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Abstract

The European Centre for Medium-Range Weather Forecasts (ECMWF) currently

prepares the assimilation of soil moisture data derived from advanced scatterometer

(ASCAT) measurements. ASCAT is part of the MetOp satellite payload launched

in November 2006 and will ensure the operational provision of soil moisture infor-

mation until at least 2020. Several studies showed that soil moisture derived from

scatterometer data contain skillful information. Based on data from its predeces-

sor instruments, the ERS-1/2 scatterometers we examine the potential of future

ASCAT soil moisture data for numerical weather prediction (NWP). In a first step,

we compare nine years of the ERS scatterometer derived surface soil moisture index

(ΘS) against soil moisture from the ECMWF re-analysis (ERA40) data set (ΘE) to

(i) identify systematic differences and (ii) derive a transfer function which minimises

these differences and transforms ΘS into model equivalent volumetric soil moisture
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Θ∗
S . We then use a nudging scheme to assimilate Θ∗

S in the soil moisture analysis

of the ECMWF numerical weather prediction model. In this scheme the difference

between Θ∗
S and the model first guess ΘFG, calculated at 1200 UTC, is added in

1/4 fractions throughout a 24 hour window to the model resulting in analysed soil

moisture ΘNDG. We compare results from this experiment against those from a

control experiment where soil moisture evolved freely and against those from the

operational ECMWF forecast system, which uses an optimum interpolation scheme

to analyse soil moisture. Validation against field observations from the Oklahoma

Mesonet, shows that the assimilation of Θ∗
S increases the correlation from 0.39 to

0.66 and decreases the RMSE from 0.055 m3m−3 to 0.041 m3m−3 compared against

the control experiment. The corresponding forecasts for low level temperature and

humidity improve only marginally compared to the control experiment and deteri-

orate compared to the operational system. In addition, the results suggest that an

advanced data assimilation system, like the Extended Kalman Filter, could use the

satellite observations more effectively.

Key words: soil moisture, scatterometer, data assimilation, numerical weather

prediction

PACS:

1 Introduction

In November 2006, the European Organisation for the Exploitation of Mete-

orological Satellites (EUMETSAT) launched MetOp-A the first out of three

satellites of EUMETSAT’s polar system (EPS). One of the instruments on-

board the satellite is the advanced scatterometer (ASCAT) which is the succes-

∗ Corresponding author.
Email address: Klaus.Scipal@ecmwf.int (K. Scipal).
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sor instrument of the ERS scatterometers [1,6]. Although designed to measure

wind over the ocean there is increasing evidence that the ERS and MetOp

scatterometer configuration also provide measurements of surface soil mois-

ture over land.

Currently, EUMETSAT implements an operational near real time soil mois-

ture processor at its central processing facility [17]. The processor will facili-

tates the retrieval of a soil moisture index ΘS based on the method described in

[41]. It was shown in several validation studies that ΘS contains skillful infor-

mation about soil moisture [42,9,7,25]. These studies focused on a qualitative

comparison between ΘS and different datasets, showing a high agreement for

tropical, dry and temperate climates. A disagreement was found in deserts

and polar regions. In a more quantitative study, Ceballos et al. [5] compared

root zone soil moisture derived from ΘS with in-situ data from a field site in

Central Spain and estimated a root mean square error (RMSE) of 0.04 m3m−3.

In a similar study using in-situ observations from agro-meteorologic networks

in Russia, Ukraine and China, Scipal [31] estimated a RMSE of 0.06 m3m−3.

Recently, ΘS was also used successfully in first agro-meteorologic assimilation

experiment [45] and in hydrological [24,32], meteorological [46] and climate

[16] studies.

Initial soil moisture retrievals, based on ASCAT observations, indicate that

the advanced sensor design and calibration will provide accurate soil moisture

information at a spatial resolution of 25 km and a sampling interval of less than

two days [2]. The MetOp system will hence provide an uninterrupted flow of

soil moisture information until at least 2020 and therefore offers an attractive

complement to dedicated soil moisture missions like the Soil Moisture and

Ocean Salinity Mission (SMOS) and the Soil Moisture Active-Passive Mission
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(SMAP). Especially the operational system capabilities, the near real time

processing of data and the heritage of the ERS-1/2 missions will make it a

valuable monitoring tool for various applications.

The availability of an observing system that can provide accurate, routine in-

formation about surface soil moisture will help to improve our understanding

of the earth system’s hydrological cycle [44]. In numerical weather prediction

(NWP) for example, the fundamental feedback mechanism of soil moisture has

been shown for the local scale [33], the regional scale [30], and the continen-

tal to global scale [15,20]. Simplifications in the representation of land-surface

processes in NWP models, however, lead to systematic errors in the soil mois-

ture field. Specifically, it was observed that free running soil moisture models

tend to drift, leading to too dry boundary layer conditions [37,13]. To compen-

sate for this effect NWP centres introduced systems to analyse soil moisture

using 2 m temperature (T2m) and 2 m relative humidity (RH2m) as proxy

observations. In the NWP context, the term analysis expresses the production

of an image of the true state of the system at a given time using a combina-

tion of a dynamic model and distributed observations via a data assimilation

scheme. The analysis itself can, subsequently, be used as a pseudo observa-

tion or as initial condition for a forecast. The assimilation methods for the

soil moisture analysis comprise, for example, nudging schemes (e.g. UK Met

Office), optimum interpolation (e.g. Meteo France), or an extended Kalman

filter (e.g. German Weather Service). At ECMWF, an optimum interpolation

is currently in use [23]. This scheme efficiently improves the turbulent sur-

face fluxes and the weather forecast on large geographic domains while root

zone soil moisture acts as a ”sink” variable, in which errors are allowed to

accumulate [12].
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Direct observations of soil moisture can represent a stronger constraint in the

