
D I S S E R T A T I O N

Frameworks for
Micro- and Nanoelectronics

Device Simulation

ausgeführt zum Zwecke der Erlangung des akademischen
Grades eines Doktors der technischen Wissenschaften

eingereicht an der Technischen Universität Wien
Fakultät für Elektrotechnik und Informationstechnik

von

JOSEF WEINBUB

Matr. Nr. 0225909

Wien, im Jänner 2014

Abstract
Approaches for software frameworks, tackling the increasingly challenging tasks of
micro- and nanoelectronics device simulations, are investigated. In particular, the de-
veloped approaches focus on the key requirements defined to be most important for
today’s research simulation software, those being reusability, flexibility, usability, main-
tainability, and expandability.

Research software experiences new challenges primarily due to the fast pacing
developments in physical modeling. Simulation tools are typically one step behind the
evolution of future devices, in the sense that today’s tools have to predict the properties
of tomorrow’s devices. Research modeling software projects - especially in the area
of micro- and nanoelectronics device simulation - attempt to tackle these challenges
on their own, thus sacrificing valuable resources for the development of non-modeling
related aspects, which introduces a significant loss of synergy effects. In universities,
primarily highly specialized simulation tools based on monolithic software design are
implemented in a closed-source manner to uphold an advantage over competitors.

In this work, software engineering aspects related to developing frameworks are
investigated, particularly focusing to improve the availability of publicly accessible sim-
ulation tools relevant to the field of micro- and nanoelectronics device simulation. The
advantages of freely accessible simulation source code as well as of decoupling imple-
mentations into reusable libraries are elaborated. The developed approaches enable to
wrap already available functionality into reusable components.

More concretely, a device simulation framework, a component execution frame-
work, and an interactive simulation framework is investigated. Where a device simu-
lation framework allows to compute the device characteristics, a component execution
framework enables to execute a set of components on highly parallel computing tar-
gets. Interactive simulation frameworks provide a high-usability access via modular
graphical user interfaces. Challenges and requirements are highlighted as well as con-
crete approaches in form of developed software tools which are freely available under
open source licenses. Application examples underline the feasibility of the depicted
approaches. The developed frameworks serve as modern and long-term simulation
platforms, favoring reusability, flexibility, usability, maintainability, and expandability; all
of those aspects are particularly important in the fast developing area of micro- and
nanoelectronics device simulation.

i

Kurzfassung
Herangehensweisen für Softwaregerüste, welche die zunehmend herausfordernden
Aufgaben von Mikro- und Nanoelektronischer Bauelemente-Simulation bewältigen, wer-
den untersucht. Im Besonderen fokussieren sich die entwickelten Herangehensweisen
auf die Schlüsselanforderungen, die für heutige Forschungssimulationssoftware von
höchster Bedeutung sind, wie Wiederverwendbarkeit, Flexibilität, Bedienbarkeit, Wart-
barkeit und Erweiterbarkeit.

Forschungssoftware erfährt neue Herausforderungen primär durch die schnell vo-
ranschreitenden Entwicklungen in physikalischer Modellierung. Simulationswerkzeuge
sind typischerweise einen Schritt hinter der Entstehung von zukünftigen Bauelementen,
im Sinne der Vorhersage der Eigenschaften von zukünftigen Bauelementen durch heut-
ige Werkzeuge. Forschungsmodellierungssoftwareprojekte - insbesondere im Bereich
der Mikro- und Nanoelektronischen Bauelemente-Simulation - versuchen diese Heraus-
forderungen alleine zu bewältigen, demnach opfern sie wertvolle Ressourcen für die
Entwicklung von nicht-modellierungsbezogenen Aspekten, was einen signifikanten Ver-
lust von Synergieeffekten mit sich bringt. An den Universitäten werden primär hochspez-
ialisierte Simulationswerkzeuge, basierend auf monolithischem Softwaredesign und in
einer quelltext-geschlossenen Art, implementiert, um einen Vorteil gegenüber Konkur-
renten zu haben.

In dieser Arbeit werden Softwareentwicklungsaspekte bezüglich der Entwicklung
von Gerüsten untersucht, insbesondere liegt der Fokus auf der Verbesserung der Verfüg-
barkeit von öffentlich zugänglichen Simulationswerkzeugen, relevant für das Gebiet der
Mikro- und Nanoelektronischen Bauelemente-Simulation. Die Vorteile von frei verfüg-
baren Simulationsquelltexten und der Entkopplung von Implementierungen in wiederver-
wendbaren Bibliotheken werden ausgearbeitet. Die entwickelten Herangehensweisen
ermöglichen die Umhüllung von bereits verfügbaren Funktionalitäten in wiederverwend-
bare Komponenten.

Im Konkreten werden ein Bauelemente-Simulationsgerüst, ein Komponentenausführ-
ungsgerüst und ein Interaktivsimulationsgerüst untersucht. Während ein Bauelemente-
Simulationsgerüst die Berechnung von Bauelemente-Characteristika ermöglicht, er-
laubt ein Komponentenausführungsgerüst die Ausführung einer Menge von Komponen-
ten auf hochgradig parallelen Berechnungszielen. Interaktiv-Simulationsgerüste stellen
einen Hochbedienbarkeitszugang durch modulare grafische Benutzeroberflächen bereit.
Herausforderungen und Anforderungen werden behandelt wie auch konkrete Herange-
hensweisen in der Form von entwickelten Softwarewerkzeugen, welche frei unter quell-
text-offenen Lizenzen zugänglich sind. Anwendungsbeispiele unterstreichen die Mach-
barkeit der aufgezeigten Herangehensweisen. Die entwickelten Gerüste dienen als
moderne und langfristige Simulationsplattformen, welche Wiederverwendbarkeit, Flex-
ibilität, Bedienbarkeit, Wartbarkeit und Erweiterbarkeit fördern; all jene Aspekte sind im
Speziellen in dem sich schnell entwickelnden Bereich der Mikro- und Nanoelektronis-
chen Bauelemente-Simulation wichtig.

ii

Acknowledgement
First and foremost I want to express my deepest gratitude to my supervisor and mentor
Professor Siegfried Selberherr who not only enabled me to embark on this astonishing
journey in the first place but also provided me with unwavering support throughout the
entire time. Professor Selberherr allowed me to find my own paths, honed my ability to
take on responsibilities, and always - and I mean always - found some kind of error in
my manuscripts, continuously improving my eye for details. Without his belief in me and
my skills I would not be where I am today.

Karl(i) Rupp deserves my sincere thanks as a colleague with whom I had the plea-
sure working for over three years. In him I found a colleague who always provided me
with his honest opinion in a respectful manner. Karli was always willing to venture out
on new (rather time-consuming) side-projects, such as the Google Summer of Code
programs which we could claim for our university not just for the first time but also three
times in a row (so far..).

I want to thank the informal gentlemen’s club for their support but most of all for great
moments and adventures, especially Lado Filipovic (the Canuck), Mihail Nedjalkov
(Mixi), Philipp Schwaha (Lord Phil), Stanislav Tyaginov (Stas), Alexander Makarov (Alex),
Dmitry Osintsev (Dima), Ivan Starkov (Vanja), Stanislav Vitanov (Stani), Roberto Orio
(Mr Brazil), and Johann Cervenka (Cerv). I will never forget looking for the sun in
Sozopol, the surprisingly challenging task of finding a suitable restaurant in Kyoto, the
slightly disturbing white nights in Saint Petersburg, the challenging trip to Munich, the
campaign in Bratislava, the occasional office sessions, and the visits in my hometown.

I also want to express my gratitude to other members of the institute for their sup-
port over the recent years, among them are Professor Erasmus Langer, for providing an
excellent work environment, Florian Rudolf, for joining our software team and providing
a fresh view (also for proof-reading this thesis), Markus Bina, for advanced device sim-
ulation knowledge, Franz Schanovsky, for cluster support, Viktor Sverdlov, for honest
discussions, Manfred Katterbauer, for maintaining my hardware and enduring my re-
quests, René Heinzl, for igniting my interest in software engineering, and Franz Stimpfl,
for the fun we had.

I had the honour of visiting the Device Modelling Group at the University of Glasgow
and EPCC at the University of Edinburgh, Scotland, UK in 2012, which was funded
by the HPC-Europa2 program. For this, I owe Professor Asen Asenov my most sin-
cere thanks as it would not have been possible without him. Also, I am honoured that
Professor Asenov acts as a second examiner for this thesis, which in the light of his
undoubtedly tight schedule is no small undertaking. Overall, I want to thank the group
members in Glasgow, among them are Stanislav Markov, Gordon Stewart, Ewan Towie,
Vihar Georgiev, and Campbell Millar, for extensive talks, their interest in my work, their
hospitality, and their support. At EPCC, Catherine Inglis did an amazing job of organiz-
ing the overall visit whereas Daniel Holmes and especially Mario Antonioletti devoted
their valuable time to discuss my research and possible improvements. I learned a lot
about software engineering for supercomputers, which in this case was HECToR.

iii

I also want to express my gratitude to a few additional fellow researchers. A big
thanks to Václav Hapla, whom I met the first time at a conference in Helsinki and then
again by accident at a summer school in New York City. In the end, he invited me to
give a lecture at a workshop at his university in Ostrava. Thank you so much for you
hospitality and the opportunity. Also, I am thankful for getting to know Jean Michel (JM)
Sellier whom I met at a conference in Madison, Wisconsin and since then stayed in
touch. JM and I share the need to support the open source movement in the area of
technology computer-aided design. I had the pleasure to get to know Peter Gottschling
at a conference in Rhodos in 2010, where we had extensive discussions on software
engineering, resulting in me realizing that I have a long way ahead of me.

The projects I participated in and the people I had the honour to meet and work
with would not have been possible without the projects provided by publicly funded
institutions, such as the European research council, the Austrian science fund, and
the partnership for advanced computing in Europe as well as ultimately the tax payers.
Thank you for enabling young researchers to develop themselves in an astonishingly
fast pacing research environment.

My progress is not only influenced by professional connections but also by a highly
supporting social base. By that I mean firstly my dear friends who were always there for
me and with whom I spent amazing times, allowing me the occasional much required
distance from work. Among them are Mathias (LG), Ralph (Extraordinaire), Thomas
(Tommi), Susi (Susi!), Dominik (Ewok), Clemens (Friedrich), Karin (Karin!), Florian
(Flo), Philipp (Chip), Georg (Bussi Schorsch), Christian (Puxi), Andreas (Nemsi), and
Markus (Gotchy). Thanks for the various oakings, BOBs, gaming sessions, barbe-
cues, and whatnot; I am honoured to call you friends. Secondly, I owe my dear fam-
ily my deepest gratitude for their unconditional support, most of all my caring mother
Margarethe, my unwavering father Josef, my beloved sister Iris (Billi), as well as my
extended family around the various clans based in Limberg (the Steinschadens, the
Kastners, the Vetters, the Dolezals, and the Goldas), Fahndorf (the Weinbubs, the
Hintermayers, and the Hangels), and Tulln (the Grills and the Friedls). Thirdly and most
importantly, I thank my smart, lovely, funny, lively, understanding, and caring girlfriend
Christiane for enduring me and my devotion to my work.

Josef Weinbub

on a rainy January 21, 2014

iv

Contents

Abstract i

Kurzfassung ii

Acknowledgement iii

Contents vi

List of Acronyms 1

1 Introduction 2
1.1 Micro- and Nanoelectronics Device Simulation 2
1.2 Software Users . 4
1.3 Frameworks . 5
1.4 Research Goals . 6
1.5 Outline . 6

2 Related Work 8
2.1 Frameworks . 8
2.2 Micro- and Nanoelectronics Device Simulation Tools 10
2.3 Software Libraries and Tools . 13

3 Methods and Tools 16
3.1 Programming Paradigms . 16
3.2 The C++ Programming Language . 17
3.3 Component-Based Software Engineering 18
3.4 Library-Centric Software Design . 19

4 Device Simulation Framework 20
4.1 The Basic Semiconductor Equations . 21
4.2 Requirements and Challenges . 22

4.2.1 Mesh Generation . 22
4.2.2 Material Database . 25
4.2.3 Symbolic Math . 26
4.2.4 Discretization Schemes . 27
4.2.5 Solver . 27

4.3 The ViennaMini Project . 28
4.3.1 Design . 29
4.3.2 Material Database . 30
4.3.3 Device . 32
4.3.4 Configuration . 33
4.3.5 Stepper . 34

v

4.3.6 Problem Classes . 34
4.3.7 Mesh Generation . 36
4.3.8 Device Templates . 37
4.3.9 Simulator . 38
4.3.10 Examples . 39

5 Component Execution Framework 45
5.1 High Performance Computing . 45

5.1.1 Shared-Memory Systems . 47
5.1.2 Distributed-Memory Systems . 48
5.1.3 Hierarchical (Hybrid) Systems . 49
5.1.4 Accelerators . 51

5.2 Requirements and Challenges . 52
5.2.1 Component System . 53
5.2.2 Data Communication . 53
5.2.3 Scheduler . 54
5.2.4 Configuration . 55

5.3 The ViennaX Project . 56
5.3.1 General . 56
5.3.2 Plugin System . 59
5.3.3 Exemplary Plugin Implementation 63
5.3.4 Configuration . 64
5.3.5 Scheduler Kernels . 65
5.3.6 Examples . 69

6 Interactive Simulation Framework 80
6.1 Requirements and Challenges . 81

6.1.1 Module System . 83
6.1.2 Data Communication . 83
6.1.3 Graphical User Interface . 84
6.1.4 Data Visualization . 84

6.2 The ViennaMOS Project . 86
6.2.1 Data Communication . 87
6.2.2 Three-Dimensional Render Visualization 87
6.2.3 Two-Dimensional Chart Visualization 90
6.2.4 Multiview . 91
6.2.5 Module System . 93
6.2.6 Graphical User Interface . 95
6.2.7 Examples . 97

7 Thesis Evaluation 103
7.1 Summary . 103
7.2 Future Extensions . 103
7.3 Conclusion . 104

Bibliography 105

Curriculum Vitae 118

Own Publications 120

vi

List of Acronyms
AMR adaptive mesh refinement
API application programming interface
BSD Berkeley source distribution
CBSE component-based software engineering
cc cache-coherent
CCA common component architecture
CPU central processing unit
CSE computational science and engineering
CSG constructive solid geometry
DAG directed acyclic graph
DAGuE directed acyclic graph unified environment
DD drift-diffusion
DDPM distributed data parallel mode
DSO dynamic shared object
DTD document type definition
DTPM distributed task parallel mode
ESMF earth system modeling framework
FEA finite element analysis
FEM finite element method
FLOSS free/libre open source software
FVM finite volume method
GPL general public license
GPU graphics processing unit
GUI graphical user interface
HPC high performance computing
ID identification
LCSD library-centric software design
LGPL lesser general public license
MIT Massachusetts Institute of Technology
MNDS micro- and nanoelectronics device simulation
MOSFET metal-oxide-semiconductor field-effect transistor
MPI message passing interface
NUMA non-uniform memory access
PDE partial differential equation
SM serial mode
TCAD technology computer-aided design
UMA uniform memory access
VTK visualization toolkit
XML extendible markup language
XPath XML path language

1

Chapter 1

Introduction

1.1 Micro- and Nanoelectronics Device Simulation

Micro- and nanoelectronics device simulation (MNDS) is a sub-category of technology
computer-aided design (TCAD), which plays a crucial role in semiconductor product
development, enabling to replace many cost- and time-intensive experiments by com-
puter simulations [1]. TCAD, in general, deals with the modeling of device fabrication1,
device operation2, and circuit simulation. Where device fabrication deals with, for in-
stance, simulating the doping process of semiconductors, device operation describes
the electrical behavior of a device. In turn, circuit simulation models the behavior of an
ensemble of devices. Typically, device fabrication provides the input data for the device
operation step, being doping profiles as well as a mesh, modeling the simulation do-
main. The device operation yields electrical characteristics, enabling to setup models
required for circuit simulations. Thus, the individual stages of TCAD form a sequence
of simulation steps (Figure 1.1).

A peculiarity of TCAD is the fact that the complexity of some problems scales with
the currently available computational hardware, used to carry out the simulations. For
instance, the design of future central processing units (CPUs) - requiring ever-more
complicated modeling and thus increasingly demanding computational resources - is
addressed on current generation hardware. This fact puts pressure on the available
simulation approaches to provide the necessary means to satisfy the modeling needs.
This circumstance is also characterized by the fact that research on device and process
modeling in certain technologies, such as silicon carbide, lack the maturity of the silicon
technology, although commercial products are already available. Overall, the role of
TCAD is fundamentally fueled by the industry’s urge to satisfy Moore’s Law as well as
the More than Moore scenario [2], thus continually demanding cutting-edge research in
all areas related to TCAD.

Another aspect of MNDS is that due to the ever-ongoing advances in physical mod-
eling, a plethora of highly specialized simulation tools is available. These tools are typ-
ically focused on the modeling aspect rather than the software design3. For instance,
primarily monolithic software designs are applied due to a decreased initial development
effort. On the contrary, a different approach would require a separation of functionality
into reusable libraries.
1Device fabrication is frequently referred to as process simulation.
2MNDS, or short device simulation, refers to device operation.
3Software design deals with software system abstractions and their relationships [3].

2

CHAPTER 1. INTRODUCTION

Process Simulation Circuit SimulationDevice Simulation

Doping Pro
file

Mes
h

Elec
tri

ca
l C

hara
cte

ris
tic

s

Figure 1.1: The individual simulation steps involved in TCAD. Process simulation pro-
vides doping profiles on top of a mesh to the device simulation step. In turn, device
simulation computes the electrical characteristics used for circuit simulations.

Such a separation, however, would in turn trigger increased initial development over-
head but also would allow the build-up of a reusable set of libraries, enabling minimal-
effort applications by merely interfacing with the libraries. However, the emphasis is
usually on the exploitation of the developed physical model, as this is significantly more
valuable in a scientific sense. The scientific modeling community and, by extension, the
research journals tend to concentrate primarily on new modeling aspects rather than
the software which enabled the simulation in the first place. With publications repre-
senting the actual currency in the academic environment, higher publication or citation
counts are attributed much higher importance than the development and maintenance
of scientific software. The increasing competition for grants and positions in a strained
economic climate puts additional pressure on this process.

Related to the modeling-focus, the simulation software ecosystem in the field of
MNDS lacks behind with respect to free/libre open source software (FLOSS) [4][5]. It
is common practice that simulation software is either developed and distributed in a
commercial or in a closed-source manner. Where the first is primarily performed by
companies, the latter is usually applied by the academic MNDS research community.
Software is usually seen as an asset, ensuring an advantage over competitors. Where
binary versions in principle allow access to the simulation mechanism, it hides the ac-
tual implementation. This black box approach is especially problematic if researchers
need to investigate the implementations, usually essential for development, analysis,
and debugging of physical models. Additionally, commercial simulation tools in the field
of MNDS are typically expensive, further straining the budget of research institutions.
Providing FLOSS-based implementations along with research results in scientific jour-
nals, also satisfies the fundamental scientific principle of science, being reproducibil-
ity [6][7]. Another relevant aspect of FLOSS is that the software acts as compensation
for publicly funded research projects, as is the case for any publication in journals. Al-
though the lack of FLOSS is not directly relevant from an academic point of view, it
ultimately reduces the long-term net research time. Precious efforts have to be de-
voted to implement the software basis prior to, for instance, implementing scientifically
valuable physical models. Therefore, a lack of FLOSS is indeed relevant to uphold the
high-pacing field of MNDS, and thus by extension makes it relevant from an academic
research perspective. However, FLOSS offers drawbacks as well, most prominent of all
is the potential for code hijacking.

3

CHAPTER 1. INTRODUCTION

As the code is publicly available the code can be accessed and distributed under a dif-
ferent label by external people, who take credit for the work conducted by the original
authors. Another potential drawback is that due to the limited funding for developing
open source software the tools tend to not offer the same level of reliability than propri-
etary software. Also related to a shortage of funding, FLOSS lacks advanced software
support such as phone or email-based services, being of particular importance to com-
panies for resolving issues in a timely manner.

The lack of software reuse is especially troublesome in an academic context. In-
creased development time is clearly a drawback in the short term, causing a research
group to lag behind groups, where software engineering4 is not a concern. The addi-
tional need for trained programmers is also particularly challenging in academia, since
the workforce is typically smaller compared to the private sector. Also, there is a higher
fluctuation of software engineers due to the inherent flow of scientific personnel, partic-
ularly PhD students. Furthermore, the majority of young researchers in physical mod-
eling areas are usually quite skilled in physics and mathematics, whereas programming
skills are typically underdeveloped. Overall, the number of physical modeling scientists
with an advanced software engineering background is small, further contributing to the
challenge of scientific software engineering in academia. It is thus of considerable im-
portance to increase the level of reusability in order to support the continuing progress
in physical modeling.

1.2 Software Users
The raised issues regarding software engineering for MNDS indicate different types
of software users. The fact that this work deals with software approaches ultimately
aimed to be utilized by users, requires an analysis of the available user types to al-
low for efficient code development tuned to the individual requirements. Overall, three
user categories are identified, those being the end user, the advanced user, and the
developer.

The end user is a person who utilizes software tools and is not interested in the
technical details of the tool, either due to a lack of interest, time, or skill. The end user
interprets software as a black box and thus only cares about the input and output quan-
tities. An example from academia would be a physicist who develops a mathematical
model to describe a physical phenomenon. In this case the researcher is solely in-
terested in software tools allowing to implement and to apply the mathematical model
with minimum effort. Concerning the private sector, in particular the field of MNDS, the
end user is typically represented by engineers, being highly skilled in a specific field.
From a development perspective, the end user requires particular treatment regarding
the usability, meaning that technicalities must be hidden as good as possible. Also, au-
tomatisms have to be provided, initializing certain options to reasonable default values.
Overall, the effort of using the software has to be minimized as much as possible.

The advanced user is similar to the end user albeit offering additional skills and
flexibility to investigate (possibly new) software tools. Overall, the advanced user re-
quires access to technical details, either to improve the quality of the software output,
to reduce the computation time, or simply out of interest.

4Software engineering involves all steps of software production, including design, development, operation,
and maintenance [3].

4

CHAPTER 1. INTRODUCTION

This particular type of user is primarily found in academia, as the scientific freedom
associated with research positions allows to investigate available approaches, such as
represented by software tools. A typical example would be a researcher with a back-
ground in semiconductor device simulation as well as mesh generation. In this partic-
ular case, the advanced user potentially wants to investigate the mesh quality prior to
conducting the actual device simulation. On the contrary, the private sector rarely har-
bors such advanced users due to the fact that it is usually too expensive for a company
to assign highly skilled engineers to investigate details on techniques and approaches
required for generating results. Concerning software engineering, supporting an ad-
vanced user requires to expose technical details and customizable options.

The developer - as the name indicates - develops software used by either advanced
or end users. Contrary to advanced or end users a developer is only marginally active in
generating results of applications. However, he or she is highly interested in the means
to generate them. In academia a developer relates to a researcher who develops or
maintains software. Aside from the software responsibilities, a developer in academia
usually has to publish. On the contrary, in the private sector, developers are typically
represented by software engineers who have to focus entirely on the software tasks
and are usually not required to publish their work. Developers require low-level access
to the software, e.g., an application programming interface (API) and corresponding
documentation.

1.3 Frameworks
In essence, a framework can be abstractly described as a structure providing the ability
for adaption and expansion of components ultimately enabling to create a specialized
application. In the context of software engineering, a framework can provide reusable
and customizable software components to be utilized and specialized for specific ap-
plications [8]. Among the differences between a framework and a software library is
the fact that a framework offers the so-called inversion of control property. A user
customizes specific framework components and yields the actual execution of the final
application to the framework. Frameworks make sense for different types of users, such
as end users who could, for instance, interact (i.e. customize) with graphical user inter-
face (GUI) components which are part of a larger simulation platform. On the contrary,
developers could utilize compiler frameworks, allowing to generate specialized compiler
tools.

Due to the plethora of available simulation tools, framework approaches merit spe-
cial consideration when designing new future-proof and flexible simulators. For in-
stance, different simulation tools can be wrapped into components, thus becoming
available to the framework infrastructure via defined interfaces. These tools can, by
extension, also be utilized in a unified manner, not only significantly increasing usability,
but also introducing synergy effects for the wrapped simulation tools. For instance, a
GUI-based framework can provide its simulation components access to the visualiza-
tion backend. Also, frameworks - due to their modular nature - natively support hybrid
closed source and FLOSS projects. The framework itself can be made open source,
while some components, holding the potentially restricted code (represented by closed
source implementations), can be individually made public or private.

5

CHAPTER 1. INTRODUCTION

1.4 Research Goals

The goal of this work is to tackle the previously introduced challenges by developing
and applying software design concepts and techniques to implement reusable software
libraries and upon those develop frameworks to ultimately provide flexible simulation
tools for the field of MNDS. The developed implementations are freely available under
open source licenses, specifically aimed to strengthen the field of MNDS, currently of-
fering an under-developed FLOSS ecosystem. Although this work focuses on MNDS,
the developed approaches are applicable to other areas of the general field of compu-
tational science and engineering (CSE).

The conducted research work particularly focuses on the following aspects:

• Reusability refers to utilizing an implementation in different applications.

• Flexibility allows to change the setup of an application with minimal effort.

• Usability refers to the ease with which users interact with the software.

• Maintainability allows to uphold the code quality.

• Expandability denotes the ability to add functionality.

Several exemplary applications are depicted, validating the approaches for practical
use. For instance, classical semiconductor device simulations are conducted via a so-
called device simulation framework and an interactive simulation framework, whereas
finite element simulations are decoupled and executed by a so-called component exe-
cution framework. The given application examples underline the increase in reusability
and flexibility of the resulting simulation applications compared to the currently available
simulation tools.

1.5 Outline

In the following, an overview of the thesis is given:
Chapter 2 discusses related research work, categorized in frameworks, simulation

tools, as well as software libraries and tools.
Chapter 3 presents significant software engineering methods and tools, which are

applied in the presented approaches. A short overview of relevant software program-
ming paradigms is provided. The motivation for using the programming language C++ is
introduced, which is the primary language for the presented implementations. Also, the
concepts of component-based software engineering (CBSE), being an applied frame-
work engineering method, are discussed as well as increasing the general level of
reusability in software projects by applying library-centric software design (LCSD).

Chapter 4 discusses device simulation frameworks. In particular, the basic semicon-
ductor equations are sketched, providing the mathematical basis for conducting device
simulations. The requirements and challenges of a device simulation framework are
investigated, followed by the introduction of the ViennaMini project [9], tackling the
raised issues.

6

CHAPTER 1. INTRODUCTION

Chapter 5 investigates component execution frameworks. A solid overview of high
performance computing (HPC) platforms is given - especially of interest to frameworks
- followed by an analysis of the requirements and challenges of such component-based
approaches. A framework approach - based on the ViennaX project [10] - focusing on
the discussed issues is introduced.

Chapter 6 introduces an interactive simulation framework. The peculiar require-
ments and challenges are investigated, which is succeeded by the presentation of the
ViennaMOS project [11], facing the introduced challenges.

Chapter 7 evaluates the presented research work. The approaches and techniques
are summarized and an outlook on future work is provided. Finally, a conclusion is
given relative to the initially defined research goals.

7

Chapter 2

Related Work

This chapter provides an overview of relevant research work. Both, software aspects
and physical modeling aspects, are investigated, clearly depicting the need for flexible
simulation approaches. Frameworks in the general field of CSE are introduced followed
by an overview of simulation tools in the field of MNDS as well as a selection of relevant
software libraries and tools.

2.1 Frameworks

In the rather broad field of CSE a plethora of frameworks is available, focusing on dif-
ferent application areas. In this section, an overview of notable frameworks is given in
alphabetical order.

ANSYS [12] provides several different commercial engineering software products,
such as an finite element analysis (FEA)-based multiphysics package. Different appli-
cation areas are covered, for instance, automotive, aerospace, energy, and electronics.
A comprehensive selection of pre- and postprocessing functionality is provided.

Cactus [13][14] is a multi-purpose framework, which has its roots in the field of rel-
ativistic astronomy. The framework is available under the GNU lesser general public
license (LGPL) and focuses on data parallel approaches. The design follows a mod-
ular approach and supports different target architectures as well as collaborative code
development. The central part of the framework (called ”flesh”) connects the individual
application modules (called ”thorns”), typically containing the implementations of the
actual simulation. Communication between thorns is realized via the framework’s API.
Connections between thorns are defined in configuration files, which are processed
during compile-time.

The common component architecture (CCA) [15][16][17] is a standard and ap-
plies so-called component-based software engineering (Section 3.3) to encapsulate
units of functionality into components. Data communication between components is
implemented via so-called ports. An interface definition language is used to describe
the interfaces of components by simultaneously being independent of the underlying
programming language.

8

CHAPTER 2. RELATED WORK

The actual connection mechanism of the individual components via the interfaces re-
quires end user interaction. The CCA standard has been applied in several projects [16],
such as the high-performance computing framework CCAFFEINE [18] and the dis-
tributed computing frameworks XCAT [19], Legion [20], and SCIRun2 [21].

COMSOL Multiphysics [22] is a commercial FEA simulation software for engineer-
ing and physics applications, supporting multiphysics simulations. The tool provides
several essential pre- and postprocessing facilities such as visualization and mesh gen-
eration.

The COOLFluiD [23][24][25] project enables multiphysics simulations based on a
component framework and is primarily designed for data parallel applications in the
field of computational fluid dynamics. The source code is available under the LGPL.
The core is a flexible plugin system, coupled with a data communication layer based on
so-called data sockets. Each plugin can set up data sockets which are in turn used to
generate a dependence hierarchy driving the overall execution.

The directed acyclic graph unified environment (DAGuE) [26][27] enables sci-
entific computing on large-scale distributed, heterogeneous environments. The source
code is available under a license similar to the Berkeley source distribution (BSD) li-
cense. The basis of DAGuE is a directed acyclic graph (DAG)-based scheduling en-
gine, where the nodes are sequential computation tasks and the edges refer to data
movements between the tasks. Computational tasks are encapsulated into sequential
kernels. A DAGuE-specific language is used to describe the data flow between the ker-
nels.

The earth system modeling framework (ESMF) [28][29] provides the setup of flex-
ible, reusable, and large-scale simulations in climate, weather, and data assimilation
domains. The source code is publicly available under the University of Illinois-National
Center for Supercomputing Applications License. The software design is based on a
component approach, enabling the division of functionality into reusable components
offering a unified interface. The parallelization layer, such as a distributed memory
model, is abstracted by a virtual machine approach and focuses on data parallel and
basic task parallel approaches.

Uintah [30][31] is a large-scale multi-physics computation framework available un-
der the Massachusetts Institute of Technology (MIT) License. Uintah solves reacting
fluid-structure problems on structured meshes, supporting adaptive mesh refinement.
Uintah enables task and data parallel applications. The primary area of application is
computational mechanics and fluid dynamics. The framework is based on a DAG rep-
resentation of parallel computation and communication to express data dependencies
between multiple components. Each node in the graph corresponds to components
which in turn represent a set of tasks. The data dependencies between components
are modeled by edges in the DAG.

9

CHAPTER 2. RELATED WORK

The FLOSS frameworks provide a set of reusable components which can be com-
bined to form the actual application [32]. The frameworks primarily support large-scale
data parallelism by, for instance, providing distributed data structures based on the
message passing interface (MPI). The focus is clearly on parallelizing and decoupling
the computationally intensive part of scientific simulations. Although such an approach
provides a high level of reusability by simultaneously supporting large-scale parallel ap-
plications, usability is limited as these frameworks are typically utilized on supercomput-
ers, inherently not favoring GUIs. However, GUIs are an integral part of a high-usability
application. Therefore, additional tools required for pre- and postprocessing, such as
data visualization, are outsourced to external tools.

In contrast, commercial simulation software provides applications with a high level
of usability. However, in addition to being cost-intensive, commercial software in gen-
eral struggles to support alterations of the simulation’s internals, due to its proprietary
nature. Having access to simulation internals, such as the implementation of physical
models, is of utmost importance to physical modeling research, allowing for an eval-
uation of new models or techniques. Typically, commercial products try to tackle this
problem by providing an API to allow a controlled external access to internal mecha-
nisms; however, this attempt obviously does not provide as much flexibility as a FLOSS
approach. Also, commercial tools tend to focus on mainstream functionality, thus spe-
cialized customer requests are often ignored or deemed too expensive.

2.2 Micro- and Nanoelectronics Device Simulation Tools
The field of MNDS offers highly specialized publicly available simulation tools, of which
an overview is presented in the following in alphabetical order.

Archimedes [5][33] is a two-dimensional Monte Carlo Boltzmann transport based
simulation tool for submicron and nanoscale semiconductor devices. Various physical
effects and transport models can be investigated for electrons and heavy holes with re-
spect to a rich set of materials. Heterostructures as well as electrostatic and magnetic
fields by solving Poisson’s and Faraday’s equation are supported. The tool is released
under the general public license (GPL) and coded in the C programming language. Ad-
ditionally, an online, GUI-based version of Archimedes is provided via the nanoHUB
platform.

Genius [34] is available as a publicly accessible version under the GNU GPL. The
FLOSS version supports two-dimensional device simulation based on the drift-diffusion
(DD) model. Lattice heating is taken into account by, for instance, a temperature cor-
rected DD model. A rich set of functionality is provided, such as various mobility models,
an energy transport model, and several impact-ionization models.

Gold Standard Simulations [35] specializes in simulating statistical variability in
nano-CMOS devices and provides corresponding commercial simulations tools. More
specifically, the tools support the physical simulation of statistical variability, statistical
compact model extraction, and statistical circuit simulation.

10

CHAPTER 2. RELATED WORK

Minimos-NT [36][37] is the successor of the Minimos [38] simulator and is commer-
cially supported. Minimos-NT is a general-purpose semiconductor device simulator,
providing a general-purpose, multi-dimensional semiconductor device simulator. The
simulator supports stead-state, transient, and small-signal analysis of arbitrary devices.
Also, mixed-mode device and circuit simulations based on compact models are sup-
ported.

nanoHUB is a platform hosting scientific tools, primarily in the field of computational
nanotechnology [39][40]. At the time of writing this thesis from the total number of 325
tools 17 tools (corresponding to 5.2%) are tagged as open source1. Figure 2.1 gives an
overview of the accumulated code lines of each project. The Count Lines of Code [41]
tool has been used to quantify the code base implemented in languages such as C/C++,
Python, Matlab, and Fortran. Irrelevant data has been - to a large extent - ignored, like
comments and building instructions. Of the 17 open source tools 41% have between
100 and 1 000, 35% offer 1 000 to 10 000, and 24% provide 10 000 to 100 000 lines of
code. Therefore, the majority of the available free open source tools can be considered
to be small to medium scale-size projects, further underlining the lack of FLOSS-based
device simulation tools of considerable size. Overall, nanoHUB provides free registra-
tion for an online account, enabling the execution of tools directly from within a web
browser. The computational resources are provided by the nanoHUB facilities, thus no
compilation and/or installation procedure is required.

an
ge

l

cn
tb
an

ds

co
m
pl
am

co
nt
ac
tm

ap
s

ffe
tto

ol

hu
ck
el
iv

la
se
rd
yn

na
no

m
os

op
tic
sle

ns

pa
rti
cl
ev
e

pi
m
c

qd
ot
le
d

qw
al
k rtd

sc
hr
ed

sp
in
co
up
le
dd
ot
s

te
c

1

10

100

1000

10000

100000

Figure 2.1: The accumulated code lines of the 17 open source nanoHUB simulation
tools are depicted. Seven tools (41%) have 100 to 1 000 code lines, six tools (35%) have
1 000 to 10 000, and four tools (24%) offer 10 000 to 100 000 code lines, respectively.

