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Kurzfassung

Die vorliegende Arbeit befasst sich mit drei grolen Themenblocken. Zu Beginn der Arbeit
betrachten wir eine kleinste Quadrate Methode zur numerischen Diskretisierung der ho-
mogenen Helmholtz Gleichung. Es wird eine Konvergenztheorie dieser Methode bewiesen,
welche explizit in der Wellenzahl ist. Weiters betrachten wir eine kleinste Quadrate Metho-
de zur Diskretisierung einer partiellen Differentialgleichung zweiter Ordnung, welche zuvor
in ein System von Gleichungen erster Ordnung umformuliert wird. Fiir diese Methode wird
unter minimalen Regularititsannahmen an die Daten Optimalitdt bewiesen. Schlielich
betrachten wir eine Klasse von zeitharmonischen Wellenphdnomenen in stiickweise glatten
Medien. Fiir diese Klasse von Problemen wird eine Regularitéitstheorie bewiesen, welche
explizit in der Wellenzahl ist. Diese Regularitidtstheorie wiederum erlaubt eine vollstandige
Konvergenzanalyse von Galerkin Verfahren fiir diese Problemklasse.
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Abstract

The present thesis is concerned with three main topics. The first one being a least squares
finite element approach for numerical discretizations of the homogeneous Helmholtz equa-
tion. We perform a wavenumber-explicit convergence theory for this method. Secondly,
we prove optimality for a first order system least squares finite element method applied
to a second order partial differential equation focusing on minimal regularity assumptions
on the data. Finally, we consider a class of time-harmonic wave propagation problems
in piecewise smooth media. For these problems, a wavenumber-explicit regularity theory
is performed. This in turn allows for a complete and wavenumber-explicit convergence
analysis of a Galerkin method applied to our model class.
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1. Introduction and contributions

The present thesis is divided into four main chapters. In Chapter 3 we consider a first order
system least squares (FOSLS) finite element method applied the homogeneous Helmholtz
equation. Chapters 4 and 5 cover the optimality of a FOSLS method under minimal
regularity assumptions on the data. In Chapter 4 we consider homogeneous boundary
conditions, whereas in Chapter 5 the case of inhomogeneous boundary conditions is covered.
Finally, in Chapter 6 we perform wavenumber-explicit regularity theory for a class of time-
harmonic wave propagation problems in heterogeneous media and apply these results to
derive a wavenumber-explicit convergence analysis for the Galerkin discretization of these
problems.

1.1. Contributions of Chapter 3

The model problem of Chapter 3 is the following homogeneous Helmholtz problem:
—Au—kKu=f inQ,

! (1.1)
Ohu—iku=g onl,

where the wavenumber k& > ko > 0 is real. For large k, the numerical solution of (1.1)
is challenging due to the requirement to resolve the oscillatory nature of the solution. A
second challenge arises in classical, H'(Q)-conforming discretizations of (1.1) from the fact
that the Galerkin method is not an energy projection, and a meaningful approximation
is only obtained under more stringent conditions on the mesh size h and the polynomial
degree p than purely approximation theoretical considerations suggest. This shortcoming
has been analyzed in the literature. In particular, as discussed in more detail in [MS11,
EM12], the analyses [Ih198, IB95, IB97, Ain04, MS10, MS11, EM12] show that high order
methods are much better suited for the high-frequency case of large k than low order
methods. Alternatives to the classical Galerkin methods which are still based on high
order methods include stabilized methods [FW09, FX13a, FX13b, ZW13], hybridizable
methods [CLX13], least squares type methods [CQ17, LMMRO00] and Discontinuous Petrov
Galerkin methods, [PD17, DGMZ12]. An attractive feature of least squares type methods
is that the resulting linear system is always solvable and that they feature quasi-optimality,
albeit in some nonstandard residual norms. Motivated by the results of [CQ17] we show
for a first order system least squares method an a priori estimate in the more tractable
L?(Q)-norm under the scale resolution condition

— < and p > co(logk +1).
p

For that, we closely follow [CQ17]. Our key refinement over [CQ17] is an improved reg-
ularity estimate for the solution of a suitable dual problem (cf. Lemma 3.3.1 vs. [CQ17,
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1. Introduction and contributions

Lemma 5.1]) that allows us to establish the improved p-dependence in the L?(§))-error esti-
mate (cf. Theorem 3.5.1 vs. [CQ17, Thm. 2.5]). As a tool, which is of independent interest,
we develop approximation operators in Raviart-Thomas and Brezzi-Douglas-Marini spaces
with optimal (in h and p) approximation rates simultaneously in L?(Q2) and H (£, div).

1.2. Contributions of Chapter 4

Motivated by the numerical findings of Chapter 3 we further investigate the optimality of a
first order system least squares method applied to a second order elliptic model problem en-
dowed with homogeneous boundary conditions in Chapter 4. Least Squares Finite Element
Methods (LSFEM) are an important class of numerical methods for the solution of partial
differential equations with a variety of applications. The main idea of the LSFEM is to re-
formulate the partial differential equation of interest as a minimization problem, for which
a variety of tools is available. For example, even for nonsymmetric or indefinite problems,
as showcased in Chapter 3, the discretization with the least squares approach leads to sym-
metric, positive definite systems, which can be solved with well-established numerical tech-
nologies. Furthermore, the least squares technique is naturally quasi-optimal, albeit in a
problem-dependent norm. For second order PDEs the most common least squares approach
is that of rewriting the equation as a first order least squares system that can be discretized
with established finite element techniques. A benefit is that many quantities of interest
are approximated directly without the need of postprocessing. We mention [BG09] as a
classical monograph on the topic as well as the papers [Jes77, CLMM94, CMM97a, BGO05].
Chapter 4 considers a Poisson-like second order model problem written as a system of first
order equations. For the discretization, an H (2, div) x H'(Q2)-conforming least squares for-
mulation is employed. Even though our model problem in its standard H'(2) formulation
is coercive our methods and lines of proof can most certainly be applied to other prob-
lems, see Chapter 3 as well as [BM19, CQ17] for an application to the Helmholtz equation.
The LSFEM is typically quasi-optimal in some problem-dependent energy norm, which is,
however, somewhat intractable; a priori error estimates in more familiar norms such as the
L?(2) norm of the scalar variable are thus desirable. Numerical examples in Chapter 3
suggested convergence rates in standard norms such as the L?(2)-norm which, to our best
of knowledge, are not explained by the current theory. We develop such a convergence
theory with minimal assumptions on the regularity of the right-hand side.

Our main contribution is an optimal L?(£2) based convergence result for the least squares
approximation uy, to the scalar variable u. Furthermore, we derive hp error estimates for
the gradient of the scalar variable u, which do not seem to be available in the current
literature, as well as an hp error estimate for the vector variable ¢ in the L?(2) norm,
which is available in the literature for a pure h-version. These optimality results are new in
the sense that we achieve optimal convergence rates under minimal regularity assumptions
on the data. Here, we call a method optimal in a certain norm, if the norm of the error
made by the method is of the same order as the best approximation of the employed space.

To highlight our contribution, we present an overview of the current results available in
the literature:

In [Jes77] the author considered the classical model problem —Aw = f with inhomoge-
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1.2. Contributions of Chapter 4

neous Dirichlet boundary condition v = ¢ in some smoothly bounded domain 2. Unlike
the methodology of Chapter 4 the least squares formulation employs vector valued H'(Q)
functions instead of H ({2, div) for the vector variable. The corresponding finite element
spaces are chosen such that they satisfy simultaneous approximation properties in L?(Q)
and H'(Q) for both the scalar variable u and the vector variable ¢. Using a duality argu-
ment akin to the one used in this thesis the author arrived at the error estimate

|lu — uhHo,Q Shil(e —nu— Uh)Hbv

see [Jes77, Thm. 4.1], where ||(-,-)||, denotes the corresponding energy norm. At this
point higher order convergence rates are just a question of approximation properties in
|(-;)|ly, see [Jes77, Lemma 3.1] for a precise statement. As stated after the proof of [Jes77,
Thm. 4.1], one can extract optimal convergence rates for sufficiently smooth data f and
g. The smoothness of the data is important as the following considerations show: For
the case of a smooth boundary I and f € L?(Q) and g € H%/?(I"), elliptic regularity gives
u € H?(2). Therefore u can be approximated by globally continuous piecewise polynomials
of degree greater or equal to one with an error O(h?) in the L?(Q) norm, which is achieved
by classical FEM, due to the Aubin-Nitsche trick. In contrast, the above least squares
estimate does not give the desired rate: The norm |[(¢ — ¢p,u — up)||, contains a term of
the form

IV-(e—en)llog=I1f=V-enlgq:

from which no further convergence rate can be extracted, since f is only in L?(Q).

In [CLMMO94] (see also [CMMO97a]) the problem —V - (AVu) + Xu = f with uniformly
elliptic diffusion matrix A and X a linear differential operator of order at most one together
with homogeneous mixed Dirichlet and Neumann boundary conditions was considered. The
least squares formulation presented therein employs the same spaces as the present work.
Apart from nontrivial norm equivalence results, see [CLMM94, Thm. 3.1], they also derived
the following estimate of the least squares approximation

lu— unllyg + e — erllma S Uullogs o+ 1€]00)

assuming u € H*T1(Q) and ¢ € H*1(Q2). This result is then optimal in the stated norm,
however, the assumed regularity is somewhat unsatisfactory, in the sense that if the solution
u € H¥1(Q) then the relation Vu + ¢ = 0 merely provides the regularity ¢ € H*(Q) and
not the assumed regularity ¢ € H*T1(Q).

Finally, in [BGO05] the same model problem, as well as the same least squares formulation,
is considered. The main goal of [BGO05] is to establish L?(Q) error estimates for v and ¢.
In [BGO5, Lemma 3.4] a result similar to [Jes77, Thm. 4.1] is obtained. This result, however,
suffers from the same drawback as elaborated above. Furthermore, they prove optimality
of the error of the vector variable ¢ in the L?(£2) norm, see [BG05, Cor. 3.7].

The main tools for a priori error estimates in more tractable norms such as L?() instead
of the energy norm in a least squares setting are, as it is done in the present thesis and the
above literature, duality arguments, which lead to an estimate of the form

|lu — uhH(LQ Shi(e —@n,u— Uh)”b-
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1. Introduction and contributions

As elaborated above it is not possible to extract the desired optimal rate from this estimate
directly. In the proof of one of our main results (Theorem 4.3.12) we exploit the duality
argument in a more delicate way, which allows us to lower the regularity requirements on ¢
to what could be expected from the regularity of the data f. Key components in the proof
are the H (2, div)-conforming approximation operators I and Ij, (cf. Lemmas 4.3.3, 4.3.6),
which are also of independent interest.

1.3. Contributions of Chapter 5

Extending the results of Chapter 4 we consider inhomogeneous Robin boundary conditions
in Chapter 5. These boundary conditions contribute to additional boundary terms in the
bilinear form b. As discussed above, the main argument in deriving error estimates in more
tractable norms, are duality arguments. The additional boundary terms arising due to the
inhomogeneous Robin boundary conditions lead to a more delicate analysis. First off, the
regularity of the dual solutions of Chapter 4 is further limited due to the boundary terms,
cf. Theorem 4.2.1 vs. Theorem 5.2.1. Furthermore, an additional duality argument for the
normal trace of the vector variable needs to be performed, see Theorem 5.2.4. Finally, the
operator I, needs to be adjusted in order to account for the additional boundary term, see
Lemma 5.3.5 in comparison to Lemma 4.3.6.

1.4. Contributions of Chapter 6

In Chapter 6 we analyze the Galerkin discretization of a class of heterogeneous time-
harmonic wave propagation problems in a high-frequency regime. The prototypical model
problem is the time-harmonic homogeneous Helmholtz equation with wavenumber k£ > 0

— Au— k?u = f. (1.2)

The solution u to (1.2) inherits a highly oscillatory behavior. On the one hand, numer-
ical schemes need to resolve this oscillatory nature and therefore require a large number
of degrees of freedom. On the other hand, standard conforming Galerkin discretizations
result in an indefinite formulation. To ensure stability on the discrete level more restrictive
conditions than kh to be small need to be met. In the sequence of papers [MS10, MS11] the
superiority of the hp Finite Element Method (hp-FEM) compared to a pure h-FEM was
established. These results rely on a wavenumber-explicit regularity theory. Therein it is
shown for a class of homogeneous Helmholtz problems, that the solution v admits a decom-
position © = up + u4 into a finite regularity part up and an analytic part us. The finite
regularity part up features favorable k-explicit bounds. The analytic part u4 captures the
oscillatory behavior of the solution. Apart from being of independent interest, this regular-
ity theory enters the analysis of Galerkin discretizations when establishing quasi-optimality.
Here, the approximability of an appropriate adjoint problem yields quasi-optimality. This
adjoint problem is again of similar character to the homogeneous Helmholtz equation.
Therefore, the aforementioned regularity theory applies. On a conceptual level, the superi-
ority of the hp-FEM is due to the fact that unfavorable k-dependence of the analytic part
u4 can be overcome, since the hp finite element space features exponential approximation



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thek,

°
lio
nowledge

b

o
i
r

M YOU

1.4. Contributions of Chapter 6

properties for smooth functions. Assuming the solution operator is polynomially bounded
in k, it is shown in [MS10, MS11], that under the scale resolution condition

"y < and p > co(logk + 1) (1.3)
quasi-optimality of the hp-FEM holds with wavenumber-independent constants.

The first results concerning a wavenumber-explicit splitting of the solution to Helmholtz
problems can be found in [MS10, Lemma 3.5] and [MS11, Thm. 4.10 and 4.20], covering
Dirichlet-to-Neumann boundary conditions on a sphere, interior Robin and exterior Dirich-
let boundary conditions, respectively. Later, these results were generalized in [EM12] to
polygonal domains and in [MPS13] to higher order Sobolev data, i.e., f € H*(Q2) and
g e Hst/ 2(T"). We also mention that similar splittings are available for the time-harmonic
homogeneous Maxwell problem. See [MS21, Sec. 7.2] for the standard H(f,curl) for-
mulation as well as [NT20, Sec. 4.1.3] for an elliptic system formulation. We point out
that previous splittings rely on a wavenumber-explicit analysis of the Newton potential.
Our present approach circumvents this by relying solely on an operator S,j which can be
viewed as a parametrix of the Helmholtz solution operator S, for high-frequency data.
The recently published preprint [LSW20] derives similar results to the present work for the
Dirichlet-to-Neumann map with a sphere as a coupling interface.

In Chapter 6 we consider an abstract class of heterogeneous time-harmonic wave propaga-
tion problems. These problems include heterogeneous Helmholtz problems with piecewise
smooth coefficients. For these problems inhomogeneous Robin, Dirichlet-to-Neumann and
second order absorbing boundary conditions are covered. Furthermore, perfectly matched
layers and volume damping problems fit into our framework. We generalize the regularity
theory developed in [MS10, MS11] and prove an analogous splitting of the solution u of
our heterogeneous model class into a finite regularity part urp and an analytic part ua,
see Theorem 6.3.10. The finite regularity part up is (piecewise) H? and features favorable
wavenumber-explicit bounds. The analytic regularity part u,4 is (piecewise) analytic with
wavenumber-explicit bounds. This regularity theory allows for the wavenumber-explicit
analysis of higher order Galerkin discretizations of the considered problems. We prove
quasi-optimality under the scale resolution conditions (1.3) of the hp-FEM applied to this
class of problems assuming polynomial well-posedness of the solution operator, see Theo-
rem 6.6.3. Furthermore, we generalize the above splitting to higher order Sobolev data,
in turn allowing for a complete convergence analysis of the method. Finally, we derive
the following results which are of independent interest: In Lemma 6.5.4 we present a shift
theorem for second order absorbing boundary conditions. In Lemma 6.5.12 a splitting of
the Dirichlet-to-Neumann map for the exterior Helmholtz equation is derived. In fact the
Helmholtz Dirichlet-to-Neumann map DtN}, can be written as DtNj, = DtNg+ kB +[8, A],
where DtNg denotes the Dirichlet-to-Neumann map for the Laplacian, B is an operator of
order zero featuring wavenumber-independent bounds and A maps into a class of analytic
functions.
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2. Background and notation

Throughout this thesis, if not otherwise stated, the following notation applies. We intro-
duce the usual Lebesgue and Sobolev spaces below, as a standard reference we mention
[McL00]. In spatial dimension d = 2,3 let Q € R? be a bounded domain with smooth
boundary I := 9. For p € [1,00] we denote by LP(f2) the usual Lebesgue spaces, by
| - llzr(@) the corresponding norm. For s > 0 and p € [1,00] we denote by W*P(§2) the
standard Sobolev spaces, with norm || - [|yys»(q), with W%P(€Q) = LP(Q). For the special
case p = 2 we denote by H*(Q) the space W*%(Q), and write | - ||s.o for the correspond-
ing norm. For u,v € L?(2) we denote by (u,v)q the L?(Q) inner product. For s > 0
we denote by H%(2) the dual of H*(Q2). For t > 0 we denote by H(T') the Sobolev
space on the boundary I' and write || - s for the corresponding norm. We denote by
H~YT) the dual space of H!(I'). For u,v € L?(I') we denote by (u,v)r the L*(T) in-
ner product. Furthermore, we write (u,v) for the duality pairing in the volume, and
(u,v) for the duality pairing on the boundary. Furthermore, we introduce the spaces
H(Q,div) and H(Q,curl) of square integrable vector fields, with square integrable weak
divergence and rotation, respectively, see [Mon03, BBF13] for further details. We denote
by n the outward unit normal vector on the boundary I'. In Chapter 4 we consider dif-
ferent boundary conditions on parts of I'. Therefore, let I' consist of two disjoint parts
I'p and T'y. We also consider subspaces of H(€2), H(,div) and H (£, curl) with addi-
tional boundary conditions. Summarizing, we will be working with the following spaces:

HYQ) = {u e L*(Q): Vu € L*(Q)},
HLH(Q) ={uec H(Q): u=0o0nTp},
HY Q) ={uec H'(Q): u=0o0nT},

H(Q,curl) = {p € L*(Q): V x ¢ € L*(Q)},
Hy(Q,curl) = {p € H(Q,curl): n xp=0o0n 'y},
Hy(Q,curl) = {p € H(Q,curl): n x ¢p =0 on I'},

H(Q,div) = {p € L*(Q): V-p € L*()},
Hy(Q,div) ={p € H(Q,div): ¢ -n=0o0n 'y},
Hy(Q,div) ={p € H(Q,div): ¢ -n=0o0n I}
Additionally, for s > 0 set H*(Q,div) = {¢ € H*(Q): V-9 € H*(Q)}. Throughout
this thesis 7}, will denote a triangulation of the computational domain €2 and will consist

of elements K. Since we are dealing with smooth boundaries we employ curved elements.
We make the following assumptions on the triangulation.
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2. Background and notation

Assumption 2.0.1 (quasi-uniform regular meshes). Let K be the reference simplex. Each
element map Fi: K — K can be written as Fx = Rg o Ax, where Ay is an affine map
and the maps Ry and Ak satisfy, for constants Cagtine, Crmetric, £ > 0 independent of K:

HA HLOO K) < CaﬂinehKv H A/ 1HL00(I?) < Cafﬁneh}_{17

H RK IHLOO(f() < Chnetrics HV RK”Loo < Cmetrlcp n! Vn € Ny.

Here, K = A K(IA( ) and hg > 0 denotes the element diameter.

On the reference element K we introduce the Raviart-Thomas and Brezzi-Douglas-Marini
elements:

) == span {z®: |a| < p},
) = Pp(K)?,
RTp,l(I?) = {p+a:q: pE Pp,l(f()d,q € Pp,l(f()}.

Note that trivially RT,_; (K K) c BDM (K K) C RT (A) We also recall the classical Piola
transformation, which is the appropriate change of variables for H (Q,div). For ~a function
¢ : K — R? and the element map F: K — K its Piola transformation P K — RY is
given by

& = (det Fjo)(Fi)"'p o F.

We consider the following global finite element spaces:

Sp.(Th) € HY(), Np,(Tn) C H(Q,curl), RT,,_1(Th) € BDM,, (T,) € H(, div),
S (Th) € Hp(Q), N (Th) € Hy(Q,curl), RT)_1(7;) € BDM,) (75) € Hy (2, div),
Sgs (Tn) € HL(Q), Ngv (Tn) € Hy(Q, curl), RTgU_l(Th) C BDMgv (Tn) € Hy(Q,div).

The spaces Sp(7p), BDM,(7,), and RT,,_1(7};,) are given by standard transformation and
(contravariant) Piola transformation of functions on the reference element:

Sp(Tn) = {ueHl( )t ul 0 Fyc € Py(K) for allKeﬁL}
BDM,,(7,) = {<p € H(div,Q): (det Fio)(Ff) "' |, o Fic € BDM,(K) for all K € n} :

RT, 1(T;) == {(p € H(div,Q): (det F)(Fj) " ¢| . o Fic € RT, 1(K) for all K € Th} ,

where the polynomial approximation of the scalar and vector variable is denoted by ps > 1
and p, > 1, respectively. For brevity we also denote by V, (7) either the space RT,, _1(7},)
or BDM,, (73). The spaces VY (T5) and V9 (7},) are denoted analogously. Furthermore, the
Nédélec space N, (73,) is either of type one or two, depending on the choice of V,, (73,). The
same convention applies to spaces with boundary conditions. See again [Mon03, BBF13]
for further details. Further notational conventions will be:

e lower case Roman letters like u and v will be reserved for scalar valued functions;
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lower case boldface Greek letters like ¢ and % will be reserved for vector valued
functions;

K denotes the physical element and K denotes the reference element;

quantities without a = will be either global quantities or quantities defined on the
physical element K, whereas quantities with a = are related to the reference element
K;

quantities like up, and ¢y will be reserved for functions from the corresponding finite
element space, again scalar and vector valued, respectively;

if not stated otherwise discrete functions without a ~ will be in some sense fixed,
e.g., resulting from a certain discretization scheme, whereas functions with a ~ will
be arbitrary, e.g., when dealing with quasi-optimality results;

generic constants will either be denoted by C or hidden inside a < and will be inde-
pendent of the wavenumber k, the mesh size h and the polynomial degree p, if not
otherwise stated.
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3. First order system least squares method
for homogeneous Helmholtz problems

In the present chapter we analyze the hp version of a first order system least squares
method applied to the homogeneous Helmholtz equation in a high-frequency regime. The
homogeneous Helmholtz equation is reformulated as a minimization problem corresponding
to a first order system of equations. The results of the current chapter are part of [BM19]
motivated by the work [CQ17].

The outline of this chapter is as follows. In Section 3.1 we introduce a homogeneous
Helmholtz model problem. In Section 3.2 we present the first order system least squares
(FOSLS) method itself, followed by Section 3.3, where we prove a refined and wavenumber-
explicit duality argument for the L?(2) norm of the scalar variable (Lemma 3.3.1), which
is later used to derive an a priori estimate (Theorem 3.5.1) of the method. Key ingredients
are the results of [MPS13], where a frequency explicit splitting of the solution to our model
problem (3.1) is performed when the data has higher order Sobolev regularity. Section 3.4
is concerned with the approximation properties of Raviart-Thomas and Brezzi-Douglas-
Marini spaces. We follow the methodology of [MS10] in order to construct approximation
operators, which are not only p-optimal and approximate simultaneously in L?(2) and
H'(€), but also admit an elementwise construction. Section 3.5 is then devoted to the a
priori estimate. Concluding, we give numerical examples which complement the theoretical
findings and compare the method to the classical FEM in Section 3.6.

3.1. Model problem

In the present chapter we consider the following homogeneous Helmholtz problem:
—Au — k*u = in Q,
vt (31)
Ohu—iku=g¢g onT,

where k > kg > 0 is real. For a general discussion and presentation of current results
concerning the numerical discretization of (3.1) we refer to Section 1.1. Throughout this
chapter, if not otherwise stated, we assume the following;:

Assumption 3.1.1. In spatial dimension d = 2,3 the bounded Lipschitz domain Q c R?
has an analytic boundary I' := 0Q2. The wavenumber k satisfies k > kg > 0. Furthermore,
f € L*Q)and g € L*(T).

Remark 3.1.2. Under Assumption 3.1.1 we may apply [BSW16, Thm. 1.8] to conclude
that the solution u € H*(Q) satisfies the a priori bound

lulli.e + Elulloe < [Iflloe + lgllor (32)
with hidden constant independent of k. u
11
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3. First order system least squares method for homogeneous Helmholtz problems

3.2. First order system least squares method and auxiliary results

In the present section we introduce the method of [CQ17] and list some auxiliary results
for later reference.

3.2.1. First order system least squares formulation

Starting from the second order formulation (3.1) we introduce the additional variable ¢ =
ik~'Vu to formally arrive at the first order system of equations

V-p+iku=—ik 'f inQ, (3.3a)
Vu + ikp = 0 in Q, (3.3b)
/%@ -n+u) =ik~ %9 onT. (3.3¢)

In the following we employ the complex Hilbert spaces
V={pcHdiv):p-nc*T)} and W =H(Q),

where V is endowed with the usual graph norm and W with the classical H!(Q2)-norm. On
V x W we introduce the sesquilinear form b and the functional F' by

b((p, u), (,v)) = (V- @ + iku, V - + ikv)g + (Vu + ikp, Vo + ikh) o+

k(g -n+u,v -n+v)r,
F((,v)) = (—ik™ " f,V -9 +ikv)g + (ig,% -n + v)r.

If u € H(Q) is the weak solution to (3.1) then the pair (p,u) with ¢ = ik~1Vu is in fact
in V x W due to the assumed regularity of the data and the domain and therefore satisfies

b((p,u), (¥, v)) = F((®,v)) V@, v) eV xW. (3-4)

For a given regular mesh 7, we consider the finite element spaces V', = RT,(7,) C V or
Vi, =BDM,(7,) CV and W), = S,(T,) C W, where RT,(7;) denotes the Raviart-Thomas
space and BDM,,(7},) the Brezzi-Douglas-Marini space; see Chapter 2 for further detail and
definition as well as Section 3.4 for further approximation theoretical results. The FOSLS
method is to find (¢p, up) € Vi, x Wy, such that

b((@n, un)s Wn,vn)) = F((Wn,vn)) Y@, vn) € Vi x W (3.5)

Remark 3.2.1. Based on the a priori estimate (3.2) reference [CQ17, Thm. 2.4] asserts
the estimate

%,Q + k?H(P N+ UH(2),F 5 b((QO, U), ((p7u)) v(s"a U) eV x W7

%,n +[|u

llp

with hidden constant independent of k, which immediately gives uniqueness. Together
with the fact that the pair (¢, u) with ¢ = ik~ Vu is a solution, we have unique solvability
of (3.4). 0

12
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3.3. Duality argument

3.2.2. Auxiliary results

Our refined duality argument in Lemma 3.3.1 hinges on the following decomposition result.

Proposition 3.2.2 ([MPS13, Thm. 4.5] combined with [BSW16, Thm. 1.8]). Let  C
R%, d € {2,3}, be a bounded Lipschitz domain with an analytic boundary T. Fiz s € N.
Then there exists a constant v > 0 independent of k such that for every f € H*(Q) and
g € H*TV2(T) the solution u of (3.1) can be written as w = uz + ugs+2, where, for all
n € Ny, there holds

luallLe + Elualloo < I fllo.q + llgll/2r, (3.6a)
IV ualloo S k™" max {n, k}" 7 (| fllog + lgllj2r),  (3.6b)
lupsszllsra0 + & ugszlon S I fllse + I9lls/2r- (3.6¢)

Remark 3.2.3. Interpolation between L?() and H*"2(Q) in Proposition 3.2.2 gives esti-
mates for other Sobolev norms: Since we have for any v € H™ ()

J

g _
lvllie S vl allvles . 5 €40, ,m},
Proposition 3.2.2 implies for j € {0,...,s+ 2}

ks+2_] HUHs+2

m
)

32 S Ifllse + lgllst1/2r-
| |

Furthermore, we often use the multiplicative trace inequality. We remind the reader of
the general form, even though we only need it in the special case s = 1.

Proposition 3.2.4 ([Mel05, Thm. A.2]). Let Q C R? be a Lipschitz domain and s €
(1/2,1]. Then there exists a constant C > 0 such that for all uw € H*() there holds

1—-1/(2 1/(2
lullor < Cllullgg’ )5,

where the left-hand side is understood in the trace sense.

3.3. Duality argument

We extend the results of [CQ17, Lemma 5.1]. To that end, we show that the function
Y2 € HY(div,Q), constructed therein, can actually be modified to satisfy 92 € H?()
and still allow for wavenumber-explicit higher order Sobolev norm estimates.

Lemma 3.3.1. For any (p,w) € V x W there exists (¥,v) € V. x W such that ||wH(2LQ =
b((p,w), (¥,v)). The pair (P,v) admits a decomposition ¥ = P4 + Vg2, v = v + Vg2,
where Y4 and v4 are analytic in Q, Y2 € HX(Q), and vy2 € H2(Q). Furthermore, there
exists a constant v > 0 independent of k such that for all n € Ny

[Yallie +ElYalloo S klwlog, (3.7a)

[vallie + Ellvalloo < Ellwlloo, (3.7h)

IV 29 allo + [V Pvallog S 7" max {n, b} lwlo.o, (3.7¢)

%12 ll2.0 + kllY g2l + Ell$ gzl S [wloo; (3.7d)
vzl + Elvgzllie + K lvmzlloa S lwllog- (3.7¢)
13
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3. First order system least squares method for homogeneous Helmholtz problems

Proof. The proof follows the ideas of [CQ17, Lemma 5.1]; for the readers’ convenience we
recapitulate the important steps of the proof. The novelty over [CQ17] is the ability to
choose ¥ 2 € H*(Q) together with |9 g2]2.0 < [|w/o.q-
Consider the problem
Az —kKz=w in €,

Opz +ikz =10 on I'.
For any ¢ € V we have, using the weak formulation and integrating by parts,
Hw”(Q),Q = (Vﬂ), VZ)Q - kg(wa Z)Q - Zk<w7 Z>F

= (ikp + Vw, V2)q — (ikp, V2)q — k*(w, 2)q — ik(w, 2)r
= (iko + Vw,Vz)q + (V- ¢ +ikw, —ikz)q + (¢ -n + w, ikz)r.

Applying Proposition 3.2.2 together with Remark 3.2.3 we decompose z into z = z4 + zg2
with z4 analytic and zp2 € H%(Q2). Furthermore, we have for all n € N,

lzall1,0 + Ellzallo,o < [lwlloq; (3.8a)
V"™ 22all0.0 S k1" max {n, K} |w]lo.q, (3.8b)
Izm2llz,0 + Elzmzllue + B lzp2lloe S llwlloq- (3.8¢)

Let (3,v) € V. x W solve

V.Y +ikv=—ikz inQ,
Vv +ikyp =Vz in Q,
V2@ -n+v) =ik'/?2 onT.

Indeed, this system is uniquely solvable by Remark 3.2.1. This gives the desired repre-
sentation such that ||w\|(2)Q = b((p,w), (¥,v)). Using the decomposition z = z4 + zy2 we

obtain ("pav) - (¢A76A) + (¢H276H2)7 where
V-, +ikig = —ikzy inQ,
Vg + ik, = Vza in Q,

\V4 '1711{2 + kb2 = —ikzge  in Q,

) } VﬁHQ —+ Zk’leQ = VZHQ in Qa
1/2 7, 54) = jL1/2 ~

KV (W -n+04) =ik/"z4 onT, kY2 s -m+ By2) = ik %22 on I

One can immediately verify that

—A(T/A—ZA)—]{:Q(TJA—ZA) :2k2zA in €, (3.9)
On (04 — 2z4) — k(04 — z4) = (1 + 1)kza on I, '
as well as
—A(6H2 — ZHQ) — kz(@HZ — ZH2) = 2l€22H2 in Q, (3 10)
an({/HQ —ZHQ) —Zk’(@H2 —ZHZ) = (1‘1‘2)](32[{2 onT. ’
14
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3.3. Duality argument

Note that the right-hand sides in equation (3.9) are analytic. This fact is used in [CQ17,

Lemmas 4.4 and 5.1] to prove the following bounds for all n € Ny:

IV 25400 S ™ max {n, k}" T lwlo.q,
9all1,0 + kllvallo.o < kllwloq;
V" 24 4ll0.0 < 4" max {n, k}" 72 |lwlloq,

1% allog + Kl alloo < kllwlloo-

Since Oz —zp2 = Sy (2k?2y2, (1+4)kzy2), where S, denotes the solution operator for (3.1),
we can exploit the regularity of the right-hand sides in equation (3.10). Applying Proposi-
tion 3.2.2 with s = 1 as well as Remark 3.2.3 we decompose ¥g2 — 252 = 04 + U3, where

D4 is analytic and dys € H3(S). For every j € {0,1,2,3} we have

o]0 S 126 2m2 10 + (1 + i)kzp2||3/2,r
<K lzm2l0 + kllzg2]3/2,r

(3.8¢)

(3.8¢)
S kllwllo,e Skllzg2llze S Ellwlloe

~

S Ellwloo-
Summarizing the above we have

Lo+ K legsloa S lwllog

K- oms lls + lomsllze + kllogs

In order to analyze the behavior of 4 we first estimate

(3.8¢)

12622 ]l0.0 + [|(1+ D)kzgzllijpr S flw

0,2-

We therefore conclude, again with Proposition 3.2.2, that

[9all1,0 + kllPallon < llwlloq,

V204

0.0 S k1" max {n, £} |[wlo,0-

We turn to the final decompositions with associated norm bounds.
Final decomposition of v:

V=044 02 =04+ Uy2 — 22 +2g2 =04+ 04+ 03 + 252 .
~— _

:@A—‘r'f)Hg =vA =2

Verification of (3.7b):

lvallie + kllvallon < [[9a

1.0+ kl[Dallog + [0all1,0 + kll0alloq

(3.11b) (3.13a)
S kllwlo < lwllo,e

S Ellwloo-

(3.12)

(3.13a)
(3.13b)

15
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3. First order system least squares method for homogeneous Helmholtz problems

Verification of (3.7e):

izl + klvazllue + k2 [lvpzlloo

< [omsllzg + kllomsllLe + k2 0ms]loo

(3.12)

< ||w||0,sz
+ lzm2llz0 + kllzmzllie + Kllzazlloq
(3.80)
< lwlloe
S llwlloo-

Final decomposition of ¢: Since —ik’t,Nsz = V(02 —zp2) = Via+Vigs, we decompose
Y2 =Y 4 + ¥ 2 accordingly such that —iky 4, = Vo4 and consequently —ik 2 = Vogs.
The final decomposition takes the form

V=1, + Py :1Z’A‘HZ’A+ @AbH? .
=a :ﬂ/}ﬂ

Verification of (3.7a):

[Yalla + klpallos
< |$alle +klYalloa+Yalie + Eldaloe

(3.11d)
S kllwlloe

S kllwlog + k7HVoalle + [Voaloe
Skllwlloo+E" ol +E7" [[V0alloq + l9alle
—— —_—— ——

(3.13a) (3.13b) (3.13a)
< lwlloe S kllwllo,e S lwllo,e

S kllwllo,o-

Verification of (3.7c): This is an immediate consequence of (3.11a), (3.11c), (3.13b), and
the fact that —ikyp 4 = V4. )
Verification of (3.7d): Since —ik®) 2 = VUys we estimate

[ u2ll2.0 + kYm0 + K $mz o
= k7| Vogs|lzg + [ Vogs|lLe + kI Vogsog

<k Yomsllso + [1omsll2e + kloms e

~~

(3.12)
S lwllo,o
S lwllogs

which concludes the proof.

16
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3.4. Approximation properties of RT and BDM spaces

3.4. Approximation properties of RT and BDM spaces

In the present section we analyze the approximation properties of Raviart-Thomas and
Brezzi-Douglas-Marini spaces. To that end, we will prove the existence of a polynomial
approximation operator acting on functions defined on the reference element having certain
desirable properties, as outlined below. This operator will then be used to construct a global
polynomial approximation operator by means of the Piola transformation.

3.4.1. Preliminaries

For the remainder of this chapter we assume Assumption 2.0.1 to be satisfied. We recall
the definition of the Sobolev space Héég(w). If wis an edge of a triangle or face of a
tetrahedron, then the norm || - HH1/2(W) is given by

00

2

U = ||lu + || ———
Felzgge ey = el H Vdist(-, 0w)

)
O,w

/2

and the space H&O (w) is the completion of C§°(w) under this norm. Since this norm is

induced by a scalar product the space H%Q(w) is a Hilbert space.

3.4.2. Polynomial approximation on the reference element

We construct a polynomial approximation operator on the reference element K:

Definition 3.4.1. Let K be the reference simplex in R? s > d/2 and p € N. We define
the operator IL, : H*(K) — Pp(K) by the following consecutive minimization steps:

~ ~ ~

(i) Fix ﬁpu in the vertices: (IL,u)(V) = u(V) for all d + 1 vertices Vof K.

(ii) Fix ﬁpu on the edges: for every edge é of K the restriction (ﬁup) _is the unique
minimizer of ‘

Pp(€) > 1 pllu— 7r||37é + [Ju — 7| s.t. 7 satisfies (i). (3.14)

Hyg* (@)’
(iii) Fix ﬁpu on the faces (only for d = 3): for every face f of K the restriction (ﬁup) ;
is the unique minimizer of

Po(f) 2 7 p?lu — 7r”(2),f + [Ju — 7r||if, s.t. 7 satisfies (i), (i7). (3.15)
(iv) Fix ﬁpu in the volume: ﬁpu is the unique minimizer of

Pp(l?) > pPllu— 7r||§f< + |lu— 77”? 7> s-t.msatisfies (d), (id), (i12). (3.16)

17
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3. First order system least squares method for homogeneous Helmholtz problems

It is convenient to construct an approximant /u of a function v in an elementwise fashion.
The drawback is that one has to check if the approximant is in fact in the finite element
space. A useful property to achieve this is the following: The restriction of the approximant
I u‘  to lower dimensional entities £ of the mesh, i.e., edges, faces or vertices, is completely
determined by the corresponding restriction of u. To put this rigorously, we employ the
following concept:

Definition 3.4.2 (restriction property). Let K be the reference simplex in R%, s > d/2,
and p € N. A polynomial 7 € Pp(f? ) is said to satisfy the restriction property of polynomial
degree p for u € H*(K), if it satisfies (i), (ii), (iii) of Definition 3.4.1.

Remark 3.4.3. Note that the minimizations in the definition of the operator ﬁp are
uniquely solvable. This is due to the fact that these minimizations are constrained min-
imizations of norms induced by Hilbert spaces. These constraints are given by an affine
subspace V C Pp(IA( ), the space of all polynomials satisfying the restriction property for
u. Step (iv) is therefore the orthogonal projection onto the space V, with respect to the
scalar product inducing the norm

Il = pllullf 7 + Ilull} &-

Furthermore, the affine space V' can be written as V; = 7" + 7319 for some 7" € V}', where
772 (I? ) C Pp(f? ) is the space of polynomials vanishing on OK. The operator ﬁp can, apart
from being the solution to a minimization problem, also be written as:

ﬁpu = argmin{||[u — «[|[ : 7 € V) } = 7" + ﬁpg(u — "), (3.17)

where ﬁ'pg denotes the orthogonal projection onto the space 7319(}? ), again with respect to

the scalar product inducing |||-|||. The operator ﬁp  HS(K) — Pp(f( ) is furthermore linear.
This is easily seen when one explicitly constructs the Steps (i), (ii), (iii) in Definition 3.4.1:
First, one picks polynomials 7y;, which are one at the vertex V' and zero on all the others.

Consider the mapping ﬁ‘7 tue g u(f})w‘;. This realizes Step (i). Next one considers

the mapping I, : 2 = argmin{p|u — 7|2, + |[u — 7|2 2, 2(V) = 0 for all vertices V}

Hy)"(é)
and extending it to the reference element. Step (ii) is then realized by the map Il; : u —
Hpu + He(u — Hpu). One can easily continue this procedure for Step (iii) and (iv). As a
composition of linear operators ﬁp is therefore also linear. "

Remark 3.4.4. Definition 3.4.2 of the restriction property was introduced in [MS10,
Def. 5.3] under the name element-by-element construction. This is due to the fact that
when working in S,(7,) € H'(£2), a polynomial, which is constructed in an elementwise
fashion on the reference simplex K , satisfying the restriction property is already an ele-
ment of the conforming element space Sp,(75). However, when working in H (€2, div) or
H (2, curl) one only needs continuity of the inter element normal or tangential trace. Fur-
thermore, it is necessary to use the Piola transformation to go back and forth between
the reference element and the physical element to ensure that normal and tangential vec-
tors are mapped appropriately. For the purpose of this chapter we therefore use the name
restriction property, rather than element-by-element construction. "
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3.4. Approximation properties of RT and BDM spaces

In the Propositions 3.4.5, 3.4.7, and 3.4.8 we recall certain useful results concerning
approximation properties of polynomials satisfying the restriction property. These results
can be found in [MS10].

Proposition 3.4.5 ([MS10, Thm. B.4]). Let K be the reference triangle or reference tetra-
hedron. Let s > d/2. Then there exists C > 0 (depending only on s and d) and for every p
a linear operator HMS H(K ) — Pp(K ), such that Hg/ISu satisfies the restriction property
of Definition 3.4.2 as well as

ﬁMS ﬁMS

<Cp~ 7Y \u! Vp > s —1. (3.18)

pllu =T ully 2+ llu =Tl &

Remark 3.4.6. The operator ﬁgﬁs does in general not preserve polynomials ¢ € Pp(f( ).
See also [MR20] for operators with the projection property. .

Proposition 3.4.7 (]MS10, Lemma C.2)). Let d € {1,2,3}, and let K C R? be the refer-
ence simplex. Let 7, C >0 be given. Then there exist constants C,o > 0 that depend solely
on v and C such that the following is true: For any function u that satisfies for some C,,
h, R> 0 and k > 1 the conditions

IV"ullg & < Culyh)" max{n/R, k}" Vn € N>o,
and for any polynomial degree p € N that satisfies

h b

<C
R—l—p_

h/R p+1 hk p+1
- _|_ - .
Fm) ()
Proposition 3.4.8 ([MS10, Lemma C. 3]) Assume the hypotheses of Proposition 3.4.7.
Then one can find a polynomial m € P,(K) that satisfies

i) ()"

and additionally satisfies the restriction property of Definition 3.4.2.

there holds

inf  |lu— 7|20y < CCy
TePp(K) W (K)

<CCy

|u — 7THW1,oo(f()

It is not clear whether the polynomial ﬁg/lsu has the same approximation properties
as the polynomial given by Proposition 3.4.8. However, it is desirable to have both the
simultaneous approximation properties in LQ(I? ) and H 1(IA( ) as stated in Proposition 3.4.5
as well as the exponential approximation properties of an analytic function as stated in
Proposition 3.4.8. In the following we will show that the operator ﬁp constructed in

Definition 3.4.1 has these properties.

Theorem 3.4.9 (Properties of 11 ) Let K be the reference triangle or reference tetra-
hedron. Let s > d/2. Let H H*(K) — P, (K K) be given by Definition 3.4.1. Then the
following holds:
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3. First order system least squares method for homogeneous Helmholtz problems

(i) The operator ﬁp 1s linear and satisfies the restriction property of Definition 3.4.2.
(ii) The operator ﬁp preserves PP(I?), i.e., ﬁpq =gq forall q € Pp(l?).
(i1i) There exists Cs > 0 (depending only on s and d) such that
pllu —Tpully z + llu— Hpull, z < Csp™ (s=1) |u\ Vp>s—1.
(iv) For given 7, C > 0, there exist constants Ca, o > 0 that depend solely on ~v and

C' such that the following is true: For any function u and polynomial degree p that
satisfy the assumptions of Proposition 3.4.7 there holds

i) ()]

Idea: The crucial points of Theorem 3.4.9 are items (iii) and (iv). To verify (iii) we
will exploit the approximation properties of H%/IS given by Proposition 3.4.5 together with

Hu - ﬁpuHWl,oo(I?) < CaCy

the fact that ﬁpu is the solution to a minimization problem. To prove (iv) we use the
affine projection representation (3.17) of II, together with the approximation properties of
polynomials satisfying the restriction property given in Proposition 3.4.8.

