte, die berücksichtigt werden müssen, wenn Kausalität dargestellt oder
gefunden werden soll, vor. Außerdem entwickelt die Arbeit eine Definition von Kausalität.
Die Definition beginnt mit einer Definition abgeleitet aus verschiedenen Definitionen,
die derzeit in der Literatur verfügbar sind und wird in eine formale Problemstellung
weiterentwickelt. Der Fokus der Implementierung liegt auf vier Algorithmen, um Kau-
salität zu finden: Granger Causality, Transfer Entropy (mit einem Kernel Estimator
und einem Kraskov Estimator) und der Peter-Clark Algorithm. In der Evaluierung der
Implementierung, zeigen wir, dass die Transfer Entropy mit einem Kraskov Estimator
am besten performt.



.





Abstract

In the current technological uprise, it is important for systems to connect the physical
and the digital world. For this purpose, Cyber Physical Systems (CPS) were introduced.
These systems are able to collect data in the physical world, decide on the proper approach
to solve problems in the digital world and communicate this result back to the physical
world. An example for a Cyber Physical System is a smart grid, where the distribution
of the energy in the grid is adjusted, based on the consumption of each consumer. Often
it is important to understand the decision process of a CPS to either find the root cause
of an appearing problem or explain the taken procedure to an end user to increase the
transparency of the system. The extension of a CPS with the possibility to explain
certain aspects of interest about the system, (e.g., unusual and possibly faulty states and
behaviors) [GLV19] is called an explainable Cyber Physical System (expCPS).

An expCPS is based on causal relations between either objects in the system (e.g., an
electrical vehicle charging station, a building,...) or events happening during the operation
of a system (e.g., reduced amount of available energy, lack of sunshine,...). Therefore,
when designing and building an expCPS, the following topics need to be considered: (1)
which formalisms to use in order to represent causality relations and (2) how to automate
the acquisition of such causality relation knowledge? While several research fields have
investigated these topics in very diverse settings and for several application domains, in
this thesis we focus on which of these techniques can be applicable in the context of an
expCPS System based on Semantic Web technologies and geared towards smart grid
settings.

To that end, we follow the following methodology: In the start we perform an literature
research to identify causality representation methods, causality acquisition algorithms
and use cases of causal information in expCPS. Afterwards we select, the most suitable
causality acquisition algorithms, define quality metrics to evaluate these algorithms and
then implement these algorithms in a framework. In the end we compare the algorithms,
based on the defined quality metrics, using controlled experiments. First the algorithms
are evaluated on their own and then they are compared to each other.

In the thesis we make the following contributions: We provide an overview of important
aspects to consider, while choosing or creating a causality representation and causality
acquisition algorithm. Further, the thesis develops a definition of causality in the context
of expCPS throughout the thesis. The definition starts with a collection of important
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points described in the literature and is developed into a formal problem statement.
Afterwards we propose a causality representation for an expCPS. The focus of the
implementation is on four different causality acquisition algorithms: Granger Causality,
Transfer Entropy (with a Kernel Estimator and a Kraskov Estimator) and the Peter-Clark
Algorithm. In the evaluation of the implementation, we show the increased performance of
the Transfer Entropy with a Kraskov Estimator compared to the other three algorithms.
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CHAPTER 1
Introduction

1.1 Context and Motivating Scenario
In today’s world Cyber Physical Systems (CPS) [Pla18, BG11] are on the uprise to
support humans in their daily lives. Those systems can provide help in different areas of
application. In [BG11] a CPS is definied as follows:

"The term cyber-physical systems (CPS) refers to a new generation of systems with
integrated computational and physical capabilities that can interact with humans

through many new modalities." [BG11]

An example for a Cyber Physical System is the smart electricity grid, where the system can
monitor and redirect energy to stations, that have a high energy consumption. For a better
understanding of these systems and to get the possibility to improve them, explainable
CPS (expCPS) are introduced which can provide an explanation for unexpected system
behaviors. An expCPS is defined as follows:

“The capability of both the system and its engineering tools to explain certain aspects of
interest about the system, both in a human-comprehensible and machine-processable

format.” [GLV19]

To provide correct explanations, the explainable Cyber Physical System has to understand
possible root causes for each feasible occurring event. This analysis is based on causality,
where causality is a relation between two objects or events, where one object or event
causes another one.

For example, a smart grid can be an expCPS, if the smart grid is able to provide
explanations of occurring events to different users. The explanations provided by an

1



1. Introduction

Figure 1.1: Example portion of Smart Grid in the BIFROST simulation engine.

expCPS increase the transparency of decisions, made by the smart grid. Therefore,
multiple different users can benefit from these explanations. Imagine a scenario of a
simple smart grid (Figure 1.1) with an electrical vehicle charging station (C1) with solar
panels and multiple buildings (H1-H4, T1, B1, B2). In this example a lack of sunshine
leads to a lower energy production through the solar panels and this leads to a lack of
energy in the smart grid, which then leads to a reduced amount of available energy for
the end user. The end user of the smart grid gains increased trust in the system, through
the explanations, as the lack of energy is comprehensible and the time span of a lower
charging speed is foreseeable. Further, an engineer knows there is no defect, and more
sunshine will bring back the normal charging speed. If there is a defect the engineer can
increase the safety and reliability of the smart grid, as he can find root causes of failures
faster due to the explanations created by the expCPS.

The thesis aims to build a module for the expCPS shown in Figure 1.2 and described
in [AES+20]. This system is built on top of the BIFROST simulation engine, where
BIFROST [MDE+19] is a simulation engine, which is able to simulate a smart grid
and provide simulated data about the smart grid. The expCPS shown in Figure 1.2
uses a set of different modules to acquire the data from BIFROST, to process this
data and to provide explanations of selected events based on that data. The first
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1.2. Problem statement

Figure 1.2: Structure of an expCPS, built on the BIFROST simulation engine, Reproduced
from [AES+20]

module is the "CPES Topology Modeling", where the topology (e.g. residential buildings,
transformers, power grid connectors, cabels,...) used to simulate a smart grid in the
BIFROST simulation engine is acquired. Second, the module "CPES Event Detection"
filters the recorded data to detect relevant events and third, the module "External Data
Extraction" reads additional information (e.g. weather data). Further, the module
"Anomaly Modeling" aims to acquire a set of possible anomalies from the simulation,
while the module "Causality Modeling" acquires data to show the causal relations between
the data collected by the remaining four modules.

After filtering the data from BIFROST, the expCPS builds and maintains a knowledge
graph KG to save information about the system collected in the previous steps. This step
is presented in the module "ExpCPS KG" and "Anomaly Event Detection" in Figure 1.2.
The last component of the expCPS is the module "Explanation Generation", where the
previously collected information in the knowledge graph is used to generate explanations
of occurring events.

The module of the expCPS, the thesis is focusing on, is the module "Causality Modeling".
The module built in the thesis should be able to acquire causality in the system from the
data provided by BIFROST. This module collects the values of different objects provided
in the simulation over time and uses these values to provide a set of causal relations in a
representation, suitable for the other modules of the expCPS. An example for a causal
relation is the relation between the amount of sunshine and the charging speed of a solar
loading station, where a lack of sunshine decreases the charging speed of the solar loading
station.

1.2 Problem statement
In explainable Cyber Physical Systems, it is critical to find and model causality relations
in order to provide the root cause of different events. The extraction and modelling of
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1. Introduction

causality is a complex problem, which cannot be solved by connecting two events by
a relation. For example, there is the possibility of an event occurring sometimes after
another event has happened, but not every time. Another problem is the extraction
of knowledge from systems to automate the process of acquiring causality information,
as the goal is to require the least amount of expert knowledge as possible. Further, it
should be possible to acquire and represent causality (semi-)automatically in an uniform
applicable method to reach this goal. Therefore, the two main problems in this area are:

• Research Problem 1: Causality representation: Each type of CPS requires
an optimal representation of causality, built from the information collected by the
CPS, to provide an overview over each existing causal relation. Furthermore, for
an optimal representation of causal relations in a system, it is necessary to take
a lot of different aspects into account, as each representation aims to provide as
much information as possible. A solution for this problem needs to contain every
accessible information of a system built into a representation to present causal
information.

• Research Problem 2: Causality knowledge acquisition: To build a causality
representation as described in Research Problem 1, it is necessary to acquire the
causality relations from a system. An example for a causality relation is the relation
between the air conditioner and the temperature in a room, where a changing
setting of the air conditioner is the cause for a changing temperature in the room.
Furthermore, each system provides different information, different interfaces and
different data models. Therefore, it is hard to automatically retrieve the causality
relations in order to build the causality representation based on the information
available.

Currently, there are multiple approaches ([SFSS09, PSL14, QDY+20, LÖC07]) from
different domains to acquire and model causality. All these approaches use various
techniques to either acquire, model, or acquire and model causality relations. There are
also different approaches to evaluate gained causality knowledge ([QDY+20, LCH+19])
and different use cases to apply this knowledge([Gra69, CSK+18, Sch00]).

Despite the fact, that there are multiple systems, which are able to either acquire
or represent causality in various research fields, there is currently no solution for an
explainable Cyber Physical Smart Grid System. In this thesis we try to find an appropriate
solution for the representation and acquisition in explainable Cyber Physical Smart Grid
Systems.

Therefore, the goal of this thesis is to find an applicable approach to extract causality
from an smart grid and model all causality relations in an appropriate way. The thesis
further applies the chosen approach to a simulated example of an expCPS, hosted as
module in the BIFROST simulation engine. The BIFROST simulation engine can be
seen in Figure 1.1.
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1.3. Aims

1.3 Aims
To successfully build a module in the expCPS, the thesis has to answer multiple research
questions (RQ). These research questions are:

• RQ1: What are classical ways to represent causality information and which for-
malisms and notions are used to represent causality information?
At the start, the research aims to go beyond literature about Cyber Physical
Systems in order to provide an overview of current solutions from other fields
(e.g.: linguistics or economics) to represent causality information. Further the
thesis wants to show an overview over existing formalisms, notions and methods to
represent causality information.
After the initial overview, this Research Question aims to summarize these ap-
proaches and extract the crucial aspects which are required to model causality
information. Furthermore, the thesis contains an overview of important aspects and
the description, why they are important for a causality representation. Accordingly,
it shows a more in-depth overview of approaches to solve Research Problem 1 and
shows important aspects to consider in order to solve Research Problem 2.

• RQ2: Which ways are already used to acquire the information required to build a
causality representation and how these approaches use the acquired information to
build a causality representation?
In this part of the research, the knowledge from the previous question is applied
in the context of a concrete explainable CPS. In the first step of this Research
Question, the thesis aims to provide current solutions of other (explainable) Cyber
Physical Systems and how these systems acquire and model causality informations.
Afterwards the thesis uses the previous literature study to propose a causality
representation, which can be used as a basis for an explainable Cyber Physical
Smart Grid System.
These results aim to provide a proposal to solve Research Problem 1, which can
be used to improve an expCPS System. Further this Research Question aims to
provide an overview over different import aspects of the application of the different
causality representation methods.

• RQ3: What approaches are already used to acquire causality information from a
system and is it possible to apply these approaches to an expCPS?
This Research Question aims to analyze already existing approaches from literature
to acquire causality from a system. Further, this part of the research shows the
applicability of the identified approaches to an explainable Cyber Physical System.
The results of the literature study aim to show important aspects of these methods,
which have to be considered before choosing a method to use in an expCPS. These
results also provide an overview of methods, which must be considered for use in
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1. Introduction

the BIFROST simulation engine. Therefore, this Research Question provides an
overview of methods to solve Research Problem 2.

• RQ4: How can causality information, with the help of the approaches from RQ3,
be acquired from the BIFROST simulation engine? What are advantages and
disadvantages of each method?
After creating an overview of possible causality acquisition algorithms for explainable
Cyber Physical Smart Grid Systems, these methods are applied to a concrete
simulation engine, the BIFROST engine developed by Siemens. The most promising
causality acquisition algorithms proposed in the last question are chosen and applied
to the BIFROST engine and implemented to acquire causality information from the
BIFROST modules. Further, the implemented causality acquisition algorithms and
the extracted causality information shall be evaluated. The evaluation has to focus
on the quality of the results and the runtime of the algorithm in the simulation
engine.
During the development and evaluation of this Research Question, a solution to
Research Problem 2 should be provided.

1.4 Methodology
In the thesis the following methodology is used to create the contributions mentioned in
Section 1.5 and to solve the Research Questions mentioned in Section 1.3. An overview
over the methodology is shown in Figure 1.3.

Literature study

In the first step of the thesis, an extensive literature research is performed. The literature
study aims to provide information over different subjects, required for the thesis. These
subjects are:

• existing causality representation methods

• existing causality acquisition algorithms

• use cases of causal information in expCPS

To collect this information, current literature is studied to provide the required knowledge.
Even though the literature study aims to answer RQ1 to RQ3, it underpins the work of
the entire thesis.

Algorithm Selection & Implementation

After the literature study, we aim to choose the most suitable approaches to acquire
causality information from the BIFROST simulation engine and build a module using
these approaches/algorithms to acquire the causal relations from the data provided by
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1.4. Methodology

Figure 1.3: Thesis methodology overview.

the simulated environment of BIFROST. After successfully implementing the algorithm,
a set of possible quality metrics has to be defined and implemented to be able to evaluate
the different algorithms. Finally the implementation should be able to provide a set
of causal relations existing in the BIFROST simulation engine. The implementation
addresses Research Question 4 (RQ4).

Evaluation of Causality Acquisition Algorithms

In the last step, the thesis provides an evaluation, using controlled experiments (presented
in [WRH+12]) of the implemented causality acquisition algorithms. For this evaluation,
the data acquired from the BIFROST simulation engine, will be used. The evaluation
will analyse the behavior of different causality acquisition algorithms. In the first step the
evaluation assesses each algorithm on its own and shows advantages and disadvantages
of the algorithms chosen during the selection & implementation step. Afterwards the

7



1. Introduction

evaluation compares the results of the different algorithms. In this final step Research
Question 4 is addressed.

1.5 Contributions
The thesis provides the following contributions to the development of a causality module
for the expCPS module in the BIFROST simulation engine by answering the research
questions:

• Definition of causality in the context of expCPS, starting with an overarching
working definition of causality for expCPS based on an overview of definitions of
causality used in various research fields (Section 2.1) and a formalised definition in
Section 4.1

• Important aspects to consider, when creating or selecting a causality
representation, based on a list of current possibilities, provided in the literature
to represent causality (Section 2.3), we acquire an overview over important aspects
(Section 2.4), which need to be considered to build a representation with each
information required to learn causal information. This contribution discusses RQ1.

• A proposal for a causality representation for expCPS, derived from a
comparison of different expCPS (Section 3.2), which use a broad range of causality
representations and causality acquisition algorithms and taking into account the
important aspects to consider, when creating or selecting a causality representation
from Section 2.4. This contribution is related to RQ2.

• The identification of important aspects to consider, when creating or
selecting a causality acquisition algorithm and the applicability of these
algorithms to the BIFROST simulation engine, based on an overview of
causality acquisition algorithms in Section 4.2, we present a set of import aspects
of causality acquisition algorithms (Section 3.2)as response to RQ3.

• An evaluation and comparison of different causality acquisition algo-
rithms, based on timeseries acquired from the BIFROST simulation engine, as a
contribution to RQ4. This evaluation is presented in Chapter 6.

1.6 Structure of the Work
The thesis is structured as follows: Chapter 2 introduces causality representations, where
a definition of causality, a list of possibilities to represent causal relations and their
advantages and disadvantages are discussed to address RQ1. Afterwards, Chapter 3
details different application areas of the causality representations from Chapter 2, related
to RQ2. It also points out different aspects to consider when choosing the correct
causality representation. In Chapter 4 different causality acquisition algorithms are

8



1.6. Structure of the Work

presented, where the chapter starts with a detailed problem statement and continues with
a presentation of different causality acquisition algorithms to discuss RQ3. Chapter 4 also
shows the applicability of the algorithms to the BIFROST simulation engine. The thesis
continues with Chapter 5, where the implementation framework to evaluate the causality
acquisition algorithms is presented. Afterwards the thesis continues with an evaluation
of the algorithms implemented in the framework in Chapter 6. Chapter 5 and 6 aim to
solve RQ4. Finally Chapter 7 concludes the thesis by recapping the Research Questions,
providing a list of limitations and assumptions of the thesis and present possible future
work.

9





CHAPTER 2
Causality Representation

This chapter investigates RQ1 in terms of the notion of causality and various approaches
to represent it. In Section 2.1 we overview definitions of causality drawn from various
research fields and distill an overarching working definition for ExpCPS, which is the
first contribution of the thesis. Accordingly, based on this definition an exemplifying
scenario is introduced (Section 2.2) as a key instrument to ground the notions of the
definition and to serve for concretely illustrating the causality representation approaches
reviewed. Section 2.3 briefly describes 10 different approaches to causality modeling and
exemplifies them by instantiating them in the context of the scenario defined in Section
2.2. Section 2.4 concludes this chapter with an overview of the main features of causality
representations which serve as a means to compare the various representation approaches
reviewed. This comparison is another contribution of the thesis.

