
Master Thesis

for the achievement of the academic degree

Diplom-Ingenieurin

in the field of study Electrical Engineering
at TU Wien

Optimal Route Planning for Electric Vehicles with
Special Consideration of the Topography

submitted at
Institute of Energy Systems and Electrical Drives

Supervisor: Priv.-Doz. Dipl.-Ing. Dr. Johann Auer
Assistent: Dipl-Ing. Andreas Fleischhacker, BSc

by

Theresia Perger
01125105

Vienna, May 2018

Die approbierte Originalversion dieser Diplom-/ 
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich. 
 

http://www.ub.tuwien.ac.at 
 
 
 
 

The approved original version of this diploma or 
master thesis is available at the main library of the 
Vienna University of Technology. 
 

http://www.ub.tuwien.ac.at/eng 
 





Acknowledgment - Danksagung

Besonderer Dank gilt meinen Betreuern Priv.-Doz. Dipl.-Ing. Dr. Johann Auer und
Dipl.-Ing. Andreas Fleischhacker, BSc, für die gute Zusammenarbeit und ständige Un-
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Abstract

In contrast to conventional routing systems that determine the shortest distance or the
fastest path to a destination, this thesis works on route planning specifically designed for
electric vehicles by finding an energy-optimal solution. The first step is to find a model
of the energy consumption of the vehicle including heating, air condition, and other
additional loads. The street network is modeled as a network with nodes and weighted
edges in order to apply a shortest path algorithm that finds the route with the smallest
edge costs. A variation of the Bellman-Ford algorithm, the Yen algorithm, is modified
such that battery constraints can be included. In this work a multi-objective optimization
problem with three optimization variables is solved with the help of the modified Yen
algorithm. The variables represent the energy consumption (the vehicle should reach
the destination with the highest state of charge possible), the journey time, and the
cyclic lifetime of the battery (minimizing the number of charging/discharging cycles by
minimizing the amount of energy consumed or regenerated). The optimization problem
assigns weights to each variable in order to put emphasis on one or the other. The route
planning system is tested for the Wienerwald near Vienna, Austria, and for the city of
San Francisco, California. It can be noticed that the topography has a strong influence on
the energy consumption. Depending on the start and destination, the results are different
depending on the weight of the optimization variable. Different weather conditions or
using a different electric vehicle can change the results as well.
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Kurzfassung

Im Gegensatz zu gewöhnlichen Routenplanungssystemen, die entweder die kürzeste Dis-
tanz oder die schnellste Route zum Ziel angeben, beschäftigt sich diese Diplomarbeit mit
der Erarbeitung einer Routenplanung, die speziell für Elektrofahrzeuge konzipiert wird,
um den energieeffizientesten Weg anzuzeigen. Im ersten Schritt wird ein Modell entwickelt,
dass den Energieverbrauch des Elektrofahrzeuges inklusive Heizung, Klimaanlage und
anderer zusätzlicher Verbraucher beschreibt. Das Straßennetzwerk wird als Netzwerk mit
Knoten und gewichteten Kanten modelliert, um einen Algorithmus anzuwenden, der den
Weg mit den geringsten Kosten findet. Eine Variation des Bellman-Ford Algorithmus,
der Yen Algorithmus, wird so angepasst, dass Nebenbedingungen der Batterie mitein-
bezogen werden können. In dieser Arbeit wird eine Multi-Kriterien Optimierung mit
drei Optimierungsvariablen mit Hilfe der modifizierten Version des Yen Algorithmus
gelöst. Die Optimierungsvariablen stehen für den Energieverbrauch (das Fahrzeug soll
mit dem hochstmöglichen Ladezustand am Ziel ankommen), die Reisedauer und die
zyklische Lebensdauer der Batterie (die Anzahl an Lade-/Entladezyklen wird minimiert,
indem der Betrag der verbrauchten beziehungsweise erzeugten Energie minimiert wird).
Den Variablen werden Gewichte zugeordnet, damit diesen unterschiedliche Bedeutung
im Optimierungsproblem zukommt. Die Routenplanung wird für den Wienerwald in
Österreich und für San Francisco in Kalifornien getestet. Den Ergebnissen zufolge hat
die Topographie der Streckenprofile einen starken Einfluss auf den Energieverbrauch. Je
nach Start und Endpunkt der Reise fallen die Ergebnisse abhängig vom Gewicht der Op-
timierungsvariablen unterschiedlich aus. Außerdem verändern Wetter, Außentemperatur
und Fahrzeugtyp die Ergebnisse.
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1 Introduction

1.1 Motivation

Combustion engine driven cars have been dominating our world for more than a century.
With global warming ahead and access to resources becoming more and more difficult,
vehicles with electric motors could be part of the solution. They do not emit carbon
dioxide or other emissions that could hurt humans or the environment, if the electrical
power comes from renewable sources. Also, their overall efficiency is much higher than
combustion engines. The ability to power vehicles with electrical engines is known for
quite a long time. The question is why electric vehicles are not the majority already.

A lot of new problems come up with this new way of transportation. Despite using
less energy, the task to store energy in the vehicle has been a difficult one. In the past
years, the technology to use lithium ion batteries has improved. They became safer, more
steady, and cheaper. Some producers of premium electric vehicles provide capacities of
up to 100 kWh. With some more affordable models, capacities between 20 to 30 kWh
are available. The range that comes with these capacities is not very easy to predict,
but it can be said that this is the property of the vehicle which causes the most doubt
in costumers. Starting with a fully charged battery, only a few hundred kilometers are
within reach until the next charging event has to take place.

High energy consumption of fossil fuel powered vehicles is more of an economic problem
or, for those who are concerned, an environmental problem. At gas stations the tank can
be refilled within a few minutes and the car is good to go again for hundreds of kilometers.
The owner of an electric vehicle faces other problems. Once the state of charge of the
battery reaches the bottom, re-charging takes up a lot more time than refilling a tank.

Planning a trip with your vehicle becomes more difficult when traveling distances that
could exceed the battery’s range. A good advice would be to research the location of
charging stations beforehand, and to plan the route wisely. Energy consumption can
vary a lot depending on which path has been chosen. Clearly, it increases with increasing
distance and velocity. But there are other impacts that show a different behavior than
conventional cars. One of the major distinctions is the possibility to regenerate energy
and charge the battery again while driving. This can happen while braking or driving
downhill.
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1 Introduction

This thesis has the goal to find an optimal route to a desired destination while considering
the special characteristics of electric vehicles. The main focus lies on energy consumption
and the influence of the topography, as well as other properties like journey time and
improving the battery lifetime.

1.2 Research Question and Method

The first main objective of this work is to find a route from a start to a destination
point with the least amount of energy used. This task will be expanded, such that it is
possible to get a route for the shortest journey time and one that should be the best
to increase battery lifetime. Then those route planning options will be combined to a
multi-objective optimization problem. Energy, time, and battery lifetime will be the
optimization variables. Each variable will be weighted in order to put emphasis on one or
the other.

The method is based on shortest path algorithms that use networks with nodes and
edges, which have assigned values called edge costs. With the help of those algorithms,
it is possible to find the path from one node to another node with the smallest edge
costs (sum of the costs of all the edges on the path). The edge costs can have different
meanings, for example the energy consumption on a section between two nodes. The
nodes are the decision points of the network.

The edge costs of the energy consumption have to be approximated by a model of the
electric vehicle. It includes the energy required for driving as well as additional loads for
air condition and other accessories. It will be considered if the engine acts as a motor or
as a generator in order to benefit from regenerative energy.

1.3 Structure of this Work

The following chapter, chapter 2, gives an overview on the work that has been done so
far on this topic.

Chapter 3 starts with a flow chart in order to explain the problem and the solution
that is proposed in this work. The model, which is used to calculate the vehicle’s energy
consumption, and the impact of additional loads and efficiencies on the vehicle are
described. Also, the street network model is explained, and the last part is applying
shortest path algorithms in order to see results for energy-optimal route planning, time-
optimal route planning, and battery lifetime-optimal route planning as well as solutions
for multi-criteria optimization.
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1.3 Structure of this Work

Chapter 4 shows the results of the optimization algorithms with the chosen street
networks, which are the Wienerwald area in the west of Vienna, Austria, and the city of
San Francisco, California.

Then there will be a sensitivity analysis in chapter 5 comparing two different electric
vehicles and different driving conditions. A comparison of the results of the different
networks and scenarios is following.

Chapter 6 contains a conclusion and an outlook on future tasks on this topic.
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2 State of the Art

2.1 Dynamic Optimization and Shortest Path Algorithms

Route planning is a dynamic optimization task, since every decision on where to continue
on the path influences the next decisions. There is usually no standardized solution to
those problems, but for route planning shortest path algorithms are widely used. Those
algorithms work with networks that consist of nodes and edges with so-called edge costs.
The goal is to find the path with the least amount of edge costs from one specific node
to another.

Dijkstra’s Shortest Path Algorithm

Dijkstra’s algorithm is a very efficient method in order to find the shortest path between
two nodes in a weighted graph network. Therefore it is widely used in network theory.
The algorithm in detail can be found in (Dijkstra, 1959). It only works with positive edge
costs, which is fine for shortest distance and shortest journey time optimization.

Bellman-Ford Algorithm

The Bellman-Ford algorithm (Bellman, 1958) can be used in networks with negative
edge costs, which is an advantage compared to the Dijkstra algorithm. The disadvantage
would be its higher complexity, which can be crucial in networks with a large number
of nodes. If searching for an energy-optimal path, the edge costs represent the energy
consumption of the electric vehicle. Energy can either be consumed or regenerated in
case of an electric vehicle, therefore the costs can be positive and negative.

Yen Algorithm

The Yen algorithm (Yen, 1970) is an improved version of the Bellman-Ford algorithm. It
has the same worst-case complexity, but generally finds the optimal path faster. It works

5



2 State of the Art

well with real-world street networks. In this work, the Yen algorithm was adapted and
then applied to the route planning.

2.2 Route Planning for Electric Vehicles

In this section there will be a brief overview on the work that has already been done
on optimal route planning for electric vehicles. Let’s start with (Neaimeh et al., 2013),
where it was pointed out that the a lot of people, who tested electric vehicles, experience
so-called range anxiety. It turned out that because of this, many drivers would change
their driving behavior and especially their choice, which route to take to the destination,
if they are going on longer trips. Neaimeh et al. used a multiple linear regression model to
include the topography information (the slope of the road) and predicted speed in their
calculation of the energy consumption as well as data like efficiencies that are derived
from previous journeys. In order to find an optimal route that can extend the range of
the vehicle Dijkstra’s shortest path algorithm was applied. The goal was not to simply
find the energy-minimal route, but also to help with range anxiety and making drivers
feel more comfortable with e-mobility.

Moving on to ’Energy-optimal driving range prediction for electric vehicles’ (De Nunzio
and Thibault, 2017). De Nunzio and Thibault created a range estimation for on-line use,
which works by calculating the energy optimal route. The vehicle’s energy consumption
is modeled with influences of traffic conditions included. Then, with a shortest path
algorithm, the Bellman-Ford algorithm, the range can be estimated. According to (De
Nunzio and Thibault, 2017), it is more accurate than approximations using knowing only
the distance to the destination or using the average energy consumption of the vehicle.

