
Evaluation of post-retrieval de-noising of active and

passive microwave satellite soil moisture

Chun-Hsu Sua,∗, Sugata Y. Narseyb, Alexander Gruberc, Angelika Xaverc,
Daniel Chungc, Dongryeol Ryua, Wolfgang Wagnerc

aDepartment of Infrastructure Engineering, The University of Melbourne, Parkville,
Victoria, Australia

bARC Centre of Excellence for Climate System Science, Monash University, Victoria,
Australia

cDepartment of Geodesy and Geoinformation, Vienna University of Technology, Vienna,
Austria

Abstract

Active and passive microwave satellite remote sensing are enabling sub-daily

global observations of surface soil moisture (SM) for hydrological, meteorolog-

ical and climatological studies. Because the retrieved SM data can be quite

noisy, post-retrieval processing such as de-noising can play an important role

to aid interpretation of the observed dynamics and/or enhance their utility for

data assimilation. To date, the merits of such techniques have not yet been

fully evaluated. Here we consider the applications of Fourier-based de-noising

filters of Su et al. (2013a) for improving SM retrieved by AMSR-E (Advanced

Microwave Scanning Radiometer for Earth Observing System) and ASCAT (Ad-

vanced Scatterometer of MetOp-A) sensors. The filters are calibrated in the fre-

quency domain based on a water-balance model, without the need for ancillary

data. The evaluation of the de-noising methods was conducted globally against

in situ data distributed via the International Soil Moisture Network (ISMN)

at 277 AMSR-E and 385 ASCAT pixels. Systematic improvements were found

for all considered metrics, namely root-mean-square deviation, linear correla-

tion and signal-to-noise ratio, for both SM products, with improvements more

striking for AMSR-E. However, the originally proposed implementation of the
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filters can induce undesirable over-smoothing and distortion of SM timeseries.

To overcome this, based on a simple heuristic argument, we propose the use of

ancillary precipitation data in the filtering process, although at some expense

of overall agreements with the in situ data.

Keywords: satellite soil moisture, de-noising, signal processing, spectral

analysis, evaluation, gap-filling

1. Introduction

Several space-borne active and passive microwave sensors provide frequent

surface soil moisture (SM) observations under diverse land-surface and meteo-

rological conditions. These sensors and missions include AMSR-E (Advanced

Microwave Scanning Radiometer for Earth Observing System) of Aqua satellite5

(Njoku et al., 2003), AMSR2 (Advanced Microwave Scanning Radiometer-2) of

GCOM-W1 (Global Change Observation Mission-Water) mission (Imaoka et al.,

2010), SMOS (Soil Moisture and Ocean Salinity) mission (Kerr et al., 2001),

SMAP (Soil Moisture Active Passive) mission (Entekhabi et al., 2010), and AS-

CAT (Advanced Scatterometer) of MetOp satellites (Wagner et al., 2013). Nu-10

merous evaluation studies have demonstrated skills of these sensors to capture

the SM variability observed in in situ data (e.g. Jackson et al., 2010; Albergel et al.,

2012; Su et al., 2013b; Wagner et al., 2014). Given the vital role of SM in

hydrological and meteorological processes in regulating water and energy ex-

changes and storages, satellite-retrieved SM data are increasingly being tested15

in rainfall-runoff modelling (e.g. Crow & Ryu, 2009; Brocca et al., 2012), nu-

merical weather modelling (e.g. Drusch et al., 2005; Scipal et al., 2008a), and

land models (e.g. Kumar et al., 2012; Draper et al., 2012).

In these applications, on one hand, accurate error characterisation of the

satellite SM is required for bias correction of the observational data (Su et al.,20

2014a), data merging (Yilmaz et al., 2012), and optimal correction of state pre-

diction in data assimilation (Yilmaz & Crow, 2013). On the other hand, any

systematic errors of the satellite SM need to be removed during the retrieval
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and the post-retrieval processes, while a low signal-to-noise ratio (SNR) can also

undermine direct interpretation of the SM dynamics and their utility for data25

assimilation. In particular, field validation and error estimation using triple col-

location (TC) analysis (Scipal et al., 2008b; Dorigo et al., 2010; Draper et al.,

2013; Su et al., 2014b) have found considerable error in the satellite data, at

levels that are commensurate with or greater than that of model-simulated SM

at many regions globally. More recently, spectral analyses also indicate possible30

presence of systematic periodic errors in satellite SM (Su et al., 2013a, 2014b).

While advances in sensor technology and retrieval algorithms will continue to

improve retrieval performance in the future, it is also conceivable to post-process

available SM products to reduce noise and systematic errors using appropriate

de-noising schemes.35

Most SM retrieval algorithms are based on instantaneous observations. This

is because of high temporal variability of the water content in the thin remotely

sensed soil layer, and for passive microwave, the relative ease of applying radia-

tive transfer model to instantaneous measurements. However, this implies that

these algorithms do not exploit the temporal auto-correlation nature of SM using40

past and/or future observations. There are now increasing attempts to rectify

this from the viewpoint of signal processing of the retrieved (level 2 or 3) geo-

physical products. In particular, Du (2012) proposed combining high-frequency

spectral components from direct sensor observations (of land emissivity) with

low-frequency outputs of land surface models or current remote sensing SM45

products using Fourier filters. While shown to improve passive microwave SM

at two watersheds in the United States, the technique assumes that accurate

low-frequency components are already available. By contrast, Su et al. (2013a)

focused on reducing high-frequency random and systematic errors; they used a

linearized water balance model to develop Fourier filters to de-noise two pas-50

sive and active SM products over southeast Australia. However these filters

are linear, time-invariant (LTI) filters that can lead to over-smoothing of SM

timeseries and in causal form, lead to distortion. This is problematic because

sharp increases of SM due to precipitation are important for many hydrological
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(e.g., flood) modelling and should be preserved. More recently, Massari et al.55

(2014) proposed a conservative approach of using entropy-based wavelet de-

noising (Sang et al., 2009) to reduce noise, based on reproducing white noise

characteristics in the residuals. Evaluations over selected in situ network also

show promising results. Lastly, Su & Ryu (2015) demonstrated the use of TC to

provide scale-by-scale error estimates for non-linear de-noising of SM via wavelet60

thresholding.

The subject of this paper is the de-noising filters of Su et al. (2013a) and

its objective is two-fold. Foremost, this work expands on the previous work,

by presenting a comprehensive validation of two gap-filled, de-noised passive

and active SM products from the AMSR-E and ASCAT instruments, against65

in situ data from the International Soil Moisture Network (ISMN). During the

process, the utility of the data interpolation method of Garcia (2010) for in-

filling gaps, as a post-retrieval step before de-noising, in the satellite data is

also evaluated. Second, we propose an alternative implementation of the filters

that considers a simple use of precipitation data to reduce the effect of over-70

smoothing and distortion introduced by the de-noising filters. This is achieved

by dynamically influencing the input-output relations of the filters. The subject

of this paper is the de-noising filters of Su et al. (2013a) and its objective is

two-fold. Foremost, this work expands on the previous work, by presenting

a comprehensive validation of two gap-filled, de-noised passive and active SM75

products from the AMSR-E and ASCAT instruments, against in situ data from

the International Soil Moisture Network (ISMN). During the process, the utility

of the data interpolation method of Garcia (2010) for in-filling gaps, as a post-

retrieval step before de-noising, in the satellite data is also evaluated. Second,

we propose an alternative implementation of the filters that considers a simple80

use of precipitation data to reduce the effect of over-smoothing and distortion

introduced by the de-noising filters. This is achieved by dynamically influencing

the input-output relations of the filters.

