
Diploma Thesis

Prediction of pKa values of small molecules via
graph neural networks

submitted in satisfaction of the requirements for the degree of
Diplom-Ingenieur

of the TU Wien, Faculty of Chemistry

Diplomarbeit

Vorhersage der pKa-Werte organischer Moleküle
mittels Graph Neuronaler Netze

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines
Diplom-Ingenieurs

eingereicht an der Technischen Universität Wien, Fakultät für Chemie

von

Fritz Mayr, BSc

Matr.Nr.: 01425153

unter der Anleitung von

1Univ.-Prof. Mag. Dr. Thierry Langer
1Dr. Marcus Wieder, MSc., MSc.

2Univ.Prof. Dipl.-Ing. Dr.techn. Ruth Birner-Grünberger

1 Institut für Pharmaceutische Wissenschaften, 2 Institut für Chemische Technologien und Analytik,
Universität Wien Technische Universität Wien
Althanstrasse 14 (UZA II) Getreidemarkt 9, 1060 Wien, Österreich
1090 Wien, Österreich 1060 Wien, Österreich

Wien, im Juli 2021

Danksagungen
Ich danke Herrn Prof. Thierry Langer und meinem Betreuer, Herrn Dr. Marcus Wieder, für
die erstklassige Unterstützung während dieser Arbeit. Stellvertretend für die Forschungsgruppe
möchte ich mich ganz besonders bei Steffen Hirte bedanken, welcher mir vom ersten Tag an bei
unzähligen informatischen Fragestellungen mit Rat und Tat zur Seite stand. Einen speziellen
Dank schulde ich Frau Prof. Birner-Grünberger, welche mir einen großen Gefallen tat, indem sie
die Betreuung und Benotung dieser Arbeit seitens der TU übernahm.
Meiner Freundin Veronika bin ich sehr dankbar für den liebevollen Beistand, vor allem wenn die
Programmierungen einfach nicht klappen wollten und zu frustrieren begannen.
Der größte Dank gebührt meinen Eltern, Elfi und Thomas, die mich durch ihre Liebe und
Unterstützung dahin brachten, wo ich heute stehe und mir ein wirklich sorgenfreies Studium
ermöglichten.

Kurzfassung
pKa-Werte spielen im Bereich der molekularen Modellierung eine große Rolle, da sie die Ladung,
Tautomer-Konfiguration und allgemeine 3D-Struktur eines Moleküls in der physiologischen
Umgebung beeinflussen. All diese Faktoren prägen weiters die Mobilität, Permeabilität, Stabilität
und Wirkweise der Substanzen im Körper. Bei unzureichenden bzw. fehlenden empirischen
Messdaten ist die korrekte Bestimmung von pKa-Werten somit essentiell, um die genannten
Moleküleigenschaften korrekt vorhersagen zu können. Die vorliegende Arbeit geht von den
Datensätzen und Modellen der Publikation Machine learning meets pKa von Baltruschat et al.[1]
aus, deren relevante Ergebnisse reproduziert und mittels auf Graph neuronalen Netzen basierenden
Modellen sogar substanziell verbessert wurden. Die Arbeit wurde in der Programmiersprache
Python verfasst und die Funktionen bzw. Prozessskripten wurden in Form des eigens erstellten
Paketes pkasolver (https://github.com/MayrF/pkasolver) veröffentlicht und frei zugänglich
gemacht.

Abstract
pKa values play a major role in the field of molecular modelling, as they influence the charge,
tautomer configuration, and overall 3D structure of a molecule in the physiological environment.
All these factors further shape the mobility, permeability, stability and mode of action of
substances in the body. In case of insufficient or missing empirical data, the correct determination
of pKa values is thus essential to correctly predict the aforementioned molecular properties. The
present work is based on the data sets and models of the publication Machine learning meets
pKa by Baltruschat et al.[1], the relevant results of which were reproduced and even substantially
improved upon by using models based on graph neural networks. The work was written in the
programming language Python, the functions and process scripts have been published and made
freely available in the form of the custom package pkasolver
(https://github.com/MayrF/pkasolver).

Contents
1 Theory 9

1.1 Introduction to pKa . 9
1.1.1 Definition of pKa . 9
1.1.2 Molecular influences on the pKa . 10

1.2 Importance of pKa in drug discovery . 12
1.2.1 Absorption . 12
1.2.2 Distribution . 12
1.2.3 Metabolism . 13
1.2.4 Toxicity . 13
1.2.5 Drug–receptor-interactions . 13
1.2.6 Formulation . 14

1.3 Analytical determination of pKa . 14
1.3.1 Overview of analytical methods . 14
1.3.2 Data quality and precision . 14

1.4 pKa prediction . 15
1.4.1 Extended connectivity fingerprint (ECFP) 15
1.4.2 Random forest . 16
1.4.3 Graph neural networks . 16

2 Methods 20
2.1 Description of the pkasolver package . 20
2.2 Data . 20

2.2.1 Datasets . 20
2.2.2 Conjugate creation algorithm . 21
2.2.3 Featurization . 22
2.2.4 Data preprocessing . 23

2.3 Models . 23
2.3.1 Baseline models . 23
2.3.2 Graph convolutional networks (GCNs) . 24

3 Results and Discussion 27
3.1 Baseline models . 27
3.2 GCN Models . 28

3.2.1 Training . 28
3.2.2 Test results . 29
3.2.3 Model interpretation . 32
3.2.4 Error Analysis . 37
3.2.5 GCN results summary . 42

4 Outlook 43

Abbreviations 44

Chapter 1

Theory

1.1 Introduction to pKa

1.1.1 Definition of pKa

Acid-base reactions in their most general form are described by the equation HA+Y � A−+HY +,
where HA represents the Brønsted-Acid and A− its conjugate base, while Y and HY + stand
for any protonatable solvent and its protonated form, respectively. In case of the most common
solvent, water, the equation becomes HA + H2O � A− + H3O+. The distributions of the four
different species, involved in any acid-base reaction in water are described by the law of mass
action, which states that

K =
z�

i=1
aνi

i (1.1)

where ai is the activity of every reactant i and vi its respective stoichiometric coefficient. For
acid-base reactions in water then results in the following equation:

K = aA− νA− · aH3O+
νH3O+

aHA
νHA · aH2O

νH2O
(1.2)

K is a dimensionless thermodynamic constant which is described by

K = exp
�
−ΔRG°

R · T

�
(1.3)

where ΔRG° is the molar Gibbs free energy of the reaction at a given temperature and pressure
(usually Standard Ambient Temperature and Pressure, T = 298.15 K or 25 °C, p = 101 300 Pa
= 1013 hPa = 101.3 kPa = 1.013 bar), R is the gas constant and T the temperature. We see
therefore that the reaction constant K for any reaction is independent of the distributions of
compounds and only dependent on temperature and pressure. For sufficiently diluted solutions
the activities can be approximated as concentration. Also, the concentration of water can be
considered constant and can therefore be multiplied with each side, resulting in the formula for
the acid dissociation constant Ka:

Ka = [A−]
�
H3O+�

[HA] (1.4)

to which applying the negative common logarithm yields the formula for the pKa:

pKa = − log10 Ka = log10
[HA]

[A−] [H3O+] (1.5)

10 1 Theory

We can see that the further the equilibrium lies on the side of the conjugated anion and H3O+,
the lower the pKa becomes. Also, when substituting − log10

�
H3O+�

with the pH, we get:

pH = pKa + log10
[A−]
[HA] (1.6)

It is observable that pKa represents the pH at which protonated and deprotonated forms have
the same concentration because log10 1 = 0 . A pH > pKa, therefore, leads to the deprotonated
form dominating, while pH < pKa will result in the protonated form representing the majority
of the molecules present in the described system.

1.1.2 Molecular influences on the pKa

As indicated above, the pKa value and hence the resulting acidity of any acid-base reaction
depends on the difference in ΔRG°, the Gibbs free energy, between the protonated and the
deprotonated form of the reactant. The pKa decreases the higher the free energy of the acid and
the lower the free energy of the conjugate base, while free energy trending in opposite directions
increases the pKa. When the free energy of the acid is lower than that of the conjugate base, the
pKa becomes greater than 7 and vice versa. The free energies of acid and conjugate base for
the most part are determined by the molecular structure and thus the molecular effects on the
dissociation centre exerted by its neighbourhood. An overview of the molecular effects on pKa is
given in the following. For a more detailed description see Perrin et al. [2].

1.1.2.1 Inductive Effect

This effect occurs in molecules wherever different elements with different electronegativities are
σ-bonded to each other. As the more electronegative atom will draw more electronic density
towards itself, it will gain a partially negative charge and induce a partial positive charge on
the other atom. These partial charges can then be propagated through the carbon backbone
of the molecule as partially positively or negatively charged carbon atoms will draw electronic
density from their neighbouring carbon atoms, respectively donate electronic density to them.
The impact on any particular atom will decrease rapidly with the distance to the origin of
the inductive effect. However, this attenuation will occur less rapidly in unsaturated groups
like C R , C R or C N [2]. Examples for elements and functional groups that draw
electrons from neighboring carbon atoms (-I-Effect) are, in order of increasing effect, H < C6H5<

OR < I < Cl < CONH2 < COOH < CHO < CN < NH +
3 . The presence and proximity of these

groups to the reaction centre lowers the pKa as it stabilises the deprotonated conjugate base.
On the other hand, examples of groups that donate electronic density are H < CH2R < CH(R)2
< C(R)3, where the higher the number of neighboring carbon rests (R), the greater the electronic
density being donated. This results in a destabilisation of charged conjugate bases respectively
lowering the urge for the acid to part with a proton and therefore increases to pKa towards less
acidic respectively towards basic values.

Although there is thought to be a difference between charge inducing effects through chemical
bonds and effects contributed via electrostatic fields (e.g. variable proximity of groups in the
cis and trans configuration, leading to different pKa values for these isomers), they are usually
summarized as Inductive effects as they tend to operate in the same directions and most of
the time can’t be separated. Generally, the characterisation of the inductive effect in terms of
electron density is merely descriptive and, from the point of view of rigorous quantum chemistry,
unacceptable [3].

1.1 Introduction to pKa 11

1.1.2.2 Mesomeric Effect

This effect (±M) is attributed to delocalised pi - electrons in conjugated systems and contributes
significantly to the degree with which the strength of an acid or a base is modified by remote
substituents, especially in aromatic or heteroaromatic systems that contain ortho or para
substituents (substituents in meta position have negligible mesomeric effects). Mesomeric effects
may enhance or oppose inductive effects, as can be seen in Table 1.1 which lists a number of
functional groups contributing +I, -I, +M and -M effects, respectively.