Martin Sachenbacher, Martin Leucker, Andreas Artmeier, and Julian Haselmayr worked
on developing an energy-optimal routing system for electric vehicles in (Sachenbacher
et al., 2011). In the paper an A* search is used and then compared to other shortest path
algorithms performance-wise.

Another interesting work has been done by Sabine Storandt and Stefan Funke (Storandt
and Funke, 2012). They include the possibility of battery switch station and use a
modification of Dijkstra’s algorithm. The modification is done by using Johnsons’ shifting
technique in order to include regenerated energy of the electric vehicle.

Battery switch stations did not establish, but charging stations for electric vehicles did
and they are becoming more and more common. So in ’Enabling E-Mobility: One Way,
Return, and with Loading Stations’ (Storandt, Eisner, and Funke, 2013), the approach
was similar to (Storandt and Funke, 2012), but including charging stations instead of
battery switch stations. It was also proposed to work on a multi-criteria optimization that

6



2.2 Route Planning for Electric Vehicles

includes the journey time and a maximum number of recharging events. For example,
the travel time of the energy optimal path should not be more than 10% longer than the
journey time of the shortest trip. Another option mentioned in (Storandt, Eisner, and
Funke, 2013) would be bounded distance or bounded travel time.

This thesis will also include a multi-objective optimization in order to find a path that
suits the driver’s requirements best. The optimization will use weighting factors in order
to put emphasis on these three optimization variables:

• Energy consumption: The user should reach the destination with the highest possible
state of charge of the battery.
• Time: The journey time should be as short as possible.
• Battery lifetime: In order to increase the battery lifetime of the electric vehicle, the

number of charging and discharging cycles should be as small as possible.

The goal here is to include the driver’s preferences in a very flexible way. For example,
the driver can choose a single-objective optimization minimizing the journey time, or
giving equal weights to all three variables. Charging stations for electric vehicles are not
included in this work.

7





3 Methodology

3.1 Flowchart

For the goal of this work - to find the optimal path to a desired destination with an
electric vehicle - it is important to have a model describing the energy consumption of the
electric vehicle, the journey time, and the street network. Then, shortest path algorithms
can be used for optimization. Figure 3.1 shows a flow chart to give an overview of the
problem.

We start by defining a start and a destination point. Then, it is necessary to have a
road network that contains all possible paths between start and end point. It should also
include topography information. Each road segment has a defined length s, a velocity
v, which will be the speed limit in this case, and the slope q in %, calculated from the
topography information.

The next step is to define the vehicle parameters. The initial state of charge of the battery
SoCinit and its maximum capacity SoCmax are important to know, as well as the mass
m, drag coefficient cw and cross sectional area A of the vehicle (see section 3.2.1). The
details considering the load of the accessories Pacc and the efficiencies η are explained in
sections 3.2.3 and section 3.2.4, respectively.

When having information on the outside temperature, all parameters are ready for the
calculation of the energy consumption of the electric vehicle and the journey times on all
the road sections of the network.

As this work formulates an optimization problem with constraints, the boundary condi-
tions have to be defined. Naturally, the state of charge of the battery SoC cannot be
negative or above the maximum capacity. In the interest of the vehicle owner, the SoC
should not fall below a certain minimum capacity, because a deep discharge can decrease
battery lifetime. A factor a, 0 ≤ a < 1, is added to the optimization problem, such that
the constraint equation becomes

aSoCmax ≤ SoC ≤ SoCmax. (3.1)

9



3 Methodology

The task will be extended to a multi-criteria optimization, with the variables energy,
time, and battery lifetime. The factors γ and δ, with γ + δ ≤ 1, are used to give weights
to the optimization variables. The last step is to apply a shortest path algorithm.

3.2 Modeling the Electric Vehicle

3.2.1 Calculation of the Energy Consumption on a Road Section

We start describing the model with the calculation of the energy consumption of an
electric vehicle on a road section. When a vehicle is moved, certain forces act on the
vehicle. Those are responsible for the amount of energy needed and they will be explained
in detail in this section. The basic principles of the calculations are the same for both
conventional as well as electric vehicles. The following parameters are necessary to use
for the calculations:

m mass of the EV kg
g gravitation constant ms−2

fR rolling resistance coefficient
A cross sectional area of EV m2

q slope %
α slope rad
cw drag coefficient
ρ air density kgm−3

v velocity ms−1

a acceleration ms−2

T temperature ◦C

Some of those parameters come from the vehicle itself, and others are road characteristics.
Velocity and acceleration can also be influenced by the driving behavior, which is generally
unknown. One way to include data on driving behavior would be using the ARTEMIS
(Assessment and Reliability of Transport Emission Models and Inventory Systems) project,
which is a large database of real world driving behavior of European drivers. For this
work it was decided to use simplifications that exclude driving behavior.

Now, a road section with constant velocity, zero acceleration and constant slope is con-
sidered. We start by finding an approximation of the driving resistance Fdrive, following
(Haken, 2013). The total driving resistance consists of the rolling resistance, air resis-
tance, and gradient resistance. Other parts, which are neglected in our calculation for
simplification, come from acceleration, wind, and curves along the road. In the following
parts, Fdrive is explained in more detail.

10



3.2 Modeling the Electric Vehicle

define start
and destination

get map of
road network

get vehicle
parameters

calculate energy
consumption and
journey time of

all road segments

define constraints
and weights for
multiobjective
optimization

find optimum
using Yen
algorithm

topography q, s, v

m, cw, A, η
SoCmax, SoCinit

Pacc

T

aSoCmax ≤
SoC ≤ SoCmax

0 ≤ a < 1
γ, δ

Figure 3.1: Flowchart of the optimization problem
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3 Methodology

Rolling Resistance

The rolling resistance of a vehicle is the primary force acting at low, constant speed. The
tiers of a car are filled with gas and the mass of the vehicle deforms the wheel. This
results in a force Froll.

Following (Haken, 2013), the sum of the normal forces acting on each wheel is∑
FN = mg cos(α). (3.2)

Because of the deformation, the rolling resistance coefficient fR is introduced, leading
to

Froll = fRmg cos(α). (3.3)

In this approximation, fR is considered a constant, although it can vary with temperature,
internal pressure, speed and structure of the road. According to (Haken, 2013), it can
go from 0.008 to 0.35 for different surfaces. A very low value of fR is typical for smooth
surfaces, a high one for driving on sand, snow, or on a field. Those extreme road conditions
rarely occur and for most common roads fR is around 0.01. Other effects that would be
part of the rolling resistance are very small compared to fR and are therefore neglected.

Air Resistance

The air resistance depends mainly on the velocity of the electric vehicle and the wind. In
this work, the effects of any kind of wind are neglected. Local magnitude and direction
of wind are hard to predict and change very quickly in time.

The following equation is widely used to calculate the air resistance without wind, see
(Haken, 2013):

Fair =
1

2
ρcwAv

2. (3.4)

In this equation there are some interesting variables. Let us consider the drag coefficient
cw, and the cross sectional area, A. Both are characteristics of the vehicle. They can
be treated as constants for the optimization task of this work, but they can change
if the same route is taken with a different vehicle. The area A is somewhere around
2 m2, depending on the size and the type of the car. The average of the drag coefficient
cw in 2003 was 0.32, but has improved since then. In modern electric vehicles cw can
have values around 0.28. The parameter ρ is the air density. It changes with altitude,
temperature, and humidity.

12



3.2 Modeling the Electric Vehicle

Gradient Resistance

Since the purpose of this work is to find an optimal route for electric vehicles while
considering the influence of topography, this part of the driving force is key. The slope q
of a road section is usually given in %. It is calculated dividing the rise by the run and
multiply it by 100.

In order to get to the slope in radian, the conversion

α = atan(q/100) (3.5)

has to be done. Knowing α and the mass of the vehicle m, the gradient resistance is
calculated as

Fgrad = mg sin(α), (3.6)

according to (Haken, 2013). When there is zero slope, then Fgrad = 0. When α is positive,
energy is consumed by the vehicle. If Fgrad is negative and can compensate the other
parts of the driving force, then energy is generated.

Energy Consumption for Driving

The calculation of the total energy consumption for driving takes advantage of a few
simplifications, such as constant velocity and slope, zero acceleration, no wind, and no
curves on the path. The total driving force with our simplifications is

Fdrive = Froll + Fair + Fgrad (3.7)

= mgfR cos(α) +
1

2
ρcwAv

2 +mg sin(α). (3.8)

In order to calculate the energy consumption, it is either possible to compute the integral
of the driving force over the distance or the integral of the power over time. In general, it
is practical to calculate the power resulting from the driving force from

Pdrive(t) = Fdrive(t) · v(t). (3.9)

Now we have the driving power Pdrive, which we can add to other loads coming from
accessories, such as heating, cooling and light (see section 3.2.3). The energy over a
certain period t1 ≤ t ≤ t2 would be

Edrive =

∫ t2

t1

Pdrive(t) dt. (3.10)

13



3 Methodology

With the simplification of having constant velocity and constant Fdrive over the time
t ∈ [t1, t2], we have

Pdrive = Fdrive · v, (3.11)

and then finally

Edrive = Pdrive ∆t, (3.12)

with ∆t = t2 − t1. If the total energy consumption from start to destination is needed,
the values of all the sections just have to be added up.

3.2.2 Including Acceleration and Regenerative Braking

The previous section has shown how the model is approximating the energy consumption
on a road section using the simplification of driving with constant velocity. The exact
course of the acceleration is not known and depends a lot on the driver and road conditions.
Therefore it was assumed that we have constant speed and zero acceleration on the road
sections, but the change of the speed between two sections should be included as well.
This is done by calculating the increase of kinetic energy between two sections.

The same goes for decreasing velocity between two sections. It is possible to receive the
energy regenerated from braking, which only works in vehicles with electric motors. The
energy that is necessary to accelerate or decelerate the vehicle to another speed level
would be

Ekin =
1

2
m(v2next − v2prev), (3.13)

with m being the total mass of the vehicle including the passengers and baggage, vprev
the velocity of the current section of the road, and vnext the velocity of the following one.
If vnext is higher than vprev, it means that the battery must provide power for accelerating
the vehicle. On the other hand, if vnext is lower than vprev, the vehicle is braking and
energy is fed back into the battery. The effects that efficiencies is explained in section
3.2.4.

It is important to note that this approach is a very basic one. The infinitely fast change
in speed, which is assumed here, is physically not possible. Another option would be
having a constant acceleration in order to have linear increasing (or decreasing) velocity
until the next speed level is reached. When v in (3.8) is not a constant, but a linear
function v(t) = a · t, with a as the constant acceleration, (3.9) would contain v3(t), which
makes the integral in (3.10) much more complex. It would also be quite vague to assume
a certain acceleration, since this is very dependent on the driving behavior. For said
reasons, the simplified approach is used in the calculations, but the effects of acceleration
and braking are not neglected.
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3.2 Modeling the Electric Vehicle

3.2.3 Including Accessory Loads

The energy that is used for moving the vehicle is not the only load decreasing the state
of charge of the battery. Depending on the outside temperature, the passengers of the
vehicle want heating or cooling. In case of conventional cars with internal combustion
engines the waste heat is able to provide most of the energy the heating needs. Turning
on air condition increases fuel consumption, but this is more of an economic problem
rather than a question of decreasing range, since refueling is fast and easy.

