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Abstract 27 

Active and passive microwave remote sensing techniques provide an effective way to observe 28 

soil moisture contents. We validated Advanced Scatterometer (ASCAT) and Advanced 29 

Microwave Scanning Radiometer – Earth Observing System (AMSR-E) sensor products 30 

using estimations from nine different stations located in the Korean peninsula, in northeast 31 

Asia from May 1 to September 30, 2010. The results of the surface soil moisture (SSM) 32 

products showed reasonable agreement with the average correlation coefficient (R) values of 33 

0.39, 0.42, and 0.53 for the National Snow and Ice Data Centre (NSIDC), Vrije Universiteit 34 

Amsterdam – National Aeronautics and Space Administration (VUA-NASA) AMSR-E, and 35 

ASCAT SSM datasets, respectively. The root zone soil moisture (RZSM) products, derived 36 

using the NSIDC soil water index (SWI), the United States Department of Agriculture 37 

(USDA) AMSR-E, and the ASCAT SWI datasets showed relatively high R values of 0.47, 38 

0.72, and 0.75, respectively, with in situ soil moisture at a depth of 20 cm. In particular, 39 

AMSR-E USDA RZSM data show best agreements with in-situ data at 20 cm, among the 40 

four depths (10, 20, 30, and 50 cm). In this study, the ASCAT SSM and SWI were rescaled 41 

based on the porosity and the effective saturation according to soil texture. Renormalized soil 42 

moisture products using three renormalization methods: the linear regression correction 43 

(REG), average-standard deviation (µ σ− ), and cumulative distribution function (CDF) 44 

provided an improvement in biases and RMSEs, with SSM (SWI) RMSEs of 0.04 (0.02), 45 

0.05 (0.03), and 0.05 (0.03) m3/m3 for REG, µ σ− , and CDF matching, respectively. A 46 

Taylor diagram was used to assess the accuracy of four satellite soil moisture products with in 47 

situ data on a plot. Based on these results, ASCAT soil moisture products were potentially 48 

proven to be more appropriate than AMSR-E products in northeast Asia. Remotely sensed 49 

soil moisture datasets from passive (AMSR-E) and active (ASCAT) sensors are beneficial to 50 
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operational hydrological investigations and water management activities. 51 

Keywords 52 

Remotely sensed soil moisture, AMSR-E, ASCAT, root zone soil moisture, validation53 
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1. Introduction 54 

Soil moisture (SM) is an essential variable in the hydrological cycle, although it occupies 55 

only 0.15% of the liquid freshwater on the earth (Western et al., 2002). It plays an important 56 

role in hydrological and meteorological activity, together with weather, climate predictions, 57 

water resources and irrigational management, as well as hazard analysis. Since 2010, it has 58 

been considered an essential climate variable (ECV) by the World Meteorological 59 

Organization (WMO, 2010). SM has strong spatio-temporal variability, caused by the 60 

heterogeneity of soil properties, land cover, vegetation, and topography, as well as climate 61 

conditions (Brocca et al., 2007; Cho & Choi, 2014; Choi & Jacobs, 2007; Famiglietti et al., 62 

2008; Jacobs et al., 2004; Schmugge et al., 2002; Sur et al., 2013). At present, ground-based 63 

SM measurement methods, such as neutron probes, time-domain reflectometry (TDR), and 64 

frequency-domain reflectometry (FDR), provide accurate moisture contents estimation at 65 

point scale. With the growing need for large-scale observations of the spatial patterns of soil 66 

moisture, there has been an increased focus on the use of remote sensing techniques 67 

(Schmugge et al., 2002; Jackson et al., 2010).  68 

Remote sensing instruments, including aircraft or satellites with active and passive 69 

microwave sensors, have facilitated the measurement of the surface soil moisture for large 70 

areas (Njoku & Entekhabi, 1996),  including the spatial and temporal characterization of 71 

surface fields (Njoku et al., 2002). Microwave sensors can observe SSM, as the effects of 72 

moisture change on the emissivity or backscattering of the surface (Njoku et al., 2003). In 73 

particular, satellites using passive or active microwave sensors have been demonstrated to 74 

provide useful retrievals of near-surface soil moisture variations, at both regional and global 75 

scales (Gruhier et al., 2010; Jackson et al., 2002; Wagner et al., 1999b). The inter-comparison 76 

and validation of remotely sensed soil moisture products is a challenging task, because of the 77 
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differences between satellite and ground based measurements at both spatial and temporal 78 

scales (Jackson et al., 1996, 2010). 79 

Since the Scanning Multichannel Microwave Radiometer (SMMR), the first passive 80 

microwave sensor on a satellite, was in operation from 1978 to 1987, there has been a series 81 

of passive microwave sensors capable of providing soil moisture data. Most notable are the 82 

Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI; 1997-present), the 83 

Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E; 84 

2002-2011), WindSat (2003-present), and the Soil Moisture and Ocean Salinity Mission 85 

(SMOS; 2009-present). The most recent instrument is the Advanced Microwave Scanning 86 

Radiometer 2 (AMSR2), which was launched by the Japan Aerospace Exploration Agency 87 

(JAXA) on the Global Change Observation Mission – Water (GCOM–W) in May 2012.  88 

Active microwave instruments, such as the SCATterometer (SCAT) onboard European 89 

Remote Sensing (ERS-1 and ERS-2; 1991-2000, 1995-2011), and Advanced SCATterometer 90 

(ASCAT; 2007-present) onboard the Meteorological Operational satellite programme–A 91 

(MetOp-A), have carried out SSM measurement (Wagner et al., 1999b, 2013). Recently 92 

(September 2012), MetOp-B was developed as a joint undertaking between the European 93 

Space Agency (ESA), and the European Organization for the Exploitation of Meteorological 94 

Satellites (EUMETSAT). The World Meteorological Organization (WMO) has also 95 

increasingly recognized the importance of the use of earth observation satellites for soil 96 

moisture monitoring (WMO, 2013). Furthermore, the Soil Moisture Active and Passive 97 

(SMAP) launch, headed by the NASA, is planned for January 2015. The SMAP measurement 98 

approach uses two microwave instruments (an L-band synthetic aperture radar and an L-band 99 

radiometer), integrating these data in order to make high resolution (9-km) and high-accuracy 100 

measurements. This mission will provide global soil moisture measurements present at the 101 
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Earth’s land surfaces and, in particular, will differentiate frozen from thawed land surfaces 102 

(Entekhabi et al., 2010a). Moreover, MetOp-C, the third and final satellite from the MetOp 103 

mission, will be launched in 2016, following MetOp-B, in order to provide continuous 104 

measurements of high-quality data, monitoring long-term weather and climate conditions 105 

until at least 2020. GCOM-W2, the 2nd flight unit of the GCOM-W program, is also 106 

expected to contribute to the monitoring of hydrological variables in 2016 (available online at 107 

http://www.wmo-sat.info/oscar/satellites). These continual satellite launches for the purpose of soil 108 

moisture observations will enable researchers to accelerate the development of remote 109 

sensing techniques.  110 

Several studies demonstrated that blending observations taken from different satellite 111 

sensors were known as a promising approach in various fields (Liu et al., 2012; Yilmaz et al., 112 

2012). Various researches using satellite soil moisture data have also consistently progressed 113 

in terms of applications, such as drought (Bolten et al., 2010; Zhang and Jia, 2013), runoff 114 

modeling (Brocca et al., 2010b, 2012), and flood forecasting (Bindlish et al., 2009). Recent 115 

validation studies have been conducted for satellite SSM retrievals (AMSR-E, SMOS, and 116 

ASCAT) comparing with in situ measurements for Europe, the United States and Australia 117 

(Albergel et al., 2012; Brocca et al., 2011; Su et al., 2013; Gruhier et al., 2010; Parinussa et 118 

al., 2013; Parrens et al., 2012). A few validation studies of the remotely sensed RZSM also 119 

have been performed (Albergel et al., 2008; Brocca et al., 2010a; Paulik et al., 2014).  120 

