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ABSTRACT 

Currently, there are several space missions capable of measuring surface soil moisture, owing 
to the relevance of this variable in meteorology, hydrology and agriculture. However, the Plant 
Available Water (PAW), which in some fields of application could be more important than the 
soil moisture itself, cannot be directly measured by remote sensing. Considering the root zone 
as the first 50 cm of the soil, in this study, the PAW at 25 cm and 50 cm and integrated 
between 0 and 50 cm of soil depth was estimated using the surface soil moisture provided by 
the Soil Moisture Ocean Salinity (SMOS) mission. For this purpose, the Soil Water Index (SWI) 
has been used as a proxy of the root-zone soil moisture, involving the selection of an optimal T 
(Topt), which can be interpreted as a characteristic soil water travel time. In this research, 
several tests using the correlation coefficient (R), the Nash-Sutcliffe score (NS), several error 
estimators and bias as predictor metrics were applied to obtain the Topt, making a 
comprehensive study of the T parameter. After analyzing the results, some differences were 
found between the Topt obtained using R and NS as decision metrics, and that obtained using 
the errors and bias, but the SWI showed good results as an estimator of the root-zone soil 
moisture. This index showed good agreement, with an R between 0.60 and 0.88. 
The method was tested from January 2010 to December 2014, using the database of the Soil 
Moisture Measurements Stations Network of the University of Salamanca (REMEDHUS) in 
Spain. The PAW estimation showed good agreement with the in situ measurements, following 
closely the dry-downs and wetting-up events, with R ranging between 0.60 and 0.92, and error 
values lower than 0.05 m3m-3. A slight underestimation was observed for both the PAW and 
root-zone soil moisture at the different depths; this could be explained by the underestimation 
pattern observed with the SMOS L2 soil moisture product, in line with previous studies. 
Nevertheless, the results obtained in this research showed an encouraging improvement of 
the PAW estimation. Despite the need for more research on this issue, the results of this study 
show that this methodology can be useful for applications of great interest in agriculture and 
hydrology. 

Keywords: SMOS; Soil moisture; Root-zone; Soil Water Index; Plant Available Water 

Highlights 

Plant Available Water (PAW) was estimated using the SMOS L2 soil moisture product. 
SMOS-derived SWI and PAW were validated at different depths with the REMEDHUS network. 
Several tests using different metrics were applied for obtaining the Topt. 
Comparison with in situ yielded R greater than 0.9 and errors lower than 0.04 m3m-3. 
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1. INTRODUCTION

Soil moisture was declared an Essential Climate Variable (ECV) in 2010 by the World 
Meteorological Organization because it plays an important role in several hydrologic and 
atmospheric processes (Legates et al. 2011). There are a variety of methods to measure soil 
moisture, which can be separated into ground based/in situ measurements and 
airborne/satellite-based approaches (Paulik et al. 2014). Regarding the first group, there are 
currently few networks that measure soil moisture in comparison with the vast number of 
climatic networks in the world. However, the number of in situ soil moisture networks is 
growing. The main advantage of the ground observations is their temporal resolution and that 
they represent the only direct measurement of soil moisture at different depths, but the main 
limitation is that they provide only discrete point-scale measurements over a limited soil 
volume. Alternatively, remotely sensed soil moisture has the advantage of covering large areas 
and identifying large-scale events (Ochsner et al. 2013), providing useful information on soil 
moisture spatio-temporal variability. The soil moisture observation by remote sensing is made 
in the first few centimeters of soil, depending on soil characteristics and wetness conditions 
(Delwart et al. 2008). However, in some cases, such as drought monitoring and agricultural 
modeling, the estimation of the root-zone soil moisture (RZSM) is more important because it 
represents the reservoir of the plant available water (PAW). 
Several sensors and systems have been used to measure soil moisture globally, e.g., the 
European Remote Sensing Scatterometer (ERS) (Wagner et al. 1999), the Advanced Microwave 
Sounding Radiometer for Earth Observation System (AMSR-E) and the AMSR-2 (Njoku et al. 
2003) or the Advanced Scatterometer (ASCAT) (Bartalis et al. 2007). The soil moisture database 
provided by these sensors, among others, is included in the Climate Change Initiative (CCI) 
project for soil moisture (http://www.esa-soilmoisture-cci.org/) created by the European 
Space Agency (ESA). The Soil Moisture Ocean Salinity (SMOS) (Kerr et al. 2010) and Soil 
Moisture Active Passive (SMAP) mission (Entekhabi et al. 2010) were launched in 2009 and 
2015, respectively, and are providing continuous estimations of soil moisture worldwide. 
Obtaining RZSM measurements with high accuracy is challenging, because it cannot be directly 
observed by remote sensing. Research has addressed the relationships between different 
vegetation indices from MODIS or Landsat satellites, e.g., the Normalized Difference 
Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI) with the RZSM (Wang et al. 
2007; Crow et al. 2008; Schnur et al. 2010; Liu et al. 2012; Bezerra et al. 2013; Santos et al. 
2014). The vegetation indices can quantify the leaf area and the health and vigor of the 
vegetation, which are influenced in turn by climate and soil moisture content, among other 
factors (Liu et al. 2012). However, all these studies concluded that plants take time to respond 
to changes in atmospheric conditions and this factor needs to be taken into account when the 
vegetation indices are used to estimate RZSM, which makes all these methods for estimating 
RZSM less appropriate for use in near real-time. 
Another method used for RZSM estimation is the combination of remotely sensed soil 
moisture with different models using data assimilation techniques. Sabater et al. (2007) used 
different Kalman filter techniques to assimilate soil moisture observations into the Interaction 
between the Soil Biosphere and Atmosphere (ISBA) model. Renzullo et al. (2014) used the 
same techniques in the Australian Water Resources Assessment Landscape (AWRA-L) model to 
estimate RZSM from 20 cm to 1 m of soil depth. The MERRA model was used in Rienecker et al. 
(2011), whereas the Soil Vegetation Atmosphere Transfer (SVAT) model was used in Crow et al. 
(2008) or the ORCHIDEE model in Rebel et al. (2012). The SMAP Level 4 Soil Moisture product 
is the first product to provide assimilated soil moisture operationally in the RZSM (0-100 cm). 
SMAP L-band brightness temperature data are assimilated into a land surface model that is 
gridded using an Earth-fixed, global, cylindrical 9 km Equal-Area Scalable Earth Grid (EASE-Grid 
2.0) projection (Koster et al. 2015). All these models have the drawback of a high 

