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Abstract

We investigate the parameterized complexity of Bayesian Network Structure Learning
(BNSL), a classical problem that has received significant attention in empirical but also
purely theoretical studies. We follow up on previous works that have analyzed the
complexity of BNSL w.r.t. the so-called superstructure of the input. While known results
imply that BNSL is unlikely to be fixed-parameter tractable even when parameterized by
the size of a vertex cover in the superstructure, here we show that a different kind of
parameterization—notably by the size of a feedback edge set—yields fixed-parameter
tractability. We proceed by showing that this result can be strengthened to a localized
version of the feedback edge set. We adapt corresponding algorithms to the closely related
problem of Polytree Learning. Concerning the lower bounds, we establish W[1]-hardness
of BNSL parameterized by tree-cut width.

We then analyze how the complexity of BNSL depends on the representation of the input.
In particular, while the bulk of past theoretical work on the topic assumed the use of the
so-called non-zero representation, here we prove that if an additive representation can
be used instead then BNSL becomes fixed-parameter tractable even under significantly
milder restrictions to the superstructure, notably when parameterized by the treewidth
alone.
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CHAPTER 1
Introduction

The key feature of Bayesian networks is that they represent conditional dependencies
between random variables via a directed acyclic graph; the vertices of this graph are the
variables, and an arc ab means that the distribution of variable b depends on the value of
a. One beneficial property of Bayesian networks is that they can be used to infer the
distribution of dependent random variables in the network based on the values of the
remaining variables. An example of a Bayesian network is depicted at Figure 1.1.
The problem of constructing a Bayesian network with an optimal network structure is
NP-hard, and remains NP-hard even on highly restricted instances [Chi96]. This initial
negative result has prompted an extensive investigation of the problem’s complexity,
with the aim of identifying new tractable fragments as well as the boundaries of its
intractability [KP13, OS13, KP15, GK20, EG08, Das99, GKL+15]. The problem—which
we simply call Bayesian Network Structure Learning (BNSL)—can be stated
as follows: given a set of V of variables (represented as vertices), a family F of score
functions which assign each variable v ∈ V a score based on its parents, and a target
value &, determine if there exists a directed acyclic graph over V that achieves a total
score of at least &.
To obtain a more refined understanding of the complexity of BNSL, past works have
analyzed the problem not only in terms of classical complexity but also from the per-
spective of parameterized complexity [DF13, CFK+15]. In parameterized complexity
analysis, the tractability of problems is measured with respect to the input size n and
additionally with respect to a specified numerical parameter k. In particular, a problem
that is NP-hard in the classical sense may—depending on the parameterization used—be
fixed-parameter tractable (FPT), which is the parameterized analogue of polynomial-time
tractability and means that a solution can be found in time f(k) · nO(1) for some com-
putable function f , or W[1]-hard, which rules out fixed-parameter tractability under
standard complexity assumptions. The use of parameterized complexity as a refinement of
classical complexity is becoming increasingly common and has been employed not only for
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1. Introduction

Figure 1.1: One of possible Bayesian networks representing the dependencies between
environment, events and tomcat’s behaviour. Sometimes an action can not be fully
determined by a single factor. If another tomcat is noticed in a safe place, it leads to
protection of the territory. However, an encounter in an unsafe location would likely
result in the tomcat fleeing instead.
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BNSL [KP13, OS13, KP15], but also for numerous other problems arising in the context
of neural networks and artificial intelligence [GKOS18, SFGP19, EGKS19, GO18].

In Chapter 3 we provide an overview of known results concerning parameterized complexity
of BNSL. We supplement some of them by proof sketches and mention general structures
of the algorithms.

While analysing the existing literature, we noticed that today two main approaches can be
distinguished. The first one is to impose restrictions on the constructed graph. However,
most attempts to use such restrictions do not lead to FPT algorithms. For example,
BNSL remains NP-hard if we require to construct a directed path instead of arbitrary
acyclic digraph, as Meek proves in [Mee01]. The complexity of BNSL parameterized by
vertex cover number (vcn) of the resulting network was studied as well. Although vcn is
a highly restrictive parameter and means in fact that the skeleton of obtained digraph
can be made edgeless by deleting bounded number of vertices, the problem is W[1]-hard,
as was shown by Korhonen and Parviainen in [KP15]. In contrast, BNSL becomes FPT
if parameterized by maximal number of arcs in the resulting network [GK20].

Another common restriction is to learn not an arbitrary acyclic digraph, but a poly-
tree, i.e. a digraph with underlying graph being a forest. Such a variant of Bayesian
network learning has been extensively studied recently an is now often referred to as
Polytree Learning (PL). Among the novel results concerning the problem, we briefly
mention [GKM21]. In the article PL is shown to be FPT when parameterized by the
number of dependent vertices (vertices that may have in-neighbours in the resulting
digraph) and maximal size of parent sets yielding a non-zero score for a vertex. However,
parameterization by the number of dependent vertices alone leads to W[1]-hardness.

Sometimes restrictions are imposed not on the resulting acyclic digraph, but on its
moralised graph, i.e. graph consisting of its skeleton and in addition edges between any
two vertices with common out-neighbours. Grüttemeier and Komusiewicz provide in
[GK20] a detailed complexity analysis for the cases when the moralised graph belongs to
a particular sparsity class or can be done a member of such a class by deleting bounded
number of vertices or edges. Again, in most of cases the problem remains hard. For
example, BNSL is W[1]-hard if parameterized by minimal number of edges to be deleted
to make the moralized graph acyclic. Moreover, it remains NP-hard if the moralised
graph of the resulting DAG is required to have maximal degree 2, as well as if it must
have connected components of size at most 3.

A second approach is to impose restrictions on the superstructure graph instead of
the potentially learned network. For instance, in [OS13] Ordyniak and Szeider studied
the complexity of BNSL parameterized by treewidth and/or maximal degree of the
superstructure. It turns out that problem is W[1]-hard when parameterized by treewidth
only, and in fact the superstructure graph provided in their reduction has bounded
vertex cover number. But the parameterization by treewidth and maximal degree leads
to an FPT algorithm that proceeds via leaf-to-root dynamic programming along the
tree-decomposition.
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1. Introduction

Motivated by the last results, we were looking for a single simple and natural restriction
on the superstructure graph leading to tractability. Hardness for the vertex cover number
established in [OS13] together with FPT algorithm for bounded number of arcs provided
in [GK20] encouraged us to concentrate on edge-cut based parameters.

In Section 4.1 of this article, we show that BNSL is FPT when parameterized by the
feedback edge set number of the superstructure, i.e. minimal number of edges to make
the graph acyclic. In fact, we present a poly-time procedure that allows to shrink the
original instance and obtain an equivalent instance with number of vertices linear in
feedback edge set number. In the next Section 4.2 we adapt the reduction procedure for
PL. In Chapter 5 we lift the FPT results to the localized version of feedback edge number
by providing efficient dynamic programming algorithms. We complete the analysis of
edge-cut based parameters by establishing the lower bounds in Chapter 6. Our reduction
strengthens the result from [OS13] and, in particular, implies that BNSL is W[1]-hard
when parameterized by the tree-cut width.

Finally, in Chapter 7 we study an alternative input representation of BNSL based on
assumption that the scoring functions decompose on scores of single arcs. In contrast to
hardness results provided in [OS13], this variant of the problem turns out to be FPT when
parameterized by the treewidth of the superstructure alone. We establish the tractability
by presenting the dynamic programming algorithm on the tree-decomposition.

4



CHAPTER 2
Preliminaries

For an integer i, we let [i] = {1, 2, . . . , i} and [i]0 = [i] ∪ {0}. We denote by N the set
of natural numbers, by N0 the set N ∪ {0}. For a set S, we denote by 2S the set of all
subsets of S.

2.1 Binary Relations
Let X be a set, then every R ⊆ X × X is called a binary relation on X. The binary
relation R is termed:

• symmetric if (x, y) ∈ R whenever (y, x) ∈ R for every x, y ∈ X;
• reflexive if (x, x) ∈ R for every x ∈ X;
• transitive if (x, z) ∈ R whenever (x, y) ∈ R and (y, z) ∈ R for every x, y, z ∈ X;

A transitive relation R� is called a transitive closure of R (denote R� = trcl(R)) if it is
a minimal transitive relation containing R, i.e. if there is no transitive relation R�� such
that R ⊆ R�� � R�. If R is reflexive, symmetric and transitive, it is called an equivalence
relation. Given an equivalence relation R on X, we denote by [x]R = [x] = {y|(x, y) ∈ R}
the equivalence class of x in X.

2.2 Graphs and Digraphs
We refer to the handbook by Diestel [Die12] for standard graph terminology. Undirected
graph G is a pair (V, E) where V is a vertex set of G and E is some set of two-element
subsets of V (edge set of G). Directed graph, or digraph, is a pair D = (V, A) where V is
a vertex set of D and A ⊆ V × V is an arc set of D. For a given undirected graph G we
refer to its vertex and edge sets as V (G) and E(G) correspondingly. Similarly we denote
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2. Preliminaries

by V (D) and A(D) the sets of vertices and arcs of a digraph D. We will consider directed
as well as undirected graphs. If another is not specified, by graphs we mean undirected
graphs. If G = (V, E) is a graph and {v, w} ∈ E, we will often use vw as shorthand for
{v, w}. Moreover, we let NG(v) denote the set of neighbors of v, i.e., { u ∈ V | vu ∈ E }.
We extend this notation to sets as follows: NG(X) = { u ∈ V \ X | ∃x ∈ X : ux ∈ E(G).

If D = (V, A) is a directed graph and (v, w) ∈ A, we will similarly use vw as shorthand
for (v, w) and say that an arc vw starts in v and finishes in w. We also let PD(v) denote
the set of parents of v, i.e., { u ∈ V | uv ∈ A } (they are sometimes called in-neighbors in
the literature). In both cases, we may drop G or D from the subscript if the (di)graph is
clear from the context. The degree of v is |N(v)|, and for digraphs we use the notions of
in-degree (which is equal to |P (v)|) and out-degree (the number of arcs originating from
the given vertex).

Let G1 = (V1, E1) and G2 = (V2, E2) be two (di)graphs, then we define their union as
G = (V1 ∪ V2, E1 ∪ E2). If V1 ∩ V2 = E1 ∩ E2 = ∅, G is a disjoint union of G1 and G2.
The (disjoint) union of more then two graphs is defined analogously.

For a given (di)graph G = (V, E) we say that G� = (V �, E�) is its subgraph if V � ⊆ V and
E� ⊆ E. Let G be a graph G and V � be a subset of V , we define the induced subgraph of
G on V � to be G[V �] := (V �, E�) where E� = {uv ∈ E|u ∈ V �, v ∈ V �}, i.e. G[V �] contains
precisely those edges of G which have both endpoints in V �. Similarly for a digraph
D = (V, A) and V � ⊆ V we denote by D[V �] := (V �, A ∩ (V � × V �)) its induced subgraph
on V �. For convenience we may omit the parenthesis and write G[x0, . . . , xk] instead of
G[{x0, . . . , xk}]. The skeleton (sometimes called the underlying undirected graph) of a
digraph G = (V, A) is the undirected graph G� = (V, E) such that vw ∈ E if and only if
vw ∈ A or wv ∈ A.

A path (directed path correspondingly) in a graph (digraph) G is a non-empty subgraph
P = (V, E) of G of the form V = {x0, . . . , xk}, E = {x0x1, . . . , xk−1xk}, where the xi are
distinct. We call P a path from x0 to xk and denote it by P = x0 . . . xk. In this case x0
and xk are connected by P in G. For convenience we say that x0 and xk are connected by
an undirected path P in a digraph G if they are connected by P in the skeleton of G. If
in addition xkx0 belongs to an edge (arc) set of G, x0 . . . xkx0 is called a cycle (directed
cycle) in G. An undirected graph is called a forest if it is acyclic, i.e. doesn’t contain cycles.

If every two vertices of a graph (digraph) are connected by an undirected path, G
is a connected graph (digraph). Note that every (di)graph G is a disjoint union of
connected graphs, which are called the connected components of G. Connected forest
is called a tree, in general, any forest is a disjoint union of trees. A subgraph T of G
is called a spanning tree if T is a tree and V (T ) = V (G). A digraph is a polytree if its
skeleton is a forest.

We use a shorthand DAG for acyclic digraph. For a set X of vertices, let AX denote the
set of all possible arcs over X.