Tab. 1.1: Inductive and resonance effects of substituents

+I
(acid-weakening)

CO –
2 , O–, NH–, alkyl

-I
(acid-strengthening1)

NH +
3 , NR +

3 , NO2, SO2R, CN, F, Cl, Br, I, CF3,
COOH, CONH2, COOR, CHO, COR, OR, SR, NH2,
C6H5

+M
(acid-weakening)

F, CI, Br, I, OH, OR, NH2, NR2, NHCOR, O–,
NH–, alkyl

-M
(acid-strengthening)

NO2, CN, CO2H, CO2R, CONH2, C6H5, COR, SO2R

1 Approximately in decreasing order.

1.1.2.3 Steric effects

Steric interactions of the dissociation site with other parts of a molecule can lead to changes
in the otherwise expected pKa values. Examples include destabilisation of ions by hindering
hydration, increased difficulty of protonating amino groups by neighbouring alkyl groups or
stabilisation via internal hydrogen bonding.

1.1.2.4 Entropic effects

Entropic effects can occur when a molecule has multiple groups n, each with an equal probability
to lose or gain a proton. The fact that butanoic acid (figure 1.1) has two equivalent ways of
losing a proton but only one site to which the proton can be restored, is lowering the pKa by
log n (0.3 = log 2) from the expected pKa value. On the other hand, the monoanionic form has
only one ionizable proton whereas the dianion has two identical sites for protonation. Therefore,
the pKa of the second deprotonation is weakened and appears increased by log 2 compared to
the otherwise expected pKa.

Fig. 1.1: butanedioic acid

12 1 Theory

1.1.2.5 Tautomers

Tautomers like keton-enols, amide–imidic acids and many others usually have different pKa

values depending on their tautomeric forms. When measuring the pKa of a component, the
measurement is macroscopic in nature and will be a combination of the different microscopic
pKa values of the tautomers. Only if one tautomer is predominantly present, the corresponding
microscopic pKa can be approximated to be equal to the measured macroscopic pKa.

1.2 Importance of pKa in drug discovery
In pharmaceutical sciences and drug discovery the impact of the pKa, which can also be referred
to as the ionization constant, will be examined by tracing its influence on the 5 areas of the
absorption, distribution, metabolism, excretion, and toxicity (ADMET) scheme and its effect on
the mode and strength of interactions of drugs with their targets. Additionally, we will have
a look at the considerations in which the pKa plays a role for drug formulation, the process of
combining different chemical substances, including the active drug, to produce a final medicinal
product. The subsequent remarks largely follow the work of Manallack et al. [4], which we refer
to for a more granular description of the impact of pKa in drug discovery.

1.2.1 Absorption
Several studies suggest that the rate of absorption is much higher for uncharged than for charged
molecules and absorption rates can therefore differ widely between similar compounds when
these differ in their pKa values [5, 6, 7, 8]. Generally, the findings of Schanker et al. [5] suggest
that rates of absorption of a wide variety of drugs are much faster if pKa values are above 3
for acids and below 8 for bases. Considering the lipophilic nature of membranes these findings
regarding the favoured transportation of uncharged species are to be expected. Also, the findings
of Gleeson [9], suggesting that permeability of bases tend to be higher than that of zwitterions
and acids (neutrals > bases > zwitterions > acids) can be explained by the anionic nature of lipid
headgroups, rendering the membrane negatively charged, which favour interactions with positively
charged bases, instead of acids and zwitterions containing negatively charged groups. Although,
when it comes to bioavailability, Gleeson [9] observed that acids are found to be more bioavailable
than bases, as the low pH in the gastrointestinal tract inclines to lead to protonation of the
bases, thus reducing lipophilicity, increasing polarity and therefore limiting passive absorption.
Obviously simple classification of molecules into bases and acids does not suffice for explaining
qualitative or even quantitative observations of permeability and bioavailability and must be
complemented by the consideration of pKa values. Despite their findings that higher ratios of
uncharged species increase the absorption remarkably, Palm et al. [6]. emphasized the significant
contribution of the ionised form in situations where the unionized form makes up less than 10%.

1.2.2 Distribution
The theoretical property, volume of distribution (Vd), can be used to assess the distribution of a
drug throughout the target system. Larger values of Vd indicate that the compound is widely
distributed, while smaller values imply that the drug mostly persists in the systemic circulation
[4]. In conjunction with information about clearance, the biological half-life of a particular drug
can be calculated (half-life = 0.693 · Vd/clearance). We can therefore see that at comparable
clearance values, a higher Vd leads to increased half-life and persistence of a drug in the system.
The findings of Gleeson [9] suggest that Vd tends to be the highest for basic and the lowest for
acidic molecules. This can be explained as acids generally tend to be constrained to plasma due to

1.2 Importance of pKa in drug discovery 13

their strong affinity to bind to human serum albumin (HSA), the most abundant protein in human
blood. Bases on the other hand do not bind to HSA as strongly and additionally, due to their
affinity to negatively charged membranes and tissue, will distribute more widely into other com-
partments of the body. For bases and neutral compounds, an increase in the logarithmic partition
coefficient (clogP) tends to increase Vd while the same effect is not observable for zwitterions and
acids [9], which further underscores the high impact of plasma protein binding on the Distribution.

1.2.3 Metabolism and Excretion
Excretion may take place via hepatic, renal, and biliary processes and is regarded to be the most
difficult to predict of the ADMET processes due to the dependence on structural aspects being
higher than that on physicochemical properties [9]. Molecules with good solubility may have
higher clearance while compounds with a positive logarithmic distribution constant (logDpH=7.4)
will generally be reabsorbed in the kidneys and are required to be metabolised in order to become
water-soluble. Drugs and other exogenous chemicals are often metabolised by cytochrome P450
enzymes, whereas the different isoforms of cytochrome P450 vary drastically in their sensibility
to charge states. Furthermore, it must be considered that cytochrome P450 enzymes as well as
other drug metabolising enzymes can yield biologically active metabolites, through processes of
bioactivation [4]. The anionic forms of acids tend to have much lower clearance rates than basic,
neural or zwitterionic species, which can be explained by their high affinity to plasma proteins
and thus much lower susceptibility to clearance in the liver [9].

1.2.4 Toxicity
Although toxicity is difficult to reduce to individual molecular properties and depends on a
variety of factors, trends for ionization states indicating the likeness for certain complications
have been identified. For instance, basic compounds are more likely to inhibit hERG-channels
and additionally with increased clogP, more likely to cause phospholipidosis. On the other
hand, drugs causing mitochondrial dysfunction by acutely reducing ATP production, have been
shown to be more likely acidic or lipophilic in nature. Lastly, off-target activity which can lead
to unwanted and toxic effects, although again being very complex, has been found to occur
more frequently with basic drugs that tend to be more promiscuous than acids, neutrals and
zwitterions [4].

1.2.5 Drug–receptor interactions
The binding pose of a small molecule within its target macro-molecule may involve a variety of
electrostatic interactions including hydrogen bonding, ionic bonding, dipole-dipole interactions
(London dispersion), ion-dipole interactions and cation–π interactions. During lead optimization,
medicinal chemists are often tempted to improve docking potency by adding lipophilicity or
groups that make interactions. This approach often leads to a phenomenon called molecular
obesity and frequently results in problems involving ADMET processes or solubility. More specific
interactions like hydrogen bonding require precise placement of functional groups and are often
punished with entropically disfavored desolvation processes. Several metrics like ligand efficiency
(binding free energy per heavy atom) and similar measures are developed to counteract molecular
obesity. Naturally, there is no universal rule of thumb for drug-pKa for ligand-protein interactions,
but evidently, the pKa and the resulting ionic state of a compound in the pH environment at the
target is a crucial factor for the strength of an interaction or even the possibility of interaction.

14 1 Theory

1.2.6 Formulation
When it comes to pharmaceutical formulation, apart from the presence of unionizable polar
groups, the pKa of a molecule has a tremendous effect on its solubility, as ionised species are much
more soluble in water. As Drugs generally need a certain degree of lipophilicity in order to reach
the site of action (beginning with absorption in the gastrointestinal tract) and for interacting with
the target receptor, efforts to enhance lipophilicity may thwart the desired solubility. One way
to counteract this is to modulate the degree of ionisation by the pH of the solution formulation.
It has to be ensured that the modulation does not significantly impede the receptor interaction.
Generally, the pH of the injectable solution should stay within pH 4-9 to avoid pain or tissue
damage, although some poorly soluble drugs still require more extreme pH values. The osmotic
effect, which is influenced crucially by the pKa of a drug and the solution pH, especially when
the drug concentration is high and it thus becomes the main osmotic determinant, is another
issue particularly important in injectable and ophthalmic drugs. Stability may also be affected
by pKa and therefore poses another factor dictating the adequate range of solution pH.

1.3 Analytical determination of pKa

1.3.1 Overview of analytical methods
Methods for determining the pKa values of organic compounds include potentiometric, conduc-
tometric, voltammetric, calorimetric, spectrometric, fluorimetric and polarimetric techniques,
NMR titration, liquid chromatography, capillary electrophoresis and approaches that derive pKa

from solubility experiments or kinetic measurements of reactions and combinations of some of
the listed processes. The potentially most accurate and precise are conductometric methods
(±0.0001 pKa units or better), while the most widely used methods tend to be based on pH
measurements, which limits the theoretical accuracy to ±0.02 pKa units at best [10]. For a
detailed introduction to these methods and a discussion of their advantages and limitations, the
reader is referred elsewhere [11, 12, 13].