analysis and lead to more accurate soil moisture analyses [12,29,43]. Conse-

quently, the development of soil moisture assimilation methods has received

increasing attention in recent years [43,26,27,34]. While there has been consid-

erable progress in the development of soil moisture data assimilation methods,

large-scale assimilation studies are still rare due to the paucity of suitable ob-

servations. So far, the impact of satellite retrieved soil moisture on the quality

of the weather forecast has hardly been addressed. Drusch [12] used a nudging

scheme to assimilate soil moisture derived from TMI satellite observations into

ECMWF’s Integrated Forecast System (IFS). Although the study was limited

to the southern United States, he showed that the initialisation of soil mois-

ture using satellite observations was beneficial in the soil moisture analysis.

However, it was also found that the impact on the short range forecast of T2m

and RH2m was slightly negative when compared to the operational analysis.

In this study, we address the question whether we can use scatterometer de-

rived soil moisture ΘS to constrain the soil moisture analysis and hence to

compensate for systematic errors in ECMWF’s IFS on a global scale. This is

of specific interest, as scatterometers have not been regarded useful for soil

moisture monitoring in NWP so far. As ASCAT is not yet fully calibrated, we

will base our study on data from the ERS-1/2 missions.

The study addresses two main topics (Fig. 1 shows a schematic view of the

study rational and the datasets used in each step):

(1) In the first part we compare ΘS with model volumetric soil moisture ΘE

from the ECMWF forecast system over a nine year period to identify

systematic differences (section 3.1). In (section 3.2) we derive a trans-

fer function which minimises these differences and transforms the soil
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moisture index ΘS into volumetric soil moisture Θ∗
S.

(2) In the second part (section 4) we set up three forecast experiments to

study the impact of assimilating Θ∗
S in the ECMWF forecast system.

These experiments are: (i) A nudging experiment (NDG), where we as-

similate Θ∗
S using the methodology described in [12]; (ii) A control exper-

iment (CTR) with an open loop configuration where soil moisture has not

been analysed but evolves freely; and (iii) An experiment using the op-

erational optimum interpolation and T2m and RH2m analysis increments

(OI).

We evaluate the results by examining soil moisture increments (i.e. analysis-

first guess) from the NDG and OI experiment (section 5.1) and by comparing

the analysed soil moisture fields ΘNDG, ΘCTR, ΘOI to field observations ΘOK

from the Oklahoma Mesonet (section 5.2). Finally we evaluate the impact of

assimilating Θ∗
S on the forecast skill of the ECMWF NWP model (section

5.3).

2 Scatterometer derived soil moisture

The ERS scatterometers are active microwave instruments operated in C-band

(5.6 GHz) at VV polarisation. ERS-1 acquired data between August 1991 and

May 1996. ERS-2 was launched in March 1996 and was operated until Jan-

uary 2001, when due to a failure of a gyroscope all ERS-2 instruments were

temporarily switched off. From 1991 until January 2001, the scatterometers

achieved a daily global coverage of up to 41%. Since May 2004, ERS-2 again

acquires data, however the down-link of data is limited to selected regions (i.e.

North America, Europe, Northwest Africa, China and Australia). Over land
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the scatterometer observations can be use to derive soil moisture information.

In this study we use the soil moisture data from Vienna University of Technol-

ogy’s (TUWien) WARP4 archive. This data is available on a Discrete Global

Grid with a resolution of 50 km and is derived by applying the TUWien model.

The following paragraph gives a brief overview of the retrieval concept. For a

full description of the method, the reader is referred to [39–41].

Scatterometers operating in the low frequency domain (1–10 GHz) provide a

relatively direct measure of soil moisture because of their high sensitivity to

the water content in the top soil layer. The challenge in retrieving soil moisture

from the backscatter measurement σ0 is to account for the effects of surface

roughness and vegetation. To this end, the TUWien model exploits the unique

sensor design and the advantages of a change detection method. To correct for

the effects of plant growth and decay the model uses the vegetation sensitive

signature of the multi-incidence angle σ0 observations. A soil moisture index

ΘS can then be retrieved following Eq. 1, which results in a relative measure of

surface (< 2 cm) soil moisture ranging between 0 and 1. In Eq. 1 σ0
dry represents

backscatter from the vegetated land surface under dry soil conditions, σ0
wet is

the corresponding measure under wet conditions.

ΘS (t) =
σ0 (t)− σ0

dry (t)

σ0
wet (t)− σ0

dry (t)
(1)

Assuming that σ0
dry represents a completely dry and σ0

wet a saturated soil sur-

face, ΘS is equal to the degree of saturation, which is the soil moisture content

expressed in percent of porosity [18]. The reference values σ0
dry and σ0

wet, are

estimated from the lowest and highest σ0 values recorded during the period

August 1991 to January 2001. By utilising data from a nine-year period, the

reference values likely represent the respective soil conditions even in temporal
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sparsely sampled areas. In extreme climates such as deserts, where saturation

is not observed, a correction factor is applied to σ0
wet in order to obtain spa-

tial consistent ΘS values. It is important to note that the method does not

provide useful information if the signal is dominated by scattering from dense

vegetation, water, rough topography or snow covered/frozen land surfaces.