1Discrepancies in nanoHUB’s tagging system do not allow for an accurate count as the available tag-based
filtering mechanisms yield slightly different results (±1-2 tools) for the open source tool tag.

11

CHAPTER 2. RELATED WORK

NanoTCAD ViDES [42] supports the simulation of nanoscale devices through the
self-consistent solution of the Poisson and the Schrödinger equations by means of
the Non-Equilibrium Green’s Function formalism. The tool allows for the simulation of
transport in graphene nanoribbons, carbon nanotubes, and two-dimensional (bilayer)
graphene field-effect transistors. The simulator is distributed as a Python module, utiliz-
ing high performance C and Fortran based subroutines. The package is released under
the BSD License.

Silvaco [43] provides a broad set of commercial simulation tools for TCAD, inter-
connect modeling, and analog/mixed-signal/radio frequency analysis. A broad set of
modeling and analysis tools are provided, allowing for a wide range of simulations and
evaluations.

Synopsis [44] provides a plethora of commercial simulation tools, covering a variety
of application categories, such as TCAD, verification, manufacturing, and system-level
design. Extensive pre- and postprocessing facilities are provided, such as structure and
mesh generation as well as visualization.

ViennaSHE [45][46] is a multi-dimensional, self-consistent semiconductor device
simulator based on the deterministic solution of the Boltzmann Transport Equation us-
ing Spherical Harmonics Expansions. ViennaSHE provides a standalone simulation
application as well as an API for utilizing the simulator by other implementations. The
tool is released under the MIT License and written in C++.

The presented open source simulation tools are highly specialized. However, they
share the requirement for certain pre- and postprocessing software components. For
instance, each tool requires visualization capabilities to enable investigations of the
simulation results. Another typical requirement is the generation of the simulation do-
main and the access to material parameters. A detailed analysis of the available open
source simulation tools leads to the conclusion that these tools treat these aspects in
a marginal manner. For instance, only a static set of material parameters is supported,
which is hard coded into the simulation code. This specific aspect introduces the need
for a flexible material mechanism, providing simulation tools access to various material
database backends. With respect to the commercially distributed simulation tools, the
advantages and disadvantages, as introduced in Section 2.1, apply here in a similar
manner.

12

CHAPTER 2. RELATED WORK

2.3 Software Libraries and Tools

This section provides an alphabetical overview of libraries and tools utilized for the
implementations introduced in this thesis. Using these packages was vital to the devel-
oped techniques and implementations, ultimately reducing the development time con-
siderably.

The Boost C++ Libraries [47] provide access to a vast set of functionality via indi-
vidual libraries. The libraries are based on a peer-review system, aiming to impose qual-
ity standards upon new library members. The Boost License supports non-commercial
and commercial use and cover a plethora of categories, such as data structures, al-
gorithms, and concurrent programming. Table 2.1 lists certain Boost libraries in closer
connection to this work.

Name Description
Graph [48] A generic graph library similar to the Standard Template Li-

brary (STL)
MPI [49] A convenience C++ layer for the C-based MPI API
Serialization [50] A library for decomposing an arbitrary set of C++ data struc-

tures into a sequence of bytes
Smart Ptr [51] A library providing automatic and safe pointer classes
uBLAS [52] A linear algebra library
Variant [53] A safe, generic, stack-based discriminated union container

Table 2.1: An alphabetical selection of Boost libraries utilized in this work.

Mesh generation tools divide a physical domain into so-called mesh elements [54],
such as triangles or cubes. This generation step is challenging, as usually several prop-
erties have to be met. For instance, a mesh must conform - as good as possible - to
the shape of the simulation object, to enable a proper representation and thus by ex-
tension allow for meaningful simulation results. Also, the elements must be suitable
shaped and sized to reduce discretization errors [55], and the number of mesh ele-
ments in total has to be kept small to minimize the subsequent simulation time. The
challenge of mesh generation holds especially true for the field of CSE, where meshes
are used to discretize equations in finite form via, for instance, finite volume meth-
ods. Several mesh generation tools are available, supporting different dimensions and
meshing algorithms [56], such as advancing front, octree, and incremental Delaunay.
Each meshing approach generates meshes with different properties, for instance, three-
dimensional simplex, i.e., line, triangle, and tetrahedron meshes which satisfy the con-
forming Delaunay property [54]. Table 2.2 gives an overview of FLOSS-based meshing
tools, the majority of which is being used by the ViennaMesh library [57].

ParaView [63] is a data analysis and visualization application supporting a variety
of platforms, such as Windows and Unix-like systems. The application is coded in C++
and is available under a BSD license. ParaView utilizes the VTK library for the visualiza-
tion backend and the Qt framework for the GUI frontend. Due to ParaView’s popularity
and modular GUI approach it acted as a reference for a developed interactive simula-
tion framework (Section 6.2).

13

CHAPTER 2. RELATED WORK

Name G
eo

m
et

ri
ca

ld
im

en
si

on

To
po

lo
gi

ca
ld

im
en

si
on

H
yp

er
cu

be

S
im

pl
ex

In
cr

em
en

ta
lD

el
au

na
y

A
dv

an
ci

ng
Fr

on
t

CGAL [58] 2,3 2,3 • •
Gmsh [59] 2,3 2,3 • • • •
Netgen [60] 2,3 2,3 • •
Tetgen [61] 3 3 • •
Triangle [62] 2 2 • •

Table 2.2: Alphabetical list of popular FLOSS-based mesh generation tools and their
properties. Simplex denotes triangular and tetrahedral mesh elements, which are usu-
ally implemented via an unstructured data structure. Hypercube relates to quardilateral
and hexahedral mesh elements, typically implemented via structured meshes.

The Qt Framework [64] is a cross-platform application and GUI framework us-
ing primarily C++. Qt extends the standard C++ language features by macros and a
code generator, the so-called meta-object compiler. Qt supports desktops as well as
mobile platforms. Furthermore, interfaces are available to non-gui features, such as
SQL databases, extendible markup language (XML), threading, and networking sup-
port. The Qt framework was used in this work for developing a modular GUI-based
simulation framework (Chapter 6).

The Vienna*2 Collection [65] is designed in the image of the Boost libraries, aimed
to provide researchers with a rich set of ready-to-use and easily accessible FLOSS-
based functionality. In essence, Vienna* is a set of libraries and applications. The
Vienna* project’s primary goal is to strengthen the open source movement in the field
of MNDS. Although a couple of software packages are considered domain-specific,
others are not and can thus be utilized in various application areas of CSE. For in-
stance, ViennaCL- a general purpose linear algebra library - is utilized by, for instance,
mechanical and electrical engineering applications. Table 2.3 and Table 2.4 depicts the
current set of applications and libraries, respectively. During the course of research
giving rise to this thesis, several of the Vienna* libraries and applications have been
supported, maintained, extended, utilized, and initiated.

2Vienna* is pronounced ViennaStar.

14

CHAPTER 2. RELATED WORK

Name Description
ViennaMini [9] A classical multi-dimensional device simulator
ViennaMOS [11] A GUI-based modular framework tailored to the requirements

of MNDS
ViennaProfiler [66] A centralized code profiling application
ViennaSHE [45] A deterministic Boltzmann solver based on spherical

harmonics expansions for semiconductor devices
ViennaWD [67] A stochastic device simulator in the classic and quantum

domain
ViennaX [10] A high-performance plugin execution framework for scientific

computing

Table 2.3: Alphabetical list of Vienna* applications.

Name Description
ViennaCL [68] A linear algebra library using CUDA, OpenCL, and OpenMP
ViennaData [69] A library for attaching application-specific data to arbitrary

objects
ViennaFEM [70] A finite element library with a symbolic math kernel
ViennaFVM [71] A finite volume library with a symbolic math kernel
ViennaGrid [72] A mesh data structure library
ViennaIPD [73] A control language library for scientific simulations
ViennaMaterials [74] A flexible material library
ViennaMath [75] A symbolic math library for compile time and run time

operations
ViennaMesh [57] A library for mesh generation, adaption, classification of multi-

segmented meshes and geometries

Table 2.4: Alphabetical list of Vienna* libraries.

The visualization toolkit (VTK) [76] library provides functionality in the field of
computer graphics, image processing, and visualization. VTK is a cross-platform library
and is based on a C++ class library with support for other languages, such as Python.
VTK provides a wide range of visualization algorithms, such as vector methods, as well
as modeling techniques, like Delaunay mesh generation. The library provides interac-
tion support with GUI frameworks, such as Qt. VTK was used in the combination with
Qt to provide flexible rendering facilities, both for charts as well as for 3D renderings
including scalar and vector field visualization (Chapter 6).

15

Chapter 3

Methods and Tools
Research software engineering requires utilizing specific methods and tools, among
those are programming languages and techniques, as well as design concepts and
third-party libraries. Therefore, the methods and tools proven vital for the presented re-
search are discussed in this chapter. Section 3.1 lists relevant programming paradigms.
Section 3.2 introduces some relevant features of C++, the primary programming lan-
guage used in this work. Section 3.3 presents the term CBSE whereas Section 3.4
discusses LCSD.

3.1 Programming Paradigms

Programming paradigms provide fundamental styles for implementing software. In the
following, a short overview of the individual programming paradigms utilized in this work
is given. Extensive comparisons are available in the literature [77][78].

• Imperative programming focuses on executing a sequence of instructions, op-
erating on a state. Imperative programming is the primary utilized programming
style in scientific implementations, due to its simplicity and intuitive approach. This
paradigm is supported by all major languages relevant to CSE, such as Fortran,
C, and C++.

• Object-oriented programming aims for modularity by wrapping functionality into
reusable classes, offering defined interfaces for external utilization [79]. Polymor-
phism is implemented via so-called virtual class hierarchies, allowing to specialize
implementations according to run-time information. The object-oriented approach
is the most widely taught paradigm at universities, especially with mainstream lan-
guages like Java and C++. The paradigm has also some basic support by C and
Fortran, although the features are not as extensive as with typical object-oriented
languages, such as C++.

• Functional programming uses mathematical functions for formulating algorithms
and programs by simultaneously avoiding states of objects and mutable data [80].
Functional programming supports so-called lambda expressions, based on the
lambda calculus [81]. Pure functional programming languages are available, such
as Haskell [82]. Since the new C++ standard 2011, C++ natively supports lambda
functions, thus enabling functional style programming. However, previous C++
generations required external libraries to enable functional-style programming,
such as Boost Lambda [83] and Boost Phoenix [84].

16

CHAPTER 3. METHODS AND TOOLS

• Generic programming fosters code reuse by lifting algorithms or data structures
from concrete implementations to their most general form [85][86][87]. For in-
stance, in C++ generic programming approaches polymorphism from a different
angle than the object-oriented paradigm. Where the latter relies on run-time de-
cisions - introducing additional execution overhead - the first uses compile-time
dispatches, omitting run-time dispatch costs. C++ supports generic programming,
due to its type system and template mechanism. Also, C++’s standard template
library makes extensive use of this paradigm, as the algorithms, such as copy,
are separated from the datastructures, like vector, allowing to use an algorithm
with different datastructures and vice versa.

• Meta programming enables programs to generate or manipulate themselves or
other programs [88][89]. Meta programming techniques are considered to be
rather exotic, and are typically not taught in engineering curricula. Template meta
programming, as supported by C++, is a type of meta-programming, where the
template system is used to generate source code at compile-time. Consequently,
compilation times are increased significantly, impeding the development process
due to the potentially increased idle time. In C++, template meta programming
is used to implement the generic programming paradigm. Although meta pro-
gramming in general promises significant reduction in run-time costs, it requires
advanced programming skills to develop, debug, and maintain implementations.
Closely connected to this issue is the term leaky abstraction, referring to the fact
that intentionally hidden implementation details are exposed to the developers in
case of errors, further complicating debugging. This exposure is triggered by the
compile-time nature of template meta programming.

3.2 The C++ Programming Language

The implementations presented in this work are based on the C++ programming lan-
guage due to several reasons.

C++ allows for high-level implementations by simultaneously supporting high per-
formance. High-level refers to the fact that the language supports high abstraction
levels, i.e., implementation specifics are hidden from the developer to ease the bur-
den of development. Concerning high performance, C++ - as a multi-paradigm lan-
guage [24][77][78] - supports generic and meta programming, in turn enabling high
performance implementations. Examples of successful high performance applications
based on C++ are the Matrix Template Library (MTL) [90], the finite element library
deal.II [91][92], and the Blitz++ library [93].

Furthermore, C++ is mature [94] and is ranked to be one of the most popular pro-
gramming languages [95]. The popularity seems to decline due to an substantial in-
crease in developers for mobile devices based on Java and Objective-C. However, ac-
cording to the long term trends, the popularity of C++ has only slightly decreased over
the last six years. Additionally, a new C++ standard has been released recently [96],
adding a vast amount of new functionality. Due to the popularity of C++ it is ensured
that there will be continuing support from compiler and library developers and standard-
ization committees to further advance C++.

17

CHAPTER 3. METHODS AND TOOLS

Additionally, several high quality compilers are available, for instance, the open
source compilers GNU GCC [97], Clang [98], and the proprietary Intel compiler [99].
As each compiler usually implements the standard differently and also provides varying
optimization and debugging approaches, having access to different compilers enables
to further stabilize and tune implementations by, for instance, using different debugging
mechanisms.

A very important property of C++ is the ability to interface with other programming
languages. This is especially important in the field of HPC, where C and Fortran are
the predominant programming languages [100]. Additionally, Python becomes more
and more popular due to it’s flexibility and ecosystem of feature-rich extensions. Where
C and Fortran code can be linked with C++ in a straightforward manner, for bridg-
ing Python with C++ in both directions the convenience library Boost Python can be
used [101].

3.3 Component-Based Software Engineering

CBSE [24][32][102] focuses on reusability by separating functionality into reusable com-
ponents. Communication between the components is achieved via defined interfaces,
thus a component’s sole link to the framework is restricted to its interface. CBSE can be
seen as an advancement of an object-oriented class approach, as components allow
for a higher degree of abstraction.

Components are considered to be the building blocks of actual applications, there-
fore they need to be connected and executed appropriately to become an application.
This is the task of the previously introduced frameworks (Section 1.3). The key advan-
tage of such a component approach lies in the ability to reuse components for different
applications, thus drastically reducing development time. Figure 3.1 schematically de-
picts CBSE.

C1
C2

C3
C4

Framework

C1 C2 C3

Framework

Application

Figure 3.1: Left: A set of components (C1-C4) is at the framework’s disposal. Right:
An application is defined by connecting various components.

18

CHAPTER 3. METHODS AND TOOLS

3.4 Library-Centric Software Design

Another approach to increase re-usability is to apply a LCSD which allows to increase
the efficiency of application development in the sense that code reuse decreases de-
velopment time [77]. LCSD can be seen as the natural companion of the generic pro-
gramming paradigm, in the sense that functionality is not embedded into a structure but
extracted and generalized into a standalone library offering its functionality via an API
so it can be accessed by applications or other libraries.

LCSD - although introducing additional short-term development overhead - amor-
tizes in the long run, when the number of utilizing applications or libraries increases.
This holds especially true in an academic setting, where typically various simulation
codes are available requiring a plethora of functionality. A popular example of the LCSD
approach with respect to C++ is the Boost library collection [47].

Overall, LCSD fosters slim applications, meaning that the application itself merely
interfaces with various libraries, thus allowing the opportunity to keep the application’s
code base to a minimum. This fact not only improves development time of the applica-
tion, but also supports maintenance, as a small code base results in reduced mainte-
nance time in a straightforward manner.

Figure 3.2 depicts the introduced design concepts with respect to initial develop-
ment effort as well as degree of reusability and maintainability. The LCSD approach
offers the highest initial development effort but also the highest degree of reusability
and maintainability.

Increasing Reusability and Maintainability

Monolithic Design Modular Design Library-Centric Design

Decreasing Initial Development E ort

Functionality 1

Functionality 2

Functionality 3Ap
pl

ic
at

io
nFunctionality 1

Functionality 2

Functionality 3Ap
pl

ic
at

io
n

Ap
pl

ic
at

io
n

2
Ap

pl
ic

at
io

n
1

Li
br

ar
y

2
Li

br
ar

y
1Li

br
ar

y

Functionality 2

Functionality 3

Functionality 1

Figure 3.2: Comparison between monolithic, modular, and LCSD approaches. Left:
With monolithic design, functionality is tailored to a specific application, and is thus
challenging to reuse or maintain in other projects. Middle: Modular design encapsu-
lates functionality into more accessible modules. Right: LCSD focuses on extracting
functionality into libraries. This not only reduces the code base of applications but also
enables other libraries to make use of synergy effects. An increasing level of reusabil-
ity and maintainability typically claims an increased initial development effort, due to
additional development overhead.

19

Chapter 4

Device Simulation Framework

A device simulator consists of several software components, required for computing the
electrical characteristics of a given device, consisting of a mesh and additional physical
information like a doping profile. For instance, a material database is required providing
the material parameters used for the mathematical models. The interplay between the
different software components usually gives rise to tightly interwoven, i.e., monolithic,
implementations, resulting in inflexible simulation platforms. Changes to the implemen-
tation, such as switching linear solver backends, are thus usually cumbersome and
require significant implementation efforts. This fact puts pressure on the software de-
sign to provide a flexible long-term solution. Interfacing the simulator with LCSD-based
libraries merits special consideration, due to the significantly increased level of reusabil-
ity provided by the already available functionality (Figure 4.1).

In this chapter, a typical set of basic equations required for device simulation is
briefly discussed (Section 4.1). The primary challenges of implementing a device
simulator are depicted as well as the input and output dependencies are identified
(Section 4.2). Based on these evaluations, an approach for a device simulation plat-
form tackling these challenges is discussed and complemented by several examples
(Section 4.3).

LCSD-Based Libraries

Device Simulation Framework

Figure 4.1: A device simulation framework significantly benefits from interfacing with
LCSD-based libraries, due to access to already available functionality.

20

CHAPTER 4. DEVICE SIMULATION FRAMEWORK

4.1 The Basic Semiconductor Equations

The basic semiconductor equations [1] consist of the Poisson equation (Equation 4.1),

∇ · (ε · ∇ϕ) = q(n− p−ND +NA) (4.1)

the continuity equations for electrons (Equation 4.2) and holes (Equation 4.3),

∇ · Jn − q
∂n

∂t
= qR (4.2)

∇ · Jp + q
∂p

∂t
= −qR (4.3)

as well as the current relations for electrons (Equation 4.4) and holes (Equation 4.5)

Jn = −qµn(n∇ϕ− VT∇n) (4.4)

Jp = −qµp(p∇ϕ+ VT∇p) (4.5)

based on the DD model [103].
ε denotes the permittivity, q the elementary charge, ND the donor doping con-

centration, and NA the acceptor doping concentration. With respect to the continuity
equations and the current relations, Jn refers to the electron current density, Jp the
hole current density, R the recombination rate, and VT the thermal voltage.

The DD model considers two charge transport mechanisms, those being charge car-
rier drift and diffusion, respectively. In general, charge carrier drift due to the presence
of an electric field, implemented by the first term of the DD model, containing the gra-
dient of the potential. On the contrary, diffusion is a fundamental process, which aims
to establish a thermodynamic equilibrium in an initially imbalanced physical system. In
the case of semiconductor physics, diffusion is achieved by carrier migration from areas
with high concentration to areas where the concentration of particles is lower. There-
fore, the DD model includes the second term, incorporating the gradient of the charge
carrier concentration.

Substituting the current densities in the continuity equations (Equations 4.2-4.3)
for the current relations (Equations 4.4-4.5) yields a system of three partial differen-
tial equations (PDEs), coupled via the potential ϕ, the electron concentration n, and
the hole concentration p. These PDEs are typically discretized with the finite volume
method to conserve the current [1], stabilized by the Scharfetter-Gummel discretiza-
tion [104], and solved via nonlinear iterative solvers, such as the Newton scheme or the
Gummel method [1]. The solved potential, electron concentration, and hole concen-
tration distributions are used to compute, for instance, the current densities, essential
to evaluating the device performance via the current-voltage characteristics, where the
evaluated current at terminal contacts is related to the individually applied terminal volt-
ages.

Although the basic semiconductor equations were successfully applied in the last
decades, with the continuing shrinking of the device dimensions the typically applied
DD model struggles to provide reasonable predictions [46]. Therefore, additional mod-
els have been developed [105], underlining the need for a modern device simulation
software to support an exchangeable and expandable modeling backend.

21

CHAPTER 4. DEVICE SIMULATION FRAMEWORK

As the focus of this work is on investigating approaches for a flexible device simu-
lation framework, the actual transport model required for conducting device simulations
is of marginal importance. Therefore, the simple yet representative DD transport model
is sufficient for the subsequent investigations.

PDEs
Mesh

Data

Symbolic Math

Mesh Generation

Material Database

Discretization Equati
on Sys

tem

Solver Device CharacteristicsSolutio
n

Figure 4.2: The essential components of a device simulator are shown. The discretiza-
tion scheme assembles an equation system according to the defined PDEs, the input
mesh, and the required material data. The equation system is solved via a solver com-
ponent, computing the solution from which the device characteristics is derived.

4.2 Requirements and Challenges

The essential building blocks of a device simulator consist of several key components,
as depicted in Figure 4.2. The discretization scheme, such as the finite volume method
(FVM), assembles an equation system according to the defined PDEs, the input mesh,
and the required material data. The equation system is solved via a solver component,
computing the solution from which the device characteristics is derived. Not only is
the implementation for each individual component a challenge, also indicated by the
fact that most of them offer their own field of research, but also the interplay of the
components. Typically, the components are not implemented orthogonally, which tends
to result in monolithic implementations, not favoring exchangeability or expandability.
The main challenge of a flexible device simulator is thus to focus on a high degree of
orthogonality between these components.

In the following, we discuss the individual requirements and challenges for each of
the introduced components of a device simulator.

4.2.1 Mesh Generation

Mesh generation divides a physical domain into so-called mesh elements. This partic-
ular task is complemented by mesh adaptation, enabling to change an already existing
mesh according to specific requirements. For instance, geometrical predicates, such as
the element shape, can be used to guide a mesh adaptation step, to ultimately improve
the worst element in a mesh [106]. Aside from geometrical predicates, meshes can be
adapted according to distribution-based tagging mechanisms. For instance, mesh re-
gions carrying high gradients in quantity distributions, like doping, are higher resolved1,
to minimize discretization errors [55].

As already indicated, device simulation tools usually receive the simulation domain
in form of a mesh from process simulation tools, accompanied by doping profiles. The
meshes provided by process simulation tools are usually not suited for device sim-
ulation, due to different requirements imposed by a different set of physical model
equations.

1In this context, higher resolved relates to an increased local density of mesh elements.

22

CHAPTER 4. DEVICE SIMULATION FRAMEWORK

Among the possible manifestations are highly distorted elements, and insufficiently re-
solved meshes, especially in regions where high gradients in the device simulation
solutions are expected, such as doping transitions. Such unsuited meshes may result
in slow convergence or in the worst case in no convergence at all of the solution method
used in the device simulator. This circumstance requires the availability of a meshing
facility, allowing either to adapt the mesh or to generate the mesh from scratch accord-
ing to extracted geometry information. However, in this particular case, the initial doping
profiles provided by the process simulator must be interpolated to the new mesh, likely
offering entirely new mesh elements. The interpolation process ensures that the ini-
tial doping distribution is mapped to the new mesh elements, required for the mesh
element-wise assembly of the basic semiconductor equations, like Poisson’s equation
(Equation 4.1).

The use of process simulation tools yielding a mesh including doping informations
may be omitted, for instance, for testing purposes. In this specific case, a device sim-
ulation tool has to work with a bare input mesh generated by mesh generation tools,
such as Netgen [60]. In this context, a bare mesh indicates a mesh without any device-
related information, meaning that although the mesh provides segments representing
the individual parts of a device such as oxides, the mesh object has no knowledge
about the physical relevance. For instance, no material information is associated with
the segments or whether the individual segments represent a contact, an oxide, or a
semiconductor region. Similar to the previous case, where a mesh is imported from
a process simulator, the externally generated meshes usually lack domain knowledge
thus potentially represents an unsuitable mesh, as already described. The lack of a
process simulator requires that a doping profile has to be assigned to the mesh via, for
instance, analytic functions, ultimately enabling to perform the actual device simulation.
Overall, it is therefore essential to interface a device simulator with meshing facilities,
enabling - possibly automatized - mesh adaptation steps to adapt an externally provided
mesh according to domain-specific information.

Furthermore, so-called template devices are of interest, as they provide convenient,
simulation-ready devices to end users. This template mechanism allows to entirely
omit an external process simulation and mesh generation step, and thus augments the
device simulator with a standalone simulation capability. Such a feature is usually of
interest for showcases, tests, and tutorial-related purposes. These templates provide a
specific device type, such as a two-dimensional metal-oxide-semiconductor field-effect
transistor (MOSFET), but expose certain customizable device geometry parameters,
such as the channel width. To support a reasonable mesh resolution, the template
mechanism has to be coupled with a meshing backend, allowing to generate a high-
quality mesh upon updated end user-provided geometry parameters. Similar to the
previous case describing the application in the context of an external mesh generation
tool, a doping profile has to be distributed on the mesh.

The three discussed application cases of mesh generation and adaption are char-
acterized in Figure 4.3. The challenge is to interface the device simulator with mesh
generation facilities, without relying on a single specific meshing backend. For instance,
interfacing directly with Netgen confines the simulator to utilize this specific tool for all
mesh generation and adaptation tasks.

23

CHAPTER 4. DEVICE SIMULATION FRAMEWORK

Process Simulation
Doping Pro

file

Mes
h

Device Simulation

Mesh Generation/Adaptation
Doping Interpolation

Mesh Generator Device Simulation

Mesh Generation/Adaptation
Doping Generation

Mes
h

Mesh Generation/Adaptation
Doping Generation

Dev
ice

Device SimulationDevice Template

Figure 4.3: Mesh generation and adaptation requirements for device simulation tools
are shown. Left: An external process simulator provides a mesh and doping profiles.
The device simulator changes the mesh according to domain-specific information and
interpolates the doping accordingly. Middle: A mesh generator provides a mesh to the
device simulator. Aside from adapting the mesh according to domain-specific knowl-
edge, a doping profile has to be assigned. Right: A device template mechanism allows
to generate simulation-ready devices automatically. Based on customized geometry
data a mesh and a doping profile is generated.

However, as already indicated different meshing tools - aside from supporting differ-
ent mesh types such as three-dimensional tetrahedral meshes - implement different
algorithms and strategies to generate high quality meshes. Having access to various
meshing backends is especially important to the field of TCAD, where input geome-
tries, consisting of thin layers and complex surfaces [107], require high quality mesh
generation which is still a matter of ongoing research.

Also, mesh generation might be prone to scaling issues, induced by, for instance,
meshes defined in the nanometer regime. Such cases involve very small numbers
which - if remained unscaled relative to the device dimensions - might break numerical
tolerance limits in the meshing backend, potentially prohibiting the generation mecha-
nism to converge. Therefore, it is advantageous to perform the mesh generation step
based on a normalized input, i.e., the mesh is scaled relative to its device dimensions.
When the mesh has been generated, it is scaled to the intended regime. Such scaling
mechanisms are of general interest to all meshing backends, thus these mechanisms
have to be provided in an orthogonal manner, further favoring a unified meshing layer.

Overall, it is of utmost importance to interface the device simulator with a flexible
meshing layer, in turn enabling access to the actual meshing backends (Figure 4.4).
This way, the meshing tools utilized by the simulator can be exchanged and expanded
without additional development effort. The selection of the actual meshing backends
can be done either manually, driven by the individual properties of the meshing tools
relative to the problem at hand, or automatically, by, for example, heuristical methods.

Simulator

Meshing Layer

Netgen Tetgen Triangle CGAL

Simulator

Netgen

Figure 4.4: Interfacing a simulator with a single meshing backend limits flexibility with
respect to mesh generation tasks (left). Instead, when a meshing layer is introduced,
access to an expandable set of meshing backends is provided to the simulator via a
unified interface (right).

24

CHAPTER 4. DEVICE SIMULATION FRAMEWORK

Materials

SemiconductorsFluids

SiliconH2O

Relative PermittivityRefractive Index

Figure 4.5: Exemplary material Properties schematically mapped on a Tree. Materials
do not necessarily share the same properties.

4.2.2 Material Database

Simulation tools usually require a large set of material parameters to carry out scientific
simulations, due to the use of equations which include material parameters to model
the physical environment [108][109][110]. Among such equations, partial differential
equations are especially widespread in the description of complex phenomena and are
therefore of special interest for CSE in general. Considering the vast number of phe-
nomena and the related sets of equations for which simulation environments have been
and are currently being developed, it becomes apparent that many different material pa-
rameters have to be made available in a consistent and reliable manner. The challenge
lies not only in the efficient storage of the material data but also in the convenient and
fast data access. For instance, considering the case of carrier mobility, in the simplest
case the mobility value for a given material is a constant. However, in more complicated
cases, i.e., scattering models, the carrier mobility depends on a set of parameters and
the solution variables. The storage and access methods need to support such setups.

Overall, accessing parameters is a fundamental task for CSE applications. In C++
parameters can be provided either during compile-time, by hard-coding them into the
implementation, or during run-time, by, for example, feeding the parameters to the appli-
cation via an input file. Where the compile-time approach is considered to be quick with
respect to implementation time, the approach lacks reusability and flexibility. The pa-
rameters cannot be easily reused by different applications and changes require recom-
pilation. On the contrary, providing the parameters during run-time allows for changing
the parameters without recompilation.

Another challenge is to incorporate unit-aware material parameters which are es-
pecially important for robust numerical simulations [111]. Not only need the units be
linked to each material parameter in the data set, but also automatic unit checks and -
if possible - unit conversions have to take place. Such a unit system must support the
dynamic nature of the material parameter database, induced by the fact that material
parameters are loaded during run-time. In other words, the unit information is usually
available as a string, thus the unit system has to be able to process string-based unit
expressions.

Tree-based structures merit special consideration for storing material data. The
underlying data associated with materials is inherently hierarchical, and can thus be
mapped to a tree naturally (Figure 4.5). Also, the variation due to the fact that not all
parameters are available or useful for all materials can also easily be accommodated
by a tree-based structure.

25

CHAPTER 4. DEVICE SIMULATION FRAMEWORK

Simulator

pugixml

Simulator

Material Database Layer

pugixml ViennaIPD

Figure 4.6: Interfacing a simulator with a single material database backend limits flex-
ibility with respect to utilized material languages and access methods (left). Instead,
when a material database layer is introduced, access to an expandable set of material
database backends is provided to the simulator via a unified interface (right).

Tree-based data structures natively support path-wise data access, due to the sup-
ported intuitive descent along the structure of the tree holding the data. Languages
which support a tree-based data structure and path-based data access are, for in-
stance, XML via the XML path language (XPath) query language - as provided by
pugixml [112] - or ViennaIPD [37][73]. XML has a distinct advantage, as the lan-
guage is widespread, thus parameter files can immediately use synergy effects from
the large available XML ecosystem, such as GUIs or other well-known XML libraries,
like libxml2 [113]. On the contrary, the ViennaIPD language - especially designed for
the field of semiconductor device simulation - is more convenient to read due to the
absence of tags bounding scoped regions, as is being used by XML. Thus follows the
challenge of implementing a flexible device simulator - similar to the previously dis-
cussed mesh generation and adaptation case - to facilitate the exchange and addition
of material databases. A unified interface is required, ensuring that material database
backend changes do not affect the simulation frontend (Figure 4.6).

4.2.3 Symbolic Math

Device simulation tools must have implemented the mathematical models, represented
by equations. For instance, the sketched basic semiconductor equations (Section 4.1)
are usually used in combination with the finite volume discretization scheme to assem-
ble a system of equations. Typically, the assembly process is interwoven with the formu-
lation of the PDE, confining a formulated PDE to be solved solely with a single specific
discretization. Or in other words, the mathematical structure of a PDE is typically sacri-
ficed when transferred to code, because only discretized versions are implemented, as
is for example the case for the deal.II library [92].
The FEniCS project [114] provides a highly expressive approach to implement and solve
PDEs, however, it relies on code generation and separate library routines, introducing
other drawbacks such as inferior support for legacy code [115]. This particular aspect
is especially problematic for the field of semiconductor device simulation as a plethora
of such implementations is available.

Other highly expressive implementations for such an approach have been devel-
oped [77], however, a decoupling between formulating PDEs and the applied discretiza-
tion is typically not applied. Usually no equation objects are provided which are decou-
pled from a discretization scheme. Hence, advanced users are required to discretize
the equation by hand, as in-depth knowledge of the discretization scheme is required.

26

CHAPTER 4. DEVICE SIMULATION FRAMEWORK

This offers utmost flexibility, but on the other side the missing convenience layer
results in decreased usability, effectively excluding end users from utilizing such an
approach. Therefore, prominent FEA tools like COMSOL Multiphysics [22] provide an
automatic discretization approach, hiding the technical details. This enables to reach
end users who can therefore focus on the physics, as primarily the PDEs modeling the
physical problem are required by the simulation tool.

Also, the basic physical models represented by the utilized PDEs are usually aug-
mented with further models, by, for instance, introducing additional terms into the equa-
tion or by adding additional equations such as the heat-flow equation. This augmen-
tation step is essential for device modeling, as it allows researchers to investigate new
mathematical approaches for simulating physical phenomena. For instance, such an
approach is required for introducing recombination models, such as the Shockley-Read-
Hall model [116][117], into the right-hand side of the continuity equations (Equations 4.2-
4.3).

Overall, a particular challenge in this context is to retain the mathematical structure
of a PDE. The simulation tool should be capable of automatically discretizing an equa-
tion object, e.g., a PDE, with an appropriate discretization schema. Such an approach
requires a symbolic math kernel, supporting the setup and manipulation of mathemat-
ical expressions. Furthermore, these expressions must support run-time changes to
enable, for example, the introduction of additional terms to extend the modeling via
GUIs or scripting interfaces like Python.

4.2.4 Discretization Schemes

Handling partial differential equations in the computer domain requires means to imple-
ment algebraic approximations of these equations while preserving as much information
as possible of the original problem [77]. Such algebraic approximations are typically
obtained by numerical discretization schemes. For the field of device simulation, the
finite difference method, the FVM, and the finite element method (FEM) are typically
employed [1].

Consequently, the simulator design has to support different treatments of a par-
ticular PDE with different discretization schemes, resulting in different assembly ap-
proaches of the equations system (Figure 4.7). The challenge of supporting different
discretization schemes is closely coupled to the raised challenges depicted with the
symbolic math component (Section 4.2.3). The key aspect is the availability of an equa-
tion object which allows manipulations and evaluations.

4.2.5 Solver

The discretization of a PDE results typically in an equation system Ax = b. Solving
a large system of equations is computational expensive and consequently direct meth-
ods, like the Gaussian elimination procedure, cannot be applied in practice due to in-
admissible execution times. Therefore, iterative solving procedures, like the conjugate-
gradient [118] and the generalized minimal residual method [119] methods, are usually
applied.

