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Abstract: In this thesis, a newly developed multi-layer model predictive control concept, the Energy
Demand Control System (EDCS), is implemented and validated on a simulation model. The simulation
model is developed, verified, and validated with industrial measurement data. The model consists of
three main components: a heat supply controlled by a hysteresis controller, sensible heat storage, and
heat demand. The EDCS replaces the hysteresis controller and calculates the optimal trajectories for the
heat pump operation. The trajectory is calculated by solving a linear mixed-integer optimization problem
considering the heat demand prediction, the power price prediction, model constraints, and objectives.
The EDCS enables a reduction of energy costs by utilizing the flexible power price market while ensuring
process quality with optimal heat supply. In this thesis, the online heat demand predictor of the EDCS
is developed further with focus on robustness against unpredicted time shifts in the heat demand. A
simulation study is conducted to examine the effect of unpredicted heat demand starts and the robustness
of the EDCS on the process quality. This thesis shows that the EDCS is applicable for the examined
process and reached a software status, which ensures an error-free and comprehensible execution. The
study results illustrate that the EDCS can reduce insufficient heat supply while reducing the cost of power
consumption. A Pareto front is presented visualizing the trade-off between process safety and consumed
power cost.



Kurzfassung: In dieser Arbeit wird das neu entwickelte mehrschichtige modellprädiktive Regelkonzept
Energy Demand Control System (EDCS), implementiert und an einem Simulationsmodell validiert. Das
Simulationsmodell wird mit industriellen Messdaten erstellt, verifiziert und validiert. Es besteht aus
folgenden Komponenten: eine Hystere geregelte Wärmeversorgung, ein thermischer Wärmespeicher
und eine Wärmesenke. Das EDCS ersetzt den Hystereseregler und berechnet die optimale Prädiktion
des Eingangssignals für die Wärmepumpe. Die Prädiktion wird durch Lösen eines linearen gemischt-
ganzzahligen Optimierungsproblems berechnet. Dabei werden die Prädiktion des Wärmebedarfs, die
Prädiktion des Strompreises sowie linearisierte Modelle und Kostenfunktionen benutzt. Das EDCS re-
duziert die Energiekosten durch Nutzung des flexiblen Strompreismarktes. Weiters wird die Prozessqual-
ität durch eine optimale Wärmeversorgung auf Basis der Wärmeprädiktion sichergestellt. In dieser Ar-
beit wird eine Echtzeit Methode zur Verbesserung der Prädiktion des Wärmebedarfs entwickelt und im
EDCS implementiert. Damit soll die Robustheit der Wärmeversorgung gegenüber unvorhergesehenen
Startzeitverschiebungen im Wärmebedarf erhöht werden. Es wird eine Simulationsstudie durchgeführt,
um die Auswirkung von unvorhergesehenen Wärmelasten auf die Prozessqualität und die Robustheit des
EDCS gegenüber ungenau prädizierten Wärmelasten zu untersuchen. Diese Arbeit zeigt ein Simula-
tionsmodell welches mit den Messdaten der untersuchten Anlage validiert wurde. Die durchgeführten
Simulationen zeigen, dass das EDCS in der untersuchten Anlage anwendbar ist. Weiters zeigen die
Ergebnisse, dass das EDCS einen Softwarestatus erreicht hat, der eine fehlerfreie und reproduzierbare
Ausführung gewährleistet. Die Ergebnisse der Studie zeigen, dass das EDCS Fälle von unzureichender
Wärmeversorgung reduziert und gleichzeitig die Kosten für den Stromverbrauch senkt. Der Zusammen-
hang zwischen Prozesssicherheit und Kosten wird mittels Pareto-Front dargestellt.



Acronyms

AIAA American Institute of Aeronautics and Astronautics
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Symbols

Greek letters

Parameter Unit Description

α − significance level
αw W/m2 ·K heat transfer coefficient wall
ε − error between reference and estimation data
µ − mean value
θ − variable parameter for the least square fit
ρ kg/m3 density

ρw80 kg/m3 density water at 80°C
σ − standard deviation
τ min time constant
Θ − multiplication factor

Roman letters

Parameter Unit Description

A − state model matrix
Ah m2 horizontal area of the SHS
Al m2 lateral area of the SHS
AlΔ m2 lateral area of one layer of the SHS
B − input model matrix
C − output model matrix

CMWH MWh charge power in the optimized model
cp J/kg ·K specific heat capacity, constant pressure

cpw80 J/kg ·K specific heat capacity, water, constant pressure, 80°C
DMWH MWh discharge power in the optimized model

f − function
G % valve position
H J SHS absolute enthalpy
h W enthalpy stream
hΔ m height of one layer of the SHS
J − cost function



Parameter Unit Description

k W/m ·K thermal conductivity
M − number of heat demand treatments
ṁ kg/s mass flow
N − number of constant volume layers
n − number of measured values

Np − prediction horizon
nHT − number of heat treatments
O − objective function for the controller

PHP MWh power consumption of the heatpump
p e/MWh price per MWh
Q̇ W heat flow
R − weighting matrix
r − weighting value

S2 − sample variance
T ◦C temperature
t min time

tSOCundercut min time the SOC is below the SOCmin

tmax min time duration of the prediction
ts seconds discretization time

tsafety min EDCS parameter for the extension of the SOCmin

tstep min time step of the controller output values
U % power control input
u − input vector

ΔU − control move vector
V m3 volume of the SHS
VΔ m3 volume of one layer of the SHS
W − number of experiments
X − statistically independent, identically distributed variable
x − state vector

xin − input values for a function
X̄ − sample mean
Y − output prediction
y − function output value
y − output vector
ȳ − mean of values

yout − output values of a function
yref − output reference values
Ytraj − output trajectory
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1 Introduction

Climate change and its consequences lead to the decarbonization of the energy sector. Re-
newable energy sources replace fossil energies, and the fluctuation of the power supply rises
due to volatile electricity generation. The fluctuation of power supply is a challenge for the
power grid balance. Therefore a variable power price penalizes the energy consumption when
the energy supply is low and vice versa. The customers can utilize variable power prices with
demand-side management (DSM). DSM are methods at the demand-side of an energy system
that influences energy use (Palensky et al., 2011). One DSM activity consumers can utilize,
is the movement of energy demand into times, where the energy supply of renewable energy
sources is high, and electricity price is low. Due to production safety, few industries use DSM
(McKane et al., 2008). The control technique model predictive control (MPC) can achieve
both: safe production and efficient DSM by keeping the operating point of the plant within its
boundary conditions.

The performance of an MPC depends on the model prediction accuracy and the prediction
data. Prediction data uncertainty has a negative effect on the control performance of MPC.
In partially automated manufacturing plants, prediction can be inaccurate because of manu-
ally started processes. The predicted process start time differs from the real start time, which
influences the energy demand schedule. This can lead to an insufficient energy supply, and
production reliability constraints can be violated due to falling below a minimum temperature.
Thereby, the process and product quality is negatively affected. Startup timing inaccuracies
are hard to predict and are an intensified problem for batch pulsed energy loads. Therefore the
Energy Demand Control System (EDCS) is introduced. It provides a cost-efficient DSM and
ensures product safety, despite the unpredicted manual actions.

The EDCS is an online, predictive and holistic, and reconfigurable control system (Windholz,
2018-2021) and is the newly developed control system of the project ’Energy Demand Control
System - PROcess Optimization For industrial low temperature systems (EDCSproof)’. It is a
two-layer MPC hierarchical system that controls the energy supply of a plant. The goal of the
EDCS is to ensure the optimal energy supply in terms of energy demand and energy cost and
keep the operating point within the process limits. Its implementation enables the utilization of
the flexible power price market and allows consumers to integrate renewable energies such as
photovoltaic efficiently. The EDCS shall be implemented in several industrial plants. Therefore
it is necessary to test and validate it to ensure its functionality on the physical system.