Additionally, the current implementation of the TUWien model does not ex-

plicitly incorporate azimuthal viewing effects as they are generally weak. In

regions characterised by surface patterns with a distinct azimuthal orientation

of the micro relief, e.g. in sand deserts, this simplification however results in

an artificial modulation of the signals. To avoid the use of spurious ΘS values

we implemented a rigorous data screening. Data is rejected if the observation

error of ΘS exceeds 6%. In this context, the observation error refers to the

propagation of instrument noise through the soil moisture retrieval model.

The error depends on the location specific sensitivity of the microwave signal

to soil moisture, to instrument noise, azimuthal viewing effects and speckle.

It is the smallest expected error, assuming that the assumptions made in the

retrieval method are correct. Additionally, we used the Global Lakes and Wet-

lands Data Base [22] to mask regions where the areal fraction of water surfaces

exceeds 15% of the scatterometer footprint. Global digital elevation data from

the GTOPO30 data set was used to mask regions where the normalised ele-

vation variation within a scatterometer footprint exceeds 20%.

3 Comparison of ERS and model soil moisture

Prior to assimilation, ΘS has to be transformed to volumetric soil moisture

representing the NWP model’s top soil layer. In meteorological data assimi-
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lation applications this transformation is performed through the observation

operator. In addition, systematic differences between the model and the ob-

servations need to be minimised to ensure an optimal analysis [8]. Although

these differences at least partly stem from the model [21], corrections are often

applied to the observations. In the following sections we compare ΘS against

the corresponding model fields ΘE to identify systematic differences. For this

purpose, we use data from the ECMWF re-analysis dataset (ERA40). Then we

derive a transfer function which converts ΘS into model equivalent volumetric

soil moisture Θ∗
S.

The ERA40 reanalysis data set contains consistent atmosphere and surface

analyses for the period from mid-1957 to 2001 based on the ECMWF NWP

model [38]. Various types of observations including satellite and ground based

measurements were assimilated through a 3D-Var analysis scheme. This sys-

tem made use of the IFS at T159 spectral resolution (∼ 1.125◦ horizontal spac-

ing) with 60 vertical levels. In the IFS, land surface processes are described

by the Tiled ECMWF Scheme for Surface Exchanges over Land (TESSEL)

[36,19]. In TESSEL soil processes are calculated in four layers. The lower

boundary of each layer is at 0.07, 0.28, 1.0 and 2.68 m depth. To keep the

land surface model simple, a uniform soil type with fixed soil hydraulic para-

meters is used globally. Saturation is prescribed with a value of 0.472 m3m−3,

field capacity with 0.323 m3m−3 and the wilting point with 0.171 m3m−3.

To facilitate the comparison, ΘS has been aggregated to the ERA40 grid and

pooled into six-hourly files. The derived statistics are based on data from the

period 1992–2000. Observations were masked if one of the datasets indicated

missing observations or if the ERA40 reanalysis indicated a screen level tem-

perature below 0◦C and/or a snow depth larger than 0 mm. It should be noted
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that the surface module of the IFS was not changed until 2007 and it can be

assumed that the ERA40 climatology represents the status of the operational

system at the corresponding resolution prior to 2007.

3.1 Correlations

To determine if ΘS and ΘE capture the same processes we calculated the

correlation (RABS) between the datasets. Considering the strong seasonal-

ity of soil moisture in certain regions, RABS has to be interpreted carefully.

In the Monsoon areas for example, RABS will be dominated by the strong

seasonal variation, suppressing soil moisture anomalies which proceed on a

much weaker magnitude. We therefore also calculate the anomaly correlation

(RANO). These are obtained by removing the mean seasonal cycle in ΘS and

ΘE derived from the nine year period. Although the nine year period is to

short to calculate a robust climatology it allows us to remove the dominat-

ing effect of the seasonal cycle. The calculation of anomalies is based on a

temporal identical sample population, i.e. if either ΘS or ΘE is missing for a

specific time-step the corresponding value is removed from the other dataset.

Comparing the two datasets does not provide any quantitative information

about the quality of the data. However, considering that both datasets are

fully independent we assume that a high correlation indicates that the same

processes are captured. This assumption is valid since the simplifications in

the model (e.g. a uniform soil type) and the satellite retrieval, will have a

decorrelating effect.

Fig. 2 shows the spatial distribution of RABS and RANO. In general, RABS is

positive over large parts of the land surface, with maximum values around 0.9.

10
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At 85% of the land points the correlation RABS is significant at the 0.05 level,

at 8% of the land points soil moisture is not correlated significantly and at 7%

the correlation is negative at the 0.05 confidence level according to a t-test. For

RANO these figures are similar. The spatial distribution of RABS clearly reflects

zonal climate patterns. As expected, RABS is high in areas characterised by

a strong seasonal soil moisture cycle (for example in the Monsoon areas).

Especially over Africa RANO drops from high values around 0.9 to low values

around 0.3. A possible explanation is a deficiency in the model, which can

hardly be corrected through the operational analysis considering the lack of

synoptic in-situ observations.

Over deserts RABS becomes negative. This problem was reported previously

and can be attributed to a shortcoming of the TUWien model [42]. The maps

also exhibit some unexpected features. Over Europe, RABS and RANO are

comparably high. Similarly, RABS and RANO are high over South East China

which is supposed to be characterised by a low sensitivity of the microwave

signal to soil moisture due to a high amount of above ground biomass. In a

study using soil moisture data derived from the AMSR-E radiometer, which

operates in the same microwave band, the area was masked as the observa-

tions did not contain skillful information [29]. On the other hand, RABS is

comparably low over the eastern parts of North America. The reason for these

low correlations are not yet fully understood but can possibly be related to

higher amounts of above ground biomass and hence to a higher level of noise

in ΘS. Nevertheless, there is large agreement between ΘE and ΘS and both

datasets seem to capture the fundamental soil moisture processes.

