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Abstract

Long-term global monitoring of terrestrial Gross Primary Production (GPP) is crucial

for assessing ecosystem response to global climate change. In recent years and decades,

great advances in estimating GPP on a global level have been made and many global

GPP datasets have been published. These global data records are either based on obser-

vations from optical remote sensing, are upscaled from in situ measurements, or rely on

process-based models. The different estimation approaches are well established within

the scientific community but also exhibit significant discrepancies among each other.

Here, the new VODCA2GPP dataset is introduced, which utilizes microwave remote

sensing estimates of Vegetation Optical Depth (VOD) to estimate GPP on a global scale.

VODCA2GPP is able to complement existing products with long-term GPP estimates

covering the period 1988 - 2020. VODCA2GPP applies a previously developed carbon

sink-driven approach (Teubner et al. [2019], [2021]) to estimate GPP from the Vege-

tation Optical Depth Climate Archive (Zotta et al. [in preperation]; Moesinger et al.

[2020]), which merges VOD observations from multiple sensors into one long-running,

coherent data record. VODCA2GPP was trained and evaluated against FLUXNET in

situ observations of GPP and assessed against largely independent state-of-the art GPP

datasets (MODIS GPP, FLUXCOM GPP, and GPP estimates from the TRENDY-v7

model ensemble).

These assessments show that VODCA2GPP exhibits very similar spatial patterns

compared to existing GPP datasets across all biomes but with a consistent positive bias.

In terms of temporal dynamics, a high agreement was found for regions outside the humid

tropics, with median correlations around 0.75. Concerning anomalies from the long-

term climatology, VODCA2GPP correlates well with MODIS and TRENDY-v7 GPP

(Pearson’s r: 0.53 and 0.61) but less with FLUXCOM GPP (Pearson’s r: 0.29). A trend

analysis for the period 1988-2019 did not exhibit a significant trend in VODCA2GPP

on a global scale but rather suggests regionally differing long-term changes in GPP.

Significant similar increases of global GPP that were found for VODCA2GPP, MODIS

GPP, and the TRENDY-v7 ensemble for the shorter overlapping observation period

(2003-2015) supports the theory of elevated CO2 uptake potentially induced by increased
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atmospheric CO2 concentrations and the associated rising temperatures.
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Preface

This Master Thesis builds on a paper that was recently submitted to the Earth System

Science Data Journal (ESSD, Wild et al. [2021a]). The submitted paper is lead-authored

by me, goes under the same title as this thesis and has not been published yet. The

co-authors of the submitted paper are: Irene Teubner, Leander Moesinger, Ruxandra-

Maria Zotta, Matthias Forkel, Stephen Sitch, Robin van der Schalie, and Wouter Dorigo.

I contributed to the paper by curating the dataset, conducting and assessing the analysis

and drafting the manuscript.

For this Master Thesis I extended the paper by providing more theoretical background,

especially on Gross Primary Production and the role of remote sensing in the quantifica-

tion of Gross Primary Production. (Sub-)chapters that were directly adopted or contain

adapted content from the paper are indicated with a footnote (1) at the beginning of

the chapter. The abstract was also adopted from Wild et al. [2021a].

Following the open data philosophy that is important to all contributors of the dataset,

VODCA2GPP is publicly and freely available (CC-BY-SA-NC 4.0) and can be accessed

here: https://doi.org/10.48436/1k7aj-bdz35 (Wild et al. [2021b]).
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1 Introduction

1Gross Primary Productivity (GPP) describes vegetation’s synthesis of atmospheric CO2

to carbohydrates through photosynthesis and therefore plays a key role in the global car-

bon cycle (Bonan [2015]). Especially in the context of global climate change, GPP plays

an important role as ”filter” from the most critical greenhouse gas CO2.

CO2 concentrations in the atmosphere have steadily increased since the beginning of

industrial revolution (Fig 1.1) which has triggered a significant temperature increase

within the last decades (Allen et al. [2018]). Depending on the measures taken by gov-

ernments and society to mitigate CO2 emissions, CO2 concentrations, and thus also

temperature, are projected to increase at the same or at an even faster pace in the years

and decades to come (Fig 1.1). As discussed in more detail in Chapter 2, GPP is strongly

influenced by both, atmospheric CO2 and temperature. Thus monitoring of GPP will

become even more crucial for understanding the impact of climate change on the global

carbon cycle (Haverd et al. [2020b]; Schimel et al. [2015]).

Figure 1.1: Evolution of historical and projection of future atmospheric CO2 concentra-
tions under various representative concentration pathways (RCPs) [Bonan,
2015]
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However, direct measurements of GPP are difficult and costly which is why in-situ

GPP measurement systems are mostly located in industrialized countries. This obser-

vation bias causes large uncertainties in many biomes of the world where hardly any

direct GPP observations are available which massively hampers the analysis of global

GPP variations.

On the global scale, GPP is commonly estimated using optical remote sensing data

in combination with (semi-)empirical or machine learning models (e.g., O’Sullivan et al.

[2020]; Alemohammad et al. [2017]; Gilabert et al. [2017]; Jung et al. [2020]; Tramon-

tana et al. [2016]). However, optical remote sensing is strongly affected by cloud cover,

leading to data gaps and high uncertainties in regions with frequent cloud cover and

high production such as tropical forests.

In contrast to optical remote sensing observations, Vegetation Optical Depth (VOD)

from microwave remote sensing is much less affected by weather conditions. VOD de-

scribes the vegetation’s attenuation of radiation in the microwave domain, which is con-

trolled by its water content, biomass, type and density (Jackson and Schmugge [1991];

Vreugdenhil et al. [2016]). Thus, VOD has been intensively used as proxy for above-

ground biomass (Li et al. [2021]; Rodŕıguez-Fernández et al. [2018]; Tian et al. [2016];

Liu et al. [2011]) and is becoming increasingly important in the monitoring of vegetation

dynamics (e.g., Frappart et al. [2020]; Piles et al. [2017]; Tian et al. [2016]).

Recent studies investigated how GPP can be estimated from VOD (Teubner et al.

[2018], [2019], [2021]). GPP is significantly correlated with spatial patterns and tem-

poral changes in VOD (Teubner et al. [2018]). Based on this relationship, Teubner

et al. [2019] developed a theoretical framework and a machine-learning method using

FLUXNET site observations to predict GPP using VOD. They showed that GPP can

be adequately estimated for most regions of the world with an overall tendency for

moderate overestimation and good temporal agreement with existing GPP products, es-

pecially for temperate regions. Recently, Teubner et al. [2021] improved this method by

adding air-temperature in their model to account for temperature dependency of plant

respiration, and found that this significantly improved the temporal agreement with ref-

erence GPP data.

However, long-term analysis of GPP from VOD was until recently hampered by the

relatively short availability of passive microwave sensors. Moesinger et al. [2020] over-
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came this issue by merging single-frequency VOD from various sensors into the long-term

VOD Climate Archive (VODCA) which comprises VOD observations of more than 20

years for X-, and C-Band and more than 30 years for Ku-Band. A new version of

VODCA (Zotta et al. [in preperation]) does not only combine single sensors from iden-

tical frequencies but also merges observations from different bands (X, C and Ku) into

one long-running multi-frequency VOD climate archive.

1.1 Objective of this thesis

The objective of this thesis is to introduce a novel long-term GPP dataset (VODCA2GPP)

which was generated by applying the method developed by Teubner et al. [2019], [2020]

to the multi-frequency VODCA dataset. Furthermore, this work aims to provide a de-

tailed evaluation the dataset, especially in regard to its complementarity to existing

state-of-the-art GPP datasets.

This thesis is organised as follows: In Chapter 2 and 3 a general overview on the (gross)

primary productivity is given (Chapter 2) with a focus on remote sensing techniques for

assessing vegetation dynamics (Chapter 3). Chapter 4 describes the datasets that were

used a) in the production process of VODCA2GPP and b) as references for the evaluation

of VODCA2GPP. Chapter 5 gives a overview on the VOD2GPP-model which represents

the theoretical basis for VODCA2GPP. Furthermore, the practical VOD2GPP imple-

mentation with Generalized Additive Models (GAMs) is outlined and other important

steps in the processing chain of VODCA2GPP are explained. Lastly the utilized means

of validation and comparison with the reference datasets are described. In chapter 6 the

results of the validation process are shown, followed by a discussion of the results with

potential sources of errors in Chapter 7.
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2 Defining primary productivity

2.1 What is GPP

Primary productivity in ecosystems is defined as the amount of carbon that is fixed by

primary producers (i.e. autotroph organisms like plants) by the means of photosynthesis

(Bonan [2015]). Gross primary productivity can be split into

• plant respiration (Ra) and

• Net Primary Productivity (NPP).