1.3.2 Data quality and precision
The International Union of Pure and Applied Chemistry (IUPAC) has sponsored compilations
of pKa values which not only assess the precision of the empirical data but also examine the
reproducibility of the measurements, the purity and stability of the materials being investigated
and of the solvents used, the consistency of the temperature, etc [14]. The precision of the
pKa values described in these compilations are classified as very reliable (pKa error < 0.005),
reliable (pKa error 0.005 to 0.02), approximate (pKa error 0.02 to 0.04), and uncertain (pKa

error > 0.04), which might seem very strict, but becomes evident, when considering that a pKa

difference of 0.04 translates to a difference in Ka values of close to 10%. Small changes like
that may have a great impact on predicted ionization ratios, solubility and therefore overall
physicochemical behaviour at pH values close to the alleged pKa values. In his pKa compilation,
Prankerd [10] critically reviews the sadly very common, sloppy practices used when compiling
physicochemical constants, such as pKa into secondary literature. He lists pitfalls such as failing
to include experimental conditions and errors, sometimes neglecting to mention when solvents
other than pure water are used or the also very common practice of compiling data from other
secondary literature, which makes it very difficult and sometimes even impossible to find the
original experimental literature and frequently introduces various errors. These include the
omittance of values when multiple different pKa values were measured for the same molecule,
plainly copying the wrong pKa values from the original source, confusing pKb for pKa or, when

1.4 pKa prediction 15

pKa values were calculated from pKb values (via pKa + pKb = pKw), using the value for pKw at
25 °C (14.008), even when the temperature for the pKb measurements (�= 25 °C) was available.
The most questionable mistakes include listing a value that is more than a hundred years old
and differs by more than 1.4 pKa units from the more recent measurement and the confusion
of the ionization constant with values of the negative log of the affinity of a drug to a receptor,
which in pharmaceutical literature sometimes is also called pKa.

1.4 pKa prediction
There are a number of different computational approaches to predict pKa values e.g. based on
Linear Free Energy Relationships (LFER), Quantitative Structure-Property Relations (QSPR)
or Quantum Mechanical and Continuum Electrostatic Methods. For a broader review of these
methods, we refer to the reviews by Lee et al. [15]. and Shields et al. [16]. The remarks of this
section will be confined to the in-silico methods that were used in the work.

1.4.1 Extended connectivity fingerprint (ECFP)
Most machine learning models can only handle a fixed number of inputs. Molecules vary
significantly in their size and structural complexity and therefore in the amount of representative
information that can be used as input for models. In order to be able to predict any characteristics
from the chemical structure of a compound, it has to be transformed into a standardised, constant-
sized form. One of the most popular ways to achieve this are extended connectivity fingerprints
(ECFPs) [17], also called Morgan fingerprints. ECFPs are circular, topological fingerprints that
present molecular substructures by means of circular atom neighbourhoods. The process of
generating these fingerprints is outlined in figure 1.2 and the following explanation is taken from
the documentation of ChemAxon1.

Fig. 1.2: Generation of ECFPs on the example of 4-Oxazolidinone. The illustration shows how
all substructures in a specified range of radii are calculated for a given molecule and
get assigned an identifier value.

It begins with the assignment of an initial integer identifier to each non-hydrogen atom of the
input molecule. This identifier captures some local information about the corresponding atom

1https://docs.chemaxon.com/display/docs/extended-connectivity-fingerprint-ecfp.md#
src-1806333-extendedconnectivityfingerprintecfp-fig-2

16 1 Theory

in such a way that various atom properties (e.g., atomic number, connection count, etc.) are
packed into a single integer value using a hash function.

After that, a number of iterations are performed to combine the initial atom identifiers with
identifiers of neighbouring atoms until a specified radius is reached. Each iteration captures
larger and larger circular neighbourhoods around each atom, which are then encoded into single
integer values using a suitable hashing method and these identifiers are collected into a list.

This iterative updating process is based on the Morgan algorithm [18], which is why ECFPs
are often referred to as Morgan Fingerprints.

The final step of the generation process is the removal of multiple identifier representations of
equivalent atom neighbourhoods. Two neighbourhoods are considered to be equivalent if they
contain exactly the same set of bonds or their hashed integer identifiers are the same. If the
identifier counts should be kept, then this step is modified to store each integer identifier as many
times as the corresponding substructural feature occurs in the molecule.

This process yields a set of unique identifiers, the number of which is different for each molecule.
In order to convert the data to a constant-sized input, it is compressed into a bit vector of
user-defined size (e.g. 4096) by applying a mod function (e.g. mod 4096) and setting the bits
to 1 at all the vector indices corresponding to the results of the mod function applied to each
identifier. These bit vectors of constant size can be used as inputs for the machine-learning
models.

1.4.2 Random forest
The main baseline model used in this work is random forest regression. Decision trees form the
basis of this method, but they often suffer from overfitting through over-complexity and tend
to be non-robust, meaning small changes in the training data can result in larger changes in
the tree model. Random forests improve this by creating multiple randomized decision trees.
The randomness is introduced on one hand by bootstrapping the data for every tree, meaning
random sampling with replacement for a number of samples equal to the number of elements
in the training data. On the other hand, when creating each tree, for every node/split, the
decision variable is chosen only from a certain number of randomly selected variables, instead of
all variables. When predicting, results for all trees are calculated and averaged to yield the final
model result. This method has been shown to be much more robust and generalizable [19].

1.4.3 Graph neural networks
1.4.3.1 Overview neural networks

The general idea of artificial neural networks (also simply called neural networks) is to use a
collection of interconnected nodes that loosely resemble our idea of how neurons in the human
brain work. Each neuron has inputs and outputs and uses some kind of non-linear activation
function, to determine how to convert the first into the latter. The most popular activation
function used is rectified linear unit (f(x) = max(0, x)), which outputs 0 for every input x <= 0
and x for every input x > 0.

Figure 1.3 2 shows the structure of one of the most basic neural networks, called Multilayer
perceptron. It is organised in layers of neurons where each neuron is connected with all neurons
of the layer before and after and each connection is assigned a weight and optionally a bias
which are the parameters that will be optimized during the training of the model. These kinds of
layers are called fully connected feed-forward layers or linear layers. There at least two layers, an

2https://www.kdnuggets.com/2019/07/convolutional-neural-networks-python-tutorial-tensorflow-keras.
html

1.4 pKa prediction 17

Fig. 1.3: Scheme of a fully connected multilayer perceptron. All nodes of every layer are
connected to all nodes of the layer before and after. There is one input and one output
layer with the number of input and output nodes corresponding to the number of
input and output variables, while the number of hidden layers and their number of
nodes can be chosen arbitrarily.

input and an output layer, with an arbitrary number of so-called hidden layers in between. The
number of neurons in the input layer corresponds to the number of input variables used and the
number of neurons in the output layer reflects the number of target variables, while the number
of neurons of the hidden layers can be chosen freely and may be subject to hyperparameter
optimisation. For every prediction, the model takes the values of all the input variables and
feeds them to the neurons in the next layer modified by the respective weights and biases of each
connection. Every neuron in the next layer takes the sum of all the outputs from the neurons
from the previous layer, connected to it as inputs to its activation function and passes the output
along with the weighed connections to the neurons in the next layer. This process is done for all
neurons in all hidden layers and ends with all outputs of the last hidden layer (or input layer,
if there are no hidden layers) feeding into the neurons of the output layer. For classification
tasks, the output neurons represent the predicted likelihood for each class assignment, with the
condition of all output neurons’ values always adding up to one. For regression tasks, like pKa

prediction, a single neuron that represents the prediction value, is used.
When initializing a neural network, all weights and biases are assigned randomly and therefore

also the predictions of the model are random. Fortunately, when comparing the output of the
network with the true values, a gradient that indicates how to adjust all weights and biases in
order to match the output with the true values, can be calculated. For a more detailed explanation
of how this gradient is calculated we refer elsewhere [20]. As neural networks often have a vast
number of adjustable parameters, ranging from tens of thousands to many millions, adjusting the
parameters to perfectly fit the outputs to the true values of a dataset leads to massive overfitting.

18 1 Theory

A first step to avoid overfitting is therefore to only adjust the parameters by a fractional amount
(e.g. 0.001) called the learning rate. Training the model can then be done by either predicting
one sample at the time, calculating the gradient and adjusting the parameters or by predicting
multiple samples, calculating theirs gradients and then adjusting the parameters by the sum or
mean of the gradients, also called batching. Batching further helps the model to mainly learn
patterns that correspond to multiple samples instead of overfitting sample-specific characteristics.
As the parameter adjustment after every batch of samples depends on the learning rate and
tends to be quite small, the training of a neural network usually involves repeating the steps
listed above for every batch in a training set and further repeating the training on every batch
for a certain number of times (epochs). Each epoch represents a circle of repetition in which the
models sees all training data once. Model performance and training progress are evaluated by a
loss function, which quantifies the difference between predicted and true values. Furthermore, to
evaluate the generalizability of the model, its performance is tested on a separate validation set,
on which it is not trained. Usually, it can be observed, that after a certain number of epochs the
performance of training and validation loss discontinue to further improve, which marks the end
of the training.

Using ECFP bit-vectors a multilayer perceptron can be utilised to predict pKa values. Another
way to use data in machine learning models is to represent molecules as graphs with the nodes
and their connecting edges representing atoms and bonds, respectively. Each node and edge
can be assigned features (like atomic number, charge, hybridisation, total number of attached
hydrogen, bond type, etc.) that are considered relevant for the prediction of the desired property.
These graph representations can then be used in special forms of artificial neural networks, called
graph convolutional networks.

One special property of such graph convolutional networks is that they can take graphs of
any size as their inputs. Using all nodes and edges of a graph as inputs is not possible as the
architecture of the model needs to be constant and cannot change the number of input neurons
for the different graphs in the dataset. Instead graph convolutional networks (GCNs) simple use
one node and its corresponding features at a time. This leads to a constant number of inputs for
all nodes in all graphs corresponding to the number of node features used in the data.

The principle graph convolutional layer used in this work is the graph convolutional operator,
described by Kipf and Welling [21] and is shown in Equation 1.7.3

X� = σ(D̂−1/2ÂD̂−1/2XΘ) (1.7)

σ represents an activation function, Â = A + I denotes the adjacency matrix with inserted
self-loops and D̂ii = �

j=0 Âij its diagonal degree matrix. The dimensions of both of these
matrices are [number of nodes, number of nodes]. X is the node matrix with the dimension
[number of nodes, number of features] and Θ a linear layer that maps the features of every node
to set of new features, represented by a matrix of shape [number of input features, number of
output features]. The equation describes a process wherein a first step, all features of each node
are put through a linear layer and mapped onto a new set of features and then, message passing
is conducted, summing the normalised feature vectors of each node and its neighbouring node
to constitute the new node vector. This process works, regardless of the number of nodes in a
graph as the only trainable parameters are contained in the linear layer matrix Θ which is only
determined by the number of input and output (node-) features but independent of the number
of nodes. Multiple GCN layers can be used consecutively, representing multiple steps of message
passing, thereby informing each node about an ever-larger radius of neighbouring nodes. In order

3(https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#torch_geometric.nn.conv.
GCNConv)

1.4 pKa prediction 19

to be able to use the graphs resulting from the message passing for classification or regression
tasks, they must be transformed into feature vectors whose dimensions are independent of the
number of nodes of the graphs. This can be done via a pooling layer that takes the node matrix
[nodes, features] and aggregates the features of for example by summing, averaging or selecting
the maximal value of all nodes for every feature. The resulting feature vector can then be passed
through a multilayer perceptron to yield the final prediction variable. Figure 1.4 4 shows an
overview of such a graph neural network.

