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Kurzfassung

Diese Arbeit beschäftigt sich mit der Theorie stochastischer Integration und versucht
einige Resultate über übliche Annahmen hinaus zu verallgemeinern.
Ein entscheidender Schritt der Definition eines stochastischen Integrals ist es, die-

ses für Martingale zu definieren. Folgt man dem funktional-analytischen Zugang von
Philip E. Protter, dann ist eine Ungleichung von Burkholder die entscheidende Zutat.
Diese Arbeit verallgemeinert diese Ungleichung für stochastische Prozesse mit Wer-
ten in bestimmten Banachräumen, speziell wenn der Integrand Werte in solchen
Banachräumen annimmt und der Integrator reellwertig ist. Für einen solchen Ba-
nachraum können wir ein stochastisches Integral für alle càglàd Prozesse mit Werten
in diesem Banachraum definieren, wenn als Integrator ein reellwertiges Semimartingal
verwendet wird.
Ein weiterer großer Teil dieser Arbeit fokussiert sich auf das Bichteler-Dellacherie

Theorem, das eine Charakterisierung jener stochastischen Prozesse im reellen Fall
liefert, die als Integrator verwendet werden können. Es besagt, dass ein stochasti-
sches Integral genau für càdlàg Semimartingale definiert werden kann und, dass sich
diese als Summe eines lokalen Martingals und eines Prozesses mit endlicher Variation
schreiben lassen. Dieses Resultat verallgemeinern wir, indem wir die càdlàg Annahme
der Pfade fallen lassen, die analogen Voraussetzungen verwenden und den Prozess auf
dem Level von Versionen noch immer als Summe eines lokalen Martingals und eines
Prozesses mit endlicher Variation schreiben können. Genauer finden wir ein lokales
Martingal mit càdlàg Pfaden und einen Prozess von endlicher Variation, sodass für
jeden Zeitpunkt der ursprüngliche Prozess fast sicher als Summe der beiden Prozesse
geschrieben werden kann.
Die gleichen Ideen können auf die Doob-Meyer Zerlegung angewandt werden, wo-

durch wir diese ebenso auf Supermartingale ohne stetige Pfade erweitern können.



Abstract

This thesis deals with the theory of stochastic integration and tries to generalize some
results beyond standard assumptions.
One crucial part of defining a stochastic integral is the step to define it for martin-

gales. If one follows a functional analytic approach introduced by Philip E. Protter,
an inequality due to Burkholder is the necessary ingredient. This thesis generalizes
this inequality to a setting in which stochastic processes with values in certain Ba-
nach spaces are considered, in particular when the integrand is Banach space-valued
and the integrator real-valued. For such a Banach space we can define a stochastic
integral of all càglàd processes with values in that Banach space against a real-valued
semimartingale.
Another major part of this thesis focuses on the Bichteler-Dellacherie theorem

which is the characterization of stochastic processes which can be taken as integrator
in the real-valued case. It tells that a stochastic integral can be defined precisely for
càdlàg semimartingales and that those decompose into a local martingale and a finite
variation process. We can extend this result by dropping the càdlàg assumption on
the paths, using the analogue assumptions of the theorem and still decomposing the
process on a level of versions. In particular we can find a càdlàg local martingale
and a finite variation process such that for each time point the original process is the
sum of those two, almost surely.
The same ideas can be applied to the Doob-Meyer decomposition and we can again

generalize this to supermartingales without continuity assumptions on its paths.
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1 Introduction

Stochastic integration theory deals with stochastic processes and defining a mean-
ingful integral for such. The goal is to define an integral for a large class of stochastic
processes and deduce properties of this integral and the emerging integral process.
This theory started in the early 1940’s in which Kiyosi Itô developed an integral in
which the integrator was a Brownian motion, see also [It44] for one of his first papers.
In the following this was extended to square integrable martingales, then martingales
and afterwards semimartingales in general.
The stochastic integral has a variety of applications. An example is financial

mathematics in which one considers a financial market as integrator and a strategy
as integrand. The stochastic integral at some time point then describes the wealth
of an agent investing in this strategy.

Before starting with explaining the focus of this thesis we want to mention that we
assume the reader to be familiar with basic probability theory and basic theory of
stochastic processes. Concerning these topics we can recommend the books by Olav
Kallenberg, [Kal02], and also for some more measure theoretic facts the book [Els18]
by Jürgen Elstrodt.

This thesis is devoted to inspecting some aspects of stochastic integration theory
and pushing those a little further. We focus on the functional analytic way of defin-
ing the stochastic integral by Philip Protter (see [Pro04]) which will be introduced in
Chapter 2. It will be done by saying a stochastic process X can be taken as integra-
tor if it meets a certain condition and is then referred to as ”good integrator”. The
condition states that a process is a good integrator if the map of simple predictable
processes to their discrete stochastic integral against X is continuous when consid-
ering the so-called ucp metric which will be introduced later on. After defining this
condition in more detail one question arises: Which stochastic processes are these
”good integrators”? This question is answered by looking at it from two directions:

i) Show that all semimartingales whose paths are right-continuous and have left
limits satisfy this definition.

ii) Prove that if a stochastic process is a good integrator, i.e. it satisfies the
definition, it has to be a semimartingale.

Recall that a semimartingale is a stochastic process X which can be written as
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1 Introduction

X = M + A where M is a local martingale and A a finite variation process. This
thesis focuses on generalizing these two points in slightly different directions.

The crucial part in proving i) is to show that all martingales satisfy the definition
of being a good integrator. For this sake there is a very elegant inequality due
to Burkholder which states that the probability of the discrete stochastic integral
exceeding some constant can be estimated by some constant and the martingale
at end time. One part of this work is devoted to generalizing this inequality to a
Banach space setting. In particular when the integrand is Banach space-valued. For
this sake we introduce a Burkholder property for Banach spaces in Chapter 3. There,
the inequality is stated in the following way which is one result of this thesis.

Theorem 1.1 (see also Theorem 3.9). Let (Ω,F ,F = (Ft)t≥0,P) be a filtered prob-
ability space with right-continuous filtration and (E, · ) a Banach space with the
Burkholder property. Additionally, let X be a real-valued martingale. We then
have for all Banach space-valued simple predictable processes H which are uniformly
bounded, i.e. there are stopping times 0 ≤ τ0 ≤ . . . ≤ τn and Banach space-valued
random variables H0, . . . , Hn−1 which are uniformly bounded and such that Hi is mea-
surable w.r.t. Fτi and H = n−1

i=0 Hi✶(τi,τi+1], time points T > 0 and c > 0 that it
holds

cP[ sup
0≤t≤T

n−1

i=0

Hi(Xτi∧t −Xτi+1∧t) > c] ≤ (10 + 8C2
E) max

0≤i≤n−1
Hi ∞E[|Xt|].

Here, CE is a constant which only depends on the Banach space E.

This theorem is a generalization of the corresponding inequality in the real-valued
case due to Burkholder, see also [Mey72, Theorem 47] for example.
Chapter 3 is mostly devoted to Banach spaces in which that inequality holds.

Having this inequality a stochastic integral for Banach space-valued integrand against
real-valued semimartingales can be defined similar as Protter’s functional analytic
approach in [Pro04]. We formulate this in the following theorem.

Theorem 1.2 (see also Theorem 3.19). Let (E, · ) be a Banach space satisfying the
Burkholder property. Then a stochastic integral for all E−valued stochastic processes
which are left-continuous and have right limits against a real-valued semimartingale
can be defined.

This gives new insights to stochastic integration theory in a Banach space setting
and can be applied to martingale type 2 spaces for example (see also Chapter 8.6 for
a definition).
The very short Chapter 4 considers the Burkholder inequality in a setting in which

the integrand is real-valued and the integrator Banach space-valued.

2



1 Introduction

The second major part of this thesis is devoted to point ii), which is generalizing
the Bichteler-Dellacherie theorem which tells that if a right-continuous stochastic
process, which has left limits as well, is a good integrator, then it already has to be
a semimartingale. The Bichteler-Dellacherie theorem is celebrated in stochastic inte-
gration theory since it characterizes the processes which can be taken as integrators.
In Chapter 7 we consider a stochastic process without continuity assumption on its

paths and prove that it can still be decomposed into a local martingale and a finite
variation process if an analogue to the good integrator property holds. We are able
to prove the following theorem on a filtered probability space (Ω,F ,F = (Ft)t≥0,P)
with right-continuous filtration.

Theorem 1.3 (see also Theorem 7.6). Let X be a stochastic process such that for
each t ≥ 0 the sets

{
n−1

i=0

Hi(Xti+1∧t −Xti∧t) | Hi uniformly bounded by 1 and Fti −measurable}

are bounded in probability. Then there exists a local martingale M which is right-
continuous and has left limits and a process of finite variation A such that for all
t ≥ 0 we have

Xt = Mt + At, almost surely.

The assumption of the theorem is the analogue of the condition for being a good
integrator. In particular, if a process satisfies the condition of the theorem and,
in addition, has paths which are right-continuous and have left limits, then it is a
good integrator. Therefore, the theorem is an extension and generalization of the
celebrated Bichteler-Dellacherie theorem (see for example [Bic79, Theorem 1].
Similar techniques as those which will be used in proving the generalized Bichteler-

Dellacherie theorem lead to a generalization of the Doob-Meyer decomposition. The
Doob-Meyer decomposition tells that a supermartingale can be written as a local
martingale minus a non-decreasing process. Again, we generalize this to non-negative
supermartingales without continuity assumptions on its paths. This is Theorem 7.8
of this thesis.
Chapters 5 and 6 are used to present two major results of stochastic analysis which

are crucial in our proof of the generalized Bichteler-Dellacherie theorem. These are
the Nikisin-Yan and the Girsanov-Meyer theorem. The Nikisin-Yan theorem can
be applied to a convex set of random variables which is bounded from above in
probability and allows one to change the measure to an equivalent one under which
the expectation of all random variables in this set is bounded from above uniformly.
The Girsanov-Meyer theorem is another theorem about equivalent measure changes,
while keeping semimartingale properties.
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1 Introduction

The last Chapter is a rather extensive appendix in which facts concerning prob-
ability theory and theory of stochastic processes in Banach spaces are given, which
are needed for Chapters 3 and 4. Next to this, a guided tour through already exist-
ing theory of stochastic integration in Banach spaces is given which makes use of so
called UMD (unconditional martingale difference) Banach spaces. There, we review
the literature and gained some insights and ideas for this thesis as well.
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2 Stochastic Integration via the
Good Integrator Property

In this chapter an introduction into stochastic integration of real-valued stochastic
processes is given. The approach of Philip E. Protter in [Pro04] is used where he
introduces the so called good integrator property. We will not prove every result
but rather introduce this approach since the method will be important for the next
chapters. The interested reader may find rigorous proofs in [Pro04]. Some results
stated in this chapter will be generalized to a more general setting in Chapter 3.
This means that actually some of the theorems presented here will follow from those
slightly more general theorems.
Protter’s way of introducing stochastic integrals is a functional analytic approach,

which enables us to define a stochastic integral quite quickly and general when talking
about càdlàg processes and their martingale transforms. càdlàg here comes from the
French expression ”continue à droite, limite à gauche”, which means that we consider
stochastic processes whose paths are right continuous and have left limits. If we
talk about càglàd processes we talk about processes whose paths are left continuous
and have right limits. The martingale transform refers to the discrete stochastic
integral. Actually Protter’s functional analytic approach is so general and in some
sense complete that any càdlàg semimartingale can be taken as an integrator for the
stochastic integral. In fact these are the only càdlàg processes which can be taken as
such. This is the statement of the famous Bichteler-Dellacherie theorem.
As a personal comment I was taught this introduction into stochastic integration

during my exchange year at ETH Zurich by Josef Teichmann in the course Mathe-
matical Finance.

Let us fix some basic definitions and notations in the following which will be used
throughout this chapter.
We fix a filtered probability space (Ω,F ,F = (Ft)t≥0,P) and assume the filtration

to be right-continuous. For two càdlàg or two càglàd adapted processes X and Y ,
we define the so called ucp metric (uniform convergence on compacts in probability)
via

d(X, Y ) :=
n≥1

1

2n
E [|X − Y |∗n ∧ 1] ,
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2 Stochastic Integration via the Good Integrator Property

where we use the ∗ notation for the running maximum process (also more precisely
running supremum process), i.e.

|X|∗t := sup
0≤s≤t

|Xs|.

The supremum over all time points will be denoted by

|X|∗ := sup
t≥0

|Xt|.

As the name suggests, the convergence of this metric is equivalent to convergence
in probability uniformly on compacts, that is for a sequence of càdlàg (or càglàd)
adapted stochastic processes (Xn)n≥1 and a càdlàg (or càglàd) adapted stochastic
process X we have

d(Xn, X) → 0 ⇐⇒ ∀t ≥ 0, ∀ > 0 : P[|Xn −X|∗t > ] → 0.

Having the ucp metric at hand we define the two spaces

D := {X | X càdlàg and adapted},
L := {Y | Y càglàd and adapted}.

Equipped with the ucp metric these are complete topological vector spaces. Note
that in the following if we talk about stochastic processes we will also assume them
to be adapted, also if we do not mention it explicitly. Sometimes we even only say
processes in this case.

The idea of our approach of defining a stochastic integral will be to introduce a
stochastical integral as a linear operator on a dense subset of L to D. This map
can then be extended onto the closure of this dense subset, which will be L if the
operator meets certain continuity conditions. If one is already familiar with some
integration theory or stochastic integration, one would not be surprised by the choice
of this dense subset. We will introduce it in the following lines.
For this sake, given stopping times 0 = τ0 ≤ τ1 ≤ . . . ≤ τn < ∞ and random

variables H0, . . . , Hn−1 such that Hi is measurable with respect to Fτi , we define a
simple predictable process as

H := H0✶{0} +
n−1

i=0

Hi✶(τi,τi+1].

We will call a simple predictable process also a simple predictable strategy in the
following.
The set of all such simple predictable strategies, which will be our choice of the
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2 Stochastic Integration via the Good Integrator Property

upwards mentioned dense subset, will be denoted by S. We furthermore define

Su := {H = H0✶{0} +
n−1

i=0

Hi✶(τi,τi+1] | Hi ∈ ▲
∞, i = 0, . . . n− 1},

which is the set of all simple predictable strategies which are uniformly bounded. For
a process in this set we set

H ∞ := sup
t≥0

Ht ▲∞

to have a slightly shorter notation.

Now, we are already at the point to define the good integrator property which tells
us if a process can be taken as stochastic integrator.

Definition 2.1 (Good Integrator). A càdlàg and adapted stochastic process X is
called good integrator, also said to have the good integrator property, if the map

JX : (S, d) → (D, d) : H = H0✶{0} +
n−1

i=0

Hi✶(τi,τi+1] → (H ·X) (2.1)

is continuous. Here we set

(H ·X)t := H0X0 +
n−1

i=0

Hi(Xτi+1∧t −Xτi∧t)

for t ≥ 0.

Remark 2.2. As a short remark on the definition, one can see right away that the
map defined in (2.1) is linear. Therefore, it is sufficient to only check continuity at
0 since we deal with topological vector spaces, see also [BKW17, Proposition 2.1.11].
Also, if a process X justifies the good integrator property, by the linearity of the

map JX it is also uniformly continuous. Therefore, the map JX can be extended to
the closure of S with respect to the ucp metric which is precisely the space L, the
space of all càglàd processes. That the closure of S in the ucp topology is L can be
seen in [Pro04, Chapter 2, Theorem 10].

In the second part of the remark we use the fact that a uniformly continuous map
f : (Y, d1) → (Z, d2), where (Z, d2) is a complete metric space and (Y, d1) a metric
space, can be uniquely extended to the closure of Y with respect to the topology
induced by the metric d1. This extension agrees with the original map f on Y and
is uniformly continuous as well. See also [BKW17, Satz 1.1.1] for a proof of this
statement.
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2 Stochastic Integration via the Good Integrator Property

Having defined the good integrator property we can quickly define quadratic co-
variation as well. Taking a good integrator X, the process X− denotes the càglàd
version of X and is an element of L, which means we can look at the stochastic
integral (X− ·X) or also (Y− ·X) for another good integrator Y .
The quadratic covariation between two good integrators X and Y is then defined

as

[X, Y ] := XY − (X− · Y )− (Y− ·X).

Analogously, the quadratic variation of X is defined as

[X,X] := X2 − 2(X− ·X).

Different to some usual approaches in which one first treats stochastic integra-
tion with respect to martingales only, mostly even with continuous paths, and then
generalizes this to local martingales and then semimartingales, we use a completely
functional analytic definition. Intuitively spoken the definition says, that X is a
good integrator if the discrete stochastic integral does not change a lot if also the
integrand does not change by a lot. It will turn out that with this definition which
sounds very intuitive, we can define a stochastic integral right away as a generaliza-
tion of the discrete stochastic integral just by extending a continuous linear map.
Also the definition of quadratic variation and quadratic covariation can be done very
elegantly.
As drawback by this general definition we do not know the processes which fit this

definition immediately. We will however show that all semimartingales fulfill this
definition and the Bichteller-Delacherie theorem will do the rest in characterizing the
good integrator property as the property fulfilled only by semimartingales.
For our definition of the good integrator property, there also is an equivalent state-

ment which characterizes this property. We state this in the following theorem, see
also Theorem 3.16 for an extended and more general version.

Theorem 2.3. Let X be a càdlàg and adapted stochastic process. X is a good
integrator if and only if for all t ≥ 0, the map

IXt : (Su, · ∞) → (▲0, dP) : H → (H ·X)t

is continuous, where dP denotes the metric induced by convergence in probability.

This characterization of the good integrator property reduces the domain to simple
predictable processes which are uniformly bounded. We also do not have to use the
ucp metric since here we have to check continuity for maps with co-domain the set
of random variables. However, for every time point we have a different map. Usually
it is easier to check for a process to fulfill the good integrator property by checking
that the assumptions of Theorem 2.3 are met. That checking this is sufficient will be

8



2 Stochastic Integration via the Good Integrator Property

proved in the next chapter in a more general setting. However, the proof is just an
extension of the real-valued case.

At this point the reader might wonder if it is easy to check that a certain process
fits our definition of a good integrator. Therefore, we give some basic examples which
however show already how quickly one gets quite big classes of functions fulfilling the
good integrator property. The first two examples use the characterization of the good
integrator property, the third example will use the definition almost right away.

Example 2.4. Let A be a càdlàg stochastic process of finite variation. Without loss
of generality we assume A0 = 0. Given a simple predictable and uniformly bounded
strategy H ∈ Su, one gets

|(H · A)t| ≤
n−1

i=0

|Hi||Aτi+1∧t − Aτi∧t| ≤ H ∞V ar(A)t, almost surely,

where V ar(A) denotes the variation process of A.
Given a sequence of simple predictable uniformly bounded strategies (Hn)n≥1 tend-

ing to 0 we have by using this inequality for every t ≥ 0 the convergence of

|IAt(Hn)| = |(Hn · A)t| ≤ Hn ∞V ar(A)t → 0, almost surely.

Since almost sure convergence implies convergence in probability, A and therefore all
processes of finite variation are good integrators.

Example 2.5. Let now X be an ▲2− martingale. Again, without loss of generality
assume X0 = 0. We can use Itô ’s insight, which is orthogonality of a martingales
increments, to derive for a simple predictable and uniformly bounded strategy H ∈ Su

the following inequality for every t ≥ 0:

E (H ·X)2t =
n−1

i,j=0

E[Hi(Xτi+1∧t −Xτi∧t)Hj(Xτj+1∧t −Xτj∧t)] =

n−1

i=0

E[H2
i (Xτi+1∧t −Xτi∧t)

2] ≤ H 2
∞

n−1

i=0

E[(Xτi+1∧t −Xτi∧t)
2] ≤ H 2

∞E[X2
t ].