Gross Primary Production is the sum of both, NPP and Ra,and the relationship

between NPP, GPP and Ra can thus be formally written as (Bonan [2015]):

GPP = Ra +NPP (2.1)

NPP describes vegetation’s synthesis of atmospheric CO2 to carbohydrates through

photosynthesis but only includes the resulting amount of stored biomass which is used

by plants to form tissues in order to adapt to environmental conditions (e.g., forming

strong roots in arid regions). In contrast to that, Ra describes all respiration processes

that are fueled by the remaining energy (Cain et al. [2014]). Ra can be further separated

into

(a) growth respiration, which is mainly associated with the plant’s ability to form

organic compounds and amounts to aproximately 25% of GPP (Ryan [1991]) and

(b) maintanance respiration which is the process that maintains living cells by breaking

down carbohydrates and in return reduces the amount of carbon that can be used

for growth.

GPP is therefore defined as the total amount of carbon that is fixed by plants in a

defined timespan over a certain area. Common units to quantify GPP are [g C m−2 d−1],

[kg C m−2 yr−1] or, when quantifying global sums of GPP, [Pg C m−2 yr−1].
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With recent estimates ranging from 120 (Beer et al. [2010]) up to 175 (Welp et al.

[2011]) Pg C m−2 yr−1, it is the largest CO2 flux in flux in the carbon cycle (Beer

et al. [2010]) and also considered to be the primary driver of the terrestrial carbon sink.

GPP is responsible for the sequestration of approximately 30% of the global annual

anthropogenic CO2 emmisions (Friedlingstein et al. [2020]) and therefore not only plays

a key role in the global carbon cycle but also significantly contributes to cleansing of the

atmosphere from the most important greenhouse gas.

2.2 What drives GPP

The main source of energy that controls the primary production is photosynthetically

active radiation (PAR; approximately in the wavelength range between 400 and 700

nm) which is emmited by the sun. This radiation is used by plants in the process of

photosynthesis to convert CO2 and H2O (water) to CH2O (i.e. carbohydrates such as

sugar) (Bonan [2015]). Accordingly, the equation photosynthesis can be written as:

CO2 + 2H2O + light energy → CH2O +O2 +H2O (2.2)

where O2 can be considered a byproduct.

Equation 2.2 shows the main drivers of GPP: energy from sunlight, water availability

and the amount of available atmospheric CO2. However, there are also other often co-

varying environmental conditions that have a significant impact on GPP such as nutrient

availability or temperature.

Figure 2.1: Temperature-dependence of maintenance respiration (Bonan [2015])

Varying temperature, for example, is known to strongly influence autotrophic respi-

ration (Teubner et al. [2021]). Higher temperatures expedite maintenance respiration
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exponentially up to 50◦C (Fig 2.1) while growth respiration is hardly affected by tem-

perature (Bonan [2015]).

The mentioned dependencies explain the high degree of (inter-)annual variability of

GPP, which is particularly strong in regions with pronounced seasonality (e.g., temperate

or boreal regions). Beside the distinct seasonal fluctuations of GPP also long-term

changes are observable on a regional and global scale.

2.3 Recent trends in global GPP

In recent years, many studies have found positive trends in global GPP and linked those

trends to changing meteorological conditions and atmospheric compositions. Campbell

et al. [2017], for example, quantified the increase of GPP for the period 1900-2000 with

ca. 31%. They hypothesised that increasing CO2 concentrations are responsible for

the strong increase. This so-called CO2 fertilization effect has been investigated more

closely by other studies (e.g. Schimel et al. [2015]; Haverd et al. [2020b]; Cox et al.

[2000]; Canadell et al. [2007]) which all came to the conclusion that elevated GPP is

indeed a response to increasing levels of atmospheric CO2 (Fig 2.2).

Figure 2.2: Relative regional changes in GPP (ΔGPP ; left) and NPP (ΔNPP ; right)
as derived from the Community Atmosphere–Biosphere Land Exchange
(CABLE) model plotted against absolute atmospheric CO2 concentrations
(Haverd et al. [2020b])

In addition to CO2 fertilization effects, rising temperatures (Schimel et al. [2015]; Piao

et al. [2013]; Cox et al. [2000]) as well as land-use change (Haverd et al. [2020b]) have

been identified as an important driver for positive trends in GPP.
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However, it is to be noted that most of these findings rely on GPP estimates that are

derived from process-based models such as Dynamic Global Vegetation Models (DGVMs)

or Land Surface Models (LSM) which are based on various theoretical model assump-

tions and thus exhibit a certain degree of uncertainty. The validation of such models is

often difficult due to a general shortage of direct GPP observations. Its important role

in the global carbon cycle, however, has lead to increased scientific effort in developing

independent methods for observing GPP locally and globally.

2.4 Small-scale measurements of GPP

1Locally, GPP can be adequately determined at in-situ flux towers which measure car-

bon dioxide fluxes by the means of eddy-covariances. Eddy-covariance is a statisitcal

method that allows the direct estimation of gas and energy fluxes at atmospheric bound-

ary layers (e.g., between terrestrial ecosystems and the atmosphere) by the means of

micro-meteorological observations (Liang et al. [2012]). These eddy-covariances can be

further partitioned into GPP and ecosystem respiration (Baldocchi [2003]).

There exist numerous eddy-covariance stations that are continously measuring CO2

fluxes. Most of these stations are associated to regional networks that incorporate

from only a few to several hundred (e.g., AmeriFlux) individual eddy-covariance towers.

FLUXNET is the global network of regional flux tower networks to provide the scientific

community with harmonized and well-documented flux observations (Pastorello et al.

[2020]). However, FLUXNET in-situ stations are sparsely and unevenly distributed

(cf 8.1) across the planet with most stations located in industrialized countries which

complicates the derivations of global ecosystem dynamics.
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3 Remote sensing in monitoring global GPP

Remote sensing allows to overcome the strong spatial limitations that are associated

with the in-situ based monitoring of GPP by providing information on biogeophysical

variables, that serve as proxies for GPP on a global scale. Basically, remote sensing of

vegetation can be separated into two categories:

• optical remote sensing and

• microwave remote sensing

The difference between the two categories lies within their operation frequencies which

allows them to gain largely independent information about similar bio-geophysical prop-

erties. Both methods are being extensively used for the remote sensing of vegetation but

only optical methods have so far been applied for the long-term global quantification of

GPP (O’Sullivan et al. [2020]) because of their close relationship to PAR.

3.1 Optical remote sensing of vegetation

Optical remote sensing uses sensors that operate with wavelengths between approxi-

mately 0.4 µm and 15 µm (Kerekes [2009]). Remote sensing of vegetation most com-

monly makes use of the visible (VIS 0.4 µm - 0.7 µm) and the near-infrared (NIR; 0.7

µm - 1.1 µm) region of the electromagnetic (EM) spectrum because of the distinct veg-

etation’s reflection mechanisms that come into play in these spectral regions.

The more photosythentically active plants are, the higher is also the degree of ab-

sorption of photosynthetically active radiation (PAR; corresponds approximately to the

visible spectrum) which they use as source of energy for photosynthesis. While the degree

of reflection of PAR is highly dependent on the photosynthetic capacity (i.e. the vital-

ity) of vegetation, the absorption mechanisms in the NIR region are mostly controlled

by the cellular structure of the leaves which reflect most of the incoming NIR radiation.

Thus, vital vegetation exhibits a distinct drop in absorption between those two spectral

regions while this drop becomes less distinct for stressed vegetation or non-existent for

other objects (Tucker and Sellers [1986]).
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This behaviour can be expressed by vegetation indices such as the Normalized Dif-

ference Vegetation Index (NDVI), which serves as a proxy for vegetation coverage and

vegetation health (Carlson and Ripley [1997]). The NDVI, for example, is obtained by

calculating the (normalized) difference between the (normalized) red (RED) and NIR

reflectances:

NDV I =
NIR−RED

NIR+RED
(3.1)

As such, the NDVI can take on values between -1 and 1. Values close to 1 indicate

vegetation with high photosynthetic activity while positive values close to 0 either in-

dicate stressed vegetation or non-vegetated surfaces. In rare cases also negative values

occur which are often caused by atmospheric disturbances (Tucker and Sellers [1986]).

Besides the NDVI, there are other optical remote sensing vegetation indicators that

rely on similar principles. Other vegetation health variables are for example:

• fraction of Absorbed Photosynthetically Active Radiation (fAPAR)

• Enhanced Vegetation Index (EVI)

• Solar Induced Fluorescence (SIF)

3.1.1 Optical vegetation variables as proxie for GPP

1So far, GPP has been commonly estimated on the basis of these optical remote sens-

ing vegetation indices in combination with (semi-)empirical or machine learning models

(e.g. Tramontana et al. [2016]; Gilabert et al. [2017] or Alemohammad et al. [2017]).

Specifically, these models are based on light use efficiency (LUE) theory and/or statisti-

cal models that are applied to derive GPP based on optical remote sensing variables as

discussed above.

