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Abstract

In this thesis, we study the effect of dissipation on quantum systems. Be-
cause of the unavoidable interaction with its environment, every quantum
system is subject to dissipation. This usually limits the performance of quan-
tum devices and washes out interesting physics. However, in this thesis we
are interested in a limit where the dissipation strengths are comparable to
the intrinsic coupling strengths of the system. We find that this competi-
tion between coherent dynamics and dissipation leads to many interesting
phenomena.
The effect of PT-symmetry breaking in coupled classical systems with bal-

anced gain and loss can be understood as a competition of coherent and inco-
herent processes. While it has been demonstrated in various classical systems,
it is still unclear how this definition can be extended to open quantum system.
In this thesis, we provide a definition of PT-symmetry for Liouville operators
and show the analogy to the classical case.
Furthermore, we extend this analysis to large spin systems with gain and

loss. In order to investigate such extended systems it requires new numerical
techniques. In this thesis, we introduce the truncated Wigner method for
open quantum spins (TWOQS) to simulate the dynamics and steady states
of collective spin systems in the presence of gain, loss and dephasing.
We use the TWOQS to explore the non-equilibrium properties of a spin

lattice where coherent interactions between neighboring lattice sites compete
with alternating gain and loss processes. In this very simple model we find
rather unconventional phase transitions such as a discontinuous phase tran-
sition without phase coexistence between two distinct phases at the critical
point and a discontinuous mixed-order phase transition with long-range cor-
relations but without any symmetry breaking.
In systems with sources of gain and loss, there is naturally a flow of energy.

This motivates the study of energy transport through a network of harmonic
oscillators, where a microscopic generator injects energy on one site of the
network and a microscopic engine extracts energy from the other site. We
investigate the chain in the macroscopic, thermal and in the quantum regime,
and describe how the transport is affected by the competition between co-
herent and incoherent processes and nonlinear saturation effects. We find a
coherent and a noise dominated transport regime, which is associated with
the breaking of the spatial symmetries.
Finally, we extend the discrete truncated Wigner approximation (DTWA)

to dissipative systems (DDTWA). The DDTWA enables an accurate sim-
ulation of realistic experiments with hundred-thousand spins while taking
account of all different types of dephasing, decay and inhomogeneities.





Kurzfassung

In dieser Arbeit anlysieren wir den Einfluss von Dissipation auf Quantensys-
teme. Da man ein reales Quantensystem nie perfekt vor äußeren Einflüssen
schützen kann, unterliegt jedes System der Dekohärenz. Diese kleine Kopp-
lung mit der Umgebung kann das Vorkommen interessanter Quanteneffekte
verhindern. In dieser Arbeit erforschen wir das Gegenspiel zwischen der kohä-
renten Dynamik und der Dissipation und zeigen das dies zu sehr interessanten
Effekten führen kann.
In klassischen PT-symmetrischen Systemen kann dieses Gegenspiel zur Bre-

chung der Symmetrie führen. Während dieser Effekt schon in einer Reihe von
klassichen Systemen experimentell nachgewiesen wurde, ist die Definition von
PT-symmetrischen offen Quantensystemen noch ungeklärt. In dieser Doktor-
arbeit liefern wir eine Definition für PT-symmetrische offene Quantensysteme
und zeigen die Analogie zu klassischen Systemen anhand mehrerer Beispiele.
Des Weiteren untersuchen wir die Wechselwirkung zwischen kohärenter Dy-

namik und Dissipation in großen Spingittern. Dieses System besitzt außer-
gewöhnliche Phasenübergänge, wie einen diskontinuierlichen Übergang ohne
Phasenkoexistenz am kritischen Punkt und einen diskontinuierlichen Über-
gang mit langreichweitigen Korrelationen, jedoch ohne Brechung einer Sym-
metrie.
Da eine exakte Berechnung nur für sehr kleine Systeme möglich ist, benötigt

es neue numerische Methoden um so eine Analyse zu ermöglichen. Wir führen
deshalb eine neue Methode TWOQS (Truncated Wigner method for Open
Quantum Spins) ein, welche die Simulation der Dynamik und des stationären
Zustandes von offenen kollektiven Spinsystemen ermöglicht.
Außerdem erweitern wir die Discrete Truncated Wigner Approximation

(DTWA) für geschlossene Quantensysteme zu offenen Quantenystemen (DDT-
WA). Dadurch können wir realistische Experimente mit 𝑁 = 105 Spinteilchen
unter der Berücksichtigung diverser inkohärenter Prozesse wie Zerfall oder De-
phasierung und diverser Imperfektionen wie Inhomogenitäten mit sehr hoher
Genauigkeit numerisch berechnen.
Darüber hinaus analysieren wir in dieser Dissertation den Energietransport

in offenen Quantensystemen. Wir betrachten dazu ein Netzwerk von harmo-
nischen Oszillatoren an dem an einer Seite Energie hineingepumpt und an der
anderen Seiten Energie entfernt wird. Wir analysieren dieses System sowohl
im makroskopischen, thermischen als auch quantenmechanischen Bereich und
finden einen Übergang zwischen einem kohärenten und einem stark verrausch-
ten Transportbereich. Diese unterschiedlichen Transporteigenschaften hängen
von der Topologie und der Symmetrie des Systems ab.
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1 Introduction

"Ich wollte kein 0850 Produkt."

- Marko Arnautovic

1.1 Open quantum systems

The performance of quantum devices such as quantum computer [1, 2], quan-
tum simulators [3–5] or quantum cryptography systems [6] are usually lim-
ited by the coupling of the system to a noisy environment. This unavoidable
interaction of the quantum system with its surroundings generates system-
environment correlations and leads to an irretrievable loss of quantum coher-
ence [7]. All real quantum system are thus open quantum systems that must
be described by a non-unitary dynamics which takes the dissipation of energy
and the decay of quantum coherences and correlations into account [8]. This
decoherence tends to destroy and wash out the interesting quantum effects
that give rise to the power of quantum computation, simulation and commu-
nication. While for most quantum technologies reducing the dissipation is one
of the biggest challenges, dissipation can be also used to prepare systems in
certain quantum states [9, 10] and even to perform quantum computation, by
designing environments that drive the system into a steady state that encodes
the outcome of the computation [11]. Moreover, dissipation can be used, for
example, to cool trapped ions to the motional ground state [12, 13], which is
essential for implementing high-fidelity quantum gates [14].

Non-equilibrium phase transitions. The study of open quantum systems
is also of interest from a different point of view. Recently, there has been a
growing interest in non-equilibrium properties of many-body quantum sys-
tems, in particular, in the presence of external driving and dissipation. While
the equilibrium states and phases of closed systems can be understood by en-
ergetic considerations or by the minimization of a thermodynamic potential,
such a general theoretical framework is not available for describing the steady
states of open quantum systems. As a consequence, there is still little known
about the nature of non-equilibrium phase transitions of driven-dissipative
quantum systems.
Recently there has been extensive work on this topic. In the context of

spin systems, a lot of previous work extended the analysis of the transverse
field Ising and related XYZ models to open systems [15–22]. For 1D systems
matrix product states (MPS) methods can be used to numerical investigate
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such spin models, however typically there are no sharp phase transitions in
1D [18, 22]. In 2D and higher dimensions numerical simulations are very
challenging and reliable results can be mostly obtained by exact numerical
simulations, which are restricted to rather small lattices [18–20, 22]. There-
fore, most of our more reliable insights about dissipative phase transitions are
currently based on studies of zero-dimensional models such as collective spin
systems [23–28], weakly nonlinear bosonic modes [29–31] or combinations of
both [32–34]. In these systems the steady states can be calculated numerically
for sufficiently large system sizes or even solved analytically [29, 31, 35].
From the analysis of many such systems a common picture of dissipative

phase transitions emerged [24, 36], where the energy gaps are replaced by
asymptotic decay rates, but the actual phenomenology is still very similar
to the equilibrium case: There are discontinuous first-order phase transitions
where two distinct stationary states can coexist at the critical point and
continuous second-order phase transitions associated with the breaking of a
symmetry. Naturally, this motivates the search for non-equilibrium critical
phenomena that lie outside of this conventional framework and for the basic
mechanisms that may cause such behavior.
In Chapter 4, we study a spin lattices with alternating gain and loss. We

show that this simple model already exhibits several phase transitions, which
do not follow the usual phenomenology of first and second-order phase tran-
sitions [36]. We study these unconventional phase transitions in detail and
compare them with previously known dissipative phase transitions.

Phase space methods. In order to search for such unconventional non-
equilibrium phase transitions, the development of new numerical techniques
is of imminent relevance. For spin-1/2 systems in 1D there exist reliable ten-
sor network methods to simulate dissipative many-body spin systems [37–
39]. As simulations are already challenging for spin-1/2 systems, simulations
in the limit of large collective spins 𝑆 ≫ 1 can not be performed with these
methods. In this limit of 𝑆 ≫ 1, mean field theory, the classical description of
the system, might give a proper description of the first order mean values for
certain models, however it does not give any insight about the correlations of
the system. It therefore requires new numerical techniques which accurately
predict correlations and can be applied to study large system sizes. In Chap-
ter 6, we introduce the truncated Wigner method for open quantum spins
(TWOQS). The TWOQS is based on the truncated Wigner approximation
(TWA), where different initial states are time evolved classically. As the initial
states are randomly drawn from a Wigner distribution, the correct amount
of quantum mechanical uncertainties are included at all times. This usually
gives substantially more accurate results and access to correlations. In order
to simulate open quantum systems, the classical evolution by the mean-field
equations has to be replaced by stochastic equations, which ensures that the
initial quantum fluctuations are preserved. This allows us to simulate large
spin systems in any dimension and for arbitrary interaction pattern in the
prescence of dephasing and decay. We provide a detailed derivation of this
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simulation technique and discuss and benchmark its performance in terms of
several explicit examples.
The Wigner function can not represent a Fock state with a positive distribu-

tion [40], which is necessary to do a TWA simulation. A Fock state therefore
must be approximated by a coherent state. The discrete TWA (DTWA) [41]
overcomes this problem by introducing a discrete phase space where even
higher spin correlations of a spin-1/2 particles are reproduced correctly. In
Chapter 7, we use a similar approach as for TWOQS to extend the DTWA to
open quantum systems. The dissipative discrete truncated Wigner approxi-
mation (DDTWA) can be used to study systems in the presence of local and
collective dephasing and decay. Moreover, this extension of the DTWA is not
only restricted to white noise processes but also systems in the prescence of
colored noise can be simulated very efficiently. Since the number of equa-
tions scales linearly with the number of spins, spin systems consisting up to
hundred-thousands of spins can be simulated very efficiently. We benchmark
this method on the transverse long-range Ising model as well as the driven
Dicke model.

PT-symmetry. A prototypical example of a classical dissipative phase tran-
sition is the phenomenon of PT (parity and time reversal) symmetry break-
ing, where the eigenvalues of the dynamical matrix of system change from
purely real to purely imaginary. Over the past years, this effect has attracted
considerable attention and has been demonstrated in various optical [42–44],
electrical [45] and mechanical [46] settings. These works were motivated by
a work of Bender and Boettcher, who found a new class of non-Hermitian
Hamiltonians with a purely real energy spectrum and attributed this fact to
the underlying combined PT symmetry [47]. This opened a whole new field
of PT-symmetric quantum theory, where the condition that the Hamiltonian
is Hermitian is replaced by the weaker condition that it possesses invariance
under space-time inversion [48]. While these are primarily mathematical con-
siderations, there exist many classical systems with balanced gain and loss,
whose dynamics can be mapped onto such PT-symmetric Hamiltonians [47,
49–52]. For a recent review of non-Hermitian physics and PT-symmetry see
Refs. [51, 52]. However, in a full master equation formulation of open quan-
tum system [7], there is no such transition between purely real and purely
imaginary eigenvalues of the corresponding Liouville operator. Also, at a mi-
croscopic level, the time-reversal equivalence between loss and gain is broken
by quantum fluctuations [53–56]. Therefore, it is still an unresolved question
how to formally define PT-symmetry for dissipative quantum systems [57] and
if the breaking of this symmetry can exist at all on a microscopic level [56].
In Chapter 5, we introduce for the first time a symmetry transformation for

Liouville operators which extends the conventional definition of PT symmetry
to arbitrary open quantum systems. This definition is chosen to reproduce
the conventional PT-symmetry definition in the classical limit for bosonic
systems, but can be used for arbitrary open quantum systems. We show
that under very generic conditions there exists a fully symmetric phase and
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that this symmetry can be broken. As the dimension of the Hilbert space
increases we find a sharp PT-symmetry breaking transition. We illustrate
our findings on several examples in order to show the universality of this
symmetry breaking transition.

Microscopic energy transport. PT-symmetric systems contain regions with
gain and loss and naturally there will be a flow of energy between these dif-
ferent regions. Therefore, a more general question to ask is, how energy is
distributed in networks with gain and loss and how this symmetry break-
ing transition will affect energy transport properties at the micro-scale. The
conventional energy transfer in electric systems has been investigated since
hundreds of years [58] and is used in our every day lives, as electric energy
is transfered from an electric generator of a power plant to our homes, so we
can use all kinds of electric devices. These kind of electric transfer can be
describes by Ohm’s law [58], which states that the current depends on the
potential gradient.
However, there is still little known about the energy transport in the mi-

croscopic regime, where the electric generators and devices are replaced a
microscopic generators and microscopic engines. Recently there has been a
growing interest in the performance of microscopic generators, engines or re-
frigerators, which may even be realized with single quantum systems [59–63].
However, while many theoretical [64–79] and first experimental [80–87] stud-
ies of individual quantum machines have already been performed, there is
still little known about interfacing multiple such devices. For example, how
is energy transfered at the microscopic scale, where quantum and thermal
fluctuations become important?
In Chapter 3, we analyze the energy transfer between two quantum ma-

chines, which are connected through a chain of coupled harmonic oscillators.
Such quantum devices can be operated in different regimes and we there-
fore investigate the resulting transport phenomena in the macroscopic, in the
thermal and in the quantum regime.

1.2 Outline of this thesis

This thesis is organized as follows: In Chapter 2, we first introduce the most
common description of open quantum systems and give an overview of dif-
ferent numerical methods to simulate such open quantum systems. In Chap-
ter 3, we then discuss energy transport and symmetry breaking effects in a
microscopic power grid, where on one side energy is injected by a microscopic
generator while on the other side of the chain energy is absorbed by a mi-
croscopic engine. In Chapter 4, we analyze dissipative phase transitions of
large spin systems with alternating gain and loss. In Chapter 5, we extend
the conventional PT-symmetry breaking in classical systems to open quan-
tum system with gain and loss and demonstrate our finding in terms of a few
simple models. In Chapter 6, we introduce the truncated Wigner method
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for open quantum spins (TWOQS) to study large dissipative spin systems.
Finally, in Chapter 7, we extend the discrete truncated Wigner approxima-
tion (DTWA) to study large many-body spin-1/2 systems in the prescence of
dephasing and decay and benchmark the method with exact simulations.

1.3 List of publications

The content of this thesis is primarily based on the results contained in the
following five publications:

PHYSICAL REVIEW A 100, 012129 (2019) [88]
Active energy transport and the role of symmetry breaking in

microscopic power grids

J. Huber and P. Rabl

In this article, we study the energy flow through a chain of harmonic oscil-
lators, where on one side energy is injected by a microscopic generator while
on the other side of the chain energy is absorbed by a microscopic engine.
We investigate the flow of energy through this system for different injection
and extraction rates of the microscopic generator and the microscopic engine.
Moreover, we investigate the energy transport phenomena in the macroscopic,
in the thermal and in the quantum regime. Finally, we extend the analysis to
networks of harmonic oscillators. For this work, I performed all the analytical
and numerical calculations under the supervision of Prof. P. Rabl.

PHYSICAL REVIEW A 102, 012219 (2020) [89]
Non-equilibrium magnetic phases in spin lattices with gain and

loss

J. Huber, P. Kirton and P. Rabl

In this article, we study a chain of coupled spins with alternating gain and
loss. We especially focus on the phase transitions of this model and compare
these rather unconventional phase transitions to well studied models. We
demonstrate that dissipative phase transitions can be very different from the
ones in equilibrium systems. For this work, I performed all analytical and
numerical calculations except the iMPS simulation, which was performed by
P. Kirton. All work was done under the supervision of P. Kirton and Prof.
P. Rabl.
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SCIPOST PHYSICS 9, 052 (2020) [90]
Emergence of PT-symmetry breaking in open quantum systems

J. Huber, P. Kirton, S. Rotter and P. Rabl

In this article, we introduce a symmetry transformation for Liouville opera-
tors, which extends the conventional definition of PT symmetry for classical
systems to arbitrary open quantum systems. We proof that under very generic
conditions, the existence of this symmetry implies that the steady state of
the system can be tuned between a fully symmetric and a symmetry-broken
phase. We demonstrate this for simple models such as coupled spin systems
as well as for randomly generated systems and systems with multiple gain
and loss processes. Furthermore, we investigate the spectrum and dynamics
of such PT-symmetric Liovillian system. For this work, I performed all of
the numerical calculations and most of the analytical calculation under the
supervision of Prof. P. Rabl. P. Kirton provided the proof of the existence of
the symmetric phase.

SCIPOST PHYSICS 10, 045 (2021) [91]
Phase-Space Methods for Simulating the Dissipative Many-Body

Dynamics of Collective Spin Systems

J. Huber, P. Kirton, and P. Rabl

In this article, we use phase-space methods to simulate open quantum spin
systems. This extension of the well-known truncated Wigner approximation
to open spin systems can be used to study large spin systems very efficiently.
By benchmarking the method with exact solutions and exact simulations,
we show that this method gives accurate results and can even predict higher
correlations correctly, especially in the limit of large spin quantum numbers.
For this work, I performed all numerical and analytical calculation under the
supervision of P. Kirton and Prof. P. Rabl.

arXiv:2105.00004 (2021) [92]
Realistic simulations of spin squeezing and cooperative coupling

effects in large ensembles of interacting two-level systems

J. Huber, A. M. Rey, and P. Rabl

In this article, we extend the discrete truncated Wigner approximation to
study open quantum systems. We benchmark this method by comparing it
to exact simulations of the long-range transverse Ising model in the presence
of local and collective dephasing and decay, where we find excellent agree-
ment even for higher correlations. Additionally, we benchmark the system by
simulating the open driven Dicke model, where we find excellent agreement
in the dynamic as well as in the steady state of the system when comparing
to exact simulations. In this work, I performed all analytical and numerical
calculations under the supervision of Prof. P. Rabl.
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2 Open quantum systems

"Früher hab dich immer das gemacht, was in meinem Kopf war,
das war natürlich der Fehler."

- Marko Arnautovic

In this chapter, we introduce the most common description of open quantum
systems, the Lindblad master equation. Based on the explicit example of
a damped harmonic oscillator, we then give a short overview of the most
common numerical methods to simulate such open quantum systems.

2.1 Master equation

The Lindblad master equation [8] describes the time evolution of a system’s
density operator interacting with a bath. It is assumed that the system-bath
interaction is weak and that this interaction does not considerably change
the state of the bath (Born approximation). Another assumption is that
the bath has very short memory time (Markov approximation) and that the
timescales of the system dynamics are faster than the loss and gain rates
(secular approximation). The master equation preserves the trace and the
positivity of the density operator for all times. The master equation has the
following form

𝜌̇ = − i

ℏ
[𝐻, 𝜌] +

∑︁
j

ΓjD[𝑐j]𝜌, (2.1)

with the Lindblad superoperator

D[𝑐]𝜌 = 2𝑐𝜌𝑐† − 𝑐†𝑐𝜌− 𝜌𝑐†𝑐. (2.2)

The first part of Eq. (2.1) is the von Neumann equation and describes the
unitary Hamiltonian dynamics, while the last part describes the non-unitary
dynamics due to the coupling to external degrees of freedom, which are rep-
resented by a set of jump operators 𝑐j and the corresponding rates Γj

Alternatively, we can express the master equation Eq. (2.1) as an evolution
of a non-hermitian effective Hamiltonian and additional recycling terms:

𝜌̇ = − i

ℏ

(︁
𝐻eff𝜌− 𝜌𝐻†

eff

)︁
+ 2

∑︁
j

Γj𝑐j𝜌𝑐
†
j, (2.3)

with the effective Hamiltonian

𝐻eff = 𝐻 − i
∑︁
j

Γj𝑐
†
j𝑐j. (2.4)
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The effective Hamiltonian has only negative real eigenvalues and therefore
the evolution with the effective Hamiltonian decreases the populations of the
density matrix. The last part in Eq. (2.3) recycles the populations that are
lost from certain states and transfers them to other states.

Example

The master equation for a bosonic system coupled to thermal bath reads [7]

𝜌̇ = −i𝜔[𝑎†𝑎, 𝜌] + 𝛾(𝑁th + 1)D[𝑎] + 𝛾𝑁thD[𝑎†], (2.5)

where 𝑎 is the bosonic annihilation operator. The first term describes the
unitary dynamics of the Hamiltonian 𝐻 = ℏ𝜔𝑎†𝑎 while the last two terms
describe the non-unitary loss and gain processes due to the coupling to a
thermal bath with a mean occupation number 𝑁th = (𝑒ℏ𝜔/k𝐵𝑇 − 1)−1 at
frequency 𝜔.
Note that especially for composite systems the validity of all approxima-

tions mentioned above must be carefully checked as a wrong description can
lead to unphysical results [93]. Throughout this thesis we will consider sys-
tems and parameter regimes, where such a master equation description can
be applied.
A master equation can consist of many subsystems and due to the ex-

ponential growth of the Hilbert space it usually a very hard task to solve
the master equation of large systems. In the following we describe the most
common approaches to do so numerically.

2.2 Exact simulation

We can simulate a master equation exactly by vectorizing the density matrix.
This can be done by reshaping the density matrix into a vector 𝜌 → |𝜌⟩. As
a consequence, we also have to transform the master equation. We use the
following transformation rules for an arbitrary operator A:

𝐴𝜌 → (𝐴⊗ ✶)|𝜌⟩ (2.6)

and
𝜌𝐴 → (✶⊗ 𝐴𝑇 )|𝜌⟩. (2.7)

Example

A master equation for a simple dissipative system as given by Eq. (2.5) with
the loss rate 𝛾 and 𝑁th = 0 can be rewritten into the following vectorized
form

𝑑

𝑑t
|𝜌⟩ = 𝛾

[︀
2𝑎⊗ (𝑎†)𝑇 − 𝑎†𝑎⊗ ✶− ✶⊗ (𝑎†𝑎)𝑇

]︀ |𝜌⟩. (2.8)

This equation can be written in short as 𝑑
𝑑t
|𝜌⟩ = ℒ|𝜌⟩, where ℒ is the Li-

ouville operator. By vectorizing the density matrix and transforming the
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master equation, we can simulate open quantum systems the same way as in
the non-dissipative case, but the dimension of the system changes from 𝑑 to
𝑑2. We can therefore simply time evolve an open quantum system by using
standard numerical routines such as the Runge-Kutta algorithm. If we are
only interested in the steady state of a system, we can directly calculate the
steady state by finding the eigenvector of the Liouvillian operator ℒ with the
zero eigenvalue, or simply evolve the system for a sufficiently long time.

2.3 Quantum trajectories

Quantum trajectories can be used much like the master equation to simulate
small quantum systems coupled to a large reservoir. However, in contrast to
the master equation, one simulates the system’s wave function and not the
full density operator [94, 95]. The idea is to let the system evolve with an ef-
fective Hamiltonian, where at each time step a quantum jump (discontinuity)
may take place with some probability. A quantum jump would correspond,
for example, to an optical cavity losing one photon to the bath. The big
advantage of quantum trajectories is that for a state vector with n elements,
only n elements must be computed, while by using the master equation one
must evolve a density matrix with n2 elements.
There are mainly two ways to implement quantum trajectories in a com-

puter program. One is to calculate the probability of a jump for every time
step and then choose a random number to determine if a jump occurs or not.
Another way is to let the state evolve until the norm of the state equals the
chosen random number and then a jump happens for sure. This is in general
more effective and will be discussed in more detail in the following.

2.3.1 Algorithm for one trajectory

1. Choose the inital state |𝜓(0)⟩.
2. Choose the random number r ∈ [0, 1].

3. Time-evolve with the non-Hermitian effective Hamiltonian 𝐻eff until
r > ⟨𝜓(t)|𝜓(t)⟩. For the simple dissipative system of Eq. (2.5) with
𝑁th = 0 we arrive at

𝜌̇ = − i

ℏ
[𝐻, 𝜌] + 𝛾D[𝑎] = − i

ℏ
𝐻eff𝜌+

i

ℏ
𝜌𝐻†

eff + 2𝛾𝑎𝜌𝑎†, (2.9)

where 𝐻eff = 𝐻 − i𝛾𝑎†𝑎.

4. Apply the quantum jump and normalize the wavefunction |𝜓⟩ = 𝑐|𝜓⟩
⟨𝜓|𝑐†𝑐|𝜓⟩ .

Note: If the system has N jump operators ci, the probability which

quantum jump happens is computed by pi =
⟨𝜓|𝑐†i 𝑐i|𝜓⟩∑︀𝑁
i=0⟨𝜓|𝑐†i 𝑐i|𝜓⟩

.

5. Go to step 2. until t = t𝑒n𝑑.
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To obtain the same evolution as by solving the master equation, hundreds of
trajectories must be calculated and averaged. The relative error goes with

1√
ntraj

where ntraj is the number of trajectories. In general the time evolution
can be done in many different ways such as the Runge-Kutta method, cal-
culating the time evolution operator, Lanczos algorithm, just to name a few.
Note that as an alternative to simulating the dissipative dynamics in terms
of discrete quantum jumps, an equivalent stochastic equation for the wave
function can be applied, where random updates occur at every timestep [96].
Again, this has to be done several times to reproduce the wave function.

2.4 Phase space methods

One way to solve the master equation for a bosonic system, Eq. (2.5), is to
map the master equation onto an equivalent partial differential equation for
a class of phase-space distributions, which contain the same information as
the density operator [97].
We parameterize the set of distributions by the variable k and define

𝐹k(𝛼, t) =
1

𝜋2

∫︁
𝑑2𝜆 𝑒(𝛼𝜆

*−𝛼*𝜆) Tr
{︁
𝑒𝜆𝑎

†
𝜌𝑒−𝜆*𝑎

}︁
𝑒

(1+k)
2

|𝜆|2 , (2.10)

where 𝑎 is the bosonic annihilation operator and 𝛼 is a complex number.
When k = 0 this phase space distribution corresponds to the Wigner func-
tion [98], for k = 1 it is the Glauber-Sudarshan 𝑃 -representation [99] and
when k = −1 we obtain the Husimi 𝑄-function [100].
Eq. (2.10) defines all three distributions in a very compact way, however

it’s hard to obtain any insights from this. In the following we will provide
alternative definitions of these distributions [101].

P-distribution

The P-distribution can also be introduced in the following way [99]

𝜌 =

∫︁
𝑑2𝛼𝑃 (𝛼)|𝛼⟩⟨𝛼|, (2.11)

where |𝛼⟩ = 𝑒−|𝛼|2/2 ∑︀∞
n=0

𝛼n√
n!
|n⟩ is the bosonic coherent state. The P-

function therefore expresses a density matrix as an integral over coherent
states. The P-function is convenient to calculate normally-ordered expecta-
tion values

⟨𝑎†n𝑎m⟩ =
∫︁

𝑑2𝛼 𝛼n𝛼*m𝑃 (𝛼). (2.12)

From the definition of Eq. (2.11) it directly follows that a coherent state |𝛼0⟩
is represented as a delta peak

𝑃 (𝛼) = 𝛿(𝛼− 𝛼0). (2.13)
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However any state with smaller width than a coherent state such as a Fock
state |n⟩ can not be represented by a positive non-singular P-distribution.
For Fock state |n⟩ the P-distribution reads [102]

𝑃 (𝛼) =
1

n!

(︂
∂2

∂𝛼∂𝛼*

)︂
𝛿2(𝛼). (2.14)

In order to represent a Fock state by a non-singular positive probability we
can introduce the positive P-function [103, 104]

𝜌 =

∫︁
𝑑2𝛼𝑑2𝛽𝑃 (𝛼, 𝛽)

|𝛼⟩⟨𝛽*|
⟨𝛽*|𝛼⟩ , (2.15)

which doubles the degrees of freedom. The positive P-function is a probability
distribution which can represent all states.

Q-distribution

The Q-distribution [100] can be defined as

𝑄(𝛼) =
1

𝜋
⟨𝛼|𝜌|𝛼⟩. (2.16)

Since the density operator is a positive operator, the Q-function is non-
negative and bounded, 𝑄(𝛼) < 1

𝜋
. Moreover, the Q-distriubtion can represent

a Fock state |n⟩ with
𝑄(𝛼) =

1

𝜋
𝑒−|𝛼|2 |𝛼|2n

n!
, (2.17)

while coherent states can be represented by a normal distribution

𝑄(𝛼) =
1

𝜋
𝑒−|𝛼−𝛼0|2 . (2.18)

Furthermore, the Q-distribution is an overcomplete map and therefore con-
tains unphysical states such as 𝑄(𝛼) = 𝛿(𝛼). The fact that this Q-function is
unphysical can be easily shown by calculating anti-normally ordered moments

⟨𝑎n𝑎†m⟩ =
∫︁

𝑑2𝛼 𝛼n𝛼*m𝑄(𝛼). (2.19)

Wigner-distribution

The Wigner function [98] is a quasi-probability function and defined the fol-
lowing way

𝑊 (x, p) =
1

ℎ

∫︁
𝑒−ipy⟨x+ y/2|𝜌|x− y/2⟩𝑑y. (2.20)

Although the marginal distributions of the Wigner function are proper prob-
ability distributions of position, 𝑊 (x) =

∫︀
𝑑p𝑊 (x, p) ≥ 0, and momentum

𝑊 (p) =
∫︀
𝑑x𝑊 (x, p) ≥ 0, the full distribution 𝑊 (x, p) can become negative
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and is therefore not a probability density. The Wigner function of a Fock
state |n⟩ is

𝑊 (𝛼) =
2

𝜋
(−1)n𝐿n(4|𝛼|2)𝑒−2|𝛼|2 , (2.21)

where 𝐿n(x) is the Laguerre polynomial. This Wigner function is clearly
negative for n > 0 while the Wigner function of a coherent state is everywhere
positive with

𝑊 (𝛼) =
2

𝜋
𝑒−2|𝛼−𝛼0|2 . (2.22)

The Wigner function can be used to evaluate symmetrically ordered operators

⟨{𝑎†n𝑎m}sym⟩ =
∫︁

𝑑2𝛼 𝛼n𝛼*m𝑊 (𝛼), (2.23)

where, for example, {𝑎†𝑎}sym = 1
2
(𝑎†𝑎+𝑎𝑎†). Because the ordering is different

in all three distributions, not only the distribution but also the mean values
of the complex amplitude 𝛼 are completely different. For the vacuum state
|0⟩ we arrive at ⟨|𝛼|2⟩ = 0, 1/2, 1 for the P-,W-,Q-function.

2.4.1 Master equation mapping

We can use the general definition of Eq. (2.10) or, equivalently, Eqs. (2.11),
(2.16) and (2.20) to calculate what form each term in the master equation
takes in the equation for 𝐹k [97, 102]. For example, for a single mode one
finds the mapping

𝑎𝜌 →
[︂
𝛼 +

(1− k)

2

∂

∂𝛼*

]︂
𝐹k(𝛼, t), (2.24)

𝑎†𝜌 →
[︂
𝛼* − (1 + k)

2

∂

∂𝛼

]︂
𝐹k(𝛼, t), (2.25)

𝜌𝑎† →
[︂
𝛼* +

(1− k)

2

∂

∂𝛼

]︂
𝐹k(𝛼, t), (2.26)

𝜌𝑎 →
[︂
𝛼− (1 + k)

2

∂

∂𝛼*

]︂
𝐹k(𝛼, t). (2.27)

Again for k = 0 this corresponds to the Wigner function, for k = 1 to the
Glauber-Sudarshan 𝑃 -representation and k = −1 to the Husimi 𝑄-function.
This translation lets us recast the master equation for 𝜌 of 𝑁 bosonic modes
in the form of a partial differential equation for the phase space distribution,

∂

∂t
𝐹k(𝛼⃗, t) = 𝐿𝐹k(𝛼⃗, t), (2.28)

with 𝐿 some linear differential operator, which depends on the specific prob-
lem under consideration, and 𝛼⃗ = (𝛼1, 𝛼2, . . . , 𝛼𝑁).
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2.4.2 Truncated Wigner approximation

The result in Eq. (2.28) is still exact but in general not very useful. In particu-
lar, the differential operator 𝐿 may contain third- or higher-order derivatives,
which prevent an efficient stochastic sampling of 𝐹k. We can therefore per-
form the truncated Wigner approximation [105–107] by neglecting all third-
and higher order terms and obtain a Fokker-Planck equation of the form

∂

∂t
𝐹k(x⃗, t) =

[︂
− ∂

∂xj

𝐴j(x⃗) +
1

2

∂

∂xi

∂

∂x*
j

𝐷ij(x⃗)

]︂
𝐹k(x⃗, t), (2.29)

with a drift matrix 𝐴 and a diffusion matrix 𝐷. Here we have assumed Ein-
stein’s sum convention, where the indices i and j run over the 2𝑁 components
of the vector x⃗ = (𝛼1, 𝛼

*
1, 𝛼2, 𝛼

*
2, . . . ).

Example

The master equation of a bosonic system coupled to a thermal bath, Eq. (2.5),
can be transformed into the following Fokker-Planck equation

∂

∂t
𝐹k(𝛼, t) =

[︂
(i𝜔 + 𝛾)

∂

∂𝛼
𝛼 + (−i𝜔 + 𝛾)

∂

∂𝛼*𝛼
*

+ 𝛾

(︂
𝑁th +

(1− k)

2

)︂
∂2

∂𝛼∂𝛼*

]︂
𝐹k(𝛼, t).

(2.30)

Note that in this example no third- and higher-order terms had to be ne-
glected.

2.4.3 Stochastic simulations

If the diffusion matrix of the Fokker-Planck equation Eq. (2.29) is positive
definite, the Fokker-Planck equation can be mapped onto an equivalent set
of stochastic (Ito) differential equations [108],

𝑑xi = 𝐴i(x⃗)𝑑t+𝐵ij(x⃗)𝑑𝑊j(t), (2.31)

where 𝑑𝑊i are real-valued independent Wiener processes with ⟨𝑑𝑊i𝑑𝑊j⟩ =
𝛿ij𝑑t and 𝐵(x⃗) is the factorized diffusion matrix with 𝐵(x⃗)𝐵(x⃗)† = 𝐷(x⃗).
This set of equations can be efficiently simulated with the Euler-Maruyama
method [108]. This means that we do not calculate the full probability distri-
bution, but instead obtain the required expectation values by averaging over
ntraj trajectories of these stochastic equations. For sufficiently many trajecto-
ries and with initial values sampled according to the distribution 𝐹k(𝛼⃗, t = 0),
these stochastic averages provide accurate approximations of the correspond-
ing quantum mechanical expectation values

⟨(𝑎†i )n𝑎mj ⟩𝑃 |𝑄|𝑊 =

∫︁
𝑑4𝑁𝛼 (𝛼*

i )
n𝛼m

j 𝐹k(𝛼⃗, t) ≈ ⟨(𝛼*
i )

n𝛼m
j ⟩stoch(t), (2.32)
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where, depending on the chosen distribution function, ⟨. . . ⟩𝑃 |𝑄|𝑊 denotes the
normally-ordered, anti-normally-ordered or symmetrically-ordered expecta-
tion value.
To sum up, by using phase space methods we can map a master equation

exactly or with approximation (TWA) to a set of stochastic equations which
can be solved numerically very efficiently.