In the current study, we evaluate the remotely sensed SSM and RZSM data, derived from 121 

active (ASCAT) and passive (AMSR-E) microwave sensors, by comparing it with ground 122 

based soil moisture measurements (10, 20, 30, and 50 cm) in northeast Asia. The three kinds 123 

of AMSR-E soil moisture retrievals were used for validation and inter-comparison: 1) NSIDC 124 

AMSR-E Level 3 SSM retrievals from the National Snow and Ice Data Centre (NSIDC), 2) 125 
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VUA-NASA AMSR-E developed by the Vrije Universiteit Amsterdam (VUA) with the 126 

National Aeronautics and Space Administration (NASA), and 3) USDA AMSR-E RZSM data 127 

using VUA-NASA SSM products. Moreover, ASCAT Level 3 SSM and SWI derived by the 128 

Vienna University of Technology (TU-Wien) were used. Unfortunately, the SMOS satellite 129 

data could not be used in this study, because of unavailability of the soil moisture data for 130 

northeast Asia due to Radio Frequency Interference (RFI) (Kerr et al., 2012; Leroux et al., 131 

2013). 132 

The main purpose of this study was to assess the accuracy of AMSR-E and ASCAT satellite-133 

based SSM and RZSM products, and to determine which sensor was in better agreement with 134 

the ground based soil moisture patterns in northeast Asia. In particular, the satellite soil 135 

moisture products were systematically compared with in situ observations from nine different 136 

sites located in the Korean peninsula from May 1 to September 30, 2010. This research will 137 

be helpful to determine the accuracy of remotely sensed SSM and RZSM retrieval, as well as 138 

the expansion of various applications, such as drought monitoring, flood forecasting, and 139 

hydrological modeling. 140 

2. Description of the study area and dataset 141 

2.1. Ground Soil Moisture Measurement in the study area 142 

Ground soil moisture observations are routinely used to evaluate remotely sensed SSM and 143 

RZSM. In the Korean peninsula, located in the middle (34-39°N and 126-130°E) of northeast 144 

Asia, ground soil moisture data were periodically collected at four different depths (10, 20, 145 

30, and 50 cm), approximately over twenty sites installed by the Korea Meteorological 146 

Administration (KMA). On the basis of data quality and availability, eight sites, Suwon, 147 

Seosan, Jeonju, Cheorwon, Chuncheon, Andong, Cheongju, and Jinju, were selected for this 148 
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validation study. We also selected an additional site, Seolmalcheon (SMC), operated by the 149 

Hydrological Survey Center (HSC), for using the ground soil moisture (10 cm) measurements 150 

(Fig. 1). Table 1 shows the main characteristics of each site: location (latitude, longitude and 151 

elevation), climate (mean annual rainfall, temperature and relative humidity), and physical 152 

characteristics (soil texture and land use). The climate is humid, and the annual rainfall 153 

ranges from 1074 to 2014 mm in the northern Korean peninsula. The heaviest rainfall usually 154 

occurs in summer, due to the East Asian monsoon (Kim et al., 2002; KMA, 2006). Most of 155 

the soil types are sandy loam and loam, and the land uses are urban, cropland, and mixed 156 

forest. In this study, the ground measured soil moisture data were collected by Frequency 157 

Domain Reflectometry (FDR), on an hourly basis. FDR sensor sends an electromagnetic 158 

wave along its probes, and measures the frequency of the reflected wave, which varies with 159 

the soil water content. Compared to Time Domain Reflectometry (TDR), FDR has several 160 

advantages. FDR is economical and requires lower electric power consumption and it enables 161 

users to continuously monitor soil moisture at several remote locations using automated data 162 

loggers (Veldkamp & O’Brien, 2000). 163 

2.2. Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) 164 

The AMSR-E instrument on board the Aqua satellite provided global microwave 165 

measurements using different bands (56 km for the C band, 38 km for the X band, and 12 km 166 

for the Ka band) from May 2002 to October 2011, with daily ascending (13:30, equatorial 167 

local crossing time) and descending (01:30, equatorial local crossing time) overpasses, over a 168 

swath width of 1445 km (Njoku et al., 2003, Njoku, 2010). We used different types of 169 

AMSR-E soil moisture products (Table 2): 1. NSIDC’s X-band based SSM and RZSM 170 

products (Njoku et al., 2003), 2. VUA-NASA’s C- and X-band based SSM products (Owe et 171 

al., 2008), and 3. USDA’s C-band based RZSM products (Bolten et al., 2010; Bolten & Crow, 172 
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2012). 173 

The NSIDC soil moisture retrieval algorithm is based on an iterative multichannel inversion 174 

procedure to compare the observed brightness temperatures, and the computed brightness 175 

temperatures. It is mainly affected by the volumetric water content of the soil, vegetation 176 

water content, and soil temperatures. For detailed descriptions of the algorithm, readers 177 

referred to Njoku et al. (2003). In response to RFI in the C-band AMSR–E data across much 178 

of North America and East Asia, the current version of NSIDC AMSR-E soil moisture was 179 

applied only to the X-band (Njoku et al., 2005; Draper et al., 2009). The VUA-NASA soil 180 

moisture products were retrieved using the Land Parameter Retrieval Model (LPRM). The 181 

LPRM is based on a radiative transfer model that looks for geophysical variables (SSM, 182 

vegetation water content, and soil/canopy temperature) to the brightness temperatures (Tb). It 183 

uses the dual polarized channel (either C-band 6.9 or X-band 10.6 GHz) for the retrieval of 184 

both SSM, and vegetation water content (VWC) (Owe et al., 2001, 2008). The vegetation 185 

optical depth is parameterized as a function of the microwave polarization difference index 186 

(MPDI):  187 

b(V) b(H) b(V) b(H)( ) / ( )MPDI T T T T= − +  (1) 188 

where b(V)T and b(H)T are the vertical and horizontal brightness temperatures, respectively. 189 

For frequencies less than 10 GHz, the MPDI has relevance to the canopy and soil emission, 190 

and the soil dielectric properties. The soil emissivity is affected by soil moisture, by the effect 191 

of moisture on the soil dielectric constant (Meesters et al., 2005; Owe et al., 2008; de Jeu et 192 

al., 2014). We used an updated version of the AMSR-E soil moisture product derived by the 193 

VUA in collaboration with NASA. 194 

The USDA RZSM data was derived by the assimilation of Land Parameter Retrieval Model 195 
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(LPRM) SSM retrievals (C-band, descending time), into the 2-Layer Palmer Water Balance 196 

Model (Bolten et al., 2010; Bolten & Crow, 2012). This data were downloaded from 197 

ftp://hydro1.sci.gsfc.nasa.gov/data/s4pa/WAOB/LPRM_AMSRE_D_RZSM3.001/. We 198 

extracted the Level 3 soil moisture values directly from the AMSR-E L3 Daily Land data 199 

files. The ground based soil moisture data were extracted at the Aqua satellite overpass time.  200 

2.3. Advanced Scatterometer (ASCAT) 201 

ASCAT is a real-aperture radar sensor measuring radar backscatter at C-band in VV 202 

polarization, with a radiometric accuracy better than 0.3 dB (Verspeek et al., 2010). It has a 203 

sun-synchronous orbit at 817 km, with equator crossing at 21:30 and 09:30. Measurements 204 

occur on both sides of the sub satellite track; therefore, two 550 km wide swaths of data are 205 

produced, with a spatial resolution of 25 km, resampled to a 12.5 km grid. Because ASCAT 206 

operates continuously, more than twice of the European Remote-sensing Satellite (ERS) 207 

scatterometer provided coverage (Bartalis et al., 2007). The C-band backscatter 208 

measurements are converted to soil moisture estimates, by applying the Technische 209 

Universität (TU) Wien soil moisture retrieval algorithm (Wagner et al., 1999b; Naeimi et al., 210 

2009). In this study, the ASCAT soil moisture products of the WARP version 5.5 (release 1.2) 211 

of the retrieval algorithm were used (https://rs.geo.tuwien.ac.at/products). 212 

Wagner et al. (1999b) proposed a method to calculate the SSM content from the 213 

backscattering measurements at a reference angle of 40°, using the lowest (dry) and highest 214 