The usage of optical remote sensing data makes these models closely linked to pho-

tosynthetic activity in plants and hence also the terrestrial carbon cycle. Furthermore,

these optical remote sensing based GPP datasets have the advantage of being available

virtually globally with high spatial (usually in the order of 10 m to 1 km) and decent

temporal granularity (approximate revisit times of one to several weeks, depending on

the spatial resolution and satellite orbits) which is also why optical remote sensing based

GPP products such as FLUXCOM GPP (Jung et al. [2019]) or MODIS GPP (Running

et al. [1999]) can be considered state-of-the-art in the monitoring of GPP on a global

scale.
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3.1.2 Issues related to optical remote sensing

Despite being able to provide detailed information on the photosynthetic activity in

plants there are also several shortcoming related to the remote sensing in the optical

domain. For example, optical remote sensing tends to underestimate GPP in very pro-

ductive regions (Chen et al. [2006]; Asner et al. [2003]) presumably due to saturation

effects of mentioned vegetation health indicators. Also, optical remote sensing is strongly

affected by cloud cover which results in additional uncertainties especially in highly pro-

ductive regions (e.g., tropical forests). Furthermore, observations from space are highly

dependent on the illumination conditions on the ground which necessitates the usage

of sun-synchronous orbits to obtain observations with a fixed sun-angle (Carver et al.

[1985]).

3.2 Microwave remote sensing of vegetation

Due to the differences in operation frequencies, microwave remote sensing can be viewed

as independent from optical earth observation techniques. This is why within the last

years and decades increased effort was put into the development of innovative microwave

sensor systems that are today also extensively used in the monitoring of global ecosys-

tems and vegetation dynamics.

A concrete definition for the wavelength boundaries of the microwave spectrum does

not exist but microwaves are commonly described as EM waves in the wavelength region

between 1 mm to 1 m (Ulaby et al. [1981]). Microwave frequencies are classified in

frequency regions (i.e. bands). For the remote sensing of vegetation the most commonly

used bands are listed in Table 3.1.

Table 3.1: Band definitions of microwave frequencies according to the Radio Society of
Great Britain (URL: https://rsgb.org/)

Band Frequency range [GHz] Wavelength range [mm]

L 1-2 150-300
C 4-8 37.5-75
X 8-12 25-37.5
Ku 12-18 16.7-25

Microwave remote sensing sensors can be split into two sub-categories (Konings et al.

[2019]):
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• active sensors (radars) and

• passive sensors (radiometers)

3.2.1 Active systems

Active systems are equipped with antennas that emit EM waves which are reflected,

absorbed or scattered on the earth’s surface. The main quantity that is measured is

the amount of radiation that returns to the sensor (i.e. the backscatter) Konings et al.

[2019]).

Active sensor systems have the potential to deliver observations at very high spa-

tial resolution (up to 10 m for Synthethic Aperture Radar (SAR)). However, vegetation

structures and geometry play a large role in the active case (Fig 3.1) which often compli-

cates the seperation of the vegetation signal (i.e. the VOD) from the other contributors.

Therefore, also the parametrization of vegetation can become very complex (Konings

et al. [2019]). Nevertheless, there have been advances to retrieve global VOD also from

the actively operating Advanced Scatterometer (ASCAT) (Vreugdenhil et al. [2016]).

Their approach mainly relies on the the water-cloud model introduced by Attema and

Ulaby [1978].

Until today, however, most VOD datasets are still based on observation from passive

microwave sensors (e.g., TMI, AMSR-E, AMSR2, etc.) which is why a more detailed

introduction of active microwave remote sensing based VOD retrievals is ommited.

3.2.2 Passive systems

In contrast to radar systems, radiometers do not emit EM radiation themselves but

sense the amount of radiation that is naturally emitted by the earth’s surface which is

commonly expressed as brightness temperatures Tb (Konings et al. [2019]). Radiometers

typically have coarse resolutions (> 10km) but as it can be seen in Fig 3.1 there are only

three main (emission) contributors that come into play which facilitates the isolation of

the vegetation signal.

According to Ulaby et al. [1981], the measured signal (i.e. TB) can be seperated into

contributions from soil (TBs), vegetation (TBv) and the interaction between soil and

vegetation (TBvs):
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TB = TBv + TBs + TBvs (3.2)

The three components are further defined as:

TBv = Tv(1− α)(1− γv) (3.3)

TBs = �sTsγv (3.4)

TBvs = TvR(1− α)γv(1− γv) (3.5)

where Tv and Ts denote the temperatures of the vegetation layer and the soil-surface.

�s denotes soils emmisivity and R its reflectivity. α corresponds to the single-scattering

albedo. The most important quantity in context of vegetation is γv which denotes

the one-way transmissivity of the vegetation cover. In other words, γv describes the

attenuation of the signal while travelling through the vegetation cover. γv is given by

γv = e
−V OD
cos(θ) (3.6)

The degree of attenuation is thus dependent on the incidence angle θ and VOD. There-

fore, high VOD indicates a high degree of attenuation by the vegetation cover and vice

versa (Ulaby et al. [1981]).

A common approximation for VOD is the linear relationship with Vegetation Water

Content (VWC) Jackson and Schmugge [1991]:

V OD = bV WC (3.7)

It is to be noted that the equations 3.2-3.71 are only valid under the assumption of a

completely smooth and plane soil surface and an idealized, homogenous vegetation layer

(i.e. ”water cloud”).

In reality, VOD is not only dependent on VWC but also influenced by the vegetation’s

structure. The slope b is mainly dependent on the landcover type and the frequency,

which is why the used frequency needs to be considered when analysing VOD retrievals

(Konings et al. [2019]). In general, high frequency microwaves (Ku-/X-/C-Band) are

more sensitive to smaller vegetation structures like leaves and branches while low fre-

quencies (L-Band) are sensitive to larger components like stems.

1The equations 3.2-3.6 are taken from Ulaby et al. [1981] and Konings et al. [2019]
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Figure 3.1: Illustration of an idealized vegetated surface and its main emission contrib-
utors (a): 1) bare soil, 2) the vegetation itself and 3) two-path emmision
that is first reflected by the soil and then attenuated by the vegetation. (b)
illustrates the backscatter contributors (in the active case): 1) backscatter
from bare soil (direct), 2) backscatter from plants (direct), 3) and 4) two-way
backscatter from plants-ground and 5) three-way backscatter ground-plants-
ground (Konings et al. [2019])

3.2.3 Advantages of microwave remote sensing over optical

1In contrast to optical remote sensing, microwave sensors are hardly affected by weather

conditions due to their much stronger capability to penetrate the atmosphere also at

cloudy conditions. This allows the observation of continuous time-series throughout the

year which is especially relevant in regions with significant cloud cover such as the Trop-

ics (Ulaby et al. [1981]). Apart from being virtually weather independent, microwave

remote sensing also has the advantage of being less dependent on illumination condi-
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tions on the earth’s surface (Carver et al. [1985]). However, the effect of surface heating

during daytime needs to be considered which can be realised by only taking nightime

obersvations into account (Owe et al. [2008]). Furthermore, unlike optical vegetation

indices, VOD is less prone to saturation effects and theoretically can take on values be-

tween [0,∞[.

3.3 Relationship between VOD and GPP

1Various studies showed that AGB and changes in AGB are correlated with Ra (Lavi-

gne and Ryan [1997]) and NPP (Girardin et al. [2010]; Luyssaert et al. [2007]; Clark

et al. [2001]) which are the both constituents of GPP (Eq. 2.1). Following the theo-

retical relationship between VOD, AGB and GPP it has been demonstrated that VOD

as well as temporal changes in VOD are significantly correlated with GPP (Teubner

et al. [2018]). According to the mentioned relationship between AGB, VOD and GPP,

theoretically highest correlation with GPP would be expected for L-Band VOD which

corresponds best to AGB (Rodŕıguez-Fernández et al. [2018]). However, best corre-

spondence between GPP and VOD was found for X-Band observations. Teubner et al.

[2021] explained the better agreement of GPP with X-Band VOD with the higher sensiv-

itiy of X-Band to parts of the vegetation that exhibit the metabolic activity (e.g. leaves).

Based on these findings Teubner et al. [2019] derived the VOD2GPP-model which is

the basis for the VODCA2GPP dataset.
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4 Data

4.1 Model Input data

4.1.1 VODCA

1The Vegetation Optical Depth Climate Archive (VODCA v1; Moesinger et al. [2020])

was first published in 2020 and consisted of three single-frequency VOD products (Ku-,

X- and C-band), covering the period from 1987-2017 (Ku-Band), 1997-2019 (X-Band),

and 2002-2019 (C-band), respectively. For VODCA2GPP, an updated VODCA version

(VODCA v2 CXKu; Zotta et al. [in preperation]) that merges all bands in a single dataset

to obtain increased spatial and temporal coverage and reduced random errors compared

to VODCA v1 was used. VODCA v2 CXKu utilizes observations from the same sensors

and frequencies as VODCA v1 (Table 3.6) to generate a single long-running VOD multi-

frequency time series. It merges 15 passive night-time VOD datasets retrieved from

seven different sensors via the Land Parameter Retrieval Model (LPRM; van der Schalie

et al. [2017]). LPRM is based on radiative transfer theory introduced by Mo et al. [1982]

and uses forward modelling to simulate the top of atmosphere brightness temperatures

under a wide range of conditions and compares this to the actual satellite observation.