Let now (Hn)n≥1 be a sequence of uniformly bounded predictable strategies such that
Hn ∞ → 0. We can use Chebyshev’s inequality to prove for > 0 arbitrary,

P[|IXt(Hn)| > ] ≤ 1
2
E[(Hn ·X)2t ] ≤

1
2
Hn

2
∞E[X2

t ] → 0.

This proves that X and therefore all ▲2− martingales are good integrators.
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2 Stochastic Integration via the Good Integrator Property

With our approach of the definition of a stochastic integral, the crucial step in
showing that all semimartingales are good integrators lies in proving that all martin-
gales are such. By a stopping argument one then gets that also local martingales are
good integrators. Afterwards, by writing a semimartingale as a local martingale plus
a finite variation process, the linearity of our definition of a good integrator brings
us to the goal of showing that all semimartingales are good integrators.
For this step we will use an inequality, from which one directly sees why martingales

are good integrators. The study of this inequality will be a major part of this thesis.
We will look into it more detailed and try to tackle it on a more general level in
Chapters 3 and 4. Therefore, we will just state it. It will be a consequence of
Theorem 3.9 and Remark 3.10. The inequality can also be seen in [Mey72, Theorem
47, Chapter 2] from which we choose the formulation.

Theorem 2.6 (Burkholder inequality). Let X be a martingale. Then we have for
all simple predictable and uniformly bounded strategies H ∈ Su and c > 0,

cP[|(H ·X)|∗t > c] ≤ 18 H ∞E[|Xt|],

for all t ≥ 0.

The Burkholder inequality can be applied right away to prove the good integra-
tor property for martingales. Note that in this case we prove uniform convergence
on compacts in probability right away and will not use that it follows from some
stronger convergence. For example when we proved the good integrator for finite
variation processes we proved convergence almost surely and deduced convergence
in probability from it. For ▲2−martingales we showed ▲2−convergence and applied
Chebvyhsev’s inequality.

Example 2.7. Let X be a martingale. For a sequence (Hn)n≥1 with Hn ∈ Su such
that Hn ∞ → 0, we have for arbitrary c > 0 and t ≥ 0

P[|(Hn ·X)|∗t > c] ≤ 18

c
Hn ∞E[|Xt|] → 0.

This proves that X and therefore all martingales are good integrators.

It is remarkable that the Burkholder inequality can be applied almost right away to
our definition of a good integrator. The only thing different is that we use uniformly
bounded predictable simple strategies, rather than just predictable simple strategies.
This not only shows in a very elegant and quick way how we can define the stochastic
integral but also the importance of this inequality. Actually this inequality also plays
a major role in Josef Teichmann’s proof of the Fundamental Theorem of Asset Pricing
(FTAP), see [CT15, Lemma 4.7], which is arguably the most important theorem in
financial mathematics. These are some of the reasons why this thesis focuses a lot
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2 Stochastic Integration via the Good Integrator Property

on this inequality. We tried and worked out different approaches in generalizing this
inequality to more general spaces in Chapters 3 and 4.

Now that we know all semimartingales are good integrators we can talk about
the Bichteler-Dellacherie theorem which tells us that semimartingales are already
all processes which are good integrators. The Bichteler-Dellacherie theorem in our
setting can simply be formulated as follows.

Theorem 2.8. Let X be a càdlàg and adapted process. Then X is a good integrator
if and only if it is the sum of a càdlàg local martingale and a càdlàg finite variation
process.

We chose this formulation since this precisely tells us that the good integrator
property is the right definition for the stochastic integral. Originally, the theorem
popped up in its first version by Klaus Bichteler in [Bic79, Theorem 1]. Today, there
are many different proofs for this theorem, including for example [BSV11, Theorem
1.2] and [BS12, Theorem BD]. The celebrated Bichteler-Dellacherie theorem precisely
tells which processes are useful for stochastic integration. The second major part
of this thesis is therefore devoted to this theorem. In Chapter 7 we try to tackle
the theorem in a more general version and drop the càdlàg assumption. We orient
ourselves at a proof by Christophe Stricker, see his paper [Str84] and generalize it.
But before this theorem we turn back out attention to the Burkholder inequality

and the good integrator property in the next two chapters.
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3 Banach Space-valued Integrands,
Real-valued Integrators

This chapter focuses on stochastic integration of Banach space-valued integrands
with respect to real-valued integrators.
The first section is devoted to the Burkholder inequality which we already saw in

the previous chapter. A new definition of so called Burkholder spaces will be intro-
duced which essentially defines Banach spaces in which the Burkholder inequality
works.
The second section of this chapter focuses on generalizing the good integrator

property to this setting and we give examples of Banach spaces in which this theory
is applicable.
In the third section we tried to work out the good integrator property for UMD

(Unconditional Martingale Difference) spaces, see also Chapter 8.4 for more on UMD
spaces. We compare our approach to other approaches of introducing a stochastic
integral in a Banach spaces setting like in [vVW15] for example. Unfortunately, we
did not fully succeed in this chapter yet, so we cannot give a positive to the question
if the good integrator theory works in UMD spaces. However, the interested reader
might get some ideas how one could tackle this open question, so it is still presented.

3.1 Burkholder Spaces

In this section we find a sufficient condition to get a Burkholder inequality for Banach
space-valued integrands and real-valued integrators. For this sake we will define a
certain property which is fulfilled for certain Banach spaces. However, a necessary
criterion for a Burkholder inequality is not yet found and it is left open, whether
the definition written in this section characterizes those Banach spaces which have
a Burkholder inequality. Since the constants for the inequality are the same if we
take as Banach space just the real numbers, the generalized Burkholder inequality
developed in this section is an exact extension of the real-valued one, which we already
saw in the previous chapter. We will present examples of Banach spaces for which a
Burkholder inequality can be applied, i.e. in our setting Banach spaces which fulfil
the property defined in this section.
For the rest of this section consider a filtered probability space (Ω,F ,F,P) where

F = (Ft)t≥0 is a right-continuous filtration if we do not mention another one.

12



3 Banach Space-valued Integrands, Real-valued Integrators

We start with the definition of the sufficient property.

Definition 3.1 (Burkholder space). For p > 1 a Banach space E is said to be a
Burkholder p space, or short a (BH)p space, if there exists a constant CE,p > 0 such
that for all real-valued ▲p− martingale difference sequences (di)

n
i=1 w.r.t. a filtration

(Fi)
n
i=0 and random variables H1, . . . , Hn ∈ ▲

∞(Ω;E) such that Hi is measurable
w.r.t. Fi−1, one has

E
n

i=1

Hidi
p ≤ Cp

E,p max
1≤i≤n

Hi
p
▲∞(Ω;E)E |

n

i=1

di
p

. (3.1)

If the property holds for p = 2, E will just be called a Burkholder space or (BH)
space and we set CE := CE,2. We will also sometimes simply say that E has the
Burkholder property in this case.

Remark 3.2. For completeness, as a short remark recall the definition of ▲p− mar-
tingale difference sequences. An ▲

p− martingale difference sequence (di)
n
i=1 with

respect to a filtration (Fi)
n
i=0 is a family of random variables (di)

n
i=1 such that di is

measurable w.r.t. Fi and

E[di | Fi−1] = 0, i = 1, . . . , n.

Given an ▲
p− martingale (Mi)

n
i=0, one can define its ▲p− martingale difference

sequence via

di := Mi −Mi−1, i = 1, . . . , n.

Therefore, every ▲p− martingale defines an ▲p− martingale difference sequence.
It also works vice versa, i.e. given an ▲p− martingale difference sequence (di)

n
i=1,

one can define

Mi :=
i

j=1

dj, i = 1, . . . , n

to get an ▲p− martingale (Mi)
n
i=0 starting at 0, since for i ∈ {1, . . . , n} it holds

E[Mi | Fi−1] = E
i

j=1

dj | Fi−1 =
i−1

j=1

dj + E[di | Fi−1] = Mi−1.

In the following if we just write martingale difference sequence, we will always refer
to a ▲2− martingale difference sequence.

Looking at the definition of Burkholder spaces, in the case of p = 2 one can think
of Ito’s insight (see also Example 2.5) and that inequality (3.1) refers to some kind

13
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of orthogonality of the increments of the martingale corresponding to the martingale
difference sequence. This is also perfectly visualized by the following example. To
fix some notation beforehand right away, given a martingale (Mi)

n
i=0 and a stochastic

process H with Banach space-valued random variables H0, . . . , Hn−1 such that Hi is
measurable with respect to Fi we denote the discrete stochastic integral by (H ·M),
i.e.

(H ·M)i :=
i−1

j=0

Hj(Mj+1 −Mj), i = 0, . . . , n.

Fixed this, we present the example.

Example 3.3. Every Hilbert space H is a Burkholder space with constant CH =
1. Denote the inner product of H by · , · , then we get with the bilinearity of the
inner product for an ▲2− martingale (Mi)

n
i=0 and random variables H0, . . . , Hn−1 ∈

▲
∞(Ω;H) such that Hi is measurable w.r.t. Fi the equality

E[ (H ·M)n
2] = E[

n−1

i=0

Hi(Mi+1 −Mi)
2] =

= E
n−1

i=0

Hi(Mi+1 −Mi) ,
n−1

i=0

Hi(Mi+1 −Mi) =

=
i=j

E[[ Hi , Hj (Mi+1 −Mi)(Mj+1 −Mj)] +
n−1

i=0

E Hi
2(Mi+1 −Mj)

2 .

For the left term we can use orthogonality in the following way: assume i < j, then

E [ Hi , Hj (Mi+1 −Mi)(Mj+1 −Mj)] =

= E[ Hi , Hj (Mi+1 −Mi)E[(Mj+1 −Mj) | Fj]

=0

] = 0.

14
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In total this leads to

E[ (H ·M)n
2] =

n−1

i=0

E Hi
2(Mi+1 −Mj)

2 ≤

≤ max
0≤i≤n−1

Hi
2
▲∞(Ω;E)

n−1

i=0

E[(Mi+1 −Mi)
2] =

= max
0≤i≤n−1

Hi
2
▲∞(Ω;E)E[M2

n −M2
0 ] =

= max
0≤i≤n−1

Hi
2
▲∞(Ω;E)E

n−1

i=0

Mi+1 −Mi
2

.

Since every ▲2−martingale difference sequence comes from an ▲
2−martingale this

shows that H is a Burkholder space with constant CH = 1 if we look at the martingale
difference associated to (Mi)

n
i=0, i.e. di = Mi −Mi−1, for i ∈ {1, . . . , n}.

Next, we will give an example of a Banach space fulfilling our property which is
not as usual as a Hilbert space and might not be familiar to the reader. Therefore,
we will also recall the definition of such a space in the example.

Example 3.4. Let E be a martingale type 2 space, for details see Definition 8.13.
Essentially we get a constant µ ≥ 0 such that for all finite E− valued martingale
difference sequences (di)

n
i=1 it holds

E
n

i=1

di
2 ≤ µ2

n

i=1

E[ di
2]. (3.2)

Let now X be an ▲
2− martingale w.r.t. a filtration (Fi)

n
i=0 and H1, . . . , Hn ∈

▲
∞(Ω;E) such that Hi is measurable w.r.t. Fi. Writing the discrete stochastic inte-

gral (H ·X) as a telescopic sum, i.e.

(H ·X)n =
n

i=1

(H ·X)i − (H ·X)i−1 =
n

i=1

Hi−1(Xi −Xi−1),

15
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we get by looking at the martingale difference sequence di := (H ·X)i − (H ·X)i−1,

E[ (H ·X)n
2] = E

n

i=1

di
2 (3.2)

≤ µ2

n

i=1

E[ di
2] =

= µ2

n

i=1

E[ Hi−1(Xi −Xi−1)
2] ≤

≤ µ2 max
0≤i≤n−1

Hi
2
▲∞(Ω;E)

n

i=1

E[(Xi −Xi−1)
2] ≤

≤ µ2 max
0≤i≤n−1

Hi
2
▲∞(Ω;E)E[X2

n −X2
0 ].

This proves that every martingale type 2 space is a Burkholder space with constant
CE = µ.

After these examples we are almost at the point to tackle the Burkholder inequality.
In the proof however, another well known inequality for non-negative and bounded
supermartingales is needed. For this sake this inequality will be introduced. First a
definition is needed and for completeness a proof of the result is given as well. We
will work very closely to [Mey72, Chapter 2] and take some results from there. Also
notice that in the following we work with processes in discrete time and take as time
points the non-negative integers.
Let us first introduce the notion of a potential taken from [Mey72, Definition 34].

Definition 3.5 (Potential). Let X be a non-negative supermartingale. Then it is a
potential if it does not dominate any non-negative martingale except 0.

A potential can be characterized by the following theorem. Its precise proof can
be found in [Mey72, Chapter 2, Theorem 35].

Theorem 3.6. A non-negative supermartingale X is a potential if and only if

lim
n→∞

E[Xn] = 0.

By this theorem one can deduce for a potential X that lim
n→∞

Xn =: X∞ exists and

is equal to 0 almost surely. In general we will write for stochastic processes Y where
lim
n→∞

Yn exists almost surely, Y∞ := lim
n→∞

Yn.

Recall the Doob-Meyer decomposition on our countable index set of the non-
negative integers for a non-negative supermartingale X, i.e. X = M − A where
M is a martingale and A a predictable non-decreasing process. This decomposition
is unique and can actually be defined via

At :=
s<t

E[Xs −Xs+1 | Fs]

16
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for t ∈ N and M := X + A. Since X is a supermartingale, A is non-decreasing. To
see that M is a martingale one just has to calculate

E[Mt+1 | Ft] = E Xt+1 +
s<t+1

E[Xs −Xs+1 | Fs] | Ft =

= E[Xt+1 | Ft] +
s<t

E[Xs −Xs+1 | Fs] + E[Xt −Xt+1 | Ft] =

= Xt + At = Mt.

In fact, such a decomposition holds for any integrable adapted stochastic process
with index set the non-negative integers into a unique martingale and a unique pre-
dictable process starting at 0 (see also [Tei19, Section 2]).
If in the following X is a potential, then also the random variables A∞, M∞ and

X∞ of its unique decomposition exist almost surely.
We are now at the point to state and give a proof of a bound for the moments of

A∞. This is taken and rephrased from [Mey72, Chapter 2, Theorem 45.2].

Theorem 3.7. Let X be a potential bounded by a constant c ≥ 0. Then, for any
integer p ≥ 1 it holds

E[Ap
∞] ≤ p!cp−1E[X0] ≤ p!cp. (3.3)

Proof. We write A∞ as a telescopic sum (note A0 = 0), i.e.

i≥0

Ai+1 − Ai.

This can be raised to the power p to obtain

Ap
∞ =

i1,...,ip≥0

(Ai1+1 − Ai1) · · · (Aip+1 − Aip).

From the integers i1, . . . , ip we then pick the largest one, call it j and single it out.
It can occur at p positions, so we get

Ap
∞ = p

j≥0 j1,...,jp−1≤j

(Aj1+1 − Aj1) · · · (Ajp−1+1 − Ajp−1)(Aj+1 − Aj).

Because A is non-negative and non-decreasing all terms are non-negative and one
can apply Fubini’s theorem to exchange summation. By summing over j first, we
arrive at

Ap
∞ = p

j1,...,jp−1

(Aj1+1 − Aj1) · · · (Ajp−1+1 − Ajp−1)(A∞ − Aj1∨...∨jp−1). (3.4)

17
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If we take the conditional expectation w.r.t. Fj1∨...∨jp−1 for each summand, actually
every but the last term of the product is measurable, therefore by recognizing the
decomposition of X, we get for each summand

E[(Aj1+1 − Aj1) · · · (Ajp−1+1 − Ajp−1)(A∞ − Aj1∨...∨jp−1) | Fj1∨...∨jp−1 ]

= (Aj1+1 − Aj1) · · · (Ajp−1+1 − Ajp−1)E[(A∞ − Aj1∨...∨jp−1) | Fj1∨...∨jp−1 ]

= (Aj1+1 − Aj1) · · · (Ajp−1+1 − Ajp−1)Xj1∨...∨jp−1 .

Arrived at this point use the bound c of X and the form of (3.4) to arrive at

E[Ap
∞] ≤ cpE[Ap−1

∞ ].

This argument can be iterated to get

E[Ap
∞] ≤ cp−1p!E[A∞].

As a last step look at

E[A∞] = E[X0]− E[X∞] = E[X0],

which finally gives

E[Ap
∞] ≤ p!cp−1E[X0] ≤ p!cp.

This is the desired inequality and ends the proof.

This bound can be generalized to non-negative and bounded supermartingales via
the following theorem. This is again taken and reformulated from Meyers work, in
this case [Mey72, Chapter 2, Theorem 46].

Theorem 3.8. Assume X is a non-negative supermartingale bounded by some con-
stant c > 0. Having its Doob decomposition X = M − A, in particular M∞ =
A∞ +X∞, for an integer p ≥ 1 we get the bound

E[Mp
∞] ≤ p!cp−1E[X0].

Proof. For n ∈ N let us define a new supermartingale via X̃i := Xi if i ≤ n and
X̃i = 0 if i > n w.r.t. the filtration F0, . . . ,Fn,F ,F , . . .. Clearly, X̃ is a potential
and for its decomposition X̃ = M̃ − Ã there is the inequality

Ã∞ = An + E[Xn −X∞ | Fn] +X∞ ≥ An +X∞.

With this we are in the position to apply the previous theorem, in particular inequal-
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ity (3.3) to arrive at

E[(An +X∞)p] ≤ E[Ãp
∞] ≤ p!cp−1E[X̃0] = p!cp−1E[X0].

Finally let n tend to infinity and apply dominated convergence to get

E[Mp
∞] = E[(A∞ +X∞)p] ≤ p!cp−1E[X0].

The previous theorem will be crucial in proving the first main result of this thesis
which is the generalization of the Burkholder inequality. Having the estimate of
Theorem 3.8 and the definition of the Burkholder property in mind we are in the
position to formulate and prove it. The idea was essentially to generalize the proof
of Paul-André Meyer in [Mey72, Chapter 2, Theorem 47]. For this we switch back to
our usual filtered probability space (Ω,F ,F,P) fixed in the beginning of this section.

Theorem 3.9 (Burkholder inequality). Let X be a real-valued martingale and
(E, · ) a Burkholder space. Define

S := H =
n−1

i=0

Hi✶(τi,τi+1] | Hi ∈ ▲
0(Ω;E) : Hi is Fτi − strongly measurable

and 0 ≤ τ0 ≤ . . . ≤ τn are stopping times ,

and set

Su := {H ∈ S | Hi ∈ ▲
∞(Ω;E), i = 0, . . . n− 1}.

Then we have for all T > 0, c > 0 and H ∈ Su :

cP[ (H ·X) ∗
T > c] ≤ (10 + 8C2

E) H ∞E[|XT |], (3.5)

where for H ∈ Su written as H = n−1
i=0 Hi✶(τi,τi+1], we set

H ∞ := max
0≤i≤n−1

H ▲∞(Ω;E).

Proof. Before proving the general result, let us do some reductions first.
Assume X ≥ 0, let c > 0 and H ∈ Su for which we additionally assume H ∞ ≤ 1.