Example

In case of master equation Eq. (2.5), a bosonic mode coupled to a thermal
bath, we arrive at following stochastic equation

𝑑𝛼 = −i(𝜔 + 𝛾)𝛼𝑑t+

√︃
𝛾

(︂
𝑁th +

1− k

2

)︂
(𝑑𝑊1 + i𝑑𝑊2). (2.33)

2.5 Cumulant expansion

In general the equation of motion of an expectation value depends on higher
order expectation values. This usually leads to an infinite hierarchy of equa-
tions. The cumulant expansion keeps all correlations until a certain order
and approximates all higher correlations with a combination of lower corre-
lations. The approximation to the lowest order is equivalent to mean-field
theory, where correlations are approximated in the following way

⟨𝐴𝐵⟩ ≈ ⟨𝐴⟩⟨𝐵⟩. (2.34)

This expression becomes exact if there are no correlations between the two
subsystems 𝐴 and 𝐵 and the system behaves classical. All third and fourth
order correlations are approximated the following way [109]

⟨𝐴𝐵𝐶⟩ ≈ ⟨𝐴𝐵⟩⟨𝐶⟩+ ⟨𝐴𝐶⟩⟨𝐷⟩+ ⟨𝐵𝐷⟩⟨𝐴⟩ − 2⟨𝐴⟩⟨𝐵⟩⟨𝐶⟩, (2.35)

⟨𝐴𝐵𝐶𝐷⟩ ≈ ⟨𝐴𝐵𝐶⟩⟨𝐷⟩+ ⟨𝐴𝐵𝐷⟩⟨𝐶⟩+ ⟨𝐴𝐶𝐷⟩⟨𝐵⟩+ ⟨𝐴𝐶𝐷⟩⟨𝐵⟩
+ ⟨𝐴𝐵⟩⟨𝐶𝐷⟩+ ⟨𝐴𝐶⟩⟨𝐵𝐷⟩+ ⟨𝐴𝐷⟩⟨𝐵𝐶⟩ − 2⟨𝐴𝐵⟩⟨𝐶⟩⟨𝐷⟩
+ ⟨𝐴𝐶⟩⟨𝐵⟩⟨𝐷⟩+ ⟨𝐴𝐷⟩⟨𝐵⟩⟨𝐶⟩+ ⟨𝐵𝐶⟩⟨𝐴⟩⟨𝐷⟩
+ ⟨𝐵𝐷⟩⟨𝐴⟩⟨𝐶⟩+ ⟨𝐶𝐷⟩⟨𝐴⟩⟨𝐵⟩+ 6⟨𝐴⟩⟨𝐵⟩⟨𝐶⟩⟨𝐷⟩.

(2.36)

In order to solve a system containing 𝑁 subsystems, the number of equa-
tions scales with O(𝑁k), where k is the order of the cumulant expansion.
While the number of mean-field equations scales only linearly with the sys-
tem size 𝑁 , simulations including higher orders are again restricted to rather
small system sizes. By increasing the order of the approximation, the results
becomes more and more exact. However, when simulating these non-linear
equations instabilities can occur that lead to unphysical results. Nevertheless,
this approach has been successfully used in several works [110–114] and even
numerical packages are available [115].
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2.6 Tensor network methods

Tensor network methods are very efficient methods for simulating quantum
systems as they restrict the Hilbert space to a smaller subspace by expressing
states by a sum of the most important product states [116].

2.6.1 Matrix Product States (MPS)

The most prominent example of a tensor network are MPS, which can be
used to efficiently study 1D systems [117–120]. The success of MPS relies
on the fact that the entanglement entropy of the ground state of 1D gapped
Hamiltonians [121] follows an area law of entanglement entropy. However, it
still remains unclear whether transient or steady states in open quantum sys-
tems can be represented efficiently. Nevertheless, most algorithms for closed
system can be straightfowardly extended to open quantum systems. By vec-
torizing the master equation, as done in Section 2.2, the time evolution can
be performed by the typical methods such as time-evolving block decima-
tion (TEBD), Runge-Kutta, Krylov methods and time-dependent variational
principle (TDVP) [122, 123]. The density matrix can be represented as a
Matrix Product Operator (MPO) to ensure the positivity of the density ma-
trix [37]. Moreover, quantum trajectories as explained in Section 2.3 can be
simulated with MPS [95, 124].
Instead of implementing the time evolution, the steady state can be deter-

mined directly by finding the eigenvector of the zero eigenvalue. This can be
done by finding the ground state of ℒ†ℒ [38]. The other possibility is to use
the same algorithm as for ground state search on ℒ, but always look for the
eigenstate closest to the zero eigenvalue instead of the eigenstate of the lowest
eigenvalue. In certain cases this can converge faster, but it is very often less
numerical stable [125].
Moreover, the MPS concept can be extended to infinite 1D spin chain

(iMPS). The time evolution can be done by the iTEBD algorithm, which is
the extension of the TEBD algorithm to infinte systems [126]. To calculate
observables the network is contracted using a termination tensor, which corre-
sponds to the eigenvector with the largest eigenvalue of the transfer matrix.
This is not restricted to unitary dynamics and can be applied to simulate
Lindblad master equations [39].

2.6.2 Projected Entangled Pair Source (PEPS)

PEPS is the extension of MPS to two-dimensional systems [127, 128] which
also allows to simulate infinite lattices (iPEPS) [129]. Simulation of 2D ten-
sor networks is particularly challenging as a 2D network of tensors needs
to be contracted and several numerical parameters have to be chosen care-
fully. Nevertheless, iPEPS can be adapted to simulate 2D open quantum
systems [130]. This is of particular interest as there are usually no symmetry
breaking phase transition in 1D open quantum system, but they can exist in
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2D systems. However, simulation of 2D open quantum systems with tensor
network system is very challenging and often the solution are not converging
or numerical instabilities can appear [131, 132].

2.6.3 Neural networks

Neural networks can be seen a special kind of tensor network system [133] and
can be used to store many-body states also for states of higher dimensional
systems [134]. This was first demonstrated by Carleo et al. [135] by doing a
variational Monte-Carlo simulation of the Ising model where the wave func-
tion is represented as a restricted Boltzmann machine. Moreover, this can be
extended to open quantum systems [136–139]. However, the simulations so
far are restricted to small system sizes and some results showed rather large
errors. At the moment these works should be therefore seen more as a proof
of principle.



3 Energy transport and the role

of symmetry breaking in

microscopic power grids✯

"And all this science I don’t understand, It’s just my job five
days a week."

- Elton John (Rocket Man)

Energy transport takes place in many parts of our lives. One prominent ex-
ample is the transport of electric energy. In order to use all kinds of electronic
devices, electric energy is typically transferred from an electric generator of
a power plant to our homes. This kind of electric energy transfer can be
described by Ohm’s law [58], which states that the current depends on the
potential gradient.
While this macroscopic energy transport has been investigated for hun-

dreds of years, there is still little known about the energy transport in the
microscopic regime. In this regime, the electric generators and devices are
replaced by microscopic generators and microscopic engines. Recently there
has been extensive theoretical works on microscopic quantum machines [64–
79] and there has been several experiments investigating such quantum ma-
chines [80–87]. The aim of most of these works is to compare the efficiency of
these quantum machines with the one of the classical Carnot process. How-
ever, here we are interested in a different scenario.
In this chapter, we investigate the energy transport by connecting such

quantum machines through an oscillator network. We mainly focus on the sit-
uation, where a microscopic generator injects energy on one site of a harmonic
oscillator chain and a microscopic engine extracts energy from the other site.
Such quantum devices can be operated in different regimes and we therefore
investigate the resulting transport phenomena in the macroscopic, thermal
and quantum regime. Furthermore, we show that these findings don’t de-
pend on the specific type of the microscopic generators and engines and that
these effects are robust to any imperfections of the system. At the end of
this chapter we extend our analysis to more complex networks of harmonic
oscillators.

✯ This chapter is based on the article: J. Huber and P. Rabl, Active energy transport and
the role of symmetry breaking in microscopic power grids, Phys. Rev. A 100, 012129
(2019).
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thermal bath

energy current(G) (E)

Figure 3.1: Sketch of a microscopic power grid realized by an array of coupled
harmonic oscillators. Energy is injected at one end by a microscopic generator
(G) with rate Γi and extracted at the other end by a microscopic engine (E)
with rate Γ𝑒. Both processes are energy-dependent and saturate above a
characteristic amplitude

√
n0. All oscillators are coupled weakly to a thermal

environment. See text for more details.

We consider a chain of 𝑁 ≥ 2 coupled harmonic oscillators, as schemat-
ically shown in Fig. 3.1. The oscillators have a frequency 𝜔0 and they are
coupled to their neighbors with strength 𝑔. Energy is injected at the first site
with a rate Γi and extracted at the other end with rate Γ𝑒. In addition, all
oscillators are weakly coupled to a thermal environment at temperature 𝑇 .
In the frame rotating with 𝜔0 ≫ 𝑔,Γi,𝑒, the whole network is described by a
master equation for the density operator 𝜌,

𝜌̇ =− i

ℏ
[𝐻𝑔, 𝜌] + ΓiD[𝐴†

1]𝜌+ Γ𝑒D[𝐴𝑁 ]𝜌

+
𝑁∑︁
ℓ=1

𝛾(𝑁th + 1)D[𝑎ℓ]𝜌+ 𝛾𝑁thD[𝑎†ℓ]𝜌,
(3.1)

where 𝑎ℓ (𝑎
†
ℓ) are the annihilation (creation) operators for each oscillator and

D[𝑎]𝜌 ≡ 𝑎𝜌𝑎† − (𝑎†𝑎𝜌 − 𝜌𝑎†𝑎)/2. The first term of Eq. (3.1) describes the
coherent exchange of energy along the chain with the Hamiltonian

𝐻𝑔 = −ℏ𝑔
2

𝑁−1∑︁
ℓ=1

(𝑎†ℓ𝑎ℓ+1 + 𝑎ℓ𝑎
†
ℓ+1) , (3.2)

while the second and the third term model the incoherent pump and dissipa-
tion processes, respectively.
In this chapter, we are interested in energy transport, where source and

drain are represented by driven few-level quantum systems. However, to keep
our analysis on a general level and to avoid details of specific implementations,
we simply mimic the main characteristics of such microscopic generators and
engines (providing gain, being saturable) by introducing in Eq. (3.1) the non-
linear jump operators 𝐴ℓ=1,𝑁 = 𝑓(𝑎†ℓ𝑎ℓ)𝑎ℓ. Here the cutoff function 𝑓(x),
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where 𝑓(0) = 1 and 𝑓(x ≫ n0) → 0, accounts for the fact that both the
injection as well as the extraction of energy saturate above a characteristic
occupation number n0. By changing this saturation parameter, we can tune
the degree of microscopicity of the network without changing any other prop-
erties of the system. For concreteness, we will mainly focus here on the cutoff
function

𝑓(𝑎†𝑎) =
1

(1 + 𝑎†𝑎/n0)
, (3.3)

which reproduces the saturation dependence of driven three-level generators
and engines [140], as depicted in Fig. 3.1. In Section 3.6, we simulate the
system for different shapes of the cutoff function 𝑓(x) and we show that none
of our central conclusions depend on the specific from of 𝑓(x). Note by using
a different shape of 𝑓(x) other realizations of quantum machines [64–79] can
be simulated.
Finally, the second line of Eq. (3.1) describes the coupling of each oscillator

to a local thermal bath, where 𝑁th = (𝑒ℏ𝜔0/k𝐵𝑇 − 1)−1 is the equilibrium
occupation number and 𝛾 the damping rate, which we assume to be much
smaller than Γi and Γ𝑒. Note that the use of local jump operators in Eq. (3.1)
is justified by the assumption that 𝜔0 is large compared to both the coherent
intra-system coupling 𝑔 and the dissipation rates [141, 142].
Typical systems which can be used to implement this model include coupled

nanomechanical resonators [143–146], linear chains of trapped ions [147–149]
or arrays of coupled 𝐿𝐶 oscillators [150–152]. For all those platforms various
techniques for engineering local gain and loss processes at the quantum level
are already experimentally available [14, 153, 154].

3.1.1 Fokker-Planck equation

For most parts of the following discussion we will be interested in the regime
n0 ≫ 1, where the cutoff function 𝑓(x) in Eq. (3.3) varies slowly on the
scale of individual excitations and the master equation can be mapped onto a
Fokker-Planck equation for the Glauber-Sudarshan P-representation [97, 99,
102] and expressed as a set of stochastic differential equations as explained
in Chapter 2.4).
In the limit of n0 ≫ 1, we can therefore rewrite the master equation

Eq. (3.1) as following set of stochastic Ito-equations (a detailed derivation
can be found in Appendix A.1)

𝛼1 =
Γi(𝛼1)− 𝛾

2
𝛼1 + i

𝑔

2
𝛼2 +

√︀
𝐷th+Γi(𝛼1)𝜉1(t), (3.4)

𝛼̇ℓ = −𝛾

2
𝛼ℓ + i

𝑔

2
(𝛼ℓ−1 + 𝛼ℓ+1) +

√︀
𝐷th𝜉ℓ(t), (3.5)

𝛼𝑁 = −Γ𝑒(𝛼𝑁) + 𝛾

2
𝛼𝑁 + i

𝑔

2
𝛼𝑁−1 +

√︀
𝐷th𝜉𝑁(t). (3.6)

Here Γi,𝑒(𝛼) = Γi,𝑒𝑓
2(|𝛼|2) and 𝐷th = 𝛾𝑁th is the thermal diffusion rate. The

𝜉ℓ(t) are white noise processes, which satisfy ⟨𝜉*ℓ (t)𝜉ℓ′(t′)⟩ = 𝛿ℓℓ′𝛿(t − t′). We
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are primarily interested in the steady-state energy current

⟨𝐽ℓ⟩ = i
𝑔

2
⟨𝑎†ℓ𝑎ℓ−1 − 𝑎†ℓ−1𝑎ℓ⟩ = 𝑔Im⟨⟨𝛼*

ℓ−1𝛼ℓ⟩⟩, (3.7)

which can be obtained from the longtime average over many trajectories,
denoted by ⟨⟨·⟩⟩. In the regime of interest, 𝛾 → 0, the average current is
approximately constant throughout the chain and we can drop the index ℓ.
In the following, we will analyze the system in the following three parameter
regimes:

❼ macroscopic regime: n0 ≫ 1 and 𝑁th ≪ n0,

❼ thermal regime: n0 ≫ 1 and 𝑁th ∼ n0,

❼ quantum regime: n0 ∼ 1 and 𝑁th ≪ n0.

3.2 Anomalous energy transport

We first consider the macroscopic regime n0 ≫ 1 and 𝑁th ≪ n0, where both
thermal and quantum noise effects in Eqs. (3.4)-(3.6) can be neglected. The
steady state is then described by a set of amplitudes 𝛼0

ℓ and in Fig. 3.2(a) we
plot the corresponding current ⟨𝐽⟩ for 𝑁 = 10 sites. We see that transport
in this system is very different from Ohm’s law, but also from the ballistic
flow of heat through a coupled chain of harmonic oscillators [147, 148, 155].
Overall, we find regimes of normal transport, where for fixed injection rate
Γi the current increases with increasing extraction rate Γ𝑒, but also regimes
of anomalous transport, where the opposite dependence is observed.
For Γi < 𝑔 there is a range of rates Γ𝑒 where the current is completely

stalled and only re-establishes at higher extraction rates. This counterin-
tuitive behavior [156, 157] can be traced back to the fact that within this
parameter range all eigenvalues of the linear chain, i.e., when saturation ef-
fects are neglected, have a negative real part and the whole network is damped
to zero. This is shown in Fig. 3.3(a) where we plot the largest real part of all
the eigenvalues obtained from the dynamical matrix of a linear chain where
Γi,𝑒(𝛼) = Γi,𝑒. As long as all eigenvalues have a negative real part, the chain
is damped to zero. This only occurs in the ‘stalled’ phase where Γi < 𝑔 and
Γi ≤ Γ𝑒 < 𝑔2/Γi. Otherwise, we see that the structure of the current plotted
in Fig. 2(a) is not at all reflected in the eigenvalue structure of the linear
chain. In all other parameter regimes the analysis of the linear chain pre-
dicts amplified solutions with a maximal gain rate that simply increases with
increasing Γi.
This behavior of the linear chain is not at all reflected in the stationary

current shown in Fig. 3.2(a), which instead has a sharp maximum around
Γ𝑒 ≃ Γi. For balanced injection and extraction rates Γ𝑒 = Γi the current then
saturates at ⟨𝐽⟩ ≃ 𝑔n0 above Γi = Γ𝑒 = 4𝑔 as shown in Fig. 3.2(b). Note that
for 𝛾 → 0 the current can exhibit sharp discontinuities near this symmetry
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Figure 3.2: (a) Dependence of the normalized steady-state energy current
⟨𝐽⟩/(𝑔n0) on the energy injection and extraction rates, Γi and Γ𝑒, for a chain
of 𝑁 = 10 oscillators. (b) Plot of the average current ⟨𝐽⟩ under fully symmet-
ric conditions, Γ𝑒 = Γi. (c) The steady-state occupation numbers |𝛼0

ℓ |2 of the
whole chain are plotted in the symmetric (Γi/Γ𝑒 = 1.05) and the symmetry-
broken (Γi/Γ𝑒 = 2/3) regime, as well as at the transition point, Γ𝑒 ≃ Γi. For
all plots 𝛾/𝑔 = 10−3 and 𝑁th = 0 have been assumed.

line, where it jumps abruptly within a range 𝛿Γ𝑒 ∼ O(𝛾). At high rates,
Γi/𝑔 > 4, there also exists a bistable regime, where the current depends
on the order in which the rates are switched on. However, in our analysis
below we find that these fine-tuned features are washed out in the presence
of noise and therefore they are less relevant for understanding transport in
the microscopic regime.
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Figure 3.3: (a) Plot of the largest real part of all the eigenvalues of a linear
chain of 𝑁 = 10 oscillators. (b) The coefficients |𝐴| (solid line) and |𝐵|
(dotted line) used in the ansatz in Eq. (3.8) are plotted for a fixed injection
rate Γi = 4𝑔 and as a function of Γ𝑒. In both plots a damping rate of
𝛾 = 10−3𝑔 has been assumed.

3.3 Symmetry-breaking

In Fig. 3.2(c) we also plot the occupation numbers |𝛼0
ℓ |2, i.e., the station-

ary distribution of the energy along the channel. In contrast to conventional
transport scenarios, where the energy distribution is flat or monotonically de-
creasing [147, 148, 155], here the chain exhibits an alternating zig-zag struc-
ture. To obtain analytic insights about the steady state of the chain in this
regime, we consider in the following the slightly simplified scenario, where
only sites ℓ = 1 and ℓ = 𝑁 are affected by the bare decay 𝛾 ≪ 𝑔, while all
the other oscillators evolve coherently.
We are interested in the long-time dynamics of the chain and make the

following ansatz for the amplitudes

𝛼0
ℓ(t) =

√
n0𝑒

−i𝜔t [𝐴 sin(k0ℓ) + 𝐵 cos(k0ℓ)] , (3.8)

where 𝐴,𝐵 ∈ ❈ and 𝜔 = 𝑔 cos(k0). With this ansatz the current between two
sites is

⟨𝐽ℓ⟩ = 𝑔Im{(𝛼0
ℓ−1)

*𝛼0
ℓ} = 𝑔n0Im{𝐴𝐵*} sin(k0). (3.9)

To obtain a steady state configuration that maximizes the energy transfer,
we look for solutions with k0 equal or close to 𝜋/2. By writing k0 = 𝜋/2 + 𝛿
we obtain the equation[︂

Γi/2

(1 + |𝐴 cos(𝛿)−𝐵 sin(𝛿)|2)2 − 𝛾

2

]︂
(𝐴 cos(𝛿)−𝐵 sin(𝛿))− i

𝑔

2
𝐵 = 0,(3.10)

from the equation of motion for 𝛼1. Similarly, from the equation of motion
for 𝛼𝑁 we obtain[︂

− Γ𝑒/2

(1 + |𝐴 sin(𝛿𝑁) +𝐵 cos(𝛿𝑁)|2)2 − 𝛾

2

]︂
(𝐴 sin(𝛿𝑁) +𝐵 cos(𝛿𝑁))

−i
𝑔

2
(𝐴 cos(𝛿(𝑁 + 1))− 𝐵 sin(𝛿(𝑁 + 1)) = 0,

(3.11)
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for the case where𝑁 is even. To proceed with our analysis we must distinguish
between the symmetric (Γi > Γ𝑒) and the symmetry-broken regime (Γ𝑒 > Γi)
and between an even and an odd number of oscillators. In the following we
will only carry out the analysis for an even number of oscillators, however the
analysis for 𝑁 odd can be done in an equivalent manner.

3.3.1 Symmetry-broken phase

We first consider the regime Γ𝑒 > Γi and 𝑁 even. In this case the choice
k0 = 𝜋/2 results in 𝜔 = 0 and a symmetry-broken solution for the amplitudes,
|𝛼0

1| ≫ |𝛼0
𝑁 |. The remaining parameters 𝐴 and 𝐵 are determined by the two

coupled equations

(︂
Γi

(1 + |𝐴|2)2 − 𝛾

)︂
𝐴− i𝑔𝐵 = 0, (3.12)(︂ −Γ𝑒

(1 + |𝐵|2)2 − 𝛾

)︂
𝐵 − i𝑔𝐴 = 0. (3.13)

These equations have a solution for Γ𝑒 ≥ Γi, but not for Γi > Γ𝑒. Although
these equations can still be solved analytically, the results are already quite
involved. However, sufficiently deep in the symmetry-broken phase we can
neglect the bare decay 𝛾 and approximate Γ𝑒(𝐵) ≈ Γ𝑒. We then obtain

|𝐴|2 ≃
√︃

ΓiΓ𝑒

𝑔2
− 1, 𝐵 ≃ −i

𝑔

Γ𝑒

𝐴, (3.14)

and the current

⟨𝐽⟩ ≃ 𝑔2n0

Γ𝑒

(︃√︃
ΓiΓ𝑒

𝑔2
− 1

)︃
. (3.15)

3.3.2 Symmetric phase

For 𝑁 even and Γi > Γ𝑒, the choice k0 = 𝜋/2 would results in an asymmetric
steady state and also the resulting equations for 𝐴 and 𝐵 do not have a
solution for Γi > Γ𝑒. To recover a symmetric solution with a maximal current
we choose 𝛿 = 𝜋/(2(𝑁 + 1)). In this case the chain undergoes persistent
oscillations with frequency 𝜔 = 𝑔 sin(𝛿). By defining 𝐴 = 𝐴 cos(𝛿) and using
the approximation 𝐵 sin(𝛿) ≈ 0, the resulting equations simplify to(︂

Γi

(1 + |𝐴|2)2 − 𝛾

)︂
𝐴− i𝑔𝐵 = 0, (3.16)(︂

− Γ𝑒

(1 + |𝐴|2)2 − 𝛾

)︂
𝐴+ i𝑔𝐵 = 0. (3.17)

Therefore, we obtain the amplitudes

|𝐴|2 =
√︃

Γi − Γ𝑒

2𝛾
− 1, 𝐵 = −i

𝛾

𝑔

Γi + Γ𝑒

Γi − Γ𝑒

𝐴, (3.18)
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and, since sin(k0) = cos(𝛿), the current

⟨𝐽⟩ = n0𝛾
Γi + Γ𝑒

Γi − Γ𝑒

(︃√︃
Γi − Γ𝑒

2𝛾
− 1

)︃
. (3.19)

Note that the current depends on 𝛾 and is therefore small for small damping
rates 𝛾 ≪ 𝑔 as opposed to the symmetry-broken regime which is more or less
independent of 𝛾.

3.3.3 Symmetry breaking transition

Near the transition point we find |𝐴| ≃ |𝐵|. More precisely, from the solution
in the symmetric regime we see that 𝐵 = −i𝐴, at a value of

Γ*
𝑒 = Γi

𝑔 − 𝛾

𝑔 + 𝛾
≈ Γi − 2Γi

𝑔
𝛾. (3.20)

Near this parameter the standing wave turns into a running wave 𝛼0
ℓ ∼ 𝑒ik0ℓ

and the current is close to maximum and scales as ⟨𝐽⟩max ∝ √
Γi. Although

the symmetric solution exists up to Γ**
𝑒 = Γi − 2𝛾, the stability analysis

reveals that for Γi > 𝑔 the symmetric solution becomes unstable before, at
around Γ ≃ Γ*

𝑒. In the regime of interest, 𝛾/𝑔 → 0, these differences become
negligible and the transition is simply given by Γ𝑒 = Γi. The dependence of
the coefficients 𝐴 and 𝐵 around the transition point is shown in Fig. 3.3(b).

3.3.4 Damping of all oscillators

The results derived so far for a chain without damping of the oscillators in the
middle agree in essence with the results obtained for two coupled oscillators
(see also Ref. [158]). However, while in the symmetry-broken phase the bare
damping 𝛾 has a negligible effect, it determines the value of the current in the
symmetric phase. In this regime it is thus important to analyze the steady
state also for the full system, where all oscillators are weakly damped. In this
case the equation

𝛼̇ℓ = −𝛾

2
𝛼ℓ + i

𝑔

2
(𝛼ℓ−1 + 𝛼ℓ+1), (3.21)

cannot be fulfilled by the ansatz (3.8). However, for 𝛾/𝑔 ≪ 1 the correction
are small and we can still use this ansatz with the same k0 as above as a
first approximation. For simplicity we focus on 𝑁 odd where k0 =

𝜋
2
. Then,

summing the equations of motion for every other site we obtain

(𝑁−1)/2∑︁
ℓ=1

(−1)ℓ+1𝛼̇2ℓ−1 =
√
n0

⎛⎝Γi(𝐴)𝐴− 𝛾

(𝑁−1)/2∑︁
ℓ=1

𝐴− i𝑔𝐵

⎞⎠ = 0 (3.22)

and for the last site,

𝛼̇𝑁 =
√
n0 [(−Γ𝑒(𝐴)− 𝛾)𝐴+ i𝑔𝐵] = 0. (3.23)



3 Energy transport and symmetry breaking in microscopic power grids 27

From this set of equations we obtain the amplitudes

|𝐴|2 =
√︃

2(Γi − Γ𝑒)

𝛾(𝑁 + 1)
− 1, 𝐵 = −i

𝛾

2𝑔

Γ𝑒(𝑁 − 1) + 2Γi

Γi − Γ𝑒

𝐴, (3.24)

and the current

⟨𝐽⟩ = n0
𝛾

2

Γ𝑒(𝑁 − 1) + 2Γi

Γi − Γ𝑒

(︃√︃
2(Γi − Γ𝑒)

𝛾(𝑁 + 1)
− 1

)︃
. (3.25)

Although this result was derived for 𝑁 odd, it is also a good approximation
for 𝑁 even when 𝑁 > 2.
Note that near Γ*

𝑒 we obtain a single traveling wave. To account first order
corrections due to a finite decay 𝛾/𝑔 ≪ 1, we can generalize the ansatz to
𝛼0
ℓ ∼ 𝑒ik0ℓ𝑒−𝜅ℓ. From Eq. (3.21) we then obtain 𝜅 = 𝛾/(2𝑔). Therefore, all our

analytic estimates will remain valid as long as 𝑁𝛾 ≪ 1, although numerical
simulations show that most of the qualitative features survive at much larger
decay rates.
From the analytical results above follows that the stationary current is

carried by a single mode with wavevector k0 = 𝜋(𝑁 +2)/(2𝑁 +2) for Γi > Γ𝑒

and k0 = 𝜋/2 for Γi < Γ𝑒 for 𝑁 even, which is the mode supporting the
highest current. However, since the saturable absorber can only extract a
finite amount of energy per unit of time, most of the energy current is reflected
at the extraction site and forms a standing wave. While a standing-wave
pattern is observed in all parameter regimes, the boundary conditions depend
on the relation between Γi and Γ𝑒. For Γi > Γ𝑒 the two ends of the chain
have exactly the same amplitude, |𝛼0

1|2 ≃ |𝛼0
𝑁 |2 ≃ |𝐴|2 and |𝐵/𝐴| ≪ 1. In

contrast, for Γi < Γ𝑒 the amplitude of the gain mode is much higher than
the amplitude of the loss mode, |𝛼0

1|2 ≫ |𝛼0
𝑁 |2. Therefore, for Γi > Γ𝑒 the

steady-state energy distribution of this network exhibits a left-right (parity)
symmetry, which is broken above the transition point Γ𝑒 ≃ Γi. Exactly
at this point we obtain 𝐵 ≃ −i𝐴 and the transport becomes unidirectional,
𝛼0
ℓ ∼ 𝑒ik0ℓ. Note that also this behavior of the steady-state amplitudes cannot

be derived by looking at the mode function of the most unstable mode of the
linear chain. This mode always has the highest amplitude on site ℓ = 1, such
that gain is maximized.
The breaking of a spatial symmetry in systems with gain and loss is rem-

iniscent of the effect of PT-symmetry breaking in systems with equal gain
and loss rates (see Chapter 5). Interestingly, in the current system such a
symmetry is not present in the underlying equations of motions, since for
Γi ̸= Γ𝑒 the oscillators at the injection and extraction sites evolve with very
different rates.

3.4 Current fluctuations

To understand the consequences of this symmetry-breaking transition for
microscopic transport, we consider now the thermal regime, n0 ≫ 1 and
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Figure 3.4: (a) The average current ⟨𝐽⟩ (solid line) and the current fluctua-
tions ∆𝐽 (shaded area) are plotted for a chain of 𝑁 = 6 oscillators coupled
to a thermal environment with 𝑁th/n0 = 10. The dashed lines indicate the
range of current fluctuations in thermal equilibrium. The marginal phase
space distributions 𝑃ℓ(𝛼ℓ) are shown in (b) in the symmetric (Γ𝑒 = 2𝑔) and
in the symmetry-broken (Γ𝑒 = 8𝑔) regime. Here 𝛼̃ℓ = 𝛼ℓ/

√
n0.

𝑁th ∼ n0. In this case, quantum effects are still small, but noise from the
environment can no longer be neglected and induces strong fluctuations of
the current, ∆𝐽 =

√︀⟨𝐽2⟩ − ⟨𝐽⟩2.
For better understanding we first look at the equilibrium case. We consider

two coupled oscillators in thermal equilibrium, where Γi = Γ𝑒 = 0. In this
case we get a closed set of equations for the variances of the linear chain,
which can be evaluated assuming a thermal state 𝜌th = 𝜌1th ⊗ 𝜌2th. We obtain

(∆𝐽)2

n2
0

=
𝑔2

4n2
0

[︁
⟨𝑎†ℓ𝑎ℓ⟩⟨𝑎ℓ+1𝑎

†
ℓ+1⟩+ ⟨𝑎ℓ𝑎†ℓ⟩⟨𝑎†ℓ+1𝑎ℓ+1⟩

]︁
=

𝑔2

4n2
0

2(𝑁2
th +𝑁th) ≈ 𝑔2

2

(︂
𝑁th

n0

)︂2 (3.26)

and we therefore find the current fluctuations are proportional to the bath
occupation number with ∆𝐽 = 𝑔𝑁th/

√
2.

In Fig. 3.4(a) we consider this high-noise regime and plot ⟨𝐽⟩ and ∆𝐽 for
𝑁th/n0 = 10, Γi/𝑔 = 4 and for varying Γ𝑒. We see that in the symmetric phase
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transport is indeed dominated by fluctuations, which even exceed the thermal
level. This behavior changes abruptly after the transition point Γ𝑒 ≃ Γi, be-
yond which a well-defined current below the thermal noise level is established.
This transition is also clearly visible in the steady-state distributions of the
individual oscillators, 𝑃ℓ(𝛼ℓ), shown in Fig. 3.4(b). For Γi > Γ𝑒 we observe
strong fluctuations, but the distributions are still symmetric with respect to
the center of the chain, i.e., 𝑃ℓ ≃ 𝑃𝑁−ℓ+1. For Γ𝑒 > Γi this symmetry is
broken and fluctuations are strongly suppressed.
For better understanding, we derive analytic solutions for both the sym-

metric regime and the symmetry-broken regime.

3.4.1 Symmetric regime

For Γ𝑒 < Γi the system is strongly influenced by thermal fluctuations. By cal-
culating the expectation values of higher order moments we can find approxi-
mate solutions for the mean occupation and their fluctuations. For 𝛾/𝑔 ≪ 1,

we can approximate Γ(𝛼) = Γ
(1+|𝛼|2/n0)2

≈ Γn2
0

|𝛼|4 and arrive at following equation
of motion

⟨ ˙|𝛼1|2 + ˙|𝛼2|2⟩ =
⟨
Γin

2
0

|𝛼1|2 − Γ𝑒n
2
0

|𝛼2|2
⟩
− 𝛾(⟨|𝛼1|2⟩+ ⟨|𝛼2|2⟩) + 2𝛾𝑁th = 0.(3.27)

In the symmetric regime ⟨|𝛼1|2⟩ = ⟨|𝛼𝑁 |2⟩ and by approximating ⟨ 1
|𝛼|2 ⟩ ≈

1
⟨|𝛼|2⟩ , we obtain

⟨|𝛼1|2⟩
n0

=
⟨|𝛼2|2⟩
n0

≈
√︃

Γi − Γ𝑒

2𝛾
+

(︂
𝑁th

2n0

)︂2

+
𝑁th

2n0

≈ 𝑁th

n0

+

√︃
Γi − Γ𝑒

2𝛾
.

(3.28)

By assuming that the noise doesn’t considerable change the mean value of the
relative phase and just broadens the phase distribution, we can approximate
the mean current by

⟨𝐽⟩ ≈ n0𝛾
Γi + Γ𝑒

Γi − Γ𝑒

(︃√︃
Γi − Γ𝑒

2𝛾
+

𝑁th

n0

)︃
. (3.29)

Therefore, for 𝛾/𝑔 ≪ 1 and not too large thermal noise the mean current is
hardly affected by thermal fluctuations, which agrees very well with numerical
simulations.
The variances of |𝛼ℓ|2 can be calculated from the equations of motion for

higher moments. For the occupation fluctuations we obtain

⟨ ˙|𝛼1|4 + ˙|𝛼2|4⟩ = 2(Γi − Γ𝑒)n
2
0 − 2𝛾(⟨|𝛼1|4⟩+ ⟨|𝛼2|4⟩)

+ 4𝛾𝑁th(⟨|𝛼1|2⟩+ ⟨|𝛼2|2⟩) = 0.
(3.30)
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In the symmetric regime ⟨|𝛼1|n⟩ = ⟨|𝛼2|n⟩ and using Eq. (3.28), we find

⟨|𝛼1|4⟩ ≈ (Γi − Γ𝑒)n
2
0

2𝛾
+ 2𝑁th⟨|𝛼1|2⟩ = (Γi − Γ𝑒)n

2
0

2𝛾
+ 2𝑁th⟨|𝛼1|2⟩

=
(Γi − Γ𝑒)n

2
0

2𝛾
+ 2𝑁th

⎛⎝√︃
(Γi − Γ𝑒)n2

0

2𝛾
+

(︂
𝑁th

2

)︂2

+
𝑁th

2

⎞⎠ ,

(3.31)

and for the variance

Var(|𝛼ℓ|2)
n2
0

≈ 𝑁th

n0

(︃√︂
Γi−Γ𝑒

2𝛾
+
(︁

𝑁th

2n0

)︁2

+ 𝑁th

2n0

)︃
= 𝑁th

n0

⟨|𝛼ℓ|2⟩
n0

. (3.32)

In the regime 𝛾/𝑔 ≪ 1, the occupation ⟨|𝛼i|2⟩ is hardly affected by the ther-
mal noise, but the variance depends linearly on 𝑁th. Furthermore, we can
approximate the variance of the current by

Var(⟨𝐽⟩)
𝑔2n2

0

≈⟨|𝛼1|2⟩Var(|𝛼𝑁 |2) + ⟨|𝛼𝑁 |2⟩Var(|𝛼1|2) + Var(|𝛼1|2)Var(|𝛼𝑁 |2)

≈2𝑁th⟨|𝛼1|2⟩+𝑁2
th

n2
0

,

(3.33)

where we again observe linear dependence on 𝑁th in the limit of 𝛾/𝑔 ≪ 1
and ⟨|𝛼1|2⟩ ≫ 𝑁th. Again, this approximate result reproduces well all our
numerical findings.