Fig. 1.4: Scheme of the steps involved in a graph convolutional network. The illustration
indicates the transformation of the input molecule into a graph representation with
node and, optionally, edge features which then enters the message passing phase (node
convolution), whereby information about each atom and its neighbours is encoded into
a new representation of the molecule. The last step (readout) uses the output of the
convolutional layers to predict pKa with a multilayer perceptron.

4http://xundrug.cn/molgpka/about

Chapter 2

Methods

2.1 Description of the pkasolver package
The entirety of the workflow presented in this chapter is conducted via the python [22] program-
ming language as it provides adequate tools for handling and manipulating data tables with
pandas [23], numerical data using NumPy [24] and chemical data utilising RDKit [25], as well as
packages for using machine learning models - scikit-learn [26], neural networks - PyTorch [27]
and graph neural networks - PyTorch-geometric [28]). Furthermore, the packages matplotlib [29]
and seaborn [30] are used for plotting.

The code of this work is public and open-source (MIT License) and can be accessed via GitHub1.
It consists of a juypter notebook thesis_pipeline.ipynb that contains the entire workflow except
for the cross-validation training and a script train_script.py that enables parallel computation
of all train-test-split and cross-validation models on multiple machines. The global variables
are stored and called from the file config.py and the code for the neural network architectures
as well as the training functions from the file architecture.py. All of these files, as well as the
directories storing saved data and models, are found within the examples folder of the repository
where each run (multiple runs with different configurations may be conducted) is stored in
separate subfolders. Most of the functions used in the code are stored and called from a custom
made python package called pkasolver. The notebook is intended to enable going through data
preparation processes, model training and evaluation, observing the individual steps, their inputs
and outputs, and experimenting with new ways to use the package and the pipeline. The script
on the other hand can be used for preprocessing data and training models of the cross-validation
in a more automated fashion.

2.2 Data
2.2.1 Datasets
The datasets used in this work were curated by Baltruschat et al. [1] and acquired from
their GitHub repository2. The training set consists of a file from DataWorrior [31] called
pKaInWater.dwar merged with the result of an extensive query of all assays in the ChEMBL
[32] database. The criteria for this query were:

• type: physicochemical assay,

• source: scientific literature

• organism taxonomy: “N/A”

• format: “small-molecule physicochemical format”
1https://github.com/MayrF/pkasolver
2https://github.com/czodrowskilab/Machine-learning-meets-pKa

2.2 Data 21

Furthermore, the results from the query were filtered for measurements specified as exact
(standard_relation equals “=”) and for which the standard_type was specified to “pka”, “pka
value”, “pka1”, “pka2”, “pka3” or “pka4” (case-insensitive), resulting in a dataset with 8111
pKa values from the ChEMBL query and 7911 entries with valid molecular structures from the
DataWorrier Data. This concatenated dataset was processed further via the following steps:

• Removal of all salts from molecules

• Removal of molecules containing nitro groups, Boron, Selenium or Silicium

• Filtering by Lipinski‘s rule of five (one violation allowed)

• Keeping only pKa data points between 2 and 12

• Tautomer standardization of all molecules

• protonation of all molecules at pH 7.4

• Keeping only monoprotic molecules regarding the specified pKa range

• Combination of data points from duplicated structures while removing outliers

The completely preprocessed training dataset consists of 5994 unique molecules. Further
details regarding the data preparations are found in the publication of Baltruschat et al. [1] Two
more datasets named Literature and Novartis were provided by Baltruschat et al. They were
processed via the same steps described above for the training set and used for testing purposes
only. Literature is a set of 123 compounds collected by manual curation of literature [33, 34, 35,
36, 13] and Novartis is a dataset of 280 molecules provided by Novartis [37]. All three datasets
were provided preprocessed and stored in sdf files by Baltruschat et al. [1].

2.2.2 Conjugate creation algorithm
One goal of this work was to assess whether the performance of predictive models for pKa is
enhanced when using both the protonated and the deprotonated species involved in an acid-base
reaction. Therefore, an algorithm was written, to create both of these species by calculating the
respective conjugate from a single molecule of each data point provided in the datasets. During
the process of developing the algorithm, it was observed that a significant portion of molecules
in the provided datasets are actually not representing the protonation state at pH 7.4, as they
were supposed to, according to the preprocessing steps described by Baltruschat et al. [1]. The
way this was detected was on one hand the observation, that some basic molecules with a pKa >
7.4 that are supposed to be in their protonated form have no spare hydrogen molecules attached
to their reaction centre (usually a nitrogen atom) and can therefore not be deprotonated to
obtain its conjugate. On the other hand, some acidic molecules with pKa < 7.4 were found to
have a reaction centre with a positive charge, the protonation of which would lead to obtaining
a conjugate containing a reaction centre with a charge of +2. In a pKa range of 2–12, this is
highly unlikely to represent reality.

The algorithm developed to correct for these errors, calculate the conjugate molecules and
sort the resulting and existing molecules into protonated and deprotonated species does so by
checking which of the three conditions are met and acting accordingly:

1. The experimental pKa is higher than the supposed protonation state pH (pH = 7.4 in our
case) and the number of Hydrogens at the reaction centre is higher than 0 or the reaction
centre charge is higher than 0: the molecule is considered protonated and therefore, the

22 2 Methods

deprotonated conjugate is created by decreasing the formal charge and the number of
hydrogens at the reaction site by 1.

2. The experimental pKa is lower than the supposed protonation state pH (pH = 7.4) and
the reaction centre charge is lower than 1: the molecule is considered deprotonated and
therefore the protonated conjugate is created by increasing the formal charge and the
number of hydrogens at the reaction site by 1.

3. The experimental pKa is higher than the supposed protonation state pH (pH = 7.4) but
the number of hydrogens at the reaction site is 0: the molecule is supposed to be in its
protonated form, but as it is not possible to deprotonate an atom with no protons, the
given molecule is assumed to be in its deprotonated form and the protonated conjugate is
created by increasing the formal charge and the number of hydrogens at the reaction site
by 1.

A total of 581 errors in the training set (581/5994), 23 errors in the Novartis set (23/280) and
6 errors in the Literature set (6/123) can be found and correct using the algorithm described in
this section.

2.2.3 Featurization
For the baseline machine learning models that require constant sized inputs, ECFPs are created
via the function GetMorganFingerprintAsBitVect, provided by the RDKit library [25]. The
same settings as Baltruschat et al. [1] are used, applying a bit length of 4096 and a radius of 3.

The atom and edge features of the input graph data for the GCNs are obtained via the
corresponding RDKit functions. The features and their respective range of unique values across
all datasets are shown in table 2.1.

Tab. 2.1: List of atom and edge features used for the graph representations of molecules. It also
includes all respective unique values yielded for all molecules of the datasets used in
this work

Atom features
atomic number: 1, 6, 7, 8, 9, 15, 16, 17, 33, 35, 53
formal charge -1, 0, 1
chiral tag: 0, 1, 2 (None, R, S)
hybridization: 1, 2, 3, 4
total number of Hs: 0, 1, 2, 3
explicit number of Hs: 0, 1, 2, 3
aromatic tag: True, False
total valence: 1, 2, 3, 4, 5, 6
total degree: 1, 2, 3, 4
ring: True, False
amide center atom: True, False

Bond features
bond type: 1.0, 1.5, 2.0, 3.0
conjugated: True, False
rotatable: True, False

2.3 Models 23

2.2.4 Data preprocessing
The dataset sdf files are loaded into a Pandas [23] Dataframe object via the PandasTools
subpackage of RDKit. Then the conjugates of all molecules are calculated via the aforementioned
conjugate creation algorithm (subsection: 2.2.2) and added to the DataFrame objects in their
respective columns named protonated and deprotonated. The Training dataset is split randomly
into a train and a validation set consisting of respectively 80 % and 20% of the Training samples.
All the DataFrames are combined into a dictionary and saved via python’s pickle module for
later use.

For the fixed-sized inputs, the Morgan-fingerprint bit-vectors are calculated for both the
protonated and deprotonated molecule and stored in a Numpy array object with a shape [number
of molecules, 2 × number of vector bits] for each dataset. The resulting array, together with the
target vector (shape: [number of molecules]) containing the experimental pKa values, are ready
to be used to train and test the baseline models.

For the creation of the molecular graphs, all-atom features, bonds and bond features are
calculated for protonated and deprotonated versions of the molecules and stored in objects of
a customised version of the PyTorch Geometric Data class called PairData. These objects are
then combined to a list containing all data of a dataset, where they are then ready to be used for
the batching, training and testing steps of GCN modelling.

All the fingerprint and graph data are combined into a dictionary and saved via the pickle
module for later use. All above steps are also done to prepare the datasets for the 5-fold-cross-
validation experiments, where the Training dataset is split into 5 random parts of equal size, of
which, for each cross-validation (CV) one part is chosen to be the validation set and 4 parts to
be combined to the train set. All the preprocessing steps listed above were also conducted for
the cv datasets.

2.3 Models
2.3.1 Baseline models
When developing a new predictive model, it is important to have reference models that can serve
as a baseline and indicate to what extent the new, usually more complex model outperforms
other simpler or already established types of models. From several models tried in various
configurations by Baltruschat et al. [1] (Random forest, support vector regression, multilayer
perceptron and XGradientBoost) the random Forest regressor (RFR) models turned out to be
the best performers and are therefore chosen to be used as the baseline models for this work.
Also, partial least squares (PLS) models are used additionally, to see how linear models compare
to the non-linear random forest and GCN models.

All the baseline models are implemented in the form of their respective Regressor objects,
provided by the scikit-learn library [26]. For PLS, the default parameters of Scikit-Learn (version
0.24.2) are used. For the RF-Models the number of estimators (= number of trees in the forest)
is set to 100. This parameter was set to 1000 by Baltruschat et al. [1] but preliminary testing
revealed that the difference between the performance of 1000 and 100 estimators is marginal
for our datasets. For all model types, three kinds of molecular data, using either the fingerprint
vectors of only protonated (1x4096 bits) - prot, only deprotonated (1x4096 bits) - deprot or
combined, referred to as pair (2x4096), are used for training and testing.