http://www.esa-soilmoisture-cci.org/
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computational cost. The same problem is presented in studies where machine learning models 
are used (Zaman and McKee 2014).  
Previous studies suggested that RZSM is well correlated with near-surface soil moisture 
(Mahmood and Hubbard 2007), however, the strength of this correlation is location- 
dependent, in particular when considering short time scales. Therefore, satellite soil moisture 
retrievals may provide an accurate means of estimating water content in the soil root-zone 
(Ford et al. 2014). One of the methods used to estimate RZSM is based on the Soil Water Index 
(SWI), an exponential filter developed by Wagner et al. (1999) and rewritten in a recursive 
form by Albergel et al. (2008). This method estimates the soil moisture profile from surface 
observations using only one parameter (T), which is related to the water travel time along the 
soil profile. This variable has been calculated in many different ways, yielding widely varying 
results (Wagner et al. 1999; Albergel et al. 2008; Brocca et al. 2011). SWI has been widely used 
and validated with previous soil moisture products from different satellites (Wagner et al. 
1999; Brocca et al. 2011; Albergel et al. 2012; Paulik et al. 2014), hence now it is also being 
used with SMOS (Ford et al. 2014; Laiolo et al. 2015). While many studies have looked into the 
temporal behavior of the SWI, only a few studies have addressed whether this equation 
provides a reasonably good estimate of the absolute soil moisture level. Once the SWI is 
estimated, the PAW can be obtained through different models. 
This work aims to obtain the PAW best estimation from the SMOS-derived SWI using the L2 
surface soil moisture series and soil water parameters. The PAW was calculated with the 
model proposed by Wagner et al. (1999) together with the SWI recursive algorithm proposed 
by Albergel et al. (2008). For this purpose, the SMOS L2 Soil Moisture product, SMUDP (v.5.51) 
was used from January 2010 to December 2014. The soil moisture measurements over the 
REMEDHUS network were used as the benchmark dataset for testing the methodology. 
Moreover, a thorough study of the effect of the parameter T on the SWI was made using 
different metrics, prior to the PAW estimation. The objective was to delve into the alternatives 
for the T estimation, obtaining an optimal T value for each soil moisture station and for the 
REMEDHUS area average. The ultimate goal is to test the feasibility of the remotely sensed 
surface soil moisture from SMOS to derive an added-value product useful for many 
applications. 
 

2. DATA SETS 

2.1. In situ soil moisture data 

REMEDHUS is located in the Duero Basin (41.1° to 41.5°N; 5.1° to 5.7°W) over a semi-arid 
Mediterranean agricultural area of approximately 1300 km2 (Fig. 1), covered by rainfed cereals 
in most cases but also irrigated crops, vineyards and forest-pasture areas (Sánchez et al. 2012; 
González-Zamora et al. 2015). REMEDHUS is part of the International Soil Moisture Network, 
ISMN, (Dorigo et al. 2011), and it has been used in many validation studies of remotely sensed 
soil moisture products (Brocca et al. 2011; Sánchez et al. 2012; González-Zamora et al. 2015) 
including SWI (Ceballos et al. 2005; Paulik et al. 2014). 
 

<Insert Fig. 1 here> 
 
This network is equipped with 12 automated stations that include capacitance probes (Hydra 
Probes, Stevens Water Monitoring System, Inc.) that measure the soil moisture hourly at 5 cm, 
and two EnviroSMART probes (Sentek Pty. Ltd.) measuring soil moisture hourly at 25 and 50 
cm soil depths (Table 1). Because the main land use is rainfed cereals (85% of the area), the 0-
50 cm depth was considered representative of the soil root zone (Pietola and Alakukku 2005). 
In many previous experiments of validation, when comparing the in situ dataset with satellite-
derived soil moisture, it was found that there were no differences on the use of the daily 
average or the instantaneous value of the in situ soil moisture at the satellite overpass 
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(Sanchez et al., 2012; Piles et al., 2014; Gonzalez-Zamora et al., 2015). For this reason, only the 
daily average (i.e., the 24 h-average) at 5, 25 and 50 cm depth were used. Furthermore, due to 
the different soil volume monitored by the two probe types, a weighted average of the 0–50 
cm soil moisture was also calculated (Martínez-Fernández et al. 2015): 

        
      

 
 

        

 
 

        

 
 (1) 

Thus, four in situ time series from the 12 stations resulted for 5, 25 and 50 cm soil depths, 
together with the weighted 0-50 cm. For this study, the number of measurements for each 
depth is 1826 in average. 

<Insert Table 1 here> 

The soil water parameters field capacity (ΘFC), wilting point (ΘWP) and total water capacity 
(ΘTWC) were obtained for each station and soil layer (Table 1) from the calculation of the water 
retention curves of the soil monoliths taken at each depth where the soil moisture was 
measured. The retention curves were estimated by applying the van Genuchten (1980) 
method, measuring the soil moisture contents at nine soil–water potential values (from 0 to -
1500 kPa) using sand boxes and pressure membrane. 

