

Abstract

Within the scope of semiconductor processing, topography simulation is
used to predict the interface evolution of a material stack built on top of
a wafer. The involved processing steps can be very different, e.g., a new
material layer is deposited on the wafer or an existing material stack is etched.
Regardless of the process, the continued scaling of microelectronic devices
and circuits into the single digit nanometer regime requires high accuracy
simulations for complex geometries and process parameters.

Considering a typical dry etching process, the wafer is situated in a vacuum
reactor and the full wafer surface is exposed to a low pressure gas phase
composed of one or more process gases. Additionally, ions are accelerated
vertically towards the wafer and bombard the surface in a specific manner.
This is typically used to achieve a directional etching on exposed regions of
the surface following specific fabrication process parameters.

Predicting such processes on a feature-scale level requires high accuracy
three-dimensional simulations which are – as a consequence – computationally
very expensive. Therefore, the focus of this work is to accelerate such topog-
raphy simulations to reduce the simulation runtime, allowing to ultimately
increase the pace of research and development of novel devices and circuits.

For high accuracy simulations, the runtime is dominated by the particle
transport, which describes, e.g., the amount of etchant particles arriving at a
specific region of a surface. Therefore, in this work, computational techniques
to accelerate the particle transport for three-dimensional feature-scale process
simulations are investigated.

A simulation platform, capable of multi-material advection, is developed
and used to implement, and validate the presented approaches. The ap-
proaches include

- a reduction of the floating point arithmetics used during the calculation
of the ballistic trajectories of the particles,

- an adaptive integration scheme to reduce the number of necessary visi-
bility tests towards the particle sources,

- an iterative partitioning of the integration points on the surface, and

- a one-dimensional approximation of the particle flux for symmetric sur-
face geometries.

Finally, the presented approaches are applied in conjunction to a three-
dimensional multi-material etching simulation. It is shown that the overall
speedup achieved is above 14 for a wide range of configurations.

i

Kurzfassung

In der Halbleiterfertigung wird mithilfe von Topographiesimulationen die
Veränderung der sich auf dem Wafer befindlichen Materialstrukturen berech-
net. Die simulierten Prozessschritte können sehr unterschiedlich sein. Zwei
Beispiele sind das Abscheiden einer neuen Materialschicht auf einer beste-
henden Struktur oder das Ätzen einer aus mehreren Materialien bestehenden
Struktur. Unabhängig vom Prozess sind durch die immer weiter voranschrei-
tende Miniaturisierung der zu fertigenden Strukturen – wobei sich die kleinsten
Abmessungen auf den einstellingen Nanometer-Bereich zubewegen – Simula-
tionen mit hoher Genauigkeit für komplexe Geometrien und Prozessparameter
nötig.

Bei einem typischen Trockenätz-Verfahren befindet sich der Wafer in einem
Vakuumreaktor und die ganze Waferoberfläche wird einer aus den Prozessga-
sen bestehenden Niederdruck-Gasphase ausgesetzt. Zusätzlich werden Ionen
vertikal beschleunigt um die Oberflächenreaktion selektiv zu beinflussen. Solch
ein Verfahren wird typischerweise eingesetzt, um ein durch Prozessparameter
gesteuertes direktionales Ätzverhalten in exponierten Regionen der Oberfläche
zu erreichen.

Um solche Prozesse zu simulieren, werden dreidimensionale Topographie-
simulationen auf Strukturebene verwendet, die viel Rechenzeit in Anspruch
nehmen. Ziel dieser Arbeit ist es deshalb, solche Topographiesimulationen zu
beschleunigen und somit zur Erforschung und Entwicklung von neuartigen
Halbleiterbauelementen beizutragen.

Bei Simulationen mit hoher Genauigkeit wird die Laufzeit durch die Be-
rechnung des Partikeltransports, der die Verteilung der am Prozess beteiligten
Partikelarten auf der Strukturoberfläche berschreibt, dominiert. In dieser Ar-
beit werden deshalb Techniken zur Beschleunigung des Partikeltransports in
dreidimensionalen Prozesssimulationen auf Strukturebene untersucht.

Eine Simulationsplattform, geeignet für die Simulation von aus mehreren
Materialien bestehenden Strukturen, wird entwickelt und eingesetzt, um die
vorgestellten Ansätze zu implementieren und zu validieren. Die Ansätze um-
fassen

- eine Reduktion der arithmetischen Genauigkeit für die Berechnung der
ballisitischen Trajektorien der Partikel,

- eine adaptives Integrationsschema, um die Anzahl von notwendigen
Sichtbarkeitstests bezüglich der Partikelquellen zu reduzieren,

- eine iterative Partitionierung der Integrationspunkte auf der Struktur-
oberfläche, und

- eine eindimensionale Approximation des Partikelflusses für Strukturen
mit symmetrischer Oberfläche.

Schlussendlich kommen die vorgestellten Ansätze kombiniert in einer drei-
dimensionalen Simulation eines Ätzprozesses zum Einsatz. Es wird gezeigt,
dass für eine große Auswahl an Konfigurationen eine Gesamtbeschleunigung
der Simulation um einen Faktor größer 14 erreicht wird.

ii

Acknowledgement

I always enjoyed being a member of the Institute for Microelectronics and
I want to thank especially my advisor Siegfried Selberherr (who founded the
institute 30 years ago) for providing his full support and an excellent working
environment.

I want to thank Josef Weinbub (who leads the Christian Doppler Labora-
tory for High Performance Technology Computer-Aided Design) and Andreas
Hössinger (Silvaco) for a very successful approach to unite the demands in a
joint research project in a fruitful manner.

Furthermore, I want to thank the whole staff (and former staff I met) of
the institute and especially Lado, Xaver, Luiz, Lukas, Georgios, and Vito.

iii

Contents

Contents iv

1 Introduction 1
1.1 Semiconductor Processing . 2
1.2 Motivational Example: Plasma Etching Simulation 3

1.2.1 Copper Interconnect Fabrication 3
1.2.2 Plasma Etching Process . 5
1.2.3 Simulation Types . 6
1.2.4 Feature-Scale Etching Simulation 6

1.2.4.1 Surface Velocity . 7
1.2.4.2 Particle Transport 7
1.2.4.3 Surface Advection 10
1.2.4.4 Computational Demands 10

1.3 Research Goals . 11
1.4 Outline of the Thesis . 11

2 Review of Methods for Particle Transport and Surface Evolution 13
2.1 Software and Methods . 13
2.2 Feature-Scale Particle Transport . 15

2.2.1 Surface Rate Calculation . 17
2.2.1.1 Straightforward Approach 18
2.2.1.2 Bottom-Up Iterative Approach 21
2.2.1.3 Top-Down Monte Carlo Approach 22

2.2.2 Efficient Visibility/Intersection Tests 23
2.2.2.1 Ray-Surface Intersection 24

2.3 Surface Evolution Using the Level-Set Method 25
2.3.1 The Level-Set Method . 27
2.3.2 Velocity Extension . 28
2.3.3 Sustaining a Signed-Distance Property 28
2.3.4 Discretization . 29

2.3.4.1 Spatial Derivatives 29
2.3.4.2 Hamiltonian Discretization 30
2.3.4.3 Temporal Discretization 31

2.3.5 Data Structures . 31
2.3.6 Surface Extraction . 32

2.4 Summary . 32

iv

3 Simulation Platform 35
3.1 Requirements for Feature-Scale Process Simulation 37

3.1.1 Boundary Conditions . 38
3.1.2 Multi-Material Advection . 40
3.1.3 Velocity Extension . 44
3.1.4 Ray-Surface Intersection . 44

3.2 Software Design . 44
3.3 Test Cases . 49

3.3.1 Enright Test . 49
3.3.2 Material Dependent Isotropic Etching 50
3.3.3 Simple Bosch Process . 54

3.4 Benchmarks . 56
3.5 Summary . 58

4 Adaptive Visibility Sampling 59
4.1 Subdivided Icosahedron . 61
4.2 Numerical Integration . 62
4.3 Adaptive Sampling Scheme . 65
4.4 Evaluation Results . 66
4.5 Performance Results . 68
4.6 Summary . 71

5 Ray-Surface Intersection Tests for Particle Transport 73
5.1 Single-Precision Ray Casting . 75
5.2 Ray Casting Performance for Non-Imaging Applications 77
5.3 Temporary Explicit Meshes for Flux Calculation 80
5.4 Summary . 83

6 Sparse Evaluation of Surface Velocities 85
6.1 Iterative Partitioning Scheme . 87
6.2 Interpolation Between Sparse Points 88
6.3 Evaluation and Performance . 90
6.4 Summary . 94

7 Approximation of Flux in High Aspect Ratio Structures 97
7.1 One-Dimensional Radiosity-Based Particle Transport 98
7.2 View Factors . 99

7.2.1 Trench View Factors . 99
7.2.2 Hole View Factors . 101

7.3 Validation and Results . 102
7.4 Summary . 103

8 Combining Acceleration Techniques for Direct Flux 107

9 Summary and Outlook 111

A Supplementary Material Chapter 3 113

v

A.1 Enright Test . 114
A.2 Material Dependent Isotropic Etching 118
A.3 Simple Bosch Process . 121

B Supplementary Material Chapter 4 125
B.1 Analytical Solutions for Direct Flux from Power Cosine Sources . . . 125

C Supplementary Material Chapter 6 127
C.1 Additional Results . 127
C.2 Algorithm Subroutines . 130

D Supplementary Material Chapter 7 133

Bibliography 135

Own Publications 143

Curriculum Vitae 145

vi

Chapter 1

Introduction

Comparing the computational capabilities of today’s smartphones to computers
from one or two decades ago, the influence of semiconductor technology on our
lives is unquestionable. Today, in 2018, a high-end smartphone is built around a
hexa-core or octa-core processor1 running at a clock speed of roughly 2GHz and
equipped with about 8MB of cache. The processor’s transistors are created using
semiconductor manufacturing processes with a metal pitch2 of about 35 nm. This
results in a total of a few billion transistors on the processor die interconnected with
several kilometers of metal lines. In 2008, similar computing power could be found
in a high-end desktop computer with a quad-core processor3 and 8MB of cache run-
ning at a clock speed of around 3GHz. This by now outdated processor consisted
of about 1 billion transistors with a metal pitch of 160 nm. In 1998, a device with
similar computing power would have found its place somewhere in the second half
of the famous list of the world’s top 500 supercomputers. Back in the day, in this
list, the top-ranked supercomputers consisted of hundreds of interconnected single-
core processors4. The metal pitch was around 500 nm and processors were clocked
around 200MHz.

The production of reliable and energy-efficient structures for today’s micropro-
cessors is made possible by the expertise of engineers and researchers at universi-
ties and in the semiconductor industry. Most of today’s production processes are
conducted in meticulously calibrated reactor setups and are sensitive to variations
produced by the preceding processing steps. As a consequence, optimizing a produc-
tion process or developing a new sequence of processes has become a very expensive
endeavor. Thus, computer simulations are more and more used to partly replace
expensive and lengthy experimental process runs. In all areas of semiconductor
product development, computer simulations have become an integral part and are
also key to gain additional insights into the utilized processes.

An important branch of simulation-based electronic design automation is tech-
nology computer-aided design (TCAD) which models the fabrication and the op-
eration of semiconductor devices and circuits. The modeling of the fabrication is

1Apple A11 Bionic (hexa-core), Samsung Exynos 9 Series (octa-core)
2The minimum lateral distance between 2 transistor contacts.
3Intel i7 CPU 940 (quad-core)
4Sun UltraSPARC I/II, IBM POWER2 SC

1

called Process TCAD and includes simulations of etching, deposition, diffusion, and
implantation processing steps. The simulated device structures are forwarded to De-
vice TCAD simulations to determining the electrical characteristics, which in turn
are used by Circuit TCAD to simulate the behavior of electronic circuits consisting
of multiple interconnected devices.

This work focuses on specific aspects of Process TCAD, where nowadays the
decreasing physical dimensions of a single device combined with vertical design lay-
outs demand for three-dimensional simulations. For example, if a three-dimensional
geometry cannot be approximated as constant in one dimension, the influence of
the surrounding geometry on the etch rates (caused by shadowing of parts of the
surface) of a plasma etching process (a key topography-changing process) cannot
be considered in a two-dimensional simulation. When keeping the resolution on
the surface constant, a three-dimensional simulation increases the computational
demands. This is noticeable especially when considering the simulation times for
etching processes. The accurate calculation of the etch rates on a highly resolved
surface is the primary bottleneck, accounting for the majority of the total runtime
of the overall simulation. The models for the etch rates depend on the local sur-
face rates of the etchants. In turn, the computational methods used for surface
rate calculation constitute nearly the entire computational load of the etch rate cal-
culation [1]. Therein lies a fundamentally important demand for computationally
efficient, high performance numerical methods for the surface rate calculation. This
demand is the underlying motivation for this work, which focuses on reducing this
common computational bottleneck arising in the three-dimensional simulation of an
etching process but also in a deposition process.

The remainder of this section lays the groundwork and is arranged as follows:
Section 1.1 provides a brief summary of the typical stages in a microprocessor fab-
rication process. To motivate this research, Section 1.2 introduces an example ap-
plication of a plasma etching process and its simulation. Finally, the research goals
are formulated in Section 1.3 and an outline for the rest of this work is provided in
Section 1.4.

1.1 Semiconductor Processing

As this work investigates problems within the general setting of Process TCAD,
here, typical processing steps are discussed in an abstract manner to provide the
context for the discussed topics. The following items provide a brief overview of the
processing stages during the production of a microprocessor:

(a) The surface of the silicon wafer is prepared for the first processing steps, e.g.,
cleaned and polished.

(b) A specific sequence of processing steps is performed to create the transistors at
the desired positions. Depending on the technology of the chip generation, the
processing sequence is different. Common processing steps include, lithogra-
phy, etching, deposition, oxidation, implantation, diffusion, and planarization.
A majority of the etching and deposition processing steps are conducted in

2

a vacuum reactor; the goal is to expose the full wafer surface to a controlled
environment to maximize the yield, i.e., the portion of properly functioning
devices. The gas phase in the reactor is composed out of one or more process
gases; the gas composition is chosen to induce the desired surface reaction on
the exposed materials stack on the wafer.

(c) By subsequent processing steps, vertical metal contacts to the terminals of
the devices (e.g., transistors) are created and the devices are sealed with a
dielectric.

(d) The following processing steps create the conducting connections between, for
example, the transistor terminals according to the circuit design. To achieve
complex connection networks, multiple layers of metal lines, vertically con-
nected through vias, are necessary. The first metal layers start with a pitch
size similar to the transistor pitch. The subsequent metal layers have incre-
mentally increasing dimensions, where the dimensions of the outermost metal
layer are suitable to connect the processor to the periphery.

(e) The separation of the wafer into single semiconductor chips is the last process-
ing step on the full wafer; it is typically followed by packaging each individual
chip into a form suitable for the final application target.

Items (b) to (c) are typically referred to as front-end-of-line; (d) is called back-end-
of-line. Both together represent the front-end of the production, while step (e) is
referred to as back-end of production.

1.2 Motivational Example: Plasma Etching

Simulation for Copper Interconnects

Etching is a fundamental processing step. To further outline the challenges and ap-
proaches associated with it, an exemplaric etching simulation scenario is introduced
and discussed in order to motivate the research presented in this work.

First, a sequence of processing steps, used to fabricate a copper metal layer, is
introduced. Then, a brief characterization of a plasma etching process in general is
provided by relating it to one of the processing steps, namely the plasma etching of
a dielectric layer. It follows a discussion on the demarcation between reactor-scale
and feature-scale simulations. Then, an etching simulation of the aforementioned
dielectric layer is presented. The commonly involved models and typical choices for
computational tasks are briefly discussed and the runtime consumed by these tasks
is put in relation.

1.2.1 Copper Interconnect Fabrication

There are various process sequences to fabricate a metal layer above an existing
metal layer [2]. All have in common that vertical conducting connections (vias)
as well as horizontal connections (lines) have to be created and bonded together.

3

(a) Materials (b) Initial geometry (c) Deposition

(d) Lithography (e) Etching (f) Deposition

(g) Lithography (h) Etching (i) Etching

(j) Deposition (k) Deposition (l) Planarization

Figure 1.1: The “self-aligned dual-damascene process” is used to create a copper metal layer. Fig-
ures (b) to (l) illustrate all processing steps to create a metalization layer on top of an existing met-
alization layer (the square domain is clipped along one axis for better visibility). First row (b) to (c):
Initial patterned planar conductor and deposition of three layers: A diffusion barrier, a dielectric
material, and an etch stop material. Second row (d) to (f): Patterning of the etch stop layer (at the
position of the vias) including the deposition of the second dielectric layer. Third row (g) to (i): Pat-
terning of the dielectric layers (vias and lines) including opening of the diffusion barrier layer around
the position of the via. Last row (j) to (l): Copper metalization including the deposition of a metal
seed layer and chemical-mechanical planarization after the copper deposition.

Depending on the metal used for the connections, the required process sequence
can be quite different. Here, we introduce a basic process sequence referred to as
“self-aligned dual-damascene process” [2][3]. It is used to process a copper metal
layer including vias and lines [4]. The processing steps are visualized in Figure 1.1

4

for a generic connection layout with three vias; the following describes each step in
more detail:

(a) Legend of the different materials involved in the following steps.

(b) Initial surface of the wafer: The lines of the lower metal layer are visible; the
position for the vias to the next metal layer are noticeable as the diameter is
widened slightly. The copper region is surrounded by a metal seed layer.

(c) Three layers are deposited on the planar surface: A thin barrier to prevent the
copper region from diffusing into the dielectric layer, a thick dielectric layer
to embed the vias, and a thin etch stop layer on top of the dielectric layer.

(d) A photoresist is patterned on top of the dielectric layer with the positions of
the vias.

(e) The pattern of the photoresist is transferred to the etch stop layer.

(f) After the photoresist is removed, a second dielectric layer is deposited to embed
the metal lines. The two dielectric layers are now directly connected at the
desired positions of the vias.

(g) Again, a photoresist is patterned on top of the dielectric layer, now patterned
with the vias and lines.

(h) The pattern of the vias and lines is transferred to the dielectric layers using a
single plasma etching process. The images show the result of perfect vertically
selective etching and without any etching of the etch stop layer and diffusion
barrier.

(i) The exposed area of the diffusion barrier is removed and the underlying copper
contact is now open.

(j) A thin layer of seed metal is deposited on the whole surface; it serves as a
seed for the crystallization and prevents the copper from diffusing into the
dielectric layer.

(k) The cavities for the vias and lines are overfilled with copper using a deposition
process.

(l) In a chemical-mechanical-planarization process, the copper above the dielectric
layer is removed and a planar wafer surface is obtained; ready to start with
the next metalization layer.

1.2.2 Plasma Etching Process

The etching of the dielectric material during the metal layer processing (Figure 1.1h)
is in practice realized using a plasma etching process which exposes the wafer surface
to a reactive gas phase (plasma) in a vacuum reactor. The gas phase in the reactor
is controlled with a gas inlet and a gas outlet leading to a permanent gas stream.

5

The volatile reaction products are carried away with the gas stream, while other
reaction products may stick to the wafer surface or re-deposit on another location.
Usually, the etching process is conducted for a predefined time span. A wide variety
of plasma etching configurations to achieve various processing goals exist. The
configurations differ with regard to the pressure and temperature inside the reactor,
the composition of the gas phase, how the plasma is created, and if (or how) the
ions in the plasma are accelerated towards the wafer surface.

1.2.3 Simulation Types

Etching process simulations can be partitioned into two major types [5]:

Reactor-Scale. The simulation domain is the full reactor chamber or an important
part of it [6], which enables, for example, that uniform properties of the angular
and energetic particle distribution in the gas phase over the full surface of the
wafer can be an optimization target. Geometric details of the topography on
the wafer surface are not modeled explicitly.

Feature-Scale. The simulation domain is a region of the wafer surface. A common
reason for a feature-scale simulation of an etching process is to predict the
topographical change of the material stack in the region of interest.

Due to this work’s focus on three-dimensional feature-scale simulations, the following
provides more details for this type of simulation.

1.2.4 Feature-Scale Etching Simulation

The simulation domain of a feature-scale simulation is usually a rectangular region of
the wafer surface containing all geometry details of the stacked materials — forming
a device — generated in the preceding processing steps. The lateral boundaries of
the simulation domain are usually modeled using reflective or periodic boundary
conditions. At the top, towards the reactor chamber, the simulation domain is
delimited by a “source plane”. By defining angular and energetic distributions of
the involved process gas species on the source plane, reactor-scale and feature-scale
simulations are decoupled. Figure 1.2 shows an example of a feature-scale simulation
domain using the same material stack and geometry introduced in Figure 1.1.

In Figure 1.1h, the result of the etching process is only shown schematically,
assuming perfect vertically selective etching and no etching of the other exposed
materials. In contrast, Figure 1.3 illustrates the resulting topography when the
etching process is simulated in a three-dimensional feature-scale simulation. With-
out any knowledge about the simulation models in use, it is apparent that all exposed
materials are influenced during the etching process. How the topography changes
during the etching process is defined by the model for the local etch rates, or more
generally, the surface velocities. In advanced models the surface velocity depends
on the particle transport of the involved gases inside the feature-scale simulation
domain. These advanced models are important for three-dimensional etching and
deposition simulations in general and inevitable for high aspect ratio geometries

6

(a) Larger layout region (b) Representative feature (c) Simulation domain

Figure 1.2: A larger region of a design layout on a wafer (a), a closer look on a representative
feature (b), and the resulting feature-scale simulation domain with indicated domain boundaries
in red (c).

(cf. Chapter 7), where the results are sensitive to the accuracy of the solution to the
particle transport.

1.2.4.1 Surface Velocity

The particle transport through the gas phase to the surface yields a surface rate
distribution for each particle type on the exposed surface. Depending on the particle
type, the rate is included in the surface velocity model as a flux rate or sputter rate
for neutral particles and accelerated particles (ions), respectively. In simple models,
a linear dependence on the surface rates is assumed for the surface velocity. The
normal surface velocity Vn at position x on the surface can the be written as

Vn(x) =

Q

q=1

Rq(x) · Cq(M(x)) , (1.1)

where Q is the number of simulated particle types, Rq(x) is the surface rate of
particle type q at position x, and Cq(M(x)) is a factor depending only on the
material M at x.

1.2.4.2 Particle Transport

To obtain the surface rate distributions R(x) on the surface, the transport of the
particles from the source plane to the surface must be computed. Due to the low
pressures in the reactor chambers and the small geometric extensions of the feature-
scale region, particle-particle collisions are typically neglected as the mean free path
of a particle is much larger than the domain extensions [5]. This justifies the as-
sumption of ballistic transport of particles and the use of line-of-sight methods, if
electromagnetic forces on charged particles are neglected.

Depending on the properties of particle sources, material properties, and feature
geometry, the incorporation of the re-emission of particles from the surface in the
transport model can be very important. For example, in the etching simulation of a

7

(a) T = 0, initial domain (b) T = 0.5, shortly after
the etch stop layer was reached

(c) T = 1.0, shortly after
the diffusion barrier was reached

(d) T = 1.5, final topography

Figure 1.3: Results of a feature-scale etching simulation of the dielectric layer in a “self-aligned
dual-damascene process” (cf. Figure 1.1h). (a) Initial domain. (b)-(d) Clipped view of the three-
dimensional domain for T = [0.5, 1.0, 1.5]. The top surface, which is exposed to the process gases,
is visualized as red line.

high aspect ratio trench, the vertical surface rate distribution of particles is strongly
influenced by the re-emission properties of the sidewalls (cf. Section 7.3).

The numerical methods used to model the particle transport can be divided into
three main groups:

(a) In the “straightforward approach”, the surface, as well as the source plane,
is discretized into Ns elements (e.g., using triangles). Furthermore, also the
angular and energetic flux distribution is discretized by an appropriate set of
Nf basis functions (e.g., subdivision of the solid angle and a binning scheme for
energies). From this discretization, a linear system of equations with Ns ·Nf

unknowns and O(N2
s) non-zero entries is assembled. Constructing the system

matrix requires visibility information between all elements.

(b) In the bottom-up iterative scheme, the surface is discretized and the direct flux
for each surface element is calculated by numerical integration over the solid

8

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

physical time T [au]

10−1

100

101

102

ru
n
ti
m
e
co
n
su
m
p
ti
on

(p
er
ce
n
t)

surface rates

surface representation

surface velocity

surface advection

other tasks

Figure 1.4: Runtime of the main computational tasks (logarithmic scale) for all time steps (T = 0
to T = 1.5) (cf. Figure 1.3).

angle under which the source plane is visible. For each surface element, an
averaged representation of the incoming particles is maintained. A number of
iterations is then performed, where the flux rates are updated by numerical
integration over the solid angle under which the surface is visible. The number
of iterations is equal to the number of considered re-emissions.

(c) In the top-down approach, the surface is discretized and particles are traced
from random locations on the source plane according to the angular and en-
ergetic distribution of the particle sources. At the first intersection with the
surface, a contribution to the local surface rate is calculated and a new par-
ticle is re-emitted according to the local surface re-emission properties. After
a fixed number of re-emissions or a threshold condition for the energy of the
particle the tracing is terminated.

All three approaches have in common that a large number of visibility/intersection
tests are involved, either providing the information if two points in the domain are
mutually visible (not obscured) or which is the first element intersecting a path
starting from an element in a certain direction.

The particle transport calculation has to be repeated in each time step of a
simulation due to the changed topography of the surface. When using any of the
numerical methods listed above in a three-dimensional etching simulation, it con-
stitutes the major part of the computational load in each time step.

9

1.2.4.3 Surface Advection

The advection of the exposed surfaces is preferentially realized by the utilization
of the level-set method (cf. Section 2.1). In contrast to cell-based or mesh-based
methods, it provides a robust framework to deal with topological changes of the
surface, for example, when a surface splits in two parts or merges with itself. The
level-set equation (1.2) relates the temporal change of a scalar level-set function φ
to the norm of the gradient of φ using a scalar velocity field Vext(x) as a prefactor.
The velocity field Vext is not only defined on the surface, but in the whole domain.
It is constructed via an appropriate extension of the surface velocities Vn; a simple
construction scheme is to use the value at the closest point on the surface.

∂φ(x)

∂t
= Vext(x) ∇φ(x) (1.2)

Common practice is to initialize φ so that the surface in question is represented
implicitly by the zero-level-set of φ. The evolution of the surface over time is ob-
tained by solving (1.2). The spatial discretization of ∇φ is usually accomplished
using suitable higher-order finite-difference schemes on a Cartesian grid [7]. A sim-
ple choice for the temporal discretization is the explicit Euler method. To obtain a
stable scheme, a maximum time step of

Δt =
Δh

|Vextmax |
· αCFL (1.3)

is necessary, where Δh is the spatial grid spacing, Vextmax is the maximum value
in the velocity field, and αCFL ∈]0, 1] is a positive constant depending on the
discretization (cf. Section 2.3.4.3). As a consequence, for a given physical simulation
time, the number of necessary time steps grows linear with the resolution of the
surface.

1.2.4.4 Computational Demands

Assuming the level-set method is used for surface advection, the common computa-
tional tasks in one time step of a simulation are

(a) the preparation of a suitable surface representation for the surface rate calcu-
lations,

(b) the calculation of the surface rate distributions on the surface,

(c) the evaluation of the surface velocity models using the surface rate distribu-
tions, and

(d) the advection of the level-set function according to the computed surface ve-
locity field (e.g., solving (1.2)).

Figure 1.4 depicts the runtime for each of these tasks based on an exemplary etching
simulation of the dielectric layer shown in Figure 1.3. The simulation is performed
on a 16-core workstation (WS2, cf. Section 3.4) and the surface rate calculation is

10

parallelized (OpenMP, 32 threads) as well as the surface advection. The horizontal
resolution of the domain is 192 × 192 grid cells. The surface velocity is modeled
using a vertically focused source of a single particle species according to

Vn(x) = R(x) · C(M(x)) . (1.4)

In the particle transport model only the direct flux rate is considered; a bottom-up
approach with 5120 sampling directions to integrate the arriving particle distribution
at each surface element is used. The calculation of the surface rates consumes the
major part of the overall runtime of the simulation.

1.3 Research Goals

The goal of this work is to provide techniques to reduce the calculation time of
particle transport models – constituting the major computational bottleneck – in
three-dimensional feature-scale process simulations. In particular, the focus is on
etching and deposition processes. Figure 1.4 shows that even for low surface resolu-
tions and simple models for the particle transport, e.g., only considering the direct
flux rate and ignoring contributions from re-emissions, the surface rate calculation
by far takes up the majority of the overall runtime of the simulation: A perceptible
speedup of the underlying numerical methods of the surface rate calculation would
therefore equate to a nearly identical speedup for the overall runtime; this holds for
a wide range of etching as well as deposition simulations. Such a runtime reduction
is highly desirable as it paves the way for high surface resolutions and the option to
integrate advanced models capturing effects neglected before because of unfeasible
simulation runtimes.

Another important goal of this work is to develop numerically robust methods
for arbitrary geometries, which have a clear interface and can be straightforwardly
integrated into existing simulation tools.

Research Setting. The research presented in this work was conducted within
the scope of the Christian Doppler Laboratory for High Performance Technology
Computer-Aided Design (TCAD). The Christian Doppler Association funds cooper-
ations between companies and research institutions pursuing application-orientated
basic research. In this case, the cooperation was established between the Institute
for Microelectronics at the TU Wien and Silvaco Inc., a company developing and
providing electronic device automation and TCAD software tools.

1.4 Outline of the Thesis

Chapter 2 provides an overview of currently available software frameworks for
feature-scale process simulations and introduces commonly used numerical methods
for the particle transport, which are a focus for this work. The level-set method
(including its common discretization schemes) is introduced in more detail as it is
used as foundation for the surface advection in many frameworks.