3.4.2 Symmetry-broken regime

For Γ𝑒 > Γi we find that in steady state Γ𝑒(𝛼
0
2) ≈ Γ𝑒. By making this

approximation we can linearize around the steady state amplitude and obtain
the following expression for the variance of the current in the limit of 𝛾 → 0,

Var(⟨𝐽⟩)
n2
0

= 𝛾𝑁th𝑔
2

(︁
Γ̃− 𝑔

)︁ [︁
𝑔2

(︁
4𝑔 − 5Γ̃

)︁
+ Γ𝑒

(︁
Γ𝑒Γ̃ + 2Γi𝑔

)︁]︁
Γ𝑒

(︁
Γ̃− 2𝑔

)︁ [︁
Γ2
𝑒Γ̃ + 𝑔2

(︁
4𝑔 − 3Γ̃

]︁)︁ , (3.34)

where Γ̃ =
√
ΓiΓ𝑒. We see that for small damping rate 𝛾, the fluctuations of

the current are small. In particular, deep in the symmetry-broken phase, this
can be simplified to

Var(⟨𝐽⟩)
n2
0

≈ 𝛾𝑁th𝑔
2

Γ𝑒

,
∆𝐽

𝐽
≈

√︃
𝛾𝑁th(𝛾Γ𝑒 + 𝑔2)

𝑔2Γi

. (3.35)

We therefore find that in the symmetric regime the variance of the cur-
rent scales with Var(⟨J⟩) ∝ Nth, while in the symmetry-broken regime with
Var(⟨J⟩) ∝ 𝛾Nth and we therefore find a significant difference in the limit of
𝛾 ≪ 𝑔,𝑁tℎ.
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Figure 3.5: (a) Plot of the relaxation time 𝜏r as a function of Γ𝑒 for 𝑁 = 4, 6, 8
oscillators and 𝑁th = 0. (b) The average dissipation rate Γ̄ = ⟨⟨Γ𝑒(𝛼𝑁) −
Γi(𝛼1)⟩⟩ in the absence and presence of thermal noise. In all plots fixed values
of Γi/𝑔 = 4 and 𝛾/𝑔 = 10−3 have been assumed.

3.4.3 Relaxation time - mean damping rate

The striking difference in the current noise can be also related to an equivalent
change in the response of the network. In Fig. 3.5(a) we plot the relaxation
time 𝜏r, i.e., the time it takes for the amplitude 𝛼1 to relax back to its steady-
state value after a small perturbation has been applied to site ℓ = 1. This was
done the following way. We first determined the steady state amplitudes with
high accuracy and then changed the amplitude of the gain oscillator by 𝛿𝛼1 =
1/10 and performed time evolution until the system relaxed. From the time
difference ∆tr between the pint where the occupation is just 𝛿|𝛼1|2 = 10−5

and 𝛿|𝛼1|2 = 10−8 away from the real steady state, we obtain the relaxation
rate as 𝜏r = ∆tr/ ln(10

3). Note that in Fig. 3.5(a) the relaxation rate exhibits
a peak in a very small region around the transition point Γ𝑒 = Γi, where we
find almost no relaxation.
In the symmetric phase this time constant is approximately independent

of Γi, Γ𝑒 and 𝑁 . It is essentially determined by the bare damping rate,
𝜏r ∼ 𝛾−1, and diverges in the limit 𝛾 → 0. In the symmetry-broken phase a
much faster response, 𝜏r ∼ O(Γ−1

𝑒 ) ∼ 𝑁2 is observed. At the transition point
the relaxation time diverges as 𝜏r ∼ (Γ𝑒 − Γi)

−𝜉, where we find 𝜉 ≃ 1.3 from
numerical simulations. This behavior is very different from a laser or from
other non-equilibrium phase transitions, where the relaxation time diverges
only at the transition point, but is finite and of similar magnitude in both
phases [24, 159–163]. As shown in Fig. 3.5(a), in the current system the
relaxation time diverges (in the limit 𝛾 → 0) within the whole symmetric
phase.
To provide a connection between the symmetry of 𝑃 ({𝛼ℓ}) and the current

noise, it is useful to consider the mean damping rate [55]

Γ̄ = ⟨Γ𝑒(𝛼𝑁)− Γi(𝛼1)⟩, (3.36)
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Figure 3.6: (a) Plot of the current fluctuations ∆𝐽 for 𝑁 = 2 oscillators in
the quantum noise limit, 𝑁th = 0, and for different saturation numbers n0 =
1, 2, 10, 30. The inset shows the scaling of the maximum of the fluctuation
peak as a function of n0. (b) Entanglement negativity N [164, 165] of the
steady-state density operator for n0 = 1, 2, 5. For these plots a fixed injection
rate Γi/𝑔 = 4 and a bare damping rate of (a) 𝛾/𝑔 = 10−3 and (b) 𝛾/𝑔 =
10−2 have been assumed. The results in this figure have been obtained from
the semiclassical stochastic differential equations (3.4)-(3.6) for n0 ≥ 10 and
from stochastic wavefunction simulations of the full density operator for n0 =
1, 2, 5.

i.e., the average difference between energy injection and extraction rates.
Due to the symmetry of the marginal distributions, this rate is vanishing
small in the symmetric phase, Γ̄ ∼ O(𝛾) [see Fig. 3.5(b)]. By breaking
this symmetry, a finite value Γ̄ ≫ 𝛾 is established for Γ𝑒 > Γi. This then
leads on average to an efficient cooling of fluctuations and the possibility for
subthermal energy transport. Again this behavior shows a close analogy to
conventional PT-symmetric systems [51]. In such systems the breaking of the
parity symmetry of the eigenstates of a non-Hermitain matrix is accompanied
by a transition from real to imaginary eigenvalues, i.e. a transition from
a purely oscillatory to an exponentially damped or amplified dynamic (see
Chapter 5 for more details). The order parameter Γ̄ generalizes this effect
to steady-state distributions of nonlinear gain-loss systems [55], where the
conventional definition of PT-symmetry breaking is no longer meaningful.

3.5 Quantum noise limit

From Eq. (3.4) we see that even for 𝑁th ≈ 0, the network is still affected by
quantum noise ∼ √︀

Γi(𝛼1)𝜉1(t). In the regime 𝑁q = Γi/𝛾 > 𝑁th, this noise
dominates over thermal fluctuations and represents a fundamental limitation
for energy transport deep in the quantum regime, n0 ∼ O(1). Fig. 3.6(a)
shows that for n0 ≫ 1 the sharp transition between a noisy and a coherent
transport regime still prevails, even for 𝑁th = 0. As the saturation number n0

is lowered, the relative level of fluctuations increases, develops a peak at the
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transition point and becomes much more pronounced also in the symmetry-
broken phase. Note that for small n0 ≲ 10 the mapping of the master equation
onto a Fokker-Planck equation is no longer valid and a full simulation of
Eq. (3.1) must be performed. Therefore, due to the large Hilbert space and
large separation of time scales involved in such simulations, the results in
Fig. 3.6 are restricted to 𝑁 = 2 oscillators.
Access to the full density operator also allows us to investigate true non-

classical quantities, such as the entanglement established between the injec-
tion and extraction sites. As shown in Fig. 3.6(b) for different n0 = 1, 2, 5, a
significant amount of entanglement exists for Γ𝑒 < 𝑔, it then vanishes in the
rest of the symmetric phase, and peaks again right after the transition point.
Therefore, this plot reveals an additional substructure, which is not reflected
in the mean current or its fluctuations. This entanglement between source
and drain can be relevant for thermodynamical considerations, where not only
the flow of energy, but also changes in entropy through mutual (quantum)
correlations must be taken into account. Note, however, that for a more de-
tailed study of entanglement it is necessary to go beyond our simply model
and explicitly include specific implementations of quantum generators and
engines in the dynamics.

3.6 Universality of the symmetry-breaking

transition

So far, we have assumed a specific cutoff function and the same saturation
occupation number n0 for the gain and the loss mechanism. While the precise
quantitative findings will of course depend on these assumptions, we will
now demonstrate with several other examples that the essential qualitative
features of the symmetry-breaking transition do not depend on these details.

3.6.1 Different gain/loss mechanisms

As there are many ways to engineer gain and loss, we will therefore first show
that our findings do not depend on the precise form of the saturation function
𝑓(x). In Fig. 3.7 we consider the example of a cutoff function 𝑓(𝑎†𝑎) = 1/(1+
𝑎†𝑎/n0)

𝜈/2, where we have assumed 𝜈 = 1 to model a system with a weaker
saturation dependence. This case corresponds, for example, to the saturation
of a regular laser. Again we see the characteristic structure of the current with
a maximum at Γ𝑒 ≃ Γi and that this maximum is associated with a transition
between a symmetric and a symmetry-broken energy distribution. For Γi ≳
3.4𝑔 we obtain a region, where the current does not have a precise value and
the whole chain settles into a limit cycle. Such a behavior has previously
been predicted for a PT-symmetric system, Γi = Γ𝑒, where 𝜈 = 1 has been
identified as a special case, where no real symmetry-breaking occurs [55].
However, in the presence of thermal noise [see Fig. 3.7(d)] these limit cycles
are no longer visible and qualitatively we obtain the same transition between
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Figure 3.7: Energy current and symmetry-breaking for a chain of 𝑁 = 10
oscillators and for the case where the saturation function is of the form
𝑓(𝑎†𝑎) = 1/(1 + 𝑎†𝑎/n0)

1/2. (a) Plot of the normalized steady-state en-
ergy current ⟨𝐽⟩/(𝑔n0) as a function of Γi and Γ𝑒 and for a damping rate
𝛾 = 10−2𝑔. (b) Variation of the current as a function of Γ𝑒 for fixed injection
rate Γi/𝑔 = 0.5 and 𝛾 = 10−3𝑔. (c) Steady-state amplitudes of the chain for
Γi = 4𝑔 and Γ𝑒 = 0.5𝑔 (red) and Γ𝑒 = 8𝑔 (blue). For better visibility the blue
line is scaled by a factor of three. (d) Mean current (solid line) and range of
current fluctuations (shaded area) for a network coupled to a thermal bath
with 𝑁th/n0 = 10. The inset shows the value of the average damping rate Γ̄,
as defined in Section 3.4. For this plot Γi = 4𝑔 and 𝛾/𝑔 = 10−3 have been
assumed.

a noise-dominated and a coherent transport regime as shown in Section 3.4 for
𝜈 = 2. Moreover, simulations reveal that the same behavior is also found for
stronger nonlinearities, 𝜈 = 3, and other saturation functions with different
functional dependencies.

3.6.2 Different saturation numbers

To further illustrate that the physical effects discussed in this work are very
generic, we now return to the cutoff function given in Eq. (3.3), but consider
the case where the gain and the loss oscillator saturate at different ampli-
tudes, i.e., n(1)

0 ̸= n
(𝑁)
0 . The resulting mean currents and fluctuations are

shown in Fig. 3.8. We see that also in this case all the qualitative features of
the symmetry-breaking phase transition remain unaffected, except that the



3 Energy transport and symmetry breaking in microscopic power grids 35

(a) (b)

-20

-10

0

10

20

0
2
4
6

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

0 4 8

Figure 3.8: (a) Plot of the current for fixed injection rate Γi = 4𝑔 and varying
extraction rate Γ𝑒 for a network of 𝑁 = 10 oscillators and 𝑁th = 0. The
plot compares the case where the saturation numbers for gain and loss are
equal, n(1)

0 = n
(𝑁)
0 , (red solid line) with the case where they differ by 10%,

n
(1)
0 = 1.1n

(𝑁)
0 , (blue dashed line). (b) Mean current (solid line) and range of

current fluctuations (shaded area) for the case n(1)
0 = 1.1n

(𝑁)
0 , but coupled to

a thermal bath with 𝑁th/n0 = 10. For both plots 𝛾/𝑔 = 10−3 and a cutoff
function as given in Eq. (3.3) have been assumed.

transition point is now shifted from Γi = Γ𝑒 to Γi ≃ Γ𝑒

(︁
n
(𝑁)
0 /n

(1)
0

)︁2

. Impor-

tantly, this example shows that even when different saturation mechanisms
for energy injection and extraction are considered, there is still an emergent
symmetric phase, which is characterized by an almost complete cancellation
of the average dissipation rate Γ̄ = ⟨⟨Γ𝑒(𝛼𝑁)− Γi(𝛼1)⟩⟩.

3.6.3 Conditions for a symmetric phase

To obtain a more general result for the symmetry-breaking point, we derive a
minimal condition under which a symmetric phase can exist. This condition
follows from the fact that in the steady state the total energy of the system
must be conserved. This means that the absorbed and dissipated energy must
be the same, or

Γi(𝛼
0
1)|𝛼1|2 = Γ𝑒(𝛼

0
𝑁)|𝛼0

𝑁 |2 + 𝛾
𝑁∑︁
ℓ=1

|𝛼0
ℓ |2. (3.37)

For a symmetric state, where |𝛼0
1| = |𝛼0

𝑁 | = 𝛼0 and |𝛼0
ℓ |2 = 𝜂ℓ|𝛼0|2, we obtain

Γi(𝛼
0)− Γ𝑒(𝛼

0) = 𝛾N , N =
𝑁∑︁
ℓ=1

𝜂ℓ. (3.38)

Here N = 2 for 𝑁 = 2, N ≃ (𝑁+1)/2 for 𝑁 odd and in general N ≈ 𝑁/2 for
𝑁 ≫ 1. For identical cutoff functions this condition can always be satisfied
by increasing the value of 𝛼0, as long as Γ𝑒 < Γi − 𝛾N . For non-identical
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Figure 3.9: (a) Plot of the occupation numbers |𝛼0
ℓ |2 of a chain of𝑁 = 10 oscil-

lators averaged over 100 realizations of random site detunings∆ℓ ∈ [−𝜎Δ, 𝜎Δ].
(b) Current for 15 different random detuning realizations with 𝜎Δ = 0.05𝑔.
For both plots the values Γi = 4𝑔, Γ𝑒 = 8𝑔 and 𝛾/𝑔 = 10−3 have been
assumed.

saturation parameters, n(1)
0 ̸= n

(𝑁)
0 , and by approximating 𝑓(𝛼0) ≃ n2

0/|𝛼0|4,
this argument also explains the shift of the transition point discussed above.
Thus, Eq. (3.38) provides a simple minimal condition for the existence of
a symmetric phase. Note, however, that for larger systems one find that for
Γi > 𝑔 symmetry breaking already occurs closer to the point where |𝐴| = |𝐵|.
For example, for n(1)

0 = n
(𝑁)
0 we find the transition point approximately at

Γ*
𝑒 =

2Γi(𝑔 − 𝛾)

2𝑔 + 𝛾(𝑁 − 1)
. (3.39)

As long as 𝛾𝑁 ≪ 𝑔, this result does not considerable change by changing the
system size and for all results presented in this chapter the transition point
derived from Eq. (3.38) is a sufficient approximation.

3.6.4 Disorder

So far we have considered chains of oscillators with identical frequencies 𝜔ℓ =
𝜔0. To understand the robustness of the observed effects with respect to
small frequency variations, which will be unavoidable in any real system, we
numerically simulate the steady state of a chain of 𝑁 = 10 oscillators with
frequencies 𝜔ℓ = 𝜔0+∆ℓ. Here the random frequency offsets for each site are
chosen from a uniform distribution ∆ℓ ∈ [−𝜎Δ, 𝜎Δ].
In Fig. 3.9 (a) and (b) we plot the disorder-averaged steady-state occu-

pation numbers |𝛼0
ℓ |2 for each of the oscillators and the current for a few

disorder realizations. We find that for 𝜎Δ < 0.1𝑔, the steady-state ampli-
tudes reproduce almost perfectly the alternating structure predicted for the
ideal case, ∆ℓ = 0. In this regime also the current exhibits the characteristic
peak structure for each individual disorder realization and is hardly affected
for parameters away from the transition point. This shows that all the ef-
fects discussed in this work are insensitive to a small amount of disorder. For
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Figure 3.10: (a) Sketch of a 2D power grid with multiple multiple quantum
machines. (b) Plot of the average currents ⟨𝐽ℓ⟩ flowing from site 1 to sites
ℓ = 7, 8, 9 for fixed Γ

(1)
i /𝑔 = Γ

(9)
𝑒 /𝑔 = 4 and varying rate Γ

(7)
𝑒 . For this

plot it is assumed that all oscillators are coupled to a thermal bath with a
moderate occupation number 𝑁th/n0 = 3 and 𝛾/𝑔 = 10−3. The inset shows
the resulting current fluctuations.

0.1 < 𝜎Δ/𝑔 < 0.3, the amplitudes still follow more or less a zig-zag structure,
while for 𝜎Δ/𝑔 > 0.3 the energy distribution is completely different from the
non-detuned case and most of the energy gets localized around the gain mode.

3.7 Microscopic networks

The transport effects analyzed here in detail for a single channel will be
highly relevant for understanding the flow of energy through more complex
networks with multiple quantum machines. To illustrate this point, we con-
sider in Fig. 3.10(a) a small multi-port network where energy injected at
site 1 with the rate Γ(1)

i and extracted at the two sites 7 and 9 with rates Γ(7)
𝑒

and Γ
(9)
𝑒 , respectively. Fig. 3.10(b) shows that although Γ

(9)
𝑒 ≫ Γ

(7)
𝑒 , only a

residual thermal current is initially flowing from site 1 to site 9. This coun-
terintuitive behavior can be explained by the fact that a symmetric standing
wave is formed between sites 1 and 7, which results in a vanishing amplitude
𝛼4 ≈ 0 at the crossing site. Once Γ

(7)
𝑒 is increased above the value of about

Γ
(1)
i , the symmetry breaks and 𝛼4 ≠ 0 now supports a large current flowing

to site 9. As a result, we obtain a transistor-like behavior, where a small
increase of losses in one site leads to a sudden increase of the energy current
through another part of the network. Simultaneously, there are sharp jumps
in the level of current fluctuations, in analogy to what we have found above
for the 1D chain. This shows that the combination of interference, nonlinear
(symmetry-breaking) effects and the prominent role of noise makes the op-
eration of microscopic power grids a very rich and complex problem, which
is still little understood. The current analysis reveals the important part in
this problem that is played by quantum fluctuations as a fundamental source
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of noise as well as by the topology of the network, which determines whether
these fluctuations are enhanced or suppressed.

3.8 Conclusion

In this chapter, we studied the energy transport between a microscopic gener-
ator and a microscopic user. We showed that the flow of energy at microscopic
scale can be very different what one would intuitively expects from Ohm’s
law. Moreover, we found that under the influence of thermal or quantum
fluctuations there is abrupt change between a noise dominated and a coher-
ent transport regime. This sudden change is accompanied by the breaking of
the spatial symmetries. By extending the analysis to complex networks, we
found that the properties of the systems strongly depend on the topology of
the system and in a 2D grid transistors can be engineered. While there are
many ways to realize such quantum machines, we showed that none of our
findings depend on the specific realization of the quantum machines or any
other imperfections.



4 Non-equilibrium magnetic

phases in spin lattices with

gain and loss❸

"Wenn man einem Physiker den Computer wegnimmt, ist das
wie ein Tod."

- Frei nach Marko Arnautovic

In the last chapter, we studied the energy transport through a chain of har-
monic oscillators and found a phase transition between two different spatial
steady state structures depending on the gain and loss rates at the ends of
the chain. Moreover, we found that the transport properties crucially differ
between these two different phases. While the analysis focused on transport
through a chain of harmonic oscillator, there naturally arise the question: Are
there are any phase transitions in spin systems with gain and loss?
In classical systems, phase transitions can be investigated by calculating

the free energy of the system, where the non-analyticity of the free energy
characterizes a classical phase transition and the minimization of the free
energy defines the state of the system. In quantum systems, the ground
state can be found by finding the lowest eigenstate of the Hamiltonian and
the phase transition usually occurs when the gap, the energy difference be-
tween the two lowest energies, vanishes. Furthermore, one can distinguish
between discontinuous first-order phase transitions and continuous second-
order phase transition. While first-order transitions are usually accompanied
by phase coexistence between two distinct phases at the critical point, second-
order transitions are typically characterized by an infinite correlation length.
Moreover, the second-order transitions are usually associated with a breaking
of a symmetry.
This classification can successfully describe most phase transitions in equi-

librium very well and it is therefore assumed that this classification can be
extended to open quantum systems [24, 36]. In such systems the steady state
is defined by the zero eigenvalue eigenstate of the Liouvillian and the gap is
replaced by the asymptotic decay rate, the real part of the eigenvalue closest
to the zero eigenvalue.
However, there is still little known about dissipative phase transitions in

spin systems as in 1D systems typically no phase transitions occur [18, 22]

❸ This chapter is based on the article: J. Huber, P. Kirton, and P. Rabl, Non-equilibrium
magnetic phases in spin lattices with gain and loss, Phys. Rev. A 102, 012219 (2020).
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and for higher dimensional systems the most reliable results come from ex-
act simulations which are restricted to small system sizes [18–20, 22]. It is
therefore of great relevance to find models which lie outside this framework
of phase transitions.
In this chapter, we consider a spin lattice with alternating gain and loss

where spins are coupled via excitation conserving interactions. The steady
state phases are therefore solely induced by dissipation. While many previous
works on open spin lattices focused on spin models which exhibit phase tran-
sitions in equilibrium [15–22], our model doesn’t show any phase transition
in equilibrium. We study the non-equilibrium properties of this system when
the dissipation strengths are comparable to the coherent interaction strengths
and investigate the different phase transitions appearing in this simple model.
Furthermore, we compare these phase transitions with well studied models
to show that these transitions lies outside of the usual considered framework.
At the end of the chapter, we discuss a possible implementation of the system
with cold atoms.

4.1 Model

We consider a one dimensional (1D) chain of 2𝑁 spin-𝑆 systems, which is
divided into two sublattices A and B as shown in Fig. 4.1(a). The spins
precess around a static field along the z-direction with Larmor frequency 𝜔0

and are coupled to their neighbors via spin-flip interactions with alternating
strengths 𝑔 and ℎ. The coherent dynamics of this system is described by the
Heisenberg model 𝐻 = ℏ𝜔0𝑀z +𝐻𝑋𝑋 , where 𝑀z =

∑︀𝑁
n=1(𝑆

z
𝑎,n + 𝑆z

𝑏,n) is the
total magnetization and

𝐻𝑋𝑋 =
ℏ
2𝑆

𝑁∑︁
n=1

(︀
𝑔𝑆+

𝑎,n𝑆
−
𝑏,n + ℎ𝑆+

𝑏,n𝑆
−
𝑎,n+1 +H.c.

)︀
. (4.1)

The 𝑆k
𝑎,n and 𝑆k

𝑏,n, with k ∈ {x, y, z,±}, denote the usual spin operators for
sublattices 𝐴 and 𝐵. Within the parameter regime of interest, 𝜔0 ≫ 𝑔, ℎ, this
model only has a trivial, fully polarized ground state, which would be stabi-
lized by adding decay for all spins. To obtain non-trivial dissipation effects,
we thus consider alternately pumping the spins along opposite directions. By
changing into a frame rotating with 𝜔0, the resulting evolution of the system
density operator 𝜌 is then described by the master equation,

𝜌̇ =
i

ℏ
[𝜌,𝐻𝑋𝑋 ] +

1

2𝑆

𝑁∑︁
n=1

(︀
Γ𝑔D[𝑆+

𝑎,n] + ΓlD[𝑆−
𝑏,n]

)︀
𝜌, (4.2)

whereD[𝑆±]𝜌 = (2𝑆±𝜌𝑆∓ − 𝑆∓𝑆±𝜌− 𝜌𝑆∓𝑆±) and Γ𝑔 and Γl are the gain and
loss rates, respectively. In Eqs. (4.1) and (4.2) the couplings and pumping
rates are scaled by the spin quantum number 𝑆 to ensure that the relevant
timescales of the system dynamics remain the same for different total spins.
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Note that Eq. (4.2) preserves the 𝑈(1) symmetry associated with a com-
mon rotation of all the spins in the x–y plane. In Section 4.5 below we
discuss possible experimental implementations of this model using, for exam-
ple, ensembles of cold atoms or solid-state defects in coupled cavity arrays.
As depicted in Fig. 4.1(b), the dissipative terms in Eq. (4.2) drive the sys-

(a)

(b) (c)

PT

1

2

2

00

A B

PPT

Figure 4.1: (a) Sketch of a 1D spin chain, where the individual spins are
coherently coupled to their neighbors and alternately pumped with rate Γ𝑔 or
cooled with rate Γl. (b) Illustration of the coherent and dissipative processes
within a single unit cell. (c) Plot of the steady-state phase diagram of the
dissipative spin chain as a function of the gain and loss rates. The solid lines
indicate the phase boundaries for 𝑆 → ∞.

tem into a state with a staggered magnetization, while the coherent coupling
tends to counteract this imbalance. This competition leads to several dis-
tinct phases for the steady state of the spin chain, 𝜌0 = 𝜌(t → ∞), which are
summarized in Fig. 4.1(c). We identify two types of ordered phases, which
exhibit either anti-ferromagnetic (AM) or ferromagnetic (FM) alignment of
the spins. In addition, there are two strongly disordered phases, which are
labeled as PT-symmetric (PT) and pseudo-PT-symmetric (PPT) for reasons
that will be discussed in more detail below. In the limit 𝑆 → ∞ the five
different phases are separated by sharp boundaries defined by the lines

Γ𝑔Γl = (𝑔 ± ℎ)2 (4.3)

and Γ𝑔 = Γl for Γ𝑔Γl < (𝑔 − ℎ)2, which can be derived from a Holstein-
Primakoff approximation (HPA) (see Appendix B.1).
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4.2 Dissipative spin dimer

To understand some basic properties of the model, it is instructive to first con-
sider the limit ℎ → 0, where the chain separates into decoupled spin dimers.
In this case the intermediate mixed phase disappears and for the remaining
phases the order parameter ℳz = ⟨𝑀z⟩/(2𝑆) is shown in Fig. 4.2(a). For
Γ𝑔,l ≫ 𝑔 dissipation always dominates and the spins are simply pumped into
an anti-aligned AM configuration, where ℳz ≈ 0, but ⟨𝑆z

𝑎⟩ = −⟨𝑆z
𝑏 ⟩ ≈ 𝑆.

For
√︀

Γ𝑔Γl < 𝑔, this arrangement is destabilized by the coherent coupling,
which, in this regime, efficiently redistributes energy between the two sites.
As a result, the stationary state is only determined by the sign of the net
damping rate, 𝛿Γ = (Γ𝑔 − Γl), and exhibits FM alignment, ℳz ≃ ±1. This
ordered phase extends into the regime Γ𝑔,l ≪ 𝑔, where the coherent interac-
tion dominates and where one would thus expect a highly mixed, depolarized
phase. At the same time the spin alignment opposes the applied dissipation
in one of the sublattices, which shows that this type of order still depends
on a non-trivial interplay between coherent and incoherent processes. In-
terestingly, even for 𝑆 ≫ 1 this stationary ferromagnetic alignment is not
captured by the mean-field equations of motion (see Appendix B.2), which
instead predict a limit cycle for one of the spins with a vanishing average
magnetization.

4.2.1 PT-symmetry

Of specific interest is the behavior of this system along the diagonal Γl = Γ𝑔,
which for Γ̄ = (Γ𝑔 + Γl)/2 < 𝑔 marks the boundary between the two FM
phases. Along this line the model becomes PT symmetric as explained in
more detail in Chapter 5. This means that the master equation, Eq. (4.2), is
invariant under the combined exchange of sublattices A and B (parity) and
the conjugation of the jump operators 𝑆+ ↔ 𝑆− (exchanging loss and gain,
i.e., reversing time).
The steady state for Γ̄ ≪ 𝑔 is close to the (symmetric) fully mixed state as

(for a proof see Chapter 5.3),

𝜌0 ≃ 1

(2𝑆 + 1)2

[︂
✶+𝑂

(︂
Γ̄

𝑔

)︂]︂
, (4.4)

with ⟨𝑀z⟩ ≃ ⟨𝑆z
𝑎,𝑏⟩ ≃ 0, and that this phase is separated from the (symmetry-

broken) AM phase by a sharp transition in the limit 𝑆 → ∞. This behavior
is clearly visible in Fig. 4.2(b), where we plot the individual magnetizations
along the line Γl = Γ𝑔 for increasing 𝑆.
In Fig. 4.2(c) and (d) we also plot the real part of the smallest magnitude

non-zero eigenvalues, 𝜆n, of the Liouville superoperator ℒ, which is defined by
𝜌̇ = ℒ𝜌. As we approach the transition point Γ̄ = 𝑔 from the AM phase, we
observe a closing of the Liouvillian gap, 𝜀𝐿 ∼ 1/𝑆, where 𝜀𝐿 = min{−Re(𝜆n)}.
While the closing of the Liouvillian gap is expected for any dissipative phase
transition point [24, 36], we also find that many of the larger magnitude
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Figure 4.2: (a) Plot of the order parameter ℳz = ⟨𝑀z⟩/(2𝑆) for a spin
dimer with 𝑆 = 12. (b) Magnetization of the individual spins along the
symmetry line, Γl = Γ𝑔 = Γ̄, for different spin quantum numbers. For the
same parameters, (c) shows the dependence of the Liouvillian gap, 𝜀𝐿, on the
ratio Γ̄/𝑔. (d) Scaling of 𝜀𝐿 and of two additional eigenvalues at the transition
point, Γ̄ = 𝑔. The crosses are the exact numerical results for up to 𝑆 = 18
and the solid lines are linear extrapolations to zero, i.e., 𝜀𝐿 ∼ 1/𝑆.

eigenvalues of ℒ vanish and remain vanishingly small (in the limit of large 𝑆)
within the whole PT phase. This indicates that for Γ̄ < 𝑔 the gain and loss
processes cancel out on average. In contrast, fluctuations, which still occur
with rates Γ𝑔,l, are not reduced correspondingly and drive the system into a
highly mixed state. Since the energy levels of the system do not change at
the transition point, this sudden increase of entropy translates into a jump of
the systems’ effective temperature [24, 28, 166]. This is a crucial difference to
equilibrium systems, where the level of fluctuations is determined by a fixed
temperature in all phases.

More specifically, as already pointed out in Eq. (4.4) above, the steady
state in this PT symmetric phase is close to the fully mixed, i.e., infinite
temperature state. This must be contrasted to states with a high, but finite
temperature as observed in other models [24, 166], since the impurity of the
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system, ℐ = 1/P , becomes extensive,

lim
𝑆→∞

ℐ(𝛿Γ = 0)

(2𝑆 + 1)2
> 0. (4.5)

This implies that such a state cannot be accurately described by a mean-field
ansatz, since for any observable fluctuations dominate over its mean value.
As we will discuss in the following, many of the unusual features of the cur-
rent model can be traced back to this specific property of the PT symmetric
phase. Note that a similar transition between low and infinite temperature
phases can also occur in various other models [26, 28]. It is thus important
to develop a more general understanding of this type of transition, in partic-
ular in extended lattice systems, where the fate of such infinite temperatures
phases is still unknown.

4.2.2 Absence of phase co-existence

For the dimer model, Fig. 4.2(a) shows that all transitions are of first order,
meaning that at the respective transition lines the magnetization in the limit
𝑆 → ∞ jumps abruptly between two different values. For concreteness, we
will focus in the following on the transition between the two FM phases for
Γ̄ < 𝑔. This situation is reminiscent of a regular Ising ferromagnet in the
presence of an external bias field 𝐵, a role which is here taken by the rate
imbalance 𝛿Γ. In an equilibrium magnetic system and for 𝐵 = 0, there is no
externally imposed direction and the magnetic moments then spontaneously
align themselves along one of the two possible directions. When averaged
over these two equally probable configurations, the resulting density operator
corresponds to an equal mixture between the two FM states.
It has been previously conjectured [36] that such a picture should also

apply, very generically, to discontinuous transitions in driven-dissipative sys-
tems. This conclusion is primarily based on the analysis of the dissipative
Kerr-oscillator (see discussion below), where this analogy between equilibrium
and non-equilibrium phase transitions is indeed very accurate. However, the
current model demonstrates that there are other types of first-order phase
transitions, where this analogy does not apply. To illustrate this point we
study in Fig. 4.3 in more detail the behavior of the system as we tune it
across the transition line for a fixed Γ̄/𝑔 = 0.5 and varying 𝛿Γ. First of all,
Fig. 4.3(a) shows the expected closing of the Liouvillian gap at 𝛿Γ = 0 con-
firming the existence of a sharp phase transition in the limit 𝑆 → ∞ [see also
Fig. 4.2(c)]. In Fig. 4.3(b) we plot the purity of the steady state, which van-
ishes as P ∼ 1/(2𝑆 + 1)2 at the transition point. More explicitly, Fig. 4.3(c)
shows the probability distribution 𝑃 (m𝐴

z ,m
𝐵
z ) for the magnetization values of

each spin just below, at and just above the transition point. This comparison
demonstrates that the state at 𝛿Γ = 0 is clearly different from a naively ex-
pected mixture between the two neighboring phases. Although in the middle
plot we still see some small variations in 𝑃 (m𝐴

z ,m
𝐵
z ), the scaled impurity in
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Figure 4.3: (a) The real part of the first 8 eigenvalues 𝜆n of the Liouvillian ℒ
for a fixed value Γ̄ = 0.5𝑔 and 𝑆 = 16. In the limit 𝑆 → ∞, the point 𝛿Γ = 0
marks the phase transition line between the two FM states. (b) Purity of
the steady-state, P = Tr{𝜌20}, for the same parameters but different values
of 𝑆. The line labelled 𝑆 = ∞ shows the analytic prediction obtained from
a HPA (see Appendix B.1). (c) The probability distribution 𝑃 (m𝐴

z ,m
𝐵
z ) for

the magnetization values of each spin is shown for three different values of
𝛿Γ representing the steady state just below, at, and just above the transition
point for 𝑆 = 12.

this (finite 𝑆) example reaches a value of ℐ/(2𝑆 + 1)2 ≃ 0.957. This con-
firms that for 𝑆 ≫ 1 the system transitions between the two opposite FM
configurations via an intermediate, fully mixed phase.
It is instructive to contrast the behavior in Fig. 4.3 with the regular first-

order phase transition in the dissipative Kerr oscillator mentioned above. The
Kerr oscillator is a single nonlinear bosonic mode with annihilation operator
𝑐, which is described by the Hamiltonian [29–31]

𝐻K = −ℏ∆𝑐†𝑐+ ℏ
𝑈

𝐷
𝑐†𝑐†𝑐𝑐+ ℏ

√
𝐷𝐹 (𝑐† + 𝑐). (4.6)

Here 𝑈 is the strength of the nonlinearity and 𝐹 the strength of an external
driving field, which is detuned from resonance by ∆. The parameter 𝐷 plays
the role of an effective Hilbert space dimension such that 𝐷 → ∞ represents
the thermodynamic limit of this model. The dynamics of the dissipative Kerr
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Figure 4.4: First-order phase transition in the disspative Kerr oscillator as
defined in Eq. (4.7). (a) The real part of smallest eigenvalues, 𝜆n, of the
Liouvillian ℒK as a function of 𝐹/𝛾 and for 𝑈/𝛾 = 10, ∆/𝛾 = 10 and 𝐷 = 50.
The dashed vertical line marks the phase transition point at 𝐹/𝛾 ≃ 1.76. (b)
Purity of the steady-state 𝜌0, where ℒK𝜌0 = 0, for the same parameters
but different values of 𝐷. (c) Probability distribution 𝑃 (n) for the oscillator
number states |n⟩ just below, at, and just above the transition point and for
𝐷 = 50.

oscillator is then described by the master equation

𝜌̇ = − i

ℏ
[𝐻K, 𝜌] + 𝛾D[𝑐] ≡ ℒK𝜌, (4.7)

where 𝛾 is the decay rate. The steady state of this master equation exhibits a
first-order phase transition at 𝐹/𝛾 ≃ 1.76, where the system switches between
states with a low and high photon number expectation value.
Figure 4.4 summarizes the behavior of the Kerr oscillator when it is tuned

across this transition point, which we can contrast with the observations in
Fig. 4.3. We first notice that the Liouvillian gap is vanishingly small over a
larger parameter range and it vanishes as 𝜀𝐿 ∼ 𝑒−𝐷 at the transition point
[30]. In contrast to the spin model, only two eigenvalues vanish, which already
indicates that at the transition point the system is well described by a mixture
of two distinct metastable states. This picture is also confirmed by a non-
vanishing purity in Fig. 4.4(b) and the distribution of the occupation numbers
of the oscillator states, p(n), in Fig. 4.4(c). This last result clearly shows that
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the state at the transition point is a mixture of the two neighboring phases,
which can also be verified explicitly [36].
The observation that such a co-existence between the two FM states does

not occur for the spin dimer can be attributed to the fact that in this model
a large number of Liouvillian eigenvalues vanish at the same time near 𝛿Γ =
0. This provides, roughly speaking, more flexibility to construct the actual
steady state out of many nearly-degenerate eigenvectors of ℒ. Since in the
spin model the closing of the Liouvillian gap only scales inversely with the
system size and not exponentially also means that other properties, such as
the divergence of the relaxation rate, etc., will be very different in these two
types of first-order transition.