27

CHAPTER 4. DEVICE SIMULATION FRAMEWORK

PDE
PDE
FDM

PDE
FVM

PDE
FEM

Simulator
Simulator

FEMFVMFDM

Figure 4.7: Left: The usual discretization approach in simulation tools is based on
implementing each PDE for each discretization scheme. Right: If the PDE can be
decoupled from the discretization scheme, the same equation object can be processed
by different discretizations, thus increasing reusability.

The convergence behavior of these approaches can be further improved by precon-
ditioners [120], such as the Jacobi method and the family of incomplete lower upper
factorization methods. It is obvious, that the nature of the assembled PDE, whether it
is linear or nonlinear, determines the solution procedure of the equation system. Non-
linear systems are commonly solved by Newton-type methods.

Several libraries are available which provide relevant tools for solving large systems
of equations [68][121][122]. Consequently, the different solver approaches and the dif-
ferent libraries introduce a plethora of prerequisites by the respective API. In order to
retain utmost flexibility for a device simulator, the design has to deal with these inconsis-
tent solver interfaces by decoupling the solver backends from the actual implementation
(Figure 4.8).

Simulator

Solution Layer

ViennaCL Trilinos PETSc

Simulator

ViennaCL

Figure 4.8: Typically a single solver library is utilized in device simulation tools (left).
By introducing an additional layer, a unified interface to different solver libraries can be
achieved, decoupling the simulator from a single specific solver backend (right). For
instance, linear solvers provided by ViennaCL [68], PETSC [122], and Trilinos [121]
can be utilized.

4.3 The ViennaMini Project

ViennaMini is a FLOSS-based device simulation framework [9], specifically tackling
the previously introduced requirements and challenges for a device simulation frame-
work (Section 4.2). The implementation makes extensive use of the Vienna* collection
(Section 2.3), thus uses synergy effects introduced by LCSD (Section 3.4). Therefore,
the actual device simulation tool, named ViennaMini, merely interfaces with these li-
braries and can thus focus on higher-level issues, such as orchestrating the simulations.

28

CHAPTER 4. DEVICE SIMULATION FRAMEWORK

This fact represents the major motivation for applying LCSD in the first place, and thus
ViennaMini can be seen as a beneficiary of such an approach.

Figure 4.9 depicts the library dependencies of ViennaMini. Note that the previ-
ously identified key components of a device simulator (Figure 4.2) map directly to the
utilized Vienna* libraries. The mesh-related functionality is provided by ViennaGrid
and ViennaMesh, respectively. ViennaGrid implements the mesh data structure and
related traversal methods. ViennaMesh enables to generate and to adapt meshes via
several meshing kernels. The material data is accessed via ViennaMaterials, provid-
ing flexible access to material parameters via different database backends. The sym-
bolic math functionality is provided by ViennaMath, allowing to setup and manipulate
mathematical expressions of the PDEs. The finite volume discretization scheme is im-
plemented via ViennaFVM, performing the discretization of the PDEs. Also ViennaFVM
assembles the system of equations Ax = b, and solves it via nonlinear solvers, in turn
powered by exchangeable linear solver backends.

Section 4.3.1 gives an overview of the general simulator design. Section 4.3.2 dis-
cusses an approach to handle material parameters. Section 4.3.3 introduces a device
object, holding the mesh data structure and additional meta information. Section 4.3.4
investigates the configuration object used to tune the simulation. Section 4.3.5 shows
the ability to perform a series of simulations according to a contact parameter sweep, re-
quired for computing, for instance, the current-voltage characteristics. Section 4.3.6 dis-
cusses an approach for defining a flexible set of simulation setups. Section 4.3.7 deals
with mesh-related tasks. Section 4.3.8 introduces the device template mechanism.
Section 4.3.10 depicts several examples, underlining the capabilities of ViennaMini.

ViennaMini

ViennaMaterialsViennaCLViennaGridBoost ViennaFVMViennaMesh ViennaMath

TetgenTriangle Netgen

Figure 4.9: The dependencies of the device simulator ViennaMini are shown. The ma-
jority of functionality, such as finite volume-based discretization and assembly routines,
is provided by the Vienna* collection and the Boost libraries. ViennaMesh additionally
depends on external meshing tools, such as Triangle, Tetgen, and Netgen.

4.3.1 Design

Figure 4.10 shows the individual components of ViennaMini. The core of the sim-
ulator is its expandable problem facility, providing specific simulation setups, such as
the basic semiconductor equations (Section 4.1) and related additional models. These
problems use the ViennaMath library to setup the PDEs, and forward it, along with
other information such as solver parameters, to the ViennaFVM library, taking care of
the assembly and solution process.

29

CHAPTER 4. DEVICE SIMULATION FRAMEWORK

Material Database

pugixml

ViennaCL

Problems

ViennaFVM

Drift-DiffusionLaplace
PDE PDE PDE PDE

Discretization

Solver

Simulator

M
es

hi
ng

 L
ay

er

N
et

ge
n

Te
tg

en
Tr

ia
ng

le
C

G
A

L

D
ev

ic
e

Te
m

pl
at

es

C
ap

ac
ito

r
PN

 D
io

de

Config

Dev
ice

Stepper

Figure 4.10: The currently available components of ViennaMini. The central simulator
orchestrates the individual components, forming the actual simulation application. Blue
components indicate exchange layers, whereas grey components relate to the actual
kernels, such as pugixml. Note that additional kernels can be added, for instance,
additional discretizations such as the FEM provided by ViennaFEM.

The device class stores a ViennaGrid mesh object in its state and allows to store
and access additional meta information, such as the segment roles. A segment role as-
sociates device-specific part to a segment, like contact, oxide, or semiconductor. Also,
an expandable device template class hierarchy enables to generate devices, which can
be directly used for simulations. Among the currently implemented device templates
are a two-dimensional pn-junction diode and a three-dimensional capacitor. The set of
templates can be further extended by implementing additional devices, adhering to the
device template interface imposed by the corresponding virtual class hierarchy. The
following sections discuss the individual parts of ViennaMini in detail.

4.3.2 Material Database

The material database is governed by ViennaMaterials, enabling access to different
tree-based database backends. In the following we focus primarily on an XML approach
provided by the pugixml library.

30

CHAPTER 4. DEVICE SIMULATION FRAMEWORK

The following snippet depicts an exemplary XML-based material database file, loaded
at run-time.

1 <Materials >

2 <Material >

3 <Name>Silicon </Name>

4 <Category >Semiconductor </Category >

5 <Parameter >

6 <Name>Bandgap </Name>

7 <Value >1.107 </Value >

8 <Unit>eV</Unit>

9 </Parameter >

10 </Material >

11 </Materials >

The depicted XML setup is both highly flexible and readable, however, due to the
tag-based nature it is not considered convenient for manual editing especially consider-
ing typical sizes of several hundreds of materials. This very fact underlines the impor-
tance of flexible database backends. In any case, additional categories and parameters
can be easily added. Furthermore, the depicted approach can be extended to support
different representations for values, for instance, additionally to the floating-point num-
ber a rational number can be stored. Storing different representations may be more
suitable under certain circumstances, such as high-precision applications. Also, units
are stored, enabling the interfacing application to extract the unit string and use it to form
unit-aware physical quantities, providing automatic conversions using, for instance, the
UDUNITS package [123]. Although not currently supported, tensor values can be used,
by introducing a corresponding tensor XML tag, holding the tensor values. The material
database can - upon access - use this particular tag to identify tensor valued data, and
use appropriate import routines for reading the tensor values into a tensor object.

The access to data is implemented by using the path-based XPath query language.
The values of the selected sub-trees can then be investigated as needed. Therefore, the
use of a query language greatly enhances the flexibility of data access. For instance,
the following query returns all semiconductor materials present in the database:

/Materials/Material[Category=’Semiconductor’]

Considering the previously depicted minimal material database, the following sub-
tree is returned.

1 <Material >

2 <Name>Silicon </Name>

3 <Category >Semiconductor </Category >

4 <Parameter >

5 <Name>Bandgap </Name>

6 <Value>1.107</Value >

7 <Unit>eV</Unit> </Parameter > </Material >

The whole node is again returned in XML format. This enables further processing of
the returned data using the same mechanisms, using relative query paths, e.g., using
the path postfix ".//" instead of "/". This approach can be used to quickly partition
and browse large databases.

31

CHAPTER 4. DEVICE SIMULATION FRAMEWORK

However, in the case of a material database for simulations, the most common task
is to directly access the numerical data values. An XPath query can be evaluated
either to a node but also directly to a string, boolean, or a floating-point value. pugixml
provides such a mechanism with it’s evaluate number function. For instance, using
this evaluation function the following query yields directly a double value holding the
requested parameter when executed on the previously generated sub-tree.

".//Material[Name=’Silicon’]/Parameter[Name=’Bandgap’]/Value";

Aside of storing numerical values, we can also store mathematical expressions in-
side the XML data. These mathematical string-expressions can be evaluated, for in-
stance, by interfacing with the Lua library [124].

The fact that users2 might change the XML input data, such as input files, introduces
the need to verify the validity of the XML document. For instance, a material database
implementation might expect a setup as introduced above. However, in the problematic
case where an advanced user chooses not to follow this setup by, for instance, introduc-
ing new tags, it is still valid XML data, but may clash with requirements expected by the
database implementation. Therefore, the document type definition (DTD) can be used,
providing a set of markup declarations that define a document structure. Automatic
verification of the XML input data relative to a DTD can be achieved by, for instance,
utilizing the libxml2 [113] library and its xmlValidateDtd() function.

The query-based access to material data is convenient, however, performing the
query in computational intensive code blocks is not meaningful. For instance, accessing
material data within the mesh element traversal used in assembly routines will result in
a considerable performance hit. Considering meshes with 106 elements would thus
translate to 106 queries, resulting in considerable look-up times [125]. Therefore, the
queries should be conducted outside of such expansive loops, or - if this is not possible
- a cache system, such as least recently used [126], can be implemented and coupled
to the query routines. Such a caching system would avoid unnecessary look-ups in the
database and thus increase overall data access efficiency.

In general, material data is accessed from various simulation components. For
instance, the device - discussed in the following - requires material data to extract pa-
rameters such as the relative permittivity for a given material name.

4.3.3 Device

As already indicated, a device holds the actual mesh object as well as additional meta
information. The mesh data structure is provided by ViennaGrid, supporting different
mesh configurations via distinct types. As the mesh configuration is not known during
compile-time, a dynamic mesh storage object - based on a Boost Variant [53] data
structure - is used to hold the actual mesh. This particular data structure can take on
several different but fixed types, e.g., one- or two-dimensional simplex meshes: Instead
of using the actual mesh types for the variant, smart pointers are used, provided by the
Boost Smart Pointer library [51].
2In this context a user refers to an advanced user who wants to extend or alter the material database,
contrary to an end user who does not interact with material properties at all and therefore requires no
knowledge of XML.

32

CHAPTER 4. DEVICE SIMULATION FRAMEWORK

Linear Solver

Pr
ec

on
di

tio
ne

r

So
lv

er

Li
br

ar
y

B
re

ak
 T

ol
er

an
ce

M
ax

 It
er

at
io

ns

Nonlinear Solver

So
lv

er

Li
br

ar
y

B
re

ak
 T

ol
er

an
ce

M
ax

 It
er

at
io

ns

Figure 4.11: The configuration class holds several parameters essential for the simula-
tion, such as linear and nonlinear solver parameters.

Smart pointers provide a safe - automatic memory deallocation - and a flexible way
of destroying/recreating objects, because of their pointer mechanism, during run-time.
The set of supported mesh types can be extended by adding additional types. This
variant-based approach allows the device to wrap a dynamic layer around static objects,
favoring, for instance, GUI applications.

A device supports methods to scale the contained mesh and to assign roles to
segments. This identification allows the device to derive further meta information au-
tomatically, such as the ability to assign doping profiles or permittivities appropriately.
Also, a device enables to assign material names to segments. This mechanism is cou-
pled with the material database, for instance, to access the relative permittivity (εr) of a
particular material, multiply it with the absolute permittivity constant (ε0), and assign the
result to the appropriate mesh elements. These auxiliary methods allow to attach meta
information to a bare mesh, elevating it from a physical meaningless entity to a device,
providing a plethora of properties via the device’s interface methods. For instance, the
problem classes (Section 4.3.6) uses these informations to assign boundary conditions
to the contact segments.

4.3.4 Configuration

The configuration enables to collect parameters relevant for the simulation process
(Figure 4.11). For instance, the maximum number of iterations and the break toler-
ance values for the linear and nonlinear solvers are stored. The individual simulator
components use these configuration parameters to drive the simulation process and
the problem classes (Section 4.3.6) forward the solver parameters to the solver ker-
nels, such as ViennaCL’s conjugate-gradient solver.

Replacing individual simulation components might alter the set of configuration pa-
rameters. A typical example would be that by using a different linear solver, other
preconditioners are supported changing the simulator’s configuration options. This fact
introduces the need for each component to provide its configurable parameters in a
unified manner to the frameworks configuration mechanism, such as via an associative
container, mapping configuration options to corresponding default values which can be
updated.

33

CHAPTER 4. DEVICE SIMULATION FRAMEWORK

Contact Range

Stepper Database

C
on
ta
ct C
on
ta
ct

Sequence Simulator

Figure 4.12: A voltage stepper allows to assign terminal contact potential ranges to
contact segments. Each range consists of a start, end, and delta value. Based on a
range, a sequence of contact values is computed and stored in the database.

4.3.5 Stepper

The stepper component enables to setup a set of simulation configurations according
to varying step values. A typical example would be a voltage stepper, which is used to
setup a set of simulation configurations according to varying contact values, being the
most fundamental stepping mechanism required to determine device characteristics.

In particular, for each contact a sequence of values has to be supported (Figure 4.12).
The simulator (Section 4.3.9) uses this mechanism to update the boundary conditions
after each simulation, followed by a new simulation, until the stepper database has been
completely processed.

Aside from voltage stepping, other stepping targets are of interest. Most importantly
current stepping, deriving a set of simulation setups for a sequence of current values
at specific Dirichlet contact segments. Also, stepping device geometries and doping
profiles are relevant, triggering a new simulation for each element of a set of geom-
etry configurations or doping profiles, respectively. Where the first usually requires a
remeshing step - the original doping profile has to be redistributed to the altered mesh
- to incorporate the changes in the device’s geometry for each new simulation step, the
latter applies different doping profiles to the device for the individual simulation steps.

4.3.6 Problem Classes

A problem class enables to group all relevant implementations required for a specific
simulation setup into a single entity. This approach is considered the core of the simula-
tor, which implements its expandable modeling facility via a virtual class hierarchy. This
hierarchy enables to specialize the assembly and solution steps according to problem-
specific requirements. Each problem specialization ensures that the required boundary
conditions and initial guesses are assigned, the PDE objects are prepared including op-
tional additional models, the linear solver backend is set up, the discretization method
is selected, and ultimately the problem is assembled and solved (Figure 4.13). The
simplest problems are the Laplace problem and the DD problem, which are discussed
briefly in the following.

34

CHAPTER 4. DEVICE SIMULATION FRAMEWORK

Discretize
Assemble
Solve

Boundary Conditions Initial Guesses PDEs Linear Solvers

ViennaFVM

Figure 4.13: Each ViennaMini problem specialization is responsible for assigning the
corresponding boundary conditions and initial guesses. Also, the PDEs must be defined
and forwarded together with a linear solver backend to ViennaFVM, responsible for
discretizing, assembling, and solving.

The Laplace Problem

The Laplace problem solves Laplace’s equation for the electrostatic potential via the
FVM. This case is implemented by assuming that the simulation domain is charge free,
thus Poisson’s equation is simplified to:

∇ · (ε · ∇ϕ) = 0 (4.6)

Note that we keep the permittivity on the left-hand side to investigate jumps in the
solution due to material transitions. Overall, such a Laplace problem is relevant for, e.g.,
capacitance simulations.

Due to the utilization of a symbolic math kernel provided by ViennaMath, the
Laplace equation object is implemented in a straightforward manner.

1 equation laplace = make_equation(div(eps*grad(phi)),/* = */0);

The first parameter of make equation resembles the left-hand side, whereas the
second parameter holds the right-hand side of the equation. In this case, the differential
operators div and grad are used, as well as two quantity objects holding data values
for each mesh element. Note the strong resemblance of the original mathematical
formulation (Equation 4.6) and the implemented equation object.

The mesh element-associated permittivity values (eps) are defined according to
material parameters assigned to each segment of the mesh. This requires access
to material-based parameters, as the device merely provides the material name, the
actual relative permittivity has to be extracted from the material database, though. Ac-
cessing the permittivity for a given material name is based on the material database,
via predefined queries, customized according to the actual material.

The boundary conditions are assigned using the segment roles provided by the de-
vice’s auxiliary methods. More concretely, segments tagged as contact, are assigned
Dirichlet boundary conditions according to the contact potentials provided by the step-
per class (Section 4.3.5). Non-Dirichlet contacts are implicitly treated as Neumann
boundaries by the utilized ViennaFVM assembly routines. The linear solver kernel
is defined via ViennaFVM and configured according to the configuration parameters
(Section 4.3.4).

35

CHAPTER 4. DEVICE SIMULATION FRAMEWORK

The Drift-Diffusion Problem

The DD problem implements the previously introduced basic semiconductor equations
(Section 4.1), consisting of three coupled PDEs in a straightforward and expressive
manner for the stationary case.

1 equation poisson = make_equation(

2 div(eps*grad(phi)), /* = */ q*(n-p-ND+NA);

3 equation continuity_n = make_equation(

4 div(mu_n*VT*grad(n)-mu_n*grad(phi)*n), /* = */ R);

5 equation continuity_p = make_equation(

6 div(mu_p*VT*grad(p)+mu_p*grad(phi)*p), /* = */ R);

The equations follow the original formulations as shown in Equations 4.1-4.5. This
approach is reasonable for a small set of models, however, with growing model num-
bers, such an approach quickly becomes confusing and thus prone to errors. As an
alternative each model could alter the equation objects accordingly via a pipelined pro-
cess, meaning that an initial PDE enters a pipeline of model-based adaptations, ac-
cording to the end user’s model selection. Such an approach would be more expand-
able and maintainable, as each model implementation performs local adaptions to the
equation objects. Concerning the mobility and the recombination, the corresponding
variables (mu n, mu p, and R) can be associated with models evaluating mesh element-
specific values.

The current implementation of the nonlinear solver required for the DD problem
utilizes the simple yet effective Gummel’s method [127] as provided by ViennaFVM.
Among the advantages of this particular nonlinear solver is the fact that it is easier
to implement as compared to Newton’s method, e.g., no Jacobian matrix has to be
assembled. However, a Gummel solver offers stability issues for certain problems, such
as high bias scenarios [1]. Overall, Gummel’s method is a reasonable nonlinear solver
technique for the investigations presented in this work, due to the focus on software
design and especially as this particular solver is suitable for a considerable number of
problems.

4.3.7 Mesh Generation

ViennaMini utilizes the mesh generation and adaptation facilities of ViennaMesh, pro-
viding a unified interface to several meshing kernels. For instance, in the following a
mesh is generated from an input geometry using the Netgen kernel.

1 algorithm_handle mesher=algorithm_handle(new netgen :: algorithm ());

2 mesher ->set_input("cell_size", 0.1);

3 mesher ->set_input("delaunay" , true);

4 mesher ->set_input("default" , input_geometry);

5 mesher ->run();

The Netgen kernel is instantiated (Line 1), meshing parameters are set in a unified
manner (Lines 2-4). The cell size parameter indicates the maximum size of a mesh
element, which’s meaning depends on the meshing backend. For example, CGAL re-
lates the size parameter to the circumradius of a tetrahedron, Tetgen maps it to the
volume of a tetrahedron, whereas Triangle interprets it as the area of a triangle.

36

CHAPTER 4. DEVICE SIMULATION FRAMEWORK

Consequently, the cell size parameter stores a value without an associated physical
unit due to the polymorphic nature. In this case the mesh element is abstractly referred
to as a cell3. The size of a mesh element is a typical basic parameter of mesh gen-
eration tools, as it provides a convenient method to guide the general resolution of the
mesh. The delaunay parameter indicates a quality criterion, i.e., whether the mesh
conforms to the Delaunay property [54]. This is a most common flag which is usually
supported by all mesh generation tools for the field of CSE. Obviously not all mesh gen-
eration tools provide the same set of meshing properties, as, for instance, some tools
provide different meshing algorithms, such as Triangle [62]. However, as already indi-
cated most fundamental parameters, such as the cell size and the Delaunay property
are potentially supported by the majority of tools and can thus be set in a unified man-
ner, as depicted in the previous code sample. The default property indicates the input
geometry object which must be discretized by the meshing tool. Finally, the meshing
algorithm is executed (Line 5). Note that changing the meshing kernel to, for instance,
Tetgen, solely requires to change the corresponding algorithm in Line 1 accordingly.

Generating meshes is used in the device template mechanism, where a customized
device geometry has to be meshed.

4.3.8 Device Templates

A device template mechanism is implemented, enabling devices with customizable ge-
ometries to be simulated without requiring an externally provided mesh or a device
holding a doping a profile generated by a process simulator. The implemented ap-
proach interfaces with the device, configuration, and problem component to prepare a
ready-to-simulate device. Each template implementation holds a device object, which
is being prepared for simulation by the device template’s generation method. The de-
vice is specialized according to the template type, for instance, a device holding a two-
dimensional triangular mesh. Also, the device is used to assign segment roles and addi-
tional meta information, such as manually assigned segment-based doping values. The
configuration component is specialized according to the nature of the device at hand.
For instance, a three-dimensional DD-based device might need specialized solver pa-
rameters, such as a specific preconditioner. Such specialized solver parameters can
either be derived from time-consuming trial and error investigations or via automatic
approaches, such as heuristical methods where the simulator determines optimal prop-
erties based on the evaluation of a set of possible property combinations. Overall, a
device template must preset the configuration parameters accordingly, to provide a rea-
sonable simulation configuration to ultimately enable the subsequent simulation step to
converge.

3A cell is a mesh element with the maximum topological dimension within the respective mesh. Its geo-
metrical equivalent depends on the cell topology and the dimension of the topological space [77]. For
instance, in a two-dimensional simplicial mesh, a cell refers to a triangle.

37

CHAPTER 4. DEVICE SIMULATION FRAMEWORK

With respect to defining the device geometry, each template provides an associative
container holding a set of device-specific geometry parameters, such as the individual
point vectors describing the geometry or - more conveniently - the oxide thickness, as
required by for instance MOSFET devices. Obviously the set of parameters supporting
customization is template specific, each implementation can offer different options. This
flexibility is vital as the plethora of potentially available devices requires entirely different
geometry properties. For instance, a bipolar transistor does usually not have an oxide,
thus providing an oxide thickness parameter is not just wasted but indeed would be
wrong. The fact that the parameters may be customized prior to the actual generation,
gives rise to the design rationale to decouple the generation step from the setup step.
Therefore, the parameters can be customized prior to the generation step, allowing to
non-intrusively change the device geometry of the generated device.

Figure 4.14 depicts the essential steps of a device template implementation. With
respect to the implementation, a virtual class hierarchy is utilized, allowing to extend
the set of supported device templates by adding additional device template specializa-
tions. Due to the generic interface of this class hierarchy, devices of arbitrary nature are
supported.

Customize Geometry

Default Geometry Prepare Mesher

Generate Mesh Setup Device

Define Problem

Simulate

Figure 4.14: The essential steps of a device template implementation are shown. Grey
components indicate preparation steps, whereas blue components relate to tasks trig-
gered by the generation of the device. When the device is generated, it can be immedi-
ately simulated.

4.3.9 Simulator
As already indicated, the central simulator orchestrates the overall simulation, as is
shown in Figure 4.15. Device objects are generated according to imported meshes,
by performing optional mesh adaptation and doping interpolation steps provided by
ViennaMesh and ViennaGrid. In case a device template is used, the ready-to-simulate
device is merely accessed and forwarded to the simulation routine. This particular rou-
tine uses the stepper component to iteratively update boundary conditions and perform
the problem-specific simulations.

Mesh Generation/Adaptation
Doping Interpolation Update Boundary Conditions

Run Problem Simulation

Process Simulator

Mesh Generator

Device Template

Device Generation
Mesh

Device

Stepper

Figure 4.15: The key steps (blue) of the simulator (dotted box) component are shown.
Grey components are external tools. Externally provided meshes and doping profiles
are processed and corresponding devices are generated. In case a device template
is used, the device is merely generated and forwarded to the simulation routine, using
the stepper component to iteratively update the boundary conditions and perform the
problem-specific simulation.

38

CHAPTER 4. DEVICE SIMULATION FRAMEWORK

4.3.10 Examples

This section depicts several examples to show the usability of the introduced device
simulator approach. The examples are chosen to depict the multi-dimensional support
as well as the device template mechanism, the different simulation problems, and the
stepping facility. Implementation details as well as simulation results are shown.

One-Dimensional Capacitor

This section discusses a one-dimensional capacitor device, solving the Laplace prob-
lem (Section 4.3.6). This particular case has been chosen to depict the support for one-
dimensional devices, usually required for developing and debugging more advanced
models. Therefore, this rather trivial device is required to be supported by every device
simulator, before delving into more complicated models.

The device consists of five segments; two metal contact segments are attached
to either side of a silicon dioxide-silicon-silicon dioxide (SiO2-Si-SiO2) structure, both
assigned as Dirichlet contacts. As the implementation of the Laplace problem4 keeps
the permittivity on the left side of the equation (Section 4.3.6), the potential reflects the
transition between the materials, as shown in Figure 4.16. The potential drops more
significantly in the oxide segments than in the middle semiconductor segment.

Metal SiO2 Si SiO2 Metal

Figure 4.16: The potential (V) over the spatial dimension (m−6) of a one-dimensional
capacitor is depicted. Dirichlet boundary conditions have been applied to the left (1.0V)
and the right (0.0V) metal contact. Note the potential transitions at the material inter-
faces due to the different relative permittivities of SiO2 and Si.

4In case the semiconductor material is doped, the thus arising space charge requires the solution of the
Poisson equation (Equation 4.1).

39

CHAPTER 4. DEVICE SIMULATION FRAMEWORK

Two-Dimensional PN Diode

This section shows the simulation of a two-dimensional pn-junction diode. The DD
problem (Section 4.3.6) is solved for a set of contact potentials. This particular exam-
ple has been chosen to depict the support for two-dimensional devices as well as the
evaluation of device characteristics.

The device consists of four segments, where two metal contact segments are at-
tached to either side of a p-Si-n-Si structure (Figure 4.17). The p-Si offers a constant
donor and acceptor doping of 105cm−3 and 1015cm−3, respectively. The n-Si offers a
constant donor and acceptor doping of 1015cm−3 and 105cm−3, respectively.

The device characteristics is computed by applying a constant cathode contact po-
tential by simultaneously varying the anode contact potential, ranging from −1.0V to
1.0V, with a stepsize of 0.05V (Figure 4.18). In forward and reverse operation a maxi-
mum current of 2.3A and 1nA is computed, respectively. Figure 4.19 depicts the com-
puted potential distributions for the reverse, equilibrium, and forward case. In the for-
ward case, the polarity of the anode contact is switched.
Figure 4.20 depicts the computed electron concentration distributions for the reverse,
equilibrium, and forward case. Where in the reverse case, the electrons retract toward
the cathode contact, in the forward case the electrons are distributed over the entire de-
vice. Figure 4.21 depicts the computed hole concentration distributions for the reverse,
equilibrium, and forward case. Where in the reverse case, the holes retract toward the
anode contact, in the forward case the holes are distributed over the entire device.

An
od

e

p-Si n-Si

Ca
th
od

e

0.0 1.0 2.0 3.0 4.0
0.0

0.4

0.8

1.2

1.4

1.8

X (nm)

Y
(n

m
)

Figure 4.17: The setup of the two-dimensional pn-junction diode; Each color denotes a
different device segment. The p-Si and n-Si offer a constant acceptor and donor doping
of 1015cm−3, respectively.

40

CHAPTER 4. DEVICE SIMULATION FRAMEWORK

Figure 4.18: The IV-characteristics of a two-dimensional pn-junction diode; the contact
potential of the anode contact has been gradually increased from negative to positive
voltages relative to a constant cathode potential (0V). For forward bias (positive potential
values) the diode is conductive, whereas for negative bias (negative potential values)
the diode is non-conductive. Note the current saturation (> 0.6V) induced by high
injection effects.

-0.8 0

-1.3 0.7

-1.2 -0.4 0.4

(a) Reverse

-0.8 0

-1.3 0.7

-1.2 -0.4 0.4

(b) Equilibrium

-0.8 0

-1.3 0.7

-1.2 -0.4 0.4

(c) Forward

Figure 4.19: The potential distributions (V) in reverse (left), equilibrium (middle), and
forward (right) mode of a two-dimensional pn-junction diode are shown. The contact
segments have been removed to ensure proper color mapping. Due to the builtin po-
tential the potential distribution is shifted. In forward mode, the anode contact switches
polarity.

41

CHAPTER 4. DEVICE SIMULATION FRAMEWORK

1e+8 1e+12

1e+5 1e+16

(a) Reverse

1e+8 1e+12

1e+5 1e+16

(b) Equilibrium

1e+8 1e+12

1e+5 1e+16

(c) Forward

Figure 4.20: The electron distributions (cm−3) in reverse (left), equilibrium (middle),
and forward (right) mode of a two-dimensional pn-junction diode are shown. The con-
tact segments have been removed to ensure proper color mapping. Where in reverse
mode the electrons retreat towards the cathode, in forward mode the electrons populate
the entire device.

1e+8 1e+12

1e+5 1e+16

(a) Reverse

1e+8 1e+12

1e+5 1e+16

(b) Equilibrium

1e+8 1e+12

1e+5 1e+16

(c) Forward

Figure 4.21: The hole distributions (cm−3) in reverse (left), equilibrium (middle), and
forward (right) mode of a two-dimensional pn-junction diode are shown. The contact
segments have been removed to ensure proper color mapping. Where in reverse mode
the holes retreat towards the anode, in forward mode the holes populate the entire
device.

42

CHAPTER 4. DEVICE SIMULATION FRAMEWORK

Three-Dimensional FinFET

This section shows the simulation of a three-dimensional symmetrically sliced Si-based
FinFET device, based on solving the DD problem (Section 4.3.6). This particular exam-
ple has been chosen to depict the support for three-dimensional devices.

Figure 4.22 depicts the device setup. The source and drain region are set at a con-
stant donor doping of 1018cm−3, whereas the bulk region is set at a constant acceptor
doping of 1014cm−3.

The device has been simulated in its active state, by setting the gate and drain con-
tact potential to 0.5V as well as the source and bulk contact potential to 0.0V (Figure 4.23).
As can be seen from the results, the electrons gather primarily under the gate contact,
forming a conducting channel from the source to the drain contact.

0.0X (nm)

Y (nm)

Z
(n

m
)

20.0
40.0

-20.0
-40.0

0.0

-20.0

-40.0

-60.0

-80.0

-100.0

-120.0

40.0
10.0

B

S

D
G

Figure 4.22: The setup of the three-dimensional FinFET device; Each color denotes
a different device segment. S, D, B, and G refer to the source, drain, bulk, and gate
contacts. The source (blue) and drain (green) region offer a constant donor doping of
1018cm−3. The bulk (brown) region offers a constant acceptor doping of 1014cm−3.

43

CHAPTER 4. DEVICE SIMULATION FRAMEWORK

0.5 0.6 0.7 0.8

0.49 0.94

0.9

SD G

(a) Potential (V)

1e+16 1e+17 1e+18 1e+19

3e+15 7.2e+19 SD G

(b) Electron Concentration (cm−3)

1 10 100

0.5 155 SD G

(c) Hole Concentration (cm−3)

Figure 4.23: The potential, electron, and hole distributions of an active FinFET device;
The gate and drain contact potential is set to 0.5V, whereas the source and bulk contact
potential is set to 0.0V. The contact, oxide, and bulk segments have been removed for
the sake of improved visualization. Iso-surfaces have been added to depict the behavior
in the interior of the device. A conducting channel is formed under the gate as can be
seen from the increased electron concentrations.

44

Chapter 5

Component Execution Framework

A component execution framework applies CBSE concepts, allowing to setup an appli-
cation based on reusable components by connecting them accordingly. For instance, a
FEM-based assembly component forwards the assembled equation system Ax = b to
a linear solver component which computes the solution vector x. As already indicated,
the strength of such an approach is based on the growing potential for reusability - as
more and more components are added to the set of available components - and on
the significantly increased level of flexibility - as components can be exchanged in a
straightforward manner. This fact is especially of interest to HPC applications, as a
plethora of, for instance, linear solver libraries or finite element analysis libraries are
available, consequently introducing the urge to exchange individual tools. Therefore,
component execution frameworks merit special consideration for implementing simula-
tion tools as compared to monolithic application approaches. Such frameworks thus
provide an alternative to simulator software design. Most importantly, though, such
frameworks can wrap - and thus reuse - already available functionality. Therefore, com-
ponent execution frameworks further benefit from the LCSD approach similarly to the
previously discussed device simulation framework (Figure 5.1).

In the following, an overview of today’s HPC platforms (Section 5.1) is provided.
Based on the established basis for computing targets the requirements and challenges
of implementing a component execution framework for the general application in the
area of CSE are discussed (Section 5.2). These discussed aspects give rise to the in
the course of this work developed component execution framework which is introduced
in detail (Section 5.3).

5.1 High Performance Computing

HPC combines all aspects of computationally intensive tasks required for conducting
simulations in the area of CSE. This typically refers to utilizing more than one comput-
ing system to achieve this goal. In HPC hardware and software aspects with respect
to conducting performance critical applications are considered. This fact introduces a
highly diverse ecosystem of research areas. Typical HPC areas are parallel computing,
network architecture, supercomputers, compilers, debuggers, operating systems, visu-
alization, and data storage. In the following, hardware and software aspects of parallel
computing are investigated, which we consider to be the basis for HPC.

45

CHAPTER 5. COMPONENT EXECUTION FRAMEWORK

D
ev

ic
e

Si
m

ul
at

io
n

Fr
am

ew
or

k

LCSD-Based Libraries

Component Execution Framework

Figure 5.1: A component execution framework - similar to a device simulation frame-
work - benefits from LCSD-based libraries as the available functionality is wrapped as
components and can thus be used within the framework.

Historically the CPU’s sole core was continually scaled down to increase the pro-
cessing power by adding more and more transistors. Consequently, each new gener-
ation of CPUs automatically improved application performance. However, around the
mid-2000s this approach gave way to introducing additional cores on the CPU die but
with stagnating - or even decreased - clock frequencies to handle the thermal bud-
get [100][128][129]. Clock frequencies for high-end consumer-level workstation CPUs
saturated at approximately 3-4 GHz. Overall, this conceptual change was forced by
physical limitations imposed by scaling limits, such as issues with heat dissipation,
power consumption, and leakage-currents. Today’s computing platforms entirely use
multi-core CPUs. This development forces the software - driving the actual computation
- to harness the parallel computational power to achieve an appropriate computational
speed-up with new generations of hardware [130].

The ongoing scaling of semiconductor devices towards the low nanometer regime
introduced the ability to provide multi-core CPUs as well as accelerators, such as graph-
ics adaptors, to single workstations and even mobile devices. Therefore, parallel com-
puting environments are no longer confined to highly expensive supercomputers, but
are already available in consumer products. This introduces a dire need for software
developers to have a solid grasp on parallel computing and the supported ways of har-
nessing the computational capabilities.