In this thesis, measured data of an existing production facility process is used to develop
a simulation model and validate the EDCS. The investigated process is characterized by heat
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treatment (HT)’s with pulsed heat loads, which are started manually by the employees. The heat
amount per HT is known, and an accurate prediction for the HT profile exists. The planned start
time is known but differs from the real start time of the HT. This thesis provides a validated
simulation model of the plant under study. Further, the EDCS is implemented in the simulation,
tested, and extended with additional functionality that can correct the prediction of the HT’s in
case of prediction errors in real-time. Finally, a simulation study is conducted to evaluate the
impact of inaccurately predicted HT start times on the process quality and to assess the ability
of the EDCS to ensure process quality.

This thesis is organized as follows. The plant, the control system EDCS, and the research
questions are introduced in Chapter 2. In Chapter 3 a literature review of the topics verification
and validation (V&V), model predictive control and multi-layer model predictive control, and
sensible heat storage (SHS) is given. Chapter 4 is concerned with the methodology of this
thesis. In Chapter 5, first the verification and validation results are presented. The simulation
results with the EDCS are shown and the simulation study’s output are evaluated, and discussed.
In Chapter 6, a brief resume and outlook of this thesis are given.
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2 Problem Setup

The Energy Demand Control System (EDCS) is a two-layer model predictive control (MPC)
and is the newly developed control system of the project Energy Demand Control System -
PROcess Optimization For industrial low temperature systems (EDCSproof). In this thesis, the
EDCS and its robustness and performance are validated with an industrial plant’s measured
data. The plant under study is a facility subsystem. Production measurement data is utilized to
develop a valid simulation model and implement the EDCS in the simulation to control the heat
supply. Additional functionality that improves the prediction accuracy in real-time is developed
and added to the EDCS. Simulation studies are executed to verify and validate the robustness,
stability, correctness of the functionality, and applicability of the EDCS.

This chapter gives an introduction to the problem setup. Section 2.1 describes the plant and
the process. In Section 2.2, the EDCS and its main functionality are introduced. The model
requirements for the simulation model are stated, and necessary steps for implementing the
EDCS in the simulation are defined. Section 2.3 presents the research questions.

2.1 Plant
The examined plant is a production facility with batch-like heat consumers. Heat is used to

warm up a product in tanks called batch consumer (BC). The products are inside the tank, which
is flooded with water. During the warm-up process, the product must be subjected to a specific
temperature trajectory to achieve the necessary quality requirements. Four BC’s are installed
and the process can be conducted parallel on different BC’s. The water in the BC is heated up
with heat exchangers. The installed heat exchangers in the plant are two fluids counter flow
plate heat exchangers with indirect heat exchange. Those plates separate the fluids and there
is no contact between them. The BC heat exchangers are connected to a sensible heat storage
(SHS) tank.

The SHS is a cylindric tank filled with water. The temperature in the SHS is between 60°C
and 90°C. On the top and bottom of the SHS, there are two ports located which can be used as
inlets or outlets. In the SHS, there is no further extension and no stratification device installed.
The SHS can be charged and discharged separately. The enthalpy level in the SHS is called the
state of charge (SOC). The SHS stores the heat for the BC’s and is connected to a heat pump
(HP). The HP heats the water while pumping it from the bottom to the top of the SHS. The
connected heat demand components exchange heat at the BC’s while pumping water from the
top to the bottom of the SHS.
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Figure 2.1: The scheme of the plant under study with its components and its connection. Measurement
device labels are depicted in circles.

The HP consists of a compressor, an expansion valve, and two heat exchangers called heat
sink and heat source. The condenser is at the heat sink side and the evaporator is at the heat
source side. The heat sink of the HP is connected to the SHS and the heat source of the HP
is connected to the internal heat network of the plant. The HP is controlled by a hysteresis
controller. It utilizes the temperature in the SHS in the desired range. The hysteresis controller
starts and stops the HP without any dynamic operation. The heat demand of the BC is above the
maximum heat supply of the HP. Therefore, the SHS is used as a buffer storage for peak heat
demand of the BC.

Figure 2.1 shows the energy supply plant schematically. It is categorized into the heat demand
and the heat supply, separated by the SHS. Pumps and valves are used for the heat supply of
the heat exchangers. Filled triangles indicate variable mass flow pumps and empty triangles
indicate constant mass flow pumps. Further, descriptions of hydraulic components are given
in Chapter VI. Each valve is proportional-integral-derivative (PID) controlled. The following
interactions of the system with the environment are considered:

• The loss of heat in the SHS and the pipes

• The heat exchange at the BC

• The heat exchange at the internal heat network with the HP

Measurement data of the plant from the 4th of October 2019 to 31st of October 2019 is used
for the modelling and validation process. In this range of time, no recognisable adjustment of
the system configuration could be detected in the data. Further, the resolution of the measured
data in the SHS is more accurate than before the 1st of October 2019. The data was recorded
during the usual production time. No validation experiments were executed. The following
measurements were recorded: temperature, valve position, heat flow, power, and rotation speed.
The sampling time of the recorded data is one minute. The measurement device accuracy is
unknown and there is no information about measurement errors. This fact and the assumption
that the data is biased reduce the trustworthiness of the data. Due to confidential reasons, exact
temperatures and energy levels in the SHS and the heat demand of the production processes are
not depicted. Figure 2.1 shows the measurement devices. The measuring devices record the
following measured values:
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Figure 2.2: Three measured heat treatment examples.

• Qi: measured heat, in W

• Ti: measured temperature, in °C

• Gi: measured valve position, in %

• Si: measured rotation speed, in rpm

Where i is an enumeration for the identification of the measurement devices.
Pulsed heat loads characterise the measured heat consumption at the heat exchangers. At

the beginning of each warm-up process, the heat consumption increases sharply and decreases
exponentially during the running process. One warm-up process is called heat treatment (HT).
The different product types and the different loadings of the BC’s result in different integral
heat consumptions. Figure 2.2 shows the measured heat flow at the heat exchangers for three
different HT’s.

During a HT, the SOC in the SHS must not be less than a minimum required SOC. The
minimum SOC guarantees a sufficient heat supply for the HT and is dependent on the end-
temperature of the warmup process. Each HT demands a particular minimum SOC for the
product-specific temperature trajectory. This is especially challenging because the manual start
of the HT causes prediction errors. Therefore, the hysteresis controller keeps the SOC con-
stantly at a high level to avoid bottlenecks in the heat supply and thereby causes high heat
losses. Still, the current hysteresis control cannot avoid that the heat supply of the SHS is in-
sufficient and the temperature trajectory of the product cannot be applied. This leads to reduced
product quality. Therefore, an insufficient SOC in the SHS must be prevented at all times.

The examined costs of the process consist of the price per MWh times the power consumption
of the HP, and the cost per product with inadequate quality. Heat loss and thus additional costs
are induced by the constant high energy level in the SHS and the operating time of the HP in
periods without any heat demand.

2.2 EDCS
The EDCS is an online, predictive and holistic, and reconfigurable control system (Windholz,

2018-2021). It is the newly developed control concept of the project EDCSproof and is not
implemented in a real industrial plant yet. The EDCS is a two-layer hierarchical MPC system
that controls a plant’s energy supply regarding the constraints, objectives, costs, and prediction.
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Figure 2.3: Example development for the price per MWh of a flexible power price market over 32
hours.