4.3 Dissipative spin chain

We now return to the fully coupled chain with 0 < ℎ ≤ 𝑔 to see how the
basic effects discussed above affect the non-equilibrium states of the extended
spin lattice. As already mentioned in the introduction, for small spins, 𝑆 ∼
O(1), there are typically no sharp phase transitions in dissipative spin systems
in 1D, even for an infinite number of lattice sites 𝑁 → ∞. This can be
understood from the fact that the fluctuations introduced by the dissipation
processes act as a finite effective temperature, which typically prevents long-
range order in 1D [167]. Therefore, in the following analysis we retain our
focus on the regime 𝑆 ≫ 1, as above. While in this limit sharp transitions
already occur for a single cell, the resulting phases and the nature of the phase
transitions can be very different in the lattice system. In fact, the exact nature
of a phase transition can only be determined in extended systems, where,
apart from the order parameter, also information about spatial correlations
and their critical scaling is available.

4.3.1 Simulation of dissipative spin lattices

While in 1D the dynamics and steady states of dissipative systems with a
small local Hilbert space dimension can still be simulated efficiently using
matrix product operator techniques [39, 126], this is not possible for the cur-
rent system when 𝑆 ≫ 1. At the same time, we have seen that, even in the
limit of a large spin quantum number, fluctuations are dominant, which makes
a mean-field approximation unreliable. To overcome these limitations we de-
veloped the truncated Wigner method for open quantum system (TWOQS)
which is based on the truncatedWigner approximation (TWA) [107, 168–170].
It works the following way: An initial state distribution, which is sampled
from a Wigner function of the initial state, is time evolved by the stochastic
equations. As quantum fluctuations are included at all times, this gives usu-
ally substantially more accurate results and access to correlations. A detailed
derivation of TWOQS and its applicability for the simulation of collective
spin models is presented in Chapter 6. In addition to TWOQS, we use infi-
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Figure 4.5: Plot of (a) the average magnetization ⟨𝑆z
𝑎,𝑏⟩ and (b) the magne-

tization fluctuations, (∆𝑆z
𝑎,𝑏)

2 = ⟨(𝑆z
𝑎,𝑏)

2⟩ − ⟨𝑆z
𝑎,𝑏⟩2. The two quantities are

shown along the path (i) indicated in the sketch of the phase diagram in (c),
which shows the extent of the PPT phase for a value of ℎ/𝑔 = 0.5. (d) Plot
of the correlation length 𝜉 along the symmetry line Γl = Γ𝑔 = Γ̄, i.e. the path
(ii) in (c). In (a), (b) and (d) the solid lines represent the results from the
TWOQS simulation for 𝑁 = 50 units cells, while the dashed lines have been
obtained using iMPO techniques [39, 126].

nite matrix product operator (iMPO) [39, 126] and cluster-mean field (CMF)
simulations to verify that the main characteristics of the different phases are
still present in the limit of small and moderate spin quantum numbers.

4.3.2 The PPT phase

In Fig. 4.5(a) and (b) we apply the numerical techniques discussed above
to evaluate the dependence of the average magnetization of each spin and
its variance for a fixed Γ𝑔 = 1.5𝑔 and varying Γl. In the limits Γl/𝑔 → 0
and Γl/𝑔 ≫ 1 we recover the FM and AM phases, respectively, which are
again characterized by a well-defined magnetization pattern and almost no
fluctuations. However, in the extended system, these phases are no longer
directly connected. Instead a new intermediate PPT phase appears between
the boundaries Γ𝑔Γl = (𝑔 ± ℎ)2. Although this PPT phase exhibits an im-
balanced average magnetization, i.e., ⟨𝑆z

𝑎⟩ ≠ ⟨𝑆z
𝑏 ⟩, it is dominated by large

fluctuations similar to the PT phase discussed above. Importantly, this char-
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acteristic behavior is no longer restricted to a single line in parameter space
and appears at intermediate values where all dissipation and coherent cou-
pling rates are approximately the same. In the limit ℎ = 𝑔 the PPT phase
completely replaces both FM phases. This shows that the behavior of the
lattice systems is considerably different to that of the dimer. For smaller 𝑆
the boundaries between the phases are much less pronounced, but even in
this limit, the three different phases can be clearly distinguished, as can be
seen in the results of the iMPO calculations in Fig. 4.5.

4.3.3 Mixed-order transitions

In Fig. 4.5(d) we now take a closer look at the transition between the AM
and the PPT phase and evaluate the correlation length 𝜉 for 𝛿Γ = 0 as we
vary the damping Γ̄ across the critical point, Γ̄𝑐 = 𝑔 + ℎ. The correlation
length is extracted from an exponential fit of the spin correlation function
⟨𝑆+

𝑎,n𝑆
−
𝑎,m⟩ ∼ 𝑒−|n−m|/𝜉. Again we find excellent agreement in the ordered

phases between the HPA (see Appendix B.1) and the TWOQS. From our
numerical simulations we find that 𝜉 ∼ |Γ̄ − Γ̄𝑐|−𝜈 , where 𝜈 ≃ 0.5 in both
phases. This behavior would be characteristic for a continuous second-order
phase transition associated with the breaking of the 𝑈(1) symmetry of our
model. However, as shown in Fig. 4.5(a) the magnetizations ⟨𝑆z

𝑎,𝑏⟩ exhibit a
rather sharp jump and, as we will argue below, there is no symmetry breaking.
To asses the order of this phase transition we compare in, Figs. 4.6(a)+(b),

the results from the full numerical simulation with the predictions from mean-
field theory (see Appendix B.2). Mean-field theory shows that while for small
spins the transition is indeed continuous, it becomes steeper and steeper with
increasing 𝑆. In the limit 𝑆 → ∞ we then obtain a discrete jump in the order
parameter ∆ = ⟨𝑆−

𝑎 ⟩, where for 𝛿Γ = 0 we obtain the explicit result

∆(Γ̄) ≃ 𝜃(Γ̄𝑐 − Γ̄)𝑆

√︃
Γ̄

𝑔 + ℎ
𝑒i𝜑. (4.8)

Here 𝜃(x) is the Heaviside step function and 𝜑 is an arbitrary phase which
breaks the 𝑈(1) symmetry [171].
In Fig. 4.6(c) we compare this behavior with two scenarios within the usual

Landau free-energy picture of equilibrium phase transitions. The first case
illustrates a first-order transition, where the order parameter jumps from
one minimum at ∆ = 0 to a finite value. If the minima at finite |∆| are
degenerate, this type of transition can spontaneously break the symmetry, but
it will not be associated with a diverging correlation length. The second case
depicts a mixed-order transition, where at the transition point the free energy
landscape becomes essentially flat. This leads to diverging fluctuations as one
approaches the transition point, but also to a jump of the order parameter
from ∆ = 0 to |∆| ∼ 𝑆. For small 𝑆 this picture smoothly connects to the
phenomenology of a continuous second-order phase transition.
Based on this mean-field analogy with conventional Landau theory, we con-

clude that in the limit of large 𝑆 the transition from the AM to the PPT phase
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Figure 4.6: Plot of the steady-state expectation values of (a) the transverse
polarization ⟨𝑆⊥⟩ =

√︀⟨𝑆x
𝑎 ⟩2 + ⟨𝑆y

𝑎⟩2 and (b) the average magnetization ⟨𝑆z⟩
along the symmetry line Γ𝑔 = Γl = Γ̄. In both plots the results obtained by
a TWOQS simulation (solid lines) for 𝑆 = 1000 and 𝑁 = 50 unit cells are
compared with the predictions from mean-field (MF) theory (dashed lines)
for different spin quantum numbers. (c) Illustration of the difference between
a first-order (top row), and a mixed-order (bottom row) phase transition
in terms of the usual Landau free energy 𝐹 (∆). The three columns show
the variation of the free energy with the order parameter ∆ before (left), at
(middle) and after (right) the transition point.

is most accurately described by a mixed-order phase transition [21, 172]. In
the exact simulations, the same behavior, namely a jump in the order pa-
rameter and a diverging correlation length, is also found for the transition
between the FM and the PPT phase, although in this case neither the FM
nor the PPT phase are captured by the mean-field equations of motion. For
the transition between the two FM phases, the HPA does not predict a di-
verging correlation length, consistent with a first-order transition as discussed
in Section 4.2. Of course, this intuitive picture of minimizing an effective po-
tential is very limited and does not take into account the non-equilibrium
fluctuations, which, for example, prevent phase-coexistence at the transition
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point.

4.3.4 Absence of symmetry-breaking

The mean-field result given in Eq. (4.8) predicts a breaking of the 𝑈(1) sym-
metry of the master equation (4.2), which is associated with a common ro-
tation of all the spins in the x–y plane. However, this symmetry-breaking
effect is not observed in our numerical simulations where in all stationary
phases ∆ ≃ 0. As a consequence other expectation values, which are not
sensitive to this phase, differ considerably from the mean-field predictions
[see Figs. 4.6(a)+(b)]. While expected for small spins, this observation is
very surprising in the limit 𝑆 → ∞, where mean-field theory usually becomes
exact.
The question of whether or not there is symmetry breaking in the steady

state of driven-dissipative systems is actually very subtle, since in the exact
steady state all the phases 𝜑 would appear with equal probability and average
to zero. Therefore, in the following we use two different numerical approaches
to argue that the transition between the AM and PPT phases is inconsistent
with our conventional understanding of symmetry-breaking.

Cluster mean field

First, we use the cluster mean field theory to systematically go beyond the
results of the mean-field equations from above, we generalize to the case
where all quantum correlations between neighboring sites are included, but a
mean-field decoupling is made between these clusters [18]. To achieve this we
treat a cluster of 𝑁𝐶 unit cells exactly, but factorize the interactions between
spins in neighboring clusters. Within this approximation the density operator
of the whole chain is replaced by a tensor product of 𝑁/𝑁𝐶 smaller density
matrices,

𝜌 ≈
(𝑁/𝑁𝐶)⨂︁
ℓ=1

𝜌
(ℓ)
𝐶 . (4.9)

Taking the limit 𝑁 → ∞ allows us to assume translational invariance and
hence we set 𝜌

(ℓ)
𝐶 = 𝜌𝐶 . The resulting mean-field master equation for 𝜌𝐶 is

given by

𝜌̇𝐶 = − i

ℏ
[𝐻, 𝜌𝐶 ] +

1

2𝑆

𝑁𝐶∑︁
n=1

(︀
Γ𝑔D[𝑆+

𝑎,n] + ΓlD[𝑆−
𝑏,n]

)︀
𝜌𝐶 , (4.10)

where

𝐻 =
ℏ
𝑆

𝑁𝐶−1∑︁
n=1

[︀
𝑔
(︀
𝑆x
𝑎,n𝑆

x
𝑏,n + 𝑆y

𝑎,n𝑆
y
𝑏,n

)︀
+ ℎ

(︀
𝑆x
𝑏,n𝑆

x
𝑎,n+1 + 𝑆y

𝑏,n𝑆
y
𝑎,n+1

)︀]︀
+

ℏℎ
𝑆

(︀⟨𝑆x
𝑏,𝑁𝐶

⟩𝑆x
𝑎,1 + ⟨𝑆y

𝑏,𝑁𝐶
⟩𝑆y

𝑎,1

)︀
+

ℏ𝑔
𝑆

(︀⟨𝑆x
𝑏,1⟩𝑆x

𝑎,𝑁𝐶
+ ⟨𝑆y

𝑏,1⟩𝑆y
𝑎,𝑁𝐶

)︀
.

(4.11)
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Here, the last two lines of the Hamiltonian account for the mean-field interac-
tion between neighboring clusters. Note that this equation is no longer linear
in 𝜌𝐶 and the evolution of the state and the expectation values must be found
self-consistently.
In our model each unit cell consists of two spin-𝑆 systems. This limits the

applicability of this method to clusters of size 𝑁𝐶 = 1, 2 for even moderate
values of 𝑆. To observe the behavior of the system as the cluster size is
increased we thus focus on the symmetric case where Γ𝑔 = Γl = Γ̄ and ℎ = 𝑔.
This then allows us to make a unitary transformation which results in a fully
translationally model in which the unit cell is a single site. By redefining the
spin on every A lattice site as 𝑆z

𝑎,n → −𝑆z
𝑎,n, 𝑆

x
𝑎,n → 𝑆x

𝑎,n, 𝑆
y
𝑎,n → −𝑆y

𝑎,n, we
obtain a model described by the cluster mean-field master equation

𝜌̇𝐶 = − i

ℏ
[𝐻, 𝜌𝐶 ] +

Γ̄

2𝑆

n𝐶∑︁
n=1

D[𝑆−
n ]𝜌𝐶 , (4.12)

with Hamiltonian

𝐻 =
ℏ𝑔
𝑆

n𝐶−1∑︁
n=1

(︀
𝑆x
n𝑆

x
n+1 − 𝑆y

n𝑆
y
n+1

)︀
+

ℏ𝑔
𝑆

(︀⟨𝑆x
n𝐶
⟩𝑆x

1 − ⟨𝑆y
n𝐶
⟩𝑆y

1 + ⟨𝑆x
𝑏,1⟩𝑆x

𝑁𝐶
− ⟨𝑆y

n𝐶
⟩𝑆y

1

)︀
.

(4.13)

This allows us to simulate cluster sizes of n𝐶 = 1, 2, 3, 4 lattice sites for spin
𝑆 ≤ 4 systems.
First, in Fig. 4.7(a) and (b) we show the results of a CMF simulation,

where the 𝑈(1) symmetry is explicitly broken by initializing the spins along a
specific direction in the x–y plane. Independent of the phase 𝜑, such a state
is characterized by a finite value of the transverse spin component

⟨𝑆⊥⟩ =
√︀
⟨𝑆x⟩2 + ⟨𝑆y⟩2, (4.14)

since it indicates a preferred average direction in the x–y plane and hence
breaking of the 𝑈(1) symmetry. For a cluster size n𝐶 = 1 of one lattice site,
which corresponds to the regular mean-field approximation, the broken sym-
metry is retained in the steady states of the PPT and PT phases. However,
as one increases the cluster size, the region with broken symmetry rapidly
shrinks and does not considerably grow again when the spin 𝑆 at each lattice
site is increased. This shows that even if the symmetry is explicitly broken
by a mean-field ansatz, the system restores the symmetry when the accu-
racy of the approximation is increased. This behavior must be contrasted to
the findings in Refs. [18, 20]. In these references the same scaling analysis
correctly predicts the absence of symmetry breaking in 1D, where there is
also no phase transition, but supports the existence of a phase with broken
symmetry in 2D. Here we find a sharp phase transition but no corresponding
symmetry-breaking.
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Figure 4.7: (a) Steady-state expectation value of the transverse polarization
⟨𝑆⊥⟩ =

√︀⟨𝑆x
𝑎 ⟩2 + ⟨𝑆y

𝑎⟩2 obtained from a CMF simulation with varying cluster
size, n𝐶 , and 𝑆 = 3/2. In (b) the same expectation value is plotted for n𝐶 = 3
and varying 𝑆. In both plots Γl = Γ𝑔 = Γ̄ and an inter-cell coupling of
ℎ = 𝑔 has been assumed. (c) Dynamics of the spin lattice, which is initially
prepared in a symmetry-broken state where all the spins are oriented along
the x axis. The solid lines show the TWOQS results for while the dashed lines
are obtained from the mean-field equations of motion (see Appendix B.2). In
blue we show ⟨𝑆z⟩ and in red the perpendicular magnetization ⟨𝑆⊥⟩. For both
plots in (c) the parameters are Γ𝑔 = Γl = 𝑔, ℎ = 0.5𝑔 and 𝑁 = 50.

TWOQS simulations

To obtain further evidence for the absence of symmetry breaking in the limit
𝑆 → ∞, we perform additional dynamical simulations, where the system is
initialized in a symmetry-broken state close to the mean-field prediction. We
then study the evolution toward the steady state. If the symmetry is broken
in the thermodynamic limit we expect that, as we move towards 𝑆 → ∞,
the timescale, 𝜏sb, over which the symmetry is restored should diverge. A
prototypical example for such a symmetry-breaking effect is a conventional
laser, where the phase diffusion rate decreases inversely with the mean photon
number [97].
In Fig. 4.7(c) we perform such a numerical experiment on our model in the

PPT phase, with Γl = Γ𝑔 = 𝑔, ℎ = 0.5𝑔 and 𝑁 = 50 unit cells. According to
mean-field theory this expectation value stays close to its initial value for the
whole duration of the simulation. However, the stochastic simulation, which
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Figure 4.8: Plot of the eigenvalues 𝜇 of the least stable fluctuation modes
for a chain of 𝑁 = 4 unit cells and ℎ = 0.5𝑔, which is initialized in all spin
configurations with ⟨𝑆z

𝑎,𝑏⟩ = ±𝑆. A few configurations and the corresponding
eigenvalues are shown as examples.

includes quantum fluctuations from the dissipative processes, shows that this
average rapidly approaches zero after a time 𝜏sb ∼ 10𝑔−1, which is also on the
order of Γ−1

𝑔,l . Importantly, this time does not considerably increase (by less
than a factor of 2), when the spin quantum number is increased by a factor
of 16. This gives further evidence to the lack of symmetry breaking in the
PPT phase.
We note at this point that the presence of a continuous phase transition

without the breaking of the corresponding 𝑍2 symmetry has been previously
pointed out for a single-site collective spin model [28], but interpreted as a
limiting case of a first-order transition. Since this model also exhibits an
infinite-temperature phase, our current analysis suggests an alternative in-
terpretation, namely a purely fluctuation-induced suppression of symmetry
breaking.

4.4 PT-symmetry breaking in quantum

many-body systems

In the case of the dimer we have already pointed out that the master equation
Eq. (4.2) posses an additional PT-symmetry when Γl = Γ𝑔 (for detailed
discussion of PT-symmetry in open quantum system see Chapter 5) and that
the PT and AM phases represent the corresponding symmetric and symmetry-
broken phases, respectively.
Compared to the dimer, an important observation is the appearance of

the intermediate PPT phase in the lattice model, which exists over a large
parameter range away from the symmetry line. For these parameters the
analogue non-Hermitian oscillator model [173] has both real and imaginary
eigenvalues. Therefore, in this phase the system shares many characteristics
of the PT phase, but the symmetry is not fully established.
To further illustrate this behavior, in Fig. 4.8 we show the results of a
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numerical quench experiment. Here, a chain with 𝑁 = 4 unit cells and
ℎ = 0.5𝑔 is initialized in all 28 possible spin configurations with ⟨𝑆z

𝑎,𝑏⟩ = ±𝑆.
The successive transient dynamics is characterized by the set of 28 complex
eigenvalues {𝜇𝜎,i} of the linearized fluctuation matrix. For each configuration
labeled by 𝜎, the eigenvalue with the largest real part, representing the least
stable fluctuation mode, is shown. For example, in the ordered AM phase,
in Fig. 4.8(c), there is only a single point with Re(𝜇) < 0. This implies that
there is only one configuration where all the fluctuations are damped. All
other configurations are rapidly destabilized due to fluctuations that are am-
plified with rates Re(𝜇) ∼ Γ𝑔,l. In the PPT phase, Fig. 4.8(b), all configura-
tions are unstable, but for a considerable fraction of possible spin orientations
the maximal growth rate is very slow, Re(𝜇) ≪ Γ𝑔,l. Thus, the system transi-
tions slowly between many metastable orientations, which is reflected in the
significant fluctuations observed in this phase. Another qualitative change is
then found in the PT phase, Γl = Γ𝑔 < (𝑔 − ℎ), shown in Fig. 4.8(a). Here
there are several configurations, where the fluctuations exhibit a purely os-
cillatory behavior, i.e., Re(𝜇) = 0, Im(𝜇) ∼ 𝑔, even in the presence of strong
local dissipation. These configurations are neither stable nor unstable, which
explains the peculiar properties of this phase. Overall, we see that the pat-
tern of growth rates of spin fluctuations provides a characteristic fingerprint
for the different non-equilibrium phases, which can also be used to classify
stationary phases of larger lattices, where the exact Liouvillian spectrum is
no longer accessible.
Note, that by redefining the orientation of all spins on sublattice A, i.e.,

𝑆z
𝑎 → −𝑆z

𝑎, 𝑆
+
𝑎 → 𝑆−

𝑎 , our model can be mapped onto an XY model with
only decay. This model has been studied, for example, in Ref. [16] using
mean-field theory, where a so-called staggered XY phase with broken 𝑈(1)
symmetry has been predicted. Our current analysis shows that this phase is
more accurately described by a PPT phase without symmetry breaking. This
basic example already shows that the effects predicted here are relevant for
a much broader class of non-equilibrium models, where such PT-symmetry
breaking effects and phase transitions outside the usual framework must be
taken into account.

4.5 Implementation

While the above analysis is primarily targeted at a conceptual understanding
of non-equilibrium phase transition phenomena, we emphasize that the model
in Eq. (4.2) can be implemented using existing experimental techniques. The
basic idea is illustrated in Fig. 4.9(a) for a system of cold atoms coupled to
multiple optical cavity modes. In this setting, each ensemble contains 𝑁𝑆

atoms and is used to encode a collective spin 𝑆 = 𝑁𝑆/2 degree of freedom
using two stable atomic ground states |0⟩ and |1⟩, i.e., 𝑆+ =

∑︀𝑁𝑆

i=1 |1⟩i⟨0| and
𝑆z =

∑︀𝑁𝑆

i=1(|1⟩i⟨1| − |0⟩i⟨0|)/2. These ground states are coupled via Raman
processes involving the excited states |𝑒⟩ and |𝑓⟩ to three different cavity
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Figure 4.9: (a) Sketch of a setup for implementing a dissipative spin dimer
with gain and loss. The collective cavity mode 𝑐 is used to mediate coherent
interactions between two spin ensembles. The other two cavity modes, 𝑐𝑎
and 𝑐𝑏, are used to implement collective dissipation channels. (b) Energy level
diagram and illustration of the relevant Raman-coupling schemes for realizing
effective couplings between the cavity modes and collective spin excitations
in the atomic ground states. (c) Generalization to a lattice of tunnel-coupled
cavities for implementing the full 1D model considered in this work. See text
for more details.

modes with annihilation operators 𝑐, 𝑐𝑎 and 𝑐𝑏. The appropriate Raman
processes are selected by the choice of detuning and polarization of classical
driving fields and are proportional to the atom-cavity coupling strength 𝑔𝑐.
For simplicity, we assume this coupling to be the same for all modes. For
the transitions and detunings indicated in Fig. 4.9(b), the resulting effective
Hamiltonian for the ground-state spins and the cavity mode is given by [32]

𝐻eff ≃ ℏ𝛿𝑐†𝑐− ℏ𝐺𝑐

[︀(︀
𝑆−
𝑎 + 𝑆−

𝑏

)︀
𝑐† + 𝑐

(︀
𝑆+
𝑎 + 𝑆+

𝑏

)︀]︀
+ℏ𝐺

(︀
𝑆+
𝑎 𝑐

†
𝑎 + 𝑐𝑎𝑆

−
𝑎

)︀
+ ℏ𝐺

(︁
𝑆−
𝑏 𝑐

†
𝑏 + 𝑐𝑏𝑆

+
𝑏

)︁
,

(4.15)

where we have defined the Raman couplings 𝐺 = 𝑔𝑐Ω1/∆ and 𝐺𝑐 = 𝑔𝑐Ω2/∆
and Ω1,2 are the Rabi frequencies of the classical driving fields.
By also including the decay of the cavity modes with rates 𝛾𝑐 (for mode 𝑐)

and 𝛾 (for modes 𝑐𝑎 and 𝑐𝑏), the dynamics of the full system density operator
𝜌tot is described by the master equation

𝜌̇tot = − i

ℏ
[𝐻eff , 𝜌tot] +

1

2
(𝛾𝑐D[𝑐] + 𝛾D[𝑐𝑎] + 𝛾𝐿D[𝑐𝑏]) 𝜌tot. (4.16)

To proceed we now assume that (i) |𝛿| ≫ 𝛾𝑐, 𝐺𝑐 and (ii) 𝛾 ≫ 𝐺. Under these
conditions, the coupling to the collective mode 𝑐 mediates coherent spin-flip
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interactions, while the resonant coupling to the lossy local modes generates
a collective dissipation mechanism. Therefore, after adiabatically eliminating
the fast dynamics of the cavity modes we obtain a reduced master equation
for the state of the spins, 𝜌 = Tr𝑐,𝑐𝑎,𝑐𝑏 [𝜌tot]. By neglecting common Stark-shift
terms for both ensembles, we obtain

𝜌̇ ≃ −i[𝑔
(︀
𝑆+
𝑎 𝑆

−
𝑏 + 𝑆−

𝑎 𝑆
+
𝑏

)︀
, 𝜌] + Γ𝑔D[𝑆+

𝑎 ] + ΓlD[𝑆−
𝑏 ], (4.17)

where 𝑔 = −𝐺2
𝑐/𝛿 and Γ𝑔,l = 2𝐺2/𝛾. This is equivalent to the master equa-

tion (4.2) restricted to a single unit cell. To obtain the full 1D chain, the
same schemes can be implemented in an array of coupled cavities, as de-
picted in Fig. 4.9(c), where the ‘coherent’ mode 𝑐 from above is replaced by
a whole band of the extended modes 𝑐k of the coupled cavity array. As long
as the photon-tunneling rates 𝐽1 and 𝐽2 are small compared to the detuning
𝛿, we obtain approximately nearest-neighbor couplings with 𝑔 ≃ −𝐽1𝐺

2
𝑐/𝛿

2,
ℎ = −𝐽2𝐺

2
𝑐/𝛿

2.
The described setting can be implemented, for example, using cold atoms in

multi-mode optical cavities, similar to the experimental setups in Refs. [174–
176]. To realize the full lattice model, one can extend the same techniques
to arrays of photonic crystal cavities, as suggested for example in Refs. [177,
178]. The coupling of atoms to such nanophotonic structures is currently
pursued in several experiments [179, 180]. In addition, equivalent Raman
coupling schemes can be realized with ensembles of solid-state spin qubits,
which are coupled magnetically to arrays of microwave resonators [181]. This
also provides a promising approach for scalable implementations of large-𝑆
dissipative spin chains.

4.6 Conclusion

In this chapter, we studied the non-equilibrium properties of a spin chain
in the presence of alternating gain and loss. We found that this system ex-
periences phase transitions which are different from what we expected from
equilibrium phase transitions. We identified a discontinuous phase transition
without phase coexistence of the two distinct phases. Moreover, when simu-
lating large lattices of spins we found long-range correlations at the critical
point, however this phase transition was not accompanied by any symmetry
breaking in the system. This shows that dissipative phase transitions can
be very different from the usual framework of equilibrium systems and it
still requires more investigations of critical dissipative systems to get a more
complete framework of dissipative phase transitions.





5 PT-symmetry breaking in

open quantum systems ❹.

"Ich verdiene soviel, ich kann mir deine Dissertation kaufen."

- Frei nach Marko Arnautovic

One of the fundamental axioms in quantum mechanics is that the Hamiltonian
operators corresponding to the total energy of a system are Hermitian 𝐻 =
𝐻†. This conventional Hermiticity condition is sufficient to ensure that the
Hamiltonian 𝐻 has a real spectrum. However, Bender and Boettcher found a
new class of non-Hermitian Hamiltonians with a purely real energy spectrum
and attributed this fact to the underlying combined PT (parity and time
reversal) symmetry [47]. This opened a whole new field of PT-symmetric
quantum theory, where the condition that the Hamiltonian is Hermitian is
replaced by the weaker condition that it possesses invariance under space-time
inversion (PT-symmetry) [48]. Although these are primarily mathematical
considerations, there exist many classical systems with balanced gain and
loss, whose dynamics can be mapped onto such PT-symmetric Hamiltonians
[47, 49–52].
A classical PT-symmetric system in the simplest configuration consists of

two coupled harmonic oscillators, where one experiences gain while the other
one experiences an equal amount of loss. For such a gain-loss system the
classical dynamics in rotating frame with respect to the oscillators frequency
𝜔 can be described by (︂

𝛼̇

𝛽̇

)︂
=

(︂
Γ −i𝑔

−i𝑔 −Γ

)︂(︂
𝛼
𝛽

)︂
, (5.1)

where 𝛼 and 𝛽 are the classical amplitudes of the two systems, 𝑔 the coupling
strength between the two systems and Γ determines the strength of gain and
loss. By comparing this equation with the Schrödinger equation 𝜓̇ = −i𝐻𝜓
for 𝜓 = (𝛼, 𝛽)𝑇 one arrives at

𝐻 =

(︂
iΓ 𝑔
𝑔 −iΓ

)︂
. (5.2)

This non-Hermitian Hamiltonian is PT-symmetric. By applying time-reversal

❹ This chapter is based on the article: J. Huber, P. Kirton, S. Rotter, and P. Rabl,
Emergence of PT-symmetry breaking in open quantum systems, SciPost Phys. 9, 052
(2020)
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T (i → −i) and parity transformation P (𝛼 ⇔ 𝛽), the equations do not
change.

The eigenvalues and (unnormalized) eigenvectors of the Hamiltonian are

𝜆1,2 = ±
√︀
𝑔2 − Γ2, (5.3)

and

𝜓1 =

(︃
𝑒i

𝜃
2

𝑒−i 𝜃
2

)︃
, 𝜓2 =

(︃
i𝑒−i 𝜃

2

−i𝑒i
𝜃
2

)︃
, (5.4)

respectively, where sin(𝜃) = Γ/𝑔.
For Γ < 𝑔 both eigenvalues 𝜆1,2 are real. In this regime, the eigenvectors

are eigenstates of the symmetry operator PT 𝜓1,2 = 𝜓1,2. For Γ > 𝑔, both
eigenvalues become imaginary and correspond to a gain and a loss eigenmode.
In this regime PT 𝜓1,2 ̸= 𝜓1,2, i.e. the eigenvectors no longer have the same
symmetry as the Hamiltonian. The PT-symmetry breaks at Γ = 𝑔.
Over the past years, this effect has attracted considerable attention and

has been demonstrated in various optical [42–44], electrical [45] and mechani-
cal [46] settings. In all these experimental works demonstrating PT-symmetry
breaking the two modes are in a highly classical state and the dynamics can
be described by classical physics. In this chapter, we will go beyond the
classical picture and address an interesting and still open question: how is
PT-symmetry defined in an open quantum systems and is there PT-symmetry
breaking in the quantum regime?
Preliminary work in this direction was already done by Kepesidis et al. [55]

by studying PT-symmetry breaking in the steady state of two coupled me-
chanical resonators with balanced gain and loss in the presence of thermal
noise. Surprisingly, the breaking of the PT-symmetry can still be observed in
this noisy environment and there is an unconventional transition from a high-
noise symmetric thermal state to a low-amplitude lasing state with broken
symmetry and strongly reduced fluctuations. However, this result was still
based on a semi-classical approach and many important questions are still
left open. For example, what happens in a full quantum description of this
problem and are there any non-classical signatures or correlations associated
with this symmetry-breaking transition?
In the last two chapters we have already studied open quantum systems

with gain and loss. We found that in the limit of balanced gain and loss
these models show different phases depending of the ratio between the dissi-
pation strength and the coupling strength. However, it remains still unclear
under which conditions can an open quantum system be considered as PT-
symmetric and is there an analogues breaking of the symmetry associated by
a change from a purely oscillatory behavior to a damped regime as in the clas-
sical case? Moreover, are there any quantum features such as entanglement
seen in such systems?
In this chapter, we introduce for the first time a symmetry transforma-

tion for Liouville operators, which extends the conventional definition of PT
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symmetry to arbitrary open quantum systems. We illustrate this on several
examples and show the universality of this transition. Moreover, we investi-
gate the dynamics as well as the spectrum of such Liouvillians.

5.1 PT-symmetric quantum systems

In order to find a definition of PT-symmetry for open quantum system, we
consider a generic bipartite quantum system with a total Hamiltonian 𝐻.
The two subsystems, A and B, have the same Hilbert space dimension, 𝑑,
and they are subject to dissipation described by the local jump operators 𝑐𝐴
and 𝑐𝐵, respectively. The master equation for the system density operator 𝜌
can then be written as (ℏ = 1) [7]

𝜌̇ =− i[𝐻, 𝜌] +D[𝑐𝐴]𝜌+D[𝑐𝐵]𝜌

=− i
(︁
𝐻eff𝜌− 𝜌𝐻†

eff

)︁
+ 2𝑐𝐴𝜌𝑐

†
𝐴 + 2𝑐𝐵𝜌𝑐

†
𝐵 ≡ ℒ𝜌. (5.5)

Here D[𝑐]𝜌 = 2𝑐𝜌𝑐† − 𝑐†𝑐𝜌 − 𝜌𝑐†𝑐 and ℒ ≡ ℒ[𝐻; 𝑐𝐴, 𝑐𝐵] is the Liouvillian
superoperator, which is specified, according to the first line in Eq. (5.5), in
terms of the Hermitian Hamiltonian 𝐻 and the two local jump operators
𝑐𝐴 and 𝑐𝐵. As already shown in Chapter 2.1 the master equation can be
rewritten in an evolution of a quantum state under the action of the effective
non-Hermitian Hamiltonian

𝐻eff = 𝐻 − i𝑐†𝐴𝑐𝐴 − i𝑐†𝐵𝑐𝐵. (5.6)

This term does not conserve the norm of the state and thus the recycling
terms ∼ 2𝑐𝜌𝑐† must be added to obtain a trace-preserving dynamics.
Given the decomposition of a master equation in Eq. (5.5), it is tempt-

ing to define PT-symmetric quantum systems in analogy to the classical
case as explained at the beginning of this chapter, namely as open quan-
tum systems where (PT )𝐻eff(PT )−1 = 𝐻eff . Here P is the parity operator
with P(𝐴 ⊗ 𝐵)P−1 = 𝐵 ⊗ 𝐴 and T iT −1 = −i. However, 𝐻eff has only
negative imaginary parts because the norm of a state evolving under 𝐻eff

always decreases and this symmetry relation can only be satisfied in closed
systems. The same is also true for the eigenvalues of the full Liouville op-
erator ℒ whose real part must always be negative or zero. Therefore, while
according to Eq. (5.6) there is a natural way to introduce non-Hermitian
Hamiltonians in open quantum systems and even probe them via conditional
measurements [182–186], there are no PT-symmetric (super-)operators in the
conventional sense. To overcome this problem, one could be less strict and
only demand that the PT symmetry criterion applies to the resulting equa-
tions of motion for the expectation values of system operators. However, this
identification is restricted to linear bosonic systems, where the quantum and
classical dynamics of mean values are the same. For fermions, spins or other
finite-dimensional quantum systems the same method is not applicable, as
illustrated by a simple example in Appendix C.1. We conclude that none of
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approaches used in the literature so far offers meaningful way to define PT
symmetry for generic quantum systems.
To provide such a definition, it is important to keep in mind that the

relevant physical effect of the T -operator is to exchange loss and gain and
not to implement a time-reversal transformation. While for classical systems
both operations are equivalent and usually no distinction is made, this is
no longer true for quantum systems. In the simplest example of a quantum
harmonic oscillator the effect of loss with rate Γ is modeled by a jump operator
𝑐 =

√
Γ𝑎, where 𝑎 is the annihilation operator. In turn, the effect of gain

with the same rate can be described by modifying the jump operator to be
𝑐 =

√
Γ𝑎†. Therefore, in this case we find that the transformation between

loss and gain is implemented in the master equation formalism by replacing
the jump operator by its adjoint, 𝑐 → 𝑐†, and not by replacing i with −i in
any part of the master equation.
Guided by this explicit example, we introduce the following anti-unitary

transformation for operators 𝑂,

"❚(𝑂) = P𝑂†P−1, (5.7)

and define an open quantum system to be PT-symmetric, if the corresponding
Liouvillian satisfies

ℒ["❚(𝐻);"❚(𝑐𝐴),"❚(𝑐𝐵)] = ℒ[𝐻; 𝑐𝐴, 𝑐𝐵]. (5.8)

This condition implies that the Hamiltonian 𝐻 is parity-symmetric and that
the local jump operators are of the form

𝑐𝐴 =
√
Γ𝑂 ⊗ ✶, 𝑐𝐵 =

√
Γ✶⊗𝑂†, (5.9)

where 𝑂 can be an arbitrary dimensionless operator.