The reminder of this paper is organised as follows. Section 2 presents the

satellite SM and several ancillary data sets used in this work and their pre-85
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processing. Section 3 reviews the de-noising schemes proposed in Su et al.

(2013a) and describes the use of precipitation data in their implementation.

The method for evaluating the SM data is also presented. Section 4 reports

separate evaluations of gap-filled and de-noised SM data, which are further dis-

cussed in section 5. Section 5 also offers our concluding remarks.90

2. Data and pre-processing

We consider the SM data from AMSR-E and ASCAT for their distinctive

characteristics in terms of sensor characteristics and retrieval algorithms. The

quality of these products after de-noising is assessed against in situ data from

ISMN. We also explore the use of satellite-retrieved precipitation data in the95

de-noising process to enhance the performance of de-noising. An additional SM

data from ERA-Interim model re-analysis is also needed for TC analysis with the

satellite data. These 5 data sets are described in the following sections 2.1–2.5

and their pre-processing in section 2.6.

2.1. AMSR-E soil moisture100

The AMSR-E sensor on the Aqua satellite enabled retrievals of surface SM

at 1–2 cm depths based on observed C/X-band microwave emissions from the

shallow soil surface. Most passive retrieval approaches implement an inver-

sion of the forward radiative transfer model of a canopy-masked soil surface

to convert measured brightness temperature to SM (Mladenova et al., 2014).105

The VUA-NASA (Vrije University Amsterdam/National Aeronautics and Space

Administration) data set is used in this work. The product is based on the

Land Parameter Retrieval Model (LPRM) (Owe et al., 2008), which uses the

radiometer’s dual-polarization observations to estimate the vegetation optical

thickness and the soil dielectric constant simultaneously. A dielectric mixing110

model is then applied to relate the dielectric constant to volumetric SM in units

of m3m−3. The latest version (v) 5, Level 3 gridded, twice-daily, C-band SM

data set is expressed on a regular 1/4◦ × 1/4◦ spatial grid for the period of
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June 2002–October 2011. The data was screened based on the accompanying

quality flag to identify swath edge effects, frozen or thawing soil, radio fre-115

quency interference, and dense vegetation. Screening for non-zero snow depth

based on ERA-Interim SM (see section 2.4) was also conducted. The pixels

> 10% urban and water cover and > 10% topographic complexity were omit-

ted from this study. The urban and water cover information comes from Glob-

Cover (Arino et al., 2007) (v2.3), Global Lakes andWetlands Database (GLWD)120

(Lehner & Döll, 2004), and Global Self-consistent, Hierarchical, High-resolution

Shoreline (GSHHS v1.5) database.

2.2. ASCAT soil moisture

The ASCAT sensor of the MetOp-A satellite uses the backscatter at C-

band to estimate SM, as the backscatter is sensitive to the moisture content125

of the scattering land surface. By using a timeseries-based change-detection

algorithm (Wagner et al., 1999), the SM can be measured relative to histori-

cal minima and maxima, as a percentage of saturation within these bounds.

This approach is less susceptible to the influence of surface roughness as its

variability occurs over a time scale longer than SM, and the influence of veg-130

etation is taken into account by the algorithm. We use the ASCAT data set

(January 2007–December 2013) produced using the Soil Water Retrieval Pack-

age (WARP) (Naeimi et al., 2009) (v5.5) from Vienna University of Technology

(TU-Wien). The product is defined over a sinusoidal grid with a grid reso-

lution of ∼ 12.5 km. Before use, the data was screened using its dynamical135

quality flag for frozen surface and temporary standing water. And as with the

AMSR-E data, further screening based on snow depth, urban and water cover

and topographic complexity was also applied.

2.3. In situ soil moisture

The International Soil Moisture Network (ISMN) collects in situ SM mea-140

surements from 42 operational and experimental monitoring networks worldwide

and acts as a single channel in data delivery (Dorigo et al., 2011). The extensive
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list of data providers and networks is reported in Gruber et al. (2013) and refer-

ences therein. While most of the networks are located in Northern America and

Eurasian, some regions in Australia and Africa are also monitored. Importantly,145

the spatial coverage of these networks provides a variety of climatic regions, land

cover types and soil textures for global scale validation. However, as the moni-

toring implementations differ across (and also within) the networks in terms of

the sensors, installation depths and quality controls, the ISMN performed pre-

processing to ensure data consistency in terms of units, sampling interval, data150

format, quality control, and metadata. First, the in situ data were harmonized in

units of volumetric SM (m3m−3) and temporal resolution. Then, quality check

was carried out to ensure SM values are within geophysical dynamic ranges and

are consistent with changes in soil temperature and precipitation. SM estimates

were also analysed and flagged for spikes, positive and negative breaks, signal155

saturation and unresponsive sensors. These resulted in quality flags added to the

data. For more details, consult Dorigo et al. (2013). We use the database down-

loaded in May 2014 and the harmonized uppermost layer SM data at depths

ranging from 0–40 cm. For our evaluation purpose, the ISMN data were screened

using the added quality flags such that we retained the data that was not flagged160

by the quality control process; these are the data identified with a ‘U’ flag as

per http://ismn.geo.tuwien.ac.at/data-access/quality-flags.

2.4. ERA-Interim soil moisture

ERA-Interim is an atmospheric, ocean and land surface reanalysis produced

by ECMWF (European Centre for Median-range Weather Forecasts) based on165

their Integrated Forecast System (IFS) model (Dee et al., 2011). It covers the

time period of 1979–present and has a T255 horizontal resolution (∼ 0.7◦ at the

equator). SM estimates are provided for 4 different layers, 4 times per day at 0,

6, 12, and 18h UTC. The data for the HTESSEL land surface scheme was used

for its more realistic representation of different soil types. The uppermost layer170

SM estimates in units of volumetric SM (m3m−3) at depths 0–7 cm are used and

the ERA pixels are spatially co-located with AMSR-E and ASCAT pixels via
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nearest-neighbour rule, and the ERA SM timeseries were linearly interpolated

to match the times of the satellite observations. We note ERA SM is only used

for data screening (see sections 2.1, 2.2 and 2.6) and TC analyses (section 3.3)175

during evaluation.

2.5. Precipitation

The TRMM (Tropical Rainfall Measuring Mission) Multisatellite Precipita-

tion Analysis (TMPA) combined precipitation estimates from multiple satellites

and monthly gauge analyses at 1/4◦ × 1/4◦ spatial grid resolution and 3-hourly180

temporal resolution (Huffman et al., 2007). The method combines estimates

from four passive microwave sensors (including AMSR-E) of low-earth orbit

satellites and infrared data from geosynchronous-earth orbit satellites. Alto-

gether, they provide on average 80% of the earth’s surface over the latitude of

50◦ to −50◦. Contrary to the real-time 3B42 Real-Time (RT) data set, the185

TMPA retrospective data set 3B42 uses the Global Precipitation Climatology

Center (GPCC) monthly monitoring product to provide gauge adjustment. We

use the latest v7 TMPA 3B42 data set that has a temporal coverage from 1998.