For electric vehicles, where the battery is the only source of energy (apart from regenerative
energy from braking or driving downhill), heating and cooling can influence the possible
range tremendously - in a negative way. Other loads can be, for example headlights, fan,
windshield wipers, rear window heating, and radio. The loads apart from driving are
called ’accessories’ in this work.

Actual measurements of the energy consumption of accessories can be found in (Geringer
and Tober, 2012), where a lot of tests have been done on a few electric vehicles, including
Nissan Leaf and Mitsubishi i-MiEV. Those two will serve as references in this work. It
can be noticed that the power depends a lot on the type of electric vehicle. Independently
of the model or brand, some generalizations can be made anyway.

For example, the radio and windshield wipers are not among the major loads. The wipers
only need around 20 to 80 W and are turned on only when necessary. The radio consumes
even less, only a few Watts. For the main task of this work, those two loads will be
neglected in the calculations.

The dimmed headlights need between 50 W and 150 W. Depending on the country and
road type, lights can be compulsory during daytime. Therefore they will be considered a
steady load. High beam headlights on the other hand have a much higher consumption
of a few hundred Watts. Since they are switched on only occasionally, there is no need to
add them to the energy consumption of the accessories.

The consumption of the fans is included, because they are working constantly. Settings on
’medium’ are assumed, because they are the most likely to be used. The power is usually
between 40 and 100 W. Settings on ’very high’ have a much higher demand (200 W or
more).

The highest accessory loads would be heating and cooling, if they are needed. The
reference values for the power vary a lot from model to model. They usually lie between
0.8 kW and 1.5 kW per 10 ◦C deviation, according to the measurements in (Geringer and
Tober, 2012). Low temperatures, which need the heating to operate, are very common
in many parts of the world. It can be a crucial factor on the range of the vehicle and
influence the state of charge of the battery.
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Table 3.1: Low voltage loads (Jeschke, 2016)

12 V load typical values

Radio 20 W
Parking lights 8 W
Dimmed headlights 110 W
Windshield wipers 50 W
Instrument panel lights 22 W
License plate lights 30 W
Rear window heating 200 W
Braking lights 42 W
Fog lights 110 W
Rear fog lights 21 W
Turning signal 42 W

There is one essential difference between heating/cooling and the other loads. The battery
of the electric vehicle is high voltage, while some loads need low voltage and therefore
a DC-DC converter. Inside the vehicle there is a high and a low voltage network. The
high voltage drives the engine as well as heating and cooling. The low voltage (12 V)
typically provides the accessory loads in table 3.1, as in (Jeschke, 2016), and a 12 V
battery, which is important for safety reasons. If the main battery fails, the 12 V network
supplies braking and steering.

The overall power for the accessories that are considered in this work is

Pacc = Phc + Plight + Pair, (3.14)

with Phc being the power needed for either heating or cooling, Plight the power for the
dimmed headlights and Pair the power for the fan on medium setting. To calculate the
energy demand over a certain period t1 ≤ t ≤ t2, the integral of the power Pacc over the
time is used:

Eacc =

∫ t2

t1

Pacc(t) dt. (3.15)

3.2.4 Including Efficiencies

The overall tank-to-wheel efficiency of an electric vehicle is a lot better than the efficiency
of a car with a combustion engine. This is one of the main advantages of electric vehicles,
since less energy is necessary to move the car. On the other hand, the storage capacity
is a lot smaller which can lead to problems with the range. The energy is stored in a
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battery that has a charging efficiency ηcha and a discharging efficiency ηdis. Then there is
a DC-AC inverter with an efficiency ηinv. The engine itself has the efficiency ηm when
acting as a motor, or ηg as a generator. Other losses can occur at the final drive (ηd), the
interface between vehicle and road. Since electric vehicles do not have a gear box, no
gear box efficiencies are considered.

The accessories light, fan, radio, rear window heating, windshield wipers, and heating for
the seats are low voltage loads. They need a DC-DC converter with an efficiency of ηacc
because the battery is high voltage. Heating and cooling on the other hand operate on
high voltage, without inverter, but with efficiency ηhc.

The next section 3.2.5 explains in more detail how those efficiencies influence the model
of the electric vehicle. A summary of all the efficiencies that are considered in this work
can be found in table 3.2.

Table 3.2: All efficiencies that are part of the calculation

Final drive ηd
Motor ηm
Generator ηg
DC-AC inverter ηinv
Accessories ηacc
Heating and cooling ηhc
Charging ηcha
Discharging ηdis

3.2.5 Energy Flow as a Motor or Generator

In the previous sections of this chapter it was explained how the energy consumption for
driving and for the accessories is calculated. Now they need to be combined considering
the efficiencies and the energy flow, which is described in this section.

Engine Operates as a Motor

When no energy is regenerated, the engine acts solely as a motor, which means that the
battery is discharging. Figure 3.2 shows the corresponding energy flow from the battery
to the accessories as well as the wheels. The graph shows which are the corresponding
efficiencies η of the components battery, accessories, motor, and final drive. Eout is the
energy taken from the battery, while Eacc and Ehc represent the energies which the
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12 V-accessories and the heating and cooling units would need, respectively. Edrive is used
for driving (see (3.9)).

The energy Eout that comes out of the battery has to supply the accessories, heating and
cooling, and the final drive. It is calculated as

Eout =
1

ηdηmηinv
Edrive +

1

ηacc
Eacc +

1

ηhc
Ehc. (3.16)

The actual energy that the battery is losing, considering the discharge efficiency, is

E =
1

ηdis

(
1

ηdηmηinv
Edrive +

1

ηacc
Eacc +

1

ηhc
Ehc

)
(3.17)

=
1

ηdis
Eout. (3.18)

The difference between Eout and E needs a brief explanation. Eout would be the energy
that comes out of the battery and could be measured with a watt-meter. E on the
other hand is only measurable indirectly by observing the state of charge of the battery.
It is the total amount of energy the battery is giving away (motor-case) or receiving
(generator-case).

BATTERY
ηdis

INVERTER
DC-AC
ηinv

MOTOR
ηm

FINAL DRIVE
ηd

ACCESSORIES
DC-DC
ηacc

HEATING/
COOLING

ηhc

Eout Edrive

Eacc

Ehc

Figure 3.2: Energy flow-chart (motor)
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Engine Operates as a Generator

When the engine acts as a generator, there is more variation. While energy is regenerated
due to regenerative braking or driving downhill, the engine can provide energy for
the battery and the accessories (see figure 3.3). There are two cases to distinguish.
Depending on how much energy is gained by driving compared to what is consumed by
the accessories:

1. Discharging of the battery: The energy that comes in (Eregen) feeds the acces-
sories, but is not enough to cover the whole load Eacc. Therefore the battery needs
to provide for the remaining energy and is discharging.

2. Charging of the battery: The regenerative energy is enough to cover all accessory
loads Eacc and Ehc, and the rest can be used to charge the battery.

The energy Eout = −Ein can be calculated as

Eout = −ηdηgηinvEregen +
1

ηacc
Eacc +

1

ηhc
Ehc, (3.19)

and the total energy that effects the state of charge of the battery is

E =


1
ηdis

Eout, if Eout > 0

ηchargeEout, if Eout < 0

0, if Eout = 0.

(3.20)

This means that if Eout in (3.19) is positive, the state of charge (SoC) of the battery
decreases, while when it is negative, the SoC is increasing.

If certain simplifications are possible, the motor- and the generator-case can be combined.
If the efficiency of the engine working as a motor is the same as for a generator (ηm = ηg),
equation (3.16) and (3.19) become

Eout =

(
1

ηdηmηinv

)sgn(Edrive)

Edrive +
1

ηacc
Eacc +

1

ηhc
Ehc. (3.21)

If charging and discharging efficiency of the battery are equal (ηcha = ηdis), equation
(3.18) and (3.20) merge to one new equation

E =

(
1

ηdis

)sgn(Eout)

Eout. (3.22)
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BATTERY
ηcharge
ηdis

INVERTER
DC-AC
ηinv

GENERATOR
ηg

FINAL DRIVE
ηd

ACCESSORIES
DC-DC
ηacc

HEATING/
COOLING

ηhc

Ein/out Eregen

Eacc

Ehc

Figure 3.3: Energy flow-chart (generator)

3.2.6 Calculation of the Total Energy between Two Points

The preceding sections explain how the energy of a road section is calculated according
to the proposed model. It includes the consumption for the purpose of driving, the loads
of the accessories and the efficiencies.

Usually, the road connecting two points has varying properties along the way. In this
model, the slope and the maximum speed can change, while the road conditions, outside
temperature, mass of the vehicle, and other properties are constant.

Let’s say over a distance of si, there is a slope of αi and a velocity of vi, both being
constants. The following section has a length si+1, a slope of αi+1 and a velocity of vi+1.
The road that connects two points can be split up in N segments, such that the energy
consumption of segment i ∈ I = (1, . . . , N) would be

Eout,i =

(
1

ηdηmηinv

)sgn(F (αi,vi))

F (αi, vi)si +
1

ηacc
Paccti +

1

ηhc
Phcti, (3.23)

with F according to (3.8) and ti = si/vi. The change of kinetic energy between the
sections i and i+ 1 would be

Ekin,i =
1

2
m(v2i+1 − v2i ), (3.24)
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according to (3.13). On the road made of N segments, the electric vehicle would have a
total energy consumption of

E =
N∑
i=1

(
1

ηdis

)sgn(Eout,i)(( 1

ηdηmηinv

)sgn(F (αi,vi))

F (αi, vi)si +
1

ηacc
Paccti +

1

ηhc
Phcti

)
(3.25)

+
N∑
i=0

(
1

ηdηmηinvηdis

)sgn(Ekin,i) 1

2
m(v2i+1 − v2i ). (3.26)

3.3 Modeling the Street Network

The next task of the route planning is to model the real-life street network with all its
properties such as slope, distances, speed limits, and road type. The route planning will
require a shortest path problem to be solved. The existing shortest path algorithms need
a specific structure of the network.

3.3.1 Networks

Different kinds of networks are usually made of nodes and edges. The nodes are connected
with each other by edges, which can have assigned values. They are referred to as ’edge
weights’ or ’edge costs’. A network consisting of nodes and edges is also called ’graph’. A
graph can be undirected, unidirectional, or bidirectional. In the following paragraphs it
is explained what nodes, edges, and edge costs mean in this context.

Nodes

Nodes are the decision points of the network. Each node is connected to different nodes
via edges. Some nodes are directly connected, others are only reachable by passing other
nodes on the way. In the real-world street network, nodes would be intersections of
roads.

Edges

Edges are the roads connecting the nodes. Each edge starts with a node and ends with
another node. In this network model, the edges are split into sections. Those sections are
all straight, have constant slope, and a constant speed limit.
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Edge costs

Networks have the purpose to express relations between the nodes. There are different
ways to characterize those relations. The most simple one would be binary relations,
which means that the only information is if there is a connection (an edge) or not. Edges
can also have assigned values, the so-called edge weights or edge costs. They can have
physical meanings like distances, or something more abstract like a value to express the
strength of a relation between people in social networks.