(wet) values over a long period. The SSM content sm  is estimated by a processing step, 215 

using 216 

0 0

0 0

dry
s

wet dry

m
σ σ
σ σ

−
=

−
(2) 217 
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where 0
dryσ  and 0

wetσ  represent the backscattering values at completely dry and wet 218 

conditions, and 0σ  is the present backscatter measurement. Soil moisture variations are 219 

adjusted between the historically lowest (0%) and highest (100%) values, producing a time 220 

series of relative soil moisture for the topmost centimeters of the soil (Wagner et al., 1999b, 221 

2007).  In order to estimate the root-zone profile soil moisture, the semi-empirical approach 222 

proposed by Wagner et al. (1999b), also called an exponential filter, is used to obtain the SWI 223 

values from the SSM, sm . 224 

( )
( )

i

i

t t

T
s i

i
t t

T

i

m t e
SWI t

e

−−

−
−

⋅
=
∑

∑

for it t< (3) 225 

The SWI at time t,	 ( )s im t  is the SSM estimated from remote sensing at time it . T is the 226 

characteristic time length, in units of day. In this study, we used SWI values at T = 1, 5, 10, 227 

15, and 20 to compare with the root zone soil moisture contents (in situ data at 20, 30, and 228 

50cm and USDA AMSR-E) in Table 8. In particular, we compared the in situ data (20 cm) 229 

and SWI values at T=5 based on maximizing the correlation with in-situ root zone soil 230 

moisture measurements during the growing seasons (May 1 through September 30, 2010). 231 

3. Methods 232 

The passive (AMSR-E) and the active (ASCAT) sensor soil moisture products, the C- and 233 

X-band observations, represent a layer depth of 2cm (Naeimi & Wagner, 2010, Escorihuela et 234 

al., 2010), were compared with in situ observations at depths of 10, 20, 30, and 50 cm. 235 

ASCAT and AMSR-E soil moisture products are characterized by different measurement 236 

units. AMSR-E products are expressed as volumetric values (3 3m m−
 or	 3/g cm ), in absolute237 
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terms. On the other hand, ASCAT products are relative concept, represented by a degree of 238 

saturation between 0 and 100%. We suggested a simplistic equation to rescale the ASCAT 239 

product, based on the physical concept, the effective saturation (es ), of the Green-Ampt 240 

infiltration model (Brooks & Corey, 1964; Rawls et al., 1983). To solve for the systematic 241 

differences between the remotely sensed SM and the in situ measurements, the linear 242 

regression correction (REG), mean/standard-deviation (µ σ− ) matching, and cumulative 243 

distribution function (CDF) matching approaches are implemented (Albergel et al., 2012; 244 

Brocca et al., 2011; Draper et al., 2009; Jackson et al., 2010; Lacava et al., 2010; Liu et al., 245 

2011; Su et al., 2013; Scipal et al., 2008). 246 

3.1 Effective saturation of soil texture classes 247 

The concept of effective saturation (es ) (Brooks & Corey, 1964; Rawls et al., 1983) was 248 

employed in order to compare ASCAT soil moisture values (degree of saturation, %) with 249 

AMSR-E soil moisture contents (volumetric units, m3/m3). The ASCAT soil moisture data are 250 

relative values, which are estimated according to the degree of the difference between the 251 

saturated and residual water contents. In this study, the ASCAT SSM content was rescaled 252 

from the degree of saturation (%) to the volumetric units (m3/m3) by considering the soil 253 

porosity (Wagner et al., 2013). The ASCAT SWI was estimated by factoring in the residual 254 

water content (rθ ) as well, rather than just the total porosity (η ). This is because SWI is one 255 

of the RZSM index which should consider the residual water content as a characteristic of the 256 

root zone soil. 257 

r r
e

r e

s
θ θ θ θ
η θ θ

− −= =
− (4) 258 



13 

where es  = effective saturation, θ  = soil moisture content, rθ  = residual water content, 259 

and η  = total porosity. The effective saturation (es ) is the ratio of the available moisture, 260 

rθ θ− , to the maximum possible available moisture content, rη θ− , where rη θ−  is called 261 

the effective porosity eθ . The effective saturation (es ) has a range of 0 ≤ es  ≤ 1.0, provided 262 

rθ  ≤ θ  ≤ η . If the specific area is saturated by rainfall, the in situ soil moisture content 263 

will become equal to the total porosity (η ) at that time; while during completely dry time, the 264 

soil moisture becomes the residual water content (rθ ). Rawls et al. (1983) showed that the 265 

effective porosity (eθ ) depends on the soil texture class. We assumed that the ASCAT’s 266 

historically lowest and highest values were the residual water content (rθ ) and effective 267 

saturation (es ), respectively. The rescaled ASCAT values 
rescaledASCATθ were calculated by: 268 

( ) /100
rescaled originalASCAT ASCAT e rθ θ θ θ= ⋅ + (5) 269 

where 
originalASCATθ is the original ASCAT soil moisture data (degree of saturation, %), and 270 

rescaledASCATθ is the rescaled ASCAT soil moisture data (volumetric soil moisture contents, 271 

m3/m3). The rescaled values were able to compare between ASCAT and other passive sensor 272 

products or in situ measurements, expressed as volumetric soil moisture contents (m3/m3). 273 

The ASCAT data was rescaled from the percentage of saturation to the volumetric unit by 274 

considering the effective saturation and residual water contents. We selected a dominant soil 275 

texture within the each footprint from the Korean soil information system 276 

(http://soil.rda.go.kr). The rescaled ASCAT datasets applied by this method can be more 277 

accurately converted than the datasets using just total porosity, though there are somewhat 278 

uncertainties due to the wide range of the effective porosity and residual water contents, even 279 

amongst the same soil type. Therefore, we applied the concept of effective saturation to the 280 
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ASCAT SWI data, prior to the renormalization methods using the Green and Ampt infiltration 281 

parameters, with typical ranges of η , rθ  and eθ  according to the soil texture classes 282 

(Rawls et al., 1983). 283 

3.2 Comparison metrics 284 

A two-dimensional Taylor diagram (Taylor, 2001) is used to represent multiple statistics for 285 

an inter-comparison between satellite soil moisture products and in situ data on a plot. The 286 

SDV and E are given by: 287 

satellite

in situ

SM

SM

stdev
SDV

stdev
−

=                                                          (6) 288 

2 2
2

2

in situSM

RMSE Bias
E

stdev
−

−=                                                        (7) 289 

2 2 1 2E SDV SDV R= + − ⋅ ⋅                                                   (8) 290 

SDV is the normalized standard deviation that indicates the ratio between the satellite data 291 

and in situ measurements. In this diagram, the SDV and R values are shown as a radial 292 

distance and an angle respectively, and the in situ observation is displayed as a point on the x 293 

axis at R = 1 and SDV=1. The centered root mean square error (E) between the satellite and in 294 

situ soil moisture, which is normalized by
in situSMstdev

−
, the standard deviation of the in situ 295 

observations, is the distance to this point. This diagram has been in previous researches for 296 

comparison and for validation studies related to satellite-based products (de Rosnay et al., 297 

2009; Albergel et al., 2012; Liu & Xie, 2013).  298 

The three following statistical indexes are used to estimate the satellite soil moisture product 299 
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accuracy: 300 

satellite in situBias SM SM −= −∑ (9) 301 

2( )satellite in situRMSE SM SM −= −∑ (10) 302 

2

2

( )
1

( )
satellite in situ

in situ in situ

SM SM
R

SM SM

−

− −

−
= −

−
∑

∑
(11) 303 

where Bias is the mean value of the differences for each time, and RMSE is the root mean 304 

squared error between the in situ soil moisture measurements, in situSM − , and the satellite soil 305 

moisture product, satelliteSM . R is the correlation coefficient. 306 

3.3 Renormalization methods: Linear regression correction, µ σ−  and CDF matching307 

Three renormalization strategies are implemented in order to make inter-comparisons 308 

between different satellite soil moisture products. The first approach, linear regression 309 

correction (Jackson et al., 2010; Brocca et al., 2011), is based on a linear regression equation 310 

between the satellite and in situ soil moisture values. Standard linear regression minimizes 311 

the squared-differences between satellite-data and in situ data (i.e., providing the least-square 312 

solution that minimizes the residual). It provides the match of the satellite data to the in situ 313 

data in the least-square sense, under the assumption that measurement errors are absent in the 314 

in situ data (Su et al., 2014). The second average - standard deviation (µ σ− ) matching 315 