2.6. Data pre-processing

The pre-processing of AMSR-E and ASCAT data are needed and were per-190

formed separately, as were their de-noising and evaluation. The grid resolu-

tions of satellite SM and rainfall, ERA, and in situ SM data are variable. The

co-location of the satellite data and model data was determined by nearest-

neighbour association. The matchup of the satellite SM data with a single

co-located monitoring station is however based on linear correlation significance195

analysis using ground (θI), ERA (θM ), and satellite SM data (θS), with a prob-

ability threshold of 0.05. First, in the screening step, ground sensors were dis-

carded as being non-representative at the coarse scale when the Pearson’s cor-

relation R(θS , θM ) is significant, while R(θI , θS) and R(θI , θM ) are not. Then if

there are multiple valid stations co-located in a satellite pixel, the station with200

the highest mean correlation to the satellite and ERA SM was retained. Note
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that linear correlation is used to measure representativeness because the metrics

used in our evaluation (section 3.3) are similarly based on a linear model.

Given that AMSR-E had a revisit time of 1–2 days and ASCAT has 1–3

days, the overpass times of the respective satellites are irregular and the timing205

of each half-orbit pass can have 1–2 hour offsets. For conventional spectral anal-

ysis and de-noising (see section 3.1), a regularly spaced timeseries is necessary.

At each satellite pixel, frequency analyses of the corresponding overpass times

were conducted to identify the most frequent ascending and descending overpass

times of the satellites. These times were then used to define a 12-hourly regular210

temporal grid (in UTC) upon which the satellite data was regridded.

In-filling of the missing values is also needed. A one-dimensional interpola-

tion algorithm based on discrete cosine transform (DCT) (Wang et al., 2012)

was applied to infill gaps of lengths ≤ 5 days. Contrary to the traditional

methods based on nearest-neighbour, polynomial or spline local interpolations,215

the missing data were assigned values that are estimated using the entire time-

series (Garcia, 2010). The signal and noise information may be largely pre-

served, but the possibilities of smoothing (see section 4.1) and generating auto-

correlated errors still exist. Thus, pixels with excessive gaps should be omitted,

such that we require that at least 80% of continuous gaps at a pixel are ≤ 2-220

day long. It is beyond the scope of this work to examine the dependency of

the performance of the interpolation scheme on the length of the gaps and the

auto-correlation length of local SM signal. Lastly, the satellite data was further

sifted for locations with sufficiently long, continuous timeseries for calibration of

the de-noising filters (see section 3.1), and a threshold of 180-day was adopted.225

Consequently, de-noising was applied to 289 AMSR-E pixels and 387 ASCAT

pixels, but the actual number of pixels that can be evaluated depends on the

availability of in situ data (section 3.3).
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3. Methods

Section 3.1 provides a brief review of the concept of LTI filters, and the230

principles and the standard implementations of de-noising filters (Eqs. 4, 5,

7) proposed by Su et al. (2013a). Section 3.2 presents a new methodological

development (Eq. 8), based on using the precipitation data in the filter im-

plementations to overcome the shortcomings of the standard implementations.

Section 3.3 describes our evaluation methodology.235

3.1. De-noising filters

Consider the noisy data θi[n] with its z-transform Θi(z), where the data is

regularly spaced at time intervals t ≡ n∆t (n ∈ Z) and the frequency variable

z ≡ exp(iω) ∈ C is expressed in terms of angular frequency ω ≡ 2π/T or period

T . As an input to a linear and time-invariant (LTI) filter, the filter generates240

an output θo[n] and a transform Θo(z) via a convolution summation between

the input and an impulse function h[n],

θo[n] = (h ∗ θi)[n] ≡

∞
∑

m=−∞

h[m]θi[n−m]. (1)

where h[n] describes the relative weights to be applied to the past and future

values of the input timeseries in informing the present values of the output

timeseries. An equivalent picture of the filter operation is in the frequency245

domain, where the input-output relation in Eq. 1 can be expressed as,

Θo(z) = H(z)Θi(z) (2)

with H(z) being the z-transform of the impulse response h[n]. It therefore

describes how to change the frequency content of θi. The rescaling of the values

of individual Fourier coefficients of the input data allows either suppression of

selected frequency components if |H(z)| < 1 or shift in time by 6 H(z)/ω, where250

|H| is the modulus of H and 6 H is its angle. The task is therefore to specify

a suitable H to remove the stochastic error in satellite data. Two types of

de-noising filters were proposed as follows.
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3.1.1. Wiener filters

The first type of filters is the Wiener filters (Wiener , 1964). For de-noising255

SM data, they were developed based on the rationale that the signal in an

erroneous SM timeseries should have the spectral properties of a water balance

model. Importantly, the SM dynamics at any spatial scale (point-to-satellite

footprint) is governed by the water balance equation (Salvucci, 2001), dθ/dt =

p− l, where θ is the SM in units of volumetric SM [L3L−3], p is the throughfall260

precipitation and l is the loss term. The power spectral density (PSD) of the

equation under linear approximations has a brown spectrum of Sθ(ω) = Sp/(η
2+

ω2) (Katul, 2007), where Sθ(ω) has units of [L
6L−6T/rad]. Here, Sp is directly

related to the transform of precipitation and has units of [L6L−6rad/T], and

η is the effective SM loss rate and has been recast as a quantity with units of265

[rad/T]. Despite the explicit use of volumetric SM units here, θ and Sθ can be

rescaled arbitrarily into other units, such as percentage of saturation for use

with ASCAT. As illustrated in Fig. 1, this theoretical PSD contrasts with the

empirical PSD of AMSR-E and ASCAT SM, which show a spectrally distinctive

‘noise floor’ in the high-frequency regime. The corresponding timeseries plots270

are shown in Fig. 2, with the satellite SM showing greater variability relative

to in situ SM over short-time periods. The contribution of the high-frequency

noise to the observed PSD can be modelled as white noise, leading to a spectral

model of an erroneous SM data,

S′
θ(ω > 0) =

Sp + 2η
√

SpSE

η2 + ω2
+ SE (3)

where SE is the PSD of the error and has units of [L6L−6T/rad]. Recently,275

Su et al. (2014b) have demonstrated that the application of this signal-noise

model to estimate satellite error is complementary to the TC analysis. But, it is

also apparent from the satellite PSDs that the satellite error has high-frequency

spectral structures more complicated than that of a white-noise model.

Based on the model in Eq. 3, the Wiener filter formalism provides the lin-280

ear minimum mean-square error (LMMSE) solution of recovering the expected

brown spectrum at filter output θo (Su et al., 2013a). Accordingly, its solution
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is a symmetric exponential filter equation, namely

θo[n] =
1− e−γ

2

{

∞
∑

m=0

e−γmθi[n−m] + (4)

∞
∑

m=0

e−γmθi[n+m]
}

where γ ≡
√

Sp/SE + η2 is the single filter coefficient [rad/T]. We note that the

multiplicative constant of Eq. 4 differs from that reported in Su et al. (2013a)285

because an additional renormalisation condition H(ω = 0) = 1 is imposed here

to ensure that the mean of θi is preserved in θo. Since the geometric series has

the identity
∑∞

m=0 e
−γm = 1− eγ , the renormalisation implies that the sum of

weights equates unity. By the same argument, where the summations in Eq. 4

are necessarily truncated for finite data, we impose that the same normalisation290

condition to ensure the mean is preserved. It is also true when there are missing

values in the input timeseries.