Relation to other symmetries

Before we proceed with a discussion of the physical implications of Eq. (5.8),
let us briefly comment on some related symmetries and classifications of open
quantum systems. First of all, we remark that the definition given in Eq. (5.8)
differs from the PT-symmetric Liouville operators introduced originally in
Ref. [57] and analyzed for different spin models in Refs. [187–189]. In those
systems, the eigenvalues of the Liouvillian exhibit a particular symmetry in
terms of a cross-shaped pattern in the complex plane, which is broken at
larger values of Γ. However, this property is rather specific and while the
systems studied in Refs. [57, 187–189] satisfy Eq. (5.8) with a redefinition of
P , none of the examples discussed below exhibits the symmetry considered
in these references when 𝑑 > 2.
Moreover, there has been considerable interest in the classifications of the

symmetries of non-Hermitian Hamiltonians [190–193] and Liouvillian [194,
195] lattice models for dissipative fermions. Connected to the classifications
of non-Hermitian Hamiltonians, we emphasize that according to Eq. (5.7) the
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"❚ map is applied to the Hermitian Hamiltonian 𝐻 and the jump operators
separately, i.e., the transformed Liouvillian is constructed as

ℒ["❚(𝐻);"❚(𝑐𝐴),"❚(𝑐𝐵)] =− i["❚(𝐻), 𝜌]

+D["❚(𝑐𝐴)]𝜌+D["❚(𝑐𝐵)]𝜌,
(5.10)

which ensures that the whole transformation remains physically meaningful.
This would not be the case when applying the same map to the non-Hermitian
Hamiltonian 𝐻eff , as defined in Eq. (5.6). As a result, the Hermitian adjoint
operation 𝑂 → 𝑂† in Eq. (5.7) is not related to a state transformation [194–
196]. As the transformation is applied to the full operators 𝐻, 𝑐𝐴 and 𝑐𝐵,
rather than to individual operators, the symmetry introduced here is in gen-
eral different from the well-known particle-hole symmetry. For example, con-
sider a jump operator 𝑐 = 𝑎†𝑎, where 𝑎 is a fermionic annihilation operator.
Then, leaving parity aside, "❚(𝑎†𝑎) = 𝑎†𝑎 ̸= 𝑎𝑎†. While basic "❚-symmetric
systems with linear jump operators, i.e., 𝑐𝐴 = 𝑎† and 𝑐𝐵 = 𝑎, may exhibit a
particle-hole symmetry as well (see, e.g., the example in Appendix C.1) this
symmetry is not, per se, relevant for the physics discussed below.

5.2 Phenomenology

As a first step, let us illustrate the physical implications of Eq. (5.8) in terms
of two simple examples as illustrated in Fig. 5.1: (i) Two coupled spin 𝑆 =
(𝑑 − 1)/2 systems with 𝑂 = 𝑆+, where 𝑆+ = 𝑆x + i𝑆y is the spin raising
operator, and (ii) two coupled harmonic oscillators with 𝑂 = 𝑎†. In the second
example we introduce a finite cutoff occupation number, i.e., 𝑎†|n = 𝑑−1⟩ = 0.
This cutoff mimics the effect of saturation in realistic systems [88] and allows
us to vary the Hilbert space dimension. In both examples we consider a
Hamiltonian of the form

𝐻 = 𝑔(𝑂𝐴𝑂
†
𝐵 +𝑂†

𝐴𝑂𝐵), (5.11)

where 𝑂𝐴 = 𝑂⊗✶ and 𝑂𝐵 = ✶⊗𝑂. This Hamiltonian describes the coherent
exchange of energy between the two subsystems with a strength 𝑔. The
resulting Liouvillian, ℒ[𝐻;

√
Γ𝑂𝐴,

√
Γ𝑂†

𝐵], then satisfies Eq. (5.8).
We calculate the steady state, 𝜌0, satisfying ℒ𝜌0 = 0, for different ratios

Γ/𝑔 and show in Fig. 5.1 the symmetry parameter [55]

∆ =
|⟨𝑂†

𝐴𝑂𝐴 −𝑂†
𝐵𝑂𝐵⟩|

⟨𝑂†
𝐴𝑂𝐴 +𝑂†

𝐵𝑂𝐵⟩
≤ 1. (5.12)

This is an experimentally observable quantity, which only requires the mea-
surement of local operators, and provides a measure for the symmetry of the
system, i.e., ∆ = 0 for a parity-symmetric density operator, P𝜌P−1 = 𝜌.
For the current examples, ∆ represents the normalized population imbalance
between the two subsystems. For small dimensions 𝑑, this parameter changes
gradually from 0 to 1 with increasing Γ. This smooth variation is expected



64 5.2 Phenomenology

(a)

2
0

1 S=4
S=16
S=

(b)

0
0

1 d=5
d=15
d=30

A B

d-levels

(c) (d)

1 20 1

Figure 5.1: Two basic examples of PT-symmetric quantum systems with a
finite Hilbert space dimension 𝑑: (a) two coupled spin 𝑆 = (𝑑 − 1)/2 sys-
tems and (b) two coupled harmonic oscillators with a finite number of energy
levels. In (c) and (d) we plot the corresponding dependence of the symme-
try parameter ∆ defined in Eq. (5.12) on the ratio Γ/𝑔. In (c) the line for
𝑆 = ∞ is obtained from a Holstein-Primakoff approximation [see discussion
of Eq. (5.24)].

since observables of finite dimensional quantum systems cannot exhibit any
non-analytic behavior. However, as the system size increases, ∆ vanishes for
Γ/𝑔 < 1 in the limit 𝑑 → ∞, while it retains a finite value for Γ/𝑔 > 1. In both
examples, the critical ratio is Γ/𝑔 = 1, which corresponds to the dynamical
PT-symmetry breaking point of an equivalent linear oscillator system with
gain and loss [51, 52]. We thus conclude that PT-symmetry breaking, i.e., a
non-analytic transition between two steady states with different symmetries,
exists even for non-harmonic and finite dimensional quantum systems, but
only as an emergent phenomenon in the semiclassical limit.
To obtain better insights into the nature of the two phases, we plot in

Fig. 5.2(a) the purity, 𝑃 = Tr{𝜌20}, for the steady state of the spin system.
This quantity again exhibits a sharp transition around Γ = 𝑔 and shows that
the symmetric and symmetry-broken phases are characterized by a highly
mixed and an almost pure steady state, respectively. More precisely, the
scaling 𝑃 (Γ → 0) ≃ 𝑑−2 implies that in the symmetric phase the steady
state is close to the maximally mixed state, 𝜌0(Γ ≪ 𝑔) ≃ ✶/𝑑2. This indi-
cates that for Γ < 𝑔 the gain and loss processes cancel out on average while
quantum fluctuations still occur with rate Γ and completely randomize the
system’s long-time dynamics [55, 88]. In contrast, for Γ > 𝑔, the incoher-
ent processes dominate and pump the spins into the polarised pure state,
𝜌0(Γ ≫ 𝑔) ≃ |𝜓0⟩⟨𝜓0|, which satisfies 𝑂𝐴|𝜓0⟩ = 𝑂†

𝐵|𝜓0⟩ = 0. Closer to the
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transition point, the coherent coupling creates excitations ∼ 𝑂†
𝐴𝑂𝐵|𝜓0⟩ on

top of this state, which are strongly correlated. As shown in Fig. 5.2(b), this
results in a characteristic peak in the entanglement negativity N around the
transition point, which is a measure of non-classical correlations between the
two subsystems [164, 165]. These correlations vanish again in the symmetric
phase due to fluctuations. Consistent with similar features observed in sat-
urable oscillator systems [88], this peak in the entanglement shows that even
for 𝑑 ≫ 1 the PT-symmetry breaking transition retains genuine quantum
mechanical properties.

5.3 Existence of a fully symmetric steady state

We will now show that the properties discussed above for specific examples are
indeed a general consequence of the symmetry relation in Eq. (5.8). Firstly,
we demonstrate that, for any Liouvillian that satisfies this condition and
where the spectrum of 𝐻 is non-degenerate, the fully mixed state,

𝜌0(Γ → 0+) =
✶

𝑑2
, (5.13)

is a stationary state of ℒ in the limit of a vanishingly small, but finite Γ.
To do so we decompose ℒ = ℒ𝐻 + ℒΓ, where ℒ𝐻𝜌 = −i[𝐻, 𝜌] describes the
coherent evolution and ℒΓ𝜌 =

∑︀
𝜂=𝐴,𝐵(2𝑐𝜂𝜌𝑐

†
𝜂 − 𝑐†𝜂𝑐𝜂𝜌− 𝜌𝑐†𝜂𝑐𝜂). As a starting

point we write the density operator as

𝜌 =
∑︁
n,m

𝜌n,m|𝐸n⟩⟨𝐸m|, (5.14)

where |𝐸n⟩ are the energy eigenstates of 𝐻, i.e. 𝐻|𝐸n⟩ = 𝐸n|𝐸n⟩. From
the PT-criterion in Eq. (5.8), we know that [𝐻,P ] = 0, and hence we may
simultaneously diagonalise the parity operator P|𝐸n⟩ = 𝜁n|𝐸n⟩, where |𝜁n|2 =
1 without loss of generality.
For Γ = 0 the fully mixed state, 𝜌 = ✶/𝑑2, is a stationary solution of the

master equation 𝜌̇ = ℒ𝐻𝜌 = −i[𝐻, 𝜌], but this is also true for any other
diagonal state. Therefore, we make the ansatz 𝜌n,m = 𝛿n,m/𝑑

2 + 𝛿𝜌n,m and
evaluate the evolution of 𝛿𝜌n,m up to first order in Γ [noting that 𝑐𝐴,𝐵 ∼
𝑂(

√
Γ)],

𝛿𝜌̇n,m = − i

ℏ
(𝐸n − 𝐸m)𝜌n,m +

2

𝑑2
⟨𝐸n|[𝑐𝐴, 𝑐†𝐴] + [𝑐𝐵, 𝑐

†
𝐵]|𝐸m⟩. (5.15)

We first assume that 𝐸n ̸= 𝐸m. In this case the elements 𝜌n,m represent
coherences between non-degenerate eigenstates and we obtain

𝛿𝜌n,m(t) ≃ −i
2ℏ

𝑑2(𝐸n − 𝐸m)
⟨𝐸n|[𝑐𝐴, 𝑐†𝐴] + [𝑐𝐵, 𝑐

†
𝐵]|𝐸m⟩ ×

(︀
1− 𝑒−i(𝐸n−𝐸m)t/ℏ)︀ .

(5.16)
Therefore, to lowest order in Γ all these off-diagonal elements of the density
matrix remain bounded and |𝛿𝜌n,m| → 0 for Γ → 0.
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Figure 5.2: (a) Plot of the purity 𝑃 of the steady state of a PT-symmetric spin
dimer [see Fig. 5.1(a)] as a function of the dissipation rate and for different
values of 𝑆. The inset shows that the purity satisfies 𝑃 ≃ 1/𝑑2 for Γ ≪ 𝑔.
(b) Plot of the entanglement negativity N [164, 165] for the same model. In
(c) and (d) the same quantities are plotted for PT-symmetric systems with
random jump operators, as described in Section 5.4.1, and in (e) and (f) for
the generalized spin model defined in Section 5.5.
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For all other matrix elements with 𝐸n = 𝐸m the coherent evolution vanishes
and

𝛿𝜌̇n,m =
2

𝑑2
⟨𝐸n|[𝑐𝐴, 𝑐†𝐴] + [𝑐𝐵, 𝑐

†
𝐵]|𝐸m⟩. (5.17)

This results in a linear growth in time, unless the matrix element on the
right-hand side is zero. We now make use of the relation

P𝑐𝐵P−1 = 𝑐†𝐴, (5.18)

which follows from the PT-symmetry relation for the Liouville operator.
Based on this transformation we obtain

⟨𝐸n|[𝑐𝐵, 𝑐†𝐵]|𝐸m⟩ = ⟨𝐸n|P−1P [𝑐𝐵, 𝑐
†
𝐵]P−1P|𝐸m⟩

= ⟨𝐸n|P−1[𝑐†𝐴, 𝑐𝐴]P|𝐸m⟩
=− 𝜁*n𝜁m⟨𝐸n|[𝑐𝐴, 𝑐†𝐴]|𝐸m⟩,

(5.19)

and the evolution equation from above can be written as

𝛿𝜌̇n,m =
2

𝑑2
⟨𝐸n|[𝑐𝐴, 𝑐†𝐴]|𝐸m⟩ (1− 𝜁*n𝜁m) . (5.20)

In the case of a Hamiltonian 𝐻 with a non-degenerate spectrum, Eq. (5.20)
only applies to the populations pn = 𝜌n,n, in which case |𝜁n|2 = 1 and the
right hand side vanishes.
This result shows that for PT-symmetric quantum systems the fully mixed

state is stationary in the presence of a small amount of dissipation, even when
each individual jump operator 𝑐𝐴,𝐵 would drive the system into a polarized
state.
A bit more care must be taken for Hamiltonians with degeneracies imposed

by extra symmetries beyond that generated by P . Even though the popula-
tions in a given basis still remain fixed, the build-up of coherences between
degenerate levels leads to a deviation from the fully mixed state. If the Hamil-
tonian has a symmetry, S, such that [𝐻,S] = 0, then the states generated
by applying S to |𝐸n⟩ are degenerate. From Eq. (5.20) we see that this leads
to a non-identity steady state when two states |𝐸n⟩ and |𝐸m⟩ with the same
energy have a different parity, 𝜁n ̸= 𝜁m. However, if [P ,S] = 0 then it is
straightforward to see that 𝜁n = 𝜁m. Therefore, for the existence of a fully
mixed symmetric phase it is in general not enough that [𝐻,P ] = 0. In addi-
tion, we require that all other non-trivial symmetries of the Hamiltonian also
commute with the parity operator, at least within each degenerate subspace.
A simple example where such non-trivial symmetries play a role is the spin
model described by the Hamiltonian

𝐻 = 𝑔(𝑆+
𝐴𝑆

+
𝐵 + 𝑆−

𝐴𝑆
−
𝐵 ) (5.21)

and the PT-symmetric master equation

𝜌̇ = −i[𝐻, 𝜌] + ΓD[𝑆−
𝐴 ]𝜌+ ΓD[𝑆+

𝐵 ]𝜌. (5.22)

This model has a symmetry generated by S = 𝑆z
𝐴 − 𝑆z

𝐵 which does not
commute with P and indeed one can show that the steady state for this
model has spin-𝐴 pointing down and spin-𝐵 pointing up independent of the
value of Γ/𝑔.
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5.4 Symmetry-breaking transition

While the existence of a fully symmetric steady state follows directly from
Eq. (5.8), there are many trivial cases where this is also the only stationary
state, for example, when 𝑂 is Hermitian. Therefore, we are interested in
systems where there is a competing asymmetric phase in the limit Γ → ∞.
To ensure that such a phase exists we now restrict ourselves to a Hamiltonian
as given in Eq. (5.11) and a non-Hermitian jump operator of rank 𝑑− 1 with
Tr{𝑂} = 0. This implies that there are dark states |𝐷⟩ and |𝐷*⟩, which
satisfy 𝑂|𝐷⟩ = 0 and 𝑂†|𝐷*⟩ = 0. Under these assumptions we obtain the
symmetry-broken phase

𝜌0(Γ → ∞) = |𝐷⟩⟨𝐷| ⊗ |𝐷*⟩⟨𝐷*|, (5.23)

which is fully asymmetric, ∆ = 1, and has maximal purity, 𝑃 = 1. Note,
however, that for observing symmetry-breaking effects it is not essential that
𝜌0(Γ → ∞) is a pure state and, later in this manuscript, we discuss examples
where the symmetry-broken state is mixed.
Given the two distinct limiting phases, the remaining question is, if there

is a sharp phase transition between them at a critical intermediate value Γ𝑐.
For the spin system discussed above this question can be rigorously answered
in the limit 𝑆 ≫ 1 by examining the stability of linear fluctuations on top
of the fully polarized state. This can be done using a Holstein-Primakoff ap-
proximation [197], where the spin operators are replaced by a pair of bosonic
operators, 𝑆−

𝐴 ≃ √
2𝑆 𝑎†, 𝑆+

𝐴 ≃ √
2𝑆 𝑎, 𝑆−

𝐵 ≃ √
2𝑆 𝑏 and 𝑆+

𝐵 ≃ √
2𝑆 𝑏†, where

[𝑎, 𝑎†] = [𝑏, 𝑏†] = 1. This approximate transformation brings the master equa-
tion into a quadratic form,

𝜌̇ = −i[𝐻lin, 𝜌] + ΓD[𝑎]𝜌+ ΓD[𝑏]𝜌, (5.24)

with Hamiltonian 𝐻lin = 𝑔(𝑎𝑏 + 𝑎†𝑏†). From the analytic solution of this
linearized model we find that the fluctuations ⟨𝑎†𝑎⟩ and ⟨𝑏†𝑏⟩ diverge at the
point Γ𝑐 = 𝑔. Explicitly, in terms of the original spin expectation values we
obtain

⟨𝑆z
𝐴/𝐵⟩0 = ±𝑆 ∓ 𝑔2

2(Γ2 − 𝑔2)
. (5.25)

Similarly, we can use well-known results for Gaussian states [198] and derive
analytic expressions for the purity and the entanglement negativity,

𝑃 = 1− 𝑔2

Γ2
, N =

𝑔

2Γ
. (5.26)

Detailed calculations can be found in Appendix B.1.s These predictions are
shown as the curves labeled by 𝑆 → ∞ in Fig. 5.2(a)–(b). Within this
Holstein-Primakoff approximation, the substantial amount of entanglement
with a maximum of N (Γ = Γ𝑐) = 1/2 at the transition point can be directly
understood from the form of 𝐻lin, which represents a two-mode squeezing
interaction.
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5.4.1 Random jump operators

In general, such an analytic treatment is not possible and, in many situations,
PT-symmetry breaking can occur as a smooth crossover, rather than a sharp
phase transition. Nevertheless, it turns out that the appearance of a sharp
transition in the limit of large 𝑑 does not require any specific fine tuning
of the dissipation mechanism. This point is illustrated in Fig. 5.2(c)–(d),
where we consider a set of PT-symmetric quantum systems with randomly
generated jump operators 𝑂. For each individual line in this plot a random
jump operator 𝑂 has been constructed.
We use following procedure to construct the random jump operators: We

first create a randommatrix𝑅 from the Gaussian orthogonal ensemble (GOE),
i.e., a symmetric matrix with real entries which follow a Gaussian distribu-
tion [199]. This matrix is then shifted by its lowest eigenvalue such that
𝑅′ = 𝑅 − 𝜆0✶ is positive semidefinite with a guaranteed zero eigenvalue.
This assures that dissipator has a single dark state, such that in the limit
Γ → ∞ the purity 𝑃 → 1. To obtain the jump operator 𝑂 we then perform
a Cholesky decomposition on the resulting matrix,

𝑅′ = 𝑂𝑂†, (5.27)

such that 𝑂 is a lower triangular matrix. Since the Cholesky decomposition
for positive semi-definite matrices is not unique, we implement this step by
first diagonalizing the random matrix 𝑅′,

𝑅′ = 𝑈𝐷𝑈 †, (5.28)

with 𝑈 a unitary matrix and 𝐷 = diag(0, 𝜆1, . . . , 𝜆𝑑−1), a diagonal matrix
where 𝜆n are non-zero eigenvalues. The diagonal matrix 𝐷 can be decom-
posed as 𝐷 = 𝐿𝐿†, where only the first superdiagonal of 𝐿† is non-zero with
(
√
𝜆1,

√
𝜆2, . . . ,

√︀
𝜆𝑑−1). As a result the jump operator is

𝑂 = 𝑈𝐿𝑈 †. (5.29)

This procedure of constructing a random jump operator ensures that most of
the resulting decay rates are O(1), due to the fact that the spacing between
the eigenvalues of 𝑅 will follow a Wigner surmise distribution 𝑃 (∆𝐸) ∼
∆𝐸 exp(−𝐴∆𝐸2) [199], meaning that there are very few almost degenerate
states. This operator 𝑂 is then used to obtain both the dissipative and
coherent terms as in Eqs. (5.9) and (5.11).
By using this procedure to obtain the random jump operators we observe

the characteristic transition between the fully mixed and pure states. More-
over, we find an asymmetric entanglement peak for each individual instance.
These features sharpen as the Hilbert space dimension is increased. There-
fore, this study demonstrates that sharp PT-symmetry breaking transitions
are not restricted to systems with a direct classical counterpart and are ex-
pected to occur in a wide range of systems that obey Eq. (5.8).
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Note that by enforcing 𝐿† to only have non-vanishing elements in the first
upper diagonal ensures that it is possible to observe the PT-symmetry break-
ing transition. This is not guaranteed in general. For example, by decom-
posing the diagonal matrix 𝐷 in Eq. (5.28) in terms of two diagonal matrices
𝐷 =

√
𝐷
√
𝐷, the resulting jump operator would be Hermitian and there

would be no phase transition since the trivial identity state is always a steady
state of such a model.

5.5 Generalizations

The symmetry defined in Eq. (5.8) and the proof of the fully mixed symmetric
phase presented in Section 5.3 can be generalized in a straightforward manner
to systems with multiple jump operators.

5.5.1 Phase transition between a positive and negative
temperature reservoir

For example, we see the same symmetry-breaking effect in a spin system,
with Hamiltonian as above, but considering two competing jump operators
for each site,

𝑐1,2𝐴 =

√︂
1± p

2
𝑆±
𝐴 , 𝑐1,2𝐵 =

√︂
1∓ p

2
𝑆±
𝐵 . (5.30)

This model, ℒ[𝐻; {√Γ𝑐1,2𝐴 }, {√Γ𝑐1,2𝐵 }], represents two coupled spins, where
one is coupled to a positive temperature reservoir with 𝑁th = 1−p

2p
and 𝜅 = Γp

while the other is coupled to an equivalent negative temperature reservoir.
While negative temperatures don’t exist in our every day life, the effective
temperature of an inverted spin system such as a laser medium can be neg-
ative. Crucially, this model still obeys the symmetry relation defined in
Eq. (5.8). In Fig. 5.2(e)–(f) we plot the purity and entanglement negativ-
ity for this model with p = 0.8. Although in this case the symmetry-broken
phase in the limit Γ → ∞ is mixed and the transition is shifted to Γ/𝑔 = 1/p,
all the signatures of PT-symmetry breaking described above are still clearly
visible. This is very surprising as there wouldn’t be any phase transition nor
entanglement between two coupled spins connected to different thermal reser-
voirs with positive temperature. However, in the case where one of the two
spins is coupled to a bath with negative temperature we can identify a phase
transition as well as entanglement. By extending the Holstein-Primakoff ap-
proximation calculation of Section 5.4, we find entanglement for p > 1/3 or
equivalently 𝑁th < 1.

5.5.2 Unitary symmetries

Even more relevant is the fact that all the arguments presented above still
apply to systems where parity is complemented by another unitary symme-
try, P → P𝑈 . For example, by choosing 𝑈 = 𝑒i𝜋(𝑆

x
𝐴+𝑆x

𝐵) and a Hamilto-
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nian 𝐻 = 𝑔(𝑆+
𝐴𝑆

+
𝐵 + 𝑆−

𝐴𝑆
−
𝐵 ), we obtain a PT-symmetric quantum system

ℒ[𝐻;
√
Γ𝑆−

𝐴 ,
√
Γ𝑆−

𝐵 ]. While this model contains only loss processes and the
occupation numbers ⟨𝑆+

𝐴𝑆
−
𝐴 ⟩ = ⟨𝑆+

𝐵𝑆
−
𝐵 ⟩ remain symmetric for all ratios of

Γ/𝑔, the Liouvillian respects the symmetry of Eq. (5.8) with a generalized
anti-unitary map

"❚(𝑂) = P𝑈𝑂†(𝑈P)−1. (5.31)

As a consequence one observes the same transition from a fully mixed to a low-
entropy state, as in the spin model discussed above. The symmetry relation
in Eq. (5.8) is thus a powerful tool to identify PT-symmetry breaking effects,
even in systems where our naive intuition fails.
We have introduced the symmetry relation, Eq. (5.8), for Liouville opera-

tors, which extends the notion of PT symmetry to bipartite open quantum
systems. This definition is consistent with previous examples of linear PT-
symmetric quantum systems for which the conventional definition of PT sym-
metry is recovered in the limit of large oscillation amplitudes. At the same
time the map, "❚, in Eq. (5.7) is completely general and can be used to
define PT symmetry in highly nonlinear systems or for dissipation processes
that have no direct classical counterpart.

5.6 Dynamics and exceptional points

In this chapter we have mainly focused on the steady state 𝜌0 of PT sym-
metric quantum systems, which is determined for all parameters by the zero
eigenvector of ℒ, i.e.ℒ𝜌0 = 0. In classical systems, PT-symmetry breaking
is usually discussed in terms of a transition from purely oscillatory to ex-
ponentially damped or amplified dynamics, which is associated with the ap-
pearance of exceptional points in the eigenspectrum of the dynamical matrix.
This has motivated similar studies of the appearance of exceptional points in
the spectra of Liouville operators [200, 201]. While symmetries as introduced
in Ref. [57] lead to remarkable patterns in the complex eigenvalues, which
can be broken above a certain dissipation strength, such transitions are not
necessarily associated with a qualitative change in the dynamics of physical
observables. However, the symmetry relations we introduce here, such dy-
namical changes can be well observed. This can be see in Fig. 5.3, where we
consider the example of two spin 𝑆 = 4 systems, as shown in Fig. 5.1(a). The
two plots show the full Liouville spectrum below and above the transition
point in Fig. 5.3(a)–(b) and the associated dynamics in panels (c)–(d). For
the two cases we don’t observe any significant differences in the overall eigen-
value structure. Still the evolution of the observables ⟨𝑆z

𝐴,𝐵⟩ undergoes the
classically expected change from an oscillatory to an overdamped behavior.
This final example confirms our previous conclusion, namely that PT-

symmetry breaking is an emergent phenomenon in the dynamics and sta-
tionary expectation values of macroscopic observables, which, in general, de-
pend little on individual eigenvalues of 𝐻eff or ℒ. Based on the symmetry
in Eq. (5.8), this effect can now be studied more systematically and used
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Figure 5.3: Plot of all complex eigenvalues 𝜆i of the Liouvillian ℒ for the
PT-symmetric spin system introduced in Fig. 5.1(a) with 𝑆 = 4. In (a)
the spectrum is shown below (Γ/𝑔 = 0.5) and in (b) above (Γ/𝑔 = 1.5) the
transition point. For the same parameters, (c) and (d) show the corresponding
time evolution of the observables ⟨𝑆z

𝐴,𝐵⟩(t), starting from the initial state
𝜌(t = 0) = | − 𝑆⟩⟨−𝑆| ⊗ |𝑆⟩⟨𝑆|.

to make physically consistent predictions for real experiments. This will be
important, for example, for trapped atoms [14], optomechanics [153] or cir-
cuit QED systems [154], where gain and loss but also much more complex
dissipation processes can be engineered [10, 202]. A detailed description of
an implementation with cold atoms can be found in Chapter 4.5.

5.7 Conclusion

In this chapter, we have introduced for the first time a symmetry relation for
Liouville operators, which extends the PT-symmetry definition for classical
systems to open quantum systems. Moreover, we proved that systems ful-
filling this symmetry relation possess a symmetric phase and by increasing
the dissipation strength this symmetry can be broken. In the thermodynamic
limit, the competition between coherent dynamics and dissipation leads to a
sharp phase transition between a symmetric and a symmetry broken regime
in analogy to the classical transition. We illustrated these findings on sev-
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eral examples such as two coupled collective spins and even for randomly
generated systems. Moreover, we find that in this examples, the quantum
phase transition features a highly entangled state at the symmetry break-
ing point. While the dynamics is crucially different in both regimes, we find
that the overall eigenvalue structure of the Liouvillian hardly depends on the
symmetry of the system.





6 Truncated Wigner method

for open quantum spins §

Studying open quantum systems is particularly challenging as the Hilbert
space scales with (𝑑2)𝑁 , where 𝑑 is the dimension of the subsystem and 𝑁
the number of lattice sites (see Chapter 2.2). Exact simulations are therefore
limited to very small system sizes and as a result there is still little know about
dissipative phase transitions. In order to search for such unconventional non-
equilibrium phase transitions, the development of new numerical techniques
is of imminent relevance. For spin-1/2 systems there exist reliable tensor
network methods to simulate dissipative many-body spin systems [37–39].
As simulations are already challenging for spin-1/2 systems, simulations in
the limit of large collective spins 𝑆 ≫ 1 can not be performed by any of these
methods. In this limit of 𝑆 ≫ 1, mean field theory, the classical description
of the system, might give a proper description of the first order mean values
for certain models, however it does not give any insight about the correlations
of the system.
For bosonic systems there exist phase space methods such as the trun-

cated Wigner approximation (TWA) [107], where an initial state distribu-
tion, which is sampled from a Wigner function of the initial state, is time
evolved by the classical equations. As quantum fluctuations are included at
all times, this usually gives substantially more accurate results and access to
correlations. This has been sucessfully used to simulate dissipative weakly in-
teracting bosonic lattice systems [203, 204] and non-equilibrium condensation
phenomena [105, 106].
Another phase space representation for bosonic systems is the positive P-

function (see Chapter 2.4). By mapping the spin systems to bosons via the
Schwinger representation and using the positive P-function, the coherent dy-
namics of lattices of spin-1/2 systems [169, 170] and of collective spins [107]
can be simulated. Moreover, this approach can be used to simulate the col-
lective decay of an atomic ensemble [168]. However, these simulations were
limited to short times as the corresponding stochastic trajectories tend to
diverge after rather short times [97, 168–170].
In this chapter, we show how this problem can be overcome for systems with

𝑆 ≫ 1 by working with the Wigner function, but performing an additional
positive diffusion approximation (PDA). As a result of this approximation,
the stochastic equations in phase space are well-behaved for arbitrary times,

§ This chapter is based on the article: J. Huber, P. Kirton, and P. Rabl, Phase-Space
Methods for Simulating the Dissipative Many-Body Dynamics of Collective Spin Sys-
tems, SciPost Phys. 10, 045 (2021).
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which allows us to evaluate the long-time dynamics and the steady states
of dissipative spin systems that have been inaccessible so far. In Chapter 4
we have already used TWOQS to study unconventional phase transitions of
large spin systems. In this chapter, we first give an outline of this method
and explain how the original master equation can be mapped, under certain
approximations, onto a set of stochastic differential equations. Furthermore,
we benchmark this method by comparison to exact simulations of single spin
systems as well as large spin lattices in the presence of dephasing and decay.

6.1 Outline of the method

We are interested in the open system dynamics of 𝑁 coupled spin-𝑆 systems,
which can be modeled by a master equation for the system density operator
𝜌,

𝜌̇ = −i[𝐻, 𝜌] +
∑︁
j

ΓjD[𝑐j]𝜌. (6.1)

Here 𝐻 is the many-body Hamiltonian describing the coherent evolution and
the Lindblad superoperators, where D[𝑐]𝜌 = 2𝑐𝜌𝑐† − 𝑐†𝑐𝜌− 𝜌𝑐†𝑐, account for
incoherent processes with jump operators 𝑐j and rates Γj. In the following
we assume that 𝐻 and all 𝑐j can be written in terms of products of the
collective spin operators 𝑆z

i and 𝑆±
i = (𝑆x

i ± i𝑆y
i ), which obey the usual spin

commutation relations, [𝑆z
i , 𝑆

+
j ] = 𝛿ij𝑆

+
i and [𝑆+

i , 𝑆
−
j ] = 2𝛿ij𝑆

z
i .

Equation (6.1) conserves the length of each individual spin, ∂t⟨𝑆⃗2
i ⟩ = 0, and

therefore the dynamics of each subsystem can be restricted to a 𝑑𝑆 = (2𝑆+1)
dimensional subspace. However, the dimension of the full density operator,
𝑑𝜌 = (𝑑𝑆)

2𝑁 , still scales exponentially with the number of subsystems or
lattices sites𝑁 . This scaling makes an exact numerical integration of Eq. (6.1)
impossible when 𝑆 or 𝑁 are large. Here we introduce an approximate method
to simulate such systems in the limit 𝑆 ≫ 1, which only scales linearly with
the system size 𝑁 . The derivation of this method consists of four main steps:

1. The 𝑁 spins are mapped onto a set of 2𝑁 bosonic modes using the
Schwinger boson representation.

2. The master equation for the bosons is mapped onto an equivalent partial
differential equation for the Wigner phase-space distribution.

3. We use the TWA and the PDA to obtain a Fokker-Planck equation
(FPE) for the Wigner function with an almost positive diffusion matrix.

4. This FPE is mapped onto an equivalent set of stochastic Ito equations,
which can be efficiently simulated numerically.

In the following, we first give a brief general outline of the individual steps in
this derivation, while the application of this method for concrete examples is
discussed in more detail in Section 6.2.
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6.1.1 Bosonization

In a first step, we use the Schwinger boson representation to map each of the
spins, 𝑆⃗i, onto two independent bosonic modes, 𝑎i and 𝑏i, by identifying

𝑆+
i = 𝑎†i𝑏i, 𝑆−

i = 𝑎i𝑏
†
i , 𝑆z

i =
1

2
(𝑎†i𝑎i − 𝑏†i𝑏i). (6.2)

One can easily show that this transformation preserves all the spin commu-
tation relations given above. For all models constructed from collective spin
operators only, the total number of excitations at each site, 𝑎†i𝑎i + 𝑏†i𝑏i, is
conserved. The initial condition can then be chosen such that

1

2
(𝑎†i𝑎i + 𝑏†i𝑏i) = 𝑆 (6.3)

to simulate spins of different lengths. This is more useful than mapping each
site to a single Holstein-Primakoff boson [197], since the transformation above
does not involve any operator square roots, which can be numerically difficult
to work with.

6.1.2 Phase space distributions

The main advantage of switching to a representation expressed in terms of
bosonic modes is that the master equation, Eq. (6.1), can be mapped onto an
equivalent partial differential equation for a class of phase-space distributions,
which contain the same information as the density operator (see Chapter 2.4
for details). We parameterize the set of distributions by the variable k and
define

𝐹k(𝛼⃗, t) =
1

𝜋4𝑁

∫︁
𝑑4𝑁𝜆 𝑒(𝛼⃗𝜆⃗

*−𝛼⃗*𝜆⃗)Tr
{︁
𝑒𝜆⃗v⃗

†
𝜌𝑒−𝜆⃗*v⃗

}︁
𝑒

(1+k)
2

|𝜆⃗|2 , (6.4)

where v⃗ = (𝑎1, 𝑏1, 𝑎2, 𝑏2, . . . , 𝑎𝑁 , 𝑏𝑁) is a vector of all 2𝑁 bosonic operators
and 𝛼⃗ and 𝜆⃗ are vectors containing the same amount of complex numbers.
When k = 0 this phase space distribution corresponds to the Wigner function,
for k = 1 it is the Glauber-Sudarshan 𝑃 -representation and when k = −1 we
obtain the Husimi 𝑄-function. As explained in Chapter 2.4 in more detail,
the master equation Eq. (6.1) can be mapped to a partial differential equation
for the phase space distribution,

∂

∂t
𝐹k(𝛼⃗, t) = 𝐿𝐹k(𝛼⃗, t), (6.5)

with 𝐿 some linear differential operator, which depends on the specific prob-
lem under consideration.

6.1.3 Truncated Wigner approximation

The result in Eq. (6.5) is still exact and therefore in general not very useful.
In particular, the differential operator 𝐿 may contain third- or higher-order
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derivatives, which prevent an efficient stochastic sampling of 𝐹k. For example,
for the coherent dynamics generated by the master equation 𝜌̇ = −iΩ[𝑆2

x, 𝜌],
the corresponding partial differential equation for 𝐹k ≡ 𝐹k(𝛼, 𝛽, t) reads

∂𝐹k

∂t
=

iΩ

4

[︂
∂

∂𝛼

(︀
2𝛼*𝛽2 + 2𝛼|𝛽|2)︀+ ∂

∂𝛽

(︀
2𝛽*𝛼2 + 2|𝛼|2𝛽)︀

− k
∂2

∂𝛼2
𝛽2 − k

∂2

∂𝛽2
𝛼2 − k

∂2

∂𝛼𝛽
𝛼𝛽

+
1− k2

2

(︂
∂3

∂𝛼∂𝛼*∂𝛽
𝛽 − ∂3

∂𝛽∂𝛽*∂𝛼
𝛼 +

∂3

∂𝛼2∂𝛽
𝛽* − ∂3

∂𝛼*∂𝛽2
𝛼

)︂
−𝑐.𝑐.]𝐹k.

(6.6)

To proceed we neglect all third- and higher-order derivatives, which in this
example corresponds to omitting all terms in the second line of Eq. (6.6). This
approximation is just the usual TWA [107] applied to arbitrary distribution
functions. For spin systems we expect this approximation to become accurate
in the limit of large 𝑆, since terms proportional to 𝛼𝐹k or 𝛽𝐹k scale as ∼

√
𝑆

compared to derivatives such as ∂𝐹k/∂𝛼 ∼ O(1). After performing the TWA
we obtain a FPE of the form

∂

∂t
𝐹k(x⃗, t) =

[︂
− ∂

∂xj

𝐴j(x⃗) +
1

2

∂

∂xi

∂

∂x*
j

𝐷ij(x⃗)

]︂
𝐹k(x⃗, t), (6.7)

with a drift matrix 𝐴 and a diffusion matrix 𝐷. Here we have assumed Ein-
stein’s sum convention, where the indices i and j run over the 4𝑁 components
of the vector x⃗ = (𝛼1, 𝛼

*
1, 𝛽1, 𝛽

*
1 , 𝛼2, 𝛼

*
2, 𝛽2, 𝛽

*
2 , . . . ).