It was briefly mentioned in the beginning of this section that a graph can have different
forms of directiveness.

• Undirected graph: The edge cost is the same for going from node A to node B as it
is for the other way.
• Unidirectional graph: There is only one way possible, from node A to B, but not

from B to A.
• Bidirectional graph: The edge costs can be different going one way or the other.

An algorithm to find the shortest path would find the path that cumulates the least
amount of edge costs on its way. When the edge costs have the physical meaning of energy
consumption of an electric vehicle, we have a bidirectional graph. The main reason for
this is the topography, because two nodes can be on a different height level and therefore
the required energy is different for both directions.

3.3.2 Topography Data

For the information on topography, data was obtained from the ’USGS Earth Explorer’
website, where a lot of geographical data is available for download. A digital elevation
map coming from the NASA Shuttle Radar Topography Mission (SRTM) was taken
from this website. It has a pretty high spatial resolution of one arc-second for longitude
(east-west) as well as for latitude (north-south). The height resolution is one meter. The
file obtained from USGS was a TIFF-file with 3601× 3601 pixel.

Since two adjacent pixels are one arc-second apart, the TIFF-file covers an area of one
degree in longitude and one degree in latitude. The testing of this method will be done
for the area around Vienna, Austria. Therefore, the file provides topography information
from 16◦E to 17◦E and from 48◦N to 49◦N.

For the calculations of the energy consumption of the electric vehicle, it is necessary to
convert the distances in degrees into distances in meters. The conversion was done by an
approximation of the earth as a perfect sphere with the radius of Rearth = 6371 km =
6371000 m. φ1 and ψ1 are the coordinates of a point in degree longitude and degree
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latitude, respectively. φ2 and ψ2 are the coordinates of another point, and ∆φ = φ1 − φ2
and ∆ψ = ψ1 − ψ2 are the distances between point 1 and point 2 (in degree). For the
distances ∆x for longitude and ∆y for latitude in meters, we convert using

∆y =
2πRearth

360
∆ψ, (3.27)

and

∆x =
2πRearth

360
cos(ψ1π/180) ∆φ. (3.28)

It can be noticed that (3.28) does depend on the coordinates of the latitude. At the
equator, both equations would be the same. The coordinate lines of the longitude come
closer together when moving further away from the equator. Two places with a ∆φ of 1◦

at the equatorial line have a much larger ∆x than two places with the same ∆φ at another
degree of latitude. Considering Vienna again, the factor resulting from the cosine in (3.28)
would be around 0.67. The resolution of one arc-second of the map obtained from NASA
means having a resolution of about 31 m north-south, and a resolution of 22 m east-west
in Austria. It has to be noticed that (3.27) and (3.28) are only approximations of the
true distances.

The next task is to calculate the slope of a road section. A section, or road segment,
is part of an edge as mentioned above. It is straight and has a constant gradient. The
height difference ∆z between the start and the end point of the segment is divided by
the euclidean distance between those points and multiplied by 100 in order to get the
slope q in %:

q = 100
∆z√

(∆x)2 + (∆y)2
. (3.29)

The height data is derived from the TIFF-file mentioned in the beginning of this section.

3.3.3 Streets and Roads

In section 3.3.2 it was explained how topography data can be obtained. The next step
is to get an adequate network of roads that contains the region of interest. For this
task there are multiple options. One of them is using ’OpenStreetMaps’, which is a big
database for streets, roads, and paths. It also includes foot ways, water ways, and other
paths cars cannot use. This turned out to be a problem for the area chosen for testing.
Even though paths have labels, a major part of them is labeled ’unclassified’ or has an
empty label. This was true even for main streets. It was nearly impossible to distinguish
road types and filter out those which are useful in this work. The same goes for a lot of
data derived from official governmental websites.
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For those reasons, a more simple approach was chosen. First, it was decided which roads
(edges) should be part of the network. Only the main roads of the ’Wienerwald’ area in
the west of Vienna were included. The nodes of the network are the intersections of these
roads.

Some of the roads (edges) are a few kilometers long. They are split up in consecutive
sections, which are straight and a few hundred meter long, making the roads polygonal
chains. It should be discussed if it is more practical to use shorter sections because they
have a higher resolution. Undoubtedly, the results would be more precise, but for the
purpose of testing the proposed method and algorithm, this kind of precision is not
necessary. On the other hand, if this method were to be used in an advanced route
planning system, the network would have to be more precise.

The coordinates of the start and end points of the road segments and the matching
topography information were obtained, and the distances and height differences were
calculated as explained in section 3.3.2. This ensure each segment is straight and has a
constant slope. The last missing piece of road information is the velocity. As explained in
section 3.2.2, the velocity of each segment considered to be constant, it can only change
between sections. To keep it simple, the legal maximum speed of each road segment was
set to be the velocity of the vehicle.

3.4 Optimization

In this section it will be explained how the optimization algorithms are implemented in
order to find the optimal path for an electric vehicle. The Bellman-Ford algorithm as well
as its improved version, the Yen algorithm, are introduced. Then, the methods of path
optimization for three different scenarios are described: finding the optimum in terms of
energy consumption and time, as well as for battery lifetime. Those three variables are
combined later on for multi-objective optimization.

3.4.1 Shortest Path Algorithms

Bellman-Ford Algorithm

Let’s imagine a road network with N nodes that are connected with each other by edges
with edge costs. The numbers assigned to the nodes are random, so we decide that the
start point is node 1 and the destination is node N . Now fi is the total costs required
to travel from node i to node N , with i = 1, 2, . . . , N − 1 and fN = 0. The algorithm in
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detail can be found in (Bellman, 1958). It starts with the initial values f
(0)
i , and then

continues iteratively with the index k:

f
(k+1)
i = min

j 6=i
(dij + f

(k)
j ), (3.30)

f
(k+1)
N = 0, (3.31)

with dij being the costs of the edge connecting node i and j. Bellman chooses f
(0)
i to be

the costs from node i directly to N without passing any other node, such that

f
(0)
i = diN . (3.32)

Now it becomes clear why the algorithm uses this kind of iterations. Iteration k = 0
gives the costs from each node to N with zero stops in between. The next step takes all
combinations that go from i to N with a maximum of one stop between and compares
them in order to find the path with minimum costs. The optimization for this iteration
is

f
(1)
i = min

j 6=i
(dij + f

(0)
j ), (3.33)

f
(1)
N = 0, (3.34)

which satisfy the inequality

f
(1)
i ≤ f (0)i . (3.35)

Then the iterative process goes on with k being the maximum number of stops between
the nodes i and N . The optimal solution of each iteration converges to the absolute
minimum fi,

lim
k→∞

f
(k)
i = fi. (3.36)

After at most N iterations, the minimum to be found. Else, a negative loop exists in the
network, not leading to any solution of the Bellman-Ford algorithm. The search for a
minimum would continue forever.

In this work, the edge costs represent either time or energy consumption. Since any
journey time between two nodes can only have a positive value, no negative loop is
possible when travel time is optimized. For energy consumption, edge costs can have
negative values because we are considering electric vehicles, which have the ability to act
as a generators and charge their batteries under certain conditions. Yet negative loops do
not occur in real-world street networks. It is physically impossible to gain energy when
start and end point are the same. The only case where this could happen is when the
electric vehicle is charged on its way, meaning some sort of energy source has been added
to the problem.
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Yen Algorithm

The Bellman-Ford algorithm has a relatively high order of complexity O(NM), with the
number of nodes, N , and M , the number of edges of the graph. The Dijkstra algorithm
would have a lower complexity, but cannot deal with negative edge costs. Therefore, it
was searched for a solution to speed up the process.

The Yen algorithm, see (Yen, 1970), is an improved version of the Bellman-Ford algorithm.
It usually finds the minimum faster than Bellman-Ford, and yet, in the worst-case scenario,
it could take just as much time to compute. In this work, the optimization algorithms
are based on Yen.

The algorithm uses the same principles as Bellman-Ford, searching the minimum costs
from node i = 1, 2, . . . , N − 1 to node N for each iteration k. We set

f
(0)
i = diN (3.37)

and proceed as follows. For odd values of k, the minimum has to be found using

f
(2k−1)
i = min

N≥j>i
(dij + f

(2k−1)
j , f

(2k−2)
i ), (3.38)

f
(2k−1)
N = f

(2k−2)
N , (3.39)

with i = N − 1, N − 2, . . . , 1. For even values of k the minimizations is

f
(2k)
i = min

1≤j<i
(dij + f

(2k)
j , f

(2k−1)
i ), (3.40)

f
(2k)
1 = f

(2k−1)
1 , (3.41)

with i = 2, 3, . . . , N. The advantage of the Yen algorithm is clear now. For each iteration
k not only the results from the previous iterations k − 1, k − 2, . . . , 0 are used, but also
those already computed in the kth-iteration. Yen’s version of the algorithm calculates
more combinations during one iteration than Bellman-Ford, because it does not restrict
to a maximum number of nodes (stops) on the path. This helps getting the optimized
path sequences faster. If iteration k fulfills the condition

f (k) =


f
(k)
1

f
(k)
2
...

f
(k)
N

 ≡

f
(k−1)
1

f
(k−1)
2

...

f
(k−1)
N

 = f (k−1), (3.42)

the algorithm has found the optimum.
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3.4.2 Energy-optimal Route Planning

The search for an energy-optimal path in a network can be viewed as a shortest path
problem. Using the Yen algorithm seems like an adequate approach. How it is applied in
order to find the energy-optimal path is explained in this part.

In section 3.3 the structure of the network was described and in section 3.2 the calculation
of the energy consumption was explained. If the optimization problem were without
constraints, the Yen algorithm could be applied straightforward. Naturally, there are
some boundaries to the problem coming from the battery. The state of charge (SoC) of
the battery cannot exceed the following limits:

I. SoC ≤ SoCmax

The state of charge cannot be higher than the maximum capacity of the battery
SoCmax. This is only relevant during driving in the case of regenerating energy by
braking or going down-hill with the vehicle.

II. SoC ≥ aSoCmax, 0 ≤ a < 1
The state of charge cannot be negative, once it is zero there is no more energy
to obtain. Deep cycles are not beneficial to the battery, therefore the factor a is
introduced. It limits the possible depth of discharge (DoD). Its value will be set
reasonably, for example a = 0.2. This means that the DoD can be as low as 20% of
the battery’s full capacity. Including this kind of protection factor in the algorithm
extends the battery’s lifespan.

The Yen algorithm, as proposed by Jin Y. Yen in (Yen, 1970), as well as the Bellman-Ford
algorithm, find the shortest paths from each node of the network to one specific node
(compare section 3.4.1). The search goes backwards, always starting from the destination

node, see (3.37). Let’s go into detail what happens during a iteration. First, f
(k)
i is

decided according to the least costs from node i to the destination, node N . If this result
is used to find the path from j to N , then dji, the costs from j to i, are added to the
path. Since this path starts with dji, the state of charge at node i is a different one than

it was assumed when deciding f
(k)
i , where the journey starts at i. It can happen that f

(k)
i

is not an optimal solution for the path from j to N . The whole algorithm is based on the
assumption that the solutions found in the previous steps are indeed optimal. The state of
charge (SoC) is always calculated forward, while the algorithm works backwards. This is
not only a problem with finding the optimal path, but also with violating constraints.