Since H has finitely many values it is enough to consider a discrete martingale with
finitely many time points.
Having this reduction, define Z := X ∧ c which is by Jensen’s inequality a super-

martingale. Therefore it admits a discrete Doob Meyer decomposition Z = M − A
where M is a martingale and A a non-negative non-decreasing process with A0 = 0.
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Using that on the set {|X|∗tn < c} it holds X = Z, we get

cP[ (H ·X) ∗
tn > c] ≤ cP[|X|∗tn ≥ c] + P[|X|∗tn < c, (H ·X) ∗

tn > c] =

= cP[|X|∗tn ≥ c] + cP[ (H · Z) ∗
tn > c].

As a next step we use that A is increasing, A0 = 0 and H ∞ ≤ 1, so we get for any
j ∈ {1, . . . , n} the inequality

(H · Z)tj ≤ (H ·M)tj + (H · A)tj =

= (H ·M)tj +

j−1

i=0

Hi(Ati+1
− Ati) ≤

≤ (H ·M)tj +

j−1

i=0

(Ati+1
− Ati) =

= (H ·M)tj + Atj .

Since the norm is convex and A non-decreasing actually (H · M) + A is a sub-
martingale and therefore by Jensen’s inequality also its square. We apply Doob’s
maximal inequality to estimate

cP[ (H · Z) ∗
tn > c] ≤ c2

c
P[(| (H ·M) + A|∗tn)2 > c2] ≤

Doob≤ 1

c
E[( (H ·M)tn + Atn)

2] ≤
(a+b)2≤2(a2+b2)

≤ 2

c
E[ (H ·M)tn

2] + E[A2
tn ] .

Z is a non-negative supermartingale which is by its definition bounded by c and
Z = M − A. We will now apply Theorem 3.8 with p = 2. It also holds that
Z = M − A ≥ 0, implying A ≤ M . With this we arrive at

E[A2
tn ] ≤ E[M2

tn ] ≤ 2cE[Z0] ≤ 2cE[X0] = 2cE[Xtn ],

which also implies M ∈ ▲
2.

As next step we can use the Burkholder property of E for the martingale difference
sequence (di)

n−1
i=0 := (Mti+1

−Mti)
n−1
i=0 to obtain (using Hi ▲∞(Ω;E) ≤ 1)

E[ (H ·M)tn
2] = E

n−1

i=0

Hidi
2 ≤ C2

EE
n−1

i=0

Mti+1
−Mti |2 =

= C2
EE[(Mtn −M0)

2] ≤ C2
EE[M2

tn ] ≤ 2cC2
EE[Xtn ].
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Plugging this in we can estimate

cP[ (H ·X) ∗
tn ≥ c] ≤ cP[|X|∗tn ≥ c] + cP[ (H · Z) ∗

tn ≥ c] ≤
≤ E[Xtn ] +

2

c
E[ (H ·M) 2

tn ] + E[A2
tn ] ≤

≤ E[Xtn ] +
2

c
(2cC2

EE[Xtn] + 2cE[Xtn ]) =

= (5 + 4C2
E)E[Xtn ].

After this, for a general X, one can split it into a difference of two non-negative
martingales and apply what we just proved to get the same constant multiplied by
two, i.e.

cP[ (H ·X) ∗
tn ≥ c] ≤ (10 + 8C2

E)E[|Xtn |].

After having proved this result this section is almost done. We give a final remark
justifying that we called our Burkholder inequality a generalization of the original
one.

Remark 3.10. The original Burkholder inequality, which covers the real-valued case,
is the following inequality. For a martingale X with X0 = 0 it holds

cP[|(H ·X)|∗T ≥ c] ≤ 18 H ∞E[|XT |], ∀T > 0, ∀H ∈ Su.

This is in accordance with Theorem 3.9 because if E = R (or any Hilbert space),
then CE = 1 and 10 + 8C2

E = 18. Therefore, Theorem 3.9 is a natural extension of
the Burkholder inequality. Also, clearly R satisfies the Burkholder property since, in
particular, it is a Hilbert space.

3.2 Good Integration

After having generalized the Burkholder inequality in the previous section, we re-
member from Chapter 2 that this was the crucial inequality to get that martingales
are good integrators in the real-valued case.
In the following let us try to generalize this idea to the setting of this Chapter

where Banach space-valued strategies are considered. Recall that in the real-valued
case processes which can be used for stochastic integration can be characterized
by the good integrator property, see [Pro04] for all details. We will present an
analogous definition for processes where we look at the simple stochastic integral of
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Banach space-valued processes against real-valued processes. The results proved in
this section also show the corresponding theorems presented in Chapter 2 since they
only correspond to a special choice of the Banach space, i.e. R.

For the remainder of this section consider a separable Banach space (E, · ). As
earlier define the spaces of càglàd and càdlàg adapted stochastic processes as

L := {H : Ω× R+ → E | H(ω, ·) càglàd, H adapted},
D := {X : Ω× R+ → E | X(ω, ·) càdlàg , X adapted},

where we identify processes up to indistinguishability. With adapted here we always
mean strongly adapted, i.e. an E−valued stochastic process X is adapted with
respect to the filtration (Ft)t≥0 if and only if for every t ≥ 0 it holds that Xt is
strongly Ft−measurable, see also Chapter 8.1 in the appendix for more details.
Remember the spaces of simple predictable strategies S and simple predictable

and uniformly bounded strategies Su which were defined in Theorem 3.9.
We will equip these spaces with a metric, namely the straight-forward generaliza-

tion of the ucp-metric from the real-valued case. This means that we just replace
absolute values by norms.

Definition 3.11. For X, Y ∈ L or X, Y ∈ D define the ucp-metric d to be

d(X, Y ) :=
n≥1

1

2n
E[ X − Y ∗

n ∧ 1] (≤ 1). (3.6)

It is clear that this defines a metric, since d is symmetric and the triangle inequality
follows from the inequality of the norm. Since d(X,X) = 0 ⇐⇒ Xt = 0 a.s. for all
t ≥ 0, d satisfies definiteness as well. Equipped with the ucp metric, L and D are
topological vector spaces.
We will give a prove that L and D are complete topological vector spaces with

respect to d. It will be an application of the next lemma. It is formulated as extra
lemma since it is basically the desired result on a pathwise level.

Lemma 3.12. Let (F, · ) be a Banach space. Define the linear spaces

C := {f : R≥0 → F | f càdlàg}
B := {f : R≥0 → F | f càglàd}.

Also define the metric

ρ(f, g) :=
k≥1

1

2k
( f − g ∗

k ∧ 1) , f, g : R≥0 → F.
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In the definition of ρ, we set

f ∗
k := sup

t≤k
f(t) , f ∈ B or f ∈ C.

Then (B, ρ) and (C, ρ) are complete vector spaces.

Proof. We will prove the statement for (C, ρ), for (B, ρ) it works analogously.
That ρ defines a metric is not hard since it is just the ucp metric for paths. In

fact, symmetry is clear and the triangle inequality follow from the triangle inequality
of the norm since for f, g, h ∈ C we have

ρ(f, h) ≤
k≥1

1

2k
sup
t≤k

( f(t)− g(t) + g(t)− h(t) ) ∧ 1 ≤ ρ(f, g) + ρ(g, h).

If f = g, of course ρ(f, g) = 0 and if ρ(f, g) = 0 we have

f − g ∗
k = 0, ∀k ∈ N.

This implies f = g. Therefore, definiteness of ρ is proved and it actually defines a
metric.

To prove completeness, let (fn)n≥1 be a Cauchy sequence in D. Convergence
uniformly on compacts which is induced by ρ implies pointwise convergence, which
we can formalize for our problem. This means we need to show that (fn(t))n≥1 is a
Cauchy sequence in F . For this sake, let a point t ∈ R≥0 be given and fix k ∈ N with
k > t. For a given > 0 let n0 ∈ N such that for m,n ≥ n0 we have ρ(fn, fm) < /2k.
Use this n0 to get for m,n ≥ n0

fn(t)− fm(t) ≤ 2kρ(fn, fm) < .

Therefore, (fn(t))n≥1 is a Cauchy sequence in F and there exists a point f(t) ∈ F
such that fn(t) → f(t).
Having this pointwise limit we are left with showing that ρ(fn, f) → 0 and f ∈ D.

For proving convergence with respect to ρ let > 0 be given and choose n0 ∈ N such
that for all m,n ≥ n0, it holds ρ(fn, fm) < . Now look at

ρ(fn, f) =
k≥1

1

2k
sup
t≤k

lim
m→∞

fn(t)− fm(t) ∧ 1 ≤

( )

≤
k≥1

1

2k
lim inf
m→∞

sup
t≤k

fn(t)− fm(t) ∧ 1 ≤

≤ lim sup
m→∞

ρ(fn, fm)

< ∀m≥n0

≤ .
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Let us now show the inequality ( ). Note that

∀s ≤ k,∀m ∈ N : fn(s)− fm(s) ≤ sup
t≤k

fn(t)− fm(t) .

This implies, noting that lim inf
m→∞

fm(s) = lim
m→∞

fm(s), the following

∀s ≤ k : lim
m→∞

fn(s)− fm(s) ≤ lim inf
m→∞

sup
t≤k

fn(t)− fm(t) ,

which finally implies

sup
t≤k

lim
m→∞

fn(t)− fm(t) ≤ lim inf
m→∞

sup
t≤k

fn(t)− fm(t) .

This proves ( ). All in all, we now know ρ(fn, f) → 0. To prove that f ∈ C, i.e. that
it has càdlàg paths, note that since we have uniform convergence on compacts limits
can be interchanged and therefore for t ∈ R≥0 it holds

lim
s↓t

f(s) = lim
s↓t

lim
n→∞

fn(s) = lim
n→∞

lim
s↓t

fn(s) = lim
n→∞

fn(t) = f(t)

lim
s↑t

f(s) = lim
s↑t

lim
n→∞

fn(s) = lim
n→∞

lim
s↑t

fn(s) = lim
n→∞

fn(s−).

The last limit exists since fn(·−) ∈ B and there it is a Cauchy sequence and
(fn(s−))n≥1 has a limit as well.
This finally shows f ∈ C and finishes the prove that (C, ρ) is complete.

As mentioned before the lemma, showing that the spaces of càdlàg adapted stochas-
tic and càglàd processes are complete with respect to the ucp metric will be an
application of the lemma on a pathwise level.

Proposition 3.13. D and L are complete topological vector spaces with respect to
the ucp metric d.

Proof. We will prove the result for D since the proof works analogously for L.
To prove completeness let (Xn)n≥1 be a Cauchy sequence of càdlàg processes in D.

One can pick a subsequence Zn := Xmn such that it holds

d(Zn, Zm) ≤ 1

2n
, ∀m ≥ n.

For this subsequence by monotone convergence we get

E
n≥1 k≥1

1

2k
Zn − Zn+1 ∗

k ∧ 1 =
n≥1

d(Zn, Zn+1) ≤ 1.
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This tells that there exists a measurable set Ω̃ ⊂ Ω with P[Ω̃] = 1 and using the
metric ρ of the previous lemma for ω ∈ Ω̃ it holds

n≥1

ρ(Zn(ω), Zn+1(ω)) < ∞.

Since the remainder of a converging series tends towards zero, for ω ∈ Ω̃ the sequence
(Zn(ω))n≥1 is a Cauchy sequence in

C := {f : R≥0 → E | f càdlàg}.

At this point the previous Lemma can be applied to get càdlàg functions X(ω) ∈ C
such that ρ(Zn(ω), X(ω)) → 0 for ω ∈ Ω̃. Since this convergence implies almost sure
convergence of Zn

t → Xt, the random variable Xt is measurable. In particular if the
processes Zn are adapted, X is adapted as well.
At this point X is a càdlàg adapted stochastic process, therefore in D and we are

left with showing that the original sequence (Xn)n≥1 converges to X with respect to

the ucp metric. First we show Zn d→ X. This can be proved by applying dominated
convergence since almost surely it holds ρ(Zn, X) ≤ 1 and also ρ(Zn, X) → 0 almost
surely. Therefore, also using monotone convergence it holds

d(Zn, X) =
k≥1

1

2k
E[ Zn −X ∗

k ∧ 1] = E[ρ(Zn, X)] → 0.

To prove that (Xn)n≥1 also converges toX we basically just have to apply the triangle
inequality to get

lim sup
n→∞

d(Xn, X) ≤ lim sup
n,m→∞

d(Xn, Zm) + d(Zm, X) = 0.

This tells Xn d→ X and finishes the proof of the completeness of D.

To prove that D is also a topological vector space we have to show that scalar
multiplication and addition are continuous.
Concerning scalar multiplication let (λn)n≥1 be a sequence of scalars in R converg-

ing to λ ∈ R. Furthermore, let a sequence (Xn)n≥1 in D be given which converges
with respect to ucp to X ∈ D. Since (λn)n≥1 is a convergent sequence in R it is
bounded by some constant M > 0 and we get

d(λnXn, λX) =
k≥1

1

2k
λnXn − λX ∗

k ≤ |λn|
≤M

d(Xn, X)

→0

+ |λn − λ|
→0

d(X, 0)

≤1

→ 0.

This shows the continuity of scalar multiplication.
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Concerning addition let (Xn)n≥1, (Yn)n≥1 be two sequences in D converging to
X, Y ∈ D respectively. We then get

d(Xn + Yn, X + Y ) =
k≥1

1

2k
Xn −X + Yn − Y ∗

k ≤ d(Xn, X) + d(Yn, Y ) → 0.

This proves continuity of the addition.

All in all we have proved that (D, d) is a complete topological vector space which
finishes the proof of the proposition.

Having the complete topological vectors spaces at hand we are ready to introduce
the good integrator property. We generalize it in a straightforward manner from
Chapter 2.

Definition 3.14 (Good Integrator). A càdlàg process X is called good integrator for
the Banach space E if the map

JX : (S, d) → (D, d) : H =
n−1

i=0

Hi✶(τi,τi+1] → (H ·X)· =
n−1

i=0

Hi(Xτi+1∧· −Xτi∧·)

(3.7)

is continuous. We will also say that X has the good integrator property for the Banach
space E in this case.

Remark 3.15. If a càdlàg process X meets our definition of a good integrator for
the Banach space E we have a continuous linear map JX from a dense subset of
the complete topological vector space (L, d) to the complete topological vector space
(D, d). As in the real-valued case we can extend this map continuously to all càglàd
processes L.
After defining the good integrator property, as in the real-valued case, an equivalent

condition for Definition 3.14 is given in the following. There again one only needs
to work with convergence in probability. On the other hand continuity has to be
checked for a family of maps instead of one map.

Theorem 3.16. Let X be a càdlàg adapted stochastic process.
Then X is a good integrator for the Banach space E if and only if for all t ≥ 0 the

map

IXt : (Su, · ∞) → ▲
0(Ω;E) : H → (H ·X)t (3.8)

where on ▲
0(Ω;E) we use the metric induced by convergence in probability, is con-

tinuous.
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Proof. Since the spaces considered are topological vector spaces it is enough to prove
continuity at the origin.
We start with proving that the good integrator property implies the continuity of

the map IXt for all t ≥ 0. For this sake, let (Hn)n≥1 ⊂ Su such that Hn ∞ → 0.

We also get that Hn d→ 0, since

d(Hn, 0) =
m≥1

1

2m
E[ Hn ∗

m ∧ 1] ≤ Hn ∞ → 0.

So, by the assumption it follows JX(H
n)

d→ 0 which in particular translates to

IXt(Hn)
P→ 0.

Let us now prove the converse. For this sake, let (Hn)n≥1 ⊂ S such that Hn d→ 0.
Let c > 0, t ≥ 0 and > 0. By assumption there exists a δ > 0 such that we have
the implication

Hn ∞ ≤ δ =⇒ P[ (Hn ·X)t > c] < . (3.9)

Next, for n ∈ N define the stopping times

τn := inf{s ≥ 0 | Hn
s ≥ δ}

σn := inf{s ≥ 0 | (Hn
✶[0,τn] ·X)s > c}.

Having these stopping times at hand note that on the set {σn ≤ t} it holds

{ (Hn
✶[0,τn] ·X) ∗

t} = { (Hn
✶[0,τn∧σn] ·X)t > c}.

Also using that {τn ≤ t} = { Hn ∗
t> c} we can start estimating the required expres-

sion by

P[ (Hn ·X) ∗
t > c] ≤ P[ (Hn

✶[0,τn] ·X) ∗
t , τ

n > t] + P[τn ≤ t]

≤ P[σn ≤ t, (Hn
✶[0,τn∧σn] ·X)t > c] + P[τn ≤ t]

≤ P[ Hn
✶[0,τn∧σn] ·X)t > c] + P[τn ≤ t]

(3.9)

≤ + P[τn ≤ t] = + P[ Hn ∗
t > c] ≤ 2

for large n because for large n the set { Hn ∗
t > c} has low probability since Hn d→ 0.

This finishes the proof.

Having defined the good integrator property in a Banach space setting and proven
the equivalent condition one has to check for this property, let us look at an example.
This example is precisely the same as in the real-valued case.
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Example 3.17. Let A be a process of finite variation. Then we get for H ∈ Su

(H · A)t ≤
n−1

i=0

Hi(Aτi+1∧t − Aτi∧t)

≤ H ∞
n−1

i=0

|Aτi+1∧t − Aτi∧t| ≤ H ∞Var(A)t.

From this inequality it follows that A is a good integrator for any separable Banach
space E.

Of course, the second example in Chapter 2 of the ▲2− martingales does not work
here since we do not have some orthogonality in general Banach spaces. Straight
forwardly, this only works up to Hilbert spaces.
However, remember that in the real-valued case the crucial part towards a stochas-

tic integral for semimartingales was obtaining via the Burkholder inequality that
martingales are good integrators. From this one can also prove the good integrator
property for all local martingales and then by summing a local martingale and a
finite variation process, again semimartingales are good integrators. We formulate
the following Lemma concerning this by using a stopping argument telling that if all
martingales are good integrators for a Banach space E, so are all local martingales.

Lemma 3.18. Suppose all martingales are good integrators for the Banach space E.
Then also all local martingales are good integrators for the Banach space E.

Proof. Let M be a local martingale and (τn) a sequence of stopping times such that
τn ≤ τn+1, τn → ∞ and for each n ∈ N it holds that M τn is a martingale. Fix t ≥ 0
and let (Hm)m≥1 ⊂ Su such that Hm ∞ → 0. We then get for > 0

P[ (Hm ·M)t > c] ≤ P[ (Hm ·M)t > c, τn > t] + P[τn ≤ t]

≤ P[ (Hm ·M τn)t > c] + P[τn ≤ t]
n large

≤ P[ (Hm ·M τn)t > c] +
m large

≤ 2 .

This shows that M is a good integrator by applying Theorem 3.16.

Having this Lemma and the Burkholder inequality for Banach spaces in mind, it
is not a long proof to show the following main result of this section.

Theorem 3.19. Suppose the Banach space E is a Burkholder space. Then all semi-
martingales are good integrators for E.

Proof. The only thing left to prove is that martingales are good integrators for E
since by the previous discussions it will then follow that all semimartingales are good
integrators.
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So, let M be a martingale. Since E is a Burkholder space we know that Theorem
3.9, i.e. the Burkholder Inequality (3.5) holds true. If we take (Hn) ⊂ Su such that
Hn ∞ → 0, the inequality can be applied to get for t ≥ 0, c > 0 and > 0 that

P[ (Hn ·M)t > c] ≤ (10 + 8)C2
E

Hn 2
∞

c
E[|Mt|] → 0.

Therefore, M is a good integrator for E and the proof is finished.

Having the theorem we close this section by a final example in which the theorem
is applicable.

Example 3.20. We already know that all martingale type 2 spaces are Burkholder
spaces. Theorem 3.19 tells that all semimartingales are good integrators for martin-
gale type 2 spaces.