Although primarily developed for soil moisture, it simultaneously solves for the VOD

using an analytical solution by Meesters et al. [2005], utilizing the ratio between H and

V polarized observations (van der Schalie et al. [2017]). LPRM requires that the soil

and vegetation temperatures are equal, which may not be the case during the day due

to uneven heating from solar radiation. VODCA v2 therefore uses only night-time ob-

servations which are assumed to have thermal equilibrium (Owe et al. [2008]). Scaling of

the single-sensor VOD observations is done by means of cumulative distribution function

(CDF) matching (Moesinger et al. [2020]).

The preprocessing of LPRM level 2 VOD data used in VODCA v2 follows the steps

described in detail in Moesinger et al. [2020]. These include projecting the data into a

0.25° × 0.25° grid, using nearest neighbour resampling, selecting the closest night-time

value in a window of ± 12 hours for every 0:00 UTC. The data are masked for radio-

frequency interference (de Nijs et al. [2015]), and negative VOD values and temperature.

Different from Moesinger et al. [2020], masking for low land surface temperature (LST
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< 0◦C), when the dielectric properties of water change drastically, is not based on Ka-

band retrievals because these have high uncertainties over frozen land (Holmes et al.

[2009]). Instead, VODCA v2 uses the ERA-5 Land (Muñoz-Sabater et al. [2021]) soil

temperature level 1 (stl1) data. To ensure that all observations taken under frozen con-

ditions are masked, all observations with an associated surface soil temperature (stl1)

below 3◦ C are masked (Zotta et al. [in preperation]).

VODCA v2 CXKu is obtained by first scaling VODCA v2 observations from C- and

Ku-band to X-band to remove systematic biases and then computing a weighted average

in order to fuse overlapping observations. VODCA v2 CXKu provides a single, long-term

vegetation metric covering over 30 years of observations (1988-2020) and thus exceeding

the temporal length of the individual sensor products (VODCA v2 C-, X and Ku). Due

to the novel weighted averaging technique used in computing this dataset, the random

error levels are lower, enabling the detection of long-term trends and dynamics at global

scales (Zotta et al. [in preperation]).

4.1.2 ERA5-Land

1For representing the autotrophic respiration’s temperature dependency 2 m air tem-

perature (T2m) was derived from the ERA5-Land dataset. T2m is the most commonly

used parameter for the describing the relationship between autotrophic respiration and

temperature (Teubner et al. [2021]; Drake et al. [2016]; Ryan et al. [1997]). ERA5-Land

is a reanalysis dataset of meteorological variables which is provided by the European

Centre for Medium-Range Weather Forecasts (ECMWF) (Muñoz-Sabater et al. [2021]).

ERA5-Land is produced at a spatial resolution of 8 km ( 0.08◦) and is available hourly.

4.1.3 FLUXNET2015 in-situ GPP

1In-situ GPP data from Tier1 v1 FLUXNET2015 (Pastorello et al. [2020]) was used to

train and evaluate the VODCA2GPP product. FLUXNET GPP estimates are available

for night-time and day-time flux partitioning, which were averaged as suggested by (Pa-

storello et al. [2020]). FLUXNET data is available daily from 1991 until 2014 with a

mean observation timespan of 7.27 ± 4.89 years for the used stations indicating signif-

icant variability in station data availability. An overview of the used FLUXNET2015

stations can be found in Table 8.2 and Fig A8.1.
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4.2 Reference datasets

4.2.1 MODIS GPP

1GPP estimates derived fromModerate Resolution Imaging Spectroradiometer (MODIS)

satellite data are based on light-use efficiency concept introduced by Monteith [1972]

which relates the amount of absorbed solar radiation to vegetation productivity. The

MODIS algorithm uses fAPAR as proxy for the absorbed solar energy. For this study

the MOD17A2H v006 GPP product was used (Running et al. [2015]; Zhao et al. [2005]).

It is available at 8-daily temporal resolution and 500 m sampling and was resampled to

0.25◦ to match the resolution of VODCA2GPP.

4.2.2 FLUXCOM GPP

1FLUXCOM GPP (Tramontana et al. [2016]; Jung et al. [2020]) is produced by upscal-

ing GPP estimates from in-situ eddy covariances by means of various machine learn-

ing algorithms. Two FLUXCOM GPP setups exist: FLUXCOM RS uses high res-

olution land surface properties from MODIS observations as machine learning model

input while FLUXCOM RS + METEO uses the mean seasonal cycle of land surface

variables and additionally incorporates meteorological data (Jung et al. [2020]). For

validating VODCA2GPP, FLUXCOM RS was used because it includes temporal prop-

erties of land surface variables at finer spatial and temporal resolution than FLUXCOM

RS+METEO. FLUXCOM RS GPP has 10 km sampling and is available every, 8 days,

in accordance with the MODIS input data. The data were aggregated to 0.25◦ to match

VODCA2GPP’s resolution.

4.2.3 TRENDY GPP

1Additionally to remote sensing-based datasets, GPP estimates from the reanalysis-

driven TRENDY-v7 ensemble of 16 dynamic global vegetation models (DGVMs) were

used as independent reference dataset (Le Quéré et al. [2018]; Sitch et al. [2015]).

TRENDY-v7 simulations consider forcing effects of climate, land use and changes in

atmospheric CO2 concentrations on ecosystem’s productivity over the period 1950-2017.

The TRENDY-v7 ensemble consists of the following global vegetation models: CABLE-

POP, CLASS-CTEM, CLM5.0, DLEM, ISAM, JSBACH, JULES, LPJ, LPJ-GUESS,

LPX, OCN, ORCHIDEE, ORCHIDEE-CNP, SDGVM, SURFEX and VISIT. All models

simulate monthly GPP and have a 1◦x1◦ grid. For the comparison with VODCA2GPP,

all models were regridded to 0.25◦ using nearest neighbour resampling and the ensemble
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mean GPP of all available TRENDY-v7 models was computed.
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5 Methods

5.1 The VOD2GPP-model

1VODCA2GPP is based on the carbon-sink driven GPP estimation approach (the VOD2GPP-

model) introduced by Teubner et al. [2019],[2021]. The VOD2GPP-model describes the

theoretical relationship between GPP and VOD. The biogeochemical basis of this model

is the relationship between GPP, the plant’s net uptake of carbon (NPP) and autotrophic

respiration (Ra) (Bonan [2015]):

GPP = Ra +NPP (5.1)

where Ra can be again split into two terms: maintenance respiration and growth

respiration (Bonan [2015]). The VOD2GPP-model makes use of several VOD variables

to represent the sum of NPP and Ra: the original VOD time series (VOD) which relates

to maintenance respiration, temporal changes in VOD (Δ(V OD)) which relate to both

growth respiration and NPP and the temporal median of VOD (mdn(V OD)) derived

from the complete time series which serves as a proxy for the landcover The incorporation

of mdn(V OD) helps the model to adapt for different vegetation types without explicitly

using additional ancillary data (Teubner et al. [2019]). NPP is mostly represented by

Δ(V OD) while Ra is represented by the original VOD signal and Δ(V OD). Thus, the

VOD-based-only VOD2GPP-model can be formulated as follows (Teubner et al. [2019]):

GPP (V OD) = s(V OD) + s(ΔV OD) + s(mdnV OD) (5.2)

where s() denotes the mapping function that maps the input variables to GPP.

Eq. 5.2 represents a simplified model formulation that connects VOD to GPP but does

not explicitly take into account the strong temperature dependency of aboveground veg-

etation’s autotrophic respiration (Teubner et al. [2021]; Wythers et al. [2013]; Atkin

et al. [2005]; Tjoelker et al. [2001]) which is mainly attributed to its maintenance part

(Bonan [2015]; Ryan et al. [1997]) . Therefore, an enhanced formulation of the model

was developed by taking into account the temperature dependency of autotrophic main-
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tenance respiration through a term representing the interaction between temperature

(T2m) and VOD (Teubner et al. [2021]):

GPP (V OD, T2M) = te(V OD, T2M) + s(ΔV OD) + s(mdnV OD) (5.3)

The mapping and interaction functions were implemented using generalized additive

models (GAMs).

5.2 Generalized Additive Models

1Generalized Additive Models (GAMs; Hastie and Tibshirani [1990]) are semi-parametric

generalizations of linear models and combine properties of Generalized Linear Models

(GLM) and additive models (Guisan et al., 2002). Link functions f() are trained and

summed up for each predictor in order to relate the expected value of a response variable

E(Y ) to the explanatory variables xi (Hastie and Tibshirani [1990]). The model can be

written as:

E(Y ) = β +
n�

i=1

fi(xi) (5.4)

where β denotes a constant offset and n corresponds to the number of input predictor

variables xi. The link functions si() are implemented as smooth spline functions and

allow the representation of non-monotonic and non-linear relationships which give them a

high degree of flexibility (Hastie and Tibshirani [1990]). Hence, the relationship between

target and predictor variables does not require explicit a-priori knowledge but can be

estimated from the data itself, which makes GAMs appropriate for the VOD2GPP-model

for which the exact relationship between VOD, air temperature, and GPP is unknown

(Teubner et al. [2019]).