Proof. Assertion (i) is trivially satisfied due to the construction in Definition 3.4.1 and
Remark 3.4.3.

Assertion (ii) is also trivially satisfied, since for a given polynomial ¢ € P, (K K) the norms
in Definition 3.4.1 are minimized at q.

To prove Assertion (iii) recall that Step (iv) in Definition 3.4.1 is exactly the minimization
of the norm in question, constrained to all polynomials satisfying the restriction property
for w. Since ﬁg/[su given by Proposition 3.4.5 also satisfies the restriction property we can
immediately conclude for p > s — 1 that

ﬁMS TMs

pllu— Tyully -+ llu — pull, 7 < pllu—

< Csp_(s_l) |u’s,f(

ullg e+ lu— TS,

We turn to Assertion (iv). Since polynomials up to degree p are preserved under ﬁp, we
immediately have

|u — Hpuuwl,oo(f() < lu— qHWLoo(f() + Hﬂpq - Hp“HWLoo(f()v (3.19)

for any g € P,(K K). We estimate the second term in (3.19). We have seen in (3.17) that the
operator H can be written as Hpu =744 H'pO (u — m) for any 7" € V' (the affine space

of polynomials with restriction property for w), where Hpg is the orthogonal projection

onto Py (K) < Pp(f( ), the space of polynomials vanishing on 9K, with respect to the norm
|| - ||| Therefore, we have

~

Hpq—ﬁpu:7rq—7r“+ﬁp3(q—u+7ru—7rq)
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3.4. Approximation properties of RT and BDM spaces

for any 7" € V) and 77 € V. Selecting q € V, allows us to choose 7" = 7% = ¢, which
immediately gives
Ilpq — Myu = Ilpo(q — u)

for all ¢ € VY. Using the polynomial inverse estimates ||| < Cp||x|loq for all
T E Pp(f(), (see, e.g., [Sch98, Thm. 4.76] for the case d = 2), we find

o _ o
1Tip0 — Tyl iy = [0 (@ — )lpse ) S 2 ITEpo (g — W)l £

Since ]/._.\['pg is the orthogonal projection with respect to the norm ||| - ||| we obtain
d (117 d d
Ppg(q — )y z < pllla — ulll S P Hlg =l z)-
We therefore conclude that
T d
= Byully e ) S P2 = i iy

for all ¢ € V. Proposition 3.4.8 provides a polynomial ¢ € V;y with the desired approxima-

d+1

tion properties. Absorbing the algebraic factor p into the exponential factor then yields

the result.
O

3.4.3. H(Q,div)-conforming approximation operators

In the following we will construct an approximation operator Hgiv’s : H°(2) = BDM,,(75,) C
RT,(7,) that features the optimal convergence rates in p simultaneously in L?(Q2) and

H(Q,div) for s > d/2. The operator will act elementwise. First we consider any operator
~div,s

Im, " H*(K) — BDM,(K) C RT,(K) and define II,""* on H*() elementwise using the

Piola transformation by
~div,s

()| o= [(aet F) " FRIL,™ [(det i) (Fi) ™' 0 Fic] | o Fic. (3.20)

In order for Hgiv’s to map into the conforming finite element space one has to select the op-
~di 5 ~di s -~ -~ ~ ~
erator l'Ip1V * correctly. We choose lev . HS (K) = Pp(K)? =BDM,(K) C RT,(K) to be

the componentwise application of ﬁp from Definition 3.4.1 and analyzed in Theorem 3.4.9:

~div,s -~ i
(I'Ip <p>i:: i fori=1,....d. (3.21)

This choice will ensure the desired approximation properties, and will also map into the
conforming finite element space due to the restriction property. We will summarize and

~div, .
prove certain properties of the above constructed operators lev * and Hglv’s. See [MS21]
for a similar construction concerning the space H (€2, curl).

~div, .
Lemma 3.4.10. Let s > d/2 and let the operators l'IpVS and ng’s be defined as above.
Then there holds:
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3. First order system least squares method for homogeneous Helmholtz problems

~div,s = =~ ~ .
(i) The operator 1L, : H*(K) — BDM,,(K) C RT,(K) satisfies for p > s — 1

~div,s ~div,s e
plle =1L, "ol 7 + lle =T, "ol 2 S Vel 7 (3.22)

(ii) Under the assumptions Theorem 3.4.9, (iv) there holds for some constants Ca, o > 0

independent of p, h, R
h/R p+1 hi p+1
) ()

(iii) The operator Hgiv’s defined on H*(2) maps to the conforming space BDM,(Ty) C
RT,(71).

Proof. The first two assertions hold by construction as well as Theorem 3.4.9, see proper-

ties (iii), (iv). To prove the third assertion, note that ﬁzw’s maps to BDMp(I? ) so that

~div,s

H‘p_Hp ‘pHWl,oo(j}) < CAC<p

(det Fl)(Fl )~ (ngiwsw) ‘K o Fi € BDM,(K)  forall K € T, (3.23)

by construction. We are therefore left with verifying that Hgiv’stp € H(Q,div). Since

ng,s(p is piecewise smooth it suffices to show inter element continuity of the normal trace.
~div,s

We will first show that the normal trace of pr S(p in fact only depends on the normal trace

of . Consider a face f of K. Let Vi denote the normal trace for the face f . We calculate

T,
pd ;
ﬁp(‘P1|f)
_ i =T 7) =Ty (9 ).
ﬁp(‘Pd‘f)

Here we used that the operator ﬁp satisfies the restriction property and the fact that n i is

constant on f . Furthermore, note that we abused notation in that the symbol ﬁp is used
both for the d dimensional as well as the d — 1 dimensional version. We conclude the proof
using the fact that if n is the unit outward normal to K the vector n on K given by

1

/ \N=T
1F)-Ta) FK) P

nOFK:

is a unit normal to K, see, e.g., [Mon03, Sec. 3.9 and 5.4].
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3.4. Approximation properties of RT and BDM spaces

We have p-optimal approximation properties on the reference element K by the operator
~div,s

P

Corollary 3.4.11 (Approximation of H*((2) functions). For d = 2,3 and s > d/2 the
operator TIN™* . H*(Q) — BDM,,(T,) C RT,(T5) satisfies

i h, 8—1
o,ﬂ+||<p—11§“5<p|h,n5<p> lolbe Vp>s—1,

p i
EH‘P - H,‘i "

where || - ||1.7;, denotes the broken H'-norm.

Proof. The proof follows from Lemma 3.4.10 together with a scaling argument.
O

Corollary 3.4.12 (Approximation of analytic functions). Let ¢ satisfy, for some Cl,
v >0,
[V"llo,0 < Cpy" max{n, k}" Vn € Np.

Then there exist C', o > 0 independent of h, p, and k such that
le =T 0l1,7;, + Kkl — L™ *pllo0
h \? hk Eh\? (1 kh
<OCy|[——) (1+ +E(—) (=+=]].
h+o h+o op P op

Proof. We mimic the procedure of [MS10, Thm. 5.5] and [CQ17, Lemma 4.7]. First consider
for each element K € 7Tj the constant Cx given by

IV™0l[§ x
2 - 3
h T

which is finite by assumption. Note that we immediately have
V"

4
2 2
E Cy < gc‘p.
KeTy,

0,k < 2"y" max{n, k}"Ck,

We write @ as
@ = det(Fy)(Fj) oo Fx = det(R 0o Ag Al ) (R 0 Ax Al) Lo Fi
— det(Al) (A5) ' o Ar,

with
7 = det(Ry)(Ri) g o R

As in [MS10, Lemma C.1] for simple changes of variables, we apply [Mel02, Lemma 4.3.1]
to the function ¢ and obtain the existence of constants 7, C' > 0 depending additionally
on the constants describing the analyticity of the map Ry such that

IV"@llg z < C¥"max{n,k}"Cx  Vn € No.
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3. First order system least squares method for homogeneous Helmholtz problems

Since A is affine we immediately deduce that

V"Bl 2 S 2V B ] 5 < B2 (R) max{n, k}"Crc ¥ € Nai.

h p+1 hk p+1
) ()

for some o > 0. By a change of variables there holds for ¢ =0, 1

Hence, by Lemma 3.4.10 with R = 1 we have

~div,s__

||¢ - Hp <P\|W1,oo(f<) SJ OKhd/2_1

~div,s

lp — IS0l ¢ <R320 5 — 10, ell, &
h p+1 hk p+1
(i) +()
lo —TIV*0|l1, 7, + ke — ISV "0]lo.q
ho\? o \"*Y k hE\? hi\PH
k S E(= 2
<0+h> * <U+h> +p<<fp> * (01)) > Ck

KeTy
h P hk kh\? (1 kh
< 1+ +h(—) (=+=)]|Cy,
h+o h+o op p  op

which completes the proof.

ShiCk

Summation over all elements gives

<

3.5. A priori estimate

We turn to an a priori estimate of the FOSLS method. Again the proof follows the
ideas of [CQ17, Lemma 5.1], resting, however, on the refined duality argument given in
Lemma 3.3.1 and the approximation properties derived in Section 3.4 to obtain the factor
h/p. For the readers’ convenience we recapitulate the important steps. As in [MS10] we
show that this can be achieved under the conditions kh/p sufficiently small and p of order
log k.

Theorem 3.5.1 (A priori estimate). Let Assumptions 3.1.1, 2.0.1 be valid. Then there
exist constants ¢y, ca > 0 that are independent of h, p, and k such that the conditions

o <c and  p>co(logk+1) (3.24)

imply that the approzimation (@p,up) of the FOSLS method satisfies the following: For any
(Yn,vp) € Vi x W), there holds

h
lu —unlloo S ;(llv(u — vp) o, + kllu — vallo.o+

IV (0 = wn)llog + Kl — wnlloq + /2@ — ¥n) -nllor )
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3.5. A priori estimate

Proof. Let e* = u—uy and e? = ¢ — ¢y, denote the errors of the two components. We apply
the duality argument from Lemma 3.3.1 with w = €* and also apply the corresponding
splitting:

le 3.0 = b((e?,e"), (3, v)) = b((€?, "), (.4, va)) + (€. "), (W12, vp12))-
Exploiting the Galerkin orthogonality we have
le“I50 = b((€?, "), (a — P a,0a — Ba)) + b((€?, "), Wp2 — b2, vp2 — T2)),
for any ($4,04), (@2, 0p2) € Vi, x Wy, Using Cauchy-Schwarz we arrive at
le“llg.a < [Hike‘p + Ve o + |liket + V- e?loq + E/2|e? -n + e“or]| -
(I - @ = Da)lo + ks = balloa + K24 —ba) -nlloat

IV - a2 —¥p2)lloo + ke —u2lloe + &2 Wmz — Yu2) nlor+ (3.25)

IV(va —8a)llo0 + Kllva — Ballog + &/?[lva — Ballor+

IV 0se = 52)lo.0 + Klloms — T2 llo + K2 g — Bzl ).

We are going to exploit the approximation properties in the corresponding norms and
spaces.

Approximation of v4 and vg2: We may apply [CQ17, Lemma 4.10], which is essentially
the procedure of [MS10, Thm. 5.5] together with a multiplicative trace inequality. Using
the estimates (3.7b), (3.7¢), and (3.7¢) in Lemma 3.3.1 as well as [MS10, Thm. B.4] to find
appropriate approximations U2 and ¥4, we have

IV (va —8a)llo0 + Ellva — Ballog + &/?|lva — dallor

< )" 1+ hk +k kh ’ 1—Fk;—h lle®|l
~I\h+o h+o op P op 0.8

h
S —llellog
p

as well as

0.0 + kY2|vgz — vpellor

IV (vg2 — Op2)lloq + kllvgz — U2

1 (kb [kh\? h
S ( + () > le"llo.e < —lle“]lo.0,
p p p

where the latter estimates are due to the boundedness of €2, ¢ > 0, and choosing ¢; small
and co sufficiently large as well as elementary but tedious calculations.

Approximation of ¥ 4: To approximate 94 we choose ¥ 4 = I3V 4 with I3V as in
Corollary 3.4.12 and apply the results therein. Furthermore, we apply the estimates (3.7a)
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3. First order system least squares method for homogeneous Helmholtz problems

and (3.7c) of Lemma 3.3.1. Proceeding as above together with a multiplicative trace in-
equality, again after tedious calculations, gives

IV @a—¥a)lloe+Elva—Pallog + &2 |Wa —14) nllor

h
S et

0,0

Approximation of 12: To approximate 12 we choose ¥z = l’[giv’2't/) 2 with Hgiv’z
as in Corollary 3.4.11 and apply the results therein. We apply the estimate (3.7d) of
Lemma 3.3.1. Due to the multiplicative trace inequality we also have

~ B\ 3/2
06m2 b mllor < (2) Il (3.26)
Therefore, we arrive at

IV - (g2 — 12’H2)H0,Q + k[t g2 — "LH2HO,Q + kl/ZH("/’m - ¢H2) “nllor

h h
S Cl¥melze S et
p p

0,825
where we used the estimate (3.7d) of Lemma 3.3.1. Putting it all together we have

h .. ,
le“llo. < E(IIMC‘” + Ve log + llike” +V - €?lloq + k'[le? -n + e or)

< z¢b<<e*°,eu>, ().

Applying again the Galerkin orthogonality and using the multiplicative trace inequality to
absorb the term k'/2|ju — vpllor into the L? norms of the volume yields the result. O

We conclude this section with a simple consequence of standard regularity theory and
approximation properties of the employed finite element spaces in higher order Sobolev
norms.

Corollary 3.5.2. For s > 0, f € H%(Q) and g € H*T'/2(0Q) we have u € H*T2(Q),
uw € HT3/2(T), du € HTV2(T), ¢ € HTH(Q), V- € H¥(Q) and ¢ -n € HY2(D).
Furthermore, there exist constants c1, co > 0 that are independent of h, p, and k such that
the conditions

— < and p>co(logk+1)+s (3.27)
p
imply that the solution (@n,up) satisfies

h s+1
lu = wnllog < (p) Ufllss2 + I9llos1 /2.0,

for p > s with a wavenumber-independent constant.
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3.5. A priori estimate

Proof. The first assertion follows immediately from standard regularity theory. Consider
the case s > 0. Theorem 3.5.1 together with a multiplicative trace inequality, which is
applicable due to the already derived regularity of ¢, gives

h
Ju—unlloo < —(llu—valli,0 + kllu—vnlloo+
p
Il =l + ko = illos)-

Applying the higher order splitting of Theorem 3.2.2 and using the fact that ¢ = ik~ 'Vu,
one can easily estimate, as in the proof of Theorem 3.5.1 together with the Corollaries 3.4.11
and 3.4.12,

h S
o — pnllz + kllo — rllog < (p) (f e + Ngllsr /o).

Note the exponent s, since ¢ is only in H**1(Q2). Furthermore, again as in the proof of
Theorem 3.5.1, see also [MPS13, Thm. 4.8], we have

h, S+1
Lo+ Rl — onllog < (p) (s + Nl st o),

lu — vp,

now with the exponent s + 1 since u € H*T2(Q), which yields the result for s > 0. In the
case s = 0 one simply sets v, = 0 as well as 9, = 0 and uses the wavenumber-explicit

estimates of Theorem 3.2.2.
O

Remark 3.5.3. Note that although we assume f € H*(Q) and g € H**/2(T") in Corol-
lary 3.5.2, we only obtained a convergence rate s+1. This seems suboptimal when compared
with classical FEM where, given sufficient regularity of the data and the geometry, one can
expect a rate of s + 2 for the convergence in the L?(Q2)-norm. Especially for f € L%(Q)
and g € HY?(T') one can only expect h/p for the FOSLS method compared to h%/p? for
the FEM. The proof of Corollary 3.5.2 is in that sense sharp since the leading error term
in the a priori estimate is

IV - (o —¥n)llog = ik~ f +iku — V - 9p]l0.0

where we used the fact ¢ = ik~'Vu. The essential part is therefore to approximate an f
that is just in L?(Q) and therefore no further powers of h can be gained. Assuming more
regularity on f would resolve this problem, however, the boundary data would restrict
a further lifting of ¢ in classical Sobolev spaces, but not in H(,div) spaces. This in
turn would make it necessary to directly estimate ||V - (¢ —%4)||0,0 instead of generously
bounding it by |j¢ — 4|17, . Last but not least there is the boundary term

(@ —n) -nlor = llik™ g —u—vpn -nor.

Again if g is only H'/?(T) one can only expect /h/p, but favorable in terms of k. .
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3. First order system least squares method for homogeneous Helmholtz problems

3.6. Numerical examples

All our calculations are performed with the hp-FEM code NETGEN / NGSOLVE by
J. Schoberl, [Sch, Sch97]. We plot the error against Ny, the number of degrees of free-

dom per wavelength,
Ny 27 /DOF
A P TQ’ )

where the wavelength A and the wavenumber k are related via k = 27 /X and DOF denotes
the size of the linear system to be solved. We compare the results of the classical FEM
with the FOSLS method, measured in the relative L?(§2) error. For the classical FEM we
use the standard space Sy,(7,). For the FOSLS method we employ the pairing V', x W), =
BDM,(T3) x S,(Th).

Example 3.6.1. Let © be the unit circle in R? and consider the problem

—Au—kK*u=0 in €,
Ohu—iku=g on I,

where the data ¢ is such that the exact solution is given by u(z,y) = eik1z+kay) with
k1= —ky = %k‘ For the numerical studies, this problem will be solved using h-FEM and
h-FOSLS with polynomial degrees p = 1,2,3,4. The results are visualized in Figure 3.1.
For both methods we observe the expected convergence O(hP™!) in the relative L%(Q)
error. Note that for both methods higher order versions are less prone to the pollution
effect. At the same number of degrees of freedom per wavelength we also observe that
the classical FEM is superior to FOSLS, when measured in achieved accuracy in L?().
This is not surprising since, for the same mesh and polynomial degree p, the number of
degrees of freedom of the FOSLS is roughly three times as large as for the classical FEM.
Note, however, that we do not consider any solver aspects of the employed methods, where
FOSLS might have advantages over the classical FEM since its system matrix is positive
definite.

Example 3.6.2. For 7 < w < 27 let Q = {(rcos,rsinp): r € (0,1),¢ € (0,w)} C R?
and consider
—Au—kK*u=0 in €,
Ohu—iku=g on I

The data g is such that the exact solution is given by u(z,y) = Ju(kr)cos(ay), with
a = 3m/2. Standard regularity theory gives u € H'%(Q) for every ¢ > 0. In the
numerical experiments we keep kh = 5 and perform a p-FEM and a p-FOSLS method up
to p = 46 and p = 29, respectively. The results are visualized in Figure 3.2. We observe that
the FEM has significantly smaller errors than the FOSLS. For a discussion of the expected
L?(§2)-convergence rates of the p-FEM, we refer the reader to [JS92, Remark after Thm. 3
and Sec. 3].

The next example focuses on the Helmholtz equation with right-hand side f with finite
Sobolev regularity.

28



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

3.6. Numerical examples

FEM FOSLS
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i 10 100 1000 1 10 100 1000

Figure 3.1.: Comparison between the h-FEM (left) and h-FOSLS (right) for p =1, 2, 3, 4
as described in Example 3.6.1. The reference line in black corresponds to hP*+1.

Example 3.6.3. Let Q = (=1,1) C R and f = —x(_1,0 + X(0,1), Where x4 denotes the
indicator function on A C R. The function f is in H'/27¢(Q) for every € > 0. We consider
uniform meshes 7; on Q such that the break point zero is mot a node, as otherwise the
piecewise smooth solution could be approximated very well. We study

—" —ku=f inQ,

Ohu —iku =g on I,

where the data g is such that the exact solution is given by

cos(kz) + & x <0,
u(z) = 2 1

Standard regularity theory gives u € H*%7¢(Q) for every ¢ > 0. For the h-FEM we
expect O(h™n{2+0.5p+1})  In fact for p > 1 one can show (cf. [EM14, Cor. 4.6]) that
Ellu — ulBM|lg o < %5 and, by inspection, |ulloo = O(1) (uniformly in k). It is therefore
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3. First order system least squares method for homogeneous Helmholtz problems

FEM FOSLS

1e+00- *_
S
= k
N - 10
— 1e-02- £ 20
¢ = 30
= ~ 40
5 s 50

1e-04-

i 3 10 30 i 3 10 30
p

Figure 3.2.: Comparison between the p-FEM (left) and p-FOSLS (right) for kh = 5 as

described in Example 3.6.2. We include the reference lines p~*2/3 = p=8/3 and

p(22/341) — =7/3,

expedient to plot k3°[ju — uf ™||g o/||ulloq versus Ny ~ (kh). For the h-FOSLS Corol-
lary 3.5.2 predicts only O(hmin{HO'E”pH}). The numerical results show, however, for both
methods convergence O(h™"{252+1}) " The results are visualized in Figure 3.3.

Remark 3.6.4. The numerical results of Example 3.6.3 visualized in Figure 3.3 indicate
that Corollary 3.5.2 is in fact suboptimal as it predicts only a convergence O(h'®) while
we observe O(h™{25741}) A starting point for understanding this better convergence
behavior could be two observations: first, the duality argument in Theorem 3.5.1 is based
on the regularity (,v) € H?(Q) x H?(Q) of the dual solution (1,v) whereas in fact (see
the proof of Lemma 3.3.1) (v, v) € H?(div, ) x H?(Q2). Second, a more careful application
of the Cauchy-Schwarz inequality (3.25) at the beginning of the proof of Theorem 3.5.1 is
advisable. In this connection, we point to the fact that the terms in the square brackets
in (3.25) are not of the same order. To illustrate this, we plot the components

e1 = ike? +Ve* and ey :=ike" +V -e¥ (3.28)
in Figure 3.4 for the problem studied in Example 3.6.3. We investigate these improved
convergence rates in the Chapters 4 and 5. "
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3.6. Numerical examples
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Figure 3.3.: Comparison between the h-FEM (left) and h-FOSLS (right) for p = 1,...,5
as described in Example 3.6.3. The reference line in black corresponds to

hmin{2.5,p+1}.
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3. First order system least squares method for homogeneous Helmholtz problems
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Figure 3.4.: Comparison between the error terms e; := ike® 4+ Ve (left) and eg = ike" +
V -e? (right) for p=1,...,5 as described in Remark 3.6.4 and Example 3.6.3.
The reference line on the left corresponds to h' for p = 1 and h'® for p > 1.
The reference line on the right corresponds to h'/2.
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4. FOSLS | - homogeneous boundary
conditions

In the present chapter we analyze the hp version of a first order system least squares method
applied to a Poisson-like model problem with homogeneous boundary conditions. Similar
to the methodology of Chapter 3 we reformulate the second order model problem into a
system of first order equations. The observed convergence rates discussed in Remark 3.6.4
in Chapter 3 motivate the analysis carried out in this chapter. The results of the current
chapter are part of [BM20].

The outline is as follows. In Section 4.1 we introduce the model problem, the first order
system least squares (FOSLS) method itself and prove norm equivalence results, which
in turn guarantee unique solvability of the continuous as well as the discrete least squares
formulation. Section 4.2 is devoted to the proof of duality results for the scalar variable, the
gradient of the scalar variable as well as the vector variable. In the beginning of Section 4.3
we first exploit the duality result of Section 4.2 in order to prove L?(f)) error estimates
for the scalar variable of the primal as well as the dual problem. We then argue first
heuristically that these results are actually suboptimal and can be further improved. To
that end, we introduce an approximation operator that also satisfies certain orthogonality
relations and prove best approximation results for this operator, which are then used to
prove our main result (Theorem 4.3.12). Furthermore, we derive L?(Q) error estimates for
the gradient of the scalar variable as well as the vector variable. In Section 4.4 we present
numerical examples showcasing the proved convergence rates, focusing especially on the
case of finite Sobolev regularity.

4.1. Model problem

Throughout the present chapter the notation of Chapter 2 applies. Furthermore, let 2 be
simply connected. Let I' = 9§ consist of two disjoint parts I'p and I'y and let f € L?(€).
(Later, we will focus on the special cases I' = I'p and I' = I'y.) For v > 0 fixed we consider
the following model problem

—Au+~vyu=f in Q,
u=0 onIp, (4.1)

Opu=0 ony.
We formulate (4.1) as a first order system. For a general discussion and presentation

of current results concerning the numerical discretization of (4.1) using a least squares
approach we refer to Section 1.2. Introducing the new variable ¢ = —Vu we formally
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4. FOSLS I - homogeneous boundary conditions

arrive at the system

V-p+yu=f inQ, (4.2a)
Vu+¢ =0 in ), (4.2b)
u=0 onIp, (4.2c)
p-n=0 only. (4.2d)

% Vooy ) e V-p+yu
U 1 Vv U Vu+

we want to solve the equation

The least squares approach to this problem is to find (¢,u) € Hy(£2,div) x HL () such
that

L L = L Y (3,v) € Hy(Q,div) x H5(Q),

Q Q

where (-,-)q denotes the usual L?(Q) scalar product. Introducing now the bilinear form b
and the linear functional F' by

b((p,u), ®,v)) =(V-p+yu, V-9 +yv)a+ (Vu+e, Vo +1)q, (4.3)

F((’l[),’l))) = <f7v 1,0-1-’)/1))9, (44)

we can state the mixed weak least squares formulation: Find (p,u) € Hn (€2, div) x H} ()

such that

(1), (0,0)) = F(,0)) ¥ (1,0) € Hy (9, div) x Hb(Q). (4.5)

To see solvability of (4.5), let v € H5(Q) be the unique solution of (4.1). In view of

f € L%(Q) the pair (—Vu,u) is a solution of (4.5). Uniqueness follows if one can show that

b((p,u), (P,v)) = 0 for all (P,v) € Hy(Q,div) x H}(Q) implies (¢,u) = (0,0). To that
end, we introduce the (yet to be verified) norm ||-||, induced by b:

I, wll, = Vbl(p, ), (9, u)). (4.6)

A general approach would be to show norm equivalence. In our case:

lully o + lella@an < 1@l < llully g + lella@a -

We will employ methods similar to a duality argument in the following Theorem 4.1.1 to
prove such a norm equivalence.
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4.1. Model problem

Theorem 4.1.1 (Norm equivalence). For all (¢,u) € Hxn(Q,div) x H5(Q) there holds the
norm equivalence

ullf o + 1ol F . S b0 w), (0, w) S [lullf o + lelE@.ay) - (4.7)
Proof. First note that by definition

b((p,u), (p,u) = | V-9 +yu o+ Vu+ e lfa,
—_——— ——

=w =n

from which the second inequality in (4.7) is obvious. For the first inequality, we will now
split ¢ and u as follows:

Vepr+yur=w  inf, Veps+yus =0  inQ,

Vuiy +¢1 =0 in €, Vus + @2 =1 in €,
up =0 on I'p, ug =0 on I'p,
p1-n=20 on 'y, p2-n=0 on 'y,

with yet to be determined functions ¢1, @2, u; and us. We observe that ¢ = 1 + @9
and u = u; + ug since the difference solves (4.2) with zero right-hand side, which is only
solved by the trivial solution. Simply eliminating ¢; and ¢2 in the above equations, we
expect w1 and us to be solutions to

—Aug +yup =w in Q, —Aug +yus =-V -9 in €,
up =0 on I'p, ug =0 on I'p,
8nu1 =0 on FN, 3nUQ =0 on FN,

where —V - 7 is to be understood as an element of (H}(f)) given by F : v — (1, Vv)q.
Both equations are therefore uniquely solvable. This then determines the desired functions
u1, ug and consequently the functions @1, @2, using the second equation in the first order

Systems.

Let us show that (g1, u1) solves the above system. By construction it satisfies the differ-
ential equations and furthermore, since ¢; = —Vu;, we have by standard regularity theory
PY1-nN= —Vul ‘N = —0huy =0.

Let us show that (¢2,us) satisfies the above system. Let v € C§°(£2) be arbitrary.
Integration by parts and exploiting the weak formulation gives

(V-p2,0)0 = —(p2, Vv)o = —(n, Vv)q + (Vuz, V) = —(yuz,v)q.

Therefore the div-equation is satisfied. To verify the boundary conditions we calculate for
any v € H5(Q)

{2 -1, 0) 1720y iz = (02, Vo)a + (V- 92, 0)0
= (=Vua +n,Vv)g + (V- p2,v)q =0,
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4. FOSLS I - homogeneous boundary conditions

where we first used Green’s theorem, then the equations of the first order system and at
last the weak formulation for us. The a prior: estimate of the Lax-Milgram theorem gives

lutlly g Il @y < ol

luzlly 0 S 1l @)y < lnlloq-

Due to the splitting © = u1 + ue it is now obvious that

2 2 2
lullio < lwllo.o + [mlloq -

We now estimate the H (€2, div) norms of ¢ and 5 as follows

2 2 2 2 2 2
o1l @.a) = leilloo + 1V -e1llgo = [-Vuillg o + lw —yulpe < lwlga-

2 2 2 2 2
el .0y = lP2llon + IV -@2llon = lIn = Vuallg o + [=yu2llon < lIn

‘2
0,92

which completes the proof. O

Remark 4.1.2. Theorem 4.1.1 (norm equivalence) does not hold on all of H(2,div) x
H'(£) since one can construct nontrivial solutions to the system

V-p+~yu=0 in Q,
Vu+¢ =0 in Q,

due to the missing boundary conditions, even though ||(¢,u)||, = 0 by construction. .

Remark 4.1.3. Theorem 4.1.1 (norm equivalence) is in fact much stronger than what we
need to establish unique solvability of the system (4.5): The weaker coercivity estimate
HquQ + Htp||3Q < b((p,u), (¢, u)) suffices to establish uniqueness. =

Remark 4.1.4. In the literature there are two main ideas for showing unique solvability
when working in a least squares setting concerning a first order system derived from a
second order equation:

e The first one deduces solvability from the second order equation and uses some
weaker coercivity estimates to establish uniqueness, as sketched in Remark 4.1.3.
See also [CQ17, BM19] for these kinds of arguments for the Helmholtz equation.

e The second approach is to establish a stronger coercivity estimate as in Theorem 4.1.1
and directly apply the Lax-Milgram theorem to (4.5), where the right-hand side is a
suitable continuous linear functional. See also [CLMM94, CMM97a] concerning the
model problem in question and also [CMM97b] for the Stokes equation.
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4.2. Duality argument

4.2. Duality argument

The current section is devoted to duality arguments that are later used for the analysis of
the L?(Q) norms of v — up,, V(u — up), and ¢ — ¢y,. Since these duality arguments rely
heavily on the elliptic shift theorem, we restrict ourself to either the pure Neumann or
Dirichlet boundary conditions, i.e., I' = I'y or I' = I'p, respectively. In contrast, when
considering mixed boundary conditions one has to expect a singularity at the interface
between the Dirichlet and Neumann condition, which has to be properly accounted for in
the numerical analysis by graded meshes for both the primal and dual problem. This is
beyond the scope of the present work. Our overall agenda is to derive regularity results for
the dual solutions, always denoted by (,v). For w € H'(Q2) and 5 € Hy(, div) we prove
the existence of dual solutions such that:

o [[wlfq = b((e,w), (®,v)), sce Theorem 4.2.1,
o [Vwl§g =0b((¢.w), (%,v)), see Theorem 4.2.2,

. ”"7”(2)9 = b((n,u), (3,v)), see Theorem 4.2.3.
These results are exploited in Section 4.3 with the special choices of w = u — up and
n = @ — @y, respectively.
Theorem 4.2.1 (Duality argument for the scalar variable). Let I' be smooth. Then there
holds:

(i) ForT =Ty and any (¢, w) € Ho(Q,div) x H(Q) there exists (v,v) € Ho(, div) x
H'(Q) such that ||U)H(2)Q = b((p,w), (Y, v)). Furthermore, ¥ € H3(Q), V-9 € H*(Q),
and v € H?(Q). Additionally the following estimates hold:

HUHQ,Q S ||7UH0,97
[Plls0 S lwloq
1A "/’”2,(2 S ”wHo,Q .

(ii) For T' = Tp and any (p,w) € H(Q,div) x HE(Q) there exists (1,v) € H(£,div) x
H(Q) such that Hw||(2)7Q = b((p,w), (¥,v)). The same regularity results and estimates
as in (i) hold.

Proof. We prove (i). Theorem 4.1.1 gives the existence of a unique (¥,v) € Hy(Q2,div) X
H'(Q) satisfying

(u,w)q = b((p,u), (¥,v)) V(p,u) € Hy(Q,div) x H(Q). (4.8)
For the regularity assertions, we introduce the auxiliary functions z and g by

Vp+yw=z in Q,
Vo+=p in Q, (4.9)
Y-n=0 on I
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4. FOSLS I - homogeneous boundary conditions

Regularity properties of z and u: Regularity properties of z are inferred from a
scalar elliptic equation satisfied by z. To that end, we note that (4.8) is equivalent to

(u,w)q = (Vu+@,p)a+ (V-@+yu,2)a V(p,u) € Ho(Q, div) x H(Q). (4.10)
For u = 0 and integrating by parts we find
0=(p.pa+(V-@.2)a=(p,p—Vz)o  Vpe Hy(Qdiv),

which gives z € HY(Q) as well as p = Vz. Inserting u = Vz and setting ¢ = 0 in (4.10)

we find
(u,w)q = (Vu, V2)q + (yu,2)q Yu € HY(Q).

Therefore z satisfies, in strong form,

—Az+vz=w in €,

(4.11)
Onz=0 onl,

and the shift theorem immediately gives z € H?(Q) with the estimate 12ll2.0 < llwllg -
Regularity properties of v: Eliminating 9 in (4.9), we discover that v satisfies

—Av+yw=w+ (1 —7)z in,

(4.12)
Opv =0 on I'.
By elliptic regularity v € H?(2) with the a priori estimate

[0llg,0 S llw+ (1 =7)zllg0 S lwllog-

Regularity properties of ¥: Setting ¥ = V(z — v), we have found the desired pair
(¥, v) € Hy(Q,div) x H(2). Since 1 = V(z — v), we first look at the regularity of z — v.
Subtracting the equations (4.11), (4.12) satisfied by z and v, respectively we obtain

—Alz—v)+7v(z—v)=(y—1)z inQ,
On(z—v)=0 on T,

which gives z — v € H*(Q) with the estimate
[z —vlly0 S (v = Dzllag S llwllog-
We can therefore deduce

[Bllz0=1V(E=vl0 <z =viie < lwloq:

and since V -9 = z — v, we have

IV lloo =z = v

which concludes the proof of (i). For the Dirichlet case (ii) the proof is completely analogous
by replacing every Neumann boundary condition with a Dirichlet one. O

2,0 S ||w”0,ﬂa
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4.2. Duality argument

Theorem 4.2.2 (Duality argument for the gradient of the scalar variable). Let I" be smooth.
Then there holds:

(i) For T =Ty and any (¢, w) € Ho(,div) x HY(Q) there exists (p,v) € Ho(£, div) x
HY(Q) such that HVng’Q = b((p,w), (Y,v)). Furthermore, ¥ € H*(Q), V-9 €
HY(Q), and v € HY(Q). Additionally the following estimates hold:

[oll10 S IVwllgq,
[#ll20 S Vwlog
V-9l o S IVwllq-
(ii) For T' = T'p and any (p,w) € H(Q,div) x H}(Q) there exists (1,v) € H(£,div) x

H(Q) such that ||Vw||(2)79 = b((p,w), (,v)). The same regularity results and esti-
mates as in (i) hold.

Proof. We prove (i). Theorem 4.1.1 gives the existence of a unique (¥,v) € Hy(Q,div) X
H(Q) satisfying

(Vu, Vw)g = b((p,u), (,v)) VY (p,u) € Hy(Q,div) x H(Q). (4.13)
For the regularity assertion, we introduce the auxiliary functions z and p by
Vp+yw=z in €,
Vot =p in Q, (4.14)
P-n=0 on I
Regularity properties of z and p: We note that (4.13) is equivalent to
(Vu, Vw)a = (Vu+@,p)a + (V@ +yu,2)q V(p,u) € Hy(Q,div) x H'(Q). (4.15)
For u = 0 and integrating by parts we find

0=(p,p)a+ (V-9 2)a=(p,p— V2o,
which gives p = Vz. Inserting p = Vz and setting ¢ = 0 in (4.15) we find
(Vu, Vw)g = (Vu, Vz)g + (yu, 2)a Yu e HY(Q),

which can be solved for z € H'(Q) with the a priori estimate 2], o S IVwllg q- Formally,
z satisfies
—Az+vz=-V-Vw in Q,

(4.16)
Onz =0 on I’

where —V - Vw € (H'(Q))’ is to be understood as the mapping u + (Vu, Vw)q.
Regularity of v: Eliminating ¥ from (4.14) and using g = Vz, we discover that v

satisfies
—Av+yv=(1-7v)z—V -Vw in(,

Opv =10 on I'.
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4. FOSLS I - homogeneous boundary conditions

By the Lax-Milgram theorem we find that v € H'(Q) as well as
Il S 10 =92 = V- Vull gy S IVwlg-

Regularity of ¥: Upon setting ¥ = V(z — v), we have found the solution (¥,v) €
Hy(Q,div) x HY(Q) of (4.13). To prove the estimates and regularity results for 4 first note

that
—A(z—v)+y(z—v)=(1—-7)z in{,

On(z—v)=0 on T,
and therefore by elliptic regularity z — v € H3(Q) with the estimate
Iz =vlls0 ST =72l 0 S IVwlgq-

Finally since 9 = V(z —v) the regularity assertion for 9 € H?(12) follows. For the Dirichlet
case (ii) the proof is completely analogous by replacing every Neumann boundary condition
with a Dirichlet one. O

Theorem 4.2.3 (Duality argument for the vector valued variable). Let I' be smooth. Then
there holds:

(i) For T' =Ty and any (n,u) € Ho(Q,div) x HY(Q) there exists (¥,v) € Ho(Q, div) x
HY(Q) such that HanQ = b((n,u), (Y,v)). Furthermore, ¢ € L*(Q), V -9 € H'(Q)
and v € H3(Q). Additionally the following estimates hold:

HUHa,Q < H"7”0,97
H"/’”o,ﬂ < ||"7||0,Q7
1A "/’H1Q < ||"7||0,Q'

(ii) For T = Tp and any (n,u) € H(Q,div) x HI(Q) there exists (v,v) € H(,div) x
HZ(Q) such that ||17||(%7Q =b((n,u), (¥,v)). The same regularity results and estimates
as in (i) hold.

Proof. We prove (i). Theorem 4.1.1 gives the existence of a unique (¥,v) € Hy(Q,div) X
H(Q) such that

(.o = b((p,u), ®,v)) ¥ (p,u) € Ho(Q,div) x H' (). (4.17)
For the regularity assertions, we introduce the auxiliary functions z and g by

V-y+yv=2z in €,
Vo+¢ =p in Q, (4.18)
PY-n=0 on I'.

Regularity of z and p: (4.17) is equivalent to

(@, ma=(Vutouwa+ (V-@o+yu,z2)q Y(p,u) e Ho(Qdiv)x H(Q).  (4.19)
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4.3. Error analysis

For v = 0 and integrating by parts we find

(p:ma = (g, ma+ (V- ¢, 2)a = (¢, p — V2)q,
which gives p — Vz = 1. Inserting p =1 + Vz and setting ¢ = 0 in (4.17) we find
0= (Vu,n+V2)g+ (yu,2)a Yuec H(Q).
Hence, with the understanding that V -9 means u — (Vu,n), the function z solves

—Az+v2z=V-n in

4.20
Opz=0 on I'. ( )

Thus, z € H'(Q) and setting p =n + Vz we find (4.19) to be satisfied. Furthermore, note
that

Izl 0 S IV - nllig )y < lnllog
where the last inequality following from integration by parts and exploiting the boundary
condition n € Hy(Q, div).
Regularity of v: By eliminating 9 we find that v solves

—Av+yv=(1—7)z inQ,
Opv =0 on .

Again by elliptic regularity we find that v € H3() as well as

[ollz0 SN =7)2l0 < lnlloq-

Regularity of 9¥: We have ¥ =1+ V(z — v), and the regularity of % follows from that
of z of v. For the Dirichlet case (ii) the proof is completely analogous by replacing every
Neumann boundary condition with a Dirichlet one. O

4.3. Error analysis

The goal of the present section is to establish optimal convergence rates for an hp version
of the FOSLS method for the scalar variable, the gradient of the scalar variable as well as
the vector variable, all measured in the L?(Q2) norm, as long as the polynomial degree of
the other variable is chosen appropriately.

4.3.1. Notation, assumptions, and road map of the current section

Throughout we denote by (¢, up) the least squares approximation of (¢, ). Furthermore,
let € = u — up and e¥ = ¢ — ¢, denote the corresponding error terms. For simplicity
we also assume I' = 'y, i.e., I'p = (). Furthermore, p will denote the minimum of the
two polynomial degrees ps and py, i.e., p = min{ps, p,}. The overall agenda of the present
section is as follows:
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4. FOSLS I - homogeneous boundary conditions

1. We start off by proving [BG05, Lemma 3.4] in an hp setting using our duality argu-
ment, i.e., the (in our sense) suboptimal L?(Q) estimate

le“llo.0 < P/p (e e )]y -

This is done in Lemma 4.3.1. In Remark 4.3.2 we present heuristic arguments that
suggest the possibility of optimal L?(2) convergence rates. These arguments suggest
to construct an Hy(£2,div) conforming approximation operator I 2 with additional
orthogonality properties.

2. In Lemma 4.3.3 we prove that the operator I 2 is in fact well-defined. As a tool of
independent interest we derive certain continuous and discrete Helmholtz decomposi-
tions in Lemmas 4.3.4 and 4.3.5. These decompositions are then used in Lemma 4.3.6
to analyze the L?(Q) error of the operator I9.

3. Next we prove an hp version of [BG05, Lemma 3.6] (an h analysis of e in the L?(Q)
norm).

4. In Theorem 4.3.10 we exploit the results of Lemma 4.3.9, which analyzes the conver-
gence rate of the FOSLS approximation of the dual solution for the gradient of the
scalar variable, in order to prove new optimal L?(f2) error estimates for Ve.

5. We analyze the convergence rate of the FOSLS approximation of the dual solution in
various norms in Lemma 4.3.11. Finally we prove our main result, Theorem 4.3.12,
which analyzes the convergence of e* in the L?(2) norm.

6. Closing this section we derive Corollary 4.3.14, which summarizes the results for
general right-hand side f € H*(2), by exploiting the estimates given by the The-
orems 4.3.8, 4.3.10 and 4.3.12 together with the approximation properties of the
employed finite element spaces.

Since we are dealing with smooth boundaries we employ curved elements. We assume
the triangulation 7 to satisfy Assumption 2.0.1. We employ the scalar and vector valued
finite element spaces as discussed in Chapter 2. For the approximation properties of the
H (Q,div) conforming finite element spaces see [BBF13, Prop. 2.5.4] as a standard reference
for noncurved elements and without the p-aspect. For an analysis of the hp-version under
Assumption 2.0.1 we refer to Section 3.4.