3.3 Good Integrator Property for UMD Spaces

In this last section of the Chapter we consider a separable Banach space E which in
addition has the UMD property. It is introduced in Section 8.4 and more details can
be found there. The idea of this section and approach was to combine Protter’s idea
of the good integrator property and the theory of stochastic integrals in a Banach
space setting as outlined in [vNVW07]. However, it did not work out as hoped yet,
so this part is still open. Nevertheless, the approach and results which were worked
out are presented since they themselves are interesting.
We will use the Sections 8.2, 8.3, 8.4 and 8.5 and translate it to this special case.

The Hilbert space H in those chapters will simply be R here.
As a first step we establish a simple Lemma for Banach spaces.

Lemma 3.21. For a Banach space X the space L(R, X) of linear operators from R
to X can be identified with X itself.

Proof. We define the isomorphism

Ψ : L(R;X) → X : T → T (1). (3.10)

It is easy to see that this defines an isomorphism since for x ∈ R, T (x) = xT (1) and
therefore

T = sup
x∈R:|x|=1

T (x) = max( T (1) , T (−1) ) = T (1) = Ψ(T ) .
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As a next step we also see that the space of radonifying operators (see also Section
8.2) simplifies to E itself.

Lemma 3.22. For a separable Banach space X we have that γ(R, X) X and the
norm agrees with the norm on X itself.

Proof. In the separable case an operator T is γ−radonifying for a separable Hilbert
space H, i.e. T ∈ γ(H,X) if and only if

E
n≥1

γnThn
2

< ∞

for an orthonormal basis (hn)n≥1 ofH and a sequence of independent standard normal
random variables (γn)n≥1.
In our case H = R, so for an operator T ∈ L(R, X), which we identify by our

previous lemma with an unique x ∈ E, we have for a standard normal random
variable γ

E[ γx 2] = x 2E[γ2] = x 2 < ∞.

Next, we look how an H−cylindrical Brownian motion looks like if H = R. One
might expect that we would end up with the usual R−valued Brownian motion which
is almost the case.
From the Definitions 8.39 and 8.40 of H−isonormal processes and H−cylindrical

Brownian motion we see that an R−cylindrical Brownian motion is an
▲

2(R+;R) = ▲
2(R+)− isonormal process, i.e. a bounded linear map

W : ▲2(R+) → ▲
2(Ω) such that

❼ ∀f ∈ ▲
2(R+) : Wf is Gaussian,

❼ ∀f1, f2 ∈ ▲
2(R+) : E[Wf1Wf2] = f1 , f2 ▲2(R+) =

∞
0

f1(t)f2(t) dt.

Similar as in Section 8.3 we can define for x ∈ R

W (t)x := W (✶(0,t)x), (3.11)

which leads to a Brownian motion (W (t)x)t≥0 for every x ∈ R. It is standard if
|x| = 1. In the following we will write W (t) instead of W (t)1 which is a standard
Brownian Motion.
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The stochastic integral for deterministic integrands from Section 8.3 for an inte-
grand,

Φ : R+ → E : t →
n−1

i=0

1(ti,ti+1]xi,

where 0 ≤ t0 ≤ . . . ≤ tn and x0, . . . xn−1 ∈ E, is then defined as

∞

0

Φ dW =
n−1

i=0

(W (ti+1)−W (ti))xi.

Also straight forwardly, we look at the stochastic integral for an elementary adapted
process in this situation which looks like

Φ : R+ × Ω → E : (t, ω) →
N

n=1

M

m=1

✶(tn−1,tn]×Amnxmn,

where 0 ≤ t0 ≤ . . . ≤ tn, Amn ∈ Ftn−1 for m = 1, . . . ,M and xmn ∈ E for n =
1, . . . , N and m = 1, . . . ,M . The stochastic integral of Φ w.r.t. W is then

∞

0

Φ dW =
N

n=1

M

m=1

✶Amn(W (tn)−W (tn−1))xmn.

Next, we recall Definition 8.61 in the case of H = R.

Definition 3.23. Φ : R+ × Ω → E is ▲p−stochastically integrable w.r.t. W if there
exists a sequence of finite rank processes Φn s.t.

i) Φn → Φ in measure, and

ii) ∃X ∈ ▲
p(Ω;E) s.t.

∞
0

Φn dW → X in ▲p(Ω;E).

The ▲p−stochastic integral of Φ w.r.t. W then is

∞

0

Φ dW = lim
n→∞

∞

0

Φn dW in ▲
p(Ω;E).

We now wonder if at least all processes H ∈ Su are ▲p−stochastically integrable
w.r.t. W . We can give a positive answer to this question.

Lemma 3.24. Let H ∈ Su. Then H is ▲p−stochastically integrable w.r.t. W .
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Proof. Write H as

H =
n−1

i=0

Hi✶(ti,ti+1]

with 0 ≤ t0 ≤ . . . ≤ tn and Hi ∈ ▲
∞(Ω,Fti ;E) for i = 0, . . . , n− 1.

Now fix > 0, then for i = 0, . . . , n − 1 and m ∈ N we find hi
m ∈ ▲

∞(Ω,Fti ;E)
simple, i.e.

hi
m =

Mi

k=1

αi
k✶Ai

j

with Ai
1, . . . , A

i
Mi

∈ Fti and αi
1 . . . , α

i
Mi

∈ E such that Hi − hi
m ∞ < . We then

define

Φm :=
n−1

i=0

✶(ti,ti+1]h
i
m (3.12)

which is a finite rank process. With this definition we get

H − Φm ∞ ≤ max
0≤i≤n−1

Hi − hi
m ∞ < . (3.13)

Next, we define

X := (H ·X)tn =
n−1

i=0

Hi(W (ti+1)−W (ti)),
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which is an element of ▲p(Ω;E) since Hi ∈ ▲
∞(Ω;E). We then estimate

T

0

Φm dW −X
▲p(Ω;E)

=
n−1

i=0

(hi
m −Hi)(W (ti+1)−W (ti))

▲p(Ω;E)

≤
n−1

i=0

(hi
m −Hi)(W (ti+1)−W (ti)) ▲p(Ω;E)

=
n−1

i=0

E[ hi
m −Hi

p|W (ti−1)−W (ti)|p] 1/p

≤
n−1

i=0

hi
m −Hi ▲∞(Ω;E) W (ti+1)−W (ti) p

≤ Φm −H ∞
n−1

i=0

W (ti+1)−W (ti) p

<
n−1

i=0

W (ti+1)−W (ti) p.

Since > 0 was arbitrary, this and the estimate 3.13 prove that for the sequence
(Φm)m∈N we get Φm → H in measure and

∞
0

dW → X in ▲p(Ω;E). Therefore, H
is stochastically integrable w.r.t. W and its integral X coincides as expected with
the martingale transform X = (H ·W ).

Knowing that a strategy H ∈ Su is ▲p−stochastically integrable we know by Theo-
rem 8.64 that there exists R ∈ ▲

p(Ω; γ(▲2(R+), E) such that for all f ∈ ▲
2(R+), x

∗ ∈
E∗ we have

Rf , x∗ =
∞

0

H(t)f(t) , x∗ dt, in ▲p(Ω) (3.14)

and

E
∞

0

H dW
p

p,E E R p
γ(▲2(R+),E) . (3.15)

Here, p,E means that there exist two constants dependent only on p and E such the
the left expression can be estimated by the right expression when multiplying with
those constants.
In the following we try to find this R for H. We guess and define

R : Ω → γ(▲2(R+), E) : ω → f →
n−1

i=0

ti+1

ti

f(t) dtHi(ω) . (3.16)
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The first question is if it is well defined (up to nullsets). For this sake, let ω be in a
set where we have Hi(ω) < ∞ for i = 0, . . . , n − 1. Looking at how we can also
write R(ω) namely like

R(ω) : ▲2(R+) → E : f →
n−1

i=0

f ,✶(ti,ti+1] L2(R+)
Hi(ω) (3.17)

we see that R(ω) is actually a finite rank operator (see Section 8.2). Then by Lemma
8.33 we have that R(ω) ∈ γ(▲2(R+), E) and

R(ω) 2
γ(▲2(R+),E) = E

n−1

i=0

γiHi(ω)
2

, (3.18)

where γ0, . . . , γn−1 are independent standard normal random variables.
We now have that R is well defined and can use the last identity to show that R

belongs to ▲2(Ω; γ(▲2(R+), E)). This we can see via

R 2
▲2(Ω;γ(▲2(R+),E)) = E[ R 2

γ(▲2(R+),E)]

=
Ω

E
n−1

i=0

γiHi(ω)
2

dP(ω)

≤ E
Ω

n−1

i=0

γiHi(ω)
2
dP(ω)

≤ E
Ω

max
0≤j≤n−1

Hj(ω) |
n−1

i=0

γi| 2
dP(ω)

≤ H 2
∞E

n−1

i=0

|γi| 2 ≤ H 2
∞n2

To check if R is the one we were looking for we have to check if it fulfills identity
(3.14). For this sake let f ∈ ▲

2(R+) and x∗ ∈ E∗. We get

∞

0

H(t)f(t) , x∗ dt =
n−1

i=0

ti+1

ti

Hif(t) , x
∗ dt

=
n−1

i=0

ti+1

ti

x∗(Hif(t)) dt =
n−1

i=0

x∗(Hi)
ti+1

ti

f(t) dt
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and by the definition of R we have

Rf , x∗ =
n−1

i=0

ti+1

ti

f(t) dtHi , x
∗ =

n−1

i=0

x∗(Hi)
ti+1

ti

f(t) dt.

This means the two sides coincide and since R is uniquely determined we have guessed
it right.
Now, we can ask the question whether we get that W is a good integrator for E.

This accounts to proving continuity for the map JW or IXt for every t ≥ 0. The
estimate (3.15) gives us a constant K2,E depending on E such that

E
∞

0

H dW
2 ≤ K2

2,EE R 2
γ(▲2(R+),E) ≤ K2

2,E H 2
∞n2. (3.19)

This estimate is unfortunately not very promising since by taking its root we see that
the norm we would like to estimate grows with n where n accounts to the number of
jumps of H. If we take now any sequence (Hm)m∈N ⊂ Su such that Hm ∞ → 0 we
could run into troubles, because probably the number of jumps tends to infinity and
if it does, maybe too fast.
This is why this section still remains open.
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4 Banach Space-valued Integrators
and Real-valued Integrands

In this very short chapter compared to Chapter 3 we exchange the role of the in-
tegrator and integrand. This means that now the integrator will take values in a
Banach space while the integrand will be real-valued. An inequality similar to the
already seen Burkholder inequality in this setting can be achieved quite fast and is
an application of already known theorems.
In the following, consider a filtered probability space (Ω,F ,F,P) with F = (Ft)t≥0

being a right-continuous filtration.
The Banach space under consideration, named E, is assumed to be separable and

a Burkholder type inequality will be given for that space.
As a first step towards this we state [Pis11, Proposition 8.10].

Proposition 4.1. Let E be an UMDp space and (Hn)n≥0 be adapted to a filtration
(An)n≥0. Let furthermore (Xn)n≥0 be an E−valued martingale. Then we have for
some constant C > 0 the inequality

sup
n≥0

H0X0 +
n

i=1

Hi−1(Xi −Xi−1)
▲p(Ω;E)

≤ C sup
n≥0

Hn ∞ sup
n≥0

Xn ▲p(Ω;E). (4.1)

Already in inequality (4.1) one can see a good bound for the discrete stochastic
integral of H with respect to the Banach space-valued martingale X.
We also state [Pis11, Corollary 8.14] which will be even more useful.

Corollary 4.2. Let E be UMDp for some p ∈ (1,∞). Then there exists a constant
C > 0 such that for all martingales (Xn)n≥0 which are bounded in ▲

1(Ω;E) and
(Hn)n≥0 adapted scalar random variables with Hn ▲∞ ≤ 1, we have

sup
λ>0

λP sup
n≥0

n−1

i=0

Hi(Xi+1 −Xi) > λ ≤ C sup
n≥0

Xn ▲1(Ω;E).

Corollary 4.2 is exactly the Burkholder inequality in the case of UMD− valued
martingales which are bounded in ▲1(Ω;E). Actually we can even follow from the
corollary already the following theorem.
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Theorem 4.3. Let E be an UMDp space for some p ∈ (1,∞). Define

Su := H = H0✶0 +
n−1

i=0

Hi✶(ti,ti+1] | Hi ∈ ▲
∞, 0 = t0 ≤ . . . ≤ tn .

There exists a constant CE > 0 such that for all H ∈ Su and all E−valued martingales
(Xt)t≥0 we have

λP [( (H ·X) )∗t > λ] ≤ CE max
0≤i≤n−1

Hi ▲∞E[ Xt ], ∀λ > 0, ∀t ≥ 0.

The constant CE is only dependent on the space E, so the constant is the same for
all martingales.

Proof. Let t > 0 and a strategy H ∈ Su be arbitrary such that tn ≤ t. By looking at

H

max
0≤i≤n−1

Hi ▲∞

instead of H we can assume Hi ▲∞ ≤ 1 for all 0 ≤ i ≤ n− 1.
Instead of X we can consider the discrete time martingale with finite time horizon

(Xti)
n
i=0.

For some λ > 0 Corollary 4.2 can be applied to the finite sequence (Hi)
n−1
i=0 and

our discrete finite time martingale and translates precisely into

λP ( (H ·X) )∗tn > λ ≤ CEE[ Xtn ] ≤ CEE[ Xt ]

with CE = C from the corollary. This finishes the prove where we note that the
second inequality holds since if X is a martingale, then X is a submartingale,
therefore its expectation is non-decreasing.
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5 Nikisin-Yan

This and the next chapter are devoted to two main results which will play a crucial
role in Chapter 7. There the two main results of this thesis besides the ones in
Chapter 3 will be presented. We start with the paper of Jia-an Yan, see [Yan80], and
look at two theorems of it.
For the rest of this chapter fix a probability space (Ω,F ,P). In the following we

cite the statement and rewrite the proof of [Yan80, Theorem 2].

Theorem 5.1 (Yan). Let K ⊂ ▲
1(Ω,F ,P) be convex and 0 ∈ K. Then the following

are equivalent:

i) ∀η ∈ ▲
1
≥0, η = 0 ∃c > 0 s.t. cη ∈ K − ▲

∞
≥0

▲
1

ii) ∀A ∈ F , P[A] > 0 ∃c > 0 s.t. c✶A ∈ K − ▲
∞
≥0

▲
1

iii) ∃ bounded Z > 0, P− a.s. s.t. sup
ζ∈K

E[ζZ] < ∞.

Proof. i) =⇒ ii) : This one should be clear since for every A ∈ F with P[A] > 0,
the function ✶A is just a specific non-vanishing function in ▲1

≥0.
iii) =⇒ i) : Assume by contradiction that there exists some η ∈ ▲≥0 with η = 0

such that

∀n ∈ N : nη ∈ K − ▲
∞
≥0

▲
1

.

We then get

nη = ζn − ξn + δn, δn ▲1 ≤ 1

n

for some ζn ∈ K and ξn ∈ ▲
∞
≥0. Take now the Z > 0 which exists by assumption of

iii) and observe

E[Zζn] = E[Znη] + E[Zξn]− E[Zδn] ≥ nE[Zη]
>0

− 1

n
→ ∞.

This contradicts the assumption sup
ζ∈K

E[ζZ] < ∞.
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5 Nikisin-Yan

ii) =⇒ iii) : Let A ∈ F , P[A] > 0. Then there exists some c > 0 such that

c✶A ∈ K − ▲
∞
≥0

▲
1

. Now we notice that K − ▲
∞
≥0

▲
1

is a closed and convex set and
the topological dual satisfies (▲1)∗ = ▲

∞ by the Riesz representation theorem. So
we can apply the Hahn-Banach theorem (see Theorem 5.2) to get a bounded Y such
that

sup
ζ∈K, η∈▲∞

≥0

E[Y (ζ − η)] < cE[Y ✶A],

where c is a new constant adapted by the constants from the Hahn-Banach theorem.
Replacing now η by nη, the inequality −nE[Y η] ≤ cE[Y ✶A] must hold for all

η ∈ ▲
∞
≥0 when we choose ζ = 0 ∈ K. This would be contradicted if Y would be

negative on a set with positive probability. Therefore, we conclude Y ≥ 0, P− a.s.
Next we set

H := {Y ∈ ▲
∞
≥0 | sup

ζ∈K
E[Y ζ] < ∞},

which is non-empty by what we have just seen. We also set

C := {{Y = 0} | Y ∈ H}

and will show that it is closed under countable intersections. For this sake consider
{Yn}n≥1 ⊂ H and notice that for (bn)n≥1 such that bn > 0 we have

n≥1

{Yn = 0} =
n≥1

bnYn = 0 .

Now define cn := sup
ζ∈K

E[Ynζ] and dn := Yn ▲∞ for n ∈ N and choose (bn)n≥1 positive

real numbers such that

n≥1

bncn < ∞ and
n≥1

bndn < ∞.

Then set Y := n≥1 bnYn in order to prove the claim that C is closed under countable
intersections.
By this we have the existence of Y ∈ H with P[Y = 0] = inf

S∈C
P[S]. Set A := {Y =

0} and assume P[A] > 0.

By what we have shown we can separate c✶A from K − ▲
∞
≥0

▲
1

by some bounded

Ỹ ≥ 0 and some c > 0. In particular since 0 ∈ K it holds that

0 < cE[Ỹ ✶A] = cE[Ỹ ✶{Y=0}].
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5 Nikisin-Yan

From this conclude Y + Ỹ ∈ H and {Y + Ỹ = 0} = {Y = 0} ∩ {Ỹ = 0}. If
P[Y = 0] > 0 would hold then also

P[{Ỹ = 0} ∩ {Y = 0}] < P[Y = 0].

This however contradicts the minimality of Y .
Thus we conclude P[Y = 0] = 0 =⇒ P[Y > 0] = 1 to finish the proof.

For completeness we state the formulation of the geometric Hahn-Banach theorem
used in the proof of the previous theorem. This is point ii) in [BKW17, Satz 5.2.5]
which we reformulate in the next Theorem.

Theorem 5.2 (geometric Hahn-Banach). Let F be a topological vector space which
is locally convex. Take A,B ⊂ F two disjoint, non-empty and convex sets. If A is
compact and B closed, there exists some f ∈ F ∗, γ1, γ2 ∈ R such that

f(x) ≤ γ1 < γ2 ≤ f(y), ∀x ∈ A, y ∈ B.

Remark 5.3. In the proof of Theorem 5.1 the set A of the Hahn-Banach theorem

corresponds to {c✶A} and the set B to K − ▲
∞
≥0

▲
1

. The element f ∈ F∗ corresponds
to Y via the Riesz-representation theorem through the operator

T : (▲1)∗ → ▲
∞ : f → (g → E[fg]) .

Having looked at the second theorem of Yan’s paper we turn our attention to the
first one in it. We cite the formulation of the theorem in the following which to be
exact is [Yan80, Theorem 1]. After that we will reformulate a proof of the statement
which is an application of Theorem 2 in Yan’s paper, or Theorem 5.1 here.

Theorem 5.4 (Nikisin-Yan). Let K ⊂ ▲
1(Ω,F ,P) be convex. Suppose

∀ > 0 ∃c > 0 s.t. P[ζ > c] < , ∀ζ ∈ K.

Then there exists a Z ∈ ▲
∞(Ω,F ,P) with Z > 0, P− a.s. and sup

ζ∈K
E[ζZ] < ∞.