The first layer optimizes a plant-wide long term problem and calculates trajectories. The second
layer optimizes component specific short term problems by following the trajectory of the first
layer and calculating the input of the heat supply. The EDCS can be used to control several
heat supply components in a plant. It uses simplified analytical models to predict future states
keeping the operating point inside the boundaries. The EDCS minimizes a cost function by
optimizing the input of the plant. The performance of the EDCS depends on the accuracy of
the prediction data and the accuracy of the predicted states calculated with the analytical model.
The aim of the EDCS is to control the energy supply for different industrial applications and
shall integrate renewable energy by four areas (Windholz, 2018-2021):

• "Use of (thermal) energy storages" (Windholz, 2018-2021)

• "Flexible consumers for electricity networks" (Windholz, 2018-2021)

• "Efficiency through optimum control of the entire system" (Windholz, 2018-2021)

• "[Use] waste heat by using high temperature heat pumps (<150°C)" (Windholz, 2018-
2021)

The EDCS can be configured to achieve a desired control aim like low costs, low energy
consumption, and process safety. The EDCS can ensure process safety in the examined plant
by an optimal supply of heat based on the heat demand prediction. The production plan can be
used for the heat demand prediction. The integral heat amount per planned HT is known and
can be used to predict the HT profile accurately. The start time of the HT’s are known a priori
but differ from the real start time caused by manual interactions of the employees. In addition,
the EDCS can reduce costs by utilizing the flexible power price market and shifting the SHS
charging into periods when power price is low and renewable energy supply is high. The price
per MWh of a variable power price of October 2019 is shown in Figure 2.3 and varies between
57e and 105e. The HP operating time in periods without heat demand can be minimized and
heat loss caused by a high energy level induced by a hysteresis controller can be reduced to its
minimum.

The implementation of the EDCS in a real plant needs a simplified analytical model of the
controlled process. Further, the prediction of the power price and heat demand must be avail-
able a priori. Additional functionality is required to improve process safety for disturbed HT
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predictions. Before the implementation at the plant, the EDCS must be validated on a simula-
tion model. Therefore a valid simulation model of the plant is necessary. Simulation studies are
needed to validate the robustness and performance of the EDCS.

2.3 Research Questions
The EDCS shall be implemented in the examined plant described in Section 2.1. Its im-

plementation leads to access to the flexible power price market. Therefore, it is intended to
control the energy supply in terms of electricity price prediction and heat demand prediction.
The EDCS shall ensure process quality while reducing costs. Before the EDCS can be imple-
mented in the real plant, tests and a simulation study must be conducted on a simulation model
to validate it.

In this thesis, a valid simulation model is developed based on measured data of the studied
process. The simulation model is used to validate the EDCS and must meet the following
criteria:

• A simulation duration of 24 hours must be executed in less than 1 minute. The simulation
is executed without the EDCS.

• The error between the simulation and the measured data is not allowed to exceed 10%
except for short periods and the error must not exhibit any trend.

• The simulation must be stable and must not interrupt during the whole simulation time.

• The main dynamics of the system, like charging and discharging the SHS, heat loss
through the wall of the SHS, the heat supply via the HP, and the heat transfer through
the heat exchangers, must be mapped by the simulation.

• The main scenarios: ’the SOC is below the lower limit’, ’more heat demand than heat
supply’ and ’run the system after a pause of up to seven days with no heat demand’ must
be mapped by the simulation correctly.

• The simulation must be developed and deployable in Matlab/Simulink (MATLAB, 2019).

• The simulation must be applicable for the EDCS Framework and usable with its con-
trollers.

• The inputs and outputs of the simulation must be usable by the EDCS.

• The simulation states and outputs must be readable by the EDCS.

The EDCS is implemented in the simulation model, tested, and enhanced with additional
functionality that can correct the prediction of the HT’s online. Prediction data is prepared
and a simulation study is conducted. The simulation study evaluates the impact of inaccurately
predicted HT start times on the process quality and evaluates the robustness of the EDCS against
prediction errors.

This thesis answers the following research questions:
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1. Is it possible to use the measured data to develop a valid simulation model of the plant for
testing the EDCS?

2. Can the EDCS be used to control the investigated energy supply system?

3. How robust is the EDCS against unpredicted interactions of human operators?

4. Which influence has the EDCS on the cost and quality of the process?



3 Literature Review 9

3 Literature Review

In the following chapter a literature review is presented about verification and validation
(V&V), model predictive control (MPC), multi-layer model predictive control, and sensible
heat storage (SHS). First V&V definitions are stated and V&V is explained. Then the distinct
procedures verification and validation are explained separately. the purpose of V&V is summa-
rized and processes are shown. At last V&V techniques are categorized.

Second a literature review about MPC and multi-layer model predictive control is provided.
The motivation of the development of MPC is summarized and the basic definitions are stated.
The concept behind MPC is reviewed and the need for hierarchical control structures are sum-
marized. Several multi-layer control structures are presented.

In the last part a review of the thermal energy storage (TES) system SHS is given.

3.1 Verification and Validation
The history of V&V of simulation models dates back to the 1940s. Research in the field of

V&V was initially carried out in the Operational Research (OR) community. The investigations
concentrated on discrete-event simulations like world economic models that stand in contrast to
the physics and engineering community. The engineering community is dominated by physical
processes simulated with partial differential equation (PDE) (W. Oberkampf et al., 2000). This
thesis concentrates on V&V philosophies, methods, and goals in the context of physical simu-
lation models, with PDE’s, created and used on computer systems. The philosophical aspects
and the history of V&V are not mentioned. The following literature gives more insight into
the research field V&V in a broader sense: Kleindorfer et al. (1998) presented a philosophical
view on the history of the V&V, and Sargent et al. (2017) summarized the research activities
of V&V from 1940 up to 2017, especially in the context of OR. W. L. Oberkampf et al. (2012)
presented the history of V&V from an engineering perspective.

In literature and scientific communities, no coherent terminology for V&V exists (Sargent
et al., 2017), and the interpretation of V&V, its methods and goals are context dependant.
Therefore relevant definitions are introduced first.

A first clear definition of verification was formulated by Fishman et al. (1968): "Verification
determines whether a model with a particular mathematical structure and data base actually
behaves as an experimenter assumes it does" (Fishman et al., 1968). Furthermore, a definition
for validation, commonly found in the literature, is stated by Schlesinger (1979). Validation is
the "substantiation that a computerized model within its domain of applicability possesses a sat-
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isfactory range of accuracy consistent with the intended application of the model" (Schlesinger,
1979).

The community around the Department of Defence (DoD) in the United States and the OR
community, or organizations like the Institute of Electrical and Electronics Engineers (IEEE)
and the International Organization for Standardization (ISO), have their own V&V definitions
and methods (W. Oberkampf et al., 2000). The ISO defines verification as the "confirmation of
a claim (...), through the provision of objective evidence, that specified requirements have been
fulfilled" (ISO, 2019) and validation as the "confirmation of a claim (...), through the provision
of objective evidence, that the requirements for a specific intended future use or application
have been fulfilled" (ISO, 2019). The ISO V&V definition, which is similar to the definition of
the IEEE’s one, is more general than definitions in other communities and is the most dominant
definition of V&V worldwide (W. L. Oberkampf et al., 2012). The unclear ISO definition for
simulation model V&V, the number of available different possible definitions for V&V, and the
sometimes inappropriate interchangeable use of the meaning of V&V can lead to confusion in
the V&V process (W. L. Oberkampf et al., 2012).

The definitions of the American Institute of Aeronautics and Astronautics (AIAA) and Amer-
ican Society of Mechanical Engineers (ASME) present a more specific and intuitive definition
(W. Oberkampf et al., 2000). Verification is "the process of determining that a computational
model accurately represents the underlying mathematical model and its solution" (ASME,
2006) and validation is "the process of determining the degree to which a model is an accu-
rate representation of the real world from the perspective of the intended uses of the model"
(ASME, 2006).