The backwards iterations of the Yen algorithm are therefore not suitable for the optimiza-
tion problem with the SoC-constraints. Therefore, the following solution was introduced.
Instead of computing all minimum paths to the destination, all minimum paths from
the start are calculated. Both ways the path of interest - from the start node to the
destination node - is evaluated. The principles of the Yen algorithm remain the same,
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there are a few modifications. fi are now the costs from node 1, the start node, to node
i.

We start with iteration 0
f
(0)
i = d1i, (3.43)

where d1i are the edges from node 1 to node i = 2, . . . , N . For odd iterations, the minimum
is found using

f
(2k−1)
i = min

1≤j<i
(f

(2k−1)
j + dji, f

(2k−2)
i ), (3.44)

f
(2k−1)
1 = f

(2k−2)
1 , (3.45)

with i = 2, 3, . . . , N . For even iterations, the minimization is

f
(2k)
i = min

N≥j>i
(f

(2k)
j + dji, f

(2k−1)
i ), (3.46)

f
(2k)
N = f

(2k−1)
N , (3.47)

with i = N − 1, N − 1, . . . , 2. For all iterations and steps, the constraints are checked. For
the first constraint (SoC ≤ SoCmax), the path is still feasible if the constraint is violated,
but the state of charge is set to the maximum capacity of the battery (SoC = SoCmax),

because no further charging is possible. The energy consumption f
(k)
j + dji is adapted

accordingly.

If the second constraint is violated (SoC ≥ aSoCmax), the specific path is considered

unfeasible. If even the resulting minimum of (3.44) or (3.46) is unfeasible, f
(k)
i is set

to infinity. This path will be neglected by all further calculations. The constraints are
checked for all road segments which are part of the edges. If the state of charge exceeds
the lower limit in the middle of an edge, the whole edge is unfeasible.

Again, if all minimum paths remain the same compared to the previous iteration, the
optimum is found:

f (k) =


f
(k)
1

f
(k)
2
...

f
(k)
N

 ≡

f
(k−1)
1

f
(k−1)
2

...

f
(k−1)
N

 = f (k−1). (3.48)

3.4.3 Time-optimal Route Planning

Compared to the search for an energy-optimal path, finding a time-optimal one is a
lot less complicated. On one hand, there are no constraints assumed concerning the
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journey time. It is just about finding the fastest itinerary. On the other hand, there are
no negative edge costs. In fact, the graph is undirected if it is assumed that the same
road with the same speed limit is available for the way back.

This optimization problem could be solved with a less complex and faster algorithm than
Bellman-Ford or Yen, because there are no negative edge costs. Although, when energy
and time are combined to multi-objective optimization, it is easier to just use the same
algorithm, because the computation time is not crucial in this work. The procedure is the
same as for finding an energy-optimal path. The edge costs are representing the journey
time in this case. For any road segment they are calculated as

t = v/s, (3.49)

with the assigned speed level v and the length s of the section. The journey time of a
whole edge connecting the nodes i and j is the sum of all M road segments:

tij =
M∑
l=1

tl. (3.50)

We start with iteration 0

g
(0)
i = t1i, (3.51)

where t1i are the edges costs from node 1 to node i = 2, . . . , N . For odd iterations, the
minimum is found using

g
(2k−1)
i = min

1≤j<i
(g

(2k−1)
j + tji, g

(2k−2)
i ), (3.52)

g
(2k−1)
1 = g

(2k−2)
1 , (3.53)

with i = 2, 3, . . . , N . For even iterations, the minimization is

g
(2k)
i = min

N≥j>i
(g

(2k)
j + tji, g

(2k−1)
i ), (3.54)

g
(2k)
N = g

(2k−1)
N , (3.55)

with i = N − 1, N − 1, . . . , 2.

3.4.4 Energy-optimal Route Planning in Order to Increase Battery Lifetime

There is also a third criterion that can be used for the route planning, which is the
increasing of battery lifetime. Battery wear-off is something that should be avoided as
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long as possible. It can decrease the capacity and limit the range of the vehicle. The
battery is also a very expensive part of the electric vehicle to replace.

There are some actions the user of the vehicle could take in order to increase the battery’s
lifetime. First, avoiding deep discharge is helpful. This can be included in the factor
a, which has been introduced in section 3.4.2. Tuning a to a value that is safe for the
battery can do the job.

A lithium-ion battery, which is the power source for most electric vehicles, usually has a
specific cyclic lifetime. Decreasing the number of cycles the battery has to go through
helps it to stay alive longer. This is the third criterion of the multi-objective optimization.
It works similar to the energy-optimal planning, but takes the absolute value of the energy
as the edge costs. The power provided by the battery for driving or for the accessories is
treated the same as regenerated energy from braking and driving downhill, which is now
increasing the costs instead of decreasing them. The edge costs from node i to j is aij ,
and is the sum of the absolute energy values of all road sections belonging to this edge.
hi are the costs from node 1 to node i.

We start with iteration 0

h
(0)
i = a1i, (3.56)

where a1i are the edges costs from node 1 to node i = 2, . . . , N . For odd iterations, the
minimum is found using

h
(2k−1)
i = min

1≤j<i
(h

(2k−1)
j + aji, h

(2k−2)
i ), (3.57)

h
(2k−1)
1 = h

(2k−2)
1 , (3.58)

with i = 2, 3, . . . , N . For even iterations, the minimization is

h
(2k)
i = min

N≥j>i
(h

(2k)
j + aji, h

(2k−1)
i ), (3.59)

h
(2k)
N = h

(2k−1)
N , (3.60)

with i = N − 1, N − 1, . . . , 2.

3.4.5 Multi-objective Route Planning

The multi-objective optimization has three optimization variables: energy consumption
of the vehicle, journey time, and cyclic lifetime of the battery. The algorithm applied
for this task is still based on the modified version of the Yen algorithm from section
3.4.2. The shortest path from the start node number 1 to all nodes i is calculated in each
iteration, taking into account the three variables and their weights.

30



3.4 Optimization

We start with iteration 0 as usual, for all three variables in the same manner:

f
(0)
i = d1i, (3.61)

g
(0)
i = t1i, (3.62)

h
(0)
i = a1i. (3.63)

The next step is to go into the details of the odd iterations. At first,

f
(2k−1)
1 = f

(2k−2)
1 , (3.64)

g
(2k−1)
1 = g

(2k−2)
1 , (3.65)

h
(2k−1)
1 = h

(2k−2)
1 (3.66)

are set. Then, for the other nodes i, the energy optimal path is calculated following (3.44)

and Emin = |f (2k−1)i | is set. The SoC-constraints are checked as explained in section
3.4.2. If at least one path is feasible, then Tmin and Amin are calculated according to
(3.52) and (3.57), respectively.

Now all three results are combined to multi-objective optimization with the weights γ
for energy, δ for time, and 1 − (γ + δ) for battery lifetime. The optimization problem
solved for node i = 2, 3, . . . , N in iteration 2k − 1 would be:

x
(2k−1)
i = min

1≤j<i

(
γ
f
(2k−1)
j + dji

Emin
+ δ

g
(2k−1)
j + tji

Tmin
+ (1− (γ + δ))

h
(2k−1)
j + aji

Amin
, (3.67)

γ
f
(2k−2)
j

Emin
+ δ

g
(2k−2)
j

Tmin
+ (1− (γ + δ))

h
(2k−2)
j

Amin

)
. (3.68)

All energy costs are normalized by the factor Emin, the journey time by Tmin, and the
absolute energy by Amin. The normalized values are one for the optimum and greater
one for all the other paths. The deviation from the optimum is then weighed by γ, δ and

1− (γ + δ). After the minimum is found, the costs f
(2k−1)
i , g

(2k−1)
i , and h

(2k−1)
i are set

according to the resulting optimal path.

For even iterations the situation is very similar. We start with

f
(2k)
N = f

(2k−1)
N , (3.69)

g
(2k)
N = g

(2k−1)
N , (3.70)

h
(2k)
N = h

(2k−1)
N . (3.71)

31



3 Methodology

Then, for node i the optimal values Emin, Tmin, and Amin are computed and multi-
objective optimization is done:

x
(2k)
i = min

N≥j>i

(
γ
f
(2k)
j + dji

Emin
+ δ

g
(2k)
j + tji

Tmin
+ (1− (γ + δ))

h
(2k)
j + aji

Amin
, (3.72)

γ
f
(2k−1)
j

Emin
+ δ

g
(2k−1)
j

Tmin
+ (1− (γ + δ))

h
(2k−1)
j

Amin

)
. (3.73)

It has to be noted that those steps start with i = N − 1 and end with i = 2.

3.5 Reference Values and Assumptions

The calculations of the previous sections need actual values for the parameters and
variables. We start with those which are independent of the vehicle (see table 3.3). The

Table 3.3: Values of the parameters independent of the vehicle

Constants

Gravitational constant g 9.81 ms−2

Rolling resistance coefficient fR 0.01 -
Air density ρ 1.2 kgm−3

gravitational constant g is treated as a constant in this work, because the variations with
altitude are very little on earth. The rolling resistance is fR = 0.01, according to (Haken,
2013). It means that the conditions on all roads are assumed to be the same. The air
density changes with altitude and weather conditions, but is considered to be a constant
for simplicity as well.

The two vehicles picked out for the testing are the Nissan Leaf, see data sheet (Nissan,
2018), and the Mitsubishi i-MiEV, see data sheet (Mitsubishi, 2018). All parameters that
are necessary in the calculations are summarized in table 3.5. For the mass m, the curb
weight of the vehicle and the weight of one person, the driver, are combined. The driver’s
mass is assumed to be 75 kg, a pretty average value.

For the air resistance, the cross sectional area A, and the drag coefficient cw are necessary
according to (3.4). If A is not specified in the official data sheet, it is possible to estimate
according to (Haken, 2013), knowing the width w and height h of the vehicle:

A = 0.81 · w · h. (3.74)
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In (Geringer and Tober, 2012) there is a lot of data available from the measurements on
these vehicles. The measurements include the total energy consumption for various driving
scenarios, power consumption of the accessories as well as heating and air condition, and
measurements of the efficiencies of converters, battery, et cetera.

The power consumption of the accessories is also obtained from (Geringer and Tober,
2012). The power of the dimmed headlights of the Nissan Leaf is Plight = 48 W. The
Mitsubishi i-MiEV has a Plight = 127 W, but it has the option of a daytime light with only
38 W. For the fans there are a few options. The power Pair of the Nissan Leaf is set to
62 W, which corresponds to setting 2, in the middle of the available range. The Mitsubishi
has a total of eight settings. Setting number 2 with 48 W seemed like a reasonable choice,
because high settings are turned on only occasionally.