Proof. By picking an element k ∈ K and looking at K − k ⊂ ▲
1(Ω,F ,P) which is

still convex and contains 0 in addition, we can assume without loss of generality that
0 ∈ K.
Let us show that the assumption ii) of Theorem 5.1 is satisfied. For this sake take

some A ∈ F with P[A] > 0. Define := P[A]/2, then there exists some constant
c > 0 such that

P[ζ > c/2] < , ∀ζ ∈ K.
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5 Nikisin-Yan

Define X := 2c✶A and let ζ ∈ K be arbitrary. Now let us claim it holds

A ⊂ {X > ζ + c/2} ∪ {ζ > c/2}.

To prove this claim let ω ∈ A be arbitrary. Let us first assume ζ(ω) ≤ c/2. Then it
holds ζ(ω) + c/2 < X(ω) and therefore ω ∈ {X > ζ + c/2}. In the other case when
ζ(ω) > c/2 it is immediate that ω belongs to {ζ > c/2}. This proves the claim.
Using the claim we get

P[A] ≤ P[X > ζ + c/2] + P[ζ > c/2] ≤ P[X > ζ + c/2] +
P[A]
2

,

leading to

P[X > ζ + c/2] ≥ P[A]
2

.

Since ζ was arbitrary we have

P[2c✶A − ζ > c/2] ≥ P[A]
2

> 0, ∀ζ ∈ K.

This tells that 2c✶A cannot be approximated in ▲1 by any function ζ ∈ K minus a
nonnegative bounded function, which finishes the proof.

Let us close this chapter by a remark concerning how the Nikisin-Yan theorem will
be used later on.

Remark 5.5. The Nikisin-Yan thereom tells that if one has a convex subset of
▲

1(Ω,F ,P) which is bounded in probability from above there exists an equivalent
measure Q for which the expectation of random variables in K is uniformly bounded
from above. To get the equivalent measure one just takes Z one gets from the theorem
as density, i.e. for A ∈ F set

Q[A] =
1

E[Z]
E[✶AZ].
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6 Girsanov-Meyer

In this short chapter we revisit and prove another result which will be essential for
the results in the next chapter. It is the Girsanov-Meyer theorem which is well known
in stochastic analysis, however we still want to give a proof here for completeness. It
allows one to change the measure to an equivalent one while still keeping semimartin-
gale properties and also shows the semimartingale’s precise decomposition into a local
martingale and a finite variation process. It is remarkable that its proof is mainly an
application of the definition of quadratic variation (see also Chapter 2). This is one
of many examples in stochastic analysis showing the power of this definition.

As usual we consider a filtered probability space (Ω,F ,F,P) where F is a right-
continuous filtration.
Before turning the attention to the Girsanov-Meyer theorem two additional lemmas

are needed. The first one tells how the conditional expectation after a change of
measure looks like compared to the previous measure.

Lemma 6.1. Let Q be an equivalent probability measure to P and denote its density
by ξ, i.e. ξ = dQ

dP .
Then, for any random variable X integrable w.r.t. P and Q, the conditional expec-

tation with respect to a sub σ− algebra G ⊂ F is given by

EQ[X | G] = E[Xξ | G]
E[ξ | G] . (6.1)

Proof. The right hand side of (6.1) is G− measurable and we have

E ξ
E[Xξ | G]
E[ξ | G] | G = E[Xξ | G].

Next, take some A ∈ G arbitrarily and look at

EQ ✶A
E[Xξ | G]
E[ξ | G] = E ✶A

E[Xξ | G]
E[ξ | G] ξ = E[✶AξX] = EQ[✶AX].

By the definition of conditional expectation this equality exactly corresponds to

EQ[X | G] = E[Xξ | G]
E[ξ | G] ,
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6 Girsanov-Meyer

which proves the lemma.

The second lemma given before the Girsanov-Meyer theorem concerns martingales
and measure changes. It characterizes exactly how a martingale after a change of
measure looks like. One just has to multiply by the density.

Lemma 6.2. Let Q be an equivalent probability measure to P. Denote the density
process by Z, that is

Zt := E
dQ
dP

| Ft .

Then a stochastic process M is a Q− martingale if and only if MZ is a P− martin-
gale.

Proof. First note that MZ is adapted if and only if M is adapted since Z is adapted
by the definition of the conditional expectation. Furthermore,

EQ[|Mt|] = E[|Mt|Zt] = E[|MtZt|],

so M is Q− integrable if and only if MZ is P− integrable. Apply the previous
Lemma to get

EQ[Mt | Fs] =
E[Mt

dQ
dP | Fs]

E[dQ
dP | Fs]

=
1

Zs

E[MtZt | Fs]. (6.2)

This equality can be reordered into

ZsEQ[Mt | Fs] = E[MtZt | Fs]. (6.3)

If now M is a Q−martingale then

E[MtZt | Fs]
(6.3)
= ZsEQ[Mt | Fs] = ZsMs,

which shows that MZ is a P−martingale.
If conversely MZ is a P−martingale, we have

EQ[Mt | Fs]
(6.2)
=

1

Zs

E[MtZt | Fs] = Ms.

This shows that M is a Q− martingale and the proof is finished.

By stopping arguments this Lemma can also be extended to local martingales.
With all this previous work we are in the position to give a proof of the Girsanov-

Meyer theorem.
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6 Girsanov-Meyer

Theorem 6.3 (Girsanov-Meyer). Let X be a semimartingale under P and decompose
it into X = M + A with M being a local P− martingale and A a process of finite
variation. Let Q be an equivalent probability measure with respect to P.
Then X is also a semimartingale under Q and has the decomposition X = N + L

with

Lt = Mt −
t

0

1

Zs

d[Z,M ]s,

and Nt = Xt − Lt.

Remark 6.4. As a reminder, the integral on the right-hand side denotes the pathwise
Lebesgue-Stieltjes integral with integrator a finite variation process.

Proof. We have thatM and Z are P− local martingales. Therefore also Z−·M+M−·Z
is a local P− martingale. For this fact we can refer to [Low10]. Applying integration
by parts which is in this case just the definition of quadratic covariation, we see that
also

ZM − [Z,M ] = Z− ·M +M− · Z

is a P− local martingale. Apply Lemma 6.2 to get that

M − 1

Z
[Z,M ]

is a Q− local martingale.
Again, we just look at the definition of quadratic variation to get

1

Z
[Z,M ] =

1

Z−
· [Z,M ] + [Z,M ]− · 1

Z
+

1

Z
, [Z,M ] . (6.4)

For a process càdlàg Y we denote the jump at time t by ΔYt := Yt − Yt− and with
this we calculate the last term in the right-hand side of (6.4) to get

1

Z
, [Z,M ] =

0<s≤t

Δ
1

Zs

Δ[Z,M ]s.

It also holds that

1

Z
· [Z,M ]− 1

Z−
· [Z,M ] =

0<s≤t

Δ
1

Zs

Δ[Z,M ]s.
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6 Girsanov-Meyer

We plug this in into (6.4) to get

1

Z
[Z,M ] =

1

Z
· [Z,M ] + [Z,M ]− · 1

Z
,

where the last part is a Q− local martingale. Therefore by reordering also

1

Z
[Z,M ]− 1

Z
· [Z,M ]

is a Q− local martingale. Finally also

M − 1

Z
[M,Z]

is a Q− local martingale, so by adding up the last two lines we arrive at the point
that

M − 1

Z
· [Z,M ]

is a Q− local martingale. All in all this tells that X can be written as as

X = M − 1

Z
· [Z,M ] +

1

Z
· [Z,M ] + A ,

where the term in the left brackets is a Q− local martingale and the term in the right
brackets a process of finite variation. This proves the statement of the theorem.

45



7 Bichteler-Dellacherie and
Doob-Meyer, Generalized

In this Chapter two of the main results are presented. One is the famous Bichteler-
Dellacherie theorem and the second one the well known Doob-Meyer decomposition.
In both we try to drop some path regularity, to be precise we drop the assumption
of càdlàg paths.
The ideas concerning the Bichteler-Dellacherie theorem try to generalize a proof

presented by Christophe Stricker in [Str84]. For the proof the two previous chapters
in which we proved the Nikisin-Yan and the Girsanov-Meyer theorem will be crucial.
Since we drop the càdlàg assumption for paths in that theorem one has to pay

attention with stopping times because in general stopped processes will not be mea-
surable with respect to any stopping time. However, we work with stopping times
taking at most countably many values. There we do not have such problems. We
state the following lemma for this fact, cited from [Sch18, Lemma 3.41]. We also fix
a filtered probability space (Ω,F ,F,P) where we assume F to be right-continuous in
the following.

Lemma 7.1. Let (S,S) be a measurable space, X : T × Ω → S a stochastic process
and τ : Ω → T an F−stopping time.
Then Xτ : Ω → S, defined by Xτ (ω) := Xτ(ω)(ω) for every ω ∈ Ω, is Fτ−

measurable under each of these conditions

a) τ(Ω) ⊂ T is countable and X is Fadapted;

b) X is F− progressive.

Having this Lemma at hand we are almost at the point to formulate our version of
the Bichteler-Dellacherie theorem. We still need an important theorem concerning
supermartingales. For those we can win a bit of regularity by changing to a version
of the supermartingale. This helps us to get from an countable index set to an
uncountable one. For this sake we cite [Low09, Theorem 4]. A proof of this statement
can be found there.

Theorem 7.2. Let X be a martingale, submartingale or supermartingale. Then
it has a version Y which has left and right limits everywhere such that there is a
countable set S ⊂ R+ for which Yt is right-continuous at every t /∈ S.
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7 Bichteler-Dellacherie and Doob-Meyer, Generalized

To use this theorem we need to connect the process we will be looking at with
supermartingales. For this sake we cite the following theorem by Rao in [Low12,
Theorem 1], where a proof can be found as well.

Theorem 7.3 (Rao). A process X is a quasimartingale if and only if it decomposes
as

X = Y − Z

for supermartingales Y and Z.

Remark 7.4. For completeness we give a definition of a quasimartingale. Given an
integrable process X it is called a quasimartingale if its mean variation is finite for
each t on [0, t], i.e. if

m-var(X)t := sup
0≤t1≤...≤tn≤t, n∈N

E
n−1

i=1

|E[Xti+1
−Xti | Fti ]| < ∞, ∀t ≥ 0.

Before however, we need another Lemma concerning weak convergence in ▲2 which
will also be important in the proof. We will in the following use the arrow to denote
weak convergence.

Lemma 7.5. Let Mn
1 , M1 ∈ ▲

2. Set Mn
t := E[Mn

1 | Ft] and Mt := E[M1 | Ft] for
some t < 1. Assume Mn

1 M1 in ▲2. Then we have

Mn
t Mt in ▲

2.

Proof. Let Y ∈ ▲
2 and note that also E[Y | Ft] ∈ ▲

2 by Jensen’s inequality. We can
use the assumption of weak convergence to get

E[E[Y | Ft]M
n
1 ] → E[E[Y | Ft]M1]. (7.1)

For the left side of this expression one can use to the tower property of conditional
expectation to rewrite it as

E[E[Y | Ft]M
n
1 ] = E[E[E[Y | Ft]M

n
1 | Ft]] = E[E[Y | Ft]E[Mn

1 | Ft]] = E[YMn
t ].

The right term of (7.1) can be rewritten as

E[E[Y | Ft]M1] = E[E[E[Y | Ft]M1 | Ft]] = E[E[Y | Ft]Mt] =

= E[E[YMt | Ft]] = E[YMt].

Knowing how both sides of (7.1) can be rewritten we deduce the convergence of

E[YMn
t ] → E[YMt].
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7 Bichteler-Dellacherie and Doob-Meyer, Generalized

Since Y was arbitrary it holds Mn
t Mt in ▲

2.

Now we are ready to formulate our theorem. Note that for a stochastic process with
càdlàg paths the assumption of the boundedness in probability corresponds to being
a good integrator. In the proof the goal of decomposing X into a local martingale
and a finite variation process is achieved by changing the measure via the Nikisin-Yan
theorem repeatedly until we can decompose X as desired for an equivalent measure.
Then we can change back to the original measure by the Girsanov-Meyer theorem
while still having a decomposition for X at hand on a level of versions.

Theorem 7.6. Let X be a stochastic process such that the convex set

{(H ·X)t | H ∞ ≤ 1, H ∈ Su jumping at deterministic times}

is bounded in probability for all t ≥ 0. Then there exists a version X̃ of X, a càdlàg
local martingale M and a process of finite variation A such that X̃ = M + A.
Written out this means for every t ≥ 0 it holds

Xt = Mt + At, a.s.

Before we start with the proof let us look at a quick remark concerning the proof’s
strategy.

Remark 7.7. The goal is to bound the discrete stochastic integral of uniformly by 1
bounded simple integrals against X in ▲2 with respect to some measure Q. For this
sake, step by step we bound more and more sets in probability and apply Nikisin-Yan
several times to change the measure. On the way we also show that X has finite mean
variation with respect to that changed measure, i.e. it is a quasimartingale. Once
we achieve all that we apply Theorem 7.3 and Theorem 7.2 to change to a version
on which we have càdlàg almost everywhere. We are only left with a countable index
set on which we will define a discrete ▲2 martingale, use weak compactness of ▲2−
balls and achieve a decomposition on this countable index set into a martingale and a
process. For that process we first show finite variation on that countable index set and
generalize this to the full index set by using the càdlàg properties we got by switching
to a version.

Proof. First fix t = 1 and prove the statement on [0, 1]. Then concatenate time
intervals to prove it for t ∈ [0,∞). Also by just subtracting assume without loss of
generality X0 = 0.

As a start we claim that the (not necessarily convex) set

{|(H ·X)|∗1 | H ∞ ≤ 1 jumping at deterministic times} (7.2)

is bounded in probability.
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To prove this assume by contradiction that there exists some > 0 and a se-
quence (Hn)n≥1 ⊂ Su with Hn ∞ ≤ 1 jumping at deterministic times numbered as
tn1 , . . . , t

n
mn

such that

P[ |(Hn ·X)|∗1 ≥ n] ≥ .

Defining stopping times like

τn := min{tni | |(H ·X)tni | ≥ n, i = 1, . . . ,mn},

we get for process stopped at τn

P[|(Hn ·X)1 |τn≥ n] = P[|(Hn
✶[0,τn] ·X)1 |≥ n] ≥ .

This however contradicts the assumption in the theorem and therefore proves claim
(7.2).
With this we also get that |X|∗1 is an almost surely finitely valued random variable.

In order to see this take the strategy H ≡ 1, then we get |(H ·X)|∗1 = |X|∗1. By claim
(7.2) it holds that

lim
c→∞

sup
H

P[[|(H ·X)|∗1 > c] = 0.

This would be contradicted if there would be a set with positive probability, where
|X|∗1 is not finitely valued, proving |X|∗1 < ∞, a.s.

As a next step for a deterministic grid {0 = t0, . . . , tn} define the strategy

H :=
n−1

i=1

Xti✶(ti,ti+1].

One can write

n−1

i=0

(Xti+1
−Xti)

2 = X2
tn − 2(H ·X)tn ,

by expanding both sides and using X0 = 0. Since by the definition of H it holds
|H|∗1 ≤ |X|∗1 we have by the proved claim (7.2) that the convex hull of

{[X,X]Π | for any partition with deterministic times Π} (7.3)

is bounded in probability. For a partition Π = {t0 ≤ . . . ≤ tn} in the claim we have
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the notation of the sampled process of the quadratic variation, i.e.

[X,X]Π =
n−1

i=0

(Xti+1
−Xti)

2.

With this we are in the position to apply the Nikisin-Yan on the convex hull
of (7.3). The theorem gives (see also Remark 5.5) the existence of an equivalent
probability measure Q ∼ P such that

sup
Π

EQ [X,X]Π1 + EQ (|X|∗1)2 + sup
H ∞≤1

EQ [(H ·X)1] ≤ U < ∞. (7.4)

Having done this first measure change we claim that the total mean variation (we
bound the mean variation uniformly in t ≤ 1) of X with respect to Q is finite. This
means we claim

m− var(X)1 = sup
π

EQ

n−1

i=1

| EQ[Xti+1
−Xti |Fti ] | ≤ U < ∞. (7.5)

To see this define a strategy as

H :=
n−1

i=1

sign EQ[Xti+1
−Xti | Fti ] ✶(ti,ti+1].

Having this strategy at hand we calculate its stochastic integral with respect to X,
i.e.

EQ[(H ·X)1] =
n−1

i=1

EQ[sign EQ[Xti+1
−Xti | Fti ] (Xti+1

−Xti)] =

n−1

i=1

EQ[sign EQ[Xti+1
−Xti | Fti ] EQ[Xti+1

−Xti | Fti ]] =

n−1

i=1

EQ[| EQ[Xti+1
−Xti | Fti ] |] = EQ

n−1

i=1

| EQ[Xti+1
−Xti | Fti ] .

The last term is precisely the term over which the supremum of partitions is taken
over in the definition of the mean variation. Since the supremum of stochastic inte-
grals of strategies which are bounded by 1 with respect to X is bounded we get that
the total mean variation of X is finite. This means claim (7.5) is proved and X is a
quasimartingale.

As next step take a strategy H = n−1
i=0 Hi✶(ti,ti+1] uniformly bounded by 1 and
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deterministic grid Π = {0 = t0 < . . . < tn}. Then we can define a discrete martingale
via

Mtj :=

j−1

i=0

Hi(Xti+1
−Xti)− Ati ,

where Ati := HiEQ[Xti+1
−Xti |Fti ]. Apply Doob’s maximal inequality on this discrete

martingale to get

EQ[(|M |∗tn)2] ≤ 4EQ[M
2
tn ] ≤ 16U. (7.6)

The second inequality follows by using orthogonality from

EQ[M
2
tn ] =

n−1

i=0

H2
i EQ (Xti+1

−Xti − EQ[Xti+1
−Xti | Fti ])

2
(a+b)2≤2(a2+b2)

≤

≤ 2
n−1

i=0

EQ (Xti+1
−Xti)

2 + EQ (EQ[Xti+1
−Xti | Fti ])

2 ≤

≤ 4
n−1

i=0

EQ (Xti+1
−Xti)

2 ≤ 4EQ [X,X]Π1 ≤ 4U.

Note that also EQ[|At|] ≤ m-var(X) holds and therefore with estimate (7.6) we get
by using |(H ·X)| ≤ |Mt|+ |At| and Hölder’s inequality

EQ sup
t∈Π

|(H ·X)|t ≤ EQ sup
t∈Π

|Mt|2
1
2

+m-var1(X) ≤ 4
√
U +m-var1(X) < ∞.

In this estimate the right side does neither depend on H nor n, therefore we obtain
that actually

sup
H ∞≤1

EQ[|(H ·X)|∗1] < ∞. (7.7)

This also shows that the convex hull of

{|(H ·X)|∗1 | H ∞ ≤ 1} (7.8)

is bounded in probability Q.
Keeping this fact in mind take again a strategy H = n−1

i=0 Hi✶(ti,ti+1] uniformly
bounded by 1 and deterministic grid Π = {0 = t0 < . . . < tn} and define another
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strategy via

K :=
n−1

j=0

Hj

j−1

i=0

Hi(Xti+1
−Xti) ✶(tj ,tj+1].

Then K ≤ |(H ·X)|∗1 holds and (H ·X)2 can be decomposed into

(H ·X)2 =
n−1

i=0

H2
i (Xti+1

−Xti)
2 + 2(K ·X).