2.1 Defining Causality
This section of the thesis gives an overview over current definitions of causality from
different research areas. After the initial overview, another definition is shown, based and
extended from previous ones. The following list shows different definitions from current
literature:

• “Causality is one of the main semantic relationships between events where an event
(CAUSE) results in another event (EFFECT) to happen or hold.” [MGC+16]

• “Causality is the relationship that the state of one property is determined by the
state of another property. This relationship may be a physical process between
two physical properties or, more generally, by relating a physical property to socio-
psychological property such as amount of rage during a blackout. By modeling it
in more abstract term than a physical process, it allows for a relationship to also
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2. Causality Representation

be explainable in terms of how the knowledge was collected (e.g., explicitly from
expert of a well-founded discipline or some recent studies).” [AES+20]

• “Causal relationships require the modeling of causes and effects and should support
the integration and use of different causal theories as discussed. Correlation refers
to two events that have a common cause “ [SFSS09]

• “Causality describes the cause-effect relationship between changes of process vari-
ables” [YDSC14]

• “Causality (also referred to as causation) is the relation between an event (the
cause) and a second event (the effect), where the second event is understood as a
consequence of the first. In common usage, causality is also the relation between
a set of factors (causes) and a phenomenon (the effect). Anything that affects an
effect is a factor of that effect. A direct factor is a factor that affects an effect
directly, that is, without any intervening factors. The connection between a cause(s)
and an effect in this way can also be referred to as a causal nexus. Though the
causes and effects are typically related to changes or events, candidates include
objects, processes, properties, variables, facts, and states of affairs.” [YDSC14]

• “X could be termed as to ‘cause’ Y if the predictability of Y is improved by
incorporating information about X” [YDSC14]

• “We say that x(k) is causing y(k) if we are better able to predict y(k) using
all available information than if the information apart from x(k) had been used”
[YDSC14]

• “We understand causation to be a relation between particular events: something
happens and causes something else to happen. Each cause is a particular event and
each effect is a particular event. An event A can have more than one cause, none
of which alone suffice to produce A. An event A can also be overdetermined: it
can have more than one set of causes that suffice for A to occur. We assume that
causation is transitive, irreflexive, and antisymmetric.”[Maz09]

Based on this list and further research, the following definition was created. It will be
used for a more in depth understanding of the following methods and formalities to
represent causality. Further this definition will be applied to examples of these methods
and formalities:

“Causality is the relation between group A (causes) and group B (effects) of entities,
where the second group is understood as a consequence of the first one. An entity can be
either an object in a system or an event, which appears during the operation of a system.
Further each group must have at least one entity. Each group can have multiple effects

and causes. Additionally, causality is generic if an entity is an object which has a
causality relation with another object and concrete if each entity is an event, where an

event is the cause of another event.”
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has a causality
relation with

weather engineer solar
loading
station

electrical
loading
station

car

weather X no yes no no
engineer no X no yes no
solar loading
station

no no X no no

electrical load-
ing station

no no yes X no

car no no yes no X

Table 2.1: Generic Causality in the exemplifying scenario

2.2 Exemplifying scenario

The following example describes a scenario, which is used in the following section to
demonstrate different approaches to represent generic and concrete causality. The focus
of the example is a solar car loading station, which is influenced by the weather. Good
weather (where good weather is sunny weather) increases the loading speed of the
loading station and bad weather decreases the loading speed. Further the loading station
influences a loading car, where a low loading speed increases the loading time of the car
and a high loading speed decreases the loading time. Additionally, the loading level of
the car influences the loading level of the loading station, as a high loading level in the
car yields a lower loss of energy than a low level in the car. As last entity, an electric
loading station is introduced, which can be activated or deactivated by an engineer. If
the electric loading station is active, the weather does not matter, as the car will always
use the electric loading station instead of the solar one. Due to this construction, the
electric loading station influences the loading time of the car, as it keeps it consistent on
a high level.
Applied to our definition, we can derive two representations of causality relation, a generic
one and a concrete one. In Figure 2.1 and Table 2.1 we can see the generic representation,
where the weather and the engineer are the root causes, which effect the solar loading
station or the electrical loading station, while both, the electrical and the solar loading
station influence the car. As last relation in the generic representation, we can see the
car influence the solar loading station. In Figure 2.2 and Table 2.2 is a concrete causality
representation of the solar loading station modeled. The root causes are different events,
based on the objects of the generic representation. Therefore, if the electrical loading
station is active or deactivated, it increases or lowers the loading time of the car. Further,
if the weather changes from sun to rain or the other way around the loading speed of
the solar loading station changes accordingly. As soon as the loading speed of the solar
loading station changes, the loading time of the car changes as well. In the second graph
in Figure 2.2 we see the difference in the loading level of the car changes the loading level
of the solar loading station.
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Figure 2.1: Generic representation of the exemplifying scenario

influences sun/rain high/low
loading
speed

electrical
loading
station ac-
tive/inactive

low/high
loading
time of
the car

low/high
loading
level of
the car

low/high
level of
the solar
loading
station

sun/rain X yes no no no no
high/low
loading
speed

no X no no no no

electrical
loading
station ac-
tive/inactive

no no X yes no no

low/high
loading
time of
the car

no yes no X no no

low/high
loading
level of
the car

no yes no no X yes

low/high
level of
the solar
loading
station

no yes no no yes X

Table 2.2: Concrete causality in the exemplifying scenario
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Figure 2.2: Concrete representation of the exemplifying scenario

2.3 Methods for causality representation
This section presents different methods and formalities to represent causality. Each
method is presented with a short introduction and afterwards applied to the loading
station example.

2.3.1 Nature Language Processing
There are multiple approaches to find and annotate events and relations. The goal of
these approaches is to automatically detect and represent these events and relations. In
the following section these approaches are presented with a special focus on different
kinds of relations and events considering causality.

Causal and Temporal Relation Scheme (CaTeRS)

In this approach, presented in [MGC+16], the goal is to connect two events with either a
temporal or causal relation and therefore, a connected network of events is created. The
paper presents three major causal relations (CAUSE, ENABLE, PREVENT), which in
conjunction with a verb (before, overlaps, during), represent the timeline of the events.
A cause relation represents a causality relation where event A always implies event B.
The enable keyword implies, if event A has happened, event B can happen, but it does
not have to happen. If event A does not happen, it is not possible for event B to happen.
Further a prevent relation represents a relation, where after event A happened, it is no
longer possible for event B to happen.
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Figure 2.3: Example of the annotation method RED, Reproduced from [OWBP16]

The paper also introduces a differentiation between different types of events. All events are
split into the categories: Event-of-state, Event-of-change, Event-type, Physical-condition,
Occurring and Natural-phenomenon. According to the paper, it is possible to objectively
classify events with these different types of events.

RED

Similar to the last approach, this one, proposed in [OWBP16], tries to find, relate and
connect events. RED also uses the causality relation types “CAUSE” and “PRECONDI-
TION”, where “PRECONDITION” is the same as “ENABLE” in the CaTeRS-Scheme.
The difference between these two methods is the use of “PREVENT” in CaTeRS, where
RED uses a negation of an event to represent this type of relation. Further explained
this means, if event A prevents event B, we can also say, event A is a precondition to the
negation of event B. The advantage of the removal of the “PREVENT” relation is an
easier way to annotate relations, but the disadvantage is the inability to present “PRE-
VENT” for events with more than one state. RED also uses these types in conjunction
with another verb to describe the timeline of the events. In Figure 2.3 we can see all
possible combinations of relation types and timeline verbs.

CLINK

CLINK is a basic approach, presented in [MSTS14], to solve the same issues as the
previous two methods. It describes two different types of events, the cause and the effect.
Those two events are connected through a causality relation, which is one of three types:
CAUSE, ENABLE and PREVENT. They work the same as previous approaches. The
approach further adds a negation (NEG) to each attribute to enable a representation of
complex stories.
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2.3. Methods for causality representation

BECauSE 2.0

In this approach, definied in [DLC17], multiple different types of causality are used to
represent causality. Like the previous method, this one also connects two events with
each other, but it uses different types of relations to represent these. The used relations
are: CONSEQUENCE, MOTIVATION and PURPOSE. A CONSEQUENCE describes
the same relation as a CAUSE in the previous methods. MOTIVATION represents a
relation, where an actor experiences the cause and based on the cause thinks about an
action or takes an action, which is the effect of the experience. At last, a PURPOSE
relation is a relation, where the actor chooses the effect out of multiple possible options
before the cause happened, to make a specific cause happen.

Example

We conclude this section about representation of causality in nature language processing
with an example of CaTeRS applied to our running example, as it is quite similar to
CLINK and RED and it is not possible to apply BECauSE 2.0 to the example, as the
relations are not designed for an example like this. To be able to apply CaTeRS to our
example, we use different events from our example with relations from the method. We
can not represent a generic causality with any linguistic approach as these approaches
work with events. The following relations can be deducted from our example:

• (sun) CAUSE DURING (high loading speed of the loading station)

• (rain) CAUSE OVERLAPS (low loading speed of the loading station)

• (high loading speed of the loading station) ENABLE BEFORE (low loading time
of the car)

• (low loading speed of the loading station) CAUSE BEFORE (high loading time of
the car)

• (low loading level of the car) PREVENTS BEFORE (high loading level of the
loading station)

• (high loading level of the car) ENABLE BEFORE (high loading level of the loading
station)

In the example we can see the event “sun” causes a high loading speed of the loading
station, which is the rule in our example. Further, the loading speed only increases while
the sun is shining. We could also add another relation where weather is only sunny
before the loading of the car, which would also cause a high loading speed of the car.
Additionally, we see the loading speed has to be high before the car arrives, as it does
not change during the loading process. At the end we can also see a low loading level of
the car prevents a high loading level of the loading station, as the car needs more energy
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to be fully filled again. It is not possible to model the engineer with this approach as we
have no way to model a conditional causality.

Finally, we can see most of these NLP approaches provide two important aspects for the
representation of causality. First we can see the use of verbs to set cause and effect into
a chronological relation. In these approaches the used keywords are BEFORE, DURING,
OVERLAPS or slight variations. The second import aspect is the differentiation of
causality relations. In these representations we can clearly see how the cause is related
to the effect, as we can see, if the effect can, cannot or has to happen after the cause.

In the end we can summarize, these approaches are not fitting for our example, as they
are unable to represent conditional causality, generic causality or weighted causality.
Further we can apply these approaches only in a limited way to our example, as it is a
big system instead of a text.

2.3.2 Adjacency- & Reachability Matrix
Adjacency- & Reachability matrices are matrices (presented in [YDSC14]), where each
object of a system is listed. A “1” in the matrix represents a causality relation between
these two objects, a ”0” indicates no causality relation. An adjacency matrix represents
only direct causality relations, where a reachability matrix also represents indirect
causality relations. In Figure 2.4 the difference between these two types of matrices is
clearly stated, where X4 has a direct relation with X2, but not with X3, as the water in
the example first flows into tank X2 and from there into X3. In the adjacency matrix
the relation between X4 and X3 is not modeled, in the reachability matrix it is.

It is also possible to transform an adjacency matrix into a reachability matrix by adding
every indirect causality relation. This can be achieved by applying the transitivity rule
to every causality relation. Therefore, for each relation where A influences B and B
influences C, also add an entry for A influences C.

Applied to our example, we can model a generic causality relation with each matrix
(modelled in Table 2.3 and 2.4). If we compare both matrices, we see the influence of the
engineer on the car is only modeled in the reachability matrix, as it is an indirect relation,
where the engineer influences the electrical loading station, which influences the car.

This approach can be used to represent different generic causality relations, but is not
able to present a concrete relation due to the fact, that it represents objects and not
events. It can further show the transitivity of causality. These matrices are ideal to
present an overview over existing causality relations.

2.3.3 Signed Directed Graph (SDG)
Similar to the adjacency or reachability matrix (presented in [YDSC14]), it is possible to
model causality relations in a Signed Directed Graph. Each object is presented as a node
in the graph, where a relation is a directed arrow pointing from the effect to the cause.
In this representation it is further possible to represent negative influences, where an
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Weather Engineer el. Load-
ing Sta-
tion

Solar
Loading
Station

Car

Weather 1 0 0 1 0
Engineer 0 1 1 0 0
el. Load-
ing Sta-
tion

0 0 1 0 1

Solar
Loading
Station

0 0 0 1 1

Car 0 0 0 1 1

Table 2.3: Adjacency matrix for the solar loading station example

Weather Engineer el. Load-
ing Sta-
tion

Solar
Loading
Station

Car

Weather 1 0 0 1 1
Engineer 0 1 1 0 1
el. Load-
ing Sta-
tion

0 0 1 0 1

Solar
Loading
Station

0 0 0 1 1

Car 0 0 0 1 1

Table 2.4: Reachability matrix for the solar loading station example

event in object A has a negative effect in object B. Negative causalities are represented
with a dashed line. Therefore, if we take the tank example in Figure 2.5, where F1 is
the flow into the tank, F2 is the flow out of the tank and L is the level of the liquid in
the tank, we can see a positive causality relation between the input, output and level of
the liquid, as more flow into the tank increases the level, which increases the flow out of
the tank. Further we see a negative relation between the outflow and the level, as more
liquid leaves the tank, less liquid is in the tank.

According to the paper, this approach can represent a generic causality relation. Applied
to the running example with the solar loading station, the representation can be seen in
Figure 2.6. In this figure we see the weather has a positive impact on the loading station,
as good weather implies a high loading speed of the loading station. We further see a
negative relation between the car and the solar loading station, as a low energy level in
the car causes a lower energy level in the solar loading station than a high energy level of
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Figure 2.5: Example for a SDG, Reproduced from [YDSC14]

Figure 2.6: Signed Directed Graph for the solar loading station example

the car.

This approach is based on the matrices mentioned before and therefore has similar
advantages and disadvantages. It can represent generic causality and additionally is able
to present binary weights. Even though it is possible to build a similar graph with events,
it is not possible to decide positive and negative relations for these events. The decision,
if a relation is positive or negative, is often quite subjective, as someone could consider
rain as good weather and sun as bad weather.

2.3.4 Matrix Layout Plot
This plot, defined in [YDSC14], presents the influence between two objects. Therefore,
on the top are always the cause variables, while all effect variables are on the left. The
representation shows the influence of one object to another. In Paper [YDSC14] the
information flow is measured by a method called partial directed coherence (PDC),
which can provide a normalized function of the information flow. A more detailed
information can be found in Paper [BS01]. Further the plot can only show direct causality
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Figure 2.7: Example of a Matrix Layout Plot, Reproduced from [YDSC14]

relations. Therefore, we can see in the plot in Figure 2.7 an example, where X3 has a
high information flow towards X1 and a low information flow towards X2.

2.3.5 Influence Diagram in Canonical Form
This representation, presented in [HS13], is an acyclic directed graph with two different
types of nodes to represent causality relations. The two types are decision nodes and
chance nodes, where a decision node represents a decision chosen by an actor, while a
chance node is a result, based on a previous decision. Additionally, the graph contains
deterministic nodes, which is a chance node, based on deterministic functions. Therefore,
each time a decision before a deterministic chance node has the same decision, the chance
node will also have the same state. To ensure this consistency, the diagram further
introduces mapping variables, which map the state of a previous decision node onto a
chance node. In the graph each decision node is represented by a square, a chance node
is represented by a circle and deterministic chance nodes are represented by a doubled
circle.

In Figure 2.8 an example, presented in Paper [HS13], is shown. The example is about a
medical treatment, where the doctor either chooses to give a recommendation (r) to take
the medical treatment or not. Based on this recommendation the patient either takes
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Figure 2.8: Example of the Influence Diagram in Canonical Form, Reproduced from
[HS13]

(t) the treatment or not. The doctor can not influence this decision and therefore it is
modelled as a chance variable. As last node in the graph we can see, if the patient is cured
(c). To ensure consistency there are two mapping variables t(r) and c(t), which declare, if
the patient takes the treatment based on the recommendation and if the patient is cured
based on the decision if he took the treatment.

For our running example, seen in Figure 2.9, we use dashed circles instead of double lined
circles to represent deterministic nodes and we furthermore use the following mapping:

• w . . . weather

• e . . . engineer

• el . . . loading speed of the electrical loading station

• so . . . loading speed of solar loading station

• c . . . loading time of the car

• ll . . . loading level of the solar loading station

• lc . . . loading level of the car

In the running example we can see the engineer, the weather and the loading level of the
car as decision nodes. Even though the weather and the loading level are not typical
actors, they are the base for further chance nodes. We could introduce another person,
which decides the moment to load the car, which would overtake the position of a decision
node. We can further see four mapping variables, where three are simply based on the
previous decision node. The last one is c(el,w), which presents the mapping from the
electrical loading station (active/inactive) and the solar loading station (slow/fast loading
speed) to the loading time of the car.
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Figure 2.9: Influence Diagram in Canonical Form for the solar loading station example

This approach represents concrete causality, as it shows different states of properties of
the objects, which where previously modeled as events. It can model a lot of different
states in a compact view, which further ensures consistency.

2.3.6 Fuzzy Cognitive Map (FCM)
A FCM, proposed by [Maz09], is represented by using concepts, where each concept
either represents a state or a characteristic. In typical cases this means, each concept is
an event or a trend of the system the FCM is modeled for. To create a FCM each concept
relates to other concepts through a causality relation, which is represented through an
arrow. Each relation is further weighted to represent the strength of the relation. In
Figure 2.10a we can see how a formal representation can look like. We further see the
possibility to build cyclic dependencies. An example for cyclic dependencies can be seen
in Figure 2.10b, where we can see the consumption of alcohol leads to disease, which
leads to depression, which again leads to the consumption of alcohol.

The FCM is built to represent events, therefore we can use it to build our example with
concrete causality. In Figure 2.11 a FCM is built according to our running example.
In this representation, we can see that even indirect causalities are modeled, as the
weighting is able to provide a differentiation between the different causality relations. In
comparison with previous representations, this representation does not represent negative
causality relations and has no ability to provide an additional description.

2.3.7 Extended SOSA Approach (Sensor, Observation, Sample,
Actuation)

This approach, presented in Paper [AES+20], uses multiple different components to
represent a causality relation. In the focus of the representation are so called “features
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(a) Structure of a Fuzzy Cognitive Map
(b) Example of a Fuzzy Cognitive Map

Figure 2.10: Fuzzy Cognitive Map, Reproduced from [Maz09]

of interest”, which model an observable component. Each of the features are connected
with properties, which are further connected between each other to represent different
relations. One possible relation is the causality relation. In Figure 2.12 a similar example
to our own example is presented, where the weather influences the photovoltaic system,
which influences the transformer, which further influences a solar loading station.

We do not model our own example for this approach as Figure 2.12 already presents a
similar example with all relevant information. This approach demonstrates a high-level
representation of causality. It only shows a generic relation between two properties of
two components and demonstrates a single type of causality relation.

2.3.8 Dynamic Uncertain Causality Graph (DUCG)

The Dynamic Uncertain Causality Graph (presented in [Zha12]) is an extension of the
DUG. The DUG represents causes and effects, where an effect can be the cause of another
effect. Further there is always a root cause, which is not an effect of another modelled
cause. In the DUG it is also possible to use logic gates to unite multiple possible causes
for an effect. Therefore, it is possible for an effect to have different sets of causes and
preconditions. Each basic root is modeled as a square, while an effect is modelled as a
circle and a causality relation as an arrow from cause to effect. In Figure 2.13 we can see
B1 and B5 as root causes, X2 (where the previous cause of X2 is not modeled) and X4
as effects and G3 as a gate to combine multiple causes.

The two extensions from DUG to DUCG are a Conditional Linkage Event and a Default
Event. The Conditional Linkage Event represents a causality relation, which only holds
under certain terms (modeled with dashed arrows), while the Default Event represents
missing information. In the example in [fig example DUCG] we see an example of an alarm
system, where either an earthquake, an intruder or a rat can trigger the alarm. There
are two different types of trigger mechanisms, infrared and vibration. An earthquake can
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Figure 2.11: Fuzzy Cognitive Map for the solar loading station example

26



2.3. Methods for causality representation

Fi
gu

re
2.

12
:

Ex
am

pl
e

fo
r

th
e

SO
SA

A
pp

ro
ac

h,
R

ep
ro

du
ce

d
fro

m
[A

ES
+

20
]

27



2. Causality Representation

Figure 2.13: Structure of a Dynamic Uncertain Graph

Figure 2.14: Example of a Dynamic Uncertain Causality Graph, Reproduced from [Zha12]

only trigger the vibration alarm, while the intruder and the rat can trigger both. We
can further see in the graph, if an earthquake appears, the vibration alarm can not be
triggered by an intruder or rat as the earthquake causes stronger vibrations. The same
principle is valid for the infrared alarm as it can not be triggered by the rat if an intruder
already triggers it. As there can be more possible events to activate the alarm, there is
also a Default Event (D7) to model unknown events.