4.3.2. The standard duality argument

Before formulating various duality arguments, we recall that the conforming least squares

approximation (@, up) is the best approximation in the || - ||, norm:
1@ —@nu—un)lls=_min_ (¢ —@p,u—1ip)l (4.21)
UhESpS (7—/1)’
Pn€VY, (Th)
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4.3. Error analysis

Lemma 4.3.1. Let T' be smooth and (pp,up) be the least squares approximation of (@, u).
Furthermore, let " = u—uy, and e® = @ —@y. Then, for any @, € Sy, (Tn), @5 € VO, (Th),

le®lloo < —1I(e®, el

[ISaS T IS S

S

- h - h -
lu = anlly o + » e —@nlloo + » IV (e —enlloq-

p

Proof. Apply Theorem 4.2.1 (duality argument for the scalar variable) with w = e*. For
any 0, € Sp, (Th), ¥, € ng (Tn), we find due to the Galerkin orthogonality and the Cauchy-
Schwarz inequality:

e 12 = b((e?, "), (1, v)
— b((e?, "), (% — Wy, 0 — ) (4.22)
< (€2, )l — B v — ) o

Using Theorem 4.1.1 (norm equivalence), and exploiting the regularity results and estimates
of Theorem 4.2.1 as well as the H'(€2) and H(£2,div) conforming operators in [MR20], we
can find o, € Sp,(Th), ¥y, € V), (Th), such that

1@ = B = )l S o = Tl + 0 — Bl
S 1/ (Iellag + 18l o))

S h/plletllog

where we exploited the regularity for (¢,v) and the a priori estimates of Theorem 4.2.1,
which proves the first estimate. The second one follows by the fact that the least squares
solution is the projection with respect to the scalar product b. Therefore,

1(€?, ") lo < [[(p — @pn,u — tn)llb
holds. The result follows by applying the norm equivalence given in Theorem 4.1.1. O

Remark 4.3.2 (Heuristic arguments for improved L?(Q) convergence). We present an
argument why improved convergence of the scalar variable u can be expected. We again
start by applying our duality argument and exploit the Galerkin orthogonality as in (4.22) in
the proof of Lemma 4.3.1. Instead of immediately applying the Cauchy-Schwarz inequality
we investigate the terms in the b scalar product and analyze the best rate we can expect
from the regularity of the dual problem:

50 = b((€?,e"), (@ — v — B))
= (V- 6‘%—1— e,V - (ibh— ¥y) +y (v — ) + (Ve“®+ e¥ V(v ; op) + —h{bh)g.
~h2 ~h2 ~ ~h3

le*

Note that the terms are not equilibrated and we cannot expect any rate from the terms
marked by ®. However, choosing (%}, 75) to be the least squares approximation (¥, vp,)
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4. FOSLS I - homogeneous boundary conditions

of (¢,v) and again exploiting the Galerkin orthogonality we have for any (@, up):

b((e?,e"), (e¥,e"))

b((QO (phv —u )7(6’(/)’611))

V- (p— v(u—1p),V- e+ €’ o+ (V(u—ip)+¢ — @, Ve +e¥)o.
= ( (<p® @n) +7 ( hzh)\ £ ,NhQ,) (V( h )+ hwh - )

2
le*llo,0

The improved convergence of the dual solution will be shown in Lemma 4.3.11. From a best
approximation viewpoint the V- term involving ¢ still has no rate. To be more precise, the
second term has the right powers of h resulting in an overall h2. Since the term (u — iy,)
already has order h? we have no problem with that one. The term with the worst rate is

(V- (¢ —@n),V-e’)o ~h.

Out of the box we cannot find an extra h to get optimal convergence, even though % has
far more regularity, which we did not exploit yet. We now want to construct an operator
I 2 mapping into the conforming finite element space of the vector variable. To exploit the

regularity of ¥ we insert any 'J)h € ng (Tr). We have

(V-lp—T09),V-e’)o= (V- (¢ =L)@). V- —Pp))a+ (V- (0~ I9). V- @), —¥n)a.
Note that {bh —1py, is a discrete object. If we assume I 2 to satisfy the orthogonality condition
(V- (e—Ie),V-xn)a=0  Vxp €V (Ta),

we arrive at

(V- (p—TI09),V-e)a= (V- (p—I0p), V- —,))a ~ h%
T

Therefore the operator I 2 should satisfy the aforementioned orthogonality condition and
have good approximation properties in L?((2), as needed above. In the following we will
construct operators I and Iy, acting on Ho(f2, div) and H(S, div), respectively. .

4.3.3. The operators I and I},

In the spirit of Remark 4.3.2 a natural choice for the operator I (,)L is the following constrained
minimization problem

INp = argmin §||<p onllog st (V- (@e—IN@),V -xn)a=0 ¥x, €V (Th).
ereVY (Th)

The corresponding Lagrange function is

1
L{en, An) = 5 llen — olloa+ (V- (orn—9), V- A
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4.3. Error analysis

and the associated saddle point problem is to find (¢, An) € ng (Tr) x ng (T1) such that

(e =)o+ (V-pn, V- 2)a=0  Vu, €V) (Th), (4.23a)
(V- (en —9), V1) =0 Vg, €V (Th) (4.23b)

Uniqueness is not given since only the divergence of the Lagrange parameter appears.
However, by focussing on the divergence of the Lagrange parameter, we can formulate it
in the following way: Find (pn,An) € V) (Tn) x V- V) (T3) such that

(@n,mn)o + (V- i, An)a = (@, r)o Yun € V) (Th), (4.24a)
(V- onnn)o =(V-@,m)a V€ V-V) (Th). (4.24D)

The construction of Ij, is completely analogous, one just drops the zero boundary conditions
everywhere.

To see that the operator I 2 is well-defined, we have to check the Babuska—Brezzi condi-
tions, see [BBF13]. First, let us verify solvability on the continuous level.
Coercivity on the kernel: Let p € Hy(Q,div) with (V - p,n)q = 0 for all n €
V - Hy(Q,div) be given. The coercivity is trivial since by construction (V -,V - ) =0
and therefore

2 2 2 2
(1) = |ulloo = lulon + 11V - #loa = lklE@.dy) -

inf-sup condition: Let € V-H(2,div) be given. First let u € H'(Q) with zero average
solve

—Au=mn 1in ,
Opbu=0 onl.
By elliptic regularity we have [jufly o < |7l o and upon defining p = —Vu we also have

1]l (,aiv) < IMllo,0- Note that by construction p € Ho(2, div) as well as

(V-pma=(nmna= ||77||0,Q ||77||o,Q Z ”UHO,Q H/J'HH(Q,div) ’

which proves the inf-sup condition.

Coercivity on the kernel - discrete: The coercivity is again trivial by the same argu-
ment as above.

inf-sup condition - discrete: Let \;, € V -ng (Tr) be given. As above in the continuous
case we solve the Poisson problem

—Au = )\h in Q,
Opbu=0 onl.

Let A = —Vu and again we have [[Al g qiv) < [All1 o < [ullao S [Anllgo- We now employ
the commuting projection based interpolation operators defined in [MR20], especially the
global operator IIS" given in [MR20, Remark 2.9], see also [Roj19, Sec. 4.8] in the case

V9 (Tn) = BDM) (Ty). Let therefore II)"* denote cither the operator oY | if VO (Th) =
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4. FOSLS I - homogeneous boundary conditions

RT) ,(Tx) or the analogous operator I3 in the case V9 (7,) = BDMJ (73). We use this
operator to project A onto the conforming subspace. With Ay, := ng}v’*A we find

VA=V -IEA =TV A =TI ), = A,

where Hﬁj denotes the L? orthogonal projection on V ~ng (71). Using [MR20, Thm 2.10,
(vi)] we can estimate

N
1A =TI Al g (o,aiv) S Ao S [Anllog

which finally leads to

1Al E @) = TS Al an) S 1A = T3 Al g (0.div) + 1A H @) S IAallog -

For any A, € V- V) (T3) we estimate

(V -0, An)a (V-Ap, \n)a ||)‘hH07Q

sup > = z 1
ereVY, (Th) H‘PhHH(Q,div) ”)‘hHO,Q HAhHH(Q,diV) H)‘hHO,Q HAhHH(Q,div)

which proves the discrete inf-sup condition. The above arguments can be modified in
a straightforward manner when replacing the discrete space ng (Tn) with V,, (T) and
Hy(Q,div) with H(Q,div). The only caveat is the fact that one has to replace the homo-
geneous Neumann boundary condition in the auxiliary problem, used in the verification of
the inf-sup condition, by a homogeneous Dirichlet boundary condition. We have therefore
proven

Lemma 4.3.3. For any mesh T, satisfying Assumption 2.0.1, the operators 12 : Hy(Q,div)
— ng(ﬁ) and Iy, : H(Q),div) — V,, (T}) are well-defined with bounds independent of the
mesh size h and the polynomial degree p,. They are projections.

We are now going to analyze the approximation properties of the operator I 2 and Iy, in
the L?(Q2) norm. To that end, we need certain decompositions on a continuous as well as
a discrete level.

Lemma 4.3.4 (Continuous and discrete Helmholtz-like decomposition - no boundary con-
ditions). The operators II°™': H(Q,div) — V x H(Q,curl) and II§W: V, (T) — V x
va (77L) gi’Ue'rL by

(Mo, V x p)g = (o, V x p)q Y € H(Q, curl), (4.25)
(™, V x w)a = (o, V x p)g Y € N, (Tr) (4.26)
are well-defined. Furthermore, the remainder r of the continuous decomposition @ =
ey + r satisfies
V.r=V-p in(,
Vxr=0 mn €,

nxr=>0 on T,
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4.3. Error analysis

as well as v € HY(Q). Additionally there exists R € H*(Q) N H(Q) such that T = VR,
where R satisfies
AR=V-p in{,
R=0 onT.

Finally, the estimate ||Rl, o S ITllia S IV -@llg.q holds.

Proof. For unique solvability of the variational definition of the operators, just note that
they are the L?(€2) orthogonal projection on V x H(Q, curl) and V x N, (7,), respectively.
By construction we have

(r,Vxpq=0 VueH(,curl),

which by definition gives V x r = 0. Furthermore, by the characterization of H ({2, curl)
given in [Mon03, Thm. 3.33] we have n x r = 0. Since Iy € V x H(Q,curl) we
immediately have V -r = V - . Exploiting the exact sequence property of the following de
Rahm complex

{0} _d, H}(Q) ~, Hy(Q2, curl) ¥ H(9,div) Y, L§(€) - {0}

in the case that both  and T' are simply connected, we can find R € H}(f2) such that
r = VR. Therefore R solves the asserted equation. The Friedrichs inequality and elliptic
regularity theory then give the desired results. O

By nearly the same arguments we also have a version for zero boundary conditions:

Lemma 4.3.5 (Continuous and discrete Helmholtz-like decomposition - zero boundary
conditions). The operators I°0: Hy(Q, div) — V x Ho(,curl) and H,Clurl’oz ng (Tn) —
V x ND (Tp) given by

@00,V x w)o = (¢, V x p)g Y € Ho(Q, curl), (4.27)
(I 00, V x ) = (n, V x p)o Vi €N (Tr) (4.28)

are well-defined. Furthermore, the remainder r of the continuous decomposition @ =
ewOp 1 satisfies
Vr=V-p in(,
Vxr=0 m €,
r-n=>0 on T,
as well asr € HY(Q). Additionally there exists an R € H*(Q)NH(Q)/R such thatr = VR,
where R satisfies
AR=V - -¢ in(,
OpR=0 onT.

Finally, the estimate ||Rllyq < Irlliq S IV -@llgq holds.
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4. FOSLS I - homogeneous boundary conditions

Proof. Unique solvability, V. xr =0 and V - r = V - ¢ follows by the same arguments
as in the proof of Lemma 4.3.4. Since ¢ € Ho(9,div) and II®"0p € ¥V x Ho(S, curl) C

H (9, div) we find

chrl,O

rn=¢p-n-— @-n=0.

Again by the exact sequence
1 v V% N VO 0
R L H (Q) — H(Q,curl) — H(Q,div) — L*(Q2) — {0}

we can find R € H'(Q2) such that r = VR. Finally since 9,R = VR-n =7 -n = 0, we find
that R solves the asserted equation. The Poincaré inequality and elliptic regularity theory
then give the desired results. O

Lemma 4.3.6. The operator I') satisfies for arbitrary @y, € ng (T1,) the estimates

H‘P I ‘PHOQ Sl — ‘Ph”o(ﬂL ||V (‘P*‘foh)Ho,Q, (4.29)
IV - (o = L)l g0 < Hv‘«o—soh)Ho,g- (4.30)

The same estimates hold true for the operator Iy, for arbitrary @, € V,, (Tp).

Proof. Let @, € ng (Tr) be arbitrary. Due to the orthogonality relation satisfied by the
operator I the estimate (4.30) is obvious. We have with e = ¢ — Ip

lellgq = (e, — @n)a + (e,@, — INg)a

In order to treat the second term we apply Lemma 4.3.5 and split the discrete object
@ —INg € V) (Th) on a discrete and a continuous level. That is,

(;bh—I(})ZQOZVX[L—FT,
@ —Inp =V X+,

for certain p € Ho(Q,curl), r € Ho(Q,div), pp € N (T3), and v, € V) (7). Since
V- Vx =0 we have
(o —Ihp,V X pp)o =0

by definition of the operator I 2 and consequently
(e,@n —INp)a = (e, V X pp +Th)a = (e,7h)a = (6,7 —)a + (e,7)q = Ty + T.

Treatment of T;: To estimate 77 we first need one of the commuting projection based
interpolation operators defined in [MR20]. Specifically we employ the global operator
I given in [MR20, Remark 2. 9] see also [Roj19]. Let therefore II3""* denote either
the operator l'Ile LIV (Th) = T, 0 1 (Tn) or the analogous operator l'Idlv in the case
Vo (Th) = BDMOU (Th)- Flrst note that V.r=V-r,eV-V) (T). By the commuting
diagram property of the operator Hgiv’* as well as the projection property we therefore

have . ,
V-(Hg;v’*r—rh):Hgv(v-r)—v-rh:V-r—V-rh:O.
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4.3. Error analysis

By the exact sequence property we therefore have Hgiv’*r —rp € VX Ngv (71,). Furthermore,
the definition of r and 7y, in Lemma 4.3.5 gives the orthogonality relation r —r, L V X
ND (7n). Putting it all together we have

|lr — thaQ =(r—rpr— Hgivv’*r)g + (r— rh,l'lgi"’*r —rp)o= (@ —ryr— Hgi"’*r)g,
which by the Cauchy-Schwarz inequality gives

Ir = rallgq < Ir — Ir

0,Q-

Since V -r = V -1}, is discrete we may apply [MR20, Thm. 2.10, (vi)] as well as perform a
simple scaling argument to arrive at

. h h
d ~
||’l" _Hpiv,*rHO,Q S o ||rH17Q S 7 Hv : (Soh - I%SO)H()Q7
Do Pu ’

where the last estimate is due to the a priori estimate of Lemma 4.3.5. Summarizing we
have

h ) , )
L5 =leloa [V @n=Tiellon < - leloalIV - (0 = @n)log:
v v

where the last estimate follows by adding and subtracting ¢, the triangle inequality as well
as the second inequality of the present lemma.

Treatment of T5: The term 75 is treated with a duality argument. We select ¢ €
H (9, div) such that

(V o,V ’lﬂ)g = (v,r)Q Yv € Ho(Q,diV).

To that end, we note that by Lemma 4.3.5 we have r = VR for some R € H?(2). Therefore
for v € Hy(Q2, div) we have

(V v, V- ¢)Q = (’U,’I’)Q = (’U, VR)Q = _(v v, R)Qa
so that the desired ¥ is found as ¥ = Vw with w solving

—Aw =R in{,

w=0 onl.

Furthermore, since R € H?(Q), elliptic regularity gives w € H*(Q2) and therefore 9 €
H3(Q). Finally the following estimates hold

IV %laq < [#lls0 < lwlio S IR0 S Irlie SV @1 = 1he)]oq (4.31)

due to elliptic regularity and the results of Lemma 4.3.5. We therefore have for any ¥ €
Vo, (Th)
Pov

Ta=(er)o=(V-eV-Yla=(V-e,V- % —9n))a <[V elgollV- & —vn)loq,
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4. FOSLS I - homogeneous boundary conditions

where we used the definition of 75, the duality argument elaborated above, the orthogonality
relation of I) to insert any %, € ng(ﬁ), and the Cauchy-Schwarz inequality. Finally
exploiting the a priori estimate of 9 in (4.31) we find for p, > 1 that

Ty < ||V - . inf V- (W— < ||V - h/py)? ||V -
b < |IV-ellgq Weg?lw(mll @ —¥n)lloa S IV el (h/po)” IV -9l q

SV -ellgg (0/p)2 ]|V - @ — 120 0 -
In the lowest order case p, = 1 we cannot fully exploit the regularity. However, we find
IV %o < oo < Iwlso < 1Rle SV - @~ 100 gy - (432)
Proceeding as above and using estimate (4.32) we find

T, < ||V -e . inf V- @ - <|V-e h/py ||V -
2 < H(),Q Tl’hEVgU(Th)H (¥ ’l/)h)Ho,Q | HO,Q /o || ")le,Q

5 HV 'eHO,Q h/pv HV : (‘Abh - I%SD)H(HI(Q))/ 5 HV : eHO,Q h/pU H‘»bh - I?LSDHQQ'

The last last estimate is due to integration by parts and the boundary condition of @, —I [})Lgo;
in fact
(V- (@1 — Ih), v)al |(@n — I, Vv)a

V(@5 — ) = sup = sup
IV-@n =Tl ooy = sup == vy Tl

< [|en = Tieo.

holds. Putting everything together we have for p, > 1

lellq = (e, — @) + (e,@), — Ing)a
= (e, —@p)a+ T + 13
N h N
S llelloq lle — @nlloq + o lelloa IV - (e —@n)lloq
v
h? - 0
+ 2 IV -ellgq IV (@ - Ih‘P)Ho,Q
v

- h - h? - 19
S HeHO,Q lp — ‘Ph”O,Q + 27 ||e||o,Q V- (¢ — ‘Ph)”o,ﬂ + pﬁ V- (e — <Ph)||o,n )
v v

where the last estimate again follows from inserting ¢ and using the second estimate of
the present lemma. Young’s inequality then yields the result for the operator I 2. The
lowest order case is treated analogous. For the operator I, the only difference is that one
applies Lemma 4.3.4 instead of Lemma 4.3.5 and perform the duality argument on all of
H(Q,div) instead of Ho(£2,div). Here it is important to note that the potential R given
by Lemma 4.3.4 satisfies homogeneous boundary conditions, so that the boundary term
vanishes in the partial integration. O

Remark 4.3.7. H({,div)-conforming approximation operators similar to I, and I ?L are
presented in [EGSV21], where the focus is on a patchwise construction rather than the
(global) orthogonalities (4.23b), (4.24b). .
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4.3. Error analysis

Theorem 4.3.8. Let I be smooth and (pp,up) be the least squares approximation of (@, u).
Furthermore, let " = u—uy, and e® =@ —@y. Then, for any @y € Sy, (Tn), @5 € VO, (Th),

>

N h N
[e?llo.0 S €, e“)ls + llp — @hlloo + — HV (e —@llog

D"B

= Hu — il g+ [l — @nlloe + fHV (@ —en)lloe-

Proof. Let (¢,v) € HO(Q, div) x H*() denote the dual solution given by Theorem 4.2.3
applied to n = e®. Theorem 4.2.3 gives 9 € L*(Q), V-9 € H'(Q), and v € H*(Q2). Due to
the Galerkin orthogonality we have for any (¢, 0p)

€€ = bl(e?, "), (b, v)) = b((€P, ¢"), (% — 0 — 0n).
We now estimate all terms in the above:
(Ve +e, V(0 — ) < (€2, )V (0 = 51)llo,
(V- €# 7, V- (% — ) + 20— 51)a S (€2, [IV - @ = d)loso + 1o = Tl
(Ve', =)o = —(", V- @ =)o < e"loq IV @ —Bi)loo

Therefore, we conclude that

le? 50 S 1€, e) s [IV - (= %n)log + lv - mel,Q] + (.9 —¥p)a, (4.33)

the limiting term being for now the last one. To overcome the lack of regularity of ¥ we
perform a Helmholtz decomposition. In fact since 9 € H(€2,div) as well as V-9 € H*(Q)
there exist p € Ho(Q, curl) and z € H3(2) such that 9 = V x p+ Vz. The construction is
as follows: Let z € H'(2) solve

—Az=-V-¥ in Q,
Onz=0 on I
Since V- (p — Vz) = 0 as well as (¢ — Vz) -n = 0 by construction, the exact sequence
property of the employed spaces allows for the existence of p € H(2, curl) such that
¥ — Vz = V X p. Finally the following estimates hold due to the a priori estimate of
the Lax-Milgram theorem and partial integration for the first estimate, elliptic regularity
theory for the second, and the triangle inequality together with the first estimate for the
third one:
1zl S IV -9l mrq)y < 1¥loq
1zl50 S IV ¥l g,
[V x P||0 o= ||"/’||0 o™ HVZHO Q~ H‘/’HOQ

We now continue estimating (4 33) by applymg the Helmholtz decomposition. For any aph,
’(/Jh € VO ,(Tn) we have with 1), = 1/)h —l—'t,bh

(e”, 9 _"Zh)Q = (e, Vxp —12';)9 + (e, Vz —@7}%)9 =T+ T9.
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4. FOSLS I - homogeneous boundary conditions

Treatment of 79: By the Cauchy-Schwarz inequality we have
T9 = (e#,Vz = ¥p)a < [0 V2 = Phlloo.
Treatment of T°: For any ¢, € V) (7T5) we have
T¢ = (e®,V x p —1];2)9
= (=@ V xp =)o+ (@ — on V x p— ) = Tf + T5.
Treatment of 77: By the Cauchy-Schwarz inequality we have
IV xp—1,

Treatment of 735: In order to treat T we proceed as in the proof of Lemma 4.3.6 and
apply Lemma 4.3.5 to split the discrete object @, — ¢, € ng (Tn) on a discrete and a
continuous level:

~ ~C ~
TF = (o — @, Vxp—)a < llo — @nlloo l0,0-

Qbh—(ph:VXﬂ+r,
Gn—@n =V X pip + T,
for certain p € Ho(Q, curl), r € Ho(Q,div), pp, € N) (Tp), and v, € V9 (7). We now

choose ¢, = qurl’ov x p given by Lemma 4.3.5. Exploiting the definition of the operator
chrl,O
h we find

T5 = (@1, — on, V X p—p)a
= (V % pp, V x p =IOV % p)g +(rp, V x p =TIV x p)g
5
=(rp—7,V xp "0V x p)g + (r,V x p — "V x p)g
=T + Ts.

Treatment of 77: With the same notation as in the proof of Lemma 4.3.6 and with exactly
the same arguments we have

h h -
[r =ralloe S —lIrllio S — IV (@r —en)lloq -
b Pov

v

By the Cauchy-Schwarz inequality we have
< h ~ curl,0 < h ~
T S o IV (@n —en)lloallV xp—IL""V x plloa S o IV (@n —en)lloa IV x pllogs
v v

where the last estimate follows from the fact that
IV x p =IOV x pllog < [V x p =V x pyllo0

for any p;, € Ngv (Tn) since it is a projection. Finally inserting ¢ and applying the triangle
inequality as well as estimating ||V - (¢ — ¢n)llgq by [[(e",€?)]|, we find

h N h
TS o IV-(e=@nlllog IV x pllog + =(€®, e[V x plloo-
v (%

52



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

4.3. Error analysis

Treatment of Tb: Note again that p € Ho(Q2, curl) and the fact that """ maps into

V xNJ (T5). Therefore, we can write V x p—II"OV x p = V x p for some p € Ho(Q, curl)
and the boundary terms consequently vanish in the following integration by parts

Ty = (’I‘,V X ﬁ)Q = (v X r?b\)Q-

Finally, 75 = 0, since V x r = 0 by Lemma 4.3.5.

Collecting all the terms: Collecting the terms together with the estimate ||V x p[lq o <
1¥]loq S lle?llq from the Helmholtz decomposition and the regularity estimates given in
Lemma 4.2.3 we find

€, —¥n)a S |1V2—dhlloa + le — @nlloe
(4.34)

h i h .
V- =@nlloa + e el | le?lloq-

Since 1}2 = qurl’ov x peV x Ny (T) we have

- =g
V- @ —¥))llog = IV (Vz=93))lloo-
Due to the regularity of z € H3(2) we can find 1},91 € V) (Tn) such that

~g h h h h

IVz =¥pllaa S — IValgqay S —IV-%llio S —llellon S — €, el
Py Po Po Po

Therefore, estimate (4.34) can be summarized as follows:

: . ) h )
(€e?, % —p)a S ;H(e €2)lb + [l — @nlloo + o IV-(e—enlloal| le?llon- (4.35)

Again due to the regularity of v € H3(2) we can find 9, € S,,(7x) such that

h h

v="1plle S —lvllen S — lle¥
| | o [0ll2,0 P |

0,2 *

Finally, summarizing the estimates (4.33) and (4.35) and again using

IV - @ —%p)lloo = IV - (V2 —97))

h
00 S — €,
Py

we find
P2 < h P LU 7 h 7 P
[ellog < | 211 Dl + e = @rlloa + V- (@ = @n)loal| l€lloo-
Canceling one power of [[e?||, o, then yields the first estimate. The second one follows again

by the fact that the least squares approximation is the projection with respect to b and the
norm equivalence given in Theorem 4.1.1. O
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4. FOSLS I - homogeneous boundary conditions

Lemma 4.3.9. Let I' be smooth and (@, up) be the least squares approximation of (¢, u).
Furthermore, let e* = u — uy, and €9 = ¢ — @p,. Let (,v) € Ho(Q,div) x HY(Q) be the
solution of the dual problem given by Theorem 4.2.2 with w = e*. Additionally, let (Y, vp)
be the least squares approximation of (¥,v) and denote €’ = v—uvy, and e¥ = —1y,. Then,

h h
(€, S IVetllpq  and  le’lpn S » IVe'lloq and  lle?llon < » IVelloq -

Proof. Theorem 4.2.2 provides [[9|l20 + ||V - 9|10 + [[v]l1.0 S [Ve'|lo,q. Stability of the
least squares method (cf. (4.21)) yields

e, el S Ve llog -

By Lemma 4.3.1 we have

1e”llo.0 S B/l (€”,€")los

which together with the above gives the second estimate. By Theorem 4.3.8 we have

h - ~ h ~
le?llo.0 < o V= nllig + ¥ =dulloa + ZIV - =9n)loe

for any oy, € Sp, (Tn), ¥y, € V9 (T5). The result follows immediately by again exploiting the
regularity of the dual solution and the approximation properties of the employed spaces. [J

Theorem 4.3.10. Let T' be smooth and (@n,up) be the least squares approrimation of
(¢, u). Furthermore, let € = u — uy. Then, for any @, € VY (Tp), i € Sp,(Th),

w . h - h _
IVetllog S llu = @nllo+ Jlie = @nlloa + IV - (0 = @n)loo.

Proof. As in Remark 4.3.2 with (e¥, e”) denoting the error of the FOSLS approximation of
the dual solution given by Theorem 4.2.2 (duality argument for the gradient of the scalar
variable) applied to w = e we have for any @;, € V9 (T), @, € Sp, (Ts)

||eu”?),Q = b((‘P - Sbh?u - ﬂh), (ellp’ ev))
= (V- (o —@p) +7(u—1p),V-e¥ +ve)a + (V(u—ap) + ¢ — @, Ve +e¥)q.

We specifically choose ¢; = I ?lcp. In the following we heavily use the properties of the
operator I given in Lemma 4.3.6. First we exploit the regularity of the dual solution using
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4.3. Error analysis

Lemma, 4.3.9 as well as the estimates of Theorem 4.2.2:
(V(u— ), V - €% +ve)a < [lu—nllyq (¥, e
S lu— ah”l,ﬂ ”V€u||o,§2 )
(V(u— 1), Ve’ +e¥)a S IV (u—an)lloq Il e)lo
S llw—=anlly o Ve (o,
(p—Ie, Ve')a = —(V - (¢ — Ijp),e")a
< HV (- Ig‘P)Ho,Q ”evHo,Q
Ship||V- (e —19) oo Ve lloq
(V- (e —I¢),7e)0 < ||V (0 = I090)]| 5.0 € llo.0
Ship|V-(p— I%(P)H(m IVe“lloq
(¢ —Thp.e¥)a < llo — 1| lle?
Shiple —Ielloq Ve log -
(V-(p—I9),V-e’)a = (V- (p—Tp), V- (¥ —Py))n
<[Vl =)o IV - (@ - ¥)llo.o
Sh/p|V- (@=L |loq IVe log-

0,2

Canceling one power of [|[Ve"[; o, collecting the terms, and using the estimate for I 9 we
arrive at the asserted estimate. O

As a tool in the proof of our main theorem (Theorem 4.3.12) we need to analyze the
error of the FOSLS approximation of the dual solution. This is summarized in

Lemma 4.3.11. Let T' be smooth and (@p, up,) be the least squares approzimation of (@, u).
Furthermore, let % = u — uy, and € = ¢ — ¢p,. Let (P,v) € Hy(Q,div) x H(Q) be the
solution of the dual problem given by Theorem 4.2.1 with w = e*. Additionally, let (Y¥p, vp)
be the least squares approximation of (¥,v) and denote e’ = v—wvy, and e¥ = —p,. Then,

() <h u v < h ? u
1€¥, el S —llelloe  and  le’loo S {— ) lle“lloq-
p p
Furthermore,
" hllello.q if Vp,(Tn) = RT{(Th),
le¥llo.e <

2
(%) le*]loq else.
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4. FOSLS I - homogeneous boundary conditions

Proof. Theorem 4.2.1 gives ¥ € H3(Q), V-4 € H?(Q2) and v € H%(Q) with norms bounded
by ||e”]|o,. Therefore we have in view of optimality of the FOSLS method in the b-norm

(4.21) . B )
Ie?,e)lls < 1@ =%, =)l S B/pllellgq

where the first estimate holds for any v, € Sp, Y, € Vgu (71) and the second one follows
with the same arguments as in the proof of Lemma 4.3.1. By Lemma 4.3.1 we have

le”llo. S B/plI(€”,€")los

which together with the above gives the second estimate. By Theorem 4.3.8 we have

h B ~ h ~
le?lloe S s o = Tally.q + I — Yullon + IV - ¥1)llo.0

for any oy, € Sp, (Tn), ¥y, € VO (Tr). The result follows immediately by again exploiting the
regularity of the dual solution and the approximation properties of the employed spaces. [

Theorem 4.3.12. Let I' be smooth and (pn,up) be the least squares approrimation of
(@, u). Furthermore, let e = u — uy,. Then, for any @, € VO (Th), @n € Sy, (Th),

v

hllu = anlly o + bl = @nlloq + 2V - (@ —@n)log for RTG(Tn),
le“lgq < 4 Pllu=tnll o + 22le = @pllon + AV - (¢ = @n)lloe for BDM{(Ty,),

2 2
B —anll o+ (2) e~ @uloa+ (£) 19 (@~ @nllon ese

Proof. As in Remark 4.3.2 with (e¥,e”) denoting the FOSLS approximation of the dual
solution given by Theorem 4.2.1 applied to w = e* we have for any @;, € V) (73), @ €
Sp.(Tn)

Heu”(Q),Q = b((‘P - ¢h7u - 'ﬂ,h), (61/)7 ev))
= (V- (o —@p) +v(u—14),V-e¥ +7e")a + (V(u—1in) + ¢ — @p, Ve’ +€e¥)q.

We specifically choose ¢;, = I ?lcp. In the following we heavily use the properties of the
operator I given in Lemma 4.3.6. First we exploit the regularity of the dual solution using
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4.3. Error analysis

Lemma 4.3.11 as well as the estimates of Theorem 4.2.1:

((u =),V - € +7e")a < llu—nlloq €, )]s

Sh/plu—anllqlle“lloq -
(V(u—1n), Ve’ +e¥)o S [V (u—an)lloq lI(€”, e
S h/pllu =l o lle*lloq -
(o —INp.Ve')a = —(V- (o —INp),e")o
< V-0~ L0) o0 Ie"ll0n
S (/P IV - (= 1h9) |o o llellog »
(V- —Ie), 7€) < [V (@ = I10)||o.q € llo0
S (/P IV - (= 1) |o o llelloq »
le = Ihell e lloo
hlle = Lell o llelloq if V}, (Tn) = RTH(Th),
(8) ke — I3eellg o el else
(V- (p—I09),V-e¥)a = (V- (p—I)p), V- (% —¥;))a
HV (o — Ig‘P)HQQ V- (¥ — {bh)HO@
RV - (o =100)[l g0 e llo0 if p, = 1,
(B)°1V - 0~ 1) le¥llo  else

Canceling one power of |le“||, ¢, collecting the terms, and using the estimate for I9 we
arrive at the asserted estimate. O

AN

(‘p - I?L‘p7e¢)ﬂ

AN

IN

AN

Remark 4.3.13. Before stating the general corollary with prescribed right-hand side f €
H*(2) we highlight the improved convergence result. Consider f € L?(£2). For the classical
conforming finite element method one observes convergence O(h?) due to the Aubin-Nitsche
trick. More precisely, let uEEM be the solution to the model problem obtained by classical
FEM, then there holds

FEM
lu = u Mo < B lulla.q < A2 1 fllog -

As elaborated in Section 1.2 this rate could not be obtained for the FOSLS method by
previous results, since further regularity of the vector variable ¢ would be necessary. Results
like [BG05, Lemma 3.4] and [Jes77, Thm. 4.1] are essentially a duality argument like
Theorem 4.2.1 and the strategy of Lemma 4.3.1. Without further analysis the estimate of
Lemma 4.3.1, does not give any further powers of h, since the b-norm is equivalent to the
H(,div) x H'(Q) norm. Theorem 4.3.12 ensures, at least if the space V) (73) is not of
lowest order, i.e. p, > 1, that the FOSLS method converges also as O(h?). More precisely,
the estimate in Theorem 4.3.12 together with the approximation properties of the employed
finite element spaces and p, > 1 and ps > 1 gives

lello.0 < 2 llullyq + R lelle + 2V - elloo < 2 [1floq-
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4. FOSLS I - homogeneous boundary conditions

So in fact the optimal rate in the sense of the beginning of Section 4.3 is achieved. If the
lowest order case p, = 1 also achieves optimal order is yet to be answered. Numerical
experiments in Section 4.4, however, indicate it to be true. "

We summarize the results for general right-hand side f € H#®(Q2). This summary is
essentially the estimates given by the Theorems 4.3.8, 4.3.10, and 4.3.12 together with the
approximation properties of the employed finite element spaces.

Corollary 4.3.14. Let T be smooth and f € H*(QQ) for some s > 0. Then the solution
to (4.2) satisfies u € H*2(Q), p € H*TY(Q) and V - ¢ € H*(Q). Let (pp,up) be the least
squares approzimation of (@,u). Furthermore, let e* = u —up, and € = ¢ —@p,. Then, for
the lowest order case p, =1,

le“llo.q S R LI f]L g

For p, > 1 there holds

h min{s+1,ps,pu+1}+1
Il < () 7l
Furthermore, the estimate
h min{s+1,ps,pu+1}
1velha < (4) 71,0
holds. Finally, we have
vy, (Th) =RT) _1(Th) V3, (Th) = BDM) (T5)
h min{s+1,ps+1,py} h min{s+1,ps+1,py+1}
le®lloq S (2) 1l | leflloa s (2) £l
Proof. The regularity result follows immediately by standard arguments together with
the fact that ¢ = —Vu. We now analyze the quantities in the estimates of the Theo-

rems 4.3.8, 4.3.10 and 4.3.12:

= inlly g S (/D)™™ vy S (hfp)™ P £ g,

<
00 < (h/p)™ ™ lgl| g o S (R/p)™™ TP £l g for RT), 1(7h),
T (p)ym st i o) o S (h/p)ymie TR | f| o for BDMY (Th),

V- (e —on) (h/py™ P | £l g

The estimates of the Theorems 4.3.8, 4.3.10, and 4.3.12 together with the above estimates
give, after straightforward calculations, the asserted rates. O

e — @y,

00 S (h/p)minters V. o]l o

)

We close this section with some remarks concerning sharpness of the estimates of Corol-
lary 4.3.14:
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4.4. Numerical examples

Remark 4.3.15. Let the assumptions of Corollary 4.3.14 be satisfied. From a best ap-
proximation point of view, since u € H*72(Q), we have

inf  Jlu— o = O(Rmn TP L),
et e =tinlloq = O )
inf  [|V(u—1a = O(h™sThpsd),

et IV (u =)0 = O )

O(hmin{s+17pv}) if ng (7;1) =RT? (7;1)7

; 7 — pv—1

inf ) HQD Ph HO,Q {O(hmin{s—i-l,pv—i-l}) if ng (771) — BDMgv (771)
Excluding the lowest order case p, = 1 we have, choosing p, > ps — 1, sharpness of the
estimates for e* and Ve*. This can be easily seen, since the rates guaranteed by Corol-
lary 4.3.14 for |e"||) o and [[Ve"[|, o, are the same as the ones from a best approximation
argument. The estimates are therefore sharp. The lowest order case p, = 1 seems to be
suboptimal, as the numerical examples in Section 4.4 suggest. In all other cases, i.e., p, > 1
and p, < ps — 1, our numerical examples suggest sharpness of the estimates, in both the
setting of a smooth solution as well as one with finite Sobolev regularity, but not achieving
the best approximation rate. Since in the least squares functional the term [[Vuy + @4l o
enforces Vuy, and ¢y, to be close, it is to be expected that an insufficient choice of p, limits
the convergence rate. A theoretical justification concerning the observed rates in the cases
py = 1 as well as p, > 1 and p, < ps — 1 is yet to be studied. In conclusion, when the
application in question is concerned with approximation of u or Vu in the L?(Q2) norm,
the best possible rate with the smallest number of degrees of freedom is achieved with the
choice p, = ps — 1 regardless of the choice of ng (Tr). Therefore, it is computationally
favorable to choose Raviart-Thomas elements over Brezzi-Douglas-Marini elements. Turn-
ing now to He""HQQ similar arguments guarantee sharpness of the estimates. In this case
when ps +1 > p, and ps + 1 > p, + 1, for the choice of Raviart-Thomas elements and
Brezzi-Douglas-Marini elements, respectively. Again the other cases are open for theoreti-
cal justification. However, both theoretical as well as the numerical examples in Section 4.4
suggest the choice of Brezzi-Douglas-Marini elements over Raviart-Thomas elements, when
application is concerned with approximation of ¢ in the L?(Q) norm. .

4.4. Numerical examples

All our calculations are performed with the hp-FEM code NETGEN / NGSOLVE by
J. Schéberl, [Sch, Sch97]. The curved boundaries are implemented using second order
rational splines.

In the following we will perform two different numerical experiments.

1. For the first one we choose f € C*°(2). Since the data is sufficiently smooth the sub-
optimal estimate [[e“[[, o < h/pl|(€¥,e")|ls of Lemma 4.3.1 suffices to deduce optimal
rates. Therefore, we only present three graphs in this section in order to highlight
two aspects of the least squares approach: On the one hand the optimal choice of
the employed polynomial degrees ps and p,. On the other hand the superiority of
Brezzi-Douglas-Marini elements over Raviart-Thomas elements when approximating
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4. FOSLS I - homogeneous boundary conditions

the vector valued variable. For completeness we present other convergence plots in
Appendix A.

2. To showcase our new convergence result we then choose f € N.soH'/27(Q), but f ¢
HY2(Q) with u € NesoH?7¢(Q) and ¢ € N.soH3?7%(Q). We again only present a
selection of graphs focusing on the new convergence results, other convergence plots
can be found in Appendix A.

In all graphs, the actual numerical results are given by red dots. The rate that is
guaranteed by Corollary 4.3.14 is plotted in black together with the number written out
near the bottom right. Furthermore, in blue the reference line for the best rate possible with
the employed space S, (7p) or ng (Tn) is plotted, depending on the quantity of interest,
Le., for [le*[|y o the blue reference line corresponds to pin{s+1ps}1 - for [Ve“[lgq the blue
reference line corresponds to A™n{s+1.Ps} and for |€#]lp ¢ the blue reference line corresponds

to hmin{s+12e} for VO (T,) = RTY, _,(75) and hmints+1e+1} for VO (7;) = BDMS, (75).

Example 4.4.1. We consider as the domain €2 the unit sphere in R?. The exact solution
is the smooth function u(z,y) = cos(2w(x? + y?)). The numerical results are plotted in
Figures 4.1 and A.1 for [le[|y o, in Figures A.2 and A.3 for |[Ve"[; o, and in Figures 4.2
and 4.3 for [|e?[|; . There are some remarks to be made:

e Consider Figure 4.1 depicting ”‘ZHH(),Q using Raviart-Thomas elements. The rates
guaranteed by Corollary 4.3.14 are achieved in the numerical experiment. The im-
portant subfigures are the ones in the subdiagonal of the discussed figure, i.e., cor-
responding to the choice p, = ps — 1. Here, apart from the lowest order case, the
best possible rate with the smallest number of degrees of freedom is achieved. Above
this subdiagonal, i.e., p, > ps, additional degrees of freedom will not increase the
rate of convergence, since by pure best approximation arguments the rate of con-
vergence is limited by the polynomial degree ps of the scalar variable. Below this
subdiagonal, i.e., p, < ps — 1, we notice that the rate of convergence is also limited
by the polynomial degree p, of the vector variable. Note that the results for |le"||, o,
in Corollary 4.3.14 are independent of the choice of the vector valued finite element
space, which is also confirmed by our experiments. Additional convergence plots can
be found in Appendix A.

e Consider Figures 4.2 and 4.3 depicting ||e®||; . Apart from similar observations as
for the scalar variable, it is notable that a difference in the approximation prop-
erties of the different spaces for the vector variable is observed, as predicted by
Corollary 4.3.14. Consider wanting to achieve a rate of h°. The combination of
spaces with the smallest number of degrees of freedom corresponds to BDMY(7;) x
S4(Tn) and RTY(T;,) x S4(Tr), respectively, highlighting the superiority of the Brezzi-
Douglas-Marini elements when approximating ¢. For further discussion see again
Remark 4.3.15.

Example 4.4.2. For our second example we consider again the case of {2 being the unit
sphere in R%. The exact solution u(z, y) is calculated corresponding to the right-hand side

60



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thek,

L]
lio
nowledge

b

3
|
r ki

M YOU

4.4. Numerical examples
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Figure 4.1.: (cf. Example 4.4.1) Convergence of |le“|,o vs. VDOF ~ 1/h employing
V), (Th) =RT) _1(Th).

pv—1

f(x,y) = Lp/2/(v/ 2% +y?). Therefore u € NesoH®/?7¢(Q). The numerical results for
the choice of Raviart-Thomas elements are plotted in Figure 4.4 for ||6“HO’Q, in Figure 4.5
for |[Ve®[|oq and in Figure 4.6 for [|e||, . Apart from the remarks already made in
Example 4.4.1 we note that we observe the improved convergence result when dealing with
limited Sobolev regularity of the data. Furthermore, in the lowest order case p, = 1 the
guaranteed rate seems to be suboptimal. The plots for the choice of Brezzi-Douglas-Marini
elements are presented in Appendix A.
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4. FOSLS I - homogeneous boundary conditions
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Figure 4.2.: (cf. Example 4.4.1) Convergence of [le?|[,, vs. VDOF ~ 1/h employing
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4.4. Numerical examples
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Figure 4.4.: (cf. Example 4.4.2) Convergence of [le“|,q vs. VDOF ~ 1/h employing
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5. FOSLS Il - inhomogeneous boundary
conditions

In the present chapter we extend our analysis performed in Chapter 4 to the setting of
inhomogeneous Robin boundary conditions. These boundary conditions contribute to ad-
ditional boundary terms in the bilinear form. This fact further limits the regularity of the
dual solutions. Furthermore, the operator I needs to be adjusted in order to account for
the additional boundary term. The results presented in the current chapter are part of the
work [BM21].

The outline of this chapter is as follows. In Section 5.1 we first introduce the model problem,
the FOSLS method itself and prove a norm equivalence result, which in turn guarantees
unique solvability of the continuous as well as the discrete least squares formulation. Sec-
tion 5.2 proves duality results for the scalar variable, the gradient of the scalar variable
as well as the vector variable and corresponding traces. It is important to note that the
additional boundary conditions result in limited regularity of the dual solutions, see e.g.,
Theorem 5.2.1 vs. Theorem 4.2.1, and also lead to the necessity of additional duality ar-
guments, see Theorem 5.2.4. In Section 5.3 we present several error estimates for different
quantities of interest, which in a bootstrapping fashion then yield optimal convergence rates
for the scalar variable. Closing with Section 5.4 we present numerical examples showcasing
the proved convergence rates, focusing especially on the case of finite Sobolev regularity.