W. L. Oberkampf et al. (2012) collected further existing definitions of V&V and discussed
them. In this thesis, the ASME V&V definition will be used. The following words are defined
to avoid misinterpretation:

• System: "a set of physical entities that interact and are observable, where the entities can
be a specified quantity of matter or a volume in space." (W. L. Oberkampf et al., 2012)

• Model: "a representation of a physical system or process intended to enhance our ability
to understand, predict, or control its behaviour." (W. L. Oberkampf et al., 2012)

• Simulation: "the exercise or use of a model to produce a result." (W. L. Oberkampf et al.,
2012)

Verification

According to Sargent (1998), verification ensures that the simulation is error-free and prop-
erly implemented. Standard software development philosophies should be applied in an object
oriented design or modular manner to assist an error-free implementation (Sargent, 1998). The
goal of verification is to recognize errors, reduce them, quantify their impact on the solution, and
prove the stability and robustness of the code (W. L. Oberkampf et al., 2003). W. Oberkampf
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et al. (2000) added that verification determines whether the implemented model fits to the con-
ceptual model. W. L. Oberkampf et al. (2012) divided verification into two distinct activities,
which are based on the work of Roache (1998) and Blottner (1990): (a) code verification and
(b) solution verification.

Roache (1998) stated that (a) code verification identifies errors that happen during the code
generation, errors in the code instructions or manuals, errors in the problem set up on which the
code is based, errors happened in the definition and coding of benchmarks, for example, ana-
lytical solutions for comparison reasons, and errors occurred in the interpretation of the results.
W. L. Oberkampf et al. (2003) defined the goal of code verification is first, to ensure that numer-
ical algorithms are implemented correctly and their solutions should be in the desired range of
accuracy. Second, software quality assurance (SQA) is assessed. SQA deals with implement-
ing correct code, which includes the use of version control, code architecture, documentation,
testing methods, or configuration management. SQA further ensures that the code is robust, can
produce repeatable solutions, and meets its requirements in the view of a software product.

(b) Solution verification estimates numerical errors of the calculation of the PDE’s based on
its analytical solution and quantifies the accuracy of the solution (W. L. Oberkampf et al., 2003).

Figure 3.1 shows the V&V process of the ASME guide. Experiments on the real world
system are part of the V&V process, like the model and its implementation and simulation. The
verification process takes place in the implementation and execution or calculation phase of the
model. After the verification, uncertainty quantification of the results must be done and the
simulation outcome can be compared and validated with the experimental outcome.

Validation

Balci (1994) stated that model validation substantiates that the model shows the same be-
haviour as the real world system. The model is executed with the same input conditions as the
real world system. Afterwards, the real world output and the model output, the behaviour and
the accuracy are compared. W. Oberkampf et al. (2000) stated that the error and uncertainty of
the model are quantified and the agreement between the measured data and the model data is
evaluated. This approach does not assume that the recorded data is more accurate than the com-
puted one but that the recorded data is the most reliable source for validation (W. L. Oberkampf
et al., 2003). W. L. Oberkampf et al. (2008) summarized three key goals of validation: First,
the model output is compared to the experimental data and its accuracy is examined, second
the model is examined on its capability to predict future states and third the estimated accuracy
of the previous steps must fulfil the stated conditions and the desired accuracy. The validation
takes part at the end of the experiments of the real world system and after the verification and
the simulation outcome, seen in Figure 3.1. If the agreement between the simulation and the
experimental data is not in an acceptable range, the model has to be revised. This may result in
new models, a new V&V process, and new experiments. The whole simulation building process
is iterative.

The purpose of V&V is to prevent three major errors. Type I Error is refusing a credible
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Figure 3.1: The simulation building process with the V&V activities (ASME, 2006).
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Figure 3.2: Course of the ’Cost’ and the ’Value of Model to User’ as a function of the ’Confidence in
Model’ (Anshoff et al., 1972).

model called the model builder’s risk (Balci et al., 1981). Type II Error is accepting a refused
model, which is called the model user’s risk (Balci et al., 1981). Solving the wrong problem
with a model is a Type III Error (Balci et al., 1985). Balci et al. (1981) argued that the model
user’s risk or Type II Error, should be kept small in the validation process because wrong and
expensive decisions based on inaccurate models could cause high losses. Greig (1979) showed
that a Type II error’s costs could be higher than a Type I Error and developed a decision basis
on how much validation is needed to reduce the expected Type I or II Error loss to a minimum.
Balci et al. (1981) stated a methodology for constructing a relationship between the Type I and
II Error risk, the acceptable range of validity, the budget, and the sample size of observations on
the model and the real world system. These parameters influence each other and an acceptable
range for each parameter must be chosen. The result is a trade-off between the degree of vali-
dation and the costs of validation. Figure 3.2 shows the relation of the "Confidence in Model"
to the "Cost" and the "Value of Model to User" as stated in Anshoff et al. (1972). The relation
shows that at some point of the V&V process, the value compared to the cost rise low and the
costs rise exponentially with more V&V activities.

Oreskes et al. (1994) noted that V&V sometimes has an either / or characteristic, which
means that a model is valid or not, is principally not possible. The reasons are limitations by
the data, limitations of the possibility of the observations of the phenomenon, the assumptions
are made, the hypothesis which is set on, or the dynamic a system is exposed. In practice,
few models are entirely valid or not. Shannon (1975) stated that validation is not a binary
decision but calculates a degree of validity. Further, the validity of a simulation model can
only be evaluated as meaningful and varies by the context of its purpose (Balci, 1990). The
model should reflect the characteristics of a studied process and V&V produces an acceptable
level of confidence (Robinson, Nov. 1997). Landry et al. (1993) stated that validation results
depend on the participants of the validation process and the research activity of the involved
social organization because of the social character of the V&V process. Carson (1989) pointed
out that V&V cannot be done by the modeller alone. A client that could be the management,
the users, or engineers, should pass judgement on the validity of the model. Gass et al. (1981)
summed up that confidence in a model is the result of the collected information of a model
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Figure 3.3: The life cycle of a simulation study (Sargent, 1981).

gained through the validation process.
Figure 3.3 shows the life cycle of a simulation study. It is an iterative process that should be

applied throughout the whole life cycle of a simulation (Balci, 1990). Oval symbols are phases,
dashed arrows describe the sequence of the process, and solid arrows describe the credibility
dependence between the phases. In each step of the modelling process, V&V takes place. It is
no static process but continuous (Shannon, 1975).

Data validation is the basis for all phases in the simulation process. Adequate data is needed
to build the conceptual model, the computerized model, and validate the model. The data must
be in an appropriate, accurate, and sufficient form available. Sargent (1998) defined that mea-
sured data must be examined whether it is consistent, if there are outliers and errors, and must be
preprocessed if needed for the further V&V. Data from defined experiments instead of data from
the regular production or business are preferred for the V&V, but in most cases, experiments
on existing and producing or running plants are not easy or impossible to conduct. Therefore,
W. Oberkampf et al. (2000) recommended the building block approach: The complexity of the
model is divided into four different tiers, with each different availability of experimental data.
The complete system is divided into subsystems. The subsystems are divided into benchmark
cases and further divided into unit problems (W. Oberkampf et al., 2000). The building block
approach provides a strategy to split the validation into small units with well defined validation
data sources like experiments, property data taken from engineering handbooks, or scientific
results (W. Oberkampf et al., 2000).

V&V should continue until the desired level of confidence is reached (Balci, 1994). This
leads to more V&V techniques or more intensive V&V, which raises the costs too. Due to this
relation, some V&V techniques must be chosen to meet cost, time, and resource limits. There
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are no standard techniques for the V&V process (Davis, 1991; Landry et al., 1993) and tech-
niques are ideally chosen by the model development team together with other involved parties,
like the users or the decision makers (Sargent, 1998). Balci (1995) categorized V&V techniques
into six different categories: informal, static, dynamic, symbolic, constraint, and formal. The
category "informal" is characterized by its reliance on humans. The category "static" contains
techniques, which do not execute the simulation but check the semantic or the syntax of the
code by automated tools or mental execution. The "dynamic" tools execute the models and
examine the behaviour and the output. Tools of the category "symbolic" examine the behaviour
of the simulation during its execution. "Constraint" tools assess the correctness of the code
concerning the models limits and boundaries, and "formal" techniques assess the correctness
of the model by mathematical proofs. Usually, non of the techniques are the basis for a binary
validity decision, but each can increase the confidence in the model. Balci (1995) summarized
a detailed description of V&V techniques and Banks (1998) identified and described more than
75 V&V techniques.