11

Chapter 3 introduces the developed simulation platform which is used in all
subsequent chapters to implement, validate, and test the accuracy and performance
of new numerical approaches for the flux rate calculation.

Chapter 4 presents an approach to accelerate the direct flux calculations in
three-dimensional process simulations: Using a subdivided icosahedron to define the
search directions, it is shown that the surface rate calculation can be accelerated
by a factor of at least two when adaptively refining the search directions only near
the aperture boundary. If the refinement is initialized on a level appropriate to the
expected topography, the accuracy of the resulting surface rates is not reduced.

Chapter 5 presents an approach to perform the visibility calculations for the
surface rate calculation on a temporarily generated explicit surface mesh utilizing
modern hardware-tailored single-precision ray tracing frameworks. When compared
to ray tracing directly on the level-set data structure, a speedup of at least a factor
of 3 is attested.

Chapter 6 presents an approach to evaluate the surface rates only on a sparse set
of points on the surface to reduce the computational effort. This sparse set of points
is generated according to application-specific requirements using an iterative parti-
tioning scheme. The resulting sparse surface rates are “diffused” in the neighborhood
to approximate a linear interpolation on the whole surface. The obtained speedup
factors range from 2 to 8 and the produced deviations of the surface position are
below 3 grid cells for all tested cases.

Chapter 7 introduces a radiosity-based method to approximate the flux rates
of neutral particles in very high aspect ratio holes and trenches. It is based on a
one-dimensional approximation of the three-dimensional surface and is eligible if
simulation runtime is critical and the geometry can be approximated with a convex
rotationally symmetric hole or convex symmetric trenches.

Chapter 8 demonstrates the overall obtained speedup when applying the ap-
proaches presented in Chapters 4 to 6 in conjunction.

Finally, Chapter 9 concludes with a brief overall summary and presents ideas for
future work.

12

Chapter 2

Review of Methods for Particle

Transport and Surface Evolution

This chapter starts with an overview of some currently available three-dimensional
topography/process simulators (Section 2.1). The underlying numerical methods
used in these simulators are described, although the level of detail of the available
information is limited for closed-source simulators. Nevertheless, recurrent compo-
nents can be identified as a numerical method to solve the particle transport inside
the domain and a numerical scheme to advect the surface. In Section 2.2, three nu-
merical methods to solve the particle transport with the aim to obtain the surface
rates (which enter the surface velocity model) are discussed. Section 2.3 introduces
the level-set method which is predominantly used for the surface advection. Finally,
Section 2.4 concludes this chapter with a brief summary.

2.1 Software and Methods

Three-dimensional topography simulation for etching and deposition processes is
available via commercial, open-source, and in-house simulation frameworks. For a
selection of publicly known frameworks, a brief description of the relevant methods
and numerical approaches is given in the following. For closed-source simulators
the brevity of the descriptions stems from the fact that little or no details of their
numerical approaches are available.

Victory Process [8] is a commercial general purpose process simulator dis-
tributed by Silvaco. It features a Process Simulator Mode to simulate three-
dimensional etching and deposition processes based on physical models. A set
of etching and deposition models is provided and user-defined models, which
have access to a set of simulated local surface conditions, are supported.
The particle transport simulation engine is parallelized via a shared-memory
approach. To evolve the surface it is discretized using a Cartesian hierarchical
level-set-based representation. In [9] the authors use Victory Process to model
the Bosch process in a microelectromechanical systems (MEMS) application.

13

Sentaurus Topography 3D [10] is a commercial profile simulator distributed by
Synopsis. It features three-dimensional topography simulations and is focused
on etching and deposition processes. It has a concept of user-defined models
similar to Victory Process and also provides a set of predefined models for
etching and deposition. The particle transport is modeled with a Monte Carlo
approach. The surface representation used for the evolution is level-set-based.
Parallelization on shared-memory systems is supported. In [11] the authors
use Sentaurus Topography 3D to investigate the influence of the photoresist
profile on the etching process.

SEmulator3D [12] is a commercial three-dimensional process modeling platform
distributed by Coventor. It uses an unspecified proprietary evolution engine
to evolve the material surfaces. Similar to the above mentioned simulators, it
offers a set of predefined models for etching and deposition. In [13] the authors
use SEmulator3D to assess different approaches for patterning metal lines and
vias.

ViennaTS [14][15] is an open-source topography simulator developed and main-
tained by the Institute for Microelectronics, TU Wien. Two- and three-
dimensional simulations are supported. The surface is represented as a single
resolution level-set discretized on a Cartesian grid. The implementation of the
level-set is based on the sparse field level-set method using a hierarchical run-
length encoded data structure. The particle transport is implemented using a
Monte Carlo approach and an explicit representation of the surface (partially
overlapping disks). A set of advanced physical etching and deposition models
are implemented; user-defined models require a recompilation. The surface
evolution and the particle transport is parallelized for shared-memory sys-
tems using OpenMP. In [1] the authors simulate the Bosch process to demon-
strate the capabilities of ViennaTS. Prior to ViennaTS, Topo3D [16], also a
three-dimensional level-set-based topography simulator, was developed at the
Institute for Microelectronics, TU Wien.

A selection of recent publications which apply three-dimensional process simu-
lations using closed, in-house frameworks are mentioned below; depending on the
publication some details are provided about the numerical approaches taken: In [17]
a wet etching process is simulated based on the sparse field level-set method im-
plementation of the ITK [18] library extended for arbitrary surface speed functions.
The authors of [19] use a narrow band level-set method for the surface evolution
and a Monte Carlo method to model the particle transport in a three-dimensional
simulation of a deep reactive ion etching (DRIE) process; the surface is represented
with small overlapping spheres during the computation of the Monte Carlo particle
transport. In [20] a cell-based method seems to be used for the surface evolution
(although not explicitly stated) and a Monte Carlo method is used to model the
particle transport.

Most simulation frameworks described above provide a set of common parame-
terized models for the surface velocity but also allow for user-defined model imple-
mentations. The underlying reason for the simulation stipulates which models are

14

appropriate, e.g., etching simulations of high aspect ratio structures rely on accurate
models for re-emission and re-deposition of particles. Equation (2.1) is an example
for a general formulation for the surface velocity which relates the normal surface
velocity Vn to

(a) the volumetric properties of the bulk material M
(e.g., to model the influence of stress types in the bulk material),

(b) the normal direction n

(e.g., to model the influence of a crystallographic direction),

(c) the curvature κ
(e.g., to model a smoothing of the surface),

(d) and the surface rate distributions of ions Rion and neutral particles Rneu

(e.g., to model the etch rate in an ion-enhanced plasma etching process).

Vn(x) = f(M(x),n(x), κ(x), Rion(x), Rneu(x)) (2.1)

The surface rate of neutral particles Rneu is typically a scalar flux value describing
how many particles are locally adsorbed per unit time. For accelerated ions the
surface rate Rion typically does not represent a particle flux directly but the effective
local sputter rate, e.g., how much of the local material is sputtered away. Models
for the sputter rate typically depend on the energy and incoming angle (relative to
the surface normal) of the ions.

Often only a subset of dependencies is important to be modeled. If an important
dependence for the simulation is identified a subsequent question is how the relevant
parameters are obtained. Typically a compromise between simulation runtime and
accuracy of the models has to be made. In any of the frameworks described above
the particle transport is an integral part of the advanced models for dry etching or
deposition processes. The next section concentrates on the numerical methods to
approximate the surface rate distributions based on the particle transport.

2.2 Feature-Scale Particle Transport

This section reviews approaches to model the particle transport towards the surface
in a feature-scale simulation, eventually resulting in the surface rate distributions
which enter the surface velocity model as a parameter.

Any advanced surface velocity model for dry etching or deposition processes
depends on how the relevant particle species are distributed. In general, the rate
of the particles on the surface (number of particles per time and per area) and
their kinetic energy is important. If accelerated ions are modeled, the effect on
the surface can depend significantly on the kinetic energy of the ions. For neutral
particles (which are not accelerated by an electric field) the energy is less important
as the energy levels at usual process temperatures are too small to have a noticeable
effect on the surface. The influence of the neutral particles on the surface is mainly

15

due to the induced chemical reactions which, in turn, are modeled using the rate of
the particles.

A general formulation relating the arrival particle flux distribution Γin to the
particle flux distribution which is emitted Γout using a re-emission function Fre is
given in (2.2). Additionally, a source term Γsrc independent of the arriving particles
is considered. NQ is the number of particle types and Γre is the re-emitted particle
flux distribution. The equation is defined for a point x on the surface at time t,
although not explicitly shown for the sake of brevity.

Γout(ω0, Q0, E0) = Γsrc(ω0, Q0, E0)+

+

NQ

q=0

Ω E

[Fre((ω0, Q0, E0), (ωdΩ, Qq, E)) · Γin(ωdΩ, Qq, E)] dEdΩ

Γre(ω0, Q0, E0)

(2.2)

Equation (2.2) states that the flux of particles of type Q0 and energy E0 leaving into
direction ω0 is equal to all arriving particles (integrated over all incoming directions
Ω and all energy levels E) weighted with a re-emission function Fre. Note that Fre

potentially also re-emitts particles different in energy and type from the incoming
particle (Qq, E), e.g., if accelerated ions bombard the surface and sputter other types
of particles situated on the surface.

In the field of computer graphics the rendering equation (2.3) [21] takes a form
similar to (2.2) for a point x on the surface at time t.

Lout(ω0, λ) = Lsrc(ω0, λ)+

+

Ω

FBRDF (ω0,ωdΩ, λ) · Lin(ωdΩ, λ)(ωdΩ · n)dΩ (2.3)

Equation (2.3) states (for wavelength λ) that the radiance Lout emitted into direction
ω0 is equal to the integral of the received radiance Lin normalized by the projected
area (ωdΩ·n) and scaled with a bidirectional reflectance distribution function FBRDF .
The radiance is the radiant energy per unit time per unit solid angle per unit
projected area.

The following assumptions are implicitly made if (2.2) is used as a general start-
ing point to model the particle transport:

(a) The re-emission of particles is not influenced by the arriving particles, e.g.,
Fre is independent of Γin.

(b) The re-emission occurs instantaneous and at the location where the parti-
cles hit the surface, e.g., no transport on/below the surface or time delay is
considered.

When taking the perspective of a point on the surface S, Figure 2.1 illustrates
the directions for which other parts of the surface and the source plane P contribute
to the arriving flux distribution Γin, if

16

(c) particle-particle collisions (which would change the momentum of the involved
particles) are neglected due to the low pressure and small dimension of the
simulation domain, and

(d) charged particles (ions) are not influenced by the electromagnetic field in the
domain which allows to model the trajectory of particles as straight lines.

Figure 2.1: The feature-scale simulation domain is delimited by the source plane (green) in upward
direction. The lateral boundaries (red) are typically either reflective (left side) or periodic (right
side). The surface of the geometry S is shown in blue. The different shades of gray below the
surface indicate different material regions. The arriving flux Γin is illustrated for point x on S.
The arriving flux Γin is divided into a direct contribution from the source (green segment) and a
contribution from re-emitted particles (blue segment). An isotropic (diffuse) emission distribution
Γsrc is illustrated for a point xdP on P and an isotropic re-emission distribution Γre is illustrated
for a point xdS on S. The surface normal directions n and the direction vectors ω between the
points are shown.

2.2.1 Surface Rate Calculation

The general formulation of the re-emission function Fre in (2.2) allows to model
numerous effects, e.g., specular-like reflections and sputtering of particles from the
surface which themselves are transported in the domain. In [5] a broad overview of
common multi-particle models for the surface velocity is provided. In the following
only the case of

(a) a single source of a mono-energetic particle species,

(b) a directionally independent probability for adsorption s(x),

17

(c) an isotropic re-emission with probability 1− s(x),

(d) and a single scalar surface rate R representing the total arriving particle flux

is considered. Hence, (2.2) becomes

Γout(x,ω0) = Γsrc(x,ω0) +

Ω

(1− s)
1

π
(nx · ω0)Γin(x,ωdΩ) dΩ

= Γsrc(x,ω0) + (1− s)
1

π
(nx · ω0)

Ω

Γin(x,ωdΩ)dΩ

Γre(x,ω0)

(2.4)

or reformulated when using an integral over the visible source and surface areas

Ω

Γin(x,ωdΩ)dΩ =

Pvis

ωxxdP
· nx

x− xdP
2
[Γsrc(xdP ,−ωxxdP

)] dP+

+

Svis

ωxxdS
· nx

x− xdS
2
[Γre(xdS ,−ωxxdS

] dS .

(2.5)

The objective is to solve (2.4) and to obtain the surface rate distributions. The
surface rates Ri are calculated by an integration of the arriving flux distribution Γin

weighted by a corresponding weight function ri.

Ri(x) =

Ω

ri(ωdΩ) · Γin(x,ωdΩ)dΩ (2.6)

In the simplest case (which is the one considered here) only a single rate R is used
and r(ωdΩ) = 1, which reduces (2.6) to (2.7) and corresponds to the total arriving
particle flux.

R(x) =

Ω

Γin(x,ωdΩ)dΩ (2.7)

A simple corresponding surface velocity model is

Vn(x) = f(M(x), R(x)) = α ·R(x) · s(x) , (2.8)

where α is a scalar value. In the following three commonly used but conceptu-
ally different methods are described which aim to obtain the surface rates R by
solving (2.4) or to approximate the solution.

2.2.1.1 Straightforward Approach

The “straightforward approach” solves the particle transport equation beforehand
and subsequently extracts the surface rates from the arriving particle flux distribu-
tions. The surface S and the source plane P are discretized into NS and NP elements

18

respectively, e.g., triangles (three dimensions) or lines (two dimensions). The flux
distributions Γ are approximated by the superposition of a set of basis functions
with corresponding coefficients. In the general case Γ can then be approximated as

Γ(x,ω) ≈
i

Ci(x) · ci(ω) , (2.9)

where Ci are the scalar coefficients and ci are the basis functions. If the basis
functions are orthonormal the coefficients Ci are defined as

Ci(x) =

Ω

ci(ωdΩ)Γ(x,ωdΩ)dΩ . (2.10)

For the simplest case, a single constant basis function is used and (2.10) reduces to

C(x) =

Ω

Γ(x,ωdΩ)dΩ = R(x). (2.11)

Inserting (2.11) into (2.5) and expressing Γre according to (2.4) yields

Cin(x) =

Pvis

ωxxdP
· nx

x− xdP
2
[Γsrc(xdP ,−ωxxdP

)] dP+

+

Svis

ωxxdS
· nx

x− xdS
2

(1− s)
1

π
(nxdS

· −ωxxdS
) · Cin(xdS) dS .

(2.12)

The discretization of S and P into elements with area A results in

Cin(x) =
j Aj

ωxxdAj
· nx

x− xdAj
2

Γsrc(xdAj
,−ωxxdAj

) dAj+

+
j Aj

ωxxdAj
· nx

x− xdAj
2

(1− s)
1

π
(nxdAj

· −ωxxdAj
) · Cin(xdAj

) dAj ,

(2.13)

and an integration of the arriving total flux Cin for a surface element leads to

Ai

Cin(xdAi
)dAi =

NP

j Ai Aj

ωxdAi
xdAj

· nxdAi

xdAi
− xdAj

2
Γsrc(xdAj

,−ωxdAj
xdAj

) dAjdAi+

+

NS

j Ai Aj

ωxdAi
xdAj

· nxdAi

xdAi
− xdAj

2
(1− s)

1

π
(nxdAj

· −ωxdAj
xdAj

) · Cin(xdAj
) dAjdAi .

(2.14)

In this case only isotropic (diffuse) re-emission is considered. If additionally

• an isotropic source emission, e.g., Γsrc(x,ω) = Esrc
1
π
nx ·w,

19

• planar surface elements, e.g., triangles, and

• a constant re-emission factor (1− s) for each surface element

is assumed, (2.14) can be converted into the discrete radiosity equation (2.15).

Ai · Cini
=

NP

j

Aj · Esrcj

1

πAj
Ai Aj

cos(θidAj
)

r2ij
cos(θjdAi

)dAjdAi

Fji

+

+

NS

j

(1− s)Aj · Cinj

1

πAj
Ai Aj

cos(θidAj
)

r2ij
cos(θjdAi

)dAjdAi

Fji

(2.15)

Ai · Cini
is the total arriving particle flux for element i, rij is the distance between

two points on element i and element j, and θjdAi
denotes the angle between the

surface normal of element i and the direction towards a point on element j. The
view factors Fji are identified; in the radiosity framework (which originates from the
field of radiative heat transfer) a view factor is the portion of the total radiation of
a surface patch j which is received by another surface patch i.

The radiosity formulation is the special (most simple) case of the “straightfor-
ward approach”, when only diffuse emission and re-emissions are considered. When
modeling non-diffuse effects the choice of the basis functions ci must be appropriate
to capture the properties of the arriving particle flux Γin, which are of importance
during the extraction of the surface rates.

A linear system of equations is constructed from (2.15) in case of a radiosity
setting and from (2.14) in the general case. If Nc basis functions are used, the
size of the system matrix is NSNc × NSNc. The number of non-zero entries in the
matrix is O((NSNc)

2) as potentially all surface elements are mutually visible. The
implementation of boundary conditions (cf. Figure 2.1) leads to an extension of the
system matrix with additional entries.

For highly resolved surfaces in a three-dimensional simulation, the direct inte-
gration method requires significant memory for storing the system matrix. From an
implementation point of view, the selection of appropriate basis functions and the
evaluation of resulting matrix elements is problematic [5]. During the evaluation of
the matrix elements visibility tests between pairs of points on the surface are used to
determine mutual direct visibility which is a condition for the exchange of particles.
Some iterative methods offer a natural interpretation, when used to approximate a
solution to the linear system, e.g., using 0 as initial guess and performing n itera-
tions of the Jacobi method can be interpreted as only considering n re-emissions and
omitting the influence of particles after the n-th re-emission; performing only one
iteration corresponds to solely considering the direct particle flux from the source
plane to the surface.

20

2.2.1.2 Bottom-Up Iterative Approach

Different from the method described above, the bottom-up iterative scheme does not
generate a system matrix upfront. In the first iteration only the direct flux from the
source plane P towards the surface S is considered using only the first summand of
(2.4) leading to

C1(x) =

Ω

Γin(x,ωdΩ)dΩ =

ΩvisP

ωxxdP
· nx

x− xdP
2
[Γsrc(xdP ,−ωxxdP

)] dΩ . (2.16)

For a set of NS points on the surface S the integral is evaluated numerically by
means of a directional sampling of the sphere. Various schemes can be used to
sample the spherical directions. Figure 2.2 illustrates the use of a latitude-longitude
grid or geodesic grids in two dimensions. Visibility tests are necessary for each

Figure 2.2: Schematic illustration of the bottom-up iterative method: Two different sampling
schemes for the spherical directions are shown. For point x1 the visible solid angle of the source
plane is shown and together with a latitude-longitude-like scheme for the sampling directions
approximated for two-dimensions. For point x2 the visible solid angle of the surface is shown
together with a geodesic-like scheme for the sampling directions approximated for two dimensions.

sampling direction to detect if the source plane is directly visible. A discretization
of P is not necessary if Γsrc does not depend on the position on P . To approximate
non-diffuse re-emission in subsequent iterations certain averaged properties of the
arriving particle flux can be captured and stored during the numerical integration,
e.g., a mean incoming direction.

In all of the subsequent iterations the numerical integration is performed not over
the visible directions towards the source plane ΩvisP , but over the visible directions

21

towards the surface.

C2(x) =

Ω

Γin(x,ωdΩ)dΩ =

ΩvisS

ωxxdP
· nx

x− xdS
2
[Γre(xdS ,−ωxxdS

)] dΩ (2.17)

An intersection test is required to obtain the closest intersection with the surface S
along the sampling direction.

The final surface rates are calculated using

R(x) = C1(x) + C2(x) + ...+ Cn(x) . (2.18)

The computational demands in terms of storage depend on the complexity of the
captured properties of the arriving flux distribution for each integration point and
are O(NS · n). Depending on the number of iterations n and the chosen sampling
scheme the necessary visibility/intersection tests are the predominant computational
task. The integration schemes are free to change in each iteration, e.g., the schemes
can be adopted to known properties of Γsrc in the first iteration by, e.g., using a
grid refined towards a pole as shown in Figure 2.2. A boundary causes a reflection
or translation of the direction of the visibility/intersection test for reflective and
periodic conditions, respectively.

2.2.1.3 Top-Down Monte Carlo Approach

The top-down Monte Carlo sampling scheme launches a large number of particles Np

on the source plane P and traces their trajectories inside the domain. The position
and direction of the particles starting on P are generated randomly but weighted
so that they collectively resemble the properties of Γsrc. When a particle p first
hits the surface S at location x, it contributes with its properties (e.g., incoming
direction, energy, and particle type) directly to the local surface rates. Re-emission
is modeled by launching one or more new particles from the same location x, where
the original particle hit the surface. Again, the re-emitted particles are generated
randomly but collectively resemble the re-emission distribution Γre(x). Figure 2.3
illustrates the trajectories of 4 exemplary particles launched from the source plane
through the domain.

Similar to the methods discussed above, a maximum number of re-emissions can
be defined at which the generation of new particles is stopped. Alternatively each
particle has a “weight” and a threshold value determines when a particle trajectory
is terminated; the weight is updated after each reflection event of the particle. Due
to the stochastic nature of the approach, noise is present in the resulting surface
rates. The storage requirement for this method is low as for each particle hit the
contribution to the rate is directly evaluated. Complex re-emission properties, e.g.,
specular-like reflections, can be considered straightforwardly [5].

To obtain the closest intersection with the surface for a given particle position
and direction an intersection test computationally very similar to the visibility test
is required.

22

Figure 2.3: Schematic illustration of the top-down Monte Carlo method: The trajectories of 4
exemplary particles p1 to p4 are shown. The effect of reflective (left) and periodic (right) boundary
conditions is shown.

2.2.2 Efficient Visibility/Intersection Tests

All methods described above rely on visibility/intersection tests. How dominant
these tests are in relation to the overall computational task depends on the method:

• In the “straightforward approach” the visibility tests are used during the
construction of the entries of the system matrix. The number of tests is
O(NS ·NS). For a surface discretized with 1 million elements ≈ 0.5 trillion
(106 ·(106−1)/2) visibility tests are necessary to evaluate the mutual visibility
between each pair of elements. The surface normals can be used to reduce this
number by first evaluating the sign of their scalar product, where only for a
value < 0 the visibility test is performed.

• In the bottom-up iterative scheme visibility tests are used in the initial iteration
and intersection tests are used in all subsequent iterations. The number of
tests for n iterations is O(NS · n), if a fixed number of sampling directions is
used. For a surface discretized with 1 million elements and considering 1000
sampling directions the necessary number of tests is 1 billion (106 · 1000) per
iteration.

• In the top-down Monte Carlo scheme the number of tests equals the number
of particles launched from the source plane Np multiplied with the average
number of re-emissions per particle nre. The number of tests is O(Np · nre).
For a surface discretized with 1 million elements and aiming at an average

23

number of 1000 particles (for direct flux) reaching each element, 1 billion
(106 · 1000) of intersection tests are necessary for the direct flux.

The considerations above show clearly that the first method is not right away suited
for high-resolution three-dimensional simulations. The comparison between the
other two methods reveals a similar number of necessary intersection tests per re-
emission. Regardless of the approach, a computationally efficient implementation
of a visibility/intersection test is desirable as a vast number of tests are used in all
of the methods described above, especially if re-emissions are considered.

2.2.2.1 Ray-Surface Intersection

A visibility/intersection test is a ray-surface intersection test for a representation
of the surface consisting of N primitives, a starting point of the ray (origin) and
a search direction. A straightforward implementation is to test each primitive for
an intersection along the search direction and to track the minimum intersection
distance. The result is the closest intersection point on one of the primitives. Due
to its complexity O(Nprimitives · Ntests) such a straightforward implementation is
prohibitive considering the required number of tests mentioned above.

In the field of computer graphics, ray-surface intersection tests are used inten-
sively for ray tracing [22] as a rendering technique. Specialized frameworks are
used to perform these intersection tests (ray casts) efficiently. All have in common
that initially a tree-like acceleration structure is constructed from the scene, e.g.,
a bounding volume hierarchy (BVH). This allows to traverse a ray more efficiently
through the domain without performing intersection tests with all primitives but
mostly with bounding volumes of the BVH. Typically, these frameworks are opti-
mized to perform tasks occurring in rendering situations, e.g., to traverse a bundle
of spatially coherent rays (i.e., rays with similar direction) together through the
scene. The applied performance metric is million ray casts per second (Mrays/s).
Non-coherent ray casting, as required for the visibility/intersection tests during the
particle transport, is typically also implemented very efficiently, although the max-
imum Mray/s scores are reached for ray bundles.

The following selection of frameworks perform accelerated ray casting using ex-
plicit surfaces, e.g., triangle meshes:

Embree [23][24] is an open-source collection of C++ ray tracing kernels developed
and maintained by Intel. The kernels are optimized by making use of SIMD
(single instruction, multiple data) instruction sets available on modern central
processing units (CPUs). It includes optimized algorithms for coherent and
incoherent ray workloads. All kernels are solely implemented using a single-
precision floating point representations.

NanoRT [25] is an open-source C++ header only CPU ray tracing kernel. It
supports ray tracing using single- and double-precision floating point repre-
sentation.

Optix Prime [26] is a closed-source C++ ray tracing library distributed by Nvidia.
It is optimized for ray-triangle intersections on graphics processing units

24

(GPUs) and solely uses single-precision floating point representation. It in-
cludes fallback implementations for CPUs, if no supported GPU is found on
the system. It depends on CUDA [27].

pbrt-v3 [28] is an open-source C++ ray tracing renderer, accompanying the book
Physically Based Rendering: From Theory to Implementation [21]. It supports
ray tracing using single- and double-precision floating point representation.

RadeonRays [29] is an open-source C++ ray intersection library maintained by
AMD. It is targeted at CPUs and GPUs. The ray tracing is implemented
using the OpenCL 1.2 standard.

All of the above mentioned frameworks support triangular meshes. The construction
of an acceleration structure (i.e., an optimized construction of a BVH and a data
structure to store and access the BVH) is provided by all frameworks.

In volume rendering application, rays are casted into a scene consisting of implicit
surfaces, e.g., signed-distance functions. Similar to ray casting for explicit surfaces,
an acceleration structure, e.g., a BVH, is used for efficient traversal of the ray. The
actual intersection with the surface is obtained by marching the ray back and forth,
until an intersection (i.e., change of sign) is detected. Sphere tracing [30] is a ray
marching algorithm using the signed-distance information to determine the next
step length along the search direction. Concerning data structures in this context,
there is only one framework which stands out:

OpenVDB [31] is an open-source C++ project developed and maintained by
DreamWorks Animation. It provides a data structure for sparse volume data
bundled with a large toolset to operate on the sparse volume data. The data
structure is a tree-like structure of 4 levels with non-equal branching factors.
It implements ray marching using the sparse volume data structure directly
without constructing a BVH [32].

2.3 Surface Evolution Using the Level-Set Method

The normal surface velocity Vn is prescribed by the surface velocity model (2.1)
and is available for a set of points on the surface. The objective is to evolve the
material surfaces according to Vn. As the evolution is unconstrained the surfaces
may undergo topological changes, e.g.,

• a material surface vanishes completely, or

• a portion of a surface is pinched off, or

• two surfaces merge into one larger surface.

The majority of the simulators presented in Section 2.1 relies on a level-set-based
method to evolve the surface as it offers robust treatment of the topological changes
mentioned above. Before more details on the level-set method are presented, the
three main groups of techniques used to model surface evolution are briefly explained
and advantages and disadvantages are discussed.

25

Explicit Representation. The surface is discretized as an explicit set of nodes
with connectivity information, e.g., a triangle mesh. To evolve the surface
each node is advanced according to the normal velocity. Initially equidistantly
spaced nodes can accumulate or rarefy depending on the curvature and surface
velocity. To ensure a maximal resolution (maximal distance between nodes)
and to avoid numerical instabilities in accumulated regions, nodes must be
redistributed; if the surface area is increasing, new nodes must be inserted
and connected. An unconstrained advancement of the nodes leads to a self-
intersection of the elements. These self-intersections must be healed/resolved
from time to time to ensure a valid surface representation. In the case of
a topological change, a change of the connectivity between nodes is required,
which is not easily implemented robustly. In general, there is no restriction for
the time step size but larger time steps (i.e., larger deformations) make it more
difficult to find robust solutions for the redistribution, intersection-healing,
and connectivity adjustments mentioned above. However, sharp features of
the surface are preserved well. In [33] a method for tracking fluid surfaces
using a triangle mesh is presented. In [34] and [35] algorithms for adaptive
restructuring of meshes on evolving surfaces are presented.

Cellular (Voxel) Representation. The surface is represented by a Cartesian grid
of cubic cells. Numerical values (typically a scalar value in [0, 1]) are assigned
to each cell identifying the cell as interior, boundary, or exterior cell. The
surface is implicitly represented through the boundary cells. The numerical
values are updated using local update rules incorporating the values of neigh-
boring cells and the surface velocity. The maximum time step is enforced
by the update rules. Topological changes are handled robustly. Features be-
low the resolution of the cubic cells cannot be represented. In [36] a cellular
material representation is used to evolve the surface in a plasma etching sim-
ulation. The determination of the surface normal requires averaging across
several cells [36]. In [37] a computationally efficient three-dimensional cel-
lular automata model is used to model the surface evolution in an etching
simulation. SEmulator3D [12] uses a voxel modeling approach for geometric
processing steps.