The running example according to the DUCG representation, is modeled in Figure 2.15,
where the root events are the weather and the decision of the engineer. We further see a
conditional relation between the loading of the solar loading station and the loading time
of the car, as the solar loading station is only relevant, if the electrical loading station
is inactive. There is also a Default Event to indicate more possible influences on the
loading time (i.e. defect in the car).

This representation shows concrete causality, as it presents relations between attributes,
which change through events (weather gets sunny, engineer activates the electrical loading
station). It is also possible to model a conditional relation, where we had to group
multiple conditions in previous examples. Further it is the only example, which handles
unknown information.

2.3.9 Multilevel Flow Model (MFM)
This representation of causality relations presented in paper [Lin11] is the MFM. It is
used to present large systems with all entities and relations. The two basic concepts
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Figure 2.15: Dynamic Uncertain Causality Graph for the solar loading station example

of MFM are the means-end concept and the part-whole concept, where the means-end
concept describes a concept, in which a system is modeled in a way, where in each step
the system gets closer to a goal, while the part-whole concept describes a representation,
where a system is split into multiple parts to present the whole system. In MFM a system
is split up into goals and functional flow structures, which are interconnected to form a
complete representation. There are different relation types to model different relations.
Each relation type describes the influence of functional structure onto another one or a
goal. Therefore, each relation can also be seen as a set of causality relations. In Figure
2.16 the basic representation types of MFM are shown.

In Paper[Lin11] a mill is used as example for MFM. The fitting diagram for the mill
is shown in figure [example MFM mill]. We can see the system is split into four flow
structures, where the first one (S3) is the water flow to the wheel and from the wheel
out of the mill, the second (S2) shows the conversion of kinetic energy into rotational
energy into heat and energy to energize the mechanical linkage to move the grinding
stones inside the mill. Additionally, S1 is the grinding of the corn into flour and shells.
These three structures are connected through mean-end relations as after each structure,
we get closer to the goal of producing flour. The last structure (S4) is a lubrication
system, which oils the wheel. It is not connected through a mean-end relation, as it is a
precondition, but not a step in the process. The relation type applied on this example
is a control relation (enable), as the lubrication system enables the wheel to fulfil his
function.

The running example about the solar loading station can be modelled in four functional
flow structures and a goal presented in Figure 2.18. The goal of the system is to load
the battery of cars. The first structure (S1) represents the flow from the weather (So1),
which is transported (T1) towards the solar loading station. At the loading station the
energy is first converted into electricity (C1) and afterwards transported (T2) into the
storage of the loading station (St1). Energy which overflows the storage of the loading
station is sent (T3) into the power grid (Si1). The second structure (S2) represents
the loading process of cars, where we assume there are endless cars (So2) which need
energy. Successively each car drives next to the loading station (T4), where the car is
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Figure 2.16: Structure elements of a Multilevel Flow Model, Reproduced from [Lin11]

loaded(D1). The distribution notation is used as the energy is distributed between all
cars. Afterwards the loaded car leaves (T5) the loading station. The third structure
represents the electrical loading station, which gets energy (T6) from the power grid
(So3) and stores the energy in the loading station (St2). If the battery of the loading
station is loaded, overflowing energy is fed back into the power grid (Si3). The last
structure (S4) is the engineer which has to maintain the current state (active) of the
electrical loading station (M1) to enable it to work. Between S1, S2 and S3, S2 we can
see a producer-product relation, as the loading station provides the energy to load the
cars. We further see a maintaining relation between S2 and O1 as the loading station
has to keep providing power to cars to successfully load cars. At the end we see an
enable-relation between S4 and S3 as the engineer has to maintain the current status to
enable the electrical loading station to provide energy.

2.3.10 Event-Model-F (causality pattern)
The Event-Model-F, shown in [SFSS09], defines multiple patterns to represent events
and relations between events. The causality pattern (shown in Figure 2.19) is described
by two events, the effect and the cause. Further both, events are connected through a
relation, which has a justification, which can be anything to additionally explain the
causality relation. The paper lists an opinion, a theory or a scientific law as examples for
possible justifications of a causality relation between these two events.
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Figure 2.17: Example of a Multilevel Flow Model, Reproduced from [Lin11]

In Figure 2.20 the Event-Model-F causality relation is applied to our running example.
Each event is either cause, effect or both. The type of the event is indicated at the
start of the name. Further each relation has the required justification, which is modeled
in orange. As this approach works with events, it can only model a concrete causality
relation. Further, the electrical loading station (active/inactive) and the weather is
combined into a single event, as this approach can not model conditional relations and
therefore the exact description of the relation has to be modeled in the justification.

This formal approach for causality representation can present every possible relation due
to the justification, which can be chosen independently of the relation. This enables or
forces the user to create an own categorization of different types of relations and events.
The user has to describe conditional relations in the justification.
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Figure 2.19: Abstract representation of the causality pattern of Event-Model-F, Repro-
duced from [SFSS09]

2.4 Summary

To summarize this section, we can see an overview of advantages and disadvantages of
different representations in Table 2.5. In the following paragraphs we will discuss these
dimensions and show their importance for our example.

Different Types of Causality Relations

It is important to model different types of causality relations and events, as there are
different kinds of influences. Each relation type represents another important information.
Applied to our example we can argue, it is important to know, if there is a different type
of relation between the solar loading station and the car and the electrical loading station
and the car, where the electrical loading station is always used if it is active. If we use
the same type of relation, we will have to extend our effects and causes to contain this
information (as we did in the example for the Fuzzy Cognitive Map). In Table 2.5 we can
see, half of the approaches to model causality use different types of causality relations.

Influence Factor of Causality Relation

Another important factor is the influence factor of a causality relation, where each
causality relation can be compared with other relations to show the strength of influence
of one relation to another. In our example this can be used to provide thresholds or
the correlation between two entities of a system. If we take the relation between sunny
weather and a high loading speed, we can use the influence factor to show the point
at which the loading speed decreases, when the weather gets worse or show the factor
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2.4. Summary

in which the loading speed declines. The Influence Factor was only proposed by two
approaches of the analyzed ones ([SFSS09], [Maz09]).

Representing a timeline

The NLP approaches propose a dimension to clarify the timeline, in which the events
happen. Therefore, if the cause happens before, after or during the effect. This is
important to consider for our example as it shows, if the sun has to shine before the
loading process starts or if it is enough if the sun starts shining during the loading process
to increase the loading speed.

Combination of multiple causes

This dimension enables an effect to have multiple causes. Therefore, each effect can have
between 1 and n causes, where each cause on his own can cause the event or all causes
together cause the effect. Applied to our example, we can use this to model the influence
of the different solar loading station onto the car, where a high loading speed at the car
can have different causes. Either the engineer activated the electrical loading station,
or the weather is sunny and therefore the loading speed of the solar loading station is
high. In the comparison of different approaches in the previous section, three approaches
provide an explicit differentiation.

Generic vs. Concrete Causality

The last dimension describes, if the approach presents concrete or generic causality
according to our definition. In the table we can see half of the approaches can be
categorized as generic and the other half as concrete ones.

Result

At the end we can conclude to build an appropriate representation of causality in a
system, which strongly depends on the use case to choose a correct representation.
For our example different approaches are viable. We could use the Event-Model-F
as it is possible to describe each relation with the additional justification, to provide
every information needed. Alternatively we can use the DUCG approach to model the
conditional relation between the solar loading station, the electrical loading station and
the car, where the solar loading station is only used, if the electrical loading station is
not active. Additionally, it is also possible to provide a clear definition of root causes
with the help of DUCG. In the end it is also possible to model the example with the
help of an SDG to provide a more generic overview of the system. The SDG is a simple
representation, which provides each relation in a single graph.
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Model Different
Types of
Causality
Relation

Influence
Factor of
causality
relations

Represents
a timeline

Combination
of multiple
causes

generic/
concrete
causality

Extended
SOSA ap-
proach

no no no no generic

Event-Model-
F

yes yes no no concrete

Adjacency &
reachability
matrix

no no no no generic

Signed Di-
rected Graph

yes (posi-
tive/negative)

no no no generic

Matrix Layout
Plots

no no no no generic

Fuzzy Cogni-
tive Maps

no yes no no concrete

Influence Dia-
gram in Canon-
ical Form

no no no yes concrete

DUCG yes no no yes concrete
MWM yes no no yes concrete
Nature Lan-
guage Ap-
proaches

yes no yes no generic

Table 2.5: Comparison of different causality relation representations
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CHAPTER 3
Application of causality models in

CPS

In this chapter we aim to investigate RQ2, where we focus on scenarios of causality
acquisition and causality representation in already existing systems. In Section 3.1 we
briefly describe these systems and point out interesting aspects of each of those systems.
Section 3.2 concludes this chapter with a comparison of these systems and proposes a
representation, considering the aspects of Section 2.4 and Section 3.2, which can be used
in the BIFROST simulation engine. The comparison of the systems and the proposed
representation, presented in Section 3.2 are contributions of the thesis.

3.1 Approaches of Causality Application
This section shows approaches to acquire and represent causality. These approaches
aim to acquire causality from a Cyber Physical System, present it in a formal way and
evaluate it to find root causes and optimize different variables in the system.

3.1.1 Semantic Smart Building Diagnoser
The Semantic Smart Building Diagnoser, presented in [PSL14], is applied to buildings to
evaluate possible causes for anomalies appearing during operations. To represent causality,
a semantic model is used, where the model is an extension of the Semantic Sensor Network
skeleton ontology defined by the W3C incubator group. The model uses different classes
to represent a feature of interest, which is an observed area (i.e.: room), an actuator, a
property of an actuator, (un)observed values and anomalies. Additionally, it represents
relations between these classes, where a relation can be either a property linked to the
actuator, an (un)observed value linked to a feature of interest or a cause-effect-relation,
which can be positive or negative, between either of these classes.
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Figure 3.1: Example of the Semantic Smart Building Diagnoser, Reproduced from [PSL14]

To build a semantic representation for the Semantic Smart Building Diagnoser, each
object in the building has to be labeled according to possible types, which are different for
each building. The paper presents a semi-automated system to annotate automatically
each object. These annotations must be manually corrected by an expert. Afterwards,
each feature is related to each (un)observed value and each object to each property of
the object. Further, the objects are interconnected with values they observe. Therefore
each object is linked with properties and observable values. Unobservable values are still
represented in the model but not connected to their influences.

With this model it is feasible to evaluate the cause of anomalies. To find the cause, it is
possible to find a sequence of relations between properties and observed values to find
the root cause. In the paper an example is presented, where a room has an occupancy
sensor, a cooling setpoint, a temperature sensor and a cooling actuator. Additionally, the
temperature outside the room is modelled. The objects, properties and observed values
of the example can be seen in Figure 3.1. If the anomaly “high temperature” appears,
there will be multiple sequences of relations and therefore, multiple possible causes. First
of all, a high temperature can be caused by a high occupancy, as it is linked through the
observed value “energy”. Alternatively, it can be caused by high temperature outside of
the building as these are linked through “temperature”, “energy” and “outside energy”.
The last possibility is the cooling actuator, as they are linked through “temperature” and
“cooling”.
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Figure 3.2: Example of a O&M Knowledge Graph, Reproduced from [QDY+20]

3.1.2 O&M Knowledge Graph
In this application of causality representation, shown in [QDY+20], a weighted directed
acyclic graph is used to find the cause of an alarm in a cloud-application. To construct
the graph, the paper proposes an algorithm, where a complete graph is built in the first.
Each node represents a performance indicator. Afterwards the algorithm decides, if there
is a causal relation between each pair of performance indicators. In this cause, the edge
between these two performance indicators persists, otherwise it is deleted. The result
of the first step is a graph, containing undirected edges. Afterwards the algorithm uses
statistical methods and interference rules to direct and weight each remaining relation.

It is easy to use this graph, to find a root cause, as there are only two rules, which can be
followed by a ranked list of possible root causes. The first rule is, the higher the weight,
the higher the priority. The other rule is the shorter the path, the higher the priority.
In the given example these rules are applied to the graph seen in Figure 3.2, where an
abnormal response time in container 3 is observed. In the graph we can see there are
four possible root causes for the anomaly. The most likely outcome is the memory usage
in container 3 as it is weighted as 0.7 and only has a pathlength of one. Compared to
the Memory usage of container 1, where the weight is 0.7 as well, but the path length is
two. These two possibilities and the other two can be seen in Figure 3.3.

3.1.3 Root Cause Map
In Paper [RH04] a more general approach to collect causality information is described. It
uses a root cause map to model effects with their possible causes. The whole map shows
each cause related to each effect, with all steps which have to appear in between for the
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Figure 3.3: Evaluation of a O&M Knowledge Graph, Reproduced from [QDY+20]

cause to happen. The building of a root cause map involves four steps. In the first step
the data has to be collected, therefore the object, which has to be analyzed, has to be
measured and data has to be saved in a logic way. Afterwards the causality relations
have to be extracted from the data. The paper proposes a sequence diagram to visualize
all possible cause sequences to trigger an effect. Afterwards, these diagrams must be used
to identify all possible root causes for each possible effect. This representation is called
the root cause map. From this root cause map we can extract possible recommendations
to avoid or to trigger a cause, which in the end is used to build a root cause summary
table, where each row contains the causal relations, which lead to an effect.

3.1.4 GoalArt
Goal Art, presented in [LÖC07], is an algorithm which uses a Multilevel Flow Model
(presented in Section 2.3.9) to extract and model causality. GoalArt is used for the
root cause diagnosis in a power grid. Therefore, each element in the Multilevel Flow
Model presents an object in the grid. Furthermore, each object is assigned to one of the
following four types: generator, line element, bus bar or load element. A transformer
for example is a line element, as it is a power transporting device. The algorithm can
assign the correct type for each of the objects automatically. As each functionality of the
power grid is modeled as function in the MFM and each goal is a possible effect, it is
easy to track back possible causes, because each function of an MFM is interconnected
with others to model all cause-effect relations of the system.

3.1.5 Produced Water Treatment
The simulated water treatment facility, introduced in Paper [NJZ+18], also uses a MFM
to present possible causes. As they work in a simulated environment, they have defined
certain threshold limits for alarms. Compared to GoalArt, this approach has the MFM
modelled by an expert. Therefore, the system has no automation to model an MFM.
This approach uses each goal as a possible alarm state and each functionality of the
system as a function in the model. With the help of this construction it is possible to find
the correct root cause by tracking back the functionality, starting at the goal modelling
the alarm, currently active.
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3.1.6 WARP
WARP, presented in [MDEG18], is an engine developed to preprocess streams of events.
Therefore, it receives all events from the observed engine, groups these events and filters
them if needed. Therefore, it is possible to show a single event for a single anomaly
instead of multiple events of a single cause, because each element between cause and last
effect can trigger an alarm. WARP offers the possibility to filter events in the following
ways. First it is possible to filter due to semantics, where events with a different type
of data or based on interference rules are chosen. Furthermore, it is possible to filter
topologically, where events from the same area of a grid or events with the same source
of data are chosen. It is also possible to filter geographical data, where WARP uses GPS
or similar technologies to determine other possibly related events. As a last filter, it
is possible to filter events based on a heuristic, where previously learned data can be
applied to find related events.

WARP is not able to provide an automatic evaluation of causes, but it can present a
structured overview over every event that has happened to an expert, who then has to
decide further, which further actions can be taken to avoid future alarms.

3.1.7 Framework for a smart data analytics platform towards process
monitoring and alarm management

This framework, shown in [HSC18], is used to present causality relations between different
alarms. Therefore, it is possible to find a root alarm, based on the causal relations. To
represent these relations, the framework uses Availability- and Reachability matrices.
Further, the framework is able to model a Signed Directed Graph from the initial matrix.
To build these representations, the framework uses a statistical method, called Transfer
Entropy (in detail explained in [DYCS13]). This method can calculate the causal strength
between different alarms. In Paper [HSC18] there is an example based on the SDG,
which can be seen in Figure 3.4. In the first step each causal relation is modelled in the
graph (left picture). Afterwards, the framework is using a normalized value of the causal
strength to find indirect causal relations and removes them. The result can be seen in
the right picture of Figure 3.4.

3.1.8 Building energy managment system
In this last presented approach to acquire and represent causality, a set of interference
rules is applied to optimize a building automation system. These rules are created by
an expert or extracted by data mining previously collected data. The whole energy
management system has different steps, until the optimization can be applied to the
building. This process is shown in Figure 3.5.

At the start of the process, the system receives current information about the building
and the weather. Afterwards the workflow splits into two different modules to evaluate
optimization potential. In one module the received data is transformed into a structured,
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Figure 3.4: Example of a SDG for process monitoring and alarm management, Reproduced
from [HSC18]

formal representation, while the other module calculates thresholds for certain values
and expected values for parameters. With the help of both calculations, the system is
able to find inefficiencies in the building. For each parameter that is marked as efficient,
the system does not need to take further actions. Every other parameter is brought
into context with surrounding objects and parameters and the system decides, if the
parameter is abnormal or not. For example, if the temperature is high, the window is
open and it is hot outside, it can be followed that the high temperature is intended.
On the other side, if the window is closed and a heater is active, there is an abnormal
behavior. If the system detects abnormal behavior, it will find the cause through the set
of interference rules and sends a recommendation on how to solve the abnormality to the
building system, which then can decide, if it wants to apply the recommendation or not.

3.2 Summary
At the end of this section we summarize different aspects of the application of causality
extraction and modeling in simulated and real-world scenarios. In Table 3.1 a comparison
of these applications can be seen.

Application Area The application area is quite important for different causality ex-
tractions, as it highlights the different needs in the model for different areas of application.
For example, in Paper [PSL14] a smart building is presented, where it is important to
explain abnormal high or low temperature. Therefore they chose a skeleton ontology to
solve the problem. On the other side, in [LÖC07] a smart grid has to be modelled, where
a Multilevel Flow Model is a proper solution.

Expert knowledge required to build the model. This dimension shows, if expert
knowledge is required to build the initial model. Therefore, it shows the required effort
to build a model. In some of the presented approaches it is necessary to use an expert to
build the initial information model. In [LCH+19] the used interference rules have to be
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Figure 3.5: Workflow of the Building energy management system, Reproduced from
[LCH+19]
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set manually, in addition to the found rules, based on old data. Further the approach
[PSL14] can only semi automatically build the model and needs an expert to double
check the automatically generated model. On the other hand, the algorithm, introduced
in [LÖC07], does not need an expert to build the MFM, as the algorithm can do it on
his own. Half of the presented approaches can build a model on their own.