6



2.3. Problem Statement

2.3 Problem Statement
The general task is, given the set V of random variables and the set of observations,
to construct a DAG on V (depicting dependencies by arcs) that maximizes posterior
probability to get the original set of observations. In some cases it is equivalent to
maximizing the sum of local scores of the variables, determined by sets of their in-
neighbours in the constructed DAG. In practice, local scores can be computed from the
set of observations. In our case, they are given as a part of an input. Formally, the
problem is stated as follows:

Bayesian Network Structure Learning (BNSL)
Input: A set V of vertices, a family F = {fv : 2V \{v} → N0} of local score

functions, and an integer &.
Question: Does there exist a DAG D = (V, A) such that f(D) := �

v∈V fv(Pv) ≥ &,
where Pv is the set of in-neighbours of v in D?

Another closely related problem which has been recently studied is Polytree Learning
(PL). It is stated similarly to BNSL with an additional requirement that the learned
network must form a polytree:

Polytree Learning (PL)
Input: A set V of vertices, a family F = {fv : 2V \{v} → N0} of local score

functions, and an integer &.
Question: Does there exist a polytree D = (V, A) such that f(D) :=�

v∈V fv(Pv) ≥ &, where Pv is the set of in-neighbours of v in D?

There are different ways to encode fv in the input. If we explicitly specify fv(P ) for every
P ⊆ V \ {v}, total size of the input automatically becomes exponential in the number
of vertices. However, the complexity of BNSL which is commonly studied is based on
number of vertices and sets of their in-neighbours yielding non-zero local scores. For this
reason we assume that F is given as a set of all tuples (v, P, fv(P )) where fv(P ) > 0. We
refer to this variant of a problem as BNSL in a non-zero representation, or BNSL�=0.
This model has been used in a large number of works studying the complexity of BNSL
and PL [KP13, OS13, KP15, GK20, GKL+15, GKM21] and is known to be strictly more
general than, e.g., the bounded-arity representation where one only considers parent sets
of arity bounded by a constant [OS13, Section 3].

Let Γf (v) be the set of candidate parents of v which yield a non-zero score; formally,
Γf (v) = { Z | fv(Z) �= 0 }, and the input size |I| of an instance I = (V, F , &) is simply
defined as |V | + & + �

v∈V,P ∈Γf (v) |P |. Let P→(v) be the set of all parents which appear
in Γf (v), i.e., a ∈ P→(v) if and only if ∃Z ∈ Γf (v) : a ∈ Z. A natural way to think
about and exploit the structure of inter-variable dependencies laid bare by the non-zero

7



2. Preliminaries

Figure 2.1: Example of a
superstructure graph (on the
left) and directed superstruc-
ture graph (on the right) when:
Γf (a) consists of {b}, {c}, and
{b, c}
Γf (b) contains only {a}
Γf (c) consists of {b} and {a, b}
Γf (d) contains only {b, c}

representation is to consider the superstructure graph GI = (V, E) of a BNSL (or PL)
instance I = (V, F , &), where ab ∈ E if and only if either a ∈ P→(b), or b ∈ P→(a), or
both. A potentially more precise way to determine possible structure of constructed
digraphs is to consider a directed superstructure graph ḠI = (V, E) where ab ∈ E if and
only if a ∈ P→(b). See Figure 2.1 for an illustration.

Naturally, families of local score functions may be exponentially larger than |V | even
when stored using the non-zero representation. In this paper, we also consider a second
representation of F which is guaranteed to be polynomial in |V |: in the additive repre-
sentation, we require that for every vertex v ∈ V and set Q = {q1, . . . , qm} ⊆ V \ {v},
fv(Q) = fv({q1}) + · · · + fv({qm}). Hence, each score function fv can be fully char-
acterized by storing at most |V |-many entries of the form fv(x) := fv({x}) for each
x ∈ V \ {v}. To avoid overfitting, one may optionally impose an additional constraint:
an upper bound q on the size of any parent set in the solution (or, equivalently, q is a
maximum upper-bound on the in-degree of the sought-after acyclic digraph D).

While not every family of local score functions admits an additive representation, the
additive model is similar in spirit to the models used by some practical algorithms
for BNSL. For instance, the algorithms of Scanagatta, de Campos, Corani and Zaf-
falon [SdCCZ15, SCdCZ16], which can process BNSL instances with up to thousands of
variables, approximate the real score functions by adding up the known score functions
for two parts of the parent set and applying a small, logarithmic correction. Both of
these algorithms also use the aforementioned bound q for the parent set size. In spite of
this connection to practice and the representation’s streamlined nature, we are not aware
of any prior works that considered the additive representation in complexity-theoretic
studies of BNSL and PL.

As before, in the additive representation we will also only store scores for parents of v
which yield a non-zero score, and can thus define P→(v) = { z | fv(z) �= 0 }, as for the
non-zero representation. This in turn allows us to define the superstructure graphs as
before: GI = (V, E) where ab ∈ E if and only if a ∈ P→(b), b ∈ P→(a), or both.

To distinguish between these models, we use BNSL�=0, BNSL+, and BNSL+
≤ to denote

Bayesian Network Structure Learning with the non-zero representation, the

8



2.4. Parameterized Complexity

additive representation, and the additive representation and the parent set size bound q,
respectively. The same notation will also be used for Polytree Learning—for example,
an instance of PL+

≤ will consist of V , a family F of local score functions in the additive
representation, and integers &, q, and the question is whether there exists a polytree
D = (V, A) with in-degree at most q and score(D) ≥ &.

2.4 Parameterized Complexity
In parameterized algorithmics [CFK+15, DF13, Nie06] the running-time of an algorithm
is studied with respect to a parameter k ∈ N0 and input size n. The basic idea is to
find a parameter that describes the structure of the instance such that the combinatorial
explosion can be confined to this parameter. In this respect, the most favorable com-
plexity class is FPT (fixed-parameter tractable) which contains all problems that can be
decided by an algorithm running in time f(k) · nO(1), where f is a computable function.
Algorithms with this running-time are called fixed-parameter algorithms or just FPT
algorithms. A less favorable outcome is an XP algorithm, which is an algorithm running
in time O(nf(k)); problems admitting such algorithms belong to the class XP.

Another important complexity class is W[1]. We will not provide a proper definition
of the class here, as it is quiet involved and is not needed to establish and prove our
results. For a general impression, let us mention that W[1] contains XP and showing
W[1]-hardness of a problem rules out the existence of a fixed-parameter algorithm under
the well-established assumption that W[1] �= FPT. This is usually done via a parame-
terized reduction [CFK+15, DF13] to some known W[1]-hard problem. A parameterized
reduction from a parameterized problem P to a parameterized problem Q is a function:

• which maps Yes-instances to Yes-instances and No-instances to No-instances,
• which can be computed in time f(k) · nO(1), where f is a computable function, and
• where the parameter of the output instance can be upper-bounded by some function

of the parameter of the input instance.

2.5 Numerical Parameters
When comparing two numerical parameters α, β of graphs, we say that α is more
restrictive than β if there exists a function f such that β(G) ≤ f(α(G)) holds for every
graph G. In other words, α is more restrictive than β if and only if the following holds:
whenever all graphs in some graph class H have α upper-bounded by a constant, all
graphs in H also have β upper-bounded by a constant. Observe that in this case a
fixed-parameter algorithm parameterized by β immediately implies a fixed-parameter
algorithm parameterized by α, while W[1]-hardness behaves in the opposite way.

Among the most common graph parameters we will concentrate on are those which,
roughly speaking, measure how far the graph is from a forest. One highly restrictive

9



2. Preliminaries

Figure 2.2: Example of a graph with
small vertex cover number but large feed-
back edge number. Left and right ver-
tices form the vertex cover of size 2.

parameter is feedback edge number (fen), specifying minimal number of edges to be
deleted to make the graph acyclic. For example, forests have fen of zero while for a cycle
it is equal to one. Another parameter is vertex cover number (vcn), it shows minimal size
of subset of vertices which contains at least one endpoint of each edge. Note that these
two parameters are incomparable in general. Indeed, for a long path fen is obviously
equal to zero, but vcn is linear in the path length. From another side, graph depicted on
the Figure 2.2 has vertex cover of size two but fen linear in number of edges. Another
parameter measuring the distance to acyclic graph is treewidth. We will describe it in
more details further, but now mention that it is less restrictive then both vcn and fen.

2.6 Treewidth
A tree-decomposition T of a graph G = (V, E) is a pair (T, χ), where T is a tree (whose
vertices we call nodes) rooted at a node r and χ is a function that assigns each node t a
set χ(t) ⊆ V such that the following holds:

• For every uv ∈ E there is a node t such that u, v ∈ χ(t).
• For every vertex v ∈ V , the set of nodes t satisfying v ∈ χ(t) forms a subtree of T .
• |χ(&)| = 1 for every leaf & of T and |χ(r)| = 0.

The tree-decomposition T is called nice if there are only 3 kinds of non-leaf nodes in T :

• Introduce node: a node t with exactly one child t� such that χ(t) = χ(t�) ∪ {v}
for some vertex v �∈ χ(t�).

• Forget node: a node t with exactly one child t� such that χ(t) = χ(t�) \ {v} for
some vertex v ∈ χ(t�).

• Join node: a node t with two children t1, t2 such that χ(t) = χ(t1) = χ(t2).

The width of a nice tree-decomposition (T, χ) is the size of a largest set χ(t) minus 1,
and the treewidth of the graph G, denoted tw(G), is the minimum width of a nice

10
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tree-decomposition of G. Fixed-parameter algorithms are known for computing a nice
tree-decomposition of optimal width:

Fact 1 ([BDD+16, Klo94]). There exists an algorithm which, given an n-vertex graph G
and an integer k, in time 2O(k) · n either outputs a nice tree-decomposition of G of width
at most 5k + 4 and O(n) nodes, or determines that tw(G) > k.

For t ∈ V (T ), let Tt be the subtree of T rooted at t. We denote by Ft the set of vertices
forgotten in t, i.e. the vertices in Tt that were forgotten in some node of Tt:

Ft = {v| χ(t�) = χ(t��) \ {v}, t� ∈ Tt, t�� is a child of t�}.

2.7 Local Feedback Edge Set
Up to now, these were the only two edge-cut based graph parameters that have been
considered in the broader context of algorithm design: feedback edge number and tree-cut
width (see [GKO21, Subsection 2.4] for the definition). Here, we propose a new parameter
that can be seen as a localized relaxation of the feedback edge number: instead of
measuring the total size of the feedback edge set, it only measures how many feedback
edges can “locally interfere with” any particular part of the graph.

Formally, for a connected graph G = (V, E) and a spanning tree T of G, let the local
feedback edge set at v ∈ V be

ET
loc(v) = {uw ∈ E \ E(T ) | the unique path between u and w in T contains v}.

The local feedback edge number of the pair (G, T ) (denoted lfen(G, T )) is then equal to
maxv∈V |ET

loc(v)|, and the local feedback edge number of G is simply the smallest local
feedback edge number among all possible spanning trees of G, i.e.,

lfen(G) = min{lfen(G, T )|T is a spanning tree of G}.

11





CHAPTER 3
Related Work

In this chapter we present an overview of latest complexity results for BNSL. The survey
is not exhaustive, but it captures most of basic graph parameters, motivates our work and
hopefully displays an overall picture of state of the art. As we have already mentioned in
the introduction, the most common approach is to impose restrictions on the structural
properties of either the superstructure graph or the learned network.

3.1 Exploiting the Superstructure: Treewidth, Maximal
Degree and Acyclicity

In [OS13], Ordyniak and Szeider study the parameterized complexity of BNSL by impos-
ing restrictions on the structural properties of the superstructure graph. This approach
allows to reduce the size of a search space: one may only consider acyclic digraphs whose
skeleton is a subgraph of a superstructure graph. Indeed, any acyclic directed graph can
be transformed to satisfy the property without decreasing the score. Moreover, by the
same arguments we may assume that every vertex either receives a parent set of non-zero
score or doesn’t have in-neighbours at all. Similarly, in case of directed superstructure
graph it is sufficient to consider only its subgraphs as potential digraphs of optimal score.

One of the main results obtained in [OS13] is an FPT algorithm for parameteriza-
tion by treewidth ω of the superstructure and maximal number of candidate parent sets
per vertex. Formally, let I be the instance of BNSL, we denote δf = maxv∈V |Γf (v)|.
Then the following holds [OS13, Theorem 1] :

Theorem 2. Given an instance I = (V, F , &) of BNSL such that tw(GI) ≤ ω, a DAG
D on V of maximal score f(D) can be found in time 2O(ω2) · δ

O(ω)
f · |V |

13
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Let us sketch the main proof ideas. We start from computing a nice tree-decomposition
(T, χ) of GI of nearly optimal treewidth, which can be done efficiently according to Fact
1. Then, moving in T from leaves to the root, we construct an acyclic digraph of the
maximal score. For every node t ∈ T , let χ↓

t be the set of all vertices occurring in bags
of the rooted subtree Tt, i.e., χ↓

t = {u | ∃t� ∈ Tt such that u ∈ χ(t�)}. Let G↓
t be the

subgraph of GI induced on χ↓
t . Intuitively, we guess a restriction of a solution DAG to

the vertex set χ↓
t along with parent sets of vertices in χ(t) in the solution. Every such a

partial DAG Dt in node t can be described by a record storing the following information:

• parent sets of vertices in χ(t);

• connectivity relation on χ(t) specifying for every x, y ∈ χ(t) whether Dt contains a
directed path from x to y.