Level-Set-Based Representation. The surface is represented implicitly by the
zero-level-set of a scalar field. The zero-level-set is the zero-isoline of a two-
dimensional scalar field or the zero-isosurface for a three-dimensional scalar
field. An evolution of the implicit surface is therefore equivalent to the ad-
vection of the scalar field. The equation for this advection is the level-set
equation. The numerical solution is typically performed using a Cartesian
grid combined with appropriate finite difference schemes for the spatial and
temporal derivatives. The time step is limited by the temporal discretization
scheme. Topological changes are inherently supported. In [38] the level-set
method is mathematically derived, related methods are covered and numer-
ous application examples are shown. The method is continuously being im-
proved, e.g., to improve mass conservation and unintended smoothing of the

26

surface [39][40][41][42]. The surface evolution in Victory Process [8], Vien-
naTS [14], and Sentuarus3D [10] is based on the level-set method.

An overview of surface tracking approaches (including the ones mentioned above)
in the field of fluid dynamics is provided in [43].

In the following, details on the level-set method including velocity extension,
normalization, discretization, surface extraction, and data structures are provided.

2.3.1 The Level-Set Method

The level-set method takes the approach that the surface/interface to be tracked
is not explicitly represented. In the following a simple example to illustrate the
method is considered: A spherical surface shrinking with unit speed.

The surface of a sphere of radius r = 1 and center at c = [0, 0, 0] is represented
with a three-dimensional scalar level-set function φ, where the values are initialized
as φ(x) = x −1. Using this initialization φ = 0 on the surface, φ < 0 inside, and
φ > 0 outside the sphere. If a vector velocity field is defined as V (x) = −x

x
, i.e., an

inward pointing unit speed, and the level-set function is advected using

∂φ(x)

∂t
= −V (x) ·

∇φ(x)

∇φ(x)

Vn∇φ
(∇φ,x)

∇φ(x) , (2.19)

the implicit surface (represented by the zero-isosurface of φ) is a sphere shrinking
with unit speed. Equation (2.19) relates the change of φ over time to the norm of
the gradient ∇φ weighted with a speed function V projected into the direction
of the gradient. For time t > 1.0 the zero-isosurface of φ vanishes (and so does the
tracked interface) as all values of φ are now larger than zero. Renaming the velocity
into the direction of the gradient Vn∇φ

(∇φ,x) to F (∇φ,x) (2.19) can be rewritten
as

∂φ(x)

∂t
+ F (∇φ,x) ∇φ(x) = 0 , (2.20)

which is the standard form of the level-set equation. The dependencies of F deter-
mine if (2.20) is linear or non-linear:

• (2.20) is linear if F is independent of φ and its derivatives and only depends
on the location x, e.g., the linear transport equation φt + Fφx = 0 (for one
dimension).

• (2.20) becomes non-linear if F is dependent on φ or ∇φ, e.g., F = φ leading
to φt + φφx = 0 (i.e., the inviscid Burgers’ equation for one dimension [44]).

In the case of a process simulation, a meaningful velocity is only available for
the points on the surface, but a velocity field F is required for the advection of
the level-set function φ. The next section describes how a suitable velocity field is
obtained from the surface velocities using extrapolation.

27

2.3.2 Velocity Extension

In a process simulation, the velocity field has no physical meaning as velocities are
only meaningful on the surface itself. There are generally no requirements for the
velocity field F besides it must agree with the surface velocity at the zero-level-
set which corresponds to the interface. The most straightforward approach is to
extrapolate from the closest point on the surface S [45]: For a point x away from
the surface the velocity from the closest point on the surface xcp ∈ S is used.

Depending on the data structure, the identification of the closest point on the
surface can be a demanding task. In [38] an alternative approach for obtaining the
velocity field is described, where the velocity field is “marched away” from the surface
with the fast marching method [46] to solve the static boundary value problem

∇φ(x) F (x) = 1, φ(x) = 0 on Γ , (2.21)

where Γ is the interface and F is a strictly positive speed function only depending
on the location x.

A consequence of how the velocity is extended is how well the level-set function
retains a signed-distance function over time. While this property is generally not
maintained using the approach in [45], the alternative approach [38] analytically
maintains the signed-distance property but discretization errors in φ and its deriva-
tives will gradually destroy this property over time. The next section describes how
the signed-distance property of the level-set function can be sustained.

2.3.3 Sustaining a Signed-Distance Property

In the example of the spherical surface in Section 2.3.1 the level-set function φ has
been initialized to a signed-distance function. That is, the magnitude |φ| encodes
the distance to the zero-level-set and the sign encodes the inside (−) and outside
(+) regions. The signed-distance property is not maintained as φ evolves in time
due to the construction of the extended velocity field itself or due to discretization
errors. It is desirable to maintain a signed-distance property of φ:

• If φ is very “flat” or very “steep” the numerical determination of the zero-level-
set locations is less accurate.

• If |∇φ| varies the accuracy of numerical derivatives suffers [47]; this includes
the accuracy of the curvature and the surface normal.

• The closest point on the surface can be approximated by a scaled step along
the gradient: xcp = x− φ(x)∇φ(x).

• The level-set function qualifies to robustly apply constructive solid geometry
(CSG) operations and geometrical “offset” operations [48].

For the reasons given above most level-set applications perform a process of
“reshaping” the level-set function in regular intervals with the aim to restore the
signed-distance property. This process if often called reinitialization, redistancing,
or normalization. Related methods can be categorized into two distinct groups:

28

Boundary Value Problem-based methods solve (2.21). Examples are the fast
marching method [46], the fast sweeping method [49], and the fast iterative
method [48]. Solutions to the boundary value problem can be generated with
near optimal complexity. The solution near the interface is used as initial
condition and is not varied, which is a desirable property. On the other hand,
deviations from the signed-distance property near the interface are not cor-
rected.

Flow-based methods solve an equation of the form (2.22). The flow defined by
(2.22) has normalizing properties, e.g., it vanishes when the signed-distance
property is obtained. The solutions near the interface are also influenced
by these methods with the benefit that deviations from the signed-distance
function near the interface are corrected. A consequence is that the interface
is also slightly advected by the flow.

∂φ(x)

∂t
+ σ(x) ∇φ(x)− 1 = 0

σ(x) = sgn(φ(x)) =
φ(x)

φ(x)2 + ǫ

(2.22)

A discussion of advantages and disadvantages for boundary value problem-based or
flow-based methods for normalization can be found in [47].

2.3.4 Discretization

The level-set equation (2.20) belongs to the class of Hamilton-Jacobi equations of
the form

∂φ(x)

∂t
+H(x, t, φ,∇φ) = 0, with the Hamiltonian

H(x, t, φ,∇φ) = F (∇φ,x) ∇φ(x) .
(2.23)

On uniform Cartesian grids a set of discretization schemes has established itself as
a widely used default choice [7].

2.3.4.1 Spatial Derivatives

The weighted ENO (essentially non-oscillatory) scheme [50][51], in short WENO,
is used for the approximation of the first derivatives of φ. The WENO scheme is
based on the ENO scheme [52], which adaptively selects a finite difference stencil
(out of a fixed set of stencils) for the approximation: By calculating the smoothness
of φ inside each stencil’s interval, the selected stencil is the one the interval of which
does least overlap with a discontinuity of φ. The WENO scheme does not solely use
one stencil but instead uses a weighted convex combination of all stencils, where the
weights depend on a smoothness measure of φ in the stencil’s interval.

29

2.3.4.2 Hamiltonian Discretization

The level-set equation (2.20) can be related to a scalar conservation law. Starting
with the one-dimensional form of (2.20)

φt +H(φx) = 0 , (2.24)

and φx = p, and differentiating results in

pdx
t x

+ [H(p)]x = 0 (2.25)

which can be simplified to the conservation law

pt + [H(p)]x = 0. (2.26)

If H(p) = αp, this gives the linear transport equation pt + αpx = 0 and upwind
finite difference schemes, which take the derivatives in the direction of information
propagation, can be used, as the upwind direction is known beforehand. For a
nonlinear conservation law, the transport depends on the solution itself and the
information propagation direction cannot be determined a priori. Furthermore,
finite difference schemes are not well suited for scalar conservation laws as solutions
are not necessarily smooth. The integral form of the conservation law

b

a

pdx
t

= −
b

a

[H(p)]xdx = − [H(p(b))−H(p(a))] (2.27)

is therefore the starting point for the numerical schemes for scalar conservation laws.
Using a finite volume approach, the cell averages at the next time step are obtained
by integrating (2.27) over the domain [xi−1/2, xi+1/2]× [tn, tn+1] leading to

(pn+1
i − pni)Δx = −Δt(Ḡn

i+1/2 − Ḡn
i−1/2) , (2.28)

where Ḡ are the fluxes at the cell boundaries

Ḡn
i+1/2 =

1

Δt

tn+1

tn
H(p(xi+1/2, t)) dt , (2.29)

which are not known a priori. The Godunov method [7][53][54] provides an a priori
explicit approximation to Ḡ = G by identifying a Riemann problem for each cell
interface.

Different schemes exist [55] to approximate a solution to the Riemann prob-
lems, e.g., the Lax-Friedrich scheme, the Engquist-Osher scheme, and the Godunov
scheme (not to be confuse with the Godunov method above). Each of the schemes
produces an approximation G(pi+1/2) ≈ g(pi, pi+1) which results in

pn+1
i − pni
Δt

= −
g(pni , pi+1n)− g(pni−1, p

n
i)

Δx
. (2.30)

30

The approximation schemes for H in (2.24) rely on the numerical fluxes g(p, p).
Using φx = p equation (2.24) can be rewritten as

φt = −H(φx) = −H(p) , (2.31)

and an approximation of H(p) is given by the numerical flux function g(p, p). This
leads to

H(pni) ≈ g(pi−1/2, pi+1/2) , (2.32)

and finally (for an explicit Euler step) to

φt+1
i − φt

i

Δt
= −g(pi−1/2, pi+1/2). (2.33)

2.3.4.3 Temporal Discretization

Total Variation Diminishing Runge-Kutta (TVD-RK) schemes [56][57] are typically
used to discretize (2.20) in time [7]. The first-order accurate scheme (TVD-RK1)
corresponds to a single explicit Euler step, i.e., for one dimension

φn+1
i − φn

i

Δt
+ gGODUNOV (φWENO−

xi−1/2
, φWENO+

xi+1/2
) = 0 , (2.34)

where the Godunov scheme is used for the numerical flux and the WENO scheme
for the derivatives of φ at i− 1/2 and i+ 1/2. Second (TVD-RK2) and third order
(TVD-RK3) schemes combine multiple temporary Euler steps to obtain higher order
accuracy.

The size for the discrete time step is limited by the assumptions of the spatial
discretization scheme and the explicit time integration scheme. To obtain a stable
scheme, the maximum time step is

Δt <
Δh

|Fmax|
· αCFL , (2.35)

where Δh is the spatial grid spacing, Fmax is the maximum value in the velocity field,
and αCFL ∈]0, 1] is a positive constant depending on the discretization schemes.
This condition is known as the Courant-Friedrichs-Lewy (CFL) condition [58].

2.3.5 Data Structures

The straightforward implementation of the level-set method using a multi-dimensional
dense array of values leads to storage complexity O(nd) where n is the average spa-
tial resolution and d is the number of spatial dimensions. For high-resolution
three-dimensional simulations a dense array is not practical, e.g., a domain of 10003

requires more than 7 GB of memory, if double-precision floating values are stored.
The memory footprint can be reduced by using single-precision or even less accurate
floating point representations.

31

To overcome the large memory footprint an attractive approach is to only store
the level-set function values near the surface. This is feasible as it is sufficient to
only solve the level-set equation inside this narrow band around the surface which
solely defines the position of the implicit surface [59][60]. Data structures can be
distinguished into two main groups:

• Tree-based approaches use a tree of nested cubes, where the leaf nodes store
the level-set function values [61][62]. The non-leaf nodes contain either only
the sign or level-set values at a reduced resolution.

• Run-length encoded approaches compress regions away from the narrow band
by just storing a sign denoting inside or outside [5][63][64].

General requirements for the data structures are an efficient mechanism to adopt the
narrow band after the surface has evolved, and fast access methods for sequential
and random access.

2.3.6 Surface Extraction

An explicit representation of the surface is obtained by performing an isosurface ex-
traction. The extraction algorithms can be categorized into the following groups [65]:

Primal methods produce a polygonal mesh by connecting the intersection points
of the isosurface with a structured grid. The marching cubes algorithm is robust,
straightforward to implement, and is the standard algorithm for surface extraction
from a signed-distance field. Variations of the original algorithm exist, e.g., to
improve mesh quality and unwanted smoothing of sharp features [65][66].

Dual methods identify a representative point for each cell of the structured grid
and connect these points to form a polygonal mesh. The dual marching cubes [67] is
an example for a dual extraction method. In [68], an algorithm for dual contouring
is introduced and compared to primal methods.

2.4 Summary

Most process simulators rely on the level-set method to evolve the surface due to its
inherent support for arbitrary surface evolutions. An implicit representation of the
surface (level-set function) is maintained throughout the simulation. For efficiency
reasons, the level-set function is stored using sparse volume data structures which
only store the values inside the narrow band around the zero-level-set. The fact that
it is sufficient to solve the level-set equation only in the vicinity of the zero-level-set
makes this memory efficient approach possible.

The particle transport is an integral part of any advanced simulation of etching
or deposition processes, as the surface rates (entering the surface velocity model)
depend on the particle distributions inside the domain. A vast number of visibil-
ity/intersection tests are a major computational task in all presented methods to

32

model the particle transport. The particle transport is calculated for every time
step of a simulation.

The visibility/intersection tests can either be performed using an implicit repre-
sentation (level-set function) or using an explicit representation of the the surface.
The explicit representation is created from the level-set function using an extraction
algorithm.

Visibility/intersection tests are ray-surface intersection tests (ray casting). Ray
tracing is a rendering technique used in the field of computer graphics, which relies
on casting (light) rays into the scene. Numerous optimized libraries implement-
ing efficient ray casting are available, originally targeted for rendering applications.
Most of those libraries perform all computations using single-precision floating point
operations.

Starting out with the approaches for the particle transport described above, the
aim of this work is to reduce the computational workload contributed by the particle
transport calculation during a process simulation. The next chapter introduces
the simulation framework which is used to implement and validate the methods
presented in the remainder of this work.

33

Chapter 3

Simulation Platform

The platform introduced in this chapter is used as a development platform for
implementing and evaluating novel computationally efficient approaches to calculate
the particle transport in three-dimensional etching and deposition simulations. The
approaches presented in Chapters 4, 5, and 6 were implemented and validated using
this platform.

The performance of a particle transport calculation can be investigated detached
from a simulation of a dynamic surface, i.e., using

• a set of surface geometries with corresponding surface models,

• information about the domain and boundary conditions, and

• information about the properties of the particle sources.

However, there is a disadvantage when using such a static setup: The accumulated
effect of the particle transport method on the final topography at the end of the
simulation cannot be assessed as the surface is not advected.

The alternative is to embed the evaluation directly into a process simulator.
This provides access to all simulation results and allows for the evaluation of par-
ticle transport methods throughout the course of a full simulation. However, most
available process simulators (cf. Section 2.1) are closed-source projects and there-
fore unsuitable. At the time of writing, ViennaTS [14] is the only available three-
dimensional fully open-source process simulator. Due to a lack of functionality in
ViennaTS regarding geometry construction, serialization of the level-sets, and sur-
face extraction a standalone evaluation platform is desired.

To provide an overview, Figure 3.1 illustrates the sequence of computational
tasks during a process simulation using such a simulation platform: First, the do-
main and the layers (i.e., the level-set functions which delimit the material regions)
are created (left column). Then, the main computational tasks in each time step of
the simulation (middle column) are

• the extraction of an explicit representation of the top layer 1, i.e., a triangle
mesh including the information of the active material for each triangle,

1See Section 3.1.2 for the definition of top layer.

35

• the calculation of the surface rates for each point on the top layer, which
requires the calculation of the particle transport,

• the calculation of the surface velocities, i.e., the velocity for each point of the
top layer,

• the extension of the surface velocities, i.e., preparing a velocity field for all
level-set grid points in the narrow band of the top layer, and

• the advection of the top layer according to the surface velocity field including
an appropriate update of the other layers (cf. Section 3.1.2).

Finally, the resulting layers and material regions are extracted and saved (right
column).

start

create domain

create layers from regions

calculate surface velocities

calculate surface rates

create material regions

end
extend surface velocities

advect layers

t < simtime

extract top layer surface

False

save final layers

extract final regions

True

save final regions

Figure 3.1: Coarse-grained flow chart of the process simulation identifying the main computational
tasks: Surface extraction, surface rate calculation, surface velocity calculation, creating of the
surface velocity field, and the advection of the layers. The relation of the computational tasks
encapsulated by the interface classes (cf. Section 3.2) is indicated.

To minimize development effort, open-source third-party libraries were employed.
Briefly, the simulation platform is based on OpenVDB [31], using its sparse volume

36

data structure; the tools provided by OpenVDB to manipulate the sparse data (e.g.,
narrow band level-set methods for advecting/normalizing level-sets and extraction
of explicit surfaces) are also utilized. The ray-surface intersection queries for the
calculation of the particle transport are performed using Embree [24] as external ray
tracing library. Other ray tracing libraries (cf. Chapter 5) were used for validation
and performance evaluations.

In the following, first, the necessary extensions to match the requirements of a
feature-scale process simulation are discussed in detail. Then, an overview of the
software architecture is given by focusing on the abstract interface classes which
decouple the individual computational tasks. Finally, test cases and benchmarks
are presented.

3.1 Requirements for Feature-Scale Process

Simulation

The sparse volume data structure provided by OpenVDB [31] is used for surface
representation. In [62] a detailed overview of the hierarchical data structure and
implemented algorithms is provided and performance benchmarks are presented.
OpenVDB suits the requirements for a level-set-based feature-scale process simulator
to large extends as it provides [62]

• a configurable sparse data structure for volumetric data with cache efficient
sequential access and fast random access (which is used to store the layers),

• a multi-threaded narrow band level-set method using TVD-RK explicit time
integration schemes and a Godunov scheme combined with WENO schemes
for spatial derivatives (which is used for the advection of the top layer),

• multi-threaded flow-based re-normalization of the narrow band using the same
discretization schemes as for the advection (which is used for normalization of
the top layer after each advection),

• geometry construction and multi-threaded CSG operations (which are used to
update the other layers after the top layer is advected (cf. Section 3.1.2) and
to construct the initial geometries),

• ray marching (i.e., ray casting) using the hierarchical volume data structure
directly (which is used as a baseline for volume/implicit ray tracing perfor-
mance, cf. Section 5.2),

• a fast dual method for the extraction of quad/triangle meshes (which is used
for the extraction of a triangle mesh from the top layer, cf. Section 5.2),

• a conversion from quad/triangle meshes to volumes/level-sets (which is used
to import explicit geometries), and

37

• serialization/deserialization of volumes/level-sets using a memory efficient file
format (which is used to store intermediate and final results of the layers and
regions).

Nevertheless, OpenVDB also lacks some requirements for a feature-scale process
simulator, namely

• a confined domain size with prescribed boundary conditions (which is neces-
sary when simulating only a small region of the wafer surface),

• a multi-material level-set advection logic (which is necessary if more than one
material region is present in the simulation domain),

• a method for surface velocity extension (which is necessary as the surface
velocities in a process simulation are only available for the surface, cf. Sec-
tion 2.3.2), and

• a ray-surface intersection test which considers the confined domain and its
boundary conditions.

In the following, the necessary extensions are briefly introduced.

3.1.1 Boundary Conditions

In feature-scale process simulations only a small region of the wafer surface is con-
sidered. Therefore, it is necessary to define boundary conditions for the vertical
and lateral boundaries of the domain. The spatial position of the vertical boundary
is adopted after each time step according to the new maximum vertical extents of
the top layer. Two types of domain boundaries are commonly used for the lateral
boundaries in a Process TCAD simulation: Periodic and reflective boundary condi-
tions. Figure 3.2 illustrates the effect of periodic boundaries Bp (right) and reflective
boundaries Br (left) in two dimensions.

Reflective boundary conditions are possible for all geometries; periodic boundary
conditions require that the initial geometry on one boundary matches the geome-
try on the opposing boundary for each applied dimension in which the boundary
condition is applied.

If reflective boundary conditions are used, the emission of the particle sources
must be rotationally symmetric with respect to the vertical axis; for periodic bound-
ary conditions, the particle sources do not have this constraint.

The boundary conditions are implemented using a straightforward ghost region
approach: The lateral boundaries of the simulation domain are extended by a thin
layer of grid cells which are initialized according to the applied boundary condition.
The surface advection is performed also for the ghost regions. The values in the
ghost regions are discarded and re-initialized after each time step of the simulation.
Figure 3.3 illustrates the top layer and ghost regions (blue) for a three-dimensional
structure before and after a tilted directional etching (i.e., a non-symmetric particle
source). Figure 3.4a illustrates the effective surrounding geometry for the initial

38

Figure 3.2: Two-dimensional illustration of a simulation domain with a reflective boundary con-
dition Br on the left side and a periodic boundary condition Bp on the right side. The vertical
domain boundaries are infinite, i.e., are adopted according to the maximum extents of the top
layer surface S (blue); the source plane P (green) is positioned according to the upper vertical
domain extent.

(a) Initial top layer and ghost region (b) Result of tilted unidirectional etching

Figure 3.3: Top layer and ghost region of multi-material unidirectional tilted etching test case with
periodic boundary conditions. (a) Top layer of initial geometry where the color indicates the active
material and blue is the ghost region. (b) Resulting top layer and ghost region for unidirectional
etching in direction [−0.5, 0,−1].

geometry of Figure 3.3a, if periodic and reflective boundary conditions are com-
bined. Figure 3.4b illustrates the same simulation results as Figure 3.3b but with
the effective surrounding geometry which is produced by the periodic boundary
conditions.

39

(a) Reflective (x-axis) and periodic (y-axis)
boundary conditions

(b) Periodic boundary conditions

Figure 3.4: Illustration of the effective surrounding geometry for (a) the same geometry as Fig-
ure 3.3a but using combined reflective and periodic boundary conditions, and (b) the unidirectional
etching test case with periodic boundary conditions (cf. Figure 3.3b).

3.1.2 Multi-Material Advection

Typically, different material regions are present during an etching process simu-
lation, e.g., a substrate patterned with a mask. Also for deposition processes at
least two materials are present, i.e., the initial material and the material which is
deposited. The straightforward approach is to represent each material region with
a corresponding level-set function. To simultaneously advect all material regions,
each region would then be advected separately, leading to potentially mutual pene-
tration. In this case, the parts of a region which are penetrated by another region
would be treated inactive, i.e., not subject to advection. One approach would be to
perform a Boolean operations between material regions to dissolve the penetrations;
in this case a strategy to decide which material fills the former penetrated volume
has to be set up.

Another approach [5][14] is to not advect each material region separately but to
construct a total union of all regions and advect this top layer. To be able to advect
the top layer with the correct surface speed of the underlying material region, it is
necessary to detect the active material for each point on the top layer. This active
material for a point x on the top layer is obtained by querying the value of all level-
sets at x: The construction of the top layer implies that the values of the queries are
all ≤ 0. The material of the level-set with the smallest value is considered active;
the active material at a point on the surface is therefore

M(x) = min
m∈{1..Nm}

φm(x) , (3.1)

where Nm is the number of materials and φm is the level-set function corresponding

40

to material m. Additionally, the level-sets have a fixed order and the lower level-set
is chosen as active material, if the values are numerically identical.

However, with this approach it is not straightforward to deposit (i.e., the surface
velocity Vn > 0) multiple materials simultaneously; instead one is restricted to de-
posit only one “top material” where Vn > 0. If Vn < 0, i.e., material is removed, the
top layer is advected according to the underlying active material. In a subsequent
Boolean operation between the advected top layer and each material region, the
removal of the material is transferred to the level-sets which represent the materi-
als. The Boolean operation to subtract the volume penetrated by level-set φB from
level-set φA is

φ′
A(x) = min{φA(x),−φB(x)} . (3.2)

A significant advantage of this “top layer ” approach is that material layers can
be represented with sub-grid resolution. This is possible if the level-sets represent-
ing the materials are chosen to not map directly to the material regions, but are
constructed “additively”. An example of a three materials setup (illustrated in Fig-
ure 3.5a) is used for demonstration: A thick bottom region (blue) is covered by a
thin layer (green) which is exposed only in a circular region due to a mask (red).
The level-set resolution is chosen such that only a single level-set grid point falls
within the vertical span of the green layer.

Figure 3.5b shows a cross section of the (narrow band) level-set grid of the do-
main. The colored lines mark the extracted zero-level-sets of the regions if the
level-sets directly represent the material regions. Figure 3.5c illustrates the same
cross section but showing the zero-level-sets, if the level-sets are constructed addi-
tively using

φ1 = φblue , (3.3)

φ2 = φblue ∪ φgreen , (3.4)

φ3 = φblue ∪ φgreen ∪ φred , (3.5)

where the unions are constructed using

φA ∪ φB = min{φA(x), φB(x)} . (3.6)

Figure 3.5d once more illustrates the zero-level-sets from Figure 3.5c and addition-
ally shows the reconstructed material regions obtained from

φblue = φ1 , (3.7)

φgreen = φ2 \ φ1 , (3.8)

φred = (φ3 \ φ2) \ φ1 . (3.9)

Figure 3.6 chronologically illustrates the development of the material stack using
top layer advection and the additive scheme to represent the materials. Starting
from Figure 3.6b the green layer is represented with sub-grid resolution, until it is
fully etched away in Figure 3.6c. Using a straightforward scheme, the thin region
of the green layer cannot be represented from Figure 3.6b onwards. It also becomes

41

(a) Material regions and level-set grid (b) Material regions

(c) Additive level-sets (d) Reconstructed material regions

Figure 3.5: Three materials stack with thick bottom region (blue), a thin layer (green), and a
mask (red). (a) Cross section through the domain and indicated level-set resolution for the cross
section plane. (b) Front view on the right half of the cross section showing the narrow band
level-set grid points and the extracted zero-level-sets of the material regions. (c) Representation
using an additive scheme from bottom to top in order blue, green, and red. (d) Material regions
reconstructed from the level-set of the additive scheme.

apparent that a void is formed between the green and the blue layer already in
Figure 3.6a; this is due to the nature of the level-set function which is a scalar field
and does not hold directional information.

In a time step where a region of a layer is fully etched and the underlying material
becomes active (cf. Figure 3.6c), the surface velocities of the involved materials must
be averaged: If only the surface velocity for the green layer is considered for the

42

(a) Beginning of the etching process (b) Sub-grid resolution of green layer

(c) Green layer fully etched (d) Blue layer is etched

Figure 3.6: Development of the material stack from Figure 3.5 during an isotropic etching simula-
tion using the additive scheme. The zero-level-sets of the additive scheme are shown (colored lines)
together with the reconstructed material regions for four different stages in chronological order:
(a) The green layer representable as one horizontal layer of level-set grid points is still enclosed.
(b) The green layer continues to be representable using the additive scheme but the reconstruction
using Boolean operations fails to represent the green layer in the thin region. (c) The blue layer
becomes the active layer where the green layer is fully etched away. (d) The blue layer is etched
further.

full time step, the surface advection speed is too slow or too fast, if the surface
velocity for the blue material is faster or slower, respectively. This is corrected by
adopting the surface velocity in such cases and using a convex combination Vavg

of the velocities according to the initial distance of the layers weighted with the
corresponding surface speeds

ΔtVavg = ΔtgVg +ΔtbVb , (3.10)

Δt = Δtg +Δtb , (3.11)

Δtg =
Δxg→b

Vg

, (3.12)

where Δxg→b is the initial distance between the green (g) and the blue (b) layer.

43

3.1.3 Velocity Extension

The velocity extension is implemented in the most straightforward approach [45]:
For each level-set cell in the narrow band, the velocity of the closest point on the
surface is identified and used. A step along the gradient weighted with the negated
level-set value is performed and the search for the nearest velocity value is started
at the resulting position (which is close to the surface if the level-set has a signed-
distance property). The nearest neighbor search is accelerated by using OpenVDB ’s
space-partitioning acceleration structure PointIndexGrid. The velocity extension
in the ghost regions is handled equally but with a preceding mapping of the query
location into the domain according to the boundary conditions.

3.1.4 Ray-Surface Intersection

The ray-surface intersection queries (which are extensively used during the calcula-
tion of the particle transport) must consider the confined domain with prescribed
boundary conditions:

• If a reflective boundary of the domain is intersected, the direction is reflected
and the origin is set to the intersection point.

• If a periodic boundary condition is intersected, the direction is maintained but
the origin is translated to the opposing domain boundary.

A maximum number of domain boundary intersections is defined to prevent infinite
domain intersections for ray directions which are (nearly) horizontal and do not
intersect with the geometry.

3.2 Software Design

The simulation platform is not intended to be an operational process simulator but
is developed to support the evaluation of novel approaches for the particle transport.
To that end, from a design perspective, the requirements are

• to support multiple implementations of the same computational task,

• to decouple individual computational tasks,

• to provide explicit interfaces between the computational tasks, and

• to not constrain new implementations of computational tasks by choosing a
loose coupling between the interfaces.

A loose coupling of the individual computational tasks is achieved by the use of
abstract interface classes. The relations between the interfaces are not enforced by
the design: This allows to integrate new implementations of computational tasks
without design constraints but provides guidance to reduce redundancy once an
implementation matures. Figure 3.7 provides an overview of the relation between

44

Figure 3.7: Main interface classes (blue boxes, postfix IF) and examples for corresponding imple-
mentations.

the interface classes and the names of the implementations of the interfaces used
for the test case in Section 3.3.3. To support mixed-precision approaches, the float-
ing point data types are templated using C++ template metaprogramming, i.e.,
different floating points types can be configured for each task. The floating point
templatization and some details of the interfaces are not reflected in the following
to keep the listings concise.