Expert knowledge required to run the model The last dimension described is
the necessity of expert knowledge to run the system, after the initial creation of the
model. Therefore, if there has to be an expert, which doublechecks causes, generated by
the system or decides based on a list of causes provided by the model, the root cause.
An example for a system, requiring an expert is WARP, shown in [MDEG18] , where
the system only provides an overview over each appearing event. In contrast to WARP,
[PSL14] can provide an automatic explanation for each occurring anomaly. Therefore,
the Semantic Smart Building Diagnoser does not need an expert during operation. The
only other system which does not need an expert is the Building Energy Managment
System, presented in [LCH+19]. no

Result At the end we can summarize, that depending on the application area, there are
multiple different approaches for the extraction and modelling of causality. Overall, there
is one representation which appears to be superior compared to others, the Multilevel
Flow Model. This representation is not only able to show causality without a lot of
statistical calculations, but can also provide an overview over large systems (e.g.: smart
grid) and even find anomalies based on the modelled functionality of the systems. Further
it is possible to extend the Multilevel Flow Model with the different aspects described in
Section 2.4.
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Approach Application
area

Expert knowl-
edge required
to build the
model

Expert knowl-
edge required
to run the
model

Semantic Smart Build-
ing Diagnoser

smart building yes no

O&M Knowledge Graph cloud computing no yes
Root Cause Map general root cause

analysis
yes yes

Goal Art smart grid no yes
Produced Water Treat-
ment

root cause analy-
sis in PWT

yes yes (can be auto-
mated over time)

WARP distributed grid no yes
Framework for a smart
data analytics platform
towards process moni-
toring and alarm man-
agement

root cause analy-
sis in a large sys-
tem

no yes

Building energy manage-
ment systems

smart buildings yes no

Table 3.1: Comparison of different approaches of Causality Applications
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CHAPTER 4
Causality Acquisition

This chapter focuses on RQ3 and investigates different possibilities to acquire causality
relations from a CSP. In Section 4.1 we formally define the problem and therefore extend
the definition of causality, originally presented in Section 2.1. This problem definition is
the first contribution of this chapter. Based on the problem definition of Section 4.1, we
present an overview of five different methods to acquire causality in Section 4.2. Finally,
Section 4.3 concludes the chapter by presenting an overview of important aspects which
have to be considered while using one of the causality acquisition algorithms presented in
Section 4.2. Further, the overview presented in Section 4.3 discusses the applicability of
these causality acquisition algorithms to the BIFROST simulation engine. The overview
of Section 4.3 is another contribution of thesis.

4.1 Causality Acquisition Problem Definition
For the purpose of this thesis we use the SOSA approach, presented in Section 2.3.7, to
define causality acquisition. Especially we introduce the feature of interest, the property
and the causal relation. A feature of interest is an object in the system. Each object has
multiple properties. A feature of interest can be a house with the properties “energy level”
or “power level”. Each feature of interest can have multiple properties, but each property
belongs to a single feature of interest. The presented causality acquisition algorithms
aim to collect causal relations between these properties, where a causal relation provides
a property (cause), which causes another property (effect).

In this thesis the aim is to evaluate causality acquisition algorithms in the context of
the BIFROST simulation engine. BIFROST provides settlements, which can contain
different types of buildings and a different number of each of these buildings. Each
building is represented as a feature of interest. Further BIFROST provides different
types of measurements from each building, which are the properties of the feature of
interest. Each type of building collects the same types of properties. These property
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measurements are collected by an expCPS, presented in [AES+20]. This collection of
measurements can be transformed into a time series by the framework, presented in
Chapter 5. Therefore, we define the following terms:

• Settlement: A settlement S is a tuple which describes the whole CPS. Therefore,
each settlement contains:

– a set of Features of Interest FI

– a set of Feature Types FT

– a set of Properties P

– a set of Property Types PT

– a set of timeseries TS

– the mapping between a Feature of Interest and a Feature Type, represented
by the function FIFT : FI− > FT

– the mapping between a Property and a Property Type, represented by the
function PPT : P− > PT

– the mapping between a Feature of Interest and a Property, represented by the
function FIP : FI− > P

Formally a Settlement is represented in Formula 4.1. The different parts of the
tuple are described in the following points.

S = {FI, FT, P, PT, TS, FIFT, PPT, FIP} (4.1)

• Feature of Interest: A Feature of Interest fi of FI is a single object in the
observed system. For an object to be classified as Feature of Interest it has to
contain relevant information which researchers want to collect. For example, a
Feature of Interest in the BIFROST simulation engine can be a building or a
transformer.

• Feature Type: To compare different Features of Interest, each Feature of Interest
belongs to a Feature Type ft of FT . Each Feature of Interest has a single Feature
Type, while multiple Features of Interest can belong to the same Feature Type.
Therefore, for each Feature of Interest there exists a mapping function FIFT (fi) =
ft, which maps the Feature of Interest to the corresponding Feature Type. An
example for a Feature Type is police_station and fire_station, where each Feature
of Interest is either a police_station or a fire_station, but there can be multiple
police_stations in the same settlement.

• Property A property p of P is a single measurable value of a Feature of Interest.
Each Feature of Interest can have multiple properties, while each property belongs
to a single Feature of Interest. For example, a building (Feature of Interest) has
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the property energy_level and power_level. As a property belongs to a Feature
of Interest, we can map a property to the Feature of Interest with the following
function: FIP (p) = fi.

• Property Type Similarly to the Feature Type, we also categorize Properties
to enable a comparison. Therefore, we introduce the Property Type pt of PT ,
where each Property has a single Property Type, while multiple Properties can
belong to the same Property Type. If two different Properties p1 and p2 of P
are given and the set of Property Types PT = {energy_level, loading_level}, p1
and p2 can belong to the Property Type energy_level, but neither p1 nor p2 can
belong to both energy_level and loading_level. Therefore, a mapping function
PPT (p) = pt exists for each Property.

• Datapoint: A Datapoint d is a single measurement taken from a property and is
represented as a tuple of the time when the measurement was taken and the value
of the measurement. Therefore a Datapoint D = (v, t), where v is the measured
value and t the time of the measurement.

• Timeseries: A Timeseries ts of TS is an ordered set of Datapoints and therefore
a set of multiple measurements of the same property. Therefore, each Timeseries
belongs to a single property. Formally a Timeseries is represented as ts = {d1. . . dn},
where n is the number of Datapoints in the Timeseries and ts is in TS. Further a
single Datapoint is represented by ts(t), where t is the time of the Datapoint we
want to represent.

• Causality Relation/Causal Relation The causality relation represents a causal
relation between two Properties. Therefore, formally a causal relation is represented
as c(p1, p2) where p1 and p2 are in P and belong to a Feature of Interest in the
same Settlement. Further p1 is the cause while p2 is the effect of the relation. An
example for a causal relation is c(loading_level, active_power), where a higher
loading_level (Property) of a transformer (Feature of Interest) causes a higher
active_power (Property) of residential_house (Feature of Interest).

With this terms we focus on solving two problems, which aim to solve RQ3. These
problems are defined as follows:

• P1: Given two properties p1 and p2 of P. How is it possible to determine if c(p1,p2)
holds true? Therefore, the output of problem P1 is true, if c(p1,p2) exists and false,
if c(p1,p2) does not exist.
For the setup in BIFROST, we always compare two timeseries ts1 and ts2 of two
Properties p1 and p2, where ts1 is a timeseries of p1 and ts2 is a timeseries of p2.
Therefore a causal relation can also be shown as: c(ts1, ts2).

• P2: Given a Settlement S, how is it possible to get a result set RS of Causal
Relations, where each Causal Relation in RS represents an existing Causal Relation
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between two properties in the Settlement S. Formally RS = {c1, ..., cn}, where n is
the number of causal relations in Settlement S.

Therefore, this chapter aims to provide an overview of different causality acquisition
algorithms that could address the problem as defined above and a discussion on the
possibility to collect these causal relations in the BIFROST simulation engine.

4.2 Causality Acquisition Algorithms
The presented Causality Acquisition Algorithms (CAA) aims to solve P1, where two
timeseries ts1 of p1 and ts2 of p2 are the input of each CAA. After applying the algorithm,
each CAA provides the information if c(p1, p2) exist. The output of each CAA is therefore
true or false, which is the output required by P1.

To solve P2, each CAA is applied to each possible combination of properties available in
a Settlement S. Even if an expert would recognize combinations of properties, which
can logically have no causal relation, the algorithm is not able to distinguish this type of
situations. After applying each CAA to each combination of properties the algorithm
collects the positive results into a result set Rs, which contains each causal relation c of
S. The different CAAs to build Rs are detailed in the following Subsections.

4.2.1 Granger Causality
Granger Causality is developed by Granger [Gra69] and designed to compare two time-
series x and y in order to find a possible causal relation. To correctly predict causal
relations, as presented in [CSK+18], between timeseries x and y of TS, it compares the
possibility to predict x(t) with x(t − l) and y(t − l) and x(t − l) alone. Based on this
comparison it can be followed, that the prediction is increased, there is a causal relation,
otherwise not. The variable l in this calculation stands for the time lag between the value
x(t) and the value of the past x(t − l), with whom x(t) is compared.

Formally the Granger Causality between two variables is given by a bivariant autore-
gressive model, which can be expressed as shown in Formula 4.2 and 4.3, where the
variables A-D express the regression coefficient matrix. This matrix is built with the
help of the ordinal least square method described in [CI11]. t and ηt are white noise
processes, which simulate the error function in the calculation. To finally compare these
two models, an F-Test is used, which compares the variance of the two outcomes.

x(t) =
m

τ=1
Aτ · x(t − τ) +

m

τ=1
Bτ · y(t − τ) + t (4.2)

y(t) =
m

τ=1
Cτ · x(t − τ) +

m

τ=1
Dτ · y(t − τ) + ηt (4.3)
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Granger causality can be applied to the BIFROST simulation engine, but it is possible
for it not to detect each causal relation as Granger Causality works more accurate on
linear functions. The other requirements for the application in BIFROST are fulfilled, as
it is possible to extract timeseries from BIFROST.

4.2.2 Transfer Entropy

The Transfer Entropy, first introduced by Schreiber [Sch00], is a method to measure
the information flow between two time series. Therefore, it is possible to measure the
information exchange between two information flows in each direction on its own. The
Transfer Entropy is based on the Shannon Entropy, shown in Formula 4.4, which describes
the uncertainty of an information. This uncertainty is given as HI in the formula. An
example for Shannon Entropy is a coin flip, where the most uncertainty is given, if the
coin is unbiased as we cannot expect either of both possible outcomes. In contrast, a
biased coin, which always has the same outcome, has no uncertainty as we can know
the outcome before the coin is flipped. Based on this concept, the Transfer Entropy is
extended to two different information sources which measure the information with a time
delay. The formula for the Transfer Entropy is given in Formula 4.5, where we see the
extension for the calculation of uncertainty for a single event towards the measure of
information flow between two sources of information. Further explained Transfer Entropy
measures the reduction of uncertainty for a future value of the first timeseries, based on
the knowledge of an old value of the second timeseries. In the formula i and j are the
two timeseries, while in and jn represent the values at a certain datapoint.

HI = −
i

p(i)log2p(i) (4.4)

TJ−→I = p(in+1, i(k)
n , j(l)

n )log
p(in+1|i(k)

n , j
(l)
n )

p(in+1|i(k)
n )

(4.5)

The result of the calculation is still based on the chosen values, where we can set two
different parameters. The first one is the historical length (k, l), which decides, how many
previously measured values are relevant for the next current one. For this parameter
Schreiber proposes either k = l or k = 1 to reduce computational effort. Furthermore,
it is possible to adjust the delay between the compared values of the cause and the
effect. Therefore, we can adjust the timespan between the cause happening and the effect
appearing.

There are different estimation methods, which are used by the Transfer Entropy method
to implement the probability measure p(in+1, i

(k)
n , j

(l)
n ). In the following, different methods

to calculate the probability measure are presented.
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Kernel Density Estimator

A Kernel Estimator is a function, presented in [Liz14], which is used to generate a
probability distribution function (PDF). These functions show the distribution of a single
specified value, similar to histograms. Compared to histograms, the Kernel Estimator
is represented as a curve instead of a collection of bars. To create a Kernel Density
Estimator, multiple Kernel Estimators are combined into a single curve. Applied to the
Transfer Entropy, this means we create a Kernel Estimator for each value of the time
series and combine these estimators to build the probability measure.

To create a smooth curve, the kernel function uses a bandwidth to round off the result.
The result of a Kernel Estimator is heavily biased towards the chosen bandwidth as the
result is quite different, as seen in Figure 4.1. Figure 4.1 shows seven different Kernel
Estimators (in color) and the Kernel Density Function (in grey). Further, different
bandwidth values (h) are used in each diagram to show the bias of the resulting function
towards the chosen bandwidth. The higher the bandwidth gets, the more biased the
function gets. The lower the bandwidth gets, the higher is the risk of the function to not
provide useful information.

Formally the probability measure, created with the Kernel Density Estimator, for two
timeseries is given in Formula 4.6, where N is the number of properties, while Θ represents
the kernel functions, which defaults in the used implementation to a step kernel, which is
given in Formula 4.7 and 4.8. Finally the bandwidth is presented as parameter r.

p̂r(xn, yn) = 1
N

N

n =1
Θ(|xn − xn

yn − yn
| − r) (4.6)

Θ(x > 0) = 0 (4.7)

Θ(x ≤ 0) = 1 (4.8)

Kraskov Estimation

Similar to the Kernel Density Estimation, described in [Liz14], the Kraskov Estimation
also uses multiple kernel functions to provide a probability measure. The difference
between these two approaches is the calculation of the bandwidth. While the Kernel
estimator takes a fixed value for the bandwidth, the Kraskov Estimation calculates the
bandwidth based on the k nearest neighbors algorithm. In this approach to build a kernel
function, the algorithm takes the k nearest neighbors next to the calculated value and
defines the bandwidth as the average of the distance between these samples.

For this estimation method it is not necessary to set a fixed bandwidth and therefore the
bias created by the bandwidth choice is prevented. On the other side it has a significant
higher calculation time, as the bandwidth has to be calculated for each kernel density
function.
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Figure 4.1: Example of a Kernel Density Graph with different bandwidths, Reproduced
from [23]

Applicability for BIFROST simulation engine

The Transfer Entropy can be applied to the BIFROST simulation engine, as it is possible
to extract timeseries for each property measured in the simulation. After the extraction it
is further possible to compare the timeseries, based on a Transfer Entropy implementation,
to find a possible causal relation.

4.2.3 Peter-Clark Algorithm
For this causality acquisition algorithm, proposed by [SGSH00], an algorithm is used,
which starts with a graph G, where each vertex, which represents a property of a feature
of interest, is connected with each other. The Peter-Clark Algorithm is not able to solve
P1, but solves P2 directly. In the first step, the algorithm tests each edge for conditional
independence based on a set of neighbor vertices, which increases each test round, starting
with the empty set. The result of the first step is an undirected graph with all appearing
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causality relations. In the second and last step the algorithm directs each undirected
edge to build a causality graph.

In Figure 4.2, an example for a Peter-Clark (PC) Algorithm, presented in [LHL+16] is
shown. In this example the function I represents a conditional independence test between
two variables. In the implementation, explained in Chapter 5, a Fisher Z test is used,
but other conditional independence tests can be used as well. In the first test round,
the conditional independence between each combination of values is tested and the edge
between B and C, D and the edge between C and D are removed, as the algorithm has
found conditional independence (based on the empty set as condition). In the second
test round, the edge between A and B is removed as the algorithm finds A and B to be
independent of each other if C is known. The remaining edges are tested as well, but no
further edge can be removed, therefore the undirected graph is constructed. In the last
step each remaining edge has to be directed to provide the final graph.

The Peter-Clark Algorithm has some major disadvantages, as the result depends on the
order of the conditional independence tests. Therefore, different edges are removed, based
on the order of calculation. Furthermore, the Peter-Clark Algorithm scales worst case
exponential [LHL+16]. We therefore do not recommend it for the BIFROST simulation
engine, as many timeseries and properties are expected, and the calculation time can
be too high. Further, the result required by the expCPS should be consistent and not
dependent on the chosen algorithm.

4.2.4 Neyman Rubin Causality

The Neyman-Rubin causal model, originally developed by Neyman [SNDS90], measures
the outcome of an event under the assumption, that another event happens, or the
other event does not happen. Based on these two outcomes (either the second event
happened or not), the model generates two comparable outcomes. In the following step
the algorithm compares the outcomes and decides, if they are equal or not. If the two
outcomes are equal, the methodology can conclude there is no causal relation between
the events as the outcome does not change, independent if the second event occurs or
not. On the other hand, if the two outcomes are not equal, the model concludes, that
there is a causal relation.

In the BIFROST simulation engine each event would be mapped to the current value of
a property. Therefore, each property has to be measured with another property present
and the other property not present. This is not possible in the BIFROST simulation
engine, as only a whole Feature of Interest can be placed or removed. Further it is
not possible to collect the two outcomes, independent of other influences. Therefore,
we do not recommend the usage of the Neyman-Rubin causal model for the BIFROST
simulation engine.
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Figure 4.2: Example of a Peter-Clark Algorithm, Reproduced from [LHL+16]

4.2.5 Structural Equation Method

The main purpose of the Structural Equation Method, presented in [YDSC14] and
[CSK+18], is to predict unobservable variables of a system. To predict these variables,
the algorithm has to find causal relations beforehand and can therefore try to predict
these relations.

To apply the Structural Equation Method to a system, the algorithm needs two different
sets of variables as input: observable variables (properties) and unobservable variables.
Further, the algorithm needs a prebuilt set of causality relations between the unobservable
variables. After receiving the necessary information, the algorithm applies series of
statistical methods to acquire further causal relations and predict values of unobservable
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variables.

As the Structural Equation Method needs a set of prebuilt relations, it can currently not
be applied to the BIFROST simulation engine, as these set of relation is not known at
the current point of research. It is further not an ideal fit, as the main purpose of the
algorithm is to predict unknown variables, instead of finding causal relations. Therefore,
we do not recommend the usage of this method for the BIFROST simulation engine.

4.3 Summary
All presented methods use different algorithms and statistical methods to acquire causality
information from data, but each of these methods works with different data and therefore
requires different input data. In Table 4.1 a comparison of the different algorithms is
shown.

The comparison is based on the input and output data, the possibility to apply previous
knowledge and the applicability to the BIFROST simulation engine. The input and
output data are important, as the required data changes the possibility to apply an
algorithm to the collected data. Further it is important as the output has to be used by
the system applying the causality acquisition algorithm. The possibility to apply previous
knowledge to the current system is important, as the algorithm does not need to acquire
this knowledge and can therefore increase the performance and reduce the calculation
time. This can also enable an algorithm to be applied as enough previous knowledge
can reduce the runtime to an applicable time. The last dimension is the applicability
to BIFROST, which is the most important point of the chapter, as we want to apply
the best algorithms to the BIFROST simulation engine and therefore it is important to
know, if the algorithm can be applied to the BIFROST simulation engine.