• sum of scores of vertices in Dt that are forgotten in t.

Obviously, it is sufficient to keep only records with maximal sums of scores when the
parent sets and connectivity relation are fixed. Note that the number of possible records
in t is 2O(ω2) · δ

O(ω)
f . Indeed, χ(t) contains O(ω) vertices, resulting in 2O(ω2) potential

connectivity relations. Further, every vertex in χ(t) has at most δf candidates for the
parent set. To prove the theorem, a leaf-to-root dynamic programming algorithm is
designed. It computes and stores a set of records at each node of T , whereas once we
ascertain the records for r we will have the information required to output a correct
answer. Intuitively:

• Introduce node: let t be a node with exactly one child t� such that χ(t) =
χ(t�) ∪ {v} for some vertex v �∈ χ(t�). Then we branch over all records R in t� and
parent sets P of v. If the combination of R and arcs induced by P doesn’t lead to
a directed cycle, we add a new record for t. The record is constructed from R by
adding v with parent set P and updating the connectivity relation with new arcs
incident to v.

• Forget node: let t be a node with exactly one child t� such that χ(t) = χ(t�) \ {v}
for some vertex v ∈ χ(t�). Then we can construct records in t from the ones in t�

by simply omitting the parent set P of v, restricting the connectivity relations to
the remaining vertices and adding fv(P ) to the score of forgotten vertices.

• Join node: let t be a node with two children t1, t2 such that χ(t) = χ(t1) =
χ(t2). Then we branch over all possible pairs of records R1 and R2 in t1 and t2
correspondingly that agree in the parent set choice for every v ∈ χ(t). If combination
of their connectivity relations doesn’t yield a directed cycle, we add a new record R
with the score of forgotten vertices equal to the sum of scores in R1 and R2. Note
that according to the definition of a tree-decomposition Ft1 ∩ Ft2 = ∅, so we count
every forgotten vertex precisely once.

14
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As we assume the root to have an empty bag, all the vertices are forgotten in the root
and therefore sum of their scores in the unique record of the root is precisely the maximal
score achievable by DAGs in I. Simple back-tracking along the tree-decomposition now
allows to reconstruct a DAG of this score.

Observe that the running time 2O(ω2) · δ
O(ω)
f · |V | actually shows an XP membership

of BNSL parameterized by the treewidth of the superstructure alone. The natural
question which arises is whether the problem is FPT if parameterized only by ω. How-
ever, the following result [OS13, Theorem 3] rules out this possibility, under standard
complexity-theoretical assumptions:

Theorem 3. BNSL parameterized by the treewidth of the superstructure is W[1]-hard.

Authors prove the statement by parameterized reduction from the following well-known
W[1]-hard problem [DF13, CFK+15]:

Multicolored Clique (MCC)
Input: A k-partite graph G = (V1 ∪ ... ∪ Vk, E)
Parameter: The integer k
Question: Are there nodes vi that form a k-colored clique in G, i.e. vi ∈ Vi and

vivj ∈ E for all i, j ∈ [k], i �= j?

Given an instance G = (V1 ∪ ... ∪ Vk, E) of MCC, it is possible to construct in FPT time
the instance I of BNSL satisfying the following properties:

• V consists of nodes nv, encoding vertices v ∈ V1 ∪ ... ∪ Vk and nodes aij for every
i, j ∈ [k], i �= j, encoding edges between Vi and Vj

• aij receives a non-zero score only if its parent set consists of two vertices—vi ∈ Vi

and vj ∈ Vj—that are connected by an edge in G

• node nvi for every vi ∈ Vi receives a non-zero score only if it takes into a parent set
all alk with l = i or k = i

• the score of & can be achieved only if every aij achieves its maximal score and all
but at most k vertices nv achieve their maximal scores

Intuitively, in case of Yes-instance the vertices nv that receive a score of zero will be
taken into parent sets of aij and determine the k-colored clique.

Note that every edge in the superstructure graph is adjacent to some aij , so GI has vcn
of at most k(k−1)

2 . In particular, it results in bounded treewidth.

The authors also point out in Theorem 2. that a reduction by Chickering [Chi96]
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implies NP-hardness of BNSL even if every vertex in the superstructure graph has a
degree of at most 4. Note that bounding the degree of the superstructure graph auto-
matically bounds the maximum size of Γf (v). Indeed, if GI has a maximum degree of d
then for every v ∈ V it holds that |Γf (v)| ≤ 2d, as every P ∈ Γf (v) is a subset of NGI (v).
Therefore BNSL is not in FPT and even not in XP when parameterized only by δf : if
this would be the case, setting δf equal to 24 would result in polynomial algorithm, which
is impossible under the standard assumption P �= NP.

It would be natural to expect that restricting the structural properties of the directed
superstructure graph makes the problem of learning the optimal network easier. Indeed,
according to [OS13, Corollary 2], BNSL is solvable in quadratic time if ḠI does not
contain directed cycles. To establish this, a greedy approach can be used: for every v ∈ V
we choose a parent set yielding the maximal score. Acyclicity of ḠI ensures that resulting
digraph is acyclic. However, already a slight complication of the directed superstructure
graph leads to NP-hardness, as [OS13, Theorem 8] shows:

Theorem 4. Bayesian Network Structure Learning is NP-hard for instances I
where ḠI can be made acyclic by deleting one node. Hardness even holds if we additionally
bound the maximal in-degree and the maximal out-degree of ḠI by 3.

3.2 Restrictions on the Constructed Network
3.2.1 Learning a Polytree.
Polytree Learning (PL) is a variant of BNSL where we require the resulting network
to form a polytree. The complexity of PL has been studied in several works [GKM21,
GKL+15, SMS13], we will briefly describe the results of this year’s article [GKM21]. Let
I = (V, F , &) be an instance of PL. We call the vertex v ∈ V dependent if there is at
least one parent set for v yielding a non-zero score, i.e. Γf (v) �= ∅. According to [GKM21,
Theorem 4.2] Polytree Learning is W[1]-hard when parameterized by the number of
dependent vertices. Original proof proceeds by reduction from the well known W [1]-hard
problem:

Independent Set
Input: Graph G = (V, E)
Parameter: The integer k
Question: Is there subset S ⊆ V of size at least k such that no two vertices of S

are connected by edge in E?

Such a subset is called independent set. Given an instance G = (V, E) of Independent
Set, we construct an equivalent instance (V �, F , &) of PL where:

• V � consists of vertices v1, . . . , vk, v∗ and vertices we for each edge e ∈ E
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• for every i ∈ [k], Γf (vi) = {Ev ∪ {v∗}|v ∈ V }, where Ev = {wvu|vu ∈ E} and
fvi(Ev ∪ {v∗}) = 1, all the rest of scores are zero

• & = k

Note that the score of k is achieved if and only if every vi receives some parent set with
the score of 1. Intuitively, if G contains an independent set S = {si|i ∈ [k]}, we may
choose the parent sets for vi equal to the sets of edges ajacent to si. However, if S is
not an independent set (some si and sj are connected by edge), then the parent sets
for vi and vj chosen as before would share at least two vertices: wsisj and v∗, which is
forbidden for a polytree.

However, the problem becomes tractable if we in addition parameterize by the maximal
size of a parent set [GKM21, Theorem 5.8]:

Theorem 5. Polytree Learning can be solved in time 2O(kp) · |I|O(1), where k is the
number of dependent vertices and p is the maximum size of a parent set.

3.2.2 Learning a Path.
Another, even more restrictive version of BNSL is the one where the resulting network
is required to be a path (we will call it Path Learning). However, even this version of
the problem is NP-hard, as was shown in [Mee01]. The hardness is proved via reduction
from the well-known NP-complete problem:

Hamiltonian path
Input: Graph G = (V, E)
Question: Is there a path in G visiting every v ∈ V precisely one time?

Given an instance G = (V, E) of Hamiltonian path, the author constructs an equivalent
instance of Path Learning with the same vertex set. We keep the construction but
slightly modify the scores from original proof for convenience. Let every vertex v ∈ V
receive the score of 1 for empty parent set and the score of 2 for any parent set {w}
where w ∈ NG(v). Further, the goal score & is set equal to 1 + 2(|V | − 1). Obviously
the score can be achieved by a directed path network D if and only if the path contains
all the vertices v ∈ V and all but one of them have precisely one in-neighbour in D
corresponding to some neighbour in G. If we now start from the only vertex with empty
parent set and move along the arcs of D, it will result in a hamiltonian path in G.

3.2.3 Sparse Moralized Graphs.
The moralized graph of a digraph D is an (undirected) graph consisting of the skeleton of
D and, in addition, edges between any two vertices that share a child (an out-neighbour)
in D. In [GK20] Grüttemeier and Komusiewicz provide a detailed complexity analysis for
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the cases when the moralised graph of learned network belongs to a particular sparsity
class or can be done a member of such a class by deleting bounded number of vertices or
edges. More precisely, they study the following classes of problem:

(Π + v)-Bayesian Network Structure Learning
Input: A set of vertices V , local scores F and integer &
Parameter: k
Question: Is there a DAG D on V with score f(D) ≥ & such that moralized graph

of D can be transformed into a graph from a class Π by deleting at
most k vertices?

The problem (Π+e)-Bayesian Network Structure Learning is defined analogously,
in this case not vertices but edges can be deleted. Π here should be replaced by a particular
sparsity class. For example, let us denote by Π1 the set of graphs with maximum degree
1. Then (Π1 + v) − BNSL asks whether there exist a DAG such that deletion of at most
k vertices from its moralized graph results in a graph of maximum degree 1. [GK20,
Corollary 9] shows that the problem is in XP:

Theorem 6. (Π1 + v) − BNSL can be solved in time nO(k2) + |I|O(1).

However, an FPT algorithm is unlikely to exists, even if we in additional parameterize by
a goal score & [GK20, Proposition 10]:

Theorem 7. (Π1 + v) − BNSL is W [1]-hard for k + &, even if the directed superstructure
is a DAG and the maximum parent set size is 3.

3.2.4 Bounding the Number of Arcs.
Let us conclude this overview by an interesting FPT result concerning learning networks
with small number of arcs. Formally, the problem is stated as follows:

Bounded-Arcs-BNSL
Input: A set of vertices V , local scores F and integer &
Parameter: k
Question: Is there a DAG D on V with score f(D) ≥ & containing at most k arcs?

[GK20, Proposition 17] presents an FPT algorithm for the colored version of the problem.
In Colored Bounded-Arcs-BNSL, every vertex v ∈ V has a color in C = {1, . . . , 2k}.
For C � ⊆ C, let us denote by VC� the vertices from V which have colors in C �. The task
is to compute a network consisting of at most k arcs such that (1) the endpoints of every
arc have different colors (2) there is at most one vertex with non-empty parent set per
color. The algorithm proceeds by dynamic programming; for each C � ⊆ C and k� ∈ [k]0
it computes the entry T [C �, k�] equal to the maximal score achievable by DAGs on VC�
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with at most k� arcs, satisfying (1) and (2). Assume that the entries are computed for all
color sets of cardinality at most m (for all k� ∈ [k]0) and C � ⊆ C has the cardinality of
m + 1. Intuitively, to compute T [C �, k�], we guess three things:

• what color c does the sink have
• which vertex v of color c is a sink
• which is a parent set P of v

When c, v and P are guessed right, rest of vertices of color c have empty parent sets and
therefore:
T [C �, k�] = T [C � \ {c}, k� − |P |] + fv(P ) + �

w �=v:w has color c fw(∅). We refer to the book
"Parameterized Algorithms" [CFK+15] for the description of color coding technique. This
powerful tool in parameterized complexity in some cases allows to lift FPT results for a
colored problem to the original one.
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CHAPTER 4
Parameterization by Feedback

Edge Number

4.1 Data Reduction for BNSL �=0

We say that two instances I, I � of BNSL are equivalent if (1) they are either both
Yes-instances or both No-instances, and furthermore (2) a solution to one instance can
be transformed into a solution to the other instance in polynomial time. Our aim here is
to prove the following theorem:

Theorem 8. There is an algorithm which takes as input an instance I of BNSL�=0

whose superstructure has fen k, runs in time O(|I|2), and outputs an equivalent instance
I � = (V �, F �, &�) of BNSL�=0such that |V �| ≤ 16k.