The Wiener filter coefficient γ is determined by fitting the spectral model

parameters {Sp, SE , η} of Eq. 3 to the empirical PSD of the input SM data

using nonlinear least-squares minimization; thus, no ancillary data is required.295

For more details on model fitting, consult Su et al. (2014b). The empirical

PSD is calculated using the Welch’s method with a Hamming window of size

W = min(L, 365) in units of days. L ≥ 180 is the length of the timeseries, and

we require a minimum of 180-day timeseries for de-noising. The fitted models

to the AMSR-E and ASCAT PSDs are illustrated by the solid blue curves in300

Fig. 1, comparing with the dashed blue curves if noise is absent from the satellite

data. It is also of note that other error estimators such as TC can also be used

to provide knowledge of the noise parameter SE (Su et al., 2014a).

The Wiener filter of Eq. 4 is a low-pass filter that suppresses the high-

frequency components and does not cause distortion, since its transfer function305

has the properties H(ω ≪ η) → 1, H(ω ≫ η) → 0, and the angle 6 H(ω) = 0.

The filter is also non-causal (NC) or a “smoother” as it operates upon the future

of the input timeseries (the second term of Eq. 4), and thus can only be used

in data re-analysis. Consequently, a causal (C) form of the Wiener filter was
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developed, namely310

θo[n] = (1− e−γ)

∞
∑

m=0

e−γmθi[n−m] (5)

which has also been renormalised. In a recursive form, the filter equation be-

comes,

θo[n] = e−γθo[n] + (1− e−γ)θi[n]. (6)

The causal Wiener filter is also a low-pass filter with same gain properties as

the non-causal counterpart. Furthermore, it is mathematically equivalent to

the SWI (soil water index) filter used in estimating profile SM from surface315

SM (Wagner et al., 1999; Albergel et al., 2008). But, the Wiener filters are

solutions to the signal estimation problem from the viewpoint of digital sig-

nal processing, producing SM estimates at the representative sampling depth

of the sensors, e.g., 1–2 cm for C-band of AMSR-E and ASCAT. By contrast,

the SWI filter conceptually yields SM estimates at a different depth character-320

ized by a time constant, and is typically calibrated against in situ observations

(Albergel et al., 2008).

The causal filter can lead to distortion at the output because of the time

delay caused by the filter ( 6 H(ω) 6= 0). Other caveats should also be noted for

both causal and non-causal filters. The optimality of the LTI Wiener filtering325

requires stationarity of the signal and noise components that made up θi, while

SM is generally non-stationary and retrieval errors can vary with land surface

conditions (e.g. Su et al., 2014b). Being the LMMSE solutions developed under

linear approximation to the water balance equation, they fail to account for non-

linear dynamics due to surface saturation and dynamical hydraulic conductivity.330

Consequently, their applications can lead to auto-correlated errors in θo and

over-smoothed SM with suppressed rainfall wet-up dynamics.

3.1.2. Bandstop filters

The second type of filters is the bandstop filters that reject specific frequency

components at ωj in satellite SM. Its transfer function therefore has the prop-335

erties H(ωj) ≈ 0 and H(ω 6= ωj) ≈ 1. As shown in Fig. 1a-c, it is needed to
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remove the extraneous peaks in the AMSR-E’s PSDs with periods T ranging

from 1–8 days. These systematic errors should not be confused with systematic

additive or multiplicative biases. Rather, they correspond to possible persis-

tent oscillations in the time domain. The input-output equation of the simplest340

bandstop filter is,

θo[n] = 2rj cosωjθo[n− 1]− r2j θo[n− 2] + (7)

H0(θi[n]− 2 cosωjθi[n− 1] + θi[n− 2])

where the coefficient rj adjusts the bandwidth of the filter and H0 provides

renormalization. For simplicity, a constant rj = 0.98 is used, corresponding

to a full width of 0.022 rad/h at half maximum that is narrow relative to the

spectral range of 0.26 rad/h for a half-daily timeseries. In this work we apply345

the bandstop filter only to the AMSR-E data, as pronounced spectral peaks can

not be easily identified in the ASCAT data, e.g., see Fig. 1d-f. A short Hamming

window of 90-day is used to estimate its PSD at high-frequency regime, over

which the frequencies of the systematic periodic errors are identified using a

peak-finding algorithm.350

3.2. Filtering with precipitation data

Given that the Wiener filtering can produce over-smoothed and/or distorted

SM timeseries, we consider the use of the ancillary precipitation data to modify

its implementation. The rationale is as follows. SM can show strong auto-

correlation due to the relatively slow transient behaviour of drainage and evap-355

otranspiration, whereas rainfall wetting decreases this auto-correlation. In par-

ticular, when sampled frequently between any two consecutive rainfall events,

the SM values are strongly correlated in time. But, the SM values before and

after a rainfall event typically have little correlation due stochastic nature of

rainfall amount and duration, and the nonlinear saturation threshold.360

Suppose then a SM timeseries being segmented into different time periods,

each with absence of rainfall occurrence. The start of each period Φ is signaled

by a rainfall event, and its end precedes the next event. Recall that the filtering
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equations (Eqs. 1, 4, 5, 7) relate an output (filtered) SM value θo[n] at time

step n of the period Φ to current input SM value θi[n] at time n, as well as the365

surrounding SM values in time θi[n ± m] for some m. Yet, the above heuris-

tic argument suggests that the input SM values residing outside the period Φ

should have weak influence on SM within it. Hence it is reasonable to adopt a

conditional input-output relation where the filter output at time step n ∈ Φ is

given by,370

θo[n] =
∑

(n−m)∈Φ

h[m]θi[n−m], (8)

c.f. Eq. 1. This means that the backward summation (with positive m) is

truncated at the start of the period Φ and for the non-causal filter, the forward

summation (with negative m) is truncated at the end of the period. With

the truncation, renormalisation was applied at each n so that the sum of the

weighting h[m] is unity. By using Eq. 8, greater amount of SM information in Φ375

is preserved at the output θo[n] for n ∈ Φ. For the causal (Wiener and bandstop)

filters, it can be observed that θo[n] = θi[n] if there is a rainfall occurrence at n,

i.e. the output retains all the information in the input. Such an implementation

of the causal Wiener filtering further highlights its functional difference from the

SWI filter. Further, by retaining more information existing in the input data,380

it enables the filtering to account for non-linear perturbation of the system due

to rainfall and saturation, although at the expense of moving away from the

LMMSE Wiener solutions.

The performance of the proposed filter implementation is dependent on the

quality of the rainfall data, specifically its probability of detection (POD) and385

false alarm ratio (FAR). On one hand, when there are many false-positive iden-

tification of rainfall, the filter output will simply replicates the filter input, i.e.,

the output from the filtering assisted with rainfall data will have quality identi-

cal to that of the input in the limit of FAR→ 1. On the other hand, when there

are many false-negative, the filter behaves in the way that rainfall data was not390

used, such that the assisted cases become the non-assisted cases in the limit of

POD→ 0.
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Previous evaluation studies of TMPA (3B42) aggregated daily data have

shown that it is skilful in detecting the occurrence of precipitation events at daily

time scales. In particular the evaluation of 3B42 (v6) over the La Plata basin395

in South America found that rain occurrence was best detected for low-medium

thresholds of 0.1–5 mm/day with a POD> 0.7, and FAR< 0.2 (Su et al., 2008).