4.3.1 Input data type
Based on the chosen algorithm, the type of expected input value changes. The most
common input data type is a list of different timeseries, where each timeseries presents
the change of a value of a feature of interest over time. Three of the five presented
algorithms work based on these timeseries. Another possible input data type is the
current value of an feature of interest in different scenarios. This input data type is used
by the Neyman Rubin algorithm. The last occurring input data type contains timeseries
and values, which are aimed to predict possible causal realtions based on the previous
knowledge. Additionally, this input data type contains previous knowledge. This input
data type is used by the Structural Equation Method.

4.3.2 Output data type
As the input data type varies based on the algorithm, so does the output data type.
Three of the presented algorithms simply show, if there is a causal relation between the
provided cause and possible effect. The other two algorithms either return a directed
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Acquisition Al-
gorithm

Input data
type

Output data
type

Can han-
dle previ-
ous knowl-
edge

Can be
applied to
BIFROST

Granger Causality Timeseries Causal Rela-
tions

no yes

Transfer Entropy Timeseries Causal Rela-
tions

no yes

Peter-Clark Algo-
rithm

Timeseries DAG yes yes

Neyman-Rubin
Causality

values in dif-
ferent Scenar-
ios for the same
property

Causal Rela-
tions

no no

Structural Equa-
tion Method

Observable
and unobserv-
able variables,
relations be-
tween these
variables

predicted
values for
unobservable
variables

yes no

Table 4.1: Comparison of different causality acquisition algorithms

acyclic graph to provide this information or only use the causal relations during the
algorithm to provide predicted values of unknown variables.

4.3.3 Can handle previous knowledge
This dimension describes, if the algorithm is able to handle previous knowledge and
therefore either reduce the calculation time or increase the precision of the result. From the
presented algorithms only the Structural Equation Method requires previous knowledge
to start a calculation. Meanwhile, the Peter-Clark Algorithm can factor in previous
knowledge to both reduce the calculation time and increase the precision. The other
three algorithms are not able to handle previous knowledge.

4.3.4 Can be applied to BIFROST
This subsection focuses on the application of the presented algorithms on the BIFROST
simulation engine as shortly discussed for each algorithm. As the BIFROST simulation
engine provides timeseries as input data, the Granger Causality, the Transfer Entropy
and the Peter-Clark Algorithm can be applied without further processing the input data.

The Neyman Rubin Causality cannot be applied as the BIFROST simulation engine is
not able to collect the pairs of outcomes for each property pair. Finally, the Structural
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Equation Method cannot be applied to BIFROST, because BIFROST does not provide
previous knowledge which is required for the Structural Equation method.

Summarized we can say the input data of BIFROST enables the application of three
algorithms on the BIFROST simulation engine and disqualifies the other two. The three
implemented algorithms are the Granger Causality (Section 6.3), the Transfer Entropy
(Section 6.4 and 6.5) and the Peter-Clark Algorithm (Section 6.6).
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CHAPTER 5
Implementation

In this chapter we investigate RQ4 in terms of the implementation of the causality
acquisition algorithms. Therefore, this chapter presents a framework which is able to
acquire causality from the BIFROST simulation engine. The framework presents a
generic interface which allows the uniform use of different causality acquisition algorithms.
In Section 5.1 an introduction to the framework and the functionality is presented.
Afterwards, in Section 5.2, the architecture of the framework and the workflow of the
framework is described. The chapter concludes with Section 5.3 which describes a set of
metrics. These metrics are provided by the framework and can be used to evaluate the
acquired causal relations. These metrics are a contribution of the thesis.

5.1 Introduction
This section presents the implementation to acquire and evaluate causality relations from
the BIFROST simulation engine. To perform this acquisition and evaluation tasks, a
framework is developed. The framework has the ability to acquire pairwise causality
relations of properties for each collected timeseries from the BIFROST simulation engine.
It further provides different metrics to evaluate the correctness and performance of
different algorithms. The framework is further designed to easily extend the currently
existing acquisition algorithms with other causality acquisition algorithms. Currently
the implementation contains three different causality acquisition algorithms:

• Granger Causality: The framework uses the implementation provided by [28] and
uses the implementation to pairwise compare two different timeseries.

• Transfer Entropy: For the Transfer Entropy the JIDT libary [29] is used. The
implementation uses the Kernel and the Kraskov implementation to pairwise
compare timeseries.
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• Peter-Clark Algorithm: The implementation provided by Tetrad [30] is used in the
framework to build a directed acyclic graph based on all timeseries provided by
BIFROST.

5.2 Architecture
The framework is based on a Java interface, which can be implemented to use and
compare different causality acquisition algorithms. Furthermore, the framework uses
a REST interface to get commands and provide results. It always takes a list of all
timeseries provided by BIFROST, in a specific format as input and provides a list of
pairwise causal relations and a list of calculated metrics as output.

The framework is further built to collect data from a graph database connected to an
expCPS module of BIFROST, presented in [AES+20]. The expCPS module is able to
provide explanations for events happening in BIFROST, while the framework is created
to find causal relations used by the expCPS module to build these explanations.

An example for a successful run of the framework is shown in Figure 5.1, where the
following steps are presented:

1. The client (user) requests data from a Settlement (FI, FT, P, PT, TS, FIFT, PPT, FIP )
from the framework through the REST-Interface.

2. The framework forwards the request to the GraphDB.

3. The GraphDB sends the requested data to the framework.

4. The framework sends the data back to the client.

5. The client uses the received data to request the calculation of causality relations
and metrics in the framework through the REST-Interface.

6. The framework forwards the received data about the settlement to the requested
CAA.

7. The CAA provides the results (a set of causal relations and a set of quality metrics,
described in Section 5.3) to the framework.

8. The framework sends the received results back to the client.

5.3 Metrics
In this section the different metrics provided by the framework are presented. Each
metric is calculated based on the provided data and the chosen algorithms.

60



5.3. Metrics

Figure 5.1: Example for a successful run in the framework

5.3.1 Certainty based on object information

The value for this metric is based on a comparison of similar relations between features
of interest in a Settlement. Therefore, it takes the result of a Causality Acquisition
Algorithm and calculates the percentage of found similar relations compared to possible
similar relations, for each found causal relation. Similar relations are defined by the
Feature Type and the Property Type. An example for this metric is shown in Figure
5.2 where a transformer (T) is connected to two houses (features of interest, H1, H2)
of the same Feature Type. In this example, if a causality relation is found between a
Property p1 of house H1 and a Property pt of the transformer T and the same causality
relation exists between Property p2 of house H2 and pt this metric evaluates to 100%. If
the relation between p2 and pt does not exist, the metric evaluates to 50%.

In the framework, the similarity between relations is based on Feature Types of Features
of Interest and Property Types of Properties corresponding to Features of Interest.
Therefore there are two cases for the similarity between two causal relations c1, c2 of C:

• The cause and the effect of c1 have the same Property Type and the same Feature
Type as c2. Therefore, if the cause of c1 has the Property Type loading_level and
the Feature Type transformer, c2 has to have the Property Type loading_level
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Figure 5.2: Example of BIFROST settlement for illustrating the metrics of "Certainty by
object information"

and the Feature Type transformer. The same has to be true for the effect of c1
and c2 for the causal relations to be counted as similar.

• The cause and the effect of c1 are the same Feature of Interest fi1 and the cause and
the effect of c2 are the same Feature of Interest fi2, where fi1 and fi2 have the same
Feature Type. Further the Property Type of the cause of c1 and c2 are the same
and the Property Type of the effect of c1 and c2 are the same. For example there
are two residential_houses (Feature of Interest), which have the same Properties
with the Property Types loading_level and active_power. Therefore the causal re-
lations c1(loading_level1, active_power1) and c2(loading_level2, active_power2)
are similar.

Formally the Certainty by object information for a single causal relation (Co(c)) is given
in Formula 5.1, where m represents the number of similar causal relations of c. The
parameter ∃cn can either be 1 or 0 if the causal relation was found by the algorithm
or not. 1 indicates the success of finding the relation, 0 indicates the missing of the
causal relation in the calculation result, as seen in Formula 5.3. Therefore, Formula 5.1
takes the amount of found similar causal relations and divides it through the amount
of possible similar causal relations. Applied to the example in Figure 5.2, this would
mean, if a relation between p1 of house 1 and pt pf the transformer is found, but not
between p2 of house 2 and pt, m would be two, as there is the possibility of two causal
relations and m

n=1 ∃cn would be one, as one causal relation is found. Therefore, Co(c)
results to 50% as described before. Furthermore, Formula 5.2 represents the Certainty by
object information over a whole system, where j indicates the amount of unique possible,
similar causal relations and Co(i) indicates the Certainty by object information of a single
relation, calculated in Formula 5.1.
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Co(c) =
m
n=1 found(cn)

m
(5.1)

Co =
j
i=1 Co(i)

j
(5.2)

found(c) = 1 if c is in Rs

0 otherwise
(5.3)

5.3.2 Certainty by ensemble based learning
This metric aims to provide a value of the comparison between the result of different
causality acquisition algorithms. To calculate the value, the framework takes the result
of each acquisition algorithm and compares the found causal relations. The provided
percentage provides the certainty if a causal relation is real, and not a false positive of
an algorithm based on the appearance of the relation in each of the provided algorithms.
Therefore, if each algorithm has found the causal relation cn, the certainty is 100%. For
each algorithm, which does not find the causal relation cn the percentage drops.

Formally the Certainty by ensemble based learning Ce for a single causal relation (Ce(c))
is given in Formula 5.4, where m is the number of different CAAs used. Therefore
Formula 5.4 represents the Certainty by ensemble based learning of a single causality
relation, where ∃cn results to either 0 or 1. It results to 0 if the causal relation is not
found by the system and results to 1 if the causal relation is found, as seen in Formula
5.3. To calculate the mean of the Certainty by ensemble based learning of found causal
relations, Formula 5.5 is applied, where j is the cardinality of Rs.

Ce(c) =
m
n=1 found(cn)

m
(5.4)

Ce =
j
i=1 Ce(i)

j
(5.5)

5.3.3 Amount of found causal relations
The last provided metric is the amount of found causal relations, which provides the
number of causal relations found by a single algorithm. Formally the amount of causal
relations is the cardinality of Rs, that is |Rs|.
The implementation and metrics described in this chapter enabled the systematic evalua-
tion of the various CAAs, as detailed in Chapter 6.
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CHAPTER 6
Evaluation of Causality
Acquisition Algorithms

In this chapter we continue to investigate RQ4. Each implemented algorithm (Granger
Causality, Transfer Entropy and Peter Clark Algorithm) is evaluated based on the metrics
described in Section 5.3 and following a controlled experiment methodology. As there is
currently no gold standard of causal relations in the BIFROST simulation engine, it is
impossible to compare the result of the framework to a standard. Section 6.1 provides an
overview of the experiments used to evaluate the algorithms. In Section 6.2 datasets are
presented, which are used to evaluate the different algorithms. The chapter continues
with Sections 6.3 – 6.6, where each section describes the evaluation of a single algorithm
based on the experiments described in Section 6.1. These evaluations are a contribution
of the thesis. After evaluating each algorithm on its own, Section 6.7 briefly compares
the algorithms with each other, which is another contribution. Finally, Section 6.8
summarizes the results of the evaluation and provides an overview of each result of an
experiment.

6.1 Evaluation Goal and Experiment Overview
In this chapter we conduct two controlled experiments for each implemented Causality
Acquisition Algorithm (CAA) with the following goals:

• Goal 1: Optimal Parameterization. We aim to identify which parameter
settings lead to the optimal performance of a CAA in terms of runtime, Co and
number of found causal relations. As we only aim to investigate the parameters
of the algorithm, we use a dataset with average characteristics. Therefore, we use
Dataset 4, which has a Measurement frequency of 15 minutes, 3 different Feature
Types and 100 datapoints/property (as explained in more detail in 6.2).
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Experiment
Nr.

Evaluated Algo-
rithm

Aim of the
experiment

Used
Datasets

Section

Experiment 1 Granger Causality Optimal Pa-
rameterization

4 6.3.2

Experiment 2 Granger Causality Influence of the
Dataset

1 - 10 6.3.3

Experiment 3 Transfer Entropy
with a Kernel Es-
timator

Optimal Pa-
rameterization

4 6.4.2

Experiment 4 Transfer Entropy
with a Kernel Es-
timator

Influence of the
Dataset

1 - 10 6.4.3

Experiment 5 Transfer Entropy
with a Kraskov Es-
timator

Optimal Pa-
rameterization

4 6.5.2

Experiment 6 Transfer Entropy
with a Kraskov Es-
timator

Influence of the
Dataset

1 - 10 6.5.3

Experiment 7 PC algorithm Optimal Pa-
rameterization

4 6.6.2

Table 6.1: List of experiments performed in the thesis

• Goal 2: Dataset Influence. We aim to study the influence of the dataset
characteristics on the results of each implemented CAA. To that end, we identify a
number of dataset characteristics in Section 6.2 and define a number of individual
datasets based on variations of these characteristics (see Table 6.2). Then we
test the algorithm with the optimal parameter values determined in the Optimal
Parameterization experiment on these diverse datasets to capture the influence of
individual characteristics on algorithm performance in terms of the runtime of the
algorithm, Certainty by object information (Co) and the number of results in terms
of the derived causality relations.

Each experiment is a controlled experiment following the methodology introduced by
Wohlin [WRH+12].

Manual Inspection During each experiment, the experimenter also manually inspects
the result set Rs. As the known causal relations of the used expCPS are unknown, there
are only two checks which can be manually performed. These checks are:

• Each causality relation, where the effect is the weather and the cause is not the
weather, has to be false positive, as we assume, no building can influence the
weather.
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Dataset FTc Structure Mf no. of
records /
property

1 2 Feature Types Figure 6.1 15 min 100
2 3 Feature Types Figure 6.2 15 min 10
3 3 Feature Types Figure 6.2 1 min 100
4 3 Feature Types Figure 6.2 15 min 100
5 3 Feature Types Figure 6.2 60 min 100
6 3 Feature Types Figure 6.2 120 min 100
7 3 Feature Types Figure 6.2 15 min 200
8 8 Feature Types Figure 6.4 15 min 100
9 3 Feature Types Figure 6.2 15 min 500
10 5 Feature Types Figure 6.3 15 min 100

Table 6.2: List of parameters of used datasets

• The experimenter can check for logical implications. For example, if the temperature_base
increases the current_temperature increases as well. Therefore the CAA should
find this causal relation.

6.2 Evaluation Datasets
The evaluation is based on 10 datasets, which have different combinations of characteristics.
These datasets are described in this section. The datasets and their characteristics
are listed in Table 2.5 and the BIFROST settlements which generate these datasets
are illustrated in Figures 6.1-6.4. Each dataset is extracted based on the predefined
parameters, but as the simulation differs based on random aspects, two datasets taken
directly after each other with the same parameterization, could yield different results.

6.2.1 Feature Type complexity

The first metric used to differentiate datasets is the Feature Type complexity FTc,
where the amount of used Feature Types changes. Therefore, a more complex settlement
contains more different Feature Types. A Settlement with a low diversity across the
placed Feature Types has an overall lower FTc than Settlements with high diversity
across placed Feature Types. This is based on the difference in causal relations, which
can be found. In an environment with a low FTc the amount of different relations is
lower, because between the same type of Feature Types the same relations exist. In
comparison, a highly complex environment has a variety of different causal relations. The
number of Features of Interest of the same type does not matter, due to the construction
of Co, which is used as a quality metric. Therefore, this number is chosen randomly. For
the evaluation four different settlements are used.
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Figure 6.1: Settlement with 2 Feature Types (4 residential buildings, 1 transformer)

• Settlement 1: A Simple Settlement shown in Figure 6.1 shows a setup with five Fea-
tures of Interest (two Feature Types), which are a Transformer and four residential
buildings.

• Settlement 2: The Settlement shown in Figure 6.2 shows a setup with 15 Features of
Interest (three Feature Types), which are nine residential buildings, two apartment
buildings and a transformer.

• Settlement 3: The Settlement shown in Figure 6.3 shows a setup with 12 Features
of Interest (five Feature Types), which are three apartment buildings, two single
family houses with a pool, three multi floor buildings, two single-family houses and
a transformer)

• Settlement 4: A complex Settlement shown in Figure 6.4 shows a setup with 21
Features of Interest (nine Feature Types), which are four residential buildings, five
apartment buildings, a single family house with pool, three multi floor buildings,
two single family houses, two single family houses with a garage, two single family
houses with a parking space and two transformers)

6.2.2 Measurement frequency
Another important metric is the frequency of individual measurements in a timeseries,
called Measurement frequency Mf , where the time between the recordings of data-
points is set. This is an important metric as some algorithms can heavily depend on Mf
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Figure 6.2: Settlement with 3 Feature Types (9 residential buildings, 2 apartment
buildings, 1 transformer)

and sometimes even have an own parameter to change the metric (skipping entries in a
timeseries). Formally Mf is given in Formula 6.1, where the difference in time between
two Datapoints is calculated. For the evaluation we use Measurement frequencies between
one minute and two hours. The used frequencies are predefined by BIFROST, as the
simulation engine only provides timesteps of 1 minute, 15 minutes, an hour and two
hours.

Mf = ts(t)[t] − ts(t − 1)[t] (6.1)

6.2.3 Number of Datapoints
The last metric considered is the number of datapoints which are recorded for each
timeseries of a dataset. The goal is to find a fitting size for the algorithm to reduce
calculation time and increase the quality and accuracy of the found causal realtions.
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Figure 6.3: Settlement with 5 Feature Types (3 apartment buildings, 2 single family
houses with pool, 3 multi floor buildings, 2 single-family houses, 1 transformer)

Formally the number of datapoints is the cardinality of the used timeseries. For the
evaluation we use datasets with 10 to 500 datapoints.

6.3 Granger Causality

The Granger Causality as described in Section 4.2.1 compares two different timeseries
and tries to find a causal relation between the Properties measured by the timeseries.
For the implementation we use the library provided at [28].

6.3.1 Parameters

The Granger causality can be parameterized by two different parameters: the lag size ls
and the critical value cv. ls is similar to the Measurement frequency Mf as it describes
the time between the current value and the historic one, which is compared to the current
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Figure 6.4: Settlement with 8 Feature Types (4 residential buildings, 5 apartment
buildings, 1 single family house with pool, 3 multi floor buildings, 2 single family houses,
2 single family houses with a garage, 2 single family houses with a parking space, 2
transformers)

one. ls is given as the number of values which are skipped. Therefore, the time lag
between the current value and the historic value is given by Mf ∗ ls.

The other value which can be parameterized in the algorithm for the Granger Causality
is the critical value cv, which is the confidence interval. If the calculated p-value is bigger
than the defined cv, the comparison of the two timeseries will be defined as causal related.

For the evaluation we use different confidence intervals between 60 and 90 percent. The
used lag size is between one and four values, where the evaluation has to take the relation
towards the Measurement frequency into account.