Now look at

sup
H ∞≤1

sup
K ∞≤|(H·X)|∗1

Q[|(K ·X)|1 ≥ c] ≤

sup
H ∞≤1

sup
K ∞≤|(H·X)|∗1

(Q[|(K ·X)|1 ≥ c, |(H ·X)|∗1 < b] +Q[|(H ·X)|∗1 ≥ b]) ≤

sup
K ∞≤b

Q[|(K ·X)|1 ≥ c] +
2

where b is chosen large enough for given using that the convex hull of (7.8) is
bounded in probability Q. With this we obtain that the set

conv {(H ·X)2 | H ∞ ≤ 1} (7.9)

is bounded in probability Q as the sum of two convex sets which are both bounded
in probability Q, the first one being the convex hull of { n−1

i=0 H2
i (Xti+1

−Xti)
2}.

With all these preliminary results, especially that the set in (7.9) is bounded in
probability, we can apply the Nikisin-Yan Theorem (i.e. Theorem 5.4) again to obtain
(after renaming) Q ∼ P for which we have

sup
H ∞≤1, Π partition

EQ[(H ·X)21 + [X,X]Π1 + (H ·X)1] < ∞. (7.10)

Now, we will use two theorems stated earlier in this Chapter to win a bit of
regularity of X. First of all we can apply Theorem 7.3 by Rao to write X = Y − Z
with Y and Z being supermartingales. Next, we can switch to versions of Y and Z
which we again call Y and Z for which we have that they are càdlàg on [0, 1] \ S,
with S being an at most countable set by Theorem 7.2. Therefore, there exists a
version of X which we call again X which is càdlàg on [0, 1] \ S.
We now set Π := S ∪ ([0, 1] ∩Q) which is still countable.
Using the estimate 7.10 and taking any partition Π we get that the discrete time
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martingale

MΠ
t :=

ti<t

(Xti+1
−Xti)− EQ[Xti+1

−Xti |Fti ]

for t ∈ Π is well defined. Furthermore, it is a square integrable martingale with
respect to its corresponding discrete natural filtration. Totally we obtain by (7.10)

sup
Π, partition

EQ (MΠ
1 )

2 < ∞. (7.11)

Having this estimate take an enumeration (tn)n≥1 of Π with t0 = 0 and define

Πn :=
n

i=0

ti, n ≥ 1. (7.12)

It then holds Π1 ⊂ . . . ⊂ Πn ⊂ Πn+1 ⊂ . . . ⊂ Π and

n≥1

Πn = Π.

Using now the estimate (7.11) we get

sup
n≥1

EQ[(M
Πn

1 )2] ≤ sup
Π, partition

EQ[(M
Π
1 )

2] < ∞. (7.13)

Since balls in L2 are weakly compact there exists a convergent subsequence, i.e. a
subsequence of our original sequence of partitions which after renaming we call again
(Πn)n≥1 for which it holds that

MΠn

1 M1

in ▲2 for some M1 ∈ ▲
2.

By our construction we still have n≥1 Π
n = Π. The continuous time martingale

with càdlàg trajectories generated by M1 will be denoted by M , i.e. we have Mt =
EQ[M1|Ft] a.s. for t ∈ [0, 1]. Furthermore, we define A := X −M .
By applying Lemma 7.5 we get E[MΠk

1 | Ft] E[M1 | Ft] in ▲
2 and therefore also

MΠk

t Mt whenever t ∈ Π.

Let now σn = {0 = s0 < . . . < sn} be a partition with points in Π and take
Y ∈ ▲

2(Q), s.t. Y 2 = 1. For large m we have σn ⊂ Πm. We then can use weak
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convergence and estimate

EQ[Y
n−1

i=0

|Asi+1
− Asi |] =

n−1

i=0

lim
m→∞

EQ[Y |Xsi+1
−MΠm

si+1
−Xsi +MΠm

si
|] =

=
n−1

i=0

lim
m→∞

E[Y |
si≤tj ,<si+1: tj∈Πm

EQ[Xtj+1
−Xtj | Ftj ]|] ≤

≤ sup
m≥1

EQ[Y
tj∈Πm

|EQ[Xtj+1
−Xtj | Ftj ]|] ≤

≤ sup
m≥1

EQ[
tj∈Πm

|EQ Xtj+1
−Xtj | Ftj ]| 2 1/2

.

To show that the last expression is finite we define a strategy with

Hj := sign EQ[Xtj+1
−Xtj | Ftj ] ,

H :=
tj∈Πm

Hj✶(tj ,tj+1].

With this we can write by adding a zero to the stochastic integral

(H ·X) =

=
tj∈Πm

Hj(Xtj+1
−Xtj − EQ[Xtj+1

−Xtj | Ftj ]) +HjEQ[Xtj+1
−Xtj | Ftj ].

The last expression can be reordered into

tj∈Πm

|EQ[Xtj+1
−Xji | Ftj ]| =

= (H ·X)−
tj∈Πm

Hi Xtj+1
−Xtj − EQ[Xtj+1

−Xtj | Ftj ] .

By squaring and using (a + b)2 ≤ 2(a2 + b2) we obtain (cross terms in second sum
gets zero after conditioning) for some suitable constant C > 0 that

sup
m∈N

EQ


tj∈Πm

|EQ[Xtj+1
−Xji | Ftj ]|

2 ≤

C sup
H ∞≤1

EQ[(H ·X)2] + sup
π

EQ[[X,X]π] < ∞.
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Therefore we have shown that

EQ Y
n−1

i=0

|Asi+1
− Asi | ≤ C1/2 sup

H ∞≤1

EQ[(H ·X)2] + sup
π

EQ[[X,X]π]

1/2

< ∞

for all partitions with points Π and Y ∈ ▲
2 s.t. Y 2 = 1. With this we can conclude

that A has finite variation, when only calculated on points in Π.
Now we are almost done because X and therefore also A are càdlàg on [0, 1] \ Π.

Take some arbitrary points {s0, . . . , sn} ⊂ [0, 1] \ Π. Since Π is dense, we can take

sequences (tmi )m∈N which are in Π such that tmi → si for i = 0, . . . , n. Hence for some
arbitrary Y ∈ ▲

2 with norm equal to 1 we can estimate by Fatou’s Lemma

E[Y
n−1

i=0

|Asi+1
− Asi |] ≤ lim inf

m→∞
E[Y

n−1

i=0

|Atmi+1
− Atmi

|] ≤ C.

With this we proved the finite variation property for A, i.e. we found a version of
X which we can write as

M + A

with M a càdlàg ▲2(Q)−martingale and A a process of finite variation.
In order to change back to the original measure P we just have to apply the

Girsanov-Meyer Theorem.

Having done our version of the Bichteler-Dellacherie theorem we also want to
tackle a second very famous theorem in stochastic analysis, namely the Doob-Meyer
decomposition and do a proof similar to the one done just now. In the Doob-Meyer
decomposition one tries to decompose a supermartingale instead of a semimartingale.
A proof can be deduced by almost the same techniques used in the end of the last
theorem.
With this we can formulate our version of the Doob-Meyer theorem.

Theorem 7.8. Let S be a non-negative supermartingale on [0, 1].

i) Let S additionally be bounded. Then there exists a càdlàg martingale M and
a predictable, increasing finite variation process A such that S = M − A. The
decomoposition is unique up to versions of A and up to indistinguishibility of
M .

ii) Let S be in a way such that there exists a sequence of stopping times τn which
stops S at the level n, i.e.

Sτn = S ∧ n+ (Sτn − n)✶[τn,1),
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in particular E[Sτn ] ≤ E[S0] is assumed. Then S can be decomposed into a
càdlàg local martingale M and an increasing, predictable process A such that
S = M − A. Again the composition is unique up to versions of A and up to
indistinguishibility of M .

Proof. We first prove i).
Let S be a super-martingale such that 0 ≤ S ≤ c with c ≥ 0. We get for a partition

Π a discrete Doob-Meyer decomposition SΠ = MΠ−AΠ with MΠ being a martingale
and AΠ an increasing process. Furthermore, by Theorem 3.8 we have the estimate

sup
Π

E (MΠ
1 )

2 ≤ 2cE[S0] < ∞. (7.14)

Now apply Theorem 7.2 to get a version S̃ of S such that it is has left and right limits
everywhere and there exists a countable set P ⊂ [0, 1] such that S̃t is right-continuous
at every t /∈ P .
As a next step define Π := P ∪ (Q ∩ [0, 1]), which is a countable set. As in the

previous theorem take an enumeration (tn)n≥1 of Π and t0 = 0 and define

Πn :=
n

i=0

ti, n ≥ 1.

We then get n≥1Π
n = Π and have a nested sequence of time points as in the

previous theorem. Using again weak compactness in ▲2 and the estimate (7.14) we
get on a subsequence which we rename as the original one

MΠn

1 M1 (7.15)

with M1 ∈ ▲
2. Denote by M the càdlàg ▲2 martingale generated by M1 and set

A := M − S̃.
Now for all n ≥ 1 we have that AΠn

is an increasing process and since n≥1 Π
n = Π

we get that A is an increasing process when only compared at points in Π.
But we also have that S̃ is actually right-continuous on [0, 1] \ Π (actually even

[0, 1] \N).
With this we can show that A is actually an increasing process in general. There-

fore, let s < t with s, t ∈ [0, 1] \Π. Π is dense in [0, 1], so let (sn)n≥1, (tn)n≥1 be two

sequences in Π \N such that sn ≤ tn for all n ≥ 1. Since A is an increasing process

on Π we get

Asn ≤ Atn , ∀n ≥ 1.
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Furthermore, A is right-continuous at s and t so we get

lim
n→∞

Asn = As

lim
n→∞

Atn = At

and therefore finally As ≤ At.
So we proved that A is an increasing process and therefore S̃ admits a decompo-

sition S̃ = M − A into a càdlàg ▲2 martingale minus an increasing process. For the
original process we therefore get the equality also on an almost sure level, i.e.

∀t ∈ [0, 1] : St = Mt − At, a.s. (7.16)

Since A is an increasing process, it is of finite variation as well.
Let now N be a càdlàg square integrable martingale and take an arbitrary sequence

(σn)n≥1 of partitions tending to the identity and chosen in Π, then we have (using
weak convergence)

lim
n→∞

E(N σn · Aσn)1] = lim
n→∞

E[
n−1

i=0

Nti(Sti+1
− Sti)] = (7.17)

lim
n→∞

E[N1

n−1

i=0

E[Sti+1
− Sti | Fti ]] = E[N1A1], (7.18)

since

E[
n−1

i=0

Nti(Sti+1
− Sti)]

first E[|Fti ]=

n−1

i=0

E[(Nti −N1)E[Sti+1
− Sti |Fti ]] + E[N1E[Sti+1

− Sti |Fti ]] =

E[
n−1

i=0

N1E[Sti+1
− Sti |Fti ]].

So what we proved is that for an ▲2 càdlàg martingale N we have

lim
n→∞

E[(N σn · Aσn)1] = E[N1A1] (7.19)

which is naturality. Doing the same for any t < 1 we get an equation like

lim
n→∞

E[(Nσn− · Aσn)t] = E[NtAt]. (7.20)
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Assume now you have another decomposition of S = M2−A2 withM2 being a càdlàg
▲

2 martingale and A2 an increasing process. We then get M − A = M2 − A2 and
therefore M −M2 = A2 − A being a càdlàg ▲2 martingale. Using this in equation
(7.20) we obtain

E[(A2 − A)2t ] = lim
n→∞

E[((A2 − A)σn− · (A2 − A)σn)t] = 0.

So we have that A2 and A are versions from each other, meaning A is unique up to
version. We get the same for M but since it is càdlàg this extends to indistinguisha-
bility. Predictability of A follows by general facts on natural processes, which we
proved for A in (7.19) already.

Now we are left with proving ii).
For this sake let S be a non-negative super-martingale such that there exists a

sequence of stopping times τn with

Sτn = S ∧ n+ (Sτn − n)✶[τn,1),

like in our assumption, in particular E[Sτn ] ≤ E[S0].
First of all, S ∧ n is a bounded, non-negative supermartingale, so by i) we get a

decomposition. The second term can be written as

(Sτn − n− E[Sτn − n])✶[τn,1) + E[Sτn − n]✶[τn,1). (7.21)

Here, the first part in the sum is a martingale and the second sum is by our assump-
tion a decreasing process if n ≥ E[S0], so for large enough n.
Therefore, for large enough n we have a decomposition into a càdlàg martingale

Mn minus a non-decreasing finite variation process An, i.e.

Sτn = Mn − An.

The decomposition is also unique up to versions w.r.t. An and indistinguishability
w.r.t. Mn. This means that for n ≥ m we have

(Mn)τm = Mm, and (An)τm = Am.

With this we can define a càdlàg local martingaleM and an increasing finite variation
process A such that

S = M − A,

where the decomposition is unique up to version w.r.t. A and unique w.r.t. indistin-
guishability w.r.t. M .
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8 Appendix

In a rather extensive appendix a guided tour through probability theory, martingale
theory and stochastic integration in Banach spaces is given. The first two sections are
rather important since they build the foundation of the generalization of real-valued
stochastic processes to stochastic processes with values in Banach spaces. Most of
the remaining sections are not too relevant for the sake of reading this thesis, however
they summarise already existing very general stochastic integration theory and played
a crucial role for gaining ideas of this thesis, especially for Chapters 3 and 4.
Most results and notes are based on and taken from [vVW15] by Jan van Neerven,

Mark Veraar and Lutz Weis, [vNVW07] by van Neerven, Veraar and Weis, [Pis11]
by Gilles Pisier, [vN07] by van Neerven and [Pro72].
If a definition or a theorem is cited the reference will be included in brackets right

next to it.

8.1 Probability Theory in Banach spaces

Here, we will introduce some basic concepts and definitions of probability theory in
Banach spaces in order to talk about expectation, martingales, etc. It will be based
on [Pro72].

Let (Ω,A,P) be a complete (i.e. A contains all P nullsets) probability space and
(E,B) be a measurable space. Here E is a Banach space and B denotes the σ−algebra
of all Borel subsets of E generated by the open sets in E. We start with some
definitions.

Definition 8.1. [Pro72, Definition 1.10] A map X : Ω → E is a random variable
with values in E, if for all Borel sets B ∈ B we have X−1(B) ∈ A.
Given a σ−algebra G ⊂ A, a random variable is called measurable with respect to

G if X−1(B) ∈ G for all B ∈ B.
Definition 8.2. [Pro72, Definition 1.11] X : Ω → E is called a finitely valued
random variable or a simple random variable, if there are finitely many disjoint sets
B1, . . . , Bn ∈ B such that X is constant on Bi for all i = 1, . . . , n and 0 on Ω \
(∪n

i=1Bi).

One can define this for a general measure instead of a probability measure but
since we will only need it for probability spaces we define it in this setting.
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Definition 8.3. [Pro72, Definition 1.12] X : Ω → E is said to be a P−almost
separably valued random variable if there exists a set B0 ∈ B such that P[B0] = 0 and
X(Ω \B0) is separable.

Now we can also define strong measurability which is the crucial concept of mea-
surability in Banach spaces.

Definition 8.4 (strong or Bochner random variable). [Pro72, Definition 1.13]
X : Ω → E is said to be a strong random variable, or also called a Bochner ran-
dom variable, if there exists a sequence (Xn)n≥1 of simple random variables which
converges almost surely to X, i.e.

lim
n→∞

Xn −X = 0, P− a.s.

Of course, if there are strong measurable random variables, there have to be weak
ones as well.

Definition 8.5 (weak or Pettis random variable). [Pro72, Definition 1.14] X : Ω →
E is called a weak random variable, also called a Pettis random variable, if for all
x∗ ∈ E∗ the functions x∗(X) are real-valued random variables.

There is the following connection between weak and strong random variables.

Theorem 8.6. [Pro72, Theorem 1.2] X : Ω → E is a strong random variable if and
only if it is a weak random variable and P−almost separably valued.

In the case when E is a separable Banach space the σ−algebra generated by the
set of all spherical neighbourhoods of E is equal to the Borel σ−algebra B. We
then have that all definitions of being a random variable in some way are equivalent,
so we can talk about Banach space valued random variables or E−valued random
variables. Therefore, when we only say Banach space valued random variables we
always implicitly assume the Banach space to be separable.

Definition 8.7. [Pro72, Definition 1.18] Let X, Y be two E−valued random vari-
ables on the same probability space. X and Y are said to be equivalent if

P[{ω : X(ω) ∈ B} {ω : Y (ω) ∈ B}] = 0.

In the case when E is separable, equivalence means that X and Y are equal with
probability one, i.e.

P[{ω : X(ω) = Y (ω)}] = 0.

Next, we cite a definition concerning some means of convergence of Banach space
valued random variables.
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Definition 8.8. [Pro72, Definition 1.20] Let (Xn)n≥1 be a sequence of E−valued
random variables and X be a E−valued random variable. We say (Xn)n≥1 converges
to X in Ω

i) strongly almost surely if there exists a P−nullset B ∈ B such that

lim
n→∞

Xn(ω)−X(ω) = 0, ∀ω ∈ Ω \B;

ii) weakly almost surely if there exists a P−nullset B ∈ B such that

lim
n→∞

x∗(Xn(ω)) = x∗(X(ω)); ∀x∗ ∈ E∗, ω ∈ Ω \B;

iii) in probability if

∀ > 0 : lim
n→∞

P∗[{ω : Xn(ω)−X(ω) > ] = 0,

where P∗ denotes the outer measure of P.

Now we can turn our attention to the important definition of the Bochner integral.
As usual, first it is defined for simple functions and then generalized to more general
functions via an approximation.

Definition 8.9. [Pro72, Definition 1.23] A simple random variable X is called
Bochner integrable if and only if X ∈ ▲

1(Ω). We then define

Ω

X(ω) dP(ω) :=
∞

i=1

xiP[Bi ∩ Ω],

where X(ω) = xi on Bi ∈ B, i ∈ N.
The integral over a measurable set A ∈ B is then defined via

B

X(ω) dP(ω) :=
Ω

X(ω)✶B(ω) dP(ω).

Concerning the notation we will mostly omit the ω. From the definition we get
the immediate inequality

Ω

X(ω) dP(ω) ≤
Ω

X(ω) dP(ω). (8.1)

Definition 8.10 (Bochner integral). [Pro72, Definition 1.24] X is said to be Bochner
integrable if there exists a sequence of simple random variables (Xn)n≥1 converging
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to X almost surely such that

lim
n→∞ Ω

Xn(ω)−X(ω) dP(ω) = 0.

We then define

Ω

X(ω) dP(ω) := lim
n→∞ Ω

Xn(ω) dP(ω).

We can define the integral as a limit because by inequality (8.1) the integrals of
the simple random variables form a Cauchy sequence obtaining a limit in E.

Remark 8.11. For a Bochner integrable random variable X we have for all x∗ ∈ E∗

x∗
Ω

X dP =
Ω

x∗(X) dP

Next we can define the expected value of a strong random variable.

Definition 8.12. [Pro72, Definition 1.25] The expected value of a strong random
variable X which is Bochner integrable is defined as

E[X] :=
Ω

X(ω) dP(ω).

This expectation is often also referred to as strong expectation.
We state the following theorem giving a necessary and sufficient condition for a

random variable to be integrable.

Theorem 8.13. [Pro72, Theorem 1.8] E[X] exists for X : Ω → E if and only if X
is a strong random variable and E[ X ] < ∞.

Similar to the real-valued case we define ▲1(Ω;E) as the set of all E−valued
random variables which are Bochner integrable. However we consider elements as
equivalence classes w.r.t. the then becoming a norm an that space

X ▲1(Ω;E) :=
Ω

X(ω) dP(ω) = E[ X ].