(Draper et al., 2009, Su et al., 2013), matches their means and variances using:  316 

ˆ ( )i
s i s s

s

σϑ µ ϑ µ
σ

= + −  (12) 317 
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where ŝϑ  = Normalized satellite data, iµ  = mean values of the in situ data, iσ  = standard 318 

deviations of the in situ data, sσ = standard deviations of the satellite data, sϑ  = satellite 319 

data, and sµ  = mean values of the satellite data. Lastly, the CDF matching (Reichle & Koster, 320 

2004; Drusch et al., 2005; Scipal et al., 2008; Lacava et al., 2010; Liu et al., 2011; Brocca et 321 

al., 2011; Albergel et al., 2012; Su et al., 2013) is a non-linear method used to remove 322 

systematic differences between two datasets, and to match the CDF of the satellite retrievals 323 

to the CDF of the in situ soil moisture. The CDF matching approach was applied to each grid 324 

individually, enabling us to efficiently remove the bias and variance error in the local grid. 325 

Liu et al. (2011) applied a piece-wise linear CDF matching, dividing the CDF curve into 12 326 

segments. In this study, CDF method is applied to the ASCAT and AMSR-E (NSIDC, VUA-327 

NASA, USDA) products using the EasyFIT application. This method was used as a data 328 

analysis tool, allowing us to match one satellite data to in-situ data by using the 329 

corresponding cumulative distributions, respectively. The user can select the best CDF model 330 

depending on the chosen goodness of fit tests and use this CDF model to renormalize the 331 

investigated satellite data (http://www.mathwave.com/help/easyfit/index.html). 332 

It should be noted that these renormalization approaches have the possibility of generating 333 

artificial biases and thus become regarded a sub-optimal works in order to remove the biases 334 

(Yimaz and Crow, 2013; Su et al., 2014). If certain conditions for datasets were met (mutual 335 

linear relationship, independence of errors, and long enough datasets), it would be optimal to 336 

use the triple collocation analysis (TCA) based rescaling factors and the lagged variables (LV) 337 

method in hydrological assimilation studies (Yilmaz and Crow, 2013; Su et al., 2014). In this 338 

study, despite the fact that the three rescaling methods (REG, µ σ− , and CDF) provide only 339 

approximations as the sub-optimal estimation, they can be used to assess the accuracy of 340 

satellite soil moisture retrievals and inter-compare between different satellite products, 341 
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proven by as previous studies (Brocca et al., 2011; Su et al., 2013). 342 

4. Results and discussion 343 

4.1 Evaluation of AMSR-E surface soil moisture (NSIDC, VUA-NASA) 344 

The two AMSR-E soil moisture products developed by the NSIDC and VUA-NASA were 345 

validated using the in situ measurements (10 cm) provided by the KMA and HSC for the 346 

study period of 2010 (May 1 to September 30), at nine sites located on the Korean peninsula. 347 

The pixel values representing each ground measurement site were extracted from satellite 348 

based soil moisture products. Temporal variations of the SSM for the NSIDC, VUA-NASA 349 

and ASCAT products and the RZSM for the NSIDC SWI, USDA and ASCAT SWI products 350 

in situ data are given in Figs. 2a and b. 351 

Fig. 2a shows that the NSIDC AMSR-E SSM products only reacted slightly to the rainfall 352 

events, compared with the other soil moisture products and were underestimated. The NSIDC 353 

soil moisture showed mean values ranging from 0.09 to 0.14 m3/m3, and standard deviations 354 

of the soil moisture ranging from 0.01 to 0.02 m3/m3. This low temporal variability and 355 

underestimated patterns of the NSIDC soil moisture had been previously found by several 356 

NSIDC AMSR-E validation studies (Wagner et al., 2007; Gruhier et al., 2008; Jackson et al., 357 

2010; Choi, 2012). In particular, these results corresponded with those of Choi (2012), which 358 

validated the AMSR-E product using ground based measurements and the Common Land 359 

Model (CLM), for two major land cover types in Korea. The correlation coefficients between 360 

the NSIDC products and in situ measurement values ranged from 0.11 to 0.61 (Average = 361 

0.39). Table 3 shows that biases ranged from -0.14 to 0.02 (Average = -0.05 m3/m3), while the 362 

RMSE ranged from 0.02 to 0.16 (Average = 0.08 m3/m3).  363 
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We evaluated the accuracy of the VUA-NASA soil moisture products (C- and X-band), by 364 

comparing them with ground based measurements, according to ascending / descending pass. 365 

It is worthy of note that the C-band VUA-NASA data have higher correlation than the X-366 

band data for all of the sites (Table 4). This implies that the C-band soil moisture products 367 

were more reliable than the X-band products, which are further recommended for use in 368 

northeast Asia, where RFI was observed (Njoku et al., 2005). It is also worth noting that the 369 

ascending AMSR-E data had good agreement with the ground-based measurements compared 370 

with the descending data, regardless of the band type in this study (Table 4). These results 371 

supported the findings of Loew et al. (2009) and Brocca et al. (2011). Brocca et al. (2011) 372 

pointed out that ascending AMSR-E data provided higher correlations with site-specific data 373 

in Europe because the ascending passes (day-time) data had the vegetation transparent effects 374 

by high temperatures during the day.  375 

Considering the results of Fig. 2a, the VUA-NASA soil moisture products (C-band and 376 

descending pass) clearly responded to rainfall events and showed reasonable agreement with 377 

the ground-based measurements in contrast to the NSIDC soil moisture products. In these 378 

graphs, we can see the temporal variations, as the values increased during rainfall and 379 

decreased after rainfall events. While the in situ soil moisture ranged from 0.11 to 0.27 m3/m3, 380 

the VUA-NASA soil moisture showed higher average values, ranging from 0.33 to 0.44 381 

m3/m3 (Table 3). The standard deviations of the in situ soil moisture measurements ranged 382 

from 0.03 to 0.05 m3/m3. The VUA-NASA products had a higher standard deviation, ranging 383 

from 0.07 to 0.13 m3/m3. The correlation coefficients ranged from 0.19 to 0.60 (Average: 384 

0.42), the biases ranged from 0.10 to 0.27 (0.20 m3/m3), and the RMSE ranged from 0.13 to 385 

0.29 (Average: 0.22 m3/m3).  386 

These results match up with several recent studies that VUA-NASA products were better 387 



19 

correlated with ground soil moisture measurements than NSIDC products, and implied that 388 

AMSR-E data was suited to VUA-NASA soil moisture retrieval, and that long wavelengths 389 

(C-band) penetrated deeper into vegetation and soil than short wavelengths (X-band) (Choi, 390 

2012; Draper et al., 2009; Rudiger et al., 2009; Wagner et al., 2007). In comparison with 391 

previous studies, the correlation between the VUA-NASA soil moisture and in situ 392 

measurements in this study area was lower than for other regions, such as America (Jackson 393 

et al., 2010), Europe (Wagner et al., 2007), West Africa (Gruhier et al., 2010) and Australia 394 

(Draper et al., 2009; Su et al., 2013). These results suggest that northeast Asia including the 395 

Korean peninsula is more affected by RFI as well as relatively heterogeneous land cover 396 

within the footprint than these validated sites (Choi, 2012). 397 

4.2 Evaluation of AMSR-E root zone soil moisture (NSIDC SWI, USDA) 398 

The NSIDC AMSR-E RZSM products were calculated using the exponential filter method 399 

in order to compare other RZSM products (USDA and ASCAT SWI). The NSIDC SWI 400 

showed that the average and standard deviation values ranged from 0.09 to 0.14 m3/m3, and 401 