6.3.2 Experiment 1: Optimal Parameterization

In this section we evaluate the parameterization of the Granger Causality using a
controlled experiment.
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Aim

This experiment aims to evaluate the influence of the different parameters on the result
set. Therefore, we aim to investigate the difference in quality metrics (runtime, Co, no.
of results) while changing parameters of the algorithm. Furthermore, we aim to find an
optimal setting of parameters in terms of ls and cv.

Hypothesis

As we follow the experimentation approach presented in [CI11], we start by defining
the null hypothesis h0 and the alternative hypothesis ha for the experiment. If the null
hypothesis is rejected, the alternative hypothesis will be accepted. Therefore, we define
the alternative hypothesis as follows:

ha: The parameterization of the Granger Causality influences the result of the algorithm
and therefore an optimal set of parameters can be defined.

Context

The experiment is conducted in the BIFROST simulation engine and for each set of
parameters a new test run is started. Therefore, each test run is a subject of the
experiment. For each test run the algorithm has new parameters assigned, while the
dataset characteristics stay the same. Further the aim is to evaluate the algorithm, which
is the object of the experiment. As we only aim to investigate the parameters of the
algorithm in this experiment, we use a dataset with average characteristics. Therefore,
we use dataset 4, which has Mf = 15 minutes, three different Feature Types and 100
datapoints/property.

Procedure

For the execution of the experiment, the evaluator conducts successive test runs, while
always changing the combination of parameters. Therefore, the evaluator starts the first
test run with the lowest possible setting for each parameter and afterwards runs the
algorithm with each possible combination of parameters. After performing the testrun,
the evaluator manually checks the results for abnormalities and documents the setting of
the test run and the results.

Variables

According to the experimentation standard, different independent and dependent variables
are defined for each experiment. Each independent variable is a variable, which can
be influenced by the evaluator, while dependent variables result from the execution of
an experiment. In our case we can define the different parameters of the algorithm as
independent variables. Therefore, the only independent variable in this experiment is cv,
as the second parameter, ls, is directly related to the Measuring frequency Mf of the
properties in the timeseries of the dataset and therefore cannot be changed to keep Mf
stable. We therefore set ls = 1 for this experiment. Finally, the dependent variable in
the experiment is the performance, which is measured by a combination of the runtime
of the algorithm, the Certainty by object information (Co) and the no. of results.
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Figure 6.5: Granger Causality: Evaluation of Certainty by object information

Evaluation

To reject the null hypothesis, we have to show the difference of the results depending on
the independent variables and how the performance of the algorithm changes with the
change of parameters.

As mentioned earlier, the performance has three different values which should be optimized.
These values are the runtime, Co and the no. of results. For the Granger Causality we
can neglect the runtime as every test run has a runtime below three seconds. Therefore,
the two main quality metrics are the no. of results and Co.

In Figure 6.5 and 6.6 Co and the no. of results over an increasing cv is shown. As
expected, the number of results is indirectly proportional to cv, as an increasing cv
reduces the number of allowed results. Further, we can see Co keeps stable after an initial
drop.

According to these results, the optimal setting for the critical value would be 0,6
because it has the highest Co and the most results. After a manual inspection of the
results we found a high number of false positive results in the results set with cv = 0, 6.
Therefore, the optimal setting is cv = 0, 7, as it has the highest number of results with a
similar Co compared to other measurements. The existence of this setting also rejects
the null hypothesis and therefore accepts the alternative hypothesis.

Examples of Identified Causality Relations (Rs)

To provide a qualitative insight into the obtained causality relations we present portion
of Rs in:
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Figure 6.6: Granger Causality: Evaluation of number of results

• Table 6.3 showing 7 of the 239 relations obtained with the setting ls = 1 and
cv = 0, 7. The table shows the fi/p pairs for the cause and the effect of causal
relations from Rs as well as the value of each relation in terms of the Co met-
ric. For example, the first row shows the causal relation between the Property
TRAFO − SECONDARY − V OLTAGE of the Feature of Interest TRAFO −
BUILDING (cause) and the Property V OLTAGE − 3P of the Feature of Interest
RESIDENTIAL − MULTI − LARGE (effect). This causal relation was verified
for all pairs of this fi/p combination (Co = 100%).

• Figure 6.7 depicting Co for each causal relation of Rs with the optimal parameteri-
zation. Each axis in the figure shows all Properties available in Settlement 2. Each
square provides the color coded Co for the causal relation between the cause (y-axis)
and the effect (x-axis), where violet shows Co = 0% and green shows Co = 100%
For example the causal relation between the Property CLOUDCOV ER − BASE
of the fi AIRSHIP (cause) and the Property V OLTAGE − ANGLE − 3P
of the fi RESIDENTIAL − MULTI − MEDIUM (effect) in the top right
corner, has Co = 100%, as the square is green. Intuitively, we found that
CLOUDCOV ER − BASE has an effect on V OLTAGE − ANGLE − 3P of
RESIDENTIAL − MULTI − MEDIUM , and this causal relation was veri-
fied for all such houses in the settlement. If we swap the cause and the effect, we
can see Co = 0% in the square in the bottom left corner, as this square is purple.
A Co = 50% can be seen for each white square in the figure.
In Figure 6.7 we can see the Granger Causality only found a small amount of causal
relation with a high Co. The found causal relations are related to the Property
CLOUDCOV ER − BASE of the fi AIRSHIP , where this Property is found
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Cause Effect Certainty by
object informa-
tion

Feature of In-
terest

Property Feature of In-
terest

Property

TRAFO-
BUILDING

TRAFO-
SECONDARY-
VOLTAGE

RESIDENTIAL-
MULTI-
LARGE

VOLTAGE-3P 100%

AIRSHIP SUN-ALTITUDE AIRSHIP DIRECT IRRA-
DIANCE

100%

RESIDENTIAL-
MULTI-
LARGE

ACTIVE-
POWER

TRAFO-
BUILDING

REACTIVE-
POWER

50%

RESIDENTIAL-
MULTI-
MEDIUM

ACTIVE-
POWER-3P

RESIDENTIAL-
MULTI-
LARGE

ACTIVE-
POWER-3P

15%

AIRSHIP TEMPERATURE-
BASE

AIRSHIP CURRENT-
TEMPERATURE

100%

AIRSHIP CLOUDCOVER-
BASE

RESIDENTIAL-
MULTI-
MEDIUM

ACTIVE-
POWER-3P

78%

RESIDENTIAL-
MULTI-
LARGE

VOLTAGE-3P TRAFO-
BUILDING

REACTIVE-
POWER-3P

100%

Table 6.3: Sample of Rs of the Granger Causality

as cause for multiple effects. The causality acquisition algorithm only found six
causal relations between buildings of the settlement with Co = 100%. Further, the
algorithm found a lot of causal relations with a low Co (violet to white squares),
which indicates the possibility of a false positive result.

6.3.3 Experiment 2: Influence of Dataset Characteristics
This Section describes an experiment to find the behavior of the algorithm for changing
dataset characteristics.

Aim

In this experiment we aim to investigate the behavior of the algorithm for changing
dataset characteristics. Therefore we evaluate how, the result set changes for datasets
with different dataset characteristics.

Hypothesis
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Figure 6.7: Granger Causality: Matrix representation of Rs of the Certainty by object
information. Legend: The color scale indicates the Co from violet (0%) to green (100%)
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To conduct this experiment, we create three hypotheses, which are evaluated in the
following:
han: The number of records/property in a dataset influences the result of the Granger
Causality and an increase or decrease in the number of records/property changes the
result.
hac: FTc of a dataset influences the result of the Granger Causality and therefore a
changing FTc changes the result.
haf : Mf of a dataset influences the result of the Granger Causality and therefore a
changing Mf changes the result.
Context
The experiment is conducted in the BIFROST simulation engine and for each used
dataset a new test run is started. Therefore, each test run is a subject of the experiment.
For each test run the dataset changes one characteristics, while the parameterization of
the algorithm stays the same. Further the aim is to evaluate the result of the algorithm,
therefore the algorithm is the object of the experiment. In this experiment we aim to
evaluate, how the different characteristics of a dataset influence the result of the Granger
Causality algorithm. Therefore, we use the optimal parameterization (cv = 0, 7, ls = 1)
found in Section 6.3.2 as a setting for the algorithm.
Procedure
For the execution of the experiment, the evaluator conducts successive test runs, while
always changing the dataset characteristics. Similar to the previous experiment we start
with a dataset with average characteristics. The starting dataset is Dataset 4. For each
hypothesis, the evaluator uses different datasets. For haf datasets 3-6 are used (Mf
varies from 1 to 120 min), for han datasets 2, 4, 7 and 9 (number of datapoints/property
varies from 10 to 500) and for hac datasets 1, 4, 8 and 10 (FTc varies from 2 to 9 Feature
Types) are used. These datasets always have one characteristic changed from Dataset 4.
After each test run the evaluator manually checks Rs for abnormalities and documents
the result and the used dataset.
Variables
The experiment has three independent variables, which are changed during the evaluation.
These independent variables are:

• the Measurement Frequency Mf

• the Feature Type Complexity FTc

• the number of records/property

An overview of all independent variables is shown in Table 6.4. The dependent variable is
the performance, which, for the Granger Causality, is defined through the Certainty by
object information (Co) and the number of results.
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Hypothesis Independent variable Scale
han number of records/property 10 - 200 records
hac FTc 2 - 8 Feature Types
haf Mf 1 - 120 min

Table 6.4: Independent Variables in the experiment for the influence of the dataset
characteristics on the Granger Causality

Evaluation

The first hypothesis we evaluate is the number of records/property (h0n). In Fig-
ure 6.8 we can see a constant increase of Co, with the increase of the number of
records/property. The number of found results is between 230 and 300, with an outlier
at 10 collected datapoints. The distribution can be seen in Figure 6.9. This outlier
can be explained with a high number of false positive results, which further causes the
low Co. We can finally conclude: The higher the number of datapoints/properties, the
more accurate the calculation of the Granger Causality, while the number of results also
increases. Therefore we can reject h0n and accept han.

Following the finding of maximizing the datapoints/property we can also take a step
back and look at the lag size ls parameter of the Granger Causality. This parameter is
not only directly related to Mf , but also to the number of datapoints/property, as an
increase of ls decreases the number of datapoints/property. This behavior results from
the algorithm, where an increase of ls skips values and therefore reduces the number
of datapoints/property. Therefore, we can conclude ls = 1 provides the most optimal
results for the Granger Causality algorithm.

In the next step we evaluate the influence of the Feature Type complexity FTc of
the dataset characteristics on the result of the algorithm (hac). In Figure 6.10 we can see
the decreasing Co during the increase of FTc. The number of results increases constantly,
but this has to be expected as the number of possible causal relations will increase, if
more different Feature Types are placed in a settlement. Therefore, we can follow: The
higher FTc is, the worse the Granger Causality performs. In the end we can reject h0c

and accept hac.

The last remaining hypothesis to be discussed is haf , which aims to show the influence
of the Measurement frequency Mf on the result of the Granger Causality. In Table
6.5 the results of the evaluation are shown. Even though Mf = 1 minute and Mf = 120
minutes seem to be optimal, they cannot be used, as Mf = 1 delivers over 2000 results,
which is about half of all possible results. Therefore, this result set has to contain a high
number of false positive entries. Furthermore, Mf = 120 minutes misses whole spikes
in the timeseries, as the time between the recordings of the dataset is too long. From
the remaining two evaluations, Mf = 60 minutes performs better, but even at this time
distance there is a possibility of missing a whole spike in a timeseries. Therefore, based
on the environment, we recommend using either a Mf = 15 or Mf = 60 minutes. For
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Figure 6.8: Granger Causality: Evaluation of number of records/property (Certainty by
object information)

Figure 6.9: Granger Causality: Evaluation of number of records/property (number of
results)
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Figure 6.10: Granger Causality: Evaluation of FTc (Certainty by object information)

Dataset Measurement fre-
quency

Certainty by object
information

no. of results

17 1 min 98,62% 2201
18 15 min 43,83% 239
19 60 min 52,59% 164
20 120 min 68,86% 158

Table 6.5: Granger Causality: Evaluation of Mf

the BIFROST simulation engine both frequencies seem to be fine. Finally, we can reject
h0f and accept haf .

Conclusions. At the end of this experiment, we can summarize the following results:

• The higher the number of datapoints/property is, the more accurate is the result.

• The more complex a settlement gets, the worse the Granger Causality performs.

• A Measurement frequency between 15 and 60 minutes is optimal for the Granger
Causality in the BIFROST simulation engine.

6.4 Transfer Entropy with a Kernel Estimator
The Transfer Entropy aims to find the information flow between two Timeseries, as
described in Section 4.2.2. The implementation uses the library provided by [29]
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6.4.1 Parameters
The Transfer Entropy with a Kernel Estimator has three different parameters to optimize
the result. These parameters are:

• History length: The history length hl contains the number of values considered
from the past. Therefore, a history length of two considers the current value and
the previous value to find a possible causal relation.

• Bandwidth: This parameter gives the bandwidth b of the Kernel Estimator. The
influence of this parameter on the result of the calculation is described in Section
4.2.2.

• Critical value: The critical value cv gives the threshold, in which we accept
a causal relation as existing. The result of the Transfer Entropy with a Kernel
Estimator is given in nats, which is the unit for the information transfer. Therefore,
if the found causal relation has more nats than the critical value, we will accept
the relation as causal related.

6.4.2 Experiment 3: Optimal Parameterization
This section describes an experiment to evaluate different combinations of parameters of
the Transfer Entropy with a Kernel Density Estimator.

Hypothesis

Similar to previous experiments we follow the same approach of controlled experiments
of Wohlin, presented in [WRH+12]. Therefore, our alternative hypothesis is:

ha: The parameterization of the Transfer Entropy with a Kernel Density Estimator
influences the result of the algorithm and therefore an optimal set of parameters can be
defined.

Context

The context of the experiment is the BIFROST simulation engine, where the evaluator
carries out a test run for each possible combination of parameters. Each test run is a
subject of the experiment. After each test run a single parameter is changed, while the
dataset stays the same, namely the average dataset Dataset 4.

Procedure

During the execution of the experiment, the evaluator conducts a test run for each unique
combination of parameters. In the first step, the evaluator changes the setting of the
algorithm to the new paramters. Afterwards he executes the calculation and documents
the results and the used setting of parameters. Further, the evaluator manually checks
the result set for abnormalities.

Variables
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Hypothesis Independent variable Scale
ha bandwidth 0,2 - 0,7
ha critical Value 0,05 - 0,15
ha historic length 1 - 5

Table 6.6: Independent Variables in the experiment for the parameterization of the
Transfer Entropy with a Kernel Estimator

As stated in the experiment guidelines, the experiment has different dependent and
independent variables. For this experiment, the parameters, which we aim to evaluate,
are the independent variables. Therefore, the experiment contains three independent
variables:

• the critical value cv

• the bandwidth b

• the historic length hl

An overview is shown in Table 6.6. Further, the dependent variable is the performance,
which is measured by the runtime of the algorithm, the Certainty by object information
(Co) and the no. of results.
Evaluation
To finish the evaluation we have to accept either the null hypothesis h0 or the alternative
hypothesis ha. As we further want to find an optimal set of variables, we will take a look
at each parameter on his own, while we keep the other parameters at an average or an,
already found, optimal value.
We start by showing the influence of the bandwidth b on the calculation result of the
algorithm. Therefore, we set cv = 0, 1 and hl = 1, as 1 is recommended by Schreiber
[Sch00]. In Table 6.7 the results of this setting are shown. We can see the decrease of Co

and the decrease of the no. of results while increasing b.
The high bias of b can be seen for values greater than 0,5 as the no. of results drastically
decreases. For these results, Co loses significance as the amount of found causal relations
is low.
The optimal setting for b seems to be 0,2, as it yields the best Co and the highest no.
of results, but after the manual inspection, the high number of results for b = 0, 2 and
b = 0, 3 is caused by a high number of false positive results. Therefore, b = 0, 4 is optimal
for the BIFROST simulation engine, as it yields the best Co and the highest number of
results without a high number of false positive results.
After showing the optimal setting for b, we continue by exploring the historic length hl.
As we already found the optimal value for b, we use it for this evaluation and continue
using cv = 0, 1.
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Dataset Bandwidth Certainty by object
information

no. of results

4 0,2 90,72% 1126
4 0,3 80,89% 567
4 0,4 73,65% 335
4 0,5 69,38% 154
4 0,6 22,20% 2
4 0,7 93,59% 42

Table 6.7: Transfer Entropy with a Kernel Estimator: Evaluation of the bandwidth

Figure 6.11: Transfer Entropy with a Kernel Estimator: Evaluation of hl (Co)

During this part of the evaluation it is important to consider the runtime, as each increase
of hl increases the runtime exponentially. Therefore, hl = 1 takes under a second to
calculate, while hl = 5 takes over 5 minutes.

In Figure 6.11 Co over an increasing hl is shown. We can see the peek of Co is between 2
and 4. The same behavior can be observed in Figure 6.12, where the no. of results over
an increasing hl is shown. In hindsight to the runtime, we can therefore follow hl = 2 is
optimal.

In the last step of the evaluation of this experiment, we evaluate the critical value cv.
As we already found the optimal parameter for the other two parameters, we use these
two for this evaluation.

In Figure 6.13 we can see Co over an increasing cv. This figure shows a decrease of Co,
while cv increases. The number of results can not be used for this evaluation as this

83



6. Evaluation of Causality Acquisition Algorithms

Figure 6.12: Transfer Entropy with a Kernel Estimator: Evaluation of hl (number of
results)

metric has to decrease strictly, as an increase excludes more values.

In this evaluation it is important to consider false positive results, as cv is a parameter
which aims to exclude these. For a cv > 0, 1 the number of false positive results is high,
and therefore these values cannot be optimal. Therefore 0, 1 < cv < 0, 15 is optimal,
where both the number of false positive results and Co constantly decrease.

Conclusions. Summarized, the optimal parameterization for the Transfer Entropy with
a Kernel Estimator is b = 0, 4, hl = 2 and 0, 1 < cv < 0, 15.

Examples of Identified Causality Relations (Rs)

In this part of the thesis we show an overview of the causal relations, found by the
Transfer Entropy with a Kernel Estimator:

• Table 6.8 shows 5 of the 616 causal relations found by the Causality Acquisition
Algorithm, with the setting b = 0, 4, hl = 2 and cv = 0, 13. For example, the
Property ACTIV E −POWER−3P of the Feature of Interest RESIDENTIAL−
MULTI − MEDIUM (cause) is causally related to the Property ACTIV E −
POWER − 3P of the Feature of Interest TRAFO − BUILDING (effect), but as
Co = 34% this causal relations was only identified for 1/3 of all RESIDENTIAL−
MULTI − MEDIUM .