▲
1(Ω;E) becomes a Banach space with that norm.
For p ∈ (1,∞) we do it similarly and define ▲p(Ω;E) as the set of all E−valued

random variables X (identified up to almost sure equivalence) such that

lim
n→∞ Ω

Xn(ω)−X(ω) p dP(ω) = 0
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for some sequence (Xn)n≥1 of simple random variables. They become Banach spaces
when equipped with the norm

X ▲p(Ω;X ) :=
Ω

X(ω) p dP(ω)
1/p

.

The last space we define is ▲∞(Ω;E) which is the set of all strong random variables
X (identified up to almost sure equivalence) such that X ∈ ▲

∞(Ω).
There is the following well known theorem as in the real-valued case.

Theorem 8.14. For p ∈ [1,∞] the spaces ▲p(Ω;E) and ▲∞(Ω;E) are Banach spaces
and the simple random variables are dense in ▲p(Ω;E).

The usual properties like linearity, monotonicity, etc. hold for the expectation, but
we also state the form of dominated convergence in this case.

Theorem 8.15. [Pro72, page 23, 4.] If a sequence {Xn}n≥1 ⊂ ▲
1(Ω;E) converges

almost surely to a random variable X and there exists a nonnegative random variable
Y ∈ ▲

1(Ω) such that Xn ≤ Y a.s. for all n ∈ N, then we have X ∈ ▲
1(Ω;E) and

lim
n→∞

E[Xn] = E[X].

We also state the following theorem which allows exchanging of expectation and
linear operators.

Theorem 8.16. [Pro72, Theorem 1.9] Let L be a closed linear operator on E onto
itself. Suppose E[X] and E[L(X)] exist, then we have L(E[X]) = E[L(X)].

Remark 8.17. Given two Banach spaces E, F and a linear operator T : E → F
we call T closed if for all sequences {xn}n≥1 ⊂ E such that xn → x ∈ E and
Txn → y ∈ F it follows that Tx = y.

In the following we will define the conditional expectation of Banach space valued
random variables. For this sake fix a sub σ−algebra G ⊂ B.
Definition 8.18. [Pro72, Definition 1.27] Given a random variable X ∈ ▲

1(Ω;E)
we call a strong random variable E[X | G] the conditional expectation of X relative
to G if it satisfied the following two conditions:

i) E[X | G] is measurable w.r.t. G and an element of ▲1(Ω;E);

ii) for every A ∈ G it holds

A

E[X | G](ω) dP(ω) =
A

X(ω) dP(ω).
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Also for the conditional expectation the usual properties hold, but we state again
two theorems which might be useful including a dominated convergence theorem.

Theorem 8.19. [Pro72, page 24, 5.] Let L be a bounded linear operator from E
onto itself. Then it holds that

L(E[X | G]) = E[L(X) | G], a.s.

Theorem 8.20. [Pro72, page 24, 6.] Let Xn → X strongly a.s. and assume there
exists a nonnegative random variable Y ∈ ▲

1(Ω) such that Xn ≤ Y a.s., then we
have

lim
n→∞

E[Xn | G] = E[X | G].

The next topic we introduce are Banach space-valued processes. We again con-
sider a measurable space (E,B) with E being a separable Banach space and B the
σ−algebra of Borel subsets of E, but we also consider a measurable space (T, T ),
where T is a subset of the extended real line R (think of R≥0 ∪∞ or N and T is the
σ−algebra of Borel subsets of T ).

Definition 8.21. An E−valued stochastic process is a map X : T × Ω → E such
that for every t ∈ T , X(t, ·) is an E−valued random variable.
Given a filtration F = (Ft)t∈T an E−valued stochastic process is adapted if for all

t ∈ T , Xt(·) := X(t, ·) is Ft−measurable.

We call two stochastic processes X, Y versions of each other if
X(t, ·) = Y (t, ·) a.s. ∀t ∈ T . For technicalities we also state the following definition.

Definition 8.22. [Pro72, Definition 1.36] An E−valued stochastic process X is said
to be separable if there exists a countable subset S ⊂ T and B ∈ B with P[B] = 0,
such that for all events {ω : X(t, ω) ∈ F ; t ∈ I ∩ T} where F ⊂ E is closed and I
an open interval we have that for the symmetric difference it holds

{ω : X(t, ω) ∈ F, t ∈ I ∩ S} {ω : X(t, ω) ∈ F, t ∈ I ∩ T} ⊂ B.

Definition 8.23. [Pro72, Definition 1.37] A measurable map X : (T ×Ω, T ⊗F) →
(E,B) is called a measurable E−valued stochastic process.

There is also an analogue to Fubini’s theorem.

Theorem 8.24 (Fubini). [Pro72, Theorem 1.11] Let X be Bochner integrable on
T × Ω. Then the functions Y (ω) :=

T
X(t, ω) dλ(t) and Z(t) :=

Ω
X(t, ω) dP(ω)

are defined almost everywhere on Ω and T , respectively, and it holds that

T×Ω

X(t, ω) d(λ× P)(t, ω) =
T

Z(t) dλ(t) =
Ω

Y (ω) dP(ω).
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We also state some concepts of continuity.

Definition 8.25. [Pro72, Definition 1.38] Let X be a separable E−valued stochastic
process and t0 ∈ T . Define

Ωt0 := {ω : X(t0, ω) = lim
t→t0

X(t, ω)},

where the limit is taken in strong (respectively weak) sense. X is said to be strongly
(respectively weakly) continuous a.s. at t0 if P[Ωt0 ] = 0. X is said to be strongly
(respectively weakly) continuous a.s. on T if it is strongly (respectively weakly) con-
tinuous a.s. at every t ∈ T .

As last point we define martingales. Therefore, T is either an interval of the
extended real line or the extended real line. Furthermore let (Ft)t∈T be an increasing
sequence of sub σ−algebras of F . Let X be an E−valued stochastic process with
values in a separable Banach space E.

Definition 8.26 (Martingales). [Pro72, Definition 1.38] An E−valued stochastic
process X which is adapted to (Ft)t∈T is said to be a Banach space valued martingale
if

i) E[ Xt ] < ∞, ∀t ∈ T and

ii) ∀s, t ∈ T, s.t. s < t we have E[Xt | Fs] = Xs a.s.

If in addition, it holds for all t ∈ T that E[ Xt
p] < ∞ we call X an E−valued

▲
p−martingale.

Having martingales at hand we will define the discrete stochastic integral which is
just the martingale transform.

Definition 8.27. Let X = (Xi)
n
i=1 an E−valued martingale and H = (Hi)

n
i=1 a

predictable and real-valued process. The martingale transform of X by H is defined
as (H ·X) := ((H ·X)i)

n
i=1 via

(H ·X)i :=
i

k=1

Hk(Xk −Xk−1), k = 1, . . . , n,

where we set X0 = 0.

One can also show Doob inequalities for Banach space valued martingales and a
convergence theorem. For this sake we fix a finite time E−valued martingale, i.e.
X = (Xi)

n
i=1. We will define the running maximum via

X∗
n : Ω → R+ : ω → max

1≤i≤n
Xi(ω) .
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We can formulate the respective Doob theorems in the setting which mostly follow
from the real-valued case. For details we can refer to [Pis11, Chapter 1] and [vN07,
Chapter 11].

Theorem 8.28 (Doob inequalities). [vN07, Theorem 11.20] For λ > 0 we have

P[X∗
n > λ] ≤ 1

λ
E[ Xn ].

If p ∈ (1,∞) and Xn ∈ ▲
p(Ω;E) we have X∗

n ∈ ▲
p(Ω;E) and

X∗
n p ≤ p

p− 1
Xn p.

Theorem 8.29 (convergence theorems). [vN07, Theorem 11.22] Let (Xn)n∈N be an
▲

1−bounded E−valued martingale. For an E−valued random variable X the follow-
ing are equivalent:

i) ∀x∗ ∈ E∗ : x∗(Xn) → x∗(X), a.s.

ii) ∀x∗ ∈ E∗ : x∗(Xn) → x∗(X), in probability

iii) Xn → X a.s.

iv) Xn → X in probability.

If for some p ∈ [1,∞) in addition, we have X ∈ ▲
p(Ω;E) then it holds Xn ∈ ▲

p(Ω;E)
for all n ∈ N and we have Xn → X in ▲p(Ω;E).

8.2 Radonifying Operators

In the next sections we will give a tour through already existing stochastic integration
theory in Banach spaces. For this sake one needs to talk about radonifying operators
which we will introduce in the following via [vNVW07], [vN07] and [vVW15]. For
the interested reader the most detailed reference are the lecture notes [vN07].
In order to come to radonifying operators we will first introduce summing opera-

tors. In the following H denotes a Hilbert space and (γn)n≥1 a Gaussian sequence, i.e.
a sequence of independent standard Gaussian random variables (i.e. i.i.d. N (0, 1)).
We start with the definition of γ−summing operators.

Definition 8.30. [vN07, Definition 5.1] A linear operator T : H → E is said to be
γ−summing if for some p ∈ [1,∞) we have

T γ∞
p (H,E) := sup E

n

i=1

γiThi
p

1/p

< ∞
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where the supremum is taken over all finite orthonormal systems {h1, . . . , hn}.
For p = 2, we set T γ∞(H,E) := T γ∞

p (H,E).
The space γ∞(H,E) is the space of all γ−summing operators.

Remark 8.31. If an operator is γ−summing for a p ∈ [1,∞) this is actually already
equivalent to being γ−summing for all p ∈ [1,∞). A detailed proof of this can be
found in [vN07] as well.

Theorem 8.32. [vN07, Proposition 5.2] γ∞(H,E) is a Banach space.

Now we can turn towards radonifying operators. We denote by H ⊗X the linear
space of all finite rank operators from H to X. That means T ∈ H⊗X if T : H → X
is a linear and bounded operator whose range is finite-dimensional. If the dimension
is n it is said to have rank n. Such an operator can be written as

Th =
n

i=1

h , vi ui, ∀h ∈ H

for some vi ∈ H, ui ∈ X, i = 1, . . . , n. For the map · , vi ui we also write vi ⊗ ui.
Then the operator looks like

T =
n

i=1

vi ⊗ ui.

The v1, . . . , vn can also be assumed to be orthonormal by a Gram-Schmidt process
argument. It follows immediately that a finite rank operator T is an element of
γ∞(H,E). Actually we have

Lemma 8.33. [vN07, Lemma 5.7] Let T = n
i=1 vi ⊗ ui be a finite rank operator.

Then we have for all p ∈ (1,∞)

T p
γ∞
p (H,E) = E

n

i=1

γiui
p

.

We also define the space of radonifying operators.

Definition 8.34. [vN07, Definition 5.8] The Banach space γ(H,X) is defined as the
completion of H ⊗X in γ∞(H,E).

γ(H,X) is a Banach space by definition and for T ∈ γ(H,E) we write for the norm

T γ(H,E) := T γ∞(H,E).

We can also extend this definition towards p ∈ [1,∞) (however, for p = 2 we will
always write just γ(H,X)) and call the space γp(H,X) and the norm respectively if
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we use the Kahane-Khintchine inequality which tells that for all 0 < p, q < ∞ there
exists κq,p ≥ 0 such that

E
N

n=1

γnxn
q

1/q

≤ κq,p E
N

n=1

γnxn
p

1/p

. (8.2)

This tells us that the norms are equal and γp(H,E) = γq(H,E).
The identity on H ⊗ X extends to an injective and contractive embedding of

γ(H,X) into L(H,X), the space of all bounded linear operators from H to X. So we
can identify γ(H,X) as a linear subspace of L(H,X). With this we call a bounded
operator T ∈ L(H,X) γ− radonifying if it belongs to γ(H,X). In the case when H
would be separable, T would be γ−radonifying if there exists an orthonormal basis
(hn)n≥1 in H such that n≥1 γnThn converges in ▲

2(Ω;X). Then its norm would
look like (in the case of p = 2)

T γ(H,X) = E
n≥1

γnThn
2

1/2

.

Actually it will turn out that it is enough to consider separable Hilbert spaces in the
following.
We have the following characterisation concerning measurability.

Theorem 8.35. [vN07][Proposition 5.14] Let (A,A, µ) be a σ−finite measure space
and H be a separable Hilbert space. Let Φ : A → γ(H,E) and define Φh : A →
E, ζ → (Φh)(ζ) := Φ(ζ)h. Then the following are equivalent

i) Φ is strongly µ−measurable;

ii) Φh is strongly µ−measurable for all h ∈ H.

Remark 8.36. (see also [vNVW07, Proposition 2.6]) For a σ−finite measure space
(S,Σ, µ) we can associate a map
f ∈ ▲

p(µ; γp(H,E)) for p ∈ [1,∞) with the mapping

H → ▲
p(µ;E) : h̃ → f(·)h̃

to define an isometric isomorphism

Fγp : ▲p(µ; γp(H,E)) → γp(H,▲p(µ;E)) : f → (Fγp(f)(h)(s) := f(s)h)

and see that the following Banach spaces are isomorphic

γp(H,▲p(µ;E)) ▲
p(µ; γp(H;E)).
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For this one can apply Fubinis theorem and use the Kahane-Khintchine inequality.
(For p = 2 one can prove it with equalities, otherwise two inequalities.)

8.3 Wiener integral (deterministic integrands)

All vector spaces in the following are real, H and H stand for fixed Hilbert spaces.
We also fix a filtered probability space (Ω,F ,F = (Ft)t≥0,P).
By a little abuse of notation for a Banach space E we will write x , x∗ := x∗(x) for

x ∈ E, x∗ ∈ E∗. With L(H,E) we will denote the space of bounded linear operators
from H to E and we will identify its adjoint operator as an element of L(E∗, H) by
the identification H H∗.

Definition 8.37. [vN07, Definition 6.1] An E−valued stochastic process (Xi)i∈I is
called Gaussian if for all n ≥ 1 and for all finitely many indices i1, . . . , in ∈ I we
have that the En−valued random variable (Xi1 , . . . , Xin) is Gaussian.
Here, an E−valued random variable X is Gaussian if for all x∗ ∈ E∗ the random

variables x∗(X) are Gaussian.

Definition 8.38. [vN07, Definition 6.8] Two processes X = (Xi)i∈I , Y = (Yi)i∈I
are called versions of each other if for all i ∈ I we have Xi = X̃i, a.s.

Definition 8.39. [vNVW07, Definition 2.1] An H−isonormal process is a bounded
linear map W : H → ▲

2(Ω) such that:

i) ∀h ∈ H : Wh is Gaussian,

ii) ∀h1, h2 ∈ H : E[Wh1 ·Wh2] = h1 , h2 .

For every Hilbert space it is known that there actually exists an isonormal process.
The random variables Wh, h ∈ H are jointly normal distributed, since every linear

combination

n

i=1

ciWhi = W
n

i=1

cihi

is normally distributed. So we have that if h1, . . . , hn are orthogonal then
Wh1, . . . ,Whn are independent.
Definition 8.39 allows to generalize Brownian motions.

Definition 8.40. [vN07, Definition 2.2] An H−cylindrical Brownian motion is an
▲

2(R+;H)−isonormal process.
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We will denote an H−cylindrical Brownian motion by WH and sometimes just by
W . For h ∈ H we define

WH(t)h := WH(✶(0,t) ⊗ h).

We then have that for each h ∈ H (WH(t)h)t≥0 is a Brownian motion.
After this, we turn our attention to defining a stochastic integral for suitable Φ :

R+ → L(H,E) w.r.t. WH .

Definition 8.41. see also [vNVW07, Section 4.1] Let W be an H−cylindrical Brow-
nian motion. Φ : R+ → H ⊗ E is called an elementary function if it is a linear
combination of functions like ✶(s,t] ⊗ (h ⊗ x) where 0 ≤ s < t < ∞, h ∈ H and
x ∈ E. For a part of this elementary function we define the stochastic integral with
respect to W as

∞

0

✶(s,t] ⊗ (h⊗ x) dW := W (✶(s,t] ⊗ h)⊗ x = (W (t)h−W (s)h)⊗ x (8.3)

and extend this definition for elementary functions by linearity.

Remark 8.42. With this we have a stochastic integral for maps Φ : R+ → H ⊗ E
and get back a map looking like ▲2(Ω) → E.

Any step function Φ : R+ → L(H,E) uniquely defines a bounded operator RΦ ∈
L(▲2(R+;H), E) via

RΦf :=
∞

0

Φ(t)f(t) dt, f ∈ ▲
2(R+;H).

Theorem 8.43 (Itô isometry). [vN07, Theorem 6.14] For all finite rank step func-

tions Φ : R+ → L(H,E) we have RΦ ∈ γ(▲2(R+;H), E),
T

0
Φ dW is a Gaussian

random variable and

E
∞

0

Φ dW
2

= RΦ
2
γ(▲2(R+;H),E).

With this isometry we can define the linear map

JW : RΦ →
∞

0

Φ dW.

This map uniquely extends to the isometric embedding

JW : γ(▲2(R+;H), E) → ▲
2(Ω;E).

This allows to make the following definition.
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Definition 8.44. For an operator R ∈ γ(▲2(R+;H), E) we define the stochastic
integral as JW (R).

We still need to recognise the L(H,E)−valued functions which the operator rep-
resents.
We define for Φ : R+ → L(H,E) and x∗ ∈ E∗

Φ∗x∗ : R+ → H : t → (Φ∗x∗)(t) := Φ∗(t)x∗

where Φ∗(t) := (Φ(t))∗.

Definition 8.45. [vN07, Definition 6.15] Φ : R+ → L(H,E) is stochastically inte-
grable w.r.t. W if there exists a sequence of finite rank step functions Φn : R+ →
L(H,E) such that

i) ∀h ∈ H : Φnh → Φh in measure, and

ii) ∃X an E−valued random variable, s.t. limn→∞
∞
0

Φn dW = X in probability.

The stochastic integral of a stochastically integrable function Φ is then defined as the
limit in probability

∞

0

Φ dW := lim
n→∞

∞

0

Φn dW.

Remark 8.46. The condition ii) in the definition of convergence in probability is
equivalent to convergence in ▲p(Ω, E) for some or equivalently all p ∈ [1,∞).

To get a final characterization of stochastically integrable processes we state an-
other definition concerning measurability suitable for this situation.

Definition 8.47. Φ : R+ → L(H,E) is called scalarly measurable if the function
Φ∗x∗ is strongly measurable for all x∗ ∈ E∗.
Φ is called H−strongly measurable if for all h ∈ H Φh is strongly measurable. If

clear from context we will just call Φ strongly measurable.

With this we have the following theorem characterizing the definition of a process
being stochastically integrable.

Theorem 8.48. [vN07, Theorem 6.17] Let Φ : R+ → L(H,E) be H−strongly mea-
surable. Then the following are equivalent:

i) Φ is stochastically integrable w.r.t. W ;

ii) Φ∗x∗ ∈ ▲
2(R+;H) for all x∗ ∈ E∗ and there exists an E−valued random vari-

able X such that for all x∗ ∈ E∗ it holds

X , x∗ =
∞

0

Φ∗x∗ dW ; a.s.;
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iii) Φ∗x∗ ∈ ▲
2(R+;H) ∀x∗ ∈ E∗, and there exists an operator

R ∈ γ(▲2(R+;H), E), s.t. ∀f ∈ ▲
2(R+;H), x∗ ∈ E∗ it holds that

Rf , x∗ =
∞

0

Φ(t)f(t) , x∗ dt.

If these equivalent conditions are satisfied, X and R are uniquely determined and we
have X =

∞
0

Φ dW almost surely and

E
∞

0

Φ dW
2

= R 2
γ(▲2(R+;H),E) = X 2

▲2(Ω);E.

With this we end the section by the following definition.