5.3 Preprocessing

1The model-input data (FLUXNET GPP (response variable), VODCA v2 CXKu, ERA5-

Land (predictor variables)) was resampled from daily to 8-daily resolution using the

8-day means over the respective time period in order to reduce noise and computation

times. This means that also the final VODCA2GPP represents the mean of daily GPP

for an 8-day period with an estimate every 8 days. Since VODCA v2 CXKu incorporates

already extensive quality flagging (e.g., for temperature) no additional data cleansing

was necessary.
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For the computation of Δ(V OD) the resampled VOD observations were smoothed in

order to increase the robustness of the derivation (Teubner et al. [2019]). The smoothing

was performed using a Savitzky-Golay filter with a window size of 11 data points as

suggested by Teubner et al. (2021). Δ(V OD) was then obtained by subtracting the VOD

observations at two consecutive timesteps. Median VOD (mdn(V OD)) was derived by

computing the temporal median VOD of the entire time series for each available pixel.

5.4 Model input and training

1For each valid FLUXNET2015 in-situ observation, the corresponding overlapping pixel

values of VOD, Δ(V OD), mdn(V OD) and T2m were gathered and used to set up the

GAM. Data from days with one or more invalid or missing observations were not con-

sidered for model training. For training of the final VODCA2GPP model no data was

retained as test data. The GAM-based implementation of the VOD2GPP-model is con-

sistent with Teubner et al. [2021] and utilizes algorithms from the pygam python package

(Servén et al. [2018]).

The trained VODCA2GPP model was applied on each pixel where all input variables

(VOD, Δ(V OD), mdn(V OD) and T2m) were available. The result of this upscaling

process is VODCA2GPP which covers the period between January 1988 and July 2020.

Its spatial resolution is 0.25° and its temporal resolution is 8 days.

It is to be noted that with this approach it is in extreme cases also possible to obtain

negative GPP values. Since negative GPP is not possible per definition, negative GPP

estimates were set to zero in VODCA2GPP.

5.5 Uncertainty analysis

1The robustness of the model was evaluated based on a uncertainty analysis during

which the influence of the in-situ GPP station selection on the model was investigated.

Specifically, the uncertainty was analysed by training 10 VODCA2GPP models with

the proposed GAM approach while for each model run 10% of the station data was

(pseudo-)randomly retained (Teubner et al. [2019]). This means that each of the 10

models was trained with 90% of the available FLUXNET stations. Every station was

excluded exactly once which is why this approach is classified pseudo-randomly.
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5.6 Product evaluation

1For model evaluation, the 10 different model outputs from the uncertainty analysis

were investigated by computing the minimum/maximum range as well as the standard

deviation of the resulting 10 mean annual accumulated GPP estimates for each pixel.

The standard deviation is also incorporated as uncertainty map in the available dataset

(layer name: ‘Uncertainties’) to support users with an indicator for known uncertainties

in VODCA2GPP.

Furthermore, annual GPP from VODCA2GPP, MODIS GPP and FLUXCOM GPP

were evaluated against annual GPP from FLUXNET. The used error metrics were Root

Mean Square Errors (RMSE) and Pearson’s r. Global spatial GPP patterns were com-

pared between the products by computing the mean annual GPP and the differences

in mean annual GPP over the common observation period. Temporal agreements were

tested by means of a Pearson correlation analysis for 8-daily GPP.

A correlation analysis of monthly GPP anomalies was conducted for all available

datasets. Anomalies were derived by subtracting the long-term mean of the overlapping

observation periods from 8-daily GPP estimates for each product.

Additionally, a trend analysis was conducted for all available GPP products in order

to compare long-term changes in GPP. Trends in yearly median GPP were quantified

using the Theil-Sen estimator (Theil [1950]; Sen [1968]) which calculates the slopes for

each line between two point pairs. The median of all computed slopes is then used for

line-fitting making it very insensitive to outliers and far more robust than simple linear

regression (Wilcox [2010]). Slopes were considered as significant when then signs of

the lower and upper 90%-confidence intervals were equal. For the trend analysis yearly

median GPP was used.
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6 Results

6.1 Spatial patterns in global annual GPP

1The average annual GPP of VODCA2GPP exhibits similar spatial patterns as the re-

mote sensing-based references MODIS and FLUXCOM (Fig 6.1). The agreement in

annual GPP is high in Northern latitudes (e.g., Europe, Russia, Canada) while there

are relatively large differences in the southern hemisphere, especially in tropical regions

(Fig 6.1d). The highest positive bias is observed in the subtropics. Very arid regions

(e.g., Australian deserts, Kalahari Desert, etc.) have low mean yearly productivity in all

three datasets (Fig 6.1a) but tend to be higher in VODCA2GPP compared to MODIS

and FLUXCOM (Fig 6.1b, c). Comparison of the latitudinal distribution of FLUXNET

station shows that lowest differences in yearly GPP are generally found in regions with

high density of FLUXNET in-situ stations while largest bias is observed in regions with

little or no FLUXNET coverage.

Similarly to the bias, uncertainties have a tendency to be smaller in latitudes with

a high density of FLUXNET station (Fig 6.1d). The uncertainty map (Fig 6.2) shows

that arid regions (e.g., Sahara, Australian deserts, Arabian Peninsula) as well as vari-

ous mountainous regions (e.g., Carpathians, Alps, Rocky Mountains, Andes) have the

highest model uncertainties (Fig 6.2). Moderate to high model instabilities are also

exhibited for the tropics. Furthermore, significant uncertainties in VODCA2GPP are

found in parts of Eastern and Western Siberia’s boreal forests as well as in parts of

Southern China.
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Figure 6.1: Figure 1: a) Mean yearly aggregated GPP for the common observation period
of the three products (2002- 2016); b) and c) Difference in mean annual
GPP between VODCA2GPP and the reference datasets; d) Latitude plot of
zonal means of mean annual accumulated GPP. The means were computed
based on 8-daily, 0.25 degree sampling. The Min/Max area denotes the
minimum/maximum latitudinal mean for the ten model runs which were
obtained during the uncertainty analysis. The dots represent the latitudinal
location of the FLUXNET sites and the corresponding mean annual GPP.
The brightness of the dots indicates the data availability for the respective
FLUXNET station. Only data that is available in all three datasets was used
for these plots.
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Figure 6.2: Standard deviation of mean yearly annual GPP (1988-2019) as obtained by
the uncertainty analysis

VODCA2GPP’s tendency towards a positive bias with respect to MODIS and FLUX-

COM GPP products is not mirrored in the comparison against FLUXNET GPP. The

in-situ comparison for MODIS and FLUXCOM GPP suggests a slight but systematic

underestimation of GPP across all biomes (Fig 6.3). VODCA2GPP has a higher RMSE

and lower Pearson’s r than the optical remote sensing based products indicating an

overall slightly weaker performance. A landcover-based analysis (Fig A8.2) shows that

uncertainties in annual VODCA2GPP are mostly occurring in (semi-)arid environments

(e.g., savannas, open shrublands, grasslands). VODCA2GPP performs best in temper-

ate environments (e.g., wetlands, evergreen broadleaf forest, croplands). Wetlands and

evergreen broadleaf forests generally exhibit the best performance for all products while

all three datasets underperform in open shrublands and deciduous broadleaf forest.
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Figure 6.3: Mean annual in-situ GPP (FLUXNET) plotted against mean annual GPP
from VODCA2GPP, FLUXCOM and MODIS for the respective grid cells.
Mean annual GPP was computed from all available overlapping years the and
thus each station is represented by one dot. Red lines indicate the best linear
fits determined by ordinary linear regression and the black lines represent the
1:1 lines.

6.2 Comparison of temporal dynamics

1VODCA2GPP shows good temporal agreement with MODIS and FLUXCOM GPP.

Pearson’s r is highest in regions with distinct interannual variability such as sub-arctic,

temperate, and semi-arid regions and lowest for dense tropical forests where partly even

negative correlations occur (Fig 6.4). Median Pearson’s r reaches 0.77 for MODIS GPP

and 0.75 for FLUXCOM GPP.

Figure 6.4: Pearson’s r between VODCA2GPP and MODIS GPP (a) and VODCA2GPP
and FLUXCOM GPP (b). The correlations are based on the common ob-
servation periods between 2002 and 2016 with 0.25◦C spatial and 8-daily
temporal resolution.
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6.3 Anomaly patterns in space and time

1For a more detailed comparison of the products, monthly GPP anomalies were compared

against each other. VODCA2GPP shows good correlation with MODIS and TRENDY-

v7 GPP and weaker correlation with FLUXCOM GPP (Table 6.1, Fig 6.5). TRENDY-

v7 correlates similarly well with VODCA2GPP and MODIS GPP and also shows worse

correspondence with FLUXCOM GPP. The highest correlation is found between the two

optical remote sensing based products MODIS and FLUXCOM GPP.