In parameterized complexity theory, such data reduction algorithms with performance
guarantees are called kernelization algorithms [DF13, CFK+15]. These may be applied
as a polynomial-time preprocessing step before, e.g., more computationally expensive
methods are used. The fixed-parameter tractability of BNSL�=0when parameterized by
the fen of the superstructure follows as an immediate corollary of Theorem 8 (one may
solve I by, e.g., exhaustively looping over all possible DAGs on V � via a brute-force
procedure). We also note that even though the number of variables of the output instance
is polynomial in the parameter k, the instance I � need not have size polynomial in k.

We begin our path towards a proof of Theorem 8 by computing a feedback edge set EF

of G of size k in time O(|I|2) by, e.g., Prim’s algorithm. Let T be the spanning tree
of G, EF = E(G) \ E(T ). The algorithm will proceed by the recursive application of
certain reduction rules, which are polynomial-time operations that alter (“simplify”) the
input instance in a certain way. A reduction rule is safe if it outputs an instance which
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is equivalent to the input instance. We start by describing a rule that will be used to
prune T until all leaves are incident to at least one edge in EF .

Reduction Rule 1. Let v ∈ V be a vertex and let Q be the set of neighbors of v with
degree 1 in G. We construct a new instance I � = (V �, F �, &) by setting: 1. V � := V \ Q;
2. Γf �(v) := {∅} ∪ { (P \ Q) | P ∈ Γf (v) }; 3. for all w ∈ V � \ {v}, f �

w = fw; 4. for every
P � ∈ Γf �(v):

f �
v(P �) := max

P :P \Q=P �

�
fv(P ) +

�
vin∈P ∩Q

fvin(∅) +
�

vout∈Q\P

max(fvout(∅), fvout(v))
�
.

Lemma 9. Reduction Rule 1 is safe.

Proof. For the forward direction, assume that I � admits a solution D�, and let λ be the
score D� achieves on v. By the construction of I �, there must be a parent set Z ∈ Γf (v)
such that Z ∩ V � = PD�(v) (i.e., Z agrees with v’s parents in D�) and λ is the sum of the
following scores: (1) fv(Z), (2) the maximum achievable score for each vertex in Q \ Z,
and (3) the score of {∅} for each vertex in Z ∩ Q. Let D be obtained from D� by adding
the following arcs: zv for each z ∈ Z, and vq for each q ∈ Q \ Z such that q achieves its
maximum score with v as its parent. By construction, λ = �

w�∈{v}∪Q fw(PD(w)). Since
the scores of D and D� coincide on all vertices outside of {v} ∪ Q and D is acyclic, we
conclude that score(D) = score(D�), and hence I is a Yes-instance.

For the converse direction, assume that I admits a solution D. Let D� = D − Q. By the
construction of f �

v, it follows that f �
v(PD�(v)) is greater or equal to the score D achieves

on {v} ∪ Q. Thus, D� is a solution to I �, and we conclude that Reduction Rule 1 is
safe.

Observe that the superstructure graph G� obtained after applying one step of Reduction
Rule 1 is simply G − Q; after its exhaustive application we obtain an instance I such
that all the leaves of the tree T are endpoints of EF . Our next step is to get rid of
long paths in G whose internal vertices have degree 2. We note that this step is more
complicated than in typical kernelization results using feedback edge set as the parameter,
since a directed path Q in G can serve multiple “roles” in a hypothetical solution D and
our reduction gadget needs to account for all of these. Intuitively, Q may or may not
appear as a directed path in D (which impacts what other arcs can be used in D due
to acyclicity), and in addition the total score achieved by D on the internal vertices of
Q needs to be preserved while taking into account whether the endpoints of Q have a
neighbor in the path or not. Because of this we will not be replacing Q merely by a
shorter path, but by a more involved gadget.

Reduction Rule 2. Let a, b1, . . . , bm, c be a path in G such that for each i ∈ [m],
bi has degree precisely 2. For each B ⊆ {a, c}, let &max(B) be the maximum sum of
scores that can be achieved by b1, . . . , bm under the condition that b1 (and analogously
bm) takes a (c) into its parent set if and only if a ∈ B (c ∈ B). In other words,
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&max(B) = maxDB

�
bi|i∈[m] fbi

(PDB
(bi)) where DB is a DAG on {b1, . . . , bm} ∪ B such

that B does not contain any vertices of out-degree 0 in DB. Moreover, let &noPath(a)
(and analogously &noPath(c)) be the maximum score that can be achieved on the vertices
b1, . . . , bm by a DAG on a, b1, . . . , bm, c with the following properties: a (c) has out-degree
1, c (a) has out-degree 0, and there is no directed path from a to bm (from c to b1).

We construct a new instance I � = (V �, F �, &) as follows:

• V � := V ∪ {b} \ {b2...bm−1};
• Γf �(b) = {B ∪ {b1, bm}|B ⊆ {a, c}} with scores f �

b(B ∪ {b1, bm}) := &max(B);
• The scores for a and c are obtained from F by simply adding b to any parent set

containing either b1 or bm; formally:

– Γf �(a) is a union of {P ∈ Γf (a)|b1 �∈ P}, where f �
a(P ) := fa(P ) and {P ∪

{b}|b1 ∈ P, P ∈ Γf (a)}, where f �
a(P ∪ {b}) := fa(P );

– Γf �(c) is a union of {P ∈ Γf (c)|bm �∈ P}, where f �
c(P ) := fc(P ), and {P ∪

{b}|bm ∈ P, P ∈ Γf (c)}, where f �
c(P ∪ {b}) := fc(P ).

• Γf �(b1) contains only {a, b, bm} with score &noPath(a);
• Γf �(bm) contains only {c, b, b1} with score &noPath(c);
• for all w ∈ V � \ {a, b1, b, bm, c}, f �

w = fw.

An Illustration of Reduction Rule 2 is provided in Figure 4.1. The rule can be applied
in linear time, since the 6 values of &noPath and &max can be computed in linear time by
a simple dynamic programming subroutine that proceeds along the path a, b1, . . . , bm, c
(alternatively, one may instead invoke the fact that paths have treewidth 1 [OS13]).

Lemma 10. Reduction Rule 2 is safe.

Proof. Note that the superstructure graph of reduced instance is obtained from GI by
contracting b2...bm−1, adding b and connecting it by edges to a, c, b1, bm. We will show
that a score of at least & can be achieved in the original instance I if and only if a score
of at least & can be achieved in the reduced instance I �.

Assume that D is a DAG that achieves a score of & in I. We will construct a DAG D�,
called the reduct of D, with f �(D�) ≥ &. To this end, we first modify D by removing
the vertices b2...bm−1 and adding b (let us denote the DAG obtained at this point D∗).
Further modifications of D∗ depend only on D[a, b1...bm, c], and we distinguish the 6
cases listed below (see also Figure 4.1):

• case 1: D contains both arcs ab1 and cbm. We add to D∗ arcs from a, c, b1, bm

to b, denote resulting graph by D�. As D� is obtained from DAG by making b
a sink, it is a DAG as well. Parent set of b in D� is {a, c, b1, bm}, so its score is
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Figure 4.1:
Top: The six possible sce-
narios that give rise to the
values of &max (Cases 1-
4) and &noPath (Cases 5-6).
Bottom: The correspond-
ing arcs in the gadget after
the application of Reduc-
tion Rule 2.

&max(a, c) ≥ �m
i=1 fbi

(PD(bi)), which means that it achieves the highest scores all of
bi’s can achieve in D. The remaining vertices in V (D�) \ {b1, bm, b} have the same
scores as in D, so f �(D�) ≥ f(D) = &.

• case 2: D contains none of the arcs ab1 and cbm. To keep the scores of a and c
the same as in D, we add to D∗ the arc ba iff D contains b1a, add arc bc iff D
contains bmc. Furthermore, we add arcs b1b and bmb and denote resulting graph
D�. As D� is obtained from D by making b a source and then adding sources b1
and bm, it is a DAG as well. The parent set of b in D� is {b1, bm}, so its score is
&max(∅) ≥ �m

i=1 fbi(PD(bi)). Rest of vertices in V (D�) \ {b1, bm, b} have the same
scores as in D, so f �(D�) ≥ f(D) = &.

• case 3: D doesn’t contain the arc cbm, but contains ab1 and all the arcs bibi+1,
i ∈ [m − 1]. We add to D∗ arcs ab, b1b and bmb. We also add bc iff D contains bmc,
to preserve the score of c. Denote resulting graph by D�. D� can be considered as
D where long directed path a → b1 → ... → bm was replaced by a → b and then
sources b1 and bm were added, so it is a DAG. Arguments for scores are similar to
cases 1 and 2.

• case 4: D doesn’t contain the arc ab1, but contains cbm and all the arcs bi+1bi,
i ∈ [m − 1]. This case is symmetric to case 3.

• case 5: D contains the arc ab1 but does not contain the arc cbm and at least
one of the arcs bibi+1, i ∈ [m − 1] is also missing (i.e., there is no directed path
from a to bm). We add to D� arcs bb1 and bmb1. If bmc ∈ A(D), add also bc.
Denote the resulting graph D�. As D� is obtained from D∗ by making b1 a sink and
b, bm sources, it is a DAG. The parent set of b1 in D� is {a, b, bm} so its score is
&noPath(a) ≥ �m

i=1 fbi
(PD(bi)). Rest of vertices in V (D�) \ {b1, bm, b} have the same
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scores as in D, so f �(D�) ≥ f(D) = &.
• case 6: D contains the arc cbm but does not contain the arc ab1 and at least one of

the arcs bi+1bi, i ∈ [m − 1] is also missing. This case is symmetric to case 5.

The considered cases exhaustively partition all possible configurations of D[a, b1...bm, c],
so we always can construct D� with a score at least &. For the converse direction, note
that the DAGs constructed in cases 1-6 cover all optimal configurations on {a, b1, b, bm, c}:
if there is a DAG D�� in I � with a score of &�, we can always modify the construction to
obtain a DAG D� with score at least &� such that D�[a, b1, b, bm, c] has one of the forms
depicted at the bottom line of the figure. The claim for the converse direction follows
from the fact that every such D� is a reduct of some DAG D of the original instance with
the same score.

We are now ready to prove the desired result.

Proof of Theorem 8. We begin by exhaustively applying Reduction Rule 1 on an instance
whose superstructure graph has a feedback edge set of size k, which results in an instance
with the same feedback edge set but whose spanning tree T has at most 2k leaves. It
follows that there are at most 2k vertices with a degree greater than 2 in T .

Let us now “mark” all the vertices that either are endpoints of the edges in EF or have a
degree greater then 2 in T ; the total number of marked vertices is upper-bounded by 4k.
We now proceed to the exhaustive application of Reduction Rule 2, which will only be
triggered for sufficiently long paths in T that connect two marked vertices but contain
no marked vertices on its internal vertices; there are at most 4k such paths due to the
tree structure of T . Reduction Rule 2 will replace each such path with a set of 3 vertices,
and therefore after its exhaustive application we obtain an equivalent instance with at
most 4k + 4k · 3 = 16k vertices, as desired. Correctness follows from the safeness of
Reduction Rules 1, 2, and the runtime bound follows by observing that the total number
of applications of each rule as well as the runtime of each rule are upper-bounded by a
linear function of the input size.

4.2 Data Reduction for PL �=0

Recall that the proof of Theorem 8 used two data reduction rules. While Reduction Rule
1 carries over to PL�=0, Reduction Rule 2 has to be completely redesigned to preserve
the (non-)existence of undirected paths between a and c. By doing so, we obtain:

Theorem 11. There is an algorithm which takes as input an instance I of PL �=0 whose
superstructure has feedback edge number k, runs in time O(|I|2), and outputs an equivalent
instance I � = (V �, F �, &�) of PL �=0 such that |V �| ≤ 24k.

Proof. Note that Reduction Rule 1 acts on the superstructure graph by deleting leaves
and therefore preserves not only optimal scores but also (non-)existance of polytrees
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4. Parameterization by Feedback Edge Number

achiving the scores. Hence we can safely apply the rule to reduce the instance of PL �=0.
After the exhaustive application, all the leaves of the superstructure graph G are the
endpoints of edges in feedback edge set, so there can be at most 2k of them. To get rid
of long induced paths in G, we introduce the following rule:

Reduction Rule 3. Let a, b1, . . . , bm, c be a path in G such that for each i ∈ [m], bi has
degree precisely 2. For every B ⊆ {a, c} and p ∈ {0, 1}, let &p(B) be the maximum sum
of scores that can be achieved by b1, . . . , bm under the conditions that (1) there exists an
undirected path between b1 and bm if and only if p = 1; (2) b1 (and analogously bm) takes
a (c) into its parent set if and only if a ∈ B (c ∈ B).