• Similar to the results of the Granger Causality in Section 6.3.2, the results of
the Transfer Entropy with a Kernel Estimator is shown in Figure 6.14. In
this result set, we can see a lot of causal relations related to the weather (FI:
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Figure 6.13: Transfer Entropy with a Kernel Estimator: Evaluation of cv (Co)

AIRHSIP). Further, we can see a high amount of causal relations between the Prop-
erties CLOUDCOV ER − BASE and both temperature properties(CURRENT −
TEMPERATURE, TEMPERATURE − BASE) and every other Property in
the Settlement. From a logical point of view, these causal relations seem to be false
positive results. Compared to the results of the Granger Causality in Secion 6.3.2,
the Transfer Entropy with a Kernel Estimator does not find the causal relations,
where the CLOUDCOV ER − BASE is the cause. Overall, the result set of the
Transfer Entropy with a Kernel Estimator has more results than the result set of
the Granger Causality, but also seems to have a higher number of false positive
results.

6.4.3 Experiment 4: Influence of Dataset Characteristics
In this section of the thesis, we describe an experiment, which tests the influence of
changing dataset characteristics on the outcome of the Transfer Entropy algorithm with
an Kernel Estimator.

Hypothesis

To conduct this experiment we create three alternative hypotheses, which are evaluated
in the following:

han: The number of records/property in a dataset influences the result of the Trans-
fer Entropy with a Kernel Estimator and an increase or decrease of the number of
records/property changes the result.
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Figure 6.14: Transfer Entropy with a Kernel Estimator: Matrix representation of Rs

of the Certainty by object information. Legend: The color scale indicates the Co from
violet (0%) to green (100%)
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Cause Effect Certainty by
object informa-
tion

Feature of In-
terest

Property Feature of In-
terest

Property

AIRSHIP DIFFUSE-
IRRADIANCE

AIRSHIP CLOUDCOVER-
BASE

100%

RESIDENTIAL-
MULTI-
MEDIUM

VOLTAGE-
ANGLE-3P

RESIDENTIAL-
MULTI-
MEDIUM

ACTIVE-
POWER-3P

11%

AIRSHIP CURRENT-
TEMPERATURE

RESIDENTIAL-
MULTI-
MEDIUM

ACTIVE-
POWER-3P

100%

RESIDENTIAL-
MULTI-
MEDIUM

ACTIVE-
POWER-3P

TRAFO-
BUILDING

ACTIVE-
POWER-3P

34%

RESIDENTIAL-
MULTI-
MEDIUM

ACTIVE-
POWER-3P

TRAFO-
BUILDING

TRAFO-
SECONDARY-
VOLTAGE

34%

Table 6.8: Sample of Rs of the Transfer Entropy with a Kernel Estimator

hac: The Feature Type complexity FTc of a dataset influences the result of the Transfer
Entropy with a Kernel Estimator and therefore a changing FTc changes the result.

haf : The Measurement frequency Mf of a dataset influences the result of the Transfer
Entropy with a Kernel Estimator and therefore a changing Mf changes the result.

Context

Similar to previous experiments, this experiment is conducted in the BIFROST simulation
engine. For each dataset used in the experiment, a new testrun is started. Therefore,
each testrun can be seen as subject of the experiment. The parameterization of the
algorithm stays the same during the whole experiment. We further aim to evaluate the
results of the algorithm, which therefore is the object of the experiment.

In Section 6.5.2 we already showed the optimal parameterization (b = 0, 4, hl = 2) for
the algorithm which we will use in this experiment. Further, we set cv = 0, 13, which is
the average of the discovered, optimal range.

Procedure

The experiment has multiple testruns which have to be conducted after each other.
Therefore, the evaluator starts with the average dataset (Dataset 4) in the first testrun.
Afterwards, the dataset is changed and the next testrun is executed. For each hypothesis
different datasets are used. For haf datasets 17-20 are used (Mf varies from 1 to 120
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min), for han datasets 2, 4, 7 and 9 (number of datapoints/property varies from 10 to
500) and for hac datasets 1, 4, 8 and 10 (FTc varies from 2 to 9 Feature Types) are used.
These datasets always have one parameter changed from Dataset 4. After finishing a
testrun the evaluator conducts a manual inspection to find possible false positive results.
He further documents the result and the used dataset.

Variables

The experiment has three independent variables, which are the three characteristics of
the dataset. Therefore, the independent variables are:

• the Feature Type complexity FTc

• the Measurement frequency Mf

• the no. of datapoints/property

The dependent variable is the performance, which is represented by the runtime of the
algorithm, the Certainty by object information (Co) and the number of results.

Evaluation

In the evaluation we have to accept or reject all three hypotheses. If we accept the
alternative hypothesis, we can automatically reject the null hypothesis and the other way
around.

The first hypothesis we evaluate is han, which is the influence of the number of
records/property on the result of the algorithm. In Figure 6.15 and 6.16 we see
Co and the no. of results over an increasing number of records/property.

We can see a stable Co and a slightly decreasing number of results. The outlier at 10
datapoints/properties showed in the manual inspection almost exclusively false positive
results. Therefore we can follow, a high number of records/properties reduces the number
of true and false positive results, because both Co and the no. of records decrease. We
can also accept han and therefore reject the null hypothesis h0n.

In the next step, we evaluate hypothesis hac, which focuses on the change of Co for an
increasing Feature Type complexity FTc. As the number of total Features of Interest
increases in a more complex settlement, we cannot compare the number of results for
this hypothesis.

In Figure 6.17 we see Co over an increasing FTc. We see an initial drop in Co, but a
stable evolution afterwards. Therefore, Co gets worse with an increasing FTc but does
not get below a certain threshold (60%). We can still clearly see an influence of FTc on
the algorithm and therefore accept hac and reject the corresponding null hypothesis h0c.

The last remaining hypothesis is haf , where the Measurement frequency Mf is
changing. In Table 6.9 we can see the collected data to evaluate haf . We see, that
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Figure 6.15: Transfer Entropy with a Kernel Estimator: Evaluation of records/property
(Co)

Figure 6.16: Transfer Entropy with a Kernel Estimator: Evaluation of records/property
(number of results)
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Figure 6.17: Transfer Entropy with a Kernel Estimator: Evaluation of FTc (Co)

Dataset Measurement fre-
quency

Certainty by object
information

no. of results

18 1 min - 0
18 15 min 64,25% 275
18 60 min 85,60% 822
18 120 min 89,25% 893

Table 6.9: Transfer Entropy with a Kernel Estimator: Evaluation of Mf

Mf < 1 minute is not optimal, as the algorithm does not find a causal relation. Further
Mf > 120 minutes is also not optimal, as the algorithm skips whole spikes in a timeseries
and therefore finds false positive causal relations.

The remaining frequencies are between 15 and 60 minutes, where the testrun with a
Mf = 60 minutes yields a high number of false positive events and therefore performs
worse than the Mf = 15 minutes.

Therefore we can summarize: The only Measurement frequency useable in the BIFROST
simulation engine without a high amount of false positive results is Mf = 15 minutes.
Therefore we can accept haf and reject h0f .

Conclusions. After performing the experiment, we can come to the following conclusions:

• The higher the number of properties, the lower the number of results, while Co

stays the same.

• The higher FTc, the lower Co, but Co does not drop below a threshold.
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• The only useable frequency is Mf = 15 minutes.

6.5 Transfer Entropy with a Kraskov Estimator
The Transfer Entropy with the Kraskov Estimator uses the algorithm described in Section
4.2.2 to acquire a set of causal relations. The library used to implement the Transfer
Entropy with a Kraskov Estimator is provided by the github repository in [29].

6.5.1 Parameters
There are multiple different parameters to optimize the results of the Transfer Entropy
with a Kraskov Estimator. In the parameters we distinguish two types of parameter sets:

• Manual parameterization: For this set of parameters we set three different
parameters. These parameters are the historic length hl, the critical value cv
and the number of nearest Neighbors nonN used. hl is the same as described
in Section 6.4.1. Further cv is the threshold which has to be surpassed for a value to
be accepted. The difference to the Kernel Estimator is the unit, where the Kernel
Estimator uses nats, while the Kraskov Estimator uses bits. The last parameter
used for the manual parameterization is the number of neighbors used in the Nearest
Neighbors algorithm, described in Section 4.2.2

• Automatic Parameterization: The algorithm provides an option to use the
Ragwitz criterion [RK02] to estimate hl and nonN . Therefore the algorithm
estimates both parameters for each pair of causal relations tested. The only set
parameter is the critical value.

6.5.2 Experiment 5: Optimal Parameterization
This section describes the influence of the parameters on the Transfer Entropy with a
Kraskov Estimator. There is a special focus on the use of the automatic estimation
parameter.

Hypothesis

In this experiment we follow the controlled experiment method from Wohlin, presented
in [WRH+12]. Therefore, we state the following alternative hypothesis:

hm: The critical value cv, the historic length hl and the number of nearby neighbors
nonN parameters of the Transfer Entropy with a Kraskov Density Estimator influence
the result of the algorithm and therefore an optimal set of these parameters can be
defined.

ha: The critical value cv of the Transfer Entropy with a Kraskov Estimator influences
the result of the algorithm while using an automatic estimation method for the historic
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Hypothesis Independent variable Scale
ha historic length 1 - 5
ha number of nearby neighbors 1 - 5
ha critical Value 0.02 - 0.1
ha enable automatic parameterization true/false

Table 6.10: Independent Variables in the experiment for the parameterization of the
Transfer Entropy with a Kraskov Estimator

length hl and the number of nearby neighbors nonN parameters and therefore an optimal
cv can be defined.

ham: The manual setting of parameters outperforms the automatically estimated setting
and therefore the manual setting, with the optimal used parameters result in a better
performance.

Context

To accept or reject the hypothesis, the evaluator conducts multiple test runs in the
BIFROST simulation engine. Therefore, each test run is a subject of the experiment.
We further evaluate the results of the algorithm, which therefore is the object of the
experiment. Similar to previous experiments, we use an average dataset, namely the
average dataset Dataset 4, as we only evaluate the parameters of the algorithm.

Procedure

The Evaluator, executing the experiment, starts the first test run with the lowest possible
settings for each parameter and afterwards changes parameters for each consecutive test
run. After finishing a test run, the evaluator has to check manually the results and
document the results and the current setting of the parameters.

Variables

For this experiment, we define four independent variables which are the parameters of
the algorithm:

• historic length hl

• number of nearby neighbors nonN

• critical Value cv

• enable automatic parameterization

An overview over the independent variables is shown in Table 6.10. The dependent
variable is the performance, which takes the runtime, the Certainty by object information
(Co) and the no. of results into account.
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Evaluation

In this evaluation we want to accept or reject all three hypotheses stated for this
experiment. We therefore have to take a look at the results of the experiment and find
the influence of the parameter on the algorithm.

We start by evaluating hm, where we have to proof the influence of the manual param-
eterization on the result set of the causality acquisition algorithm. In Table 6.11 we
can see the metrics for each combination of hl and nonN while keeping cv stable. We
show these two parameters in combination to show the volatility in the result set while
changing these parameters. In Table 6.11 we can see the following statements are true:

• All three rows with more than 1000 results show a high number of false positive
results.

• All six rows with Co > 90% have a high number of false positive results.

• The most results are provided nonN = 1, while hl does not influence the result.

• The highest Co is recorded with hl = 3, while nonN does not influence the result.

Therefore, for an average dataset, the optimal parameterization is hl = 3 and nonN = 1.
This combination of parameters seems to be optimal for this dataset, but as the difference
in performance is high and unstable, the results also point towards the use of an automatic
estimation of the parameters to optimize the results. We further accept the alternative
hypothesis hm.

After evaluating the manual parameterization, we take a look at the automatic param-
eterization and therefore, the only parameter, which has to be chosen, is cv. In Figure
6.18 we can see Co over an increasing cv. We see a stable Co at the start, which decreases
the higher cv gets. This can be explained by the number of true positive results, which
are removed from Rs. Therefore, we can accept cv = 0, 02 as optimal critical value, as it
has the highest number of results and a high Co. We can therefore accept the alternative
hypothesis ha.

In the last step we want to compare the automatic and the manual parameter-
ization, where we compare them based on the three performance criteria (number of
results, Co, runtime).

Both, the manual and the automatic parameterization yield around the same num-
ber of results, therefore they are equal in this metric. In terms of Co the automatic
parameterization yields a better result as the Co is about 10% higher.

The last metric is the runtime where manual parameterization outperforms the automatic
one, as the automatic parameterization needs to estimate the parameters for each combi-
nation of properties. For Dataset 4 the runtime, independent of the parameterization,
was around 120 seconds. In the manual parameterized setting, each test run took below
10 seconds.
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Figure 6.18: Transfer Entropy with a Kraskov Estimator: Evaluation of automatic
parameterization

Conclusions. We conclude this section with the following findings: The manual param-
eterization has the better runtime, while the automatic parameterization has a better Co.
We can also accept ham.

Examples of Identified Causality Relations (Rs)

To provide an overview over results of the Transfer Entropy with a Kraskov Estimator,
we show the following presentations of the result:

• Table 6.12 shows 6 of the 613 found by the causality acquisition algorithm, with the
automatic parameterization and cv = 0, 13. For example the table shows a causal
relation between the Property ACTIV E −POWER−3P of the Feature of Interest
TRAFO − BUILDING (cause) and the Property ACTIV E − POWER − 3P
of the Feature of Interest RESIDENTIAL − MULT I − LARGE (effect). This
causal relation was identiefed by the CAA between every TRAFO − BUILDING
and every RESIDENTIAL − MULTI − LARGE, as Co = 100%.

• Similar to previous sections the results of the Transfer Entropy with a Kraskov
Estimator are shown in Figure 6.19. This figure, similar to previous results,
shows a lot of causal relations between Properties related to the weather (FI:
AIRSHIP). Further we can see the influence of buildings on the Feature Type
RESIDENTIAL − MULTI − LARGE, which presents an apartment house in a
Settlement. The Transfer Entropy with a Kraskov Estimator is the only algorithm,
which is able to find causal relations between Features of Interest independent of
the weather. The CAA also finds some causal relations between Features of Interest
with a lower Co.

94



6.5. Transfer Entropy with a Kraskov Estimator

Historic
Length

k nearest
Neighbor

Certainty by object
information

no. of results

1 1 76.69% 686
1 2 90.72% 1237
1 3 94.3% 1138
1 4 78.42% 586
1 5 69.59% 316
2 1 75.22% 684
2 2 92.25% 1115
2 3 66.95% 343
2 4 75.65% 124
2 5 76.43% 82
3 1 76.55% 687
3 2 75.42% 538
3 3 83.23% 176
3 4 60.59% 52
3 5 65.81% 68
4 1 76.62% 680
4 2 74.23% 343
4 3 83.36% 106
4 4 91.61% 138
4 5 90.33% 136
5 1 74.52% 692
5 2 73.69% 173
5 3 87.8% 84
5 4 43.43% 15
5 5 45.42% 21

Table 6.11: Transfer Entropy with a Kraskov Estimator: Evaluation of the historic length
and k nearest neighbor parameters
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Figure 6.19: Transfer Entropy with a Kraskov Estimator: Matrix representation of Rs

of the Certainty by object information. Legend: The color scale indicates the Co from
violet (0%) to green (100%)
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Cause Effect Certainty by
object informa-
tion

Feature of In-
terest

Property Feature of In-
terest

Property

TRAFO-
BUILDING

ACTIVE-
POWER-3P

RESIDENTIAL-
MULTI-
LARGE

ACTIVE-
POWER-3P

100%

TRAFO-
BUILDING

TRAFO-
CURRENT

RESIDENTIAL-
MULTI-
LARGE

ACTIVE-
POWER-3P

100%

TRAFO-
BUILDING

REACTIVE-
POWER-3P

RESIDENTIAL-
MULTI-
LARGE

ACTIVE-
POWER-3P

67%

RESIDENTIAL-
MULTI-
MEDIUM

VOLTAGE-3P RESIDENTIAL-
MULTI-
MEDIUM

ACTIVE-
POWER-3P

56%

RESIDENTIAL-
MULTI-
MEDIUM

ACTIVE-
POWER-3P

RESIDENTIAL-
MULTI-
LARGE

ACTIVE-
POWER-3P

34%

AIRSHIP DIFFUSE-
IRRADIANCE

AIRSHIP SUN-ALTITUDE 100%

Table 6.12: Sample of Rs of the Transfer Entropy with a Kraskov Estimator

6.5.3 Experiment 6: Influence of Dataset Characteristics
In this experiment we observe the behavior of the Transfer Entropy with a Kraskov
Estimator during changing dataset characteristics.

Hypothesis

For this experiment we evaluate the following three hypotheses:

han: The number of records/property in a dataset influences the result of the Trans-
fer Entropy with a Kraskov Estimator and an increase or decrease in the number of
records/property changes the result.

hac: The Feature Type complexity FTc of a dataset influences the result of the Transfer
Entropy with a Kraskov Estimator and therefore a changing FTc changes the result.

haf : The Measurement frequency Mf of a dataset influences the result of the Transfer
Entropy with a Kraskov Estimator and therefore a changing Mf changes the result.

Context

The experiment is carried out in the BIFROST simulation engine, where for each used
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dataset a test run is started, while the parameterization of the algorithm stays the same.
Similar to previous experiments, each test run is a subject of the experiment, while the
algorithm is the object of the experiment. We also use the optimal parameterization
(automatic parameterization, cv = 0, 02) of Section 6.5.2 to evaluate the characteristics
of the dataset.

Procedure

During the execution of the experiment, the evaluator starts a test run with an average
dataset (Dataset 4) and consecutively starts test runs with datasets which have one
characteristic changed from the starting dataset. For haf datasets 3-6 are used (Mf
varies from 1 to 120 min), for han datasets 2, 4, 7 and 9 (number of datapoints/property
varies from 10 to 500) and for hac datasets 1, 4, 8 and 10 (FTc varies from 2 to 9 Feature
Types) are used. These datasets always have one characteristic changed from Dataset 4.
After each test run the evaluator performs a manual inspection for possible false positive
results and documents the results and the used dataset.

Variables

This experiment contains three independent variables. These variables are the three
characteristics of a dataset:

• the Measurement frequency Mf

• the Feature Type complexity FTc

• the no. of datapoints/property

The dependent variable of the experiment is the performance, which is conducted from
the runtime, the Certainty by object information (Co) and the no. of results.

Evaluation

In this evaluation we either want to accept or reject all three hypotheses. We therefore
evaluate them one after the other. For each hypothesis we take a look at the documented
results of the experiment and show the influence the characteristic has on the result set
Rs.

We start the evaluation by discussing hypothesis haf , the influence of the Measurement
frequency Mf on the results of the algorithm. In Table 6.13 we can see the results of
the experiment, where we can see either a high number of results (Mf = 1min, 60min),
where Rs contains a high number of false positive results or a low Co (Mf = 120min).
The only remaining value for Mf , available in BIFROST, is 15 minutes, which seems to
be the only valid setting.