5.1. Extensions to Robin boundary value problems

Throughout the present chapter again the notation of Chapter 2 applies. For v, a > 0 fixed
as well as f € L?(2) and g € L*(T") we consider the following model problem

—Au+~vyu=f in Q,

(5.1)
Ohu+au=g onl.
As in Chapter 4 with the variable ¢ = —Vu we arrive at the system
Vep+yu=f inQQ,
Vu+e=0 in{, (5.2)

p-n—au=—g onl.
Furthermore, we introduce the Hilbert spaces
Vi={pcHQdiv): p-nc L*T)} and W := H'(Q),

where V' is equipped with the graph norm (||‘pH?’{(Q7diV) + |l -an’F)l/Q, in order to control
the L?(T') normal trace. This is necessary since for general ¢ € H(),div) one only has

65



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

5. FOSLS II - inhomogeneous boundary conditions

@-n € H-Y2(I'). In order to verify that V is in fact a Hilbert space, consider any Cauchy
sequence ¢, in V. Therefore ¢, is also a Cauchy sequence in H(£2,div) as well as ¢,, -n in
L?(T"). Consequently ¢, — ¢ in H(£2,div) and ¢,,-n — g in L*(T"), for some ¢ € H(Q, div)
and some g € L?(TI"). We therefore need to verify ¢ -n = g. To that end, we calculate via
Green’s theorem for any v € H'(Q)

{on-n,0)r = (Pn 0, 0) 120y ize) = (V- @nv)a + (@n, Vo)a.
Taking the limit in the above we arrive at
<ga U>F = (v P, U)Q + (‘pz V’U)Q

for any v € H'(Q), which proves ¢ -n = g. The bilinear form b and linear functional F are
given as in the homogeneous boundary case, just with additional boundary terms, by

b((goa U), <¢7U)) = (V “p+yu,V Q/J +’Y’U)Q + (VU‘F‘P, Vv +I‘/))Q
+ <‘P"’7f—04u"4/"n—0w>ra
F((p,v) = (f,V - +v)o+(-g.% - n—av)r.

We start our analysis with a norm equivalence theorem.

Theorem 5.1.1 (Norm equivalence - Robin version of Theorem 4.1.1). For all (p,u) €
V x W there holds the norm equivalence

2o+ el + e - nlir S (e w), (0, w) S [l o + lellEoa + e - l5r-

[

Proof. Apart from constructing the correct splitting the proof is completely analogous to
the proof of Theorem 4.1.1. We will therefore only write down the splitting and omit the
rest. By definition we have

b((p. ), (@, u) = |V -+ yullio+ 11 Vut@lio+ e n—oulfr,
—_—— —— —_—
=:w =mn =l

from which the second inequality follows immediately by the triangle inequality and a trace
estimate. To prove the first estimate, the correct system of equations to look at is given by

V-p1+yu =w in €, V-2 +vyus =0 in Q,
Vuy+¢1 =0 in €, Vus + 9o =1 in €,
p1-n—au; =0 on I, P2:N — QU = 4 on I

In terms of second order equations we have

—Aup +yu; = w in €, —Aug +yug =-V -9 in €,
Opur +aup =0 on T, Ontg + cug = — i onT.

From this point onward the proof is completely analogous to the proof of Theorem 4.1.1. [

66



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

5.2. Duality argument

5.2. Duality argument

In the following we perform duality arguments for several quantities of interest. The pro-
cedure is very similar to Section 4.2, however we note that the additional boundary term

in the bilinear form b further limits the regularity of the dual solutions.

Theorem 5.2.1 (Duality argument for the scalar variable - Robin version of Thm. 4.2.1).
Let T' be smooth. For any (¢, w) € V. x W there exists (,v) € V. x W such that HngQ =

b((p,w), (¥,v)). Furthermore, ¥ € H*(Q), V -9 € H*(Q) and v € H*(Q2). Additionally

the following estimates hold:

[v
[Yllz,0 < llwllq
1A ‘¢'||2,Q S ||w”o,Q'

Proof. Theorem 5.1.1 gives the existence of a unique (¢,v) € V- x W satistying

(u,w)a = b((,u), (,v) V(p,u) €V x W.

20 S lwlloqs

We introduce the additional unknowns z, g and o by

Vyp+yw=z in Q,
Vot =np in €,

Y n—av=o on I
Hence, (5.3) is equivalent to
(uw,w)o= (Vut+e,p)a+ (V-o+yu,2)g+ (p-n—au,o)r V(p,u) eV xW.
Choosing u = 0 in (5.4) and integrating by parts we find
0=(p.p)a+ (V- 2)a+{p nojr=(p,p—Vz)o+(p-no+zr,
which gives p = Vz as well as 0 = —z. Therefore we find with ¢ = 0 in (5.4)
(u,w)q = (Vu, V2)a + (yu, 2)q + (au, 2)r Yu € HY(Q).

Hence, z satisfies
—Az+vz=w in €,

Onz+az=0 onl,

(5.4)

(5.5)

and the shift theorem immediately gives z € H?(Q2) with the estimate [|z([, o < [wlly -
We now proceed as in the proof of Theorem 4.2.1. To highlight the fact that 4 is only in

H?(Q) compared to Theorem 4.2.1 we write down the equations for v and z — v:

—Av+yw=w+(1-7v)z inQQ, —A(z=v)+y(z—v)=(y—1)z inQ,
Opv+av=(1-a)z on T, On(z—v)+a(z—v)=(a—1)z onl.
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5. FOSLS II - inhomogeneous boundary conditions

Again standard regularity theory gives v € H?(Q). However, the regularity of z — v is
limited by the exploitable regularity of the boundary data (a — 1)z € H3/2(I"). Therefore
we have z — v € H3(Q) with the estimate

Iz =vllz0 S0y =Dzl g + (e =Dzl3r S lwloq;

and consequently ¥ = V(z — v) € H?(2). The regularity of V -1 as well as the remaining
estimates are obvious. O

Theorem 5.2.2 (Duality argument for the gradient of the scalar variable - Robin version
of Thm. 4.2.2). Let I' be smooth. For any (¢, w) € V x W there exists (,v) € V x W such
that ||Vw\|(2)79 = b((p,w), (¥, v)). Furthermore, 1 € H (), V-9 € H'(Q) and v € H'(Q).
Additionally the following estimates hold:

[oll1.0 S [Vwllgq,
[Pl S IVwllgq
1A\ "/’Hlﬂ S va”o,ﬂ'

Proof. Theorem 5.1.1 gives the existence of a unique (,v) € V- x W satisfying
(Vu, Vi) = b((,u), (%,0)) ¥ (p,u) €V x W. (5.6)
We introduce the additional unknowns z, g and o by

Vyp+yw=z in Q,
Vo+1v=pu in Q,

PY-n—av=o onI.
Hence, (5.6) is equivalent to
(Vu,Vw)g = (Vu+e, o+ (V-po+u,2)g+ (@-n—au,o)r V(p,u) eV xW. (5.7)
For u =0 in (5.7) and integrating by parts we find
0=(p.p)a+ (V-p,2)a+{p-no)r=(p,u—Vz)o+{p-no+2r
which gives p = Vz as well as 0 = —z. Therefore we find with ¢ = 0 in (5.7)
(Vu, Vw)g = (Vu, V2)g + (yu, 2)q + (au, 2)r  Vu € HY(Q), (5.8)

which is uniquely solvable by the Lax-Milgram theorem. Furthermore, z satisfies the esti-
mate [[2[|; o < [[Vwlgq. Formally 2 satisfies

—Az+vz=-V-Vw in Q,

5.9
Opz+az=Vw-n on . (5.9)

The right-hand side in (5.9) is understood in accordance with (5.8) as the mapping u
(Vw, Vu)q, see the proof of Theorem 4.2.2. We now proceed as in the proof of Theo-
rem 4.2.2. The equations satisfied by v and z — v are easily derived:
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5.2. Duality argument

—Av+yv=(1-7)z—V-Vw in (), —Az—v)+y(z—v)=(y—1)z in,
Opv+av=(1-—a)z+Vw-n onl, On(z—v)+a(z—v)=(a—1)z onT.

Again by the Lax-Milgram theorem we have v € H'(Q) with vl o < Vwllyq- The
regularity of z — v is limited by the exploitable regularity of the boundary data (a« — 1)z €

H'Y2(I'). Therefore we have z — v € H?(Q) with the estimate

12 = vllao S 1y =Dzl + @ =1zl o S 1Vwlipgq,

and consequently ¥ = V(z — v) € H' (). The regularity of V -4 as well as the remaining

estimates are obvious.

O]

Theorem 5.2.3 (Duality argument for the vector valued variable - Robin version of The-
orem 4.2.3). Let I' be smooth. For any (n,u) € V. x W there exists (¥,v) € V. x W such
that H”I”gg = b((n,u), (¥,v)). FPurthermore, ¥ € L*>(Q), V-9 € H'(Q), ¥ -n € H/*T)

and v € H*(Q). Additionally the following estimates hold:

[0ll2,0 < lInllo.q
[Plloe S lmlloq -

1A\ "»bulQ S H’?Ho,av
I nH1/2,F S H’?HO,Q'

Proof. Theorem 5.1.1 gives the existence of a unique (3,v) € V x W satisfying
(50717)9 = b((QO, U), (’lﬁ,U)) V(‘Pa U) eV W
We introduce the additional unknowns z, g and o by

V-p+yw=z in Q,
Vo+¢ =p in Q,

YP-n—av=o on I.
Hence, (5.10) is equivalent to
(e;ma=Vut+e,pa+(V-o+yu,2)g+ (¢ -n—au,o)r V(p,u) eV xW.
For v = 0 and integrating by parts we find
(@.ma = (o, u)a+ (V- -p,2)a+ (¢ -n,0)r =(p,n—Vz)o+{p-n0o+2)r
which gives p — Vz =15 as well as ¢ = —z. Therefore we find with ¢ =0

0= (Vu,n+ V2)g + (yu, 2)q + (au,2)r Yu € H(Q),

(5.10)

(5.11)
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5. FOSLS II - inhomogeneous boundary conditions

which is uniquely solvable by the Lax-Milgram theorem with the estimate |[z([, o < [0l o-
In fact z satisfies
—Az+~v2=V" in €,
v K (5.12)
Onz+az=-n-n onl.
The equations satisfied by v are easily derived:
—Av+yv=(1—-7)z inQ,
Opv+av=(1-a)z onl.

By elliptic regularity we find v € H%(Q) with

[llg,0 SN =7)2lloq+ 11 = a)zll o0 S 1210 S lnlloo

Finally ¥ = n+ V(2 —v) € L?(Q2). The regularity of V-1 and 1 -n as well as the remaining
estimates are trivial. O

Theorem 5.2.4 (Duality argument for the normal trace of the vector valued variable).
Let T' be smooth. For any (n,u) € V. x W there exists (¢,v) € V. x W such that ||n - nHaF =

b((n,u), (4, v)). Furthermore, % € HY/?(Q), V-9 € H>?(Q), ¥ -n € L*I) and v €
H3/2(Q). Additionally the following estimates hold:

HU||3/2,Q < ln 'n”oIa
||?/’||1/2,Q S llm 'n”o,lw
IV-liz 00 S ln-nlor
[ -nllor S lln-nllor-

Proof. Theorem 5.1.1 gives the existence of a unique (¢¥,v) € V- x W satisfying
(p-n.n-n)r =b((p,u), (¥,v)) V(p,u) eV xW. (5.13)
We introduce the additional unknowns z, g and o by

V-p+yv==z in Q,
Vo+1=pu in Q,

Y-n—av=oc on I'.
Hence, (5.13) is equivalent to
(p-nmn)r=(Vutp pla+(V-p+yu,z)o+{p-n—au,o)r V(p,u) eV xW. (514)
For uw = 0 in (5.14) and integrating by parts we find
(p-nn-n)pr=(p,pa+(V-p,2)a+{p-no)r=(,pu—Vz)g+ (g -no+2z)r
which gives p = Vz as well as ¢ =n-n — z. Therefore we find with ¢ =0

0= (Vu,V2)q + (yu, 2)q + (ou, 2)r — alu,n-n)r Yu € H(Q).

70



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thek,

°
lio
nowledge

b

o
i
r

M YOU

5.3. Error analysis

Hence, z € H' () satisfies
—Az+v2z=0 in Q,
Onz+az=an-n onl.

Standard regularity theory gives z € H%/2(Q) with 12ll3/2,0 S [ - nllo,r- The equation for

v reads
—Av+yv=(1—-7)z in ©,

Opv+av=(a—1)(n-n—=z2) onl,

which immediately gives v € H%/2(Q) with [v]l3/2,0 < [Im-nllo,r- The remaining regularity
results and estimates follow immediately from

Vyp+yw==z in Q,
Vo419 =Vz in €,
Yn—av=n-n-—=z on I,
which concludes the proof. O

Remark 5.2.5. Note that usually a duality argument results in a dual solution with
higher order Sobolev regularity. However, this is not the case in Theorem 5.2.4, wherein
the regularity is not improved, since 9 - n is still only in L?(T"). The sole purpose of this
duality argument is to again exploit Galerkin orthogonality, this time to overcome the
limiting regularity of the boundary data. .

5.3. Error analysis

In the error analysis it is crucial to understand the approximation properties of the vector
valued finite element space in the classical H(f2,div) norm as well as the L?(T") norm of
the normal trace simultaneously. We are therefore interested in quantifying

inf % — Yyl E@.aw) + 1% = %5) -nlor

’l/JhEVpU (7-h

for 9 € V. For the readers’ convenience we quickly summarize some results of [MR20]
concerning the H (€, div) conforming approximation operator constructed therein. A simple
scaling argument gives the desired h estimates of the global operator.

Proposition 5.3.1 (Definition 2.3, Theorem 2.10 & Remark 2.9 in [MR20]). The global
operator IINY satisfies for every ¢ € H'Y2(Q,div) and @), € V,,(Th),

(i) (V-(p—TI3" ), V-@ )0 = 0 and consequently ||V - (o —TI3V¢p)

0.2 <IV-(e—op)llo0.0;

(it) {(p ~TI;)'p) -0, @, -n)r = 0 and consequently || (¥ —II5Ve) nllor < (¢ —@4) -nllor,

o 1/2 ~
(iii) Nl ~ M0l S (£) " Il = @alli /)
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5. FOSLS II - inhomogeneous boundary conditions

Proof. For the orthogonality relation in Item (ii) see [MR20, Def. 2.3, Eq. (2.18a), (2.18b)].
The approximation properties for the normal trace follow immediately. For Item (iii)
see [MR20, Thm. 2.10, (v)]. A scaling argument yields the result. Finally, concerning
Item (i) note that the definition of the operator Hgi" is such that

(V- (p—TI3p), V-@,)0 =0
for any @;, € V,, (7) with @, -n = 0 on I', see [MR20, Def. 2.3, Eq. (2.18d)]. However,
due to the commuting diagram property we can calculate for any ¢, € V,, (7r)

(V-(cp—Hgivcp),V-COh)Q:(V‘w—ﬂﬁjv'w)av"foh)ﬁzoy

where Hg denotes the L? orthogonal projection, which then gives the orthogonality relation
in Item (i). The approximation properties for the divergence follow immediately. Ol

Lemma 5.3.2 (Suboptimal estimate for [[e"|, - Robin version of Lemma 4.3.1). Let
I’ be smooth and (@n,un) be the least squares approximation of (¢, w). Furthermore, let
e =u—uy and e? =@ — . Then, for any uy € Sy, (Tr), @5 € Vo, (Th),

e llo.0 < —lI€®,e")lls

S

"I=T®I=

~ h . h ~ h -
lu—plly o + » le —@nllon + EH('P —v¥y) nllor + » V- (e —on)lloq-

Proof. We apply the duality argument of Theorem 5.2.1 with w = €*. As in Lemma 4.3.1
we find

2 7 ~
le*llo < [1(€®, ) loll (% — by, v — o)y

for any 1), € V., (T) and 0y, € S, (Tr), due to the Galerkin orthogonality and the Cauchy-
Schwarz inequality. The norm equivalence in Theorem 5.1.1 gives

1@ = %0 = )llo S llv = Tallie + [ = Pulla@am) + 1@ = $4) -nllor-

Using Proposition 5.3.1 and exploiting the regularity estimates given by Theorem 5.2.1
yields the result. O

We are going to need an approximation operator satisfying certain orthogonality rela-
tions, i.e., a similar operator to I 2 and Iy, as constructed in Section 4.3. Even though the
operator Iy, is applicable to derive improved convergence results, they are only optimal in a
pure h version of the FOSLS method. The p version is however suboptimal. This is due to
the fact that the analysis requires the approximation properties of I, in the L?(T") norm of
the normal trace, which hinges on an inverse estimate. It is therefore natural to introduce
the normal trace into the definition of the operator:
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5.3. Error analysis

Construction of I}: In the following we construct an operator which sees the L*(T')
normal trace. We define I 1}: again as a constrained minimization problem:

1 1
Iip= argmin _llp —pnlia+ 5 1@ —en) - nlir
‘Phevpu(Th)

st. (V-(e—I,0),V xn)a=0 Vxu € Vp,(Th).
To simplify notation we introduce the scalar product ((-,-)) and the induced norm ||| - |||
onV ={pc H(Q,div): ¢ -nc L)}
Therefore we can write the operator I }1: as

1
Iip= argmin Clllp—enll® st (V-(p—Ip),V-Xxn)a=0 V¥xn €V, (Th).
(PheVP'U (ﬁl)

The variational formulation is now given by: Find (¢, An) € Vp, (Th) x V -V, (T3) such
that
((enspn)) + (V- s An)a = (@, pn)) Yun € Vp, (Th),

(V- @nmn)a =(V-p,m)a Vo, € V-V, (Th).

Coercivity on kernel: Let p € {p e V: (V- -¥,n)q=0 Vne V- -V} be given. The
coercivity is trivial since by construction (V -, V - u)q = 0 and therefore

(o)) = 1l = alP + 1V - plio.g =l -

inf-sup condition: Let n € V-V be given. First let u € H}() solve

—Au=mn 1in ,

u=0 onT.

By elliptic regularity we have [[ully o < ||7(lgo- Let p == —Vu, which gives due to regularity
p € V. We therefore have H“HH(Q,diV) < [nllg - Furthermore, due to the smoothness of I
as well as due to a multiplicative trace inequality we find

1/2 1/2
i -nllgp = IVu-nllor S 1Vullgr < IVallys IVulli’s < lullg S lnllog -
Consequently we find ||ully < ||7]lgq. Finally we have
(Vep,no =m0 = lnloqlnloq 2 0l &y

which proves the inf-sup condition.
Coercivity on kernel - discrete: The coercivity is again trivial with the same argument
as above.
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5. FOSLS II - inhomogeneous boundary conditions

inf-sup condition - discrete: Let A\, € V-V, (73) be given. As above in the continuous
case we solve the Poisson problem

—Au = )\h in Q,

u=~0 on I

Let A = —Vu and again we have [[Ally S [Allgqai) + 1A -nlor < llullao S [Anlloq-
We now employ the commuting diagram projection based interpolation operators defined
in [MR20], see also Proposition 5.3.1. We use this operator to project A onto the conforming
subspace. With Aj, := ng}"A we find

VA=V IA =TIV . A =1\, = A,

where Hg denotes the L? orthogonal projection on V -V, (7). Using [MR20, Thm. 2.10,
(vi)] we can estimate

IA =TV A | g.ai) S IIAlLa S Tl -

Furthermore, since l'[giv realizes the L?(I") orthogonal projection of the normal trace, we
find
I(A =TNA) - nllor < [|A-nlor < (Ml

which finally leads to
1Al = T Ally S 1A = TEYAlly + [JAllv < [Anllog -
For any A\, € V-V, (T,) we estimate

. A A
sup (V (pha)\h)Q > (v hv)\h)Q _ H h”O,Q 2 17
oneVo, () 1Prllv [Anlloq — IARlly [Arlloq  [[Aslly

which proves the discrete inf-sup condition. We have therefore proven

Lemma 5.3.3. For any mesh Ty satisfying Assumption 2.0.1, the operator Ig V-
V,., (Th) is well-defined with bounds independent of the mesh size h and the polynomial
degree py.

As a tool in the L?(Q) analysis of the operator I g we need the following decomposi-
tion. Compared to Section 4.3 we need a Helmholtz-like decomposition accounting for the
regularity of the normal trace:

Lemma 5.3.4 (Continuous and discrete Helmholtz-like decomposition - L?*(T") normal
trace). Let Y C H(Q,curl) be given by

Y ={peHQ,cul): (Vxp) neLl*I)}.
The operators I . V — ¥V x Y and qurl,F: Vo, (Th) = V x N, (Th) given by

(I, ¥ x p)) = (0, V x p)) Vpey,
(@™, ¥ x pn)) = (0n, V X ) Vi € Ny, (Th)
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5.3. Error analysis

are well-defined. Furthermore, the remainder r of the continuous decomposition @ =
Oy + r satisfies 1 € HY(Q) with the a priori estimate Il o S IV-elq. Addi-

~

tionally there exists an R € H?(SY) such that r = VR, where R satisfies

“AR=-V-¢ inQ,
OhR+R=0 onT.

Furthermore, r satisfies
Vr=V-p in(,
Vxr=0 m €,
r-n=-—R onT.

Finally, the estimate ||Rllyq < Irlliq S IV -@llgq holds.

Proof. The unique solvability on a discrete and continuous level follows immediately from
the fact that the variational formulations are just the definition of the orthogonal projec-
tions onto V x Y and V x N, (7), respectively. For any p € C3(Q2) we find

((r,V X ﬂ‘>> = (r,V X /‘)Q =0,

which gives V x r = 0. Since II°""I'y € V x Y we can conclude V -7 = V - ¢. The fact
that V x r = 0 gives via the exact sequence property of the following spaces

R % 7Y(Q) 5 H(Q, curl) 25 H(Q, div) 2 L2(Q) -% {0}

the existence of a potential R € H'(Q) such that r = VR. Therefore, we immediately have
—AR=-V -VR=-V.r=-V_-¢. To analyze the boundary conditions satisfied by R
we insert r = VR into the variational formulation and integrate by parts:

0=(VR,V xp))=(VR,V xp)g+ (R, (V xp) -n)r =(R+0R,(Vxpu) nr.

Since (V x p)-n = V- (u x n) we conclude 9, R+ R = ¢ for some ¢ € R. We can however
choose ¢ = 0. This is due to the fact that the family of solutions

—AR.=-V-p in ),
OpnR.+R.=c on I,

for ¢ € R is uniquely determined up to a constant, since the difference D = R, — Ry, satisfies

—AD =0 in Q,
OwD+D=a-b onT,
to which the constant solution D = a — b is the unique solution in H'(2). In order to

prove the final estimates, first note that due to elliptic regularity we have R € H?(Q) with
IRlly0 S IV -@llgq- Note that [|[V-[lo o + [|[lor defines an equivalent norm to the H'(£2)
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5. FOSLS II - inhomogeneous boundary conditions

norm. Using norm equivalence, the boundary condition satisfied by R, as well as a trace
inequality we find:

[Bllg.0 S IRl o + VRl o
S IVERlgq + [Rlor + IVE], o
= HVRHO,Q + ||8HRHO,F + ||VR”1,Q
= HVRHO,Q + ||VR'"'||0,F + ”VRHLQ
SIVRlgo + VRl + VR o
SIVERlLg=lrlliaSIV-elloq;

which concludes the proof. O

Lemma 5.3.5. The operator I}, satisfies for arbitrary @, € Vy,, (Tp,) the estimates

- h -
lle = Iheolll < llle — @alll + o IV -le=@nllog

IV (¢ —ILep)

0,20 <IV-(e—@nllon-

Proof. The proof is very similar to the one of Lemma 4.3.6, where a similar operator is
analyzed. In essence the arguments are the same by replacing ||-[|o with [[[ - [[|. Let

@y, € V,, (T1,) be arbitrary. Due to the orthogonality relation satisfied by the operator I }:
the second estimate is obvious. We have with e = ¢ — 1 Ego

lelll* = (e, — @) + (e, @ — I19)).

Lemma 5.3.4 enables us to split the discrete object @), — I ¢ € V), (75) on a discrete and
a continuous level:

e —Ihp =V xp+r,
@ —Iho =V x p, +1y

for certain p € Y, r € V, pu, € Ny, (73,) and 7, € V,, (7). Since V- Vx = 0, the definition
of I 1}: immediately gives

({¢ — T,V x pn)) = 0. (5.15)
With (5.15) we therefore have

{(e;@n —I9)) = {(&,V x pn +1n)) = ((e.rn)) = (e, — 1) + ((e.1)) = Th + T.
Treatment of 77: See the proof of Lemma 4.3.6 for completely analogous arguments and

more details. Since V-r =V -7y, € V-V, (7},) we find using the commuting diagram as
well as the projection property of the operator Hgi"

VoM —py) =T (V1) = Vory =Vor — V.1, = 0.
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5.3. Error analysis

By the exact sequence property we therefore have Hgivr —7rp € VXN, (Th). The definition
of r and r in Lemma 5.3.4 gives the orthogonality

(r =7, V) =0 Vi € Ny, (Tn).
Putting it all together we have
lir = rall = (= rr — T ({7 I — 720) = (o — TP,
Applying the Cauchy-Schwarz inequality and the definition of ||| - ||| we find
llr = ralll < lllr = 7| S Jlr = T5Yrllog + [|(r — TLr) - o

In order to treat the volume term we invoke [MR20, Thm. 2.10, (vi)], which is applicable
since V-1 =V -1y, is discrete. The estimate of Lemma 5.3.4 therefore gives

; h h -
Ir =T rlloe S —~lirlh o S — 1V - (@n = Th)llo.0-
Do Pv
To estimate the boundary term we apply Proposition 5.3.1 to conclude

Ir =T5™r) - mllor = [r-n =105 Or njor < oo e S 2= IV

h h -
S ]7 ”RHQ,Q S p—||V ~(Pn — IfFL‘P) 0,Q-

Summarizing the above we have

h -
[|lr =7l SZTIIV'(%*I%P)IIO,Q- (5.16)

v

Adding and subtracting ¢, applying the triangle inequality as well as the second inequality
of the present lemma we find

h - h -
Ty < |llell[ - [llr —ralll < ;H!e\ll IV (@ = Tho)llog S ;HI@HI V- (e = @n)lloq

v v

Treatment of T5: The term T5 is treated with a duality argument. We seek to find
¥ € H(2,div) such that

(o) =(V-v,V-9)o WweV.
Since r = VR for some R € H?(f2), see Lemma 5.3.4, we have

(V-v,V-9)g = ((v,r)) = ((v,VR)) = (v, VR)q + (v -n,0,R)q
=—(V-v,R)g+ (v-n,0,R+ R)r = —(V-v,R)q.

Upon solving the problem
—Aw =R in{,

w=0 onl,
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5. FOSLS II - inhomogeneous boundary conditions

and setting ¥ = Vw we found the desired . Furthermore, elliptic regularity gives w €
H*(Q) and therefore 9 € H3(Q). Finally the following estimates hold

IV-%li0 < Wllog < lwllso < 1Rl1q S IV - (@n = 1h0)ll 1)y

due to elliptic regularity and the results of Lemma 5.3.4. We therefore have for any ¥, €
Vi, (Th)

Ty ={(er)) = (V-e,V-9)o=(V-e, V- =%n))a < [[V-elgalV-®—%n)lloq,

where we used the definition of 75, the duality argument elaborated above, the orthogonality
relation of I} to insert any 9y € V,, (75), and the Cauchy-Schwarz inequality. Finally,
exploiting the a priori estimate of ¥ we find

. h N
T < [|V-elgq '«phe\l/nf(Th) V- —¥n)lloa = oy IV -ellgallV-(en —Igso)H(Hl(Q))'-
Pv (3

We now estimate using partial integration

(V- (@1, = T,9). fal

IV - (@n = I59) )y = sup

FEHL(Q) 1£1l1.0

~ sup | = (@n, — L. Vo + (@n —Ihe) -n, fir|
feEH(Q) ”f 1,0

S en — Ihelll.

Hence, we find

lllell]> = ((e.0 — @n)) + (e, @1 — TL))
= ((e;p—p)) + T + T

. h - h -
S el - e — enllloga + pflllelll V- (e = en)lloa+ . IV - ellgq - ll@n — IThelll
(% v

Adding and subtracting ¢ in the last term, applying the triangle inequality, the second
estimate of the present lemma as well as the Young inequality yields the result. O

Theorem 5.3.6 (Suboptimal estimate for ||e¥||, ;, - Robin version of Theorem 4.3.8). Let
I’ be smooth and (@n,un) be the least squares approximation of (¢, w). Furthermore, let
e =u—uy and e? =@ — . Then, for any uy € Sy, (Tr), @5 € Vo, (Th),

le?

B 1/2 B\ 1/2
o0 S (%) lu=nl ot~ ealont o2 nlor+ (%) 1V (0= dllog.
Proof. Let (¢,v) € V. x W denote the dual solution given by Theorem 5.2.3 applied to
n = e¥. Theorem 5.2.3 gives ¢ € L*(Q), V¥ € H'(Q), ¢ -n € HY2(I') and v € H*(Q).

Due to the Galerkin orthogonality we have for any (¥, 0p,)

le? 5.0 = b((€?,¢*), (%, v)) = b((e?, "), (@ — Pp, v — Tn))-
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5.3. Error analysis

We now estimate all terms, except for ((e¥, —'tzvh)> = (e"",'l,b—ﬂ)h)g—i— (e n, (Y —'zzh) ‘n)r,
in the above:
(Ve' + e, V(v —tn))a < [[(e?, ) [[o|V (v = 0n)[lo.0,
(—ae, (@ =) ) < [le“llor |® —bp) - nllor

< (h/p)"|I(€®, ) |oll @ — 1) - o,

(V-ef +7€e", V- (% —y) +v(v = ) < (€2, ")y [HV @ =)o+ v = Tullog |,

(Ve —dp)a = —(e, V- (% —))a + (", (% —¢y) -n)r

S e eIV - % = 9o

+ (/D)@ = $1) -nllor ]
(€ -n—ae", —a(v—0))r < [I(e,e”)[lsllv— a0
(5.17)
Therefore, we conclude that

e 120 S 1€ ) [IV - @ = @)oo + (/)21 — $1) - llor + 1o = nll g

(e, — ).
. (5.18)
To analyze the term ((e¥,% — 1)) we follow a similar procedure as in the proof of The-
orem 4.3.8. Therefore we first perform a Helmholtz decomposition of the vector field .
Since 9 € H(Q,div) with V-4 € H'(Q) and 9 -n € H'/2(T') there exist p € H(€, curl)
and z € H?(Q) such that 9 = V x p + Vz. To that end, let 2 € H'(Q) with zero average
solve
—Az=-V-9¢ inQ,
Onz=1%-n on I,

Since V- ( — Vz) = 0 as well as (3 — Vz) -n = 0 by construction, the exact sequence
property of the employed spaces allows for the existence of p € H(, curl) such that
¥ — Vz =V x p. Elliptic regularity furthermore gives z € H?({)) with the estimate

1ll.0 S IV -¥lloo + [l -nlyor-

To estimate ||z||; , we use the a priori estimate of the Lax-Milgram theorem applied to
the weak formulation of the above problem, which is given by

(Vz,Vw)Q = (*v "¢',U/)Q + <'¢' n, w)F = ("p?VW)Qy

due to partial integration. Therefore we have |z||; o < [[9[lg - Finally, we have the es-
timate ||V X plloa < Wloa +11Vzloa S 1¥lloqo- We now continue estimating (5.18) by
applying the Helmholtz décompositi(;n. In essence this is again the procedure of The-
orem 4.3.8 by replacing [|-[|o o with ||| - [[|. For the readers’ convenience we recall the

important steps. For any 9,9}, € V,,(7) we have with 9, = ¥, + ¥;,

(2.9 — 1)) = (€2, V x p— Bp)) + (€9, V2 — ) = T° + 7.
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5. FOSLS II - inhomogeneous boundary conditions

Treatment of 79: By the Cauchy-Schwarz inequality we have
T9 = (e, Vz—y)) < [[le?]]] - [[[Vz — |-
Treatment of 7°: For any ¢;, € V,, (7) we have
TS = ((e?,V x p— $}))
= (o=@ V X p—3)) + (@n — o, V X p—y)) = T{ + T5.

Treatment of 77: By the Cauchy-Schwarz inequality we have

Tf = (o =&,V x p—91)) <l — @alll - IV x p— 3.

Treatment of 7T35: To treat 1% we apply Lemma 5.3.4 to split the discrete object ¢, —¢}, €
V., (Th) on a discrete and a continuous level:

Qbh—QOhZVX[.L+T,
@ —en =V X pup +rp

for certainp €Y, r € V, pp € Ny, (Tp) and vy, € Vi, (75). We now choose {b; = qurl’rv Xp
given by Lemma 5.3.4. Exploiting the definition of the operator qurl’r we find

TS = ((@n — @n. V X p— p,))
= ((V x pn, V x p =TV x p)) +((rp, V x p — TV x )
=0
= ({rn =1,V x p IV 5 p) + ((r, V x p — TV x p))
=Ty + Ts.

Treatment of 77: As in the estimate (5.16) we have

h N
lr —ralll < p*HV (@, — en)lloa;

v

which gives after applying the Cauchy-Schwarz inequality
< h ~ curl,I’ < h ~
ns o IV (@n = n)lloalllV xp—IL7V X pl[| S o IV (@n = en)lloa IV xplll,
(o v

where the last estimate follows immediately from the fact that qurLF is by definition a
projection. Finally, adding and subtracting ¢ and applying the triangle inequality as well
as estimating |V - (¢ —¢n)llg o by [[(€#,e")[ly we find

h N h
TS oIV -le=@nlllog IV x pllog + =I(€®, e[V x plloo-
v (2

Treatment of T: Note again that p € H(€2, curl) as well as the fact that H;url’r maps into
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V xN,, (7p). Therefore we can write V x p— H*;L““’Fv x p =V x p for some p € H(Q, curl).
In fact p € Y since (V x p)-n = (Vx p—IE""V x p).n = (I""'V x p) -n e L2(D).
Consequently the definition of the remainder r gives Th = ((r, V xp)) = 0, see Lemma 5.3.4.
Collecting all the terms: Since p € Hy(, curl) and consequently V x p € Hy(£,div)
we can estimate |||V x p|[| = [V x pllg o S [#¥llo0 < [|€°]lg,o: where we used the estimates
of the Helmholtz decomposition as well as the regularity estimates of Lemma 5.2.3. We
can nNow suminarize

(2,9 =) SIIVz =il - llle?]]

- h N h
+ |l —@nlll + = IV - (¢ = @n)lloo + —Il(e?, eu)llb] €]l -
Py Pv
(5.19)
To conclude the proof we estimate the quantities arising in the estimates (5.18) and (5.19).
To that end, note that Vz € H'(Q2,div). Using the estimates of the Helmholtz decomposi-

tion, the equation satisfied by z as well as the regularity estimates given by Theorem 5.2.3
we find

IVl i) S M2l + 11 A2, e S el

=V
V2 nllyopr =¥ nlior < €€]q-

Exploiting these regularity estimates and employing the operator in Proposition 5.3.1 we
can find 9 € V,, (7T1) such that

IV2 = $hllr@.an) S h/po V211 .am) S B/po lle?llog
(V2 = 3) -nllor S (B/p) V2 ally o S (h/p0)* €200
11V2 =il S (h/p) ' €2 0.
where the last one is just a combination of the previous ones. These estimates in turn give
IV - @ = #u)lloa =V (V2= #i)loo S h/polle?loo
1@ —p) -mllor < 1(V x p =TV x p) -mflor + (V2 = 3) - m

Furthermore, there exists 0, € Sy, (Tn) such that [[v — Oull; o S h/ps[vlla.q S h/ps €]y q-
Finally, we combine the estimates (5.18) and (5.19) to find

le?l5.0 S (/)21 (e e b lle?llo.q + (h/p)'2 - [[1e2]]] le? .0

+ |llle —@nlll + /P IV - (¢ — @n)llgo + 1 /pll(e?, 6")Hb] 1€°]lo.6 -

or S lle?lloq-

Canceling one power of [[e?||) , estimating |[[e?[|| by |[/(e®,e")[l, and summarizing the
terms we find

le?lloq S (h/p) 211, e) s + lllp — @ulll + 1/ IV - (¢ = @n)llog -

The result follows by using the fact that the FOSLS approximation is the projection with
respect to the b scalar product, using the norm equivalence given in Theorem 5.1.1 and
collecting the terms. O
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5. FOSLS II - inhomogeneous boundary conditions

Remark 5.3.7. Theorem 5.3.6 seems suboptimal in the following sense: Given f € L*(Q)
and g € HY?(T) the shift theorem gives u € H?(Q) and consequently ¢ € H'(Q). Theo-
rem 5.3.6 gives

le?llo.0 S P2 lullyq+h el o+h' 2 lenler+h2 1V -@llgq S B2l flloa+ gl 2r),
whereas from a best approximation viewpoint we could hope for O(h). "

Lemma 5.3.8 (Convergence of dual solution for Ve" - Robin version of Lemma 4.3.9). Let
I' be smooth and (@n, up) be the least squares approzimation of (@, u). Let e* = u—up and
e¥ =p—pp. Let (Y,v) € VXW be the solution of the dual problem given by Theorem 5.2.2
with w = e*. Furthermore, let (Yp,vy) be the least squares approzimation of (¥,v) and
denote e’ = v — vy, and €¥ = —py,. Then,

¥, e)lls S 1Vellog

le?

h
0652 Ve 0.

B /2
1l < (p) 1900

B 1/2
oS () Ve! .
0, p 1Ve“lloq

Proof. Theorem 5.2.2 gives 9 € HY(Q), V-9 € HY(Q) and v € H*(Q) and exploiting the
regularity estimates therein we find

Ie?, ey < Ve llo0-

le¥

By Lemma 5.3.2 we have
le”llo.0 < h/pll(€?, ) los

which together with the above gives the second estimate. The third one follows by a
multiplicative trace inequality together with the second estimate and the norm equivalence
theorem in conjunction with the first estimate of the present lemma:

» onl/2 1 wnl/2 v u
e’llor < lle IIO,/QHe HL/Q < (h/)'2II(e¥, €)ly < (h/p) 2 (Ve g -

By Theorem 5.3.6 we have
1/2

h 1/2 B _ h -
le¥log < (p) o — @l o+ I —Bullog + 1% —Bn) -allor + (p) V- =B los

for any o, € Sy, (Th), ¥, € V., (Th). The result follows immediately by again exploiting the
regularity of the dual solution and the approximation properties of the employed spaces. [J]

Theorem 5.3.9 (Suboptimal estimate for [[Ve"||; , - Robin version of Theorem 4.3.10).
Let T' be smooth and (pp,up) be the least squares approzimation of (@, u). Furthermore, let
e =u —uy. Then, for any @;, € Vp, (Tn), tn € Sp, (Th),

- - - h -
IVetlloo S llu = dnllig + llo = @nlloo + e = @n) - nlor + 7V - (= @n)lloo:
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5.3. Error analysis

Proof. We proceed as in Theorem 4.3.10 with (e¥,e¥) denoting the FOSLS approximation
of the dual solution given by Theorem 5.2.2 (duality argument for the gradient of the scalar
variable) applied to w = e* we have for any ¢, € V,, (Tr), @, € Sp, (Th)

”Véqu,Q = b((‘P - <)~0h7 U — ﬂh)v (e¢7 60))‘

We specifically choose ¢; = I Z(p. In the following we heavily use the properties of the
operator I g given in Lemma 5.3.5. We exploit the regularity of the dual solution using
Lemma 5.3.8 as well as the estimates of Theorem 5.2.2:
(v —@n), V- €¥ +7e")a < [lu = anlloo (¥, )]s
S lu— Z~Lh”1,Q ||veu‘|0,9 )
(V(u—an), Ve +€?)a S IV (u—an)loq €, )]s
S llu—=tnlly o IVe lloq,
(—o(u— i), ¥ n—ae’)p < Jlu—dnllor [1(e”, €”)]
S llu— ahHLQ HV@“H&Q )
(¢ —Thp,Ve')a = —(V- (¢ —ILp),e")a + ((p — I1p) -n.e’)r
<V (o = Tio)llos llelloq + (@ = Ihe) -nllor el
S [1/8lIV - (0 = Th@)llo + (h/p) e = Tl 1IVe o
(V- (@~ Thp).ve)a < 9 (0 — TE@) oo eVl
SV - (0 = @)l Vel
(o —ILp)-mn,—ae’)r < |[(p —ILp) - m
< (h/p)2llle = Lielll 1 Ve llog »
(¢ —Ii9.€”)a S llo — Iieloale’ oo
S (/p)2llle = Ihelll Ve llo
(V- (o —T19),V-e')a = (V- (p—Lp). V- (¥ —))a
<V (@ —Io)oallV - (@ —¥)lloe
S h/plIV - (e = Thp)llog | Ve
(¢ —TIip) -m.e¥ -n)r < |l(p — The) -nllorl(e?, )]s
S e = Thelll [IVe]loq -

or llellor

0,92

Canceling one power of [[Ve"||; o and collecting the terms yields

Ve

) h
00 S lu—anllq + llle — Thelll + SV (¢ — I)llo.0-

Finally, exploiting the estimates of the operator I 2 given in Lemma 5.3.5 we arrive at the
asserted estimate. O
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5. FOSLS II - inhomogeneous boundary conditions

Remark 5.3.10. Theorem 5.3.9 seems again suboptimal: Given f € L?(Q) and g €
H'/2(T") the shift theorem gives u € H?(Q) and consequently ¢ € H'(Q). Theorem 5.3.9
gives

IVellon S P llullyg+hllello+h"2le-nlgoc + 71V -@log S B2 log+I9l/2r),

whereas from a best approximation viewpoint we could hope for O(h). =

Theorem 5.3.11 (Optimal estimate for [|e® - n||, ). Let I' be smooth and (¢n,un) be the
least squares approzimation of (p,u). Furthermore, let €* = u—uy, and e? = @ —pp. Then,

for any uy, € Sp (Th), @1 € Vp, (Th),

B\ 1/2 B /2
e -l 5 (5) = nlha+ (2) o= 2ullo

- h -
e =@n)-nllor+ 2V (@ =@n)loo-

Proof. Let (¢,v) € V. x W denote the dual solution given by Theorem 5.2.4 applied to
n = e®. Theorem 5.2.4 gives ¥ € HY?(Q), V-9 € HY?(Q), ¥ -n € L*T) and v €
H3/2(Q). For the analysis we employ the operator Hgi" from [MR20] and summarized in
Proposition 5.3.1. The main features exploited in the proof, are that Hgivv realizes the L?
orthogonal projections of the divergence as well as the normal trace. Due to the Galerkin
orthogonality we have for any (¥, 95)

le? - nlfgr = b((e?, "), (#,v)) = b((e?, "), (% — Py, v — Tn))-

Choosing th = ng}"@b, exploiting norm equivalence, the orthogonality properties of ng}"
and the Cauchy-Schwarz inequality we find

(V- €# +7¢%, V- (@~ TE) + (0 — ) S e, e[|V - (9 ~ %) o

+ o = nlly0 |

(Ve +e?, V(v—1vp)+9 — Hgiv o S [l[Ve"

00+ lle?llog] [llv =10

+ I~ I llo0),
(—ae”, —a(v —on))r S [1(€?, €")lollv — Tnllo,r,
(€ -n, (% —9p) -n)r = ((p — @n) -1, (% — V) -m)r
S 1@ —@n) - nllorll® —I5Y9) -nlor.
The two missing boundary terms, i.e., (€ -n,—a(v — 0))r and (—ae, (¥ — ;) - n)r,
can be absorbed into the first two estimates by means of partial integration. We now

exploit the regularity estimates given in Theorem 5.2.4, the properties of Hgi" given in
Proposition 5.3.1 as well as the approximation properties of the employed spaces to find oy,
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5.3. Error analysis

such that
IV - (@ —TM) oo S h/pollV %o S h/po lle? -nllgr,
1~ llog S (h/po) Il 2 ai) S (/o) 1le? - nlly
I~ ) -nfor < ¥ nllor < lle - nlor,
lo = nllog S (h/ps)*? 0]l /00 S (h/ps)*? l€? - nllop .
lo = nllia S (h/ps) 2 0ll3 /00 S (h/ps)2 l€? - nllo
lo.r S h/psllvllgo0 S h/ps €2 - nllor

which in turn gives after summarizing and canceling one power of ||e¥ - n||, 1 the estimate

lv — op,

le? - nllo.r < h/plle?, el + (/) 2 [[Ve o0 + le?lloe] + 1 — @n) -nllor-
Applying Theorems 5.3.6 and 5.3.9 to estimate ||e?| o, and || Ve"||p q yields the result. [

Remark 5.3.12. Theorem 5.3.11 seems optimal in the following sense: Given f € L?(Q)
and g € HY?(T') the shift theorem gives v € H?(Q) and consequently ¢ € H'(Q). Theo-
rem 5.3.11 gives

e - mllgr < /2 [fullyg + 152 llplly o + H2l@ - mll1or + A1V - @loq
S hl/z(HfHo,Q + llgll1/2,r)-
which is the rate expected from a best approximation argument. u

We are in the position to derive an optimal estimate for [|[Ve"[|; o, using the estimate
given in Theorem 5.3.11.