6.1.4 Positive diffusion approximation

For stochastic simulations, performing the TWA is not enough since in general
the diffusion matrix 𝐷 obtained in this way is not positive semi-definite. This
can already be seen from the underlined terms in Eq. (6.6). Similarly, we
find that an incoherent decay process, 𝜌̇ = ΓD[𝑆−]𝜌, is mapped under the
TWA onto the FPE

∂

∂t
𝐹k = Γ

[︂
∂

∂𝛼

(︂
|𝛽|2 + (1 + k)

2

)︂
𝛼− ∂

∂𝛽

(︂
|𝛼|2 − (1− k)

2

)︂
𝛽 − ∂2

∂𝛼∂𝛽
𝛼𝛽

+
(1− k)

2

∂2

∂𝛼∂𝛼*

(︂
|𝛽|2 + (1 + k)

2

)︂
+
(1 + k)

2

∂2

∂𝛽∂𝛽*

(︂
|𝛼|2 − (1− k)

2

)︂
+ 𝑐.𝑐.

]︂
𝐹k,

(6.8)

and there are again second-order derivatives that can lead to negative dif-
fusion rates. Thus, in a second step we perform a PDA by neglecting some of
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these diffusion terms. In the two examples above this approximation amounts
to omitting all the underlined terms in Eq. (6.6) and Eq. (6.8), while keeping
the diffusion terms in the second and third line of Eq. (6.8). This choice can-
not be justified by simple scaling arguments and in Section (6.2) we discuss
and verify the applicability of this approximation in terms of several explicit
examples. In general, the PDA can be motivated by the fact that it eliminates
the dominating negative contributions to 𝐷, while conserving the total spin
𝑆 and leaving the equations of motion for the mean values ⟨𝑆k

i ⟩ unaffected.
The price we pay for this last requirement is that for k = 0 the resulting
diffusion matrix can become negative for certain values of 𝛼. However, the
corrections scale as ∼ 1/𝑆 compared to other terms and for 𝑆 ≫ 1 the resid-
ual negative contributions do not affect considerably the stochastic sampling
of trajectories in actual simulations.
Before we proceed let us remark that the problem of non-positivity can also

be overcome by working with a positive-𝑃 representation, where 𝛼i and 𝛼*
i

are replaced by a pair of independent complex variables [97, 168, 204]. In this
case, a positive semi-definite diffusion matrix can be obtained for this larger
set of variables without neglecting any terms. However, it is known that the
resulting stochastic equations are often not well-behaved [97]. In particular,
the appearance of “spikes", where individual trajectories diverge at a finite
time [97, 169, 170], often prevents the simulation of the long-time behavior
of a system or its steady state.

6.1.5 Stochastic simulations

After applying the TWA and the PDA, we end up with a FPE with an
(almost) positive semi-definite diffusion matrix 𝐷. This FPE can be mapped
onto an equivalent set of stochastic (Ito) differential equations (for details see
Chapter 2.4),

𝑑xi = 𝐴i(x⃗)𝑑t+𝐵ij(x⃗)𝑑𝑊j(t), (6.9)

where 𝑑𝑊i are real-valued independent Wiener processes with ⟨𝑑𝑊i𝑑𝑊j⟩ =
𝛿ij𝑑t and 𝐵(x⃗) is the factorized diffusion matrix with 𝐵(x⃗)𝐵(x⃗)† = 𝐷(x⃗).
This set of equations can be efficiently simulated with the Euler-Maruyama
method [108].

Initial conditions

In many situations of interest the initial state can be chosen as a fully polar-
ized state with ⟨𝑆z

i ⟩ = −𝑆 at each site. This corresponds to a state where
one of the two Schwinger bosons is prepared in the vacuum state |0⟩, the
other one in the Fock state |2𝑆⟩. For k = −1 this state is described by the
𝑄-function

𝑄0(𝛼, 𝛽) =
1

𝜋2
𝑒−(|𝛼|2+|𝛽|2) |𝛽|4𝑆

(2𝑆)!
, (6.10)

which is positive everywhere and can be used as an initial probability distri-
bution for the trajectories. As already shown in Chapter 2.4 for k = 1 and
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k = 0 the corresponding 𝑃 - and Wigner distributions for Fock states are sin-
gular or have negative values. It is thus necessary to approximate the initial
state by replacing the Fock state |2𝑆⟩ by a coherent state with the same mean
amplitude. The corresponding initial conditions are then given by

𝑃0(𝛼, 𝛽) = 𝛿(𝛼)𝛿(𝛽 −
√
2𝑆), (6.11)

and

𝑊0(𝛼, 𝛽) =
4

𝜋2
𝑒−2(|𝛼|2+|𝛽−√

2𝑆|2), (6.12)

respectively. This approximation introduces an uncertainty in the spin quan-
tum number 𝑆, which, however, scales only with

√
𝑆 and becomes negligible

in the limit of interest, 𝑆 ≫ 1.
In order to initialize the system in an arbitrary spin coherent state |𝜃, 𝜑⟩

on the Bloch sphere we can simply rotate this state by the angle 𝜃 around
the y-axis and 𝜑 around the z-axis. This amounts to replacing 𝛼 and 𝛽 by
the rotated amplitudes

𝛼̃ = 𝑒i𝜑(cos(𝜃/2)𝛼− sin(𝜃/2)𝛽), (6.13)

𝛽 = sin(𝜃/2)𝛼 + cos(𝜃/2)𝛽, (6.14)

i.e., 𝑊𝜃,𝜑(𝛼, 𝛽) = 𝑊0(𝛼̃, 𝛽), etc.

6.1.6 𝑃 -, 𝑄-, or Wigner distribution?

Up to now we have kept our analysis completely general and derived all the re-
sults for arbitrary distribution functions 𝐹k(𝛼⃗). But which distribution works
best in an actual simulation? It is well-known that the 𝑃 -distribution (k = 1)
cannot represent states with an uncertainty smaller than that of a coherent
state. This includes, for example, squeezed states that appear commonly in
interacting spin systems. The 𝑄-distribution (k = 1) has the obvious advan-
tage that it can represent spin states with a well-defined spin quantum num-
ber, i.e., there is no need to approximate the initial state. Further, as can be
seen from Eq. (6.8), after the PDA the diffusion matrix for the 𝑄-distribution
is strictly positive semi-definite. However, it turns out that for models that
include (𝑆x)2 or similar interaction terms in the Hamiltonian, performing the
PDA eliminates relevant contributions to the coherent dynamics. As can be
seen from Eq. (6.6), this is not the case for the Wigner distribution (k = 0),
since there are no second-order derivatives in the Hamiltonian dynamics and
the PDA only affects incoherent processes. This is true for all quadratic cou-
pling terms in the Hamiltonian ∼ 𝑆𝜈

i 𝑆
𝜇
j (𝜈, 𝜇 = z,±), which already includes

the most common types of spin-spin interactions. Therefore, while below we
will also discuss several basic examples where the 𝑃 - or the 𝑄-distribution
yield equally accurate results, we find that for generic interacting systems
it is necessary to work with the Wigner function, which reproduces most
accurately the Hamiltonian part of the dynamics.
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6.2 Examples and applications

In this section we will present several explicit examples, to show how our
method can be applied to simulate some of the most frequently encountered
interactions and decoherence processes. To do so we will mainly focus on
systems with a single collective spin, where all the results can still be com-
pared with exact numerical results. This will allow us to test the validity
of the approximations described above and make a comparison of how the
different phase space representations perform under different circumstances.
In Section 6.2.5 we will then extend these results and discuss the simulation
of a whole chain of collective spins, for which exact numerical methods are
no longer available.

6.2.1 Spontaneous emission

As a first example we consider the collective decay of a large ensemble of
two-level systems, which can be described by the master equation

𝜌̇ =
Γ

2𝑆
D[𝑆−]𝜌. (6.15)

Note that here we rescale the emission rate by a factor 2𝑆 in order to obtain
the same time scale for the dynamics for different values of 𝑆. After perform-
ing the TWA the resulting FPE for this model is already given in Eq. (6.8)
above. The PDA then corresponds to neglecting the underlined term in this
equation, after which we can map the FPE onto the following set of stochastic
Ito equations

𝑑𝛼 = −Γ
2𝑆

(︁
|𝛽|2 + (1+k)

2

)︁
𝛼𝑑t+

√︂
Γ(1−k)

4𝑆

(︁
|𝛽|2 + (1+k)

2

)︁
𝑑𝑊1, (6.16)

𝑑𝛽 = Γ
2𝑆

(︁
|𝛼|2 − (1−k)

2

)︁
𝛽𝑑t+

√︂
Γ(1+k)

4𝑆

(︁
|𝛼|2 − (1−k)

2

)︁
𝑑𝑊2. (6.17)

Here the 𝑑𝑊n = 𝑑𝑊𝑅
n + i𝑑𝑊 𝐼

n are complex noise increment, where the 𝑑𝑊𝑅
n

and 𝑑𝑊 𝐼
n are real-valued and independent Wiener processes with ⟨𝑑𝑊𝑅

n 𝑑𝑊𝑅
m⟩ =

⟨𝑑𝑊 𝐼
n𝑑𝑊

𝐼
m⟩ = 𝛿nm𝑑t.

In Fig. 6.1 we plot the outcome of a stochastic simulation of this coupled
set of equations for k = 0,±1 and for two different spin quantum numbers,
𝑆 = 10 and 𝑆 = 100. In these examples it is assumed that the spin is ini-
tially prepared in the maximally excited state with 𝑆z|𝑆⟩ = 𝑆|𝑆⟩, which we
represent by initial distributions as given in Section 6.1.5. For the considered
values of 𝑆 we can also solve the full master equation exactly and use these
results to benchmark our approximate approach. We find that for about
ntraj = 1000 trajectories the TWOQS reproduces very accurately the super-
radiant decay of a large ensemble, with higher accuracy for larger values of
𝑆. For this example we find almost no visible differences between the three
different distribution functions. However, a closer inspection shows that in
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Figure 6.1: Simulation of the superradiant decay of a single collective spin
with spin quantum number 𝑆 = 10 and 𝑆 = 100. The system is initially
prepared in the highest excited state, |𝑆z = 𝑆⟩. The stochastic simulations
for the 𝑃 -, 𝑄- and Wigner-distribution are compared to the exact integration
of the master equation, Eq. (6.15). In both plots ntraj = 1000 trajectories
have been simulated to compute the stochastic averages.

the case of the Wigner function (k = 0), the square root in Eq. (6.17) can be-
come negative for some trajectories. This becomes a crucial problem for very
small values of 𝑆 and restricts stimulations to short integration times, since
at longer times these unphysical trajectories can dominate the dynamics. For
larger spins, this error is suppressed by 1/𝑆 and becomes a negligible effect
for 𝑆 ≳ 100, as shown in Fig. 6.1. In a simulation, possible errors arising from
the negative diffusion term can be easily tracked by monitoring the change of
the total spin, i.e., ⟨|𝛼|2 + |𝛽2|⟩, over time.

This example illustrates that even for the Wigner function, residual neg-
ative diffusion terms are not a practical limitation for simulating dissipative
processes in collective spin systems when 𝑆 is large. Instead, when using the
exact positive 𝑃 -representation [168], the same simulation would be limited to
times of about t ≲ Γ−1, before the appearance of spikes prevents any converg-
ing results. Note that the same conclusions also apply to master equations
with a gain term, D[𝑆+], which can be described by simply exchanging the
two bosonic modes, i.e., 𝛼 ↔ 𝛽 in Eqs. (6.16) and (6.17).

6.2.2 Dephasing

We now proceed with the derivation of the stochastic equations of motion for
a collective spin which is subject to dephasing. In the absence of any other
interactions, dephasing can be described by the master equation

𝜌̇ = Γ𝜑D[𝑆z]𝜌. (6.18)
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Figure 6.2: Dephasing of a collective spin as described by Eq. (6.18). For this
plot, it is assumed that the system is initially prepared in a spin coherent
state pointing along the x-direction, |𝑆x = 𝑆⟩, and the successive evolution
of ⟨𝑆x⟩(t) is shown as a function of time. For this example the other two
spin components vanish up to statistical errors. The exact results obtained
from the full master equation are compared with stochastic simulations of
Eq. (6.21) and Eq. (6.22) for k = 0,±1. To obtain this data ntraj = 1000
trajectories were simulated.

The bosonized form of this equation is obtained by substituting 𝑆z → (𝑎†𝑎−
𝑏†𝑏)/2 and under the TWA the resulting FPE reads

∂

∂t
𝐹k(𝛼⃗, t) =

Γ𝜑

4

{︂
∂

∂𝛼
𝛼 +

∂

∂𝛽
𝛽 − ∂2

∂𝛼2
𝛼2 − ∂2

∂𝛽2
𝛽2 +

∂2

∂𝛼∂𝛼* |𝛼|2

− ∂2

∂𝛼∂𝛽
𝛼𝛽 +

∂2

∂𝛼∂𝛽*𝛼𝛽
* − ∂2

∂𝛽∂𝛽* |𝛽|2 + 𝑐.𝑐.

}︂
𝐹k(𝛼⃗, t). (6.19)

Although also in this case there are second-order derivatives with negative
prefactors, a straight-forward diagonalization of the diffusion matrix shows
that 𝐷(𝛼, 𝛽) is already positive semi-definite for all 𝛼 and 𝛽. In this case
the PDA is obsolete and we can factorize the diffusion matrix as 𝐷(𝛼, 𝛽) =
𝐵(𝛼, 𝛽)𝐵(𝛼, 𝛽)†, where

𝐵(𝛼, 𝛽) =

√︂
Γ𝜑

2

i

4

⎛⎜⎜⎝
𝛼 −𝛼 𝛼 −𝛼

−𝛼* 𝛼* −𝛼* 𝛼*

−𝛽 𝛽 −𝛽 𝛽
𝛽* −𝛽* 𝛽* −𝛽*

⎞⎟⎟⎠ . (6.20)

Note that this factorization is not unique, but with the current choice we
obtain a very simple and symmetric form for the stochastic equations,

𝑑𝛼 = −Γ𝜑

4
𝛼𝑑t+ i

√︂
Γ𝜑

2
𝛼𝑑𝑊, (6.21)

𝑑𝛽 = −Γ𝜑

4
𝛽𝑑t− i

√︂
Γ𝜑

2
𝛽𝑑𝑊, (6.22)
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where 𝑑𝑊 is a single real-valued Wiener processes. These equations are
independent of k and there is no preferred phase space distribution to simulate
dephasing. In the example plotted in Fig. 6.2, which shows the dephasing of a
spin that is initially polarized along the x direction, the stochastic averages for
all distributions agree within the statistical errors with the exact dynamics,
keeping in mind that for k = 1 and k = 0 the initial distributions are only
approximate.

6.2.3 Dynamics and steady states of driven spin systems

We now consider slightly more complicated models in which there is an in-
terplay between coherent driving and incoherent decay. The simplest model
in this class is that of a collective spin driven by a transverse field of strength
Ω and including a collective decay with rate Γ. The corresponding master
equations reads

𝜌̇ = −i[𝐻𝐷, 𝜌] +
Γ

2𝑆
D[𝑆−]𝜌, (6.23)

with a Hamiltonian 𝐻𝐷 = Ω𝑆x.

Transient dynamics

In Fig. 6.3 we show again a comparison between the TWOQS and the exact
numerical simulations of this master equation for all three distribution func-
tions and for the spin quantum numbers 𝑆 = 10 and 𝑆 = 100. For 𝑆 = 10, we
find clearly visible deviations from the exact oscillations, which can in part be
traced back to the approximation we made in the initial condition (see Sec-
tion 6.1.5). For this reason, sampling of the 𝑄-function is most accurate in
this situation. However, these deviations become negligible when we consider
higher spins and already for 𝑆 = 100 all distribution functions reproduce very
precisely the exact spin dynamics over many oscillation periods.

Steady states

A specific interest in the model given in Eq. (6.23) arises from the fact that
it exhibits a non-equilibrium phase transition at a driving strength of Ω = Γ
[28, 29, 205]. At this point the steady state of this system changes from a
spin coherent state on the lower half of the Bloch sphere to a highly mixed
state with ⟨𝑆z⟩ = 0.
From the analysis of coherent bosonic or spin systems it is known that

the TWA often leads to inaccurate results for long simulation times [107].
The same problem is encountered when the TWOQS is used to simulate, for
example, the oscillations shown in Fig. 6.3 for much longer times. However,
the timescale beyond which significant errors occur increases with 𝑆 and for
many practical applications the system reaches a steady state before problems
arise. This is demonstrated in Fig. 6.4, where we use our stochastic approach
to simulate the master equation for a driven spin with 𝑆 = 1000 up to a time
t = 50Γ−1. Note that for Eq. (6.23) there still exists an analytic solution for
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Figure 6.3: Time evolution of a driven collective spin in the presence of dissipa-
tion, as described by Eq. (6.23). The solid lines represent the exact dynamics
of the spin expectation values ⟨𝑆z⟩ (yellow line), ⟨𝑆y⟩ (red line) and ⟨𝑆x⟩ (blue
line), while the crosses, diamonds and circles are obtained from the stochastic
sampling of the 𝑃 -, the 𝑄- and the Wigner-distribution, respectively. For this
simulation, the system is initialized in the fully polarized state |𝑆z = −𝑆⟩.

the steady state [28, 29, 205], which allows us to compare these simulations
with the exact results for the mean values and the fluctuations of the spin
components.
In the polarized phase, Ω < Γ, we find that both the mean values as

well as the fluctuations of all spin components agree almost perfectly with
the exact results. For the considered example of 𝑆 = 1000 there are still
some visible differences for the predicted spin fluctuations at and above the
transition point, Ω/Γ = 1. However, as shown in the inset of Fig. 6.4(a)
the non-analyticity at the phase transition point becomes more pronounced
and closer to the exact result by increasing the spin quantum number 𝑆. We
emphasize that in the whole mixed phase, Ω/Γ ≥ 1, the Liouvillian gap of the
considered model, i.e., the smallest decay rate in the problem, scales as∼ 1/𝑆.
This means that in the mixed phase this system is particularly challenging
to simulate and oscillations around the steady state can persist for very long
times. Nevertheless, we see that by simply approximating the steady state
at a fixed time t = 40Γ−1 by an average over a time span of ∆t = 10Γ−1, all
the essential features of the model are already rather accurately reproduced.
In particular, for Ω ≫ Γ, all the fluctuations are around ⟨(𝑆k)2⟩ ∼ 𝑆2/3,
indicating that the system is close to a fully mixed state. This and other
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Figure 6.4: Simulation of the steady state of a driven spin system described by
Eq. (6.23). The two plots show (a) the mean values and (b) the fluctuations
of the three components of a spin with 𝑆 = 1000. The solid lines are obtained
from the exact solution for the steady state of this system [28, 29, 205], while
the crosses, diamonds and circles are obtained from a stochastic sampling of
the 𝑃 -, the 𝑄- and the Wigner-distribution. The inset in (a) shows the simu-
lations of the Wigner distribution for even larger spin numbers 𝑆 around the
transition point Ω/Γ = 1. The steady state was obtained by time averaging
after t = 40Γ−1 for another period of ∆t = 10Γ−1 and for ntraj = 2500.

examples show that by using the TWOQS it is possible to access the steady
states of driven-dissipative collective spin models.

6.2.4 Spin squeezing

Spin squeezing is an important non-classical effect in quantum metrology,
which reduces the variance of one spin component below the value of 𝑆/2
obtained forNTLS independent two-level systems. In the presence of collective
decay and dephasing, the effect of spin squeezing can be described by the
master equation

𝜌̇ = −i
𝑔

2𝑆
[𝑆2

x, 𝜌] +
Γ

2𝑆
D[𝑆−]𝜌+ Γ𝜑D[𝑆z]𝜌, (6.24)

where the Hamiltonian term∼ 𝑆2
x has already been discussed as an example in

Section 6.1. Therefore, under the TWA and the PDA we obtain the stochastic
equations,

𝑑𝛼 = −i
𝑔

4𝑆

(︀
𝛼*𝛽2 + 𝛼|𝛽|2)︀ 𝑑t+ 𝑑𝛼|decay + 𝑑𝛼|deph, (6.25)

𝑑𝛽 = −i
𝑔

4𝑆

(︀
𝛽*𝛼2 + |𝛼|2𝛽)︀ 𝑑t+ 𝑑𝛽|decay + 𝑑𝛽|deph, (6.26)

where the last two terms in each line account for the decay and dephasing
processes described by Eqs. (6.16)-(6.17) and Eqs. (6.21)-(6.22), respectively.
In Fig. 6.5, we use the approximate stochastic equations to simulate the

spin squeezing parameter 𝜉 as a function of time. For a state pointing in the
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Figure 6.5: (a) Time evolution of the squeezing parameter 𝜉 for different decay
rates Γ/𝑔 = 0, 0.125, 0.25, 0.5 and for 𝑆 = 10 and 𝑆 = 100. (b) Maximum of
the squeezing parameter 𝜉opt as a function of the decay rate Γ. In all plots the
solid lines represent the exact results, while the diamonds and circles have
been obtained from a stochastic sampling of the 𝑄- and Wigner distribution.
The system is initialized in the state with all spins pointing down, |𝑆z = −𝑆⟩.

z-direction this parameter is defined as [206]

𝜉2 = min
𝜑

2𝑆(∆𝑆𝜑)2

|⟨𝑆z⟩|2 , (6.27)

where (∆𝑆𝜑)2 = ⟨(𝑆𝜑)2⟩ − ⟨𝑆𝜑⟩2 and 𝑆𝜑 = cos(𝜑)𝑆x + sin(𝜑)𝑆y. Note that a
squeezing parameter below unity, 𝜉 < 1, requires a finite amount of entangle-
ment between the two-level systems [207].
Compared to all the previous examples, we now see a clear difference be-

tween the results obtained for different distributions. For k = 1 the value
of the squeezing parameter is 𝜉 ≥ 1 for all times, since squeezed states can
only be represented by a non-positive 𝑃 -distribution. Therefore, these re-
sults have not been included in Fig. 6.5. For the 𝑄-distribution we obtain a
finite amount of squeezing, but the predicted values for 𝜉 do not match at
all the exact results. This discrepancy can be traced back to the fact that in
the PDA we neglect essential contributions to the coherent dynamics, which
appear whenever there are spin-spin interactions. Therefore, in such cases
neither the 𝑃 - nor the 𝑄-distribution give reliable predictions.
For simulations based on the Wigner function, we find very accurate results

for 𝜉 at short times, but considerable deviations from the exact behavior
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Figure 6.6: Time evolution of the squeezing parameter 𝜉 for different dephas-
ing rates Γ𝜑/𝑔 = 0, 0.25, 0.5, 1.0 and for 𝑆 = 10 and 𝑆 = 100. The solid lines
represent the exact results, while circles have been obtained from a stochastic
sampling of the Wigner distribution. The system is initialized in the state
with all spins pointing down, |𝑆z = −𝑆⟩.

for longer simulations when Γ is small. This is consistent with the general
observation that the TWA is not well suited to simulate coherent dynamics
over longer times. However, these discrepancies are significantly reduced for
larger dissipation rates and for larger spin quantum numbers. Importantly,
Fig. 6.5 shows that already for 𝑆 = 100 the dissipative evolution into an
entangled quantum state with 𝜉2 ≈ 0.05 − 0.5 can be accurately simulated
with our method. As further demonstrated in the lower two panels of Fig. 6.5,
this level of accuracy is sufficient to predict optimal squeezing parameters
in open quantum systems, as relevant for metrological applications. Very
similar conclusions can be obtained from the investigation of squeezing in the
presence of dephasing, as summarized in Fig. 6.6. In general we find that
dephasing processes are more accurately captured by our method than decay.

6.2.5 Spin chains

In all the examples so far we have considered the dynamics of a single spin,
where for 𝑆 ≈ 100 the full master equation can still be solved exactly. This
is no longer possible for systems involving 𝑁 ≳ 2 collective spins, while the
TWOQS scales only linearly with 𝑁 . This feature becomes highly relevant,
for example, for the study of non-equilibrium magnetic phases in driven-
dissipative spin chains. In this context, one typically considers generic Heisen-
berg models of the form [16, 18]

𝐻 =
𝑁∑︁
i=1

(︁
𝐽x𝑆

x
i 𝑆

x
i+1 + 𝐽y𝑆

y
i 𝑆

y
i+1 + 𝐽z𝑆

z
i 𝑆

z
i+1

)︁
, (6.28)
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where in addition each spin is subject to decay. Thus, the master equation
for this system reads

𝜌̇ = −i[𝐻, 𝜌] +
𝑁∑︁
i=1

Γ̃D[𝑆−
i ]𝜌, (6.29)

where 𝐽k = 𝐽k/(2𝑆) and Γ̃ = Γ/(2𝑆) are the rescaled coupling strengths and
the rescaled dissipation rate for general spin-𝑆 systems.
For 𝑆 = 1/2, Eq. (6.29) can still be simulated for large 1D chains using nu-

merical techniques based on matrix-product operators [18]. However, in this
case one does not observe any sharp phase transitions for finite Γ, while the
reliability and applicability of related techniques for 2D systems are still un-
der investigation [130–132]. Both in 1D and 2D, such tensor network methods
have very unfavorable scaling for larger 𝑆. The current method allows us to
address the limit 𝑆 ≫ 1, where already in 1D distinct non-equilibrium phases
and sharp transitions between them are expected. In Chapter 4, we have
already applied this approach to study PT-symmetry breaking transitions in
spin chains with both gain and loss, which can be mapped back onto a loss-
only model with 𝐽x = −𝐽y and 𝐽z = 0. Here we outline the implementation
of this method for the general Heisenberg model in Eq. (6.28). Since we are
dealing with in interacting spin system we must use the Wigner function, i.e.,
k = 0. After carrying out the general procedure described in Section 6.1 we
obtain the stochastic equations

𝑑𝛼n = − i

4

[︁
(𝐽x + 𝐽y)(𝛼n+1𝛽

*
n+1 + 𝛼n−1𝛽

*
n−1)𝛽n

+ (𝐽x − 𝐽y)(𝛼
*
n+1𝛽n+1 + 𝛼*

n−1𝛽n−1)𝛽n

+𝐽z(|𝛼n+1|2 − |𝛽n+1|2 + |𝛼n−1|2 − |𝛽n−1|2)𝛼n

]︁
𝑑t+ 𝑑𝛼|decay,

(6.30)

and

𝑑𝛽n = − i

4

[︁
(𝐽x + 𝐽y)(𝛼

*
n+1𝛽n+1 + 𝛼*

n−1𝛽n−1)𝛼n

+ (𝐽x − 𝐽y)(𝛼n+1𝛽
*
n+1 + 𝛼n−1𝛽

*
n−1)𝛼n

+𝐽z(|𝛽n+1|2 − |𝛼n+1|2 + |𝛽n−1|2 − |𝛼n−1|2)𝛼n

]︁
𝑑t+ 𝑑𝛽|decay.

(6.31)

Depending on the relations between all the coupling parameters and the dissi-
pation rate, the model in Eq. (6.28) exhibits many different stationary phases,
which have been analyzed in Ref. [16] using mean-field theory. As a proof-
of-concept demonstration of the TWOQS we consider here the case 𝐽z = 0.
Then for 𝐽x𝐽y > −Γ2 the steady state of the system is the fully polarized state
along the z-direction and we can use a Holstein-Primakoff approximation to
study the fluctuations around this state, similar to the analysis in [16, 90].
Beyond the transition point, e.g. for 𝐽x > 0 and 𝐽y < −Γ2/𝐽x, we expect
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Figure 6.7: Stochastic simulation of the steady state of a dissipative Heisen-
berg chain as described by Eq. 6.29. (a) Magnetization ⟨𝑆z⟩ and variances
⟨(∆𝑆x,y,z)2⟩ as a function of 𝐽y/Γ for a fixed value of 𝐽x = Γ/2. (b) Plot of the
spin-spin correlations 𝐶(s) = ⟨𝑆+

n 𝑆
−
n+s⟩/⟨𝑆+

n 𝑆
−
n ⟩ for a value of 𝐽y/Γ = −1.96

near the phase transition point. (c) Plot of the correlation length 𝜉 extracted
from a fit of 𝐶(s) = 𝑒−|s|/𝜉 (for s even) as a function of 𝐽y. In all plots the
solid line represent the results obtained using the TWOQS and the crosses
show the analytic predictions obtain from the Holstein-Primakoff approxima-
tion in the polarized phase. For the stochastic simulations we have assumed
a chain of 𝑁 = 100 sites with periodic boundary conditions and 𝑆 = 5000.

a strongly mixed phase, but in this regime mean-field theory and lineariza-
tion techniques are no longer applicable. In Fig. 6.7 we show the results of a
stochastic simulation of a spin chain with 𝑁 = 100 sites and 𝑆 = 5000. This
simulation confirms that in the limit of large 𝑆 there is a non-equilibrium
phase transition between a polarized and a highly mixed phase, even in 1D.
At the transition point the mean value of ⟨𝑆z⟩ and the fluctuations of all
spin components exhibit a sharp jump and spin-spin correlations along the
chain diverge. In the polarized phase we can still use the Holstein-Primakoff
approximation to benchmark the simulations also in this extended chain and
we find almost perfect agreement. Importantly, the TWOQS also allows us to
explore the non-polarized phase, where the strong fluctuations cannot be cap-
tured by a Holstein-Primakoff or mean-field approximation. While a detailed
analysis of this phase is outside the scope of this work, we find many simi-
larities with the pseudo PT-symmetric phase described in Chapter 4, where
further discussions about its physical properties can be found.

6.3 Conclusion

In this chapter, we introduced a new method, the truncated Wigner ap-
proximation for open quantum spin (TWOQS). This method is based on
the Schwinger boson representation and uses the truncated Wigner approx-
imation and the positive diffusion approximation (PDA) to map a master
equation to a set of stochastic differential equations. The PDA has to be per-
formed to ensure the positivity of the diffusion terms. Although this seems
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a very crude approximation, it does not affect the accuracy of actual simu-
lations for large 𝑆 and allows us to access the long-time dynamics of open
spins systems. This was not possible using previous approaches based on the
otherwise more accurate positive 𝑃 -distribution. We have benchmarked this
method on various spin models with dephasing and decay and showed that
TWOQS is able to reproduce spin squeezing very accurately. We showed that
even steady states can be reproduced very accurately and TWOQS is there-
fore very well suited to study dissipative phase transitions of large system as
done in Chapter 4. Moreover, the method scales only linearly with the num-
ber of spins and there are no restriction on the dimensionality of the system.
It will be therefore very interesting to extend the analysis of Chapter 4 to
higher dimensional systems in the near future. Moreover, this method can
be combined with existing TWA simulation techniques for bosonic systems
to simulate Dicke-type models.





7 Dissipative discrete truncated

Wigner approximation ➯

Recent advances in experiments with cold atoms [208–216], trapped ions [217–
223], Rydberg atoms [224–230] or hybrid quantum systems [231–237] made it
possible to engineer large spin systems. However, exact theoretical modeling
is very challenging and while exact diagonalization is limited to very small spin
numbers, time-dependent density matrix renormalization group (t-DMRG)
methods become inefficient in higher dimensional systems (see Chapter 2.6).
Due to imperfections of the system, all quantum systems are always subject to
decoherence mechanisms, making a theoretical modeling even more difficult.
It therefore requires new approximate methods to simulate large interacting
spin systems in the presence of dephasing and decay.
In the previous chapter, we have already introduced the truncated Wigner

method for open quantum spins (TWOQS), which gives very accurate re-
sults, however only in the limit of large spins 𝑆 ≫ 1. For spin-1/2 systems,
one of the reason for the inaccuracies is that a Fock state has to be approx-
imated by a coherent state in order to sample from a positive distribution
(see Chapter 6.1.5). One way to overcome this problem is by the discrete
truncated Wigner approximation (DTWA) [41], where the initial states are
sampled from a discrete phase distribution. In this chapter, we take a similar
approach as for TWOQS (see Chapter 6) and replace the classical equations
of motion by stochastic equations in order to extend the DTWA to dissipa-
tive quantum systems (DDTWA). While existing numerical techniques often
rely on certain symmetries and other idealizations, which do not represent
the actual experimental situation, the DDTWA fully accounts for all types
of inhomogeneities, dephasing and decay. In the following, we summarize the
DTWA technique for simulating the coherent dynamics of interacting spin
ensembles which we then extend to take dephasing and decay processes into
account. Furthermore, we benchmark the method in terms of a few basic
examples, for which exact solutions still exist.

➯ This chapter is based on the article: J. Huber, A. M. Rey, and P. Rabl, Realistic simula-
tions of spin squeezing and cooperative coupling effects in large ensembles of interacting
two-level systems, arXiv:2105.00004 (2021).
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7.1 Discrete truncated Wigner approximation

We are interested in the time evolution of interacting spin ensembles and
cavity QED setups with 𝑁 ≫ 1 effective spin-1/2 systems. For concreteness
we will first focus on pure spin systems described by a Hamiltonian of the
form (ℏ = 1)

𝐻 =
1

2

𝑁∑︁
i=1

Ω⃗ · 𝜎⃗i +
1

2

𝑁∑︁
i ̸=j

𝜎⃗ 𝑇
i Jij𝜎⃗j. (7.1)

Here 𝜎⃗ = (𝜎x, 𝜎y, 𝜎z)𝑇 , where the 𝜎k are the usual Pauli operators, and Ω⃗
and Jij are the local field and the spin-spin interaction matrix, respectively.
Later below we will also consider additional couplings of the spin ensemble
to a common bosonic mode, as encountered in cavity QED. Even without
the bosonic mode, the spins evolving under the action of 𝐻 will in general
get entangled over time and exact numerical simulations of the full quantum
state of the system is only possible for a few tens of spins.
In Ref. [41] the DTWAwas introduced as an approximate numerical method

to simulate the coherent dynamics of interacting spin systems. In the follow-
ing, we will first discuss the truncated Wigner approximation for continuous
degrees of freedom and then discuss the discrete truncated Wigner approxi-
mation. As already discussed in Chapter 2.4, the regular Wigner function for
a continuous degree of freedom is defined the following way

𝑊 (x, p) =
1

ℎ

∫︁
𝑒−ipy⟨x+ y/2|𝜌|x− y/2⟩𝑑y. (7.2)

To calculate the time evolution of the expectation value of an operator 𝑂̂, it’s
Weyl transformed operator 𝑂̃(x, p) is integrated over the whole phase space,

⟨𝑂̂(t)⟩ =
∫︁ ∫︁

𝑑x𝑑p𝑂̃(x, p)𝑊 (x, p, t). (7.3)

Here

𝑂̃(x, p) =

∫︁
𝑒−ipy⟨x+ y/2|𝑂̂|x− y/2⟩𝑑y, (7.4)

through which an operator 𝑂̂ is mapped to a function 𝑂̃(x, p) of x and p.
For larger systems, it is in general not possible to calculate Eq. (7.3) exactly,
since the time-evolved Wigner function is not known. However, the TWA
approximates the dynamics by only taking the first-order quantum fluctua-
tions into account. In the Heisenberg picture the Wigner distribution is fixed
to its initial state 𝑊 (x, p) → 𝑊 (x0, p0), and the Weyl operator evolves in
time. The TWA makes the approximation that the Weyl operator follows a
classical evolution 𝑂̃(x, p)(t) → 𝑂̃(x𝑐l(t), p𝑐l(t)), where x𝑐l(t) and p𝑐l(t) are
the classical equations of motion. Thus, we find,

⟨𝑂(t)⟩ ≈
∫︁ ∫︁

𝑑x0𝑑p0𝑂̃(x𝑐l(t), p𝑐l(t))𝑊 (x0, p0). (7.5)
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In the case of the discrete truncated Wigner approximation integrals are re-
placed by sums. A density matrix 𝜌 can be expressed as a discrete distribution
w𝛼 with

𝜌 =
∑︁
𝛼

w𝛼𝐴𝛼 (7.6)

where

w𝛼 =
1

2
tr(𝜌𝐴𝛼). (7.7)

While there are many basis choices for𝐴𝛼, we choose the following parametriza-
tion for a spin-1/2 particle

𝐴𝛼 =
(1 + r⃗𝛼 · 𝜎⃗)

2
, (7.8)

with

r⃗1 = (1, 1, 1)𝑇 , r⃗2 = (−1,−1, 1)𝑇 , r⃗3 = (1,−1,−1)𝑇 ,

r⃗4 = (−1, 1,−1)𝑇 , r⃗5−8 = −r⃗1−4,
(7.9)

where the phase space of each spin consists of eight points. By using this
discrete basis of operators, any operator can be Weyl transformed back and
forth the following way

𝑂𝑊
𝛼 = tr(𝑂̂𝐴𝛼)/2, and 𝑂̂ =

∑︁
𝛼

𝐴𝛼𝑂
𝑊
𝛼 . (7.10)

Equivalently to the continuous case we can make the approximation that the
Weyl operator follows a classical evolution as done in Eq. (7.5). Thus, we
find,

⟨ ˆ𝑂(t)⟩ =
∑︁
𝛼

w𝛼(0)𝑂
𝑊
𝛼 (t) ≈

∑︁
𝛼

w𝛼(0)𝑂
𝑊,𝑐l
𝛼 (t), (7.11)

where w𝛼(0) is the initial Wigner function on the discrete phase space and
𝑂𝑊,𝑐l

𝛼 is the classically evolved Weyl symbol.
The basic principle of the TWA and the DTWA can be explained in the

following way. By time evolving different initial states with the mean-field
equations, quantum uncertainties are included as the initial states are ran-
domly drawn from a probability distribution that accounts for the correct
quantum mechanical uncertainties. A DTWA simulation can be therefore
summarized as follows [see Fig. 7.1(a)]:

1. Draw nt random initial states from the discrete Wigner distribution
𝑊𝐷({s⃗i}) [238]. A single spin pointing down | ↓ ⟩ is represented by
following discrete Wigner function

𝑊𝐷(s⃗i) =
1

4
𝛿(szi + 1) (𝛿(sxi + 1) + 𝛿(sxi − 1))

×(𝛿(syi + 1) + 𝛿(syi − 1))
(7.12)
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Figure 7.1: Illustration of (a) the DTWA algorithm [41] for coherent spin
systems and (b) the DDTWA algorithm introduced in this work for open
quantum spin systems. See text for more details.

where we find four discrete spin configurations

(sxi , s
y
i , s

z
i ) = (±1,±1,−1) (7.13)

which occur with the same probability of 𝑊𝐷 = 1/4. By rotating
the state, all states of the Bloch sphere can be represented and by an
additional statistical mixture of different states, all density matrices can
be represented.