Table 6.1: Pearson’s r correlation matrix for mean global monthly GPP anomalies be-
tween 2003 and 2016.

VODCA2GPP MODIS FLUXCOM TRENDYv7

VODCA2GPP 1
MODIS 0.53 1

FLUXCOM 0.29 0.69 1
TRENDYv7 0.61 0.60 0.26 1

Figure 6.5: Time-series of mean global monthly GPP anomalies.

Analysis of the anomalies’ temporal evolution and spatial distribution exhibits various

similar patterns (Fig A8.3). Several extreme events are captured in VODCA2GPP and

in at least one of the other GPP datasets. An example of such GPP extremes are the

strong positive anomalies between 2010 and 2011 at around 25◦CS which were mainly

caused by record-breaking rainfalls in Australia (Wardle et al. [2013]). These positive
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anomalies are clearly visible in all examined GPP products apart from FLUXCOM which

does not exhibit similarly striking patterns (Fig A8.3). Other GPP extremes that are

noticeable in all products apart form FLUXCOM is extremely low GPP in 2002/2003

and early 2005 around 20◦CS (Fig A8.3). Both anomalies can be explained by extreme

drought events that occurred in these years (Bureau of Meteorology, [2002],[2003],[2005];

Horridge et al. [2005]) which can be associated with El Niño events (Taschetto and

England [2009]). Also, the distinct drop in GPP in 2015/2016 in similar latitudes might

be linked to El Niño related drought events (Zhai et al. [2016]). Generally, extreme

events in VODCA2GPP are more pronounced than in the other datasets.

6.4 Global GPP trends

1Trends in global annual median GPP between 2002 and 2016 are similar for VODCA2GPP,

TRENDY-v7 GPP and MODIS GPP. All three products detect a significant increase of

GPP during the observation period (Table 6.2, Fig 6.6). FLUXCOM GPP does not

exhibit a significant trend but rather suggests a slight decrease in global annual median

GPP.

The spatial distribution of GPP trends for the period 2003-2015 (Fig 6.7) exhibits

many similarities between all analysed products. Large patterns of strong positive trends

are, for example, found in Eastern parts of Siberia and China as well as in India and

North America. Patterns of negative trends are found north of the Caspian Sea for

all datasets. The remote sensing based products exhibit distinct patterns of declining

GPP in central Siberia and significantly elevating GPP in Western Russia. Generally,

the trends of VODCA2GPP match better with MODIS GPP and Trendy-v7 than with

FLUXCOM. While there are many similar patterns on the Northern Hemisphere, trends

on the Southern Hemisphere do not match well or are even contradictory. Especially in

the Tropics hardly any similarities are visible.

For the full-time period (1988-2019) VODCA2GPP increases slightly on a global scale

(Table 6.2), but this cannot be classified as significant due to contradictory upper and

lower confidence intervals. The same is true for the slightly shorter period between 1988

and 2016 during which Trendy-v7 does detect a subtle significant trend on a global scale.

The spatial distribution of long-term (1988-2019; 6.8) trends in VODCA2GPP is simi-

lar to the shorter period (2003-2015) but in general, long-term VODCA2GPP trends are

34



less pronounced . The comparison of the fully overlapping period between VODCA2GPP

and TRENDY-v7 (1988-2016, Fig A8.4) shows that TRENDY-v7 GPP exhibits weak

but consistent positive trends for practically all biomes while VODCA2GPP trends are

spatially strongly differing and for some regions even contradicting TRENDY-v7 trends.

A comprehensive comparison with in-situ GPP trends is hampered because most

FLUXNET time series are too short to derive reliable trends. However, trends that were

derived from available long-term time series (Fig A8.5) also suggest increasing GPP.

Since this analysis is only based on very few stations this cannot be seen as evidence for

positive GPP trends on a global scale.

Figure 6.6: Time-series of yearly median GPP with the regression lines as obtained by
the Theil-Sen estimator. Areas around the regression lines indicate the 90%-
confidence intervals.

35



T
ab

le
6.
2:

T
h
ei
l-
S
en

tr
en

d
s
in

gl
o
b
al

y
ea
rl
y
m
ed
ia
n
G
P
P
.
S
am

e
si
g
n
s
of

th
e
u
p
p
er
/l
ow

er
9
0%

-c
on

fi
d
en

ce
in
te
rv
al

in
d
ic
at
e

si
gn

ifi
ca
n
t
tr
en

d
s.

T
h
e
a
n
al
y
se
d
p
er
io
d
s
ar
e
20

03
-2
01

5
w
h
ic
h
co
rr
es
p
on

d
s
to

th
e
fu
ll
y
ov
er
la
p
p
in
g
p
er
io
d
fo
r
al
l

d
at
as
et
s,

1
98

9
-2
01

6
w
h
ic
h
co
rr
es
p
on

d
s
to

th
e
fu
ll
y
ov
er
la
p
p
in
g
p
er
io
d
of

V
O
D
C
A
2G

P
P

an
d
T
R
E
N
D
Y
-v
7
a
n
d

19
8
8-
20

1
9
w
h
ic
h
co
rr
es
p
on

d
s
to

al
l
fu
ll
y
av
ai
la
b
le

ye
ar
s
of

V
O
D
C
A
2G

P
P
.

P
ro
d
u
ct

20
03

-2
01

5
20

03
-2
01

5
19

88
-2
01

9

T
h
ei
l-
S
en

sl
o
p
e

lo
w
er
/u

p
p
er

co
n
-

fi
d
en
ce

in
te
rv
al

T
h
ei
l-
S
en

sl
op

e
lo
w
er
/
u
p
p
er

co
n
-

fi
d
en
ce

in
te
rv
al

T
h
ei
l-
S
en

sl
op

e
lo
w
er
/
u
p
p
er

co
n
-

fi
d
en
ce

in
te
rv
al

V
O
D
C
A
2G

P
P

0.
0
13

+
0.
00

8
/
+
0.
02

5
0.
00

2
-0
.0
01

/
+
0.
00

6
0.
00

2
-0
.0
01

/
+
0.
00

5
T
R
E
N
D
Y
-v
7
G
P
P

0.
0
17

+
0.
00

6
/
+
0.
02

6
0.
00

4
+
0.
00

0
/
+
0.
00

8
-

-
M
O
D
IS

G
P
P

0.
0
12

+
0.
00

2
/
+
0.
02

0
-

-
-

-
F
L
U
X
C
O
M

G
P
P

-0
.0
0
4

-0
.0
09

/
+
0.
00

1
-

-
-

-

36



Figure 6.7: Global map of trends in yearly median GPP for the period 2003-2015 for all
analysed datasets. White indicates non-significant trends.

Figure 6.8: Global map of yearly median GPP trends for the period 1988-2019 for
VODCA2GPP. White indicates non-significant trends.
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7 Discussion

7.1 Uncertainties in the VODCA2GPP model

1The results from the uncertainty analysis and the comparison with in-situ GPP show

that VODCA2GPP estimates can be viewed as very reliable across most biomes. How-

ever, substantial uncertainties were exhibited through the uncertainty analysis in some

areas with extreme climatic or topographic conditions (e.g.; deserts and mountain ranges).

Also, parts of Eastern and Western Siberia and parts of Southern China show a rela-

tively large spreads in the predictions. The observed uncertainty patterns in Siberia

might be associated with topography, generally lower data availability (due masking of

frozen conditions in VODCA) and a lack of FLUXNET stations. Missing in-situ infor-

mation might also be a driver for uncertainties in Southern China but the exact cause for

the relatively high uncertainty there is unclear. The uncertainty analysis suggests that

VODCA2GPP estimates have a tendency to be too high in these regions and thus should

be interpreted with caution. Furthermore, moderate uncertainties were also found for

the tropics which is likely due to the extremely low in-situ data availability and higher

absolute GPP than in mid-latitudes.

The comparison with in-situ GPP shows clear differences in performance of the

VODCA2GPP model across different biomes. High performance is achieved in densely

vegetated biomes while the performance decreases in arid and less-vegetated regions.

A reason for the weaker performance in areas with less water availability might be

adapted water regulation strategies of plants. Plants in drought-prone regions often

reduce transpiration by limiting stomatal conductance in order to maintain a constant

water potential even in times of extreme water scarcity (Sade et al. [2012]). Since VOD

is largely driven by the vegetation water content, this isohydric behaviour of vegetation

could at least partly explain relatively high VOD and consequently also overestimated

GPP in these regions (Teubner et al. [2021]).

Also, the observation bias which is introduced by unevenly distributed FLUXNET sites

decreases the model’s robustness. GPP is measured in situ only for few locations where

in-situ carbon fluxes are measured and these stations are mostly located in temperate
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regions (e.g., Europe and North America) while semi-arid and tropical forest regions are

underrepresented in the training data.