0.00 to 0.02 m3/m3, respectively (Table 5). The correlation coefficients between these 402 

products and the in situ measurement values (20 cm) ranged from 0.16 to 0.72 (Average: 403 

0.47). The NSIDC SWI products had higher correlation values than the NSIDC SSM 404 

products (0.39) for all of the sites, with the exception of Suwon. These results are slightly 405 

better than a previous study that was performed in Europe (Brocca et al., 2011), which 406 

showed that the average R values of the NSIDC SWI products were equal to 0.45 and 0.20 407 

with in situ measurements at 5 cm (surface) and 10-30 cm (root zone), although modified by 408 

the application of CDF matching method, respectively. 409 

The AMSR-E RZSM is derived by the USDA, via the assimilation of VUA-NASA soil 410 
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moisture retrievals into the 2-Layer Palmer Water Balance Model, using the Ensemble 411 

Kalman filter (EnKF). We executed a correlation analysis between the in situ soil moisture 412 

(10, 20, 30, and 50 cm) and USDA RZSM, in order to confirm which depth has the highest 413 

correlation coefficients. As this dataset was designed to only use the C-band soil moisture at a 414 

descending overpass time (1:30 am), in situ measurements were also extracted at the same 415 

time. Fig. 2b shows that the USDA products overestimate the soil moisture, and have a large 416 

bias, as compared to the in situ measurements. The biases ranged from 0.14 to 0.40 m3/m3 417 

(Average: 0.28 m3/m3), and the RMSE ranged from 0.15 to 0.41 (Average: 0.29) in Table 5. 418 

The USDA soil moisture showed that the average and standard deviations values ranged from 419 

0.40 to 0.61 m3/m3, and 0.04 to 0.10 m3/m3, respectively. Table 8 shows the correlation 420 

coefficient values between the USDA RZSM and the in situ soil moisture measurements at 421 

nine sites. The average R values were equal to 0.70, 0.72, 0.64 and 0.52, at 10, 20, 30, and 50 422 

cm depth, respectively. In particular, the R values at 20 cm depth ranged from 0.47 to 0.88 423 

(Average: 0.72), showing the highest R-values of all of the AMSR-E products. Most of the 424 

study sites had good correlation coefficients at depths of 10 and 20 cm. The highest R values 425 

(r = 0.83 and 0.88) were obtained at 10 and 20 cm depths in the Cheongju site. Conversely, 426 

the lowest R values (r = 0.37 and 0.45) were obtained at 30 and 50 cm depths in Seosan site. 427 

This implied that there were differences in correlation coefficient values of the USDA RZSM 428 

products according to the depths of the in situ measurements and land surface characteristics. 429 

Furthermore, it can be inferred that the USDA RZSM products best correlate with the in-situ 430 

measurements at about 20 cm depths.  431 

4.3 Evaluation of ASCAT surface and root zone soil moisture products 432 

The ASCAT surface soil moisture (SSM) was validated for nine sites in Korea. Fig. 2a shows 433 

the time series of ASCAT SSM products versus the two AMSR-E and ground based data at a 434 
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10 cm depth for all of the sites. Notwithstanding the high temporal variability of the SSM, the 435 

ASCAT products corresponded more accurately with the temporal patterns of the in situ 436 

measurements than did the AMSR-E SSM products during the growing season. The ASCAT 437 

products showed that the average and standard deviations values ranged from 0.14 to 0.34 438 

m3/m3, and 0.05 to 0.08 m3/m3, respectively (Table 6). Correlation coefficients between these 439 

products and the in situ measurement values (10 cm) ranged from 0.41 to 0.70 (Average: 440 

0.53). The ASCAT SSM products had higher average correlation values than did the two 441 

AMSR-E SSM products (NSIDC: 0.39, VUA-NASA: 0.42). These results correspond with 442 

previous studies (Brocca et al., 2011; Liu et al., 2011). The ASCAT soil water index (SWI) is 443 

one of the RZSM values (Naeimi and Wagner, 2010; Brocca et al., 2011). We applied the 444 

concept of effective saturation to the ASCAT SWI products according to soil texture. The 445 

time series in Fig. 2b show that the temporal patterns of the rescaled ASCAT SWI are more 446 

similar to those of the in situ measurements, than the AMSR-E products. Fig. 4 shows a 447 

comparison between the ground measurements at 20cm depth and the ASCAT SWI products 448 

with the average, standard deviation, bias and RMSE. The rescaled ASCAT SWI values 449 

corresponded with the ground measurement as the average values of the in situ soil moisture 450 

measurements for the nine sites were 0.21 m3/m3 during the growing season and the average 451 

value for the ASCAT SWI is 0.27 m3/m3. The average correlation coefficient value was equal 452 

to 0.75. The biases ranged from -0.08 to 0.21 (0.06 m3/m3), and the RMSE ranged from 0.04 453 

to 0.21 (0.11 m3/m3), as shown in Table 7. These results indicate that the rescaled ASCAT 454 

product is more accurate than the AMSR-E products, nearly to the target value of 0.04 m3/m3, 455 

which was the numerical goal of the SMAP mission (Entekhabi et al., 2010b). It is worthy to 456 

note that the ASCAT SWI values should be evaluated so as to determine an effective 457 

saturation concept with a renormalization method, as has been used in several previous 458 

studies (Brocca et al., 2011; Draper et al., 2009; Su et al., 2013).  459 
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We also analyzed the correlation values between the in situ soil moisture measurements (10, 460 

20, 30, and 50 cm) and the ASCAT SWI data, according to the characteristic time length, T 461 

(Table 8). Generally, the ASCAT SWI has relatively good correlation coefficients with the in 462 

situ RZSM at 10 and 20 cm, compared with 30 and 50 cm. The highest average R-value (0.75) 463 

at T = 5 days was obtained for the depths of 10 and 20 cm. This may be due to the length of 464 

time (T), which connotes the infiltration time. There are horizontal variations in the amount 465 

of soil moisture contents after rainfall events, which are caused by the differences in 466 

infiltration velocity, according to the type of soil texture. The differences in R-values among 467 

the nine study sites were found in Table 8. In particular, the Suwon and Seosan sites had the 468 

lowest R-values at T = 10, 15 and 20 days for the depth of 10 cm. This may be partly 469 

explained by the spatial heterogeneity of land cover within the foot-print compared to other 470 

sites (Fig. 1). Dominant land cover types in pixel may be the cause of the problematic 471 

retrieval results (Lakhankar et al., 2009; Loew, 2008; van de Griend et al., 2003). Loew (2008) 472 

mentioned that the quality of the soil moisture retrievals was influenced by the spatial 473 

heterogeneity within a resolution pixel, especially concerning vegetation, urban, and open 474 

water surfaces, and might ultimately result in significantly biased soil moisture retrievals.  475 

4.4 Inter-comparison of satellite soil moisture retrievals 476 

Fig. 2 shows the temporal profiles of the satellite based soil moisture products (SSM: 477 

NSIDC, VUA-NASA, and ASCAT, RZSM: NSIDC SWI, USDA, and ASCAT SWI) for the 478 

nine different locations. All of the products responded to the multiple rainfall events during 479 

the growing season in 2010. However, there were significant differences between the three 480 

satellite-based SSM datasets. The R-values of the satellite-based SSM datasets are in the 481 

range of 0.11-0.61, 0.19-0.60 and 0.41-0.70, with average values of 0.39, 0.42, and 0.53, for 482 

the NSIDC, VUA-NASA AMSR-E and ASCAT datasets, respectively (Fig. 3a). The ASCAT 483 
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had the highest mean correlation (R=0.53), compared to the other satellite datasets. Fig. 3b 484 

shows the comparison of the RMSE between the satellite soil moisture products (AMSR-E 485 

and ASCAT). The RMSE of the modified datasets are in the range of 0.02-0.16, 0.13-0.29, 486 

and 0.06-0.22 m3/m3, with average values of 0.08, 0.22, and 0.10 m3/m3, for the NSIDC, 487 