Theorem 5.3.13 (Optimal estimate for [|[Ve"|[, , - Robin version of Theorem 4.3.10). Let
I’ be smooth and (@pn,un) be the least squares approximation of (¢,w). Furthermore, let
e =u—wuy. Then, for any @;, € Vp, (Tr), tn € Sp,(Th),

i B 12 i B 12 i h i
Vel = anlort () le-guloat (%) Ie-@nalart 219 to-pnlos
Proof. Reentering the proof of Theorem 5.3.9 we therein estimated

(¢ —Iip) n.e¥ -n)r < |l(p — o) nforl(e?, )]s
Sllle = Thelll Ve lloq -

Theorem 5.3.11 however now gives together with the regularity of the dual solution the

estimate
< _ _ N _ _
TS v —0plly o+ Y-
0 (p) | 1.0 ’ | h

- h -
+[|(% =) - nflor + EIIV (% —¥p)llo

B\ 1/2 .
S (p) [Ve ”o,Q,

He¢ -n

0,0
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5. FOSLS II - inhomogeneous boundary conditions

which in turn enables us to improve the estimate as follows:

{(p —Thp) n.e? -n)r S (h/p)"[lle — Tipll Ve g -

All other estimates in the proof of 5.3.9 stay the same. Canceling one power of [[Ve"||; o
and collecting the terms yields

i B 12 . h .
IVetlloq < llu = anll, o + (p) llo = Inelll + IV - (0 = In@)llo-

Finally, exploiting the estimates of the operator I 1,: given in Lemma 5.3.5 we arrive at the
asserted estimate. O

Before turning to the estimate for [[e"||,, we first derive a slightly better version of
Theorem 5.3.6. To that end, we first analyze the convergence of the corresponding dual
solution:

Lemma 5.3.14 (Convergence of dual solution for e¥). Let I' be smooth and (pp,un) be the
least squares approximation of (¢, u). Let €* = u—uyp, ande? =@ —y,. Let (P,v) e VW
be the solution of the dual problem given by Theorem 5.2.3 with n = e¥. Furthermore, let
(¥, vp) be the least squares approzimation of (¥, v) and denote e’ = v—uvy, and e¥ = h—1py,.
Then,

¥, e)llo < o

h
lelo.0 < 2 le®llo

B /2
le¥llor < (p) 1€l

B\ /2
Ive'loa 5 (2) Ieloa.

le¥llog < lle®llog -

P < A% »
¥ - nllor < 5 le Ho,Q-

Proof. Theorem 5.2.3 gives ¢ € L?(2), V-4 € H'(Q), ¢ -n € H/?(Q) and v € H*(Q) and
exploiting the regularity estimates therein we find

1e®, ")y < lle®lloz -
By Lemma 5.3.2 we have
le”llo.0 < h/pll(€?, )b,
which together with the above gives the second estimate. The third one follows by a

multiplicative trace inequality together with the second estimate and the norm equivalence
theorem in conjunction with the first estimate of the present lemma:

v v 1/2 v 1/2 v
lelor S llellalle’ e < (/o) 211 (e¥, )y S (h/p)2 el -

The Theorems 5.3.13, 5.3.6 and 5.3.11 then yield the result by exploiting the regularity of
the dual solution and the approximation properties of the employed spaces. ]
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5.3. Error analysis

Theorem 5.3.15 (Suboptimal but improved estimate for [e?||, , - Robin version of The-
orem 4.3.8). Let I' be smooth and (¢pp,up) be the least squares approzimation of (¢,u).
Furthermore, let €* = u—uy, and e? =@ —pp,. Then, for any uy, € Sy, (T), @5 € Vp, (Th),

B /2
- <p> lu— inlly o + I — @allo

1€®llo.0 < llu— tn

- h N
+ (e —@n) -nllor + » V- (e —@n)lloq-

Proof. We proceed as in the proof of Theorem 5.3.9 with (e¥,¢e") denoting the FOSLS
approximation of the dual solution given by Theorem 5.2.3 (duality argument for the vector
variable) applied to n = e¥. As before for any ¢, € V,, (T1), an € Sp,(Th)

He‘pHg,ﬂ = b((‘p - ()Nohv u — ah)a (61’0, ev))_

We again choose ¢;, = I gtp, extensively use the properties of the operator I 1}: given in
Lemma 5.3.5, exploit the regularity of the dual solution using Lemma 5.3.14 as well as the
estimates of Theorem 5.2.3:

(1w = @n), V - €¥)a S lu = @nllg (¥, €)1l
S llu=nllog lle?llo
(—a(u—an),e* 0 —ae")r S Ju—anlor [l€¥ - nlor + e lor]
S (/92w = nllg e Pl
(V(u—ap),e%)q = —(u—tp, V - e¥)q + (u — ap,,e¥ -n)r
S [l = anllo g + (/p) /2 1w —
(= @n),v¢")a S llu = anllo.q el
S h/pllu = nlly o leflo
(V= @), Ve)o S IV (= in)llo g Ve o
S (/92w = @nlly o el g
(¢ —The, Ve +e¥)a < llo — Tholoall€”,e”)]s
< llle = gl e®llo o
(p ~Ihp) -m.e¥ -n — ac”)r < [l — Iip) -mlorll(e®, )]l
< llle = IRl e®llo 0
(V- (p—Th9),V-e’)o= (V- (¢ —I19),V- ¥ —9p))a
< |V (o~ Ih@)lloallV - @ — %y loo
Sh/PIV - (0 = Tl €%l

Canceling one power of |e?||, o, and summarizing the estimates we find

O,F] He(PHO,Q )

or

1€Moo S llw—tnllgo + (h/p)"? [|lu — inllor + (h/p)? lu—dinlly g
+ |l — ILoll| + h/p|V - (0 — Ie)

0,0
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5. FOSLS II - inhomogeneous boundary conditions

A trace estimate, using the estimates of the operator I g given in Lemma 5.3.5 and collecting
the terms yields the result. O

Lemma 5.3.16 (Convergence of dual solution for e" - Robin version of Lemma 4.3.11). Let
I be smooth and (@n, up) be the least squares approzimation of (¢, u). Let e* = u—uy and
e¥ =p—pp. Let (Y,v) € VW be the solution of the dual problem given by Theorem 5.2.1
with w = e*. Furthermore, let (Y, vp) be the least squares approzimation of (Y,v) and
denote €V = v — vy, and €¥ = —y,. Then,

h
1%, el S 2 llello.a
p
. h
1l < (p) Il
3/2
e¥llor < (h)
’ P
Floq < hne g V,,(Th) = RTo(Ts),
€7 0,0
||eu||07(2 6186,
. hne log V,.(Th) = RTo(Th).
e nllor <9 /,0\3/2, .
(5) T levlog etse.

Proof. Theorem 5.2.1 gives ¥ € H*(Q), V -9 € H*(Q2) and v € H%(Q) and exploiting the
regularity estimates therein we find

h
(e, eIy < o Il

By Lemma 5.3.2 we have
le”llo.0 < h/pll(€?, )b,

which together with the above gives the second estimate. The third one follows by a
multiplicative trace inequality together with the second estimate and the norm equivalence
theorem in conjunction with the first estimate of the present lemma:

e lor < eIl el lYa < (h/p)* 2%, )b < (h/p)*? lle“lo g -

The Theorems 5.3.6 and 5.3.13 then yield the result by exploiting the regularity of the dual
solution and the approximation properties of the employed spaces. O

Theorem 5.3.17 (Optimal estimate for [|e"|,(, - Robin version of Theorem 4.3.12). Let
I’ be smooth and (@n,un) be the least squares approximation of (¢, u). Furthermore, let
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5.3. Error analysis

e =u —uy. Then, for any @;, € Vp, (Tn), tn € Sp, (Th),

( ~ ~
hluw —nlly o + hlle — @nllog

+h|[(e — @) -nllor + 1|V - (¢ — 1) o0 VY (Tn) = RTo(Th),
hllu— ;o + R o — @plloq
leloe S § +r32((@ — 1) -nllor + IV - (@ — @1)llos V9 (Tn) = BDM1(Ty),

- 3/2 N
Bllu—anlo+ ()" le - @nlos

3/2 ~ 2 )
+ (B e - @) -nllor + () 1V - (0 - @)

00 else.

Proof. We proceed as in the proof of Theorem 5.3.9 with (e¥,e”) denoting the FOSLS
approximation of the dual solution given by Theorem 5.2.1 (duality argument for the scalar
variable) applied to w = e*. As before for any @, € V,, (T3,), Up € Sp,(Th)

||€u||3,9 = b((‘P - ()Noha U — ﬂh)a (6¢, ev))‘

We again choose ¢;, = I gcp, extensively use the properties of the operator I E given in
Lemma 5.3.5, exploit the regularity of the dual solution using Lemma 5.3.16 as well as the
estimates of Theorem 5.2.1:

(Y(u—n), V- e¥ +7e')a S llu—dnllgq ll(”, el
Sh/plu— ﬂh”l,ﬂ ”euHO,Q )
(V(u— 1), Ve' +e¥)g S IV (u—an)lloq lI(€?,e)]ls
Sh/plu— ah”l,Q ||6u||0,Q )
(—o(u— i), €% -n— ae’)r < |lu—dnllorlI(e”, ")
S h/pllu—dnlly o lleloq
(p—TILp,Ve)a=—(V- (o —L,p),e")a+ (¢ — ILp) -m,€")r
<|IV- (@ —=Tip)log lelloq + 1 = Ihp) - nllor llellor
S |(/PIV - (0 — Iho)lloo + (h/p)*llle — Thelll| lle“llo.q
(V- (o —T0),7¢")a < IV - (o = Tr@)loa lle’llo.q
S (Wp?IIV - (o — L)
((p—Ihp) -n,—ae’)r < [[(@ — I9) -nllor[le’]lor
< (h/p)*P|lle — Il e o0
(¢ —Tip.e)a Sl —Ihe
Wlle — Irelll el Vy, (Th) = RTo(Th),
“UE) " e - Il lenloq etse

09 lle"lloq

’3¢||0,Q

0,2

89



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

5. FOSLS II - inhomogeneous boundary conditions

(V-(p—119),V-e")a= (V- (¢~ I19),V - (% —9)))0
< IV (o = IE@)loallV - @ — ¥4 oo
WY - =Tigllballeln =1,
“LE) IV e - Lol el eise
((p —ILp) -n,e? -n)r < [[(p — Ip) nlorle? nlor
Allle = 5l e lo o V,,(7h) = RTo(Tp),
~ h 3/2 r u
(5)" e = IRl el g else.

Canceling one power of ||e“||, ¢, using the estimates of the operator I}, given in Lemma 5.3.5
and collecting the terms yields the result. O

Corollary 5.3.18. Let I' be smooth, f € H*(Q) and g € H*t/2(T) for some s > 0 and
denote Cy.g = || f|l () + 91l grs+1/2(ry- Then the solution to (5.2) satisfies u € H5+2(Q),
o € HT(Q), ¢ -n € HTV2(T) and V - € H*(Q). Let (pn,un) be the least squares
approzimation of (p,w). Furthermore, let €* = u — up and e = ¢ — @p. Then, for the
lowest order case p, = 1,

HeuHo,Q S pin{st1.2} ||f||Hs(Q) :

For p, > 1 there holds

va (771/) - RTpv_l(l];L)

va (771) - BDMPU (77L)

min{s+1,ps,pu+1/2}+1 min{s+1,ps,pu+1}+1
le*log < (2) ro | letlog S (%) fo
Furthermore, the estimates
Vy, (Th) = RTp,1(Tn) Vo, (Th) = BDM,, (7x)
min{s+1,ps,pv+1/2} min{s+1,ps,pu+1}
IVe'llon < (%) ro | Ve loa S (%) a
and
Vo, (Th) = RTp,—1(Th) Vo, (Th) = BDM,,, ()
min{s+1/2,ps+1/2,p, } min{s+1/2,ps+1/2,pp+1}
le®lloq < (%) ro | leflog S (2) fo

hold. Finally, we have
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5.4. Numerical examples

Vi, (Th) = RTp, -1(Th) Vy, (Th) = BDM,, (T5)

)min{s+1/2,ps+1/2,pu+1}

ro | le? - mllor S (2

Proof. The regularity follows by the standard shift theorem with the fact that ¢ = —Vu.
We now analyze the quantities in the estimates of the Theorems 5.3.11 | 5.3.13 , 5.3.15
and 5.3.17:

Ju =l S (/)™ P gy S (/)

= nll g S (h/p)™™ 1 u] ey S (h

min{s+1,ps}+1/2 ’

||e§0 -n

P f7g

< <h> min{s+1/2,ps+1/27pv}

)min{s+1,pS } Cf,

/p
5 (h/p)mm{erl,ps}Jrl/ZC«f7

lw—nl[or < (h/p) (ull grs+2(0

Furthermore, the following estimates hold for the choices V, (75) = RT,,—1(7r) and
V,, (Tn,) = BDM,, (74), respectively

hp) P | ) S (h/p) TP Cy

} (h/p)
HSD - (Ph”O,Q 5 { min{s min{s
(h/p)m st bret o) o ) S (B/p)mintstirt oy o
(h/p)
(h/p)

10— 3) mlor < hp)min{s+1/2p0} H‘P”Hs+1(g) < (h/p)min{s+1/2,pv}cf’g’
h L~ h/p min{s+1/2,p,+1} H‘pHHé‘H(Q) 5 (h/p)min{s-l—l/Z,Pu+1}Cf,g7

IV - (0 =@nlloa S (W/p)™ PV - 0] gy S (h/p)™ P Cyy.

The estimates of the Theorems 5.3.11 , 5.3.13 , 5.3.15 and 5.3.17 together with the above
estimates give, after straightforward calculations, the asserted rates. O

Remark 5.3.19. Note that the rates predicted by Corollary 5.3.18 for the error of the
vector valued variable ||e¥||, o, and the normal trace of the vector valued variable ||e® - n||, -
are the same. This again suggests the suboptimality of the estimate for [|e®|, . .

5.4. Numerical examples

For the presentation of the numerical results we employ the same conventions as in Sec-
tion 4.4. An additional quantity of interest is now the error of the normal trace ||e® - n||, -

Example 5.4.1. We consider as the domain €2 the unit sphere in R?. The exact solution
is given by wu(z,y) = sin(z + y) and therefore smooth. The right-hand sides f and g are
calculated according to the choice & = 1 and v = 3. The numerical results are plotted in
Figure 5.1 and B.1 for |[e"|, o, in Figure B.2 and B.3 for ||Ve"||, , in Figure 5.2 and 5.3
for [|e#]|,.q. in Figure 5.4 and 5.5 for [l -nj, p. ’

Example 5.4.2. We again consider as the domain © the unit sphere in R?. The exact solu-
tion u(z,y) is calculated corresponding to the right-hand side f(z,y) = Tjo1/9/(v/2? + y?),
~v = 2 and satisfying 0,u = 0. The right-hand side g is calculated according to the choice
a = 1. The numerical results are plotted in Figure 5.6 and B.4 for |e"||, o, in Figure 5.7
and B.5 for | Ve[| o, in Figure 5.8 and B.6 for [|e?][, o, in Figure 5.9 and B.7 for le¥ - nllop-

91



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thek,

blio
nowledge

3
|
r ki

m You

5. FOSLS II - inhomogeneous boundary conditions

relative L2 error of u

Figure 5.1.: (cf. Example 5.4.1) Convergence of [le“[,q vs. VDOF ~ 1/h employing

relative L2 error of ¢

Figure 5.2.: (cf. Example 5.4.1) Convergence of |[e?[, vs. vVDOF ~ 1/h employing
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5.4. Numerical examples
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Figure 5.3.: (cf. Example 5.4.1) Convergence of [e?[,o vs. VDOF ~ 1/h employing
va (777«) = BDMpv (771)
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Figure 5.4.: (cf. Example 5.4.1) Convergence of |le? -n|, vs. VDOF ~ 1/h employing
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5.4. Numerical examples
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6. Galerkin discretizations of Heterogeneous
Helmholtz problems

In the present chapter we perform wavenumber-explicit regularity theory as well as conver-
gence analysis of the Galerkin discretization for a class of time-harmonic wave propagation
problems in piecewise smooth media. Our model problems include heterogeneous Helmholtz
problems with piecewise analytic coefficients endowed with Robin, Dirichlet-to-Neumann
and second order absorbing boundary conditions. Furthermore, our theory covers perfectly
matched layers as well as volume damping terms. The results presented in the current
chapter are part of the work [BCFM21].

The outline of this chapter is as follows. In Section 6.1 we give an informal road map of our
results. To that end, we consider a prototypical heterogeneous Helmholtz model problem.
Section 6.2 introduces problem specific notation and lists the assumptions of our theory. In
Section 6.3 we perform an abstract contraction argument and prove a wavenumber-explicit
regularity splitting of the solution, see Theorem 6.3.10. In Theorem 6.3.11 we perform this
splitting for higher order Sobolev data. Section 6.4 reviews the adjoint problem, which
arises naturally in the duality argument when analyzing a Galerkin discretization. Sec-
tion 6.5 verifies the assumptions for the wavenumber-explicit regularity splitting of Section
6.3 for a variety of problems. Next, we perform an abstract Galerkin analysis in Sec-
tion 6.6. We conclude this section with an application to the hp-FEM. In Section 6.7 we
present numerical results which support our findings. In Section 6.8 we prove analytic reg-
ularity of a model problem with second order boundary conditions. Finally, in Section 6.9
we analyze the Dirichlet-to-Neumann map for the exterior Helmholtz equations and its
relation to the Dirichlet-to-Neumann map for the Laplacian. We prove a splitting of the
difference of the two, see Lemma 6.5.12. Closing this chapter, we propose a splitting of the
Dirichlet-to-Neumann map for linear elasticity in Section 6.10.

6.1. Whetting the appetite
Consider the following heterogeneous Helmholtz problem with Robin boundary conditions:

—Au—k*n*u=f inQ,

. (6.1)
Opu —iku=g onT,

where k > kg > 0is real. The boundary I" of the bounded Lipschitz domain €2 as well as the
spatial-dependent index of refraction n = n(z) are assumed to be analytic and uniformly
bounded away from zero and from above, i.e., there exist constants nmin, Mmax > 0 such
that 0 < Nmin < () < Nmax for all z € Q. Furthermore, let f € L*(Q) and g € HY2(T).
In one of our main results, Theorem 6.3.10, which is applicable to the above problem, see
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6. Galerkin discretizations of Heterogeneous Helmholtz problems

Section 6.5, we prove a wavenumber-explicit splitting of the weak solution v € H() to
problem (6.1). Theorem 6.3.10 allows to write u = up + ua, where up € H?(Q) and u4 is
analytic. The function up satisfies

lurll20 + kllurllLe + K lurlloe < [1floo + gl

which expresses favorable wavenumber-dependence. The analytic part w4 is oscillatory.
Note that for n = 1, we recover the results of [MS11, Thm. 4.10] for the homogeneous
Helmholtz equation.

The weak formulation of (6.1) reads: Find u € H*() such that

(Vu, Vo) — E*(nu,v) — ik{u,v) = (f,v) + (g,v) Yo € HY(Q). (6.2)

We denote by S, the solution operator to problem (6.1), i.e., S, (f,g) = u, where u solves
(6.2). Let us also introduce the sesquilinear form b, given by

by (u,v) = (Vu, Vo) — k*(n’u,v) — ik{u, v) Yu,v € H(Q),

as well as the associated differential operator L, u = —Au — k?n’u and the boundary
operator T, pu := iku. Problem (6.1) can therefore be written as

Lyu=f inQ,

6.3
Opwu—T, u=g onl. (6:3)

We additionally introduce the solution operator S,j( f,g) = w of the auxiliary problem

—Aw+kw=f inQ,

6.4
Ohyw=g¢g onl, (6.4)

as well as the corresponding differential operator L,":w = —Aw + k*w and the sesquilinear
form b; If we additionally introduce the (in this case) trivial boundary operator 7, ,j r=0
we find that w solves

L,ng =f inQ,

6.5
8nw—Tk+Fw:g on I (6:5)

By construction problem (6.5) is coercive and the solution features favorable k-explicit
a priori bounds as well as estimates in H?(Q), since a shift theorem is applicable. The
difference between the differential operators and the boundary operators only consists of
lower order terms. More generally, we allow for a diffusion matrix A and lower order
operators T,; o and T,: o such that the differential operators L, and L,‘: take the form

Liu=-V-(AVu) - T} qu,
Liu=-V-(AVu) — T,:Qu.

The above fits into this framework, with the choice T, qu = —k?n%u and —T,j QU = +k%u.
We will later see that S;” and S,j act very similar on high-frequency data. For the read-
ers’ convenience, we summarize this notation in Table 6.1.
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6.2. Assumptions and problem specific notation

Minus Plus
uw=>5;(f9) u= Sy (f,9)
by, (u,v) by, (u,v)
Liu=f Liu=f

Lyu=-V-(AVu) - T} qu Liu= -V (AVu) — T;Qu

Opu—"T, pu=g Onu—T,jFu:g

Table 6.1.: Notational overview.

6.2. Assumptions and problem specific notation

The goal of this section is to depict the abstract settings for which the proposed analysis
is valid. A large part of our analysis relies on smoothness properties of the domain. For
ease of reference we introduce the following

Assumption 6.2.1 (Assumptions on the domain €2, the boundary I' and the interface
I';). In spatial dimension d = 2,3 the bounded Lipschitz domain Q@ C R has an analytic
boundary I' :== 0. The interface I'; C  is an analytic d—1 dimensional manifold, possibly
consisting of a finite number of connected components. Furthermore, it is nonintersecting
and bounded away from I

In view of Assumption 6.2.1 we introduce the piecewise Sobolev spaces of order s > 0.
For  and T'; as in Assumption 6.2.1 let H*(2\ I';) denote the space of functions u, such
that u‘w € H*(w) for all components w C Q\I';. The corresponding norm for u € H*(Q\T;)

is given by Hquﬂ\n =>. ||u||§w

Assumption 6.2.2 (Assumptions on the wavenumber k and the diffusion matrix A).
The wavenumber k is real and bounded away from zero, i.e., k > ko > 0. Furthermore,
the matrix-valued variable heterogeneity A is analytic on Q or piecewise analytic with an
analytic interface I';. We assume the existence of constants C'4, 74 > 0 such that

IVPA[ peoryy < Caviyp!  Vp € No.
Furthermore, we assume A to be homogeneous at the boundary, i.e., A=1onI.
For our presentation, the energy space will be the space H%*(Q,T"). For t > 0 let
HY(Q,T) = {uec H(Q): uc H(T)} c H'(Q).
with k-dependent norm

lullf ¢ = IVulld o + K2 [lulld o + &7 ulf
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6. Galerkin discretizations of Heterogeneous Helmholtz problems

Furthermore, we denote by || - ||1 z,o the k-dependent norm
[ull? 0 = IVulld o + K[l o-
It is easy to show

Lemma 6.2.3. For 0 <t < 1/2 the space H'*(Q,T) coincides with H(Q) and || - ||1.¢x 4s
equivalent to || - ||1.x.0-

We stress at this point that our theory also covers vector valued problems. For notational
convenience we stick to the space H!(Q,T) in order to cover heterogeneous Helmholtz
problems with different boundary conditions, including the Robin boundary condition,
the full space problem employing the Dirichlet-to-Neumann operator DtNg on a coupling
interface ' as well as second order absorbing boundary conditions, second order ABCs for
short.

For the readers’ convenience we present an overview table of our covered problems in
Table 6.2. We further discuss these problems in Section 6.5.

Model Energy Space L, L;T TA:Q - T,I Q Ty T;T r | Tor— T,I T
HH + RBC iku 0 iku
HH + DtN Sphere —V - (AVu) — k?n* —k*(n® + Du DtN,, DtN, kRr
—V - (AVu) + k?u
HH + DN I HY(Q) DtN;, DtNo | kRr+ Ap
HH + Damping + RBC —V - (AVu) — k*n?u + ikmu —k*(n® + 1)u + ikmu iku 0 tku
HH + PML + RBC —V(APMLGy) — k2nu —V(APMLYu) + k*u o iku 0 tku
—k*(n? 4+ 1)u
HH + second order ABC | HM(Q,T) —V - (AVu) — k*n?u —V - (AVu) + k*u aAru + kRru | aArpu kRp

Table 6.2.: Overview of covered problems.

The primal problem reads: For f € L?(Q2) and g € L*(T) find S, (f,9) == u € H"(Q,T)
such that
by, (u,v) = (AVu, Vo) — (T} qu,v) — (T, pu,v) = (f,v) + (g, v) Yo e HY(Q,T). (6.6)

The auxiliary problem problem reads: For f € L*(Q2) and g € L*(T) find S} (f,g) = u €
HYH(Q,T) such that

b (u,v) = (AVu, Vo) — (T,:Qu,v) - (karu,v) = (f,v) + (g,v) Yo e HYH(Q,T). (6.7)
We specify the operators T} ¢, T} T, T,jQ and T,jr in the Assumptions 6.2.4 and 6.2.5 as

well as 6.2.6 below. Furthermore, for C,v; > 0 we introduce the analyticity class in the
volume

A(Cy, 71, Q\Ty) == {v € L*(Q): |[V™

loonr; < Civf max{n, k}" n € No},

as well as the analyticity class on the boundary. For g € L?(I") we write g € A(C1,71,T),
if there exists a one-sided tubular neighborhood T' of the boundary I'; such that ¢ is the
restriction of an analytic function G which satisfies

IV"Gllor < Ci7f max{n,k}"  Vn > 0.
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6.2. Assumptions and problem specific notation

We start with assumptions on the primal problem.

Assumption 6.2.4 (Assumptions regarding L, , b, , T\ (,, T - and S, ). The following is
satisfied:

M.1 The sesquilinear form b, : H(Q,T') x HY4(Q,T') — C is continuous, i.e., there exists
a constant C__ ., > 0 such that

by ()] < Copepellullieallvlies  Vu,v e HY(QT).

— Ci

M.2 The linear operators T} o: H(Q,T) — HY(Q,T') and T} .+ HY(I') — HY(T') ad-
mit splittings into linear operators

T,;Q:D§+A’, T,;F:DI?—FA’,
such that

(Dgu, )| + [(Dpu, v)| < llulliekllvlles  Vu,v e HHQT).

|v

Furthermore, the operators Ay and A have the mapping properties
Aqu € A(CY q pllulliee, va o Q\Ti),  Apv € ACy pllulliik, Yo T)
for all w € HY(Q,T). Let C == max(C o, Caryp)-

M.3 Problem (6.6) is well-posed, i.e., for every f € L?(Q2) and g € L*(I') it admits a
unique weak solution S; (f,g) = u € HY(Q,T). The a priori energy bound

Lk < Ol fllo.e + llgllo.r) (6.8)

[

holds with a constant C__, , 2 1 independent of f and g.

M.4 For (piecewise) analytic data f € A(Cy, v, Q\T;) and g € A(Cy,74,I") the solution
u =5, (f,g) to Problem (6.6) is again (piecewise) analytic and satisfies

[ullieh < CCL(Cr + Cy),
IV ulloonr, < CCLy k™ 19P max{k,n}"(Cy +Cy)  Vn > 2,
with constants C', v > 0 independent of k.

Assumption 6.2.5 (Assumptions regarding L;, b;, T ,:r o 1 ,j r and S,j) The following is
satisfied:

P.1 The sesquilinear form b; : H/(Q,T') x H(Q,T') — C is continuous, i.e., there exists
a constant C’;;nt x = 0 such that

b3 (w,0)] < O pllullwllvllies Yu,v e HY(Q,T).

cont,
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6. Galerkin discretizations of Heterogeneous Helmholtz problems

P.2 There exists o € C with |o| = 1, such that
Re(obf (u,u) 2 lullf e Yu€ HY(Q,T)
independently of k.

P.3 The linear operators T},: H'(Q,T') — H(Q,T) and T,/ .: HY(I') — H~Y(T) are
such that
T];Q_T]::Q:RQ‘FAQ, T];F_T;:F:RF‘FAF,
with linear operators Rq, Aq, Rr and Ar.
P.4 The linear operator Ro admits a splitting Ro = Z?:l k2_siRQ75i. The linear oper-

ators Rq,: H () — L?(Q) are bounded linear operators and satisfy the estimate
[Ro.sullo.e S llulls;0, 0 < si < 1.

P.5 The linear operator Rr admits a splitting Rr = > | k3/2—si Rr ;. The linear opera-
tors Rr,: H®(T') — H'2(T) are bounded linear operators and satisfy the estimate
| Rr.sulli2r S llulls;r, 0 < s; < 1/2.

P.6 The operators A and Ar have the mapping properties

Agu € A(Cagillulli e a0 Q\Ti),  Arv e A(Carillu

1tk YA, )
for all u € HM(Q,T). Let Capar == max(Ca gk, Carg).

P.7 For f € L*(Q) and g € H'/?(T") the solution S, (f, ) = w € H*(Q\T;). Furthermore,
the regularity shift estimate

lwllaonr, S Iflog + llglh20 + k2llgllo,r (6.9)
holds.

Assumption 6.2.6 (Assumptions regarding L,Jg, T,:r Q> T,j r and S,j for higher Sobolev

regularity). Let s > 0 denote the regularity of the data f € H*(Q\I;) and g € H*t1/2(T).
With the notation of Assumption 6.2.5 we additionally assume the following to be satisfied:

PS.1 The linear operator Rq admits a splitting Ro = > .1, k8+2_SiRQ’si. The linear
operators Ro g, : H*(Q\I';) — H*(Q\T;) are bounded linear operators and satisfy
the estimate ||Rqs,ullso\r, S llulls,o\r,, 0 < s < s+ 2.

PS.2 The linear operator Rp admits a splitting Rp = Y ", kst3/ 2=%iRrs,. The linear
operators Rrs,: H*(I') — H*T1/2(T") are bounded linear operators and satisfy the
estimate | Bro,ullir/or S Jullor, 0 < 5i < 5+ 3/2.

PS.3 For f € H*(Q\T;) and g € H*F/2(T) the solution S} (f,g) = w € H**2(Q\ T}).
Furthermore, the regularity shift estimate

lwllssaor, S Iflsovrs + &1 fllog + lgllsozr + k2 gllor (6.10)

holds.
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6.3. Abstract contraction argument

Remark 6.2.7. For the analysis of an abstract Galerkin discretization, see Section 6.6,
we will make additional assumptions. In fact, we will assume that the operators T}, and

T, are quasi-selfadjoint, see Assumption 6.4.1. Furthermore, in the application to the
hpLFEM, we will make the additional assumption, that the problem is polynomially well-
posed, see Assumption 6.6.6. We do not state these assumptions in the above, since they
are not necessary for the wavenumber-explicit regularity theory developed in Section 6.3. =

Remark 6.2.8. We stress that the well-posedness in Assumption M.3 as well as the later
assumed polynomial bounds in Assumption 6.6.6 are injected into our theory. u

Remark 6.2.9 (Conceptual explanation of Assumptions 6.2.4, 6.2.5 and 6.2.6). We quickly
discuss the relevance of the Assumptions 6.2.4, 6.2.5 and 6.2.6. Assumption M.1 in Assump-
tion 6.2.4 expresses the continuity of the sesquilinear form b, with possibly wavenumber-
dependent continuity constant C'_ ... In conjunction with M.2 in Assumption 6.2.4 this
expresses the fact that unfavorable wavenumber-dependence in the continuity constant
Coont 1 18 only caused by operators, which map into a class of sufficiently smooth functions.
Assufnption M.3 expresses well-posedness of the problem. Assumption M.4 states, that
analytic data are mapped to analytic solutions.

We now turn to Assumption 6.2.5. P.1 and P.2 express continuity and coercivity of b,
respectively. This allows for wavenumber-explicit energy estimates of the solution operator
S,j. P.3 with P.4, P.5 and P.6 expresses that the differential operators L, and L;: agree
on the leading order operator. Furthermore, the difference admits a splitting into a finite
regularity part with favorable k-dependence and an analytic part with possibly unfavorable
k-dependence. Finally, P.7 states a shift property associated to S,‘:. Last but not least,

Assumption 6.2.6 is the natural assumption for higher order Sobolev data. .

Remark 6.2.10. The results of Section 6.3, i.e., the splitting u = up + ua does not rely
on M.2, nor does it rely on the later Assumptions of quasi-selfadjointness and polynomially
well-posedness, see Assumptions 6.4.1 and 6.6.6. These assumptions only enter in the error
analysis of an abstract Galerkin discretization. Here an additional adjoint problem arises.
In fact, under Assumption 6.4.1 primal and adjoint problem are essentially the same, up
to some complex conjugations. This has the advantage that after analyzing the primal
problem, the corresponding results also hold for the dual problem. For our model problems
in mind, all these assumptions are satisfied. Hence, we are able to perform a complete
analysis of the Galerkin discretization of these problems. .

Remark 6.2.11 (On implicit and explicit constants in Assumptions 6.2.4, 6.2.5 and 6.2.6).
Explicit constants appearing in the Assumptions 6.2.4, 6.2.5 and 6.2.6, which may depend
on the wavenumber £, are denoted with an additional subscript &, e.g., C__ ., and Cyapa k-
Implicit constants hidden inside < are independent of k. ’ .

6.3. Abstract contraction argument

The main result of the present section is Lemma 6.3.6 and the resulting Theorem 6.3.10,
which establishes a wavenumber-explicit regularity theory for our model class.
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6. Galerkin discretizations of Heterogeneous Helmholtz problems

Lemma 6.3.1 (Stability estimates for S;"). Let P.1 and P.2 in Assumption 6.2.5 be satis-
fied and let Q be a bounded Lipschitz domain. Then, for every f € H=1(Q) and g € H(T)

the problem
Lljw =f inQ,
8nw—T,ij:g on T’

admits a unique weak solution S,j(f,g) =w € HY(Q,T). Furthermore, for f € L*(Q),
g € L3(T) and any 0 < ¢ < 1 the estimate

[l S k1A ey + 520 (6.11)
holds.
Proof. The weak formulation reads: Find w € H*(Q,T) such that
b (w,v) = (f,v) + (g, v) Yo e HY(Q,T). (6.12)

Unique solvability follows by the Lax-Milgram theorem since P.1 and P.2 in Assump-
tion 6.2.5 are satisfied. For f € L2(Q), g € L?*(T), choosing v = gw in (6.12), with o
as in P.2 in Assumption 6.2.5, passing to the real part we find for any 0 <e <1

lwllf ¢ < Re(ob (w,w)) < [(f,w)| + g, w)] S 1f]| 5@ llwlle. + lgllo.rllwlor

S N N e +F 2 lgllon) lwleo

where the last estimate follows by interpolation. Estimating ||w||1 .0 by ||w||1 4, canceling
one power of ||wl|;; proves (6.11) and concludes the proof. O

We remind the reader of the high and low pass filters introduced in [MS11, Sec. 4.1.1].

Proposition 6.3.2 (Volume high and low pass filters Hffk and Lflzk) Let © be bounded
Lipschitz domain andn > 1. There exist operators Hf;zk: L3(Q) — L*(Q2) and Lf}k: L2(Q) —
L?(Q) such that Hykf + Lffkf = f for every f € L*(Q). Furthermore, for 0 < s’ < s the
operator ngk satisfies

IHS flloo S k) | fllse Vf € H(Q),

with hidden constant independent of n and k. Additionally, for 0 < e < 1/2 the operator
HQk satisfies
n
1k fl -y S ) Ellflloe ¥F € LA(9). (6.13)

Finally, the low pass filter L?k satisfies

IVPLE flloo S RPlIflee Vf € HY(Q), Yp €N, p > s.

Proof. Apart from the estimate (6.13) the results can be found in [MS11, Lemmas 4.2
and 4.3]. Regarding (6.13), note that for 0 < e < 1/2 and a bounded Lipschitz domain €2,
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6.3. Abstract contraction argument

the space of compactly supported smooth functions C§°(€2) is dense in H*(€2). Also note
that ngk is given by

d
Hyj f = Hyy. (Bqf) o

where Eq denotes the Stein extension operator. The high pass filter H}flj is given by a
Fourier procedure, see [MS11, Sec. 4.1.1]. It is easy to check that

d —S
HH}fk f|Ls,Rd < (nk) HfHO,Rd

for all —1 < s < 0. For v € C§°(Q) let ¥ denote the trivial extension by zero on all of R?
of v. These observations now give

d, -
Q (Hrg)]knﬁv)Q (H,]%c [, 0)ra
HanfH]T[—e(Q) = sup TR T sup —
veCe (Q) [vlle.0 vECE(Q) [v][c.0
d -
< HHEk EQf”—E,RdHUHE,Rd
™ vec () lv]|e.0

S k)l Eafllore S (k) [ fllog
which concludes the proof. O

Proposition 6.3.3 (Boundary high and low pass filters Hrl;k and Lgk) Let T' be analytic
and n > 1. There exist operators Hgk: L*(T) — L*(T) and Lgk: L*(T') — L*(T) such that
H};kg + Lgk,g = g for every g € L*(I'). Furthermore, for 0 < s' < s the operator H};k
satisfies

IHykgllsr < (0k)* *llglsr Vg € HY(D),

with hidden constant independent of n and k. Finally, for s > 0 and g € H*(T") the
function Lgkg can be obtained as the normal trace of an analytic function, i.e., there exists

an analytic function G4 such that Lgkg =n-VGy, which satisfies

1Ggll3/2450 < llgllsr,
IV?Gllog S k)P *lgllsr Yo €No, p2s+3/2.

Proof. See [MS11, Lemmas 4.2 and 4.3]. O

Remark 6.3.4 (Other constructions of high and low pass filters). The presented high and
low pass filters are by no means the only possible constructions. It is for example also
possible to construct them on bounded domains by Fourier series expansion, associated
with an eigenvalue problem for the Laplacian. See also [Mell2, Sec 6.1] for these kinds of
considerations. .

Proposition 6.3.5 (Piecewise volume high and low pass filters H yk’pw and L;l,;pw). Let Q
be a bounded Lipschitz domain, let the interface T'; be as in Assumption 6.2.1 and n > 1.
Then there exist operators ngk,pw: L2(2) — L3(2) and Lf;,;pwz L3(Q2) — L) such that

105



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

6. Galerkin discretizations of Heterogeneous Helmholtz problems

Hﬁﬁ’pwf+L£]2,;pwf = f for every f € L*(Q). Furthermore, for 0 < s’ < s the operator H;lk’pw

satisfies

1H P fllo onr, S k)Y (I flsovr,  Vf € HY(Q\TW),
Q,pw

with hidden constant independent of n and k. Finally, the low pass filter Lnk satisfies

”VPL,?;;prHo,Q\n S RPN fllsonr, V€ H(Q\Ty), Vp € No, p > s.

Proof. The filters are constructed piecewise using the filters given in Proposition 6.3.2. In
fact, it is easy to see that the operator given by (H;)];pw P| = Hp.(fxw), where x., denotes
w

the indicator function on each component w C §2, satisfies the asserted properties, due to
the properties of the high and low pass filters given in Proposition 6.3.2. O

Lemma 6.3.6 (Unified Contraction Argument). Let the Assumptions 6.2.1 (smoothness
of the Q, T and T';) , 6.2.4 (assumptions on the minus problem) and 6.2.5 (assumptions
on the plus problem) be satisfied. Let g € (0,1) be given. Then for every f € L*(Q) and
g € HY/2(T) the function u = S, (f,g) can be written as u = up + ua + S,;(f, J), where

HUFHQ,Q\D + kHUFHLt,k S Hf||0,ﬂ + ngl/Q,Fa (6.14)
lualliik S Cog (X + Canark™ (I flloo + llglljz,r)- (6.15)

Furthermore, the function ua is given by the solution operator S,  applied to analytic data
via

ua = Sy, (L f. Ligg) + Sy (Aqur, Arup)

and there exists a constant v > 0 independent of k such that
IV uallo.onr; S Coppk ™ (14 Cana ik ™)y max{k, n}" (| flloo+llgll/2r) Yn > 2. (6.16)
Finally, the data f, g contracts, i.e.,
I fllo. + gl /20 < a(llfllog + gl j2r)- (6.17)
Proof. The solution u = S, (f, g) of

Lyu=f inQ,
Opwu—T u=g onl

is split as follows
=S (Hypf Hpg) + S (Lyf, Lyg) 411

/

N~

=ur =uA
Due to P.3 the remainder r; satisfies
LI;TI — —(L];

— Lﬁ)up = Roup + Aqgup in €,
OnT1 — T];FTI = (T,;F — T,j’F)uF = Rrup + Arup onT.
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6.3. Abstract contraction argument

We again split r; as follows
r =S, (Aqur, Arup) +,

=UATII

where r satisfies .
L,r= Roup = f in (),

8nr—T,;Fr:Rqu =g onl.

The final splitting now reads

u=ur+us+S. (f,q)
uF:S (H nkg)

ua =S (L nkf, Lyv9) + Sy (Aqup, Arur),
f = Roup,
g = RFUF.

We first prove the estimates for up. Since up = S:(Hfizkf, H};kg) with estimate (6.11) in
Lemma 6.3.1 we find for any 0 < e < 1/2

Flluplloe S REHSS o) + k21 H
S kEHHTS]Zka]?[fs(Q) + kl/QHH};kQHO,F
S lloa+07 gl or
< =(Ifllo.2 + llgllij2,r)-
Furthermore, with (6.9) in P.7 we find

which proves the regularity estimate (6.14). We proceed with the proof of the contraction
estimates. We prove the remaining estimates for the case R = k>~* Rq s forsome 0 < s <1
and Rp = k3/2*TRp7T for some 0 < r < 1/2. The general case Rg =Y ;- , kQ*SiRQ,Si and
Rr = Y1" | k3/27% Ry ,, follows by the triangle inequality. We use the estimates in P.4 and
P.5 as well as (6.18). We have

r)

(6.18)

SIH o + [ Hyggllor + &2 Higglor S 1 flog + lgll/2.r,

I llo.c = [IK*~° Rasurlloo S & *llurlso S K78 urlike
= kllupllire S0 U lloq + llglly2r)-
For the data g we have
H9H1/2F = ”k?3/2 "Rr TUFHI/QF < K2 "upllrr S K32 THUFHT-H/Q,Q

SEPTE T upl ke S klueliee S0 (1 log + lglhy2r).