The outermost level is the SimulationIF class (cf. Figure 3.7). The only inter-
face method is a function to trigger the simulation of a process for T = simtime.
The class shown in Listing 3.1 sketches a multi-material simulation implementing
SimulationIF which utilizes the other interface classes as intended by the design.
A static function (create) prepares the arguments for the interface constructor and
returns a shared pointer object. The run-method first determines the maximum
surface velocity of the process and calculates the maximum time step according to
the advection scheme. Then, a point cloud of surface velocities is calculated using
the calcSurfVelos-method of ProcessIF. The top layer is then advected accord-
ing to these surface velocities using the advect-method of AdvectIF. Finally, the
advection of the top layer is transferred to the other material layers. This sequence
is repeated until t == simtime.

The GeometryIF class provides access to the domain (e.g., extents and boundary

45

Listing 3.1: Process Simulation Implementation

class SimulationMultiLayer : public SimulationIF {

private:

GeometryIF ::Ptr mGeometry;

ProcessIF ::Ptr mProcess;

AdvectIF ::Ptr mAdvect;

public:

using Ptr = shared_ptr <SimulationMultiLayer >;

static SimulationMultiLayer ::Ptr Create ([...]) {

// [set/create members]

return make_shared <SimulationMultiLayer >([...]);

}

SimulationMultiLayer ([...]) : mGeometry ([...]) , [...] {}

void run(double simtime) {

double t = 0;

while (t < simtime) {

double vmax = mProcess ->maxSurfVelo ();

double dtmax =

mAdvect ->CFL() * mGeometry ->Domain.dx / abs(vmax);

double dt = (t + dtmax) < simtime ? dtmax : simtime - t;

vector <Vec3f > points;

vector <double > velos;

mProcess ->calcSurfVelos(mGeometry , dt , points , velos);

mAdvect ->advect(t, dt , mGeometry ->domain(), points , velos ,

mGeometry ->layers (). back ());

// [boolean operations with other material layers]

t = t + dt;

}

}

};

conditions) and the material layers. It is also used for the creation of the initial
geometry (using CSG operations between level-sets) and saving of intermediate and
final results.

A process is implemented using the interface shown in Listing 3.2. The first
method (maxSurfVelo) calculates the maximum possible surface speed of the pro-
cess. The second method’s task is to create a set of points on the surface (points)
and calculate the corresponding surface velocities (velos); it has read access to the
geometry, i.e., the domain and the material layers. The time step dt is provided to
allow for the averaging of velocities as discussed in Section 3.1.2.

The surface rates for a particle source are interfaced using SurfaceRatesIF (List-
ing 3.3). An implementation of this class uses an implementation of RayTracingIF
to conduct the ray-surface intersection tests. An interface for a particle source
(ParticleSourceIF) is used to access the properties of the source or to generate
random samples according to the emission properties of the particle source. The
maxSurfRate-method returns the maximum possible surface rate. The calcSurf-

Rates-method calculates the surface rates at all triangles (ratesAtTriangles) of
the surface (mesh), i.e., the extracted surface of the zero-level-set of the top layer;
mesh holds additional information for each triangle, e.g., which material is active

46

Listing 3.2: Process Interface

class ProcessIF {

public:

using Ptr = shared_ptr <ProcessIF >;

virtual double maxSurfVelo () const = 0;

virtual bool calcSurfVelo(const double dt ,

const GeometryIF ::Ptr geometry ,

vector <Vec3f > &points ,

vector <double > &velos) = 0;

};

or a quality measure (as the extraction algorithms potentially generate low quality
triangles).

Listing 3.3: Surface Rates Interface

class SurfaceRatesIF {

public:

using Ptr = shared_ptr <SurfaceRatesIF >;

virtual double maxSurfRate () = 0;

virtual void calcSurfRates(const GeometryIF ::Ptr geometry ,

const Mesh &mesh ,

vector <double > &ratesAtTriangles) = 0;

};

A source of particles is implemented according to ParticleSourceIF (List-
ing 3.4). The interface methods aim at two different approaches for the particle
transport calculation:

flux(...) provides the emitted flux into direction dir and is used for bottom-up
particle transport calculations.

sample(...) generates a random emission direction dir together with a scalar
weight (the return value) and is used for top-down particle transport calcula-
tions. The same approach as in [5] is chosen to generate the random directions.

Listing 3.4: Particle Source Interface

class ParticleSourceIF {

public:

using Ptr = shared_ptr <ParticleSourceIF >;

// flux emitted into direction

virtual double flux(const Vec3f &dir) const = 0;

// create random direction which resembles the distribution

virtual double sample(Vec3f &dir) const = 0;

};

The ray tracing interface RayTracingIF (Listing 3.5) provides ray-surface inter-
section queries via a trace-method. The trace-method traces a ray from origin org

47

into direction dir through the domain. If a domain boundary is intersected, the
ray’s origin and direction are updated accordingly and tracing proceeds. The method
reports the distance of the closest intersection with the surface hitDistance, the
normal direction of the surface at the intersection location hitNormal, the ID of the
intersected primitive primitiveID, and the number of performed ray casts numCasts
(i.e., number of boundary intersections). The return value signals an intersection
with the surface (true) or no intersection (false). The refresh-method is used

Listing 3.5: Ray Tracing Interface

class RayTracingIF {

public:

using Ptr = shared_ptr <RayTracingIF >;

// refresh the scene

virtual void refresh(const Domain &domain ,

const vector <Vec3f > &points ,

const vector <Vec3i > &triangles) = 0;

// trace ray

virtual bool trace(const Vec3f &org , const Vec3f &dir ,

double &hitDistance , Vec3f &hitNormal ,

int &primitiveID , int &numCasts) const = 0;

};

to refresh the scene, i.e., to re-build the acceleration structure according to the new
geometry given by a triangle mesh (triangles and points).

An interface intended for the use with implicit ray tracing (i.e., the signed-
distance field is used directly for ray casting) is implemented analogously; obviously,
it lacks the information of an intersected primitiveID but provides an intersection
location.

The advection of the top layer level-set is interfaced via AdvectIF (Listing 3.6).
Only one method is defined which advects a level-set inside the domain from time
t to t + dt using the surface velocities (velos) provided at the corresponding loca-
tions on the surface (points). The advection of the surface includes normalization
of the level-set and an update of the narrow band, i.e., the narrow band has to be
moved as the zero-level-set evolves.

Listing 3.6: Level-Set Advection Interface

class AdvectIF {

public:

using Ptr = shared_ptr <AdvectIF >;

// advect level -sets according to surface velocities

virtual void advect(const double t, const double dt ,

const Domain &domain ,

const vector <Vec3f > &points ,

const vector <double > &velos ,

LevelSet ::Pt > &levelset) = 0;

};

48

The extension of the surface velocities into the narrow band is provided by
VeloFieldIF shown in Listing 3.7. The refresh-method is intended to prepare (or
conduct) the extension into the narrow band. The extended velocities are accessed
via the overloaded operator().

Listing 3.7: Velocity Field Interface

class VeloFieldIF {

public:

using Ptr = shared_ptr <VeloFieldIF >;

virtual void refresh(const Domain &domain ,

const LevelSet ::Ptr levelset ,

const vector <Vec3f > &points ,

const vector <double > &velos) = 0;

virtual double operator ()(const Coord &ijk) const = 0;

};

The relation of the interfaces introduced above to the sequence of computational
tasks throughout a process simulation is indicated in Figure 3.1. The tasks in the left
and right column are handled by an implementation of GeometryIF. The tasks in the
center column are handled in the run-method of SimulationIF: First, GeometryIF
is used to extract the top layer surface. Then, ProcessIF is used to calculate the
surface rates and surface velocities (utilizing ParticleSourceIF, RayTracingIF,
and SurfaceRatesIF). It follows the velocity extension (VeloFieldIF) and the ad-
vection (AdvectIF).

The test cases in the following sections use computationally inexpensive imple-
mentations of ProcessIF, i.e., a calculation of the particle transport is not required
for the surface velocities. The runtime of the simulations are therefore dominated
by the advection of the level-sets and extraction of the surface representation.

3.3 Test Cases

The multi-material surface advection capabilities of the platform are validated us-
ing three test cases. Simple surface velocity models are used which are indepen-
dent of the particle transport. Therefore the surface advection and maintenance
of the multi-material level-sets becomes the main computational load. Different
spatial resolutions are used, the final profiles are compared, and the performance
is tracked throughout the simulations. The main computational tasks for the fol-
lowing test cases is the advection of the surface including velocity extension and
re-normalization.

3.3.1 Enright Test

The Enright test is described in [69] and is a standard test for benchmarking level-set
data structures and related numerical methods [62][70]. The test is straightforward
to setup: A sphere with radius 0.15 is placed with its center at x = [0.35, 0.35, 0.35].

49

The simulation domain is the unit box: [0, 0, 0] to [1, 1, 1] (cf. Figure 3.8). The
velocity field V (x, t) is a three-dimensional incompressible flow field modulated
with a period T = 3, i.e., a multiplication with cos(tπ

3
), which results in

V (x, t) =

cos(t

π
3
)[2 sin2(2πx) sin(2xy) sin(2πz)]

cos(tπ
3
)[− sin(2πx) sin2(πy) sin(2πz)]

cos(tπ
3
)[− sin(2πx) sin(2πy) sin2(πz)]

 . (3.13)

The sphere is mangled through this velocity field resulting in a very thin structure
at T = 1.5 where the velocity field and thus the deformation as well is reversed
(due to the temporal cosine modulation). The analytical result is again the original
structure (sphere) for T = 3.0.

Figure 3.8: Initial position of the sphere for the Enright test in the unit domain (gray) and
deformed sphere at T = 1.5 (yellow).

In Appendix A.1, Figure A.1-A.4 illustrate the deformed states of the sphere
from T = 0.0 to T = 3.0 for various resolutions. For the lowest resolution (1283,
Figure A.4) the thin regions are not representable from T = 1.2 onwards (cf. Sec-
tion 3.1.2), leading to a drastic loss in volume at the final time T = 3.0. When the
resolution in is increased (cf. Figure A.1-Figure A.3), the loss in volume is decreased.

Table 3.1 shows the results using the OpenVDB data structure to store the level-
set and performing the surface advection using a TVD-RK3 time integration scheme
and WENO schemes for spatial discretization; three iterations (i.e., time steps) of a
flow-based normalization are performed after the advection using the same WENO
schemes and a TVD-RK1 time integration.

3.3.2 Material Dependent Isotropic Etching

The test configuration (isotropic test) consists of four stacked layers of different
materials M . The surface velocity model is an isotropic etch rate:

Vn(x) = f(M(x)) =

0.07, if M(x) = M4

1, if M(x) = M3

0.05, if M(x) = M2

1, if M(x) = M1

(3.14)

50

Domain
resolution

Memory
[MB]

Advection
[s]

Performance
[MAV/s]

Active voxels
[million]

1283 0.6/1.0 0.01/0.03 2.3/2.8 0.027/0.078
2563 1.6/4.3 0.04/0.13 2.7/3.0 0.11/0.39
5123 5.4/18 0.15/0.56 2.9/3.1 0.44/1.7
10243 20/76 0.57/2.4 2.9/3.1 1.7/7.2
20483 80/330 2.4/10 2.9/3.1 7.1/29

Table 3.1: Performance characteristics for the Enright test for resolutions from 1283 to 20483

(min/max) test on WS1 (cf. Section 3.4). Column 1: Memory footprint of the VDB data structure
(single-precision floating point representation). Column 2: Time for the advection step (TVD-RK3,
WENO) including normalization (3 iterations, flow-based TVD-RK1, WENO) and tracking of the
narrow band. Column 3: Advection performance in MAV/s (million active voxels per second).
Column 4: Number of active voxels.

The lateral domain dimensions are 6× 1 (cf. Figure 3.9). The boundary conditions
are reflective in both lateral directions. The thicknesses of the layers from top to
bottom are 0.25 (M4), 0.25 (M3), 0.02 (M2), and 0.98 (M1), respectively. The top
layer (M4) has four cylindrical holes of varying diameters 0.4, 0.3, 0.2, and 0.1. The
centers are located on one of the longer lateral boundaries of the domain and are
equidistantly spaced with a distance of 1.5.

Three different level-set resolutions were used: 1/64, 1/128, and 1/256, corre-
sponding to lateral dimensions of 1536× 256, 768× 128, and 384× 64 grid cells for
the simulation domain. The simulation is run until time T = 1.0 using a TVD-RK3
time integration scheme with αCFL = 0.4. The simulation results for T = [0, 1] are
illustrated in Figures A.5-A.7. The thin material layer (M2) has a low etch rate com-
pared to the materials above and below; for the lowest resolution (1/64 = 0.0156)
the layer is just a bit thicker than one grid cell. Nevertheless, the multi-material
level-set representation described above allows to represent this thin layer with sub-
grid thickness (cf. Section 3.1.2) during the level-set advection.

If the material regions are reconstructed from the multi-material level-sets (using
Boolean operations), the thin layer vanishes in regions where no grid cell center is
situated between the wrapping level-sets. This effect is visualized in Figure 3.10
where this sub-grid resolution is shown for the thin layer of M2 near the crater in
M1 at T = 0.7.

Figure 3.11 shows the cross section for the hole of diameter 0.2 at different
simulation times for all three resolutions. The low etch rate of M2 slows etching in
the downward direction, until the thin layer is first opened at the center line of the
hole.

51

(a) Initial material regions

(b) Material regions at T = 0.75

Figure 3.9: (a) Initial material regions M4(yellow), M3(green), M2(red), and M1(blue). (b)
Material regions for T = 0.75.

52

(a) rightmost hole at T = 0.75
(b)

Figure 3.10: Material regions at T = 0.75 for the rightmost hole. (a) The explicit representation
of the top layer level-set is shown (red triangle mesh). (b) A spot near the crater in material M1

is magnified to illustrate the sub-grid resolution of the thin material later (M2). If no grid cell is
between the two wrapping level-sets, the thin layer vanished during a Boolean operation between
the wrapping level-sets. This is visible in the horizontal region near the crater. Nevertheless,
the layer is still represented through the wrapping level-sets and considered during the surface
advection.

Figure 3.11: Cross section of the top layer level-set for resolutions 1/256(black), 1/128(blue), and
1/64(red). For time T = 0.0, 0.25, 0.5, 0.75, and 1.0, the top layer level-set for all three resolutions
is shown.

53

3.3.3 Simple Bosch Process

The Bosch process is a technique to fabricate high aspect ratio structures which are
obtained by alternating a passivation step with an etching step. The passivation
layer protects the sidewalls in the following directional etching step. In the etching
step, accelerated ions remove the passivation layer primarily on horizontal surface
regions, i.e., at the open top surface and the bottom of the structure. Once the
passivation layer is removed at the bottom, the substrate is also etched isotropically
by a neutral etchant species.

For this test case (Bosch test), etching and deposition are assumed to be isotropic
and the accelerated ions are modeled to have perfect vertical trajectories. No re-
emissions are considered allowing to simplify modeling the ion flux by a single verti-
cal (upward) visibility check weighted with the projected surface area. This simple
model is deliberately chosen as this test case is solely conducted to evaluate the
capabilities of the framework.

The involved materials are a mask Mmask patterned with the desired structure,
a substrate Msubs into which the pattern is transferred, and a passivation mate-
rial Mpass. This results in an isotropic surface velocity for the deposition of the
passivation layer Mpass

Vn(x) = f(M(x)) = 0.00025, if M(x) = Mpass , (3.15)

and a combined (isotropic and directed) surface velocity for the etching step

Vn(x) = f(M(x),n(x)) =

0.000875 + 0.00275(n · ωup), if M(x) = Mpass

0.00025 + 0.0005(n · ωup), if M(x) = Mmask

0.003 + 0.00295(n · ωup), if M(x) = Msubs

,

(3.16)

where n is the surface normal direction and ωup is an upward unit vector. The
second summand is only considered, if the upward visibility check (a single upward
ray is traced) evaluates to false, i.e., the source is visible. The duration of the
passivation step is T = 5 and the duration of the etching step is T = 12. The
simulation of 20 cycles is conducted using a domain with lateral dimensions 1× 0.5
and reflective boundary conditions. A mask (Mmask) of thickness 0.25 is patterned
with a cylindrical hole of radius 0.25 with its center midway on one of the longer
domain boundaries.

Figure 3.12 illustrates the results of the first 5 processing steps.
The results for all 20 cycles are provided in Figures A.8-A.11 in Appendix A.3

for resolutions 1/256, 1/128, 1/64, and 1/32. It becomes apparent that the sub-
grid resolution of thin layers is essential especially at low resolutions, as the thin
passivation layer would not be representable otherwise.

Figure 3.13 compares the final results for four different resolutions. Larger differ-
ences in the absolute position of the side wall are noticeable for the lower resolutions.

54

(a) First cycle (b) Second cycle (c) Third cycle

Figure 3.12: Material regions of the Bosch test for resolution 1/256. (a)-(c): Material regions after
each of the first 3 cylces, i.e., alternating deposition (top) and etching (bottom). The corresponding
final material regions after 20 cycles are shown in Figure A.8f in Appendix A.3.

(a) Top (b) Middle (c) Bottom

Figure 3.13: Final cross sections for resolutions 1/256(black), 1/128(blue), 1/64(red), and
1/32(green). All three material layers (e.g., cf. Figure A.8g) are shown at (a) the top, (b) the
middle, and (c) at the bottom of the hole.

55

3.4 Benchmarks

The individual computational tasks of the simulation platform were benchmarked
on two hardware configurations:

Workstation 1 (WS1). Intel Core-i7-4790K system, 4 physical cores (8 logical
cores), 8MB of shared L3 cache, 32GB of main memory.

Workstation 2 (WS2)2. Dual CPU Intel Xeon E5-2650v2 system, each CPU
has 8 physical cores (16 logical cores), 20MB of L3 Cache, 64GB of main memory.

Utilizing all available cores (including hyper-threading), the isotropic test is
benchmarked on WS1: The runtime of the main computational tasks (resolution
1/256) is shown in Figure 3.14. The majority of runtime is utilized by the sur-
face advection. The second largest runtime is used for the surface representation,
which includes the extraction of an explicit surface of the top layer level-set and
the detection of the active layer for each triangle of the top layer. The runtime per
time step doubles throughout the simulation. This increase is due to the increasing
surface area; from T = 0.9 onwards, the surface area and consequently the runtime
decreases.

Figure 3.15 shows the runtime of the main computational tasks throughout the
simulation of the Bosch test : Also here, the dominating runtime during the deposi-
tion steps is the surface advection. During the etching steps the surface representa-
tion and the surface rates increase: The active material region must be determined
leading to a larger runtime for the surface representation, and the upward visibility
test effects the runtime for the surface rates.

To evaluate the parallel scalability of the surface advection, the first time steps
of the Enright test for resolution 20483 (7.1 MAV), the isotropic test for resolution
1536× 256 (7.0 MAV), and the Bosch test for resolution 256× 128 (0.5 MAV) were
benchmarked on a 16-core WS2. Figure 3.16 illustrates the results for up to 32
threads: The speedups are 12, 10, and 7.5 for 16 threads, respectively.

2Represents a single node on the Vienna Scientific Cluster 3 (VSC-3); https://vsc.ac.at

56

0.0 0.2 0.4 0.6 0.8 1.0

physical time T [au]

0

1

2

3

4

5

6

ru
n
ti
m
e
p
er

ti
m
e
st
ep

[s
]

surface rates

surface representation

surface velocity

surface advection

other tasks

Figure 3.14: Runtime of the main computational tasks for all time steps (T = 0 to T = 1.0) of the
isotropic test illustrated in Figure A.5. The lateral resolution of the domain is 1536× 256. At the
top, the corresponding cross sections of the domain are shown for times T = 0.25, 0.5, 0.75, and
1.0. The simulation was performed on WS1.

0 50 100 150 200 250 300

physical time T [au]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

ru
n
ti
m
e
p
er

ti
m
e
st
ep

[s
]

surface rates

surface representation

surface velocity

surface advection

other tasks

Figure 3.15: Runtime of the main computational tasks for all time steps (T = 0 to T = 340) of the
Bosch test illustrated in Figure A.8. The lateral resolution of the domain is 256×128. At the top,
the corresponding cross sections of the domain are shown after cycle 1 (T = 17), cycle 5 (T = 85),
cycle 10 (T = 170), and cycle 20 (T = 340). The simulation was performed on WS1.

57

5 10 15 20 25 30

number of threads

5

10

15

20

25

30

sp
ee
d
u
p

id
ea
l s
pe
ed
up

p
h
y
si
ca
l
co
re
s

Enright

Isotropic

Bosch

Figure 3.16: Parallel scalability of the surface advection for the Enright test, the Bosch test, and
the material dependent isotropic etching test case. The benchmarks were performed on WS2.

3.5 Summary

The developed simulation platform provides important features to validate new ap-
proaches for the particle transport calculation: Multi-material advection, sub-grid
resolution of thin layers, periodic and reflective boundary conditions, and an inter-
face for efficient ray-surface intersections using external libraries. These features
allow to qualify new approaches for the particle transport using realistic simulation
setups. The surface advection shows appropriate speedup on shared-memory sys-
tems, although the scalability of the surface advection is not primarily important
(as the focus is on the performance of the particle transport), it is advantageously
as a realistic distribution of runtime between the individual computational tasks is
obtained.

The platform is used to implement and validate the numerical approaches in the
following Chapters 4, 5, and 6, respectively.

58

Chapter 4

Adaptive Visibility Sampling

If the direct flux originating from one or more remote sources above the structure
is required to evaluate the surface velocity model, typically either a top-down or a
bottom-up approach is used to obtain the flux rates for all points on the surface.
The bottom-up approach integrates the flux contribution from the source towards a
surface point by

• finding all directions that are not obstructed by the geometry, and

• integrating the source contribution over these directions,

which yields the surface rates (cf. Section 2.2.1.2). The accurate calculation of
these surface rates is a significant computational bottleneck in three-dimensional
process simulations, especially for high aspect ratios which are increasingly required
as device structures move towards full three-dimensional designs, e.g., NAND flash
cells [71].

Figure 4.1 conceptually illustrates different stages in one time step of a simulation
using a bottom-up integration scheme: (a) A set of integration points is defined on
the initial surface. (b) For each integration point, a scheme defines the directions
which are tested for direct visibility of the source plane. (c) The surface is advected
according to the surface velocity model that requires the results of the integrations
(i.e., surface rates).

For an arbitrary geometry, visibility information of the full upper hemisphere
(i.e., all upward pointing vertical directions) is required; the lower hemisphere can
be neglected as the source plane is always strictly above the surface. The num-
ber of required visibility tests depends on the scheme used to define the sampling
directions.

The problem to discretize and access data distributed on a sphere is common in
many fields [72][73][74][75]. The most straightforward (hemi)spherical tiling is to use
a regular grid with respect to the two angular coordinates of a spherical coordinate
system. A disadvantage is that the area of the grid cells decreases towards the poles
(i.e., where the polar angle approaches ±π/2), leading to a non-uniform sampling
with respect to the subtended solid angles. Alternative sampling schemes can be
derived from subdividing a spherical polyhedron. The platonic solids are a common

59

(a) Initial surface position (b) Integration points

(c) Integration scheme (d) Surface velocities / new surface position

Figure 4.1: Two-dimensional illustration of a surface advection using a bottom-up integration
scheme for direct flux: (a) Initial position of the surface and source plane. (b) Integration points
distributed on the initial surface. (c) Integration directions for each integration point. The red
directions indicate where the source plane is directly visible. (d) Resulting surface velocities and
surface position after the advection.

choice as basis for such tiling schemes [76][77][78]. The concentration of grid cells
around the poles is overcome at the price of irregular coordinates.

In the following, an adaptive sampling scheme to accelerate the direct flux in-
tegration during a process simulation is presented [79][80]. It is applicable when
a bottom-up approach (cf. Section 2.2.1.2) is chosen for the particle transport. An
icosahedron, i.e., the platonic solid with the most (=20) faces, and its subdivided
versions (to increase the resolution) are used to sample the spherical directions dur-
ing the numerical integration of the surface rates. The presented scheme reduces
the number of rays which have to be traced during the visibility calculation by only
refining the sample directions where the visibility changes. The scheme is especially
useful for geometric configurations as they occur in Process TCAD, i.e., typically
the source plane is visible through one or a few larger apertures. It is shown that if
the initial sampling is chosen appropriately, the accuracy of the flux integration is
not reduced but the runtime is cut by 50% for higher spatial resolutions.

60

n=0 n=1 n=2 n=3 n=4

Figure 4.2: Initial icosahedron (n=0) and subdivisions up to n=4. The top row shows the
integration directions originating at the center and pointing towards each centroid of the triangles
of the spherical mesh. The bottom row visualizes the differences in the areas of the triangles (gray
= smaller, red = larger) resulting from the subdivisions. Detailed numerical information about
each subdivision step is listed in Table 4.1.

First, the properties of the hierarchically subdivided icosahedron are presented in
more detail. Then, the numerical intgeration scheme of the direct flux is presented.
Finally, the adaptive sampling scheme is introduced and results are shown for a
cylindrical hole with aspect ratios 1 to 25.

4.1 Subdivided Icosahedron

The initial spherical tiling is provided by an icosahedron which consists of 20 equilat-
eral triangles defined by 12 vertices on a spherical surface. To increase the resolution,
the triangles are subdivided according to [81]: For each triangle,

• compute the midpoints of the edges,

• project those midpoints onto the unit sphere,

• remove the original triangle, and

• connect the three original vertices and the three new midpoints to form four
new triangles.

The resulting triangles have similar shape and quality as the original triangles of
the icosahedron although they differ slightly in size and are not equilateral.

Figure 4.2 visualizes an icosahedron (n = 0) and the first four subdivisions (n = 1
to n = 4) together with the integration directions which are defined via the centroids
of the triangles. Table 4.1 provides detailed properties of the original icosahedron
and the subdivision steps up to n = 9. The number of triangles for subdivision step

61

subdivisions Ntri Nvert αres Δmin/Δmax rmin

n=0 20 12 25.842 1.00000 0.9000000
n=1 80 42 12.839 0.84222 0.9750000
n=2 320 162 6.409 0.78820 0.9937500
n=3 1280 642 3.203 0.77377 0.9984375
n=4 5120 2562 1.602 0.77010 0.9996094
n=5 20480 10242 0.801 0.76918 0.9999023
n=6 81920 40962 0.400 0.76895 0.9999756
n=7 327680 163842 0.200 0.76889 0.9999939
n=8 1310720 655362 0.100 0.76888 0.9999985
n=9 5242880 2621442 0.050 0.76888 0.9999996

Table 4.1: Properties of an icosahedron and its subdivisions up to n=9: Ntri = number of triangles,
Nvert = number of vertices, αres = angular resolution, Δmin/Δmax = ratio of triangle areas,
rmin = smallest radius occurring in triangulation.

n is defined as
Ntri(n) = 20 · 4n. (4.1)

The corresponding number of vertices is defined by

Nvert(n) =
20 · 3

5
+

20 · 3

2
·

n

i=0

4i , (4.2)

where the first summand originates from the initial vertices shared by five triangles;
the subsequent summands originate from the subdivisions which generate vertices
shared by six triangles. This difference (i.e., five or six triangles sharing a vertex)
is also the reason for the subdivided triangles not being equilateral and having
different areas. The angular resolution αres in Table 4.1 is the angle corresponding
to a spherical cap of the same area as a triangle. For subdivision step n

αres(n) = arccos(1−
4 · π

Ntri(n)
·

1

2 · π
) , (4.3)

where an equal distribution of the solid angle over all triangles is assumed. Fur-
thermore, Table 4.1 illustrates the effect of the subdivision on the spread of triangle
areas Δmin/Δmax.

The next section presents the numerical integration based on the subdivided
icosahedron in more detail.

4.2 Numerical Integration

The integration method permits sources with an arbitrary angular distribution func-
tion Γsrc(Θ) with direction Θ(θ, ϕ). The integral of the direct flux

Fi =
ΩHS

Γsrc(Θ)(Θ · ni)dωΘ, with dωΘ = sinθdθdϕ (4.4)

62

received at surface location i (surface normal = ni) is approximated by triangulating
the hemisphere ΩHS based on a subdivided icosahedron leading to

Fi =

Ntri

j=1 Δj

Γsrc(Θ)(Θ · ni)dA =

Ntri

j=1

Γsrc(Θcj)(Θcj · ni) ·Δj . (4.5)

Here Θcj is the direction towards the centroid of triangle j and Δj is the area of
triangle j. A centroid rule (4.6) is used in (4.5) to integrate over the area of a
triangle.

Fij =
Δj

Γsrc(Θ)(Θni)dA = Γsrc(Θcj)(Θcj · ni) ·Δj (4.6)

Using a visibility function fvis(Θ), which evaluates to 0 if a surface is intersected
in direction Θ, and 1 otherwise, the direct flux at surface location i is

Fi =

Ntri

j=1

fvis(Θcj)Γsrc(Θcj)(Θcj · ni) ·Δj , (4.7)

where nsrc is the upward pointing normal of the source plane, and ni is the normal
direction of the surface at position i.

Validation

A power cosine source distribution with a downward mean direction is used to
validate the integration method as it provides analytical solutions for the direct
flux received on horizontal and vertical surfaces. The angular distribution functions
are defined as Γsrc(Θ) = cos(θ)n. For n = 1, the angular distribution function is
reduced to Γsrc(Θ) = cos(θ) and therefore constitutes an ideal-diffuse source1 (i.e.,
a source with a constant particle flux per solid angle and per projected source area).
Figure 4.3 visualizes the normalized angular distribution of a power cosine source
from n = 1 to n = 1000.