VUA-NASA AMSR-E and ASCAT datasets, respectively. NSIDC AMSR-E had lowest 488 

RMSE values, followed by the ASCAT, and VUA-NASA AMSR-E, in spite of the locational 489 

differences. The ASCAT products were applied with the concept of soil porosity (Wagner et 490 

al., 2013). These results are different than the results of several previous studies, in that the 491 

RMSE between the VUA-NASA and in situ data was smaller than the RMSE between the 492 

NSIDC and in situ data (Wagner et al., 2007; Choi, 2012). However, these findings are 493 

similar to those of Gruhier et al. (2010), as they showed that the RMSE of the NSIDC data 494 

(0.05 m3/m3) was smaller than that of the VUA-NASA data (0.06 m3/m3) during monsoon 495 

seasons; however, the RMSE of the NSIDC data (0.07 m3/m3) was bigger than that of the 496 

VUA-NASA data (0.02 m3/m3) during dry seasons.  497 

Fig. 4a shows that R-values of satellite based RZSM datasets. These average values were 498 

0.47, 0.72, and 0.75, for the NSIDC SWI, USDA AMSR-E and ASCAT SWI datasets, 499 

respectively. The RMSE of these datasets ranged from 0.02-0.20, 0.15-0.41, and 0.04-0.21 500 

m3/m3, with the average values of 0.10, 0.29, and 0.11 m3/m3 (Fig. 4b). The ASCAT also has 501 

the highest mean correlation (R=0.75), compared to the other satellite datasets. The results of 502 

the comparisons for the following sets were modified by the application of renormalization 503 

approaches, REG, µ σ− , and CDF matching, and were subsequently categorized according 504 

to satellite products (SSM and RZSM) 1) NSIDC, VUA-NASA AMSR-E, and ASCAT SSM, 505 

and 2) NSIDC SWI, USDA AMSR-E, and ASCAT SWI products. There are several causes of 506 

various systematic differences (Bias, RMSE). These errors may be caused due to the fact that 507 



24 

the microwave sensor on board the satellite can detect only the soil moisture in the top soil 508 

layer (2-5 cm), and satellite-derived soil moisture contents are easily affected by various 509 

atmospheric forcing. Furthermore, the satellite data represents the spatial average value, 510 

while the in situ measurement data reflect sites that were monitored at certain depths (Draper 511 

et al., 2009). 512 

Fig. 5 shows four Taylor diagrams that illustrate the statistics for the comparison between 513 

NSIDC, VUA-NASA, and ASCAT SSM data and ground based measurement data (10 cm) 514 

for the original and three renormalization methods, REG, µ σ− , and CDF matching. On 515 

average, for the nine sites, the R-values of the three renormalized satellite soil moisture 516 

products were 0.39, 0.42 and 0.53 (REG and µ σ− ) and 0.38, 0.43, and 0.55 (CDF), for 517 

NSIDC, VUA-NASA AMSR-E, and ASCAT datasets, respectively. All of the symbols 518 

representing the NSIDC data (red dots) are located just below the SDV value of 1 (violet 519 

dotted line in Fig. 5a). This implies that the temporal variability of the NSIDC data is lower, 520 

than that of the other satellite products. Fig. 5b shows the Taylor diagram representing REG-521 

based rescaling. As seen in this figure, the average SDV values modified from 0.32, 2.43, and 522 

1.56 to 0.36, 0.42, and 0.53 m3/m3 for all of the products. The REG method showed SDV 523 

values less than one for all of the products, drawing a semicircle. The ASCAT data (Green 524 

dots) presents relatively close to the x axis at R = 1 and SDV=1, followed by VUA-NASA, 525 

and NSIDC. These obtained SDV values were equal to R-values. The results using the 526 

Average – Standard deviation (µ σ− ) matching method showed that all of the SDV values 527 

were equal to 1 (Fig. 5c). Therefore, this method enables us to compare three satellite 528 

products only considering correlation coefficients. Fig. 5d shows the dispersion of statistics, 529 

which were modified using the CDF matching method. This diagram depicts the fact that 530 

most of the data points are close to the SDV value of 1, except for some of the NSIDC 531 



25 

products. 532 

The four Taylor diagrams of the RZSM products, which illustrate the statistics of the 533 

comparison between NSIDC SWI, USDA, and ASCAT SWI data and ground-based 534 

measurement data (20 cm) for the original and three renormalization methods (REG, µ σ− , 535 

and CDF matching) are shown in Fig. 6. In general, the RZSM correlations had better results 536 

than the SSM correlations. The R-values of the three satellite soil moisture products were 537 

0.47, 0.72 and 0.75 for the NSIDC SWI, USDA, and ASCAT SWI datasets, respectively. 538 

Throughout the three renormalization methods, the RMSE values improved from 0.10, 0.29, 539 

and 0.11 to 0.03, 0.02, and 0.02 m3/m3 (REG), 0.03, 0.03, and 0.02 m3/m3 ( µ σ− ), and 0.04, 540 

0.03, and 0.02 m3/m3 (CDF), respectively. As seen in Fig. 6c, the µ σ−  method showed 541 

that all satellite RZSM products followed the curve, SDV = 1 (violet dotted line). The CDF 542 

matching method was able to acquire the SDV values of three RZSM products close to 1 (Fig. 543 

6d). Through four diagrams, we can assess that the ASCAT SWI and USDA RZSM products 544 

outperform the NSIDC SWI products. Furthermore, the ASCAT SWI data are more accurate 545 

than USDA RZSM data in Fig. 6d. Basically, the result may be due to the fine resolution of 546 

the 0.125° grid of the ASCAT products, compared to the AMSR-E products, which have a 547 

0.25° grid, and the application of the exponential filter which allows satellite products to be 548 

comparable with in situ observations of near-surface soil moisture. Subsequent research is 549 

required not only to assess the applicability of ASCAT with Advanced Microwave Scanning 550 

Radiometer 2 (AMSR2) for the different regions in east Asia, but also to validate and 551 

calibrate upcoming SMAP products. 552 

5. Summary and conclusions 553 

Several soil moisture datasets from active / passive microwave sensors have been provided to 554 
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users for diverse public purposes. The validation and evaluation of these products are 555 

required on both a global and local scale. In this study, active (ASCAT) and passive (AMSR-556 

E) sensor products were estimated from nine stations located in the Korea peninsula, in 557 

northeast Asia. Through this validation study, we were able to conclude that ASCAT, a type 558 

of active microwave sensor, outperformed the three AMSR-E products (NSIDC, VUA-NASA 559 

and USDA) in terms of both SSM and RZSM products in northeast Asia. We rescaled ASCAT 560 

products considering the concept of effective saturation. In addition, the AMSR-E USDA 561 

RZSM showed characteristics related to soil texture. Through the comparison of soil moisture 562 

retrievals with three renormalization methods (REG, µ σ−  and CDF matching) using a 563 

Taylor diagram, the ASCAT satellite datasets proved their reliability in terms of both SSM 564 

and RZSM. This study would play an important role in assessing global satellite-based soil 565 

moisture under the circumstances, where other major satellite soil moisture products have 566 

limitations such as the Soil Moisture Ocean Salinity (SMOS) due to the RFI in northeast Asia, 567 

and the AMSR-E instrument onboard the Aqua satellite, which stopped producing data after 568 

October 2011, due to an antenna problem. Furthermore, such research might lead to a better 569 

understanding of operational hydrological investigations and water management activities, as 570 

well as in validating and estimating remotely sensed soil moisture products derived by 571 

Metop-B, AMSR2, and the upcoming SMAP mission.  572 
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Table 1 The characteristics of study areas. 