24 2 Methods

2.3.2 GCNs
For the implementation of the graph-based neural network models, the python libraries PyTorch
[27] and PyTorch Geometric [28] are used.

2.3.2.1 Architecture

Four different types of architectures are used, two of them taking only graphs of either the
protonated - prot or the deprotonated - deprot molecules as input and two that use the graphs of
both the protonated and deprotonated - pair species as input data. For each data configuration
there is one model useing only node features and one model using node and bond features
(marked with the edge - keyword) of the input graphs for training and testing.

The architectures used in this work have been determined by confined empirical testing and
were found to be suitable for the task at hand, but have not been subject to thorough, systematic
hyperparameter testing.

2.3.2.2 Single input

• Convolutional Layers:
1. GCNConv / NNConv(11, 96)
2. GCNConv / NNConv(96, 96)
3. GCNConv / NNConv(96, 96)
4. GCNConv / NNConv(96, 96)

• global_max_pool function (number of atoms × 96, 96)

• Linear layers:
1. Linear(96, 96)
2. Linear(96, 1)

Fig. 2.1: GCN architecture for single-molecule inputs (prot, deprot). The GCNConv layers are
used for atom features only, while for models utilizing edge features additionally, the
NNConv layers are used instead.

The basic input structure is depicted in figure 2.1. First, we have 4 layers of the type GCNConv,
with the first layer having an input size according to the number of node features (11) and
96 outputs. The subsequent layers all have 96 in- and output features. All the atoms of a
molecule get passed through the convolutional layers separately and then get combined by the
global_max_pool function, which takes the maximum value for every feature of all of the graphs
atoms. This results in a vector of length 96 which is then fed through two fully connected Linear
layers that result in a single output that can then be trained to estimate the pKa values.

The structure for the model incorporating the edge features differs from this basic model by
using the NNConv layer for all convolutional layers, which factors in the edge features in form of
a sequence of two Linear layers.

2.3 Models 25

• graph layers (protonated)
– Convolutional Layers:

1. GCNConv / NNConv(11, 96)
2. GCNConv / NNConv(96, 96)
3. GCNConv / NNConv(96, 96)
4. GCNConv / NNConv(96, 96)

– global_max_pool function (number of atoms × 96, 96)

• graph layers (deprotonated)
– Convolutional Layers:

1. GCNConv / NNConv(11, 96)
2. GCNConv / NNConv(96, 96)
3. GCNConv / NNConv(96, 96)
4. GCNConv / NNConv(96, 96)

– global_max_pool function (number of atoms × 96, 96)

• concatenate pooled feature vectors (2 × 96, 192)

• Linear layers:
1. Linear(192, 192)
2. Linear(192, 1)

Fig. 2.2: GCN architecture for pair molecule inputs. The GCNConv layers are used for atom
features only, while for the model utilizing edge features, additionally, the NNConv
layers are used instead. The graphs of the protonated and deprotonated representations
of any molecule are passed through their respective convolutional layers, separately,
and are then combined for the interpretation in the readout layer.

2.3.2.3 Paired input

The GCN models using paired graphs with and without edge features as input consist of two
separate blocks of the same convolutional layers and pooling functions as the single graph models
described above. The resulting vectors of length 96 from each block get concatenated and fed
through two linear layers with the first having 192 in- and outputs and the second having 192
inputs and one final output.

2.3.2.4 Training

6 different models with varying permutations of graph data and edge feature inclusions (pro-
tonated, deprotonated, paired each with and without edge features) using the corresponding
architectures, are trained. Training for each of these 6 models is done for 2000 Epochs and
a batch size of 64. The learning rate is set to 0.001 and adjusted by a scheduler, called
ReduceLROnPlateau, with patience=5 and verbose=True. The loss criterion is chosen to be
mean squared error (MSE) and parameter adjustment is done using the Adam optimizer. For
the training, a dropout layer with a probability of 0.5 is used. A dropout layer introduces an

26 2 Methods

additional source of randomness into the training process as for every value in every molecule
feature vector passing through it during training it has a chance (50% in our case) to set it to
0. This prevents the model from memorizing the batches and is a further measure to prevent
overfitting.

The same training process was done for the 5-fold cross-validations of all 6 different models.

2.3.2.5 Interpretation

The individual impacts of the node and edge parameters on the predictions of the models is
estimated using the IntegratedGradients class of the PyTorch Captum library [38]. The
IntegratedGradients object can take a trained molecule and a sample input and is then able
to compute the impact of every input feature on the prediction of the sample. This was done for
each of the 6 types of models on a random selection of 100 molecules from the training set and
plotted using the seaborn boxplot function for qualitative interpretation.

Chapter 3

Results and Discussion

3.1 Baseline models
The results for the 5-fold cross-validation, conducted for the two baseline models, the random
forest regressor and partial least squares regressor are shown in table 3.1.

Tab. 3.1: Cross validation training results for baseline models

R2 (mean ± std) RMSE (mean ± std) MAE (mean ± std)
RFR_prot 0.791 ± 0.007 1.110 ± 0.025 0.732 ± 0.014
RFR_deprot 0.753 ± 0.015 1.209 ± 0.048 0.799 ± 0.023
RFR_pair 0.798 ± 0.009 1.093 ± 0.036 0.727 ± 0.022
PLS_prot 0.633 ± 0.012 1.473 ± 0.016 1.132 ± 0.016
PLS_deprot 0.595 ± 0.010 1.546 ± 0.042 1.189 ± 0.038
PLS_pair 0.645 ± 0.007 1.448 ± 0.025 1.110 ± 0.029

The RFR models are quite clearly outperforming the PLS models by a difference in RMSE
of about 0.34 while the differences within each model type between the 3 different data types
were less notable. Although the PLS models clearly performed worse, than the RFR models, it
must be noted, that despite the assumed non-linearity of the problem of pKa prediction, the
results of the linear PLS models are surprisingly good. The respective model types using pair
input data are both performing best in terms of the mean values of the metrics, but considering
standard deviation, they cannot be regarded as significantly superior to the models of the same
type that use protonated input data. The models using deprot input data are under-performing
significantly compared to the models using the other two data types. This suggests that there is,
at least in our dataset, a significant difference between the information relevant to pKa contained
in the protonated and the deprotonated molecular fingerprint data.

Table 3.2 shows the performance of the baseline models of the two test sets. The best performing
baseline model on the Novartis test set is the RFR_pair model and on the Literature set the
RFR_prot model. Just as it was the case for the training results, all Random Forest models
performed better than the PLS models. Also, the models using deprot input data underperformed
again, compared to those using prot or pair input data, expect for the PLS_deprot model on the
Literature data set, which actually performed better than the other PLS models.

The best model of Baltruschat et al. [1], a Random Forest Regressor with a number of
estimeters=1000 and ECFPs with radius=3 and 4096 bits calculated from molecules, allegedly
in a protonation state at pH=7.4, has been outperformed on the Novartis test set by both
the RFR_prot and RFR_pair models with a difference of about 0.06 in RMSE but was still
significantly better than any of the random forest models of this work when applied to the
Literature test set. As the model of Baltruschat et al. [1] used the same fingerprint and model
configurations (apart from our model using 100 instead of 1000 estimators) as our random

28 3 Results and Discussion

Tab. 3.2: Test results for Baseline models

Novartis Literature
R2 RMSE MAE R2 RMSE MAE

RFR_prot 0.587 1.479 1.169 0.844 0.932 0.612
RFR_deprot 0.423 1.749 1.379 0.756 1.166 0.767
RFR_pair 0.604 1.45 1.139 0.833 0.965 0.657
PLS_prot 0.423 1.749 1.379 0.66 1.376 1.049
PLS_deprot 0.361 1.842 1.473 0.727 1.232 0.935
PLS_pair 0.458 1.696 1.341 0.711 1.269 0.941
Baltr.: RFR /FCFP6 (4096 bits) 0.569 1.513 1.147 0.889 0.785 0.532
ChemAxon Marvin (V20.1.0) 0.744 1.166 0.856 0.866 0.865 0.566

forest models, the enhanced performance of our models can be assumed to originate from the
protonation state errors, we found and fixed via the conjugate creation algorithm described
in subsection 2.2.2. The worse performance of our models on the Literature dataset might
be attributable to the 10 times greater number of estimators used by Baltruschat et al. [1].
Baltruschat et al. also predicted the test datasets with the commercial tool Marvin1 by the
company ChemAxon. The results that show the Marvin model outperforming all of our baseline
models both on the Novartis and the Literature test set can be seen in the last row of table 3.2.
Table 3.3 shows the cross-validation results of the baseline models on the test sets.

Tab. 3.3: Results of the cross-validation of the baseline models on the test sets

Novartis Literature
R2 RMSE MAE R2 RMSE MAE

RFR_prot 0.625 ± 0.032 1.409 ± 0.060 1.118 ± 0.044 0.839 ± 0.009 0.946 ± 0.026 0.615 ± 0.014
RFR_deprot 0.425 ± 0.014 1.746 ± 0.021 1.365 ± 0.017 0.761 ± 0.005 1.154 ± 0.011 0.761 ± 0.017
RFR_pair 0.617 ± 0.020 1.425 ± 0.038 1.120 ± 0.029 0.832 ± 0.012 0.968 ± 0.035 0.638 ± 0.020
PLS_prot 0.422 ± 0.005 1.751 ± 0.008 1.384 ± 0.016 0.662 ± 0.019 1.372 ± 0.038 1.044 ± 0.021
PLS_deprot 0.358 ± 0.006 1.846 ± 0.009 1.479 ± 0.012 0.727 ± 0.018 1.233 ± 0.041 0.947 ± 0.026
PLS_pair 0.458 ± 0.005 1.696 ± 0.007 1.351 ± 0.015 0.710 ± 0.015 1.269 ± 0.032 0.958 ± 0.021

3.2 GCN Models
3.2.1 Training
All the GCN models were trained for 2000 epochs. Figures 3.1a and 3.1b show the loss on
the train and the validation set plotted against the number of training epochs for the models
GCN_prot_no-edge and GCN_paired_edge, respectively. For both models, the losses drop
rapidly during the first 500 epochs. Afterwards, the train losses continue decreasing slightly,
ending up at about 0.4 and 0.15, respectively, while the validation losses plateau after about 1000
epochs at just under 0.80 and around 0.60. One might be tempted to assume that continuing
training when the training loss is going down, whilst the validation loss only barely decreases,
would lead to overfitting the model and thus diminished generalizability. But as long as the
validation test loss is the only measure, by which the performance of the model on data that it

1https://chemaxon.com/products/marvin

3.2 GCN Models 29

is not trained on can be assessed, it must be assumed that as long as the validation loss keeps
decreasing, no matter how negligibly, subsequent training further improves the general prediction
ability of the model.