The power needed for heating and cooling is a lot higher (see table 3.4). In order to make
calculations easier, the power consumption was linearized. At 20 ◦C there is no need for
either heating or cooling. Therefore, the power Phc depends on the deviation of T from
T0 = 20◦C:

Phc =


Pcool(T − T0), if T > T0

Pheat(T0 − T ), if T < T0

0, if T = T0.

(3.75)

Table 3.4: Power consumption of the heating and cooling systems of Nissan Leaf and Mitsubishi i-MiEV
from (Geringer and Tober, 2012)

Outside temperature Nissan Mitsubishi

30 ◦C 0.4 kW 0.3 kW
20 ◦C 0.0 kW 0.0 kW
10 ◦C 0.9 kW 1.0 kW
0 ◦C 1.9 kW 2.5 kW
−10 ◦C 2.8 kW 3.1 kW
−20 ◦C 2.7 kW 3.8 kW

Moving on to the efficiencies, there are no measurements of the final drive ηd and the
motor ηm, which means they have to be assumed. For both vehicles, ηd = 1 and ηm = 0.96
are set. The efficiencies of the DC-AC inverter were measured in (Geringer and Tober,
2012), resulting in ηinv = 0.96 (Nissan), and ηinv = 0.91 (Mitsubishi).

The efficiency of the high voltage battery is dependent on the outside temperature. The
graphs in figure 3.4 show the actual values of the measurements. For the Nissan Leaf,
ηdis is between 0.90− 0.96, and for the Mitsubishi i-MiEV, it is 0.88− 0.95.
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In (Geringer and Tober, 2012), they were only able to measure the efficiency of the
DC-DC converter of the Mitsubishi, with ηacc = 0.83. The value for Nissan is set to
ηacc = 1 because measurements were not possible due to the specific construction. Heating
and cooling use high voltage without converter, therefore their efficiency ηhc = 1.

(a) Mitsubishi i-MiEV (b) Nissan Leaf

Figure 3.4: The efficiencies of the batteries of the Nissan Leaf and Mitsubishi i-MiEV depending on the
outside temperature, (Geringer and Tober, 2012) - edited
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Table 3.5: Parameters of the two electric vehicles

Nissan Leaf Mitsubishi

Dimensions

Curb weight 1516 1090 kg
Mass with driver m 1591 1165 kg
Drag coefficient cw 0.28 0.33 -
Width with mirrors 1967 1792 mm
Width w/o mirrors w 1770 1475 mm
Height h 1550 1610 mm
Cross sectional area A 2.22 2.14 m2

Accessory loads

Heating Pheat 90 95 W/◦C
Cooling Pcool 40 30 W/◦C
Lights Plight 48 38/127 W
Fan Pair 62 48 W

Battery

Capacity SoCmax 24 16 kWh

Efficiencies

Drive ηd 1 1
Motor ηm 0.90 0.90
Inverter DC-AC ηinv 0.96 0.91
Battery ηdis 0.90-0.96 0.88-0.95
Accessories DC-DC ηacc 1 0.83
Heating/Cooling ηhc 1 1
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4 Results

4.1 Route Planning

The model and optimization algorithms introduced in chapter 3 have been tested with
the help of MATLAB. Two different areas served as simple models of the street network.
At first, the ’Wienerwald’ area, which is in the west of Vienna, Austria, was chosen.
Because of its pretty unique topography, the city of San Francisco, California, was the
second example for testing the route planning algorithm.

4.1.1 Wienerwald, Austria

The street network covers the main roads of the Wienerwald area in the west of Vienna.
The route planning does not include the city of Vienna, because it is an urban network
with a lot of unknown properties such as traffic lights, zebra crossings, and traffic jams.
The energy consumption and the journey time depend on all those factors too. The
proposed model is quite simple and ignores those things, mainly because it is very hard
to get the right data and information.

The area of the Wienerwald consists of some small towns and villages, but it is mostly
woods and fields. It has a diverse topography with a lot of small hills. Therefore it seems
like a good place to start with the testing. More mountainous areas would be interesting
too, but they are not that suitable for this kind of route planning, because there is usually
only one main road connecting two places, and other paths are no reasonable choices.
This is the advantage of Wienerwald. It is a non-urban area with still quite a few route
options to choose from. Figure 4.1 shows a screen-shot from Google Maps that includes
this network.

The following places are part of the network: At first there is Auhof, which is still part
of the city of Vienna, but in the very west. At Auhof the highway A1 starts, which
connects Vienna and the city of Salzburg. The first section of A1 that terminates at
Pressbaum is an edge of the network. It is possible to reach Pressbaum via Purkersdorf
and Untertullnerbach as well.
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Figure 4.1: Vienna and Wienerwald (screen-shot from Google Maps)

Further north there is Sieghartskirchen and Reichersberg. Other towns are Mauerbach,
Allhang, Maria Gugging, Tulbing, and Königstetten. This network has a total of 31 nodes
and 41 edges.

The tests were done for different start and destination points. The multi-objective
optimization as in section 3.4.5 was used to see which roads are picked when favoring
one optimization variable. Since this is a real world street network, some trips have one
optimal solution for all the scenarios. In many cases, the fastest route is the most energy
efficient at the same time. For other cases, there is more than one option when planning
the trip. Some interesting results were achieved with different weights on the optimization
variables.

The optimization variables are:

• Energy consumption: The energy consumption of an electric vehicle is calculated
according to the model in 3.2. The weight for this variable is γ.
• Journey time: The total time required to go from the start point to the destination.

The length of the roads and the speed of the vehicle are derived from the network.
The weight here is δ.
• Battery lifetime: In order to increase the battery’s lifetime, the number of total

charging and discharging cycles has to be reduced. The optimization variable is the
absolute value of the energy that is either consumed or generated. The goal is to
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minimize the energy flow. It is weighted with the factor 1− (γ + δ), with γ + δ ≤ 1.

Different combinations of γ = 0, 0.2, . . . , 1 and δ = 0, 0.2, . . . , 1 are tried out, while always
obeying γ+ δ ≤ 1. In the following sections it is analyzed how much the weights influence
the choice of an optimal route by picking out two scenarios with different start and
destination points.

Route: From Auhof to Sieghartskirchen

The first interesting result is the route from Auhof to Sieghartskirchen. Applying different
weights to the optimization variables, the following two routes are obtained from the
optimization problem:

(a) The first route goes via Purkersdorf, Allhang, and Reichersberg. It is the path from
Auhof to Sieghartskirchen that has the shortest distance (see figure 4.2, blue).

(b) This route goes via highway A1 and Pressbaum. It is longer, but the vehicle is a
lot faster on the highway than on the other roads that are passing small towns and
villages. According to the results obtained in this work it is fastest route (see figure
4.2, red).

Figure 4.2: Results for Auhof to Sieghartskirchen (screen-shot from Google Maps - edited)
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The multi-objective optimization, which puts emphasis on energy consumption, time, or
cyclic lifetime, gives us the results in table 4.1 for the route planning. All the combinations
of different values for γ and δ lead to the same result except for one.

The option of taking the highway and being slightly faster, by less than half a minute, is
considered when δ = 1. This means that when the multi-objective optimization turns
into a single-objective optimization for the journey time, route (b) is chosen. All the
other combinations have the same solution, which is route (a) via Purkersdorf, Allhang,
and Reichersberg.

Table 4.1: Results for Auhof - Sieghartskirchen with Nissan Leaf at 20 ◦C

γ/δ 0 0.2 0.4 0.6 0.8 1

0 (a) (a) (a) (a) (a) (b)

0.2 (a) (a) (a) (a) (a) -

0.4 (a) (a) (a) (a) - -

0.6 (a) (a) (a) - - -

0.8 (a) (a) - - - -

1 (a) - - - - -

Figure 4.3 - 4.6 compare the two results in terms of topography, energy consumption,
absolute energy consumption (for the cyclic lifetime of the battery), and time. It can
be noticed that route (b) is a lot longer than route (a). Figure 4.3, where it shows the
topography, it can be noticed that both routes have significant changes in altitude, yet
the slope in Route (b) alternates a little bit more.

The energy consumption (see figure 4.4) and the absolute energy (figure 4.5) are a lot
higher for route (b) as a result of the topography and - more important - as a result of
the much longer distance.

The journey time (figure 4.6) is almost the same for both routes. It takes the vehicle
22.69 minutes on route (a) compared to 22.46 minutes on route (b). The difference in
energy consumption on the other hand is more significant. Using the Nissan Leaf while
having an outside temperature of 20 ◦C, where no heating or air condition is needed, the
difference is around 2.88 kWh, according to the calculations.

This explains why the energy consumption is favored in all cases except for one (δ = 1).
If δ < 1, the very significant difference in energy consumption influences the result
automatically, even if γ is very small. The second best journey time is only about one
percent slower, while the energy consumption of the is around 30% higher. Even with a δ
of 0.99, the is result still in favor of the energy-optimal route.
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Figure 4.3: Topography of route (a) and route (b) from Auhof to Sieghartskirchen
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Figure 4.4: Energy consumption (cumulated) of route (a) and route (b) from Auhof to Sieghartskirchen
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Figure 4.5: Absolute value (cumulated) of the energy consumed or regenerated of route (a) and route (b)
from Auhof to Sieghartskirchen
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Figure 4.6: Journey time of route (a) and route (b) from Auhof to Sieghartskirchen
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Route: From Passauerhof to Maria Gugging

The route planning from Passauerhof to Maria Gugging gives other interesting results.
There are two different solutions of the multi-objective optimization with different weights
on the optimization variables. At first, we will analyze the results obtained at an outside
temperature of 20 ◦C with the Nissan Leaf. The routes are:

(a) The first path, where the electric vehicle needs the least amount of energy, starts at
Passauerhof and goes via Katzlsdorf, Königstetten, and St. Andrä before it reaches
the destination, Maria Gugging (see figure 4.7, blue).

(b) The other route passes some small villages (e.g. Unterkirchbach and Hintersdorf)
until it reaches Maria Gugging (see figure 4.7, red). It is the fastest and shortest
route at the same time and has much more variation in topography than (a).

Figure 4.7: Results for Passauerhof to Maria Gugging (screen-shot from Google Maps - edited)

Table 4.2 presents the solutions from the multi-objective optimization for various combi-
nations of the weights. It can be noticed that combinations with a low value for γ and δ
result in option (a). This route has less variation in topography than (b), as it can be
seen in figure 4.8. When γ and δ are small, the focus is on increasing the battery lifetime.
In contrast to the optimization variable for energy consumption, where the regenerated
energy has a negative sign and therefore helps minimizing the costs, the optimization
variable that represents the battery lifetime takes the absolute value of the energy. The
regenerated energy counts the same way as the consumed energy. Therefore driving
downhill or braking increases the costs and is avoided by the optimization algorithm.
A route that has little elevation up and down is preferred. It can be seen in figure 4.10
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that the absolute value of the energy, which has either been consumed or regenerated, of
route (a) is less than of route (b).