3.2 Model Predictive Control and Multi-Layer Model
Predictive Control

García et al. (1989) stated, the control problem of any system must satisfy the following:
"On-line update the manipulated variables to satisfy multiple, changing performance criteria in
the face of changing plant characteristics." (García et al., 1989). According to García et al.
(1989), Arkun et al. (1980) and D. M. Prett et al. (1980) stated that the economic minimum of
a plant is at the intersection of the control constraints. Furthermore, García et al. (1989) stated
that a control system must keep the operating point close to the constraints of a plant. The con-
troller must anticipate constraint violations and move the operating point inside the constraints
systematically (García et al., 1989). In the process industry, systems with operating points
changing over time, processes that are limited by constraints, and non-linear and multivariable
processes must be controlled (Qin et al., 2003). The stated requirements can be fulfilled by
model predictive control (MPC) (Qin et al., 2003).

The name model predictive control originates from using a plant’s model to predict future
inputs and their influence on the output (García et al., 1989). García et al. (1989) remarked that
multivariable and constrained problems are the primary motivation for the MPC development.
Further Raković et al. (2019) stated that linear quadratic regulator (LQR) is limited by their
ignorance of actuator saturation, that is the main argument for the development and the distri-
bution of MPC, instead of using the LQR control. MPC is the only control strategy to handle the
model, objective functions, and constraints (García et al., 1989). Compared to MPC, the LQR
cannot implement constraints in the design phase. García et al. (1989) explained that a common
practice is to design a control process and ignore the constraints. During the implementation of
the LQR, the controller is adapted to prevent the violation of constraints (García et al., 1989).
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Therefore the LQR handles constraints, nonlinearities, and uncertainties inadequately (Mayne
et al., 2000). García et al. (1989) added that a feasible solution could not be found by the LQR
when a disturbance pushes the measured states outside the limits. Another unresolved issue
is the tuning of multiple input multiple output (MIMO) systems which can be very complex
(García et al., 1989). Computer systems’ increased reliability and power further led to digital
control technologies as the MPC (Richalet et al., 1978).

Single Layer Model Predictive Control

The following mathematical representation of the models used in MPC is based on Wang
(2009), García et al. (1989), and Raković et al. (2019). The discrete-time linear time-invariant
dynamic model, without disturbance and without measurement noise, is presented in Eq. (3.1).
The output of the model is calculated in Eq. (3.2). The stated representation is called the
state space representation.The mixed-integer linear programming (MILP) representation is in-
troduced from Eq. (3.6) to Eq. (3.11). Other representations as transfer functions are not consid-
ered in this review. Further, only linear model predictive control with linear constraint models
are considered.

xi+1 = A ·xi +B ·Δui (3.1)

yi = C ·xi (3.2)

The vector xi+1 is the controlled state vector, Δui represents the input vector and A, B, C
are the model matrices where CT ·C > 0. yi is the output of the model. The models can be
MIMO and single input single output (SISO). The depicted model in Eq. (3.1) is the receding
horizon representation, where the input Δui cannot affect the output yi at the same time step.
Further, a prediction horizon Np is defined. The MPC calculates the states xi and inputs Δui

from the current time step i to the prediction horizon i+Np. The stated problem is a quadratic
programming (QP) problem (Raković et al., 2019) and the optimal Δui is found by minimizing
a cost function which is given in Eq. (3.3).

J = (Ytraj −Y)T · (Ytraj −Y)+ΔUT ·R ·ΔU (3.3)

J is the 2-norm cost function which is minimized. Ytraj is the trajectory of the output and Y
is the predicted output. ΔU is the predicted control input deviation vector and R a symmetric
weighting matrix, with R > 0. The error between the output trajectory Ytraj and the predicted
output Y is minimized, as well as the predicted input ΔU. The weighting matrix R defines,
in which relation the minimization of the error between the output and the trajectory, or the
input is conducted. Constraints are stated in Eq. (3.4) and Eq. (3.5). The states and inputs are
constrained to prevent damages to the real world system, prevent the MPC from calculating
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Figure 3.4: In the receding horizon control concept the output ŷ and the input u is predicted for the
prediction horizon from the actual step k to the prediction horizon k+Np. The MPC optimizes a QP
problem and minimizes the difference between the target setpoint and the predicted output ŷ (García
et al., 1989).

unphysical states, or limit the model according to economic considerations.

Umin ≤ U ≤Umax (3.4)

Xmin ≤ X ≤ Xmax (3.5)

Umin and Umax are the minimum and maximum for the predicted input U. Xmin and Xmax are
the minimum and maximum for the predicted states X. The MPC uses the actually measured
states from the real world system and computes the future states and inputs for the prediction
horizon based on the defined model. Constraints limit the predicted states and inputs. The
difference between predicted states and their trajectory or predicted inputs and their trajectory
is minimized. The first value of the Np calculated inputs Ui=1 is applied and in the following
sampling step, the MPC calculates optimal inputs for given constraints, objectives, and initial
conditions again. Figure 3.4 shows the principles of the MPC, which is interchangeably called
receding horizon control. The output y is measured at the current step k. The prediction ŷ
follows the setpoint trajectory target. The predicted input u and the difference between ŷ and
the target is minimized in the prediction horizon k+Np. Further definitions and explanations of
the MPC control design are sated in S. Joe Qin et al. (1997), Wang (2009), García et al. (1989),
or Raković et al. (2019).

The problem stated in Eq. (3.1), Eq. (3.2), and Eq. (3.3) can be transformed into a linear
programming (LP) problem by reducing the cost function to a linear equation. The general def-
inition of a LP problem is an objective or cost function with a set of equalities and inequalities.
A model that does not contain a quadratic feature is called a MILP problem. Further, some or
all of the variables are restricted to be integers. The minimizing objective function is stated in
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Eq. (3.6). From Eq. (3.7) to Eq. (3.11), the equalities and inequalities are defined.

J =
N

∑
i=1

(ytraji − yi + r ·ui) (3.6)

xi+1 = A ·xi +B ·ui (3.7)

ui ≥Umin (3.8)

ui ≤Umax (3.9)

xi ≥ Xmin (3.10)

xi ≤ Xmax (3.11)

r is a weighting factor. The input ui is optimized for the prediction horizon Np to minimize
the objective function J by a LP algorithm. The process is repeated for each step.

Main concepts of MPC technologies as LP and the moving horizon approach were introduced
first in the 1960s (García et al., 1989). One of the first MPC was introduced by Richalet et al.
(1978), who described a model predictive heuristic control (MPHC). According to Mayne et al.
(2000), the use of LP for a linear control problem with hard constraints are first used in A.I.
Propoi (1963). Optimal control algorithms are summarized in Polak (1997). Wright (1996) and
Rao et al. (1998) summarized algorithms suitable for solving linear model predictive control
problems. Several MPC designs and implementations of MPC exist (Qin et al., 2003; S. Joe
Qin et al., 1997). S. Joe Qin et al. (1997) collected different MPC design implementations and
compared them.