After showing the results of Mf , we take a look at hypothesis han, where we evaluate
the number of records/datapoint. In Table 6.14 we can see the results of the
experiment. In this table we see an increase in runtime, while increasing the number of
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Dataset Mf Certainty by
object informa-
tion

no. of results

17 1 min 74,16% 1686
18 15 min 82,87% 613
19 60 min 80,67% 2536
20 120 min 61,65% 775

Table 6.13: Transfer Entropy with a Kraskov Estimator: Evaluation of the Mf

Dataset no. of
data-
points/
property

Certainty by
object informa-
tion

no. of re-
sults

Runtime

14 10 - 0 -
18 100 82,87% 613 128s
22 200 72,95% 780 191s
37 500 88,97% 470 394s

Table 6.14: Transfer Entropy with a Kraskov Estimator: Evaluation of the no. data-
points/property

records/datapoint. Further we can see the inability of the algorithm to acquire a result
with 10 datapoints. We can also see an increasing number of datapoints/property increases
Co, while decreasing the number of results, the higher the number of records/datapoint
gets. At 200 datapoints, we see an outlier, where the algorithm finds a high number of
causal relations and has a lower Co due to a higher number of false positive results for
Dataset 7. We can therefore see, the higher the number of records/datapoints gets, the
higher the runtime, the higher Co and the lower the number of results gets. We can also
reject the null hypothesis h0n and accept the alternative hypothesis han.

The last evaluated hypothesis is hac, where we take a look at the Feature Type
complexity FTc. We can only evaluate Co, as the runtime will increase the more
Features of Interest a Settlement contains and so will the number of results. In Figure
6.20 we can see Co over an increasing FTc. We can see a decline of Co, while increasing
FTc, even though the decline in Co is lower than in previous algorithms.

Conclusions.In the end, we can conclude the following statements for the Transfer
Entropy with a Kraskov Estimator:

• Mf = 15 minutes seems to be the only possible setting.

• The higher the number of records/datapoints gets, the higher the runtime, the
higher Co, the lower the number of results gets.
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Figure 6.20: Transfer Entropy with a Kraskov Estimator: Evaluation of FTc (Certainty
by object information)

• The higher FTc gets, the lower Co gets.

6.6 Peter-Clark Algorithm
The Peter-Clark Algorithm (PC Algorithm) tries to build a DAG to represent found
causal relations of a set of timeseries, as described in Section 4.2.3. The implementation
uses the library provided by [30]. As previously mentioned, the PC-algorithm can only
solve P2.

6.6.1 Parameters
The PC-algorithm has two different parameters to optimize Rs. These parameters are
the depth d and alpha a. Alpha is the alpha level for the independence test used in
the algorithm, while the depth limits the maximal depth of the algorithm. Therefore, a
depth of five limits the algorithm to test for independence between two properties under
the condition of at most five other properties.

6.6.2 Experiment 7: Optimal Parameterization
This section shows an experiment, which aims to find the influence of the parameterization
on the result. Further we aim to find an optimal setting for the parameters.

Hypothesis

For this experiment we use the following hypothesis:
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Hypothesis Independent variable Scale
ha depth 1 - 5
ha alpha 0.05 - 0.35

Table 6.15: Independent variables in the experiment for the parameterization of the
PC-algorithm

hm: The parameters of the PC-algorithm influence the result of the algorithm and
therefore an optimal set of these parameters can be defined.

Context

The experiment takes place in the context of the BIFROST simulation engine. For each
possible set of parameters, a new test run is started. By the definition of a subject,
each test run is a subject of the experiment, while the algorithm is the object of the
experiment, as we aim to evaluate the results of the algorithm. As we want to evaluate
the parameters of the algorithm and not the characteristics of the dataset, we use an
average dataset, namely the average dataset Dataset 4 for the experiment.

Procedure

During the execution of the experiment the evaluator performs successive test runs for
each possible combination of parameters. Therefore the evaluator starts with the lowest
possible combination of parameters and changes the parameters after each test run. The
experiment is finished after each possible combination has been used. After each test run
the evaluator performs a manual inspection of Rs and documents the results of the test
run.

Variables

The experiment has two independent variables, which are the parameters of the algorithm.
Therefore, the two independent variables are:

• alpha a

• depth d

An overview is shown in Table 6.15. Further the experiment has the dependent variable
performance, which is conducted from the runtime, the Certainty by object information
(Co) and the number of results.

Evaluation

Similar to previous evaluations we want to find the optimal parameters to optimize the
performance. Therefore, we want to maximize Co and the number of results while keeping
the runtime as low as possible.
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In Table 6.16 the evaluation results of the PC-algorithm are shown. We can see that an
increase of d exponentially increases the runtime. While d = 1 takes under a second,
d = 5 takes around half an hour and d = 6 takes around five hours.

With the depth reachable in a justifiable time, the algorithm is not able to provide a
result set with a reasonable collection of causal relation. We can see, independent of d,
the result set stays the same and contains a high number of false positive results.

We can further see no change in Co, during a change in either parameter, as this metric
stays between 50 and 60%. The only change, we were able to observe is a decrease of
found results while increasing d or a.

Due to the inability of the algorithm to deliver a result set without a high number of
false positive results in a reasonable time, we can follow the PC-algorithm should not be
applied to data from the BIFROST simulation engine.

6.7 Comparison of Results
In this section we compare the results of the algorithms based on the Certainty by
ensemble based learning. For the comparison we use the average dataset, namely Dataset
4. Further each algorithm is parameterized using the optimal parameterization, found
in Experiment 1, 3 and 5. A summary of these parameters can be seen in Section 6.8.1.
As the Transfer Entropy with a Kraskov Estimator has the highest Co, we compare the
other two algorithms to the Transfer Entropy with a Kraskov Estimator. In the following
Figures the algorithms are compared:

• In Figure 6.21 we can see a matrix representation of the Certainty by ensemble
based learning of the Transfer Entropy with a Kraskov Estimator and the Granger
Causality. Ce is the percentage of causality acquisition algorithms, which found the
causal relation. Therefore, if both the Transfer Entropy with a Kraskov Estimator
and the Granger Causality find a causal relation Ce = 100%, if only one of the
algorithms finds the relation Ce = 50%. In Figure 6.21 Ce = 100% each unique pair
of Features of Interests and Properties is shown on both axis. The y-axis presents
causes, while the x-axis presents effects. A green square represents Ce = 100%,
while a white square represents Ce = 50% and a violet square presents Ce = 0%.
Therefore the causal relation between the CLOUDCOV ER − BASE and the
V OLTAGE −ANGLE −3P in the top right corner (white square) has a Ce = 50%,
while the green square next to the white square in the top right corner presents
a causal relation, with Ce = 100% between the CLOUDCOV ER − BASED and
V OLTAGE − §P .

• In Figure 6.22 we can see a matrix representation of the Certainty by ensemble
based learning of the Transfer Entropy with a Kraskov Estimator and the Transfer
Entropy with a Kernel Estimator. This figure has the same color codes as Figure
6.21.
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Depth Alpha Certainty by
object informa-
tion

no. of results Runtime

1 0.05 52.63% 225 0s
1 0.1 56.25% 251 0s
1 0.15 58.07% 271 0s
1 0.2 55.69% 281 0s
1 0.25 52.54% 302 0s
1 0.3 54.72% 324 0s
1 0.35 58.88% 342 0s
2 0.05 56.79% 96 1s
2 0.1 54.67% 107 1s
2 0.15 57.25% 111 1s
2 0.2 55.71% 104 1s
2 0.25 58.71% 103 1s
2 0.3 58.15% 112 1s
2 0.35 60.09% 117 1s
3 0.05 56.79% 96 10s
3 0.1 54.67% 107 10s
3 0.15 57.25% 111 10s
3 0.2 55.71% 104 10s
3 0.25 58.71% 103 10s
3 0.3 58.03% 110 10s
3 0.35 58.56% 114 10s
4 0.05 56.79% 96 149s
4 0.1 54.67% 107 150s
4 0.15 57.25% 111 148s
4 0.2 55.71% 104 150s
4 0.25 58.65% 102 148s
4 0.3 58.03% 110 152s
4 0.35 58.56% 114 151s
5 0.05 56.79% 96 1836s
5 0.1 54.67% 107 2107s
5 0.15 57.25% 111 1945s
5 0.2 55.71% 104 1888s
5 0.25 58.65% 102 1866s
5 0.3 58.03% 110 1859s
5 0.35 58.56% 114 1818s

Table 6.16: PC-algorithm: Evaluation of the depth and alpha parameters
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Figure 6.21: Transfer Entropy with a Kraskov Estimator compared to Granger Causality:
Matrix representation of Rs of the Certainty by ensemble based learning. Legend: The
color scale indicates the Ce from violet (0%) to green (100%)
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Figure 6.22: Transfer Entropy with a Kraskov Estimator & Transfer Entropy with a
Kernel Estimator: Matrix representation of Rs of the Certainty by ensemble based
learning. Legend: The color scale indicates the Ce from violet (0%) to green (100%)
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In both comparisons we can see a set of Causal relations with Ce = 100% (green squares).
For these relations we can assume they are true positives, because at least two causality
acquisition algorithms found them. Further there are some relations, which are only
found by one of the algorithms (white squares), where the manual inspection showed
a higher number of false positive results in both the Transfer Entropy with a Kernel
Estimator and the Granger Causality.

Especially the Transfer Entropy with a Kernel Estimator seems to be still biased towards
certain Features of Interest. Therefore, even though the experiment provided a seemingly
optimal parameterization, the Transfer Entropy outperforms the Transfer Entropy with
a Kernel estimator using the automatic parameterization, regarding the amount of true
positive results.

6.8 Evaluation Summary
In this chapter we investigated the influence of the algorithm parameters and the influence
of the dataset characteristics on the result set Rs for each algorithm. We showed the
applicability of the algorithms to BIFROST and their strengths and weaknesses. In this
section we summarize the findings of the chapter.

6.8.1 Optimal Parameterization
After evaluating the influence of the parameterization, we found an optimal setting
for three of the four implemented CAA. The PC-algorithm was not able to provide an
acceptable result and has therefore no optimal parameterization in the context of the
BIFROST simulation engine.

The optimal settings for the algorithms are:

• Granger Causality: ls = 1, cv = 0, 7

• Transfer Entropy with a Kernel Estimator: b = 0, 4, hl = 2, cv = 0, 1 − 0, 15

• Transfer Entropy with a Kraskov Estimator: use automatic parameterization,
cv = 0, 02

6.8.2 Influence of the dataset characteristics
We showed the influence of the dataset characteristics on the result set. Each of the three
evaluated algorithms (Granger Causality, Transfer Entropy with a Kernel Estimator,
Transfer Entropy with a Kraskov Estimator) behave similarly to changes in the dataset
characteristics, as follows.

• Measurement Frequency. All three algorithms operate the best at Mf = 15
minutes. The only algorithm, which is also able to work with other frequencies
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provided by BIFROST is the Granger algorithm, which delivers acceptable results
until Mf = 60 minutes.

• Feature Type complexity. Each algorithm decreases in performance, when the
FTc of the dataset increases. The best performing algorithm at a high FTc is the
Transfer Entropy with a Kraskov Estimator.

• Number of Datapoints leads to quite different behavior across algorithms. While
the Granger Causality performs strictly better under a higher number of datapoints,
the Transfer Entropy with a Kernel Estimator keeps the performance the same
as the Certainty by object information stays stable, while the number of results
decreases. The last CAA, the Transfer Entropy with a Kraskov Estimator, has a
higher accuracy the higher the number of results gets, as the Certainty by object
information increases. The disadvantage of the higher accuracy is an increased
runtime.

6.8.3 Conclusions and Recommendations
After evaluating each implemented CAA, we found one algorithm, which is not suitable
for the BIFROST simulation engine (the PC algorithm), while the other three deliver
results with a similar performance. Even though the performance is similar, the strengths
and weaknesses are not, as the Granger Causality and the Transfer Entropy with a Kernel
Estimator have a better runtime but a worse Certainty by object information than the
Transfer Entropy. We therefore recommend the usage of the Transfer Entropy with a
Kraskov Estimator, as long as the runtime is reasonable, to maximize the correctness of
the found causal relations.
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CHAPTER 7
Conclusion and Future Work

7.1 Conclusion
In this thesis we aim to solve problems related to causality and explainable Cyber
Physical Systems (expCPS). In Section 1.3 we introduce four Research Questions that
are investigated in this thesis. In the following we discuss these questions and summarize
the corresponding answers/results based on the material presented in Chapters 2 – 6.

• RQ1: What are classical ways to represent causality information and which for-
malisms and notions are used to represent causality information?
We investigate this question in Chapter 2, where we start by reviewing a collection
of different definitions of causality and form a working definition of causality
for expCPS based on these definitions. Afterwards we show different causality
representations, used in a broad range of research areas. These representation
methods show the different needs of systems in different application areas. Finally,
we provide an overview of important aspects to consider when choosing or creating
a causality representation method.
The first aspect to consider is the difference between types of causal relations, where
some systems require the representation to differentiate between causal relations.
Further it can be important for a system to weight the relations, to distinguish the
strength of relations. It can also be critical to consider multiple causes for the same
event or object. Finally, we differentiated two types of causal relations: generic
Causality and concrete Causality.

• RQ2: Which ways are already used to acquire the information required to build a
causality representation and how these approaches use the acquired information to
build a causality representation?
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This Research Question focuses on different expCPS, which use a causality repre-
sentation or a causality acquisition algorithm or both. In Chapter 3 we show, how
these expCPS acquire causality knowledge and represent the gained knowledge. We
also compare the expCPS, based on three aspects.

The first aspect we used, is the application area, where we found two systems, which
already operate in a power grid. The first system [LÖC07] uses the Multilevel Flow
Model to represent causality knowledge, while the second [MDEG18] one uses an
advanced filter method to acquire events causally related to each other. The other
two aspects are the required knowledge of experts to build and operate the system.
Therefore, these aspects describe the required help of experts, the system needs to
be initially built and to be used during daily operation.

Finally we use the results from Chapter 2 and 3 to propose the Multilevel Flow
Model, as an optimal causality representation approach for an expCPS, as it
provides the possibility to scale infinitely, because it represents functionality instead
of the structure of components. It further can be adapted to include all important
aspects identified in Section 2.4.

• RQ3: What approaches are already used to acquire causality information from a
system and is it possible to apply these approaches to an expCPS?

We explore RQ3 in Chapter 4 where we start by formally defining causality in
expCPS in the problem of causality acquisition. In this part of the thesis, we
formally describe each part related to a causal relation in the BIFROST simulation
engine. Based on this problem definition, we discuss different algorithms to acquire
causality knowledge from a system. We further show the difference in approaches to
acquire knowledge. It is important to decide for the correct algorithm based on the
system the algorithm is applied for. Therefore, we focus on three different aspects
to consider, when choosing the correct algorithm. At the start it is important to
consider both, the input and the output data type of the method. It is important to
use an algorithm, which can handle the data provided by the system and provides
data the system can use. The last considered aspect is the possibility to use already
collected knowledge, as this knowledge can increase the performance of the algorithm.

After reviewing different methods, we also discuss the applicability of the causality
acquisition algorithms to the expCPS module built on top of the BIFROST simula-
tion engine [AES+20]. We concluded that there are two approaches, which clearly
fit to the module. These approaches are the Granger Causality [Gra69] and the
Transfer Entropy (with different estimators) [Sch00]. We also found an algorithm,
which can be applied to the BIFROST simulation engine, but has an exponentially
worse runtime – the Peter Clark Algorithm [SGSH00].

• RQ4: How can causality information, with the help of the approaches from RQ3,
be acquired from the BIFROST simulation engine? What are advantages and
disadvantages of each method?
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To acquire causality knowledge from the BIFROST simulation engine, we imple-
mented a framework, which is able to apply the Granger Causality, two different
implementations of the Transfer Entropy and the Peter Clark Algorithm to the
expCPS module. Further the framework provides three different metrics, on which
the evaluation of these algorithms is based. These metrics, presented in Chapter
5, are the Certainty by Object information, the Certainty by ensemble
based learning and the amount of causal relations. In the framework we use
the data acquired from the expCPS to provides a result set, with a collection of
found causal relations and a list of metrics, which can determine the quality of the
result.

Afterwards we use this data to conduct controlled experiments and evaluate the
causality acquisition algorithms, based on the provided metrics. For each imple-
mented algorithm, we conduct two experiments. In the first experiment for each
algorithm, we aim to find the optimal parameterization of the algorithm. In the
second experiment we investigate the influence of changing characteristics of the
dataset. We conclude the experiments, with the observation, that the Transfer
Entropy with a Kraskov Estimator provides the most optimal result (Co = 83%,
number of results = 613 and runtime = 128s). The Transfer Entropy with a Kernel
Estimator and the Granger Causality provide a good result on paper, but contain
a high amount of false positive results. Finally, the Peter Clark Algorithm is unfea-
sible, as it is computationally too expensive and therefore the time-performance
quickly deteriorates to unacceptable levels (several hours) even for small datasets.

7.2 Assumptions & Limitations

There are some limitations and assumptions in the thesis. The first limitation of the
thesis is the focus on the BIFROST simulation engine. Therefore, we focused the research
on a single expCPS and could not investigate the influence of the chosen causality
representation and causality acquisition algorithms on different systems (or domains).
Further the decision for the Multilevel Flow Model is only based on theoretical literature
research and was not evaluated in either a simulated or real expCPS.

Further, there is currently no gold standard for causal relations in the BIFROST simulation
engine. Therefore, the evaluations are only based on the metrics described in Section
5.3. There are also some risks, while performing the controlled experiments, described in
[WRH+12]. One threat is the possibility of a low statistical sample size, as we only use
four different settlements to evaluate the algorithms. Another threat is the expectation
of the experimenter, where the experimenter expects a certain solution and manipulates
the experiment towards a certain result. We tried to address this risk by frequent joint
meetings with the supervision team in order to reduce bias from a single experimenter.
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7.3 Future Work
During the thesis we were able to propose a causality representation, the Multilevel
Flow Model, suitable for an explainable Cyber Physical System (expCPS). In the future,
the Multilevel Flow Model should be implemented and evaluated in a simulated or
real expCPS, to evaluate its usability. Further, the representation should be extended
with more functionality such as by adding weights to the representation elements of the
Multilevel Flow Model.

Another important research in the future is the implementation and evaluation of the
algorithms shown in Chapter 4 in a real or another simulated environment to check, if the
standards set in the thesis still apply for systems apart from the BIFROST simulation
engine or other important aspects to consider in an expCPS are found. Therefore, a
future work should investigate the performance of the causality acquisition algorithms
and the applicability of causality representation in similar systems.

Finally, we envision combining both the representation and the acquisition of causality into
a single module to investigate the interaction between these two components. Additionally,
causal relations found by the algorithms should be evaluated quantitatively by domain
experts.
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