The direct flux originating from an unobstructed power cosine source on a hori-
zontal surface is

Fhori =
π/2

0

2π

0

cos(θ)n+1 sinθdθdϕ =
2

n+ 2
π (4.8)

and for a vertical surface under the same source

Fvert =
π/2

0

π

0

[cos(θ)nsin(θ)sin(ϕ)] sinθdθdϕ = 2
π/2

0

[cos(θ)nsin(θ)] sinθdθ .

(4.9)

The derivations of the analytical formulations are provided in Appendix B.1.
In Figure 4.4, the numerical results are compared to the analytical solutions

for sources with power cosine exponents and subdivisions up to 5. The flux rates
approach the analytical solutions with a relative error below 1% for 3 subdivisions
and far below 0.1% for 5 subdivisions.

1Ideal-diffuse sources are used in Process TCAD to model neutral particles.

63

0◦
15

◦

30
◦

45
◦

60
◦

75
◦

90
◦

Θ

0.00.20.40.60.81.0
Γsrc(Θ)

0◦
15

◦

30
◦

45
◦

60
◦

75
◦

90
◦

Θ

0.00.20.40.60.81.0
Γsrc(Θ)

0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦
Θ

0.00

0.25

0.50

0.75

1.00

Γ
sr

c
(Θ

)

0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦
Θ

0.00

0.25

0.50

0.75

1.00

Γ
sr

c
(Θ

)

n=1

n=10

n=20

n=50

n=100

n=1000

Figure 4.3: Power cosine source distribution for exponents from diffuse (n = 1) to very directed
(n = 1000) in polar (left) and Cartesian (right) coordinates.

0 1 2 3 4 5

subdivisons

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

d
ir

e
c
t
 f

lu
x

cos(θ)1

cos(θ)2

cos(θ)3

cos(θ)4

cos(θ)5

0 1 2 3 4 5

subdivisons

10
-4

10
-3

10
-2

10
-1

10
0

r
e
la

t
iv

e
 e

r
r
o
r

(a) Horizontal

0 1 2 3 4 5

subdivisons

0.1

0.2

0.3

0.4

0.5

0.6

0.7

d
ir

e
c
t
 f

lu
x

cos(θ)1

cos(θ)2

cos(θ)3

cos(θ)4

cos(θ)5

0 1 2 3 4 5

subdivisons

10
-4

10
-3

10
-2

10
-1

10
0

r
e
la

t
iv

e
 e

r
r
o
r

(b) Vertical

Figure 4.4: Direct flux received on a horizontal (a) and vertical (b) surface using the presented
integration method. An unobstructed source with a power cosine distribution with exponents
n = [1, 5] is used. The resolution of the icosahedron is increased by using up to 5 subdivisions,
resulting in a maximal angular resolution αres = 0.8 degrees (see Table 4.1). The dotted lines
are the analytical solutions obtained from (4.8) and (4.9). The solid lines in (b) show the average
of the flux over all four vertical faces of a cube; the error bars indicate the maximum deviation
amongst the four vertical faces.

64

4.3 Adaptive Sampling Scheme

For each subdivision level of the icosahedron, the search directions are defined to-
wards the centroids of the triangles of the icosahedron. The subdivision divides
each triangle into four triangles on the next level, which cover the same area when
projected onto the unit sphere (cf. Figure 4.2). Instead of evaluating all directions
on the final subdivision level (maxlevel), the presented adaptive scheme starts on a
lower subdivision level (minlevel). After evaluating all directions on minlevel, the
boundary of the aperture is identified and all directions in the neighborhood of the
boundary are re-evaluated on the next level. The aperture boundary is defined as
all triangles which are connected to a vertex which shares triangles with mixed vis-
ibility information (cf. blue points in Figure 4.5). This procedure is repeated until
maxlevel is reached. The adaptive sampling scheme is conceptually illustrated for
two dimensions in Figure 4.5.

Figure 4.5: Two-dimensional illustration of the bottom-up visibility scheme for direct flux calcula-
tion for two surface points. The search directions are colored according to the source visibility (red
= visible, black = obscured). In three dimensions, the search directions are towards the centers of
the triangles of the icosahedron. The green solid angles indicate the neighborhood of the aperture
boundary. The blue points are identified as aperture boundary points which are used to define the
regions for re-evaluation on the next level. The green arrows indicate the refined search directions
near the aperture boundary.

After the detection of the visible directions using the adaptive visibility scheme,
the integration is performed with the resolution of maxlevel to provide the same
integration accuracy compared to the non-adaptive sampling on maxlevel.

Algorithm 1 describes the adaptive visibility sampling for an integration point
on the surface including the integration on the maximum refinement level.

65

Algorithm 1: Bottom-up direct flux calculation at surface position i using the
proposed adaptive visibility scheme and integration on the maximum refinement
level.

Input : minlevel, maxlevel
Output: flux at surface point i
for n = minlevel to maxlevel do

if n == minlevel then
set all directions to be active on level n;
set all visibility information to false level on n;

foreach direction d on level n do
if d is active then

trace ray into direction of d;
if ray hit source then set visibility for d to true;
if ray hit surface then set visibility for d to false;

if n < maxlevel then
foreach direction d on level n+ 1 do

set visibility for d according to parent on level n

foreach vertex v on level n do
if v is boundary vertex then

foreach triangle t connected to v do
mark all children of t active on next level

if n == maxlevel then
foreach direction d on level n do

if visibility of direction d is true then
integrate flux contribution (cf. (4.5));
add contribution to surface point i;

4.4 Evaluation Results

The algorithm is evaluated using a cylindrical hole with aspect ratios between 1 and
25 and resolutions (i.e., number of level-set grid cells) between 48×48 and 80×80 in
the lateral directions (Figure 4.6a). This results in vertical resolutions of up to 1100,
which represents computationally challenging evaluation cases. To investigate the
sensitivity of the approach towards geometrical variations, the radius at the bottom
is varied by ±25%, leading to extended and tapered holes (Figure 4.6b).

The choice for the minlevel depends on the aspect ratio of the geometry and is
illustrated in Figure 4.7: For a vertical geometry, the minimum angular resolution
required to detect the opening aperture is shown and put in relation to the required
number of subdivisions of the icosahedron. The maxlevel is set to 6 for all simu-
lations, which corresponds to about 4 · 104 search directions per hemisphere. This
choice allows at least one level of refinement for all tested aspect ratios between 1
and 25 (cf. Figure 4.7, dotted vertical lines).

66

(a) Resolutions and aspect ratios

75%125%
width
100%

vertical extended tapered

de
pt
h

(b) Variations

Figure 4.6: (a) Triangulated surfaces of the vertical geometry for aspect ratios between 1 and 25.
The opening is shown in detail (cut view) for three different horizontal resolutions. (b) Variations
of the geometry.

0 10 20 30 40 50 60

aspect ratio

0

1

2

3

4

5

6

7

8

9

n
u
m
b
er

of
su
b
d
iv
is
io
n
s

refinement
minlevel

maxlevel

tested

10−1

100

101

102

an
gl
e
(d
eg
re
es
)

angles
minimum angle
of aperture ’cap’

angular resolution
of icosahedron (minlevel)

Figure 4.7: Plot of the minimum angular resolution (dashed red) and corresponding minimum
subdivision level of the icosahedron (solid blue) to guarantee the detection of the aperture of the
vertical geometry. The dotted vertical lines indicate the investigated aspect ratios 1, 3, 6, 15, and
25.

67

All results were produced using a highly, vertically focused2 (n = 100) power
cosine source distribution Γ(Θ) = cos(Θ)n (cf. Figure 4.3). To verify that the
accuracy of the integral indeed does not suffer, the flux rates are compared at various
depths of the structure: The flux rates are identical when applying the proposed
algorithm.

Figure 4.8 shows the cross section of a validation simulation with a linear surface
velocity model Vn = −F for the tapered structure (aspect ratio 6). In Figure 4.8a,
the impact of a low maximum level of refinement is demonstrated: The position of
the top surface is very inaccurate; this is due to the high derivatives of the source
distribution (i.e., a very directed source) in conjunction with a low spatial sampling
during the integration. The aperture is detected but the position of the bottom of
the structure varies considerably due to an insufficient sampling of the aperture. In
Figure 4.8b, using maxlevel = 5, the positions at the bottom are symmetric and
close to the reference in Figure 4.8c. The position of the top surface still shows a
noticeable difference to the analytical solution. In Figure 4.8c, also the top surface
is very close to the analytical solution.

4.5 Performance Results

The average runtime for the parallelized (OpenMP) direct flux calculation (i.e., run-
time consumed by SurfaceratesIF.calcSurfRates(), cf. Section 3.2) was tracked
for various combinations of aspect ratios, spatial resolutions, and refinement levels.
All performance measurements were performed on WS1. The obtained speedups
when applying the presented adaptive sampling algorithm are summarized in Fig-
ure 4.9; the corresponding ratio of necessary visibility tests between the non-adaptive
and the adaptive simulations are summarized in Figure 4.10.

If the visibility tests constituted the entire computational load and no overhead
were introduced to maintain and access the visibility information on different sub-
division levels of the icosahedron, the speedup would be expected to match the
reduction ratio. Figure 4.9 and 4.10 reveal a factor between the speedup and the
reduction: For one level of refinement, the factor is about 2 for all configurations;
for 2 and 3 levels of refinement, the factor increases up to 4. The underlying reasons
are the overhead of creating and accessing the visibility information (which increases
with the number of refinement levels) and the computational load of the integration
itself, which is performed on the maxlevel for the full aperture regions.

In summary, when only considering one level of refinement, a minimum speedup
of 1.5 is obtained for aspect ratio 1. For surface meshes with more than 2 · 105

triangles (aspect ratios 15 and 25), the speedup is larger than 2 for all configurations.

2Highly vertically focused power cosine sources are used in Process TCAD to model vertically
accelerated particles (ions).

68

T = 0.0

T = 20.25

T = 40.5

(a) min=3,
max=3

T = 0.0

T = 20.25

T = 40.5

(b) min=4,
max=5

T = 0.0

T = 20.25

T = 40.5

(c) min=5,
max=6

Figure 4.8: Cross section of three-dimensional simulation results for a linear surface model Vn = −F
and for the tapered structure of aspect ratio 6 from T = 0 to T = 40.5 for different refinement
settings (a,b,c). The straight, horizontal lines in the upper part (highlighted by red circles) indicate
the analytical solution for a horizontal surface.

69

0.0 0.1 0.2 0.3 0.4 0.5 0.6

triangles (million)

1.0

1.5

2.0

2.5

3.0

3.5

sp
ee
d
u
p

refinement levels

3

2

1

aspect ratios

1

3

6

15

25

aspect ratios

1

3

6

15

25

(a) Vertical

0.0 0.1 0.2 0.3 0.4 0.5

triangles (million)

1.0

1.5

2.0

2.5

3.0

3.5

sp
ee
d
u
p

(b) Tapered

0.0 0.1 0.2 0.3 0.4 0.5 0.6

triangles (million)

1.0

1.5

2.0

2.5

3.0

3.5

sp
ee
d
u
p

(c) Extended

Figure 4.9: Speedup obtained by applying the presented adaptive sampling scheme for different
surface mesh sizes (x axes) and aspect ratios (symbols) and geometry variations (a-c). The line
style indicates the number of refinements; maxlevel is 6 for all results.

0.0 0.1 0.2 0.3 0.4 0.5 0.6

triangles [million]

2

4

6

8

10

12

14

ra
ti
o

refinement levels

3

2

1

aspect Ratios

1

3

6

15

25

aspect Ratios

1

3

6

15

25

(a) Vertical

0.0 0.1 0.2 0.3 0.4 0.5

triangles [million]

2

4

6

8

10

12

14

ra
ti
o

(b) Tapered

0.0 0.1 0.2 0.3 0.4 0.5 0.6

triangles [million]

2

4

6

8

10

12

14

ra
ti
o

(c) Extended

Figure 4.10: Ratios of necessary visibility tests for the full sampling on maxlevel and the adaptive
sampling scheme (configurations identical to Figure 4.9).

70

4.6 Summary

It is shown that the bottom-up adaptive visibility sampling scheme is able to sustain
the accuracy of the direct flux integrals while reducing the integration time by 50%
for larger meshes (> 2 · 105 triangles), as long as all opening apertures are captured
by the minimum level of refinement.

When using more than one level of refinement, the ratio between integration
time and ray tracing time limits the obtainable speedup, as the integration is always
performed on the maximum level of refinement.

71

Chapter 5

Ray-Surface Intersection Tests for

Particle Transport

The particle transport calculation in either bottom-up or top-down schemes relies on
a large number of ray-surface intersection tests (cf. Section 2.2.2). The result of an
intersection test is the distance from the origin of the ray to the closest intersection
with the surface in the direction of the ray. Figure 5.1 illustrates two choices for the
representation of a surface: An implicit representation (e.g., a signed-distance field)
and an explicit representation (triangle mesh) of a sphere.

Figure 5.1: Illustration of two surface representations of a sphere: Left: Implicit representation
using a signed-distance field. The blue and red surfaces are the isosurfaces delimiting the narrow-
band of 3 grid cells around the interface to the inside (blue) and outside (red). The gray surface
is the zero-level-set. Right: Triangle mesh extracted from the zero-level-set.

If an explicit representation of the surface is used, the intersection test identifies
the closest intersection point and the corresponding primitive, e.g., a specific triangle
out of a triangle mesh. A straightforward implementation is to test each primitive
of a mesh for an intersection with the ray and store the resulting distance to the
intersection point. Finally, the closest intersection point and the corresponding

73

primitive is reported. The primitives need not necessarily form a closed polygonal
surface, e.g., in [1] tangential disks are used and in [19] spheres are used to represent
the surface.

For an implicit representation, e.g., a signed-distance field, the intersection point
is a coordinate (on the isosurface) between the vertices of the grid holding the signed-
distance field. A straightforward implementation is to advance a test point in steps
along the ray direction. The step length is thereby equal to the absolute value
of the signed-distance field at the location of the test points. The signed-distance
value is then re-evaluated at the new position of the test point. The procedure is
repeated until the signed-distance value changes its sign or the absolute value falls
below a threshold value. The last position of the test point is then reported as the
intersection point. This procedure is referred to as sphere tracing [82].

In applications requiring a high throughput of ray-surface intersections, e.g., ren-
dering or non-imaging optics, typically a spatial data structure is constructed from
the surface representation to accelerate the intersection tests. The most common
data structure is a bounding volume hierarchy (BVH), which reduces the number
of necessary intersection tests by grouping primitives hierarchically into bounding
boxes.The intersection tests are then performed with the bounding boxes. Only if a
bounding box is intersected by a ray, the hierarchically lower bounding boxes (or con-
tained primitives) are tested for intersection. Hardware-tailored ray tracing libraries
(cf. Section 2.2.2.1) originally designed for computer graphics applications provide
highly-optimized ray tracing kernels for common modern computing platforms. As
target applications commonly include real-time rendering of dynamic geometries,
the libraries also focus on optimizing the performance of the BVH construction.
Most libraries solely support single-precision arithmetics; this allows to fully uti-
lize SIMD instructions on modern CPUs and to utilize the high single-precision
processing power of GPUs.

In a feature-scale process simulator, the surface is typically represented as a
narrow-band level-set (cf. Section 2.1). The most widely used approach, and thus
the frame of reference for the here presented evaluations, is to perform the ray
casting on the implicit representation, i.e., the level-set function. An advantage is
that no explicit representation of the surface has to be extracted in each time step.
However, the consequential lack of a closed polygonal explicit surface representation
is disadvantageous, as the surface topology in the neighborhood of a surface point is
not readily accessible, which is demanded by spatially adaptive approaches for the
calculation of the particle transport (cf. Section 6.1).

In the following, an in the course of this work developed approach is presented
which extracts an explicit polygonal mesh in each time step of a feature-scale simu-
lation [80]. This mesh is then used for the ray casting during the particle transport.
The underlying motivation is to utilize the higher throughput of ray-surface inter-
sections during the particle transport; however, the overhead introduced by mesh
extraction from an implicit surface representation must be considered. The ray
casting is performed using single-precision arithmetic.

First, the accuracy of ray casting using single- and double-precision floating point
representations is compared using a generic test scenario. Then, the performance
difference for single-precision ray casting is compared using two highly optimized

74

open-source libraries for ray casting on implicit and explicit surfaces. Finally, the
newly developed approach is presented in more detail and an evaluation of the
performance is presented for a simple deposition test case.

5.1 Single-Precision Ray Casting

The sufficiency of single-precision arithmetics depends on the numerical method
and the further use of the result. The methods to calculate the particle transport
(cf. Section 2.2) use ray casting to detect ray-surface intersections along a certain
direction. The resulting information is binary and therefore the influence of the
arithmetic precision of the ray casting is isolated.

To evaluate the applicability of single-precision ray casting for the ray-surface in-
tersections during the particle transport, the angular resolutions which are achieved
for single- and double-precision ray casting are compared. A spherical mesh (double-
precision vertex coordinates), generated by subdividing an icosahedron 6 times
(cf. Section 4.1, i.e., about 4 · 104 vertices), serves as a reference mesh. The ra-
dius of the reference mesh is scaled from r = 10−16 to r = 1018 and rays are traced
from the origin towards each vertex of the mesh. Figure 5.2 conceptually illustrates
the spherical reference mesh at different scales and the corresponding rays towards
the vertices of the mesh. The distance between the intersection point (found by
ray casting) and the vertex coordinate on the reference mesh is computed for all
vertices. The ratio of this distance and the radius r provides information about the
maximum angular resolution of the intersection test.

Figure 5.2: Conceptual visualization of the geometric configuration of the ray casting precision
evaluation: The cross section of the spherical mesh is shown (for different scales) together with the
rays which start at the origin and point into the directions of each vertex of the spherical mesh.
The distance between the intersection position of each ray with the mesh (found by ray casting)
and the corresponding vertex coordinate are calculated for single- and double-precision ray casting.

The NanoRT library [25] is used for single- and double-precision ray casting;
the Embree library [24] is additionally used for single-precision. In Figure 5.3, the
results for the maximum distance dmax and the distance normalized to the radius
dnorm = dmax/r are plotted over the radius r of the reference sphere. The normal-
ized distance is constant for single- and double-precision, respectively; the constant
values are ≈ 10−7 and ≈ 5 · 10−16 falling in the range of significant digits for single-

75

and double-precision, respectively. For r < 10−12 and r > 1013 no intersection is
found for single-precision ray casting using NanoRT ; the same holds for Embree
where the lower limit is r < 10−7. The angular resolution of subdivided icosa-
hedrons (cf. Section 4.1) are indicated with dotted lines. The results reveals that

10−1610−1310−1010−7 10−4 10−1 102 105 108 1011 1014 1017

radius r

10−33

10−30

10−27

10−24

10−21

10−18

10−15

10−12

10−9

10−6

10−3

100

103

106

d
is
ta
n
ce

d
m

a
x

NanoRT, DP

NanoRT, SP

Embree, SP

distance (left y-scale)

normalized distance (right y-scale)

10−20

10−18

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

n
or
m
al
iz
ed

d
is
ta
n
ce

d
n
o
r
m

αres(n = 6)
αres(n = 8)
αres(n = 10)
αres(n = 12)

Figure 5.3: Evaluation of the angular resolution using single-precision (green, red) and double-
precision (blue) ray casting. The maximum distance dmax between the intersection point (found
by ray casting) and the reference point is shown as solid line and the scale on the left. The nor-
malized distance dnorm = dmax/r is shown as dashed line and the scale on the right. Two lines are
shown for each result which correspond to two different ways of calculating the intersection point
with the mesh: (a) using a scaling of the direction of the ray with the distance of the intersection
(solid for dmax, dashed for dnorm) or (b) using the coordinates of the intersected primitive com-
bined with the local intersection coordinates (dotted). Additionally, the angular resolutions of a
subdivided icosahedron are shown as horizontal dotted lines for up to n = 12 subdivisions.

the achieved angular resolution is more than two decades smaller than the angu-
lar resolution of a 12 times subdivided icosahedron for both, single-precision and
double-precision ray casting.

In conclusion, the arithmetic precision achieved with single-precision ray cast-
ing is sufficient to calculate the ray-surface intersection tests in practical three-
dimensional feature-scale process simulations: For bottom-up flux calculation
schemes, the angular resolution is sufficient even for the highest practical spa-
tial sampling resolutions; the same holds for top-down flux calculation schemes.
For instance, considering a cylindrical hole of aspect ratio 1000, i.e., depth 1000
and diameter 1: Taking the area of the opening aperture Ao = 0.52π and approx-
imating a ray direction starting from the bottom of the structure with coverage

76

Aray = (1000 · 10−7/2)2π on Ao, the aperture can be sampled with Ao/Aray = 107

ray directions. The bottom of the hole can consequently be sampled with 107 rays
starting at a single position on the source plane.

5.2 Ray Casting Performance for Non-Imaging

Applications

In rendering applications, the ray tracing performance is commonly reported in
achieved frames per second for a given scene and perspective. An alternative met-
ric, and suitable for topography simulations in Process TCAD, are the traced rays
per second, usually denoted in million rays per second (Mrays/s). The actual compu-
tations assigned to the tracing of a single ray are defined by the rendering algorithm
and may include followup computations, e.g., to calculate shading. The following
benchmark solely aims at evaluating the performance of the raw intersection test
(i.e., the calculation of the closest intersection point with a surface) for spatially
incoherent rays.

The surface is a unit sphere with runit = 1 centered at the origin for all config-
urations in the following. The origins of the rays are distributed on another sphere
with rorg = runit + d; this leads to rays which start inside the surface for d < 0
and rays which start outside the surface for d > 0. At each origin, rays are traced
towards the centroids of the triangles of a subdivided icosahedron (cf. Section 4.1).
Figure 5.4 illustrates this benchmark scheme conceptually for two-dimensions.

Figure 5.4: Conceptual two-dimensional illustration of the benchmark scheme: The red circle
represents the unit sphere and the blue dotted circles represent the spheres on which the ray origins
are distributed. The black arrows indicate the scheme for the ray directions which are defined using
a subdivided icosahedron. The left and right side illustrate the configurations rorg < runit and
rorg > runit, respectively.

The performance of two open-source libraries from the field of computer graph-
ics is compared: OpenVDB [31] is used for implicit, and Embree [24] for explicit
surfaces. The rays are traced against a narrow-band level-set representation of a
sphere with radius rmesh = 1 using OpenVDB ’s LevelSetRayTracer and against a
triangulated mesh (extracted from the level-set) using Embree. The implicit mesh is

77

represented with OpenVDB ’s default tree configuration Tree4<float,5,4,3> and a
narrow-band half-width of 3 level-set grid spacings dvox. The for loop which iterates
over the ray origins is OpenMP-parallelized. All performance measurements were
performed on WS1. The benchmarks were performed using Embree 2.12, OpenVDB
4.0, and compiled using gcc 6.1.1. Table 5.1 summarizes the parameter range of the
performance analysis.

Parameter Values
Number of threads 1, 2, 4, 5, 6, 8
Subdivisions for search directions ntrace 1, 2, 3, 4, 5
Radius of origins rorg 1.5, 1.15, 0.85, 0.5
Voxel size dvox 0.05, 0.01, 0.005, 0.0025
Dependent Parameter
Number of active voxels f(dvox) 30K, 0.8M, 3.0M, 12.1M
Number of triangles f(dvox) 15K, 0.4M, 1.5M, 6.0M
Number of search directions f(ntrace) 80, 320, 1280, 5120, 20480

Table 5.1: Parameter variations used in the performance comparison (K = thousand, M =
million). An active voxel is a level-set grid cell in the narrow-band level-set around the surface.

Fig 5.5 compares implicit and explicit ray casting performance for different ray
origins rorg and different surface resolutions. The limits of the achieved performance
with 8 threads for Embree are about 100 Mrays/s (rorg = 1.5, 15K triangles, Fig-
ure 5.5c) and about 10 Mrays/s (rorg = 0.85, 6.0M triangles, Figure 5.5b). For the
implicit ray casting using OpenVDB, the limits are about 13 Mrays/s (rorg = 1.5,
0.4M triangles, Figure 5.5c) and 2 Mrays/s (rorg = 0.85, 6.0M triangles, Figure 5.5b).

The resulting performance gain is between 3 and 6 for all possible combinations
of the parameters in Table 5.1, excluding low spatial resolutions (i.e., less than 0.4
million triangles). The performance gain is higher for the multi-threaded runs, the
main reason being the higher speedup for Embree in the hyper-threading regime
(cf. Figure 5.6). For low spatial resolutions (less than 0.4 million triangles) the
performance ratio is increasing. For high spatial resolutions (i.e, more than 1 million
triangles) the multi-threaded performance ratio is ≈ 3.5 for rorg < 1 and ≈ 4.5 for
rorg > 1, i.e., Embree profits more than OpenVDB if a large portions of the rays do
not intersect the geometry at all.

Fig 5.6 plots the achieved speedup for the parallelized for loop (which iterates
over the ray origins) for explicit and implicit ray casting. Both parallelizations show
nearly an ideal speedup for 2 threads. The speedup spreads for 4 threads with a
minimum speedup of 2.7 (Embree) and 2.0 (OpenVDB). The speedup for 8 threads
is up to 6 for Embree and up to 5 for OpenVDB. The parameter combinations which
show nearly no speedup between 2 to 4 threads (cf. Figure 5.6b) were identified to
have a low hit ratio (number of hits/number of traced rays < 0.13) and a large
voxel size (dvox >= 0.01). For 5 and more threads (entering the hyper-threading
regime) this influence is compensated leading to an overall speedup between 3 and
4 for 6 threads.

78

0 1 2 3 4 5 6

triangles (million)

0

1

2

3

4

5

6

M
R
ay
s/
s

MRays/s

Embree rorg = 0.5

OpenVDB rorg = 0.5

Embree rorg = 0.85

OpenVDB rorg = 0.85

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

p
er
fo
rm

an
ce

ra
ti
o

performance ratio

Embree/OpenVDB

0.8 3.0 12.1
active voxels in narrow-band (million)

(a) 1 thread, rorg < 1

0 1 2 3 4 5 6

triangles (million)

0

5

10

15

20

25

30

35

M
R
ay
s/
s

MRays/s

Embree rorg = 0.5

OpenVDB rorg = 0.5

Embree rorg = 0.85

OpenVDB rorg = 0.85

3

4

5

6

7

8

9

10

p
er
fo
rm

an
ce

ra
ti
o

performance ratio

Embree/OpenVDB

0.8 3.0 12.1
active voxels in narrow-band (million)

(b) 8 threads, rorg < 1

0 1 2 3 4 5 6

triangles (million)

0

5

10

15

20

M
R
ay
s/
s

MRays/s

Embree rorg = 1.15

OpenVDB rorg = 1.15

Embree rorg = 1.5

OpenVDB rorg = 1.5

3

4

5

6

7

8

9

p
er
fo
rm

an
ce

ra
ti
o

performance ratio

Embree/OpenVDB

0.8 3.0 12.1
active voxels in narrow-band (million)

(c) 1 thread, rorg > 1

0 1 2 3 4 5 6

triangles (million)

0

20

40

60

80

100

120

M
R
ay
s/
s

MRays/s

Embree rorg = 1.15

OpenVDB rorg = 1.15

Embree rorg = 1.5

OpenVDB rorg = 1.5

4

5

6

7

8

9

10

11

12

p
er
fo
rm

an
ce

ra
ti
o

performance ratio

Embree/OpenVDB

0.8 3.0 12.1
active voxels in narrow-band (million)

(d) 8 threads, rorg > 1

Figure 5.5: Performance comparison 1 and 8 threads between ray casting on the implicit surface
(using OpenVDB) and on the explicit surface (using Embree). (a)-(b): Ray origins rorg < 1.
(c)-(d): Ray origins rorg > 1. The top axis plots the number of active voxels in the narrow-band
representation of the surface while the bottom axis labels the corresponding number of triangles
in the extracted mesh. The error bars show the spread in performance when varying the number
of search directions for each origin according to Table 5.1. The filled gray area is the range of the
performance ratio of the explicit approach (Embree) over the implicit approach (OpenVDB).

79

1 2 3 4 5 6 7 8
number of threads

1

2

3

4

5

6

7

8

sp
ee
d
u
p id

ea
l s
pe
ed
up

p
h
y
si
ca
l
co
re
s

speedup range A

(a) Embree

1 2 3 4 5 6 7 8
number of threads

1

2

3

4

5

6

7

8

sp
ee
d
u
p id

ea
l s
pe
ed
up

p
h
y
si
ca
l
co
re
s

speedup range

(b) OpenVDB

Figure 5.6: Speedup for the OpenMP-parallelized ray casting with Embree (a) and OpenVDB (b)
on WS1. The speedup range represents limits resulting of the full parameter range (cf. Table 5.1).
The dashed line indicates an ideal speedup and the dotted line marks the number of physical cores
in the system. The circle in (b) marks a group of combinations with nearly no speedup between 2
and 4 threads.

5.3 Temporary Explicit Meshes for

Flux Calculation

Based on the results from the previous sections a scheme is introduced which aims to
accelerate the particle transport calculation of a level-set-based process simulation.
It bases on the extraction of a temporary explicit surface mesh (from the level-set)
in each time step of the simulation. Figure 5.7a and 5.7b illustrates the sequence
of computational tasks in a time step of a level-set-based process simulation. The
scheme introduces new computational tasks for each time step, namely

• the extraction of the explicit surface mesh from the level-set,

• the generation of an acceleration structure (for efficient intersection tests) from
the extracted mesh, and

• the interpolation of the surface rates from the explicit mesh to the positions
of the level-set grid (computationally negligible).