2.2. Satellite data set 

SMOS was launched by the European Space Agency (ESA) in November 2009. It is the first 
mission specifically dedicated to globally measuring the Earth’s surface soil moisture, with an 
accuracy goal of 0.04 m3m-3 and a revisit of 3 days since January 2010 (Kerr et al. 2010). In this 
research, the SMOS Level 2 Soil Moisture User Data Product (SMUDP2) version 5.51 was used. 
This product is delivered by ESA over an Icosahedral Snyder Equal Area Earth (ISEA-4H9) grid 
with equally spaced nodes at ~15 km, known as the Discrete Global Grid (DGG). A detailed 
description of the L2 algorithm used for the retrievals is provided in Kerr et al. (2012). The soil 
moisture retrieval is associated with two quality flags, Data Quality Index (DQX) and Radio 
Frequency Interference (RFI_flag). In this work, the ascending and descending series were 
filtered out following the thresholds for the RFI_flag and DQX as suggested in (González-
Zamora et al. 2015). 
An average of the ascending and descending L2 soil moisture series was calculated daily using 
1678 data (91.89% of dates available for the whole study period) without any interpolation. In 
case of days with only one orbit, that orbit was only used. 

3. METHODOLOGY

Prior to any calculation, the L2 SMOS series was compared to the ground measurements. To 
assess its accuracy, each DGG value was individually compared with each overlapping station. 
Additionally, the spatial average of the 6 DGGs and the 12 stations was used. These 
comparisons were made using the in situ soil moisture measurements at 5, 25, 50 and 0-50 cm 
depth (SM25cm, SM50cm and SM0-50cm). The correlation coefficient (R), the root mean square 
difference (RMSD), the centered root mean square difference (cRMSD) and the bias were 
used. 

3.1. Calculation of Soil Water Index 

Albergel et al. (2008) used a recursive exponential filter to estimate the RZSM from near-
surface observations. This method assumes a two-layer soil, the first representing the 
remotely sensed topsoil layer, and the second layer that extends downwards from the bottom 
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of the surface layer, and which represents the water reservoir (Wagner et al. 1999). The 
proposed model relates the past dynamics of the surface soil moisture content to the profile 
moisture using an exponential smoother filter instead of a linear relation, assuming that the 
soil moisture content integrated over the deeper layers exhibits much smaller variations than 
in the topmost layer. The recursive formulation was used to calculate the SWI (2). The filter is 
initialized with SWI(1)=SM(t1) and K1=1. 
 

                                 , (2) 

 
where SWI(n-1) is the predicted RZSM estimate at tn-1, SM(tn) is the surface soil moisture 
estimate at tn, and the gain K at time tn is given by (3) 
 

   
    

      
 
       

 

, (3) 

 
where T represents the timescale of the soil moisture variation, in days. This parameter can be 
interpreted as a characteristic time length for each type of soil, increasing with the depth of 
the reservoir and decreasing with the soil diffusivity constant. The T values appear to be highly 
variable in the literature, depending on the applications, study areas, sensors used or even 
between measurement locations within the same area (Albergel et al. 2008). Overall, the 
methods used to obtain the optimal T value (Topt) can be clustered in three groups: those that 
compare SWI from remote sensing with in situ soil moisture measurements at different 
depths, others that compare SWI from remote sensing with modeled soil moisture data at 
different depths, and finally those that compare SWI from in situ soil moisture measurements 
with in situ depth soil moisture measurements; this study belongs to this last group. Albergel 
et al. (2008) showed that each study site had its Topt, which was characterized by the highest 
prediction accuracy as assessed by the Nash-Sutcliffe (NS) score. Other studies used the best 
correlation coefficient between the SWI dataset and in situ measurements to select the Topt 
(Albergel et al. 2009; Paulik et al. 2014). In this work, a comprehensive study for calculating the 
Topt was made, using the NS score, R, RMSD, cRMSD and the bias as predictors of the Topt. The 
best T (ranging from 1 to 120 days) was determined by assessing with these metrics the 
comparisons between ground observations at 25, 50 and 0-50 layers from the 12 stations and 
the SWI calculated with the surface soil moisture. Thus, 120 values of SWI were obtained for 
each station and for the area average. The SWI calculated from the in situ surface soil moisture 
measurements (hereafter SWIInSitu) was compared to SM25cm, SM50cm and SM0-50cm obtaining the 
different metrics for each T used. The Topt was selected based on the better metric in the 
different cases. For NS and R, the Topt corresponds to the highest NS and R values; for RMSD 
and cRMSD, the Topt corresponds to the lowest RMSD and cRMSD values; for bias, the Topt 
corresponds to the bias value nearest to zero.  
The Topt obtained with in situ soil moisture values were applied afterwards to the SMOS L2 soil 
moisture product using equations (3) and (2), resulting in the SWI series calculated exclusively 
with satellite data (hereafter SWISMOS). The agreement between the resulting SWISMOS and the 
in situ SM25cm, SM50cm and SM0-50cm series was assessed again with the former set of statistical 
metrics (R, RMSD, cRMSD and bias). 
 

3.2. Calculation of Plant Available Water 

For the PAW calculation, Wagner et al. (1999) proposed a model using the soil water 
parameters and the SWI (4): 
 

        
         

 
     ,  (4) 
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where SWI is the Soil Water Index obtained with Topt at each depth, and ΘFC, ΘWP and ΘTWC 
stand for field capacity, wilting point and total water holding capacity, respectively. The ΘFC, 
ΘWP and ΘTWC used for the estimation of PAW0-50cm were calculated with the same weights for 
the different depths as used in equation (1). The agreement between the PAW calculated with 
SWIInSitu (hereafter PAWInSitu) and the PAW calculated with SWISMOS (hereafter PAWSMOS) was 
assessed with a set of statistical metrics (R, RMSD, cRMSD and bias). 