Definition 8.49. In the situation of the theorem we say that Φ represents the oper-
ator R.

8.4 UMD spaces

UMD spaces are essentially the spaces in which the stochastic integration theory de-
veloped in [vNVW07], [vVW15] and [vN07] works. First we remember the definition
of martingale difference sequences which was also needed in Chapter 3.

Definition 8.50. Let (Mn)n∈N be an E−valued martingale. The sequence (dn)n∈N
defined by dn := Mn −Mn−1 where we set M0 := 0 is called the martingale difference
sequence associated with (Mn)n∈N.
It is called an ▲p−martingale difference sequence if (Mn)n∈N is an ▲p−martingale.

Having this, UMD spaces are defined as follows.

Definition 8.51. [vVW15, Definition 5.2] A Banach space E is called an UMD
space if for some p ∈ (1,∞) there is a constant β ≥ 0 such that for all E−valued
▲

p−martingale difference sequences (dn)n≥1 and all signs ( n)n≥1 one has

E
N

n=1

ndn
p ≤ βpE

N

n=1

dn
p , ∀N ≥ 1. (8.4)

The least admissible constant will be denoted by βp,E.

Remark 8.52. Actually the existence of a p ∈ (1,∞) in the definition is already
equivalent that it holds for all p ∈ (1,∞). See also [vN07, Section 12.2] for details.

Some examples of UMD spaces are Hilbert spaces and ▲p(µ) for p ∈ (1,∞). Also
E is an UMD space if and only if its dual E∗ is an UMD space.
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We end this section by a reverse estimate of martingale differences in UMD spaces.
Namely one can apply the inequality in the definition of UMD spaces to the martin-
gale difference sequence ( ndn)n≥1 and get

E
N

n=1

dn
p ≤ βp

p,EE
N

n=1

ndn
p

, ∀N ≥ 1. (8.5)

8.5 Itô integral

Here we will cite some introductions into stochastic integration using UMD spaces.
For this sake we fix p ∈ (1,∞).
In many of the theorems a certain decoupling technique is necessary which gives an

independent copy of the cylindrical Brownian motion on another probability space.
With respect to the copy of the cylindrical Brownian motion one can estimate its
▲

p−norms path-by-path w.r.t. Ω.
In order to formulate this in a theorem we consider a filtered probability space

(Ω,F ,P) and independent copies (Ω̃, F̃ , P̃). We identify the filtrations F and F̃
on Ω × Ω̃ with F × {∅, Ω̃} and {∅,Ω} × F̃ . Similarly random variables ξ and ξ̃
on Ω and Ω̃ are identified with random variables on Ω × Ω̃ as ξ(ω, ω̃) := ξ(ω) and
ξ̃(ω, ω̃) := ξ̃(ω̃).

Theorem 8.53. [vVW15, Theorem 5.4] Let E be an UMD space and let p ∈ (1,∞).
Let (ηn)n≥1 be an F−adapted sequence of centered random variables in ▲

p(Ω) such
that for each n ≥ 1, ηn is independent of Fn−1. Let (η̃n)n≥1 be an independent
F̃−adapted copy of this sequence in ▲p(Ω̃). Finally let (νn)n≥1 be an F−predictable
sequence in ▲∞(Ω;E). Then, for all N ≥ 1,

1

βp
p,E

E Ẽ
N

n=1

νnη̃n
p ≤ E Ẽ

N

n=1

νnηn
p ≤ βp

p,EE Ẽ
N

n=1

νnη̃n
p

.

Having looked at this theorem one starts defining a stochastic integral as always for
some kind of elementary process. In this setting those are introduced in the following
definition.

Definition 8.54. [vNVW07, Section 2.4] A process Φ : R+ × Ω → L(H,E) is said
to be elementary adapated to the filtration F = (Ft)t≥0 if it is of the form

Φ(t, ω) =
N

n=1

M

m=1

✶(tn−1,tn]×Amn(t, ω)
K

k=1

hk ⊗ xkmn, (8.6)

where 0 ≤ t0 < . . . < tn and the sets A1n, . . . , AMn ∈ Ftn−1 are disjoint for each
n and the vectors h1, . . . , hK ∈ H are orthonormal. It is also called a finite rank
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adapted process w.r.t. F.

In the following we also fix an H−cylindrical Brownian motion W on (Ω,F ,P)
adapted to F in the sense that the increments W (t)h−W (s)h are independent of Fs

for all h ∈ H and s < t.
Now we can define the stochastic integral w.r.t. W of elementary adapted func-

tions, also called random simple functions as in [vN07, Section 13.2].

Definition 8.55. For Φ as above we define the stochastic integral w.r.t. W via

∞

0

✶(s,t]×F (h⊗ x) dW := ✶FW (✶(s,t] ⊗ h)⊗ x

and extend it via linearity.

Remark 8.56. Written out the stochastic integral for Φ looks like

∞

0

Φ(t) dW (t) =
M

m=1

N

n=1

✶Amn

K

k=1

(W (tn)hk −W (tn−1)hk)xkmn.

We get that
∞
0

Φ dW ∈ ▲
p(Ω,F∞;E) for all p ∈ [1,∞) and

E
∞

0

Φ(t) dW (t) = 0.

For ω ∈ Ω the trajectory t → Φω(t) := Φ(t, ω) is a finite rank step function and
therefore defines an element RΦω ∈ γ(▲2(R+;H), E). Therefore, we obtain a random
variable

RΦ : Ω → γ(▲2(R+;H), E).

With this at hand one can prove the following Itô isomorphism.

Theorem 8.57 (Itô isomorphism). [vVW15, Theorem 5.5] Let E be an UMD space
and p ∈ (1,∞). For all adapted elementary processes Φ : R+ × Ω → H ⊗ E we have

1

βp,E

Φ ▲p(Ω;γp(▲2(R+;H),E)) ≤
∞

0

Φ dW
▲p(Ω;E)

≤ βp,E Φ ▲p(Ω;γp(▲2(R+;H),E)).

(8.7)

Remark 8.58. The isomorphism can be used to obtain an equivalence of norms.
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One just applies Doob’s inequality for p ∈ (1,∞) to obtain

1

βp,E

Φ ▲p(Ω;γp(▲2(R+;H),E)) ≤ E sup
t≥0

t

0

Φ dW
p

1/p

≤ (8.8)

≤ p

p− 1
βp,E Φ ▲p(Ω;γp(▲2(R+;H),E)). (8.9)

To make the step towards more general processes we will define adapted processes
in this setting.

Definition 8.59. [vN07, Definition 13.3] A random variable
R ∈ ▲

p(Ω; γ(▲2(R+;H), E)) is called adapted if it is in the closure in
▲

p(Ω; γ(▲2(R+;H), E)) of the finite rank adapted processes.
This closed subspace we will denote by ▲p

F(Ω; γ(▲
2(R+;H), E)).

Remark 8.60. We see how the stochastic integral defines an isomorphic embedding

I : ▲p
F(Ω; γ(▲

2(R+;H), E)) → ▲
p(Ω;E). (8.10)

The stochastic integral defines also an isomorphic embedding of
▲

p
F(Ω; γ(▲

2(R+;H), E)) into ▲p(Ω;Cb(R+;E)).

With this one can make the following definition of a process being stochastically
integrable.

Definition 8.61. [vN07, Definition 13.4] Fix p ∈ (1,∞). Φ : R+ × Ω → L(H,E) is
called ▲p−stochastically integrable w.r.t. W if there exists a sequence of finite rank
adapted step processes Φn s.t.

i) ∀h ∈ H : Φnh → Φh in measure, and

ii) ∃X ∈ ▲
p(Ω;E) such that

∞
0

Φn dW → X in ▲p(Ω;E).

The ▲p−stochastic integral of Φ w.r.t. W is then defined by

∞

0

Φ dW := lim
n→∞

∞

0

Φn dW in ▲
p(Ω;E).

One can also look at the integral process which turns out to be a martingale again
and for which we can as usually estimate its running maximum.

Theorem 8.62. [vN07, Theorem 13.5] Let p ∈ (1,∞). If Φ is ▲p−stochastically
integrable w.r.t. W , then the stochastic integral process

t

0

Φ dW
t≥0
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is an E−valued martingale which has a continuous version satisfying

E sup
t≥0

t

0

Φ dW
p ≤ p

p− 1

p

E
∞

0

Φ dW
p

.

We will define strongly measurable processes in this setting and give a characteri-
zation if they are ▲p stochastically integrable with respect to a cylindrical Brownian
motion.

Definition 8.63. [vN07, Definition 13.6] Φ : R+ × Ω → L(H,E) is called an
H−strongly measurable process if for all h ∈ H the map

Φh : R+ × Ω → E, (t, ω) → Φh(t, ω) := Φ(t, ω)h

is strongly measurable.

Theorem 8.64. [vN07, Theorem 13.7] For an H−strongly measurable adapted pro-
cess Φ the following are equivalent:

i) Φ is ▲p−stochastically integrable w.r.t. W ;

ii) Φ∗x∗ ∈ ▲
p(Ω;▲2(R+;H)) for all x∗ ∈ E∗ and there exists X ∈ ▲

p(Ω;E) s.t.
for all x∗ ∈ E∗

X , x∗ =
∞

0

Φ∗x∗ dW in ▲
p(Ω).

iii) Φ∗x∗ ∈ ▲
p(Ω;▲2(R+;H)) for all x∗ ∈ E∗ and there exists

R ∈ ▲
p(Ω; γ(▲2(R+;H), E)) s.t. for all f ∈ ▲

2(R+;H), x∗ ∈ E∗

Rf , x∗ =
∞

0

Φ(t)f(t) , x∗ dt in ▲
p(Ω).

In this case, X and R are uniquely determined and we have X =
∞
0

Φ dW and

E
∞

0

Φ dW
p

p,E E R p
γ(▲2(R+;H),E) .

Moreover, R ∈ ▲
p
F(Ω; γ(▲

2(R+;H), E)), which means R is adapted.

With this we can even characterize processes in ▲p(Ω,FW
∞ ;E) via their expectation

and a stochastic integral.

Theorem 8.65. [vN07, Theorem 13.9] For X ∈ ▲
p(Ω,FW

∞ ;E) there exists a unique
R ∈ ▲

p
FW (Ω; γ(▲2(R+;H), E)) such that

X = E[X] + JW (R).

77



8 Appendix

With this we obtain an isomorphism of Banach spaces.

JW : ▲p
FW (Ω; γ(▲2(R+;H), E)) ▲

p
0(Ω,FW

∞ ;E),

where ▲p
0(Ω,FW

∞ ;E) denotes the closed subspace of ▲p(Ω,FW
∞ ;E) having all elements

with expectation 0.
Next, we have a theorem which tells when a process is integrable.

Theorem 8.66. Let p ∈ [0,∞). For Φ ∈ ▲
p(Ω; γ(▲2(R+;H), E)) the following are

equivalent:

i) Φ ∈ ▲
p
F(Ω; γ(▲

2(R+;H), E)),

ii) Φ(✶[0,t]f) , x
∗ ∈ ▲

p(Ω) is Ft−measurable ∀t ∈ R+, f ∈ ▲
2(R+;H), x∗ ∈ E∗.

This tells that if Φ : R+ × Ω → L(H,E) is H−strongly measurable and adapted,
adapted here meaning that for all h ∈ H the process Φh : R+ × Ω → E is adapted,
then Φ ∈ ▲

p(Ω; γ(▲2(R+;H), E)) already implies Φ ∈ ▲
p
F(Ω; γ(▲

2(R+;H), E)).

Looking again at the integral process it can be shown is that the stochastic integral
I : Φ → ·

0
Φ dW uniquely extends to a continuous linear mapping

I : ▲0
F(Ω; γ(▲

2(R+;H), E)) → ▲
0(Ω;Cb(R+;E))) (8.11)

The integral process is defined as follows.

Definition 8.67. For Φ ∈ ▲
0
F(Ω; γ(▲

2(R+;H), E)) we define IΦ to be the stochastic
integral of Φ w.r.t. W and define the integral process

t

0

Φ dW := (Iφ)(t), t ≥ 0. (8.12)

We state the following fundamental theorem.

Theorem 8.68. [vVW15, Theorem 5.8] Let E be an UMD Banach space. Let Φ :
R+ × Ω → L(H,E) be an H−strongly measurable adapted process such that Φ∗x∗ ∈
▲

0(Ω;▲2(R+;H)) for all x∗ ∈ E∗. Let ζ : R+ × Ω → E be a process whose paths are
almost surely bounded. If for all x∗ ∈ E∗, a.s. it holds that

t

0

Φ∗x∗ dW = ζt , x
∗ , t ≥ 0,

then Φ represents an element in ▲0
F(Ω; γ(▲

2(R+;H)), and a.s. it holds that

t

0

Φ dW = ζt, t ≥ 0.

Moreover, ζ is a local martingale with continuous paths a.s.
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We also state a theorem which tells that UMD spaces are useful and shows why
this stochastic integration theory works there.

Theorem 8.69. Let E be a Banach space and suppose for a p ∈ (1,∞) there exist
constants cp and Cp such that for all adapted elementary processes Φ : R+ × Ω → E

1

cp
Φ ▲p(Ω;γp(▲2(R+),E)) ≤

∞

0

Φ dW
▲p(Ω;E)

≤ Cp Φ ▲p(Ω;γp(▲2(R+),E)).

Then E is an UMD space with constant βp,E ≤ cpCp.

We want to finish this section by stating a version of Itô’s formula in this setting.
For this sake take Banach spaces X, Y, Z and let (hn)n≥1 be an orthonormal basis
of H. Let R ∈ γ(H,X), S ∈ γ(H, Y ) and T ∈ L(X,L(Y, Z)), then the sum

trR,ST :=
n≥1

(TRhn)(Shn)

converges in Z and does not depend on the choice of the orthonormal basis. It also
holds that

trR,ST ≤ T R γ(H,X) S γ(H,Y ).

If X = Y , we also write trR := trR,R.

Theorem 8.70 (Itô formula). [vVW15, Proposition 5.11] Let X and Y be UMD
spaces. Assume f : R+×X → Y is C1,2 on every bounded interval. Let φ : R+×Ω →
L(H,X) be H−strongly measurable and adapted and assume that φ locally defines an
element of ▲0(Ω; γ(▲2(R+;H), X)) ∩ ▲0(Ω;▲2(R+; γ(H,X))). Let ψ : R+ × Ω → X
be strongly measurable and adapted with locally integrable paths a.s. Let ξ : Ω → X
be strongly F0−measurable. Define ζ : R+ × Ω → X by

ζ = ξ +
·

0

ψs ds+
·

0

φs dWs.

Then s → D2f(s, ζs)φs is stochastically integrable and a.s. we have for all t ≥ 0,

f(t, ζt)− f(0, ζ0) =
t

0

D1f(s, ζs) ds+
t

0

D2f(s, ζs)ψs ds

+
t

0

D2f(s, ζs)φs dWs +
1

2

t

0

trφs(D
2
2f(s, ζs)) ds.

The first two integrals and the last one are a.s. defined as Bochner integrals.

Beyond the Itô formula one can define some sort of quadratic variation and also
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arrive at Burkholder-Davis-Gundy inequalities. However, we omit this here and refer
the interested reader to the references used in this section.

8.6 Stochastic Integration in Martingale Type 2
Spaces

As last section we look into martingale type 2 spaces and how they play a role in
stochastic integration. As the sections before we will again base most of this tour on
[vVW15], [vNVW07] and [Pro72].
We begin with the definition of a Rademacher sequence.

Definition 8.71. A Rademacher sequence is a sequence (rn)n≥1 of independent ran-
dom variables, s.t. P[rn = 1] = P[rn = −1] = 1

2
.

With this we define generally type p spaces for p ∈ [1, 2].

Definition 8.72. [vVW15, Definition 4.1] Let p ∈ [1, 2]. A Banach space E has type
p if there exists a constant τ ≥ 0 such that for all finite sequences (xn)

N
n=1 in E it

holds that

E
N

n=1

rnxn
p ≤ τ p

N

n=1

xn
p.

The least admissible constant is denoted by τp,E.

In many proofs some randomisation identity is important which we want to sketch
here. For a sequence of independent symmetric random variables (ξn)n≥1 in ▲

p(Ω;E)
and an independent Rademacher sequence (r̃n)n≥1 on another probability space
(Ω̃, P̃), we have

E
N

n=1

ξn
p

= E Ẽ
n

n=1

r̃nξn
p

, ∀N ≥ 1.

Noticing that for fixed ω̃ ∈ Ω̃ (ξn)n≥1 has the same distribution as (r̃n(ω̃)ξn)n≥1 we
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can use Fubinis theorem to prove this by looking at

E Ẽ
n

n=1

r̃nξn
p

=
Ω Ω̃

N

n=1

r̃n(ω̃)ξn(ω)
p
dP̃(ω̃) dP(ω) Fubini

=

=
Ω̃ Ω

N

n=1

r̃n(ω̃)ξn(ω)
p
dP(ω) dP̃(ω̃) =

=
Ω̃

E
N

n=1

ξn
p

dP̃(ω̃) = E
N

n=1

ξn
p

.

In a next step one can also define a stochastic integral for simple functions in this
section as in Section 8.3.
With this we have a stochastic integral for maps φ : R+ → H ⊗ E and get back a

map looking like ▲2(Ω) → E.

Now we turn to also defining a stochastic integral for random integrands. The
important part of the definition is for p = 2.

Definition 8.73. [vVW15, Definition 4.4] Let p ∈ [1, 2] and E a Banach space. It
has martingale type p if there exists µ ≥ 0 such that for all finite E−valued martingale
difference sequences (dn)

N
n=1 one has

E
N

n=1

dn
p ≤ µp

N

n=1

E[ dn
p]. (8.13)

The least admissible constant is denoted by µp,E.

Remark 8.74. Since every Gaussian sequence is a martingale difference sequence,
we get that every Banach space with martingale type p also has type p.

In the following we see an H−cylindrical Brownian motion W as given and denote
by (Ft)t≥0 its generated filtration, i.e. Ft = σ (W (f) | f ∈ ▲

2([0, t];H)) .
An integral w.r.t. an H−cylindrical Brownian motion for adapted elementary

processes can also be defined as in Section 8.5.
For the integral we get the following inequality.

Theorem 8.75. [vVW15, Theorem 4.6] Let the Banach space E have type 2 and let
φ be an adapted elementary process. Then we have

E
∞

0

φ dW
2

≤ µ2
p,EE

∞

0

φt
2
γ(H,E) dt .
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Remark 8.76. With Doob’s maximal inequality, the result improves to

E sup
t≥0

t

0

φ dW
2 ≤ 4µ2

p,EE
∞

0

φt
2
γ(H,E) dt .

As usual the stochastic integral can be extended by a density argument. It can
be extended to all progressively measurable processes φ : R+ × Ω → γ(H,E) that
satisfy

E
∞

0

φt
2
γ(H,E) dt < ∞.

Then the process t → t

0
φ dW turns out to be a continuous martingale. With this

result, the usual stopping techniques apply to extend the stochastic integral towards
all progressive measurable processes satisfying

∞

0

φt
2
γ(H,E) dt < ∞, a.s.

We close with the following Burkholder inequality.

Theorem 8.77. [vVW15, Theorem 4.7] Let E have martingale type 2. Then for all
p ∈ (0,∞) there exists a constant Cp,E such that for all strongly measurable adapted
processes φ : R+ × Ω → γ(H,E) we have

E sup
t≥0

t

0

φ dW
p ≤ Cp

p,E φ p
▲p(Ω;▲2(R+,γ(H,E))).

For more details on martingale type p spaces we refer the reader especially to
[vVW15].
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