0 500 1000 1500 2000

Epoch

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

L
o
s
s
 (

M
A

E
)

Train Loss

Validation Loss

(a) Training progression of GCN_prot_no-edge

0 500 1000 1500 2000

Epoch

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

L
o
s
s
 (

M
A

E
)

Train Loss

Validation Loss

(b) Training progression of GCN_pair_edge

Fig. 3.1: Training progression exemplified by GCN_prot_no-edge and GCN_paired_edge.

For calculating the final prediction results of the GCN models, we would typically want to use
the best models, according to their performance on the validation set. These models are usually
obtained at epochs close to the end of the training (1500-2000). For reasons, which we will go
into in the next section, we chose to only use the best models from the first 500 training epochs.

The results for the 5-fold cross-validation, conducted for the 6 different GCN models are shown
in table 3.4. In terms of the mean values, we can see, that using edge features generally improves
training performance and that the models using pair input data are slightly in the lead against
models using the same edge feature configuration, but other data inputs.

Tab. 3.4: Cross validation training results for GCN models

R2 (mean ± std) RMSE (mean ± std) MAE (mean ± std)
GCN_prot_no-edge 0.804 ± 0.013 1.077 ± 0.023 0.740 ± 0.020
GCN_prot_edge 0.837 ± 0.007 0.982 ± 0.036 0.663 ± 0.024
GCN_deprot_no-edge 0.796 ± 0.004 1.097 ± 0.012 0.770 ± 0.010
GCN_deprot_edge 0.835 ± 0.008 0.989 ± 0.036 0.683 ± 0.016
GCN_pair_no-edge 0.824 ± 0.011 1.021 ± 0.043 0.699 ± 0.024
GCN_pair_edge 0.850 ± 0.008 0.942 ± 0.025 0.638 ± 0.007

3.2.2 Test results
As we saw in figure 3.1, the performance of the models on the validation set does not significantly
increase after training for more than 500 epochs. Looking at the prediction results on the test sets
in tables 3.5 and 3.6, we actually best models chosen only from the models trained for a maximum
of 500 epochs, perform close to as good or sometimes even better than best models chosen from

30 3 Results and Discussion

Tab. 3.5: Results of the cross-validation of the GCN models on the test sets (best of 2000ep)

Novartis Literature
R2 RMSE MAE R2 RMSE MAE

GCN_prot_no-edge 0.668 ± 0.028 1.326 ± 0.055 0.971 ± 0.050 0.883 ± 0.023 0.803 ± 0.079 0.572 ± 0.058
GCN_prot_edge 0.685 ± 0.015 1.292 ± 0.032 0.981 ± 0.028 0.876 ± 0.016 0.828 ± 0.054 0.589 ± 0.034
GCN_deprot_no-edge 0.610 ± 0.029 1.437 ± 0.053 1.123 ± 0.036 0.869 ± 0.030 0.850 ± 0.094 0.611 ± 0.057
GCN_deprot_edge 0.697 ± 0.017 1.268 ± 0.035 0.984 ± 0.014 0.896 ± 0.010 0.758 ± 0.036 0.550 ± 0.043
GCN_pair_no-edge 0.702 ± 0.017 1.257 ± 0.037 0.978 ± 0.033 0.903 ± 0.012 0.734 ± 0.046 0.536 ± 0.028
GCN_pair_edge 0.728 ± 0.023 1.199 ± 0.050 0.922 ± 0.032 0.888 ± 0.010 0.788 ± 0.035 0.553 ± 0.028

Tab. 3.6: Results of the cross-validation of the GCN models on the test sets (best of 500ep)

Novartis Literature
R2 RMSE MAE R2 RMSE MAE

GCN_prot_no-edge 0.674 ± 0.026 1.314 ± 0.052 0.997 ± 0.049 0.893 ± 0.017 0.770 ± 0.063 0.557 ± 0.051
GCN_prot_edge 0.709 ± 0.036 1.241 ± 0.077 0.947 ± 0.064 0.888 ± 0.013 0.789 ± 0.045 0.577 ± 0.033
GCN_deprot_no-edge 0.602 ± 0.048 1.451 ± 0.087 1.119 ± 0.065 0.901 ± 0.014 0.740 ± 0.052 0.560 ± 0.051
GCN_deprot_edge 0.685 ± 0.023 1.291 ± 0.048 0.985 ± 0.033 0.894 ± 0.014 0.768 ± 0.049 0.570 ± 0.035
GCN_pair_no-edge 0.700 ± 0.019 1.261 ± 0.040 0.986 ± 0.033 0.890 ± 0.012 0.781 ± 0.045 0.578 ± 0.046
GCN_pair_edge 0.729 ± 0.021 1.198 ± 0.047 0.937 ± 0.039 0.890 ± 0.017 0.780 ± 0.061 0.578 ± 0.048

all 2000 epochs. We can thus see that the model training can be considered finished after 500
epochs and that further training does not generally improve the models. We therefore decided
to only use the best models from the first 500 training epochs for the subsequent performance
analysis.

In table 3.7 the performances of the GCN models on the two test sets Novartis and Literature
are shown. The table also includes the results of the best baseline models and the best models
of Baltruschat et al. [1] for further comparisons. It should be noted that some of the results
obtained from the models trained on the train-test split data are outside the confidence interval
that resulted from the cross validation on the test data.

Tab. 3.7: Test results for GCN models

Novartis Literature
R2 RMSE MAE R2 RMSE MAE

GCN_prot_no-edge 0.705 1.25 0.975 0.882 0.811 0.614
GCN_prot_edge 0.688 1.287 0.971 0.862 0.877 0.667
GCN_deprot_no-edge 0.61 1.439 1.102 0.929 0.628 0.496
GCN_deprot_edge 0.7 1.261 0.985 0.903 0.734 0.558
GCN_pair_no-edge 0.644 1.374 1.045 0.899 0.75 0.571
GCN_pair_edge 0.751 1.15 0.873 0.895 0.766 0.57
RFR_prot 0.616 1.428 1.126 0.853 0.903 0.589
RFR_pair 0.625 1.411 1.100 0.837 0.952 0.632
Baltr.: RFR /FCFP6 (4096 bits) 0.569 1.513 1.147 0.889 0.785 0.532
ChemAxon Marvin (V20.1.0) 0.744 1.166 0.856 0.866 0.865 0.566

We can see that the GCN model using edge feature and pair data is the best performing model
on the Novartis test set, outperforming the random forest pair model by a difference in RMSE
of 0.26 and even slightly improving on the results of the ChemAxon’s Marvin model with an
RSME lower by 0.01 units. The same model also beats all baseline and reference models on the

3.2 GCN Models 31

Literature set, but is itself outperformed by the models, GCN_pair_no-edge, GCN_deprot_edge
and GCN_deprot_no-edge, with the latter being the best performing model on this dataset.
Regression and Residual plots of the results of the GCN_pair_edge model on the test sets can be
seen in figure 3.2a and 3.2b for the Novartis test set and in figure 3.3a and 3.3b for the Literature
test set.

2 4 6 8 10 12

pKa (true)

2

4

6

8

10

12

g
c
n
_
p
a
ir

_
e
d
g
e

 r2 = 0.78

 MAE = 0.84
 RMSE = 1.18

(a) Regression plot

4 6 8 10

pKa_true

3

2

1

0

1

2

3

E
rr
o
r

(b) Residual plot

Fig. 3.2: Regression and Residual plots of the predictions of the GCN_pair_edge model on the
Novartis testset. The prediction errors are distributed quite uniformly along the pKa

spectrum, with a minor overestimation at lower pKa values.

32 3 Results and Discussion

2 4 6 8 10 12

pKa (true)

2

4

6

8

10

12

g
c
n
_
p
a
ir

_
e
d
g
e

 r2 = 0.89

 MAE = 0.57
 RMSE = 0.59

(a) Regression plot

2 4 6 8 10

pKa_true

2

1

0

1

2

E
rr
o
r

(b) Residual plot

Fig. 3.3: Regression and Residual plots of GCN_prot_edge on the Literature testset. The
residual plot show significant overestimation for pKa values > 9.5.

3.2.3 Model interpretation
Machine Learning models, especially neural networks, although very powerful in their ability to
model and predict complex systems, tend to be very difficult to interpret. We know that the
models are learning properties and characteristics about the data they are being trained on, but
more often than not, the learned parameters and patterns are hard to reconcile with how humans
might expect the information in the data could be learned. To at least shine a bit of light into
how the GCNs used in this work function, respectively what impact the individual node and
edge features have on the predictions, we used the IntegratedGradients method provided by
the PyTorch Captum library [38]. For a random sample of 100 molecules from the train set, the
importance of the features, meaning the extent of the effect on the prediction value of the model,
of each individual node and edge (atom and bond) were calculated. Then for each molecule, the
maximal absolute value for every feature, found in any of the nodes or edges of the said molecule,
were taken and combined to a distribution of 100 values per feature. This has been done for
all 6 types of GCN models and the results in form of box plots are displayed, including their
discussions, in figures 3.4, 3.5, 3.6 and 3.7.

3.2 GCN Models 33

0 1 2 3

value

atomic_number

formal_charge

chiral_tag

hybridization

total_num_Hs

explicit_num_Hs

aromatic_tag

total_valence

total_degree

is_in_ring

amide_center_atom

bond_type

is_conjugated

rotatable

(a) attributions for prot data

0 1 2 3 4 5

value

atomic_number

formal_charge

chiral_tag

hybridization

total_num_Hs

explicit_num_Hs

aromatic_tag

total_valence

total_degree

is_in_ring

amide_center_atom

bond_type

is_conjugated

rotatable

(b) attributions for deprot data

Fig. 3.4: Importances of GCN_prot_edge and GCN_deprot_edge models. Feature importances
for all nodes and edges of a random sample of 100 molecules from the train set were
calculated and filtered by the maximal value for each feature and molecule. We can see
that the atomic number and the total valence have the most impact for both models.
The impact of most features is scattered around medians between 0.5 to 1.5. chiral
tag, amide centre atom and rotatability have the least impact with their distribution
centring close to 0 impacts. Generally, it can be seen that the importance of the
features of the deprotonated molecules scatter within a larger range, while the medians
of both models are very similar.