We construct a new instance I � = (V �, F �, &) as follows:

• V � := (V ∪ {b, b�
1, b��

1, b�
m, b��

m}) \ {b1 . . . bm};
• Γf �(b�

1) = Γf �(b��
1) = Γf �(b�

m) = Γf �(b��
m) = ∅;

• The scores for a (analagously c) are obtained from F by simply replacing every
occurence of b1 by b�

1 and b��
1 (bm by b�

m and b��
m), formally:

– Γf �(a) is a union of {P ∈ Γf (a)|b1 �∈ P}, where f �
a(P ) := fa(P ) and

{(P \ b1) ∪ {b�
1, b��

1}|b1 ∈ P, P ∈ Γf (a)}, where f �
a((P \ b1) ∪ {b�

1, b��
1}) := fa(P );

– Γf �(c) is a union of {P ∈ Γf (c)|bm �∈ P}, where f �
c(P ) := fc(P ), and

{(P \ bm) ∪ {b�
m, b��

m}|bm ∈ P, P ∈ Γf (c)}, where f �
c((P \ bm) ∪ {b�

m, b��
m}) :=

fc(P ).

• Γf �(b) consists of eight sets, yielding corresponding scores f �
b:

{a, c, b�
1, b��

1, b�
m, b��

m} → l1({a, c}), {b�
1, b��

1, b�
m, b��

m} → l0({a, c}),
{b�

1, b�
m} → l1(∅), ∅ → l0(∅),

{a, b�
1, b��

1, b�
m} → l1({a}), {b�

1, b��
1} → l0({a}),

{b�
1, b�

m, b��
m, c} → l1({c}). {b�

m, b��
m} → l0({c}),

Parent sets of b are defined in a way to cover all the possible configurations on solutions
to I restricted to a, b1, . . . , bm, c; the corresponding scores of b are intuitively the sums
of scores that bi, i ∈ [m], receive in the solutions. The eight cases that may arise are
illustrated in Figure 4.2.

Claim 1. Reduction Rule 3 is safe.

Proof. We will show that a score of at least & can be achieved in the original instance I
if and only if a score of at least & can be achieved in the reduced instance I �.

Assume that D is a polytree that achieves the score of & in I. We will construct a polytree
D�, called the reduct of D, with f �(D�) ≥ &. To this end, we first modify D by removing
the vertices b1, . . . , bm and adding b, b�

1, b��
1, b�

m, b��
m. We also add arcs b�

1a and b��
1a (b�

mc
and b��

mc correspondingly) if and only if b1a ∈ A(D) (bmc ∈ A(D)). Let us denote the
DAG obtained at this point D∗. Note that scores of a and c in D∗ are the same as in D.

26
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Figure 4.2: Top: The eight possible scenarios for solutions to I. Bottom: The corre-
sponding arcs in the gadget after the application of Reduction Rule 2’ (the scores of b
are specified below).

Further modifications of D∗ depend only on D[a, b1...bm, c] and change only the parent
set of b. We distinguish the 8 cases listed below (see also Figure 4.2):

• case 1.1 (1.2): ab1, cbm ∈ A(D), b1 and bm are (not) connected by an undirected
path in D. We add incoming arcs to b from a, c, b�

1, b��
1, b�

m, b��
m (b�

1, b��
1, b�

m, b��
m only)

resulting in f �
b(PD�(b)) = l1({a, c}) (f �

b(PD�(b)) = l0({a, c})).
• case 2.1 (2.2): ab1, cbm �∈ A(D), b1 and bm are (not) connected by an undirected

path in D. We add incoming arcs to b from b�
1 and b�

m (leave D∗ unchanged)
yielding f �

b(PD�(b)) = l1(∅) (f �
b(PD�(b)) = l0(∅)).

• case 3.1 (3.2): ab1 ∈ A(D), cbm �∈ A(D), b1 and bm are (not) connected by an
undirected path in D. We add incoming arcs to b from a, b�

1, b��
1, b�

m (b�
1 and b��

1 only),
then f �

b(PD�(b)) = l1({a}) (f �
b(PD�(b)) = l0({a})).

• case 4.1 (4.2): ab1 �∈ A(D), cbm ∈ A(D), b1 and bm are (not) connected by an
undirected path in D. The cases are symmetric to 3.1 (3.2)

Note that D� contains a path between a and c if and only if D does. By definition of l0
and l1, the score of b in D� is at least as large as the sum of scores of bi, i ∈ [m], in D.
Moreover, each vertice in V (D) ∩ V (D�) receives equal scores in D and D�. Hence D� is
a polytree with f �(D�) ≥ &, as desired.
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4. Parameterization by Feedback Edge Number

For the converse direction, note that the polytrees constructed in cases 1.1-4.2 cover
all optimal configurations which may arise in I �: if there is a polytree D�� in I � with a
score of &�, we can always modify it to a polytree D� with a score of at least &� such that
D�[a, b�

1, b��
1, b, b�

m, b��
m, c] has one of the forms depicted at the bottom line of the figure.

But every such D� is a reduct of some polytree D of the original instance with the same
score.

We apply Reduction Rule 3 exhaustively, until there is no more path to shorten. Bounds
on the running time of the procedure and size of the reduced instance can be obtained
similarly to the case of BNSL�=0. In particular, every long path is replaced with a set of
5 vertices, resulting in at most 4k + 4k · 5 = 24k vertices.
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CHAPTER 5
Local Feedback Edge Number

5.1 Fixed-Parameter Algorithm for BNSL�=0

Our aim here will be to lift the fixed-parameter tractability of BNSL�=0 established by
Theorem 8 by relaxing the parameterization to lfen. In particular, we will prove:

Theorem 12. If a spanning tree T of G such that lfen(G, T ) = k is provided as part of
the input, BNSL�=0 can be solved in time 2O(k3) · n3, where n = |I|.

Since fen is a more restrictive parameter than lfen, this results in a strictly larger class
of instances being identified as tractable. However, the means we will use to establish
Theorem 12 will be fundamentally different: we will not use a polynomial-time data
reduction algorithm as the one provided in Theorem 8, but instead apply a dynamic
programming approach.

As our first step towards proving Theorem 12, we provide general conditions for when the
union of two DAGs is a DAG as well. Let D = (V, A) be a directed graph and V � ⊆ V .
Denote by Con(V �, D) the binary relation on V � × V � which specifies whether vertices
from V � are connected by a path in D: Con(V �, D) = {(v1, v2) ⊆ V � × V �| ∃ directed path
from v1 to v2 in D}. Similarly to arcs, we will use v1v2 ∈ as shorthand for (v1, v2); we
will also use trcl to denote the transitive closure.

Lemma 13. Let D1, D2 be digraphs with common vertices Vcom = V (D1) ∩ V (D2),
Vcom ⊆ V1 ⊆ V (D1), Vcom ⊆ V2 ⊆ V (D2). Then:

• (i) Con(V1 ∪ V2, D1 ∪ D2) = trcl(Con(V1, D1) ∪ Con(V2, D2));
• (ii) If D1, D2 are DAGs and Con(V1 ∪ V2, D1 ∪ D2) is irreflexive, then D1 ∪ D2 is

a DAG.
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5. Local Feedback Edge Number

Proof. (i) Denote Ri := Con(Vi, Di), i = 1, 2. Obviously trcl(R1 ∪ R2) is a subset of
Con(V1 ∪ V2, D1 ∪ D2). Assume that for some x, y ∈ V1 ∪ V2 there exists a directed path
P from x to y in D1 ∪ D2. We will show (by induction on the length l of shortest P )
that xy ∈ trcl(R1 ∪ R2).

• l = 1: in this case there is an arc xy in some Di, so xy ∈ Ri ⊆ trcl(R1 ∪ R2)
• l → l + 1. If P is completely contained in some Di, then xy ∈ Ri ⊆ trcl(R1 ∪ R2).

Otherwise P must contain arcs e /∈ A(D1), f /∈ A(D2). Then there is w ∈ Vcom ⊆
V1 ∪ V2 between them. By the induction hypothesis xw ∈ trcl(R1 ∪ R2) and
wy ∈ trcl(R1 ∪ R2), so xy ∈ trcl(R1 ∪ R2)

(ii) The precondition implies that the digraph D1 ∪ D2 induced on V1 ∪ V2 is a DAG.
Assume that D1 ∪ D2 is not a DAG and let C be a shortest directed cycle in D1 ∪ D2.
As D1 and D2 are DAGs, C must contain arcs e /∈ A(D1), f /∈ A(D2). So there are least
2 different vertices x, y from Vcom in C. By (i) we have that xy ∈ trcl(R1 ∪ R2) and
yx ∈ trcl(R1 ∪ R2), then also xx ∈ trcl(R1 ∪ R2), which contradicts irreflexivity.

Towards proving Theorem 12, assume that we are given an instance I = (V, F , &) of
BNSL�=0 with connected superstructure graph G = (V, E). Let T be a fixed rooted
spanning tree of G such that lfen(G, T ) = lfen(G) = k, denote the root by r. For v ∈ V (T ),
let Tv be the subtree of T rooted at v, let Vv = V (Tv), and let V̄v = NG(Vv) ∪ Vv. We
define the boundary δ(v) of v to be the set of endpoints of all edges in G with precisely
one endpoint in Vv (observe that the boundary can never have a size of 1).

v is called closed if |δ(v)| ≤ 2 and open otherwise. We begin by establishing some basic
properties of the local feedback edge set.

Observation 14. Let v be a vertex of T . Then:

1. For every closed child w of v in T , it holds that δ(w) = {v, w} and vw is the only
edge between Vw and V \ Vw in G.

2. |δ(v)| ≤ 2k + 2.
3. Let {vi|i ∈ [t]} be the set of all open children of v in T . Then t ≤ 2k and

δ(v) ⊆ ∪t
i=1δ(vi) ∪ {v} ∪ NG(v)

Proof. The first claim follows by the connectivity assumption on G and the definition of
boundary.

For the second claim, clearly δ(r) = ∅. Let v �= r have the parent u, and consider
an arbitrary w ∈ δ(v) \ {u, v}. Then there is an edge ww� ∈ E(G) with precisely one
endpoint in Vv and ww� �= uv. Hence ww� �∈ E(T ) and the path between w and w� in T
contains v, and this implies ww� ∈ ET

loc(v) by definition. Consequently, w ∈ V T
loc(v). For

the claimed bound we note that |V T
loc(v)| ≤ 2|ET

loc(v)| ≤ 2k.

30
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For the third claim, let w = vi for some i ∈ [t]. As w is open, there exists an edge e �= vw
between Vw and V \ Vw in G. By definition of local feedback edge set, e ∈ ET

loc(v). Let
xw be the endpoint of e that belongs to Vw, then xw ∈ V T

loc(v) and xw �∈ Vw� for any
open child w� �= w of v. But |V T

loc(v)| ≤ 2k, which yields the bound on number t of open
children.
For the boundary inclusion, consider any edge c in G with precisely one endpoint xv in
Vv. Note that xv can not belong to Vw for any closed child w of v. If xv ∈ Vvi for some
i ∈ [t], then endpoints of c belong to δ(vi). Otherwise xv = v and therefore the second
endpoint of c is in NG(v).

With Observation 14 in hand, we can proceed to a definition of the records used in our
dynamic program. Intuitively, these records will be computed in a leaf-to-root fashion
and will store at each vertex v information about the best score that can be achieved by
a partial solution that intersects the subtree rooted at v.

Let R be a binary relation on δ(v) and s an integer. For s ∈ Z, we say that (R : s) is a
record for a vertex v if and only if there exists a DAG D on V̄v such that (1) w ∈ Vv for
each arc uw ∈ A(D), (2) R = Con(δ(v), D) and (3) �

u∈Vv
fu(PD(u)) = s. The records

(R, s) where s is maximal for fixed R are called valid. Denote the set of all valid records
for v by R(v), and note that |R(v)| ≤ 2O(k2).

Observe that if vi is a closed child of v, then by Observation 14.1 R(vi) consists of
precisely two valid records: one for R = ∅ and one for R = {vvi}. Moreover, the root
r of T has only a single valid record (∅ : sI), where sI is the maximum score that can
be achieved by a solution in I. The following lemma lies at the heart of our result and
shows how we can compute our records in a leaf-to-root fashion along T .

Lemma 15. Let v ∈ V (G) have m children in T where m > 0, and assume we have
computed R(vi) for each child vi of v. Then R(v) can be computed in time at most
m · |Γf (v)| · 2O(k3).