7.2 Independence of reference datasets

1The lack of in-situ GPP is not only problematic in model training but also hampers

a fair evaluation and validation on a global scale. Thus, validation in regions with

low FLUXNET station density could only be done via global reference datasets. Re-

mote sensing-based references (MODIS and FLUXCOM), however, are also calibrated

or trained using in-situ GPP observations (Jung et al. [2020]; Running et al. [1999]) and

can therefore not be viewed as fully independent from VODCA2GPP (Teubner et al.

[2021]). In contrast to observation-based GPP products, estimates from the TRENDY

ensemble can be considered largely independent from VODCA2GPP which makes it a

very valuable additional reference for VODCA2GPP.

7.3 Limitations in VODCA and their impact on VODCA2GPP

1As outlined in Moesinger et al. [2020] there are certain limitations in the VODCA v1

product which are partly also evident in VODCA v2 (Zotta et al. [in preperation]) and

thus also propagate to VODCA2GPP. A known issue of VODCA v2 is caused by an

observation gap between October 2011 and July 2012 for AMSR-E and AMSR2 (Table

4.1), which prevents a direct bias removal between the sensors. However, scaling between

the sensors is achieved by using TMI observations North/South of 35°N/35S for X and

Ku-band. Beyond these latitudes for X- and Ku-band and generally globally for C-band,

AMSR-E data from 2010-2012 was matched against AMSR2 data from 2012-2014 under

the assumption that trends between 2010-2014 are negligible (Moesinger et al. [2020]).

The result is that AMSR2 observations exhibit a slight positive bias in parts of North

America which is also evident in a spatial break in VODCA v1 X- and Ku-Band trends

(Moesinger et al. [2020]). Although the impact of this procedure on VODCA2GPP

trends is small and spatially limited, users are advised to keep the potential bias in mind

when analysing VODCA2GPP data after 2012 for latitudes North/South of 35°N/35°S.
Other limitations in VODCA concern the mixing of observations that were retrieved at

different geometries (e.g., incidence angles) or observation times (Moesinger et al. [2020])

and the data loss in certain regions, mostly in the Himalayas, which is caused by failure

of the CDF-matching method due to insufficient input data (Moesinger et al. [2020]).

These issues, however, only have a small or spatially very limited influence on the final

VODCA2GPP product.
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7.4 Observed bias between VODCA2GPP and other remote sensing based

GPP data

1VODCA2GPP compares well to the analysed state-of-the-art remote sensing-based

products FLUXCOM and MODIS in terms of spatio-temporal patterns. However, in

comparison to the GPP datasets driven by optical remote sensing data, VODCA2GPP

exhibits higher GPP across most biomes. This positive bias can be partly explained by

a reported and observed tendency of FLUXCOM and MODIS to underestimate GPP

which is especially pronounced in tropical regions (Turner et al. [2006]; Wang et al.

[2017]; Fig 6.1; Fig A8.2). Furthermore, VODCA2GPP is in better alignment with the

average station data (Fig 6.1d). Discrepancies in absolute GPP among the products

outside the tropics might also be caused by assumed overestimation of VODCA2GPP in

winter months (i.e., in times with very little or no primary productivity). This overes-

timation is explicable with the water content in vegetation that is also present in these

dormant periods. The sensitivity of microwaves to this water content results in non-zero

VOD and, consequently, non-zero GPP (Teubner et al. [2021]).

Another potential explanation for overestimation in VODCA2GPP is the presence

of surface water and its impact on VOD retrievals. The presence of surface water is

known to decrease the brightness temperature of the earth’s surface and thus signifi-

cantly decreases VOD retrievals (Bousquet et al. [2021]). The impact of surface wa-

ter contamination is evident in VODCA pixels that partly contain water bodies (e.g.,

lakes, rivers). These pixels exhibit systematically lower values than neighbouring pix-

els without water share. This is on the one hand problematic for the output of the

VODCA2GPP model where GPP is presumably systematically underestimated in pixels

containing surface water. On the other hand, it also has a non-negligible effect on model

training. This effect is caused by FLUXNET stations located close to water bodies,

which hardly impact in-situ GPP retrievals but do cause erroneous VOD-retrievals. As

a result, underestimated VOD is trained against unaffected in-situ GPP which causes a

slight but systematic global overestimation. A potential solution would be the masking

of water-contaminated VOD. However, due to the constraints with temperature in the

interaction term (eq. 5.3) this is a non-trivial task and would require a reformulation of

the VODCA2GPP model.
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7.5 Potential factors for observed trends in VODCA2GPP

1There are several potential drivers for long-term increases in GPP, the most important

ones being global warming, land-use changes and elevating CO2 concentrations in the

atmosphere (Piao et al. [2013]). VODCA2GPP does not show a clear global increase

trend in microwave-derived GPP for the period 1988-2019 but does so for the period 2003-

2015. MODIS GPP also exhibits a slight increase in median global GPP for 2003-2015

but at a slower rate. The strongest increase in global GPP was found for the TRENDY-

v7 ensemble for both analysed periods. The observed long-term trends in GPP across

the different products supports the theory of elevated atmospheric CO2 leading to an

increased uptake of CO2 (Haverd et al. [2020a]; Walker et al. [2020]; Campbell et al.

[2017]; Schimel et al. [2015]). The absence of trends in FLUXCOM is not contradicting

this theory as FLUXCOM does not account for CO2 fertilization effects (Jung et al.

[2020]). However, an in-situ based trend analysis did not provide enough evidence to

prove this hypothesis. Therefore, the global influence of atmospheric CO2 on vegetation

productivity remains uncertain but VODCA2GPP advocates a positive effect of rising

CO2 on GPP.

7.6 Complementarity of VODCA2GPP to existing products

1The comparison of spatio-temporal patterns showed that there are many similarities

between VODCA2GPP and the reference datasets. The analysis of monthly anomalies

exhibited various extreme events in VODCA2GPP that also are found in one or sev-

eral existing products indicating high plausibility of VODCA2GPP derived anomalies.

Furthermore, trends derived from VODCA2GPP contain several plausible patterns that

match those derived from the TRENDY-v7 simulations but are not visible in MODIS

and FLUXCOM and vice versa. This suggests that VODCA2GPP has the potential to

bridge the gaps between existing observation-based and process-based state-of-the art

products and can be used complementary to them.
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8 Conclusions and outlook

1In this thesis VODCA2GPP, a long-term GPP data record which uses multi-frequency

microwave VODCA and temperature data from ERA5-Land for the upscaling of in-

situ GPP from FLUXNET2015 was introduced. The comparison of VODCA2GPP

with FLUXNET in-situ GPP and global state-of-the art GPP datasets showed good

correspondence between the products in both the spatial and temporal domain, but

with varying performance differences across the biomes. In tropical and arid regions

VODCA2GPP has significantly higher values than the reference datasets. Arid and

mountainous areas were found to have the largest uncertainties. The observed anoma-

lies and trends in VODCA2GPP overall match with anomalies and trends derived from

MODIS and Trendy-v7 which is another argument for the validity of VODCA2GPP as

well as for increased CO2 uptake by plants induced by increasing atmospheric CO2 con-

centrations. Overall, the analysis show that the novel microwave remote sensing based

VODCA2GPP product is able to complement existing GPP data records.

In this thesis several potential improvements of the VODCA2GPP dataset have been

identified and might be included in future versions of VODCA2GPP. An important

step towards bias reduction of the VOD2GPP-model would be the accounting for water

contamination in VOD pixels. Other enhancements concern updates of the underlying

VODCA data which will likely include new missions and potentially further refined

merging methods. Potentially updated versions of VODCA2GPP will be made available

to the public as soon as possible. Therefore, interested users are asked to follow the

developments at https://doi.org/10.48436/1k7aj-bdz35.
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Appendix

Table 8.1: Overview of used FLUXNET2015 sites

ID Name Lon [°E] Lat [°N] Years used

AR-SLu San Luis -66.46 -33.46 2009-2011

AR-Vir Virasoro -56.19 -28.24 2010-2012

AT-Neu Neustift 11.32 47.12 2002-2012

AU-ASM Alice Springs 133.25 -22.28 2010-2013

AU-Ade Adelaide River 131.12 -13.08 2007-2009

AU-Cpr Calperum 140.59 -34 2010-2013

AU-Cum Cumberland Plains 150.72 -33.61 2012-2013

AU-DaP Daly River Savanna 131.32 -14.06 2008-2013

AU-DaS Daly River Cleared 131.39 -14.16 2008-2013

AU-Dry Dry River 132.37 -15.26 2008-2013

AU-Emr Emerald, Queensland, Australia 148.47 -23.86 2011-2013

AU-Fog Fogg Dam 131.31 -12.55 2006-2008

AU-GWW Great Western Woodlands, Wester Aus-

tralia, Australia

120.65 -30.19 2013-2014

AU-RDF Red Dirt Melon Farm, Northern Territory 132.48 -14.56 2011-2013

AU-Rig Riggs Creek 145.58 -36.65 2011-2013

AU-Rob Robson Creek, Queensland, Australia 145.63 -17.12 2014

AU-Tum Tumbarumba 148.15 -35.66 2001-2013

AU-Whr Whroo 145.03 -36.67 2011-2013

BE-Bra Brasschaat 4.52 51.31 2004-2013

BE-Lon Lonzee 4.75 50.55 2004-2014

BE-Vie Vielsalm 6 50.31 1996-2014

BR-Sa3 Santarem-Km83-Logged Forest -54.97 -3.02 2000-2004

CA-NS1 UCI-1850 burn site -98.48 55.88 2001-2005

CA-NS3 UCI-1964 burn site -98.38 55.91 2001-2005

CA-NS4 UCI-1964 burn site wet -98.38 55.91 2002-2005

CA-NS5 UCI-1981 burn site -98.49 55.86 2002-2005

CA-NS6 UCI-1989 burn site -98.96 55.92 2001-2005
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CA-NS7 UCI-1998 burn site -99.95 56.64 2002-2005