11



ACCEPTED MANUSCRIPT 
 

3.2 Observation transformation

Assuming that ΘS reflects the degree of saturation, model equivalent volu-

metric soil moisture can be derived by a rescaling with the model value of

porosity, which is a prescribed quantity. However, such a transformation does

not account for shortcomings of the model physics and the satellite retrieval

method, which can result in large biases especially in the mean and variance

[14,9]. Dee [8] showed that a direct assimilation of biased observations (with

respect to the model) prevent a statistically optimal analysis. Therefore, we

transform ΘS with respect to the climatology of ΘE. The transformation is ac-

complished by scaling ΘS so that the cumulative distribution functions (CDF)

of ΘS and ΘE match. In a similar study [11], the data transformation was

achieved by ranking datasets of satellite derived and model soil moisture and

fitting a 3rd order polynomial to the differences. This approach allowed to cor-

rect differences in the mean, the variance, the skewness and the kurtosis. Here,

we simplified the CDF matching to a linear transform. This effectively removes

the differences in the first two moments (mean and variance). Differences in

higher order moments are mainly found in dry climates. In these regions, ΘE

is more skewed towards dry values and shows a narrower distribution (i.e. a

higher kurtosis). These higher order difference will enter the assimilation as an

uncorrected bias. The impact of ignoring differences in higher order moments

is nevertheless small and scarcely reaches values larger than 0.02 m3m−3. The

disadvantage of neglecting differences in higher moments is, however, com-

pensated by the robustness of the method especially in data sparse regions.

The linear approach is also attractive as it can be fully parametrised by the

mean and variance of ΘE and ΘS according to Eq. 2. In Eq. 2, Θ∗
S denotes
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the transformed soil moisture index, ΘS the original index from Eq. 1 and ΘE

the model soil moisture (i.e. ERA40 soil moisture). V AR denotes the variance

and the bar denotes the mean of the respective sample. The intercept a and

slope b are local coefficients depending on factors such as soil type, land-cover

and climate. Therefore, the coefficients are derived for each model grid box in-

dependently. Spatial averaging was also omitted to minimise ergodicity errors

[28].

Θ∗
S = a + b ·ΘS with

a = ΘE −ΘS ·
V AR (ΘE)

V AR (ΘS)
, b =

V AR (ΘE)

V AR (ΘS)
(2)

Fig. 3 shows an exemplary time series of ΘS, Θ∗
S and ΘE for a grid point

in eastern Australia (34.3◦S/148.8◦E) for a one–year period. Generally, ΘS

and ΘE capture variations induced by rainfall events observed by the nearby

synoptic weather station Frogmere well. Both datasets also agree in the dry

down rates. ΘS shows a higher noise level, which is especially evident during

the long dry spell in April. After applying Eq. 2 systematic differences in the

dynamic range of ΘS and ΘE are reduced, and Θ∗
S is almost bias free with

respect to ΘE.

The transformation described in Eq. 2 uses the entire data from 1992–2000

and consequently produces bias free observations for the nine year period.

This raises the question if systematic differences on seasonal to inter-annual

time scales remain after the transformation. In Fig. 4 we plotted zonal means

of the differences in the mean and variance of Θ∗
S and ΘE. The differences

are calculated for each month to uncover seasonal effects and for each year

to reveal drifts. Although the observed differences are small on average, they

exhibit organised patterns: In the tropics the monthly plots show that ΘE is
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on average slightly drier during the dry season and slightly wetter during the

wet season when compared to Θ∗
S.

In the mid-latitudes, ΘE tends to be wetter during winter and drier during

summer. The most striking feature in the yearly plots is found during the

winter 1996/1997 when ΘE indicates wetter conditions than captured by Θ∗
S.

Specifically, near the equatorial belt differences can reach up to 0.02 m3m−3 on

average. Winter 1996/1997 was an El Niño year with significantly higher tem-

peratures and hence more precipitation in this region. This event was followed

by a cold period resulting in lower precipitation rates. The observed differences

suggest that the model produces stronger signals under anomalous conditions.

However, the observed differences are small in terms of absolute water con-

tent. Moreover, Fig. 4 indicates that the transformation leads to consistent

soil moisture estimates over time and it therefore seems reasonable to base

the transformation of the satellite observations on a multi-annual data set. It

is worth noting that it is possible to remove the remaining differences evident

in Fig. 4 by calculating the parameters of Eq. 2 on a seasonal (yearly) basis. In

this study we kept the transformation simple to retrace problems during the

assimilation of Θ∗
S more directly. An optimisation of the method, considering

a seasonal transformation, higher order moments and the error structure of

both datasets may be inevitable in a future operational application.

4 Data Assimilation Experiments

To evaluate the impact of the satellite derived soil moisture data on the soil

moisture analysis and the weather forecast we performed three data assimi-

lation experiments. The experiments are based on ECMWF’s IFS cycle 31R2
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(representing the operational model version from 12 December 2006 to 05

June 2007), and make full use of the atmospheric 4D-VAR analysis system.

For the sake of computational efficiency, the horizontal resolution for the three

experiments is set to 125 km (spectral wave-number cutoff at 159), the ver-

tical resolution is set to 91 layers with the lowest level at approximately ten

meters. All experiments start from the same initial (operational) model state

at 1 May 2005, 0000 UTC. Ten-day weather forecasts are initialised from the

0000 UTC analyses. The atmospheric variables analysed at each grid point

comprise wind, temperature, humidity, and surface pressure. Roughly, five

million observations from conventional sources and different satellite sensors

are used in the atmospheric analysis each day. Soil moisture analyses are car-

ried out at 0600, 1200, 1800 and 0000 UTC.