Table 4.2: Results for Passauerhof-Maria Gugging with Nissan Leaf at 20 ◦C

γ/δ 0 0.2 0.4 0.6 0.8 1

0 (a) (a) (a) (b) (b) (b)

0.2 (a) (a) (a) (b) (b) -

0.4 (a) (a) (b) (b) - -

0.6 (a) (a) (b) - - -

0.8 (a) (b) - - - -

1 (a) - - - - -

Combinations with a high value of δ lead to the fastest route, route (b). The difference
in time is almost four minutes (see figure 4.11), which is about a quarter of the total
journey time of route (b). The difference in energy consumption is a lot less significant
(see figure 4.9). Choosing route (a), only a few Watt-hours are saved. Let’s see what
happens if the battery lifetime is neglected (γ + δ = 1). A high value of γ and a small
δ still lead to route (b), while only with γ = 1, route (a) is chosen. The explanation
is similar to the case of Auhof to Sieghartskirchen, where the savings in journey time
were insignificant compared to the savings in energy consumption. In this case now, the
journey time outweighs the energy consumption.

It is also interesting to see when the vehicle is charging or when it is discharging. Figure
4.12 shows the charging and discharging events of route (a), and figure 4.13 of route (b).
This is done by showing when the energy E is positive (discharging) or negative (charging),
see (3.22). The graphs only show the (dis)charging events due to elevation, not due to
braking or acceleration. The electric vehicle changes between charging and discharging
mode slightly more often on Route (b) than on Route (a). This charging/discharging
frequency could also be included in the task of increasing the battery lifetime, although
this work only focuses on the amount of energy flow.

In the next step, the tests are done for a different outside temperature. During winter,
the temperatures can fall below zero in Austria, which means that the passengers in the
vehicle want heating. The Nissan Leaf’s power demand of the heating is Pheat = 90 W/◦C
according to the measurements in (Geringer and Tober, 2012). The tests with 20 ◦C did
not include heating or cooling, because they are not necessary. The energy consumption
is expected to rise with cooler temperatures. How this can influence the results of the
multi-objective optimization we are able to see now.

Setting the outside temperature to T = −10◦C, we have

Phc = Pheat(T0 − T ) = 1800 W, (4.1)
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Figure 4.8: Topography of route (a) and route (b) from Passauerhof to Maria Gugging
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Figure 4.9: Energy consumption (cumulated) of route (a) and route (b) from Passauerhof to Maria
Gugging
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Figure 4.10: Absolute value (cumulated) of the energy consumed or regenerated of route (a) and route
(b) from Passauerhof to Maria Gugging
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Figure 4.11: Journey time of route (a) and route (b) from Passauerhof to Maria Gugging
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Figure 4.12: Charging and discharging events of route (a) from Passauerhof to Maria Gugging
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Figure 4.13: Charging and discharging events of route (b) from Passauerhof to Maria Gugging

with T0 = 20◦C. The journey time is almost 20 minutes, such that about 0.6 kWh are
used only for heating, while this is a relatively short trip. Also, battery efficiencies are
decreasing at such low temperatures (see figure 3.4). Table 4.2 shows the results of various
combinations of the optimization weights.

Table 4.3: Results for Passauerhof - Maria Gugging with Nissan Leaf at −10 ◦C

γ/δ 0 0.2 0.4 0.6 0.8 1

0 (a) (a) (b) (b) (b) (b)

0.2 (a) (a) (b) (b) (b) -

0.4 (a) (b) (b) (b) - -

0.6 (b) (b) (b) - - -

0.8 (b) (b) - - - -

1 (b) - - - - -

Those results are not surprising when we know that the energy consumption of all
accessories including heating and cooling are time-dependent. This factor makes fast
routes more attractive also when looking at energy-optimal route planning. In this case,
route (a), which had less energy consumption at 20 ◦C, now needs more energy than
route (b), making route (b) the most energy and time efficient route (see figure 4.14).
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Only when the focus is on the cyclic lifetime of the battery (low γ and δ), route (a) is
chosen because of the topography, as explained previously. It can be seen in figure 4.15
that the cumulated absolute energy consumption and regeneration of route (a) is still
less than of route (b), but the difference is smaller at −10 ◦C compared to 20 ◦C.
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Figure 4.14: Energy consumption (cumulated) of route (a) and route (b) from Passauerhof to Maria
Gugging comparing the outside temperatures of 20 ◦C and −10 ◦C
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4 Results

4.1.2 San Francisco, California

Next, the tests were done for the city of San Francisco, California, because of its interesting
topography. The street network of San Francisco is fundamentally different from the
street network of Wienerwald. It is an urban area with a high density of roads (see figure
4.16). The network is shaped like a grid with perpendicular streets. Each intersection
represents a node of the network.

Figure 4.16: The city of San Francisco, California (Screen-shot from Google Maps)

Because of the high density of roads, there is also a high number of nodes. Therefore
only a small part of downtown San Francisco was selected in order to keep the network
more compact.

Modeling an urban street network can be challenging because it has a lot of factors
that are hard to predict. Traffic would be the first thing that comes into mind. When
searching for the fastest route, the current traffic situation is a main factor. Traffic lights
will also influence the results. The fastest route from the calculations can turn out to
be not that fast if the timing of the traffic lights was bad. Other factors would be zebra
crossings, stop signs, bus stops, et cetera.

Not only the journey time, but also the energy consumption is influenced by those
factors. Nevertheless, influences of traffic are neglected for simplification in this work.
The deviation from the real duration of the journey is accepted and the focus will be on
the energy consumption and battery lifetime, where the topography of the city has the
most effect on.
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4.1 Route Planning

Route: From Pier 39 to Russian Hill

Let’s start with some interesting results. The journey starts close to Pier 39, at the corner
Beach Street/Grant Avenue. The destination point is Union Street/Hyde Street, close to
Russian Hill. For all combinations of the multi-objective optimization weights, the same
result is obtained (see figure 4.17). Going in the opposite direction, from Russian Hill to
Pier 39, there are two results. For all combinations of γ and δ, except for δ = 1, we have
the result in figure 4.18. Only for δ = 1, we have the same result as before from 4.17.
This result is for time-optimization only, therefore not significant, since the calculation of
the journey time without knowing the traffic situation is rather vague.

Figure 4.17: Result for Pier 39 to Russian Hill (screen-shot from Google Maps - edited)

Figure 4.19 shows the topography of the two scenarios: Going from Pier 39 to Russian
Hill (Union/Hyde Street) and the return. The energy consumption on both trips (see
figure 4.20) is strongly dependent on the topography. Since Pier 39 is almost at sea level,
going to Russian Hill takes a lot of energy, while the electric vehicle regenerates energy
by going down to Pier 39.

It is interesting to see in figure 4.21 that the absolute energy of the return trip is a lot less.
At low speed, the rolling resistance is dominant, while the air resistance is less significant.
The energy that is regenerated when driving downhill is less than the energy that is
needed to go uphill because of the rolling resistance and losses due to the efficiencies of
the electric vehicle.
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4 Results

Figure 4.18: Result for Russian Hill to Pier 39 (screen-shot from Google Maps - edited)
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Figure 4.19: Topography of Pier 39 to Russian Hill and back
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Figure 4.20: Energy consumption (cumulated) of Pier 39 to Russian Hill and back
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Figure 4.21: Absolute value (cumulated) of the energy consumed or regenerated of Pier 39 to Russian
Hill and back
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4 Results

Route: From Union/Hyde Street to Lombard/Mason Street

Now we consider a relatively short trip from Union Street/Hyde Street to Lombard
Street/Mason Street. The multi-objective optimization results in four different solutions:

(a) Goes via Filbert and Powell Street (see figure 4.22).
(b) Goes via Filbert, Greenwich, James, and Lombard Street (see figure 4.23).
(c) Goes via Filbert, Taylor, and Lombard Street (see figure 4.24).
(d) Goes via Leavenworth, Greenwich, James, and Lombard Street (see figure 4.25).

Table 4.4 shows that the optimization problem mostly results in route (b). With γ = 0
and δ = 0, route (a) is chosen, while with γ = 0.2 and δ = 0, route (c) is the solution.
Route (d) is the result of δ = 1, therefore it is the time-optimal path. As mentioned
before, the calculation of the journey time is not very accurate. The focus will lie on
optimization results for δ = 0.

Table 4.4: Results for Union/Hyde Street-Lombard/Mason Street with Nissan Leaf

γ/δ 0 0.2 0.4 0.6 0.8 1

0 (a) (b) (b) (b) (b) (d)

0.2 (c) (b) (b) (b) (b) -

0.4 (b) (b) (b) (b) - -

0.6 (b) (b) (b) - - -

0.8 (b) (b) - - - -

1 (b) - - - - -

The results that are discussed are route (a), route (b), and route (c). The first thing that
can be noticed when looking at the topography in figure 4.26 and the energy consumption
in figure 4.27 is that the energy consumption depends a lot on the elevation, since the
shape of the curves is similar. Route (c) is the most energy efficient one and route (a)
has the smallest absolute energy consumption and regeneration (see figure 4.28).

These results show that the difference between the paths is not too significant, but it
gives an impression on how the route planning would work for longer trips in the city.
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4.1 Route Planning

Figure 4.22: Route (a) for Union/Hyde Street to Lombard/Mason Street (screen-shot from Google Maps
- edited)

Figure 4.23: Route (b) for Union/Hyde Street to Lombard/Mason Street (screen-shot from Google Maps
- edited)
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4 Results

Figure 4.24: Route (c) for Union/Hyde Street to Lombard/Mason Street (screen-shot from Google Maps
- edited)

Figure 4.25: Route (d) for Union/Hyde Street to Lombard/Mason Street (screen-shot from Google Maps
- edited)
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Figure 4.26: Topography of Union/Hyde Street to Lombard/Mason Street
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Figure 4.27: Energy consumption (cumulated) of Union/Hyde Street to Lombard/Mason Street
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Figure 4.28: Absolute value (cumulated) of Union/Hyde Street to Lombard/Mason Street
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5 Sensitivity Analysis

5.1 Comparing Nissan Leaf and Mitsubishi i-MiEV

In this section the results of two different electric vehicles are compared. In chapter 4
the tests were done with only one vehicle, the Nissan Leaf. In this part the Mitsubishi
i-MiEV is added, with its characteristics as described in section 3.5. The Mitsubishi has
almost 30% less weight, but the cw-value is higher and the efficiencies are lower.

Wienerwald

Testing the same scenario as in section 4.1.1, from Passauerhof to Maria Gugging with
the Mitsubishi i-MiEV, the same two routes are obtained from the optimization:

(a) Starts at Passauerhof and goes via Katzlsdorf, Königstetten, and St. Andrä before
it reaches the destination, Maria Gugging (blue in figure 4.7).

(b) Starts at Passauerhof, then continues via Unterkirchbach and Hintersdorf on its
way to Maria Gugging (red in figure 4.7).

Let’s start with an outside temperature of 20 ◦C. In table 5.1 the results for Nissan
Leaf and Mitsubishi i-MiEV are compared. The results of the Nissan have already been
discussed in section 4.1.1. In figure 5.1 it can be seen that the energy consumption on
both route (a) and route (b) is higher when driving the Mitsubishi despite having less
weight. Another interesting finding is that the cumulated absolute value of the consumed
and regenerated energy of the Mitsubishi is smaller compared to Nissan on both paths,
while the normal energy consumption is the opposite. The regenerated energy must be
the reason for those differences.