Area 
Latitude 

(degree) 

Longitude 

(degree) 

Elevation 

(m a.s.l) 

Annual 

rainfall 

(mm) 

Temperature 

(℃) 

Relative 

humidity 

(%) 

Soil 

texture 

Land 

use 

Suwon 37° 16´ N 126° 59´ E 143 m 1470.6 mm 12.3 ℃ 73.5 % Sandy loam Urban 

Seosan 36° 46´ N 126° 29´ E 30 m 2141.8 mm 11.7 ℃ 73.8 % Loam Cropland 

Jeonju 35° 49´ N 127° 09´ E 53 m 1867.5 mm 13.6 ℃ 66.0 % Loam Urban 

Cheorwon 38° 08´ N 127° 18´ E 156 m 1581.4 mm 10.1 ℃ 71.8 % Sandy loam Cropland 

Chuncheon 37° 54´ N 127° 44´ E 79 m 1464.0 mm 11.0 ℃ 70.0 % Silt loam Urban 

Andong 36° 34´ N 128° 42´ N 140 m 1073.8 mm 12.3 ℃ 66.6 % Sandy loam Grassland 

Cheongju 36° 38´ N 127° 26´ N 58 m 1422.4 mm 13.1 ℃ 65.3 % Loam Urban 

Jinju 35° 09´ N 128° 02´ N 29 m 1896.0 mm 13.2 ℃ 67.5 % Loamy sand Mixed forest 

Seolmacheon 37° 56´ N 126° 57´ E 269 m 1827.2 mm 10.4 ℃ 73.6 % Sandy loam Mixed forest 



Table 2 Specifications of the five datasets used in this study. 

FDR 

(In-situ) 

AMSR-E 

(NSIDC) 

AMSR-E  

(VUA-NASA) 

AMSR-E 

(USDA) 

ASCAT 

(TU-WIEN) 

Observation period 
Jan. 2008 ~ 

Dec. 2010 

Jun. 2002 ~ 

Dec. 2010 

Jun. 2002 ~ 

Oct. 2010 

Jun. 2002 ~ 

Dec. 2010 
Jan. 2007 ~ 

Spatial Resolution (grid) Point 38 (25 km) 25 km 25 km 25 km (12.5 km) 

Measurement interval Hourly Daily Daily Daily Daily 

Overpass time (A , D) - 13:30, 1:30 13:30, 1:30 13:30 11:30, 23:30 

Penetration depth 

(sample size*) 

10, 20, 30, 50 cm 

(3672) 

Surface (226) 

Root zone (306) 
Surface (214) Root zone (304) 

Surface (278) 

Root zone (304) 

The sample size* is the mean at each site from the ascending and descending pass. 



Table 3 Statistics of AMSR-E SSM for the NSIDC and VUA-NASA products with in-situ data at 10cm depth. 

Area 

(10 cm) 

NSIDC SSM (m3
/m

3
) VUA-NASA SSM (m3

/m
3
) 

Average Stdev R Bias RMSE Average Stdev R Bias RMSE 

Suwon 0.12 0.02 0.37
**

 -0.09 0.09 0.40 0.08 0.43
**

 0.18 0.20 

Seosan 0.09 0.02 0.23
**

 -0.03 0.06 0.33 0.07 0.60
**

 0.19 0.20 

Jeonju 0.14 0.02 0.61
**

 -0.07 0.07 0.39 0.08 0.31
**

 0.18 0.19 

Cheorwon 0.13 0.01 0.57
**

 -0.08 0.09 0.35 0.11 0.43
**

 0.13 0.17 

Chuncheon 0.13 0.01 0.54
**

 0.00 0.02 0.39 0.13 0.19
*
 0.26 0.29 

Cheongju 0.13 0.01 0.13
*
 -0.14 0.16 0.37 0.08 0.56

**
 0.10 0.13 

Jinju 0.13 0.02 0.41
**

 0.02 0.05 0.38 0.11 0.27
**

 0.26 0.27 

Andong 0.14 0.02 0.11 0.00 0.06 0.40 0.13 0.43
**

 0.27 0.29 

Seolmacheon 0.12 0.01 0.52
**

 -0.09 0.11 0.44 0.11 0.58
**

 0.22 0.24 

Average 0.13 0.01 0.39 -0.05 0.08 0.38 0.10 0.42 0.20 0.22 

* and ** indicates significance at the 0.05 and 0.01 probability level, respectively.



Table 4 Statistics of the VUA AMSR-E data from C- and X-band for according to overpass time (descending / ascending). 

Area 

C-band (m
3
/m

3
) X-band (m

3
/m

3
)

Ascending Descending Ascending Descending 

R Bias RMSE R Bias RMSE R Bias RMSE R Bias RMSE 

Suwon 0.43
**

 0.18 0.20 0.24
*
 0.21 0.24 0.36

*
 0.16 0.20 0.10 0.26 0.27 

Seosan 0.60
**

 0.19 0.20 0.29
**

 0.23 0.24 0.32
**

 0.18 0.22 0.21
*
 0.26 0.27 

Jeonju 0.31
**

 0.18 0.19 0.12 0.28 0.31 0.29
**

 0.12 0.15 0.07 0.23 0.26 

Cheorwon 0.43
**

 0.13 0.17 0.19
*
 0.27 0.30 0.42

**
 0.16 0.20 0.13 0.30 0.33 

Chuncheon 0.19
*
 0.26 0.29 0.05 0.33 0.36 0.13 0.25 0.31 0.07 0.35 0.38 

Cheongju 0.56
**

 0.10 0.13 0.31
**

 0.14 0.18 0.43
**

 0.07 0.12 0.29
**

 0.19 0.21 

Jinju 0.27
**

 0.26 0.27 0.04 0.34 0.35 0.24
*
 0.27 0.30 0.09 0.34 0.37 

Andong 0.43
**

 0.27 0.29 0.11 0.35 0.41 0.24
*
 0.08 0.14 0.11 0.17 0.21 

Seolmacheon 0.58
**

 0.22 0.24 0.31
**

 0.27 0.28 0.49
**

 0.19 0.24 0.27
**

 0.27 0.29 

Average 0.42 0.20 0.22 0.17 0.27 0.30 0.29 0.17 0.21 0.09 0.26 0.29 

* and ** indicates significance at the 0.05 and 0.01 probability level, respectively.



Table 5 Statistics of AMSR-E RZSM for the NSIDC SWI and USDA RZSM products with in-situ data at 20cm depth. 

Area 

(20 cm) 

NSIDC SWI (m3
/m

3
) USDA RZSM (m3

/m
3
) 

Average Stdev R Bias RMSE Average Stdev R Bias RMSE 

Suwon 0.12 0.01 0.35
**

 -0.19 0.20 0.49 0.04 0.70
**

 0.17 0.18 

Seosan 0.09 0.02 0.32
**

 -0.08 0.09 0.47 0.05 0.47
**

 0.30 0.31 

Jeonju 0.14 0.02 0.72
**

 -0.11 0.11 0.59 0.08 0.79
**

 0.34 0.34 

Cheorwon 0.13 0.00 0.68
**

 -0.08 0.08 0.61 0.06 0.69
**

 0.40 0.41 

Chuncheon 0.13 0.01 0.66
**

0.01 0.02 0.47 0.06 0.70
**

 0.34 0.35 

Cheongju 0.13 0.01 0.16
**

0.19 0.19 0.46 0.07 0.88
**

 0.14 0.15 

Jinju 0.13 0.01 0.66
**

0.02 0.02 0.44 0.05 0.82
**

 0.32 0.33 

Andong 0.14 0.01 0.18
**

 -0.04 0.06 0.40 0.10 0.74
**

 0.22 0.24 

Average 0.13 0.01 0.47 -0.04 0.10 0.49 0.06 0.72 0.28 0.29 

* and ** indicates significance at the 0.05 and 0.01 probability level, respectively.



Table 6 

Comparison between (a) in-situ data at 10 cm depth and the rescaled ASCAT SSM products from May 1 to September 30. 