CA-Qfo Quebec – Eastern Boreal, Mature Black

Spruce

-74.34 49.69 2003-2010

CA-SF1 Saskatchewan – Western Boreal, forest

burned in 1977

-105.82 54.49 2003-2006

CA-SF2 Saskatchewan – Western Boreal, forest

burned in 1989

-105.88 54.25 2001-2005

CA-SF3 Saskatchewan – Western Boreal, forest

burned in 1998

-106.01 54.09 2001-2006

CH-Cha Chamau 8.41 47.21 2006-2012

CH-Fru Frübüel 8.54 47.12 2006-2012

CH-Oe1 Oensingen grassland 7.73 47.29 2002-2008

CN-Cha Changbaishan 128.1 42.4 2004-2005

CN-Cng Changling 123.51 44.59 2007-2010

CN-Dan Dangxiong 91.07 30.5 2004-2005

CN-Din Dinghushan 112.54 23.17 2003-2005

CN-Du2 Duolun-grassland (D01) 116.28 42.05 2006-2008

CN-Ha2 Haibei Shrubland 101.33 37.61 2003-2005

CN-HaM Haibei Alpine Tibet site 101.18 37.37 2002-2004

CN-Qia Qianyanzhou 115.06 26.74 2003-2005

CN-Sw2 Siziwang Grazed (SZWG) 111.9 41.79 2010-2012

CZ-BK1 Bily Kriz forest 18.54 49.5 2004-2008

CZ-BK2 Bily Kriz grassland 18.54 49.49 2004-2006

DE-Akn Anklam 13.68 53.87 2009-2014

DE-Gri Grillenburg 13.51 50.95 2004-2014

DE-Hai Hainich 10.45 51.08 2000-2012

DE-Kli Klingenberg 13.52 50.89 2004-2014

DE-Lkb Lackenberg 13.3 49.1 2009-2013

DE-Obe Oberbärenburg 13.72 50.78 2008-2014

DE-RuS Selhausen Juelich 6.45 50.87 2011-2014

DE-Spw Spreewald 14.03 51.89 2010-2014

DE-Tha Tharandt 13.57 50-96 1996-2014

DK-NuF Nuuk Fen -51.39 64.13 2008-2014

DK-Sor Soroe 11.64 55.49 1996-2012

ES-LgS Laguna Seca -2.97 37.1 2007-2009

ES-Ln2 Lanjaron-Salvage logging -3.48 36.97 2009
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FI-Hyy Hyytiala 24.3 61.85 1996-2014

FI-Jok Jokioinen 23.51 60.9 2000-2003

FR-Gri Grignon 1.95 48.84 2004-2013

FR-Pue Puechabon 3.6 43.74 2000-2013

GF-Guy Guyaflux (French Guiana) -52.92 5.28 2004-2012

IT-CA1 Castel d’Asso 1 12.03 42.38 2011-2013

IT-CA2 Castel d’Asso 2 12.03 42.38 2011-2013

IT-CA3 Castel d’Asso 3 12.02 42.38 2011-2013

IT-Cp2 Castelporziano 2 12.36 41.7 2012-2013

IT-Isp Ispra ABC-IS 8.63 45.81 2013-2014

IT-Lav Lavarone 11.28 45.96 2003-2012

IT-Noe Arca di Noé – Le Prigionette 8.15 40.61 2004-2012

IT-PT1 Parco Ticino forest 9.06 45.2 2002-2004

IT-Ren Renon 11.43 46.59 1998-2013

IT-Ro1 Roccarespampani 1 11.93 42.41 2000-2008

IT-Ro2 Roccarespampani 2 11.92 42.39 2003-2012

IT-SR2 San Rossore 2 10.29 43.73 2013-2014

IT-SRo San Rossore 10.28 43.73 1999-2012

IT-Tor Torgnon 7.58 45.84 2008-2013

JP-MBF Moshiri Birch Forest Site 142.32 44.39 2003-2005

JP-SMF Seto Mixed Forest Site 137.08 35.26 2002-2006

NL-Hor Horstermeer 5.07 52.24 2004-2011

NL-Loo Loobos 5.74 52.17 1996-2013

NO-Adv Adventdalen 15.92 78.19 2012-2014

RU-Che Cherski 161.34 68.61 2002-2005

RU-Cok Chokurdakh 147.49 70.83 2003-2013

RU-Fyo Fyodorovskoye 32.92 56.46 1998-2013

RU-Ha1 Hakasia steppe 90 54.73 2002-2004

SD-Dem Demokeya 30.48 13.28 2005-2009

US-AR1 ARM USDA UNL OSU Woodward Switch-

grass 1

-99.42 36.43 2009-2012

US-AR2 ARM USDA UNL OSU Woodward Switch-

grass 2

-99.6 36.64 2009-2012

US-ARM ARM Southern Great Plains site - Lamont -97.49 36.61 2003-2012

US-Blo Blodgett Forest -120.63 38.9 1997-2007

US-Ha1 Harvard Forest EMS Tower (HFR 1) -72.17 42.54 1991-2012
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US-Los Lost Creek -89.98 46.08 2000-2014

US-MMS Morgan Monroe State Forest -86.41 39.32 1999-2014

US-Me6 Metolius Young Pine Burn -121.61 44.32 2010-2012

US-Myb Mayberry Wetland -121.77 38.05 2011-2014

US-Ne1 Mead – irrigated continuous maize site -96.48 41.17 2001-2013

US-Ne2 Mead – irrigated maize-soybean rotation

site

-96.47 41.16 2001-2013

US-Ne3 Mead – rainfed maize-soybean roatation site -96.44 41.18 2001-2013

US-SRM Santa Rita Mesquite -110.87 31.82 2004-2014

US-Syv Sylvania Wilderness Area -89.35 46.24 2001-2014

US-Ton Tonzi Ranch -120.97 38.43 2001-2014

US-Tw3 Twitchell Alfalfa -121.65 38.12 2013-2014

US-UMd UMBS Disturbance -84.7 45.56 2007-2014

US-Var Vaira Ranch-Ione -120.95 38.41 2000-2014

US-WCr Willow Creek -90.08 45.81 1999-2014

US-Whs Walnut Gulch Lucky Hills Shrub -110.05 31.74 2007-2014

US-Wkg Walnut Gulch Kendall Grasslands -109.94 31.74 2004-2014

ZM-Mon Mongu 23.25 -15.44 2007-2009

Figure 8.1: Spatial distribution of the FLUXNET2015 Tier v1 stations. The circle size
indicates the observation length for each station (Teubner et al. [2021])
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Figure 8.2: Scatterplots of mean annual GPP for the period 2002-2016 per vegetation
type. Vegetation types indicate the pre-dominant IGBP-vegetation type at
the respective FLUXNET station. Abbreviations: CRO: Croplands; ENF:
Evergreen Needleleaf Forests; DBF: Deciduous Broadleaf Forests; WET: Per-
manent Wetlands; WSA: Woody Savannas; MF: Mixed Forests; GRA: Grass-
lands; OSH: Open Shrublands; SAV: Savannas; EBF: Evergreen Broadleaf
Forests
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Figure 8.3: Hovmoeller diagrams of monthly GPP-anomalies for each dataset.
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Figure 8.4: Global maps of yearly median GPP trends for the period 1988-2016
for VODCA2GPP and TRENDY-v7 GPP. White indicates non-significant
trends.

Figure 8.5: Exemplary collection of time series of in-situ FLUXNET GPP together with
extracted time series from MODIS, FLUXCOM and VODCA2GPP. The sta-
tions were selected because of their high data availability for the respec-
tive landcover. The lines indicate the regression lines as obtained from the
Theil-Sen slope estimation. The trends are computed for the common ob-
servation period with FLUXNET. The depicted stations are: a) AU-Tum:
Tumbarumba, Australia; Lat: -35.65 °N, Lon: 148.15 °E; Landcover: EBF
b) DE-Tha: Tharandt, Germany; Lat: 50.96 °N, Lon: 13.57 °E; Landcover:
ENF c) GF-Guy: Guyaflux, French Guiana; Lat: 5.28 °N, Lon: -52.93 °E;
Landcover: EBF d)US-Ha1: Harvard Forest EMS Tower, United States; Lat:
42.54 °N, Lon: -72.17 °E; Landcover: DBF
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