Since the parameter n > 1 is still at our disposal, we can choose it such that the contraction
estimate (6.17) is satisfied. Finally, the estimate for uy follows by M.3 as well as the
Lemmas 6.3.2 and 6.3.3. We find

HS ( f7 Lnkg)HLt,k N Csolk(

) S C;)l,k("f"O,Q + Hng/Q,F)a
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6. Galerkin discretizations of Heterogeneous Helmholtz problems

1S (Aqur, Arup)|l1ek S Cop(lAourlloo+l|Arurllor) S Co i (Canr+Cari)urllitk,

which together with (6.18) yields (6.15). Finally, by M.4 we find
V™S (L fs Lypdloanrs S Cogr k™" max{k, 0} (|| fllo. + llgll1/2,0),
V™S, (Aqur, Arur)|loo\r, S C;)ka_l’Yn max{k,n}"(Caor + Carr)llur|iek
for all n > 2, which again together with (6.18) yields (6.16). O

Remark 6.3.7 (Contraction argument as parametrix). Assume for simplicity Aqu = 0
and Aru = 0. Then the splitting performed in the proof of Lemma 6.3.6 reads

Sk_(f,g) = SJ(HTS;)kﬁ H,fkg) + SQ(Li,)kf, Lgkg) +r
Consequently, we find
Sy (Hyf, Hyrg) = S (HyL f Hyg) + (6.19)

which expresses, that S,j is an approximate solution operator for L,  on high-frequency
data. =

We now perform a similar contraction argument for data in higher order Sobolev spaces:

Lemma 6.3.8 (Unified Contraction Argument, higher Sobolev regularity). Assume the
hypothesis of Lemma 6.3.6. Let g € (0,1) and s > 0 be given. Additionally, let Assump-
tion 6.2.6 be satisfied. Then for every f € H*(Q\ T;) and g € H*TV2(T) the function
u =S, (f,g) can be written as u = upr +ua + Sk_(f, J), where

lurllss2.or, + B urlios S I fllsor, + 19llsr1/2rs (6.20)
luallier S Coopp(X+ Cana k™) ([ Flloo + llgllj2.r)- (6.21)

Furthermore, the function uy is given by the solution operator S,  applied to analytic data
via

ua = Sy (LY £, L) + Sy (Aqup, Arur)

and there exists a constant v > 0 independent of k such that

IV u A

0,0\ < Cs;hkkil(l""cana,kkil)"yn max{kan}n(HfHO,Q"‘”g”l/Z,F) Vn > 2. (6.22)
Finally, the data f, g contracts, i.e.,

1 s, + 19lls41/20 < allflsoars + lgllst1/2.0)- (6.23)

Proof. The main difference compared to the proof of Lemma 6.3.6 is the application of the
piecewise high and low pass filters. We only highlight the crucial differences. The solution
u =S, (f,g) is split as follows

w= S (HP £, HEg) + Sy (L2 £, b g) +1.

N~

=ur =UA T
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6.3. Abstract contraction argument

With the same notation and lines of proof as in Lemma 6.3.6 the final splitting now reads
u=up +ua+ 5 (f,9),
up = S{E(H™ £, Hpg),
wa = Sp (L™ [, Lyg) + Sy (Aqup, Arur),
f = Roup,
g = Rrup.

We first prove the estimates for up. Since up = S;(ngk’pwf, H};kg) with estimate (6.11) in
Lemma 6.3.1 we find with the choice ¢ =0

_ 0, _
Eluplie S kETHH P fllog + &2 HYygllor)
Q,pw
SIHE flloo + k2| Hygllor

S k) flls,oar, + "77371/27?78H9Hs+1/2,r
S F) ([ fls,onrs + 119lls41/2,7)

and with PS.3 we find

Q? Q7
”uF”s+2,Q\FZ~ N ”anpwfﬂs,ﬂ\m + kSHanprHO@ + ||H;kg||s+1/2,F + ks+1/2”H};k9”0,F
S fllsonry + 19lls 12,0,

which proves the regularity estimate (6.20). We proceed with the proof of the contraction
estimates. Note that by interpolation we have for any ¢t € [0, s + 2] the estimate

s+2—t

t
s+2 <

_ o5t2—t e
lurlluone, S lurllos” lurll 5 ar Sn 72 K773

£ s nr; + lgllst1/2,0)-

Again, we prove the remaining estimates for the case Rg = ks+2_tRQ’t for some 0 <t < s+2
and Rr = k8+3/2*7"RF7,_ for some 0 < r < s+3/2. The general case Rg = Y - k*T? 7% R ,,
and Rp =Y 1" | ks +3/ Q_SiRnsi follows by the triangle inequality. We have

If

Note that since 0 <t < s+ 2 the exponent of 7 is negative. For the data g we have

s+2—t
s+2

sonrs = 1K R upllsonr, S BT upllior, Sn° (I flls, o\ + 1glls+1/2,0)-

19l s41/20 = |’k8+3/2_TRF,rUF||s+1/2,F Sk g S ks+3/2_r||uF||r+1/2,Q\Fi
_85+277'71/2

Sn (s + llglls+1/2,0)-
Note that since 0 < r < s+ 3/2 the exponent of 7 is negative. Since the parameter
n > 1 is still at our disposal, we can choose it such that the contraction estimate (6.23) is
satisfied. The remaining estimates are proven in the same manner as in Lemma 6.3.6 and

are therefore omitted. O

Remark 6.3.9. The contraction argument presented in Lemma 6.3.8 allows for the oper-
ator Rg to act on broken Sobolev spaces with a wider range than compared to the result
in Lemma 6.3.6. Comparison of the proofs of Lemma 6.3.8 and Lemma 6.3.6 shows that
one can allow in Assumption 6.2.5 the following:
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6. Galerkin discretizations of Heterogeneous Helmholtz problems

e Ro=> " k% Rq, with Ro,: H(Q\T;) — L*(Q) being bounded linear opera-
tors with || Ra,sullog S ulls,onr,s 0 < 5 < 2

e Rp=>1", k3/2*5iRp7si with Rpg,: H*(I') — H'Y?(I") being bounded linear opera-
tors with ||Rp’siu”1/2,p SJ ||UHSZ.7F, 0<s; < 3/2. n

Theorem 6.3.10. (Unified Iteration Argument) Assume the hypothesis of Lemma 6.5.6.
Then there exists a constant v > 0 independent of k such that for every f € L*(Q) and
g € HY2(I) the function u = S, (f,g) can be written as u = up + ua, where

lurllo,ovr, + Elluelles S 1 log + gl (6.24)
luallier S Cop (1 + Cana k™) ([ fllo0 + llgll/2r); (6.25)
IV ualloonr, S Cogih ™ (14 Cana gk ™)y max{k, n}" (|| fllo.c + [lgll1/2.,r)
(6.26)
for all n > 2.

Proof. The proof iterates the contraction argument in Lemma 6.3.6. To that end, let
O = fand ¢© := g. By Lemma 6.3.6 we can split S,;(f(o),g(o)) as follows

S (. 9®) = )+ + 55D g

with

1F Mllo.e + 19 120 < a(lF o0 + 19 l112.0)-

We iteratively define the function sequences ug), uﬁ) and f@, ¢ for i € N. Due to
contraction we find

1FDNo.e + 199120 < @ UF o + 191 j2r)

u:Zug)—{—Zug)

and therefore

1€Ng 1€Np
—_—— ——
=ur =uA

with up and w4 being well-defined and satisfying the asserted estimates due to a geometric
series argument. We showcase this argument for the H?(Q \ T';) norm of up:

[ur o, < [l 2 onr, < S Moo <D dllfloe SIS

i€Np 1€Np 1€Ng

0,0-

The other estimates follow analogously. O

Theorem 6.3.11. (Unified Iteration Argument, higher Sobolev regularity) Assume the hy-
pothesis of Lemma 6.3.8. Then there exists a constant v > 0 independent of k such that for
every f € L2(Q) and g € HY*(T) the function u = S, (f,g) can be written as u = up +ua,
where

ek S I llsovrs + lgllss1/2r- (6.27)

Furthermore, ua satisfies the same estimates as in Theorem 6.3.10.

lur|lst2,0\r, + g
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6.4. Adjoint problem

Proof. The proof is completely analogous to the one of Theorem 6.3.10 with the application
of Lemma 6.3.8 instead of Lemma 6.3.6. 0

Remark 6.3.12 (On implicit and explicit constants in Theorems 6.3.10 and 6.3.11). The
implicit constants in the estimates of ur and ua in the Theorems 6.3.10 and 6.3.11 are
independent of k. Note however, that the implicit constants depend on the hidden (k inde-
pendent) constants in Assumptions 6.2.4, 6.2.5 and 6.2.6. In particular, as in Section 6.5,
these implicit constants depend on the coefficients of the differential equation. For the
heterogeneous Helmholtz problems in heterogeneous media, as considered in Section 6.5,
these implicit constants then depend for example on the index of refraction n. u

6.4. Adjoint problem

The proof of quasi-optimality of an abstract Galerkin discretization of problem (6.6) hinges
on the approximability of the adjoint problem, i.e., one performs a duality argument. Below,
Lemma 6.4.2 will characterize the solution of the adjoint problem. The primal problem
reads:

Find u=: S, (f,g) € H"(Q,T) such that b, (u,v) = (f,v) + (g,v) Vv e HY(Q,T).
The corresponding adjoint problem reads:
Find u* = S, *(f,9) € H"(Q,T) such that by (v,u*) = (v, f)+(v,g) Yve H(Q,T).
Assumption 6.4.1 (Quasi-selfadjointness of Ty and T) - ). The linear operators Tiq:
HYM(Q,T) — HY(Q,T) and Ty : HY(T): — H™(T) are quasi-selfadjoint, i.e.,
(T qu.0) = (T qu,u) as well as (T} u,v) = (T} v, )
for all u,v € HY(Q,T).

For the adjoint problem to be again of the same character as the primal problem one
may assume Assumption 6.4.1.

Lemma 6.4.2 (Adjoint Problems). Let Assumption 6.4.1 be satisfied. Let S, (f,g;A)
denote the solution operator specifying the diffusion matriz A. Then the adjoint solution

operator satisfies S, (f,g) = Sy (f,g; AT).
Proof. Let u* = S, *(f, g). Therefore, we have

(AVo, Vu*) — (T gv,u”) — (T pv,w’) = (v, f) + (v,9) Vv € HM(Q,T).
Due to the assumed quasi-selfadjointness in Assumption 6.4.1 we find

(ATVur, Vo) — (T, qu*, 0) — (T, pu*,0) = (f,0) + (f,0) Yve HNQT).
Replacing 7 by v we find u* = S;” (f,9; AT), which yields the result. O]
Remark 6.4.3. Loosely speaking Lemma 6.4.2 states that under the assumption of quasi-
selfadjointness, see Assumption 6.4.1, the adjoint problem is again of similar character
to the primal problem. This in turn is convenient, since the same regularity splitting of

Section 6.3 can be performed for both the primal and the adjoint problem. See also [MS11,
Lemma 3.1] for similar results in the case of homogeneous media. ]
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6. Galerkin discretizations of Heterogeneous Helmholtz problems

6.5. Covered problems

Before turning to the analysis of an abstract Galerkin discretization we first verify that the
Assumptions 6.2.4, 6.2.5 and 6.2.6 in Section 6.2 are in fact satisfied for a variety of time-
harmonic wave propagation problems. At this point, we stress again that the well-posedness
in Assumption M.3 as well as the later assumed polynomial bounds in Assumption 6.6.6
are injected into our theory. Consider the setting of the standard heterogeneous Helmholtz
problem, i.e., where the differential operator L, is given by

Lou= -V (A(x)Vu) — k*n?(z)u.

There is rich literature studying on how the stability constant C’s:)L . depends on the geome-
try of the domain €2, the boundary conditions, and the coefficient n and A in the Helmholtz
problem: For homogeneous media we refer the reader to [Spel4]. For nontrapping heteroge-
neous media see [BCFG17, GPS19, GSW20]. The general one-dimensional case is analyzed
in [CF15, GS20]. For weak trapping see [CWSGS20]. Finally we mention the weak effect
of strong trapping analyzed in [LSW], justifying Assumptions M.3 and 6.6.6.

We present an overview table of the covered problems in Table 6.3.

Model Energy Space Ly LZ Tha— T;f Q Ter T,:f r | Ter— ka r
HH + RBC iku 0 tku
HH + DtN Sphere ~V - (AVu) — K*n*u ‘ —k*(n® + Lu DNy DtNp kRp
—V - (AVu) + k*u
HH + DtN T HY() DN, DtNo | kRr+ Ar
HH + Damping + RBC —V - (AVu) — k*n?u + ikmu —k*(n® + 1)u + ikmu iku 0 iku
HH + PML + RBC —V(APMET) — k*nu ~V(APMEY) + k*u iku 0 iku
—k2(n? 4+ 1)u
HH + second order ABC | HY(Q,T) —V - (AVu) — k*n?u ~V - (AVu) + k%u alAru+ kRru | aAru kRr

Table 6.3.: Overview of covered problems.

For the problems listed below the choice
Liu= -V (AVu) + k*u

suffices. We now turn to the covered problems in detail.

6.5.1. Overview of covered problems
Heterogeneous Helmholtz problem with Robin boundary conditions

As a first example we consider the heterogeneous Helmholtz problem with Robin boundary
condition. The problem reads

—V - (AVu) — k*n*u=f inQ,
Opu —iknu=g onT.

The variable coefficient A is assumed to map into the class of symmetric positive definite
real matrices. Let A be uniformly positive and bounded, i.e.,

0 < aminl < A(z) < amax! Vr €,
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6.5. Covered problems

in the sense of SPD matrices and be homogeneous at the boundary, i.e., A = I on I
Furthermore, we assume A to satisfy

IVPA| oo (rry) < Cavip! Vp € No.
Finally, the index of refraction n is uniformly bounded and satisfies the analyticity estimate
VPl ooy < Cuhp! Vp € No.

For the boundary operator T,j r we may choose TkJr r = 0. Note that we may assume n to be
complex valued. Therefore, volume damping, classically written in the form —V - (AVu) —
k?n%u + ikmu is also included in this setting.

Heterogeneous Helmholtz problem in the full space

The heterogeneous Helmholtz problem with Sommerfeld radiation condition in full space
R? is to find U € HL _(R?) such that

—V - (AVU) — k*n*U = f in RY,

. 1-d (6.28)
10,U — ikU| = o (HxH : ) for ||| — oo
is satisfied in the weak sense. Here, 0, denotes the derivative in the radial direction. We
assume f, A and n to be local in the sense that there exists a bounded Lipschitz domain
Q C RY such that supp f C Q, supp (A — I) C Q and supp (n — 1) C Q. Problem (6.28)
can be reformulated using the Dirichlet-to-Neumann operator DtNy,: H/2(T') — H~/2(T),
which is given by ¢g — DtNg := 0,w, where w € Hﬁ)C(Rd \ Q) is the unique weak solution
to

—Aw —k*w =0 in R4\ Q,

w=g on I,

10yw — ikw| = o (qu%) for ||z]] — oo.
The model problem is to find u € H*(£2) such that

—V - (AVu) — k*n*u=f inQ, 6.2

Optt —DtNgu=g¢g onT (6:29)
for f € L?(Q) and g € HY?(I'). We make the same assumptions on A and n as in the
heterogeneous Helmholtz problem with Robin boundary conditions. The coupling interface
I' between the interior and exterior domain may be chosen to be arbitrary as long as the
exterior domain is nontrapping [BSW16, Def. 1.1] and T itself is analytic. The operator 7, ,j r
can be chosen to be the Dirichlet-to-Neumann operator corresponding to the Laplacian, i.e.,
T,;fr = DtNy. The splitting of Tk_,l“ — Tl:,—l“ is not obvious, see Lemma 6.5.12. The Dirichlet-
to-Neumann map DtNj is again given by the Neumann trace of the solution to an exterior
problem, i.e., the operator DtNg: H'/2(T') — H~'/(T) is given by g — DtNog = 9,w,
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6. Galerkin discretizations of Heterogeneous Helmholtz problems

where w € HL (R?\ Q) is the unique weak solution to

loc
—Aw =0 in R\ Q,
w=g on I,

w(x) = oo + boo log ||z|| + o(1) for ||z|| — oo in spatial dimension 2,

w(z) =0 (||| for ||z|| — oo in spatial dimension 3,
where we can fix either as, or bo. We may choose ao, = 0. The constant b, is then
determined as part of the problem such that the exterior Calderén identities (6.69) hold.

For further discussion see [Eral2] as well as [McL00, Thm. 8.9]. In the following we will
refer to the asymptotic condition at infinity simply as radiation condition.

Heterogeneous Helmholtz problem with second order ABCs

On a sphere in spatial dimension d = 2 there are formulas available for second order
absorbing boundary conditions. Our theory covers those in the style of Bayliss-Gunzberger-
Turkel [BGT82], Enquist-Majda [EM77, EM79] and Feng [Fen84|, see [Ihl98, Sec. 3.3.3,
Table 3.2] for a comprehensive comparison. We denote by Ar and V the surface Laplacian
and the surface gradient, respectively. The model problem for a heterogeneous Helmholtz
equation with second order absorbing boundary conditions is

—V - (AVu) — k*n*u=f inQ,

6.30
Opwu—T, u=g onl, ( )

with T} | realizing second order absorbing boundary conditions. In fact all of the mentioned
ABCs can be cast into the form
T,;Fu = pfu + alAru,

with the following specifications for a:

BGT EM F
_ __1+ik _ 1+ik _
@ _2(1+2k2) a= S| a=—gp

The parameter (3 is k-dependent and satisfies || ~ k, for the precise k-dependence see
again [Ihl98, Sec.3.3.3, Table 3.2]. In the above models the coefficient « is such that

1 1
Ima#0 and Ima~ Z and |Rea| S e (6.31)

for k > ko > 0. We make the same assumptions on A and n as in the heterogeneous
Helmholtz problem with Robin boundary conditions. We will see that (6.31) allows for
application of our framework. At this point, it is worth noting that our theory covers
general problems of this form, however, it is not clear how to formulate second order ABCs
on arbitrary domains. The operator T,: r can be chosen to be the leading term in the

seconder order ABCs, i.e., ler = aAr.
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6.5. Covered problems

Perfectly Matched Layers

Consider again the setup of the full space problem. Enclosing the heterogeneities in a
sufficiently large ball and using the method of perfectly matched layers one again arrives
at a heterogeneous Helmholtz problem of the form

—V - (ApmppVu) = Enpygpu = [ in Q,
Ohu —iku=g onl,

see [CMO8, Sec. 3]. In this case, the index of refraction n3, , is homogeneous at the
boundary and again piecewise analytic. The matrix-valued function Apnir, i is also piece-
wise analytic, but not positive definite. However, inspection of the proof of [CM98, Thm. 2]
shows that in fact

Re(Apmr s Vu, Vu) 2 [[Vullf o,

which in turn makes our theory applicable.

6.5.2. Verification of assumptions

We now turn to the verification of the nontrivial assumptions made in Section 6.2 for the
problems discussed in Subsection 6.5.1. We will see that for the model problems presented
above the operator T,j r actually satisfies a stronger assumption. For ease of reference we
introduce the followiné

Assumption 6.5.1 (Coercivity of T;f.). Let ¢ > 0. There exists o € C such that Reo > 0
and |o| = 1 such that

—Re(o (T} ru,u)) >0 Vu € HY(Q,T)
if ¢t > 1/2, additionally
—Re(o(T,:fFu,uﬂ > k_2t+1|u|,527p Yu e HH(Q,T).

Lemma 6.5.2. Let A map into the class of symmetric positive definite real matrices. Let
A be uniformly positive, i.e.,

0 < aminl < A(x) V€ €,

in the sense of SPD matrices. Then under Assumption 6.5.1 (coercivity of T,:rr) also P.2
(coercivity of b)) in Assumption 6.2.5 holds with the choice L u = —V - (AVu) + k?u.

Proof. Trivial. O

Lemma 6.5.3 (Continuity and coercivity of bZ) Let A map into the class of symmetric
positive definite real matrices. Let A be uniformly positive and bounded, i.e.,

0 < aminl < A(z) < amax! Vz € Q,
in the sense of SPD matrices. Then with

Liu= -V (AVu) + k?u,
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6. Galerkin discretizations of Heterogeneous Helmholtz problems

and any boundary operators T,jr in Table 6.3 the conditions P.1 (continuity of b;) and P.2

(coercivity of b;:) in Assumption 6.2.5 are satisfied. In the case of second order ABCs let
a be as in (6.31). The same holds true, if A is only bounded and satisfies

Re(AVu, Vu) 2 [ Vuld o

for all w € HY(Q)) with the choice Tl:F =0.

Proof. Robin boundary conditions: The Robin case corresponds to the choice t = 1/2
and T,:fru = 0. Obviously, le,l“: HY(I') - H-Y2(I') is a bounded linear operator. Fur-
thermore, ka p trivially satisfies Assumption 6.5.1 and therefore, together with Lemma 6.5.2
we find P.2 with ¢ = 1 to be satisfied. Finally, P.1 follows since A is uniformly bounded.
Full space: The full space problem corresponds to the choice t = 1/2 and T,: ru = DtNou.
The Dirichlet-to-Neumann map DtNg: HY2(I') — H~'/2(T) is a bounded linear operator.
Furthermore, we have —(DtNou,u) > 0, see Item (i) in Lemma 6.5.12. Hence, Assump-
tion 6.5.1 is satisfied. Again, together with Lemma 6.5.2 we find P.2 with ¢ = 1 to be
satisfied. Finally, P.1 follows readily since A is uniformly bounded.

Second order ABCs: The second order absorbing boundary conditions correspond to the
choice t = 1 and T,;’Fu = aAru. The Laplace-Beltrami operator Ar: HY(T) — H~Y(T) is
a bounded linear operator since I" has no boundary. Furthermore, we have —(aApu,u) =
a(Vru, Vru). We verify that Assumption 6.5.1 is satisfied. To that end, note, that

?
—Re(cr(kaFu,u)) = Re(oa)(Vru, Vru) = Re(aa)|u|ip pe k‘_1|u|ip.

Since Ima # 0 for all k > ko > 0, Ima ~ k=% and |[Rea| < k72, it is easy to see that a o as
in 6.5.1 exists. Again, together with Lemma 6.5.2 we find P.2 to be satisfied. Finally, P.1
follows readily since A is uniformly bounded.

PML: The PML corresponds again to the choice t = 1/2 and T,;r ru = 0, with a complex
matrix-valued function satisfying

Re(AVu, Vu) 2 [|Vul§ o

for all u € HY(Q). It is easy to see that again P.1 and P.2 in Assumption 6.2.5 are
satisfied. n

A crucial ingredient in our analysis is the H? shift of the solution operator S’,j. In the
following lemma we verify this H? shift for the presented model problems. Especially the
shift property for problems involving second order ABCs are of independent interest. For
simplicity we assume in Lemma 6.5.4 that Assumption 6.2.1 (smoothness assumption on
Q) is satisfied. However, it is worth noting that the results also hold for example for C?
boundary I' and interface I';.

Lemma 6.5.4 (H? regularity shift of S,j) Let Assumption 6.2.1 be satisfied. Let A map
into the class of symmetric positive definite real matrices. Let A be uniformly positive and

bounded, i.e.,
0 < aminl < A(z) < amax! Vr €,
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6.5. Covered problems

in the sense of SPD matrices and C*(Q\ T;), with one-sided continuous extensions. Then,
with
Liu= -V (AVu) + k?u,

and any boundary operators TJF in Table 6.3 the condition P.7 in Assumption 6.2.5 is
satisfied, i.e., for f € L*(Q) and g € HY*(I') the solution SH(f.g) =we HXQ\T;) and
the estimate

|wllz,onr, S o+ lgllhj2r + k2| g o,r (6.32)
holds, in the case of second order ABCs let a be as in (6.31). The same holds true, if A is
only bounded, in C1(Q\T;), with one-sided continuous extensions and satisfies

Re(AVu,Vu) 2 HVUH(%Q

for all u € H' () with the choice T,:F =0.

Proof. Robin boundary conditions: The Robin boundary condition corresponds to the
choice t = 1/2 and T}/ u = 0. The function w = S;f (f, g) satisfies

V- (AVw) = f — K*w in Q,
Ohw =g on I

therefore, standard regularity results apply and we find v € H?(Q\ I';) with the estimate

lwlloonr: < [1flog + & [lwllog + llglli /o
S flloo + kG fllo + & llgllor) + lgll/2.r
Sl +llgljzr + &7 lgllor,
where we applied the a priori estimate of Lemma 6.3.1, which is applicable since the con-

ditions P.1 and P.2 in Assumption 6.2.5 are satisfied by Lemma 6.5.3.
Full space: The full space problem corresponds to the choice ¢t = 1/2 and T,:r ru = DtNou.

The function w = S,j (f,g) satisfies

—V - (AVw) = f —k’w in Q,
Onw — DtNow = ¢ on I'.
We reformulate the equations for w as a full space interface problem via the solution

of the exterior Dirichlet problem which gives rise to the Dirichlet-to-Neumann operator.
Consequently w satisfies, with QF := Q"

—V - (AVw) + F*w = f in Q,
OnW = g + Oty on I,

—Aty =0 in QF, (6.33)
W = Uy on I’

U, satisfies radiation condition.
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6. Galerkin discretizations of Heterogeneous Helmholtz problems

Upon defining z as w in Q and u,, in Q" we find that z satisfies

—V - (AV2)+ k2= f in Q,
—-Az=0 in QF,
[2] =0 on T, (6.34)
[Onz] =g on T,

z satisfies radiation condition.

Let © be a ball with boundary [ := 98 such that @ C Q and let X denote a smooth cut-off
function such that x =1 in © and x = 0 in Q° The function 2 == 2y € H} () satisfies,
with A being the extension of A by the identity matrix,

~V(AV3) + K’1gz = f inQ,
[2]]=0 onT,

[On2]=¢g onT, (6:35)
2=0 on f,

with f = fin Q and f = 2V2Vy + 2Ax in Q\ Q. Since f € L3(Q), f € L%Q) and
g € HY2(I') and due to the shift theorem for transmission problems, see e.g., [Mel02,
Prop. 5.4.8], we find 2 € H*(Q\ (I';UT)) and consequently w = 2|, € H*(Q2\T;). Finally,
we have

lwllz o, = lwxllzeve: = 1220w, < 1256 @,
S I llos + Hk2192”0,§ + llgll1/2,r
S lloa + 12V2Vix + zAXH(]’ﬁ\Q + k‘QHw

0.9+ lglli2r
S lzllygng + Ifloge + B lwlogn + lgl/ar
< lwwlly gvg + 1 floge + B wllog + lgllyar

Since HUwHLﬁ\Q S w20 S Jwll1,e, due to the fact that u,, is the solution to the exterior

Dirichlet problem as well as k2|lw|o.o < k(7| flloo+k~"/?||gllor), by the a priori estimate
of Lemma 6.3.1, which is applicable since the conditions P.1 and P.2 in Assumption 6.2.5
are satisfied by Lemma 6.5.3, we find

Lo+ I flloa + & llgllor + lgll/2.r-

|wllo.ovr, S llw

The asserted estimate follows by the a priori estimate for ||w||; o in Lemma 6.3.1.
Second order ABCs: The second order absorbing boundary conditions correspond to
the choice t = 1 and T,;"Fu = aAru. The function w = Slj(f, g) satisfies

—V - (AVw) = f —k?w in Q,

Ohw — aArw =g on I
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6.5. Covered problems

Note that for f € L?*(Q) and g € L?(") we have by the a priori estimate (6.11) of
Lemma 6.3.1

IVwlog + klwllog + &~ 2lwlue S K fllog + £ glor-

Especially, we have
IVrwllor < &2 flog + lgllor-

Note that the following surface PDE is satisfied

aArw = —g+ Op,w on T

which gives

[|w o + kl[Opwllor + [[wl1r,

10 SEY2fllog + g

21 S kllg

where we used the properties of a given in (6.31). Since ||w
have

o,r wWe

wllor < k72 Flloo + klgllor + kldnwllor-

In order to estimate ||d,w||or we introduce the auxiliary problem for @ € H'(Q) which
realizes the interior Dirichlet-to-Neumann map, i.e.,

o,
o (6.36)

We have the following estimates

0.0+ k" lglor,
0.0+ K lglor,

1BllLe £ lwlhyjzr S lwlie S K
Lo < wlie + ldllie < lwlie S 6
lw — @20 S K lwloa S Ifloa+ k7 llgllor,

e SEY3 fllog + lgllor,

|lw — w

10n@llor S @ll32.0 S lw

where the last estimate is the crucial one. We postpone the verification of this estimate
to the end of the proof. We now estimate using a multiplicative trace inequality and the
above estimates

o0 SE2| fllog + Ellgllor + Kl Onwlo,r,
SEY2 flloq + Kllgllor + kl|0nd]or + k|9 (w — @)|lo,r,
~nl/2 ~nl/2
S EY2|| fllog + Ellgllor + kllw — le,/QHw - sz,/Q,

Sk log + klglor.

[[w
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6. Galerkin discretizations of Heterogeneous Helmholtz problems

‘We therefore have
[wlzr S k21 flloq + kllglor- (6.37)

We proceed to estimate ||wl|2,q. To that end, we will interpolate H'(T') and H*(T') to get
an estimate for H%/2(I"). Since w trivially satisfies the Dirichlet problem

V- (AVw) + K*w=f inQ,

w=w onl,
we find

lwllze S I fllog + E*lwlloge + wlls/2r

1/2 1/2
S flloq + 572 lgllor + llwlly 2llwly?

S Iflloa+ £ lglor.

Hence, we have

lwllz0 < [ fllo0 + k?llglo,r-
We turn to the proof of the crucial estimate for ||0,@|or. First, we find @ € H3/?(Q)
and consequently Vi € H'Y2(Q), since @ satisfies (6.36). Therefore, we find AV €
HY2(Q\T;). Again, using (6.36) gives AVw € H'/?(div, ). Its normal trace is therefore
in L?(T") and since A is homogeneous near the boundary we have d,w € L*(T') with the
estimate

[Onwllor = [[AVE - nllor S [AVD[1 2,40 = [[AVD]1 20 S [[@]3/2,0, (6.38)

which yields the result for second order ABCs.
PML: For the setting of the PML note that since the complex matrix-valued function A

satisfies
Re(AVu,Vu) 2 HVquQ

Therefore, the usual procedure of the difference quotient method works out, giving rise to
a shift theorem as used in the Robin boundary case. ]

Remark 6.5.5 (H?(I) estimate for second order ABCs). In the case of second order ABCs
with av as in (6.31) the solution S, (f, g) = w € H*(2\T;) also satisfies the estimate (6.37):

V2 wllor < | flloq + kY2 g

0r-
[ |

Lemma 6.5.6 (H® regularity shift of S,j) Let the assumptions of Lemma 6.5.4 hold.
Assume additionally that A is CSTY(Q\Ty). Then, for f € H*(Q\T;) and g € H*t1/2(T")
the solution S, (f,g) =w € H*"2(Q\T;) and the estimate

lwllspzonr, S Il + £ oo + Igllstar + &2 lglor

holds.
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6.5. Covered problems

Proof. The proof is done by induction over s € N. Corresponding results for noninteger
s follow readily by interpolation. The case s = 0 is covered in Lemma 6.5.4. As in the
proof of Lemma 6.5.4 the regularity shift w € H52(Q \ T;) follows. Differentiating the
differential equation we find

|wllst2,00r S I flls,o\r, + K ||lw so\ry Tt l9lls1/2,0-

For 0 < s < 2 we interpolate between the a priori estimate (6.11) in Lemma 6.3.1 and the
estimate (6.32) in Lemma 6.5.4, in order to estimate k*(|w||so\r,. For s > 2 we use the
induction hypothesis and find

Jwllsso.00r S I lsonrs + l9lls+1/2r + B2 ls—2.o\r,
+ k5| fllo,e + k2||9||s—2+1/2,r + k8+1/2||9||0,F-

Finally, interpolation between H*(Q\ T;) and L?*(Q) as well as H*+t1/2(T) and L*(I") with
appropriate use of Young’s inequality yields the result. ]

Remark 6.5.7 (H*"2(T") estimate for second order ABCs). Analogous considerations as in
Lemma 6.5.6 show in the case of second order ABCs with « as in (6.31) with f € H*(Q\I})
and g € H*"V/2(T) for s > 0 that the solution S (f,9) = w € H**2(Q\ T}) also satisfies
the estimate

F Y2 wllsszr S 1f lsavrs + F 1 llog + l9llsia/ar + 572 lgllor-

Lemma 6.5.8 (Analytic regularity of S,"). Let Assumption 6.2.1 and M.3 be satisfied.
Furthermore, let the hypothesis of Lemma 6.5.4 be satisfied. Finally, let A and n be such
that

VP A| poo@\ry) < Caviyp!,
VPRl oo 1) < Crhp!

orallp>0. Let f € e precewise analytic and satisfy
for all 0. Let f € L*>(Q) be pi ' lyts d isf
IV? flloanr, < Cpyfmax{p, k}P  ¥p > 0.

Let g be the restriction of an analytic functions G in a one-sided tubular neighborhood T
of the boundary I" and satisfy

IV?Gllo.r < Cyylh max{p, k}*  ¥p > 0.

Then, for any of the problems considered in Subsection 6.5.1 there exist constants C', v > 0
independent of k, such that the function u = S, (f,g) is piecewise analytic and satisfies

[ulle < CCy 1 (Cr + C), (6.39)
[VPullo.o\r, < CCS_Oka_lﬁyp max{k, p}?(C; + C,) Vp > 2. (6.40)
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6. Galerkin discretizations of Heterogeneous Helmholtz problems

Proof. Estimate (6.39) is just a restatement of the energy estimate (6.8) in M.3. The proof
of analytic regularity proceeds as usual. The domain {2 is covered with balls and an analytic
change of variables is performed to flatten the boundary and the interface. It is important
to note that membership in the analyticity classes is invariant under analytic change of
variables and multiplication by analytic functions, see [MS21, Lemma 2.6]. This in turn
makes the results of [Mel02, Sec. 5.5] as well as Section 6.8 (in the case of second order
ABCs) applicable.

Robin boundary conditions: The Robin case corresponds to the choice Ty ru= tknu.

Note that, upon setting ¢ = 1/k, the function v = S, (f, g) satisfies
—e?V - (AVu) — n*u = f in Q, (6.41)
e20,u = e(eg+inu) onT. ‘

We apply [Mel02, Prop. 5.5.1] (interior analytic regularity) , [Mel02, Prop. 5.5.3] (boundary
analytic regularity for Neumann problems) as well as [Mel02, Prop. 5.5.4] (interface analytic
regularity) if I'; # (), to problem (6.41). We find
IVPullognr, S CoF max{k, p}? (k*Cy + k™' Cy + k1| Vull p2(0) + llull 2(0)

< CyP max{k, p}? (k2Cy + k' Cy + Copy (k™ (Cr + Cy))

S CHP max{k,p}pCS;kafl(éf + C~'g) Vp > 2,
where we applied the estimate (6.39) as well as C__;, 2 1. See also [MS11, Lemma 4.12]
for similar arguments in the homogeneous case.

Full space: The full space problem corresponds to the choice T, u = DtNju. As in the
proof of Lemma 6.5.4 we can extend u to satisfy

—V - (AVu) — k*n’u = f in QUQT,
[u] =0 onT,
[Onu] =g on I',

u satisfies radiation condition.

From now on the proof is completely analogous to the Robin case above.

Second order ABCs: For second order absorbing boundary conditions we have T} u =
Bu 4+ aAru. We proceed similar to the case of Robin boundary conditions. We épply
Theorem 6.8.5 instead of [Mel02, Prop. 5.5.3]. O

Lemma 6.5.9 (Quasi-selfadjointness). The operators T, , and T} . considered in Subsec-
tion 6.5.1 are quasi-selfadjoint.

Proof. The mapping T} ¢ : u k*nu is trivially quasi-selfadjoint since

(T), qu.0) = /anuv = /Qn%u = (T} qu: ).

Analogously we find the mapping 7T}, , : u k?n?u + ikmu to be quasi-selfadjoint, as well
as T) 1 : w > iknu. In the case of second order ABCs, T} |- is also trivially quasi-selfadjoint.

For the T, . = DtNy, see [CWGLS12, Sec. 2.7, Eq. (2.84)] as well as [MS10, Lemma 3.10],
in case of a sphere. O
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6.5. Covered problems

Lemma 6.5.10 (Splitting of T} ¢, T} 1, T,;Q—Tl;fg and T,;F—T,;fr). Let Assumption 6.2.1 be
satisfied. Let m, n? € L>(Q)) andn € L>(T'). Then the operators Ty o Ty T,:Q and T,:F
considered in Subsection 6.5.1 and specified in Table 6.3 satisfy M.2, P.3, P.4, P.5 and P.6.
Furthermore, for s > 0 let additionally m, n®> € W*>(Q\ I;). Then the operators Ty o
T,;F, T,;rg and le,r considered in Subsection 6.5.1 and specified in Table 6.3 additionally
satisfy PS.1 and PS.2

Proof. The proof is trivial except the case of the Dirichlet-to-Neumann operator. In case of
a sphere the improved splitting holds true by Item (iii) in Lemma 6.5.12. The result for the
Dirichlet-to-Neumann in the general nontrapping case follows by application of Item (ii) in
Lemma 6.5.12 with s = 1/2 for the splitting of Tpr— kap and with s = 0 for the splitting

of T,; r itself. O

Remark 6.5.11 (Stronger estimate for up for second order ABCs). In the case of second
order absorbing boundary conditions as considered in Subsection 6.5.1, inspection of the
proof of Lemma 6.3.6 and Lemma 6.3.8 together with the Remarks 6.5.5 and 6.5.7 yields
the following stronger result. The function upr in the splitting © = up + u4 additionally
satisfies

E 2 upseor S I lsovr, + l9llstaja,r-

It is important to note that this improved regularity estimate is not necessary for establish-
ing quasi-optimality as in Corollary 6.6.9. However, it is crucial in order to extract optimal
convergence rates as in Corollary 6.6.11. u

Lemma 6.5.12. Let Q C R%, d = 2,3 be a bounded Lipschitz domain with boundary T.
Then the following holds:

(i) —(DtNou,u) > 0 for all u € HY/2(I).

(i1) With the notation of Section 6.9 let Qt be nontrapping with analytic boundary T'. Let
s > 0 be given. Then

DtN;, — DtNy = kB + [9,A],
where the linear operators B: H*(T') — H*(I') and A: H*(T') — C™(Qg) satisfying
for allu € H*(T)

1Bullsr < llullsr,  Au € ACCK |lullsr, 7, )

with f="17/2+d/2, and constants C, v > 0 independent of k.

(iii) If T is the unit ball in dimension d = 3 then the symbol of the operator DtN; — DtNg
is gwen by z (k) + 1+ 1, where z;(k) denotes the symbol of DtNy. Furthermore, the

estimate
|zi(k) + 1+ 1] <2k V>0

holds. Finally, DtNj — DtNg: H*(I') — H*(I") satisfies
|DtNiu — DtNou||s 1 S kl|ulls Vu € H*(T")

for every s > 0.
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6. Galerkin discretizations of Heterogeneous Helmholtz problems

Proof. For —(DtNou,u) > 0 see [AMP15, Lemma 2.2, (vi)]. We proceed with the proof
of Item (iii). If I' is the unit sphere in spatial dimension d = 3 the operator DtNj has an
explicit series representation in terms of spherical harmonics. Let Y} denote the standard
spherical harmonics. On the unit sphere I' in spatial dimension d = 3 we can expand u as

e l
u(@) =) Y u"Y"(0,¢)

=0 m=-1

in spherical coordinates (6, ) € I'. The operator DtNj, as well as the operator DtNy can
be written as

[e's) l
DtNou=—Y > (I+u"y",

=0 m=—1
00 l
DtNyu = Z Z zi(k)u" Y™,
=0 m=-1
with explicit estimates for the symbol z;(k). The formulas for DtN; and DtNy immediately

give

[e's) l
DtNju — DtNou = Z Z (z1(k) + 1+ Du* Y™,
=0 m=-—1
From [DIO1, Lemma 3.2, Eq. (3.28)], where the operator DtNj has opposite sign, we have

I+1—k< —Rez(k) <l+1+k.
Consequently, we immediately have
Rez (k) + 14+ 1| <k.
From [Né01, Thm. 2.6.1, Eq. (2.6.24)] we have
0 < Imz(k) <k,
which together with the previous estimate gives
|zi(k) + 1+ 1] < 2E.

For u € H*(I") and with the previous estimate we have

00 l
IDtNgu — DtNoul2p = > > (1 + 1) |z(k) + 1+ 1P 0Py

=0 m=-1
o l
< (262 D0 U DY = (26)%|lullZr,
=0 m=—I
which yields the result. The proof of Item (ii) is given in Section 6.9. O]

Collecting the above results we have therefore proven

Theorem 6.5.13 (Regularity theory for heterogeneous Helmholtz problems). The regu-
larity theory of Section 6.3 is applicable to the problems considered in Subsection 6.5.1 and
specified in Table 6.3.
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6.6. Stability and convergence of abstract Galerkin discretizations

6.6. Stability and convergence of abstract Galerkin
discretizations

The present section establishes quasi-optimality of an abstract Galerkin discretization of
(6.6) under the condition that the ansatz space satisfies certain approximation properties.
We apply our results to the hp Finite Element Method discretizations of the model problems
considered in Subsection 6.5.1. Furthermore, a complete convergence analysis is performed
for higher order Sobolev data.

6.6.1. Quasi-optimality of abstract Galerkin discretizations

We consider a Galerkin discretization of (6.6) with a subspace V;, ¢ H(Q,T'). In the
analysis a variety of approximability quantities arise. We employ the following notation.
The approximability quantities will all be denoted by n with different sub- and superscripts.
The superscripts exp in 7P indicate that this quantity gets exponentially small (when
working with hp-FEM spaces) since it quantifies the approximability of smooth functions.
We introduce

1S, " (Aqu, Apv) — sp,

1tk

exp ., :
Ny =  sup inf , 6.42
! veHLH(Q,T) ShE€VR [vll1,¢,% ( )
S, *(Aqu, Arv) — s
Ny = sup inf 19, (Agv, Aro) hHl’t’k, (6.43)
veHLH(Q,T) Sh€VR [0ll1,t,
as well as
S, (f,9) —
77* — sup inf H k (f g) Sh |17t7k_ (644)
feL?(Q), $h€Va 1fllo.2 + llgll1/2.r
geH'/2(T)

We consider a fixed right-hand side f € L?*(Q) and g € H'?(T') and the corresponding
solution w = S (f,g) € H"'(Q,T) of

b (u,0) = (f,0) + (g,0) Vo€ HW(Q,T).
Then, in the following we let u;, denote any element of V}, such that
by, (w—up,vp) =0 Yoy € V. (6.45)

Lemma 6.6.1. Let Assumptions M.1 , M.2 and 6.4.1 be satisfied. Furthermore, let A be
uniformly bounded. Then the estimate

0 (=, 0)] S (14 Coop ™)l = wnll el (6.46)

holds true for all v € H'(Q,T).
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6. Galerkin discretizations of Heterogeneous Helmholtz problems

Proof. Let v € HY!(Q,T') be arbitrary. For sake of shortness we write e; = u — u;. We
have

‘b];(ehavﬂ = |(AVeh,VU) - (T];QE}MU) - <T];Fehav>|

4. - -
2 |(AVen, Vo) — (T o, ) — (T 10, e)]
M.2
< [(AVen, V)| + (Do, en)| + [(Dr v, e)| + (AT, €r) + (ApT, &)
M.2 I
S llenlliellvllies + (en, AgD) + (en, Ar D)

The analytic part is now treated using a duality argument. Using the Galerkin orthogonality
(6.45) , M.1 and the definition of 1" in (6.42), we can estimate

(ens AgD) + (en, ApD)] = by (en, Sy * (A7, A7)
6.45) _ i
(62 by, (en, S, 7*(‘49@7 ARv) — wp)

M.1
S Coonrllenllieell S, (Aqu, AF D) — valliek

~ cont,k
(6.42)

— eX

S Coonr - lenllvenllvlln e,
which concludes the proof. ]

Remark 6.6.2. In Lemma 6.6.1 we assume quasi-selfadjointness of the operators T , and

T} 1. We note however, that one could also assume a splitting of the adjoint operators as
in M.1 and M.2 and derive the same result. "

Theorem 6.6.3. Assume the hypothesis of Lemma 6.6.1. Let Assumptions P.2 , P.3 , P.4
and P.5 be satisfied. Assume C__ 07", kn* and 13" to be sufficiently small. Then the
Galerkin solution up, € Vi, of (6.45) exists, is unique and satisfies

lu—upllien S inf |lu—vnll1ek, (6.47)
v EVR

which hidden constant independent of k.