The evaluation study of 3B42 (v7) over eastern India by Kneis et al. (2014)

shows consistent results; high POD ∼ 0.8 and low FAR < 0.3 at low threshold

of ∼ 5 mm. A similar result was reported by Ochoa et al. (2014) over the Pacific-400

Andean basin. We therefore exploit this capability of 3B42 (v7) to provide a

priori knowledge of the periods Φ. The periods were distinguished using the

total rainfall accumulation over 12-hour periods matching the sampling times of

each satellite at each location. The accumulation was calculated by integrating

the linearly interpolated 3-hourly average rainfall rates over time. Following405

these studies, we adopt 5 mm/12h as the the threshold for rainfall occurrence.

3.3. Method evaluation

3.3.1. Standard metrics

We first assess the merits of the de-noising schemes by their ability to improve

the overall agreement between the satellite data and ground measurements.410

The two types of filters essentially modify the high-frequency components ex-

isting in the original timeseries, and hence the evaluation was conducted on

the anomaly timeseries from 30-day moving averages following Albergel et al.

(2012). Anomaly calculations were applied to untreated and post-processed data

separately. Moving averages and thus the anomaly values were computed for415

windows containing at least 40% valid data. The traditional performance met-

rics typically used in evaluations (e.g., Su et al. (2013b) and references therein)

are root-mean-square deviation (RMSD) and Pearson’s linear correlation coef-

ficient R between satellite (θS) and ground (θI) SM data,

RMSD =
√

E[(θI − θS)2], (9)

R =
cov(θI , θS)

√

var(θI)var(θS)
(10)
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where E(◦) specifies the expectation value in time, and var(◦) and cov(◦) specify420

the variance and covariance.

The evaluation of satellite data was conducted in their native units, i.e.,

volumetric soil moisture (m3m−3) for AMSR-E and percentage of saturation

(%) for ASCAT. Rescaling of in situ and ERA SM was therefore needed for

ASCAT evaluation; Min-max rescaling to match 0–100% range was applied425

to ground and ERA SM before computing their anomalies. The metrics were

computed for locations with at least 100 co-located measurements, and these

locations are mapped in Fig. 3.

3.3.2. Signal-to-noise ratio metric

Given that we are largely interested in reducing the noise in the satellite430

data, TC can provide a measure of the level of the signal relative to the level

of the noise. TC uses an affine signal model and an additive orthogonal error

model to relate three spatio-temporally coincident SM anomaly data from the

in situ probe, satellite and ERA-Interim via,

θq = αq + βqθ + ǫq (11)

where the subscript q ∈ {I, S,M} labels the respective SM data, and θ is the435

unknown true, error-free SM signal common to the three SM estimates. The

coefficients αq and βq are intercept and slope terms relating to the signal com-

ponent of each data fq ≡ αq + βqθ, and ǫq is its zero-mean noise component.

The estimation equations for their variances are (Su et al., 2014a),

var(fS) = var(θS)− var(ǫS), (12)

var(ǫS) = var(θS)−
cov(θS , θI)cov(θS , θM )

cov(θI , θM )
. (13)

We follow the conventions of signal processing practices and Su et al. (2014b)440

to use signal-to-noise ratio (SNR) as the third metric. In decibel (dB), the metric

SNR is computed using,

SNR = 10 log10

[var(fS)

var(ǫS)

]

. (14)

17



The association between RMSD and R with the variances is straightforward to

understand. Substituting Eq. 11 to 9 and 10 leads to,

RMSD2 = [E(θI)− E(θS)]
2 + (βI − βS)

2var(θ) + (15)

var(ǫI) + var(ǫS),

R2 =
var(fI)var(fS)

[var(fI) + var(ǫI)][var(fS) + var(ǫS)]
. (16)

The de-noising of the satellite data aims to reduce the noise variance var(ǫS),445

which in turn reduces RMSD and increases R and SNR. Thus we also report the

score changes denoted by ∆RMSD, ∆R, and ∆SNR due to the post-processing

of θS . For TC, it requires that there are positive and substantial linear correla-

tions between the data triplet; thus the analysis was only applied to pixels with

R(θI , θS), R(θI , θM ), R(θM , θS) > 0.1.450

3.3.3. Comparison against precipitation data

The use of the aforementioned metrics can disguise the possibility that the

satellite and in situ SM are not compatible for direct comparison at certain

locations, due to marked differences in their measurement supports and high

spatial heterogeneity in SM. Laterally, in situ SM are point-scale measurements455

c.f. mesoscale footprints ∼ 50 km of the satellite microwave sensors. Vertically,

the satellite sensors have shallow sensing depths up to 2 cm c.f. the placement

of in situ probes at deeper depths of 0–40 cm. While these can lead to biases

(as reflected by the first two terms of Eq. 9), there are also likely temporal

lags between their observed SM dynamics. These differences complicate the460

evaluation of the performance between causal and non-causal filtering schemes

as the distorted and/or over-smoothed timeseries can show better agreement

with data from deeper in situ probe placements. In other words, the absence

of true SM values at the representative layer of C-band sensing fundamentally

limits our ability to fully assess the quality of the de-noised SM. We therefore465

turn to using precipitation data to provide a diagnostic examination of the

filters’ behaviours.

The water balance model (section 3.1.1) suggests that the positive increments
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in SM are linearly related to precipitation p to some degree: ∆θS ∝ p for positive

∆θS . Consider then a fourth metric based on the time-lagged cross-correlation470

between positive ∆θS and p,

R(p,∆θS ; τ) =
cov(p[n+ τ ],∆θS [n])
√

var(p)var(∆θS)
, (17)

where the negative (positive) time delay τ parameter corresponds to cases where

p leads ∆θS (∆θS leads p). Generally, SM at the shallow C-band sensing depth

will show immediate response to rainfall in a 12-hour time window and thus

should ideally show strong positive zero-lag correlation. Of course, there are475

obvious limitations to this diagnosis. The expected response will diminish with

soil saturation and surface runoff, large SM variability during the 12-hour time

lapse due to loss, and poor-quality rainfall data. Other wetting processes, e.g.,

melted snow water and irrigation, are also contributing factors, but we recall

that pre-screening of the satellite data for these instances were performed. Amid480

these concerns, the measure of temporal association between SM and TMPA re-

processed data may provide insight to the influence of different filtering schemes

on the shape and timing of rainfall-induced SM increments. Specifically at each

location, we identify the τmax value at which R(p,∆θS ; τ) is non-zero (with

p-value less than 0.01) and is maximum for all τ , and report the associated485

correlation value.

4. Results

Figure 2 illustrates the modifications to the original satellite SM timeseries

(black dots) at the three locations due to post-processing. In general, the simi-

larities between the satellite and in situ SM in terms of temporal responses to490

various rainfall events are visible, but stochastic noise is also apparent in satel-

lite SM. The illustration of the ground measurements at 0–5 cm depth from

Las Arenas in Fig. 2e and 2f also reveals the possible limitation of point-scale

data, where the measured SM is not responsive to TMPA precipitation. This is

in contrast to AMSR-E and ASCAT SM variability, and may be attributed to495
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either poor quality of the ground data or representativity differences between

point-scale and meso-scale measurements. Hence, caution is required when in-

terpreting RMSD and R metrics.