4. RESULTS AND DISCUSSION

4.1. Comparison between SMOS soil moisture and in situ soil moisture at different depths 

The time series of soil moisture (Fig. 2) reveals that the SMOS series has a larger dynamic 
range than the in situ series; for the three in situ measurements time series, the higher 
dynamic range, as expected, corresponds to the 5 cm depth. The deeper the measurement, 
the more limited the dynamic range and the smoother the curve. All the series showed a 
marked seasonality, corresponding with the climatic conditions in the area. During the summer 
periods, there is greater difference in the time series of in situ soil moisture at the various 
depths than there is in cold, rainy periods due to the higher temperature and surface 
evaporation that make the deep layers retain a higher water content. In contrast, soon after a 
rain event in the fall-winter periods, there is more water in the 5 cm than in the 25 cm or even 
the 50 cm depth owing to the delay in reaching the deeper layers. These two patterns in 
combination with the larger dynamic range for SMOS indicate that the SMOS penetration 
depth would be less than 5 cm. 

<Insert Fig. 2 here> 

Quantitatively, the results obtained for the comparison between SMOS L2 and in situ surface 
soil moisture (Fig. 3a) show an R ranging between 0.60 and 0.78 for each station and 0.78 for 
the area average (note that this R value corresponds to the correlation of the average soil 
moisture) and errors between 0.045 and 0.268 m3m-3. The SMOS soil moisture exhibited a 
certain underestimation with respect to the ground observations, although it showed a quicker 
reactivity to rainfall events and dry-downs. This effect was detected in previous validation 
experiments in the same area (Sánchez et al. 2012; González-Zamora et al. 2015). 
For the comparison between SMOS L2 and in situ soil moisture at 25 and 50 cm depth (Fig. 3b, 
c), the results are obviously worse. For the 25 cm (Fig. 3b), the R values for the 12 stations and 
the area average are lower (R=0.71), and the RMSD and cRMSD (0.070 and 0.053 m3m-3, 
respectively) are higher than the values obtained at surface (R=0.78, RMSD=0.068 m3m-3 and 
cRMSD=0.047 m3m-3). For the comparison between SMOS estimations and SM0-50cm (Fig. 3d), 
the results are very similar to those obtained at a depth of 25 cm (R=0.71, RMSD=0.085 m3m-3 
and cRMSD=0.053 m3m-3). Not surprisingly, the worst results were obtained at a depth of 50 
cm (Fig. 3c, with R=0.59, RMSD=0.111 m3m-3 and cRMSD=0.061 m3m-3), because we are 
comparing soil layers of very different depths. The deeper the in situ soil moisture 
measurement, the worse the agreement with the surface satellite observations. The results of 
the bias in all depths are positive excepting in few stations, showing underestimation, in 
agreement with the previous results in Fig. 2.  

<Insert Fig. 3 here> 

4.2. T optimal estimation 
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Even if a reasonable relationship were found between the L2 surface soil moisture product and 
the water content at deep layers, it is necessary to go further to obtain a good estimate of the 
water stored in the root zone. Thus, the model proposed by Wagner et al. (1999) and 
improved by Albergel et al. (2008) using the SWI as a surrogate of the RZSM was tested. As a 
given example, Figure 4 illustrates the time evolution of the soil moisture at 25 cm depth from 
the ground measurements at the N9 station together with the SWI results for 8, 50 and 100 
days of the T parameter. This particular case, which is representative of the ground 
observations, gave some insights on the use of the proposed statistics for the Topt estimation. It 
can be seen that as the T parameter increased, the time series curve became smoother. 
Hence, the correlation coefficient, which reflects the similarity of the time series, may seem 
appropriate to discriminate the Topt. Indeed, in Figure 4, the smaller value of T for calculating 
SWI (T=8 days) better defines the in situ evolution of soil moisture at the shallower layers (25 
cm).  
 

<Insert Fig. 4 here> 
 
Topt is discriminated using different metrics from the comparison between the in situ soil 
moisture at different depths and the SWI calculated with T ranging from 1 to 120 days.  Tables 
2-4 show the different Topt obtained for each method at each station and different depths, as 
well as for the area average. T increased as the depth increased (Tables 2, 3), which is in 
agreement with the model assumptions of the SWI and the results obtained in former 
studies (Albergel et al. 2008; Brocca et al. 2010a; Paulik et al. 2014). However, Topt based in the 
R for 0-50 cm (Table 4) showed similar results to those obtained for 25 cm (Table 2), in line 
with the previous comparison between SMOS estimations and in situ soil moisture 
measurements. A feasible explanation for this closeness is that the weighted average for the 0-
50 cm estimation (1) gave more weight to the top soil layers (0 and 25 cm).  
 