34 3 Results and Discussion

0 2 4 6

value

atomic_number

formal_charge

chiral_tag

hybridization

total_num_Hs

explicit_num_Hs

aromatic_tag

total_valence

total_degree

is_in_ring

amide_center_atom

(a) attribitions for prot data

0 2 4 6 8

value

atomic_number

formal_charge

chiral_tag

hybridization

total_num_Hs

explicit_num_Hs

aromatic_tag

total_valence

total_degree

is_in_ring

amide_center_atom

(b) attribitions for deprot data

Fig. 3.5: Importances of GCN_prot_no-edge and GCN_deprot_no-edge models models. Fea-
ture importances for all nodes and edges of a random sample of 100 molecules from
the train set were calculated and filtered by the maximal value for each feature and
molecule. For these models with single-molecule inputs without edge features, we can
observe, that the features atomic number, total valence, hybridization and total degree
have the most impact. Again, the impacts of chiral tag and amide centre atom have
the least impact, mainly distributing around 0. The range of feature impacts of the
models using deprotonated data is higher than that of the models using protonated
data.

3.2 GCN Models 35

0 2 4 6 8

value

atomic_number

formal_charge

chiral_tag

hybridization

total_num_Hs

explicit_num_Hs

aromatic_tag

total_valence

total_degree

is_in_ring

amide_center_atom

(a) attributions for prot data

0 2 4 6

value

2_atomic_number

2_formal_charge

2_chiral_tag

2_hybridization

2_total_num_Hs

2_explicit_num_Hs

2_aromatic_tag

2_total_valence

2_total_degree

2_is_in_ring

2_amide_center_atom

(b) attributions for deprot data

Fig. 3.6: Importances of GCN_pair_no-edge models. Feature importances for all nodes and
edges of a random sample of 100 molecules from the train set were calculated and
filtered by the maximal value for each feature and molecule. For both molecule inputs of
the pair_no-edge models, similar distributions of importances as for the prot_no-edge
model and deprot_no-edge model can be observed.

36 3 Results and Discussion

0 1 2 3 4

value

atomic_number

formal_charge

chiral_tag

hybridization

total_num_Hs

explicit_num_Hs

aromatic_tag

total_valence

total_degree

is_in_ring

amide_center_atom

bond_type

is_conjugated

rotatable

(a) attribitions for prot data

0.0 0.5 1.0 1.5 2.0 2.5

value

2_atomic_number

2_formal_charge

2_chiral_tag

2_hybridization

2_total_num_Hs

2_explicit_num_Hs

2_aromatic_tag

2_total_valence

2_total_degree

2_is_in_ring

2_amide_center_atom

2_bond_type

2_is_conjugated

2_rotatable

(b) attribitions for deprot data

Fig. 3.7: Importances of GCN_pair_edge models. Feature importances for all nodes and edges
of a random sample of 100 molecules from the train set were calculated and filtered
by the maximal value for each feature and molecule. Compared to the impacts of the
GCN_pair_no-edge model, each individual feature has less impact as the information
is spread across a large variety of features. The most important features for the
protonated input are atomic number and bond type with the medians of most other
features ranging between 0.5 and 1. The impacts of the deprotonated inputs have
predominately values below 1 and spread in a range of a bit more than half the size of
the range for the protonated features.

3.2 GCN Models 37

3.2.4 Error Analysis
To further analyze the generalizability of the GCN models, we wanted to see, if their prediction
performance was significantly dependent on the similarity of the test molecule to the training
molecules. As a metric for estimating the similarity of two compounds, we use the Tanimoto
coefficient. The Tanimoto similarity for two molecules is calculated from their morgan fingerprints
by dividing the number of common fingerprint bits by the number of total bits of both molecules.
The Tanimoto-similarity, therefore, ranges between values of 1 and 0 meaning, whereby a value
of 1 indicates identical morgan fingerprints and 0 a pair of molecules with no fingerprint bit
and therefore no substructure in common. For each molecule in the two test sets, the maximal
Tanimoto-similarity coefficient it has with any molecule of the train set was calculated. Figures
3.8 and 3.9, show the RMSE values calculated for filtered test sets, containing only molecules
with a maximum Tanimoto coefficient below a certain threshold. The RMSE values are plotted
on the y-axis against the threshold Tanimoto coefficient on the x-axis. The discussion of the plot
is included in their description.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Similarity

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

R
M
S
E

GCN_prot_no-edge

GCN_prot_edge

GCN_deprot_no-edge

GCN_deprot_edge

GCN_pair_no-edge

GCN_pair_edge

Fig. 3.8: Performance trend of GCN models depending on the maximum Tanimoto coefficient
each Novartis test set molecule has with the training molecules . We can see that until
a Tanimoto threshold of about 0.35, the RMSE values are only rising slightly, with
each model type staying on its respective plateau, while at lower similarity thresholds,
the RMSE values start to rise significantly. Close to the threshold for the lowest
Tanimoto the RMSE for some models tends to lower again, possibly due to fewer
samples constituting the threshold dataset.

38 3 Results and Discussion

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Similarity

0.4

0.6

0.8

1.0

1.2

1.4

1.6

R
M
S
E

GCN_prot_no-edge

GCN_prot_edge

GCN_deprot_no-edge

GCN_deprot_edge

GCN_pair_no-edge

GCN_pair_edge

Fig. 3.9: Performance trend of GCN models depending on the maximum Tanimoto coefficient
each molecule has with the training molecules (Literature). We can observe an
exponential increase in the RMSE of all models, peaking around a similarity of 0.35.
In the range of 0.35 to 0.2 the models yield quite divergent RMSE values which could
coincide with their overall performance on the Literature test set.

Figures 3.10 and 3.11 contain boxplots of prediction errors for different similarity ranges and
heat maps showing the average prediction error of the GCN_pair_edge on a grid defined by
pKa and similarity for the predictions on the Novartis and Literature test set, respectively. The
discussion of the plots is included in their descriptions.

Figures 3.12 and 3.13 shows and discusses the molecules corresponding to the 6 best and
worst predictions of the GCN_pair_edge model on the Novartis and the Literature test set,
respectively.

3.2 GCN Models 39

< 0.25 < 0.4 < 0.55 < 0.7 < 0.85 < 1.0

Similarity

2

0

2

4

E
rr

o
r

[p
K

a
 u

n
it

s
]

(a) error-similarity - plot

4 6 8 10 12

pKa

0
.2

0
.4

0
.6

0
.8

1
.0

S
im

il
a
ri
ty

0.00

0.25

0.50

0.75

1.00

1.25

1.50

(b) Novartis testset

Fig. 3.10: displays box plots of prediction errors on different similarity ranges (a) and a heat
map showing the average prediction error of the GCN_pair_edge mode on a grid
defined by pKa and similarity (b) for the Novartis test set. The similarity ranges
between 0.25 and 0.4 have the highest error spread, while the median of the ranges of
0.00 to 0.25 is the most skewed away from 0. The heat map indicates that molecules
with low similarity and marginal pKa values tend to yield poorer results on this
dataset.

< 0.25 < 0.4 < 0.55 < 0.7 < 0.85 < 1.0

Similarity

2

1

0

1

2

3

E
rr

o
r

[p
K

a
 u

n
it

s
]

(a) error-similarity - plot

4 6 8 10 12

pKa

0
.2

0
.4

0
.6

0
.8

1
.0

S
im

il
a
ri
ty

0.00

0.25

0.50

0.75

1.00

1.25

1.50

(b) Novartis testset

Fig. 3.11: displays box plots of prediction errors on different similarity ranges (a) and a heat
map showing the average prediction error of the GCN_pair_edge mode on a grid
defined by pKa and similarity (b) for the Literature test set. The similarity range
between 0.4 and 0.25 has the highest error spread. the medians of all ranges stay
within 0.5 units around 0. The heat map shows good overall performance in all
quadrants withe a tendency for poorer predictions at a similarty < 0.2 and pKa < 4 .

40 3 Results and Discussion

(a) best predictions

(b) Outliers

Fig. 3.12: shows the molecules corresponding to the 6 best (a) and worst (b) predictions of the
GCN_pair_edge model on the Novartis test set. The reaction centre of each molecule
is marked with a red-filled circle and the prediction error, the Tanimoto similarity
and the empirical pKa value are displayed. It is observable that the similarity to the
train data is in a similar range for both the best and the worst predictions and is,
therefore, no distinguishing feature. No obvious structural differences between the
molecules of the best and the worst predictions can be noticed.

3.2 GCN Models 41

(a) best predictions

(b) Outliers

Fig. 3.13: shows the molecules corresponding to the 6 best (a) and worst (b) predictions of
the GCN_pair_edge model on the Literature test set. The reaction centre of each
molecule is marked with a red-filled circle and the prediction error, the Tanimoto
similarity and the empirical pKa value are displayed. As for the Novartis set, no
correlation between similarity and outliers/best molecules and no obvious structural
differences between the molecules of the best and the worst predictions can be
observed.

42 3 Results and Discussion

3.2.5 GCN results summary
We were successfully able to show that using graph convolution networks on molecular graph
data is a viable way to predict pKa values. The GCN models achieved to considerably improve
upon the best results of the random forest models of Baltruschat et al. [1], as well as on our
own improved random forest baseline models. It can also be considered quite a success that
our models were even able to outperform the results of the commercial program Marvin by
Chemaxion. The interpretation of the models and the impact of its input features, as well as
the interactions occurring for different combinations of features (node features only, node and
edge features, etc.), is complex and remains to be further investigated. The approach of using
both the protonated and deprotonated molecules of the acid-base reaction appeared fruitful in
this work. In our case, the pair models also had a doubled amount of adjustable parameters,
which could account in part for the enhanced performance compared to the single input model.
Therefore, further experiments using equal amounts of parameters must be conducted to confirm
the positive effect of the pair molecule inputs on the predictive performance of the GCN models.

Chapter 4

Outlook
Pathways for further improvement upon the results of this work can involve data, featurization
and model architecture. In terms of data, it would be interesting to revise the training dataset
provided by Baltruschat et al. [1]. The data mining on the CHembl database could be repeated
to include the latest pKa data and for the preprocessing, the filter criteria could be loosened
by eliminating the filter steps involving the removal of all molecules that contain nitro groups,
Boron, Selenium or Silicium or that break more than one of Lipinski’s rules of five as this further
increases the variety of molecules the models will be exposed to, thus hopefully further improving
their generalizability.