Gap-filling and de-noising can be distinguished as two distinctive post-processing

stages, as further illustrated in Fig. 2. The gap-filled timeseries are shown by the500

grey curves, and the timeseries de-noised by the causal Wiener and/or bandstop

filters are shown by the green and blue curves, which correspond to implementa-

tions with and without using TMPA rainfall. The differences from the original

and gap-filled data are obvious; the satellite SM timeseries are considerably

smoothed and the overall dynamic range is smaller, but the overall mean is pre-505

served. The rainfall-assisted filter implementation also yields markedly different

timeseries from the non-assisted counterparts, by showing more immediate and

sharper response to rainfall events. The rainfall-assisted implementation can be

argued to provide a more visually realistic SM timeseries.

The subsequent sections detail our quantitative evaluation of gap-filling and510

de-noising, separately. The influence of gap-filling on the agreement between

the satellite and in situ data is shown in Fig. 4, and the effect of de-noising for

AMSR-E and ASCAT in Figs. 5 and 6 respectively. The spatial statistics of the

scores for various de-noising implementations are summarized in Tab. 1. To take

into consideration different scores at different evaluation sites, we present the515

spatial summary statistics, namely the median and interquartile range (IQR)

statistics of the scores (or differences in score), using a bracket notation me-

dian[IQR], e.g., 0.05[1] refers to median of 0.05 and IQR of 0.01. Finally the

lag-correlation analyses are presented in Fig. 7.

4.1. Evaluation of gap-filled satellite data520

There is a high incidence of missing values in half-daily, AMSR-E and AS-

CAT SM timeseries. However, for the pixels evaluated in Figure 4, the contin-

uous data gaps mainly have lengths ≤ 2-days for > 80% of the gaps. Con-

sequently, the applications of the gap-filling algorithm results in (Linterp +

Lorig/Lorig) = 1 − 2.5 fold increase in the effective satellite SM sample size525
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L = Linterp+Lorig. ASCAT needs more interpolation than AMSR-E because of

its longer revisit time.

As a baseline, the original AMSR-E SM has RMSD=0.063[23] m3m−3, R=0.29[20]

and SNR=-3.9[60] dB, while ASCAT has 13.6[29]%, 0.46[20] and -0.49[40] dB,

respectively. After gap-filling, the overall changes in scores are small. The no-530

ticeable difference is related to ASCAT, showing ∆SNR of -1.1[15] dB, compared

to 0.1[6] dB for AMSR-E.

In repeated analyses (not shown), we distinguish between the existing data

from the interpolated data, and find more striking differences in their quality.

The interpolated data show lower RMSD, by -0.03[2] m3m−3 for AMSR-E and -535

2.4[21]% for ASCAT, when compared to the existing data. The results are mixed

for other metrics. The interpolated AMSR-E data shows higher R by 0.10[10]

and SNR by 2.5[28] dB, whereas interpolated ASCAT data shows marginally

lower R and SNR by -0.03[11] and -1.7[26] dB respectively.

4.2. Evaluation of de-noised AMSR-E SM540

Figure 5 shows the quality of AMSR-E SM data following the application

of bandstop (labeled with ‘B’) and Wiener causal (‘C’) or non-causal (‘NC’)

filtering, but without using the rainfall data. The reference scores are taken

from the evaluation of the gap-filled data, which has RMSD=0.056[19] m3m−3,

R=0.30[20] and SNR=-3.7[60] dB. All the sites show improvements in RMSD,545

and only few sites (up to 7) show degradation in R and SNR. The overall

improvements are apparent: ∆RMSD=-0.02 m3m−3, ∆R=0.13-0.14 and ∆SNR

= 4.5-5 dB. The change in SNR corresponds to 2.8-3.2-fold increase in the signal

variance relative to the noise variance in the de-noised data. The locations with

larger initial RMSD and lower initial SNR show greater improvements in these550

metrics.

Table 1 summarises the evaluation of de-noised AMSR-E SM produced by

different combinations of the bandstop filter, the Wiener filters, with (labeled

with ‘R’) and without the use of TMPA rainfall data. The first set of columns

show the results from evaluating all (interpolated and existing) satellite SM val-555
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ues. On the whole, the improvements are largest amongst the implementations

involving the Wiener filters without TMPA data, and the bandstop filtering

yields marginal reduction in RMSD and modest increase in R and SNR. The

non-causal filtering produced slightly better scores than the causal filtering. The

use of TMPA data typically diminishes the overall agreement between de-noised560

satellite and in situ data.

Separate evaluations of the interpolated and existing data are reported in

the subsequent columns of Table 1. It is found that the improvements previ-

ously observed in the all-data evaluation are largely due to improvements in

the existing data, and the merits of using the bandstop filter become more ap-565

parent. For the existing data, the bandstop filtering leads to ∆R = 0.06[4]

and ∆SNR=2.0[12] dB, and combined with the Wiener filtering, ∆RMSD∼

−0.03[2] m3m−3, ∆R ∼ 0.16[8] and ∆SNR∼ 5.5[24] dB. The interpolated data

are also enhanced by de-noising, but with more modest increases in R and SNR.

This is partly because the quality of the interpolated data is better than the570

existing data before de-noising (see section 4.1). Even so, de-noising can be seen

to be complementary to interpolation, to further improve the accuracy of the

estimated SM during non-retrieval times.

4.3. Evaluation of de-noised ASCAT SM

Figure 6 shows the evaluation of the ASCAT de-noised by the Wiener filters.575

The median and IQR statistics of RMSD, R and SNR of the gap-filled ASCAT

are 12.3[25]%, 0.43[18], and -1.5[38] dB, respectively. All locations show clear

improvements in RMSD and SNR, but for the non-causal Wiener implementa-

tion, up to 19 sites (out of 385) show negative ∆R and 6 sites show negative

∆SNR. Comparing against AMSR-E, the magnitude of the improvements is also580

generally smaller: ∆RMSD∼ −1.6%, ∆R=0.04–0.09 and ∆SNR=1.4–2.7 dB,

corresponding to 1.4-1.9-fold increase in signal variance relative to noise vari-

ance. The smaller gain is expected because the gap-filled ASCAT SM has better

agreement with in situ data than the AMSR-E SM, prior to de-noising. The

other difference from the AMSR-E data is that the use of causal filtering on585
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the ASCAT data outperforms the use of non-causal filtering in terms of R and

SNR.

Other filter implementations are summarised in Table 1. The greatest im-

provements are found amongst the existing data with the causal filtering, with

∆R = 0.09[5] and ∆SNR=3[2] dB. For the interpolated ASCAT data, the im-590

provements are greater than the interpolated AMSR-E data. Furthermore, the

use of rainfall data appears to benefit the non-causal filtering approach in terms

of R and SNR.