Using the libraries benchmarked in Section 5.2 the overhead introduced by the
approach is estimated. Figure 5.7c plots the runtime on WS1 (8 threads) for the
generation of the temporary explicit mesh and the construction of the acceleration

80

time

im
pl

ici
t

ad
ve

ct
io

n

ve
lo

cit
y

ex
te

ns
io

n

ad
ve

ct
io

n

pa
rt

icl
e

tr
an

sp
or

t
(r

ay
 tr

ac
in

g)

(a) Implicit

time

ex
tr

ac
tio

n

in
te

rp
ol

at
io

n

im
pl

ici
t

ex
pl

ici
t

ad
ve

ct
io

n

ve
lo

cit
y

ex
te

ns
io

n

ad
ve

ct
io

n

ac
ce

ler
at

io
n

st
ru

ct
ur

e

pa
rt

icl
e

tr
an

sp
or

t
(r

ay
 tr

ac
in

g)

(b) Implicit/explicit

0 1 2 3 4 5 6
triangles (million)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

se
co
n
d
s

mesh extraction (OpenVDB)

acceleration structure (Embree)

total

overhead/million triangles

(c) Overhead

Figure 5.7: Difference in the sequence of computational tasks in a time step between the fully
implicit scheme (a) using a level-set to represent the surface and the implicit/explicit scheme (b)
using a temporary explicit mesh to represent the surface during the particle transport calculation.
In (c), the overhead introduced by the extraction of the explicit mesh (using OpenVDB) and the
initialization of the acceleration structure (using Embree) is shown for different resolutions of the
unit sphere.

structure, when using OpenVDB to represent the level-set and to extract the mesh,
and the acceleration structure of Embree. Different resolutions of the unit sphere
(analog to the benchmarks above) are tested; the maximum runtime is identified
with a total of less than 1.4 seconds for a mesh with about 6 million triangles. The
overhead per million triangles is about 0.2 seconds for meshes with more than 0.4
million triangles.

Performance Evaluation

The simulation platform described in Section 3 is used to implement a simple depo-
sition test case: A cube with edge length 1.5 is centrally placed in a 2 × 2 domain
with periodic boundary conditions. The direct flux F from an ideal-diffuse source is
calculated and a simple linear deposition Vn = F is used as surface velocity model.
The direct flux is calculated using a bottom-up scheme with a 4 times subdivided
icosahedron (cf. Section 4.1) to sample the spherical directions. The lateral level-set
resolution is set to 128× 128 and the resulting explicit surface meshes for the initial
and final geometry count about 150K and 250K triangles, respectively. Figure 5.8
illustrates the initial, intermediate, and final geometry of the deposition simulation.

Figure 5.9 shows the runtime of the main computational tasks throughout the
simulation. The runtime for the calculation of the surface rates (i.e., the direct
flux calculation in this case) is dominating for both simulations. Nevertheless, the

81

(a) T = 0 (b) T = 0.5

(c) T = 1.0 (d) Cross sections

Figure 5.8: Results of the the deposition test case for lateral level-set resolution 128×128. (a)-(c):
Quadrupled visualization of the initial, intermediate, and final three-dimensional surface. (d):
Cross sections for time T = 0.0, 0.25, 0.5, 0.75, 1.0.

speedup is about 7 to 9 when using explicit ray tracing. The speedup is in accordance
with the estimates of the generic benchmark in Section 5.2. However, differently to
the benchmark above, the ray origins are located near the surface, i.e., they start
inside the narrow-band of the level-set. Considering the geometry visualized in
Figure 5.8c, it is apparent that most rays start in the narrow-band and intersect the
narrow-band. This configuration is not considered in the benchmark above, where
all ray origins are located at some distance to the narrow-band.

82

0.0 0.2 0.4 0.6 0.8 1.0

physical time T [au]

10−1

100

101

102

103

ru
n
ti
m
e
p
er

ti
m
e
st
ep

[s
]

surface rates

surface representation

surface velocity

surface advection

other tasks

(a) Implicit ray tracing

0.0 0.2 0.4 0.6 0.8 1.0

physical time T [au]

10−1

100

101

102

ru
n
ti
m
e
p
er

ti
m
e
st
ep

[s
]

surface rates

surface representation

surface velocity

surface advection

other tasks

(b) Explicit ray tracing

Figure 5.9: Runtime of the main computational tasks throughout the deposition test case when
using (a) implicit ray tracing, and (b) explicit ray tracing during the direct flux calculation.

5.4 Summary

Single-precision ray tracing is attested sufficient accuracy, for top-down and bottom-
up approaches for the particle transport in practical simulation scenarios.

The ray casting performance when using OpenVDB for implicit surfaces and
Embree for explicit surface representations is studied using a generic test for non-
imaging application. The performance gain is at minimum a factor of 3 for a wide
range of scenarios.

An approach to perform the ray-surface intersections not on the level-set-based
implicit representation of the surface but on a temporary explicit mesh was presented
and compared. The performance gain in a deposition test case using a bottom-
up approach to calculate the direct flux is a factor between 7 and 9 using the
benchmarked libraries.

83

Chapter 6

Sparse Evaluation of

Surface Velocities

A constant spatial resolution throughout the domain is a straightforward choice
for feature-scale process simulation. An advantage is that numerical schemes for
advection and extraction algorithms can be applied without the need to consider
multiple resolutions. Another advantage is that geometric features are represented in
the full domain with maximum accuracy. For high spatial resolutions, this results in
a highly resolved surface representation which is used during the particle transport
calculation. In a straightforward approach, the surface rates are evaluated using
the full resolution of the surface. This represents a valid and robust approach as
the surface advection is conducted with maximum spatial accuracy. The particle
transport is typically dominating the runtime of the simulation in such cases.

The material surfaces potentially experience very different advection rates, de-
pending on the simulated process and the geometric configuration. For instance, a
large portion of the fully exposed horizontal surface of a photoresist is advected with
a constant vertical velocity. Other regions of the surface potentially exhibit locally
very different advection rates, e.g., in regions near the transition from a vertical to
horizontal surface orientation.

Considering the resulting different requirements for spatial resolutions, one ap-
proach is to reduce the overall computational complexity by locally reducing the
spatial resolution (of the level-set) in regions where it is admissible without sacri-
ficing the advection accuracy. Within the scope of the example discussed above, a
lower spatial resolution is used for the top surface of the photoresist. Approaches
based on a local spatial reduction of the resolution cannot solely rely on the geo-
metrical properties of the surface: Local variations of the advection rate might also
occur on planar material surfaces due to shadowing from remote regions of the sur-
face. That is, depending on the local surface advection rates, the level-set resolution
has to be re-adopted accordingly, e.g., to capture features of the geometry which
develop in previously planar regions.

The approach presented in the following is based on a constant spatial resolution
of the level-set function [83]. The computational complexity is reduced by selecting a
sparse set of points on the surface. The surface rates are evaluated only on this sparse
set leading to a reduction of the computational demand of the direct flux calculation.

85

(a) Sparse set, initial geometry (b) Direct flux, initial geometry

(c) Sparse set, etched geometry (d) Direct flux, etched geometry

Figure 6.1: Top layer of a two-material etching simulation for a focused source with direction
[0.5, 0.5,−1] to demonstrate the result of the iterative partitioning scheme. The resulting sparse
set of points and corresponding direct flux for the initial geometry (a) (b) and geometry and at a
later etched stage (c) (d) is visualized. The blue color in (b) and (d) encodes the received direct
flux, whereas gray corresponds to shadowed regions, i.e., zero flux.

This sparse set of points is generated according to application-specific requirements
with an iterative partitioning scheme: The local geometrical properties and local
deviation of the direct flux are used to locally define the resolution of the sparse
points. The flux rates at the sparse points are also applied in the neighborhood
which is assigned to each sparse point. This constant extrapolation is then “diffused”
to obtain an approximation of a linear interpolation between these sparse points.
Figure 6.1 demonstrates the approach for a structure etched by the direct flux from
a tilted focused particle source with direction [0.5, 0.5,−1]. The red triangles on the
surface of Figure 6.1a and 6.1c depict the sparse set of points for which the surface
rates are evaluated. Figure 6.1b and 6.1d illustrate the corresponding direct flux.

In the following, first the iterative partitioning scheme and the subsequent inter-
polation are introduced in detail. Then, the method and its performance is evaluated
using different resolutions of a simple etching test case.

86

6.1 Iterative Partitioning Scheme

The scheme presented in the following provides a robust method to reduce the
number of necessary evaluation points for which the surface rates are calculated.
From a dense set of evaluation points given by the resolution of an explicit surface
mesh, a subset of points is selected using an iterative partitioning scheme. The
scheme is controlled by a freely definable refinement condition, allowing to adopt
the method for different application-specific requirements (cf. Section 6.3).

The dense set of evaluation points is defined as the set of all triangle centroids.
Algorithm 2 is used to iteratively select a sparse subset of evaluation points depend-
ing on (a) the maximally globally allowed edge distance (dmax0

) between two points
in the subset, (b) an array of maximally allowed edge distances for each point in the
dense set where each entry is between 0 and dmax0

, and (c) a refinement condition.
The refinement condition defines in each iteration and for each point in the sparse
set, if additional points in the surrounding should be added to the sparse set. Algo-
rithm 2 assigns one of the sparse points to each of the points in the dense set: This
way, a neighborhood is formed from all points with the same sparse “parent”. This
neighborhood is referred to as patch in the following. The patches are the “spacers”
between the points in the sparse set and are used to efficiently identify neighbors
in the sparse set and to generate the initial guess for the Jacobi solver discussed in
Section 6.2. As will be discussed later in more detail, the refinement condition used
in Section 6.3 is based on a fixed threshold for the angular deviation of the surface
normal and the deviation of the direct flux (from a source) between a sparse point
and its sparse neighbors. Details for the functions in Algorithm 2 can be found in
Appendix C.2.

Figure 6.2 illustrates the individual stages of the algorithm using a small, reg-
ular triangle mesh. After the refinement is completed for all patches where the
refinement condition evaluates to true, the refinement condition is re-evaluated for
all sparse points. Subsequently, the refinement is repeated with dmax2

= dmax1
/2,

continuously leading to a bisection of the maximal edge distance between sparse
points on the patch. The algorithm is terminated either because the refinement
condition evaluates to false for all sparse points or dmaxi

= 1, corresponding to a
patch consisting of only one triangle. If the refinement condition depends on the
surface velocity at the sparse points, the surface model must be evaluated for the
newly added sparse points in each iteration. After completion, Algorithm 2 provides
a sparse set of points with corresponding sparse neighbors and patch information.

How well the edge distances between the sparse points map to arc length dis-
tances on the triangular mesh depends on the uniformity of the mesh with respect
to triangle shape and size. Only with a mesh consisting of triangles with comparable
size and quality the algorithm will produce “convex” patches (convex with respect
to the projected polygon constructed of the outermost centroids).

Figure C.3 in Appendix C.1 demonstrates the resulting set of sparse points for
each iteration when using dmax0

= 16 for the two-material geometry introduced in
Figure 6.1. The refinement condition (6.2) is employed and the sparse set of points
is initialized with the points near the material interfaces.

87

Algorithm 2: Adaptive decimation of evaluation locations
on a triangular surface mesh.

Input: dmax0, distTarget[i], RefinementCondition(i)
Output: active[], sparseNeighbors[], patches[]
Algorithm

withdrawn[Ntri] = true; reflagged[Ntri] = false; active[Ntri] = false;
distance[Ntri] = dmax0; parent[Ntri] = -1;
patches[] = empty map(activeIndex,patchIndices);
sparseNeighbors[] = empty map(activeIndex,activeNeighbors);
indices[Ntri] = iota(0,Ntri);
FlagTriangles(indices, dmax)

RebuildPatches();
EvaluateSurfaceModel(for all active indices)
for n=1. . . log 2(dmax0

) do
reflagged[Ntri] = false;
withdrawn[Ntri] = false;
numNewPatches = 0;
foreach patch in patches do

iactive = patch.activeIndex;
if RefinementCondition(iactive) == true AND reflagged[iactive]
== false then

numNewPatches += RefinePatch(iactive, dmax0
/2n);

if numNewPatches == 0 then
break;

RebuildPatches();
EvaluateSurfaceModel(for all newly active indices)

6.2 Interpolation Between Sparse Points

Inherent to its construction method, the sparse set of points and the connections
between sparse neighbors do not necessarily allow to construct a sparse mesh cover-
ing the complete original surface, which could be used for interpolation. To provide
a robust, non-supervised, and computationally efficient interpolation between the
sparse points, a constant extrapolation inside the patches using the corresponding
values at the origins is performed, i.e., the values of the sparse points are assigned
to the full corresponding patch. The properties of Laplace’s equation (6.1) and the
error diffusion properties of the Jacobi method [84] are used to smooth the “jumps”
in the constant extrapolation and to approximate a linear interpolation between the
sparse points:
(a) In one dimension, the solution of Laplace’s equation (6.1) is equivalent to a
linear interpolation between a sparse set of points when using the sparse set as
Dirichlet boundary conditions and modeling the boundaries of the domain as Neu-
mann boundary conditions.
(b) In one iteration of Jacobi’s method, local information propagates only across

88

7

7

5

5

5

6

6

6

6

7

7

7

7

8

8

8

8

55 5

5

5

6 6 6

6

7 7
8 8

4

4

4

4

444

3

3

3

3

333

2 2

2

22

2 1

1

10

(a) First patch

55 5

5

5

6 6 6

6

7 7
8 8

4

4

4

4

444

3

3

3

3

333

2 2

2

22

2 1

1

10 5 5

5

5
6

6

4

444

4

4

4

3 3 3

3

3

3

3

2 2

2

22

2 1 1

1
0

7

7

5

5

5

6

6

6

6

7

7

7

7

8

8

8

8

(b) Second patch

55 5

5

5

6 6 6

6

7 7
8 8

4

4

4

4

444

3

3

3

3

333

2 2

2

22

2 1

1

10 5 5

5

5
6

6

4

444

4

4

4

3 3 3

3

3

3

3

2 2

2

22

2 1 1

1
0

(c) Sparse neighbors

2 2

2

22

2 1

1

10 5 5

5

5
6

6

4

444

4

4

4

3 3 3

3

3

3

3

2 2

2

22

2 1 1

1
0

7

7

5

5

5

6

6

6

6

7

7

7

7

8

8

8

8

(d) Withdraw region

2 2

2

22

2 1

1

10 5 5

5

5
6

6

4

444

4

4

4

3 3 3

3

3

3

3

2 2

2

22

2 1 1

1
0

0

0

00

1

11

1

1

1

1

1

3

2

2 2

2
2

22

2
2 2 2

3

2
3

7

7

5

5

5

6

6

6

6

7

7

7

7

8

8

8

8

(e) Refine withdrawn

2 2

2

22

2 1

1

10 5 5

5

5
6

6

4

444

4

4

4

3 3 3

3

3

3

3

2 2

2

22

2 1 1

1
0

0

0

00

1

11

1

1

1

1

1

3

2

2 2

2
2

22

2
2 2 2

3

2
3

(f) New sparse neighbors

Figure 6.2: Schematic depiction of the stages of the iterative partitioning scheme for an exemplary
mesh. Yellow lines denote patch boundaries. (a) Initial creation of a patch where the numbers
refer to edge distances to the origin; for visualization purposes only, the triangles which will be
removed from the patch in the next step use a smaller font size. (b) Creation of a second patch
(blue) starting at one of the unprocessed triangles. (c) Sparse neighbor connection between the two
origins of the patches. (d) Withdrawal of sub region in red patch. (e) Refinement of the withdrawn
region in the red patch with dmax1

= dmax0
/2. (f) Updated sparse neighbor connections after the

red patch is refined.

one edge; using this property the radius of influence is restricted to not exceed the
maximal patch radius of dmax0

/2 by only performing dmax0
/2 or less iterations.

A linear interpolation between the sparse points on the surface is approximated
by using the same boundary conditions (as for the one-dimensional case mentioned
above) and starting with the constant extrapolation as an initial guess. (6.1) is not
solved until convergence but only a fixed number of iterations of Jacobi’s method is

89

performed.

−∇2
u = 0 (6.1)

A finite volume approximation is used to discretize (6.1) on the triangulated
mesh by

integrating over the volume −
Vi

∇2
u dV = 0,

applying Green’s Theorem −
δVi

∇u · ni dS = 0,

summing over the triangle edges −
3

j=1 δVij

∇u · nij = 0,

using the midpoint rule −

3

j=1

LEij
∇u · nij dS = 0, and

using a central difference between centroids ∇u · nij ≈
u(xnij

)− u(xi)

xnij
− xi

,

where u is the scalar function (in this case the local surface rate), LEij
is the length

of the edge shared by triangle i and j, xi is the centroid of triangle i, and xnij
is

the centroid of the triangle connected to triangle i across edge j. This discretization
and the boundary conditions described above results in a system of linear equations.
The number of unknowns is the number of all centroids minus the size of the sparse
set.

6.3 Evaluation and Performance

The simulation platform described in Section 3 is used to implement, validate, and
benchmark the approach. A generic etching simulation test case with a single mate-
rial region is used for the evaluation. The model for the surface velocity is a linear
relation to the direct incident flux from a source with a power cosine distribution
Γ(Θ) = cos(Θ)100, which is a common choice in Process TCAD for the distribu-
tion of accelerated ions. The bottom-up integration method based on a subdivided
icosahedron (cf. Section 4.1) is used to calculate the direct flux rates on the surface.
Here, a 5 times subdivided icosahedron is used to limit effects of the integration
accuracy. The direct flux rates are normalized to the flux rate on a fully exposed
horizontal plane.

The initial geometry (Figure 6.3a) is a cylindrical hole with diameter 1 and
depth 6 in a bulk region of thickness 8. Figure 6.3b-6.3e show the intermediate
surface positions using the dense centroid-set for surface model evaluation (dense
flux evaluation) from time T=0 up to T=8, where the bulk region is completely
etched.

90

(a) T = 0 (b) T = 2 (c) T = 4 (d) T = 6 (e) T = 8

Figure 6.3: Cylindrical hole with diameter 1 and depth 6 in a bulk region of thickness 8. Surface
evolution during the simulation at times T=[0, 2, 4, 6, 8]. The level-set resolution is 1/64.

To model the refinement condition, for each sparse point i

the maximal normal deviation νmaxi
= max

∀k∈Nk

(ni,nk),

the average flux difference duavgi =
1

n(Nk)
∀k∈Nk

|ui − uk|

|umax − umin|
, and

the maximal flux difference dumaxi
= max

∀k∈Nk

|ui − uk|

|umax − umin|
,

are defined, where Nk is the set of neighboring sparse point indices, and umax and
umin are the global maximum and minimum flux value, respectively. A combination
of fixed thresholds is used in all of the following results to model the refinement
condition in Algorithm 2:

RefinementCondition(i) =

true, if νmaxi

> π/10

true, if duavgi+dumaxi

2
> 0.2

false, otherwise

(6.2)

Furthermore, dmax0
= 32 is used in all simulations, which gives a total of 6 iterations

(1 initial iteration, and log2(dmax0
) = 5 refinements), whereas the number of Jacobi

iterations is fixed to dmax0
/4 = 8.

Figure 6.4 illustrates the resulting sparse centroid-set at time T=4.5 for different
level-set resolutions. Analogously, Figure C.1 and C.2 in Appendix C illustrate the
results for T = 0 and T = 3.0.

In Figure 6.5, the results between the dense and sparse flux evaluation at times
T=3 and T=6 are compared. For a level-set resolution of 64, this corresponds to
time step 800 and 1600, respectively. In Figure 6.6, the corresponding maximum

91

(a) 15412/3264 ≈ 5 (b) 56680/5802 ≈ 10 (c) 220580/12611 ≈ 17

Figure 6.4: Sparse set of triangles (black; correspond to triangles which are labeled “0” in Figure
6.2) for level-set resolutions 16 (a), 32 (b), and 64 (c) at time T=4.5. The ratios between the total
number of triangles and the sparse set of triangles are provided in the subcaptions. These ratios
correspond to the dense/sparse ratios in Figure 6.7, 6.8, and 6.9.

dense | sparse

(a) Resolution 16

dense | sparse

(b) Resolution 32

dense | sparse

(c) Resolution 64

Figure 6.5: Comparison of surface positions at times T=[3,6] for all tested resolutions. The
surface mesh for the dense and sparse flux evaluation is displayed on the left and right half-space,
respectively. Two regions are magnified for resolution 64 where the blue and red line correspond
to slices of the sparse and dense evaluation, respectively.

92

Table 6.1: Level-set resolutions, resulting initial domain resolutions, initial mesh
properties, and resulting number of time steps until T=8.

Cells per unit length Cells vertical Cells horizontal Triangles Time steps
16 128 32x32 17k 540
32 256 64x64 67k 1080
64 512 128x128 262k 2160

deviations throughout the simulations are shown. The maximum deviations peak
slightly below 3 level-set cell widths (Δx). For resolution 32, the error stays below
Δx. In the upper region of the hole and the top surface, the deviations are small
and the sharp edge is conserved.

0.0 0.2 0.4 0.6 0.8 1.0

time (normalized)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

m
ax

im
u
m

er
ro
r
e m

a
x
n
o
r
m resolutions

16

32

64

Figure 6.6: Maximum deviation of the surface position throughout the simulations for all three
tested resolutions. The deviation is normalized to the resolution, i.e., emaxnorm

= emax/Δx, where
Δx = 1/resolution.

The performance of the method is evaluated by tracing the runtime per time
step from T=0 to T=8 for three different level-set resolutions summarized in Ta-
ble 6.1 for the dense and the sparse flux calculation. For each time step, the runtime
for the flux evaluation and for the remaining parts (velocity extension, advection,
normalization, and mesh extraction; referred to as other tasks in the following) is
tracked (cf. Figure 6.7-6.9 green and red areas, respectively). The flux integration
method for a single point is identical for both cases. The implementation of Algo-
rithm 2 is serial, in contrast to the flux evaluation, which is OpenMP-parallelized
in both cases to provide a realistic estimation of the speedups. The serial overhead
generated by Algorithm 2 is captured in the runtime of the flux evaluation. All
performance measurements were performed on WS1.

Figure 6.7 summarizes the performance differences for resolution 16. The left
plot shows the runtime per time step for the dense flux evaluation. The runtime
at the beginning of the simulation is ≈ 5.5 seconds per time step. As soon as the
hole has reached the bottom of the bulk material, the number of triangles starts
to decrease and consequently the runtime per time step drops linearly from T=3.6
to T=8. The ratio between flux evaluation (green) and other tasks (red) is ≈ 20
for the whole simulation, emphasizing the dominance of the computational cost for

93

the flux evaluation, even for small domain resolutions. The right plot in Figure 6.7
is analogous to the left plot, but for the sparse flux evaluation. A second y-axis
on the right is used to plot two additional properties, namely: The ratio of dense
to sparse points (dashed line) and the speedup of the flux evaluation (solid line)
over the dense flux evaluation. Throughout the simulation, the dense/sparse ratio
is between 2.5 and 6 while the speedup is ≈ 2.0.

0 1 2 3 4 5 6 7 8

physical time T [au]

0

1

2

3

4

5

6

7

ti
m
e
st
ep

ru
n
ti
m
e
[s
]

dense evaluation

flux evaluation

other

0 1 2 3 4 5 6 7 8

physical time T [au]

00

11

22

33

ti
m
e
st
ep

ru
n
ti
m
e
[s
]

sparse evaluation

0

1

2

3

4

5

fa
ct
or
s

dense/sparse ratio

dense/sparse speedup

Figure 6.7: Performance results for dense evaluation (left) and sparse evaluation (right) of the
direct flux for resolution 16.

Figure 6.8 and 6.9 compare the performance for resolution 32 and 64, respec-
tively. With increasing resolution, the dominance of the flux evaluation in terms
of runtime is also increased, leading to a negligible share of runtime for the other
tasks in the case of dense flux evaluation. For sparse flux evaluation a dense/sparse
ratio of 3 to 14 and 4 to 35 is achieved for resolution 32 and 64, respectively. How-
ever, different to resolution 16, the obtained speedups (5 and 8, respectively) are
only constant up to T=3.6, where the hole reaches the bottom of the bulk mate-
rial. From T=3.6 to T=8 the speedups decrease to approximately 2 (following the
dense/sparse ratio) keeping the total runtime per time step approximately constant
up to T=6.5.

The difference between achieved and potential speedup (i.e., dense/sparse ratio)
is higher for large meshes and ranges from ≈ 2 for resolution 16, to ≈ 4 for resolution
64 before the hole reaches the bottom. When approaching T=8, all three tested
resolutions converge to a speedup of ≈ 2.

6.4 Summary

A method was presented to reduce the number of necessary evaluation locations
for the surface rates to reduce the computational effort with limited impact on
the accuracy. A sparse point-set and corresponding neighborhoods are constructed
using an iterative partitioning scheme. The surface rates are only evaluated for

94

0 1 2 3 4 5 6 7 8

physical time T [au]

0

5

10

15

20

25

ti
m
e
st
ep

ru
n
ti
m
e
[s
]

dense evaluation

flux evaluation

other

0 1 2 3 4 5 6 7 8

physical time T [au]

0

1

2

3

4

5

ti
m
e
st
ep

ru
n
ti
m
e
[s
]

sparse evaluation

0

2

4

6

8

10

12

14

fa
ct
or
s

dense/sparse ratio

dense/sparse speedup

Figure 6.8: Performance results for dense evaluation (left) and sparse evaluation (right) of the
direct flux for resolution 32.

0 1 2 3 4 5 6 7 8

physical time T [au]

0

10

20

30

40

50

60

70

80

90

ti
m
e
st
ep

ru
n
ti
m
e
[s
]

dense evaluation

flux evaluation

other

0 1 2 3 4 5 6 7 8

physical time T [au]

0

2

4

6

8

10

12

14

ti
m
e
st
ep

ru
n
ti
m
e
[s
]

sparse evaluation

0

5

10

15

20

25

30

35

fa
ct
or
s

dense/sparse ratio

dense/sparse speedup

Figure 6.9: Performance results for dense evaluation (left) and sparse evaluation (right) of the
direct flux for resolution 64.

this sparse point-set. The variable limits for the allowed distance between sparse
locations enable to balance between computational complexity and accuracy in a
robust way. A linear interpolation between the sparse points is approximated by
diffusing the result of a constant extrapolation in the neighborhoods.

When using a cylindrical hole with a directed vertical source as a generic etching
simulation test case, deviations in the surface position are below 3 level-set cells
for all tested configurations. The achieved speedups range from 2 for the lowest
resolution up to 8 for the highest resolved surface. The speedups are tracked during
all time steps of the simulations starting from thick initial geometries to very thin
geometries at the end of the simulated physical process.

95

Chapter 7

Approximation of Flux in High

Aspect Ratio Structures

High aspect ratio structures are essential for the fabrication of various semiconductor
devices, where the aspect ratio (AR) of the structure is defined as depth/diameter
in case of cylinders and as depth/width in case of trenches. One particular example
is negative-AND (NAND) flash cell fabrication [71], where three-dimensional multi-
layer designs (3D-NAND) involve vertical holes which require aspect ratios above
40. The accurate simulation of the fabrication process for these high aspect ratio
structures is challenging, in particular for etching processes: If the re-emission of
particles (of the etching species) is neglected, the error in the results for the surface
rates increases towards the bottom of the structure.

For a neutral particle species, the flux originating from multiple reflections dom-
inates the surface rates towards the bottom of high aspect ratio structures; surface
properties on the sidewalls of a structure which exhibit a high re-emission probability
(i.e., low sticking probability) for a neutral particle species emphasize the impor-
tance to model a high number of re-emission events. The computational effort for
the three-dimensional particle transport calculation increases with the number of
considered re-emission events: In a bottom-up scheme the number of necessary re-
distribution iterations is increased. In a top-down Monte Carlo scheme the necessary
number of particles is increased in order to obtain an acceptable signal-to-noise ratio
at the bottom of a high aspect ratio structure.

In [85] an approach is presented to calculate the neutral flux in long trenches and
holes by exploiting symmetry properties of the structures. The three-dimensional
problem is reduced to a line integral and the Nyström method [86] is used for dis-
cretization. Special numerical treatment is needed to handle singularities during the
integration. Spikes and oscillations of the solution near corners of the structure were
reported, when the resolution is not refined (compared to the resolution required
by the Nyström method) at these critical spots. Assumptions for the transport of
the neutral particles are ideal diffuse sources/reflections, a locally constant sticking
probability, and molecular flow (ballistic transport without considering inter-particle
collisions) of the neutral particles; these assumptions also justify radiosity-based ap-
proaches.

In the following, a radiosity-based one-dimensional approximation for the surface

97

rates of a neutral particle species is presented for convex holes and trenches [87].
The approximation is eligible to replace the three-dimensional particle transport cal-
culation for neutral particle species. It is applicable to simulations where the three-
dimensional geometry can be approximated with a convex rotationally symmetric
hole or convex symmetric trenches. Although these constraints seem restrictive,
the approach can be an attractive choice in modern Process TCAD, in particular
for memory devices where symmetric high aspect ratio structures are utilized to
increase the integration density.

First, the details of the approach are presented. Then, the utilized view factors
are introduced including a novel combination of analytical view factors to obtain an
analytical view factor for coaxial cones. Then, the approximation is validated using
the three-dimensional top-down particle transport implementation of ViennaTS [14].
Finally, the capabilities of the presented approach are demonstrated.

7.1 One-Dimensional Radiosity-Based

Particle Transport

For cylindrical holes, the simulation domain is a rotationally symmetric closed con-
vex surface. For trenches, the simulation domain is a trench with a closed convex
symmetric cross section. The neutral flux source is modeled by closing the structures
at the top. This leads to a disk-shaped source for holes and a strip-shaped source
for trenches. Figure 7.1a and Figure 7.1b illustrate the cross sections of domains
with vertical walls and with a kink at one half of the depth, respectively.

(a) Vertical domain (b) Kinked domain (c) Surface model

Figure 7.1: Cross sections of simulation domains with vertical walls (a) and with a kink at one
half of the depth (b). ss, sw, and sb designate the sticking probabilities for the source, the wall,
and bottom region, respectively. (c) illustrates the surface model showing the relation between
the received flux R, the adsorbed flux A, and the re-emitted flux RE; source areas emit a flux E
independent of the received flux R.