Area 
In-situ (m3

/m
3
) rescaled ASCAT Surface Soil Moisture (m3

/m
3
) 

Average Stdev Average Stdev R Bias RMSE 

Suwon 0.21 0.03 0.19 0.07 0.64
**

 0.02 0.06 

Seosan 0.13 0.05 0.14 0.08 0.62
**

 0.01 0.06 

Jeonju 0.21 0.03 0.19 0.08 0.54
**

 -0.02 0.07 

Cheorwon 0.21 0.04 0.30 0.05 0.51
**

 0.09 0.10 

Chuncheon 0.12 0.03 0.34 0.06 0.48
**

 0.21 0.22 

Cheongju 0.26 0.08 0.21 0.07 0.41
**

 -0.05 0.09 

Jinju 0.11 0.05 0.20 0.07 0.44
**

 0.08 0.11 

Andong 0.13 0.06 0.28 0.05 0.42
**

 0.15 0.16 

Seolmacheon 0.22 0.05 0.25 0.06 0.70
**

 0.03 0.06 

Average 0.18 0.05 0.23 0.07 0.53 0.06 0.10 

* and ** indicates significance at the 0.05 and 0.01 probability level, respectively.



Table 7 

Comparison between in-situ data at 20 cm depth and the rescaled ASCAT SWI products (T=5) from May 1 to September 30. 

Area 
In-situ (m3

/m
3
) rescaled ASCAT Soil Water Index (m3

/m
3
) 

Average Stdev Average Stdev R Bias RMSE 

Suwon 0.31 0.01 0.24 0.04 0.73
**

 -0.08 0.08 

Seosan 0.17 0.05 0.17 0.06 0.51
**

 0.00 0.05 

Jeonju 0.25 0.03 0.22 0.05 0.77
**

 -0.03 0.04 

Cheorwon 0.21 0.03 0.35 0.03 0.80
**

 0.14 0.14 

Chuncheon 0.14 0.02 0.35 0.03 0.85
**

 0.21 0.21 

Cheongju 0.32 0.04 0.24 0.04 0.80
**

 -0.07 0.08 

Jinju 0.12 0.02 0.23 0.05 0.84
**

 0.12 0.12 

Andong 0.18 0.05 0.32 0.03 0.67
**

 0.12 0.13 

Average 0.21 0.03 0.27 0.04 0.75 0.06 0.11 

* and ** indicates significance at the 0.05 and 0.01 probability level, respectively.



Table 8 

Correlations of root zone soil moisture between ground based measurements (10, 20, 30, and 

50 cm) and USDA AMSR-E and ASCAT satellite products. 

USDA AMSR-E 
ASCAT soil water index 

T=1 T=5 T=10 T=15 T=20 

10 cm 
 

Suwon 0.62
**

 0.81
**

 0.66
**

 0.58
**

 0.53
**

 0.49
**

 

Seosan 0.50
**

 0.70
**

 0.53
**

 0.44
**

 0.38
**

 0.34
**

 

Jeonju 0.82
**

 0.75
**

 0.82
**

 0.80
**

 0.76
**

 0.72
**

 

Cheorwon 0.67
**

 0.79
**

 0.77
**

 0.71
**

 0.66
**

 0.63
**

 

Chuncheon 0.73
**

 0.74
**

 0.84
**

 0.85
**

 0.83
**

 0.81
**

 

Cheongju 0.83
**

 0.68
**

 0.82
**

 0.84
**

 0.83
**

 0.81
**

 

Jinju 0.79
**

 0.82
**

 0.81
**

 0.74
**

 0.70
**

 0.66
**

 

Andong 0.71
**

 0.59
**

 0.65
**

 0.62
**

 0.60
**

 0.58
**

 

Seolmacheon 0.61
**

 0.86
**

 0.83
**

 0.72
**

 0.66
**

 0.62
**

 

Average 0.70 0.75 0.75 0.70 0.66 0.63 

20 cm 
      

Suwon 0.70
**

 0.81
**

 0.73
**

 0.63
**

 0.57
**

 0.53
**

 

Seosan 0.47
**

 0.66
**

 0.51
**

 0.43
**

 0.38
**

 0.33
**

 

Jeonju 0.79
**

 0.71
**

 0.77
**

 0.75
**

 0.71
**

 0.67
**

 

Cheorwon 0.69
**

 0.76
**

 0.80
**

 0.76
**

 0.72
**

 0.69
**

 

Chuncheon 0.70
**

 0.72
**

 0.85
**

 0.87
**

 0.86
**

 0.85
**

 

Cheongju 0.88
**

 0.62
**

 0.80
**

 0.84
**

 0.83
**

 0.81
**

 

Jinju 0.82
**

 0.77
**

 0.84
**

 0.82
**

 0.79
**

 0.77
**

 

Andong 0.74
**

 0.58
**

 0.67
**

 0.66
**

 0.65
**

 0.64
**

 

Average 0.72 0.70 0.75 0.72 0.69 0.66 

30 cm 
      

Suwon 0.70
**

 0.82
**

 0.70
**

 0.58
**

 0.52
**

 0.47
**

 

Seosan 0.37
**

 0.53
**

 0.36
**

 0.30
**

 0.27
**

 0.24
**

 

Jeonju 0.64
**

 0.68
**

 0.65
**

 0.61
**

 0.56
**

 0.52
**

 

Cheorwon 0.63
**

 0.62
**

 0.77
**

 0.76
**

 0.74
**

 0.72
**

 

Chuncheon 0.51
**

 0.52
**

 0.61
**

 0.57
**

 0.53
**

 0.49
**

 

Cheongju 0.80
**

 0.35
**

 0.64
**

 0.78
**

 0.83
**

 0.84
**

 

Jinju 0.80
**

 0.71
**

 0.80
**

 0.79
**

 0.77
**

 0.75
**

 

Andong 0.68
**

 0.51
**

 0.58
**

 0.60
**

 0.62
**

 0.63
**

 

Total 0.64 0.59 0.64 0.62 0.61 0.58 

50 cm 
      

Suwon 0.61
**

 0.64
**

 0.49
**

 0.37
**

 0.31
**

 0.27
**

 

Seosan 0.45
**

 0.59
**

 0.40
**

 0.32
**

 0.28
**

 0.23
**

 

Jeonju -0.23 -0.05 -0.11 -0.12 -0.09 -0.06 

Cheorwon 0.58
**

 0.58
**

 0.74
**

 0.76
**

 0.76
**

 0.75
**

 

Chuncheon 0.60
**

 0.53
**

 0.74
**

 0.81
**

 0.83
**

 0.83
**

 

Cheongju 0.78
**

 0.69
**

 0.79
**

 0.81
**

 0.81
**

 0.80
**

 

Jinju 0.71
**

 0.69
**

 0.71
**

 0.69
**

 0.66
**

 0.64
**

 

Andong 0.66
**

 0.37
**

 0.49
**

 0.57
**

 0.64
**

 0.67
**

 

Average 0.52 0.51 0.53 0.53 0.53 0.52 

* and ** indicates significance at the 0.05 and 0.01 probability level, respectively.



Figure 1. Korea Meteorological Organization (KMO) and Seolmacheon validation sites in Korean peninsula 

(each star mark indicates location of the sites). 

Figure 2. Temporal patterns of (a) surface soil moisture (SSM) and (b) root zone soil moisture (RZSM) 

through AMSR-E, ASCAT and in situ soil moisture from 1 May to 30 September 2010 at the nine sites in 

northeast Asia. 

Figure 3. Comparison results of surface soil moisture (SSM) retrievals of R and RMSE values at nine sites. 

Figure 4. Comparison results of root zone soil moisture (RZSM) retrievals of R and RMSE values at eight 

sites. 

Figure 5. Taylor diagram of surface soil moisture products (SSM) illustrating the statistics of comparison 

between according to three renormalizing methods, (a) original, (b) linear regression correction (REG), (c) 

average - standard-deviation (  ) and (d) cumulative distribution function (CDF). 

Figure 6. Taylor diagram of root zone soil moisture products (RZSM) illustrating the statistics of 

comparison between according to three renormalizing methods, (a) original, (b) linear regression correction 

(REG), (c) average - standard-deviation (  ) and (d) cumulative distribution function (CDF).  
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