<Insert Table 2 here> 
 

<Insert Table 3 here> 
 

<Insert Table 4 here> 
 

Regarding the statistics used, the range of Topt is lower when using R as the decision metric. 
Note that the Topt obtained for the NS score was similar to that obtained for the RMSD in most 
of the stations and for the area average. 
Topt for the 25 cm depth (Table 2) based in R ranged between 1 and 17 for each station and Topt 
based on the NS score is between 1 and 82; the rest of Topt based on the other statistics ranged 
between 1 and 120, without suggesting an ideal T. For the 50 cm depth (Table 3), the Topt value 
based in the R and NS score increases when the in situ depth observations increase. For RMSD, 
cRMSD and bias, there are stations where the Topt remains identical for all depths, whereas in 
other stations Topt is greater for 25 cm (Table 2) than for 50 cm (Table 3), which leads to an 
unrealistic result. 
Figure 5 depicts the shape and evolution of the metrics for T varying from 1 to 120 days. Using 
R to obtain the optimal T (Fig. 5a), similar curve shapes were obtained for all stations, with a 
similar range of R, suggesting R as a consistent metric for obtaining the Topt. For most 
applications it is probably more important to capture the correct temporal pattern of the 
RZSM rather than the absolute value, making the correlation (Fig. 5a) and NS (Fig. 5e) the most 
appropriate metrics. In contrast, the rest of the metrics had a high level of scattering. 
The lack of definition when using RMSD and cRMSD could be explained because in most 
stations, the range between the maximum and minimum values of RMSD and cRMSD is very 
small (~0.015) making the choice of Topt very difficult (Fig 5b, c). The same reasoning can be 
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applied to the Topt obtained through the bias as a control metric, where the Topt had no 
distinguishable values in most stations for all depths (Table 2-4, Fig. 5d). 

<Insert Fig. 5 here> 

The difficulty of defining an optimal T is even more marked when using the bias as the 
reference metric, where the use of different Ts leads to an invariable bias until the fourth 
decimal (Fig. 5d). It can be inferred that the differences (expressed by a single value, the bias) 
between the estimated SWI and the observed soil moisture are negligible, probably due to a 
balance in the negative and positive values resulting in a bias close to zero in all cases. 
Therefore, the RMSD, cRMSD and bias were considered unsuitable for calculating the Topt, and 
therefore they are discarded for further analysis. 
The results showed that for a number of stations Topt is very large. As Topt gets larger the SWI 
time series becomes more and more representative of the RZSM seasonal cycle, but it likely 
does not capture possible short term variations in the RZSM. With this aim, a test using 
anomalies instead of SWI and in situ soil moisture measurements was done (results not 
shown), applying the standard deviation and mean of the five-year records for each day. The 
new Topt calculated with these anomaly series resulted very different than those obtained with 
the original series. Nevertheless, the resulting correlations between the anomalies of soil 
moisture and SWI time series are equally robust than the calculated with both original time 
series, reinforcing the strength of the method. However, the calculation of anomalies using 
means and standard deviations calculated with only five data seemed not statistically reliable, 
and more data are required to draw conclusive results. 
In the study of de Lange et al. (2008), Topt was estimated for each soil texture type using the 
RMSD method and comparing the modeled soil moisture data at different depths with the ERS 
scatterometer-derived SWI. Then, they calculated the SWI for each soil texture type, with its 
corresponding Topt and another conventional Topt=20 days, and found that there were no 
differences in the estimation of the RZSM whether using one specific Topt or a generic Topt, in 
line with the results obtained in other studies (Albergel et al. 2008; Paulik et al. 2014). 
Albergel et al. (2009) found Topt = 14 days for 30 cm using ASCAT soil moisture data. Brocca et 
al. (2010a) found a Topt = 19.5 days for a layer depth of 10 cm, 23 days for 20 cm and 29 days 
for 40 cm, using also ASCAT soil moisture. Those results for Topt are higher than the results 
obtained in the present study using R (4 days for 25 cm and 21 days for 50 cm). Moreover, in a 
previous study over the same area with ERS data, Ceballos et al. (2005) also obtained a higher 
Topt value (40 days) for the 0-25 cm depth. In this case, the discrepancy could be explained by 
the different time interval of the in situ measurements, being daily in the current research and 
fortnightly in the former, and for the different soil moisture probes used.  
Using modeled soil moisture data, Brocca et al. (2010b) obtained Topt values ranging between 
30 and 90 days with ASCAT soil moisture and the correlation coefficient as Topt estimator, for a 
layer depth of 1–1.5 m. Pellarin et al. (2006) used ERS soil moisture data to obtain a Topt = 39 
days, both higher than the Topt obtained in this research. On the contrary, other studies where 
in situ soil moisture at different depths was used for estimating Topt, such as those of Albergel 
et al. (2008) and Ford et al. (2014), found low values for the Topt using the NS statistic. As in situ 
data are less noisy than satellite retrievals it is also not surprising that T values are lower (Su et 
al. 2015). In particular, Albergel et al. (2008) found a Topt = 6 days for a layer of 30 cm in 
SMOSMANIA and SMOSREX networks in France, and Ford et al. (2014) found a Topt=8 days and 
Topt=9 days in two different study areas in the Oklahoma Mesonet and Nebraska Automated 
Weather Data Network in the USA, similar to the Topt values shown in this research. 
Paulik et al. (2014) used different T values with the ASCAT surface soil moisture data to obtain 
SWI at different depths, but they did not find a clear Topt value, and their conclusion is that 
Topt generally increases with the depth of the observed soil.  
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Brocca et al. (2010a) argued that the high variability of Topt obtained in the different studies 
could be due to the different lengths of the data series. However, the period used to calculate 
Topt in our study and the study presented by Albergel et al. (2008) was very different, even 
though the retrieved Topt was similar for all of them.  Hence, one can suspect that the length of 
the series is not so critical.   
A wide range of factors that are poorly understood seemed to influence the Topt retrieval. 
Theoretically, the soil type and the climate would be crucial factors, however, in several 
studies it was shown that the type of soil has no influence and the climate influence is 
uncertain (Paulik et al. 2014). Regarding the database used for calculating Topt, the use of in 
situ soil moisture values or remote-sensed values could lead to large differences in the 
calculated value of T, being more important than the length of the series. 