Furthermore, the IUPAC pKa database by as presented in its most recent version by Slater [14]
contains 29,946 unique pKa values for 12,189 unique molecules from primary sources categorized
by the IUPAC precision criteria, aforementioned in section 1.3.2and would be a great addition to
the train and test data used for further pKa modelling.

In terms of featurization, there is probably still quite some room for experimentation and
further improvements. On one hand, different combinations of the features used in this work
could be tried out as there might be some redundancy or even features that oftentimes do not
actually affect pKa and can therefore lead to overfitting of the model to the training data, thereby
downgrading the prediction performance on the test data. Also, additional features involving
substructure matching on atoms and bonds (e.g. cyanide, imids, etc.), could be added.

There is a range of variations to be tried in terms of model architecture and Training, that
remain to be tested for their impact on the quality of the present models. Using different numbers
of convolutional and linear layers, different types of convolutional layers or varying training
parameters like the learning rate, batch size or the loss criterion. Furthermore, the feature vector
resulting from the pooling layer could additionally be fed with molecule-wide property metrics.

Also the fact that our models seem to be fulled trained after 500 epochs and cannot be
significantly enhance by further training should be examined more closely.

Finally, further investigation into the efficiency of the pair input data approach, which uses
two separate stacks of convolutional layers in parallel is definitely needed. As indicated in the
discussion of the GCN results (3.2.5), it could easily be the case, that a model using single
inputs of molecules, correctly protonated at pH=7.4, perform just as good or even better than
the paired or the protonated inputs. However, for further generalisation and to predict pKa

values of multiprotic molecules, where the same input structure might have different ways to be
protonated or deprotonated, corresponding to different pKa values, the use of models that have
both the protonated and the deprotonated molecule’s graph as inputs, ensures that the model
understands what reaction with which educt and product it is supposed to predict. These types
of paired graph data models are also in no way restricted to the subject of pKa prediction and
could actually be used to model reaction constants or energies for all sorts of chemical reactions,
even those involving more than one molecule on either side of the reaction as all educts and all
products could be subsumed as subgraphs into a single graph respectively.

Abbreviations
ADMET absorption, distribution, metabolism, excretion, and toxicity

clogP logarithmic partition coefficient

CV cross-validation

ECFP extended connectivity fingerprint

GCN graph convolutional network

HSA human serum albumin

IUPAC International Union of Pure and Applied Chemistry

logDpH=7.4 logarithmic distribution constant

PLS partial least squares

RFR random Forest regressor

Bibliography
[1] M. Baltruschat and P. Czodrowski. “Machine learning meets pK a”. In: F1000Research 9

(2020).
[2] D. D. Perrin, B. Dempsey, and E. P. Serjeant. pKa prediction for organic acids and bases.

Vol. 1. Springer, 1981.
[3] O. Exner. “The inductive effect: theory and quantitative assessment”. In: Journal of physical

organic chemistry 12.4 (1999), pp. 265–274.
[4] D. T. Manallack, R. J. Prankerd, E. Yuriev, T. I. Oprea, and D. K. Chalmers. “The

significance of acid/base properties in drug discovery”. In: Chemical Society Reviews 42.2
(2013), pp. 485–496.

[5] L. S. Schanker, D. J. Tocco, B. B. Brodie, and C. A. M. Hogben. “Absorption of drugs
from the rat small intestine”. In: Journal of Pharmacology and Experimental Therapeutics
123.1 (1958), pp. 81–88.

[6] K. Palm, K. Luthman, J. Ros, J. Gråsjö, and P. Artursson. “Effect of molecular charge on
intestinal epithelial drug transport: pH-dependent transport of cationic drugs”. In: Journal
of Pharmacology and Experimental Therapeutics 291.2 (1999), pp. 435–443.

[7] M. Boisset, R. P. Botham, K. D. Haegele, B. Lenfant, and J. I. Pachot. “Absorption of
angiotensin II antagonists in Ussing chambers, Caco-2, perfused jejunum loop and in vivo::
Importance of drug ionisation in the in vitro prediction of in vivo absorption”. In: European
Journal of Pharmaceutical Sciences 10.3 (2000), pp. 215–224.

[8] J. L. Castro, I. Collins, M. G. Russell, A. P. Watt, B. Sohal, D. Rathbone, M. S. Beer, and
J. A. Stanton. “Enhancement of oral absorption in selective 5-HT1D receptor agonists:
fluorinated 3-[3-(piperidin-1-yl) propyl] indoles”. In: Journal of medicinal chemistry 41.15
(1998), pp. 2667–2670.

[9] M. P. Gleeson. “Generation of a set of simple, interpretable ADMET rules of thumb”. In:
Journal of medicinal chemistry 51.4 (2008), pp. 817–834.

[10] R. J. Prankerd. “Critical compilation of pKa values for pharmaceutical substances”. In:
Profiles of drug substances, excipients and related methodology 33 (2007), pp. 1–33.

[11] B. Pathare, V. Tambe, and V. Patil. “A review on various analytical methods used in
determination of dissociation constant”. In: Int. J. Pharm. Pharm. Sci 6.8 (2014), pp. 26–
34.

[12] S. Babić, A. J. Horvat, D. M. Pavlović, and M. Kaštelan-Macan. “Determination of pKa
values of active pharmaceutical ingredients”. In: TrAC Trends in Analytical Chemistry
26.11 (2007), pp. 1043–1061.

[13] J. Reijenga, A. Van Hoof, A. Van Loon, and B. Teunissen. “Development of methods for
the determination of pKa values”. In: Analytical chemistry insights 8 (2013), ACI–S12304.

[14] A. M. Slater. “The IUPAC aqueous and non-aqueous experimental pKa data repositories
of organic acids and bases”. In: Journal of computer-aided molecular design 28.10 (2014),
pp. 1031–1034.

46 Bibliography

[15] A. C. Lee and G. M. Crippen. “Predicting p K a”. In: Journal of chemical information
and modeling 49.9 (2009), pp. 2013–2033.

[16] G. C. Shields. Computational approaches for the prediction of pKa values. CRC Press, 2019.
[17] D. Rogers and M. Hahn. “Extended-connectivity fingerprints”. In: Journal of chemical

information and modeling 50.5 (2010), pp. 742–754.
[18] H. L. Morgan. “The generation of a unique machine description for chemical structures-a

technique developed at chemical abstracts service.” In: Journal of Chemical Documentation
5.2 (1965), pp. 107–113.

[19] L. Breiman. “Random forests”. In: Machine learning 45.1 (2001), pp. 5–32.
[20] C. C. Margossian. “A review of automatic differentiation and its efficient implementation”.

In: Wiley interdisciplinary reviews: data mining and knowledge discovery 9.4 (2019), e1305.
[21] T. N. Kipf and M. Welling. “Semi-supervised classification with graph convolutional

networks”. In: arXiv preprint arXiv:1609.02907 (2016).
[22] G. Van Rossum and F. L. Drake. Python 3 Reference Manual. Scotts Valley, CA: CreateS-

pace, 2009. isbn: 1441412697.
[23] W. McKinney et al. “pandas: a foundational Python library for data analysis and statistics”.

In: Python for high performance and scientific computing 14.9 (2011), pp. 1–9.
[24] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau,

E. Wieser, J. Taylor, S. Berg, N. J. Smith, et al. “Array programming with NumPy”. In:
Nature 585.7825 (2020), pp. 357–362.

[25] G. Landrum et al. “RDKit: Open-source cheminformatics”. In: (2006).
[26] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,

P. Prettenhofer, R. Weiss, V. Dubourg, et al. “Scikit-learn: Machine learning in Python”.
In: the Journal of machine Learning research 12 (2011), pp. 2825–2830.

[27] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N.
Gimelshein, L. Antiga, et al. “Pytorch: An imperative style, high-performance deep learning
library”. In: Advances in neural information processing systems 32 (2019), pp. 8026–8037.

[28] M. Fey and J. E. Lenssen. “Fast graph representation learning with PyTorch Geometric”.
In: arXiv preprint arXiv:1903.02428 (2019).

[29] J. D. Hunter. “Matplotlib: A 2D graphics environment”. In: Computing in science &
engineering 9.03 (2007), pp. 90–95.

[30] M. L. Waskom. “Seaborn: statistical data visualization”. In: Journal of Open Source
Software 6.60 (2021), p. 3021.

[31] T. Sander, J. Freyss, M. von Korff, and C. Rufener. “DataWarrior: an open-source program
for chemistry aware data visualization and analysis”. In: Journal of chemical information
and modeling 55.2 (2015), pp. 460–473.

[32] A. Gaulton, L. J. Bellis, A. P. Bento, J. Chambers, M. Davies, A. Hersey, Y. Light, S.
McGlinchey, D. Michalovich, B. Al-Lazikani, et al. “ChEMBL: a large-scale bioactivity
database for drug discovery”. In: Nucleic acids research 40.D1 (2012), pp. D1100–D1107.

[33] A. Avdeef. Absorption and drug development: solubility, permeability, and charge state.
John Wiley & Sons, 2012.

Bibliography 47

[34] M. Morgenthaler, E. Schweizer, A. Hoffmann-Röder, F. Benini, R. E. Martin, G. Jaeschke, B.
Wagner, H. Fischer, S. Bendels, D. Zimmerli, et al. “Predicting and tuning physicochemical
properties in lead optimization: amine basicities”. In: ChemMedChem: Chemistry Enabling
Drug Discovery 2.8 (2007), pp. 1100–1115.

[35] F. Luan, W. Ma, H. Zhang, X. Zhang, M. Liu, Z. Hu, and B. Fan. “Prediction of p K a for
neutral and basic drugs based on radial basis function Neural networks and the heuristic
method”. In: Pharmaceutical research 22.9 (2005), pp. 1454–1460.

[36] C. Dardonville. “Automated techniques in pKa determination: low, medium and high-
throughput screening methods”. In: Drug Discovery Today: Technologies 27 (2018), pp. 49–
58.

[37] C. Liao and M. C. Nicklaus. “Comparison of nine programs predicting p K a values of
pharmaceutical substances”. In: Journal of chemical information and modeling 49.12 (2009),
pp. 2801–2812.

[38] N. Kokhlikyan, V. Miglani, M. Martin, E. Wang, B. Alsallakh, J. Reynolds, A. Melnikov, N.
Kliushkina, C. Araya, S. Yan, et al. “Captum: A unified and generic model interpretability
library for pytorch”. In: arXiv preprint arXiv:2009.07896 (2020).