The setup of the three experiments is identical apart the way soil moisture is

analysed. The first experiment (CTR), is an open loop setup where soil mois-

ture is not constrained through an analysis and can evolve freely. In the second

experiment (OI), soil moisture is analysed through the operational optimum

interpolation using T2m and RH2m analysis increments as proxy observations

[23,10,13]. Analysis increments, defined as the difference between the model

first guess ΘFG and the corresponding analysis, are added throughout the root

zone, i.e. the top three soil layers. The first guess for the soil moisture analysis

is obtained from 6 and 12-hour forecasts started at 1800 UTC and 0600 UTC.

In the third experiment (NDG), the optimum interpolation scheme is replaced

by a nudging scheme for the transformed soil moisture index Θ∗
S according to

the method outlined in [12].

In the NDG experiment differences between daily averages of Θ∗
S and ΘFG from

the uppermost soil layer are computed for 1200 UTC based on a 6-hour forecast
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started at 0600 UTC. The difference is then added in 1/4 fractions during the

next 24-hour window at 1200, 1800, 0000 and 0600 UTC. Consequently, the full

departure is added at 0600 UTC of the subsequent day. In contrast to the OI

experiment, soil moisture is only added to the uppermost model layer. It should

be noted that the NDG experiment assumes that the error of the soil moisture

index is zero and the model error is infinite. This setting implies that the model

is forced to the Θ∗
S observations and as a consequence, errors in Θ∗

S directly

propagate to the model. In addition, the NDG experiment is idealised since it

uses the satellite information at 1200 UTC, although the observations could

also have been taken later. It is also important to notice that the assimilation

concepts of the NDG and OI experiment are conceptually different. From a

physical point of view the correction of soil moisture deficiencies in the OI

experiment is controlled by its link to the evapotranspiration process (T2m

and RH2m analysis increments are used as proxy observations) and it therefore

explicitly adds water to the entire root zone. The assimilation scheme of the

NDG experiment corrects soil moisture deficiencies directly based on surface

soil moisture observations assuming that the water deficit in the root-zone

is corrected in between two assimilation steps by infiltration. Although, the

NDG experiment is not optimal in a statistical sense, it is a computationally

inexpensive system to address the question if the scatterometer observations

are useful to constrain the soil moisture analysis in a NWP model.

5 Results

Observations are used in the soil moisture analysis to correct for deficiencies

in the hydrology of the model. Analysis increments, therefore, provide insight
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on the spatial and temporal structure of model errors. In a first step, analysis

increments from the OI experiment and the NDG experiment are compared

to demonstrate the relative impact of the different observation types in the

two assimilation systems and to evaluate the capability of Θ∗
S to correct for

model deficiencies.

To quantify and evaluate the impact of Θ∗
S on the soil moisture analysis on the

regional scale, we compare the analysed soil moisture fields from the NDG,

CTR and OI experiments (ΘNDG, ΘCTR, ΘOI) to in-situ observations ΘOK

from the Oklahoma Mesonet (OK Mesonet). The OK Mesonet is currently the

only network providing operational soil moisture observations with a sufficient

observation density over a large area (33.8◦N – 37.0◦N and 102.9◦W – 94.6◦W).

It consists of over 110 automated stations measuring a variety of atmospheric

and surface variables. 88 stations reported soil moisture observations on a

regular basis using heat dissipation sensors. Soil moisture observations are

reported every 30 minutes at depths of 0.05, 0.25, 0.60 and 0.75 m. The OK

Mesonet observations are described in detail in [3].

5.1 Analysis increments

The magnitude and evolution of the analyses increments are a useful diagnos-

tic of the forecast system. A well calibrated, physically correct model is char-

acterised by small, randomly distributed analysis increments. Large and/or

persistent increments indicate systematic model and/or observations errors.

Considering that the analysis of the OI experiment effectively corrects model

deficiencies [13], and that we use the same forecast model in the data as-

similation experiments, we expect similar spatial and temporal patterns in
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the analysis increments of the NDG experiment. However, differences in the

analysis increments can be expected since:

(1) The analysis of the OI experiment adds/removes water to/from three

layers, whereas the analysis of the NDG experiment only adjusts soil

moisture in the surface layer. The amount of water, which can be added,

is therefore confined by the thin surface layer and the nudging scheme

assumes that the water is redistributed to deeper layers in between two

analysis steps by infiltration.

(2) The analysis of the OI experiment corrects ΘFG every six hours, whereas

the analysis of the NDG experiment corrects ΘFG only if the satellite

overpasses the respective region, which is about once or twice per week.

In Fig. 5 we show accumulated analysis increments for May to July 2005

from the NDG and OI experiments. Considering the conceptual differences

in the assimilation schemes of the NDG and OI experiment we refrain from

normalising the increments based on the number of assimilation steps and/or

vertical resolution as such a normalisation can not account for the non-linearity

in the model-analysis system. For large parts of the world, water has been

added systematically over the experiment period. In the OI experiment the

water added, locally exceeds 250 mm. These values are non-negligible and

represent a sizable part of the terrestrial water budget. In Spain for example,

an average amount of 100 mm of water is added during the three month period

which represents one quarter of the total annual amount of precipitation.