4.3. Soil Water Index estimated from SMOS 

The SWISMOS was calculated from SMOS L2 and the Topt obtained in the previous subsection. As 
a given example, Fig. 6 show the SWI results for three stations with very different Topt at 25 and 
50 cm depth. At 25 cm, the Topt is very low for F6 (Topt =1, Fig. 6a), intermediate for N9 (Topt =8, 
Fig. 6e) and very high for M9 (Topt =1, Fig. 6c). In these figures it is noticeable how the 
variability of SWI decreases as the Topt increases, i.e., F6 is more variable than N9, which in turn 
is more variable than M9. Same behavior was found at 50 cm depth, where N9 (Topt =25, Fig. 
6f) is more variable than M9 (Topt =43, Fig. 6d) which in turn is more variable than F6 (Topt =71, 
Fig. 6b). In summary, for both 25 and 50 cm depth, it can be seen as for low Topt, the variability 
of the SWI was higher than for large Topt, and for the same reason, the variability of SWI for 25 
cm was higher than for 50 cm, owing its smaller Topt. The SWI results well reproduce the 
expected behavior of soil moisture at the root zone, and in all cases, the temporal cycle is well 
reproduced. 

<Insert Fig. 6 here> 

Figures 7a-c shows the results of the comparison between the soil moisture measurements at 
the different depths and the SWISMOS using the Topt obtained by the R and the NS score. No 
large differences were found between stations in the results for all depths using the different 
Topt. Only a few stations showed differences in correlations, but errors and bias remain in the 
same order of magnitude. 

<Insert Fig. 7 here> 

Regarding the results obtained for the different depths, it was observed that errors were 
higher at 50 cm (Fig. 7b) than they were both at 25 cm (Fig. 7a) and 0-50 cm (Fig. 7c), although 
the correlation was similar. The bias was positive in 9 of the 12 stations for all depths, 
indicating that SWISMOS underestimated the RZSM. Comparing these results with those 
obtained in Section 4.1, it was proven that the SWI improved the estimation of the RZSM as 
compared to the use of the single SMOS L2 as an estimator of RZSM. This improvement took 
place at 25 cm and 0-50 cm, but mostly at a depth of 50 cm, indicating that the SWI is a better 
proxy of the RZSM than the use of only L2 surface soil moisture. 

<Insert Fig. 8 here> 

In a recent work with SMOS data, Ford et al. (2014) showed similar results to those of the 
present study in two different areas in the USA, Oklahoma and Nebraska, even though not all 
stations had significant results, in contrast with the significant correlations found in the 
present study overall (Fig. 7). These authors, together with Albergel et al. (2008) found that 
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although Topt varied strongly among stations in their studies, using the overall average Topt 
based on all stations did not result in a significant decrease of the SWI accuracy. In the current 
research, the area-average Topt was evaluated too, finding similar results to the results 
obtained using a Topt for each station, in line with those works. Fig. 8 showed that using the 
area-average Topt (obtained with R or NS) the correlations were similar to those obtained with 
an individual Topt for each station. 
When the SWI is calculated with other remote-sensing sources of data, the results are within 
the same precision. For example, Ceballos et al. (2005) found higher correlation (R = 0.87) 
between the SWI derived from the ERS scatterometer and in situ observations over the same 
area. Additionally, Wagner et al. (2003) found similar results using multiple stations in Ukraine 
and Brocca et al. (2010a) with ASCAT-derived SWI and in situ soil moisture observations in 
Northern Italy. 

4.4. Plant Available Water 

As for the SWI results, Fig. 9 represents the PAW series for the same stations with Topt low (F6 
at 25 cm, Fig. 9a and N9 at 50 cm, Fig. 9h), intermediate (N9 at 25 cm, Fig. 9g and M9 at 50 cm, 
Fig. 9e) and high (M9 at 25 cm, Fig. 9d and F6 at 50 cm, Fig. 9b). The time evolution of PAWSMOS 
agreed well with the PAWInSitu and followed closely the dry-downs and wetting events. The 
values of Topt seem not to affect the agreement between both time series, PAWSMOS and 
PAWInSitu, but the variability of PAW is similar to that of Topt, being higher for low values. 
Likewise, PAWSMOS time series are more variable for 25 cm than for 50 cm (Topt is smaller for 25 
cm depth in all cases), matching the behavior of the PAWInSitu, which is also more fluctuating at 
25 cm. The in situ measurements respond to the different soil texture at the different layers (in 
general, more sandy in the upper soil layers) and the specific water dynamics in the soil layers 
(the deeper the layer, the steadier the water content). Thereby, the PAW approach agreed 
well with the ground observations. 
Additionally, a slight time lag between PAWSMOS and PAWInSitu was found (e.g., at the beginning 
of autumn in 2010 and 2011), probably due to the faster SMOS response to rainfall events, 
observed in both 25 and 50 cm depths.  
In the particular case of the showed stations (Fig. 9), the PAWInSitu values are higher than the 
PAWSMOS values for both 25 and 50 cm, which could be explained by the previously mentioned 
underestimation found for the SMOS surface soil moisture, which was corroborated in the 
scatterplot of both series (Fig. 9c, f, i). This underestimation was observed in 9 of the 12 
stations used.  
As for the soil moisture series (Fig. 2) from which the PAW is calculated, the PAW showed a 
marked seasonality according with the growing season of the plants. The PAW obtained at 25 
cm has a maximum in the fall, which is maintained until the end of spring, while the minimum 
is reached in summer (except for some storm events as in 2011 or 2012). The water is 
accumulated in this period but not used by plants until the growing season, a period in which 
the PAW decreases accordingly. Overall, the curve of the PAW for 50 cm matches the rainfed 
vegetative cycle. In short, the PAW values obtained in the study area are consistent with the 
water-related behavior of the most common crops in this area.  