The surface adsorption is modeled using a locally constant sticking probability s.
The received flux R is split according to s into an adsorbed flux A and a re-emitted
flux RE as depicted in Figure 7.1c. Source areas additionally emit a flux E inde-
pendent of R.

98

The discrete form of the radiosity equation (2.15) is used. For a surface element
i the received flux Ri is

Ri =
j

(EjFji) +
j

((1− sj)RjFji) , (7.1)

where Ej is the self-emitted energy, sj is the sticking probability, and Fji is the view
factor (proportion of the radiated energy, which leaves element j and is received by
element i).

The linear system of equations is obtained by rewriting (7.1) in matrix notation

R = F
T · E + diag (1− s)F T ·R , (7.2)

and transformation into the standard form

I − diag (1− s)F T ·R = F
T · E , (7.3)

with the vector of emitted flux E, a vector of sticking probabilities s, and a matrix
of view factors F (where Fij corresponds to the view factor i → j).

The solution of the diagonally-dominant linear system of equations (7.3) is ap-
proximated using the Jacobi method. The number of performed Jacobi-iterations
corresponds to the considered number of re-emissions of each element to all other
elements. The adsorbed flux A is related to R by the corresponding sticking prob-
ability s of the element

Ai = Risi . (7.4)

The relation A − E = 0, which holds for closed surfaces, can be used to
test the implementation and to define a stopping criterion for the Jacobi iterations.

7.2 View Factors

The approach presented here is based on the discretization of the surface into discrete
surface elements along the structure’s line of symmetry. Figure 7.2 shows the cross
section of a convex structure and the shape of the resulting surface elements. Two
vertical ranges are indicated in Figure 7.2b and the resulting surface elements a and
b are shown for a trench (Figure 7.2a) and a hole (Figure 7.2c). The elements are
formed from two strips for the trench and take the form of a sliced cone for the hole.

To assemble the matrix F the view factors between all possible pairs of surface
elements are required.

7.2.1 Trench View Factors

The view factor between two segments of a symmetric convex trench with a con-
stant cross section, as depicted in Figure 7.2a, is derived using the crossed-strings
method [88]. This method computes the view factor between two surfaces with a
constant cross section and infinite length utilizing a two-dimensional re-formulation

99

(a) Trench (b) Domain (c) Hole

Figure 7.2: Two surface elements, which result when discretizing the domain (b) are displayed:
(a) is the side view of two surface elements a and b, which result from a trench discretization and
(c) is the isometric view of two surface elements a and b, which result from a hole discretization.

of the problem. For two mutually completely visible strips of infinite length the
view factor is [88]

F1→2 =
(d1 + d2)− (s1 + s2)

2 · a1
, (7.5)

where d1 and d2 denote the lengths of the diagonals, when connecting the cross
section of the two strips to form a convex quadrilateral, s1 and s2 denote the lengths
of the sides of that quadrilateral which connects the strips, and a1 denotes the length
of the side of the quadrilateral which represents the emitting strip.

Figure 7.3a is an isometric view of the four strips from Figure 7.2a. The view
factors from the top right strip ar towards the other three strips is visualized in
Figure 7.3b.

(a) Isometric view (b) Side view

Figure 7.3: Isometric (a) and side view (b) on the four infinite strips which correspond to the
surface elements a and b from Figure 7.2a. In (b) the view factors from the top right strip ar
towards the other three strips are visualized.

The view factor between the two segments a and b is

Fa→b = Far→br + Far→bl , (7.6)

100

where the subscripts denote the side of the strip according to Figure 7.3b; al can
be neglected, as the cross section is symmetric. The view factor from an element to
itself is

Fa→a = Far→al , (7.7)

where again the other direction can be neglected due to symmetry. Equation (7.5)
is used to compute the view factors between individual strips in (7.6) and (7.7).

7.2.2 Hole View Factors

A general formulation to compute the view factors between two segments of a rota-
tionally symmetric convex hole (cf. Figure 7.2c) is derived. It is based on the view
factor between two coaxial disks of nonequal radii r1 and r2 at a distance z defined
by

F1→2 =
1

2
X − X2 − 4(R1/R2)2 , (7.8)

where Ri = ri/z and X = 1+(1+R2
2)/R

2
1 [89]. Using this relation and the reciprocity

theorem of view factors
S1 · F1→2 = S2 · F2→1, (7.9)

where S is the element area, a general formulation for the view factor between the
inner wall surfaces of two coaxial cone-like segments (whose surfaces are mutually
completely visible) is obtained. Figure 7.4a shows two segments a and b in such a
configuration and denotes the four coaxial disks which represent the apertures of
the two elements.

(a) Cone/cone (b) Cone/annulus (c) Cone/disk

Figure 7.4: Three possible pairs of segments as they result from discretizing the hole. For each
pair, the near apertures an and bn, and the far apertures af and bf are denoted: (a) two cone-like
segments, (b) cone and annulus, and (c) cone and disk. The far aperture is treated as an infinitely
small element.

The final goal to compute the view factor between two elements a and b is divided
into multiple inexpensive view factor computations between coaxial disks. First, the
difference of the view factors from bf towards the two disks of a is computed, and
the reciprocity theorem (7.9) is applied to obtain Fabf (red indicates sending and
blue receiving areas).

Fbfa = Fbfan −Fbfaf ⇒
Sbf

Sa

· Fbfa = Fabf (7.10)

101

The same is done for bn to obtain Fabn .

Fbna = Fbnan −Fbnaf ⇒
Sbn

Sa

· Fbna = Fabn (7.11)

Finally Fab is obtained by subtracting Fabf from Fabn .

Fabn − Fabf = Fab (7.12)

The view factor of an element to itself Faa is computed by subtracting the flux
leaving through the two apertures from unity.

Faa = 1− Faan − Faaf (7.13)

If an element is an annulus or a disk (see Figure 7.4b and Figure 7.4c, respec-
tively), the general formulation still applies. For a disk, the far aperture is treated
as an infinitely small element.

7.3 Validation and Results

The sticking probabilities for the wall and the bottom of the structures are selected
to represent a reasonable approximation to the prevalent conditions for the neutral
particles in an ion-enhanced chemical etching [90] (IECE) environment. A sticking
probability ss = 1 is used for source areas which do not have any reflections origi-
nating from these artificial areas; the bottom is modeled as a fully adsorbing area
with a sticking probability sb = 1. A constant sticking probability sw is used for the
walls of the structures.

The results for cylindrical holes with different aspect ratios (5 to 45; cf. Fig-
ure 7.5a), sticking probabilities sw (0.02 to 0.2), and geometries (cf. Figure 7.5b-
7.5e) are compared with the reference results obtained using ViennaTS [14], which
uses a three-dimensional top-down Monte Carlo approach for the particle transport.
The results show good agreement (cf. Figure 7.6) aside from the deviation at the
wall/bottom interface, caused by the discretization which is used in the reference
simulation. Figure D.1 in Appendix D plots the flux distributions for a hole and a
trench of aspect ratio 25 along the wall and at the bottom for sticking probabilities
sw = 0.2 and sw = 0.01: All results are in agreement with the result obtained by
the reference simulation.

The neutral particle flux at the bottom of a structure is an important parameter
during an IECE process, as it determines the etch rate of the process [85]. Figure 7.7
shows results obtained with the presented approach for the flux at the bottom center
of a hole and a trench structure. The sticking probability of the bottom is set to
sb = 1 (cf. Figure 7.7a, 7.7b) and sb = sw (cf. Figure 7.7c, 7.7d). The total flux
(solid lines) and the flux originating from re-emission (indirect flux, dashed lines)

102

5
25

45

(a) Aspect ratios

width
100%

de
pt
h

(b) Vertical

125%

(c) Extended

75%

(d) Tapered

112.5%

1/
2

de
pt

h

(e) Kinked

Figure 7.5: (a) True to scale aspect ratios from 5 to 45. (b)-(e) Cross sections of the geometric
variations of the wall for holes and trenches (shown for AR=3); the resulting angle α, which is
identical for all three variations, is depicted.

is plotted for aspect ratios between 0.1 and 50, and different sticking probabilities
sw. The results reveal the effect of a high sticking probability at the bottom for
high aspect ratio structures: The bottom adsorbs more particles, which leads to a
higher contribution of the direct flux. For instance, for a hole with aspect ratio 50
and sw = 0.02, the ratio indirect/total flux is 0.33 and 0.8 for sb = 1 and sb = 0.02,
respectively.

7.4 Summary

A computationally inexpensive radiosity-based approximation of the local neutral
flux for three-dimensional plasma etching simulations of high aspect ratio holes
and trenches was presented. All relevant view factors for holes are computed by
establishing an inexpensive general formulation for the view factor between coaxial
cone-like segments.

It can be used as a drop-in replacement for the neutral flux computation dur-
ing three-dimensional IECE simulations of high aspect ratio structures offering an
underlying symmetry, as shown here for holes and trenches, to significantly reduce
simulation times in practical simulation cases — or as a stand-alone tool which
provides fast results for exploratory investigations.

Comparing the results for various convex configurations using a rigorous three-
dimensional Monte Carlo ray tracing simulation shows good agreement.

103

0.0 0.2 0.4 0.6 0.8 1.0

normalized depth

10−3

10−2

10−1

100

n
o
rm

a
li

z
e
d

a
d

so
rb

e
d

fl
u

x
(A

n
s
r
c
)

3D ray tracing

1D radiosity

sw=0.02

sw=0.04

sw=0.1

sw=0.2

(a) Cylinder wall, AR=5

0.00.20.40.60.81.0

normalized radius

10−3

10−2

10−1

100

n
o
rm

a
li

z
e
d

a
d

so
rb

e
d

fl
u

x
(A

n
s
r
c
)

3D ray tracing

1D radiosity

sw=0.02

sw=0.04

sw=0.1

sw=0.2

(b) Cylinder bottom, AR=5

0.0 0.2 0.4 0.6 0.8 1.0

normalized depth

10−6

10−5

10−4

10−3

10−2

10−1

100

n
o
rm

a
li

z
e
d

a
d

so
rb

e
d

fl
u

x
(A

n
s
r
c
)

3D ray tracing

1D radiosity

sw=0.02

sw=0.04

sw=0.1

sw=0.2

(c) Cylinder wall, AR=45

0.00.20.40.60.81.0

normalized radius

10−5

10−4

10−3

n
o
rm

a
li

z
e
d

a
d

so
rb

e
d

fl
u

x
(A

n
s
r
c
)

3D ray tracing

1D radiosity

sw=0.02

sw=0.04

sw=0.1

sw=0.2

(d) Cylinder bottom, AR=45

Figure 7.6: Normalized flux distributions along the wall and at the bottom for cylinders of
aspect ratio 5 (a)(b) and aspect ratio 45 (c)(d). The one-dimensional radiosity approach (circles)
is compared to the results of a three-dimensional ray tracing simulator (lines). The sticking
probability of the wall sw is varied between 0.02 and 0.2. The deviations between ray tracing and
radiosity towards the wall-bottom interface are due to the resolution of the ray tracing simulator.
In (c) the ray tracing results are plotted using the minimum and maximum along the cylinder
radius, particularly visible for sw = 0.2.

104

10−1 100 101

aspect ratio

0.0

0.2

0.4

0.6

0.8

1.0

n
or
m
al
iz
ed

fl
u
x
at

b
ot
to
m

ce
n
te
r

sw=0.02

sw=0.04

sw=0.1

sw=0.2

sw=1.0

total flux

indirect flux

indirect/total ratio

0.0

0.2

0.4

0.6

0.8

1.0

in
d
ir
ec
t/
to
ta
l
ra
ti
o

(a) Hole, sb = 1

10−1 100 101

aspect ratio

0.0

0.2

0.4

0.6

0.8

1.0

n
or
m
al
iz
ed

fl
u
x
at

b
ot
to
m

ce
n
te
r

sw=0.02

sw=0.04

sw=0.1

sw=0.2

sw=1.0

total flux

indirect flux

indirect/total ratio

0.0

0.2

0.4

0.6

0.8

1.0

in
d
ir
ec
t/
to
ta
l
ra
ti
o

(b) Trench, sb = 1

10−1 100 101

aspect ratio

0.0

0.2

0.4

0.6

0.8

1.0

n
or
m
al
iz
ed

fl
u
x
at

b
ot
to
m

ce
n
te
r

sw=0.02

sw=0.04

sw=0.1

sw=0.2

sw=1.0

total flux

indirect flux

indirect/total ratio

0.0

0.2

0.4

0.6

0.8

1.0

in
d
ir
ec
t/
to
ta
l
ra
ti
o

(c) Hole, sb = sw

10−1 100 101

aspect ratio

0.0

0.2

0.4

0.6

0.8

1.0

n
or
m
al
iz
ed

fl
u
x
at

b
ot
to
m

ce
n
te
r

sw=0.02

sw=0.04

sw=0.1

sw=0.2

sw=1.0

total flux

indirect flux

indirect/total ratio

0.0

0.2

0.4

0.6

0.8

1.0

in
d
ir
ec
t/
to
ta
l
ra
ti
o

(d) Trench, sb = sw

Figure 7.7: Total flux (solid) and indirect flux (dashed) at the bottom center of a vertical hole
and trench structure for various aspect ratios (0.1 to 50) and different sticking probabilities (sw)
of the wall (0.02 to 1). The ratio between indirect and total flux (dotted) is plotted additionally
using the right y-axis. (a)-(b) Result for a sticking probability sb = 1 at the bottom. (c)-(d) Result
for a sticking probability sb = sw at the bottom.

105

Chapter 8

Combining Acceleration Techniques

for Direct Flux

The approaches to accelerate the flux calculation presented in Chapters 4, 5, and 6
are applied to the etching simulation of a dielectric layer introduced in Section 1.2.4
to showcase the advantage of their combined use. The surface velocity Vn is defined
as a linear relation to the direct flux Fdirect from a power cosine source (cf. Figure 4.3)
with exponent n = 100.

Vn(x) =

−0.01Fdirect(x), if M(x) = Mphotoresist

−0.02Fdirect(x), if M(x) = Mbarrier ∨Metchstop

−0.1Fdirect(x), if M(x) = Mmetal ∨Mseed

−1.0Fdirect(x), if M(x) = Mdielectric

(8.1)

The etching is simulated until T = 1.5, where the etchstop embedded in the dielectric
and the diffusion barrier is reached at T = 0.5 and T = 1.0, respectively; Figure 8.1a-
8.1c show the corresponding cross sections of the simulation domain.

All benchmarks in this chapter are performed on WS2. As a frame of refer-
ence, for resolution 1/64, the runtimes of the main computational tasks with a 4
times subdivided icosahedron for spherical sampling (cf. Section 4.1) and implicit
ray tracing (using OpenVDB) are shown in Figure 8.1d. Analogously, Figure 8.1e
shows the runtimes for the same setup, when applying the presented acceleration
schemes, namely (a) explicit ray tracing on a temporary explicit mesh (using Em-
bree, cf. Section 5.3), (b) an adaptive sampling of the visibility directions with one
level of refinement (i.e., minlevel= 3 and maxlevel= 4, cf. Section 4.3), and (c) a
sparse evaluation of the surface rates using a maximum edge distance of 16 (i.e.,
dmax0 = 16, cf. Section 6.1) and Equation (6.2) as refinement condition. The over-
all runtime for a time step is about 70 seconds at the beginning of the simulation
and about 110 seconds for T = 1.5. When applying all presented approaches com-
bined the overall runtime is reduced to about 5 and 8 seconds, respectively. This
corresponds to an overall speedup of about 14.

The speedup for the calculation of the surface rates is shown in Figure 8.2 for vari-
ous additional combinations of the presented acceleration approaches. The speedups
are normalized to runtimes based only on an explicit ray tracing approach. The con-

107

(a) T = 0.5, shortly after the
etch stop layer was reached

(b) T = 1.0, shortly after the
diffusion barrier was reached

(c) T = 1.5, final topography

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

physical time T [au]

10−1

100

101

102

103

ti
m
e
st
ep

ru
n
ti
m
e
[s
]

surface rates

surface representation

surface velocity

surface advection

other tasks

(d) Implicit tracing

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

physical time T [au]

10−1

100

101

ti
m
e
st
ep

ru
n
ti
m
e
[s
]

surface rates

surface representation

surface velocity

surface advection

other tasks

(e) All methods combined

Figure 8.1: Results of a feature-scale etching simulation of the dielectric layer in a “self-aligned
dual-damascene process” (cf. Figure 1.1h). The lateral dimensions of the domain are 192 × 192
grid cells. (a)-(c) Cross sections of the domain for T = [0.5, 1.0, 1.5]. (d) Runtimes demanded with
implicit tracing. (e) Runtimes using all presented acceleration approaches combined.

figurations corresponding to the result shown in Figure 8.1d and 8.1e are additionally
marked with a circle. Figure 8.2 confirms the speedups estimated in the individual
chapters presenting the acceleration approaches: The explicit ray tracing (which is

108

3 4 5 6

icosahedron subdivisions

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

sp
ee
d
u
p

expl. (baseline)

impl.

expl. + refine (1)

expl. + refine (2)

expl.+ sparse

expl. + sparse + refine (1)

expl. + topdown (1k/tri)

expl. + topdown (2k/tri)

expl. + topdown (4k/tri)

expl. + topdown (8k/tri)

(a) Resolution 1/64

3 4 5 6

icosahedron subdivisions

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

sp
ee
d
u
p

expl. (baseline)

impl.

expl. + refine (1)

expl. + refine (2)

expl.+ sparse

expl. + sparse + refine (1)

expl. + topdown (1k/tri)

expl. + topdown (2k/tri)

expl. + topdown (4k/tri)

expl. + topdown (8k/tri)

(b) Resolution 1/128

Figure 8.2: Average speedup for the surface rate calculation for various combinations of the pre-
sented acceleration approaches normalized to the runtime with solely the explicit tracing approach
(expl.). (a) and (b) show the results for resolution 1/64 and 1/128, where the configurations are
otherwise identical besides the dmax0

setting for the sparse evaluation of 16 and 32, respectively.
The results corresponding to Figure 8.1d and 8.1e are additionally marked with a circle in (a).
The speedup with a top-down Monte Carlo approach for the direct flux is plotted in dashed lines
where each line represents a constant number of launched rays, i.e., 1k/tri corresponds to 1000
triangles launched per triangle on an equivalent horizontal surface.

used as a baseline, thick blue line) provides a speedup of about 9 compared to the
implicit tracing (green line). The adaptive visibility sampling provides a speedup
of 2 for a 6 times subdivided icosahedron; for lower subdivision levels, the speedup
decreases to only a marginal speedup for 3 subdivisions. The sparse evaluation of
the surface rates provides a speedup of 1.5 and 2 for 4 subdivisions up to 4.5 and 8
for 6 subdivisions. The combined speedup can be approximated by the product of
the individual speedups. The speedup for the combined approaches is above 14 for
4 or more subdivisions.

109

Figure 8.2 additionally plots the speedups when using explicit tracing combined
with a top-down Monte Carlo approach for the direct flux calculation. The speedups
are plotted for four different numbers of launched rays per triangle on a equiv-
alent horizontal surface, i.e., for resolution 1/64 the launched number of rays is
192× 192 · 2 · 1000 ≈ 73Mrays, where 2 triangles are assumed per grid cell and 1000
rays are launched per triangle (1k/tri).

Figure 8.2 also allows to relate the runtime between top-down and bottom-up
approaches for the direct flux calculation, e.g., for resolution 1/64 the runtime for a
top-down scheme using 1k/tri is about a factor of 0.7 slower than a sampling using
a 4 times subdivided icosahedron. This relation can merely be used as a rough
estimate as it strongly depends on the geometry, if the number of launched rays is
related to the number of equivalent triangles of a horizontal surface.

110

Chapter 9

Summary and Outlook

The state of the art of numerical methods for topography simulation for Process
TCAD was presented and discussed with a focus on computational aspects. In
particular, different approaches for particle transport and surface advection were
discussed. The level-set method was identified as predominant choice for surface
advection for three-dimensional process simulation. Thus, from an implementa-
tion point of view, the starting position for any particle transport/flux calculation
approach is a set of level-sets representing the material regions in the simulation do-
main. All common approaches for the particle transport, which all assume ballistic
transport in the feature-scale region, rely on a vast number of ray-surface intersec-
tion tests to either perform visibility tests or to simulate the trajectories of particles
in the simulation domain. This emphasizes that an indispensable requirement for a
high performance particle transport/flux calculation approach is access to a highly
efficient ray casting back end.

With these two requirements in mind, a simulation framework was developed
to explore novel approaches for particle transport/flux calculations. The framework
combines open-source third-party libraries for sparse volumetric data and ray tracing
to store and advect the level-sets and to perform the ray-surface intersection tests.
Using this framework, different approaches to reduce the computational workload
of the particle transport/flux calculation were investigated.

The accuracy requirements for the ray-surface intersection tests was put in rela-
tion to the accuracy obtained with single-precision arithmetics for the ray casting:
It is admissible to utilize single-precision arithmetics for the ray-surface intersection
tests in practical process simulation scenarios. This is a fundamental finding as all
particle transport methods benefit from the improved underlying performance.

As the surface advection is predominantly level-set-based, no explicit represen-
tation of the surfaces is available. Using two highly optimized open-source libraries
(from the field of computer graphics) for ray casting on implicit (OpenVDB) and
explicit (Embree) surfaces, it is shown that the overhead introduced by an extrac-
tion of a temporary polygonal mesh (in each time step of the simulation) is by far
compensated by the performance gain obtained from the ray casting against the
explicit surface.

To reduce the runtime of a bottom-up direct flux calculation two approaches
were pursued: Firstly, the number of necessary visibility sampling directions (per

111

integration point) is reduced by adaptively refining the sampling only around the
boundary of the aperture regions using a hierarchical subdivision of the spherical di-
rections. Secondly, the number of integration points on the surface is locally reduced
(according to a freely definable application-specific condition) using an iterative par-
titioning scheme on the extracted polygonal surface mesh. Both approaches reduce
the runtime of the direct flux calculation significantly. The accuracy of the result
is not influenced by the first approach and the influence of the second approach is
reasonably small.

All approaches are applicable for arbitrary three-dimensional geometries and
were applied in conjunction to an etching simulation of a multi-material stack. The
resulting overall simulation speedup is above 14 for a wide range of settings.

A further utilization of the application-specific refinement condition for the iter-
ative partitioning has potential to increase the speedup – for example by introducing
a material dependence, e.g., exploiting the fact that the demands for accuracy can
differ greatly from material to material, or by introducing a dependence on the po-
sition in the domain, e.g., the accuracy demands can be tailored to simulations of
high aspect ratio structures.

Introducing a dependence on the emission characteristics of the source for the
adaptive visibility sampling and the subsequent integration potentially increases
viability of this approach further. This is especially auspicious with regard to the
integration accuracy for very directed sources.

112

Appendix A

Supplementary Material Chapter 3

In the following, the results for the test cases in Chapter 3 are provided for various
resolutions.

113

A.1 Enright Test

(a) Unit Domain (b) T = 0.0 (c) T = 0.3

(d) T = 0.6 (e) T = 0.9 (f) T = 1.2

(g) T = 1.5 (h) T = 1.8 (i) T = 2.1

(j) T = 2.4 (k) T = 2.7 (l) T = 3.0

Figure A.1: Results for the Enright test for resolution 10243. The domain is shown in (a); (b)-(l)
show the result from T = 0.0 to T = 3.0 with a stepsize 0.3. The same illustration for resolution
5123, 2563, and 1283 is provided in Figures A.2, A.3, and A.4.

114

(a) Unit Domain (b) T = 0.0 (c) T = 0.3

(d) T = 0.6 (e) T = 0.9 (f) T = 1.2

(g) T = 1.5 (h) T = 1.8 (i) T = 2.1

(j) T = 2.4 (k) T = 2.7 (l) T = 3.0

Figure A.2: Results for the Enright test for resolution 5123.

115

(a) Unit Domain (b) T = 0.0 (c) T = 0.3

(d) T = 0.6 (e) T = 0.9 (f) T = 1.2

(g) T = 1.5 (h) T = 1.8 (i) T = 2.1

(j) T = 2.4 (k) T = 2.7 (l) T = 3.0

Figure A.3: Results for the Enright test for resolution 2563.

116

(a) Unit Domain (b) T = 0.0 (c) T = 0.3

(d) T = 0.6 (e) T = 0.9 (f) T = 1.2

(g) T = 1.5 (h) T = 1.8 (i) T = 2.1

(j) T = 2.4 (k) T = 2.7 (l) T = 3.0

Figure A.4: Results for the Enright test for resolution 1283.

117

A.2 Material Dependent Isotropic Etching

(a) T = 0.25 (b) T = 0.5

(c) T = 0.75 (d) T = 1.0

Figure A.5: Extracted material regions for resolution 1/256 at T = 0.25, 0.5, 0.75, and 1.0. Regions
thinner than one grid cell potentially vanish during the Boolean operations between the level-sets,
which is visible in (c) and (d) near the edge of the crater in the blue material. The same results
for resolutions 1/128 and 1/64 are provided in Figures A.6 and A.7.

118

(a) T = 0.25 (b) T = 0.5

(c) T = 0.75 (d) T = 1.0

Figure A.6: Extracted material regions at T = 0.25, 0.5, 0.75, and 1.0 for resolution 1/128.

119

(a) T = 0.25 (b) T = 0.5

(c) T = 0.75 (d) T = 1.0

Figure A.7: Extracted material regions at T = 0.25, 0.5, 0.75, and 1.0 for resolution 1/64.

120

A.3 Simple Bosch Process

(a) T = 5

(b) T = 17

(c) T = 22

(d) T = 34

(e) T = 39
(f) T = 340, regions (g) T = 340, layers

Figure A.8: Material regions of the simple Bosch process test case for resolution 1/256. (a)-(e):
Material regions after each of the first 5 processing steps, i.e., alternating deposition and etching
steps. (f): Final material regions after 20 cycles. (g): Final material layers after 20 cycles. The
same results for lower resolutions 1/128, 1/64, and 1/32 are provided in Figures A.9-A.11.

121

(a) T = 5

(b) T = 17

(c) T = 22

(d) T = 34

(e) T = 39
(f) T = 340, regions (g) T = 340, layers

Figure A.9: Material regions of the simple Bosch process test case for resolution 1/128.

122

(a) T = 5

(b) T = 17

(c) T = 22

(d) T = 34

(e) T = 39
(f) T = 340, regions (g) T = 340, layers

Figure A.10: Material regions of the simple Bosch process test case for resolution 1/64.

123

(a) T = 5

(b) T = 17

(c) T = 22

(d) T = 34

(e) T = 39
(f) T = 340, regions (g) T = 340, layers

Figure A.11: Material regions of the simple Bosch process test case for resolution 1/32.

124

Appendix B

Supplementary Material Chapter 4

B.1 Analytical Solutions for Direct Flux from

Power Cosine Sources

Direct flux originating from a source with flux distribution Γsrc

Fi =
ΩHS

Γsrc(Θ)(Θ · ni)dωΘ, with dωΘ = sinθdθdϕ .

Direct flux originating from a source with power cosine distribution

Fi =
ΩHS

[cos(θ)nΘ(ϕ, θ) · ni(ϕ, θ)] sinθdθdϕ .

Direct flux originating from a source with power cosine distribution on a horizontal
surface, i.e., ni(ϕ, 0)

Fhorizontal =
π/2

0

2π

0

cos(θ)n Θ(ϕ, θ) · ni(ϕ, 0)

cos(θ)

 sinθdθdϕ

=
π/2

0

2π

0

[cos(θ)ncos(θ)] sinθdθdϕ

=
π/2

0

2π

0

cos(θ)n+1 sinθdθdϕ =
2

n+ 2
π .

E.g., for n = 1 (i.e., a diffuse source)

Fhorizontal =
π/2

0

2π

0

cos(θ)2 sinθdθdϕ

= 2π
π/2

0

cos(θ)2 sin(θ)dθ

= 2π −
1

3
cos(π/2)3 +

1

3
cos(0)3 = 2π

1

3
=

2

3
π .

125

Direct flux originating from a source with power cosine distribution on a vertical
surface, i.e., ni(ϕ, π/2)

Fvertical =
π/2

0

π

0

cos(θ)n Θ(ϕ, θ) · ni(ϕ, π/2)

sin(θ) cos(ϕ−π/2)

 sinθdθdϕ

=
π/2

0

π

0

[cos(θ)n(sin(θ)cos(ϕ− π/2))] sin(θ)dθdϕ

=
π/2

0

π

0

[cos(θ)n(sin(θ)sin(ϕ))] sin(θ)dθdϕ

=
π/2

0

[cos(θ)nsin(θ)(−cos(π))− cos(θ)nsin(θ)(−cos(0))] sin(θ)dθ

=
π/2

0

[cos(θ)nsin(θ)(1)− cos(θ)nsin(θ)(−1)] sin(θ)dθ

= 2
π/2

0

[cos(θ)nsin(θ)] sin(θ)dθ .

E.g., for n = 1 (i.e., a diffuse source)

Fvertical = 2
π/2

0

[cos(θ)nsin(θ)] sin(θ)dθ

= 2
1

3
=

2

3
.

or other exponents

Fvertical = 2
π/2

0

[cos(θ)nsin(θ)] sin(θ)dθ

= 2
π

16
(n = 2)

= 2
2

15
(n = 3)

= . . .

= 2
21π

2048
(n = 10) .

126

Appendix C

Supplementary Material Chapter 6

C.1 Additional Results

(a) 19456/4849 ≈ 4 (b) 71424/6221 ≈ 11 (c) 273664/8048 ≈ 34

Figure C.1: Sparse set of triangles (black) for T = 0, analog to Figure 6.4 in Chapter 6.