Water is removed mainly over high latitudes but at lower amounts, scarcely

reaching levels above 120 mm in total. The increments of the NDG experiment

show similar spatial patterns as those from the OI experiment. Also the NDG

experiment adds more water to the surface than the OI experiment, showing
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that the root zone soil moisture can to a certain extend be controlled by

infiltration. The absolute amount of water added/removed via the analysis

system in the NDG experiment does, however, not reach the quantities of the

OI experiment leading to a dry down of the root zone (Fig. 7). Nevertheless,

the similarities in the temporal and spatial patterns of the analysis increments

are evident (Fig. 5) and suggest that Θ∗
S can correct systematic errors due to

an oversimplified soil parametrisation and deficiencies in the soil hydrology of

the ECMWF land surface model.

5.2 Validation against OK Mesonet observations

Analysed soil moisture from the three experiments is compared against in-situ

observations from the OK Mesonet. For our comparison observations are aver-

aged to daily values. To compare analysed surface soil moisture (ΘNDG, ΘCTR,

ΘOI) of the top 0.07 m soil layer, we used OK Mesonet observations from the

0.05 m layer. For the comparison of root zone soil moisture (1 m soil layer) we

calculated a weighted average of all layers where the weights corresponded to

the layer depth. Error statistics (correlation, bias and standard deviation) are

calculated between ΘOK and ΘNDG, ΘCTR, ΘOI time series for each station

of the OK Mesonet.

The highest correlations for all stations are obtained from either ΘNDG or

ΘOI . For 79% of the stations the highest correlation is found for ΘNDG, for

21% the highest correlation is found for ΘOI (Fig. 6). According to a z-test

[35], the correlation of ΘNDG is significantly higher in the South-East of Ok-

lahoma in the outskirts of the Quachita mountains (significant at the 0.05

confidence level) when compared to the ΘCTR and ΘOI correlations. This re-
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gion is characterised by forested vegetation. Stations with a higher correlation

in the ΘOI series are found along the major rivers of Oklahoma, the Red river

in the south and the Arkansas river in the north east. However these differ-

ences are not significant at the 0.05 confidence level. The results suggest that

scatterometers can contribute skill to the model even if the sensitivity of the

signal towards soil moisture is attenuated by dense vegetation. On the other

hand the moderate impact along the major river systems indicate that water

surfaces, even if they cover only a small fraction of the satellite footprint have

a non-negligible impact on the signal. The correlation coefficients are however

low, and show a large spread, with an average value of 0.46±0.16 for ΘNDG,

0.31±0.20 for ΘCTR and 0.37±0.18 for ΘOI experiment. The highest corre-

lation of 0.57±0.15, is found for the original Θ∗
S observations. These values

partly reflect the scale mismatch between coarse resolution soil moisture and

in-situ point observations. Similar correlations have been reported in an as-

similation study using soil moisture data form the passive microwave satellite

missions AMSR-E and SMMR [29].

To account for the scaling problem we calculated regional averages for Okla-

homa by spatially averaging ΘOK , ΘCTR, ΘNDG and ΘOI from all stations. The

correlation coefficients for these regional time series are significantly higher

with values of 0.66 for ΘNDG, 0.39 for ΘCTR and 0.59 for ΘOI . Again, the

highest correlation of 0.86, is found for Θ∗
S (area averages were only calculated

if at least 2/3 of the Oklahoma area was observed by the scatterometer). These

values are in line with [12], where correlation coefficients of up to 0.8 between

a nudging experiment using soil moisture data form the passive microwave

satellite missions TMI and OK Mesonet data were reported.

The averaged time series also show systematic differences between the exper-
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iments (Fig. 7). As soil moisture in the CTR experiment is not constrained,

differences are only due to the sampling mismatch and forecast model errors.

The CTR experiment follows the general soil moisture trend observed during

the May–July period only roughly. We observe a significant dry bias in ΘCTR

of 0.05 m3m−3. Beside this, the CTR experiment also fails to capture a sig-

nificant soil moisture increase in the first week of July and it tends to dry

down too quickly after the wet periods. The main reason for this mismatch

can be found in too low rainfall rates. Rainfall in the model is persistently

underestimated compared to OK Mesonet observations. In total, the model

produces only 116 mm of rainfall during the May–July period, compared to

an observed quantity of 222 mm. Especially the large rainfall events after 01

July 2005 are underestimated by the model. The lack of precipitation results

in a persistent dry down of the root zone and consequently a large bias of

0.07 m3m−3. It should however be noted, that half of this bias is explained by

differences in the initial conditions.

The analysis of the OI experiment partly compensates for these deficiencies by

adding significant amounts of water to the system. This reduces the negative

bias in ΘOI to a value of 0.026 m3m−3. The OI analysis also partly compensates

for the too quick dry downs. During the dry down in the third week of May for

example this leads to more consistent soil moisture estimates. As the analysis

of the OI experiment also adds water to the root zone, the dry down is impeded

resulting in similar trends and the bias of 0.03 m3m−3 can be fully attributed

to differences in the initial conditions. Interestingly, water is also added in the

period 15 June 2005 to 1 July 2005, though no precipitation was observed

(Fig. 8). Comparing the total water added to the hydrologic budget through

rainfall and analysis increments with the observed figures, indicates that the
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analysis of the OI experiment overcompensates the shortage of soil moisture

in the model. Both observations are a sign of systematic model errors.

The transformed scatterometer observations Θ∗
S follow the general trend more

closely than ΘCTR and ΘOI do (Fig. 7). Especially during the second half of

the study period, the timing of soil moisture peaks, as well as dry down rates

agree well with ΘOK . Differences are evident in the first week of May when the

Θ∗
S is consistently drier then ΘOK . This difference is possibly caused by the

different vertical resolution of the scatterometer and the OK Mesonet sensors.