The only result that changed compared to Nissan is for γ = 0.2 and δ = 0.4. The absolute
energy has the weight of 1 − (γ + δ) = 0.4 in this scenario. The explanation could be
found in figure 5.2, because the difference between route (a) and route (b) is smaller for
the Mitsubishi than it was for the Nissan. Apparently it is small enough now that the
time difference between the paths is more significant.
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5 Sensitivity Analysis

Table 5.1: Results for Passauerhof-Maria Gugging at 20 ◦C

(a) Nissan Leaf

γ/δ 0 0.2 0.4 0.6 0.8 1

0 (a) (a) (a) (b) (b) (b)

0.2 (a) (a) (a) (b) (b) -

0.4 (a) (a) (b) (b) - -

0.6 (a) (a) (b) - - -

0.8 (a) (b) - - - -

1 (a) - - - - -

(b) Mitsubishi i-MiEV

γ/δ 0 0.2 0.4 0.6 0.8 1

0 (a) (a) (a) (b) (b) (b)

0.2 (a) (a) (b) (b) (b) -

0.4 (a) (a) (b) (b) - -

0.6 (a) (a) (b) - - -

0.8 (a) (b) - - - -

1 (a) - - - - -
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Figure 5.1: Energy consumption (cumulated) of route (a) and route (b) from Passauerhof to Maria
Gugging comparing Nissan Leaf and Mitsubishi i-MiEV at 20 ◦C
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5.1 Comparing Nissan Leaf and Mitsubishi i-MiEV
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Figure 5.2: Absolute value (cumulated) of the energy consumed or regenerated of route (a) and route (b)
from Passauerhof to Maria Gugging comparing Nissan Leaf and Mitsubishi i-MiEV at 20 ◦C
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5 Sensitivity Analysis

The next step compares the vehicles with a different outside temperature. As in section
4.1.1, the tests were done for −10 ◦C. Table 5.3 shows the results of both vehicles with
different weights for the multi-objective optimization. In figure 5.3 it can be seen that
the energy consumption of route (a) is higher than of route (b) for both vehicles. For the
absolute energy in figure 5.4 it can be noticed that in case of the Mitsubishi, the values
for route (a) and route (b) are almost equal now, leading to route (b) as the result of
most combinations. Route (a) is still a little lower, therefore with γ = 0 and δ = 0, route
(a) is chosen.

Table 5.3: Results for Passauerhof-Maria Gugging at −10 ◦C

(a) Nissan Leaf

γ/δ 0 0.2 0.4 0.6 0.8 1

0 (a) (a) (b) (b) (b) (b)

0.2 (a) (a) (b) (b) (b) -

0.4 (a) (b) (b) (b) - -

0.6 (b) (b) (b) - - -

0.8 (b) (b) - - - -

1 (b) - - - - -

(b) Mitsubishi i-MiEV

γ/δ 0 0.2 0.4 0.6 0.8 1

0 (a) (b) (b) (b) (b) (b)

0.2 (b) (b) (b) (b) (b) -

0.4 (b) (b) (b) (b) - -

0.6 (b) (b) (b) - - -

0.8 (b) (b) - - - -

1 (b) - - - - -
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Figure 5.3: Energy consumption (cumulated) of route (a) and route (b) from Passauerhof to Maria
Gugging comparing Nissan Leaf and Mitsubishi i-MiEV at −10 ◦C
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5.2 Different Weather Conditions
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Figure 5.4: Absolute value (cumulated) of the energy consumed or regenerated of route (a) and route (b)
from Passauerhof to Maria Gugging comparing Nissan Leaf and Mitsubishi i-MiEV at −10 ◦C

5.2 Different Weather Conditions

All previous tests have been done with minimal accessory loads, only using headlights, the
fan, and heating if necessary due to a low outside temperature. When certain conditions
are met, this is not accurate anymore. For example when there is rain, the windshield
wipers are used. When there is fog, the fog lights are necessary. If humidity is high, the
fans should operate on settings with high power.

Now the following scenario is tested. It is assumed to be night time, so headlights, license
plate lights, and lights for the instrument panel are necessary. The outside temperature
is 10 ◦C and according to (3.75), the power for the heating is

Phc = Pheat(T0 − T ) = 900 W, (5.1)

with Pheat = 90 W. It is assumed to be foggy as well, making fog lights and rear fog lights
necessary. Table 5.5 shows all the accessories that are used in this scenario and their
power consumption.

The results in table 5.7b are obtained and compared to the results with an outside
temperature of 20 ◦C in table 5.7a, with route (a) and route (b) as explained in section
5.1. The difference in energy consumption is about 0.1 kWh, such that route (b) is the
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5 Sensitivity Analysis

Table 5.5: Accessory loads for different weather conditions

Load Value

Heating 900 W
Dimmed headlights 48 W
Instrument panel lights 22 W
License plate lights 30 W
Rear window heating 178 W
Fog lights 110 W
Rear fog lights 21 W
Fan 143 W

fastest and most energy efficient route. Only when the optimization algorithm focuses on
the cyclic lifetime of the battery, route (a) is chosen because of the topography (compare
figure 4.8). Figure 5.5 shows th energy consumption of this case and figure 5.6 the absolute
values of the consumed and regenerated energy.

Table 5.6: Comparing the results for Passauerhof-Maria Gugging with Nissan Leaf at 20 ◦C to 10 ◦C with
fog

(a) 20 ◦C

γ/δ 0 0.2 0.4 0.6 0.8 1

0 (a) (a) (a) (b) (b) (b)

0.2 (a) (a) (a) (b) (b) -

0.4 (a) (a) (b) (b) - -

0.6 (a) (a) (b) - - -

0.8 (a) (b) - - - -

1 (a) - - - - -

(b) 10 ◦C with fog

γ/δ 0 0.2 0.4 0.6 0.8 1

0 (a) (a) (a) (b) (b) (b)

0.2 (a) (a) (b) (b) (b) -

0.4 (a) (a) (b) (b) - -

0.6 (a) (b) (b) - - -

0.8 (b) (b) - - - -

1 (b) - - - - -

5.3 Comparison of the Results

In order to compare the results from chapter 4 and chapter 5, they are shown in table
5.8. The table lists the trips at Wienerwald and San Francisco and gives the distances,
the total elevation up and down, the energy consumption and the journey time. The time
is only available for Wienerwald, because for San Francisco it would be too imprecise.
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Figure 5.5: Energy consumption (cumulated) of route (a) and route (b) from Passauerhof to Maria
Gugging
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Table 5.8: Comparison of different routes with different parameters

Route Vehicle Temp. Distance Up Down Energy Time

Wienerwald

Auhof - Sieghartskirchen (a) Nissan 20 ◦C 20.47 km 211 m 231 m 2.19 kWh 22.68 min
Auhof - Sieghartskirchen (b) Nissan 20 ◦C 29.68 km 383 m 403 m 4.81 kWh 22.45 min
Passauerhof - Maria Gugging (a) Nissan 20 ◦C 17.63 km 122 m 299 m 1.02 kWh 19.70 min
Passauerhof - Maria Gugging (a) Mitsubishi 20 ◦C 17.63 km 122 m 299 m 1.24 kWh 19.70 min
Passauerhof - Maria Gugging (a) Nissan −10 ◦C 17.63 km 122 m 299 m 2.03 kWh 19.70 min
Passauerhof - Maria Gugging (a) Mitsubishi −10 ◦C 17.63 km 122 m 299 m 2.15 kWh 19.70 min
Passauerhof - Maria Gugging (b) Nissan 20 ◦C 15.13 km 203 m 380 m 1.04 kWh 16.06 min
Passauerhof - Maria Gugging (b) Mitsubishi 20 ◦C 15.13 km 203 m 380 m 1.26 kWh 16.06 min
Passauerhof - Maria Gugging (b) Nissan −10 ◦C 15.13 km 203 m 380 m 1.85 kWh 16.06 min
Passauerhof - Maria Gugging (b) Mitsubishi −10 ◦C 15.13 km 203 m 380 m 1.95 kWh 16.06 min

San Francisco

Pier 39 - Russian Hill Nissan 20 ◦C 1.86 km 93 m 25 m 0.58 kWh -
Russian Hill - Pier 39 Nissan 20 ◦C 1.86 km 24 m 92 m −0.05 kWh -
Union/Hyde - Lombard/Mason (a) Nissan 20 ◦C 1.19 km 15 m 81 m −0.12 kWh -
Union/Hyde - Lombard/Mason (b) Nissan 20 ◦C 0.90 km 15 m 79 m −0.136 kWh -
Union/Hyde - Lombard/Mason (c) Nissan 20 ◦C 0.76 km 15 m 79 m −0.139 kWh -
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6 Conclusion

The results of this thesis show that route planning specifically designed for electric vehicles
has more to offer than conventional routing systems that find the shortest distance or
the fastest path to a destination. Finding the most energy efficient path or a route that
is best for the battery lifetime can increase the range and protect the battery.

The proposed route planning is tested for the Wienerwald area in Austria and for the city
of San Francisco in California. The multi-objective optimization uses three optimization
variables: energy consumption, journey time, and battery lifetime. With different weights
on the variables, different solutions are obtained.

Analyzing real-world street networks, the results vary depending on the start and desti-
nation points. For some cases, there is only one optimal route for all variables. Other
cases show very distinct results for one optimization variable.

The results in this work demonstrate the influence of the topography of the routes. The
energy consumption depends significantly on the topography. Especially with electric
vehicles, where energy can be regenerated by driving downhill, there is a strong correlation
between energy consumption and topography.

Another aspect of this work is the optimization in order to increase the battery lifetime.
Minimizing the total energy flow of the battery is the goal here and therefore routes with
little variation of the topography are preferred. The battery is an expensive part of the
vehicle and should be protected from degradation as much as possible.

The influence of the additional loads such as heating, air condition, lights, and fan is
significant. Those loads are powered by the battery and therefore they increase the total
energy consumption. An important factor is the duration of the journey, because the
longer these additional loads operate, the more energy is used. Therefore, the results of
the multi-objective optimization can change, because fast routes become more energy
efficient.

It can be noticed that using a weighted multi-objective optimization is smarter than
using a single-objective optimization. If the second best route in journey time is much
more energy efficient, but only slightly slower, a time-only optimization would lead to an
unreasonable result. Considering different aspects at the same time, the most convenient
solution is achieved.
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6 Conclusion

In order to use this type of route planning for real-world scenarios, some additional
information would be necessary. First, traffic lights and stop signs should be included.
Another important factor is traffic flow, because the optimal route can turn out to be a
bad choice if the vehicle is stuck in traffic.

Future work on this topic should also include charging stations such that route planning
is possible for trips longer than the range of the vehicle.

Another important aspect to be included in future work is driving behavior. Speed and
acceleration influence the energy consumption of the vehicle. In urban areas, the journey
time is mostly dependent on the traffic situation rather than speed, while in non-urban
areas the speed can make a lot of difference. Assuming a certain speed profile would help
achieving very realistic results. There could either be a statistical approach to obtain a
speed profile or learning from previously obtained data of the driver’s preferences.
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