This section provides a detailed overview of parallel computing, more specifically:

• Shared-memory systems (Section 5.1.1)

• Distributed-memory systems (Section 5.1.2)

• Hierarchical (hybrid) systems (Section 5.1.3)

• Accelerators (Section 5.1.4)

46

CHAPTER 5. COMPONENT EXECUTION FRAMEWORK

5.1.1 Shared-Memory Systems

A shared-memory system consists of at least one multi-core CPU1, sharing the memory
available on the system, i.e., all CPUs can access the same physical address space.
Examples for such a system are modern single- or multi-socket multi-core worksta-
tions. Although, these targets are shared-memory systems, and as such provide a sin-
gle memory address space to the programmer, the supported memory access patterns
vary fundamentally. The most commonly utilized patterns are uniform memory access
(UMA) [100] and cache-coherent (cc) non-uniform memory access (NUMA)2 [131].
UMA is typically used by single multi-core workstations, whereas (cc)NUMA is widely
utilized by multi-socket systems. Basically, UMA allows to offer the same access per-
formance to all participating cores and memory locations via a single bus (Figure 5.2).

Memory

C1 C2

C3 C4

CPU

Figure 5.2: A UMA architecture provides each CPU core (C1-C4) the same memory
access.

Therefore, UMA systems are also frequently referred to as symmetric multiprocess-
ing systems. Such a symmetric approach does not reasonably scale with the introduc-
tion of additional CPUs, as the central bus is quickly saturated. This fact gave rise to the
NUMA architecture (Figure 5.3). On NUMA systems memory is physically distributed,
but logically shared. A NUMA system consists of several so-called NUMA nodes, typi-
cally representing a CPU and its local memory. The NUMA nodes are connected with
interconnect links, such as AMD’s HyperTransport or Intel’s QuickPath technology. Con-
sequently, latency and possibly bandwidth between the cores vary depending on the
physical location (also called NUMA effects).

From a software point of view, usually - but not exclusively - thread-based ap-
proaches are utilized on shared-memory systems. Several approaches are available,
such as OpenMP [132], Intel Cilk Plus [133], and Pthreads [134]. Although thread-
based programming is considered to be rather intuitive and easy to get used to, it is
exactly this feature which makes it hard to achieve reasonable scaling for high core
numbers. One of the challenges is the shared-memory approach, i.e., all threads can
access the same memory address space.

1Single-core CPUs are not mentioned, as they practically vanished from the desktop and HPC market,
triggered by single-core scaling issues which forced the evasion towards multiple cores.

2The cc prefix refers to a mechanism which is responsible for keeping a consistent memory image in the
individual distributed caches, meaning that a processor accessing a memory location receives the most
up-to-date version of the data. For the remainder of this work NUMA refers to the cc versions, as these are
predominantly applied due to significantly higher programmability, when compared to non-cc platforms.

47

CHAPTER 5. COMPONENT EXECUTION FRAMEWORK

NUMA Node 1

M
em

or
y C2

C4

C1

C3 M
em

or
yC1 C2

C3 C4

M
em

or
yC1 C2

C3 C4M
em

or
y C1 C2

C3 C4

NUMA Node 3 NUMA Node 4

NUMA Node 2

Link

Figure 5.3: A NUMA architecture connects different NUMA nodes (Nodes 1-4) - typ-
ically multi-core CPUs (C1-C4) - via interconnect links (Link), to enable a single logi-
cally shared global memory. However, memory access times - and possibly throughput
as well - are reduced when, for instance, Node 1 accesses memory associated with
Node 3, due to overhead introduced by the link. This effect is typically referred to as
NUMA effect.

Although convenient, it does not inherently force the developer to handle memory local-
ity, thus NUMA effects easily arise, significantly reducing the scalability. Also, a typical
problem with shared-memory approaches is over-utilization, meaning that significantly
more threads conducting computations are executed concurrently than CPU cores are
available. Obviously severe over-utilization, for instance, more than three times, leads
to considerably reduced execution speeds, thus needs to be avoided.

5.1.2 Distributed-Memory Systems

A distributed-memory model connects different processors via a communication net-
work (Figure 5.4). This model originates from a time where a CPU contained a single
processing core. Such a setup is typically not found anymore in today’s cluster sys-
tems due to the advent of multi-core CPUs. However, the model still serves well as an
introduction to distributed computing, as the concepts are still applicable.

The defacto standard following the distributed-programming model is the MPI [135].
However, other less popular distributed parallel programming models are available,
such as High Performance Fortran [136][137] and partitioned global address space [138]
models like Co-Array Fortran [139] and Unified Parallel C [140]. MPI is implemented by
various commercial and open source institutions, which make their individual imple-
mentation available as a library to be linked to the respective target application. It is
important to note that using MPI is not restricted to distributed-memory systems, MPI
can also be used on shared-memory systems (Section 5.1.1).

48

CHAPTER 5. COMPONENT EXECUTION FRAMEWORK

C1 C2

Network Interconnect

Memory

CPU

Memory

CPU

Memory

CPU

Figure 5.4: In a distributed-memory model, the memory is physically and logically dis-
tributed among the individual processing units (P1-P3), e.g., CPUs. Accessing data
from remote memory locations requires to initiate a data transfer protocol, such as
point-to-point communication provided by the MPI.

The fundamental difference between the shared and the distributed-memory pro-
gramming model is the fact that in the distributed case processes are used instead
of threads. As processes have only access to their own memory address space, ac-
cessing non-local data requires inter-process communication. The inter-process com-
munication is implemented in MPI by so-called messages, hence the name message
passing interface.

The overall performance of such a distributed system is not only determined by the
compute capabilities of the individual processing units, but also by the network intercon-
nect technology’s speed, layout, and switching capabilities. Collecting, for instance, the
partial result data from all processes imposes a considerable challenge for the network
interconnect, as concurrent transmissions easily saturate the supported throughput.
If communication or computation becomes predominant with respect to run-time per-
formance, the parallel application is said to be communication bound or computation
bound, respectively.

5.1.3 Hierarchical (Hybrid) Systems

Today’s supercomputers and clusters are primarily hierarchical systems, also called
hybrids. Such systems denote a mixture of systems based on different parallel memory
models (Figure 5.5). The most prominent example are supercomputers with shared-
memory nodes3 interconnected via a network. Therefore, hybrids are neither purely
shared nor are they purely distributed, further contributing to the challenge of parallel
software engineering.

In fact, hybrids may be utilized by solely applying a distributed programming model,
but hybrid models are supported as well, such as MPI in tandem with OpenMP. A typ-
ical approach is to utilize MPI for inter-node communication, and a shared-memory
approach, e.g., OpenMP, on the individual nodes.

3A node is considered to be a self-sufficient computer which works in the collective, forming the super-
computer.

49

CHAPTER 5. COMPONENT EXECUTION FRAMEWORK

Memory

C1 C2

C3 C4

Memory

C1 C2

C3 C4

Memory

C1 C2

C3 C4

Network Interconnect

Figure 5.5: In hierarchical systems the distributed- and shared-memory model are com-
bined. In the depicted case three UMA-based shared-memory nodes are connected via
a network connection, however, NUMA systems can be used in a similar manner.

If the node’s infrastructure offers a NUMA architecture, it may become a viable option
to assign several MPI processes to a node and pin one, for instance, to each CPU
socket4. For example, for each socket an MPI process can be assigned rather than
using one MPI process for the whole node. On the right platform, such an approach
reduces NUMA effects. Another considerable aspect is the node’s memory-core ratio,
where the sweet-spot5 in today’s systems is typically around 1-2 GB/core. Therefore,
using one MPI process for each core might become challenging with memory inten-
sive applications, as a node might not offer enough memory to accommodate a given
problem. This becomes evident when considering a typical node setup used in cur-
rent cutting-edge supercomputers, such as Titan [141], which is based on single-socket
nodes offering a 16-core CPU and 32GB of shared memory. If 16 MPI processes are
executed on such a node, each MPI process has access to merely 2GB of memory. A
ratio of one is provided by the Sequoia supercomputer, offering 16 compute cores and
16GB of system memory on each node [142]. The observed node setups also depict
an interesting fact based on the continued microprocessor scaling: a single CPU can
now hold up to 16 compute cores, allowing to build cheaper single-socket nodes rather
than the significantly more expensive multi-socket systems. This enables to remain cost
efficient by simultaneously providing high core numbers. This trend towards higher core
numbers per CPU is likely to continue [143]. At this point it becomes evident that due to
the high degree of anisotropy of the available parallel target platforms, developing rea-
sonably scaling software for such platforms is one of the major challenges today and
especially in the future [144].

4Assigning an MPI process to a specific CPU core enables to distribute the MPI processes evenly through-
out the available CPUs of a node.

5The term sweet-spot refers to the optimal ratio between computational capabilities and costs.

50

CHAPTER 5. COMPONENT EXECUTION FRAMEWORK

10
0

10
1

10
2

10
3

 2007 2008 2009 2010 2011 2012 2013

G
B

/s
e

c

Year

Peak Memory Bandwidth Comparison

CPUs, Intel

Xeon X5482 Xeon X5492
Xeon W5590 Xeon X5680 Xeon X5690

Xeon E5-2690

GPUs, NVIDIA

8800 GTS

GTX 280
GTX 285

GTX 480
GTX 580

GTX 680 GTX Titan

PCI Express (16x)

PCIe 2.0

PCIe 3.0

Figure 5.6: Memory-bandwidth between graphics-adaptors, CPUs, and PCI Express
buses. Note that other accelerator cards - such as Intel Xeon Phi and AMD graph-
ics adaptors - attached to PCI Express offer similar memory-bandwidths, thus for the
sake of simplicity only NVIDIA GPUs are shown. Between 2007 and 2013 memory-
bandwidth doubled for CPUs, whereas it tripled for GPUs primarily due to additional
memory channels and broader buses. In 2012 the memory-bandwidths from CPUs
and GPUs are roughly twelve times and more than three times faster compared to PCI
Express, respectively.

5.1.4 Accelerators

At the time of writing, it is common practice to augment nodes of supercomputers with
accelerators, such as graphics adaptors and so-called coprocessors. For instance,
Titan utilizes NVIDIA Tesla K20 graphics processing units (GPUs) [141], where Stampede
instead uses Intel Xeon Phi SE10P coprocessors [145]. In general, accelerators offer
high core numbers and an excellent peak performance/watt ratio when compared to
common shared-memory clusters [146]. However, one of the fundamental limitations
is the connection with the host system via a connecting bus. The bandwidth and la-
tency of such a bus system, e.g., PCI Express, are inferior compared to, for instance,
the host’s memory bus, resulting in a significant communication bottleneck. Figure 5.6
compares the memory bandwidths of typical CPUs with accelerators and the PCI Ex-
press bus [147]. To overcome this problem, processor vendors aim to integrate the
accelerators on the CPU die, thus eliminating the need for a slow bus system [148].
However, if the applications can be tuned to minimize such communication in the first
place, accelerators are capable of providing outstanding performance with simultane-
ously reduced energy consumption, heat dissipation, and costs.

51

CHAPTER 5. COMPONENT EXECUTION FRAMEWORK

From a software point of view, different approaches to program accelerators are
available, which are typically also specific to the utilized accelerator. Prominent exam-
ples are CUDA and OpenCL. Where the first solely supports NVIDIA-based boards,
the latter is not restricted to a specific board vendor, nor is it restricted to GPUs, as it
can be utilized with CPUs as well. The computational capabilities of Intel accelerators
- so-called coprocessors - can be harnessed with, for instance, Intel Cilk Plus, offer-
ing an offloading feature to perform computations on the coprocessor. Recently the
OpenACC standard has been released, aiming for an increased level of convenience for
programming highly-parallel compute targets. OpenACC focuses on a directive-based
programming approach, similar to OpenMP.

The broad availability of programming models and different processor architectures
of accelerators shows that this field is currently in flux. It is not clear at the moment
which hardware and software approach will prevail. This, however, has considerable
ramifications for software developers with respect to long-term support. Relying on a
specific accelerator technology for boosting an application introduces a significant exter-
nal dependence. Programming accelerators is very challenging and thereby allocates
considerable resources. However, due to the rather unstable accelerator environment,
it is not foreseeable whether a chosen accelerator platform will be supported in the
future, thus bearing the risk of wasted development.

5.2 Requirements and Challenges

The availability of highly diverse parallel computing platforms promises significant speed-
ups for HPC-focused applications, among the potential beneficiaries are component ex-
ecution frameworks. A component execution framework involves several essential as-
pects (Figure 5.7). The component system enables to implement reusable components
via defined interfaces. Data communication enables components to receive and forward
data from and to other components, thus representing dependencies. Scheduler rou-
tines - supporting parallel execution - are responsible for determining the appropriate
component execution order according to the dependencies of the utilized components.
Finally, a configuration mechanism allows an appropriate configuration of the framework
and the modules. Each of these essential parts are discussed in detail in the following.

Component System Data Communication

Scheduler

Component Execution Framework

Configuration

Figure 5.7: A component execution framework involves four essential aspects, those
being a component system, a data communication layer, a configuration mechanism,
and schedulers, driving the overall execution.

52

CHAPTER 5. COMPONENT EXECUTION FRAMEWORK

Initialization CleanupExecution

Figure 5.8: A component must provide a decoupled initialization, execution, and
cleanup state. Where the initialization and cleanup state is only executed once by the
framework, the component might be executed several times if, for instance, it is part of
a loop.

C

B

A

Figure 5.9: A component data communication mechanism must support an arbitrary
number of input and output dependencies for each component (A, B, C).

5.2.1 Component System

A component system enables to implement reusable software entities, offering a de-
fined interface. The interface must support an initialization, execution, and cleanup step
(Figure 5.8). Where the first is essential to, for instance, allocate data structures for
the subsequent step of execution, the latter enables to implement appropriate cleanup
methods, such as releasing memory. The execution step contains the actual computa-
tion. In general, such a three-step approach allows for multiple executions of a plugin
within a simulation introduced by, for instance, loops. Utilizing a three-step interface is
a common approach in scientific frameworks, such as the ESMF [29]. Furthermore,
the system must support the addition of new components as well as the convenient
exchange of components, i.e., the exchange must not require recompilation.

It is particularly important to provide a high level or usability. Developers and ad-
vanced users will implement additional components and thus the interface has to be
intuitive to facilitate straightforward implementations without requiring significant devel-
opment efforts.

5.2.2 Data Communication

Strongly related to the component system is the ability of components to share data.
The already discussed example of an assembly component forwarding A, b of an equa-
tion system Ax = b to a linear solver sketches this requirement. As can be seen from
this example, the communication mechanism has to support an arbitrary number of
input and output dependencies for each component (Figure 5.9).

An important aspect is the support of arbitrary datatypes for the communication
layer, to avoid confining the use of a fixed pre-defined set of types. This would other-
wise limit the applicability - as potentially utilized external libraries typically offer their
own data types - and also triggers costly data transfer operations to move data from
unsupported datatypes to new objects based on supported types.

53

CHAPTER 5. COMPONENT EXECUTION FRAMEWORK

C

B

A

A B C

Execution Sequence

Figure 5.10: A component execution scheduler determines the execution sequence
based on the dependencies.

Furthermore, it is required to associate the individual dependencies with an addi-
tional dynamic identifier, as using merely type-based identifiers might not offer a unique
identification. For instance, a component might provide two matrices, both of the same
type but holding different data. Merely using the type as identifier would thus not allow
to distinguish the data and would consequently require manual connection.

The challenge of a data communication layer is primarily to provide a type-safe ap-
proach offering a convenient setup of input and output data communication among the
components. In essence a generic mechanism has to be implemented, capable of link-
ing input and output data communications of each component. This link in essence can
be implemented by a generic object which needs to be aware of the data type trans-
mitted via the link as C++ is a statically typed language. Implementing such a generic
object capable of representing data of arbitrary type requires so-called type-erasure
techniques, effectively removing the type information from an object to transform it into
a typeless object. This transformation allows to handle objects of arbitrary types in a
unified manner, for instance, a homogeneously-typed container, such as a vector can
hold such typeless objects which originally differed in the type and thus would not have
been possible to store them together in such a container. As a consequence arbitrary
yet unforeseen data types can be processed. However, usually the challenge is not
to lift the actual type from an object - basically removing the type information from the
object - but to access the object from a type-erased state again appropriately. There-
fore, the access mechanisms need to be as safe as possible, i.e., allowing for correct
data retrieval. Other projects, like the ESMF [29] approach this problem by supporting
a predefined set of datatypes for data communication. However, as already indicated,
such an approach limits usability.

5.2.3 Scheduler

Ultimately the components must be executed. The sequence of execution, however,
depends on the input and output data communication requirements of each utilized
component. Scheduler mechanisms are required to determine the execution order in
such a way that upon a component’s execution all the required input data is available,
i.e., the input data has been generated by other components (Figure 5.10).

Essential for usability is an automatic dependence resolution process. The end
user should merely list the components to be utilized by the framework, but should
not be burdened with the responsibility of establishing the connections manually. The
framework must automatically - based on the data communication layer and the thus
provided dependencies of each component - resolve the dependencies and compute
an appropriate execution sequence.

54

CHAPTER 5. COMPONENT EXECUTION FRAMEWORK

Also the scheduler should support different serial and parallel execution methods.
Most important is data parallelism based on the MPI, where each component works
on a subset of the data. This particular parallelization mode is especially important to
the field of CSE, due to the typically large simulation domains where a specific physical
model is evaluated. Methods like domain decomposition are used to partition the data
set into data chunks of comparable computational effort which are then processed in
an MPI-based computing environment [100], such as hybrid computing clusters. Aside
from data parallelism also task parallelism merits special consideration. In this particu-
lar execution the components are executed in parallel, meaning that, for instance, two
components might be executed by two different processes. Among the application ar-
eas are wave front simulations [149]. However, a serial mode is also essential, as not
all applications inherently support or favor a distributed memory model.

With respect to task parallelism, a mechanism has to be provided allowing to guide
the automatic task scheduling. For instance, an advanced user and a developer has
knowledge about the computational effort of a task and thus by extension about the
estimated execution times. If the scheduler has knowledge about the expected compu-
tational load of each task, the scheduling can be adapted, for example, the task with
the long run-time is processed on a separate process than the rest of the tasks, offering
short run-times and ultimately improving parallel execution efficiency.

The challenges of scheduler implementations are primarily related to automatically
determining a correct execution sequence especially in a parallel setting. In particular,
the usability should be maximized whereas the code base should be minimized to favor
maintainability. Also the task parallel scheduling has to be augmented with an optional
task-specific weight factor, reflecting the individual execution run-time. In this regard,
the challenge is to incorporate the advanced user or developer-provided task weights
into the scheduling, either by hard-coding it into the component implementations or by
using the non-intrusive configuration mechanism, which is discussed in the subsequent
section.

5.2.4 Configuration

The component execution framework must be informed from the end users which of the
available components to utilize for an execution. Also components might offer customiz-
able parameters which can be adjusted prior to execution. Hardcoding the parameters
into the source code would be inconvenient, as changes to the parameters would re-
quire recompilation, quickly becoming unbearable especially with growing component
numbers.

Therefore, a run-time configuration mechanism is required providing both, the set
of components to be utilized as well as forwarding component-specific parameters to
individual components where they are accessed and utilized. Obviously, the framework
must process this data to setup the components and use their individual dependen-
cies to derive an appropriate execution order via the previously discussed schedulers
(Section 5.2.3).

The primary challenge of such a run-time configuration mechanism is to provide an
intuitive and easy-to-use approach, capable of handling both small and large sets of
components. For instance, command-line arguments are unfeasible, as with growing
component numbers the parameter list would become irritating and thus prone to errors.

55

CHAPTER 5. COMPONENT EXECUTION FRAMEWORK

For configuring applications usually either an input configuration file or a GUI is uti-
lized. In this particular case, a configuration file approach merits special consideration
as computing clusters typically only support command-line and job submission-based
access. However, such an approach can also be paired with a GUI, allowing to gener-
ate configuration files in a convenient and decoupled manner, thus favoring framework
utilization by end users.

5.3 The ViennaX Project

The FLOSS-based ViennaX framework facilitates the setup of flexible scientific ap-
plications by applying a CBSE (Section 3.3) approach, based on providing an exe-
cution framework for plugins [10][150][151]. In particular, ViennaX tackles the previ-
ously introduced requirements and challenges for a component execution framework
(Section 5.2). The decoupling of simulations into separate components is facilitated by
the framework’s plugin system. Functionality is implemented in plugins, supporting data
dependencies. Most importantly, the plugin system enables a high degree of flexibility,
as exchanging individual components of a simulation is reduced to switching plugins by
altering the framework’s configuration data. Consequently, no changes in the simula-
tion’s implementation must be performed, thus avoiding recompilation and knowledge
of the code base. Furthermore, decoupling simulation components into plugins also
increases the reusability significantly. For example, a file reader plugin for a specific file
format can be utilized in different simulations. Ultimately, the effort of changing parts of
the simulation is greatly reduced, strongly favoring long-term flexibility and reusability.

5.3.1 General

ViennaX can be seen as a plugin execution framework. Available simulation tools or
components can be wrapped by plugins and therefore reused. An application is thus
constructed by executing a set of plugins. The input configuration file based on the
XML contains information indicating the plugins to be utilized during the course of the
execution. Additionally, parameters can be provided by this configuration file, which are
forwarded to the respective plugins by the framework.

Plugins can have data dependencies, which are internally represented by a task
graph and handled by the so-called socket system. Different scheduler kernels are
available, focusing on different execution approaches, being serial, task parallelism, and
data parallelism, respectively. These applications can be used to execute the graphs
generated from the input XML file.

Figure 5.11 schematically depicts the general execution flow of the framework. Plu-
gins are implemented and compiled as dynamic shared objects (DSOs), which are for-
warded to the framework’s application. In addition to the plugins, the input configuration
file is passed to the application. The schedulers automatically generate and execute
the task graph according to the data dependencies. The intended target platforms are
workstations or clusters, which are supported by different distributed scheduler kernels
based on the MPI. More specifically, the Boost MPI Library [49] is utilized to support
distributed-memory parallelization (Section 5.1.2). Our approach does not wrap the
parallel execution layer of the target platform like MPICH [152].

56

CHAPTER 5. COMPONENT EXECUTION FRAMEWORK

Cluster

Workstation

ViennaX

.........................

.........................

.........................

.........................

.........................

.........................

.........................

Configuration File

Plugin C++ Source Files

Compile

Plugin DSO Files

.........................

.........................

.........................

.........................

.........................

.........................

.........................

.........................

.........................

.........................

.........................

.........................

.........................

.........................

.........................

.........................

.........................

.........................

.........................

.........................

.........................

.........................

.........................

.........................

.........................

.........................

.........................

.........................

.........................

.........................

.........................

.........................

.........................

.........................

.........................

Figure 5.11: Schematic utilization of the component execution framework. C++ source
files modeling the plugin concept are compiled into DSOs. The DSOs as well as the
configuration file are loaded into the framework. The plugins are loaded during run-time
and based on the dependencies a task graph is generated. The plugins are executed
according to the dependencies, until the graph has been processed.

Core

API

DTPM
SM

DDPM

Plugin System
Configuration
Facility

Figure 5.12: Design of ViennaX. An API provides developers access to the supported
different scheduler kernels, being SM, DTPM, and DDPM. Additionally, the plugin sys-
tem, and the configuration facility can be accessed externally. The core part provides
fundamental functionality utilized throughout the framework, such as a task graph im-
plementation.

As such, the framework is executed as a typical application utilizing the respective par-
allelization library. For instance, to execute an MPI capable scheduler application, the
following expression is used.

mpiexec -np 4 ./ vxscheduler config.xml plugins/

In this case the mpiexec command spawns the execution of four instances.
vxscheduler relates to the application, whereas configuration.xml refers to the XML
input file holding the required information to build the task graph. The final parameter
plugins refers to the directory path, containing the plugins to be utilized during the
execution.

Different scheduler kernels, those being the serial mode (SM), distributed task paral-
lel mode (DTPM), and distributed data parallel mode (DDPM) scheduler, as well as the
plugin system and the configuration facility are accessible via an API (Figure 5.12). The
API enables software developers amongst others to implement or adapt schedulers.
The design of the framework allows for different task execution modes implemented by
the respective scheduler kernels to support, for instance, different parallel task graph
execution strategies.

57

CHAPTER 5. COMPONENT EXECUTION FRAMEWORK

Graph Execution Plugin Execution
SM serial serial/shared-memory

DTPM distributed serial/shared-memory
DDPM serial distributed

Table 5.1: Overview of graph and plugin execution modes supported by the component
execution framework.

Serial Task Parallel Data Parallel

Figure 5.13: Different task graph execution models, where each vertex of the graph rep-
resents a plugin. Grey and white shaded plugins denote different compute-units, e.g.,
MPI processes. In serial mode, one compute-unit executes all the tasks but only one
task at a time. In task parallel mode, different compute-units are responsible for sub-
sets of the task graph. In data parallel mode, each task is executed by every available
compute-unit, where each compute-unit processes only a subset of the data.

Table 5.1 discusses the available scheduler kernels. The SM-based kernel pro-
cesses one plugin at a time, where the individual plugins run either serial and/or par-
allel shared-memory-parallelized implementations restricted to a single process, such
as OpenMP. The DTPM kernel models the task parallel concept in an MPI context,
where plugins are executed in parallel by different MPI processes, if the respective de-
pendencies are satisfied. Consequently, applications with parallel paths in the graph
can benefit from such a scheduling approach, such as the already indicated wave front
simulations [149]. Finally, the DDPM kernel allows for a data parallel approach, where,
although each plugin is processed consecutively, the plugins’ implementation follows an
MPI-based parallelization approach. Such an approach allows, for instance, to utilize an
MPI-based linear solver component within a plugin, such as PETSc [122]. Figure 5.13
schematically compares the principles of the different execution modes, by mapping
components to vertices6 of a graph.

The currently implemented parallel scheduler focus on the distributed MPI. To better
support the ongoing development of continually increasing core numbers per comput-
ing target, scheduler kernels utilizing shared-memory parallelization approaches are
planned for future extensions. These future extensions are supported by the introduced
naming scheme for the scheduler kernels as well as by the applied modular kernel
approach.
6A vertex is a topological element of dimension 0. Its geometrical equivalent is a point.

58

CHAPTER 5. COMPONENT EXECUTION FRAMEWORK

5.3.2 Plugin System

This section discusses the design and implementation of ViennaX’s plugin system.
Figure 5.14 depicts the setup and exchange of a plugin. If the process of interchanging
plugins is compared to the one of conventional simulation tools, it becomes clear that
the conventional approach requires actual coding, and as such in-depth knowledge of
the implementation at hand. For obvious reasons, this fact impedes the implementa-
tion of changing functionality. With the plugin-based approach, the exchange can be
realized conveniently by only adjusting the input configuration data accordingly.

In the following, a factory [153] implementation is discussed, allowing to register and
to load plugins in an automatic manner. Also the utilized plugin interface is introduced
as well as the communication layer.

Empty plugin

Linear Solver I

A b

x

Solve Ax=b

Linear Solver IAvailable
external tool

Utilize external tool
in plugin

Use linear solver
plugin

Interchangeable
Linear Solver II

x

A b

Figure 5.14: A plugin can be used to wrap available functionality, like linear solver
implementations. Due to the abstraction mechanism provided by the socket input/output
dependencies, plugins can be exchanged by other plugins. In this case, a linear solver
implementation provided by ViennaCL as depicted in Section 5.3.3 is interchanged
with an implementations from PETSc.

Factory

The factory implementation enables to discover, load, and execute plugins. The applied
approach is based on the so called self-registering technique, enabling the plugins to
register themselves in a global plugin database upon loading the DSOs by the Portable
Operating System Interface (POSIX) dlopen command. The implementation is based
on the so-called template factory design pattern [24][154], which can be seen as an
extension of the abstract factory design pattern with C++ templates.

Figure 5.15 depicts a simplified class diagram of the registration mechanism. The
Base and Concrete template parameters refer to a base and a derived class of a class
hierarchy, respectively. This hierarchy in turn relates to the base and derived classed of
a plugin system, holding the actual functionality. Due to the increased genericity intro-
duced by the template factory design pattern, class hierarchies of arbitrary type can be
stored. However, the derived class has to satisfy a so-called registrable concept. This
concept requires the derived class to provide a static function named ID returning an
identification (ID) string and to offer a member type named Base holding the type of the
base class. The need for the registrable concept is discussed in the following.

59

CHAPTER 5. COMPONENT EXECUTION FRAMEWORK

+ ProviderBase

+ProviderBase(id : String)
+create(comm : Communicator) : Base*

Base

+ Provider

+create(comm : Communicator) : Base*

+ Factory

+<<static>> getInstance() : Factory<Base>&
+regist(prov : ProviderBase<Base>*,id : String)
+get(id : String) : ProviderBase<Base>*

Concrete

Base

Figure 5.15: Class diagram of the implemented template factory design pattern. The
constructor of the ProviderBase class registers instances of itself into the singleton
Factory class.

Each plugin source file holds aside of the implementation of the derived plugin
(ViennaCLLinSol) a static object of the type Provider<ViennaCLLinSol>. The Provider

class is part of the factory mechanism and provides automatic registration within the fac-
tory’s database. This automatism is based on the fact that static objects are generated
during the start-up phase of the application, thus the registration related code provided
by the Provider class is automatically executed before the main application is executed.

The constructor of Provider<ViennaCLLinSol> utilizes the registrable concept in-
duced interface to access the base class type and the ID string. This information is
forwarded to the ProviderBase<Base> constructor which in turn registers itself in the
instance of the singleton pattern-based factory class. Using the factory’s get method, a
specific plugin’s Provider class can be retrieved and created with the respective create

method.

Interface

This section discusses the plugin interface which has to be modeled by a ViennaX
plugin. Additionally, the general class hierarchy and the access for the ViennaX sched-
uler kernels is introduced.

ViennaX offers a three stage interface model, enabling an initialization, execution,
and finalize step realized by the init(), execute(), and finalize() functions, respec-
tively. Although such a three-stage interface is known to handle most application sce-
narios, more sophisticated needs cannot be covered by such an approach, for instance,
additional communication between the individual components. Therefore, improving the
interface for more intricate cases is part of future extensions.

The scheduler kernels use a load method to initialize the plugin with the plugin
specific configuration data and with a unique plugin ID integer. The constructors are
used by the factory mechanism to instantiate the plugins as well as providing the plugins
with a Communicator object.

60

CHAPTER 5. COMPONENT EXECUTION FRAMEWORK

If ViennaX is compiled with MPI support, the communicator refers to a Boost MPI
communicator, otherwise it maps to an integer value, enabling to compile ViennaX on
non-MPI targets without any changes.

With respect to the implementation, a straightforward dynamic polymorphism ap-
proach via virtual functions is used to specialize the functionality for each plugin. Boil-
erplate code7, required to implement, for instance, the appropriate plugin’s constructor,
is automatically generated by macros to increase the level of convenience.

Sockets

Aside of loading and executing plugin implementations via the interface, data commu-
nication between the plugins is a vital task in the field of CSE. For instance, a scalar
field representing the result of a simulation conducted in a plugin might be used as an
initial guess for another simulation performed by a subsequent plugin.

The approach for the plugin communication layer is based on previously conducted
research for the COOLFluiD framework [24]. We refer to the communication access
points in plugins as sockets. The socket system supports input and output data ports,
called sink and source sockets, respectively.

In general, the data associated with the sockets can either be already available,
thus no copying is required, or it can be generated automatically during the course of
the socket creation. The following code snippet creates a source socket, generating the
associated data object automatically.

create_source <Vector >("x");

The data of the socket can be accessed by the following.

Vector& x = access_source <Vector >("x");

If a data object is already available, the socket can be linked to it.

Vector x;

link_source(x, "x");

Similar implementations for socket creation and access are available for sink sock-
ets.

Figure 5.16 gives an overview of the socket implementation via a class diagram. In
general, the socket hierarchy utilizes a socket ID class and a database class to store
the data associated with the sockets (Figure 5.17). Sockets can be compared to en-
able matching validation tests. The remainder of this section discusses the database
implementation and the socket class hierarchy.

The DataBase class provides a centralized, generic storage facility for the data as-
sociated with the sockets. This storage additionally provides access and lookup mech-
anisms for retrieving and deleting the data objects of a given socket. The storage inter-
nally uses an associative container, mapping a string ID value to a void-pointer, thus
being able to hold pointers of arbitrary type.

7Boilerplate code indicates code that occurs often in the implementation with almost no changes. There-
fore it is cumbersome to implement as well as to maintain and is thus often the target of automated code
generation using macros.

61

CHAPTER 5. COMPONENT EXECUTION FRAMEWORK

+ DataSocket

+m_id : DataSocketID

+match(sck : DataSocket*) : Boolean

+ BaseDataSocketSource

+m_plugged : Boolean
+m_db : DataBase*

+allocate(db : DataBase*)

+ DataSocketSource

+m_data : T*

+allocate(db : DataBase*)
+get_data() : T*

+ BaseDataSocketSink

+plug_to(src : BaseDataSocketSource*)
+plug_to(db : DataBase*)
+is_plugged() : Boolean

+ DataSocketSink

+m_source : DataSocketSource<T>*

+plug_to(src : DataBase*) : int
+is_plugged() : Boolean
+get_data() : T*

T
T

Figure 5.16: Class diagram of the socket system.

+ DataSocketID

+m_name : String
+m_type : String

+operator==(id : DataSocketID) : Boolean

+ DataBase

+m_database : map<String, void*>

+add<Data>(data : Data*,name : String)
+access<Data>(name : String) : Data*
+is_avail<Data>(name : String) : Boolean
+erase<Data>(name : String)

Figure 5.17: Class diagram of the socket database and ID class.

The ID string is generated from the name of the socket and the type string, thus as
long as the names are unique, the data can be clearly identified even if the types are
the same. This access mechanism represents the key of the entire socket-based data
communication layer. The applied socket data storage approach decouples the actual
storage related tasks from the actual socket implementations, thus improving main-
tainability and expandability as, for instance, possible future extensions to the socket
storage layer can be conducted without interfering with the socket implementations.

To enable storing source and sink sockets and holding data of arbitrary types in
a homogeneously typed data structure, a virtual inheritance approach is applied. As
such, source and sink sockets are generalized by the BaseDataSocketSource and
BaseDataSocketSink classes, respectively. The derived, type-aware socket class spe-
cializations DataSocketSource/Sink, provide access to the associated data object via
the get data function. In general, a source socket holds the actual data pointer (m data),
whereas the sink socket merely points to the corresponding source socket (m source).
A sink socket has thus to be linked to a source socket via the plug to method, which is
explained in the following.

Before working with the socket data, the source sockets have to be allocated and
the sink sockets have to be linked to their respective source counterparts. This step
can be implemented using the allocate and plug to methods. The allocate function
requires a pointer to an already available socket database object, which is then used
for the allocation implementation, as depicted in the following.

1 db ->add(m_data , m_name);

2 m_db = db;

62

CHAPTER 5. COMPONENT EXECUTION FRAMEWORK

In Line 1 the data pointer (m data) is added to the socket database (db), whereas in
Line 2 the externally provided database pointer is stored locally for future references.

The socket linking step, required for accessing the data of sink sockets, is imple-
mented by the plug to method, which prior to updating the internal source socket
pointer verifies socket compatibility.

1 if(match(src)) m_source =

2 static_cast <DataSocketSourceT *>(src);

Therefore, a suitable external source socket has to be provided by the calling in-
stance utilizing the DataSocketID information.