The different vertical resolution may also explain why the scatterometer ob-

serves wet conditions around 25 May 2005 and 10 June 2005. The respective

measurement coincides with rainfall events, which may have moistened the

thin surface layer observed by the scatterometer, but not the deeper layers

accessible to the OK Mesonet sensors. The high agreement between Θ∗
S and

ΘOK is expressed in a low bias of 0.01 m3m−3. Similarly, the standard devia-

tion between Θ∗
S and ΘOK is lower (0.014 m3m−3) compared to the respective

values from the CTR (0.024 m3m−3) and the OI (0.019 m3m−3) experiments.

Nudging of Θ∗
S improves the analysis only slightly (Fig. 7). Although Θ∗

S forces

the model toward higher soil moisture, the soil dries down rapidly after soil

moisture has been added. The sampling frequency of the scatterometer seems

to be insufficient to effectively constrain the model. As a result, we observe a

large bias of 0.037 m3m−3 of ΘNDG. The standard deviation of 0.016 m3m−3

is still low. It can also be observed that the amount of water added through

the analysis of the NDG experiment is too little to infiltrate to the root zone,

leading to too dry conditions which are similar to the CTR experiment. It is

worth noting that the problem regarding the observation frequency is some-

what in contradiction to Calvet and Noilhan [4], who found that a three day
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sampling interval is sufficient to constrain model soil moisture. However, in [4],

soil moisture for the entire soil profile was updated using surface observations

in a quasi-Newton optimisation algorithm.

5.3 Forecast Impact via Surface Fluxes

Soil moisture has a significant impact on the state of the atmosphere due to

its influence on the partitioning between latent and sensible heat fluxes and

consequently the screen level parameters, i.e. T2m and RH2m. We therefore

examine the impact of the soil moisture analyses from the NDG, CTR and OI

experiments on the lower atmosphere for selected areas of the globe and for

the OK Mesonet. Fig. 9 shows time series of daily averaged T2m and RH2m

for the OK Mesonet and the NDG, CTR and OI experiments. In general,

the difference between observed and analysed T2m and RH2m is small. With

respect to T2m all three experiments show a high agreement to OK Mesonet

observations with a correlation above 0.9 and a moderate bias of -0.5◦C. Dif-

ferences between the NDG, CTR and OI are marginal. For RH2m differences

are more pronounced, although still small. Similar to T2m the correlations for

RH2m are high with values of 0.89, 0.85 and 0.91 for the NDG, CTR and

OI experiment. However, the observed bias is substantial. The OI experiment

shows the smallest bias of -6.4%. The bias for the NDG and CTR experiments

are slightly larger reaching values of -7.8% and -9.3% respectively.

The effect of the soil moisture analysis on the forecast skill of screen level

parameters can be assessed through objective measures such as forecast bias

and correlation. Both quantities compare the forecast for a given time step

against the corresponding verifying analysis. Fig. 10 shows spatial average
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bias and correlation scores for the 1–5 day forecast for Europe (37◦N – 55◦N,

10◦W – 30◦E), North America (25◦N – 55◦N, 120◦W – 75◦W) and North

West Africa (5◦N – 18◦N, 20◦W – 10◦E). These statistics indicate that in all

three experiments the T2m forecasts are better than the ones for RH2m. The

correlation scores for T2m are well above 0.6 with significantly higher values

for Europe and North America. For RH2m the forecast correlations exceed 0.6

only for the first two days and then drop to lower values. For both parameters,

differences in the correlation for the CTR, NDG and OI experiments are small.

Again, the biases show substantial differences: over Europe and North America

a warm T2m bias can be observed in the model forecast. Over North West

Africa the bias becomes negative indicating that the model predicts cooler

conditions. For all three regions, the OI experiment predicts lower T2m than the

NDG and CTR experiments. The observed difference is 0.25◦C on average and

reaches high values of 0.5◦C over North America. The RH2m bias is negative

for Europe and North America, i.e. the model predicts less humid conditions.

For both regions, the values are similar, and the CTR experiment shows higher

correlations. Over North West Africa, more humid conditions are predicted by

the model after day two of the forecast. Interestingly, over North West Africa

the OI experiment is outperformed by the NDG and CTR experiments. This

might be related to the fact that the NDG and CTR experiment generally

predict warmer, less humid conditions, which are closer to real conditions in

this region during the study period.
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6 Conclusions & Perspectives

ECMWF’s current soil moisture analysis system is based on an optimum inter-

polation scheme of 2 m temperature (T2m) and 2 m relative humidity (RH2m).

It was shown by Drusch [13] that this scheme efficiently improves the turbu-

lent surface fluxes and the weather forecast on large geographic domains while

root zone soil moisture acts as a ”sink” variable, in which errors are allowed to

accumulate. Satellite observations provide more direct estimates of surface soil

moisture conditions which can complement the classical soil moisture analysis.

In this study we addressed the question if an ERS scatterometer derived soil

moisture index ΘS can improve the soil moisture analysis in the ECMWF Inte-

grated Forecast System. For this purpose, we compared soil moisture analyses

based on the nudging of ΘS (NDG experiment) with soil moisture analyses

based on the optimum interpolation of T2m and RH2m (OI experiment) and

soil moisture analysis of an open loop configuration where the surface analy-

sis is not constrained by observations (CTR experiment). The results of this

study suggest:

(1) Scatterometer observations contain valuable information about surface

soil moisture. A comparison with nine years of model soil moisture from

the ERA40 re-analysis indicates a correlation of up to 0.9 for absolute and

0.7 for anomalies over large parts of the land surface. Comparison with

in-situ observations from the OK Mesonet confirms the high accuracy of

ΘS and suggests that ΘS can be regionally more accurate than ECMWF’s

NWP model.