Proof. For the sake of simplicity, we write e, = u — up, and pick an arbitrary element
vy, € V. By P.2, and using Galerkin orthogonality (6.45), the first step of the proof
consists in estimating

P2
lenllTon S Re(obf (en,en)) < [bf (enen)

< |by, (en, en) — by (en, en)| + by, (en, en)]
6.45 _ _
O 1o (en, en) — bt (enn en)| + b7 (e — vp)|-

Then, using P.3, the Galerkin orthogonality (6.45), the refined continuity estimate (6.46) in
Lemma 6.6.1, the definitions of 7y " and n* in (6.43) and (6.44), respectively and finally P.4
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6.6. Stability and convergence of abstract Galerkin discretizations

and P.5 to derive that
P3
‘ < |(RQ€h, eh) + <Rr€h, €h>‘ + ’(Ageh, eh) + <Ap€h, 6h>|
= |(en, Raen) + (en, Rren)| + |(en, Aqen) + (en, Aren)|
= |by, (en, S " (Raen, Rren))| + |by, (en, S, " (Aaen, Aren))|
2 by, (en. S * (Raen, Rren) — )

+ |by, (en, Sy, ™ (Aqen, Arer) — sp)|

S (1 + Ceont k”?xp) | , [HSlg_7*(RQ€haRF€h) - Sfﬂl,t,k

+ IS, " (Aqen, Arep) — Sf)”l,t,k}

b, (en,en) — b;(eh, en)

(6.43),(6.44)
SJ ( + Ccont knl ) |

[ (I Raenllo.o + | Rrenllz,r) + 15 llenll1e]

P4, P5
< 1 + C exp (k + exp) |
~ cont, k' n n

We therefore find
lenl e S (14 Coomep§™®) U 455 llenll? i+ b (e, w = w1)].

The assumed smallness of C_ 77", ki* and 75" allows to absorb [les |7, ; on the left-
hand side, which yields
lenll% 1k S 167 (en, w — vp)|

for any v € V. Finally, application of Lemma 6.6.1 concludes the proof. 0

Remark 6.6.4. Theorem 6.6.3 shows that quasi—optimality of an abstract Galerkin method
holds if the quantifies C'__ cont, ;J?lXp kn* and 1y are sufficiently small. All of these depend
on the approximability of the solution to the adjoint problem. The primal problem only
enters these quantities in terms of the continuity constant C cont k of the sesquilinear form
b, and the operators A, and A[. Hence, in the application to the hp-FEM., if the adjoint
problem is such that the regularity theory of Section 6.3 is applicable one can further
estimate C__ . kr]l){p kn* and ny® via the splitting stated in Theorem 6.3.10. n

6.6.2. Application to hp-FEM

We start with assumptions on the triangulation.

Assumption 6.6.5 (quasi-uniform regular fitted meshes). Let Assumption 2.0.1 be sat-
isfied. Furthermore, if I'; # () we assume the mesh to resolve the interface I';, i.e., each
element K lies on one side of the interface I'; and at most two mapped vertices of K lie on
r;.

Note that for all ¢ < 1 the space S,(7,) is a conforming subspace of H1*(Q,T"), with the
limiting case t = 1 included to cover second order ABCs.
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6. Galerkin discretizations of Heterogeneous Helmholtz problems

Assumption 6.6.6 (Polyomial well-posedness). There exist constants oy, ag, ag, ag >0
such that
<k, C

~ cont,k ~

S kaz: Cana,k 5 ka37 C S ka4>

ana,k ~

Cs_ol,k
holds true.

Theorem 6.6.7 (discrete stability of hp-FEM). Let the Assumptions 6.2.1 (smoothness of
the Q, I' and I';) , 6.2.4 (assumptions on the minus problem) , 6.2.5 (assumptions on the
plus problem) , 6.4.1 , 6.6.5 and 6.6.6 be satisfied. Assume additionally t < 1. Then there
exist constants c1, co > 0 independent of h, p, and k, such that under the scale resolution
condition

— < and p > co(logk + 1) (6.48)
p
the Galerkin solution up, € Sp(Ty) exists, is unique and satisfies

U —u < inf U—
I mplli e < . | hpll1, ks

with hidden constant independent of k, h and p.

Proof. The proof is standard as in [MS10, MS11]. Due to the assumed polynomial well-
posedness (Assumption 6.6.6) and applying the regularity splitting in Theorem 6.3.10, we
find that the quantities C___ 77", kn* and n5™" get arbitrarily small for appropriate choice
of ¢1, ca > 0. There are two éimple adjustments to be made. First, regarding the piecewise
regularity of ugp and u4. Since the mesh is fitted to the interface I';, see Assumption 6.6.5,
the approximation properties of S,(7,) stay the same. Second, the additional boundary
term in the energy norm || - ||+, which is treated with a trace inequality. The abstract
quasi-optimality result in Theorem 6.6.3 then yields the result. O

Remark 6.6.8 (On the boundary term in ||-||1 + 5.). It is worth mentioning that in the proof
of Theorem 6.6.7 the boundary term k~"*'/2||-||; r, which appears in the case 1/2 < ¢ <1,
is treated with a trace inequality: When estimating kn* and after applying the regularity
splitting of Theorem 6.3.10 a term of the form

inf kT2 lup — syl
ShESp(,Th)

arises. This term is treated by applying a trace inequality and using standard approxima-
tion properties of Sy,(7x):

inf  kkTY2lup —spller 0 inf K327 lup — spllit oo
ot I I¢, ety | [e+1/2,0\

I B\ 2t-1/2
Sk ; HUFHZQ\E

Lh\ 32t
= <p> HUFHQ,Q\D-

Therefore, the condition that kh/p be sufficiently small also ensures (kh/p)*/?>~t to be
small, and vice versa. However, we will see below, that in order to derive optimal rates,
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6.6. Stability and convergence of abstract Galerkin discretizations

the additional regularity on the boundary, see Remark 6.5.11, needs to be exploited. For
that we need an approximation operator featuring simultaneous approximation properties
in H%1(Q,T), see Proposition 6.6.10 .

As a simple corollary of Theorem 6.6.3 we have

Corollary 6.6.9 (Application of hp-FEM to the problems in Subsection 6.5.1). Consider
any of the model problems of Subsection 6.5.1. Let this problem be polynomially well-
posed, i.e., let Assumptions M.8 and 6.6.6 be satisfied. Additionally let Assumptions 6.2.1
and 6.6.5 be satisfied. Then there exist constants c1, co > 0 independent of h, p, and k,
such that under the scale resolution condition

— < and  p>ca(logk+1) (6.49)
p

the Galerkin solution upy, € Sp(Ty,) exists, is unique and satisfies

w = unpllier S infT)Hu—'Uhp 1tk

Vpp€Sp(Th
with hidden constant independent of k, h and p.

Proposition 6.6.10 (Simultaneous Approximation in H'(Q,T)). Let K denote the ref-
erence triangle in spatial dimension two. Let s > 1. Then for every p there exists a linear
operator H%rad: H3?(K) — P,(K), which satisfies

Terad TTgrad —
pllu =I5l & + [lu = Il 7 S p~°llull,,, % (6.50)
or p > s — 1. Additionally, there holds
forp Y
TTerad frgrad —
pllu =I5l o5 + llu = IE™ull, 5o S p~°llull 4 o5 (6.51)

forp>s—1.

Proof. The desired operator is defined in [MR20, Def. 2.5]. The estimate (6.50) is given
in [MR20, Cor. 2.14]. The estimate (6.51) is a combination of [MR20, Def. 2.5 and
Lemma 4.1]. O

Corollary 6.6.11 (Convergence rates of hp-FEM for the problems in Subsection 6.5.1).
Assume the hypothesis of Corollary 6.6.9. Let s > 0, f € H(Q\T;) and g € Ht/2(T)
be given. Let 0 = max{aq,a; + ag — 1}, with oy and as given in Assumption 6.6.6. Then
there exist constants c1, ca, o > 0 independent of h, p, and k, such that under the scale
resolution condition

— < and p>s+ca(logk +1)
b

the Galerkin solution upy, € Sp(Ty) satisfies the estimate

s+1 D p
o= s S [(Z) s () e (2 }] (I

with hidden constant independent of k, h and p.

so\r; T 19lls+1/2,0);
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6. Galerkin discretizations of Heterogeneous Helmholtz problems

Proof. Assumption 6.2.6 is satisfied for the problems considered in Subsection 6.5.1. The
infimum in Corollary 6.6.9 is quantified by applying the splitting given in Theorem 6.3.11.
Note that due to Theorem 6.3.11 as well as Remark 6.5.11 we can split u = up + uyg with

lurllstzovr; + 5 urlioe S 1 lsovrs + 1951275
k_1/2”UF|’s+2,F S I lls,vrs + 1glls 12,
luallter S K (1 fllog + lgll1/2.0),

IV wallog S K" max{k, 0} (|flog + lgllyjar) — ¥n>2,

with § = max{ay, a; +ag—1}, see the estimate (6.25). Applying this splitting and employ-
ing the approximation properties of the finite element spaces yields the result, see [MPS13,
Sec. 4] for these kinds of arguments. In the case of second order absorbing boundary condi-
tions, one additionally applies the approximation operator given in Proposition 6.6.10. [J

6.7. Numerical examples

All our calculations are performed with the hp-FEM code NETGEN / NGSOLVE by
J. Schéberl, [Sch, Sch97]. The curved boundary and interface are implemented using sec-
ond order rational splines. We plot different errors against IV, the number of degrees of

freedom per wavelength,
_ 27V/DOF

Ny, = VYL
A kd,7|Q| )

where the wavelength A and the wavenumber k are related via k = 27/ and DOF denotes
the size of the linear system to be solved.

Example 6.7.1. Let Q be the unit circle in R? and consider the problem

—Au—E*nPu=1 in Q,
Opu —iku =0 on I

The index of refraction n is given in polar coordinates by n = n; = 1 for » < 1/2 and
n =ng =2 for 1/2 < r < 1. The exact solution can be derived by elementary calculations.
In fact, the solution can be derived by separation of variables, in polar coordinates, and is
given by
u( ) . {cng(knlr) — w T § 1/2,
coJo(knar) + esYo(knor) — W r>1/2,

where Jy and Yy are the Bessel functions of order zero and the constants ¢q, co and c3 can
be determined using the Robin boundary conditions as well as the interface conditions. For
the numerical studies, we solve this problem using A-FEM with polynomial degrees p = 1,
2, 3 and 4. It is important to note that the interface I'; is resolved by the mesh. Therefore,
the observed rates are optimal with respect to the employed finite element space, since
the solution is piecewise smooth. The results are visualized in Figure 6.1. Note that as
in the homogeneous case higher order versions are less prone to the pollution effect, see
also [EM12, Sec. 4.3].
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6.7. Numerical examples
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N;, N;,

Figure 6.1.: Numerical results of the h-FEM for p = 1, 2, 3, 4 as described in Example 6.7.1.
Relative L?(€2) error (left) with reference line in black corresponding to hP*1.
Relative energy error (right) with reference line in black corresponding to hP.

Example 6.7.2. Let © be the unit circle in R? and I'; the quadrilateral with corners
(—1/2,-1/2), (1/2,-1/2), (—1/2,1/2) and (1/2,1/2). The index of refraction n is given
by n =nj = 1 inside of I'; and n = ng = 2 otherwise. We chose u(z,y) = elF1z+kay) with
k1= —ky = %k to be the exact solution and calculate the data f and g such that

—Au—k*nPu=f in §,
Ohu—iku=g on I'.

For the numerical studies, this problem will be solved using A-FEM with polynomial degrees
p=1,2, 3 and 4. Again the interface I'; is resolved by the mesh. The results are visualized
in Figure 6.2.

Example 6.7.3. Let again  be the unit circle in R? and consider the problem

—Au—k*n*u=f in €,
Optt — a@Aru — fu =g onT.
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6. Galerkin discretizations of Heterogeneous Helmholtz problems
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Figure 6.2.: Numerical results of the h-FEM for p = 1, 2, 3, 4 as described in Example 6.7.2.
Relative L?(€2) error (left) with reference line in black corresponding to hP*1.
Relative energy error (right) with reference line in black corresponding to h?.

The index of refraction n is given in polar coordinates by n = n; = 1 for r < 1/2 and
n=ng =2 for 1/2 < r < 1. The parameters a and  are chosen according to [Fen84]:

1 . 1 1
T and B:zk—§—8—k.

The exact solution is chosen to be u(x,y) = sin(k(xz + y)). The right-hand sides f and
g are calculated accordingly. Note that on the unit sphere the surface gradient can be
expressed for sufficiently smooth functions as the trace of (—y,x)? - Vu, which allows for
straightforward numerical discretization of the problem in question. For the numerical
studies, we solve this problem using h-FEM with polynomial degrees p =1, 2, 3 and 4. It
is important to note that the interface I'; is resolved by the mesh. The observed rates are
optimal with respect to the employed finite element space, since the solution is piecewise
smooth. The results are visualized in Figure 6.3.
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Figure 6.3.: Numerical results of the h-FEM for p = 1, 2, 3, 4 as described in Example 6.7.3.
Relative L?(€2) error (left) with reference line in black corresponding to hP*1.
Relative energy error (right) with reference line in black corresponding to hP.

6.8. Analytic regularity for second order absorbing boundary
conditions

The present section develops similar results as [Mel02, Sec. 5.5] for a model problem with
second order boundary conditions. We start by introducing general notation: For d > 2
and R > 0 let By C R? denote the ball of radius R with center in the origin. Let
B} C R? be a half ball with radius R, i.e., Bj, = {z € Bg: x4 > 0}. Furthermore, let
I'r:={x € Bg: ©4 = 0}. We consider functions u that satisfy
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6.52
anAu +aVr- (AFVFU) = 051/29 4+ G on g, ( )
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6. Galerkin discretizations of Heterogeneous Helmholtz problems

with the conormal derivative 0, ,u = n - (AVu). We assume that solutions u of (6.52)
satisfy

o, v) = /B (AVu) - V5 ta / (ArVru) - Vi (6.53)

I'r
:/ fv+/ (@ 2g+G)T Yo e CP(BY).
Bh I'r

To describe the parameter «, it is convenient to introduce, for fixed 6 > 0, the sector

Sp:={aeC||arga| <7 —0}.

6.8.1. The shift theorem in tangential direction

The proof of Lemma 6.8.2 uses the well-established difference quotients method of Nirenberg
that can be found, e.g., in [Eval0, Sec. 6.3]. For j € {1,...,d — 1}, the j-th unit vector
ej € RY and h € R\ {0} we introduce the translation operator T]}-Z by (Tjhv)(:n) = v(z+ hej)
and the difference quotient (D;‘v)(x) = h™Y(v(x + he;) — v(z)). Inspection of the proof
of [Eval0, Sec. 5.8.2, Thm. 3] shows that for fixed 0 < r; < ry

axj’U S L2(B7“2) — ‘|D§LU||L2(B”) < HaxijLz(Bw) \V/‘h| <7ro—rq, (654)
as well as

HD?UHLQ(BM) < Cv V‘h‘ <rg—ry — Hé?xijLa(BTl) < Cv. (6.55)

Lemma 6.8.1. Let G, u € Hl(BE). Let r, 6 > 0 with r +0 < R be given. Let x €
CS°(R%R) be a cut-off function with supp x C B,y s/2 and x =1 on B,.. Then there exists
a constant C' > 0 depending only on the spatial dimension, such that

—h(y Db
GD, " (xDy,u)
I'r

<

_ — h
C (57NC paap, ) + IVG sy ) (7 1Vl s,y + IV D ul o ) -

Proof. Let x' be another cut-off function with suppx’ C B,is, X’ = 1 on suppx and
VX ||Le < C6~L. Then, for h sufficiently small (depending only on 7, §)

GDJ-_h(XD?u) :/ X’GD;h(XD?u).
' I'r

Let v = Dj_h(xD;-‘u). Scaling B}, to a half ball of radius 1, we denote by G the scaled
version of x'G and by v the scaled version of v. It is also convenient to define ¢ as the
solution of the Neumann problem —A = 0 in B] and 9,4 = v on dB;". Note that v = 0
on dB{ \ I'y. Furthermore, fFl v = 0 and therefore the solvability condition for the above
Neumann problem is satisfied. We then have

' oB; B

B
< IVGl 25 IVl 252
< RV G| o 10 517205
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6.8. Analytic regularity for second order absorbing boundary conditions

Since ¥ = 0 on 9B; \ I'1, we estimate H@HH,W(an) < Clvllg-172(p,y- To estimate this

last norm, we write w = XD;LU and denote by w the corresponding scaled function. We
observe for ¢ € C§°(I'1) and h sufficiently small (depending only on ¢, r, R)

—h/R ~ ~nh/R
/(Dj / w)gp’: / ij/ go‘
Iy Iy

—~ h/R
<N @l g2 DY Foll 2y

(6.54)
< Nwllz2 @y l10z; @l L2y

< @llz2pyllollmrer)-

Hence, ||Dj_h/R{bHH71(F1) < C||@||2(r,) uniformly in h. Similarly, (6.54) shows

~

—h/R ~ —~
(2 MB@) 2 ryy < CllOw, @ poqryy < CIB| gy
uniformly in A. By interpolation, we arrive at
—h/R ~ ~ ~ ~
||Dzj / wHH—1/2(r1) < CHwHHl/?(Fl) < CHwHHl(Bj) = Cva|’L2(Bl+)’

where the penultimate estimate follows from the trace inequality and the last one by a
Poincaré inequality, which is applicable due to the support properties of @w. In conclusion,
we arrive at

GD;jh(Xng u)

. < CHV(X/G)HLZ(B;)HV(XDQJ-U)HB(BE)
R

- - h
<C (5 1||GHL2(B;*‘+6) + ||VG||L2(B:'+5)> (5 IHVUHLZ(B;"M) + ||XVij“”L2<B;g§))-
O

Lemma 6.8.2. Let A € C! (EE), Ar e Ct (f;) be matriz-valued functions that are point-
wise symmetric positive definite with lower bound on the eigenvalues Ay > 0. Let a € Sy.
Let f € LQ(BE), g € L*(T'g) and G € Hl(BE). Then there exists Cgar, > 0 depending
only on 0, a lower bound on Ayin, and an upper bound on ||A||p~ + R||V Al e + ||Ar|| 1o +
R||VAr||pe such that any solution u of (6.52) satisfies for all r, 6 >0 withr +d < R

V20l 28, + |2 VEu 2,y <
Cstab(”f”m(BjH) + HQHLQ(FTM) + 5_1HGHL2(B:F+5) + HVGHLz(BLa) (6.56)

+ 67 VUl 2, + a2 VRl 2, )-

Proof. Step 1: A calculation reveals that o € Sy implies the existence of ceoer > 0 such
that

‘yl + ayQ’ > Ccoer<y1 + ’a’y2) Yy1,y2 > 0. (6.57)
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6. Galerkin discretizations of Heterogeneous Helmholtz problems

Step 2: Let x € C5°(R% R) be a cut-off function with supp x C B,45/2 and x = 1on B,. We
assume furthermore ||Vy|[z~ < C§~1, and 9, ,x = 0 on I'g, see [Mel02, Lemma 5.5.21] for
a similar construction. For h sufficiently small, we select the test function v = —Dj_h XZD?u
in (6.53) and get

a(u, —D;"\*Dhu) = — [ fD"\*Diu — / (o!?g + G)D;"y* D}, (6.58)

B} Tr

We treat the left-hand and the right-hand side separately. We proceed as in the proof
of [Eval0, Sec. 6.3, Thm. 1]. We have

- /B L (AVu) V(D" Diu) = /B , Dj(AVu) - V(x*Dym)
_ /B (R A)(DEVU) + (DEAVU) - V(3 Dl)
_ / (7 A)(DIVu) + (DEA)Tu) - (VDI + 2V Dl
By

_ 2 h h h—
B /+ X ((Tj A)VD] u) ’ VD]u + Ryol
R
with Ryo given by
Ryor = / +(TJhA)(D;'L Vu)2xVx D} + (D} A)Vu - (X2VD§?E + 2XVXD§%> .
BR

Hence, we can estimate

Rual < OO~ Al I3 Dl | DSl
h
+ CIVA[ L~ HVUHU(BT*H/Q) HXVDJ'UHL?(B;)

_ h
+ O8IV A=l Vel pag,, IDS s, -

r+6/2

Analogously, we get

- / (ArVr) - VrD;"x*Diu = / X*((7]' Ar)Vr D) - VeD'u + Rpng
T'r

I'r
with
| Rona| < C5 Y| Ar|l o [IXVr D} ull 20 1D} ull L2r, 5 )
+ C|IVAp| = | Vrull g2, ) IXVe Dl 20 )
+C5 VA ||| Veull o,y o) 1 DSl 2(r, 5 0)-
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6.8. Analytic regularity for second order absorbing boundary conditions

For the right-hand side of (6.58), we get with (6.54) applied to v = —Dj_hXQD;-lu and
Lemma 6.8.1

—h. 2 h— -1 h h
[ 05Dl < Ol (5 W0+ IXT Dl )

/F gD;"x* Dl < Cllgllraqr, .4 ) <571HD;LUHL2(FT+5/2) + ||XVFD?UHL2(FR)) )
R

—h.21h—~| _
GD;"x"Dju| =

h 2 nh—
/DjGX Dju
g

g
<C (571HG”L2(BT++6) + ||VGHL2(B1T+5)> (5*1||VUHL2(BL6) + ||XVD§LU“L2(Bj+5)> :

Step 3: Using (6.57) we get

Ceoer (/ N XQ((T;LA)VD?U) . VD;-LH + || XQ((TJ}»LA)VFD;‘U) : VrD?u)
B} I'r

< |a(u, =D;"x* D) — Ryol — aRpnd]

< + + |Ryol| + [t/ Rbndl-

/B . fD7"*Dla

R

Using the lower bound for A and Ar and the above estimates together with (6.54) we find

Cooermin (XY D}l sy + ol NV DY ular, ) <
(10 1000l 205, ) + 1Ly X DSl
+ ||g||L2(B:+6)6_1|a|1/2‘|8xju”[/2(rr+5) + gl 2, ol IV DMl oy
+ (5_1||G”L2(Bj+5) + ||VG||L2(BT++5)) (5_1||VU||L2(Bj+5) + ||XVD?U||L2(BL,;))
+ (1Al + OV All )0~ 1Vl o, IXV DYl o
+ OV A =62Vl e

+ (| Ar |z + 61V Ar]| o) als ™ [ Vrull e, o) XV DYl ey
+ 31V Ar 1< als =2 Vrula, ) )-

The Cauchy-Schwarz inequality with epsilon allows us to absorb the terms HXijhuH 2(B7)
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6. Galerkin discretizations of Heterogeneous Helmholtz problems

and || XVFD || r2(rp,) from the right-hand side into the left-hand side and we get

1
& Ceoermin (HxVDhullL2(B+) +lallxVrD}ulda,) <

Oz, 0 10s, 2,y + Aka e
 lgla e 0 ol 2100, ullar, g+ Amtal g,
+ (071G asr ) + IVGl i) 67 10l s
+ B (571G asr ) + VG 2y, ))2
+ Amh (14 2 +6\|VArrLoo>26 [Vl 5
+ 8V Al =02Vl 2,
—i—)\;lm

+ 8V Ar < a0~ [ VrulZar, ) )-

(IAr iz~ + 5HVAFIIL°°)2|0é|5*2HVFUII%2(r

From (6.55), we get in the limit h — 0 that V&,,u € L*(B;}) and Vrd,u € L*(I'})
together with

Can (12 ) + Mol 2oy + 6 G gy + VGt (6.59)

+ 67 Vull o e+ ol 207 [Vl aqr, )

IV Vol r2(s,) + |2V Vol o

with Cgap > 0 depending only on 6, a lower bound on Apin, and an upper bound on
| Allzs + RIV Al + | Ar| 1 + RV Ar] .

Step 4: We complete the proof by controlling [|0 ul| ;- (p+)- This follows from the differ-
ential equation

d
—Agdiu=f+ > (O, Aij)0pu— Y A0y, 0n,u.
i,j=1 (4,5)#(d,d)
We have Ay = ¢, TAeg > Amin and therefore

AminHa;%dqu(B;*') < ||f||L2(B;r) + C5||VA||L°°5_1HVUHH(B;L) + ||A”L°°||VVI’UHL2(B,T)'

Noting % > 1 together with (6.59) concludes the proof.

6.8.2. Control of the tangential derivatives

For functions v = (v;);e1, (I some finite index set) defined on R? we introduce the notation

laf! o
VPP ="y D vil?. (6.60)

i€l aeNg: |af=p
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6.8. Analytic regularity for second order absorbing boundary conditions

Analogously, the notation |[V?,v| for 2/ € R?"! indicates that o € N¢~! in the sum. We
proceed as described, e.g., in [Mel02, Sec. 5.5.3 and 5.5.4]. We write Vs for the tangential
derivatives in contrast to [Mel02, Sec. 5.5.3], where V, denotes the tangential derivatives
and introduce

1
Ml,f,p(f) = sup (R— T)pHHVZ'fHL?(B;r)a
1

P Rj2<r<R
Mp,r(9) === sup (R—r)P"?|V2g2r,),
P R/2<r<R
N, (v) = ﬁSUPR/2§r<R(R - T)p+2||v2vi’v||L2(B:r) ifp>0,
R, = .
. SUpR/2<r<r(R — 1) 2 V2P oty ifp=-1,-2,
Niy o o(v) = %1 SupR/2§r<R(R - T)pHHV?LQUHL?(Fr) for p > 0,
RpT T 2
g SUPR/a<r< (R — r)Pr2|vEr vllp2(r,) for p= -2, —1,
1 1 R il
Hpp(v) := p— 1! R/§1<171~)<R(R — )Pt HVZUHLz(BT*) + WHV?VQ’HB(B;L) ;
where

[p]! := max{p, 1}!.

Analogous to [Mel02, Lemmas 5.5.15 and 5.5.23] is

Lemma 6.8.3. Letp € Ng. Let A € CPHL(B}), Ap € CPYL(T'})) be matriz-valued functions
that are pointwise symmetric positive definite with lower bound on the eigenvalues Ayin > 0.
Let f € Hp(BE), g€ Hp(FE), Ge Hp’“l(BE) and oo € Sy. There exists a constant Cg > 0
depending only on the same quantities as the constant Cgap tn Lemma 6.8.2 such that

Nl%,p(“’) + ‘O“l/2NI/~2,p,F(u> < CB{M]/%,p(f) + M;%,p,F(g) + HRJ?(G)

p+1 1
S (P! AN R\ - [p—q!

+ . ( q ) <<2> ||VqA”LOO(BE) + 5 q||Vq 1A||LOO(B§) TNé’p_q(u)
q:

+ Nll%,p—l (U) + N]%,p—? (U)

p+1 q
p+1 R —q|!
+|a|1/2<2( Y (5) 1A TNy e

q=1

+ NAP*LF(U) + Nk,pZ,F(”)) }

Proof. The proof follows the lines of the proofs of [Mel02, Lemmas 5.5.12, 5.5.15 and 5.5.23].
We abbreviate a = An, where n is the outer normal vector on I'g. The derivative Dg‘,/u
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6. Galerkin discretizations of Heterogeneous Helmholtz problems

with o’ € Ng_l satisfies

—V - (AVD% u) = DY f — {V - (AVDS u) — D (V - (AVu))},

&MD?/,U + aVr - (ApVeDS w) = DS (a%g) + go)
+ oV - (ArVy D% u) — D (V- (ArVyu))}

x

+ {(a VD% u) — DY (a- Vu)} .

The remainder of the proof proceeds analogously to the proof of [Mel02, Lemmas 5.5.12
and 5.5.23] and uses Lemma 6.8.2 with § = g;g . Specifically, the terms arising from A, f,
G are obtained directly as in the proofs of [Mel02, Lemmas 5.5.12 and 5.5.23]. The terms
arising from the Laplace-Beltrami are treated with the same arguments as in the proof
of [Mel02, Lemma 5.5.12]. O

6.8.3. Tangential control for k-dependent problem

We consider the problem

~V - (AVu) — ck*u = f in B},
» (6.61)
Op,u~+aVr - (ArVru) = a / g+G+bku onl.
For the data, we assume
vaf”H(BE) < CpyfR™Pmax{p+ 1, Rk}’  Vpe Ny, (6.62a)
||V§,g||L2(FR) < Oy R™P max{p + 1, Rk}” Vp € N, (6.62b)
HV”GHLQ(BE) < CeveR Pmax{p+1,Rk}’  Vpe Ny, (6.62¢)
||VpAHLOO(B§) < Cavip! Vp € Ny, (6.62d)
||V§,,Ap||Loo(pR) < CAF’yf‘Fp! Vp € Ny, (6.62¢)
vabHLOO(BE) < Cb’yfp! Vp € Ny, (6.62f)
vacHLoo(Bg) < Ctp! Vp € No. (6.62g)
Additionally, we assume that
la|'/? < C k12 (6.63)

as well as a € Sy for some 6 > 0 uniformly in k.

Theorem 6.8.4. Let R < 1. Let f, g, G, A, Ar, b and « satisfy (6.62) and (6.63),
respectively. Letwu solve (6.61). Then there exists a K > 1 depending only on the coefficients
A, Ar of the differential operator, 6, and the constants in (6.62) and (6.63) such that for
allp > —1

Fop 2 max{p + 3, Rk}P*2

N}z,p(u) 4 L2 N}LP,F(U) <Oy, !

(6.64)
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6.8. Analytic regularity for second order absorbing boundary conditions

where

Cu = min{1, Rk}’ (k™*Cy + k~>Cy + Cllul| 2 53)
+ min{1, Rk}, *Ce(1 + ¢ R)
+min{l, RE}(1 + wR)Cyllull 2 ) (6.65)
+ min{1, Rk}(1 + Cp min{1, Rk})k_1||VuHL2(B;)
+min{1, Rk} ™/2Co || Vru 121 p))-

Proof. We will frequently use the elementary property
min{a, Rk} max{a, Rk} = aRk a>0.

We first verify that (6.64) is correct for p = —1, if K > (1 + C,1)/2. To that end, note
that

Nf%,—l(“)

IN

1 _

HMM—‘M‘m

max{1, Rk} min{1, Rk}k‘_lnquL?(BE)

IN

5 max{1, Rk}C,,

_ 1R
k I/QNJI%,A,F(U) <k 1/2§HVFU||L2(FR)

—1
< % max{1, Rk} min{1, R}k k™2 Co|Vrul r2(r )

C—l
< % max{1, Rk}C,.

Hence, we have

1+Ct

Np_y(w) + k2Np _y p(u) < 5 max{l, Rk}Cy,

which concludes the case p = —1. We next show that it is correct for p = 0 and then by
induction for all p > 1. To that end, we rewrite the equation as

—V - (AVu) = f + cku in Bf,
O u+aVr - (ArVru) = a2g + G+ bku  onT.
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6. Galerkin discretizations of Heterogeneous Helmholtz problems

For p = 0, an application of Lemma 6.8.2 (used with § ~ R — r) gives

Niop(w) + k2N ()
R? 2
< Cuan (G- (IF + cKull 2y + 9l 2r)
R R’
+ GG + bkull 2 ey + = V(G + bhu)l 2 1
R 1R
+ S IVull o) + lo 25 IV rul 2y )

< Cotab (B2 | 2y + Cok? ull gy + gl z2qrn)
+ RHGHLz(B;) + RQHVG”L?(Bg)
+ RE(L+ 9 R)Collull 12 1) + R2kaHVuHL2(B§)
+ RVl 255 + Cak™ 2 RIVrull 2(ry) )

< Cstab (RQ(Cf +Cy + CckQHUHLz(B;g))

+ RC¢q + R*yaCq

+ RVl s + BE2Cal Vrull ey )
< CytapCr, max{3, Rk:}z,

where the last estimate follows by similar estimates as in the case p = —1. Let us assume
that (6.64) is correct for all —1 < p’ < p—1 for some p > 1. We show that it is correct for p if
K is chosen sufficiently large. In fact, we will implicitly assume K > max{vs, Vg, 7 Ye; Vo)
so that the various geometric series below converge.

It is convenient to abbreviate
m(p) := max{p + 3, Rk}’ (6.66)

In order to apply Lemma 6.8.3, we have to estimate Ml’%’p(f—kQCu), Mg, r(g) and H'(kbu).
Since My, ,(f — k*cu) < My (f) + My, (k*cu), we first estimate Mp, (f).

MZ%,p(f) S -

p

p+2
(2> Cyyp R max{p + 1, Rk}”

1
!
< % <¥)p R2;! max{p + 3, Rk}’
Cr
4

(lf)pk_z min{1, Rk)2 P

<
2 p!
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6.8. Analytic regularity for second order absorbing boundary conditions

From [Mel02, Lemma 5.5.13] and the induction hypothesis, we have

M]’;t’p(chu) < kQCczp% (761;{)‘1 (J;)Q P = q)'] Rp—q—2(1)

q—2

C = (1R
= —“min{1, Rk}* max{1, Rk}*> (7" Nppgo(w)
=0

4

L)

p q
< 9min{1,Rk;}2 max{1, Rk}*) Deft K7™ Tmax{p — ¢ + 1, Rk}P71C,
4 =\ 2 (p q)!
C 2 2 zpz YR\ *
= —“min{1, Rk}*K? max{1, Rk} < - ) max{p — ¢+ 1, Rk}’ 1C,
4 —=\2K ) (p—q)
p q 1
< %min{l,RkPKp max{1, Rk}? Z <%R> —p?max{p — ¢+ 1, RE}'"IC,
4 = 2 p!
C m(p P 4
< ZC min{1, Rk}?KP+2 D) -2 > ( >
q=0
2
< Ceming, Rk}QKp“m(p LB S

4 P! 1-7.R/(2K)

where the last step follows from a geometric series argument and assumes K > ~.R/2.
Similarly, we find

Migrle) < 52 (22)" 2 min1, Ry ™2

From [Mel02, Lemma 5.5.24], similar estimates to the above and the induction hypothesis,
we have

Hipp(kbu) < Cb[ T2

L nin{1, Rk} »
{ max{p + 1, Rk}? Z <§>

’YbR>q (’YbR>q+1
- _l’_ -
= ( 2 2
P\ (wR\?
+ max{p + 1, Rk} Z (q) <2> q'lp—q— 1]!N}/%7p_q_1(u)}
q=0

< % min{l,Rk}KP”m(‘p ) (
p:

ql[p —q— 2]!N}/%,p—q—2(u)

K2 K=2wR/2 K1 > o
1—wR/(2K)  1—-yR/(2K) 1—-wR/2K))

Finally, we estimate Hg,(G) as at the end of the proof of [Mel02, Prop. 5.5.25]

Hpp(G) < CorPik ™ min{1, Rk}(1 + v R) m;!p). (6.67)
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6. Galerkin discretizations of Heterogeneous Helmholtz problems

We are now in the place to perform the induction argument. Lemma 6.8.3 gives

N},%,p(u) + k_l/QNI/%,p,F (’LL)
< Cp|Mp,(f = K2cu) + M, p(g) + Hp (G + bku)

p+1
p+1 Rya\4 Rya\ea—1 [p_q]!
q=1
+ Npp-1(u) + Nppa(u)

p+1 q
p+1 Rya —q|!
wlalon 3 (P e (B )
=\ a p!
o+l (N1 0 (0) + Nig g ()]
m(

=Cp [Cf’f2 min{1, Rk}Q'y?p,m + Cyk 2 min{1, Rk}%ygm;p)

Ce . m(p)  K7?
~c 1 L 2Kp+2 .
+ g mindl, Rk} pl 1—7:R/(2K)

+ Cevpk ™' min{1, RE}(1 + ’ng)mIEf))

Gy pr2m(p) K2 K R/2 K
+ 5 mln{l,Rk’}K p! 1—’be/(2K) 1_7bR/(2K) 1—fbe/(2K) Cyu
+ CAKP+2 m(p) < K2 K_Q’YAR/2 )
. \1—7aR/2K) " 1-~vaR/(2K)) "

L xr™P) (g2 gty ey
p!

m(p) K2
p! 1 —7va.R/(2K)

L™ (g2 ey g,
p!

+ CpCa KPT2 C

< CBKW;@ [cfk,-—2 min{1, Rk}2K 2 (%)p + Cyk~2 min{1, Rk)2K (ﬁ)p

K
+ % min{1, Rk}i_fy{;;@mcu + Ok~  min{1, Rk}(1 + v R)K 2 (%G)p
-2 -2 1
+ %min{l,Rk} (1 — fb(R/(QK) 1 [_(%Zé’ﬁﬁ() T fyi(R/(2K)> Cy
-2 -2
+ Cy <1 — 'yfR/(QK) 1 I_{’YA?;EQ/;Q Cy + (K*2 + K*l) C.
+CaClar 5 _wf}:/@K)CujLCa (K24 K1) G,

< C"KPHIE!MCB [ . ]
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6.9. Dirichlet-to-Neumann maps via Boundary Integral Operators

The induction argument is complete, once we established that there exists a sufficiently
large K, which can be chosen uniformly in p such that Cp { . ‘]S 1. This can be easily

seen, since

e 2 (VNP g2 (Yo, Ce KT G
CB[ ]_CB[K (K) K (K) +41—%R/(2K)+K (K)

Gy ( K2 K=2wR/2 K1 >

2 \1-wR/2K) 1-%R/2K) 1-v%R/(2K)

K2 K 2y,R/2 ) 2 1

+C + (K 2+ K~

(Tmem * o) )

K—2
TGO T R K)

+Ca (K24 K1),
which concludes the proof. O

6.8.4. Control of all derivatives for k-dependent problems

Control of the derivatives 9%, is achieved using the differential equation. For that purpose,
we introduce

1
sup (R _ T)P-HH-? Hvi/ag:—QUHL2 (Bj‘)

!/
r(u) =
P [p+a)! rj2<r<r

Theorem 6.8.5. Assume the hypotheses of Theorem 6.8.4. Then there exist constants
K1, Ko depending only on the coefficients A, Ar of the differential operator, 0, and the
constants in (6.62) and (6.63) such that for all p, ¢ € No U {—1, -2} with p+ q # —2

q+ 3, Rk}ptat?
[p+q)!

N o(w) < CukP+2gcgr2 et : (6.68)

where Cy, is given in Theorem 6.8.4.

Proof. The proof follows directly from the proof of [Mel02, Prop. 5.5.2]. Namely, [Mel02,
Prop. 5.5.2] proceeds by induction on ¢g. The induction step relies on a) the fact that
an elliptic equation in BE of the form studied here is considered and b) control of the
tangential derivatives, which is provided in Theorem 6.8.4. Hence, the proof of [Mel02,
Prop. 5.5.2] applies. Ol

6.9. Dirichlet-to-Neumann maps via Boundary Integral Operators
The main goal of the present section is prove Item (ii) in Lemma 6.5.12. To that end, we

rewrite the Dirichlet-to-Neumann operators DtN; and DtNg in terms of boundary integral
operators.
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6. Galerkin discretizations of Heterogeneous Helmholtz problems

6.9.1. Preliminaries

Let Q € R% d =2, 3, be a bounded Lipschitz domain with analytic boundary ' := 9. We
denote by QF the exterior domain, i.e., QF := R\ Q. Throughout this section we assume Q+
to be nontrapping, see [BSW16, Def. 1.1]. Furthermore, we assume that the open ball B of
radius R around the origin contains €2, i.e., @ C Bg. We set Q := (QUQT)NBr = Bg\T.
Following standard notation we introduce the interior and exterior trace operators 76’”, yint
76t and ¢!, Furthermore, we denote by Vi, Ky, K .. and Dy, the single layer, double layer,
adjoint double layer and hypersingular boundary integral operators, see [Ste08, Sec. 6.9
and 7.9]. The corresponding potentials are denoted with an additional tilde (*). Finally,
given a coupling parameter n € R\ {0} we introduce the combined field operator A;mn given

by
1 .
ke = 3+ K, + inVj.

We remind the reader of the exterior Calderdn identities

V6=t s+ Ee  —Vi V6" u (6.69)
75"y —Di 3Ky ) i

Given Dirichlet data u we can now express the Dirichlet-to-Neumann operator DtN; for
any k > 0 by a complex linear combination of the two equations in the Calderén identity:
For any n € R\ {0} we have

1 1
(2 + K}, + ind> DtNju = <—Dk + i77(—§ + Kk)> u, (6.70)

or using the combined field operator A;wz we have

1
;CthNku = <—Dk + i?](—§ + Kk)) U. (6.71)

Our analysis relies on invertibility of the combined field operator A;’cm as an operator
mapping H*(T") into itself. In fact, wavenumber-explicit estimates of H(A;cvn)*lH L2(T)«L2(T)
are available in the literature. We refer to [BSW16, Sec. 1.4] for detailed discussion and
the references therein. For nontrapping Q1 ¢ R%, d = 2,3 it is known that

A < K41 s 72
1(A%.) " Nr2ryerzm) S + ] (6.72)

for all k£ > ko and n € R\ {0}, see [Spel4, Thm 1.11]. This bound can be sharpened
assuming |n| ~ k. In fact, for nontrapping Q* Cc R%, d = 2,3 and |n| ~ k there holds

1AL ) rzyerzy S 1 (6.73)

for all k& > ko, see [BSW16, Thm. 1.13]. We now collect certain results concerning mapping
properties as well as invertibility of the involved operators.
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6.9. Dirichlet-to-Neumann maps via Boundary Integral Operators

Proposition 6.9.1. Let I' be analytic and n € R\ {0} fized. If d = 2, assume additionally
diamQ < 1. Then

(i) Ag—y =%+ Ko—inVy: H(I') — H*(T) is boundedly invertible for s > 0.
(i1) Ap, = 3+ K +inVy: H¥(I') — H*(T) is boundedly invertible for s > —1.

(iii) For k > 0 the combined field operator A = 3+ Kj +inVy: HS(T) — H*(T) is
boundedly invertible for s > —1.

For k > 0 the operators
Vis H™Y205(0) — HY?T(D),

Kk: H1/2+8(F) N H1/2+S<F),

6.74
K]/{;Z H71/2+S(I\) N H71/2+S<F)7 ( )
Dk: H1/2+S(F) _> H71/2+S(1—\)
are bounded for s > —1/2. Finally, for k > ko > 0 the splittings
Vi = Vo = Sy + " Ay,
Kj, — Ko = Sk + " Ak,
k 0 K T7% AK (6.75)

K}, — Kf = Sgr + " Ay,
Dk — Dy = SD +’yintA~K

with linear maps Ay : H-3/2(') — C®(Q) and Ag: H-Y*(I') — C®(Q) and bounded
linear operators Sy, Sk, Sk and Sp having the following mapping properties for s > —1

[Svull—1/24sr < Cs,s'k?_(Hs_sl)HU||—1/2+s/,r, 1/2< s <s+3,
ISKull1jorsr < Co k™ ]|y jop g s 1/2<s' <543, (6.76)
ISkl 1 j21sr < Cosrk™ ]| 30191, 3/2<s <s+3,
ISpullijssr < Cowk™ " ull_gppwr,  3/2<s <s5+3
hold true. Furthermore, the operator Ay has the mapping property
Axf € ACkIf || -1j2rs v, Q) Vfe HVAD), (6.77)

with constants Ck, vix independent of k > ko. Finally, for t > 0 the following mapping
properties
ISvuler < Cok™ ul,r,
Sku < Ci||lu|e.r,
ISiculler < Cululx 619
[Skruller < Celluller,

[Spulle,r < Cekfluller

hold true.