The MPC constraints can be defined on the maximum, minimum, and rate of change of states
or inputs, preventing the controller from being unstable or calculating non physical states or
inputs (S. Joe Qin et al., 1997). S. Joe Qin et al. (1997) stated that MPC constraints are
implemented as soft or hard constraints. Soft constraints are allowed to be violated but lead to
a penalty, while hard constraints are not allowed to be violated at all (S. Joe Qin et al., 1997).
Further, the state or input trajectories are defined as setpoints, zones, reference trajectories, or
funnels (S. Joe Qin et al., 1997). Figure 3.5 shows the different possible trajectory definitions
with soft constraints, examined by S. Joe Qin et al. (1997). The setpoint trajectory are static
or changing levels that the states or the input shall reach. The zone trajectory defines a region
to which the desired value is limited. The difference between the reference trajectory and the
predicted state is tried to keep zero. The funnel is a region between two limits with a decreasing
distance to which the states are limited. The soft constraint penalty is active if the value is
outside the zone or region between the constraints. The solution is still feasible, although the
constraint is violated.

The stability of MPC was tried to reach by tuning costs and changing the prediction horizon
parameter (Mayne et al., 2000). Mayne et al. (2000) reviewed that Lyapunov value functions
can be used for the stability analysis of MPC. According to Mayne et al. (2000), Keerthi et al.
(1988) were the first who establish stability in time varying, constrained, non-linear, discrete
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Figure 3.5: Different trajectory techniques with soft constraints and quadratic penalty added to the cost
function. In the upper row, costs are added when the prediction does not fit to the trajectory. In the
bottom row, costs are added when the prediction cannot be kept between the limits (García et al., 1989).

systems with terminal equality constraints by a Lyapunov value function. The stability of MPC
controlled systems can be achieved by setting terminal constraints and terminal costs together
(Mayne et al., 2000). Mayne et al. (2000) described the process of achieving stability and
examined it by four conditions that are sufficient for closed loop stability, although the horizon
is finite. Raković et al. (2019) stated the stability for an MPC without terminal constraints.
MEADOWS et al. (1995) stated that MPC could stabilize some systems, continuous feedback
controller cannot. Mayne et al. (2000) reviewed the stability and robustness of the MPC and
presented further literature on techniques accessing stability.

Robustness means that the quality of the MPC and system is preserved, although the dynamic
behaviour of the plant differs from the model in the MPC (García et al., 1989). Further uncer-
tainties can influence the robustness of the MPC (Mayne et al., 2000). Raković et al. (2019)
stated that robustness guarantees that the system is stable, feasible, and performs in the desired
way. The MPC is as robust as classic feedback control is, and no general answer to the com-
parison of the robustness can be stated (García et al., 1989). An unconstrained linear MPC is
as robust as the classic feedback control is. The robustness depends on the configuration of the
MPC and can be adjusted more easily than in classic feedback control by tuning the weights
or constraints (García et al., 1989). The robustness of an unconstrained MPC can be analysed
with the available methods for classical feedback control. Raković (2020) summarized different
approaches to develop robust MPC with different sets of uncertainties, constraints, and the level
of complexity.

Multi Layer Model Predictive Control

The calculation time can exceed acceptable limits for complex optimization tasks even though
calculation power has increased over the past decades. Therefore, complex optimization tasks
are divided into sub problems and subsystems. If such a system and its subsystems are con-
trolled by several hierarchically distributed layers controlled by MPC, the structure is called a
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Figure 3.6: A control hierarchy example is shown. The plant or the component directly is controlled
by a PID controller which in turn is controlled by an MPC. The MPC tries to follow a trajectory from a
plant wide optimization (Scattolini, 2009).

multi-layer model predictive control hierarchy. If such a control hierarchy is implemented, the
system components are typically controlled by low-level proportional-integral-derivative (PID)
controllers. The PID controller follows setpoints given by the MPC. The first layer executes a
plant wide optimization with trajectories for the MPC (Scattolini, 2009). Figure 3.6 shows the
structure of an example multi-layer model predictive control architecture. The top level of the
hierarchy uses simplified models and solves a long term problem with large time steps, while
the middle layer has a higher model and prediction accuracy and solves a short term problem
with short time steps. Each layer can consist of multiple controllers.

Systems can be divided into subsystems with separated controllers, called decentralized con-
trol (Scattolini, 2009). Sandell et al. (1978) discussed the difference between two subsystems
controlled separately with a "weak" interaction and subsystems with strong interactions. If the
interaction is not negligible, the performance can be decreased (Sandell et al., 1978). Therefore,
Sandell et al. (1978) introduced the coordinator, which is in contact with both of the systems
and controllers. The coordinator’s aim is to improve the performance, compared to the case
where no coordinator is implemented. Scattolini (2009) stated that few decentralized control
systems are developed because the MPC can be implemented centrally with many input and
output variables, and stability cannot be as easily analysed in decentralized configurations com-
pared to centralized configurations (Scattolini, 2009). Sandell et al. (1978) examined the tasks
of the coordinator and the flow between the hierarchies. Sandell et al. (1978) concluded that
measurements and decisions should be exchanged error-free and delayed. Otherwise, a single
controller should be implemented (Sandell et al., 1978). The economic benefit of implementing
a sophisticated control hierarchy depends on the higher levels, and optimality depends on the
underlying control structure (Richalet et al., 1978).

Scattolini (2009) summarized control hierarchies with different classifications and collected
examples of hierarchical MPC system implementations. In Scattolini (2009), the following
hierarchical control structures are reviewed:
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• Hierarchical control for coordination
The system is divided into different subsystems with interactions among them. The sub-
systems are controlled by regulators separately, which are themselves coordinated by a
coordinator. The coordinator provides the regulators the constraints and optimal prices,
which "coincide with the Lagrange multipliers of the coherence constraints in the global
optimization problem" (Scattolini, 2009). The optimum of the regulators are calculated
locally and send back to the coordinator. At the coordinator, the next global optimization
problem is solved and the new constraints are sent back. This iterative process is stopped
if the variables satisfy the conditions and constraints.

• Hierarchical control of multilayer systems
Hierarchical multilayer control systems work with different time scales at each layer
(Scattolini, 2009)

– Hierarchical control of multi time scale systems
A system with fast and slow dynamics is controlled by regulators with different
frequencies for the output variables. The first controller calculates the output for the
slow control input of the system. The second controller calculates the fast control
input for the system based on the fast trajectory of the first controller.

– Control of systems with hierarchical structure
The first layer has a slow dynamic and calculates a long scale optimum. The second
layer consists of regulators with faster dynamics. The slow dynamics output is the
trajectory of the fast dynamics layer. The stated problem is a cascade feedback
control system.

– Hierarchical control for plantwide optimization
The optimum is calculated concerning economic criterion in the first layer. The un-
derlying layer tries to execute or follow the values from the first layer. The model
accuracy can be designed in two ways: In the first layer, a model with higher accu-
racy than in the following layer is implemented or vice versa.

3.3 Sensible Heat Storage
Beckmann et al. (1984) defined a thermal energy storage (TES) as a process which is storing

energy during charge and discharge operations. It consists of a vessel, the storage medium,
charging and discharging devices, and auxiliaries. Its primary task is to overcome the discrep-
ancy between the energy supply and the energy demand. This discrepancy can be a mismatch of
the available time, a mismatch of the location, a mismatch of the kind of the used and provided
energy, for example, fluctuate or steady energy supply, or a mismatch of the amount of heat
supplied and demanded (Beckmann et al., 1984). The principle process of a TES is the same
for all types of TES and includes the following process steps: charging, storing, and discharging
(Dincer et al., 2013). Dincer et al. (2013) and Dinçer (1997) summarized the use of an Energy
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Storage results in:

• Reduced energy costs.

• Reduced energy consumption.

• Improved indoor air quality.

• Increased flexibility of operation.

• Reduced initial and maintenance costs.

• Reduced equipment size.

• More efficient and effective utilization of equipment.

• Conservation of fossil fuels (by facilitating more efficient energy use and/or fuel substi-
tution).

• Reduced pollutant emissions (e.g., CO 2 and chlorofluorocarbons (CFCs)).