(2) A scheme to transform ΘS to model equivalent volumetric surface soil

moisture Θ∗
S based on Cumulative Distribution Function matching has
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been presented. It has been shown that the high agreement of the clima-

tological characteristics of ΘS and the ERA40 soil moisture ΘE justifies

the application of a linear transform.

(3) Based on a comparison with in-situ observations of the OK Mesonet we

showed that the assimilation of Θ∗
S has a positive impact on the soil

moisture analysis. However, the nudging scheme can not compensate for

the high evaporation rate of the model leading to too low soil moisture

conditions in the root zone. Problems are related to the revisit time of

the ERS scatterometer, which is once to twice per week over the OK

Mesonet region, and the fact that the analysis of the NDG experiment

only adds water to the surface layer of the model. This problem is not

observed in the operational OI configuration which uses T2m and RH2m

analysis increments to update the entire root zone.

(4) The lack of water added during the analysis to the root zone is detri-

mental to the prediction of T2m and RH2m. In general, the impact of Θ∗
S

on the prediction of T2m and RH2m is slightly positive when compared

to the CTR experiment. When compared to the operational model (OI

experiment), we observe drier, less humid conditions, and the forecast

skill for screen level parameters is reduced.

In a study by Drusch [12] the problem of the dry down of the root zone was not

observed in a similar extend. The study used the same experimental setup and

soil moisture data derived from the passive microwave satellite mission TMI.

TMI revisist the Oklahoma region daily. This leads to a stronger constraint

of the root zone soil moisture of the model and consequently also leads to

improved forecasts of screen level parameters when compared to results of this

study. Apart from this difference the results are comparable. It is therefore
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expected that the analysis system will benefit from the higher observation

frequency of the MetOp scatterometer.

In addition, improvements are expected from the use of the Extended Kalman

Filter technique. The Extended Kalman Filter considers the observation and

model errors during the analysis in a statistically optimal way and allows

to assimilate the observation at the correct observation time. The Extended

Kalman Filter also allows to combine the assimilation of T2m, RH2m and

satellite observations as proposed by [34] and hence takes full advantage of

all available data. However, combining the different data sets in the Extended

Kalman Filter is a major challenge considering that the temporal and spatial

structure of model and observation errors need to be known precisely.
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Fig. 1. Schematic view of the experimental setup.

Fig. 2. Correlation between the scatterometer derived soil moisture index ΘS and

ERA40 reanalysis soil moisture ΘE for (a) absolute values and (b) anomalies for

the period 1991 to 2001.

Fig. 3. (a) The scatterometer derived soil moisture index ΘS (diamonds, right x-axis

scale), transformed soil moisture index Θ∗
S (black line) and model soil moisture ΘE

from the ERA40 reanalysis (grey line) in eastern Australia (34.3◦S/148.8◦E). (b)

Observed rainfall and temperature range at the nearby synoptic weather station

Frogmere.

Fig. 4. Hovmöller diagram of differences in the mean and variance between model

soil moisture ΘE from the ERA40 reanalysis and the transformed scatterometer

derived soil moisture Θ∗
S . The diagrams show (a) monthly differences of the mean;

(b) monthly differences of the variance; (c) yearly differences of the mean; (d) yearly

differences of the variance.

Fig. 5. (a) Accumulated surface soil moisture increments for the OI experiment for

the period May, June, July 2005. Red colour tones indicate that water is removed,

blue colour tones indicate that water is added during the analyses. (b) Same as

(a), but for the entire root zone; (c) Same as (a), but for the NDG experiment. (d)

Number of assimilation steps in the NDG experiment.
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Fig. 6. Performance of time series correlation for each station of the Oklahoma

Mesonet. Triangle symbols indicates that the correlation is highest for ΘNDG. Circle

symbols indicates that the correlation is highest for ΘOI . Filled symbols indicate

that the correlation is significantly higher at the 0.05 confidence level than the

correlation from the other two experiments.

Fig. 7. (a) Station average rainfall observed at the OK Mesonet (black) and from

the CTR experiment (grey). (b) Station average surface soil moisture ΘOK (solid

black), ΘNDG (solid grey), ΘCTR (thick dashed) and ΘOI (thin dashed). Diamonds

display Θ∗
S observations. (c) Same as (b) but for the root zone.

Fig. 8. Time series of accumulated rainfall and soil moisture increments from the

NDG experiment (light grey) and the OI experiment (dark grey). Solid lines show

accumulated rainfall, dashed lines accumulated soil moisture increments. Dotted

lines show the total amount of water added to the system through rainfall and soil

moisture increments. The black line shows the accumulated precipitation observed

at the OK Mesonet.

Fig. 9. (a) Time series of RH2m and (b)T2m for the NDG (solid grey), CTR (thick

dashed) and OI (thin dashed) experiment and OK Mesonet observations (black).

The time series show daily averaged data based on 0000, 0600, 1200 and 1800 UTC

analyses.
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Fig. 10. (a) Correlation scores of T2m forecasts; (b) Bias scores of T2m forecasts;

(c) Correlation scores of RH2m forecasts; (d) Bias scores of RH2m forecasts. Scores

are averaged for Europe (solid line) North America (dashed line) and North West

Africa (dotted line). Different grey tones show scores for the NDG (light grey), CTR

(black) and OI (dark grey) experiment.
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Fig. 2.
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