4.4. Evaluation against precipitation data

Figure 7 shows the lag correlation analysis between TMPA precipitation p595

and positive SM increments ∆θ∗ observed in in situ data (7a,g) and satellite

data (7b-f for AMSR-E and 7h-l for ASCAT). For each SM data, the lag τmax

value that maximizes its cross correlation with p is identified at each site, and the

sites with same τmax are binned. The boxplots show the range of R(p,∆θ∗; τmax)

values within each bin. Ideally, the shallow SM, as was observed by C-band sen-600

sors, should show short-time scale and coincident response to precipitation, and

this should manifest as strong lag-zero cross correlation if the linear dynamics

in SM is dominant and precipitation data is representative.

At most sites, the ground data have their highest correlation at zero lag, and

the median of the R(p,∆θI ; τ = 0) is 0.47. The relatively strong correlations605

suggest that there are some merits of using the TMPA data to evaluate satellite

SM. In reference to the example timeseries in Fig. 2, the in situ measurements

show stronger lag-zero R(p,∆θI) of 0.45 at Cooma airfield and 0.55 at Little

River, compared to 0.23 at Las Arenas where differences between θI and p are

apparent. Over 50 sites appear to show lagged responses to TMPA, which may610

be attributed to the differences in (lateral and vertical) measurement supports

(e.g., Fig. 2e,f), poor data quality and/or nonlinear SM processes. We also note

that when R(p,∆θI ; τ) becomes too weak, the lag τmax is generally ill-defined,

such that in some cases has values outside of the plot range.

For the pre-denoised satellite SM in Fig. 7b and h, most pixels similarly615
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show maximum correlations R(p,∆θS ; τ) at zero lag, but the median of corre-

lation statistics is relatively lower at 0.2 for AMSR-E and 0.27 for ASCAT. In

addition to the above reasons, the presence of noise can suppress the correlation

with rainfall, since it will manifest as both false positive and false negative SM

increments.620

The rest of the panels in Fig. 7 illustrates the influence of de-noising on the

cross-correlation. In particular, we find that the non-assisted causal Wiener

filtering, which shifts the filter output forward in time relative to its input,

increases the number of sites with negative τmax for AMSR-E (7c). In other

words, the de-noised AMSR-E shows increased delayed response to precipitation.625

The problem of over-smoothing by the non-causal Wiener filtering also becomes

apparent from the increased number of sites with positive τmax (7d and 7j); the

de-noised SM at these sites therefore show non-causal response to precipitation.

Such degradation of the satellite SM is not apparent in the traditional metrics.

The influence of using rainfall in the filtering is shown in Fig. 7e-f (AMSR-630

E) and k-l (ASCAT). It leads to stronger zero-lag correlations at almost all the

satellite pixels, where median R(p,∆θS ; τ = 0) statistics are 0.47–0.55, and all

the sites show maximum correlation between ∆θS and p at zero-lag. These

results are consistent with the qualitative differences between non-assisted and

assisted filtering observed in Fig. 2.635

5. Discussion and conclusion

The functionalities of de-noising Fourier filters under investigation are in-

tuitive to understand. The Wiener filters are low-pass filters that attenuate

high-frequency spectral components in the data where noise is most prominent.

This gives rise to smoothing of the input timeseries. The bandstop filters are640

designed to remove extraneous spectral peaks, which represent a form of system-

atic errors in satellite SM. The reference spectrum of an error-free SM needed

to identify these high-frequency noise and extraneous peaks is provided by the

Fourier transform of the governing water-balance equation. The key advantages
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of these filters over other low-pass (e.g., moving-average or median) filters are645

that they were not designed in an ad-hoc fashion but based on a physical model,

and practically, their calibration does not require ancillary data.

Based on anomaly-based evaluation metrics (RMSD, R and SNR), the post-

processed data were evaluated against ISMN at over 270 locations for AMSR-E

and over 380 locations for ASCAT. In particular, before post-processing, the650

median statistics for RMSD, R and SNR are 0.06 m3m−3, 0.29 and -3.9 dB for

AMSR-E, and 14% (in units of degree of saturation), 0.46, and -0.49 dB for AS-

CAT. While there is significant variability in data quality across different sites,

the relatively low scores support our rationale for post-processing to improve

their qualities.655

Given an intermittent data stream, we used the DCT-based gap-filling al-

gorithm of Garcia (2010) to estimate missing SM values in gaps of ≤ 2-days.

We found in section 4.1 that interpolation over few-day gaps appears to provide

reasonable SM estimates with some agreement with in situ data. Notably, the

accuracy of the interpolated data is commensurate with or even slightly better660

than the existing data, especially for the AMSR-E data that contains shorter

gaps than the ASCAT data. For instance, interpolated AMSR-E SM values

have lower RMSD by (median statistics) 0.03 m3m−3, higher R by 0.10 and

SNR by 2.5 dB, relative to existing SM data. Given that the interpolation algo-

rithm uses the spectral characteristics of the entire timeseries, the resultant SM665

estimates can retain the autocorrelation nature of SM but are also smoothed.

This may be responsible for better agreement between interpolated satellite data

and in situ data. However, it is expected that their accuracy of the interpolated

data will diminish with longer gaps and during periods of high SM variability.

Future studies may trial different interpolation algorithms and investigate the670

dependency of their performance on the gap length and SM autocorrelation

length.

With respect to de-noising, we found in section 4.2 and 4.3 that the sys-

tematic improvements of the satellite data came from the bandstop and Wiener

filtering, and greater enhancement was found to be amongst the existing data675
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(as opposed to interpolated data). For instance, the de-noised AMSR-E SM

reported improved scores of (median statistics) ∆RMSD=-0.02 m3m−3, ∆R =

0.13− 0.14 and ∆SNR= 4.5− 5 dB, whereas de-noised ASCAT reported -1.6%,

0.04−0.09 and 1.4–2.7 dB, respectively. In other words, the magnitudes of over-

all improvement are greater amongst AMSR-E data than the ASCAT because680

the latter shows better agreement with in situ data prior to de-noising, although

their associated evaluation sites and periods are notably different. More gen-

erally, the results highlight the fact that high-frequency noise diminishes the

quality of the satellite data, and by removing them through filtering, their qual-

ity can be enhanced. The implementations without using rainfall data generally685

offer better agreement based on the traditional evaluation metrics (RMSD, R

and SNR). This finding, however, must be viewed in the context of the prob-

lematic over-smoothing and distortion of the SM timeseries by the non-assisted

filtering. Better agreement in terms of these three metrics can disguise such

adverse filtering effects.690

By examining the lag-correlations between positive SM increments and pre-

cipitation in section 4.4, the differences between various filter implementations

became discernible. We found evidence of these adverse effects amongst non-

assisted filter implementations. More importantly, we demonstrated a possible

resolution from using the precipitation data to alleviate the problem of over-695

smoothing due to the filters’ LTI characteristics and the LMMSE formalism,

and reduce distortion caused by the causal filters’ phase characteristics. In par-

ticular, the SM increments in the (assisted) de-noised products show desirable

enhanced lag-zero cross-correlation, which is indicative of retained short-time

scale SM variability; this is also visible in the timeseries plots (Fig. 2). By us-700

ing only the categorical rain/no-rain information in the TMPA, the method is

expected to be less susceptible to its associated biases and errors. The proof-of-

concept evaluation using satellite-retrieved rainfall data is further encouraged

by the global availability of such data that is expected to continue with the

Global Precipitation Measurement mission (Smith et al., 2007), in addition to705

relatively widespread rain-gauge networks globally.
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The greatest improvements of the satellite data came from the Wiener fil-

tering, but the relative merits between causal and non-causal filtering are not

consistent between the two SM products. For AMSR-E, while the phase-shift

characteristics of the causal filter could conceivably cause the shallow AMSR-E710