Garg et al. (1985) categorised TES into two main types: sensible heat storage (SHS) and
latent heat storage (LHS). Only the SHS is treated in this thesis. The energy can be stored in a
TES by rising or lowering the temperature of a material without a phase change, called a SHS. If
the material used for the heat storage is a fluid, it is called heat transfer fluid (HTF). The use of a
HTF and a tank design with separate inlets and outlets makes it possible to charge and discharge
the SHS simultaneously (Abhat, 1981). If a HTF with a temperature higher compared to the
mean tank temperature is pumped into the top of the SHS and a HTF with a lower temperature
compared to the tank temperature is pumped into the bottom of the SHS, the difference of the
density leads to water layers with different temperatures. The sensible heating is described in
Eq. (3.12).

H load =V ·ρ · cp · (T 2 −T 1) (3.12)

H load is the loaded or unloaded enthalpy of the TES. V is the volume, cp is the heat capacity
of the HTF or material or combination of both, ρ is the density, and T 2 is the temperature after
the charging and T 1 is the temperature before the charging of the TES. The primary use of the
SHS is to buffer and provide the peak demand energy, which the available heat supply cannot
provide in the needed period.
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4 Methods

The Energy Demand Control System (EDCS) is an online, predictive and holistic, and recon-
figurable control system (Windholz, 2018-2021) and was newly developed in the course of the
project Energy Demand Control System - PROcess Optimization For industrial low tempera-
ture systems (EDCSproof). It is a two-layer hierarchical model predictive control (MPC) that
controls the energy supply of a plant. Before applying the EDCS to a plant, its performance and
robustness must be validated in simulation studies.

In this thesis, the subsystem of an industrial plant was investigated. The system consists of a
heat supply, a sensible heat storage (SHS), and a heat demand. Industrial measurement data was
utilized for the modelling and validation process of a simulation. Additional functionality were
added to the EDCS, for correcting the heat demand prediction online. Simulation studies were
conducted to verify and validate the robustness, stability, correctness of the functionality, and
applicability of the EDCS. Furthermore, a simulation study investigated the unpredicted opera-
tions of the employees and their consequences on the process quality. The added functionality
of the EDCS and its ability to ensure process quality was examined. The performance of the
EDCS was quantified by analyzing the effect on the energy consumption and energy cost.

In this thesis, the following research questions are answered:

1. Is it possible to use the measured data to develop a valid simulation model of the plant for
testing the EDCS?

2. Can the EDCS be used to control the investigated energy supply system?

3. How robust is the EDCS against unpredicted interactions of human operators?

4. Which influence has the EDCS on the cost and quality of the process?

In the course of this chapter, the methods for the preparation and preprocessing of the mea-
sured data are defined and the prediction data are calculated in Section 4.1. The modelling of
the simulation model is shown in Section 4.2 and the verification and validation (V&V) method-
ology of the components and the complete model is presented in Section 4.3. The functionality
of the EDCS is explained and its structure is stated in Section 4.4. At last the simulation study
is introduced and explained in Section 4.5.
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4.1 Data
Due to computation time reasons, constant values were chosen for the material parameters,

instead of calculating the parameters for each temperature. Density and heat capacity of water
were chosen (VDI, 2013):

• density water at 80°C ρw80 = 971.8kg/m3

• specific heat capacity, water, constant pressure, 80°C cpw80 = 4196 j/kg ·K

The measuring devices depicted in Figure 2.1 recorded the following values:

• Qi: measured heat data, in W

• Ti: measured temperature data, in °C

• Gi: measured valve data, in %

• Si: measured rotation speed, in rpm

The following meanings apply to the indices:

• measured (meas): This data was measured by a device in the plant.

• prepared (prep): This data was altered through the validation process.

• calculated (calc): This data was calculated by the simulation.

• predicted (pred): This data was used as a prediction for the EDCS.

• real (real): This data was used as the input heat demand data for the simulation and differs
from the predicted data.

• reference (ref): This data was used as a reference for the least square (LS) fit.

Where i is an enumeration for the identification of the measurement devices. Variable names
without one of the stated indices refer to the measurement device with the corresponding index.

Some of the parameters were taken from the datasheet and some were estimated by a LS fit
between the calculated output of the component model and the measured data. Eq. (4.1) and
Eq. (4.2) show the problem which was minimized by a LS fit with the trust region approach
(Coleman et al., 1996).

youtj = f (θ ,xinj) (4.1)

min
θ

n

∑
j=1

(youtj − yrefj)
2 (4.2)

f is the function which calculates a comparable output youtj for the reference data yrefj, with
the set of parameters θ and the input data for each step xinj. The square error is computed for
all steps n. The algorithm minimizes the quadratic error by optimizing the parameters θ .
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The model and its V&V depends on the underlying data quality and validity. Therefore data
validation was processed first. As reviewed in Section 3.1, data must be prepared and available
in the desired accuracy. Measurement imperfections such as outliers were removed and miss-
ing data points were interpolated. Due to missing and inconsistent data, a set of trustworthy
and consistent data was defined and missing data was calculated with enthalpy balances. The
data preparation was done to increase the consistency level. Afterwards the validity and the
credibility of the data were examined by a consistency analysis, face validation, and scenario
analysis. Prediction data for the heat demand was calculated with the algorithm of Fuhrmann
et al. (2020) in Subsection 4.1.1.

4.1.1 Heat prediction Q189, Q190, Q191, and Q192

The EDCS needs an accurate prediction of the heat demand Q189,Q190,Q191, and Q192. The
prediction is used to calculate future states and inputs to the energy supply. The heat prediction
was calculated with measured heat data. Fuhrmann et al. (2020) presented a calculation of the
prediction of pulsed heat load demand. First, the data must fulfil the following assumptions
(Fuhrmann et al., 2020):

• The start and end time of the heat demand must be known.

• The desired temperature of the heat demand must be known.

• The integral heat per heat treatment (HT) must be known.

• The heat demand has an initial peak and decreases exponentially.

A prediction can be computed for each HT based on a calculated time constant τ and the inte-
gral amount of heat Q̇HT per HT. The calculation of the HT prediction is presented in Eq. (4.3)
(Fuhrmann et al., 2020).

Q̇HTpred(t) = Q̇HT · (1− e−
t
τ ),0 < t < tmax (4.3)

Q̇HTpred is the prediction data for one HT and Q̇HT is the integral amount of heat for one HT.
t is the time and τ is the calculated time constant. The parameter tmax was chosen for each HT
separately. If the heat Q̇HTpred(t) function value is lower than 1 W, the parameter tmax is set to
the number of the elapsed function values. The rest heat of the exponential function was added
equally to all of the generated function values, ensuring that the heat amount is equal to the
measured one. The time constant τ was calculated by first choosing the HT’s where the usable
enthalpy level in the SHS was twice the demanded heat. Second, the time constant τ can be
computed with the HT’s, which satisfies the stated conditions. In Eq. (4.4), the time constant τ
is calculated (Fuhrmann et al., 2020).
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Figure 4.1: The measured heat demand Q̇meas is compared with the predicted heat demand Q̇pred as a
function of time.

τ =
∑M

v=1
0.95·Q̇HTv

3
M

(4.4)

τ is the time constant for the computation of the predicted HT, M is the number of all chosen
HT’s, and Q̇HTv is one HT. Figure 4.1 compares the calculated heat demand prediction Q̇pred

with the measured heat demand data Q̇meas. The prediction fits reasonably to the measured data
with a slight deviation from the measured one. Further analysis of the fit was done in Fuhrmann
et al. (2020). The integral heat is the same for the prediction and the measured HT.

4.2 Modelling
The modelling process started with defining model requirements. Model requirements were

derived from the project goals, respectively, the research questions. They were specified sepa-
rately for the components and the overall model. Simulation objectives, necessary performance,
and structure conditions were stated. Simulation scenarios for the EDCS were defined and had
to be executable.