Proof. Without loss of generality, let the open children of v ∈ V (G) be v1, . . . , vt and
let the remaining (i.e., closed) children of v be vt+1, . . . , vm; recall that by Point 3. of
Observation 14, t ≤ 2k. For each closed child vj , j ∈ [m] \ [t], let s∅

j be the second
component of the valid record for ∅ ∈ R(vj), and let s×

j be the second component of the
valid record for the single non-empty relation in R(vj). Consider the following procedure
A.

First, A branches over all choices of P ∈ Γf (v) and all choices of (Ri, si) ∈ R(vi) for
each individual open child vi of v. Let R0 = { pv | p ∈ P } and let R� = �

j∈[t]0 Rj . If
trcl(R�) is not irreflexive, we discard this branch; otherwise, we proceed as follows.
Let Rnew be the subset of R� containing all arcs uw such that w ∈ Vv. Moreover, let
snew = fv(P ) + (�

i∈[t] si) + (�
i∈[m]\[t] | vi∈P s∅

i ) + (�i∈[m]\[t] | vi �∈P (max(s∅
i , s×

i )).

The algorithm A gradually constructs a set R∗(v) as follows. At the beginning, R∗(v) = ∅.
For each newly obtained tuple (Rnew, snew), A checks whether R∗(v) already contains a
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tuple with Rnew as its first element; if not, we add the new tuple to R∗(v). If there already
exists such a tuple (Rnew, sold) ∈ R∗(v), we replace it with (Rnew, max(sold, snew)).

For the running time, recall that in order to construct R∗(v) the algorithm branched over
|Γf (v)|-many possible parent sets of v and over the choice of at most 2k-many binary
relations Ri on the boundaries of open children. According to Observation 14.2, there
are at most 3(2k+2)2 options for every such relation, so we have at most O((3(2k+2)2)2k ·
|Γf (v)|) ≤ 2O(k3) · |Γf (v)| branches. In every branch we compute trcl(R�) in time kO(1)

and then compute the value of snew using the equation provided above before updating
R∗(v), which takes time at most O(m).

Finally, to establish correctness it suffices to prove following claim:

Claim 2. (R : s) is a record for v if and only if there exist P ∈ Γf (v) and records
(Ri : si) for vi, i ∈ [m], such that:

• trcl(∪t
i=0Ri) is irreflexive;

• Ri = ∅ for any closed child vi ∈ P ;
• �m

i=1 si + fv(P ) = s;
• R = (trcl(∪t

i=0Ri)) ∩ (δ(v) × δ(v)).

Moreover, if (R : s) ∈ R(v) then in addition:

• (Ri : si) ∈ R(vi), i ∈ [t];
• for every closed child vi �∈ P , si = max(s∅

i , s×
i ).

Proof of the Claim. (a) (⇐) Denote Vi = Vvi and V̄i = V̄vi , i ∈ [m]. For every i ∈ [m]
there exists DAG Di on V̄i such that all its arcs finish in Vi, Ri = Con(δ(vi), Di) and�

u∈Vi
fu(PDi(u)) = si. Denote by D0 DAG on V0 = v ∪ NG(v) with arc set R0. We will

construct the witness D of (R, s) by gluing together all Di, i ∈ [m]0.

We start from D0 and DAGs of open children. Note that Con(V0, D0) = R0 and
Con(δ(vi), Di) = Ri for i ∈ [t] . Inductive application of Lemma 13 to DAGs Di, i ∈ [t],
yields Con(∪t

i=1δ(vi) ∪ V0, D∗) = trcl(∪t
i=0Ri). In particular, as δ(v) ⊆ ∪t

i=1δ(vi) ∪ V0
by Observation 14.3, we have that Con(δ(v), D∗) = (trcl(∪t

i=0Ri))|δ(v)×δ(v) = R. As
trcl(∪t

i=0Ri) is irreflexive, D∗ = ∪t
i=0Di is DAG by Lemma 13.

Now we add to D∗ DAGs for closed children and finally obtain D = ∪m
i=t+1Di ∪ D∗.

For every closed child vi, Di is by Observation 14.1 the union of v and Di \ v, plus at
most one of arcs vvi, viv between them (recall Ri = ∅ for any closed child vi ∈ P ). Note
that Di \ v can share only vi with D0 and doesn’t have common vertices with any other
Dj . Therefore any directed path in D starting and finishing outside outside of Vi, i > t,
doesn’t intersect Vi. In particular, acyclicity of D∗ and Di, i ∈ [m] \ [t], implies acyclicity
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of D; Con(δ(v), D) = Con(δ(v), D∗) = R.

All the arcs in Di finish in Vi, so parent set for every xi ∈ Di in D is the same as
in Di, i ∈ [m]. Also parent set of v in D is the same as in D0. So

�
u∈Vv

fu(PD(u)) =
m�

i=1

�
u∈Vi

fu(PDi(u)) + fv(PD0(v)) =
m�

i=1
si + fv(P ) = s

(⇒) Let D be a witness for (R : s), i.e. D is DAG on V̄v with all arcs finishing in
Vv such that �

u∈Vv
fu(PD(u)) = s and Con(δ(v), D) = R. For i = 1 ∈ [m] define

D�
i = D[V̄i] and let Di be obtained from D�

i by deleting arcs that finish outside Vi. Note
that ∪m

i=1Di = D. Let Ri = Con(δ(vi), Di), as in (⇐) we have that R = Con(δ(v), D) =
trcl(∪t

i=0Ri))|δ(v)×δ(v). As D is DAG, trcl(∪t
i=0Ri) is irreflexive and Ri = ∅ for any

closed child vi ∈ P . Local score for Di is

si =
�
u∈Vi

fu(PDi(u)) =
�
u∈Vi

fu(PD�
i
(u)) =

�
u∈Vi

fu(PD(u))

So vi has record (Ri : si). Denote P = PD(v). Then:

s =
�

u∈Vv

fu(PD(u)) =
m�

i=1

�
u∈Vi

fu(PD(u)) + fv(PD(v)) =
m�

i=1
si + fv(P )

(b) Let (R : s) ∈ R(v) and all D, P, Di, Ri, si are as in (a)(⇒). Assume that for some i
(Ri, si) is not valid record of vi. In this case vi must have a record (Ri : si + Δ) with
Δ > 0. But then (a)(⇐) implies that v has record (R : s + Δ), which contradicts to
validity of (R : s)

Assume that some closed vi �∈ P has valid record (R�
i, si + Δ) with Δ > 0. R� and

R differ only by arc vvi, so addition or deletion of the arc to D would increase the total
score by Δ > 0 without creating cycles. This would result in record (R : s + Δ) and yield
a contradiction with validity of (R : s). �

We are now ready to prove the main result of this section.

Proof of Theorem 12. We provide an algorithm that solves BNSL�=0 in time 2O(k3) · n3,
where n = |I|, assuming that a spanning tree T of G such that lfen(G, T ) = k is given as
part of the input.

The algorithm computes R(v) for every node v in T , moving from leaves to the root:

• For a leaf v, compute R∗(v) := {(RP : fv(P ))| P ∈ Γf (v), RP = {uv|u ∈ P}}. This
can be done by simply looping over Γf (v) in time O(n). Note that R∗(v) is the set
of all records of v, so we can correctly set R(v) := {(R : s) ∈ R∗(v)| there is no
(R : s�) ∈ R∗(v) with s� > s}.
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• Let v ∈ V (G) have at least one child in T , and assume we have computed R(vi)
for each child vi of v. Then we invoke Lemma 15 to compute R(v) in time at most
m · |Γf (v)| · 2O(k2) ≤ 2O(k2) · n2.

5.2 Fixed-Parameter Algorithm for PL �=0

Similarly as for BNSL we can provide an FPT algorithm using the same ideas as in
the proof of Theorem 12. The algorithm proceeds by dynamic programming on the
spanning tree T of G with lfen(G, T ) = lfen(G) = k. The records will, however, need
to be modified: for each vertex v, instead of the path-connectivity relation on δ(v), we
store connected components of the inner boundary δ(v) ∩ Vv and incoming arcs to Tv.
We provide a full description of the algorithm below.

Theorem 16. If a spanning tree T of G such that lfen(G, T ) = k is provided as part of
the input, PL �=0 can be solved in time 2O(k3) · n3, where n = |I|.

Proof. We pick a root r in T and keep all the notations Tv, Vv, V̄v, δ(v) for v ∈ V (T )
from the section 5.1. In addition, we define the inner boundary of v ∈ V (T ) to be
δin(v) := δ(v) ∩ Vv i.e. part of boundary that belongs to subtree of T rooted in v. The
remaining part we call the outer boundary of v and denote by δout(v) := δ(v) \ δin(v).
For any set A of arcs, we define �A = {uv|uv ∈ A or vu ∈ A}. Obviously, the claims of
Observation 14 still hold. Moreover, for every closed v, δin(v) contains only v itself and
δout(v) is either the parent of v in T or ∅ (for v = r).

Let Rv be binary relation on δin(v), Av ⊆ δout(v)×δin(v), sv is integer. Then (Rv, Av, sv)
is a record for v if and only if there exist a polytree D on V̄v with all arcs oriented inside
Vv such that:

• Av = {xy ∈ A(D)| x ∈ δout(v), y ∈ δin(v)}
• Rv = {xy| x, y ∈ δin(v) are in the same connected component of D[Vv]}
• sv = �

u∈Vv
fu(PD(u))

Note that Rv is an equivalence relation on δin(v), number of its equivalence classes is
equal to number of connected components of D[Vv] that intersect δ(v).

Record (Rv, Av, sv) is called valid if and only if sv is maximal for fixed Rv, Av among all
the records for v. Denote by R(v) the set of all valid records for v, then |R(v)| ≤ 2(2k+2)2 .
Indeed, Rv and Av can be uniquely determined by the choice of some relation on δ(v)×δ(v).
As |δ(v)| ≤ 2k + 2, there are at most 2(2k+2)2 possible relations.

The root r of T has a single valid record (∅, ∅, sI), where sI is the maximum score that
can be achieved by a solution to I. For any closed v �= r, R(v) consists of precisely two
valid records: one for Av = ∅, Rv = {vv} and another for Av = {wv}, Rv = {vv}, where
w is a parent of v in T .
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We proceed by computing our records in a leaf-to-root fashion along T .

Let v be a leaf. Start by innitiating R∗(v) := ∅, then for each P ∈ Γf (v) add to R∗(v)
the triple ({vv}, {uv|u ∈ P}, fv(P )). Note that R∗(v) is by definition precisely the set of
all records for v, so we can correctly set R(v) = {(Rv, Av, sv) ∈ R∗(v)|sv is maximal for
fixed Rv, Av}.

Assume that v has m children {vi : i ∈ [m]} in T , where vi, i ∈ [t], are open and vi,
i ∈ [m] \ [t], are closed. The following claim shows how (and under which conditions) the
records of children of v can be composed into a record of v.

Claim 3. Let P ∈ Γf (v), D0 is a polytree on V0 = v ∪ P with arc set A0 = {uv|u ∈ P},
(Ri, Ai, si) are records for vi witnessed by Di, i ∈ [m]. Let Ain

loc be the set of arcs in�
i∈[t]0 Ai which have both endpoints in Vv, R = trcl( �Ain

loc∪�
i∈[t]0 Ri). Then D = ∪m

i=0Di

is a polytree if and only if the following two conditions hold:

1. Ai = ∅ for each closed child vi ∈ P .

2. �t
i=0 Ni − |Ain

loc| − �
y∈Y (ny − 1) = N , where

• N is the number of equivalence classes in trcl(�i∈[t]0( �Ai ∪ Ri))
• Ni is the number of equivalence classes in Ri, i ∈ [t]
• Y is the set of endpoints of arcs in �

i∈[t]0 Ai which don’t belong to any Vi,
i ∈ [m].

• For every y ∈ Y , ny is the number of arcs in A0 ∪ ... ∪ At having endpoint y.

In this case D witnesses the record (Rv, Av, sv), where:
Rv = R|δin(v)×δin(v), Av = (�i∈[t]0 Ai)|δout(v)×δin(v), sv = �m

i=0 si + fv(P ).

If (Rv, Av, sv) ∈ R(v), then (Ri, Ai, si) ∈ R(vi), i ∈ [m]. Moreover, for any closed child
vi �∈ P , there is no (R�

i, A�
i, s�

i) ∈ R(vi) with s�
i > si.

We will prove the claim at the end, let us show how it can be exploited to compute
valid records of v. We start from initial setting R∗(v) := ∅, then branch over all parent
sets P ∈ Γf (v) and triples (Ri, Ai, si) ∈ R(vi) for open children vi. For each closed
child vi �∈ P take (Ri, Ai, si) ∈ R(vi) with maximal si, for each closed child vi ∈ P take
(Ri, Ai, si) ∈ R(vi) with Ai = ∅. Now the first condition of Claim3 holds, if the second
one holds as well, we add to R∗(v) the triple (Rv, Av, sv).