2. The time evolve all nt configurations with the mean-field equations. For
the Hamiltonian Eq. (7.1) we arrive at following mean-field equations

𝑑s⃗i
𝑑t

= Ω⃗i
eff × s⃗i, Ω⃗i

eff = Ω⃗ + 2
𝑁∑︁
j=1

Jij s⃗j. (7.14)

3. Calculate expectation values of spin observables from the average over
all trajectories as

⟨𝜎k
i ⟩(t) ≃

1

nt

nt∑︁
n=1

ski,n(t), (7.15)

and

⟨{𝜎k
i , 𝜎

l
j}sym⟩(t) ≃

1

nt

nt∑︁
n=1

ski,n(t)s
l
j,n(t). (7.16)

We immediately see that by averaging over the four configurations of
Eq. (7.13) all expectation values of the state of a spin pointing down
| ↓ ⟩ are reproduced correctly.

The number of stochastic equations scales only linearly with 𝑁 and therefore
allows one to simulate the time evolution of thousands of spins. At the
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same time, the quantum mechanical uncertainties of the initial state are fully
included by averaging over a distribution of initial spin vectors and in general
⟨𝜎k

i 𝜎
ℓ
j⟩ ≠ ⟨𝜎k

i ⟩⟨𝜎ℓ
j⟩. In particular, since the mean-field equations, Eq. (7.14),

preserve the length of each individual spin, s⃗ 2
i (t) = 3, its magnitude is equal

to the exact quantum mechanical value along each individual trajectory. This
means that compared to mean-field theory, the effect of spin-spin interactions,
which scale as ∼ |s⃗i(t)||s⃗j(t)|, are more accurately taken into account leading
to very precise results in many situations of interest, for example, in spin-
squeezing experiments with trapped ions or cold atoms. A more detailed
discussion of the DTWA and many explicit examples can found in Refs. [41,
239–242].
Note by sampling from the Wigner distribution of a coherent state

𝑊 (s⃗i) =
2

𝜋
𝑒−2((sxi )

2+(syi )
2)𝛿(szi + 1), (7.17)

instead of the discrete distribution of Eq. (7.12), we perform a TWA simula-
tion [107]. While we focus here on the DTWA, all the results below can be
also applied to do a TWA simulation.

7.2 Dissipative discrete truncated Wigner

approximation

In real experiments the spins or atoms are never completely isolated and will
spontaneously decay or undergo dephasing due to residual interactions with
the environment. Such an open system scenario can be modeled by a master
equation for the system density operator 𝜌,

𝜌̇ = −i[𝐻, 𝜌] + ℒdeph(𝜌) + ℒdecay(𝜌). (7.18)

Here, the first correction to the Hamiltonian evolution accounts for pure de-
phasing, where for the case of uncorrelated dephasing of each spin with rate
Γ𝜑 we obtain

ℒdeph(𝜌) =
Γ𝜑

2

𝑁∑︁
i=1

(𝜎z
i 𝜌𝜎

z
i − 𝜌) . (7.19)

In the other limit of interest, where the noise is fully correlated across the
ensemble, we can use instead

ℒdeph(𝜌) = ΓC
𝜑

[︀
2𝑆z𝜌𝑆z − (𝑆z)

2𝜌− 𝜌(𝑆z)
2
]︀
, (7.20)

where 𝑆z =
1
2

∑︀
i 𝜎

i
z. The last term in Eq. (7.18) is given by

ℒdecay(𝜌) =
Γ

2

𝑁∑︁
i=1

(︀
2𝜎−

i 𝜌𝜎
+
i − 𝜎+

i 𝜎
−
i 𝜌− 𝜌𝜎+

i 𝜎
−
i

)︀
, (7.21)

and describes the uncorrelated decay of each two-level system with rate Γ.



98 7.2 Dissipative discrete truncated Wigner approximation

Naively, one could simply account for these decoherence processes by evalu-
ating the mean-field dynamics for ⟨𝜎k⟩ using the master equation in Eq. (7.18)
and by including the additional terms in the mean-field equations of motion
in Eq. (7.14). This approach is still exact for noninteracting spins and would
also in general correctly capture the decay of coherences of the transverse
spin components, ⟨𝜎x

i ⟩ and ⟨𝜎y
i ⟩. However, in this case the spin length |s⃗i(t)|

is no longer conserved along a trajectory. As a consequence, the effect of
spin-spin interactions is also reduced and the accuracy of the DTWA simula-
tion degrades considerably. Therefore, in order to avoid this degradation, not
only damping terms, but also an appropriate amount of fluctuations must be
included in the dynamics.

7.2.1 Dephasing

Let us first focus on pure dephasing. In this situation we can make use of
the fact that the incoherent dynamics generated by ℒdeph in Eq. (7.18) is
simply the limiting case of a coherent evolution of the spins under the rapidly
fluctuating Hamiltonian

𝐻fluc(t) =
1

2

𝑁∑︁
i=1

𝜉i(t)𝜎
z
i . (7.22)

Here the 𝜉i(t) are classical noise processes with zero mean and we can set
⟨𝜉i(t)𝜉j(t′)⟩ ∼ 𝛿ij to model individual dephasing or 𝜉i(t) = 𝜉(t) for collective
noise. The evolution under this Hamiltonian introduces an additional term
in the mean-field dynamics,

𝑑s⃗i
𝑑t

⃒⃒⃒⃒
deph

= 𝜉i(t)𝑒⃗z × s⃗i, (7.23)

i.e., a rotation around the z-axis with a fluctuating frequency.

White noise limit

If the noise is uncorrelated over the typical timescales of the spin dynamics,
which is also assumed in the derivation of the master equation in Eq. (7.18),
we can take the white-noise limit ⟨𝜉i(t)𝜉i(t′)⟩ ≃ 2Γ𝜑 𝛿(t − t′) and interpret
Eq. (7.23) as a Stratonovich stochastic differential equation. For numerical
simulations it is more convenient to convert Eq. (7.23) into an Ito differential
equation, where the added noise in each time step is independent of s⃗i(t).
Using the usual rules of stochastic calculus [108] we then obtain the following
stochastic increments for the spin variables

𝑑sxi |deph = −Γ𝜑s
x
i 𝑑t−

√︀
2Γ𝜑s

y
i 𝑑𝑊i, (7.24)

𝑑syi |deph = −Γ𝜑s
y
i 𝑑t+

√︀
2Γ𝜑s

x
i 𝑑𝑊i, (7.25)

𝑑szi |deph = 0, (7.26)
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where the 𝑑𝑊i ≡ 𝑑𝑊i(t) are real-valued and independent Wiener incre-
ments for the time step [t, t + 𝑑t]. These increments satisfy ⟨𝑑𝑊i⟩ = 0
and ⟨𝑑𝑊i𝑑𝑊j⟩ = 𝛿ij𝑑t for individual dephasing and again we can simply
set 𝑑𝑊i = 𝑑𝑊 to describe spatially correlated noise.
In summary, we end up with a DDTWA algorithm as illustrated in Fig. 7.1(b).

In this algorithm the sampling of the initial spin values, s⃗i(t = 0), is imple-
mented as before, but the deterministic mean-field equations of motion for the
dynamics are replaced by the following set of stochastic differential equations

𝑑s⃗i = Ω⃗i
eff × s⃗i𝑑t+ 𝑑s⃗i|deph , (7.27)

where the dephasing-induced contribution is defined in Eqs. (7.24)-(7.26).
This set of equations can be efficiently simulated numerically with the Euler-
Maruyama method [108].
We see that Eq. (7.27) still describes the same coherent dynamics for ⟨s⃗i⟩(t),

but also accounts for the loss of coherences. Importantly, this loss is accom-
panied by an appropriate amount of noise, which ensures that

⟨𝑑s⃗ 2
i ⟩ = ⟨𝑑((sxi )2 + (syi )

2 + (szi )
2)⟩ = 0. (7.28)

Therefore, although coherences decay over time, the length of each spin and,
as a consequence, also the magnitude of the spin-spin interactions are pre-
served on average. In the examples discussed in Section 7.3 below we find
that this property results in an excellent agreement between these approxi-
mate stochastic simulations and the exact results obtained for a large variety
of models and parameter regimes. Note that the Eqs. (7.24)-(7.26) are equiv-
alent to Eqs. (6.21)-(6.22) for a spin-1/2, but written in the Schwinger-boson
basis. In both cases the derivation was done without performing any approx-
imation.

Colored noise

Compared to the original master equation, an important benefit of the deriva-
tion presented above is that it can be readily generalized, without any ap-
proximation, to colored noise with a finite correlation time. For example, let
us consider the evolution of the spins in the presence of noisy fields with a
correlation function of the form

⟨𝜉i(t)𝜉j(t′)⟩ ≃ 𝛿ij𝜎
2𝑒−|t−t′|/𝜏𝑐 . (7.29)

We see that in the limit 𝜏𝑐 → 0 we recover the 𝛿-correlated noise from above
with Γ𝜑 = 𝜎2𝜏𝑐, while for 𝜏𝑐 → ∞ we obtain the case of static noise with
⟨𝜉i(t)𝜉j(t′)⟩ ≃ 𝛿ij𝜎

2. In general, the random noises 𝜉i can be obtained by
simulating an Ornstein-Uhlenbeck process [108, 243]

𝑑𝜉i = − 1

𝜏𝑐
𝜉i𝑑t+

√︂
2

𝜏𝑐
𝜎𝑑𝜂i, (7.30)
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where 𝑑𝜂i are Wiener increments with ⟨𝑑𝜂i⟩ = 0 and ⟨𝑑𝜂i𝑑𝜂j⟩ = 𝛿ij𝑑t. In
our numerical simulations we can then account for the effect of colored noise
by simulating the coherent dynamics in Eq. (7.23), but assuming noisy fields
𝜉i(t) that are calculated according to Eq. (7.30). Note that compared to the
Markovian case, this only increases the number of simulated equations by 𝑁
or even just by one in the case of collective noise. However, for very short
correlation times 𝜏𝑐, also the integration time steps must be reduced and
it becomes much more efficient to use the Markovian dephasing dynamics
described by Eqs. (7.24)-(7.26).

7.2.2 Decay

In the previous derivation we made use of the fact that dephasing can be
described by classical noise. This is not the case for decay processes, where
the system couples to a quantum environment represented by noise operators
with non-vanishing commutation relations. We have already seen this differ-
ence between dephasing and decay processes in Chapter 6, where the Fokker-
Planck equation of the collective decay required an additional approximation,
the positive diffusion approximation (PDA). In stochastic simulations of the
full quantum mechanical wavefunction, decay is usually modelled by intro-
ducing random quantum jumps [97], after which the system is projected into
the state of the spin pointing down | ↓ ⟩. Within the truncated Wigner func-
tion formalism, this would corresponds to a random projection into one of the
four configurations listed in Eq. (7.13). However, in this approach the system
evolution between the jumps is described by a non-Hermitian Hamiltonian,
which again reduces the spin length |s⃗i| and degrades the accuracy of the
DTWA.
To circumvent these problems, we propose here to simulate the decay dy-

namics of dissipative spin systems by a continuous stochastic process with
the following increments for the classical spin trajectories

𝑑s⃗i = Ω⃗i
eff × s⃗i𝑑t+ 𝑑s⃗i|decay , (7.31)

where

𝑑sxi |decay = −Γ

2
sxi 𝑑t−

√
Γsyi 𝑑𝑊i, (7.32)

𝑑syi |decay = −Γ

2
syi 𝑑t+

√
Γsxi 𝑑𝑊i, (7.33)

𝑑szi |decay = −Γ(szi + 1)𝑑t+
√
Γ(szi + 1)𝑑𝑊i. (7.34)

Let us emphasize that these equations are not derived from an underlying
system-bath Hamiltonian, but rather constructed in order to satisfy two cru-
cial properties. First, the deterministic terms in these equations reproduce
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the correct decay dynamics for the average spin components

⟨𝜎̇x
i ⟩ = − Γ

2
⟨𝜎x

i ⟩, (7.35)

⟨𝜎̇y
i ⟩ = − Γ

2
⟨𝜎y

i ⟩, (7.36)

⟨𝜎̇z
i ⟩ = − Γ(⟨𝜎z

i ⟩+ 1). (7.37)

Second, the additional noise terms in Eqs. (7.32)-(7.34) reintroduce spin fluc-
tuations to preserve the length of each spin, |s⃗i|, on average. By using the
Ito-calculus [97] we obtain

⟨𝑑(sxi )2⟩ = − Γ⟨(sxi )2⟩𝑑t+ Γ⟨(syi )2⟩𝑑t (7.38)

⟨𝑑(syi )2⟩ = − Γ⟨(syi )2⟩𝑑t+ Γ⟨(sxi )2⟩𝑑t (7.39)

⟨𝑑(szi )2⟩ = − 2Γ⟨(szi )2 + szi ⟩𝑑t+ Γ⟨(szi + 1)2⟩𝑑t (7.40)

where the first terms come from the deterministic part and the second terms
from the stochastic part of Eqs. (7.32)-(7.34). For the length of the spin
vector we therefore obtain

⟨𝑑s⃗ 2
i ⟩ = Γ

(︀
1− ⟨(szi )2⟩

)︀
𝑑t ≈ 0, (7.41)

and in contrast to the classical noise process this requirement can only be
fulfilled up to a certain level of approximation.
The reason is that for the decay process the deterministic change of the

z-component, 𝑑(szi )
2 = −2Γszi (s

z
i + 1)𝑑t, is positive for szi < 0. This cannot

be compensated by a positive diffusion term. In this sense, Eqs. (7.32)-(7.34)
represent a diffusion process, which reproduces the exact single-spin dynamics
while conserving the length of each spin as well as possible.
In the actual numerical simulations we find that under most conditions

of interest, in particular for small decay rates Γ, the condition ⟨𝑑s⃗ 2
i ⟩ ≈ 0

is satisfied and that the average spin length remains very close to its initial
value. Specifically, in all the investigated examples reported below there
was only little change of ⟨s⃗ 2⟩ and therefore no noticeable degradation of the
accuracy of the predicted results has been observed, neither in the transient
dynamics nor in the steady state. While, this cannot be guaranteed in general,
the conservation of the spin lengths can easily be verified for a particular
application. In this case, Eqs. (7.32)-(7.34) represent a faithful stochastic
approximation of a spin decay process, which is fully compatible with the
DTWA.

7.3 Examples and benchmarking

In this section we demonstrate the application of the DDTWA for two paradig-
matic settings in quantum optics, which can also be used to benchmark the
results against exact numerical simulations in certain limiting cases. The
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first example is an ensemble of spin-1/2 systems with spatially varying in-
teractions. For this system it is already known that the DTWA provides
accurate results in the isolated case and we show that adding dephasing or
decay does not affect the accuracy of the method. In the case of decaying
spins we can also simulate the steady states of the ensemble and investigate,
for example, non-equilibrium phase transitions in driven-dissipative spin sys-
tems. As a second setup we consider an ensemble of two-level atoms coupled
to a common optical mode. This setting illustrates how the DDTWA can be
combined with other phase space methods for continuous variable systems
and shows that the relevant interplay between collective interactions and in-
dividual dephasing is accurately captured by our stochastic simulations.

7.3.1 Interacting spin ensembles

We first study the dynamics of an interacting spin ensemble under the influ-
ence of local dephasing and spontenous emission, as described by Eqs. (7.18)
and (7.19). More specifically, we assume that the coherent evolution of the
spins can be modeled by the transverse Ising Hamiltonian

𝐻 =
Ω

2

∑︁
i

𝜎x
i +

1

2

∑︁
i̸=j

𝐽ij𝜎
z
i 𝜎

z
j , (7.42)

where the spin-spin interactions,

𝐽ij =
1

𝑁

𝐽

|r⃗i − r⃗j|𝛼 , (7.43)

decay algebraically with the (normalized) distance between the spins, |r⃗i− r⃗j|.
Such a scenario appears, for example, in trapped ion systems, where 0 < 𝛼 <
3 [217–219], while for an ensemble of Rydberg atoms with van-der-Waals
interactions we obtain 𝛼 = 6 [224, 225, 228].
By adding the stochastic terms for local dephasing and spontaneous emis-

sion to the mean-field equations, we arrive at the following set of stochastic
differential equations,

𝑑sxi = −
∑︁
j ̸=i

2𝐽ijs
y
i s

z
j𝑑t+ 𝑑sxi |deph + 𝑑sxi |decay, (7.44)

𝑑syi =
∑︁
j ̸=i

2𝐽ijs
x
i s

z
j𝑑t− Ωszi 𝑑t+ 𝑑syi |deph + 𝑑syi |decay, (7.45)

𝑑szi = Ωsyi 𝑑t+ 𝑑szi |decay, (7.46)

which we will now study in different limits of interest.

Dephasing

In Fig. 7.2 we use the DDTWA to evaluate, first of all, the dynamics of
an interacting spin ensemble in the absence of the driving field, Ω = 0. In
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Figure 7.2: Time evolution of the squeezing parameter, 𝜉2, for an ensemble
of 𝑁 = 64 spins arranged on a 3D cubic lattice with unit spacing. The
spins are initially aligned along the x-direction, |Ψ0⟩ =

∏︀
i | → ⟩i, where

| → ⟩ = (| ↑ ⟩ + | ↓ ⟩)/√2. For these simulations we assumed Ω = 0 and
an individual dephasing of each spin with a rate (a) Γ𝜑/𝐽 = 0.0025 and (b)
Γ𝜑/𝐽 = 0.025. For a better comparison the curves for different 𝛼 are plotted
in terms of the rescaled time unit 𝐽−1, where 𝐽 =

∑︀
i,j 𝐽ij/𝑁 . The solid lines

show the exact results [244] for different power-law interactions. The crosses
show the corresponding values obtained with the DDTWA for nt = 10000
trajectories.

this example we have assumed that the 𝑁 = 64 spins are arranged on a
cubic lattice in three dimensions with unit spacing and different values of
the power-law exponent 𝛼 are considered. The central quantity of interest in
these plots is the spin-squeezing parameter [206]

𝜉2 = min
𝜑

(∆𝑆⊥
𝜑 )

2 × 𝑁

|⟨𝑆⃗⟩|2 . (7.47)

Here 𝑆⃗ = (𝑆x, 𝑆y, 𝑆z) is the collective spin operator with components 𝑆k =
1
2

∑︀
𝜎k
i , and 𝑆⊥

𝜑 = 𝑆⃗ · n⃗⊥
𝜑 is the projection of 𝑆⃗ onto an axis n⃗⊥

𝜑 parametrized

by an angle 𝜑 in the plane orthogonal to the mean spin vector ⟨𝑆⃗⟩. As usual,
(∆𝑂)2 = ⟨𝑂2⟩−⟨𝑂⟩2 denotes the variance of an operator 𝑂. Achieving a spin
squeezing parameter of 𝜉2 < 1 is relevant for metrological applications, but it
also implies that the spins are entangled [207]. Therefore, such spin-squeezing
effects cannot be described by mean-field theory.
In the absence of the driving field the z-components of all the spins are

conserved and the system dynamics can still be solved efficiently for a large
number of spins [244]. This allows us to directly compare the approximate
stochastic simulations with the corresponding exact results. In Fig. 7.2(a)
we find that for a very small dephasing rate of Γ𝜑/𝐽 = 0.0025 the squeezing
parameter 𝜉2 calculated with the DDTWA is accurate up to the level of a
few percent, which is consistent with DTWA results for isolated systems. As
shown in Fig. 7.2(b), for a slightly stronger rate of Γ𝜑/𝐽 = 0.025 the accuracy
of the DDTWA improves even further. This can be attributed to the overall
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Figure 7.3: Plot of the time evolution of (a) the magnetization ⟨𝑆z(t)⟩ and
(b) the squeezing parameter 𝜉2(t) of a driven spin ensemble with different
driving strengths Ω and individual dephasing with rate Γ𝜑/𝐽 = 0.2. Initially,
all the spins are polarized along the negative z-axis. In both plots, 𝑁 = 40
and all-to-all interactions (𝛼 = 0) are assumed. The solid lines are obtained
from an exact integration of the master equation exploiting permutational
invariance, while the crosses are obtained from a DDTWA simulation with
nt = 10000 trajectories.

reduction of quantum correlations, which are only approximately taken into
account in the coherent dynamics.
As a next step we extend our analysis to finite driving strengths, Ω ̸= 0.

In this case there are no analytic solutions available and exact numerical
simulations are restricted to small spin systems, 𝑁 ≲ 20. However, in the
limit of all-to-all interactions, i.e., 𝛼 = 0, simulations with a large number
of spins, 𝑁 ∼ 100, can still be done by exploiting the permutational sym-
metry of the master equation. In Fig. 7.3 we use this symmetry [245, 246]
to compare the DDTWA simulations of the driven Ising model with 𝛼 = 0
to the corresponding exact numerical results. Again we find that for all the
considered driving strengths the DDTWA provides very accurate predictions
for the mean spin components as well as for the achievable level of quantum
correlations signified by the squeezing parameter.
Moreover, we consider the situation of collective dephasing. In this case

both the interactions and the dephasing preserve the total spin 𝑆 and the
exact dynamics can be restricted to the totally-symmetric subspace with a
dimension that only scales as 𝑑𝑁 = 2𝑁 . In Fig. 7.4 we do so by evaluating
variances and correlations of collective spin operators under the combined
influence of interactions and dephasing. Again we find perfect agreement
with the exact results.

Decay

Let us now continue with a similar study of the transverse Ising model for
Γ𝜑 = 0, but including a rate of decay, Γ. In Fig. 7.5 we plot the spin-squeezing
dynamics for different power-law interactions in the absence of the driving
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Figure 7.4: Collective quadratic operators ⟨𝑆2
x⟩, ⟨𝑆2

y⟩ and ⟨𝑆y𝑆z⟩ as a
function of time t for different collective dephasing strengths Γ𝐶

𝜑 =
0, 0.01𝑔, 0.02𝑔, 0.03𝑔, 0.04𝑔, 0.05𝑔 of the Ising model with all to all interac-
tion 𝛼 = 0 and 𝑁 = 100 spins. The spins are initially aligned along the
x-direction, |Ψ0⟩ =

∏︀
i | → ⟩i, where | → ⟩ = (| ↑ ⟩ + | ↓ ⟩)/√2. The solid

lines are from exact simulations while the crosses are obtained by the discrete
truncated Wigner approximation (DTWA) method.

field, Ω = 0, and two different values of Γ. Again we find excellent agreement
between the DDTWA simulation and the exact solution [244], which shows
that for such short-time dynamical simulations both types of decoherence
processes can be accurately taken into account.

Let us now consider the case of a finite driving Ω. While under the in-
fluence of pure dephasing the spin ensemble always evolves into an infinite
temperature state, this is not the case for driven spin systems in the presence
of decay. As we illustrate in the following, in this case the DDTWA can also
be used to simulate nontrivial steady states of the spin ensemble when Ω ̸= 0.
In order to benchmark these simulations, we focus again on the case 𝛼 = 0,
where exact numerical calculations are still possible. In Fig. 7.6 we evaluate
the steady states of the dissipative transverse Ising model for varying driv-
ing strengths Ω. For all parameters we find excellent agreement between the
DDTWA simulations and the exact results, both for the mean values of the
collective observables ⟨𝑆k⟩ as well as for the variances (∆𝑆k)2. The sharp
peak in the spin fluctuations at a critical driving strength of Ω𝑐 ≈ 𝐽 indicates
a non-equilibrium phase transition in the steady state of the spin ensemble,
which shows that the DDTWA is well suited to study such phenomena.

In summary, these examples clearly demonstrate the high level of accuracy
that can be achieved with the dissipative DTWA when simulating interacting
spin systems with dephasing and decay and equivalently accurate results are
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Figure 7.5: Time evolution of the squeezing parameter 𝜉2 for an ensemble
of 𝑁 = 64 spins arranged on a cubic lattice with unit spacing. The spins
are initially aligned along the x-direction, |Ψ0⟩ =

∏︀
i | → ⟩i, where | → ⟩ =

(| ↑ ⟩ + | ↓ ⟩)/√2. For these simulations we assumed Ω = 0 and individual
spontaneous emission of each spin with a rate (a) Γ/𝐽 = 0.0025 and (b)
Γ/𝐽 = 0.025. For a better comparison the curves for different 𝛼 are plotted
in terms of the rescaled time unit 𝐽−1, where 𝐽 =

∑︀
i,j 𝐽ij/𝑁 . The solid

lines show the exact results [244] for different power-law interactions. The
crosses show the corresponding values obtained by the DDTWA method for
nt = 10000 trajectories.

obtained for spatially correlated dephasing. Small deviations from the exact
predictions are mainly due to inaccuracies in the coherent dynamics, which
takes spin-spin correlations only approximately into account. Therefore, we
find that in most situations the accuracy of the DDTWA improves in the
presence of decay and dephasing, where such correlations are reduced.

7.3.2 Driven Dicke model

Apart from being capable of simulating large ensembles of spins, the DDTWA
can be readily combined with conventional phase space methods for contin-
uous degrees of freedom. This is relevant for a large range of cavity QED
models, where many two-level systems are coupled to a common photonic
mode. As an illustrative example, we consider here the driven Dicke model
with Hamiltonian

𝐻 =
𝑔√
𝑁

(︀
𝑆+𝑎+ 𝑆−𝑎†

)︀
+ Ω𝑆x, (7.48)

where 𝑆± = 𝑆x± i𝑆y and 𝑎 (𝑎†) is a bosonic annihilation (creation) operator.
To model a realistic scenario, we include the dephasing of the two-level sys-
tems as well as the decay of the photonic mode with a rate 2𝜅. The whole
system is then described by the master equation

𝜌̇ = −i[𝐻, 𝜌] + ℒdeph(𝜌) + 𝜅
(︀
2𝑎𝜌𝑎† − 𝑎†𝑎𝜌− 𝜌𝑎†𝑎

)︀
. (7.49)
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Figure 7.6: Steady state of the transverse Ising model given in Eq. (7.42)
with 𝛼 = 0 and for a spin decay rate of Γ/𝐽 = 0.2. The two plots show (a)
the average values of the spin components, ⟨𝑆x,y,z⟩, and (b) their fluctuations,
(∆𝑆k)

2 = ⟨𝑆2
k⟩−⟨𝑆k⟩2, as a function of the driving strength Ω and for 𝑁 = 64.

To apply the DDTWA in such a mixed setting, it is natural to represent also
the bosonic mode in terms of its Wigner function,

𝑊 (𝛼, t) =
1

𝜋2

∫︁
𝑑2𝛽 𝑒(𝛼𝛽

*−𝛼*𝛽) Tr
{︁
𝑒𝛽𝑎

†−𝛽*𝑎𝜌(t)
}︁
. (7.50)

In this case the moments of 𝑊 (𝛼, t) correspond to the symmetrically-ordered
expectation values of mode operators [97, 102],

⟨(𝑎†)k𝑎ℓ⟩|sym(t) =
∫︁

𝑑n𝛼 (𝛼*)k𝛼ℓ𝑊 (𝛼, t). (7.51)

In the common situation where the photonic mode is initially prepared in the
vacuum state or in a coherent state with amplitude 𝛼0, the corresponding
Wigner function,

𝑊 (𝛼, t = 0) =
2

𝜋
𝑒−|𝛼−𝛼0|2 , (7.52)

is positive and can be interpreted as a probability distribution for the classical
amplitudes 𝛼. In this case we can also sample the time evolution of 𝑊 (𝛼, t)
by a set of stochastic trajectories {𝛼n(t)} and evaluate expectation values as

⟨(𝑎†)k𝑎ℓ⟩|sym(t) ≃ 1

nt

nt∑︁
n=1

[𝛼*
n(t)]

k𝛼ℓ
n(t). (7.53)

In the absence of the two-level systems, these trajectories obey [97, 102]

𝑑𝛼|loss = −𝜅𝛼𝑑t+
√︀
𝜅/2(𝑑𝑊1 + i𝑑𝑊2), (7.54)

and describe the loss of energy as well as the associated amount of quantum
noise.
Given a stochastic description for each of the individual subsystems, we can

now simulate the dynamics of the whole setup by imposing a joint TWA, i.e.,
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by treating the coupling between the photonic mode and the spins on a mean-
field level. As a result we obtain the following set of stochastic differential
equations

𝑑sxi = − 2𝑔√
𝑁
Im(𝛼)szi 𝑑t+ 𝑑sxi |deph, (7.55)

𝑑syi = − 2𝑔√
𝑁
Re(𝛼)szi 𝑑t− Ωszi 𝑑t+ 𝑑syi |deph, (7.56)

𝑑szi =
2𝑔√
𝑁

[Re(𝛼)syi + Im(𝛼)sxi ] 𝑑t+ Ωsyi 𝑑t, (7.57)

𝑑𝛼 = −i
𝑔√
4𝑁

∑︁
i

(sxi + isyi )𝑑t+ 𝑑𝛼|loss, (7.58)

which are integrated for a set of nt ≫ 1 initial values s⃗i(0) and 𝛼(0), randomly
drawn from the Wigner distributions of the individual subsystems.
In Fig. 7.7 we use this combined TWA approach to simulate the dynamics

of the driven Dicke model, first of all for 𝑁 = 10 spins, where the results can
still be compared with an exact simulation of the master equation. From this
comparison we find an excellent agreement between the stochastic simulations
and the exact results, both for the cavity and the spin observables Although
here we do not include a decay of the spins, the coupling to the lossy photonic
mode still relaxes the combined system. Therefore, also this setup allows us
to investigate the properties of the nontrivial steady states of this system.
For example, in Fig. 7.7(c) we plot the stationary value of the two-photon
correlation function

𝑔(2)(0) =
⟨𝑎†𝑎†𝑎𝑎⟩
⟨𝑎†𝑎⟩2 . (7.59)

This quantity shows a qualitative change from a coherent state, where 𝑔(2)(0) ≃
1, to a thermal-like state with 𝑔(2)(0) ≳ 2. This crossover as a function of
the driving strength depends explicitly on the spin dephasing rate Γ𝜑. Note
that in stochastic simulations, higher-order correlations typically have larger
statistical errors, which can also be seen in the plot for 𝑔(2)(0).
As another illustrative example, we compare in Fig. 7.7(d) the time evolu-

tion of the driven Dicke model for the two limiting cases of individual dephas-
ing and collective dephasing with the same rate Γ𝜑. For this plot we have
assumed a moderate driving and coupling strength, such that the dissipative
cavity acts mainly as a collective decay channel for the spins. For collective
dephasing, where the system dynamics remains constrained to the maximal
angular momentum subspace, the system then quickly relaxes to a stationary
state with only a small spin population. In contrast, for individual dephasing
the spin population increases with a rate ∼ Γ𝜑 for longer times. This can be
understood from the fact that the local dephasing processes drive the spins
into orthogonal subspaces with a smaller total angular momentum quantum
number. Within these subspaces there exists many subradiant states, |𝜓sub⟩,
which are decoupled from the cavity mode, i.e. 𝑆−|𝜓sub⟩ = 0, but still have a
finite spin population that remains trapped.
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Figure 7.7: Simulation of the driven Dicke model as described in Eq. (7.49)
for 𝑁 = 10 and 𝜅 = 0.5𝑔. (a) Time evolution of ⟨𝑆y(t)⟩ for Ω = 2𝑔 and
different dephasing rates Γ𝜑, when intially prepared in |Ψ0⟩ =

∏︀
i | ↓ ⟩i . (b)

Steady state cavity occupation number ⟨𝑎†𝑎⟩ and (c) steady state second or-
der correlation function of the cavity field 𝑔(2)(0) as a function of the driving
strength Ω and different dephasing rates Γ𝜑. (d) Evolutions of an initial fully
polarized spin in the presence of individual or collective dephasing with the
same rate. For this plot Ω = 𝑔. In all the plots the solid lines represent the
results obtained from an exact simulations of the master equation exploiting
permutational invariance while the crosses are obtained by the discrete trun-
cated Wigner approximation (DTWA) method. The dashed line shows the
prediction of mean-field theory.

In Fig. 7.7(d) we also show the prediction for ⟨𝑆z⟩(t) obtained from mean-
field theory. While mean-field theory still predicts very accurately the initial
oscillations and the overall increase of the populations, the solution exhibits
large, weakly-damped oscillations that are a clear artefact of this approxi-
mation. Note that the mean-field contribution to 𝑑s⃗i|deph is the same for
local and collective dephasing. Thus, a mean-field simulation cannot distin-
guish between spatially correlated and uncorrelated noise, a difference that is
manifested only in the stochastic noise terms.

In summary, the simulation of this driven Dicke model demonstrates the
applicability of the DDTWA for simulating cavity QED systems with large
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ensembles of two-level systems. In particular, the example presented in
Fig. 7.7(d) shows that this method captures very accurately both the col-
lective coupling to the maximal angular momentum states as well as the
physics associated with subradiant states.