Aside of the exchange of data between plugins, the data communication layer in-
herently supports an approach to handle physical units in a straightforward manner. As
already discussed, units are a major concern in CSE, as mixing the units between func-
tions obviously results in a major corruption of the computational result [111]. As such
it is of utmost interest to introduce automatic layers of protection to ensure that required
data is given in the expected units. The communication approach enables to tackle this
particular challenge by, for instance, coupling the unit information to the string-based
ID of the sockets. As the automatic socket plugging mechanism requires the sink and
source socket to have not only the same type, but also the same ID string, a sink and a
source socket with different ID will not be connected. The string-based approach allows
for coupling arbitrary properties to the sockets, making it a highly versatile system to
impose correctness on the plugin data connections.

5.3.3 Exemplary Plugin Implementation

For the sake of clarity, an exemplary plugin implementation is provided, which not only
depicts the utilization of the developed framework with respect to using already available
implementations in plugins, but is also a reference for the subsequent investigation of
the implementation details.

The plugin wraps a ViennaCL [68] iterative linear solver implementation, a high-
performance reusable linear solver component supporting shared-memory computing
platforms as well as accelerators (Section 5.1). Utilizing ViennaCL in this example
additionally underlines the straightforward applicability of our framework with respect to
utilizing already available implementations.

63

CHAPTER 5. COMPONENT EXECUTION FRAMEWORK

In the following, the full implementation of a simplistic ViennaCL-powered iterative
solver plugin is given.

1 // Plugin Name

2 #define PLUGIN_NAME ViennaCLLinSol

3 // Plugin Class Implementation

4 struct PLUGIN_NAME : public plugin {

5 INIT_VIENNAX_PLUGIN

6 // Initialization: Setup Sockets

7 void init() {

8 create_sink <Matrix >("A");

9 create_sink <Vector >("b");

10 create_source <Vector >("x"); }

11 // Execution: Perform computation

12 bool execute(std:: size_t call) {

13 // Access socket data

14 Matrix& A = access_sink <Matrix >("A");

15 Vector& b = access_sink <Vector >("b");

16 Vector& x = access_source <Vector >("x");

17 // Solve the system

18 x = solve(A, b, bicgstab_tag ());

19 return true; } };

20 FINALIZE_VIENNAX_PLUGIN

The plugin’s name (Line 2), class definition (Lines 4), and required macros - au-
tomatically generating boilerplate code required for the plugin mechanism - are im-
plemented (Lines 5, 20). The data dependencies are set up in the initialization part
(Lines 7-10). Two input sockets (A, b) and one output socket (x) are created in ViennaX’s
central socket database, relating to the linear system Ax = b. The data associated with
the sockets are accessed (Lines 14-16) and the system is solved by using ViennaCL’s
biconjugate gradient stabilized linear solver [68] (Line 18). The result vector x is auto-
matically available to other plugins via the outgoing data connection.

5.3.4 Configuration

Supporting a run-time configuration allows to define and drive the execution of the
framework without the need for recompilation. As already indicated, ViennaX utilizes
an input file - potentially provided by advanced users - approach based on XML, which’s
path is provided to the application via a command-line argument. Such a file-based
method also enables possible future pairing with a GUI application generating configu-
ration files upon an end user’s behest in a straightforward manner, therefore eliminating
the need for users to generate the configuration files by hand, further improving the
support for end users. This input file contains information regarding the components to
be utilized for the execution and also parameters for each component. In a first step
the framework processes this input configuration and extracts the list of components
to be utilized for the execution. According to this list, the corresponding components
are created. In a second step, the component-specific parameters are extracted and
forwarded to each individual component, allowing the component to change the setup
of its input and output dependencies accordingly. In the following step, the execution
order is determined by the schedulers, as the input and output dependencies are - at
this point - final.

64

CHAPTER 5. COMPONENT EXECUTION FRAMEWORK

Using an XML approach for the input configuration data offers similar advantages
as the previously discussed material database approach introduced in the context of
the device simulation framework (Section 4.3.2). Most essential is the support for an
arbitrary number of components, by using a dedicated XML tag. Also, the component-
specific properties offer similar characteristics to material parameters, for instance,
physical units. Furthermore, XML-based data are advantageous because of a rich
ecosystem of libraries and tools, such as GUI based XML editors easing the interaction
of XML files, especially important for large files. Additionally, having the parameters
available in XML format enables the utilization of XPath queries to conveniently access
the data from within the component framework and the actual components.

<plugins>
 <plugin>
 <key>ViennaCLLinSol</key>
 <tol>1.0E-10</tol>
 </plugin>
 <plugin>
 <key>PETScLinSol</key>
 <iter>200</iter>
 </plugin>
 ...
</plugins>

std::string tol = query("plugin/tol/");

std::string iter = query("plugin/iter/");

ViennaCLLinSol

PETScLinSol

Figure 5.18: Each plugin possesses its own configuration region within the input config-
uration file. In this representative case default values for a break-tolerance of 10−10 for
a ViennaCL linear solver component and an iteration limit of 200 iterations for a PETSc
linear solver component are used. The values can be accessed from within the plugin
by querying the configuration object.

In the following, we shall adapt the already introduced approach for a general pa-
rameter database in the context of the configuration of a component framework. A basic
configuration file providing default values - potentially being generated by a GUI-based
application to better support end users- with the sole purpose of executing the plugin
named ViennaCLLinSol is depicted in the following.

1 <plugins >

2 <plugin >

3 <key>ViennaCLLinSol </key>

4 <tol>1.0E-10</tol>

5 </plugin >

6 </plugins >

The general plugins region contains the set of all plugins, which should be utilized
during the execution (Lines 1-6). Each plugin is defined within its own region (Lines 2-
5), which enables to pass parameters to the plugin instance (Figure 5.18). The name of
the plugin has to be mentioned within the key region (Line 3), and must match the name
as provided by the static ID method provided by the respective plugin (Section 5.3.2).

5.3.5 Scheduler Kernels
This section discusses the design and implementation of different scheduler kernels. In
particular, a serial scheduler is discussed as well as a task parallel scheduler - com-
ponents can be executed by different MPI processes if possible - and a data parallel
scheduler - all components execute the same instructions, but solely on a specific sub-
set of the data.

65

CHAPTER 5. COMPONENT EXECUTION FRAMEWORK

Serial Mode

The SM kernel is used for serial task graph execution on a shared-memory machine.
Although the task graph is processed in a serial manner, the individual plugins can
indeed utilize shared-memory parallelization approaches, such as OpenMP. The task
graph implementation is based on the Boost Graph Library [48][155], which not only
provides the data structure but also graph algorithms, such as topological sort [156].

The serial scheduler is based on the list scheduling technique [157]. Informally, this
technique uses a prioritized sequence of tasks, which is then processed consecutively.
Figure 5.19 depicts the major steps of execution flow.

Generate Plugins

Generate Socket Database

Setup Sockets

Build Task Graph

Prioritize Tasks

Process Graph

Figure 5.19: Flow diagram of the SM scheduler kernel.

As previously discussed in the context of the framework’s configuration mechanism,
the plugins are loaded according to the input configuration file (Section 5.3.4) by the
factory mechanism (Section 5.3.2). Each plugin is configured based on the parameters
listed in the input file. With these parameters the input and output dependencies are
defined.

A task graph meshing algorithm connects the various plugins based on their depen-
dencies. The meshing procedure is based on plugging the sink sockets of the plugins
to valid source sockets of other plugins (Section 5.3.2). Validity is ensured by compar-
ing the socket IDs, incorporating the socket key as well as the data associated with the
socket. The generated task graph is used for building the prioritized sequence, gener-
ated by the Boost Graph’s topological sort graph algorithm, as depicted in the following.

1 std::list <Vertex > plist;

2 boost :: topological_sort(graph ,

3 std:: front_inserter(plist));

The graph object is a directed graph data structure, which is used to hold the en-
tire task graph. A directed graph is a graph consisting solely of directed edges, i.e.,
edges pointing from a source to a target vertex. In addition, the graph must not con-
tain cycles8, also known as loops. If these conditions are satisfied, the topological
sort algorithm can be utilized to generate a linear sequence of vertices - representing
the ViennaX components - which upon execution guarantees that the input dependen-
cies of each component are met. More concretely, the prioritized sequence of tasks
is processed consecutively by traversing the result container plist and executing the
individual plugins via the plugin’s execute interface method (Section 5.3.2). Note that
the linear solver plugin introduced in Section 5.3.3 can be utilized with this scheduler.
8A graph which does not contain loops is typically referred to as acyclic.

66

CHAPTER 5. COMPONENT EXECUTION FRAMEWORK

Despite of the acyclic requirement, the SM scheduler supports loops by identifying
the loop entry vertex and the loop exit vertex. These particular vertices are identified
by a loop-detection algorithm based on Boost Graph’s implementation of Tiernan’s ap-
proach to detect cycles in an acyclic graph [158]. The loop is then broken up to satisfy
the acyclic condition, followed by executing the topological sort algorithm to determine
the linear execution sequence. ViennaX manually triggers a re-execution of the sub-
graph representing the loop part via the previously identified loop vertices.

To implement a loop, the components representing the previously mentioned loop
entry and loop exit vertices, need to provide a sink-source socket connection represent-
ing the loop. To this end, the loop exit component implements a source socket whereas
the loop entry component provides a corresponding sink socket, thus closing the loop
via a backwards connection. As this connection is merely required for establishing a
dependency in the task graph, the associated data is irrelevant, and can thus be cho-
sen arbitrarily. The loop exit component is responsible for triggering a loop continuation
or a loop exit by either returning false or true at the end of the execution method, re-
spectively. The framework evaluates the boolean return value and acts accordingly.

Distributed Task Parallel Mode

The DTPM scheduler kernel enables applications focusing on a task parallel approach.
In general, the scheduler follows a static scheduling approach, based on load balancing
indicated by optional plugin weights. Similar workload distribution approaches are avail-
able, focusing on dynamic scheduling implementations based on, for instance, work-
stealing [159][160]. The execution of the individual plugins is distributed among the
available MPI processes. Therefore, a considerable speedup of the task execution can
be achieved, if the task graph offers parallel paths. Figure 5.20a depicts the flow dia-
gram of the scheduler.

The DTPM scheduler has two peculiarities: First, the global task graph is partitioned
and ultimately the individual subgraphs are processed by different MPI processes. Sec-
ond, as the plugins sharing a data connection might be executed on different MPI pro-
cesses, an extension to the socket data communication layer incorporating the dis-
tributed memory environment is required.

The distribution of the workload is based on the METIS graph partitioning library [161],
to automatically improve the efficiency of the parallel execution of the task graph. A
weighting approach is implemented enabling an advanced user or a developer to as-
sign a weight to the plugin implementation via a corresponding method, indicating the
computational load of the respective component. This load value is used by METIS,
aiming to equalize the computational effort over the generated partitions, thus improv-
ing parallel execution efficiency. In general, the larger the assigned value the larger the
associated computational load of the respective component. Considering four compo-
nents (each offering a load of one) and two processes, each process will be assigned
two components as each process is responsible for a computational load of two. How-
ever, if one component has a load of three instead, one process will be responsible for
three components, whereas the other will be dealing with one component; in this case
both processes will handle a computational load of three.

67

CHAPTER 5. COMPONENT EXECUTION FRAMEWORK

With respect to the implementation of the METIS-based graph partitioning, inter-
nally, the developed framework approach converts the Boost Graph-based graph data
structure to a compressed sparse row format [120], which is required by the METIS API.
The computational weights are transferred to the METIS backend and the correspond-
ing partitioning algorithm is executed. The algorithm aims to minimize the so-called
edge-cut, aiming to minimize the number of edges which straddle partitions by simul-
taneously balancing vertex weights across partitions. Upon completion, each vertex
is assigned a partition number which is used by ViennaX to distribute the workload
among the MPI processes accordingly.

The second peculiarity of the DTPM scheduler, being the incorporation of a dis-
tributed memory environment into the socket data communication layer, is based pri-
marily on the non-blocking point-to-point communication capabilities of the MPI layer.
The graph partitioning step yields, aside of the MPI process assignments of the plugins,
a lookup table for the socket communication. Each MPI process holds its own socket
database, and utilizes the communication lookup table to determine the corresponding
transmission sources and sinks. This mechanism is utilized after a plugin has been ex-
ecuted on an MPI process, where its source sockets requiring outbound inter-process
communication are traversed and the transmission is initiated.

In general, the non-blocking point-to-point methods are utilized to increase execu-
tion performance. This is crucial, as an MPI process should in the optimal case not
wait for an outgoing transmission to be finished before it executes another plugin. Such
an approach is typically referred to as overlapping communication with computation.
However, using a pure MPI approach and therefore non-blocking communication meth-
ods, such an overlap is rarely achieved. In fact, specialized hardware and software
is required to achieve a reasonable overlap, for instance, Cray’s XE6 with Gemini in-
terconnects is capable of delivering such an overlap [100]. A possible future exten-
sion would be a hybrid approach, utilizing MPI and threads to implement a true asyn-
chronous approach, thus introducing a much more improved overlap of communication
and computation. The DTPM scheduler currently does not support loops, being espe-
cially challenging due to the distributed nature of the components requiring additional
communication to orchestrate a looped-execution.

The linear solver plugin introduced in Section 5.3.3 can be utilized with this sched-
uler, as each plugin is executed by one process. Therefore, one MPI process accesses
the available computational resources via the parallel accelerator layer.

Distributed Data Parallel Mode

The DDPM scheduler kernel enables simulations based on the data parallel approach.
Figure 5.20b depicts the flow diagram of the scheduler implementation. Contrary to the
DTPM scheduler, the graph is not partitioned as all plugins are processed by all MPI
processes in the same sequence. The root process prepares the task graph and gen-
erates a prioritized list of plugins. This list is distributed to all MPI processes each pro-
cessing the graph in its entirety. As with the DTPM scheduler, each MPI process holds
its own socket database responsible for storing the data associated with the sockets on
the local process.

68

CHAPTER 5. COMPONENT EXECUTION FRAMEWORK

R
oo

t
A

ll

Generate Plugins

Generate Socket Database

Setup Sockets

Build Task Graph

Prioritize Tasks

Distribute Subgraph

Process Subgraph

(a) DTPM

Generate Plugins

Generate Socket Database

Setup Sockets

Build Task Graph

Prioritize Tasks

Distribute Graph

Process Graph

(b) DDPM

Figure 5.20: (a) Flow diagram of the DTPM scheduler kernel. The root MPI process
is responsible for preparing and distributing the workload evenly between the compute
units. All available compute units process their distinct parts of the graph. The fact
that this scheduler assigns parts of the graph to the compute units is indicated by the
respective Subgraph nodes. (b) Flow diagram of the DDPM scheduler kernel. Similar
to the DTPM scheduler, the root MPI process prepares the entire task graph. However,
the entire workload is distributed to all MPI processes, as each process executes the
entire task set represented in the task graph.

A peculiarity of the DDPM scheduler kernel is the fact that each plugin has access
to an MPI communicator object via the comm method, providing access to the entirety of
the MPI environment. The following code snippet depicts an exemplary utilization in a
plugin’s implementation to evaluate the rank of the current MPI process.

1 if (comm (). rank() == 0) {

2 // Root code

3 }

A Boost MPI communicator object offers implicit conversion to a raw MPI communi-
cator, ensuring interoperability with non-Boost MPI implementations.

Figure 5.21 shows the execution behavior of the scheduler. Each plugin is pro-
cessed by all MPI processes and has access to an MPI communicator. Inter-plugin
communication is provided by the socket data layer, whereas inter-process communi-
cation is supported by the MPI library.

Note that the utilization of the linear solver plugin introduced in Section 5.3.3 is not
reasonable here, as in this case each process would perform the computation, thus
massively overburdening the compute unit beyond reasoning. For the scheduler at
hand, an MPI-powered linear solver implementation is the proper choice, as is provided
by, for instance, the PETSc library.

5.3.6 Examples

This section presents application results for each scheduler provided by ViennaX. Due
to the nature of ViennaX, the framework can be applied to different fields of CSE. To
reflect this fact the discussed examples have been selected accordingly by investigating
application scenarios outside of the field of MNDS.

69

CHAPTER 5. COMPONENT EXECUTION FRAMEWORK

MPI MPI MPI

P0 P1 P2 P3
IF(RANK==0)
 COMPUTE

COMPUTE

MPI MPI MPI

SC
K

SC
K

SC
K

SC
K

Pl
ug

in
 1

Pl
ug

in
 2

Figure 5.21: Exemplary execution behavior of the DDPM scheduler based on two plug-
ins and four MPI processes. The bars in the right part of the figure indicate the computa-
tional load. Each MPI process executes the individual plugin. Additionally, each plugin
has access to an MPI communicator object, enabling not only classical data parallel
execution modes but also plugin inter-process communication. Inter-plugin communi-
cation is realized by the socket mechanism (SCK).

Serial Mode

This section discusses adaptive mesh refinement (AMR), a typical requirement for FE
simulations. The general idea is to improve the solution process by locally adapting
the mesh during the course of the simulation. Usually, a first solution is computed
based on an initial mesh. Based on this solution, the mesh is locally adapted. Typi-
cally, a refinement is conducted in regions with large gradients or large curvatures in
the solution [162][163]. Increasing the resolution, i.e., adding mesh elements in areas
of interest, tends to increase the overall accuracy. The adaptation and solution steps
are repeated, until a certain threshold level is reached as indicated by an error estima-
tor [164].

In the following, an example application provided by the deal.II library is investi-
gated [92]. This discussion is followed by depicting a decoupled implementation includ-
ing simulation results based on ViennaX. Concretely, the step-8 example, dealing with
an elasticity problem coupled with an iterative AMR scheme is analyzed and ViennaX’s
loop mechanism for modeling the iterative nature of the AMR algorithm is investigated.
We analyze the initial implementation, followed by a detailed description of a decoupling
scheme.

The initial implementation is based on a single C++ source file, containing a class
implementation (ElasticProblem), which provides methods to utilize the deal.II library
for solving the elasticity problem.

70

CHAPTER 5. COMPONENT EXECUTION FRAMEWORK

The subsequent code discussion is based on the class interface instead of the full
implementation.

1 template <int dim >

2 class ElasticProblem { // ..

3 void run ();

4 void setup_system ();

5 void assemble_system ();

6 void solve ();

7 void refine_grid ();

8 void output_results (const unsigned int cycle) const; };

The structure of the class implementation provides an intuitive description of the en-
tire simulation process. The class itself is parameterized via the compile-time template
parameter dim (Line 1), indicating the dimensionality of the problem. The run() method
(Line 3) drives the overall simulation by performing the iteration process, in turn calling
the individual methods required for the computation (Lines 4-8). As the focus of this par-
ticular application example is on implementing the AMR algorithm via the ViennaX loop
mechanism, the implementation of the run() method deserves closer investigation:

1 template <int dim >

2 void ElasticProblem <dim >:: run () {

3 for (unsigned int cycle =0; cycle <6; ++ cycle) {

4 if (cycle == 0) { // Initial mesh generation

5 hyper_cube (triangulation , -1, 1);

6 triangulation.refine_global (2); }

7 else refine_grid (); // AMR

8 setup_system ();

9 assemble_system ();

10 solve (); } }

The AMR loop is implemented via the for-loop and the refine grid method (Lines 3-
7). In the first iteration an initial mesh is generated (Lines 4-6). During each loop
iteration all steps required for this particular FE simulation are conducted, being the
assembly of the linear system of equations and the linear solution process (Lines 8-10).

Concerning the implementation of a decoupled version by using ViennaX, an exem-
plary decoupling of this particular simulation is schematically depicted in Figure 5.22.

Assembly/AMR
Solve
Output writer

Solve

Assembly/AMR

Output writer

Figure 5.22: The schematic overview of the initial deal.II example (left) and the pro-
posed decoupling into a loop-based execution graph (right) is shown. For the sake of
simplicity, the sockets are abstracted by single edges.

Note that this particular ElasticProblem class implementation had to be slightly al-
tered to allow external access to the data structures and methods. In the following, we
focus on the implementation aspects of the Assembly/AMR and Output writer compo-
nent.

71

CHAPTER 5. COMPONENT EXECUTION FRAMEWORK

The initialization phase of the Assembly/AMR component is implemented as follows.

1 // Component state

2 ElasticProblem <2> sim; /* .. */

3 void init() { // Initialization method /* .. */

4 link_source(sim , "sim");

5 create_sink <bool > ("loopback"); }

We omit the instantiation of the data structures for the mesh, the system matrix,
and the load vector. These data structures - kept in the state of the component - are
forwarded to the constructor of the sim object. An additional sink socket is used for the
loop mechanism (Line 5). A corresponding source socket is used in the last component
in the loop sequence, being the Output writer component.

The implementation of the execution part is similar to the original version.

1 bool execute(std:: size_t call) {

2 if (call == 0) {

3 hyper_cube (triangulation , -1, 1);

4 triangulation.refine_global (4); }

5 else sim.refine_grid ();

6 sim.setup_system ();

7 sim.assemble_system ();

8 return true; }

No explicit loop mechanism is required, such as a for-loop, as ViennaX automati-
cally issues a re-execution of the components within the loop. However, to keep track of
the loop iteration within the component, the call variable is used (Lines 1,2), replacing
the originally utilized cycle loop parameter. The sim object is used to call the respective
methods for assembling the linear system of equations (Lines 5-7).

The Output writer component is - additionally to generating the simulation output
files - responsible for notifying ViennaX whether to continue the loop. Aside of the obvi-
ous sink sockets required to access the result data to be written to a file, this particular
component has to provide a complementary source socket to close the loop defined in
the initialization phase:

1 create_source <bool > ("loopback");

This socket is not required for actual data communication, it is merely required to
inform ViennaX that there is a backward-dependence.

The execution phase utilizes the boolean return value to indicate whether the loop
has to be continued. In the following example, after six executions, the loop is exited.

1 bool execute(std:: size_t call) { /* .. */

2 if(call == 6) return true;

3 else return false; }

In Lines 2,3 ViennaX’s loop break condition is implemented by comparing the call

parameter with the intended number of six loop iterations. In this exemplary case, the
value is hard coded, however, it can also be implemented in a non-intrusive manner via
the data query mechanism provided by ViennaX’s configuration facility (Section 5.3.4).
By convention returning true forces ViennaX to exit the loop, whereas returning false

triggers a new iteration.

72

CHAPTER 5. COMPONENT EXECUTION FRAMEWORK

Figure 5.23 depicts exemplary simulation results for a three-dimensional simulation
based on the introduced decoupled implementation.

3.4e-20

1e-2 2e-2 3e-2

1.3e-20

4e-3 8e-3 1.2e-2

1.2e-22.5e-4

2e-3 4e-3 6e-3 8e-3 1e-2

1.2e-47.2e-6

2e-5 4e-5 6e-5 8e-5 1e-4

Figure 5.23: Top: The x-displacement for the deal.II example for the initial (left) and
the six-times adapted mesh (right). Bottom: The maximum error (infinity norm) of the
computed error estimates drops from 0.012 to 3.9·10−5. The depicted error estimates for
the sixth iteration would trigger a refinement in the corners in the subsequent iteration
step, as due to the continuing reduction in the error the relative small solution gradients
become relevant.

Distributed Task Parallel Mode

This section investigates the scalability of the DTPM scheduler by a Mandelbrot bench-
mark as implemented by the FastFlow framework [165][166]. Implementation details of
the benchmark are provided as well as performance results. This example has been
benchmarked on HECToR [167], a Cray XE6 supercomputer with a Gemini interconnect
located at the University of Edinburgh, Scotland, UK.

The DTPM scheduler is used to compute the Mandelbrot set for a partitioned ap-
plication domain by using different instances of a Mandelbrot plugin responsible for the
individual parts. This particular example has been chosen, as the computational effort
of computing the Mandelbrot set is inhomogeneously distributed over the application
domain. Therefore, the computational load of the individual parts have to be weighted
accordingly to improve the scalability.

73

CHAPTER 5. COMPONENT EXECUTION FRAMEWORK

The partial results are gathered at the end of the simulation, which provides insight
into the communication overhead (Figure 5.24). The implementation of the Mandel-
brot plugin performs a partitioning of the simulation domain. Thus, each instance is
responsible for a subdomain, which is identified by the plugin index. In its essence, this
approach follows a data parallel approach, which also shows that the DTPM can be
used for such kind of tasks, despite of its inherent focus on task parallelism.

Gather

MB MB MB

1000x / 4000x

Figure 5.24: The graph for the Mandelbrot benchmark. 1000 and 4000 instances of the
Mandelbrot plugin (MB) have been used. The partial results are gathered, which forces
MPI communication.

Two different simulation domains have been investigated, being a grid of 1000x1000
and 4000x4000 to demonstrate the influence of varying computational load on the scal-
ing behavior. Each plugin processes one line of the grid, consequently 1000 instances
for the smaller and 4000 instances for the larger case have been used.

The following depicts the configuration file for the smaller benchmark.

1 <plugins >

2 <plugin >

3 <key>Mandelbrot </key>

4 <clones >1000</clones >

5 <dim>1000</dim>

6 <niters >10000000 </niters >

7 </plugin >

8 <plugin >

9 <key>MandelbrotGather </key>

10 </plugin >

11 </plugins >

The clones entry triggers an automatic duplication of the plugin in ViennaX, thus
in this case 1000 instances of the Mandelbrot plugin are generated. The parameters
dim and niters are forwarded to the plugins and relate to the number of grid points in
one dimension and the number of iterations (in this case 107 iterations are conducted to
increase the computational effort) used in the Mandelbrot algorithm, respectively. The
configuration of the larger benchmark is similar, however, the number of clones and
dimensions is increased to 4000, respectively.

During the Mandelbrot plugin’s initialization phase, the output socket has to be gen-
erated as well as the computational level of the plugin has to be set to balance the
computational load over the computational resources. A peculiarity of computing the
Mandelbrot set is the fact that the computational load in the center is larger than on
the boundary. Therefore, a weighting scheme has been applied to increase the load
balancing over the MPI processes. The plugin instances in the center are assigned a
higher computational weight (Section 5.3.5) as depicted in the following.

74

CHAPTER 5. COMPONENT EXECUTION FRAMEWORK

1 void init() {

2 double current = pid ();

3 if((current >= dim *0.45) &&

4 (current <= dim *0.55))

5 computation_level () = 100;

6 // ..

7 }

In Line 2 the current plugin ID is extracted, which has been provided by the sched-
uler during the preparation phase (Section 5.3.2). As each plugin is responsible for a
single line of the simulation grid, its ID is tested whether it is responsible for the central
part. In this case, the central part is identified by evaluating whether the component is
responsible for the centered 10% of the grid line, i.e., to be larger equal than 45% (0.45)
and smaller equal than 55% (0.55) of the grid line dimension. If so, the computational
level is set to a high value, such as 100 in this case, to ensure that these center com-
ponents are equally spread over the computational resources by the scheduler’s graph
partitioner.

As each plugin computes a subset of the simulation result, the output port has to be
localized with respect to the plugin instance to generate a unique socket. As already
stated, the socket setup has to be placed in the initialization step.

create_source_local <Vector >("vector");

This socket generation method automatically generates sockets of the type Vector

and the name vector including an attached string representing the plugin ID, retrieved
from the pid method. This approach ensures the generation of a unique source socket
for each Mandelbrot plugin instance.

The execution part accesses the data associated with the source socket and uses
the data structure to store the computational result. The plugin ID is used as an offset
indicating the responsible matrix line which should be processed.

bool execute(std:: size_t call) {

Vector & vector =

access_source_local <Vector >("vector");

i = pid();

for (j = 0; j < dim; j++) {

// compute k as a function of i and j

vector[j] = k;

}}

On the receiving side, the Gather plugin’s initialization method generates the re-
quired sink sockets using a convenience function.

1 void init() {

2 create_sink_set <Vector >("vector");

3 }

The above method automatically generates one sink socket for 0 . . . n− 1 predeces-
sor plugins, where n represents the current plugin ID. Therefore, all previous output
ports generated by the Mandelbrot plugins can be plugged to the respective sink sock-
ets of the Gather plugin.

75

CHAPTER 5. COMPONENT EXECUTION FRAMEWORK

Cores

S
p
e
e
d
u
p

32 64 128 256 512

3
2

6
4

1
2
8

2
5
6

5
1
2

Strong Scaling

1000x
4000x

Figure 5.25: The strong scaling behavior of the Mandelbrot benchmark. Increasing
the computational load on the plugins shifts the scaling saturation towards higher core
numbers. The smaller problem scales well for up to 256 cores, however, for higher core
numbers the communication overhead outpaces the computational load on the plugins.
Both benchmarks depict a non-optimal speedup for small core numbers, which is due
to communication overhead and insufficient load balancing.

The execution phase is dominated by a gather method, similar to the MPI counter-
part.

1 bool execute(std:: size_t call) {

2 std::vector <Vector > matrix;

3 gather <Vector >("matrix", matrix);

4 }

The partial results of the 0 . . . n− 1 predecessor plugins are stored consecutively in
a vector container, thus forming the result matrix where each entry corresponds to a
point on the two-dimensional simulation grid.

Figure 5.25 depicts the strong scaling results, i.e., a fixed problem size is investi-
gated for different core numbers. Reasonable scaling is achieved, although commu-
nication overhead and load balancing problems are identifiable already for small core
numbers. However, increasing the computational load on each plugin and the number
of plugins to be processed by the MPI processes further shifts the scaling saturation
towards higher core numbers. For the smaller problem an efficiency of 38% and for
the larger problem an efficiency of 60% for 512 cores is achieved. Improving the load
balancing via the plugin weighting approach as well as introducing a hybrid scheduler
to improve communication and computation overhead will further improve the scaling
behavior.

76

CHAPTER 5. COMPONENT EXECUTION FRAMEWORK

Distributed Data Parallel Mode

The DDPM scheduler is investigated by comparing the execution performance to a
reference implementation provided by the deal.II library [91][92]. This benchmark not
only shows that an available implementation using external high-performance libraries
can be transferred to the ViennaX framework in a straightforward manner, but also
that the execution penalty of using the framework is negligible. Similar to the previous
example, HECToR [167] was used as benchmark target.

A large-scale two-dimensional Laplace test case named step-40 of the deal.II li-
brary offering 67 million degrees of freedom is considered, which utilizes components
representing important aspects of large-scale high performance computing applica-
tions [168]. For instance, the data structure holding the mesh and the linear system
is fully distributed by using data structures provided by the PETSc library [122] and
the p4est library [169][170]. The equations are discretized using biquadratic finite ele-
ments and solved using the conjugate gradient method preconditioned by an algebraic
multigrid method provided by the Hypre [171] package and accessed via PETSc.

The reference implementation is split into two functional parts, being the assembly
by the deal.II library and the solution of the linear system via the PETSc library. There-
fore, two plugins have been implemented, which also underlines the reusability feature
(Figure 5.26). For instance, the linear solver plugin can be replaced with a different
solver without changing the implementations.

PETSc Solver

deal.II Assembly

A b Meta
PETSc Solver

deal.II Assembly

A b Meta
PETSc Solver

deal.II Assembly

A b Meta

P0 P1 Pn

PETSc Solver

deal.II Assembly

A b Meta

Figure 5.26: The graph of the deal.II benchmark, which is executed by all MPI pro-
cesses (P0-Pn). The system matrix (A) and the right-hand side (b) as well as meta
information (Meta) is forwarded to the solver plugin via the socket communication layer.

The following depicts the configuration file for the benchmark.

1 <plugins >

2 <plugin >

3 <key>deal.II.Assemble </key>

4 </plugin >

5 <plugin >

6 <key>PETSc.Solve</key>

7 </plugin >

8 </plugins >

77

CHAPTER 5. COMPONENT EXECUTION FRAMEWORK

The assembly plugin’s initialization phase prepares the distributed data structures
as well as provides the source sockets. The data structures required for the com-
putation are generated and kept in the plugin’s state. Therefore, the source sockets
are linked to the already available objects, instead of created from scratch during the
socket creation. The execute method of the assembler plugin forwards the simulation
data structures to the implementation provided by the deal.II example, which performs
the actual distributed assembly. This fact underlines the straightforward utilization of al-
ready available implementations by ViennaX plugins. The following code snippet gives
a basic overview of the assembly plugin’s implementation.

1 // Plugin state

2 Matrix matrix;

3 Vector rhs;

4 Mesh triangulation;

5 Simulation sim;

6

7 void init() {

8 link_source(matrix , "matrix");

9 link_source(rhs , "rhs");

10 // ..

11 }

12

13 bool execute(std:: size_t call) {

14 GridGenerator :: hyper_cube (triangulation);

15 triangulation.refine_global (10);

16 sim.assemble_system ();

17 }

The plugin state holds various data objects (Lines 2-5). The sim objects holds
references of the other objects, thus the internals of the simulation class can access the
data structures. The source sockets link to already available data objects (Lines 8,9).
The simulation grid is generated (Lines 14,15) and the linear system (matrix, rhs) is
assembled (Lines 16).

The solver plugin generates the corresponding sink sockets in the initialization part
and utilizes the PETSc solver environment in the execution method. As each MPI pro-
cess holds its own instance of the socket database, the pointers of the distributed data
structures are forwarded from the assembler to the solver plugin. The PETSc internals
are therefore able to work transparently with the distributed data structures without the
need for additional copying operations. The following depicts the crucial parts of the
solver plugin’s implementation.

1 void init() {

2 create_sink <Matrix > ("matrix");

3 create_sink <Vector > ("rhs");

4 }

5 bool execute(std:: size_t call) {

6 Matrix &matrix=access_sink <Matrix >("matrix");

7 Vector &rhs =access_sink <Vector >("rhs");

8 // compute solution vector x }

78

CHAPTER 5. COMPONENT EXECUTION FRAMEWORK

Figure 5.27 compares the execution performance of the ViennaX implementation
with the deal.II reference implementation. A system of 67 million degrees of freedom is
investigated, which due to it’s memory requirements does not fit on one compute node.
Generally, excellent performance is achieved, however, an overall constant performance
hit of about one second for all core numbers is identified. This performance hit is due to
the run-time overhead introduced by the plugin framework, such as the time required to
load the plugins, generate the task graph, and perform virtual function calls. The relative
difference for 1024 cores is around 8%, however, it is reduced to 1.5% for 64 cores,
underlying the fact that the framework’s overhead becomes more and more negligible
for larger run-times. This overhead is acceptable, as the simulations we are aiming for
have run-times way beyond 50 seconds, as is the case for 64 cores.

Although the relative difference is significant for short run-times, a delay of one sec-
ond hardly matters in real world, day-to-day applications. On the other hand, accepting
this performance hit introduces a significant increase in flexibility to the simulation setup
due to the increased reusability of ViennaX’s component approach.

1
0

2
0

3
0

4
0

5
0

Cores

W
a

ll
T

im
e

 [
s
e

c
o

n
d

s
]

64 128 256 512 1024

Strong Scaling

Reference
ViennaX

Figure 5.27: The execution performance of the Laplace benchmark is compared to the
reference implementation provided by the deal.II library. ViennaX is approximately one
second slower than the reference implementation throughout the core spectrum.