<Insert Fig. 9 here> 

The comparison between PAWInSitu and PAWSMOS (Fig. 10) showed good results, with correlation 
coefficients between 0.6 and 0.92 and errors lower than 0.05 m3m-3 for 25 cm. The 0-50 cm 
results are very similar to 25 cm, in line with the results showed before. Better results are 
shown for the 50 cm depth, with higher correlation coefficients and lower errors than for 25 
cm and 0-50 cm in most of the stations. This may be explained by the use of a higher Topt for 
the 50 cm depth, resulting in a smoother curve of the PAW with less variability. Hence, smaller 
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errors and higher correlations can be expected for 50 cm than for 25 or 0-50 cm. Only H9, the 
station with the highest water content, increased the errors from 50 cm to 25 cm. No 
remarkable differences were found when using Topt obtained from the R and the NS methods 
(Fig 10a-c). 

<Insert Fig. 10 here> 

The PAW values obtained here with SMOS were slightly smaller than those obtained using a 
similar methodology with other remote sensing sources (the active sensor ERS) in the same 
area, but using fortnightly Time Domain Reflectometry (TDR) measurements (Ceballos et al. 
2005). The errors obtained there were the same magnitude order to the errors obtained here 
but the correlations resulted higher using SMOS soil moisture. In this line, Wagner et al. (2003) 
found also higher values of PAW using multiple stations in Ukraine with ERS. 

5. CONCLUSIONS

PAW plays an important role in agriculture because it is an indicator of the soil storage 
capacity available for plant use. In this study, the PAW at different soil depths was obtained for 
the period between January 2010 and December 2014 through SMOS L2 surface soil moisture 
and the SWI model, which related the surface soil moisture to the root-zone soil moisture. For 
validating the method, in situ soil moisture measurements at different depths from 
REMEDHUS network (Spain) were used. 
The time series comparison between SMOS surface soil moisture observations and in situ soil 
moisture measurements at the different depths showed good results in the shallower soil 
layers. As expected, the deeper the layer, the worse the agreement, thus, another proxy of the 
RZSM, such as the more complex SWI, was tested. 
The use of the SWI for RZSM estimation involves the selection of a Topt. After the results, the 
selection of the Topt based on the RMSD and cRMSD metrics should be dismissed, because the 
range between the maximum and minimum of these metrics is small, making the selection 
difficult or even impossible. This caveat is much clearer in the selection of the Topt based on the 
bias. In this case, the bias is invariable for all values of T considered, making it impossible to 
decide on a given Topt. On the other hand, the best metrics for selecting the Topt resulted from 
the R and the NS scores. In light of the results obtained for both Topt with the SMOS L2 soil 
moisture product, achieving values of R=0.88 and errors=0.03 m3m-3 for 25 cm and R=0.81 and 
errors=0.035 m3m-3 for 50 cm, the use of the SWI seemed appropriate for the RZSM 
estimation. These results are in line with previous research where soil moisture data from 
other microwave satellites were used. 
It can be concluded that the use of SMOS data with the methodology proposed in this 
research, integrating the SMOS L2 surface soil moisture in the SWI, led to a reasonably good 
estimation of the ground-based PAW. The similarity of PAWInSitu and PAWSMOS is notable, with 
high correlations (R>0.65) and low errors (RMSD and cRMSD < 0.05 m3m-3), providing a realistic 
description of the water content availability for the plants under study. Despite the low depth 
of the soil layer explored by the SMOS satellite, the SWI and PAW estimates have good 
agreement with in situ measurements, which are even better at deep layers than superficial 
ones. Although good results have been obtained, this study is located into a specific region 
and, therefore, the findings cannot be directly generalized. The results are encouraging but it is 
only a first step and much more work has to be done. In this research, soil properties 
measured at the laboratory were used, but these properties are not worldwide available. 
However, the number of soil moisture networks is increasing as well as the number of soil 
moisture stations that report soil properties around the world. In those places where reliable 
soil properties databases are not available, one option is using soil texture databases together 
with pedotransfer functions to obtain soil water parameters. The methodology used in this 
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work should be tested under a wide range of soil characteristics and climate conditions, but 
the results obtained suggest that this new SMOS-derived product could be very useful for 
many future applications. 
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Figure Captions 

Fig. 1. Location of the stations included in the study. 

Fig. 2. SMOS and in situ soil moisture measurements (area-average) at the different depths 
used in the study. Precipitation data is also shown. 

Fig. 3. Results of the comparison between the time series of each in situ station with its 
corresponding SMOS L2 DGG at a) surface, b) 25 cm depth, c) 50 cm depth and d) 0-50 cm 
depth. Area-averaged results are also shown. All the stations are significant at 0.01 confidence 
level. 

Fig. 4. In situ soil moisture measurements and SWI time series from N9 station calculated with 
different T (8, 50 and 100 days) at 25 cm depth. 

Fig. 5. T parameter following the correlation coefficient (a), RMSD (b), cRMSD (c), Bias (d) and 
NS score (e) after the comparison between SWIInSitu and in situ soil moisture measurements at 
25 cm depth. O7 station was removed in NS plot because results were out of range. 

Fig. 6. Results of the comparison between the time series of the SWISMOS (using Topt obtained 
with R and NS score) with the in situ measurement stations at a) 25 cm depth, b) 50 cm depth 
and c) 0-50 cm depth. All the stations are significant at 0.01 confidence level. 

Fig. 7. SWI time series and in situ soil moisture measurements from F6 (a, b), M9 (c, d) and N9 
(e, f) stations at 25 and 50 cm depth, respectively. Precipitation data is also shown. 