According to Claim 3, R∗(v) computed in such a way consists only of records for
v and, in particular, contains all the valid records. Therefore we can correctly set
R(v) = {(Rv, Av, sv) ∈ R∗(v)| sv is maximal for fixed Rv, Av}.

To construct R∗(v) for node v with children vi, i ∈ [m], we branch over at most n possible
parent sets of v and at most 2(2k+2)2 valid records for every open child of v. Number
of open children is bounded by 2k, so we have at most O((2(2k+2)2)2k · n) ≤ 2O(k3) · n

35



5. Local Feedback Edge Number

branches. In a fixed branch we compute scores for closed children in O(n), application of
Claim 3 requires time polynomial in k. So R∗(v) is computed in time 2O(k3) · n2 that
majorizes running time for leaves. As the number of vertices in T is at most n, total
running time of the algorithm is 2O(k3) · n3 assuming that T is given as a part of the
input.

proof of Claim 3 (⇐). We start from checking whether D = ∪m
i=0Di is a polytree. As

the first condition implies that a polytree of every closed child vi is connected to the
rest of D by at most one arc viv or vvi, it is sufficient to check whether Dt = ∪t

i=0Di

is polytree. Number of connected components of Dt is N � + N , where N � is the total
number of connected components of Di that don’t intersect δ(vi), i ∈ [t]. Note that Dt

can be constructed as follows:

1. Take a disjoint union of polytrees D�
i = Di[Vi], i ∈ [t]0, then the resulting polytree

has N � + �t
i=0 Ni connected components.

2. Add arcs between D�
i and D�

j that occur in D for every i, j ∈ [t]0, i.e. the arcs
specified by Ain

loc. Resulting digraph is a polytree if and only if every added arc
decreases the number of connected components by 1, i.e. the number of connected
components after this step is N � + �t

i=0 Ni − |Ain
loc|.

3. Add all remaining vertices y of D together with their adjacent arcs in D. Note that
such y precisely form the set Y , so Dt is a polytree if and only if we obtained a
polytree after the previous step and every y ∈ Y decreased it’s number of connected
components by (ny − 1), i.e. the number N � + N of connected components in Dt is
equal to N � + �t

i=0 Ni − |Ain
loc| − �

y∈Y (ny − 1). But this is precisely the condition
2 of the claim.

Now, assuming that D is a polytree, we will show that it witnesses (Rv, Av, sv). Parent
sets of vertices from each Vi in D are the same as in Di, parent set of v in D is P . So
sv = �m

i=0 si + fv(P ) is indeed the sum of scores over Vv in D.

There are two kinds of arcs in D starting outside of Vv: incoming arcs to v and incoming
arcs to the subtrees of open children. Thus A(D)|δout(v)×δin(v) = (�i∈[t]0 Ai)|δout(v)×δin(v) =
Av.

Take any u, w ∈ δin(v), u �= w, note that u and w can not belong to subtrees of closed
children. So u and w are in the same connected component of D[Vv] if and only if they
are connected by some undirected path π in the skeleton of D using only vertices from
Dt ∩ Vv. In this case Ri captures the segmens of π which are completely contained in
Di[Vi], i ∈ [t]. Rest of edges in π either connect v to some Vi, i ∈ [t], or have enpoints in
different Vi and Vj for some i, j ∈ [t]. Edges of this kind precisely form the set �Ain

loc, so uw
belongs to R = trcl(�

i∈[t] Ri ∪ �Ain
loc). Therefore Rv = R|δin(v)×δin(v) indeed represents

connected components of δin(v) in D[Vv].
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(⇒) Condition 1 obviously holds, otherwise D would contain a pair of arcs with the same
endpoints and different directions. In (⇐) we actually showed the necessity of condition
2 when 1 holds.

For the last statement, assume that (Rv, Av, sv) ∈ R(v) but (Ri, Ai, si) �∈ R(vi) for
some i. Then there is (Ri, Ai, si + Δ) ∈ R(vi) for some δ > 0. Let D�

i be a witness of
(Ri, Ai, si + Δ), then D� = �

j∈[m]\{i} Dj ∪ D�
i is a polytree witnessing (Rv, Av, sv + Δ).

But this contradicts to validity of (Rv, Av, sv). By the same arguments records for closed
children vi �∈ P are the ones with maximal si among two (Ri, Ai, si) ∈ R(vi). �
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CHAPTER 6
Lower Bounds: Tree-Cut Width

It is not difficult to show that the local feedback edge number is “sandwiched” between
the feedback edge number and tree-cut width.

Proposition 17. For every graph G, tcw(G) ≤ lfen(G) + 1 and lfen(G) ≤ fen(G).

Proof. Let us begin with the second inequality. Consider an arbitrary spanning tree T of
G. Then for every v ∈ V (G), ET

loc(v) is a subset of a feedback edge set corresponding to
the spanning tree T , so |ET

loc(v)| ≤ fen(G) and the claim follows.

To establish the first inequality, we will use the notation and definition of tree-cut width
from [GKO21, Subsection 2.4]. Let T be the spanning tree of G with lfen(G, T ) = lfen(G).
We construct a tree-cut decomposition (T, X ) where each bag contains precisely one vertex,
notably by setting Xt = {t} for each t ∈ V (T ). Fix any node t in T other than root, let
u be the parent of t in T . All the edges in G \ ut with one endpoint in the rooted subtree
Tt and another outside of Tt belong to ET

loc(t), so adhT (t) = | cut(t)| ≤ |ET
loc(t)| ≤ lfen(G).

Let Ht be the torso of (T, X ) in t, then V (Ht) = {t, z1...zl} where zi correspond
to connected components of T \ t, i ∈ [l]. In H̃(t), only zi with degree at least 3
are preserved. But all such zi are the endpoints of at least 2 edges in |ET

loc(t)|, so
tor(t) = |V (H̃t)| ≤ 1 + |ET

loc(t)| ≤ 1 + lfen(G). Thus tcw(G) ≤ lfen(G) + 1.

Since lfen lies between fen and tree-cut width in the parameter hierarchy (see Proposi-
tion 17) and BNSL�=0 is FPT when parameterized by lfen, the next step would be to ask
whether this tractability result can be lifted to tree-cut width. Below, we answer this
question negatively. In fact, we strengthen the hardness result established in [OS13] by
bounding the degree of vertices outside of the vertex cover:
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Theorem 18. BNSL�=0 is W[1]-hard when parameterized by the vertex cover number of
the superstructure even when all vertices outside of the vertex cover are required to have
degree at most 2.

Proof. We reduce from the following well-known W[1]-hard problem [DF13, CFK+15]:

Regular Multicolored Clique (RMC)
Input: A k-partite graph G = (V1 ∪ ... ∪ Vk, E) such that |NG(v)| = m for

every v ∈ V
Parameter: The integer k
Question: Are there nodes vi that form a k-colored clique in G, i.e. vi ∈ Vi and

vivj ∈ E for all i, j ∈ [k], i �= j?

We say that vertices in Vi have color i. Let G = (V1 ∪ ... ∪ Vk, E) be an instance of RMC.
We will construct an instance (V, F , &) of BNSL�=0 such that I is a Yes-instance if and
only if G is a Yes-instance of RMC. V consists of one vertex vi for each color i ∈ [k] and
one vertex ve for every edge e ∈ E. For each edge e ∈ E that connects a vertex of color i
with a vertex of color j, the constructed vertex ve will have precisely one element in its
score function that achieves a non-zero score, in particular: fve({vi, vj}) = 1.

Next, for each i ∈ [k], we define the scores for vi as follows. For every v ∈ Vi, let Ev

be the set of all edges incident to v in G, and let P v
i = {ve : e ∈ Ev}. We now set

fvi(P v
i ) = m + 1 for each such v; all other parent sets will receive a score of 0. Note

that { vi | i ∈ [k] } forms a vertex cover of the superstructure graph and that all vertices
outside of this vertex cover have degree at most 2, as desired. We will show that G
has a k-colored clique if and only if there is a Bayesian network D with score at least
& = |E| + k +

�k
2
�
. (In fact, it will later become apparent that the score can never exceed

&.)

Assume first that G has a k-colored clique on vi, i ∈ [k], consisting of a set EX of
�k

2
�

edges. Consider the digraph D on V obtained as follows. For each vertex vi, i ∈ [k],
and each vertex ve where e ∈ E, D contains the arc vevi if ve is incident to vi and
otherwise D contains the arc vive. This completes the construction of D. Now notice
that the construction guarantees that each vi receives the parent set P vi

i and hence
contributes a score of m + 1. Moreover, for every edge e not incident to a vertex in
the clique, the vertex ve contributes a score of 1; note that the number of such edges is
|E| − km +

�k
2
�
; indeed, every vi is incident to m edges but since vi, i ∈ [k], was a clique

we are guaranteed to double-count precisely
�k

2
�

many edges. Hence the total score is
k(m + 1) + |E| − km +

�k
2
�

= |E| + k +
�k

2
�
, as desired.

Assume that I = (V, F , &) is a Yes-instance and let sopt ≥ & = |E| + k +
�k

2
�

be the
maximum score that can be achieved by a solution to I; let D be a dag witnessing such a
score. Then all vi, i ∈ [k], must receive a score of m + 1 in D. Indeed, assume that some
vi receives a score of 0 and let Pv be any parent set of vi with a score m + 1. Modify D
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by orienting edges vive for every ve ∈ Pv inside vi. Now local score of vi is m + 1, total
score of the rest of vertices decreased by at most m (maximal number of ve that had
local score 1 in D and lost it after the modification). So the modified DAG has a score
of at least sopt + 1, which contradicts the optimality of sopt. Therefore all vi, i ∈ [k], get
score m + 1 in D.

Let Pi be parent set of vi in D, then |Pi| = m, Pi = P vi

i for some vi ∈ Vi. For every
ve ∈ Pi, the local score of ve in D is 0. Denote by Eunsat the set of all ve that have a
score of 0 in D. Every ve belongs to at most 2 different Pi and Pi ∩ Pj ≤ 1 for every
i �= j, so |Eunsat| ≥ km − �k

2
�
. If |Eunsat| > km − �k

2
�
, sum of local scores of ev in D

would be smaller then |E| − km +
�k

2
�
, which results in sopt < |E| + k +

�k
2
�
. Therefore

|Eunsat| = km − �k
2
�
. But this means that Pi ∩ Pj �= ∅ for any i �= j, i.e. vi, i ∈ [k] form a

k-colored clique in G. In particular sopt = &.
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CHAPTER 7
Additive Scores and Treewidth

While the previous two sections focused on the complexity of BNSL when the non-zero
representation was used (i.e., BNSL�=0), here we turn our attention to the complexity
of the problem with respect to the additive representation. Recall from Section 2.3
that there are two variants of interest for this representation: BNSL+ and BNSL+

≤. In
contrast to BNSL�=0, both of them are fixed-parameter tractable when parameterized by
the treewidth of the superstructure alone.

Theorem 19. BNSL+ is can be solved in time 2O(k2) · n, where k is the treewidth of the
superstructure and n = |I|. Moreover, BNSL+

≤ can be solved in time 2O(k2) · qO(k) · n.

Proof. We begin by proving the latter statement, and will then explain how that result
can be straightforwardly adapted to obtain the former. As our initial step, we apply
Bodlaender’s algorithm [Bod96, Klo94] to compute a nice tree-decomposition (T , χ) of
GI of width k = tw(GI). In this proof we use T to denote the set of nodes of T and let
r ∈ T be the root of T . Given a node t ∈ T , let χ↓

t be the set of all vertices occurring in
bags of the rooted subtree Tt, i.e., χ↓

t = {u | ∃t� ∈ Tt such that u ∈ χ(t�)}.

To prove the theorem, we will design a leaf-to-root dynamic programming algorithm which
will compute and store a set of records at each node of T , whereas once we ascertain the
records for r we will have the information required to output a correct answer. Intuitively,
the records will store all information about each possible set of arcs between vertices in
each bag, along with relevant connectivity information provided by arcs between vertices
in χ↓

t and information about the partial score. They will also keep track of parent set
sizes in each bag.