79

Chapter 6

Interactive Simulation Framework

Although the previously discussed component execution framework increases the flex-
ibility of setting up simulations, the approach supports primarily advanced users. To
extend support specifically to end users, this chapter presents an interactive simulation
framework, based on a CBSE approach - similar to the previously discussed compo-
nent execution framework - to enable a flexible and modular setup of simulation-focused
CSE applications. As the name suggests, the focus is on end user interaction and thus
on usability. Each component of the CBSE-based framework shall provide access to
a full-fledged application, such as a device simulator, providing the end user the abil-
ity to, for instance, utilize different simulation tools on the same software platform. To
underline the component’s containment of a full-fledged application, the term module
is used instead of component. Overall, an interactive simulation framework promises
improved end user experience as different applications can be utilized in a unified man-
ner, as, for instance, they share the same visualization backend. The key for supporting
this is based on enforcing a unified interface upon the individual modules wrapping the
external tools, as is introduced by a CBSE approach.

An interactive simulation framework is characterized by extending the previously
established requirements for a component execution framework by incorporating GUIs
(Section 6.1). Interactive simulation frameworks further extend the set of tools which
benefit from LCSD-based libraries (Figure 6.1), as due to the CBSE-based approach
available functionality provided by, for instance, libraries can be reused. Most impor-
tantly, though, due to the rigorously applied decoupled software designs presented in
this work, reusability is not restricted to LCSD-based libraries, but also frameworks
themselves can be reused. Section 6.2 introduces an approach for an interactive sim-
ulation framework. The presented investigations focus on utilizing the previously in-
troduced device simulation framework ViennaMini (Section 4.3) instead of the compo-
nent execution framework ViennaX, as it reflects the more relevant application scenario
in the field of MNDS, being the focus of this work.

80

CHAPTER 6. INTERACTIVE SIMULATION FRAMEWORK

C
om

po
ne

nt
 E

xe
cu

tio
n

Fr
am

ew
or

k

D
ev

ic
e

Si
m

ul
at

io
n

Fr
am

ew
or

k
LCSD-Based Libraries

Interactive Simulation Framework

Figure 6.1: An interactive simulation framework further extends the previously intro-
duced set of tools, those being the device simulation framework and the component
execution framework, which benefit from a decoupled software design; in this case the
device simulation framework as well as the libraries are wrapped as or used in modules
and are thus reused within the interactive simulation framework.

6.1 Requirements and Challenges

Considering a typical simulation workflow, such as performing a device simulation of a
transistor device, generates concrete requirements regarding an interactive simulation
platform. In a first step the simulation domain representing the electronic device must
be discretized - yielding a mesh - and visualized to the end user in a simplified form.
The visualization of the simulation domain aids the end user to setup the simulation,
by providing a visual target for the simulation setup. Device regions are not abstracted
by numbers or names but actually rendered on the screen, allowing to assign segment
roles in a natural manner. Therefore, it is not required to visualize the mesh elements by
default but rather the so-called surface representation, enabling end users to grasp the
shape and size of the simulation domain. However, advanced users with an additional
background in mesh generation can choose to inspect the mesh visually supported
by computational aids, e.g., algorithms which identify badly shaped mesh elements,
especially required for three-dimensional meshes.

Based on the discretization, device-specific meta information such as material data
and doping information has to be assigned to the mesh, elevating the mesh to a device.
As already discussed in Section 4.2.1, the doping information is either based on the
result of a numerical process simulation or according to an analytic approach where the
latter is of particular importance for day-to-day use as no time-consuming numerical
simulation is required. The thus generated device acts as an input for the actual device
simulation step, where the physical problem is defined by appropriate models, such as
transport and scattering models, and boundary conditions. The simulation is conducted
and the results are visualized allowing the end user to analyze the device properties.
To this end, not only three-dimensional quantity rendering is required, allowing to show,
for instance, electron concentration distributions on top of a mesh, but also charts are
required to visualize, for example, current-voltage characteristics.

81

CHAPTER 6. INTERACTIVE SIMULATION FRAMEWORK

Interactive Simulation Framework

Module System

GUI

Data Communication

Data Visualization

Figure 6.2: An interactive simulation framework consists of four essential parts, those
being a module system, a data communication layer, a GUI, and a data visualization
facility.

Based on these requirements, the essential key aspects of an interactive simulation
framework are extracted (Figure 6.2), those being a module system, a data communica-
tion layer, a GUI, and a data visualization facility. A module system enables to separate
different functionalities in standalone entities - thus enabling reusability - whereas a data
communication mechanism allows the modules to exchange data, such as a device. A
visualization facility enables to render meshes and quantities, such as simulation re-
sults, therefore enabling the end user to visually perceive the data, thus significantly
aiding the end user in the various evaluation steps. A GUI provides a general high-
usability platform to the end user, enabling to conveniently interact with the simulation
platform. Note that the visualization mechanism is embedded into the GUI. However,
as the visualization mechanism has rather specialized requirements, such as rendering
data fields on top of meshes, as compared to general interaction elements of a GUI,
like buttons and dialogs, they are considered separately.

Where the requirements and challenges of the module system and the data com-
munication are similar to the already discussed approaches in Section 5.2, schedulers
are typically not required with an interactive simulation framework. Instead of executing
a set of modules in a single execution run - which indeed would require scheduling -
only one module is usually executed at the end user’s behest. This peculiarity stems
from the primary area of application as a platform for providing individual simulation
tools. Consequently, the results of each simulation are likely to be investigated by the
end user, thus a single-module execution mode merits special consideration.

Contrary to the previously discussed component execution framework (Chapter 5),
a key aspect of an interactive simulation framework is the ability to interact with the
end user, represented by a GUI and a data visualization mechanism, such as three-
dimensional rendering. Therefore, the GUI takes the place of the configuration mecha-
nism as introduced in the context of a component execution framework. Each of these
four introduced key aspects is discussed in detail in the following.

82

CHAPTER 6. INTERACTIVE SIMULATION FRAMEWORK

6.1.1 Module System

The module system extends the requirements introduced with the component execution
framework (Section 5). Aside from imposing a unified interface upon the individual mod-
ules to enable exchangeability and expandability, each module is required to provide its
own specific GUI. This ability is vital as simulation tools offer different parameters,
hence requiring specific GUI-elements. The challenge is to extend the module interface
- used to hold the module implementations - to further support module-specific GUIs.

Coupling a GUI with intensive computations by sharing a thread freezes the GUI,
which is typically the case with numerical simulations. The thread is utilized for the
computation, for instance, to solve a linear equation system, and is by itself1 not able
to process GUI-related events. This behavior must be avoided to allow interaction with
the GUI during the computation. For instance, whilst a simulation tool performs the
computations, the rendering facility should still allow interactions such as zooming or
panning. The challenge is thus to implement a non-intrusive mechanism, allowing for
GUI interactions during heavy computations, by, for instance, outsourcing the computa-
tion to a worker thread (Figure 6.3). In this context, non-intrusive refers to the fact that
no changes in the wrapped simulation code are required.

GUI Task

GUI Task

Computation

GUI Thread

GUI Task

GUI Task

Computation

GUI Thread

Worker Thread

Delay

Figure 6.3: The concept of outsourcing computationally intensive implementations to
a separate thread is shown. Left: GUI tasks are delayed by the computation, if the
GUI thread is used for the computation. Right: GUI tasks can be processed during the
computation, if the computation is outsourced to its own worker thread.

6.1.2 Data Communication

Similar to the component execution framework, a data communication layer is required
to enable modules to share their data. Otherwise, the framework would be robbed
of the fundamental ability to combine the specialized functionalities of the modules,
significantly reducing reusability as, for instance, data generated by a module can not
be accessed by another one. However, where in the other case communication was
restricted between the components (modules), an interactive simulation framework also
requires the framework itself to have access to the data for visualization purposes. This
adds an additional indirection to the data handling, thus requires a different approach
than the introduced socket-based communication layer (Section 5.3.2).
1In this case, by itself relates to the case where a thread is manually tasked to stop processing the
computation and process required GUI tasks. However, such a mechanism is intrusive, clearly being a
drawback for modules wrapping external application, as it requires knowledge of the code base which
cannot be assumed.

83

CHAPTER 6. INTERACTIVE SIMULATION FRAMEWORK

Also, modules must be given control to handle the data destined to be used by
other modules differently than the data used for visualization. Transferring data to the
visualization backend typically requires additional copy operations, which become more
significant with larger problem sizes. Furthermore, potentially not all data of interest to
other modules makes sense to visualize, for instance, auxiliary data required for en-
abling the simulation in the first place. Overall, to minimize data transfer operations, the
data communication among modules as well as between the modules and the visual-
ization backend has to be separated.

Also, the raw data has to be coupled with additional meta information to allow for
specialized visualization and to enable modules to handle input data accordingly. For
example, data can be represented by tensor fields of different levels, such as scalar or
vector fields and can be associated with different mesh elements such as tetrahedra,
triangles, or points. This requires the meta information to contain parameters indicating
the nature of the data, allowing the visualization mechanism to use the appropriate
rendering method.

6.1.3 Graphical User Interface

Modules of an interactive simulation framework can provide their own specific GUI,
allowing end users to conveniently interact with the module. More explicitly, providing a
GUI is optional meaning that a module must not be forced to provide a frontend2. This
would allow, for instance, module developers to test module backends before devoting
efforts into the development of a frontend. Overall, these specialized GUIs must be
presented to the end user in a consistent manner, meaning that the module-specific
frontend is embedded into the main framework’s GUI upon the end user’s behest.

The framework must also support the utilization of several modules and the monitor-
ing of the modules’ readiness state. In this context readiness relates to the availability
of the potentially required input data of a module. More concretely, only modules which
have their input dependencies satisfied can be made active, meaning that the end user
is allowed to interact with the corresponding module. The framework is required to au-
tomatically evaluate the readiness state of each module and activate/deactivate them
accordingly. In turn, each module must be given the ability to investigate whether the
available data provided by other modules is suitable to satisfy its specific requirements
and, based on this evaluation reports, its state of readiness to the framework.

Also, simulation tools usually generate output messages during the execution, such
as the convergence information during a solver process. The framework must provide
a centralized message output element to provide the end user with a centralized spot
of output messages, further increasing usability. In addition, the ability to reroute output
streams, such as C++’s std::cout, to such an output window is required. Such a
mechanism allows to non-intrusively transfer output data from a simulation module to
the framework’s centralized message element.

6.1.4 Data Visualization

Data visualization for CSE-based simulations is a fundamental capability as it enables
to analyze the simulation results and thus allows to ultimately derive conclusions, further
driving the research.
2In the context of an interactive simulation framework, a frontend refers to a GUI.

84

CHAPTER 6. INTERACTIVE SIMULATION FRAMEWORK

Therefore, data visualization capabilities are a central aspect of an interactive simulation
framework. The diversity of simulations requires flexible visualization tools, such as
three-dimensional rendering methods supporting, for instance, scalar- or vector-field
visualization on top of a mesh. Especially important is to give the individual framework
modules full access to the rendering backend, as the visualization demands for all future
modules are not foreseeable. For instance, simulation tools might require a simulation-
specific visualization especially for three-dimensional data, such as a combination of
rendering algorithms to reveal the behavior inside of the simulation object.

Also, convenient selection of a specific quantity to be rendered is required as well
as different mesh representations, e.g., wireframe3. The latter can be coupled with
automatic mesh evaluation algorithms aiding an advanced user, referring to a user with
an additional background in mesh generation, in the task of evaluating the mesh quality.
These additional investigation methods further underline the importance of a modular
simulation environment, capable of attaching non-simulation modules, such as mesh
generation and evaluation modules, to the simulation platform.

Aside from supporting three-dimensional rendering, support for chart visualization
is essential. Chart visualizations enable to investigate a set of quantities relative to
a reference quantity. For example, a current-voltage characteristics enables to judge
a device’s performance. Vital to such a mechanism is the ability to access data gen-
erated from several simulation runs to, for instance, compare a set of current-voltage
characteristics for the same device but for different doping profiles. The data from the
individual simulation runs should be visualized in the same chart, enabling the end user
to relate the quantities to each other.

In general, essential to visualization is the ability for comparing results. For in-
stance, two different charts are compared or two different render views of the same
mesh are displayed simultaneously. This requires the visualization backend to support
an arbitrary number of visualization windows, in an arbitrary combination. Exemplary
combinations would be three rendering windows and two chart windows as well as two
rendering windows and four chart windows. Related to this mechanism is the ability
to analyze data in a multi-monitor environment. Today’s typical workstation setups are
increasingly equipped with more than one monitor, introducing the ability to utilize this
setup for visualization needs. For instance, where two chart views are displayed on one
monitor, one rendering view is displayed on the second. While this requirement seems
trivial, it introduces substantial design considerations concerning the general GUI plat-
form of an interactive simulation framework and is thus vital to be explicitly stated as a
requirement.

Simulation tools may generate a series of simulation results which has to be sup-
ported by the visualization backend. For instance, a device simulator performs a range
of simulations according to a range of contact values, allowing to determine the current-
voltage characteristics of a device. In such a case, the visualization backend must sup-
port manual or automatic stepping through the simulation results. Where the first allows
to specifically analyze results, the latter enables a visualization in a movie-like manner,
further improving the perception of the simulated physical processes.
3The term wireframe relates to visualizing the mesh’s elements without coloring the interior of the elements,
such as areas and volumes. The thus remaining vertices and their individual connections - visualized as
lines - represent the wireframe.

85

CHAPTER 6. INTERACTIVE SIMULATION FRAMEWORK

Data Communication

Multiview

Render 3D Chart 2D

ViennaMOS

M
od

ul
e

S
ys

te
m

M
od

ul
e

M
od

ul
e

G
ra

ph
ic

al
 U

se
r I

nt
er

fa
ce

Figure 6.4: The ViennaMOS general software design; The module system allows inter-
facing with reusable, exchangeable, and expandable modules, using a unified interface.
Data communication between modules is realized with a central data storage. A flexible
and modular GUI provides access to the individual modules as well as to the visualiza-
tion mechanism. The latter is based on the so-called multiview facility, enabling access
to an arbitrary combination of three-dimensional rendering and two-dimensional chart
visualization backends.

6.2 The ViennaMOS Project

The FLOSS-based ViennaMOS project [11] provides an interactive simulation platform
applying CBSE (Section 3.3) as well as utilizing LCSD-based libraries (Section 3.4)
in combination with a modular GUI and modern visualization methods. The modular
concepts enabled by the CBSE approach are extended to the GUI as each module
offers its own specific end user interface. By using these approaches ViennaMOS
tackles the discussed challenges for an interactive simulation framework (Section 6.1).

The framework’s code base benefits from the extensive functionality provided by the
VTK library [76] for the visualization backend and the Qt library [64] for the frontend. The
design - especially with respect to the visualization capabilities and the modular GUI -
is significantly influenced by the FLOSS-based visualization software ParaView [63].

ViennaMOS is composed of four essential parts, those being the data communica-
tion layer, the GUI, the module system, and the visualization facility represented by the
so-called multiview mechanism, providing access to three-dimensional rendering and
two-dimensional chart visualization backends (Figure 6.4). Overall, the four key parts
tackle the requirements and challenges introduced by implementing an interactive sim-
ulation framework (Section 6.1).

86

CHAPTER 6. INTERACTIVE SIMULATION FRAMEWORK

The following sections give a detailed overview of ViennaMOS.
Section 6.2.1 discusses the data communication layer based on a central data stor-

age. Section 6.2.2 introduces the three-dimensional rendering facility. Section 6.2.3
depicts the two-dimensional chart visualization ability. Section 6.2.4 describes the multi-
view mechanism, providing arbitrary combinations of visualization windows. Section 6.2.5
discusses the module system, in particular the interface. Section 6.2.6 characterizes
the main GUI of ViennaMOS. Section 6.2.7 gives two application examples, by dis-
cussing a device generator and a device simulator module and their interplay.

6.2.1 Data Communication

The single-execution mode and the fact that the set of utilized simulation modules used
in an active ViennaMOS simulation is significantly smaller than the usual scenarios
of large-scale component execution frameworks simplifies the data communication re-
quirements considerably. Therefore, to keep the implementation simple - yet effective
- and also highly maintainable due to a simplified code base, a straightforward central-
ized database is utilized by ViennaMOS. Each module stores and accesses data in
this database, which is in turn governed by the framework. This storage is solely used
to exchange data between the individual modules and is not related to the visualization
backend.

To ensure flexibility with respect to the supported storage types, a storage setup
based on an associative container mapping a string-based key with a generic object
pointer is utilized. The generic object pointer is implemented via a void smart pointer,
provided by the Boost Smart Pointers library [51]. The use of smart pointers ensures
that upon destruction the destructor of the stored, type-erased object is called appro-
priately, thus eliminating memory leaks.

6.2.2 Three-Dimensional Render Visualization

An essential ability of simulations in the general field of CSE is to visualize simulation
results. Therefore, special consideration has been given to provide a flexible three-
dimensional rendering backend4. To this end the FLOSS-based VTK library is uti-
lized as a visualization backend of a dedicated rendering class(Section 2.3), directly
utilizable in Qt-based GUI applications. The rendering class provides an interface for
ViennaMOS and its modules to the VTK-based visualization backend. Also, a render
editor GUI is available, providing the advanced users the ability to customize the ren-
dering (Figure 6.5). Note that the central VTK-based mesh storage is not related to
the previously introduced ViennaMOS communication database. The mesh storage
is solely used for the VTK-based visualization and is thus enforced to be a VTK ob-
ject. Therefore, no generic storage - as provided by the ViennaMOS’ communication
database - is required, otherwise unnecessarily complicating the mesh storage access.

As already indicated, the support for multi-segment meshes is essential for a sim-
ulation framework, as different areas of a simulation domain might require a different
handling. For instance, different materials might be assigned to the individual segments.

4Although the name of the rendering facility indicates sole support for three-dimensional objects, one- and
two-dimensional objects are also supported.

87

CHAPTER 6. INTERACTIVE SIMULATION FRAMEWORK

Module

Mesh

Quantiti
es

Mesh Storage

User
Selectio

n

Render 3D

Render Editor

Figure 6.5: The schematic process of the three-dimensional rendering mechanism; A
ViennaMOS module stores data - mesh and/or quantities - in a central VTK mesh
storage, dedicated to store mesh objects via a vtkMultiBlockDataSet object. An end
user interacts primarily with an editor to select and tune the visualization. Upon user
input, the renderer accesses the required data from the mesh storage and performs the
rendering in the GUI.

Although using a multi-segment mesh for visualization is not required - as a multi-
segment mesh can also be mapped to a single-segment mesh - it allows to provide
segment-specific visualization options, such as segment-wise coloring or visibility ad-
justments. These features further improve usability, as, for instance, the framework can
aid the end user in identifying individual segments of a mesh, especially important for in-
tricate simulation devices. To this end we use VTK’s vtkMultiBlockDataSet data struc-
ture, enabling to hold an arbitrary set of VTK meshes, such as vtkUnstructuredGrid

and vtkStructuredGrid (Figure 6.6). For each mesh segment, a vtkActor and a
vtkDataSetMapper is stored, allowing to perform segment-specific visualization tasks,
such as coloring according to vertex-based scalar fields.

vtkMultiBlockDataSet
vtkPointSet 1
vtkPointSet 2
vtkPointSet 3
vtkPointSet 4
vtkPointSet 5
vtkPointSet 6
vtkPointSet 7
vtkPointSet 8
vtkPointSet 9

Figure 6.6: ViennaMOS’ render class stores the individual segments of a mesh - indi-
cated by colors - as vtkPointSet objects, capable of holding, for instance, unstructured
and structured grids. A vtkMultiBlockDataSet is used to store the set of vtkPointSet
objects.

Different mesh representations are supported natively by the VTK library, in particu-
lar surface, surface with edges, wireframe, and point representations, enabled by using
the corresponding vtkActor methods (Figure 6.7).

88

CHAPTER 6. INTERACTIVE SIMULATION FRAMEWORK

(a) Surface (b) Surface with Edges (c) Wireframe (d) Points

Figure 6.7: ViennaMOS supports different mesh representations, those being surface,
surface with edges, wireframe, and points.

Visualizing data fields on top of meshes requires the data to be stored on the re-
spective vtkPointSet objects - representing mesh segments - collectively governed
in the central vtkMultiBlockDataSet object. In particular, the data fields have to be
stored as vtkDataArray objects and linked to the corresponding vtkPointSet’s point
or cell data container. Note that VTK natively only supports point or cell data. Due to the
support for mapping data fields on different mesh elements, specific meta information
is required by the render class indicating, for instance, the mesh element association of
a particular data set, i.e., whether the data to be visualized has to be mapped on ver-
tices or on cells. Overall, ViennaMOS supports cell-based and vertex-based quantity
visualization of scalar fields (Figure 6.8).

(a) Cell Quantity (b) Vertex Quantity

Figure 6.8: ViennaMOS supports cell and vertex quantities. A cell-based (left) and
vertex-based (right) quantity distribution is shown. Where with the first the individual
mesh elements can be clearly identified, the latter offers an automatic color smoothing
mechanism provided by VTK’s vertex-based coloring backend.

Simulation tools might generate a series of simulation results. For instance, simu-
lating the characteristics of a device yields for each applied bias not only the current
at the terminal, but also the actual quantity distributions, like potential, electron carrier,
and hole carrier distributions. Therefore a playback mechanism has been implemented
allowing to step through the individual simulation results.

89

CHAPTER 6. INTERACTIVE SIMULATION FRAMEWORK

More concretely, all results are stored on the multi-block data structures associated with
a unique ID relating to the sequence position of the result. ViennaMOS can thus order
the renderer to show a specific result out of a sequence via generating the correspond-
ing ID. This mechanism not only allows to step forward and backward, but also enables
ViennaMOS to provide an automatic playback mechanism enslaved to a time-delay
used between rendering the individual simulation result.

6.2.3 Two-Dimensional Chart Visualization

ViennaMOS provides a two-dimensional chart plotting facility based on the VTK library.
The key mechanisms are provided by the vtkChartXY and the vtkTable classes. The
end user is exposed to the chart mechanism via a chart editor, allowing to customize
the visualization of data generated by modules. Figure 6.9 depicts the utilization of the
plotting tool.

Table List Table Setup

General

Figure 6.9: ViennaMOS’ two-dimensional chart plotting ability; Left: The editor pro-
vides general properties (General) such as the chart title as well as support for visual-
izing a set of results in a single chart by providing the set of stored tables (Table List).
Selecting a specific table in the Table List raises the respective Table Setup section.
Right: Based on the editor properties, a chart is rendered.

With respect to the implementation, a simulation result is added to the facility by
inserting a new vtkTable into the storage along with meta information, such as the
quantity name. More concretely, vtkDataArrays are used to store the individual data
sequences, for instance, the computed current values and the applied voltage values
of a device contact. These arrays are used to populate a vtkTable which is in turn
forwarded to the framework, which provides access to all available chart rendering in-
stances (Figure 6.10). Similar to the previously discussed three-dimensional rendering
mechanism, the central VTK-based table storage is not related to ViennaMOS’ com-
munication database. The requirement of supporting the comparison of different sim-
ulation runs is implemented in a straightforward manner, by using a set of tables, one
for each simulation run. This set is accessed by the chart editor, and in turn used to
update the GUI’s Table List.

90

CHAPTER 6. INTERACTIVE SIMULATION FRAMEWORK

Module
Tables

Table Storage

User
Selectio

n

Chart 2D

Chart Editor

Figure 6.10: The schematic process of the two-dimensional chart visualization mech-
anism; A ViennaMOS module stores data - tables - in a central VTK table storage,
based on a container of vtkTable objects. An end user interacts primarily with an edi-
tor to select and tune the visualization. Upon user input, the chart visualization backend
accesses the required data from the central table storage and performs the rendering
in the GUI.

6.2.4 Multiview

ViennaMOS allows to use several instances of the previously introduced rendering and
chart visualization simultaneously via the so-called multiview mechanism (Figure 6.11).

Module

FrameworkSel
ec

t

Module
D
at

a

Multiview

Visualization

Table Storage

Chart 2D

Chart 2D

Render 3D

Render 3D

Mesh Storage

Figure 6.11: The multiview facility centrally governs the data received by the individual
modules and distributes it to each of the utilized render and chart views. The framework
and the modules interact with multiview’s interface, in turn orchestrating the correspond-
ing updates to the visualization.

The key mechanism is based on a polymorph view entity, which - upon input from an
end user - can be transformed into either a three-dimensional render view or into a two-
dimensional chart view. The essence of the provided comparative views is based on
splitting available views in a horizontal or a vertical manner at the behest of the end user.
This splitting is natively supported by Qt by embedding each view into a QDockWidget.
The following code snippet depicts the simplicity of the splitting mechanism.

1 QDockWidget* dock = new QDockWidget;

2 splitDockWidget(multi_view ->getCurrentDock (),dock ,Qt:: Horizontal);

3 multi_view ->addNewView(dock);

91

CHAPTER 6. INTERACTIVE SIMULATION FRAMEWORK

Figure 6.12: An exemplary multiview setup is shown consisting of two render views
(top), one chart view (bottom left), and one polymorph view (bottom right). Repre-
sentative simulation results based on a two-dimensional pn-diode - already discussed
in Section 4.3.10 - are used to depict the multiview’s GUI. In particular, the potential
(top left) and electron distribution (top right) as well as a current-voltage characteris-
tics (bottom left) are visualized in a comparative manner. The polymorph view can be
transformed into a render view or into a chart view by the end user.

A new dock widget5 is generated (Line 1). The multi view object provides the
currently selected QDockWidget, which is split horizontally - vertical splitting is similarly
available - initializing the newly created dock object (Line 2). The new dock object
is forwarded to the multi view, being preloaded with a polymorph view entity. This
particular view provides the end user with button widgets enabling to transform the
view either into a three-dimensional render view or into a two-dimensional chart view
(Figure 6.12). As a convenient side-effect, a QDockWidget - as the name suggests - can
be detached from its parent widget, effectively allowing to natively provide the required
support for multi-monitor setups.

The multiview facility centrally stores the data received by the individual modules,
such as meshes and associated quantities (in Figure 6.5 referred to as mesh storage)
as well as data tables (in Figure 6.10 referred to as table storage). When a new view
- render or chart - is created, the data objects are copied to the new view states. Al-
though this introduces memory and copy transfer overhead, it ensures that no crosstalk
between the individual views occurs. Concerning crosstalk, quantity visualization of the
VTK meshes is based on activating a single specific data array previously stored on the
mesh.
5A widget refers to a GUI element, such as a button. In Qt all GUI elements are widgets, due to the applied
object-oriented approach (Section 3.1), supporting dynamic polymorphism essential for adapting a GUI
application during run-time.

92

CHAPTER 6. INTERACTIVE SIMULATION FRAMEWORK

Consequently, if several views operate on the same centrally stored mesh, each at-
tempting to visualize different quantities on top of the mesh, the views turn each other’s
selections on and off, thus introducing the aforementioned crosstalk.

6.2.5 Module System

The core of ViennaMOS’ module system is based on Qt’s plugin mechanism, providing
convenient facilities to extend an application with additional functionality. Therefore,
each module is implemented by a plugin, similar to the plugin system discussed with
the component execution framework ViennaX (Section 5.3). Each module has access
to the multiview facility, enabling direct access to the rendering backends. Although this
approach introduces visualization responsibilities with a module, it enables a module
to setup its own specific visualization needs by, for instance, applying a series of VTK
algorithms to a quantity dataset prior to rendering the result.

Each module implementation has to adhere to a specific class interface, induced by
the applied virtual plugin class hierarchy. The interface enables the individual module
implementations to, for instance, provide general information on each module, such
as the name, description, and version of the module. Also, a readiness method is
used by the framework to evaluate whether all input dependencies of a module are
satisfied. Each module is thus required to perform the required check routines defined
by the module developer, for instance, testing whether the available data stored in the
central database (Section 6.2.1) can be processed by the respective module. An update
method enables to access a possibly updated state of the database triggered by the
execution of other modules. For instance, another module stored new data into the
database, therefore the update method allows for reevaluating whether the new data is
suitable.

A reset method gives the module the opportunity to fallback into an initial, defined
state. Such a mechanism is required to clear the module without reloading it. Fur-
thermore, each module’s GUI provides an execution button which executes the module
by calling the corresponding execution method. Usually, external simulation code is
wrapped and executed in this method, thus this particular method contains implemen-
tations with potentially significant run times.

A quantity meta-information retrieval method enables the framework to access the
information on the module’s visualization quantities, i.e., quantities which are copied by
the module to the visualization backend as implemented by a developer and are thus
available to the end user - via a drop-down widget containing the individual quantities -
for selection. In this context, each module is responsible to transfer its result data, i.e.,
result quantities such as a potential distribution, into ViennaMOS’ visualization data
storages - implemented by VTK objects - centrally governed by the multiview facility
(Section 6.2.4). More concretely, this step requires copying data from module-specific
data structures to VTK objects, such as a vtkTable. This is required as it is to be
expected that the module wraps an external simulation tool, offering its own specialized
data structure. Therefore, only the module has the knowledge - implemented by the
module developer - about the utilized data structure and is thus in the unique position
to transfer the data appropriately.

93

CHAPTER 6. INTERACTIVE SIMULATION FRAMEWORK

GUI

ViennaMOS GUIGUIModule

GUIModule

GUIModule

Figure 6.13: Each module provides its own specific GUI being presented to the end
user as part of the central ViennaMOS GUI.

The fact that the data transfer to the visualization backend is explicitly coded with re-
spect to VTK, is an acceptable limitation, as the visualization backend is based on
VTK. However, utilizing a different rendering backend, such as the Visualization and
Computer Graphics library [172] would require a transfer to the corresponding native
data structures. Providing access to different rendering backends would trigger fur-
ther investigations regarding a generic visualization backend data transfer mechanism
to further decouple the implementations and thus by extension the maintainability and
extendability of ViennaMOS.

Coupled to this data transfer is a registration mechanism, meaning that each module
registers the transferred quantity by providing the quantity name, the unit, the cell-level
(cell-based or vertex-based data), the tensor-level, e.g., scalar field, and the module
name. The latter enables the framework - or other modules - to associate the data
with a specific module at a later point of the simulation process. In essence, the reg-
istration is based on a set of quantity registration objects, each holding the required
meta-information for a specific quantity. The framework has access to this set via the
module interface and can thus perform data-agnostic specializations, for instance the
main GUI can therefore use a different icon for indicating vertex- or cell-based data.
Also, this registration mechanism allows the rendering backend to determine the ap-
propriate visualization technique, for instance, map the quantities on the mesh vertices
(Section 6.2.2).

With respect to the module loading mechanism, Qt’s QPluginLoader class provides
the essential mechanisms. Each module implementation is required - aside from stick-
ing to the mentioned virtual class interface - to be a valid Qt object, i.e., a class which
not only derives from QObject but also uses the Q OBJECT macro in the class’s state,
automatically generating boilerplate code required to, for instance, enable the class to
utilize Qt’s signal/slot system. By adhering to this Qt-specific implementation guide-
line, no manual factory mechanism has to be implemented, contrary to the previously
discussed component execution framework (Section 5.3.2).

As previously mentioned, each ViennaMOS module potentially provides its own
GUI, being plugged into the framework’s main frontend upon the selection of the cor-
responding module (Figure 6.13). As all Qt GUI elements derive from Qt’s QWidget,
forwarding a module-specific frontend from the module to the main GUI is straightfor-
ward. If indeed the module does not provide a frontend, an empty widget is used.
Overall, typically each module provides two classes, one implementing the module in-
terface and the other implementing the GUI, providing a QWidget object containing the
GUI.

94

CHAPTER 6. INTERACTIVE SIMULATION FRAMEWORK

A module can outsource computationally intensive parts to a separate thread by
using Qt’s QThread facility. In essence, the computational intensive part is outsourced to
a new worker object, modeling Qt’s Q OBJECT concept. The new class is associated with
a new QThread instance, execution controls, e.g., which method of the worker object has
to be called when the thread starts up, are linked via Qt’s signal/slot mechanism, and
finally the thread is executed (Figure 6.14). This approach can be further simplified by
providing macros, as the required code is to a large extent boilerplate code.

GUI Thread GUI Thread

Module

Computation

Module

QThread

Worker

Computation

Figure 6.14: Computational intensive parts can be outsourced from the GUI thread to a
separate thread, thus keeping the GUI responsive during extended computations. The
computation part is moved to a new class (Worker), modeling Qt’s Q OBJECT concept.
The worker is then assigned to a new QThread and executed separately from the main
GUI thread.

6.2.6 Graphical User Interface

The GUI of ViennaMOS is the central interaction platform, providing the end user ac-
cess to the rendering facilities and the modules. It makes use of the previously dis-
cussed flexible GUI elements, in particular the module system as well as the multiview
facility with its three-dimensional rendering and two-dimensional chart views. All main
elements of ViennaMOS’ GUI are based on QDockWidget objects, enabling to decouple
the containing widget from the main frontend and move it, for instance, to a secondary
monitor (Figure 6.15).

ViennaMOS provides the means to automatically discover valid modules on the lo-
cal filesystem, to load them, and to provide a list of discovered modules to the end user
via the so-called module manager. The module manager is in fact a dialog enabling
the end user to select individual modules to be used in the current session. Selected
modules are then loaded, meaning that the module’s factory mechanism is used to in-
stantiate a module, and are finally listed in the active module list where they can be
selected to show the module-specific GUI (Figure 6.16).

This active module list allows selection-based switching between the individual mod-
ule GUIs. Only modules the input dependencies of which are resolved, can be inter-
acted with by the end user. As already indicated, each module is asked by the frame-
work to evaluate its readiness state after one module of the active set finished execu-
tion, as previously discussed in Section 6.2.5. For instance, two modules are loaded,
where the first is used to generate a device representing the simulation domain, the
latter actually conducts simulations requiring the presence of a device.

95

CHAPTER 6. INTERACTIVE SIMULATION FRAMEWORK

Multiview

Active Modules

Module GUI

Messages

Module Manager
Undock Active Modules

Undock Module GUI

Undock Messages

Undock Multiview

Transform to 3D Render View

Transform to 2D Chart View

Figure 6.15: The main elements of the default ViennaMOS GUI; Top left: The list of
activated modules is provided, which is being populated by using the module manager
dialog. Middle left: The module-specific GUI is shown based on the selected module
in the active modules window. Bottom left: An output message window gathers all
messages, both from the framework and from the modules. Middle: A multiview en-
vironment holds a set of views, where each view can be specialized to either hold a
three-dimensional render view or a two-dimensional chart view. All four main elements
can be undocked from the main window, enabling, for instance, to move the respective
windows to a secondary monitor.

Therefore, until the first module stored a suitable simulation domain in the central
database, the second module remains inactive. Only if a valid domain has been stored,
the second module becomes active and thus enables the end user to interact with it.
This mechanism ensures that the end user interacts only with modules which can be
actually executed, due to the resolved dependencies.

The output messages generated by the framework and by the modules are collec-
tively presented to the end user via the central Messages window. The implementation
is based on extending Qt’s QPlainTextEdit class by additional methods to claim and
release C++ streams, based on rerouting the respective buffers.

96

CHAPTER 6. INTERACTIVE SIMULATION FRAMEWORK

1.

2.3.
4.

Figure 6.16: Triggering the module manager dialog (Step 1) allows to select modules
used for the simulation (Step 2). When a module is selected - in this case the so-
called Device Generator - it can be activated, which instantiates the module in the
background and adds it to the list of active modules (Step 3). An active module can be
selected, loading the module-specific GUI into the main frontend (Step 4).