7.4 Large-scale simulations

In the previous section we have focused on examples and parameter regimes,
where a comparison with other exact methods was still possible. However,
the main advantage of the DDTWA is that it can be easily scaled up and
applied in many experimentally relevant situations where exact methods are
no longer available. To illustrate this point, we consider in this section the
superradiant decay of a large ensemble of interacting two-level atoms inside
a lossy cavity. An old question in connection to superradiance is, how dipole-
dipole interactions in dense atomic ensembles affect the decay process by
inducing transitions out of the fully symmetric subspace [247]. In real ex-
periments, similar effects can also arise from local dephasing and a relevant
follow-up question is, if interaction effects can actually be distinguished from
fluctuating or static frequency inhomogeneities. As we show in the following,
the DDTWA can be used to answer these and related questions by direct
numerical simulations.
To do so we consider the same master equation as in Section 7.3.2,

𝜌̇ = −i[𝐻, 𝜌] + ℒdeph(𝜌) + 𝜅
(︀
2𝑎𝜌𝑎† − 𝑎†𝑎𝜌− 𝜌𝑎†𝑎

)︀
, (7.60)

but with a Hamiltonian of the form

𝐻 =
𝑔√
𝑁

(︀
𝑆+𝑎+ 𝑆−𝑎†

)︀
+
∑︁
i<j

𝐽xx
ij 𝜎

x
i 𝜎

x
j +

∑︁
i

𝜔i

2
𝜎z
i . (7.61)

Here the first and the second terms represent the collective atom-cavity cou-
pling and the short-range spin-spin interactions with 𝐽xx

ij = 𝐽 |r⃗i − r⃗j|−3,
respectively. The last term accounts for an inhomogeneous broadening of
the atomic transition frequency, where the 𝜔i are randomly drawn from a
Gaussian distribution with variance 𝜎2 and zero mean.
The model defined in Eq. (7.60) and Eq. (7.61) can now be used to inves-

tigate, for example, how superradiant decay is influenced by (i) short-range
interactions, (ii) Markovian dephasing and (iii) static inhomogeneous broad-
ening. To do so we consider in Fig. 7.8 a system of 𝑁 ≈ 105 atoms arranged
on a cubic lattice and initially prepared in the excited state. We then use
the stochastic DTWA method to simulate the consecutive decay dynamics
under the influence of those three processes. For these simulations we have
assumed 𝛼 = 3, but all interactions with |𝐽xx

ij |/𝐽 < 0.01 have been set to
zero. For the frequency distribution we have chosen a variance of 𝜎2 = 2Γ2

𝜑,
such that the inhomogeneous broadening and the Markovian dephasing lead
to a loss of coherence over a similar timescale. The plots in Fig. 7.8 show
that while all three mechanism lead to a strong inhibition of the decay, the



7 Dissipative discrete truncated Wigner approximation 111

(a) (b)

-1

0

1

0

0.1

0.2

0 10 20 30 0 10 20 30

Figure 7.8: Superradiant decay of an ensemble of 𝑁 = 473 = 103823 two-
level systems that are initially prepared in the excited state and couple to a
lossy cavity mode with 𝜅 = 𝑔, as sketched in (a). In (b) we show the de-
cay of z-magnetization and in (c) the photon number ⟨𝑎†𝑎⟩ ∼ 𝐼ph(t), which
is proportional to the emitted field intensity. In both plots we compare the
evolution of the bare non-interacting ensemble (blue line), with dynamics in
the presence of additional Ising interactions ∼ 𝜎x

i 𝜎
x
j , with 𝐽x/𝑔 = 0.025 and

𝛼 = 3 (purple line). The other two cases show the dynamics of a noninter-
acting ensemble, but in the presence of local Markovian dephasing with a
rate Γ𝜑/𝑔 = 0.5 (red line) and for an inhomogeneously broadened ensemble
(yellow line). In the latter case the spin frequencies 𝜔i have been randomly
drawn from a normal distribution with zero mean and a variance of 𝜎2 = 2Γ2

𝜑.
To obtain this data nt = 64 trajectories were simulated.

actual decay dynamics of the atomic population and the emitted photons is
both qualitatively and quantitatively very different.
While a more detailed investigation of this system is beyond the scope of

this work, these basic results already show how the stochastic DTWA can
be used to simulate interesting dynamical effects in large-scale spin systems
under experimentally realistic conditions. Note that for the plots in Fig. 7.8
we have simulated about 𝑁 = 105 atoms coupled to a cavity mode that
becomes populated with many thousands of photons. We remark that the
simulations shown in Fig. 7.8 have been performed on a regular PC within
a day of computation time in total and with some additional programming
efforts and the use of a supercomputer, the simulation of millions of spins
becomes possible.
Such system sizes are far beyond the typical atom numbers of about 𝑁 ≈

150 [245] that can be treated in exact simulations of similar models by exploit-
ing permutation symmetry and using quantum trajectories. Moreover, both
the short-range interactions as well as the inhomogeneous frequency distribu-
tion break the permutational invariance of the system such that the current
type of simulations are simply not accessible with such exact numerical tech-
niques. At the same time, since during the whole evolution ⟨𝜎x

i ⟩ = ⟨𝜎y
i ⟩ = 0,

neither the initial decay nor the effect of transverse spin-spin interactions
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would be captured by a simulation of the mean-field equations of motion
only. Higher-order approximation schemes based on a cumulant expansion
(see Chapter 2.5), which can account for such effects, already scale as 𝑁2 or
higher and are thus no longer applicable for the considered system sizes. Note
that cumulant expansion techniques also often exhibit numerical instabilities,
which do not occur in the DDTWA approach.

7.5 Conclusion

In this chapter, we have presented a simple and efficient numerical algorithm
for simulating large spin ensembles and cavity-QED systems in the pres-
ence of realistic decoherence processes. We used a similar approach as for
TWOQS (see Chapter 6) by replacing the deterministic classical equations
with stochastic equations, to extend the discrete truncated Wigner approxi-
mation to open quantum system (DDTWA). By using stochastic equations it
is possible to account for damping and loss of coherence while still preserving
the total length of each classical spin on average. This last feature ensures
that the magnitude of spin-spin interactions is not reduced and that the ac-
curacy of the DTWA is not degraded. We benchmarked the method with
exact simulations and find that the DDTWA is very well suited to simulate
such systems with very high accuracy. As there are usually less correlations
in a dissipative system, simulations reveal that the accuracy improves in the
prescence of dissipation compared to the equilibrium case. Because of the
linear scaling of stochastic equations with the number of spins, we showed
that simulations of a hundred-thousand spins are possible even on a regu-
lar computer. We showed that the DDTWA can reproduce steady states
very accurately and as there a no restriction on the dimensionality, it will be
interesting to apply the method to 2D and 3D systems in order to investi-
gate dissipative phase transitions. Moreover, this method is not restricted to
white noise processes only, also systems in the presence of colored noise can
be simulated very efficiently.
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"Shampoo!"

- Marko Arnautovic

In this thesis, we studied the influence of dissipation on quantum systems.
We can group the main findings of this thesis into two parts. The first set of
results concern the competition between coherent and incoherent processes
in systems with gain and loss. We analyzed a spin chain where the coherent
interactions between neighboring lattice sites compete with alternating gain
and loss processes. We found that this system experiences phase transitions
which are different from what we would expect from equilibrium phase tran-
sitions. We identified a discontinuous phase transition without coexistence
of the two distinct phases. Moreover, when simulating large lattices of spins
we identified long-range correlations at the critical point, however this phase
transition was not accompanied by any symmetry breaking in the system.
These unconventional phase transitions can be linked to the dynamical effect
of PT-symmetry breaking in classical systems.
The effect of PT-symmetry breaking arises through the competition of co-

herent and incoherent processes and has been demonstrated in various classi-
cal systems in the past years. In this thesis, we introduced for the first time
a symmetry relation for Liouville operators, which extends the PT-symmetry
definition for classical systems to open quantum systems. This symmetry re-
lation is not restricted to a specific kind of system such as quadratic bosonic
systems, where the first order mean values coincide with the classical equa-
tions of motion. It can be used even for randomly generated systems. We
proved that systems fulfilling this symmetry relation possess a symmetric
phase which can be broken by increasing the dissipation strength. In the
thermodynamic limit, the competition between coherent dynamics and dissi-
pation leads to a sharp phase transition between a symmetric and a symmetry
broken regime in analogy to the classical transition.
Surprisingly, the effect of symmetry breaking can be also found when study-

ing the energy transport between two quantum machines. Depending on the
injection and extraction rate of the quantum machines, the system is in a spa-
tially symmetric or a symmetry broken steady state. This emergent symme-
try crucially influences the energy transport properties and we found a noise
dominated and a coherent transport regime under the influence of quantum
or thermal noise. Moreover, we showed that the competition of coherent and
incoherent processes and nonlinear saturation effects leads to a flow of energy
which is very different from what one would intuitively expect from Ohm’s
law.



114

In order to study such extended open quantum systems, it requires new
methods. In the second part of the thesis we introduced new methods to
efficiently study large open quantum systems, the truncated Wigner method
for open quantum Spin (TWOQS) and the discrete truncated Wigner ap-
proximation (DDTWA). Both methods are based on the truncated Wigner
approximation and map a master equation to a set of stochastic equations in
order to capture dissipation while still preserving the initial quantum fluctu-
ations. As a result, both methods can accurately reproduce spin squeezing
effects and even the steady states of large many-body systems. While the
DDTWA can be used to study spin-1/2 systems in the presence of decay and
dephasing, the TWOQS works best for large quantum spin numbers. Because
the methods scale only linearly with the number of spins, large spin systems
consisting of 𝑁 = 105 spins can be simulated on a regular computer. Studying
dissipative phase transitions of 2D and 3D spin systems is very challenging as
there are no reliable numerical techniques to accurately simulate large-scale
systems. As both methods are not restricted to any dimension or interaction
pattern, we can finally simulate large-scale 2D and 3D systems very accu-
rately. This will be a very important step towards a better understanding of
dissipative phase transitions. Moreover, the DDTWA enables the simulation
of realistic experiments by including all different forms of dephasing, decay
and inhomogeneities. It would be therefore very interesting to study the ef-
fect of these imperfections on large-scale interacting spin systems. This could
help experimentalist to improve their experiments as they better understand
the impact of imperfections in their setups.
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A Energy transport and

symmetry breaking in

microscopic power grids

A.1 Fokker-Planck equation

In the following we give a detailed derivation of the mapping of the master
equation Eq. (3.1) to a set of stochastic equations Eq. (3.4)-(3.6). In the
regime n0 ≫ 1 the cutoff function 𝑓(x) in Eq. (3.3) varies slowly on the
scale of individual excitations and the master equation can be mapped onto a
Fokker-Planck equation for the Glauber-Sudarshan P-representation [97, 99,
102]. This distribution function is defined by

𝜌 =

∫︁ ∏︁
ℓ

𝑑2𝛼ℓ 𝑃 ({𝛼ℓ})|{𝛼ℓ}⟩⟨{𝛼ℓ}|, (A.1)

where |{𝛼ℓ}⟩ denotes a multi-component coherent state. By using the usual
substitution rules [97, 102]

𝑎ℓ𝜌 → 𝛼ℓ𝑃, 𝑎†ℓ𝜌 →
(︂
𝛼*
ℓ −

∂

∂𝛼ℓ

)︂
𝑃,

𝜌𝑎†ℓ → 𝛼*
ℓ𝑃, 𝜌𝑎ℓ →

(︂
𝛼ℓ − ∂

∂𝛼*
ℓ

)︂
𝑃,

(A.2)

we can convert Eq. (3.1) for the density operator 𝜌 into a partial differential
equation for 𝑃 ({𝛼ℓ}). We obtain

∂𝑃

∂t
=

∂𝑃

∂t

⃒⃒⃒⃒
lin

+
∂𝑃

∂t

⃒⃒⃒⃒
nl

, (A.3)

where the first term,

∂𝑃

∂t

⃒⃒⃒⃒
lin

=
1

2

[︃
−i𝑔

(︃
𝑁−1∑︁
ℓ=1

∂

∂𝛼ℓ

𝛼ℓ+1 +
𝑁∑︁
ℓ=2

∂

∂𝛼ℓ

𝛼ℓ−1

)︃

+ 𝛾
𝑁∑︁
ℓ=1

(︂
∂

∂𝛼ℓ

𝛼ℓ +𝑁th
∂2

∂𝛼ℓ∂𝛼*
ℓ

)︂
+ 𝑐.𝑐.

]︃
𝑃,

(A.4)

describes the linear chain and already has the form of a Fokker-Planck equa-
tion.
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The nonlinear dissipative terms in Eq. (3.1) at the ends of the chain trans-
late into higher order derivatives for the P-distribution and additional approx-
imations are required. To do so we first use the substitution rules from above
to translate the action of 𝑓(𝑎†𝑎) on the density operator into a differential
operator acting on a coherent state,

𝑓(𝑎†𝑎)|𝛼⟩⟨𝛼| →
∞∑︁

m=0

𝑓m𝛼
m

(︂
𝛼* +

∂

∂𝛼

)︂m

|𝛼⟩⟨𝛼|. (A.5)

Here the coefficients 𝑓m follow from an expansion of the operator 𝑓(𝑎†𝑎) into
a normally ordered series

𝑓(𝑎†𝑎) =
∞∑︁

m=0

𝑓m(𝑎
†)m𝑎m. (A.6)

By using the binomial theorem(︂
𝛼* +

∂

∂𝛼

)︂m

=
m∑︁
k=0

(︂
m

k

)︂
(𝛼*)m−k ∂k

∂𝛼k

=
m∑︁
k=0

1

k!

∂k

∂𝛼*k (𝛼
*m)

∂k

∂𝛼k
,

(A.7)

and integrating by parts we obtain the following substitution (omitting the
site index)

𝑓(𝑎†𝑎)𝜌 →
∞∑︁

m=0

m∑︁
k=0

𝑓m𝛼
m (−1)k

k!

∂k

∂𝛼*k (𝛼
*m)

∂k

∂𝛼k
𝑃 (𝛼)

=
∞∑︁
k=0

(−1)k

k!

∂k

∂𝛼*k
[︀
𝑓(𝛼, 𝛼*)

]︀ ∂k

∂𝛼k
𝑃 (𝛼),

(A.8)

where 𝑓(𝛼, 𝛼*) = ⟨𝛼|𝑓(𝑎†𝑎)|𝛼⟩. Since 𝑓(𝑎†𝑎) is a function of 𝑎/
√
n0 and

𝑎†/
√
n0, the derivatives of 𝑓(𝛼, 𝛼*) scale as ∂k

∂𝛼*k 𝑓(𝛼, 𝛼
*) ∝ n

−k/2
0 . Therefore,

in the limit n0 → ∞, we can neglect all derivatives and approximate

𝑓(𝑎†𝑎)𝜌 → 𝑓(𝛼, 𝛼*)𝑃 (𝛼, 𝛼*) +O
(︂

1√
n0

)︂
. (A.9)

Note that the definition of 𝑓(𝛼, 𝛼*) is based on the normally ordered series
expansion and in general 𝑓(𝛼, 𝛼*) ̸= 𝑓(|𝛼|2). Therefore, in our derivation we
make a second approximation and neglect this difference, i.e.,

𝑓(𝛼, 𝛼*) = ⟨𝛼| 1

(1 + 𝑎†𝑎/n0)
|𝛼⟩ ≈ 1

(1 + |𝛼|2/n0)
. (A.10)

To show the validity of this approximation, we first evaluate the function
exactly [248]

⟨𝛼| 1

(1 + 𝑎†𝑎/n0)
|𝛼⟩ = 𝑒−|𝛼|2(−|𝛼|)−n0

[︀
Γ(n0, 0)− Γ(n0,−|𝛼|2)]︀ (A.11)
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(a) (b)

Figure A.1: Plot of the function 𝑓(𝛼, 𝛼*) = ⟨𝛼| 1
(1+𝑎†𝑎/n0)

|𝛼⟩ and its approxi-

mated form 1
(1+|𝛼|2/n0)

for (a) n0 = 1 and (b) n0 = 10.

and compare the results with the approximate form 1/(1 + |𝛼|2/n0). Here
Γ(n, x) denotes the incomplete Gamma function. Even deep in the quantum
regime, n0 ≈ 1, these two expressions agree up to a few percent and become
essentially identical for n0 ≳ 10 as shown in Fig. A.1. Therefore, we conclude
that the main approximation in the derivation of our semiclassical Fokker-
Planck equation arises from neglecting higher order derivatives in Eq. (A.8).
Based on these considerations we obtain the following approximate substitu-
tion rules

𝐴𝜌 → 𝛼

(1 + |𝛼|2/n0)
𝑃 (𝛼, 𝛼*),

𝐴†𝜌 →
(︂
𝛼* − ∂

∂𝛼

)︂
1

(1 + |𝛼|2/n0)
𝑃 (𝛼, 𝛼*),

(A.12)

and analogous relations for 𝜌𝐴 and 𝜌𝐴†. All together we then obtain

∂𝑃

∂t

⃒⃒⃒⃒
nl

=
1

2

[︂
− ∂

∂𝛼1

Γi(𝛼1)𝛼1 +
∂2

∂𝛼1∂𝛼*
1

Γi(𝛼1) +
∂

∂𝛼𝑁

Γ𝑒(𝛼𝑁)𝛼𝑁 + 𝑐.𝑐.

]︂
𝑃,

(A.13)

where Γi,𝑒(𝛼) = Γi,𝑒𝑓
2(|𝛼|2). After this approximation, the resulting Fokker-

Planck equation (A.3) can be mapped onto the set of stochastic differential
as explained in Chapter 2.4.3.

𝛼1 =
Γi(𝛼1)− 𝛾

2
𝛼1 + i

𝑔

2
𝛼2 +

√︀
𝐷th+Γi(𝛼1)𝜉1(t), (A.14)

𝛼̇ℓ = −𝛾

2
𝛼ℓ + i

𝑔

2
(𝛼ℓ−1 + 𝛼ℓ+1) +

√︀
𝐷th𝜉ℓ(t), (A.15)

𝛼𝑁 = −Γ𝑒(𝛼𝑁) + 𝛾

2
𝛼𝑁 + i

𝑔

2
𝛼𝑁−1 +

√︀
𝐷th𝜉𝑁(t). (A.16)

Here Γi,𝑒(𝛼) = Γi,𝑒𝑓
2(|𝛼|2) and 𝐷th = 𝛾𝑁th is the thermal diffusion rate. The

𝜉ℓ(t) are white noise processes, which satisfy ⟨𝜉*ℓ (t)𝜉ℓ′(t′)⟩ = 𝛿ℓℓ′𝛿(t− t′).





B Non-equilibrium magnetic

phases in spin lattices with

gain and loss

B.1 Holstein-Primakoff approximation

In the ordered FM and AM phases and for large 𝑆 the spins are highly
polarized and we can use a HPA [197] to linearize the dynamics of each spin
around its mean value on the Bloch sphere. Under this approximation the
collective spin operators 𝑆± and 𝑆z are mapped onto a bosonic mode with
annihilation operator 𝑐. For example, for a spin down state with ⟨𝑆z⟩ ≈ −𝑆
we obtain

𝑆+ ≃
√
2𝑆𝑐†, 𝑆− ≃

√
2𝑆𝑐, 𝑆z = −𝑆 + 𝑐†𝑐. (B.1)

Equivalently, in the opposite limit of a spin up state, where ⟨𝑆z⟩ ≈ 𝑆, we find

𝑆+ ≃
√
2𝑆𝑐, 𝑆− ≃

√
2𝑆𝑐†, 𝑆z = 𝑆 − 𝑐†𝑐. (B.2)

This approach then allows us to find a description of the system in terms of
bosonic modes valid for large 𝑆 in each of the ordered phases. For example,
within the AM phase with all spins pointing up, which we label | ⇑⇑⟩, we
obtain the linearized master equation

𝜌̇ = − i

ℏ
[𝐻𝐻𝑃𝐴, 𝜌] + Γ𝑔

𝑁∑︁
n=1

D[𝑐𝑎,n]𝜌+ Γl

𝑁∑︁
n=1

D[𝑐†𝑏,n]𝜌, (B.3)

where

𝐻𝐻𝑃𝐴 = ℏ
𝑁∑︁

n=1

𝑔 (𝑐𝑎,n𝑐
†
𝑏,n + 𝑐†𝑎,n𝑐𝑏,n) + ℎ(𝑐𝑏,n𝑐

†
𝑎,n+1 + 𝑐†𝑏,n𝑐𝑎,n+1). (B.4)

Here we have introduced the bosonic operators 𝑐𝑎,𝑏, which describe the left
and right spins in each unit cell labeled by n. Similar expression are obtained
for the other phases, |⇓⇓⟩ and |⇑⇓⟩.

B.1.1 Phase boundaries

By assuming periodic boundary conditions, the linearized master equation
can be solved by changing to Fourier space,

𝑐𝑎/𝑏,n =
1√
𝑁

∑︁
k

𝑒ink𝑐𝑎/𝑏,k, (B.5)
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where the Hamiltonian reads

𝐻 = ℏ
∑︁
k

𝑔k𝑐𝑎,k𝑐
†
𝑏,k + 𝑔*k𝑐

†
𝑎,k𝑐𝑏,k (B.6)

with 𝑔k = 𝑔 + ℎ𝑒ik. For the steady-state occupation numbers in k-space we
then obtain

⟨𝑐†𝑎,k𝑐𝑎,k⟩ =
Γl|𝑔k|2

(Γ𝑔 − Γl)(|𝑔k|2 − Γ𝑔Γl)
, (B.7)

⟨𝑐†𝑏,k𝑐𝑏,k⟩ =
Γl(|𝑔k|2 + Γ𝑔(Γ𝑔 − Γl))

(Γ𝑔 − Γl)(|𝑔k|2 − Γ𝑔Γl)
, (B.8)

⟨𝑐†𝑎,k𝑐𝑏,k⟩ =
i𝑔kΓ𝑔Γl

(Γ𝑔 − Γl)(|𝑔k|2 − Γ𝑔Γl)
, (B.9)

and ⟨𝑐†𝑎,k𝑐𝑎,k′⟩ = 0, etc. for k ̸= k′. The corresponding expectation values for

each lattice site are given by ⟨𝑐†𝑎,n𝑐𝑎,n⟩ = 1
𝑁

∑︀
k⟨𝑐†𝑎,k𝑐𝑎,k⟩ and by approximating

this sum by an integral for 𝑁 → ∞ we obtain

⟨𝑐†𝑏,n𝑐𝑏,n⟩ =
Γl

Γ𝑔 − Γl

(︂
1 +

Γ2
𝑔

𝐶

)︂
, (B.10)

⟨𝑐†𝑎,n𝑐𝑏,n⟩ =
iΓ𝑔Γl

2𝑔(Γ𝑔 − Γl)

(︂
1 +

Γ𝑔Γl + 𝑔2 − ℎ2

𝐶

)︂
, (B.11)

where 𝐶 =
√︀
[(𝑔 − ℎ)2 − Γ𝑔Γl][(𝑔 + ℎ)2 − Γ𝑔Γl]. Finally, the magnetizations

of each of the inequivalent sites are ⟨𝑆z
𝑎⟩ = 𝑆 − ⟨𝑐†𝑎,n𝑐𝑎,n⟩ and ⟨𝑆z

𝑏 ⟩ = 𝑆 −
⟨𝑐†𝑏,n𝑐𝑏,n⟩.
These solutions for the occupation numbers only give real numbers when

Γ𝑔 > Γl and (𝑔 − ℎ)2 > Γ𝑔Γl, which shows that the |⇑⇑⟩ phase is only stable
in these regions of the phase diagram. Note that the same conditions can
be obtained from the linear equations of motion for the mean values ⟨𝑐𝑎/𝑏,n⟩.
Equivalent calculations for the |⇓⇓⟩ phase give

⟨𝑆z
𝑎⟩ = −𝑆 +

Γ𝑔

Γl − Γ𝑔

(︂
1 +

Γ2
l

𝐶

)︂
, (B.12)

⟨𝑆z
𝑏 ⟩ = −𝑆 +

Γ𝑔

Γl − Γ𝑔

(︂
1 +

Γ𝑔Γl

𝐶

)︂
, (B.13)

which are only valid for Γl > Γ𝑔 and (𝑔 − ℎ)2 > Γ𝑔Γl, where this phase is
stable. Finally, for the |⇑⇓⟩ phase we find

⟨𝑆z
𝑎⟩ = 𝑆 − Γl

Γl + Γ𝑔

(︂
−1 +

Γ𝑔Γl

𝐶

)︂
, (B.14)

⟨𝑆z
𝑏 ⟩ = −𝑆 +

Γ𝑔

Γl + Γ𝑔

(︂
−1 +

Γ𝑔Γl

𝐶

)︂
, (B.15)

which sets the phase boundary for this phase as Γ𝑔Γl > (𝑔 + ℎ)2. To obtain
the locations of the phase boundaries for the dimer model one may simply
set ℎ = 0 in these expressions.
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Note that these results can be generalized in a straightforward manner
to higher dimensions and other lattice geometries. For example, in a 2D
square lattice we find that all the ordered phases still exist. In this case the
antiferromagnetic phase is stable for Γ𝑔Γl > 4(𝑔 + ℎ)2, etc.

B.1.2 Correlation length

Close to the points where transitions between the different phases occur we
see the build-up of long-range correlations in the steady-state density matrix.
To quantify these correlations we calculate

⟨𝑐†𝑎,n𝑐𝑎,n+s⟩ = 1

𝑁

∑︁
k

⟨𝑐†𝑎,k𝑐𝑎,k⟩𝑒isk, (B.16)

which can be evaluated in the same way as the magnetization above. For
example, in the |⇑⇓⟩ phase and for s > 0 this quantity takes the form

⟨𝑐†𝑎,n𝑐𝑎,n+s⟩ = Γl

Γl + Γ𝑔

(︂
Γ𝑔Γl

𝐶

)︂
𝜆s−1, (B.17)

where

𝜆 =
Γ𝑔Γl − 𝑔2 − ℎ2 − 𝐶

2𝑔ℎ
. (B.18)

This then lets us express the asymptotic form of the spin-spin correlation
function as

|⟨𝑆−
𝑎,n𝑆

+
𝑎,n+s⟩| ∝ 𝑒−|s|/𝜉, (B.19)

with the correlation length 𝜉 = −1/ log(−𝜆).
Close to the phase boundary 𝜆 → 1 and the correlation length diverges.

We can expand around the transition point, Γ𝑔Γl = (𝑔 + ℎ)2, and find

𝜉 =

(︂
Γ𝑔Γl − (𝑔 + ℎ)2

𝑔ℎ

)︂−1/2

. (B.20)

Similar calculations for the other ordered phases show that the critical expo-
nent for the correlation length in this large-spin limit is always 𝜈 = 1/2.

B.1.3 Purity and entanglement

For Gaussian states we can calculate the purity and entanglement negativity
from the covariance matrix [249]. Since within the HPA the steady-state is
Gaussian we may examine these quantities to understand more about the
nature of the phases. This calculation is only analytically tractable in the
case of a single dimer, where ℎ = 0, and so we focus on this case below. For
the lattice, the same procedure can be carried out numerically.
The covariance matrix for the dimer is defined as

𝑉ij = ⟨(𝑋i𝑋j +𝑋j𝑋i)⟩/2− ⟨𝑋i⟩⟨𝑋j⟩, (B.21)
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where 𝑋1 = (𝑐𝑎 + 𝑐†𝑎), 𝑋2 = i(𝑐𝑎 − 𝑐†𝑎), 𝑋3 = (𝑐𝑏 + 𝑐†𝑏), 𝑋4 = i(𝑐𝑏 − 𝑐†𝑏). The
covariance matrix has the following structure

𝑉 =

(︂
𝑉𝐴 𝑉𝐶

𝑉 𝑇
𝐶 𝑉𝐵

)︂
, (B.22)

where 𝑉𝐴 contains correlations within the first site, 𝑉𝐵 those in the second site
and 𝑉𝐶 the cross-correlations. The covariance matrix of the steady-state can
be derived from the linearized master equation in the respective phases. The
resulting analytic expression for 𝑉 is already quite involved and not explicitly
shown here.

Purity

For a given Gaussian state 𝜌 with co-variance matrix 𝑉 the purity can be
calculated as

Tr{𝜌2} =
1√
det𝑉

. (B.23)

In the case of the | ⇑⇓⟩ phase the resulting expression for the purity of the
steady-state is given by

Tr{𝜌20} =
(Γ𝑔 + Γl)

2(Γ𝑔Γl − 𝑔2)

𝑔2(Γ𝑔 − Γl)2 + Γ𝑔Γl(Γ𝑔 + Γl)2
, (B.24)

while in the other two phases | ⇑⇑⟩ and | ⇓⇓⟩ we obtain

Tr{𝜌20} =
(Γ𝑔 − Γl)

2(𝑔2 − Γ𝑔Γl)

Γ𝑔Γl(Γ𝑔 − Γl)2 + 𝑔2(Γ𝑔 + Γl)2
. (B.25)

We see that the purity vanishes at and below the phase boundary and the
same behavior is found numerically for larger chains with ℎ ̸= 0.

Entanglement

We can calculate the entanglement negativity from the covariance matrix as

N =
1

2

(︂
1

𝜂
− 1

)︂
, (B.26)

where

𝜂 =

√︀
Σ−√

Σ2 − 4 det𝑉√
2

(B.27)

and
Σ = det𝑉𝐴 + det𝑉𝐵 − 2 det𝑉𝐶 . (B.28)

By evaluating this expression for both the | ⇑⇑⟩ and | ⇓⇓⟩ phases, we obtain
a vanishing entanglement, N = 0, while the negativity is finite in the |⇑⇓⟩
phase. This can be understood from the fact that in the former two phases the
linearized Hamiltonian contains only excitation-conserving interactions, 𝐻 ∼
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𝑐†𝑎𝑐𝑏 + 𝑐𝑎𝑐
†
𝑏, [see Eq. (B.6)], while in the |⇑⇓⟩ phase the Hamiltonian creates

correlated pairs of excitations, 𝐻 ∼ 𝑐†𝑎𝑐
†
𝑏 + 𝑐𝑎𝑐𝑏. The resulting expression for

the negativity in this phase simplifies along the PT-symmetric line, Γ𝑔 = Γl =
Γ̄ to

N =
𝑔

2Γ̄
. (B.29)

Therefore, the maximal amount of entanglement is reached at the transition
point Γ̄ = 𝑔. The same behavior is also found for larger chains when ℎ ̸= 0.
Note that within the Holstein-Primakoff approximation a finite amount of
entanglement is only found between neighbouring spins.

B.2 Mean-field theory

From the master equation Eq. (4.2) we can derive a set of equations of motion
for the expectation values of the spin operators, ⟨𝑆x,y,z

𝑎,𝑏 ⟩. Under the mean-field
approximation, we factorize all expectation values between two spin operators
as ⟨𝐴𝐵⟩ → ⟨𝐴⟩⟨𝐵⟩ as explained in Chapter 2.5 and make the replacement
⟨(𝑆x)2 + (𝑆y)2⟩ = 𝑆(𝑆 + 1) − ⟨(𝑆z)2⟩. We then arrive at the closed but
non-linear set of equations,

⟨𝑆̇x
𝑎 ⟩ = −Γ𝑔

2𝑆
⟨𝑆x

𝑎 ⟩(1 + 2⟨𝑆z
𝑎⟩) +

(𝑔 + ℎ)

𝑆
⟨𝑆z

𝑎⟩⟨𝑆y
𝑏 ⟩,

⟨𝑆̇y
𝑎⟩ = −Γ𝑔

2𝑆
⟨𝑆y

𝑎⟩(1 + 2⟨𝑆z
𝑎⟩)−

(𝑔 + ℎ)

𝑆
⟨𝑆z

𝑎⟩⟨𝑆x
𝑏 ⟩,

⟨𝑆̇z
𝑎⟩ =

Γ𝑔

𝑆
[𝑆(𝑆 + 1)− ⟨𝑆z

𝑎⟩ (⟨𝑆z
𝑎⟩+ 1)] +

(𝑔 + ℎ)

𝑆
(⟨𝑆y

𝑎⟩⟨𝑆x
𝑏 ⟩ − ⟨𝑆x

𝑎 ⟩⟨𝑆y
𝑏 ⟩),

⟨𝑆̇x
𝑏 ⟩ = − Γl

2𝑆
⟨𝑆x

𝑏 ⟩(1− 2⟨𝑆z
𝑏 ⟩) +

(𝑔 + ℎ)

𝑆
⟨𝑆y

𝑎⟩⟨𝑆z
𝑏 ⟩,

⟨𝑆̇y
𝑏 ⟩ = − Γl

2𝑆
⟨𝑆y

𝑏 ⟩(1− 2⟨𝑆z
𝑏 ⟩)−

(𝑔 + ℎ)

𝑆
⟨𝑆x

𝑎 ⟩⟨𝑆z
𝑏 ⟩,

⟨𝑆̇z
𝑏 ⟩ =

Γl

𝑆
[𝑆(𝑆 + 1)− ⟨𝑆z

𝑏 ⟩(⟨𝑆z
𝑏 ⟩ − 1)] +

(𝑔 + ℎ)

𝑆
(⟨𝑆x

𝑎 ⟩⟨𝑆y
𝑏 ⟩ − ⟨𝑆y

𝑎⟩⟨𝑆x
𝑏 ⟩).

Here we have dropped the n subscripts in these equations since under the
mean-field approximations each unit cell is identical. These equations can
then be readily integrated numerically using standard ODE solvers.





C PT-symmetry breaking in

open quantum systems

C.1 Mean field equations of motion of

PT-symmetric systems

In this appendix, we discuss a basic example of a bipartite quantum system,
which illustrates how the same structure of the Liouville operator results in
very different equations of motion for the mean values of bosonic, fermionic
and spin operators. To do so we consider the following master equation

𝜌̇ = −i𝑔[𝑂†
𝐴𝑂𝐵 +𝑂𝐴𝑂

†
𝐵, 𝜌] + Γ𝑔D[𝑂†

𝐴]𝜌+ ΓlD[𝑂𝐵]𝜌 = ℒ𝜌, (C.1)

which has the same structure as the one assumed in most other examples in
this paper. In particular, for Γl = Γ𝑔 the Liouvillian ℒ satisfies the symmetry
relation in Eq. (5.8) for arbitrary operators 𝑂𝐴 and 𝑂𝐵.
In a first step we assume that the two subsystems are represented by two

bosonic modes with annihilation operators 𝑎 and 𝑏. We identify 𝑂𝐴 = 𝑎 and
𝑂𝐵 = 𝑏 and define the vector of expectation values 𝜓⃗b = (⟨𝑎⟩, ⟨𝑏⟩)𝑇 . This
vector obeys the equation of motion

∂t𝜓⃗b = −i𝐻b𝜓⃗b, where 𝐻b =

(︂
iΓ𝑔 𝑔
𝑔 −iΓl

)︂
. (C.2)

We see that for Γl = Γ𝑔 the Liouvillian PT symmetry is directly reflected in
the non-Hermitian two-by-two matrix 𝐻b, which satisfies (PT )𝐻b(PT )−1 =
𝐻b. We now perform the same calculations with 𝑎 and 𝑏 representing fermionic
annihilation operators. The mean values of these operators, 𝜓⃗f = (⟨𝑎⟩, ⟨𝑏⟩)𝑇 ,
obey a very similar equation of motion

∂t𝜓⃗f = −i𝐻f𝜓⃗f , where 𝐻f =

(︂ −iΓ𝑔 𝑔
𝑔 −iΓl

)︂
, (C.3)

but in this case (PT )𝐻f(PT )−1 ̸= 𝐻f .
Non-interacting bosons and fermions are rather special, since in both cases

the equations of motion for ⟨𝑎⟩ and ⟨𝑏⟩ are closed. In general, this is not the
case and, for example, when considering two 𝑆 = 1/2 particles with 𝑂𝐴 = 𝜎−

𝐴

and 𝑂𝐵 = 𝜎−
𝐵 we already obtain 16 coupled equations for the expectation

values of all possible combinations of spin operators. While here we do not
write out the resulting matrix 𝐻s explicitly, it is straight forward to show
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that also in this case (PT )𝐻s(PT )−1 ̸= 𝐻s. Basically, this result can already
understood by looking at a single spin with loss and gain, i.e.,

𝜌̇ = Γ𝑔D[𝜎+]𝜌+ ΓlD[𝜎−]𝜌 = ℒ𝜌. (C.4)

For this system we define the vector 𝜓⃗s = (⟨𝜎−⟩, ⟨𝜎+⟩, ⟨𝜎+𝜎−⟩, ⟨𝜎−𝜎+⟩)𝑇 ,
which obeys

∂t𝜓⃗s = −i𝐻s𝜓⃗s, where 𝐻s =

⎛⎜⎜⎝
−i(Γl + Γ𝑔) 0 0 0

0 −i(Γl + Γ𝑔) 0 0
0 0 −2iΓl +2iΓ𝑔

0 0 +2iΓl −2iΓ𝑔

⎞⎟⎟⎠ .

(C.5)
This simple example shows that for spin systems, exchanging gain and loss is
not the same as replacing i → −i in the dynamical matrix for the evolution
of mean values.
We conclude that whether or not the symmetry of the Liouville operator

defined in Eq. (5.8) maps onto a conventional PT symmetry condition for the
equations of motion depends on the type of quantum system under considera-
tion. For this simple example we also find that both the Liouville operator as
well as the corresponding non-Hermitian effective Hamiltonian are invariant
under a particle-hole transformation,

𝑎 → 𝑏†, 𝑏 → ±𝑎†, (C.6)

where the plus (minus) sign applies to bosons (fermions). However, this
invariance is lost when additional energy terms are added, e.g., 𝐻 → 𝐻 ′ =
𝐻 + 𝜔0(𝑎

†𝑎+ 𝑏†𝑏), while it does not affect the PT symmetry.
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