127

(a) 17840/3349 ≈ 5 (b) 64908/4717 ≈ 14 (c) 247892/7768 ≈ 32

Figure C.2: Sparse set of triangles (black) for T = 3, analog to Figure 6.4 in Chapter 6.

128

(a) direct flux, initial ge-
ometry

(b) dmax = 16

(c) dmax = 8 (d) dmax = 4

(e) dmax = 2 (f) dmax = 1

Figure C.3: Results for each iteration of the partitioning scheme (dmax0
= 16) for the geometry

introduced in Figure 6.1. (a) Direct flux on the initial geometry. (b) Initial sparse set (including
the material interfaces). (c)-(f) Results for the iterations dmax = 8 to dmax = 1.

129

C.2 Algorithm Subroutines

Algorithm 3: Recursive flagging and refinement of patches.

Function FlagNeighborhood(i, iparent, iprev, dpath, dmax):
dmaxlocal

= distTarget[i];
if withdrawn[i] AND dmax >= dpath AND dmaxlocal

> dpath AND
distance[i] > dpath then

touched[i] = true;
parent[i] = iparent;
distance[i] = dpath;
foreach ine in edgeNeighbors[i] do

if ine! = iprev then
FlagNeighborhood(ine, iparent, i, dpath + 1, dmax)

else
SetNeighbors(i, iparent);

Function FlagTriangles(indices, dmax):
touched[] = false;
dpath = 0;
numNewPatches = 0;
foreach i in indices do

if !touched[i] and withdrawn[i] then
++numNewPatches;
active[i] = touched[i] = reflagged[i] = true;
parent[i] = i;
distance[i] = dpath;
foreach ine in edgeNeighbors[i] do

FlagNeighborhood(ine, i, i, dpath + 1, dmax)

return numNewPatches
Function RefinePatch(iactive, dmax):

count = Withdraw(iactive, dmax/2)
if count == 0 then

return 0
else

UnSetAllNeighbors(iactive)
numNewPatches = FlagTriangles(patches[iactive].patchIndices, dmax)

RebuildNeighbors(iactive)
UnWithdraw(iactive)

return numNewPatches

130

Algorithm 4: Helper functions for sparse neighbor handling.

Function SetNeighbors(i, iactive):
if parent[i] != −1 and parent[i] != iactive then

sparseNeighbors[parent[i]].insert(iactive);
sparseNeighbors[iactive].insert(parent[i]);

Function UnSetAllNeighbors(iactive):
foreach ins in sparseNeighbors[iactive].activeNeighbors do

sparseNeighbors[ins].erase(iactive);
sparseNeighbors[iactive].erase(ins);

Function RebuildNeighbors(iactive):
foreach i in patches[iactive].patchIndices do

if !withdrawn[i] then
foreach ine in edgeNeighbors[i] do

SetNeighbors(ine, iactive);

Algorithm 5: Helper functions for withdrawal and building patch
information.

Function Withdraw(iactive, d):
count = 0;
foreach i in patches[iactive].patchIndices do

if distance[i] > d then
withdrawn[i] = true;
distance[i] = dmax0

;
parent[i] = -1;
++count;

return count
Function UnWithdraw(iactive):

foreach i in patches[iactive].patchIndices do
withdrawn[i] = false;

Function RebuildPatches():
patches.clear();
for i = 0 . . . Ntri − 1 do

if parent[i] == -1 then
patches[parent[i]].insert(i);

131

Appendix D

Supplementary Material Chapter 7

133

0.0 0.2 0.4 0.6 0.8 1.0

normalized depth

10−5

10−4

10−3

10−2

10−1

100

n
o
rm

a
li

z
e
d

a
d

so
rb

e
d

fl
u

x
(A

n
s
r
c
)

hole

trench

1D radiosity

3D ray tracing

tapered

vertical

extended

kink @ 50% depth

(a) Wall, AR=25,
sw = 0.2, α = 0.286

0.00.20.40.60.81.01.2

normalized radius

10−4

10−3

10−2

10−1

n
o
rm

a
li

z
e
d

a
d

so
rb

e
d

fl
u

x
(A

n
s
r
c
)

hole

trench

1D radiosity

3D ray tracingtapered

vertical

extended

kink @ 50% depth

(b) Bottom, AR=25,
sw = 0.2, α = 0.286

0.0 0.2 0.4 0.6 0.8 1.0

normalized depth

10−3

10−2

10−1

100

n
o
rm

a
li

z
e
d

a
d

so
rb

e
d

fl
u

x
(A

n
s
r
c
)

hole

trench

1D radiosity

3D ray tracing

tapered

vertical

extended

kink @ 50% depth

(c) Wall, AR=25,
sw = 0.01, α = 0.286

0.00.20.40.60.81.01.2

normalized radius

10−3

10−2

10−1

n
o
rm

a
li

z
e
d

a
d

so
rb

e
d

fl
u

x
(A

n
s
r
c
)

hole

trench

1D radiosity

3D ray tracing

tapered

vertical

extended

kink @ 50% depth

(d) Bottom, AR=25,
sw = 0.01, α = 0.286

Figure D.1: Normalized flux distributions along the wall and at the bottom of a hole and a trench
of AR=25: (a) (b): Sticking probability sw = 0.2. (c) (d) Sticking probability sw = 0.01. The
geometry of the structures is varied according to Figure 7.5b-7.5e. Lines represent the results of
the reference ray tracing simulator ViennaTS. The deviations between ray tracing and radiosity
towards the wall-bottom interface are due to the limited grid resolution of the ray tracing simulator.
The flux distributions at the bottom span the interval [0.75,0] for the tapered structures and
[1.25, 0] for the extended structures.

134

Bibliography

[1] Otmar Ertl and Siegfried Selberherr. “Three-Dimensional Level Set Based
Bosch Process Simulations Using Ray Tracing for Flux Calculation”. In: Mi-
croelectronic Engineering 87.1 (2010), pp. 20–29.

[2] W. Stanley. Silicon Processing for the VLSI Era, Volume 4: Deep Submicron
Process Technology. Lattice Press, Sunset Beach, CA, 2002.

[3] J. Kriz, C. Angelkort, M. Czekalla, S. Huth, D. Meinhold, A. Pohl, S.
Schulte, A. Thamm, and S. Wallace. “Overview of Dual Damascene Inte-
gration Schemes in Cu BEOL Integration”. In: Microelectronic Engineering
85.10 (2008), pp. 2128–2132.

[4] Joyeeta Nag, Shishir Ray, Kriteshwar K. Kohli, Andrew H. Simon, Brian A.
Cohen, Felipe Tijiwa-Birk, Christopher J. Parks, and Siddarth A. Krishnan.
“Non-Contact, Sub-Surface Detection of Alloy Segregation in Back-End of
Line Copper Dual-Damascene Structures”. In: IEEE Transactions on Semi-
conductor Manufacturing 28.4 (2015), pp. 469–473.

[5] Otmar Ertl. “Numerical Methods for Topography Simulation”. Doctoral Dis-
sertation. TU Wien, 2010.

[6] Mohammad Reza Shaeri, Tien-Chien Jen, Chris Yingchun Yuan, and Masud
Behnia. “Investigating atomic layer deposition characteristics in multi-outlet
viscous flow reactors through reactor scale simulations”. In: International Jour-
nal of Heat and Mass Transfer 89 (2015), pp. 468 –481.

[7] Frederic Gibou, Ronald Fedkiw, and Stanley Osher. “A Review of Level-
Set Methods and Some Recent Applications”. In: Journal of Computational
Physics 353 (2017), pp. 82–109.

[8] Silvaco. Victory Process - 3D Process Simulator. url: http://www.silvaco.
com/products/tcad/process_simulation/victory_process/victory_

process.html.

[9] J. Pagazani, F. Martyl, A. Babayan, A. Hoessinger, G. Lissorgues, and A. Ne-
jim. “DRIE Process Modelling - A MEMS Case Study on a Real Design”. In:
Proceedings of the 2013 Symposium on Design, Test, Integration and Packag-
ing of MEMS/MOEMS. 2013, pp. 1–3.

[10] Synopsis. Sentaurus Topography. url: https://www.synopsys.com/silicon
/tcad/process-simulation/sentaurus-topography.html.

135

[11] Cheng-En Wu, Wayne Yang, Lan Luan, and Hua Song. “Photoresist 3D Pro-
file Related Etch Process Simulation and its Application to Full Chip Etch
Compact Modeling”. In: Proceedings of the SPIE Advanced Lithography Con-
ference. Vol. 9426. 2015, 94261Q:1–94261Q:8.

[12] Coventor. SEMulator3D Advanced Modeling. url: https://www.coventor.
com/semiconductor- solutions/semulator3d/semulator3d- advanced-

modeling/.

[13] Aurelie Juncker, William Clark, Benjamin Vincent, Joern-Holger Franke,
Sandip Halder, Frederic Lazzarino, and Gayle Murdoch. “Self-Aligned Block
and Fully Self-Aligned Via for iN5 Metal 2 Self-Aligned Quadruple Pattern-
ing”. In: Proceedings of the SPIE Advanced Lithography Conference. Vol. 10583.
2018, 105830W:1–105830W:11.

[14] Otmar Ertl, Lado Filipovic, Paul Manstetten, Xaver Klemenschits, and Josef
Weinbub. ViennaTS - The Vienna Topography Simulator. url: https://

github.com/viennats/viennats-dev.

[15] Otmar Ertl and Siegfried Selberherr. “A Fast Level Set Framework for Large
Three-Dimensional Topography Simulations”. In: Computer Physics Commu-
nications 180.8 (2009), pp. 1242–1250.

[16] Alireza Sheikholeslami. “Topography Simulation of Deposition and Etching
Processes”. Doctoral Dissertation. TU Wien, 2004.

[17] Branislav Radjenović, Marija Radmilović-Radjenović, and Miodrag Mitrić.
“Level Set Approach to Anisotropic Wet Etching of Silicon”. In: Sensors 10.5
(2010), pp. 4950–4967.

[18] ITK - Segmentation & Registration Toolkit. url: https://itk.org/.

[19] Jia-Cheng Yu, Zai-Fa Zhou, Jia-Le Su, Chang-Feng Xia, Xin-Wei Zhang, Zong-
Ze Wu, and Qing-An Huang. “Three-Dimensional Simulation of DRIE Process
Based on the Narrow Band Level Set and Monte Carlo Method”. In: Micro-
machines 9.2 (2018), p. 74.

[20] Yiting Zhang. “Low Temperature Plasma Etching Control through Ion En-
ergy Angular Distribution and 3-Dimensional Profile Simulation”. PhD thesis.
North Carolina State University, 2015.

[21] Matt Pharr, Wenzel Jakob, and Greg Humphreys. Physically Based Rendering:
From Theory to Implementation. Morgan Kaufmann, Burlington, 2016.

[22] James Arvo and David Kirk. “A Survey of Ray Tracing Acceleration Tech-
niques”. In: An Introduction To Ray Tracing. Academic Press, London, 1989,
pp. 201–262.

[23] Ingo Wald, Sven Woop, Carsten Benthin, Gregory S. Johnson, and Manfred
Ernst. “Embree: A Kernel Framework for Efficient CPU Ray Tracing”. In:
ACM Transactions on Graphics 33.4 (2014), 143:1–143:8.

[24] Intel. Embree. url: https://embree.github.io/.

[25] nanort: NanoRT, single header only modern ray tracing kernel. url: https:
//github.com/lighttransport/nanort.

136

[26] Nvidia. Optix/Optix Prime. url: https://developer.nvidia.com/downloa
d.

[27] Nvidia. CUDA. url: https://developer.nvidia.com/cuda-zone.

[28] Matt Pharr. pbrt-v3. url: https://github.com/mmp/pbrt-v3.

[29] RadeonRays. url: https://github.com/GPUOpen-LibrariesAndSDKs/Rade
onRays_SDK.

[30] John C. Hart. “Sphere Tracing: A Geometric Method for the Antialiased Ray
Tracing of Implicit Surfaces”. In: The Visual Computer 12.10 (1996), pp. 527–
545.

[31] OpenVDB - Sparse volume data structure and tools. url: https://github.
com/dreamworksanimation/openvdb.

[32] Ken Museth. “Hierarchical Digital Differential Analyzer for Efficient Ray-
Marching in OpenVDB”. In: Proceedings of the ACM SIGGRAPH. 2014, p. 40.

[33] Matthias Müller. “Fast and Robust Tracking of Fluid Surfaces”. In: Proceedings
of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation.
ACM, 2009, pp. 237–245.

[34] Vittorio Cristini, Jerzy Bławzdziewicz, and Michael Loewenberg. “An Adap-
tive Mesh Algorithm for Evolving Surfaces: Simulations of Drop Breakup and
Coalescence”. In: Journal of Computational Physics 168.2 (2001), pp. 445–463.

[35] Andrei Zaharescu, Edmond Boyer, and Radu Horaud. “Topology-Adaptive
Mesh Deformation for Surface Evolution, Morphing, and Multiview Recon-
struction”. In: IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 33.4 (2011), pp. 823–837.

[36] Ernst Strasser and Siegfried Selberherr. “Algorithms and Models for Cellular
Based Topography Simulation”. In: IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 14.9 (1995), pp. 1104–1114.

[37] Z. F. Zhou, Q. A. Huang, W. H. Li, and W. Lu. “A Novel 3-D Dynamic Cel-
lular Automata Model for Photoresist-Etching Process Simulation”. In: IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems
26.1 (2007), pp. 100–114.

[38] J. A. Sethian. Level Set Methods and Fast Marching Methods: Evolving In-
terfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and
Materials Science. Cambridge University Press, Cambridge, 1999.

[39] Jean-Christophe Nave, Rodolfo Ruben Rosales, and Benjamin Seibold. “A
Gradient-Augmented Level Set Method with an Optimally Local, Coherent
Advection Scheme”. In: Journal of Computational Physics 229.10 (2010),
pp. 3802–3827.

[40] Ebrahim M. Kolahdouz and David Salac. “A Semi-Implicit Gradient Aug-
mented Level Set Method”. In: SIAM Journal on Scientific Computing 35.1
(2013), A231–A254.

137

[41] Simone E. Hieber and Petros Koumoutsakos. “A Lagrangian Particle Level Set
Method”. In: Journal of Computational Physics 210.1 (2005), pp. 342–367.

[42] Rodolfo Bermejo and Juan Luis Prieto. “A Semi-Lagrangian Particle Level
Set Finite Element Method for Interface Problems”. In: SIAM Journal on
Scientific Computing 35.4 (2013), A1815–A1846.

[43] Listy Stephen and Anoop Jose. “An Overview of Surface Tracking and Rep-
resentation in Fluid Simulation”. In: International Journal of Advanced Com-
puter Science and Applications 6.11 (2015), pp. 281–286.

[44] Randall J. LeVeque. Numerical Methods for Conservation Laws. Birkhäuser,
Basel, 1990.

[45] Ravi Malladi, James A. Sethian, and Baba C. Vemuri. “Shape Modeling With
Front Propagation: A level Set Approach”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence 17.2 (1995), pp. 158–175.

[46] James A. Sethian. “A Fast Marching Level Set Method for Monotonically Ad-
vancing Fronts”. In: Proceedings of the National Academy of Sciences. Vol. 93.
4. 1996, pp. 1591–1595.

[47] Li-Tien Cheng and Yen-Hsi Tsai. “Redistancing by Flow of Time Depen-
dent Eikonal Equation”. In: Journal of Computational Physics 227.8 (2008),
pp. 4002–4017.

[48] M. W. Jones, J. A. Baerentzen, and M. Sramek. “3D Distance Fields: A Survey
of Techniques and Applications”. In: IEEE Transactions on Visualization and
Computer Graphics 12.4 (2006), pp. 581–599.

[49] Hongkai Zhao. “A Fast Sweeping Method for Eikonal Equations”. In: Mathe-
matics of Computation 74.250 (2005), pp. 603–627.

[50] Stanley Osher and Chi-Wang Shu. “High-Order Essentially Nonoscillatory
Schemes for Hamilton–Jacobi Equations”. In: SIAM Journal on Numerical
Analysis 28.4 (1991), pp. 907–922.

[51] Guang-Shan Jiang and Danping Peng. “Weighted ENO schemes for Hamil-
ton–Jacobi equations”. In: SIAM Journal on Scientific Computing 21.6 (2000),
pp. 2126–2143.

[52] Ami Harten, Bjorn Engquist, Stanley Osher, and Sukumar R. Chakravarthy.
“Uniformly High Order Accurate Essentially Non-Oscillatory Schemes”. In:
Upwind and High-Resolution Schemes. Springer, Berlin Heidelberg, 1987,
pp. 218–290.

[53] Peter K. Sweby. “Godunov Methods”. In: Godunov Methods. Springer, Boston,
2001, pp. 879–898.

[54] Olindo Zanotti and Gian Mario Manca. A Very Short Introduction to Go-
dunov Methods. Lecture Notes for the COMPSTAR School on Computational
Astrophysics. 2010.

[55] Randall J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Vol. 31.
Cambridge University Press, Cambridge, 2002.

138

[56] Ami Harten. “High Resolution Schemes for Hyperbolic Conservation Laws”.
In: Journal of Computational Physics 49.3 (1983), pp. 357–393.

[57] Chi-Wang Shu and Stanley Osher. “Efficient Implementation of Essentially
Non-Oscillatory Shock-Capturing Schemes, II”. In: Journal of Computational
Physics 83.1 (1989), pp. 32–78.

[58] Richard Courant, Kurt Friedrichs, and Hans Lewy. “Über die partiellen Dif-
ferenzengleichungen der mathematischen Physik”. In: Mathematische Annalen
100.1 (1928), pp. 32–74.

[59] J. A. Sethian. “Fast Marching Methods and Level Set Methods for Propagating
Interfaces”. In: van Karman Institute Lecture Series. Vol. 3. 1998, A1–A59.

[60] Ross T. Whitaker. “A Level-Set Approach to 3D Reconstruction from Range
Data”. In: International Journal of Computer Vision 29.3 (1998), pp. 203–231.

[61] Chohong Min and Frédéric Gibou. “A Second Order Accurate Level Set
Method on Non-Graded Adaptive Cartesian Grids”. In: Journal of Computa-
tional Physics 225.1 (2007), pp. 300–321.

[62] Ken Museth. “VDB: High-Resolution Sparse Volumes with Dynamic Topol-
ogy”. In: ACM Transactions on Graphics 32.3 (2013), 27:1–27:22.

[63] Michael B. Nielsen and Ken Museth. “Dynamic Tubular Grid: An Efficient
Data Structure and Algorithms for High Resolution Level Sets”. In: Journal
of Scientific Computing 26.3 (2006), pp. 261–299.

[64] Ben Houston, Michael B. Nielsen, Christopher Batty, Ola Nilsson, and Ken
Museth. “Hierarchical RLE Level Set: A Compact and Versatile Deformable
Surface Representation”. In: ACM Transactions on Graphics 25.1 (2006),
pp. 151–175.

[65] Falko Löffler and Heidrun Schumann. “Generating Smooth High-Quality Iso-
surfaces for Interactive Modeling and Visualization of Complex Terrains”. In:
Proceedings of the International Workshop on Vision, Modeling and Visual-
ization. 2012.

[66] Leif P. Kobbelt, Mario Botsch, Ulrich Schwanecke, and Hans-Peter Seidel.
“Feature Sensitive Surface Extraction from Volume Data”. In: Proceedings
of the 28th Annual Conference on Computer Graphics and Interactive Tech-
niques. 2001, pp. 57–66.

[67] Scott Schaefer and Joe Warren. “Dual Marching Cubes: Primal Contouring
of Dual Grids”. In: Proceedings of the 12th Pacific Conference on Computer
Graphics and Applications. 2004, pp. 70–76.

[68] Tao Ju, Frank Losasso, Scott Schaefer, and Joe Warren. “Dual Contouring of
Hermite Data”. In: ACM Transactions on Graphics 21.3 (2002), pp. 339–346.

[69] Douglas Enright, Ronald Fedkiw, Joel Ferziger, and Ian Mitchell. “A Hybrid
Particle Level Set Method for Improved Interface Capturing”. In: Journal of
Computational Physics 183.1 (2002), pp. 83–116.

139

[70] Douglas Enright, Frank Losasso, and Ronald Fedkiw. “A Fast and Accurate
Semi-Lagrangian Particle Level Set Method”. In: Computers & Structures 83.6
(2005), pp. 479–490.

[71] Panagiotis Dimitrakis. Charge-Trapping Non-Volatile Memories: Volume 1 –
Basic and Advanced Devices. Springer International Publishing, 2015.

[72] Peter Z. Kunszt, Alexander S. Szalay, and Aniruddha R. Thakar. “The Hier-
archical Triangular Mesh”. In: Proceedings of the MPA/ESO/MPE Workshop
Held at Garching. Springer, 2001, pp. 631–637.

[73] Krzysztof M. Gorski, Eric Hivon, A. J. Banday, Benjamin D. Wandelt, Frode
K. Hansen, Mstvos Reinecke, and Matthia Bartelmann. “HEALPix: A Frame-
work for High-Resolution Discretization and Fast Analysis of Data Distributed
on the Sphere”. In: The Astrophysical Journal 622.2 (2005), p. 759.

[74] A. Vince. “Indexing a Discrete Global Grid”. In: Special Topics in Computing
and ICT Research, Advances in Systems Modelling and ICT Applications 2
(2006), pp. 3–17.

[75] Tamás Budavári, Alexander S. Szalay, and György Fekete. “Searchable Sky
Coverage of Astronomical Observations: Footprints and Exposures”. In: Pub-
lications of the Astronomical Society of the Pacific 122.897 (2010), p. 1375.

[76] Max Tegmark. “An Icosahedron-Based Method for Pixelizing the Celestial
Sphere”. In: The Astrophysical Journal 470 (1996), pp. L81–L84.

[77] Chihiro Kodama, Masaaki Terai, Akira T. Noda, Yohei Yamada, Masaki
Satoh, Tatsuya Seiki, Shin-ichi Iga, Hisashi Yashiro, Hirofumi Tomita, and
Kazuo Minami. “Scalable Rank-Mapping Algorithm for an Icosahedral Grid
System on the Massive Parallel Computer with a 3-D Torus Network”. In:
Parallel Computing 40.8 (2014), pp. 362–373.

[78] Alexander S. Szalay, Jim Gray, George Fekete, Peter Z. Kunszt, Peter Kukol,
and Ani Thakar. Indexing the Sphere with the Hierarchical Triangular Mesh.
Technical Report MSR-TR-2005-123, Microsoft Research. 2005.

[79] Paul Manstetten, Andreas Hössinger, Josef Weinbub, and Siegfried Selberherr.
“Accelerated Direct Flux Calculations Using an Adaptively Refined Icosahe-
dron”. In: Proceedings of the 22nd International Conference on Simulation of
Semiconductor Processes and Devices. 2017, pp. 73–76.

[80] Paul Manstetten, Josef Weinbub, Andreas Hössinger, and Siegfried Selberherr.
“Using Temporary Explicit Meshes for Direct Flux Calculation on Implicit
Surfaces”. In: Procedia Computer Science 108 (2017), pp. 245–254.

[81] Kendall Atkinson. “Numerical Integration on the Sphere”. In: The Journal
of the Australian Mathematical Society. Series B. Applied Mathematics 23.03
(1982), pp. 332–347.

[82] John C. Hart. “Ray Tracing Implicit Surfaces”. In: Siggraph 93 Course Notes:
Design, Visualization and Animation of Implicit Surfaces (1993), pp. 1–16.

140

[83] Paul Manstetten, Lukas Gnam, Andreas Hössinger, Siegfried Selberherr, and
Josef Weinbub. “Sparse Surface Speed Evaluation on a Dynamic Three-
Dimensional Surface Using an Iterative Partitioning Scheme”. In: Lecture
Notes in Computer Science. accepted, in print.

[84] I.N. Bronshtein, K.A. Semendyayev, G. Musiol, and H. Mühlig. Handbook of
Mathematics. Fifth Ed. Springer, Berlin Heidelberg, 2007.

[85] George Kokkoris, Andreas G. Boudouvis, and Evangelos Gogolides. “Inte-
grated Framework for the Flux Calculation of Neutral Species Inside Trenches
and Holes During Plasma Etching”. In: Journal of Vacuum Science & Tech-
nology A 24.6 (2006), pp. 2008–2020.

[86] Evert J. Nyström. “Über die praktische Auflösung von Integralgleichungen
mit Anwendungen auf Randwertaufgaben”. In: Acta Mathematica 54.1 (1930),
pp. 185–204.

[87] Paul Manstetten, Lado Filipovic, Andreas Hössinger, Josef Weinbub, and
Siegfried Selberherr. “Framework to Model Neutral Particle Flux in Convex
High Aspect Ratio Structures using One-Dimensional Radiosity”. In: Solid-
State Electronics 128.2 (2017), pp. 141–147.

[88] Michael F Modest. Radiative Heat Transfer. Academic Press, 2013.

[89] John R Howell, M Pinar Menguc, and Robert Siegel. Thermal Radiation Heat
Transfer. CRC press, 2010.

[90] Jane P. Chang Francis F. Chen. Lecture Notes on Principles of Plasma Pro-
cessing. Springer, 2003.

141

Own Publications

Journal Articles

[1] Paul Manstetten, Josef Weinbub, Andreas Hössinger, and Siegfried Selberherr.
“Using Temporary Explicit Meshes for Direct Flux Calculation on Implicit
Surfaces”. In: Procedia Computer Science 108 (2017), pp. 245–254.

[2] Paul Manstetten, Lado Filipovic, Andreas Hössinger, Josef Weinbub, and
Siegfried Selberherr. “Framework to Model Neutral Particle Flux in Convex
High Aspect Ratio Structures using One-Dimensional Radiosity”. In: Solid-
State Electronics 128.2 (2017). invited, pp. 141–147.

Book Contributions

[3] Paul Manstetten, Lukas Gnam, Andreas Hössinger, Siegfried Selberherr, and
Josef Weinbub. “Sparse Surface Speed Evaluation on a Dynamic Three-
Dimensional Surface Using an Iterative Partitioning Scheme”. In: Lecture
Notes in Computer Science. accepted, in print.

[4] Paul Manstetten, Lado Filipovic, Andreas Hössinger, Josef Weinbub, and
Siegfried Selberherr. “Using One-Dimensional Radiosity to Model Neutral Par-
ticle Flux in High Aspect Ratio Holes”. In: Proceedings of the 2016 Joint In-
ternational EUROSOI Workshop and International Conference on Ultimate
Integration on Silicon (EUROSOI-ULIS). IEEE Xplore, 2016, pp. 120–123.

Conference Contributions

[5] Paul Manstetten, Andreas Hössinger, Josef Weinbub, and Siegfried Selberherr.
“Accelerated Direct Flux Calculations Using an Adaptively Refined Icosahe-
dron”. In: Proceedings of the 22nd International Conference on Simulation of
Semiconductor Processes and Devices. Talk given in Kamakura, Japan, 2017,
pp. 73–76.

[6] Paul Manstetten, Lado Filipovic, Andreas Hössinger, Josef Weinbub, and
Siegfried Selberherr. “Using One-Dimensional Radiosity to Model Neutral
Flux in Convex High Aspect Ratio Structures”. In: Proceedings of the 21st

International Conference on Simulation of Semiconductor Processes and De-
vices. Poster presented in Nürnberg, Germany, 2016, pp. 265–268.

143

[7] Paul Manstetten, Lado Filipovic, Andreas Hössinger, Josef Weinbub, and
Siegfried Selberherr. “Modeling Neutral Particle Flux in High Aspect Ratio
Holes using a One-Dimensional Radiosity Approach”. In: Book of Abstracts of
the 2016 Joint International EUROSOI Workshop and International Confer-
ence on Ultimate Integration on Silicon. Talk given in Vienna, 2016, pp. 68–
69.

[8] Paul Manstetten, Vito Simonka, Georgios Diamantopoulos, Lukas Gnam,
Alexander Makarov, Andreas Hössinger, and Josef Weinbub. “Computational
and Numerical Challenges in Semiconductor Process Simulation”. In: CSE17
Abstracts. Talk given by Josef Weinbub at the SIAM Conference on Computa-
tional Science and Engineering, Atlanta, GA, USA; 2017-02-27 – 2017-03-03.
2017, p. 46.

144

Curriculum Vitae

Personal Information

Name Paul Ludwig Manstetten
Address Pezzlgasse 14/8A

1170 Wien
Phone +43 660 740 1624
Email paul@remans.de

Date of Birth September 17, 1984, Berlin
Nationality German

Education

10/2015 - present Doctoral Program, Electrical Engineering,
Institute for Microelectronics,
Technische Universität (TU) Wien

10/2010 - 09/2012 Graduate Studies, Computational Engineering,
Friedrich-Alexander Universität (FAU) Erlangen-
Nürnberg, Faculty of Engineering

10/2005 - 03/2010 Graduate Studies, Mechatronics,
Fachhochschule (FH) Regensburg, Faculty of Electrical
Engineering and Information Technology

Research Positions

09/2015 - present Project Assistant, Christian Doppler Laboratory for
High Performance TCAD,
Institute for Microelectronics, TU Wien

05/2012 - 09/2012 Research Assistant, Department of Computer Science
10, FAU Erlangen-Nürnberg

02/2012 - 05/2012 Research Assistant, Chair of Sensor Technology, FAU
Erlangen-Nürnberg

10/2009 - 03/2010 Research Assistant, LaS3, FH Regensburg

Industry Positions

11/2012 - 09/2015 Application Engineer for Optical Simulations, OSRAM
Opto Semiconductors GmbH, Regensburg

03/2008 - 07/2008 Intern (Advanced Development Group), Continental
Automotive GmbH, Regensburg

10/2006 - 02/2007 Intern (Technical Lab), BMW AG, Regensburg
06/2005 - 08/2005 Intern, Infineon AG, Regensburg

145