6.2.7 Examples

In this section, two representative application examples are discussed based on two
ViennaMOS modules. The general design and usage of the modules is depicted as
well as the basic utilization of the ViennaMOS GUI and visualization backends. More
concretely, the already mentioned device generation module is introduced which pro-
vides different ways to generate a simulation domain. Upon the module’s execution,
the generated device is stored in the central database. The second module, a de-
vice simulation module based on the previously introduced device simulation frame-
work ViennaMini (Section 4.3), utilizes the device generated by the device generation
module to conduct a device simulation.

These examples further underline the advantages of the decoupled approach dis-
cussed throughout this thesis as depicted in Figure 6.1. Not only libraries are reused
by the individual modules, but also another framework - ViennaMini - is utilized via
ViennaMOS modules. Therefore, additional development overhead is drastically mini-
mized, as already available implementations, such as mesh generation or device simu-
lation facilities, are reused.

97

CHAPTER 6. INTERACTIVE SIMULATION FRAMEWORK

Device Generation Module

In this section a device generation module is discussed providing the means to gener-
ate devices for device simulations via the ViennaMini framework (Section 4.3.3). This
example also underlines the versatility of ViennaMOS modules, as this particular mod-
ule is in fact not a simulation module, but a modeling tool required to characterize the
simulation domain. To this end, the module requires mesh generation capabilities and
the ability to assign a doping profile and segment roles. Overall, the module utilizes
the various device generation functionalities enabled by interfacing with external tools,
such as ViennaMini, and provides a flexible GUI for the process, further underlining
the benefit of rigorously applying a LCSD approach.

The device generation module provides three mechanisms to generate a device.
Where the first mode loads an externally generated already meshed structure enabling
the end user to assign segment roles as well as a doping profile, the second mode
allows to perform an in-place mesh generation for a desired device structure via a con-
structive solid geometry (CSG) language (primarily of interest to advanced users) also
requiring the end user to provide segment roles as well as doping information. The
third mode utilizes a device template mechanism, already providing default segment
and doping information. Figure 6.17 schematically depicts the individual device gener-
ation modes.

Segment Roles
Doping Generation

Device GeneratorMes
h

Dev
ice

Device Generator Dev
ice

Load Mesh Device Template

Device Generator Dev
ice

CSG Mesh

Segment Roles
Doping Generation

Figure 6.17: The device generation module provides three modes; Left: An externally
generated meshed structure is loaded via ViennaGrid, requiring the assignment of
segment roles and the generation of a doping profile. Middle: A CSG feature provided
by ViennaMesh’s Netgen backend allows to generate meshed structures on the fly
via an expressive language. Upon completion, the segment roles and a doping profile
must be assigned. Right: The device template mechanism of ViennaMini is used
to generate ready-to-simulate devices. No further steps are required, as the template
feature already assigns segment roles as well as a doping profile.

Figure 6.18 depicts the module’s GUI and the basic process flow. The end user
selects one of the three device generation mechanisms. As soon as the structure is
loaded, the render window visualizes the mesh. Finally the GUI provides the means to
assign segment roles including doping levels for semiconductor segments. When the
end user is finished, the device can be stored into ViennaMOS’ central data storage,
so other modules can access it. In this particular case, a FinFET device is prepared,
offering the same properties as depicted in Section 4.3.10. This device is used in the
subsequent device simulation steps, therefore it is stored in the central database.

Aside from the already discussed structure loading and device template mecha-
nism, a peculiarity of this module is the CSG functionality. ViennaMesh provides an
interface to Netgen’s three-dimensional CSG backend, enabling on-the-fly generations
of meshed structures inside the device generation module. Due to the applied LCSD
approach, the module’s GUI has to provide merely a text input field - holding the CSG
commands - which is forwarded to the CSG backend via ViennaMesh.

98

CHAPTER 6. INTERACTIVE SIMULATION FRAMEWORK

Figure 6.18: General process flow of the device generation module; One of the three
generation modes is used to load a meshed structure (left) - in this case representing a
FinFET device - and visualized in the render window (middle). When the structure has
been loaded, the segment roles and doping profiles are assigned (right). Each segment
can either be a contact, an oxide, or a semiconductor, the latter allows to assign an
initial acceptor and donor doping value. All segments support the assignment of a
specific material. When the end user finished entering the segment roles and doping
information, the final device can be stored in ViennaMOS’ central database (red arrow),
so other modules can access it and further utilize it.

In turn, ViennaMesh takes care of transferring the generated mesh into an appropriate
ViennaGrid mesh object. Figure 6.19 depicts the utilization of the CSG mechanism.

The implementation of the device generation module is based on two classes, sepa-
rating the GUI from the actual module implementation interfacing with external libraries
(Figure 6.20). The GUI forwards the input data to the module according to the chosen
generation mode. For instance, if the CSG mode is used, a string containing the CSG
information is passed. The module makes use of synergy effects in particular by inter-
facing with ViennaGrid, ViennaMesh, ViennaMini, and ViennaMaterials for loading
and generating meshes, accessing material data as well as using the device template
mechanism, respectively. The thus received data is used to update the GUI, allowing
the end user to customize the device by, for instance, updating the segment roles and
doping information. Finally, if the end user is finished, the device is forwarded to the
framework, where it is stored in the central database for other modules to access it.

Device Simulation Module

This section introduces a device simulation module providing basic device simulation
capabilities. The module is a wrapper for the previously introduced device simulation
framework ViennaMini (Section 4.3), further underlining the benefit of decoupling func-
tionality into reusable tools by the LCSD approach. Also, the fact that this module is
merely a wrapper puts the focus of this section on the module itself rather than discus-
sions regarding the simulation results.

With respect to the implementation, the device simulator module interfaces with
ViennaMini and provides a GUI for the provided API (Figure 6.21). The device sim-
ulation module becomes usable, i.e., it can be selected in the active module list of
the main ViennaMOS GUI (Section 6.2.6), as soon as a valid device is stored in the
ViennaMOS central data storage. The device is automatically imported and the GUI
is updated accordingly, enabling the end user to setup contact potentials or currents
as well as particular physical models. Upon the module’s execution the ViennaMini-
powered simulation is conducted.

99

CHAPTER 6. INTERACTIVE SIMULATION FRAMEWORK

1.

2.

3.

Figure 6.19: The CSG mechanism of the device generation module; Upon raising the
editor, the CSG commands can be entered (Step 1). The mesh generation is manually
triggered (Step 2) followed by an automatic visualization in the three-dimensional ren-
dering window (Step 3). In this case the drain, source, and channel region of a FinFET
device is modeled.

Figure 6.22 shows a basic but representative populated device simulation GUI based
on the FinFET device generated by the previously executed device generation module.
The GUI provides an overview of the device segments and related meta information,
generated by the previously utilized device generation module. The device simulation
setup is segment-based, meaning that the end user can assign contact potentials and
semiconductor models, like scattering models, for each segment. The actual simulation
is triggered via the corresponding execution button. When the simulation is finished,
the results can be visualized by ViennaMOS’ multiview mechanism (Figure 6.23). In
this particular case a similar simulation - an active FinFET device - as introduced in
Section 4.3.10 has been conducted. Note that the current limitations of the visual-
ization mechanism do not allow for manual color ranges, therefore if logarithmic color
rendering is required - as is the case for the electron concentration and hole concen-
tration distributions - segments offering no quantity values are automatically assigned a
value of one to enable the computation of the logarithm. This manifests with the carrier
concentration distributions’ renderings where the gate is assigned a value of one.

100

CHAPTER 6. INTERACTIVE SIMULATION FRAMEWORK

File
nam

e

CSG Stri
ng

Te
mplat

e I
D

Meta

ViennaGrid

ViennaMesh

ViennaMini

Filename
Mesh

CSG String
Mesh

Template ID
Device

Device Generator

G
U

I
Module

Device

ViennaMOS

Database Multiview

ViennaMaterials

Material
Parameter

Figure 6.20: The design of the device generation module; The GUI provides the input
data to the module, forwarding it to the appropriate external library to generate a mesh.
In the case of ViennaMini’s device template mechanism a device is already returned
not requiring any additional user interaction to finish the device setup, although further
customizations are supported. In the other cases - a mesh file is loaded via ViennaGrid
or a mesh is generated by ViennaMesh’s CSG mechanism - the end user is required to
provide additional meta information, such as material information, to elevate the mesh to
a device. To this end, ViennaMaterials is used to retrieve material-specific parameters,
such as the relative permittivity. Finally, the device is forwarded to the framework, where
it is stored and processed for visualization.

Meta
ViennaMini

Device Simulator

G
U

I

Module

Device

ViennaMOS

Database Multiview

Device
Results

Figure 6.21: The design of the device simulation module; The module loads a suitable
device, i.e., a meshed structure with assigned segment roles and a doping profile, from
the ViennaMOS data storage and updates the GUI with the meta information, such
as segment roles. The end user inputs simulation properties into the GUI, like the
physical models to be solved, which are used to configure a ViennaMini simulation
instance. After the simulation is finished, the results are being accessed and forwarded
to ViennaMOS, in particular to the database and the multiview mechanism to visualize
the results.

101

CHAPTER 6. INTERACTIVE SIMULATION FRAMEWORK

Figure 6.22: The GUI of the device simulation module; Left: An overview of the device
generated by the device generation module is given, including segment roles, names,
and materials. Contact and semiconductor segments can be customized by, for in-
stance, assigning contact potentials and activating particular physical models, respec-
tively. Right: Parameters for the solver can be customized if desired, influencing the
convergence behavior. The actual simulation is started by pressing the green execution
button, calling the module’s execution method.

Figure 6.23: ViennaMOS’ comparative visualization mechanism is used to investigate
the results of a device simulation based on an active FinFET device. By selecting the
appropriate render window (blue box) and the corresponding visualization properties
(red box), the respective visualization is updated. Top left: The individual segments are
colored by simultaneously visualizing the surface triangles and coordinate axes. Top
right: The computed potential distribution is depicted. Bottom left: The computed
hole concentration distribution is shown using logarithmic colors. Bottom right: The
computed electron concentration distribution is visualized using logarithmic colors.

102

Chapter 7

Thesis Evaluation

7.1 Summary

Requirements, challenges, and approaches for frameworks relevant for the field of
MNDS have been examined in detail. A discussion has been based on an extensive
analysis of the available software tools with an additional focus on CSE. Fundamental
methods and tools have been introduced followed by a detailed presentation of three
different framework concepts. The device simulation framework ViennaMini developed
in the course of this work has been introduced, providing a flexible simulation platform to
compute the characteristics of a semiconductor device. Also, the developed component
execution framework ViennaX has been discussed, allowing to separate functionality
into reusable components and execute them - among others - on large-scale computing
clusters. The component approach has been extended in the context of an interactive
simulation framework to ViennaMOS augmenting the components with GUIs. The fea-
sibility of the individual frameworks has been underlined by application examples.

7.2 Future Extensions

The presented research in this thesis gives rise to a plethora of future research work.
With respect to the device simulation framework ViennaMini further investigations

regarding the simulator-material database interface, in particular support for tensor-
based material data have to be conducted. Also, adapting the discussed equation
objects - holding the PDEs - to incorporate additional more complex models has to be
analyzed. These investigations have to especially consider continually growing model
numbers. Furthermore, an interface to Python merits special consideration, enabling to
perform simulations from within Python scripts, being of interest to advanced users.

Concerning the component execution framework ViennaX, among the identified fu-
ture investigations further scheduler extensions are of particular interest, especially with
respect to shared-memory platforms. The communication layer has to be extended to
incorporate an additional communication facility aside from the socket-based communi-
cation, based on, for instance, a messaging mechanism. This would allow the modules
to tune the execution part according to load-balancing issues. Also, the DTPM sched-
uler requires further investigations regarding support for loops as well as concerning
the overlap of communication with computation based on an hybrid approach.

103

CHAPTER 7. THESIS EVALUATION

Regarding the interactive simulation framework ViennaMOS, possible future work
should focus, among others, on the extension of the visualization backend. In particular,
support for vector field visualization as well as enabling manual color ranges are impor-
tant, to further improve the visualization capabilities. Furthermore, a decoupling of the
visualization backend has to be analyzed, allowing to exchange the currently utilized
VTK backend with other libraries, such as the Visualization and Computer Graphics li-
brary. Also, capturing C-based output messages from external C-based tools wrapped
by ViennaMOS modules has to be investigated, to enable the rerouting of external
debug messages into the central framework message window, further improving the
overall usability.

7.3 Conclusion

In essence, this thesis is a testament to the importance of CBSE, FLOSS, and LCSD
to software engineering in the field of CSE and MNDS in particular. Overall, the three
developed frameworks utilize a total of 19 LCSD-based libraries (Table 7.1), whereas
several libraries are utilized more than once. This fact further underlines the benefit of
decoupling implementations in general, as implementations can be reused in different
contexts.

V
ie

n
n

aF
E

M

V
ie

n
n

aF
V

M

V
ie

n
n

aM
es

h

S
um

Boost • • • 3
Netgen • 1
Tetgen • 1
Triangle • 1
ViennaCL • • 2
ViennaGrid • • • 3
ViennaMath • • 2
Sum 13

(a) Libraries

V
ie

n
n

aM
in

i

V
ie

n
n

aM
O

S

V
ie

n
n

aX

S
um

Boost • • • 3
deal.II ◦ 1
Qt • 1
ViennaCL • • 2
ViennaFVM • • 2
ViennaGrid • • 2
ViennaMaterials • • 2
ViennaMath • • 2
ViennaMesh • • 2
ViennaMini • 1
VTK • 1
Sum 19

(b) Frameworks

Table 7.1: Alphabetical overview of relevant libraries (a) and frameworks (b) part of
the Vienna* collection which utilize synergy effects by using LCSD-based libraries; a
bullet (•) denotes a dependence whereas a circle (◦) relates to an optional dependence.
The Boost libraries and the Vienna* libraries are utilized most. Where ViennaFEM,
ViennaFVM, and ViennaMesh utilized in total 13 libraries, the discussed framework
approaches altogether make use of 19 libraries.

104

CHAPTER 7. THESIS EVALUATION

Furthermore, by utilizing and implementing FLOSS as well as by applying CBSE and
LCSD techniques for the introduced frameworks, the initially defined research goals
(Section 1.4) are tackled. More concretely, not only has the overall goal of develop-
ing flexible simulation tools relevant for the field of MNDS been met via the developed
frameworks, but also the five established primary requirements of this work, those be-
ing reusability, flexibility, usability, maintainability, and expandability, are inherently sup-
ported by utilizing FLOSS-based approaches and by applying LCSD as well as CBSE
techniques (Table 7.2).

FLOSS LCSD CBSE
Reusability • • •
Flexibility • • •
Usability • •
Maintainability • •
Expandability • • •

Table 7.2: The key research goals established for this thesis are supported by applying
CBSE, FLOSS, and LCSD approaches. A bullet (•) denotes the inherent support of the
particular feature by the respective method.

Reusability is provided by implementing and using FLOSS, as software can be ac-
cessed by other developers. By applying an LCSD approach libraries can be reused by
other libraries and applications. Components of CBSE-based implementations can be
reused in different execution contexts.

Flexibility is supported by FLOSS-based tools, as the access to other tools enables
to alter an application by developing and using interfaces. Also, LCSD favors flexibility,
as the decoupled nature allows to change parts of an implementation with minimized
effort. CBSE inherently enables to change the setup of an application via exchanging
components.

Usability is improved by LCSD due to the enforced interfaces introduced by the
libraries’ APIs, easing the utilization of the functionality provided by the individual li-
braries, which is particularly relevant for software developers. On the contrary, usabil-
ity is supported by the applied CBSE approach as is being utilized, for instance, in
ViennaMOS, where each module potentially provides its own GUI, allowing a highly
usable access to the simulation kernel.

Maintainability is favored by LCSD and CBSE approaches, as the decoupled nature
of the software reduces the overall code base of individual tools (Table 7.3) and thus by
extension increases the maintainability of each tool.

Finally, expandability is supported by FLOSS in the sense that already available
software can be accessed and functionality can be added without reimplementing the
code base allowing to add the new functionality in the first place. Also, LCSD and CBSE
approaches inherently favor expandability due to their utilized component interface, en-
abling the addition of further components in a straightforward manner.

These five primary aspects, being reusability, flexibility, usability, maintainability, and
expandability, are of particular importance to simulation software in a fast pacing re-
search environment such as MNDS. As the presented frameworks utilize these as-
pects, they allow to provide modern and long-term simulation platforms to end users
and advanced users. Simultaneously, developers can continuously advance the simu-
lation tools with minimum effort, ultimately enabling to stay at the forefront of research.

105

CHAPTER 7. THESIS EVALUATION

Lines of Code
ViennaCL 58 019
ViennaGrid 19 578
ViennaMath 7 562
ViennaMesh 7 280
ViennaFEM 4 672
ViennaFVM 2 880
ViennaData 1 779
ViennaMaterials 399

(a) Libraries

Lines of Code
ViennaMOS 8 717
ViennaX 4 121
ViennaMini 1 760

(b) Frameworks

Table 7.3: The number of source code lines for the Vienna* libraries (a) and frameworks
(b) are listed in descending order, as evaluated via the Count Lines of Code [41] tool.
The frameworks, allowing to setup the actual applications, offer a small code base, as
a significant part of functionality is provided by external libraries.

106

Bibliography

[1] S. Selberherr, Analysis and Simulation of Semiconductor Devices. Springer,
1984, ISBN: 3211818006.

[2] W. Arden, M. Brillouët, P. Cogez, M. Graef, B. Huizing, and R. Mahnkopf,
“More-than-Moore,” International Technology Roadmap for Semiconductors
(ITRS), White Paper, 2010. URL:
http://www.itrs.net/Links/2010ITRS/IRC-ITRS-MtM-v2%203.pdf

[3] I. Sommerville, Software Engineering, 9th ed. Addison-Wesley, 2010, ISBN:
0137035152.

[4] J. Weinbub, “Why Isn’t There More Open Source in Research?” Blog of the
Software Sustainability Institute, 2013. URL:
http://software.ac.uk/blog/2013-01-21-why-isnt-there-more-open-source-research/

[5] Archimedes. URL: http://www.gnu.org/software/archimedes/

[6] The Yale Law School Roundtable on Data and Code Sharing, “Reproducible
Research,” Computing in Science and Engineering, vol. 12, no. 5, pp. 8–13, 2010.
DOI: 10.1109/MCSE.2010.113

[7] V. Stodden, “The Legal Framework for Reproducible Scientific Research,”
Computing in Science and Engineering, vol. 11, no. 1, pp. 35–40, 2009. DOI:
10.1109/MCSE.2009.19

[8] M. Fayad and D. C. Schmidt, “Object-Oriented Application Frameworks,”
Communications of the ACM, vol. 40, no. 10, pp. 32–38, Oct. 1997. DOI:
10.1145/262793.262798

[9] ViennaMini. URL: https://github.com/viennamini/

[10] ViennaX. URL: http://viennax.sourceforge.net/

[11] ViennaMOS. URL: http://viennamos.sourceforge.net/

[12] ANSYS. URL: http://www.ansys.com/

[13] T. Goodale, G. Allen, J. Lanfermann, G.and Massó, T. Radke, E. Seidel, and
J. Shalf, “The Cactus Framework and Toolkit: Design and Applications,” in High
Performance Computing for Computational Science - VECPAR 2002, ser. Lecture
Notes in Computer Science, 2003, vol. 2565, pp. 197–227. DOI:
10.1007/3-540-36569-9 13

107

http://www.itrs.net/Links/2010ITRS/IRC-ITRS-MtM-v2%203.pdf
http://software.ac.uk/blog/2013-01-21-why-isnt-there-more-open-source-research/
http://www.gnu.org/software/archimedes/
http://dx.doi.org/10.1109/MCSE.2010.113
http://dx.doi.org/10.1109/MCSE.2009.19
http://dx.doi.org/10.1145/262793.262798
https://github.com/viennamini/
http://viennax.sourceforge.net/
http://viennamos.sourceforge.net/
http://www.ansys.com/
http://dx.doi.org/10.1007/3-540-36569-9_13

BIBLIOGRAPHY

[14] Cactus. URL: http://cactuscode.org/

[15] R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L. McInnes, S. Parker,
and B. Smolinski, “Toward a Common Component Architecture for
High-Performance Scientific Computing,” in Proceedings of the IEEE International
Symposium on High Performance Distributed Computing (HPDC), 1999, p. 13,
ISBN: 0769502873.

[16] B. A. Allan, R. Armstrong, D. E. Bernholdt, F. Bertrand, K. Chiu, T. L. Dahlgren,
K. Damevski, W. R. Elwasif, T. G. W. Epperly, M. Govindaraju, D. S. Katz, J. A.
Kohl, M. Krishnan, G. Kumfert, J. W. Larson, S. Lefantzi, M. J. Lewis, A. D. Malony,
L. C. Mclnnes, J. Nieplocha, B. Norris, S. G. Parker, J. Ray, S. Shende, T. L.
Windus, and S. Zhou, “A Component Architecture for High-Performance Scientific
Computing,” International Journal of High Performance Computing Applications,
vol. 20, no. 2, pp. 163–202, 2006. DOI: 10.1177/1094342006064488

[17] The Common Component Architecture Forum. URL: http://www.cca-forum.org/

[18] B. A. Allan, R. C. Armstrong, A. P. Wolfe, J. Ray, D. E. Bernholdt, and J. A. Kohl,
“The CCA Core Specification in a Distributed Memory SPMD Framework,”
Concurrency and Computation: Practice and Experience, vol. 14, no. 5, pp.
323–345, 2002. DOI: 10.1002/cpe.651

[19] M. Govindaraju, M. Head, and K. Chiu, “XCAT-C++: Design and performance of a
distributed cca framework,” in High Performance Computing - HiPC 2005, ser.
Lecture Notes in Computer Science, 2005, vol. 3769, pp. 270–279. DOI:
10.1007/11602569 30

[20] M. J. Lewis, A. J. Ferrari, M. A. Humphrey, J. F. Karpovich, M. M. Morgan,
A. Natrajan, A. Nguyen-Tuong, G. S. Wasson, and A. S. Grimshaw, “Support for
Extensibility and Site Autonomy in the Legion Grid System Object Model,” Journal
of Parallel and Distributed Computing, vol. 63, no. 5, pp. 525–538, 2003. DOI:
10.1016/S0743-7315(03)00012-1

[21] K. Zhang, K. Damevski, V. Venkatachalapathy, and S. Parker, “SCIRun2: A CCA
framework for high performance computing,” in Proceedings of the International
Workshop on High-Level Parallel Programming Models and Supportive
Environments (HIPS, 2004, pp. 72–79. DOI: 10.1109/HIPS.2004.1299192

[22] COMSOL Multiphysics. URL: http://www.comsol.com/

[23] A. Lani, T. Quintino, D. Kimpe, H. Deconinck, S. Vandewalle, and S. Poedts, “The
COOLFluiD Framework: Design Solutions for High Performance Object Oriented
Scientific Computing Software,” in Computational Science - ICCS 2005, ser.
Lecture Notes in Computer Science, 2005, vol. 3514, pp. 279–286. DOI:
10.1007/11428831 35

[24] T. Quintino, “A Component Environment for High-Performance Scientific
Computing,” Ph.D. thesis, Katholieke Universiteit Leuven, 2008.

[25] COOLFluiD. URL: http://coolfluidsrv.vki.ac.be/trac/coolfluid/

108

http://cactuscode.org/
http://dx.doi.org/10.1177/1094342006064488
http://www.cca-forum.org/
http://dx.doi.org/10.1002/cpe.651
http://dx.doi.org/10.1007/11602569_30
http://dx.doi.org/10.1016/S0743-7315(03)00012-1
http://dx.doi.org/10.1109/HIPS.2004.1299192
http://www.comsol.com/
http://dx.doi.org/10.1007/11428831_35
http://coolfluidsrv.vki.ac.be/trac/coolfluid/

BIBLIOGRAPHY

[26] G. Bosilca, A. Bouteiller, A. Danalis, T. Herault, P. Lemarinier, and J. Dongarra,
“DAGuE: A Generic Distributed DAG Engine for High Performance Computing,”
Parallel Computing, vol. 38, no. 1-2, pp. 37–51, 2012. DOI:
10.1016/j.parco.2011.10.003

[27] DAGuE. URL: http://icl.cs.utk.edu/dague/

[28] C. Hill, C. DeLuca, V. Balaji, M. Suarez, and A. d. Silva, “The Architecture of the
Earth System Modeling Framework,” Computing in Science and Engineering,
vol. 6, no. 1, pp. 18–28, 2004. DOI: 10.1109/MCISE.2004.1255817

[29] Earth System Modeling Framework. URL: http://www.earthsystemmodeling.org/

[30] M. Berzins, “Status of Release of the Uintah Computational Framework,”
Scientific Computing and Imaging Institute, University of Utah, Tech. Rep.
UUSCI-2012-001, 2012.

[31] J. Davison de St.Germain, J. McCorquodale, S. Parker, and C. Johnson, “Uintah:
A massively parallel problem solving environment,” in Proceedings of the IEEE
International Symposium on High Performance Distributed Computing (HPDC),
2000, pp. 33–41. DOI: 10.1109/HPDC.2000.868632

[32] C. Szyperski, Component Software: Beyond Object-Oriented Programming,
2nd ed. Addison-Wesley Longman Publishing, 2002, ISBN: 0201745720.

[33] J. Sellier, J. Fonseca, and G. Klimeck, “Archimedes, the free Monte Carlo
Simulator,” in Proceedings of the International Workshop on Computational
Electronics (IWCE), 2012, pp. 1–4. DOI: 10.1109/IWCE.2012.6242861

[34] Genius TCAD Open. URL: https://github.com/cogenda/Genius-TCAD-Open/

[35] Gold Standard Simulations. URL: http://www.goldstandardsimulations.com/

[36] S. Wagner, “Small-Signal Device and Circuit Simulation,” Dissertation, Technische
Universität Wien, 2005. URL: http://www.iue.tuwien.ac.at/phd/wagner/

[37] R. Klima, “Three-Dimensional Device Simulation with Minimos-NT,” Dissertation,
Technische Universität Wien, 2002. URL: http://www.iue.tuwien.ac.at/phd/klima/

[38] S. Selberherr, A. Schütz, and H. Pötzl, “MINIMOS - A Two-Dimensional MOS
Transistor Analyzer,” IEEE Transactions on Electron Devices, vol. 27, no. 8, pp.
1540–1550, 1980. DOI: 10.1109/T-ED.1980.20068

[39] nanoHUB. URL: http://nanohub.org/

[40] G. Klimeck, M. McLennan, S. Brophy, G. Adams, and M. Lundstrom,
“nanoHUB.org: Advancing Education and Research in Nanotechnology,”
Computing in Science Engineering, vol. 10, no. 5, pp. 17–23, 2008. DOI:
10.1109/MCSE.2008.120

[41] Count Lines of Code (CLOC). URL: http://cloc.sourceforge.net/

[42] NanoTCAD ViDES. URL: http://vides.nanotcad.com/

109

http://dx.doi.org/10.1016/j.parco.2011.10.003
http://icl.cs.utk.edu/dague/
http://dx.doi.org/10.1109/MCISE.2004.1255817
http://www.earthsystemmodeling.org/
http://dx.doi.org/10.1109/HPDC.2000.868632
http://dx.doi.org/10.1109/IWCE.2012.6242861
https://github.com/cogenda/Genius-TCAD-Open/
http://www.goldstandardsimulations.com/
http://www.iue.tuwien.ac.at/phd/wagner/
http://www.iue.tuwien.ac.at/phd/klima/
http://dx.doi.org/10.1109/T-ED.1980.20068
http://nanohub.org/
http://dx.doi.org/10.1109/MCSE.2008.120
http://cloc.sourceforge.net/
http://vides.nanotcad.com/

BIBLIOGRAPHY

[43] Silvaco. URL: http://www.silvaco.com/

[44] Synopsys. URL: http://www.synopsys.com/

[45] ViennaSHE. URL: http://viennashe.sourceforge.net/

[46] K. Rupp, “Deterministic Numerical Solution of the Boltzmann Transport Equation,”
Dissertation, Technische Universität Wien, 2011. URL:
http://www.iue.tuwien.ac.at/phd/rupp/

[47] Boost. URL: http://www.boost.org/

[48] Boost Graph. URL: http://www.boost.org/libs/graph/

[49] Boost MPI. URL: http://www.boost.org/libs/mpi/

[50] Boost Serialization. URL: http://www.boost.org/libs/serialization/

[51] Boost Smart Pointers. URL: http://www.boost.org/libs/smart ptr/

[52] Boost uBLAS. URL: http://www.boost.org/libs/numeric/ublas/

[53] Boost Variant. URL: http://www.boost.org/libs/variant/

[54] S.-W. Cheng, T. K. Dey, and J. R. Shewchuk, Delaunay Mesh Generation. Taylor
& Francis, 2012, ISBN: 9781584887300.

[55] J. Shewchuk, “What is a Good Linear Element?” in Proceedings of the
International Meshing Roundtable (IMR), 2002, pp. 115–126. URL:
http://www.imr.sandia.gov/papers/imr11/shewchuk2.pdf

[56] S. J. Owen, “A Survey of Unstructured Mesh Generation Technology,” in
Proceedings of the International Meshing Roundtable (IMR), 1998, pp. 239–267.
URL: http://www.imr.sandia.gov/papers/imr7/owen meshtech98.ps.gz

[57] ViennaMesh. URL: http://viennamesh.sourceforge.net/

[58] Computational Geometry Algorithms Library (CGAL). URL: http://www.cgal.org/

[59] Gmsh. URL: http://geuz.org/gmsh/

[60] Netgen. URL: http://sourceforge.net/projects/netgen-mesher/

[61] TetGen. URL: http://tetgen.berlios.de/

[62] Triangle. URL: http://www.cs.cmu.edu/∼quake/triangle.html

[63] ParaView. URL: http://www.paraview.org/

[64] Qt. URL: http://qt-project.org/

[65] Software at the Institute for Microelectronics. URL:
http://www.iue.tuwien.ac.at/software/

[66] ViennaProfiler. URL: http://viennaprofiler.sourceforge.net/

110

http://www.silvaco.com/
http://www.synopsys.com/
http://viennashe.sourceforge.net/
http://www.iue.tuwien.ac.at/phd/rupp/
http://www.boost.org/
http://www.boost.org/libs/graph/
http://www.boost.org/libs/mpi/
http://www.boost.org/libs/serialization/
http://www.boost.org/libs/smart_ptr/
http://www.boost.org/libs/numeric/ublas/
http://www.boost.org/libs/variant/
http://www.imr.sandia.gov/papers/imr11/shewchuk2.pdf
http://www.imr.sandia.gov/papers/imr7/owen_meshtech98.ps.gz
http://viennamesh.sourceforge.net/
http://www.cgal.org/
http://geuz.org/gmsh/
http://sourceforge.net/projects/netgen-mesher/
http://tetgen.berlios.de/
http://www.cs.cmu.edu/~quake/triangle.html
http://www.paraview.org/
http://qt-project.org/
http://www.iue.tuwien.ac.at/software/
http://viennaprofiler.sourceforge.net/

BIBLIOGRAPHY

[67] ViennaWD. URL: http://viennawd.sourceforge.net/

[68] ViennaCL. URL: http://viennacl.sourceforge.net/

[69] ViennaData. URL: http://viennadata.sourceforge.net/

[70] ViennaFEM. URL: http://viennafem.sourceforge.net/

[71] ViennaFVM. URL: http://viennafvm.sourceforge.net/

[72] ViennaGrid. URL: http://viennagrid.sourceforge.net/

[73] ViennaIPD. URL: http://viennaipd.sourceforge.net/

[74] ViennaMaterials. URL: https://github.com/viennamaterials/

[75] ViennaMath. URL: http://viennamath.sourceforge.net/

[76] Visualization Toolkit (VTK). URL: http://www.vtk.org/

[77] R. Heinzl, “Concepts for Scientific Computing,” Dissertation, Technische
Universität Wien, 2007. URL: http://www.iue.tuwien.ac.at/phd/heinzl/

[78] P. Schwaha, “Beyond Atavistic Structures in Scientific Computing,” Dissertation,
Technische Universität Wien, 2010. URL: http://www.iue.tuwien.ac.at/phd/schwaha/

[79] P. Wegner, “Concepts and Paradigms of Object-Oriented Programming,”
SIGPLAN OOPS Messenger, vol. 1, no. 1, pp. 7–87, 1990. DOI:
10.1145/382192.383004

[80] P. Hudak, “Conception, Evolution, and Application of Functional Programming
Languages,” ACM Computing Surveys, vol. 21, no. 3, pp. 359–411, 1989. DOI:
10.1145/72551.72554

[81] J. Backus, “Can Programming Be Liberated from the Von Neumann Style?”
Communications of the ACM, vol. 21, no. 8, pp. 613–641, 1978. DOI:
10.1145/359576.359579

[82] Haskell. URL: http://www.haskell.org/

[83] Boost Lambda. URL: http://www.boost.org/libs/lambda/

[84] Boost Phoenix. URL: http://www.boost.org/libs/phoenix/

[85] B. Stroustrup, “Evolving a Language in and for the Real World: C++ 1991-2006,”
in Proceedings of the ACM SIGPLAN Conference on History of Programming
Languages, 2007, pp. 4–1–4–59. DOI: 10.1145/1238844.1238848

[86] D. Musser and A. A. Stepanov, “Generic Programming,” in Proceedings of the
International Symposium on Symbolic and Algebraic Computation (ISSAC), 1988,
pp. 13–25, ISBN: 3540510842.

111

http://viennawd.sourceforge.net/
http://viennacl.sourceforge.net/
http://viennadata.sourceforge.net/
http://viennafem.sourceforge.net/
http://viennafvm.sourceforge.net/
http://viennagrid.sourceforge.net/
http://viennaipd.sourceforge.net/
https://github.com/viennamaterials/
http://viennamath.sourceforge.net/
http://www.vtk.org/
http://www.iue.tuwien.ac.at/phd/heinzl/
http://www.iue.tuwien.ac.at/phd/schwaha/
http://dx.doi.org/10.1145/382192.383004
http://dx.doi.org/10.1145/72551.72554
http://dx.doi.org/10.1145/359576.359579
http://www.haskell.org/
http://www.boost.org/libs/lambda/
http://www.boost.org/libs/phoenix/
http://dx.doi.org/10.1145/1238844.1238848

BIBLIOGRAPHY

[87] G. D. Reis and J. Järvi, “What is Generic Programming?” in Proceedings of the
Object-Oriented Programming Systems, Languages, and Applications Conference
(OOPSLA), Workshop on Library-Centric Software Design (LCSD), 2005. URL:
http://lcsd05.cs.tamu.edu/papers/dos reis et al.pdf

[88] T. Veldhuizen, “Expression Templates,” C++ Report, vol. 7, no. 5, pp. 26–31, 1995.

[89] D. Abrahams and A. Gurtovoy, C++ Template Metaprogramming.
Addison-Wesley, 2004, ISBN: 0321227255.

[90] The Matrix Template Library. URL: http://www.simunova.com/

[91] W. Bangerth, R. Hartmann, and G. Kanschat, “deal.II - A General-Purpose
Object-Oriented Finite Element Library,” ACM Transactions on Mathematical
Software, vol. 33, no. 4, pp. 24:1–24:27, 2007. DOI: 10.1145/1268776.1268779

[92] deal.II. URL: http://www.dealii.org/

[93] The Blitz++ Library. URL: http://blitz.sourceforge.net/

[94] B. Stroustrup, “Evolving a Language in and for the Real World: C++ 1991-2006,”
in Proceedings of the ACM SIGPLAN Conference on History of Programming
Languages (HOPL), 2007, pp. 4:1–4:59. DOI: 10.1145/1238844.1238848

[95] TIOBE Programming Community Index. URL:
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

[96] C++ Standards Committee. URL: http://open-std.org/JTC1/SC22/WG21/

[97] GNU Compiler Collection. URL: http://gcc.gnu.org/

[98] Clang. URL: http://clang.llvm.org/

[99] Intel Developer Zone. URL: http://software.intel.com/

[100] G. Hager and G. Wellein, Introduction to High Performance Computing for
Scientists and Engineers. CRC Press, 2010, ISBN: 9781439811924.