Formally, the records will have the following structure. For a node t, let S(t) =
{(loc, con, inn) | loc, con ⊆ Aχ(t), inn : χ(t) → [q]0} be the set of snapshots of t. The
record Rt of t is then a mapping from S(t) to N0 ∪{⊥}. Observe that |S(t)| ≤ 4k2(q +1)k.
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To introduce the semantics of our records, let Dt be the set of all directed acyclic graphs
over the vertex set χ↓

t with maximal in-degree at most q, and let Dt = (χ↓
t , A) be a

directed acyclic graph in Dt. We say that the snapshot of Dt in t is the tuple (α, β, p)
where α = A ∩ Aχ(t), β = Con(χ(t), Dt) and p specifies numbers of parents of vertices
from χ(t) in D, i.e. p(v) = |{w ∈ χ↓

t |wv ∈ A}|, v ∈ χ(t). We are now ready to define the
record Rt. For each snapshot (loc, con, inn) ∈ S(t):

• Rt(loc, con, inn) = ⊥ if and only if there exists no directed acyclic graph in Dt

whose snapshot is (loc, con, inn), and
• Rt(loc, con, inn) = τ if ∃Dt ∈ Dt such that

– the snapshot of Dt is (loc, con, inn),
– score(Dt) = τ , and
– ∀D�

t ∈ Dt such that the snapshot of D�
t is (loc, con, inn): score(Dt) ≥ score(D�

t).

Recall that for the root r ∈ T , we assume χ(r) = ∅. Hence Rr is a mapping from the
one-element set {(∅, ∅, ∅)} to an integer τ such that τ is the maximum score that can be
achieved by any DAG D = (V, A) with all in-degrees of vertices upper bounded by q. In
other words, I is a YES-instance if and only if Rr(∅, ∅, ∅) ≥ &. To prove the theorem,
it now suffices to show that the records can be computed in a leaf-to-root fashion by
proceeding along the nodes of T . We distinguish four cases:

t is a leaf node. Let χ(t) = {v}. By definition, S(t) = {(∅, ∅, ∅)} and Rt(∅, ∅, ∅) = fv(∅).

t is a forget node. Let t� be the child of t in T and let χ(t) = χ(t�) \ {v}. We initiate
by setting R0

t (loc, con, inn) = ⊥ for each (loc, con, inn) ∈ S(t).

For each (loc�, con�, inn�) ∈ S(t�), let locv, conv be the restrictions of loc�, con� to tu-
ples containing v. We now define loc = loc� \ locv, con = con� \ conv, inn = inn� |χ(t)
and say that (loc, con, inn) is induced by (loc�, con�, inn�). Set R0

t (loc, con, inn) :=
max(R0

t (loc, con, inn), Rt�(loc�, con�, inn�)), where ⊥ is assumed to be a minimal element.

For correctness, it will be useful to observe that Dt = Dt� . Consider our final computed
value of R0

t (loc, con, inn) for some (loc, con, inn) ∈ S(t).

If Rt(loc, con, inn) = τ for some τ �= ⊥, then there exists a DAG D which wit-
nesses this. But then D also admits a snapshot (loc�, con�, inn�) at t� and witnesses
Rt�(loc�, con�, inn�) ≥ τ . Note that (loc, con, inn) is induced by (loc�, con�, inn�). So in our
algorithm R0

t (loc, con, inn) ≥ Rt�(loc�, con�, inn�) ≥ τ .

If on the other hand R0
t (loc, con, inn) = τ for some τ �= ⊥, then there exists a

snapshot (loc�, con�, inn�) such that (loc, con, inn) is induced by (loc�, con�, inn�) and
Rt�(loc�, con�, inn�) = τ . Rt(loc, con, inn) ≥ τ now follows from the existence of a DAG
witnessing the value of Rt�(loc�, con�, inn�).

Hence, we can correctly set Rt = R0
t .
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t is an introduce node. Let t� be the child of t in T and let χ(t) = χ(t�) ∪ {v}. We
initiate by setting R0

t (loc, con, inn) = ⊥ for each (loc, con, inn) ∈ S(t).

For each (loc�, con�, inn�) ∈ S(t�) and each Q ⊆ {ab ∈ Aχ(t) | {a, b} ∩ {v} �= ∅}, we define:

• loc := loc� ∪Q

• con := trcl(con� ∪ Q)
• inn(x) := inn�(x) + |{y ∈ χ(t)|yx ∈ Q}| for every x ∈ χ(t) \ {v}

inn(v) := |{y ∈ χ(t)|yv ∈ Q}|

If con is not irreflexive or inn(x) > q for some x ∈ χ(t), discard this branch. Otherwise,
let R0

t (loc, con, inn) := max(R0
t (loc, con, inn),new) where new = Rt�(loc�, con�, inn�) +�

ab∈Q fb(a). As before, ⊥ is assumed to be a minimal element here.

Consider our final computed value of R0
t (loc, con, inn) for some (loc, con, inn) ∈ S(t).

For correctness, assume that R0
t (loc, con, inn) = τ for some τ �= ⊥ and is obtained

from (loc�, con�, inn�), Q defined as above. Then Rt�(loc�, con�, inn�) = τ − �
ab∈Q fb(a).

Construct a directed graph D from the witness D� of Rt�(loc�, con�, inn�) by adding the
arcs specified in Q. As con = trcl(con� ∪ Q) is irreflexive and D� is a DAG, D is a DAG
as well by 13. Moreover, inn(x) ≤ q for every x ∈ χ(t) and the rest of vertices have in D
the same parents as in D�, so D ∈ Dt. In particular, (loc, con, inn) is a snapshot of D in
t and D witnesses Rt(loc, con, inn) ≥ Rt�(loc�, con�, inn�) + �

ab∈Q fb(a) = τ .

On the other hand, if Rt(loc, con, inn) = τ for some τ �= ⊥, then there must exist a
directed acyclic graph D = (χ↓

t , A) in Dt that achieves a score of τ . Let Q be the restriction
of A to arcs containing v, and let D� = (χ↓

t \v, A\Q), clearly D� ∈ Dt� . Let (loc�, con�, inn�)
be the snapshot of D� at t�. Observe that loc = loc� ∪Q, con = trcl(con� ∪Q), inn differs
from inn� by the numbers of incoming arcs in Q and the score of D� is precisely equal to the
score τ of D minus �

(a,b)∈Q fb(a). Therefore Rt�(loc�, con�, inn�) ≥ τ −�
(a,b)∈Q fb(a) and

in the algorithm R0
t (loc, con, inn) ≥ Rt�(loc�, con�, inn�) + �

(a,b)∈Q fb(a) ≥ τ . Equality
then follows from the previous direction of the correctness argument.

Hence, at the end of our procedure we can correctly set Rt = R0
t .

t is a join node. Let t1, t2 be the two children of t in T , recall that χ(t1) = χ(t2) = χ(t).
By the well-known separation property of tree-decompositions, χ↓

t1 ∩ χ↓
t2 = χ(t) [DF13,

CFK+15]. We initiate by setting R0
t (loc, con, inn) := ⊥ for each (loc, con, inn) ∈ S(t).

Let us branch over each loc, con1, con2 ⊆ Aχ(t) and inn1, inn2 : χ(t) → [q]0. For every
b ∈ χ(t) set inn(b) = inn1(b) + inn2(b) − |{a|ab ∈ loc}|. If:

• trcl(con1 ∪ con2) is not irreflexive and/or
• Rt1(loc, con1, inn1) = ⊥, and/or
• Rt2(loc, con2, inn2) = ⊥, and/or
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• inn(b) > q for some b ∈ χ(t)

then discard this branch. Otherwise, set con = trcl(con1 ∪ con2), doublecount =�
ab∈loc fb(a) and new = Rt1(loc, con1) + Rt2(loc, con2) − doublecount. We then set

R0
t (loc, con, inn) := max(R0

t (loc, con, inn),new) where ⊥ is once again assumed to be a
minimal element.

At the end of this procedure, we set Rt = R0
t .

For correctness, assume that R0
t (loc, con, inn) = τ �= ⊥ is obtained from loc,con1, con2,

inn1, inn2 as above. Let D1 = (χ↓
t1 , A1) and D2 = (χ↓

t2 , A2) be DAGs witnessing
Rt1(loc, con1, inn1) and Rt2(loc, con2, inn2) correspondingly. Note that common vertices
of D1 and D2 are precisely χ(t). In particular, if D1 and D2 share an arc ab, then a, b ∈ χ(t)
and therefore ab ∈ loc. On the other hand, loc ⊆ A1, loc ⊆ A2, so loc = A1 ∩ A2. Hence
inn specifies the number of parents of every b ∈ χ(T ) in D = D1 ∪D2. Rest of vertices v ∈
V (D)\χ(t) belong to precisely one of Di and their parents in D are the same as in this Di.
As trcl(con1 ∪ con2) is irreflexive, D is a DAG by Lemma 13, so D ∈ Dt. The snapshot of
D in t is (loc, con, inn) and score(D) = �

ab∈A(D) fb(a) = �
ab∈A1 fb(a)+�

ab∈A2 fb(a)−�
ab∈loc fb(a) = score(D1) + score(D2) − doublecount = Rt1(loc, con1, inn1) +

Rt2(loc, con2, inn2) − doublecount = τ . So D witnesses that Rt(loc, con, inn) ≥ τ .

For the converse, assume that Rt(loc, con, inn) = τ �= ⊥ and D is a DAG witnessing this.
Let D1 and D2 be restrictions of D to χ↓

t1 and χ↓
t2 correspondingly, then by the same

arguments as above A(D1)∩A(D2) = loc, in particular D = D1 ∪D2. Let (loc, coni, inni)
be the snapshot of Di in ti, i = 1, 2, then Rti(loc, coni, inni) ≥ score(Di). By the
procedure of our algorithm, R0

t (loc, con, inn) ≥ Rt1(loc, con1, inn1)+Rt2(loc, con2, inn2)−
doublecount ≥ score(D1) + score(D2) − �

ab∈loc fb(a) = score(D) = τ.

Hence the resulting record Rt is correct, which concludes the correctness proof of the
algorithm.

Since the nice tree-decomposition T has O(n) nodes, the runtime of the algorithm
is upper-bounded by O(n) times the maximum time required to process each node.
This is dominated by the time required to process join nodes, for which there are at
most (2k2)3((q + 1)k)2 = 8k2 · (q + 1)2k branches corresponding to different choices
of loc, con1, con2, inn1, inn2. Constructing trcl(con1 ∪ con2) and verifying that it is
irreflexive can be done in time O(k3). Computing doublecount and inn takes time
at most O(k2). So the record for a join node can be computed in time 2O(k2) · qO(k).
Hence, after we have computed a width-optimal tree-decomposition for instance by
Bodlaender’s algorithm [Bod96], the total runtime of the algorithm is upper-bounded by
2O(k2) · qO(k) · n.

Finally, to obtain the desired result for BNSL+, we can simply adapt the above algorithm
by disregarding the entry inn and disregard all explicit bounds on the in-degrees (e.g.,
in the definition of Dt). The runtime for this dynamic programming procedure is then
2O(k2) · n.
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CHAPTER 8
Conclusion

In this thesis we investigated the problem of Bayesian network structure learning. Bayesian
networks are among the most prominent models for representing conditional dependencies
between random variables. They constitute acyclic digraphs where vertices correspond
to the variables with dependencies represented by arcs. Constructing Bayesian networks
of optimal structure has a significant meaning for making conclusions and predictions
based on incomplete information, such as weather forecasts or disease recognition.

There are different ways to associate to every network a score measuring how precisely a
probability distribution depicted by the acyclic digraph agrees with the set of observation.
We focus on a special case when the score function decomposes on local scores of single
variables, given as a part of an input. Even under this assumption Bayesian Network
Structure Learning is NP-hard. This fact along with crucial practical meaning gave
rise to extensive research on parameterized complexity of the problem.

While previous works provided nearly exhaustive classification of complexity for param-
eters based on vertex deletion distances, we concentrated on the ones related to edge
deletion distances. We showed that parameterization by a localised version of feedback
edge number makes the problem fixed parameter tractable. Moreover, we designed a
reduction procedure that allows to shrink given instances to equivalent ones with number
of variables linear in feedback edge number. The results also hold for a closely related
problem of Polytree Learning, where the constructed network is in addition required
to be a polytree.

Local feedback edge number, introduced in this work, is a natural generalisation of
feedback edge number. It might be interesting to study deeper its connections with
another parameters, such as tree-cut width. We also believe that tractability of many
different graph problems, known to be FPT by feedback edge number, can be lifted to
lfen. Another related task that arises is to provide an effective procedure for constructing
the spanning tree T of a given graph G with lfen(G, T ) = O(lfen(G)).
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8. Conclusion

Previous hardness results and some practical implications motivated us to consider the
special case of additive score functions, defined as scores per arc. Additive representation
guarantees that the total input size is at most quadratic in number of vertices. In contrast
to standard non-zero representation, this variant of the problem becomes FPT even if
parameterized by the treewidth of the superstructure alone. One of possible directions
for the further research would be to consider local score functions with properties weaker
then additivity, such as monotone ones. Indeed, considerable part of score functions used
in practice can be decomposed into a monotone function and some penalty depending on
parent set size only.
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