Fig. 8. Boxplots of correlations between in situ soil moisture measurements and SWI calculated 
for individual stations and area-averaged at each depth. R Station corresponds to the Topt 
calculated with R for individual stations, R Average corresponds to the Topt calculated with R for 
area-averaged, NS Station corresponds to the Topt calculated with NS for individual stations and 
NS Average corresponds to the Topt calculated with NS for area-averaged. 

Fig. 9. PAW time series from F6 (a, b), M9 (d, e) and N9 station (g, h) calculated with Topt 
obtained by correlation coefficient for SWISMOS and SWIInSitu at 25 cm depth  and 50 cm depth, 
and scatterplot for the comparison between PAWInSitu and PAWSMOS (c, f, i), respectively. 
Precipitation data is also shown. 

Fig. 10. Results of the comparison between the time series of the PAWSMOS and PAWInSitu, with 
Topt obtained with R and NS score at a) 25 cm depth, b) 50 cm depth and c) 0-50 cm depth. All 
the stations are significant at 0.01 confidence level. 
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Station Land use Depth (cm) Texture ΘFC (m
3
m

-3
) ΘWP (m

3
m

-3
) ΘTWC (m

3
m

-3
)

E10 Vineyard 

5 Sandy Loam 0.088 0.028 0.410 

25 Sandy Loam 0.108 0.047 0.367 

50 Sandy Clay Loam 0.193 0.099 0.397 

F6 Vineyard 

5 Sandy Loam 0.229 0.111 0.324 

25 Sandy Clay Loam 0.207 0.113 0.294 

50 Sandy Loam 0.108 0.063 0.347 

H9 
Forest-
Pasture 

5 Silty Clay Loam 0.305 0.205 0.483 

25 Loam 0.232 0.171 0.394 

50 Clay Loam 0.290 0.177 0.489 

H13 
Forest-
Pasture 

5 Sandy Loam 0.158 0.075 0.424 

25 Sandy Loam 0.138 0.071 0.446 

50 Sandy Loam 0.113 0.076 0.447 

J12 Rainfed 

5 Sandy Clay Loam 0.236 0.096 0.483 

25 Sandy Clay Loam 0.228 0.113 0.456 

50 Sandy Clay Loam 0.265 0.168 0.415 

J14 Rainfed 

5 Sandy Loam 0.141 0.041 0.541 

25 Sandy Loam 0.153 0.052 0.377 

50 Sandy Loam 0.156 0.052 0.370 

L3 Vineyard 

5 Loamy Sand 0.125 0.04 0.427 

25 Loamy Sand 0.146 0.056 0.348 

50 Loamy Sand 0.130 0.043 0.370 

M5 Rainfed 

5 Loamy Sand 0.100 0.057 0.357 

25 Loamy Sand 0.125 0.042 0.406 

50 Loamy Sand 0.071 0.043 0.507 

M9 Rainfed 

5 Sandy Clay Loam 0.226 0.137 0.519 

25 Sandy Clay Loam 0.238 0.124 0.527 

50 Loam 0.214 0.146 0.508 

N9 Rainfed 

5 Sandy Clay Loam 0.220 0.082 0.558 

25 Sandy Loam 0.274 0.140 0.536 

50 Loam 0.334 0.218 0.544 

O7 Rainfed 

5 Loamy Sand 0.076 0.021 0.512 

25 Sandy Loam 0.093 0.035 0.447 

50 Loamy Sand 0.083 0.035 0.468 

CAR Rainfed 

5 Loam 0.256 0.137 0.505 

25 Sandy Clay Loam 0.239 0.127 0.515 

50 Sandy Clay Loam 0.218 0.109 0.500 

Table 1. Land use, texture, field capacity (ΘFC), wilting point (ΘWP) and total water capacity (ΘTWC) at the different 

depths of each REMEDHUS station used in the study. 

Table 1



E10 F6 H9 H13 J12 J14 L3 M5 M9 N9 O7 CAR Area-Average 

R 1 1 2 1 2 3 4 2 17 8 12 14 4 

RMSD 1 10 12 13 1 5 5 119 120 9 82 16 9 

cRMSD 1 10 120 16 2 6 6 25 15 8 120 16 6 

Bias 1 15 1 1 1 1 120 1 120 120 18 1 1 

NS 1 10 12 13 1 5 5 5 15 9 82 16 6 

Table 2. Topt obtained by the different metrics at 25 cm depth. 

Table 2



E10 F6 H9 H13 J12 J14 L3 M5 M9 N9 O7 CAR Area-Average 

R 27 71 11 12 20 10 19 19 43 25 20 120 21 

RMSD 10 120 120 14 15 13 120 46 40 120 71 106 45 

cRMSD 19 120 120 17 16 24 120 120 39 51 120 101 38 

Bias 1 120 1 1 1 1 20 1 120 120 26 120 120 

NS 10 120 120 14 15 13 120 46 40 120 71 106 44 

Table 3. Topt obtained by the different metrics at 50 cm depth. 

Table 3



E10 F6 H9 H13 J12 J14 L3 M5 M9 N9 O7 CAR Area-Average 

R 1 4 1 1 5 2 4 1 19 9 3 17 6 

RMSD 1 47 13 5 4 6 9 9 19 13 51 27 11 

cRMSD 1 32 14 6 4 7 9 23 19 12 120 27 11 

Bias 1 120 1 1 1 1 120 1 120 120 26 1 120 

NS 1 47 13 5 4 6 9 9 19 13 51 27 11 

Table 4. Topt obtained by the different metrics at 0-50 cm depth. 

Table 4