SM to reflect deeper SM observations better, this is not apparent in our causal

c.f. non-causal comparison in terms of the traditional metrics. Furthermore,

the lag-correlation analysis suggests that both causal and non-causal filtering

are problematic with AMSR-E SM. For ASCAT, the causally-filtered SM shows

better overall agreement with the in situ data and stronger lag-zero correlation715

with TMPA data. A likely reason is the algorithmic differences between the

SM products in terms of the retrieval model and the model inversion strategy,

since the ASCAT has similar vertical sampling depth sensitivity to the AMSR-

E. Further investigation is still needed to understand the influence of retrieval

algorithms and different measurement supports on the perceived SM variability.720

Based on our lag-correlation results, we recommend assisted non-causal filtering,

unless restricted by real-time operational requirement.

In relation to the broader literature on model-data assimilation, the Kalman

filtering and smoothing generalise the causal and non-causal Wiener filters to

appreciate time-varying characteristics in underlying model, model and obser-725

vational errors. They also allow better integration of SM data and many other

observational data e.g., via a land-surface model. In this work, using rainfall

data to dynamically modify the Fourier filtering process represents a partial

solution and a bold (perhaps, ad-hoc) step beyond the standard approach, in

the direction towards the more sophisticated Kalman-based approaches. How-730

ever the success of the data assimilation depends on a model that appropri-

ately accounts for the nonlinear SM dynamics, knowledge of soil properties

at multiple depths, proper characterisation of model and observational errors,

and accurate observational operators relate observed variables to their modelled

counterparts. While significant advances have been made in this direction (e.g.735

Dunne & Entekhabi, 2005; Draper et al., 2012), our approach is practically sim-

ple to implement, generating SM data sets that are very close to observations
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and can be an important complement to modelled data and re-analysis. Looking

ahead, the adopted Fourier filter designs may be improved with better under-

standing of the spectral characteristics of the satellite SM errors. In turn, such740

understanding can advise optimal land data assimilation of satellite SM.

In conclusion, this work found compelling evidence that the Fourier (Wiener

and bandstop) filters have skill in improving existing satellite active and passive

microwave SM products. Without the minimal need for ancillary data, the

schemes can potentially be applied to a broad range of historical satellite SM745

records (from 1978) and in causal forms, are relevant to future observations and

use in operational environments. The filters are support-independent and thus

are applicable for other sources of SM estimates from in situ sensors and models.
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Isaksen, L., Kerr, Y., & Wagner, W. (2012). Evaluation of remotely sensed

and modelled soil moisture products using global ground-based in situ obser-

vations. Remote Sensing of Environment, 118, 215–226.770
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Figure 1: Spectral analysis of satellite (black and grey curves) and in situ (red) SM, showing the PSD of the AMSR-E (SAMS) (a-c) and ASCAT

(SASC) SM (d-f) at three monitoring locations. They are compared with the PSD of the co-located in situ SM (Sins). Brackets in legend indicate

the size of the Hamming window in units of years used for PSD estimation. Sins differs because different data are used to match different satellite

periods. Blue curves are the model S′ (Eq. 3) fitted to the satellite PSD for instances with and without noise term SE .
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Figure 2: Untreated and treated AMSR-E and ASCAT SM. Black dots are original SM data points, grey curves are gap-filled SM, and green (blue)

curves are de-noised SM with causal filter (with TMPA rainfall). Red dots are the in situ SM data. The superimposed bar plots are 12-hourly TMPA

rainfall accumulation.
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Figure 4: Evaluation of gap-filled satellite SM anomalies against in situ SM anomalies, in terms of RMSD, correlation R and SNR. For the scatterplots,

x-axes denote the scores of the untreated satellite SM, and y-axes the score after gap-filling. Each symbol corresponds to one evaluation site amongst

M total number of sites. The color coding indicates the multiplicative increase in the length of satellite anomaly data for evaluation due to gap filling.

The barplots show the changes in scores across all sites, and indicate spatial median and interquartile range (IQR) statistics of the score change.
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Figure 5: Evaluation of de-noised, gap-filled AMSR-E SM anomalies against in situ SM anomalies. Two sets of filters were applied, namely bandstop

(‘B’) and Wiener causal (‘C’) or non-causal (‘NC’) filters. TMPA rainfall data were not used. The color coding indicates the size of sample evaluated

at each site. Computation of M , median, and IQR follows Fig. 4.
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Figure 6: Same as Fig. 5, but for ASCAT and bandstop filter was not used.
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Figure 7: Statistics of maximum lag-correlation between TMPA precipitation and positive SM increments in each SM data set. (a,g) shows the

analysis for in situ SM data; (b,h) for satellite SM before de-noising; (rest) for satellite SM after de-noising. The blue integers are number of sites

for each τmax bin.
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Table 1: Summary of changes to the scores after applying de-noising to gap-filled satellite data. The filter notations follow Fig. 5, and label ‘R’

corresponds to cases where TMPA rainfall data was used. The bracket notation refers to median[IQR] statistics. ∆RMSD is in units of m3m−3 (%)

for AMSR-E (ASCAT), and ∆SNR is in units of dB.

All data Interpolated data Existing data

Prod. Filt. ∆RMSD ∆R ∆SNR ∆RMSD ∆R ∆SNR ∆RMSD ∆R ∆SNR

AMS B -0.008[7] 0.046[29] 1.6[11] 0.003[3] -0.026[40] -1.1[12] -0.012[9] 0.057[36] 2.0[12]

B+R -0.005[5] 0.033[27] 1.2[8] 0.002[3] -0.012[37] -0.5[13] -0.007[6] 0.035[28] 1.3[9]

B+C -0.020[12] 0.134[78] 4.5[25] -0.001[2] 0.032[62] 0.6[15] -0.026[17] 0.158[86] 5.4[24]

B+C+R -0.013[10] 0.102[75] 3.6[20] 0.001[5] 0.034[66] 0.9[17] -0.018[13] 0.117[76] 4.0[20]

B+NC -0.022[14] 0.137[61] 5.1[22] -0.002[2] 0.029[21] 1.1[6] -0.029[17] 0.162[73] 6.0[24]

B+NC+R -0.018[11] 0.117[64] 4.2[19] -0.002[2] 0.045[40] 1.7[11] -0.024[15] 0.127[70] 4.7[21]

ASC C -1.72[82] 0.085[43] 2.7[12] -0.67[42] 0.071[41] 2.2[11] -2.92[141] 0.087[46] 3.1[18]

C+R -1.23[55] 0.073[36] 2.3[9] -0.50[45] 0.068[38] 2.1[9] -1.97[93] 0.069[40] 2.4[12]

NC -1.58[96] 0.041[25] 1.4[9] -0.38[26] 0.024[14] 1.0[4] -2.96[159] 0.052[41] 1.8[15]

NC+R -1.44[72] 0.052[24] 1.7[9] -0.52[28] 0.042[22] 1.5[6] -2.52[128] 0.052[30] 1.8[12]
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