147



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

6. Galerkin discretizations of Heterogeneous Helmholtz problems

Proof. For Item (i) see [Mell2, Lemma 3.5, (ii)]. For Item (ii) in the case s > 0 see [Mel12,
Lemma 3.5, (iv)]. We turn to the case s € [—1,0]. Note that the adjoint of Ag _, is
precisely the operator Aj, . Furthermore, by Item (i) the operator Ag _,: H'(T') — H(T')
is boundedly invertible in particular for ¢ € [0, 1]. Hence, due to the adjoint of Ag _, being
Ay, we find that Ap @ H*(I') — H*(I') is also boundedly invertible for s € [~1,0]. For
Item (iii) see [CWGLS12, Thm. 2.27] in the case s € [—1,0] as well as [BSW16, Sec. 6.1].
Consequently, by [Mell2, Lemma 2.14] invertibility holds for any s > 0. The mapping
properties (6.74) are standard. For (6.75) and (6.76) see [MMPR20, Lemma A.1] for the
1/2 < " and 3/2 < ¢/, respectively. The limiting cases follow by inspection of the proof,
the therein used estimates for the potentials, and applying a multiplicative trace estimate.
For (6.77) see also [MMPR20, Lemma A.1]. (6.78) is just a simplification of (6.76). O

6.9.2. Decomposition of the Dirichlet-to-Neumann map

Before proceeding with the proof of Item (ii) in Lemma 6.5.12 let us introduce the jumps
of the trace operators:

[ol =™ =2, [l = 5= 5
For linear operators /1 mapping into spaces of piecewise defined functions we define the
operator [A] and [0,A] analogously, e.g., [A]u = [Au].
We now collect further technical results of [Mell2]. We closely follow the notation and
results of [Mel12]. As in [Mell2] we assume
Cylk < |nl < Cyk (6.79)

for some (), > 0 independent of k.
In Proposition 6.9.2 below we extend the results of [Mell2, Lemma 6.3] to a wider range
of Sobolev spaces.

Proposition 6.9.2 ([Mel12, Lemma 6.3]). Let Q C R? be a bounded Lipschitz domain with
an analytic boundary I'. Let ¢ € (0,1). Then one can construct operators L?eé], ngg on

H~YT) with the following properties:
(i) L?i}qf + Hff;gf = f for all f € H-Y(T).
(ii) For —1 < s’ <'s there holds |H.7 f|lsr < Cs.o(a/k)* || fllsr-

(iii) L?ejf is the restriction to I' of a function that is analytic on a tubular neighborhood
T of I' and satisfies

IVPLE fllor < Cok®?~7 max{k, n}"||fl—1j2r  ¥n € No,
IV LE fllo < Cok? 1y max{k,n}"|| f| 10 ¥n € No.

Here, Cs o is independent of q and k; the constants Cy, 74 > 0 are independent of k.
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6.9. Dirichlet-to-Neumann maps via Boundary Integral Operators

Proof. For Ttem (i), Item (ii) in the case —1 < ¢’ < s < 1 and Item (iii) see [Mell2,
Lemma 6.3 and Remark 6.4]. The crucial extension is the estimate stated in Item (ii) in
the case —1 < s’ < s for s > 1. In the proof of [Mell2, Lemma 6.3] the operators Hl’ffqg
and Lgif are explicitly constructed. We collect the important ingredients of the proof of
[Mell12, Lemma 6.3] in the following. On the compact manifold I' consider the eigenvalue
problem for the Laplace-Beltrami operator

—Arp =Xy onT. (6.80)

There are countably many eigenfunctions ¢,,, m € Ny, with corresponding eigenvalues
A2, >0, which we assume to be sorted in ascending order. Without loss of generality, these
eigenfunctions are normalized in L?(T"). The functions (¢, )men, are an orthonormal basis
of L*(T") and an orthogonal basis of H'(T"). With w,, := (u, ¢,,) we have

lullgr =D fuml®,  and  Jullfr =Y (14 A7) /. (6.81)
m=0 m=0

For s € R we introduce the sequence space h® by

o0
h? = {(um)mEN: Z(l + A Jum|? < OO} .
m=0

The mapping ¢: u — ((u, ©m) )men,, then provides an isomorphism between the Sobolev
space H*(I") and the sequence space h® for s € [—1, 1], with corresponding norm equivalence,
see [Mell2, Lemma C.3]. However, as we will see below ¢ is in fact an isomorphism for
all s > —1. Inspection of the proof of [Mell2, Lemma 6.3], in particular the proof of the
estimate for H{}fqg , reveals that

1HE fllor < Co(a/k)* ™ lls,r

holds for all —1 < s’ < s, for which ¢t: H*(T') — h® and ¢: H*(I') — h* are isomorphisms.
Hence, the proof is complete once we establish that ¢: H*(I') — h*® is an isomorphism for
all s > 1. We show the case s = 2.

The inclusion h? — H?(T'): Let u = Y ov_ um@m be such that Yoo (14 A2)%{uy|? <
oo. Let uV = Z%:o Um@m. By the above construction, v — u in HY(T') and |Juir =
() men||p1- Furthermore, we have

2

N M-—1
N M—-1)2
HAFU — Aru HO,F: Ar g UmSOm_AF E UmPm
m=1 m=1 o,r
N 2
= E umAF(Pm
m=M o,r
N 2
_ )\2
- Um mQOm
=M o,r

N
= > |um[*Ah, =0,
i=M
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6. Galerkin discretizations of Heterogeneous Helmholtz problems

where we used (6.80), the fact that the eigenfunctions are an orthonormal basis of L?(T),
and the assumed convergence Y ov_(1 + A2)?|u;m|> < co. Therefore, u” is a Cauchy
sequence in HY(I',Ar) = {u € HYT): Aru € L*()}, with corresponding graph norm.
Consequently u” converges in H'(I', Ar). Since Ar : HY(I', Ar) — L*(T") is continuous,
we conclude Aru =3y UmArom = = en, U A2, 0. Finally, by elliptic regularity
we can now estimate

ul3r S 1Arulgr = D [fnlXh = [(wm)men, lre- (6.82)
mENy
Finally,

ull3 . S Nl (m)men Iz

follows by (6.82) together with (6.81).

The inclusion H?(I') — h% Let u € H?(T') be be given with the representation u =
> o Um®m, where the sum converges in H'(T'). Since u € H?(T') we have —Aru =: f €
L?(T). In the following we express the coefficient wu,, in terms of f,,,. Note that

M um = N2 (U, 0m) = (Vru, Viem) = (f, 0m) = fn-

Hence, we have A2 u,, = f,, and consequently

) %
D Anluml? =D |l < o0
m=0 m=0

Finally, using 6.82 as well as the fact that ||u|; 1 = ||(%m)men|/pt, we find

||(um)m€NoHi2 = H(um)meNo”}%l + ’(um)mENoﬁ? = HUH%,F + ||AFU”%),F < HUH%,F

This concludes the proof for s = 2. Interpolation between s = 1 and s = 2 yields the result
for s € (1,2), see [Mel12, Lemma C.3]. Inductively one proceeds for the space H?"(T') by
similar arguments. Instead of Ar one performs the same arguments for Af. O

Remark 6.9.3. A natural question arising from the proof of Proposition 6.9.2 is whether
or not a similar construction allows for high and low pass filters in the volume . The
volume filters in Proposition 6.3.2 only allow for estimates in negative Sobolev norms for
—1/2 < §'. In fact similar arguments as in the proof of Proposition 6.9.2 allow to construct
high and low pass filters via the eigenvalue problem

—Ap =Xy inQ,
Opu =0 on I

However, the corresponding high pass filter only allows for estimates in the range —1 <
s’ < s <1, because of the additional boundary terms. =

In the following we will prove an extension of the following
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6.9. Dirichlet-to-Neumann maps via Boundary Integral Operators

Proposition 6.9.4 ([Mell2, Thm. 2.9]). Let ' be analytic and let —1/2 < s < 0. Fix
q € (0,1). Then the operator Aj, p can be written in the form

1 ~ ~
A;C,n — 5 + K(,) + RA’ + ki[[.Al]] + [[anAQ]]a

where Ryr: H¥(T') — HYYT) and Ay, Ay: H-Y (') — C(T) satisfy

[Rarulls41,r < Ckllullsr, [Rarullsr < gllullsr,
A € A(CyChrps g, T), Cre =kloll-s2r + k2ol -1,
Az € A(CqC25,74, T), Crp = kH(P”—S/Q,F-

The constant C' and the tubular neighborhood T of I' are independent of k > ko and q; the
constants Cyq, 74 > 0 are independent of k > ko (but may depend of q).

The proof of Proposition 6.9.4 relies on a decomposition of the volume potential Vj,
which we present below for the readers’ convenience.

Proposition 6.9.5 ([Mell2, Thm. 5.3]). Let I' be analytic and q € (0,1). Then
Ve=Vo+ gv,pw + AV,pwa
where the linear operators SV,pw and flV’pw satisfy the following for every s > —1:
(i) Svpw: HV?HS(T) — H3*5(Qgr) with
1Vpuells o < Cv sa®(ak™ ) ol _1jpar, 0< s <s+3.
Here, the constant Cy s > 0 is independent of ¢ and k > k.
(i1) Ay p: H-Y2H5(T) = C=(Q) with
anAV,pw‘PHO,QR < Cyygmax{n +1, ]{:}"+1H4p\|73/2’r Vn € No.
Here, the constants Cy, 4 > 0 are independent of k > ko but may depend on q.

Theorem 6.9.6 (Extension of [Mell2, Thm. 2.9]). Let I' be analytic and let s > 0. Fix
q € (0,1). Then the operator A;wz can be written in the form

;WI = A/071 + Ry + k[[fil]] + ﬂanflg]],

where the linear operator Ry satisfies

|Rarullssir < Chllulsr, (6.832)
|Ravullor < Chllulls—vr, (6.83b)
|Raullor < qllullr, (6.83¢)

|Raullsovr < qllulls-rr, (6.83)
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6. Galerkin discretizations of Heterogeneous Helmholtz problems

and the linear operators Ay, Ay: H-'(T') — C®(T) satisfy

Ap € A(CyCip,7%0:T),  Crp =kloll—sjor +E”?|lol 11, (6.84a)
Asp € A(CyCo,79:T),  Cop = klloll 32,1 (6.84D)

The constant C' and the tubular neighborhood T of T' are independent of k > ko and q; the
constants Cy, 74 > 0 are independent of k > ko (but may depend of q).

Proof. We perform a similar splitting as in the proof of [Mell2, Thm. 2.9]. The starting
point of our analysis is the decomposition

;c,n + KO + 7Mt(SV,pw + AV,pw) + “7’76nt(V0 + SV,pw + AV,pw)a

with Sy, and Ay, as in Proposition 6.9.5, see [Mel12, Eq. (6.4)]. Adding and subtracting
1Vp and noting Vp = ’yé”tVO we find

, 1
kﬁ’] 2

= A6,1 + ’Yint(SV,pw + AV,pw) +i(n — 1)7mtv0 + m’th(SV,pw + AV,pw)- (6.85)

+ KO +iVo + 'Ymt(SV,pw + AV,pw) +i(n — 1)7’mtV0 + m')’mt(SV,pw + AV,pw)

Using the filters chbqu and L?qu in Proposition 6.9.2 we define

Ry = HY (fﬁ"tév,pw iyt Sy + (1 — 1)V0) , (6.862)

-/le = _k_1XQ <i77AV,pw + L??qg (’Yint‘g\ﬁpw + in’YéntS\ﬁpw + 2(77 - 1)%)) 5

-/Zl2 = _XQAV,pw-
The mapping properties of A; and Ay stay the same as in Proposition 6.9.4. We are
left with the mapping properties of R4/. In the following the parameter ¢ appearing in
Proposition 6.9.2 and 6.9.5 is still at our disposal'. We fix it at the end of the proof to

guarantee the estimates (6.83c) and (6.83d).
Step 1: We estimate the term i(n — 1)HICLZgV0 in various norms. We heavily use the

estimates for H?qu and Vp given in Proposition 6.9.2 and (6.75) in Proposition 6.9.1, re-
spectively. First estimating 7, then using the properties of H?qu in Proposition 6.9.2 and
finally the mapping properties of Vy we find
li(n — D Hp Y Voulls+1,r < Ck|[HR Y Voulls+1,r < Ck[[Voul[s+1,r < Ckl[ullsr,
li(n — D) Hp/ Voulls,r < Ck|[Hy Voulls,r < Ckllul[s-1,r,
li(n — DHp Voullsr < C|Hy G Voullsr - < Ck(a/k)[Voulls1,r < Callullsr,
li(n — DHp I Voulls—1,r < Ck|Hp Y Voulls—1,r < Ck(q/k) < Cqllufls-1r-

In the Steps 2 and 3 below we again heavily use the properties of H qg given in Proposi-
tion 6.9.2. Furthermore, we often apply the results of Proposition 6.9. 5 especially Item (i).

Do not confuse this ¢ with the one appearing in the statement of the present theorem.
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6.9. Dirichlet-to-Neumann maps via Boundary Integral Operators

Below, we will write certain exponents nonsimplified in order to indicate the corresponding
choices of Sobolev exponents when applying Proposition 6.9.5.
Step 2: We estimate the term H ”69 mtSpr in various norms. We have

”Hneg mtSpr“Herl r < C”’ths’\/,pwUHerl,I‘ < C||§V,pwu||s+5/2,Q
< O (g™ ) FETVDEER) || p = Cakullsr.
By the previous estimate we also find
| Hy neg mtSpruHsF < CQ/kHVintSpr“Herl r < Cq [[wlls,r-
In the case s € [0,1 / 2), we perform a multiplicative trace inequality and find
HH;‘lqufylntSV,pwuHs—l r < C(Q/k)ierl H’YintSpruHO r
1/2
< Cla/R) Syl ol Svpwrllsly
—s+1 [ 2/ 1 —1\14+(s—1/2)—1 1/2 2/ 1 —1y14+(s—1/2)—2] 1/
< Cla/k) ™" [a*(ak™) | 2@ Jeals-1.0
= O°||ul|s-1,r-
In the case s > 1/2 we perform a standard trace estimate and find

IHE A Sy pwlls—10 < Ca/EI™ Svpwullsr < Ca/klISvpwullsis/2.0
< Oq/kq?(qgk™ 1y1+(s-1/2)=(s+3/2) ulls—1.r
= O’ ||ul|s-1,r-
By the previous two estimate we find
IHE 7™ Svpwll s < Cl™Svpwtllsr < Cakllulls—1,r-
Summarizing, we found

|| neg mtSprU|’5+1F < quHUHs 1)
|| neg ZntSprUHsI‘ <qu‘||u||s 1,I'

HHneg mtSprUHsF < Cq ||UHS r

H neg

r o™ Sy puwulls—1,0 < Cllulls—1,r:

Step 3: We estimate the term nHy | st mtS’pr in various norms. We have

InHE 6™ S pwttl|s10 < CRING™ Svpwullstir < CE|[Svpwtllsys/2.0
< Chkq*(gk™) /2= r = Cq’kl|ul|s .

By the previous estimate we also find

Hn neg ’LntSpruHsF < CkQ/k"’YlntSMpwu|’s+l,F S ng”uHS,F'
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6. Galerkin discretizations of Heterogeneous Helmholtz problems

In the case s € [0,1/2), we perform a multiplicative trace inequality and find

HnHICLqu’ylnt pwuHs 1,r < Ck(Q/k) 8+1”’Y
s 1/2
< Clq/k)™ +1H5pruHoQ||5prU|| /

1/2 1/2
< C(q/k)_s+1 [qQ(qk—1)1+(s—1/2)—0:| [qQ(qk,—l)l-i-(s—l/Q)—l] HuHs—l,F
= Cq’||ulls—1,r.

In the case s > 1/2 we perform a standard trace estimate and find

H77 neg mtSprUHs 1T < Ck‘q/k”’}/mtsv,pwuns,r < qu/k’HSV,pwUHs-i—l/Q,Q
< Ckq/kq? (g™ ) V2= ||y
= O’ ||ulls-1,r-

By the previous two estimate we find
|[nHp neg mtSpru”sF < kH’YmtSV,pw“”s,F < quk”UHs—LF'
Summarizing, we found

H77 neg mtSpruH
Hn neg ’LntsvauHSF <Cq kHuHs I

H7] neg mtSprUHsF <Cq HUHSF7

InHpy mtSvawU\ls 11 < O ||ufls-1r.

Step 4: The definition of the operator Ry in (6.86a), the triangle inequality, and
appropriate choice of ¢ yields mapping properties of R4/ as stated in (6.83). O

Finally, a simple application of [Mel12, Cor. 7.5] for nontrapping Q" with analytic bound-
ary is the following

Lemma 6.9.7. Let QT be nontrapping. Let I’ be analytic, T be a tubular neighborhood of
' and Cy,, Cy, , vg > 0. Then there exist constants C, v > 0 independent of k > ko such
that for all g1 € A(Cyy,74:T), g2 € A(Cyy, g, T) the solution ¢ € L*(T') of

2:,7790 = k[g1] + [Ong2]

satisfies
© = —[0pv], v e A(CK2(Cyy + Cg), v, QR).

Proof. We apply [Mell2, Cor. 7.5] with s4 = 0. By Item (iii) in Proposition 6.9.1 the
operator A ;: L*(I') — L2(I') is boundedly invertible. The result follows immediately
from [Mell12, Cor. 7.5] together with the bound (6.73). O
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6.9. Dirichlet-to-Neumann maps via Boundary Integral Operators

Proof. (Proof of Item (ii) in Lemma 6.5.12)
Step 1: We derive a splitting of (A} 77)_1’ similar to the results of [Mell2, Thm. 2.11].
Fix g € (0,1). Let

1 1
q'=q¢min« 1, — , — .
{ 1(AG 1)~ Hlers (s ) 11(Ap 1) 1HH51(F)<—H51(F)}

Note, that by Proposition 6.9.1 the operator Ap,: H*(I') — H'(T') is boundedly invertible
for ¢ > —1 and therefore ¢ is well defined and ¢ € (0,1). Theorem 6.9.6 applied to g gives

the decomposition
k= Ao1 + R+ AL

with R = Ry and A = k:.,zll + an,zb, as in Theorem 6.9.6. Note that by construction
1A ) Rllgrsryemsry <4 and  [[(Ap ) " Rl s (ryemrs—1r) < 4. (6.87)

Hence, A(],l + R is boundedly invertible by a geometric series argument, since

(Ab1 +R)™ = (I + (Ap ) "R (A ) (6.88)

with norm estimates
(Ao + R)_1||H5(F)<—H5(F) <(1- (j)_1||(‘46,1)_1||HS(I‘)<—HS(F)7 (6.89a)
1(Ab1 + R) s myems— ) < 0= @) HI(A0 ) s oy ms—1r)- (6.89b)

By Proposition 6.9.1 the operator Aj , : HY(T) — HY(T) is boundedly invertible for ¢ > —1.
We may decompose (A;m)*1 as follows

()" = (A5 + B+ Q. (6.90)
The operator @ is in fact given by
Q=—(A;,) " [AN (A, + B, (6.91)
since
I = ( 2,77)( ;c,n)_l = ( ;f,n)( 6,1 + R)_l +( 2},77)@

= (Apy + R+ [AD(AG, + R) ™' + (4;,)Q
= I+ [AJ(Aj; + R) ™"+ (A%,)Q

Step 2 We rewrite the difference DtN; — DtNg using the combined field equations. Using
the combined field equations (6.71) with for n as in (6.79) (for DtNy) and n = 1 (for DtNy)
we find

DtNy, — DtNg = (4;,) " [—Dk +in (—; + Kk>] — (Ap )" [—Do +i (—; + K0(>6L2)
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6. Galerkin discretizations of Heterogeneous Helmholtz problems

Adding and subtracting Dy and Ky in (6.92), employing the splitting of Dy — Dy and
K — Ky given in (6.75) in Proposition 6.9.1, and applying the splitting of (A;:,l)_l in
(6.90) we find
DtNy — DtNg = —(A4}, )~ [Dx — Do) — (A},,) " Do
(A T Kk — Ko] +in(AL,) ™ [=Y/2 + Ko
+ (A1)~ Do —i(Aj 1) Do [=Y/2 + K]
= ( 6,1)_1170 — (Ap + R)™'Dy — QDy
— (Ahy +R)"'Sp — QSp — (A}, ' Ak
+in(Ap, + R) 'Sk + inQSk + in(Ay ) 0" Ak
+in(Ap,y + R)7' [=1/2+ Kol +in@Q [-1/2 + Ko
—i(Ap1) 7t [<Y/2 + Ko
= FSO + ASO,

where the Finite Shift Operators (FSO) and the Analytic Shift Operators (ASO) are given
by
FSO = ( 6,1)71D0 — (Ao + R)™'Dy
— (Apq + R)7'Sp + in(Ap + R) 'Sk
+in(Apy + R) 7 [=1/2+ Ko
—i(Ap) 7 [Y/2 + Kol
ASO = —QDy — QSp — (A},,) " Ak
+inQSk + in(A,) 0" Ak +inQ [—Y2 + Kol .

Step 3: We analyze the Finite Shift Operators (FSO). We will show that
FSO = kB, (6.93)

where the linear operator B maps in fact from H*(I') to H*(I') and satisfies ||Bu||sr <
|ullsr, as in the assertion of the present lemma. Using the mapping properties of (Ap; +
R)~!in (6.89a) as well as (6.74), (6.78) and Item (ii) in Proposition 6.9.1 we find

1(Ap1 + R) ' Spullsr S [1Spullsr S kllullsr,
kl[(Apy + R) " Skullsr S ElSkullse S kllSkullsr S Ellullsr,
k[I(Ap1 + R) ! [=Y2 + Kol ullsr S kIl [<Y2 + Kol ullsr S Kkllullsr,
1(A4,1) 7" [=Y2+ Kol ullsr S || [=Y2 + Kol ullsr S [|ullsr-

Once we have shown

1(A6,1) ™" Do = (Apy + R) ™' Doulls,r < kllulls.r,
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6.9. Dirichlet-to-Neumann maps via Boundary Integral Operators

the assertion in (6.93) follows. Using (6.88) we find
( 6,1)71170 — (Apy + R)"'Dy = ( 6,1)71D0 (I +( 6,1)71R)71( 6,1)71D0

= [I = (I +( 6,1)_1R)_1] ( 6,1)_1D0
- - [Z(—n”(( )R

n=1

( 6,1)_1D0-

Applying the previous calculations, a geometric series argument with (6.87), the mapping
properties of (Af;)~" in Ttem (ii) in Proposition 6.9.1, the estimate ||Rullsr < Ellulls—1,0
given by Theorem 6.9.6, again the mapping properties of (A{)’l)_l and finally the mapping
properties of Dy given in (6.74) in Proposition 6.9.1 we find

1(A5,1) ™" Do—(Ab1 + R) ™ Douls,r

o0

D DM((A) TR

n=1

1 _ _
qAH( 6,1) 1R( 6,1) 1Dou

((Ab1) " R)(Ap 1)~ Dou

s,

< T s,

< [1R(AG1) ™ Doulls,r
S KlI(A51) " Doulls-1r
S kl[Doulls—1,r

S Kllulls,r-

Hence, the assertion in (6.93) follows, which concludes the analysis of the finite shift oper-
ators FSO. Summarizing, so far we have found that

DtNy — DtNy = kB + ASO,

with B as in the assertions of the present lemma.
Step 4: We analyze the Analytic Shift Operators (ASO). We have

ASO = -QDy — Q[Sp — inSk — in[-1/2 + Ko]
+ (A5 ) i Ak — A Ak].
Step 4a: We analyze the term —QDy. In view of (6.91) we have for f € H*(T")
—QDof = (A} ,) "' [ANAG, + R)™ Dof
= (A,) " [K[A(AG, + R)7' Dof + [0nA2](Ag 1 + R) ™ Dof] .

In order to apply Lemma 6.9.7, we use the mapping properties of A; and Ay given in
Theorem 6.9.6 and estimate

kl(Apq + R)_1D0f||—3/2,r + k42| ( 01+ R) ™' Do f||-1r
S EY2|(Apy + R) ' Doflls-1r
S K| Dof s
SEYP| fs s
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6. Galerkin discretizations of Heterogeneous Helmholtz problems

where we used the trivial embedding H*~'(I') ¢ H-YI') ¢ H~3/*(T), the fact that
k 4+ k%2 < k%2 the mapping property (6.89b) and finally the mapping properties of
Dy given in (6.74) in Proposition 6.9.1. Hence, for the tubular neighborhood T' given in
Theorem 6.9.6 we find

A1(Ah 1 + R) Do f € ACIEY?|| fllsr,m, T),
Aa (A + R 'Dof € A(CiE| f

for constants C7, y1 > 0 independent of k. We find Lemma 6.9.7 to be applicable, which
yields the representation

- QDOf = [[anvjl”]]7 Ujlc € A(élkS/Qer/QHf”S,Fv:Vl’ QR)? (6‘94)

S,F7717T)7

for constants C}, 41 > 0 independent of k.
Step 4b: We analyze the term

—Q[Sp —inSk —in[—1/2+ Kol
We proceed very similar to Step 4a. We estimate
E2(|(Ah + R) M [Sp — inSk — in [=1/2+ Kol] fll-1r
SEY?|[(Ah 1 + R) T [Sp — inSk — in[—Y2 + Ko]] f]lsx

< kY| [Sp — inSk — in[—Y2 + Ko] fllsr
SR 5

s,y

where we first use the trivial embedding H*(T')) ¢ H~(I'), the mapping property (6.89a),
the mapping properties of Sp, Sk and Ky given in in (6.78) and (6.74) in Proposition 6.9.1
as well as |n| < k. Proceeding as in Step 4a we find the representation

—Q[Sp — inSk — in[=Y2+ Ko]] = [0vF], v} € A(Cok®2T/2H|| £l o1, 72, Qr) (6.95)

to hold true, for constants Cy, 32 > 0 independent of k.
Step 4c: We analyze the term

(A;s,n)_l linyi" A — i Ak].

For f € H*(T") the mapping properties of A are such that Ag f € ACK | fll=1/2,05 7K ),
see (6.77) in Proposition 6.9.1. Upon extending A f with zero outside of Q, we find
Lemma 6.9.7 to be applicable, which yields the representation

(A )"l Ak = W AR = [000F], v} € ACsKE2| fll-1j20, 73, ), (6.96)

with constants Cs, 43 > 0 independent of k.
Step 5: Collecting the representations derived in (6.94), (6.95) and (6.96), we find

ASO = [8,4],  Au e ACK* 2 ||u|sr, 7, QR)
with A as in the assertions of the present lemma. Hence, the splitting
DtN;, — DtNo = kB + [0, 4]
with B and A as asserted, holds true. This concludes the proof. ]
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6.10. Dirichlet-to-Neumann map for Elasticity

6.10. Dirichlet-to-Neumann map for Elasticity

In the present section we prove positivity of the Dirichlet-to-Neumann map DtNy and pro-
pose a splitting for the difference of the Dirichlet-to-Neumann maps corresponding to linear
elasticity. Furthermore, we analyze the symbol of the finite regularity part in Lemma 6.10.5.
Following standard notation we denote by A and p the Lamé parameters. We assume p > 0

and A > 0, which is common for elastic materials, see [McLO00, p. 299]. We denote by J,
(1)

and Y, the standard Bessel functions. Furthermore, the Hankel function H,,1 is given by
H ,Sl) = Jy, +iY,. The Dirichlet-to-Neumann map is explicitly known on the unit circle in
spatial dimension two. Let u € L?(T') be given in terms of a Fourier expansion in polar
coordinates

w(0) = (uper + ubeq)e™,
nez

where e, = (cos(6),sin(0))7, eg = (—sin(0), cos(0))T and u”, uf are the Fourier coefficients.

The Dirichlet-to-Neumann map is given, see [Yual9, Eq. 2.59], by

k2 ink? ‘
DtNju = Z K—u + OQ;) Uy, + (—z’nu + zz > ufl] e e
neL " "

+Z{<—M+An)un+(mu— A u, | ege’”,

nez n

where A,, is given by, see the last equation in the proof of [Yual9, Lemma 2.7.1],
Ap=n®— a1 00,

with, see second to last equation in the proof of [Yual9, Lemma 2.7.1]

1n 1 H(l) ) 2,n 2 H(l)
n ("61) n ("52)

with compressional and shear wavenumber k1 and kg given by

k k
=  K2=—4
VA+2p VI
with A, i being the Lamé parameter. The canonical operator DtNg is derived by considering
the symbol of DtN; and passing to k& = 0. We collect some results concerning Hankel
functions in the following

R1 =

Lemma 6.10.1 (Properties of Hankel functions). There holds:
(i) HY = (=1"HY for alln € N.
(ii) Hél)(z) ~Znz for z — 0.

(iii) Hfll)(z) ~—LD(n)(2)™" forn >0 fived and z — 0.
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6. Galerkin discretizations of Heterogeneous Helmholtz problems

Proof. For Item (i) see [Olv97, Ch. 7, Eq. (4.09)]. Item (ii) and (iii) follow immediately by
the asymptotics in [Olv97, Ch. 12, Eq. (1.07),(1.08)]. O

Lemma 6.10.2. There holds:
(i) o —p =0y fori=1,2.
(ii) oGy — —|n| for k — 0.
(iii) = — 0 for k — 0.
(iv) %—)%]‘ork—ﬂ) andn > 1.

Proof. The result in Item (i) follows immediately from Lemma 6.10.1 Item (i). For Item (ii)
note that the Hankel functions satisfy the differential relation

HV'(2) = —H, (2) + ZHD(2), (6.97)

see [DLMF, Eq. 10.6.2]. Hence, for n = 0 we find together with Lemma 6.10.1

. -~ 0, (6.98)
Hél) (Z) = Inz Inz

as z — 0, which proves Item (ii) for n = 0. For n > 1 using (6.97) as well as Lemma 6.10.1
Item (iii) we find for z — 0

(1) g _ir 1) (2)" (D
zHyzl) (2) _ —2z "(Jlr)l(z) +nn~—z—T" (nt1) 2)_n +n
2\ 1
= —zn (§> +n=—n,

which proves Item (ii), in view of Item (i) in Lemma 6.10.1. For Item (iii) we use the
calculations in (6.98) to conclude

2 2 2
k _ k ~ — k :—k:21n/£11n/£2—>0,

Ao Q,1000,2 Tnry In ko

as k — 0. We turn to Item (iv). For n = 1 we use the fact that
1 1 1«
1V (z) = Hy () = ZH{(2), (6.99)
see again [DLMF, Eq. 10.6.2]. We find with (6.99)

') H()
HP () H(2)

=—2’Inz—1,

2y 5
i 2
z

—1~—z

z

Al
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6.10. Dirichlet-to-Neumann map for Elasticity

as z — 0. Hence, we find

k2 k2 k2
AT - 1— Q10002 - 1-— (1 + K,% 111/61)(1 + fi% IIIKQ)
k2
=2 2 2.2 — 0,
kiInky + K5In ko + kK5 In K1 In Ko

as k — 0. We proceed with case n > 2. We truncate the series expansions in [DLMF,
Eq. 10.2.2] and [DLMF, Eq. 10.8.1] for n > 2 to find

W) o~ (B Lo (2)
HD () ~ ==(n = 1)! (2) ~(n 2).(2) : (6.100)
as z — 0. Using again (6.97) and inserting (6.100) we find

1) HL ()

G = A m L T
Hy'(2) Hy'(2)
—nl(5) " =21 (E) T
~ - 2 . 2 n-+2 +n

Inserting the above in the definition of A,,, using the definition of k1 and k9, and performing
elementary calculations we finally find

L k2 (k% + 4p(n — 1)) (k* + 4\ + 2u)(n — 1)) L 2+ 2p)(n— 1)
An 12 —agiapp 4(n —1)(k* +2(A + 3p)n) (A+3u)n
as k — 0, which concludes the proof. O

We therefore find using Lemma 6.10.2 that

a27nk2 . inkz . .
— i+ i — =l — Oy, —inu + A — —m,u—l—zsgn(n)an,
n n
al,nk2 . ink? . .
-+ 0 — — i — Op, inp— —& — inu — isgn(n)op,
n n

as k — 0 with

0 n =0,
Op == A
AL (|| — 1) else.

Hence, DtNy is given by

DtNou = Z [(—,u —op) Uy, + (—inp + isgn(n)oy,) ufl} e e’
nes

+ Z [(—,u — o) Ul + (inp — isgn(n)oy,) ufl] ege’™.

ne”L
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6. Galerkin discretizations of Heterogeneous Helmholtz problems

Lemma 6.10.3 (Positivity of —DtNg). Let > 0 and A + %u > 0. Then the operator
—DtNg s positive, i.e.,
—(DtNou,u) >0

for all uw € HY*(I).

Proof. The positivity of —DtNj follows immediately from the positive definiteness of the
matrix corresponding to the symbol. Hence, once we find that for each n € Z the matrix

—u—op —inp ~+ isgn(n)oy,
M, = —

inp — isgn(n)oy, —u—op

is positive definite, the proof is complete. For n = 0 we have

w0
My =

0

which is trivially positive definite, since p > 0. For n # 0 we have

2u(A+2 . . 2u(A+2
o[ e R ) i s 2 il )
=
. : 2u(A+2p) 2u(A+2p)
inp — isgn(n )Wﬂ n| —1) P+ 7A+3uu (In[ =1)

Sinceu>0and)\+§u20vveﬁnd

2p(A + 2p)
(A+3p)
Hence, the top-left entry of M,, is positive for n € Z \ {0}. It is easily verified that in

fact the determinant is also positive under the assumptions of the present lemma, which
concludes the proof. O

(In] — 1) > 0.

The difference DtNy — DtNg is given by

g nk? - ink? 0 ino
DtNyu — DtNou = Z A +tou Jup + {5~ isgn(n)oy, | u, | ere
n n

ne”L

a1 n 0 an2 . r inf

+ Z on | Uy + | — +isgn(n)oy, | uy, | ege™”.

An
ne’l
We propose the k-dependent splitting
DtNkU—DtNOUZZ---: Z+ Z"':RF+AF‘ (6.101)
neZ |n|>2k |n|<2k

In the following we verify that the operator Rr is in fact an operator of order zero and its
symbol is uniformly bounded by k.
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6.10. Dirichlet-to-Neumann map for Elasticity

Lemma 6.10.4. Let n > 2x. With the above notation the uniform asymptotic expansion

H(l)/(x) 22
T——" = 4 — + T,
Hr(Ll)(x) 2n
with ) .
T T
Il < 23
holds.

Proof. The asymptotics in [DLMF, Eq. 10.20.6] and [DLMF, Eq. 10.20.9], respectively give

1
HY (nz) ~ 2e7/3 ( S )4 X

1—22
Aj (e2m/3V§C) > A4 (0) o2mi/3 A (ezm‘/%gc)

> 5
2k

1 5
V3 k—0 vs k=0

1
N
HM (nz) ~ %e_%i/i” (1 ;CZ )4 X

0—2mi/3 A (e%i/:)’u%{)

uniformly in z, with
2 1+v1—22
¢ = SV TE - (6.102)
z

We are interested in the case n > 2x, with z = x/n, ie., z € (0,1/2). We will use the
following abbreviations for now:

v~ Ak(©) S~ B(Q) \~ Cr(©) v~ i)
A~ 521@7 BNZ :2k’ CNZ ,f%’ DNZ :2k'
k=0 k=0 k=0 k=0

For the definitions of Ay, By, Ck and Dy we refer to [DLMF, Eq. 10.20.10-13]. Furthermore,
we will use the asymptotics for the Airy functions Ai and Ai’, given in [DLMF, Eq. 9.7.5
and 9.7.6]. To that end, let us introduce

=3y

2
= —§V<3/2.
We then have
efg
2/ (e2mi/315 ()1/4 P
e2”/3u%()1/4e*5 0

ING <627ri/3l/%<-> - _( NG Z(_l)k?]z’

Ai (e%i/?’ygo ~
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6. Galerkin discretizations of Heterogeneous Helmholtz problems

with ug, vg as in [DLMF, Eq. 9.7.2]. Again, we abbreviate
> u = v
k Yk k Vk
U~ (1) 2 V> (1) ek
k=0 k=0

We find after elementary calculations

1y 1y
an (x):an (nz)

H;ll)(x) Hél)(nz)

. 1 —2mi/3 pj [ o2mi/3 %C A (o2mi/3 %C
36_27”/3(1252)4 (e 1(e v )C—|— 1<e v >D

4 2
v3 v3

~ T

. L[ aife2mi/s, g ¢ 2mi/3 A1l (0271/3,,3 ¢
2e—Ti/3 <1f€:2> 4 (e . )A + ¢ (es )B
vs vs (6.103)

o—2mi/3 A (627r7l/3,/%<-> A (eQ”i/BV%C)

Y 4 c+ 5
=
C Ai(e27rz/3y§<) A n e2mi/3 Aj/ <627r1/31,§<> B

I/% 1/%
_ JEm x2<*1/2U0 +nVD
B C12VB+nUA "

We now truncate the series expansions of A, B, C, D, U and V with the remainder denoted
with a subscript r as follows:

A 1
A~ Ao(O) + ;(f) +A,, A, =0 <n4) ,
| ——
=A,
B -1/2
B~ Bo(¢) + ;(QO +B,, B, =0 (Cn4 )
| ———
=DB)
C 1/2
~—_—
=C
pD © ) (6.104)
D ~ Do(¢) + = 5= +D:, DT=0<H4>,
—_—
=Dy
up o U2 U3 1
Un~rl-—+4+ 55— 510, UT:O<>’
RS &
=Up
v V2 U3 1
Vinl— 42— 24, W:o(>_
£ & 8 '3
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6.10. Dirichlet-to-Neumann map for Elasticity

Once we have shown

¢V2UC +nVD z2
VB U4 L+0( 5], (6.105)

the result follows, since by Taylor expansion and the calculations in (6.103) we have

H(”’ (®) __ il V2UC +nVD

“HO@) (Y2VB +nUA

- nz_x2<1+o(i§>>
—n<1—5”§2+0(21)>(1+0(23>>
(=m0 (3)) (0 (5)

2

+:v +
=—-n+—+r
2n

with , A
x T
Ir| < S T 3

n

We now verify (6.105). To that end, we insert (6.104) into

¢Y2UC +nVD
CY2VB+nUA

We first simplify the numerator in the above. Elementary calculations show, with the use
of (6.104),

(MPUC VD _ (PUC, Dy <m2> '

CI2VB+nUA  (Y2VB+nUA n3

The denominator is treated similarly with the aid of Taylor expansion. Again with appro-
priate use of (6.104) we find

(Y2UC+nVD  (TY2U,Cp +nV,D, @ <x2)
nd )’

CY2VB+nUA — (Y2V,B, +nU,A, n3

Inserting the definitions of Ay, By, Cp, D), U, and V), see [DLMF, Eq. 9.7.2 and 10.20.10-
13], and Taylor expanding the above yields the result. O

Lemma 6.10.5. Let I' be the unit circle in dimension d = 2 then the operator DtN —DtNg
admits a splitting
DtN, — DtNg = Rr + Ar

defined as in (6.101). The symbol of Rr is uniformly bounded by k.
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6. Galerkin discretizations of Heterogeneous Helmholtz problems

Proof. The estimate for the symbol of Rr follows once we have shown

ag’nk2

An
2
aLnk

An

+ on <k’

+on| Sk,

ink?
A,

—isgn(n)o,| Sk

(6.106)
(6.107)

(6.108)

for n > 2k. In view of Lemma 6.10.2 we just perform the analysis for positive n. By

Lemma 6.10.4 we have )

K
Qip =—Nn+ =+
’ 2n
with |r;| < S—z + Z—i. We first show
nk?
— —oy| Sk
A, e
; _ 2u(A+2p) ; ~ _ 2p(A+2p)
Since o, = W(]n\ — 1), let us introduce o = “Ovian) - Hence,
nk? . . 2 k
— —on| Sk is equivalent to — —0| < —.
We now use the asymptotics for «; ,, to find
2 2 2,2 2 2
9 K1+ Ky | KIK) K1 K3
X nQ2n =N" — —n(r1+r2) + —ro+ ==r1 +rira.
1,n02,n 5 An? (r1 +72) on 2 T 5,71 172
Note that
K1+ K3 w2l
2 o
and therefore
1 K’k3 K2 K2
A1 02y, = n?— k= + 1722 —n(ry +1r9) + ~try + ~2r) + 7o,
o 4n 2n 2n
We calculate
k2 k2
—_—— = —— — 0
Ay n? — a1 000
k2
T oo g2l _ M it K3 -7
n? —n? + k%= — L2 +n(ry +r2) — 5hre — 5211 — 1172
k2 ~

- 33 -7
— i+ n(r1+re) — ghro — 52r1 —rirg

Sk
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6.10. Dirichlet-to-Neumann map for Elasticity

Factorizing the denominator we find

k2 k2
— —0="5—"""—0
An E(1+p)
- 5 P
I+p

with p given by

~ 2.2 2 2
G [ KIKZ K2 K2
=— =2 +n(r+r) — —tro— —2r —rira |
p k2< 4n2+(1+2) 5,72 " 5,71 12)

One readily finds

k

|p| 5 )

n
due to the estimates for r; and the fact that n > 2k. Hence, estimate (6.108) follows.
Estimates (6.106) and (6.107) follow analogously. O
Remark 6.10.6. Analysis of the symbol of Ar is subject to future work. .
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A. Additional numerical results - FOSLS |

For completeness we present additional convergence plots concerning the numerical experi-
ments corresponding to the Examples 4.4.1 and 4.4.2 considered in Chapter 4. In Figure A.1
we plot [le"[|y o, employing Brezzi-Douglas-Marini elements for the problem considered in
Example 4.4.1. The Figures A.2 and A.3 depicting [|Ve"||, , are essentially the same just
one order less than ||e“\|O’Q. The numerical results for the finite regularity solution con-
sidered in Example 4.4.2 are plotted in Figure A.4 for ||e"||, o, in Figure A.5 for ||Ve"|, o
and in Figure A.6 for [|e?|, . 7 7
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i 2
1e400- % .
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2
Texlly % ¢
1e-04- M
6
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Figure A.1.: (cf. Example 4.4.1) Convergence of [[e“[[, vs. VDOF ~ 1/h employing
V3, (Th) = BDM}, (Tp)-
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A. Additional numerical results - FOSLS I
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Figure A.2.: (cf. Example 4.4.1) Convergence of [|[Ve"||; o vs. VDOF ~ 1/h employing
Vo (Tn) =RT) _(Th).
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Figure A.3.: (cf. Example 4.4.1) Convergence of [[Ve®[|; o vs. VDOF ~ 1/h employing
V3, (Th) = BDM (7).
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B. Additional numerical results - FOSLS Il

For completeness we present additional convergence plots concerning the numerical exper-
iments corresponding to the Examples 5.4.1 and 5.4.2 considered in Chapter 5.

In Figure B.1 we plot |le"||, o, employing Brezzi-Douglas-Marini elements for the problem
considered in Example 5.4.1. The Figures B.2 and B.3 depicting ||Ve"||, o are essentially
the same just one order less than ||e“HO7Q. The numerical results for the finite regularity
solution considered in Example 5.4.2 are plotted in Figure B.4 for |[e"|, , in Figure B.5
for [Ve"||y o, in Figure B.6 for [le?(|, o and in Figure B.7 [|e® - n|, 1 7
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B. Additional numerical results - FOSLS II
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B. Additional numerical results - FOSLS II
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