[101] Boost Python. URL: http://www.boost.org/libs/python/

[102] D. E. Bernholdt, R. C. Armstrong, and B. A. Allan, “Managing Complexity in
Modern High End Scientific Computing through Component-Based Software
Engineering,” in Proceedings of the Workshop on Productivity and Performance in
High-End Computing (P-PHEC), 2004. URL:
http://www.research.ibm.com/people/r/rajamony/pphec2004-proceedings.pdf

[103] W. Van Roosbroeck, “Theory of the Flow of Electrons and Holes in Germanium
and Other Semiconductors,” Bell System Technical Journal, vol. 29, no. 4, pp.
560–607, 1950. DOI: 10.1002/j.1538-7305.1950.tb03653.x

[104] D. Scharfetter and H. Gummel, “Large-Signal Analysis of a Silicon Read Diode
Oscillator,” IEEE Transactions on Electron Devices, vol. 16, no. 1, pp. 64–77, 1969.
DOI: 10.1109/T-ED.1969.16566

112

http://lcsd05.cs.tamu.edu/papers/dos_reis_et_al.pdf
http://www.simunova.com/
http://dx.doi.org/10.1145/1268776.1268779
http://www.dealii.org/
http://blitz.sourceforge.net/
http://dx.doi.org/10.1145/1238844.1238848
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://open-std.org/JTC1/SC22/WG21/
http://gcc.gnu.org/
http://clang.llvm.org/
http://software.intel.com/
http://www.boost.org/libs/python/
http://www.research.ibm.com/people/r/rajamony/pphec2004-proceedings.pdf
http://dx.doi.org/10.1002/j.1538-7305.1950.tb03653.x
http://dx.doi.org/10.1109/T-ED.1969.16566

BIBLIOGRAPHY

[105] T. Grasser, T.-W. Tang, H. Kosina, and S. Selberherr, “A Review of
Hydrodynamic and Energy-Transport Models for Semiconductor Device
Simulation,” Proceedings of the IEEE, vol. 91, no. 2, pp. 251–274, 2003. DOI:
10.1109/JPROC.2002.808150

[106] B. M. Klingner and J. R. Shewchuk, “Agressive Tetrahedral Mesh Improvement,”
in Proceedings of the International Meshing Roundtable (IMR), 2007, pp. 3–23.
URL: http://www.imr.sandia.gov/papers/imr16/klinger.pdf

[107] P. Fleischmann and S. Selberherr, “Enhanced Advancing Front Delaunay
Meshing in TCAD,” in Proceedings of the International Conference on Simulation of
Semiconductor Processes and Devices (SISPAD), 2002, pp. 99–102. DOI:
10.1109/SISPAD.2002.1034526

[108] V. Palankovski, “Simulation of Heterojunction Bipolar Transistors,” Dissertation,
Technische Universität Wien, 2000. URL:
http://www.iue.tuwien.ac.at/phd/palankovski/

[109] M. Gayer and G. Iannaccone, “A Software Platform for Nanoscale Device
Simulation and Visualization,” in Proceedings of the International Conference on
Advances in Computational Tools for Engineering Applications (ACTEA), 15-17
2009, pp. 432–437. DOI: 10.1109/ACTEA.2009.5227880

[110] A. Logg and G. N. Wells, “DOLFIN: Automated Finite Element Computing,” ACM
Transactions on Mathematical Software, vol. 37, no. 2, pp. 1–28, 2010. DOI:
10.1145/1731022.1731030

[111] B. Stroustrup, “Software Development for Infrastructure,” Computer, vol. 45,
no. 1, pp. 47–58, 2012. DOI: 10.1109/MC.2011.353

[112] pugixml. URL: http://pugixml.org/

[113] Libxml2. URL: http://www.xmlsoft.org/

[114] FEniCS. URL: http://fenicsproject.org/

[115] M. G. Knepley, J. Brown, K. Rupp, and B. F. Smith, “Achieving High Performance
with Unified Residual Evaluation,” Computing Research Repository, 2013. URL:
http://arxiv.org/abs/1309.1204

[116] R. N. Hall, “Electron-Hole Recombination in Germanium,” Physical Review,
vol. 87, pp. 387–387, 1952. DOI: 10.1103/PhysRev.87.387

[117] W. Shockley and W. T. Read, “Statistics of the Recombinations of Holes and
Electrons,” Physical Review, vol. 87, pp. 835–842, 1952. DOI:
10.1103/PhysRev.87.835

[118] M. R. Hestenes and E. Stiefel, “Methods of Conjugate Gradients for Solving
Linear Systems,” Journal of Research of the National Bureau of Standards, vol. 49,
no. 6, pp. 409–436, 1952. DOI: 10.6028/jres.049.044

113

http://dx.doi.org/10.1109/JPROC.2002.808150
http://www.imr.sandia.gov/papers/imr16/klinger.pdf
http://dx.doi.org/10.1109/SISPAD.2002.1034526
http://www.iue.tuwien.ac.at/phd/palankovski/
http://dx.doi.org/10.1109/ACTEA.2009.5227880
http://dx.doi.org/10.1145/1731022.1731030
http://dx.doi.org/10.1109/MC.2011.353
http://pugixml.org/
http://www.xmlsoft.org/
http://fenicsproject.org/
http://arxiv.org/abs/1309.1204
http://dx.doi.org/10.1103/PhysRev.87.387
http://dx.doi.org/10.1103/PhysRev.87.835
http://dx.doi.org/10.6028/jres.049.044

BIBLIOGRAPHY

[119] Y. Saad and M. Schultz, “GMRES: A Generalized Minimal Residual Algorithm for
Solving Nonsymmetric Linear Systems,” SIAM Journal on Scientific and Statistical
Computing, vol. 7, no. 3, pp. 856–869, 1986. DOI: 10.1137/0907058

[120] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed. Society for
Industrial and Applied Mathematics, 2003, ISBN: 9780898715347.

[121] Trilinos. URL: http://trilinos.sandia.gov/

[122] PETSc. URL: http://www.mcs.anl.gov/petsc/

[123] UDUNITS. URL: http://www.unidata.ucar.edu/software/udunits/

[124] Lua. URL: http://www.lua.org/

[125] J. Weinbub, R. Heinzl, P. Schwaha, F. Stimpfl, and S. Selberherr, “A Lightweight
Material Library for Scientific Computing in C++,” in Proceedings of the European
Simulation and Modelling Conference (ESM), 2010, pp. 454–458, ISBN:
9789077381571.

[126] B. Reed and D. D. E. Long, “Analysis of Caching Algorithms for Distributed File
Systems,” ACM SIGOPS Operating Systems Review, vol. 30, no. 3, pp. 12–21,
1996. DOI: 10.1145/230908.230913

[127] H. Gummel, “A Self-Consistent Iterative Scheme for One-Dimensional Steady
State Transistor Calculations,” IEEE Transactions on Electron Devices, vol. 11,
no. 10, pp. 455–465, 1964. DOI: 10.1109/T-ED.1964.15364

[128] J. Dongarra and A. van der Steen, “High-Performance Computing Systems,”
Acta Numerica, vol. 21, pp. 379–474, 2012, ISBN: 9781107026155. URL:
http://www.netlib.org/utk/people/PAPERS/acta-num-2012.pdf

[129] S. Borkar and A. A. Chien, “The Future of Microprocessors,” Communications of
the ACM, vol. 54, no. 5, pp. 67–77, 2011. DOI: 10.1145/1941487.1941507

[130] H. Sutter and J. Larus, “Software and the Concurrency Revolution,” ACM Queue,
vol. 3, no. 7, pp. 54–62, 2005. DOI: 10.1145/1095408.1095421

[131] C. Lameter, “NUMA (Non-Uniform Memory Access): An Overview,” ACM Queue,
vol. 11, no. 7, pp. 40:40–40:51, 2013. DOI: 10.1145/2508834.2513149

[132] OpenMP. URL: http://openmp.org/

[133] Intel Cilk Plus. URL: http://www.cilkplus.org/

[134] IEEE and The Open Group, IEEE Stdandard 1003.1, 2004 Edition, 2004. URL:
http://pubs.opengroup.org/onlinepubs/000095399/

[135] Message Passing Interface Forum, “MPI: A Message-Passing Interface
Standard Version 3.0,” 2012. URL:
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf

114

http://dx.doi.org/10.1137/0907058
http://trilinos.sandia.gov/
http://www.mcs.anl.gov/petsc/
http://www.unidata.ucar.edu/software/udunits/
http://www.lua.org/
http://dx.doi.org/10.1145/230908.230913
http://dx.doi.org/10.1109/T-ED.1964.15364
http://www.netlib.org/utk/people/PAPERS/acta-num-2012.pdf
http://dx.doi.org/10.1145/1941487.1941507
http://dx.doi.org/10.1145/1095408.1095421
http://dx.doi.org/10.1145/2508834.2513149
http://openmp.org/
http://www.cilkplus.org/
http://pubs.opengroup.org/onlinepubs/000095399/
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf

BIBLIOGRAPHY

[136] CORPORATE Rice University, “High Performance Fortran Language
Specification,” SIGPLAN Fortran Forum, vol. 12, no. 4, pp. 1–86, 1993. DOI:
10.1145/174223.158909

[137] K. Kennedy, C. Koelbel, and H. Zima, “The Rise and Fall of High Performance
Fortran,” in Proceedings of the ACM SIGPLAN Conference on History of
Programming Languages (HOPL), 2007, pp. 7:1–7:22. DOI:
10.1145/1238844.1238851

[138] Partitioned Global Address Space. URL: http://www.pgas.org/

[139] R. W. Numrich and J. Reid, “Co-Array Fortran for Parallel Programming,”
SIGPLAN Fortran Forum, vol. 17, no. 2, pp. 1–31, 1998. DOI:
10.1145/289918.289920

[140] W. W. Carlson, J. M. Draper, D. E. Culler, K. Yelick, E. Brooks, and K. Warren,
“Introduction to UPC and Language Specification,” IDA/CCS, Tech. Rep.
CCS-TR-99-157, 1999. URL: http://www3.uji.es/∼aliaga/UPC/upc intro.pdf

[141] Titan. URL: http://www.olcf.ornl.gov/titan/

[142] Sequoia. URL: https://asc.llnl.gov/computing resources/sequoia/

[143] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger,
“Dark Silicon and the End of Multicore Scaling,” ACM SIGARCH Computer
Architecture News, vol. 39, no. 3, pp. 365–376, 2011. DOI:
10.1145/2024723.2000108

[144] V. Sarkar, W. Harrod, and A. Snavely, “Software Challenges at Extreme Scale,”
SciDAC Review, Special Issue on Advanced Computing: The Roadmap to
Exascale, vol. 16, 2010. URL: http://www.scidacreview.org/1001/html/software.html

[145] Stampede. URL: http://www.tacc.utexas.edu/resources/hpc/stampede/

[146] D. B. Kirk and W. W. Hwu, Programming Massively Parallel Processors.
Morgan Kaufman, 2010, ISBN: 0123814723.

[147] K. Rupp, “CPU, GPU and MIC Hardware Characteristics over Time.” URL: http:
//www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

[148] M. Arora, S. Nath, S. Mazumdar, S. Baden, and D. Tullsen, “Redefining the Role
of the CPU in the Era of CPU-GPU Integration,” IEEE Micro, vol. 32, no. 6, pp.
4–16, 2012. DOI: 10.1109/MM.2012.57

[149] A. Dios, R. Asenjo, A. Navarro, F. Corbera, and E. Zapata, “High-Level Template
for the Task-Based Parallel Wavefront Pattern,” in Proceedings of the International
Conference on High Performance Computing (HiPC), 2011, pp. 1–10. DOI:
10.1109/HiPC.2011.6152717

[150] J. Weinbub, K. Rupp, and S. Selberherr, “ViennaX: A Parallel Plugin Execution
Framework for Scientific Computing,” Engineering with Computers, 2013. DOI:
10.1007/s00366-013-0314-1

115

http://dx.doi.org/10.1145/174223.158909
http://dx.doi.org/10.1145/1238844.1238851
http://www.pgas.org/
http://dx.doi.org/10.1145/289918.289920
http://www3.uji.es/~aliaga/UPC/upc_intro.pdf
http://www.olcf.ornl.gov/titan/
https://asc.llnl.gov/computing_resources/sequoia/
http://dx.doi.org/10.1145/2024723.2000108
http://www.scidacreview.org/1001/html/software.html
http://www.tacc.utexas.edu/resources/hpc/stampede/
http://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
http://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
http://dx.doi.org/10.1109/MM.2012.57
http://dx.doi.org/10.1109/HiPC.2011.6152717
http://dx.doi.org/10.1007/s00366-013-0314-1

BIBLIOGRAPHY

[151] J. Weinbub, K. Rupp, and S. Selberherr, “Highly Flexible and Reusable Finite
Element Simulations with ViennaX,” Journal of Computational and Applied
Mathematics, 2013. DOI: 10.1016/j.cam.2013.12.013

[152] MPICH. URL: http://www.mpich.org/

[153] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1994, ISBN: 0201633612.

[154] D. Kharrat and S. Quadri, “Self-Registering Plug-ins,” in Proceedings of the
Canadian Conference on Electrical and Computer Engineering (CCECE), 2005,
pp. 1324–1327. DOI: 10.1109/CCECE.2005.1557221

[155] J. G. Siek, L.-Q. Lee, and A. Lumsdaine, The Boost Graph Library.
Addison-Wesley Professional, 2001, ISBN: 0201729148.

[156] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms. The MIT Press, 2009, ISBN: 0262033844.

[157] Y.-K. Kwok and I. Ahmad, “Static Scheduling Algorithms for Allocating Directed
Task Graphs to Multiprocessors,” ACM Computing Surveys, vol. 31, no. 4, 1999.
DOI: 10.1145/344588.344618

[158] J. C. Tiernan, “An Efficient Search Algorithm to Find the Elementary Circuits of a
Graph,” Communications of the ACM, vol. 13, no. 12, pp. 722–726, 1970. DOI:
10.1145/362814.362819

[159] K. Agrawal, C. Leiserson, and J. Sukha, “Executing Task Graphs Using
Work-Stealing,” in Proceedings of the IEEE International Symposium on Parallel
and Distributed Processing (IPDPS), 2010, pp. 1–12. DOI:
10.1109/IPDPS.2010.5470403

[160] J. Dinan, D. B. Larkins, P. Sadayappan, S. Krishnamoorthy, and J. Nieplocha,
“Scalable Work Stealing,” in Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis (SC), 2009, pp. 53:1–53:11. DOI:
10.1145/1654059.1654113

[161] METIS. URL: http://glaros.dtc.umn.edu/gkhome/metis/metis/overview/

[162] P. Colella, J. Bell, N. Keen, T. Ligocki, M. Lijewski, and B. van Straalen,
“Performance and Scaling of Locally-Structured Grid Methods for Partial
Differential Equations,” Journal of Physics: Conference Series, vol. 78, no. 1, p.
012013, 2007. DOI: 10.1088/1742-6596/78/1/012013

[163] M. Möller and D. Kuzmin, “Adaptive Mesh Refinement for High-Resolution Finite
Element Schemes,” International Journal for Numerical Methods in Fluids, vol. 52,
no. 5, pp. 545–569, 2006. DOI: 10.1002/fld.1183

[164] D. W. Kelly, J. P. De S. R. Gago, O. C. Zienkiewicz, and I. Babuska, “A Posteriori
Error Analysis and Adaptive Processes in the Finite Element Method,” International
Journal for Numerical Methods in Engineering, vol. 19, no. 11, pp. 1593–1619,
1983. DOI: 10.1002/nme.1620191103

116

http://dx.doi.org/10.1016/j.cam.2013.12.013
http://www.mpich.org/
http://dx.doi.org/10.1109/CCECE.2005.1557221
http://dx.doi.org/10.1145/344588.344618
http://dx.doi.org/10.1145/362814.362819
http://dx.doi.org/10.1109/IPDPS.2010.5470403
http://dx.doi.org/10.1145/1654059.1654113
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview/
http://dx.doi.org/10.1088/1742-6596/78/1/012013
http://dx.doi.org/10.1002/fld.1183
http://dx.doi.org/10.1002/nme.1620191103

BIBLIOGRAPHY

[165] FastFlow. URL: http://calvados.di.unipi.it/dokuwiki/doku.php/ffnamespace:about

[166] M. Aldinucci, M. Danelutto, P. Kilpatrick, and M. Torquati, “FastFlow: High-Level
and Efficient Streaming on Multi-Core,” in Programming Multi-core and Many-core
Computing Systems, ser. Parallel and Distributed Computing. Wiley, 2013, ISBN:
0470936908.

[167] HECToR. URL: http://www.hector.ac.uk/

[168] W. Bangerth, C. Burstedde, T. Heister, and M. Kronbichler, “Algorithms and Data
Structures for Massively Parallel Generic Adaptive Finite Element Codes,” ACM
Transactions on Mathematical Software, vol. 38, no. 2, pp. 14:1–14:28, 2011. DOI:
10.1145/2049673.2049678

[169] C. Burstedde, L. C. Wilcox, and O. Ghattas, “p4est: Scalable Algorithms for
Parallel Adaptive Mesh Refinement on Forests of Octrees,” SIAM Journal on
Scientific Computing, vol. 33, no. 3, pp. 1103–1133, 2011. DOI:
10.1137/100791634

[170] p4est. URL: http://www.p4est.org/

[171] Hypre. URL: http://acts.nersc.gov/hypre/

[172] Visualization and Computer Graphics (VCG) Library. URL:
http://vcg.isti.cnr.it/∼cignoni/newvcglib/html/

117

http://calvados.di.unipi.it/dokuwiki/doku.php/ffnamespace:about
http://www.hector.ac.uk/
http://dx.doi.org/10.1145/2049673.2049678
http://dx.doi.org/10.1137/100791634
http://www.p4est.org/
http://acts.nersc.gov/hypre/
http://vcg.isti.cnr.it/~cignoni/newvcglib/html/

Curriculum Vitae

Personal Information

Name

Gender

Nationality

Place of Birth

Josef Weinbub

Male

Austrian

Vienna, Austria

Academic Career and Positions

10/2012-11/2012 Visiting researcher
Device Modelling Group, University of Glasgow and
EPCC, University of Edinburgh, Scotland, UK

since 2/2010 Doctoral student
Institute for Microelectronics, TU Wien
Supervisor: Prof. Dr. Siegfried Selberherr

since 1/2010 Research assistant
Institute for Microelectronics, TU Wien

10/2009 Master’s degree in Microelectronics
Thesis: Adaptive Mesh Generation, TU Wien

2/2009 Bachelor’s degree in Electrical Engineering
Thesis: Multi-Paradigm Programming for Scientific Computing
with GSSE, TU Wien

118

BIBLIOGRAPHY

Sideline Positions

since 11/2013 Program committee member of the SCS/ACM High Performance
Computing Symposium (HPC 2014), Tampa, FL, USA

11/2013 Invited lecturer at SPOMECH Autumn School
Parallel Solution of Large Engineering Problems
Technical University of Ostrava, Ostrava, Czech Republic

3/2013 - 9/2013 Project head of the Google Summer of Code 2013 organization
Computational Science and Engineering at TU Wien

since 1/2013 Project head of the Vienna Scientific Cluster project
Modeling Silicon Spintronics, project number: 70388

3/2012 - 8/2012 Debuty head of the Google Summer of Code 2012 organization
Computational Science and Engineering at TU Wien

3/2011 - 8/2011 Co-founder and debuty head of the Google Summer of Code
2011 organization Computational Science and Engineering at TU
Wien

Additional Professional Training

6/2013 Participated in XSEDE/PRACE/RIKEN Summer school
HPC Challenges in Computational Sciences
New York University, New York City, NY, USA

9/2012 Participated in EuroMPI Workshop
Advanced MPI including new MPI-3 Features
Austrian Academy of Sciences, Vienna, Austria

6/2012 Participated in PRACE/Intel Summer school
Code Optimisation for Multi-Core and Intel MIC Architecture
CSCS, Lugano, Switzerland

9/2010 Participated in Summer school
Dresden Microelectronics Academy
TU Dresden, Dresden, Germany

Awards

2012 HPC-Europa2 fellowship, Edinburgh, Scotland, UK

2012 Best paper award
International Conference of Information Engineering (ICIE)
IAENG World Congress on Engineering (WCE)
London, England, UK

119

Own Publications

Journal Articles

[1] J. Weinbub, K. Rupp, and S. Selberherr, “Highly Flexible and Reusable Finite
Element Simulations with ViennaX,” Journal of Computational and Applied
Mathematics, 2013. DOI: 10.1016/j.cam.2013.12.013

[2] F. Rudolf, J. Weinbub, K. Rupp, and S. Selberherr, “The Meshing Framework
ViennaMesh for Finite Element Applications,” Journal of Computational and
Applied Mathematics, 2013, submitted.

[3] J. Weinbub, K. Rupp, and S. Selberherr, “ViennaX: A Parallel Plugin Execution
Framework for Scientific Computing,” Engineering with Computers, 2013. DOI:
10.1007/s00366-013-0314-1

[4] F. Ortmann, S. Roche, J. C. Greer, G. Huhs, T. Shulthess, T. Deutsch,
P. Weinberger, M. Payne, J. M. Sellier, J. Sprekels, J. Weinbub, K. Rupp,
M. Nedjalkov, D. Vasileska, E. Alfi nito, L. Reggiani, D. Guerra, D. Ferry,
M. Saraniti, S. Goodnick, A. Kloes, L. Colombo, K. Lilja, J. Mateos, T. Gonzalez,
E. Velazquez, P. Palestri, A. Schenk, and M. Macucci, “Multi-Scale Modelling for
Devices and Circuits,” E-Nano Newsletter, vol. Special Issue April 2012, 2012.
URL: http://issuu.com/phantoms foundation/docs/enn special april2012/

Book Contributions

[1] J. Rodriguez, J. Weinbub, D. Pahr, K. Rupp, and S. Selberherr, “Distributed
High-Performance Parallel Mesh Generation with ViennaMesh,” in Lecture Notes in
Computer Science, Vol. 7782, P. Manninen and P. Öster, Eds. Springer, 2013, pp.
548–552. DOI: 10.1007/978-3-642-36803-5 44

[2] J. Weinbub, K. Rupp, and S. Selberherr, “A Flexible Dynamic Data Structure for
Scientific Computing,” in Lecture Notes in Electrical Engineering, Vol. 229, G.-C.
Yang, S.-L. Ao, and L. Gelman, Eds. Springer, 2013, pp. 565–577. DOI:
10.1007/978-94-007-6190-2 43

[3] J. Weinbub, K. Rupp, and S. Selberherr, “A Lightweight Task Graph Scheduler for
Distributed High-Performance Scientific Computing,” in Lecture Notes in Computer
Science, Vol. 7782, P. Manninen and P. Öster, Eds. Springer, 2013, pp. 563–566.
DOI: 10.1007/978-3-642-36803-5 47

120

http://dx.doi.org/10.1016/j.cam.2013.12.013
http://dx.doi.org/10.1007/s00366-013-0314-1
http://issuu.com/phantoms_foundation/docs/enn_special_april2012/
http://dx.doi.org/10.1007/978-3-642-36803-5{_}44
http://dx.doi.org/10.1007/978-94-007-6190-2{_}43
http://dx.doi.org/10.1007/978-3-642-36803-5{_}47

CONFERENCE CONTRIBUTIONS

[4] J. Weinbub, K. Rupp, L. Filipovic, A. Makarov, and S. Selberherr, “Towards a Free
Open Source Process and Device Simulation Framework,” in The 15th
International Workshop on Computational Electronics. IEEE Xplore, 2012, pp.
1–4. DOI: 10.1109/IWCE.2012.6242867

[5] J. Weinbub, K. Rupp, and S. Selberherr, “Towards Distributed Heterogenous
High-Performance Computing with ViennaCL,” in Lecture Notes in Computer
Science, Vol. 7116, I. Lirkov, S. Margenov, and J. Wasniewski, Eds. Springer,
2012, pp. 359–367. DOI: 10.1007/978-3-642-29843-1 41

Conference Contributions

[1] J. Weinbub, K. Rupp, and F. Rudolf, “A Flexible Material Database for
Computational Science and Engineering,” in Abstracts 4th European Seminar on
Computing, 2014, accepted.

[2] K. Rupp, F. Rudolf, J. Weinbub, A. Jüngel, and T. Grasser, “Automatic Finite
Volume Discretizations Through Symbolic Computations,” in Abstracts 4th
European Seminar on Computing, 2014, accepted.

[3] F. Rudolf, Y. Wimmer, J. Weinbub, K. Rupp, and S. Selberherr, “Mesh Generation
Using Dynamic Sizing Functions,” in Abstracts 4th European Seminar on
Computing, 2014, accepted.

[4] V. Sverdlov, H. Mahmoudi, A. Makarov, D. Osintsev, J. Weinbub, T. Windbacher,
and S. Selberherr, “Modeling Spin-Based Devices in Silicon,” in Proceedings of
the 16th International Workshop on Computational Electronics (IWCE 2013),
2013, pp. 70–71.

[5] J. Weinbub, K. Rupp, and S. Selberherr, “Increasing Flexibility and Reusability of
Finite Element Simulations With ViennaX,” in Abstracts 4th International
Congress on Computational Engineering and Sciences, 2013.

[6] K. Rupp, F. Rudolf, and J. Weinbub, “A Discussion of Selected Vienna-Libraries
for Computational Science,” in Proceedings of C++Now (2013), 2013.

[7] J. Weinbub, K. Rupp, and S. Selberherr, “A Flexible Execution Framework for
High-Performance TCAD Applications,” in Proceedings of the 17th International
Conference on Simulation of Semiconductor Processes and Devices, 2012, pp.
400–403.

[8] J. Weinbub, K. Rupp, and S. Selberherr, “A Generic Multi-Dimensional Run-Time
Data Structure for High-Performance Scientific Computing,” in Proceedings of the
World Congress on Engineering (WCE), 2012, pp. 1076–1081.

[9] J. Weinbub, “A Lightweight Task Graph Scheduler for Distributed
High-Performance Scientific Computing,” in Proceedings of the International
Workshop on the State-of-the-Art in Scientific and Parallel Computing, 2012.

[10] J. Weinbub, “Distributed High-Performance Parallel Mesh Generation with
ViennaMesh,” in Proceedings of the International Workshop on the
State-of-the-Art in Scientific and Parallel Computing, 2012.

121

http://dx.doi.org/10.1109/IWCE.2012.6242867
http://dx.doi.org/10.1007/978-3-642-29843-1{_}41

CONFERENCE CONTRIBUTIONS

[11] J. Weinbub, K. Rupp, L. Filipovic, A. Makarov, and S. Selberherr, “Towards a Free
Open Source Process and Device Simulation Framework,” in Proceedings of the
15th International Workshop on Computational Electronics (IWCE 2012), 2012,
pp. 141–142.

[12] J. Weinbub, K. Rupp, and S. Selberherr, “Utilizing Modern Programming
Techniques and the Boost Libraries for Scientific Software Development,” in
Proceedings of C++Now (2012), 2012.

[13] M. Wagner, K. Rupp, and J. Weinbub, “A Comparison of Algebraic Multigrid
Preconditioners using Graphics Processing Units and Multi-Core Central
Processing Units,” in Proceedings of the Spring Simulation Multiconference 2012,
2012.

[14] A. Makarov, V. Sverdlov, D. Osintsev, J. Weinbub, and S. Selberherr, “Modeling of
the Advanced Spin Transfer Torque Memory: Macro- and Micromagnetic
Simulations,” in Proceedings of the 25th European Simulation and Modelling
Conference, 2011, pp. 177–181.

[15] J. Weinbub, J. Cervenka, K. Rupp, and S. Selberherr, “High-Quality Mesh
Generation Based on Orthogonal Software Modules,” in Proceedings of the 16th
International Conference on Simulation of Semiconductor Processes and
Devices, 2011, pp. 139–142.

[16] J. Weinbub, J. Cervenka, K. Rupp, and S. Selberherr, “A Generic High-Quality
Meshing Framework,” in Proceedings of the 11th US National Congress on
Computational Mechanics (USNCCM), 2011.

[17] J. Weinbub, K. Rupp, and S. Selberherr, “Distributed Heterogenous
High-Performance Computing with ViennaCL,” in Abstracts Intl. Conf. on
Large-Scale Scientific Computations, 2011, pp. 88–90.

[18] D. Osintsev, V. Sverdlov, Z. Stanojevic, A. Makarov, J. Weinbub, and S. Selberherr,
“Properties of Silicon Ballistic Spin Fin-Based Field-Effect Transistors,” in 219th

ECS Meeting, Vol.35, No.5, 2011, pp. 277–282. DOI: 10.1149/1.3570806

[19] A. Makarov, J. Weinbub, V. Sverdlov, and S. Selberherr, “First-Principles Modeling
of Bipolar Resistive Switching in Metal-Oxide Based Memory,” in Proceedings of
the European Simulation and Modelling Conference (ESM), 2010, pp. 181–186.

[20] J. Weinbub, R. Heinzl, P. Schwaha, F. Stimpfl, and S. Selberherr, “A Lightweight
Material Library for Scientific Computing in C++,” in Proceedings of the European
Simulation and Modelling Conference (ESM), 2010, pp. 454–458.

[21] K. Rupp, J. Weinbub, and F. Rudolf, “Automatic Performance Optimization in
ViennaCL for GPUs,” in Proceedings of the 9th Workshop on
Parallel/High-Performance Object-Oriented Scientific Computing, 2010. DOI:
10.1145/2039312.2039318

[22] P. Gottschling, R. Heinzl, J. Weinbub, N. Kirchner, M. Sauer, A. Klomfass,
C. Steinhardt, and J. Wensch, “Generic C++ Implementation of High-Performance
BFS-RBF-based Mesh Motion Schemes,” in AIP Conference Proceedings, 1281,
2010, pp. 1631–1634.

122

http://dx.doi.org/10.1149/1.3570806
http://dx.doi.org/10.1145/2039312.2039318

CONTRIBUTED OPEN SOURCE PROJECTS

[23] G. Mach, R. Heinzl, P. Schwaha, F. Stimpfl, J. Weinbub, and S. Selberherr, “A
Modular Tool Chain for High Performance CFD Simulations in Intracranial
Aneurysms,” in AIP Conference Proceedings, 2010, pp. 1647–1650.

[24] F. Stimpfl, J. Weinbub, R. Heinzl, P. Schwaha, and S. Selberherr, “A Unified
Topological Layer for Finite Element Space Discretization,” in AIP Conference
Proceedings, 2010, pp. 1655–1658.

[25] J. Weinbub, P. Schwaha, R. Heinzl, F. Stimpfl, and S. Selberherr, “A Dispatched
Covariant Type System for Numerical Applications in C++,” in AIP Conference
Proceedings, 2010, pp. 1663–1666.

[26] K. Rupp, F. Rudolf, and J. Weinbub, “ViennaCL - A High Level Linear Algebra
Library for GPUs and Multi-Core CPUs,” in Proceedings of the International
Workshop on GPUs and Scientific Applications (GPUScA 2010), 2010, pp. 51–56.

[27] J. Weinbub, K. Rupp, and S. Selberherr, “ViennaIPD - An Input Control Language
for Scientific Computing,” in Proceedings of the Industrial Simulation Conference,
2010, pp. 34–38.

Professional Blog Articles

[1] J. Weinbub, “Why Isn’t There More Open Source in Research?” Blog of the
Software Sustainability Institute, University of Edinburgh, Scotland, UK, 2013.
URL: http://software.ac.uk/blog/2013-01-21-why-isnt-there-more-open-source-
research/.

[2] J. Weinbub, “Research: What a Wonderful Open-Source World,” Blog of the
Software Sustainability Institute, University of Edinburgh, Scotland, UK, 2013.
URL: http://www.software.ac.uk/blog/2013-07-02-research-what-wonderful-open-
source-world/.

Contributed Open Source Projects

[1] ViennaCL. URL: http://viennacl.sourceforge.net/

[2] ViennaFVM. URL: http://viennafvm.sourceforge.net/

[3] ViennaGrid. URL: http://viennagrid.sourceforge.net/

[4] ViennaIPD. URL: http://viennaipd.sourceforge.net/

[5] ViennaMaterials. URL: https://github.com/viennamaterials/

[6] ViennaMesh. URL: http://viennamesh.sourceforge.net/

[7] ViennaMini. URL: https://github.com/viennamini/

[8] ViennaMOS. URL: http://viennamos.sourceforge.net/

[9] ViennaX. URL: http://viennax.sourceforge.net/

123

http://software.ac.uk/blog/2013-01-21-why-isnt-there-more-open-source-research/
http://software.ac.uk/blog/2013-01-21-why-isnt-there-more-open-source-research/
http://www.software.ac.uk/blog/2013-07-02-research-what-wonderful-open-source-world/
http://www.software.ac.uk/blog/2013-07-02-research-what-wonderful-open-source-world/
http://viennacl.sourceforge.net/
http://viennafvm.sourceforge.net/
http://viennagrid.sourceforge.net/
http://viennaipd.sourceforge.net/
https://github.com/viennamaterials/
http://viennamesh.sourceforge.net/
https://github.com/viennamini/
http://viennamos.sourceforge.net/
http://viennax.sourceforge.net/

	Abstract
	Kurzfassung
	Acknowledgement
	Contents
	List of Acronyms
	Introduction
	Micro- and Nanoelectronics Device Simulation
	Software Users
	Frameworks
	Research Goals
	Outline

	Related Work
	Frameworks
	Micro- and Nanoelectronics Device Simulation Tools
	Software Libraries and Tools

	Methods and Tools
	Programming Paradigms
	The C++ Programming Language
	Component-Based Software Engineering
	Library-Centric Software Design

	Device Simulation Framework
	The Basic Semiconductor Equations
	Requirements and Challenges
	Mesh Generation
	Material Database
	Symbolic Math
	Discretization Schemes
	Solver

	The ViennaMini Project
	Design
	Material Database
	Device
	Configuration
	Stepper
	Problem Classes
	Mesh Generation
	Device Templates
	Simulator
	Examples

	Component Execution Framework
	High Performance Computing
	Shared-Memory Systems
	Distributed-Memory Systems
	Hierarchical (Hybrid) Systems
	Accelerators

	Requirements and Challenges
	Component System
	Data Communication
	Scheduler
	Configuration

	The ViennaX Project
	General
	Plugin System
	Exemplary Plugin Implementation
	Configuration
	Scheduler Kernels
	Examples

	Interactive Simulation Framework
	Requirements and Challenges
	Module System
	Data Communication
	Graphical User Interface
	Data Visualization

	The ViennaMOS Project
	Data Communication
	Three-Dimensional Render Visualization
	Two-Dimensional Chart Visualization
	Multiview
	Module System
	Graphical User Interface
	Examples

	Thesis Evaluation
	Summary
	Future Extensions
	Conclusion

	Bibliography
	Curriculum Vitae
	Own Publications