The next activity in the modelling process was the demarcation of the physical system and
its components from their environment. The environment was defined and the relationship and
uncertainties between the system and its surroundings were identified. System boundaries were
chosen based on the measured data and components were separated, to create small logical
model units. The usual production environment and scenarios for the simulation were defined.

The physical models were identified by the measured and prepared data and the knowledge
of involved system operators of the facility. No experimentation data was available. The main
processes, relationships, constraints, variables, and goals were identified, relevant data was
collected, and minor dynamics were neglected. Simplifications of the models were made in
all three categories: omission, aggregation, and substitution. Omission means that physical
processes are neglected in the model, as cooling effects, fluid friction, or changing density
at changing temperature. Aggregation means that physical effects are combined, as the heat
transfer between stagnant layers of water and heat transfer by turbulent flow combined with
one correction factor. Substitution means that known values are substituted by simple ones, for
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example, the infinite number of layers in a SHS, which are substituted to a reasonable number.
These abstractions and the reduction to the main physical theory follow the principle of Occam’s
razor. The philosophy is to use a known, limited model rather than a complex model. Complex
models require more resources like computation time and V&V costs and lead to few model
improvements.

The models are described by physical laws and are mainly partial differential equation (PDE)’s,
combined with analytical models. They are deterministic and discrete. Black box or grey box
models were not used because the measured data could not meet the requirements for the iden-
tification, and universal models, usable for various energy supply systems, were desired. The
data was separated into identification data (2/3) and validation data (1/3).

The used PDE’s were numerically discrete solved with the explicit Euler method, which
meets the prerequisite of the EDCS. The fixed step size was chosen as ts = 60 seconds because
the measurement frequency and the standard sampling interval of the EDCS was one minute.
The representation of the output data is zero order hold. The model is implemented in the devel-
opment software Matlab/Simulink 2019b because of the prerequisites of the EDCS (MATLAB,
2019).

From Subsection 4.2.1 to Subsection 4.2.6, the components of the plant are described, delim-
ited from their environment, and equations are defined. Further, parameters and restrictions are
stated. The resulting simulation model, its requirements, and input data are defined in Subsec-
tion 4.2.7. The modelling of the components follows the same structure:

1. The component is described.

2. The delimited component is presented with its inputs and outputs and the functionality is
explained.

3. Parameters are stated.

4. Restrictions of the model are defined.

4.2.1 Sensible Heat Storage
The used model for the SHS is based on Streckiene et al. (2011) and Eicker (2005) who

described an analytical model of a SHS. The SHS is divided up into several layers with constant
volume. The enthalpy balance differential equation for each layer is solved separately. The main
features, the charging, the discharging, and the heat loss through the wall, are implemented.
Additional internal turbulent flow is represented by a multiplication factor. Figure 4.2 shows
the input and output of the SHS model. ṁcoldin and T coldin are the mass flow and temperature into
the buffer storage from the heat exchange, ṁhotin and T hotin are the mass flow and temperature
into the buffer storage from the heat pump (HP), T hotout is the temperature out of the SHS to the
heat exchange and T coldout is the temperature out of the SHS to the HP. Q̇loss is the heat loss of
the model through the tank wall.
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Figure 4.2: The SHS model and its inputs and outputs, set as arrows.

The model equations first calculate the resulting direction for the internal mass flow for the
layers, Eq. (4.5). If the resulting mass flow is positive, the water flows from top to bottom.
If the resulting mass flow is negative, the water flows from bottom to top. For each layer,
the enthalpy balance differential equation is rearranged and the change of temperature dT i

dt is
calculated. Afterwards, the resulting temperature changes are merged by a parameter called
mixfactor, which maps a turbulent internal flow and leads to tight temperature layers. Eq. (4.6)
to Eq. (4.11) shows the differential equations for the layers for both resulting signs of Eq. (4.5).
Eq. (4.12) shows the post processing of the change of temperature dT i

dt with the mixfactor.

ṁΔ = ṁhotin − ṁcoldin (4.5)
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1. ṁΔ >= 0

i = 1 : ρ · cp ·VΔ · dT 1

dt
= cp · ṁhotin · (T hotin −T 1)

+ k ·Ah · T 2 −T 1

hΔ
+αw ·AlΔ · (T outside −T 1)

(4.6)

1 < i < N : ρ · cp ·VΔ · dT i

dt
= cp · ṁΔ · (T i−1 −T i)

+ k ·Ah · T i+1 −2 ·T i +T i−1

hΔ
+αw ·AlΔ · (T outside −T i)

(4.7)

i = N : ρ · cp ·VΔ · dT N

dt
= cp · ṁcoldin · (T coldin −T N)

+ cpw80 · ṁΔ · (T N−1 −T N)+ k ·Ah · T N−1 −T N

hΔ
+αw ·AlΔ · (T outside −T N)

(4.8)

2. ṁΔ < 0

i = 1 : ρ · cp ·VΔ · dT 1

dt
= cp · ṁhotin · (T hotin −T 1)

+ cpw80 · ṁΔ · (T 1 −T 2)+ k ·Ah · T 2 −T 1

hΔ
+αw ·AlΔ · (T outside −T 1)

(4.9)

1 < i < N : ρ · cp ·VΔ · dT i

dt
= cp · ṁΔ · (T i −T i+1)

+ k ·Ah · T i+1 −2 ·T i +T i−1

hΔ
+αw ·AlΔ · (T outside −T i)

(4.10)

i = N : ρ · cp ·VΔ · dT N

dt
= cp · ṁcoldin · (T coldin −T N)

+ k ·Ah · T N−1 −T N

hΔ
+αw ·AlΔ · (T outside −T N)

(4.11)

N is the number of constant volume layers in the SHS. VΔ is the SHS volume divided by the
number of layers N. ṁhotin is the hot mass flow and ṁcoldin is the cold mass flow into the SHS.
T i is the temperature of the layer j. hΔ is the height of one layer. Ah is the horizontal area of the
cylindrical SHS. AlΔ is the lateral area of the SHS. αw is the heat transfer coefficient of the wall
of the SHS. k is the thermal conductivity of water.

dT
dt

=
dT
dt

− (T − ∑N
i=1 T i

N
·mixfactor) (4.12)

dT
dt is the calculated change of temperature for each layer, T is the temperature of the previous

step of each layer and mixfactor is a factor tightening the temperature layers.
The dimensions of the SHS are:

• Diameter: 1.9m
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• Volume: 12.7m³

For the model, five equidistant layers with constant volume and various temperatures, dis-
tributed over the height of the SHS, were chosen. The computed temperatures could be com-
pared to the temperature data of the five temperature sensors, which were distributed over the
height of the SHS in the plant.

The heat transfer coefficient αw, which describes the heat loss through the wall of the SHS,
was computed by the loss of enthalpy HΔ, during periods in time with no charge or discharge
of the SHS. 51 periods with only heat loss through the wall could be identified in the chosen
period from Section 4.2. They were divided into an identification and a validation part. The
first 34 periods were used for the identification part and the last 17 periods were used for the
validation part. The change of enthalpy HΔk in each time step j was calculated from the mea-
sured temperature difference data and a resulting heat transfer coefficient αw for each time step
was computed. The resulting heat transfer coefficient αw is the mean of the coefficients of each
time step. Eq. (4.13) shows the change of enthalpy for one time step and Eq. (4.14) shows the
equation of the heat transfer coefficient αw.

HΔj =
N

∑
i=1

(T (j+1)i
−T ji) · cpw80 ·ρw80 · V

N
(4.13)

αw =
1
n
·

n

∑
j=1

HΔj

60s ·AlΔ ·∑N
i=1(T outsidej −T ji)

(4.14)

HΔj is the change of enthalpy in the SHS for one time step, j is the index for one time step
and i is the index for the Layer. T ji is the temperature for a time step and a Layer and T outsidej

the temperature outside the tank. AlΔ is the lateral area of one Layer of the SHS. αw is the heat
transfer coefficient for the wall of the SHS and n is the number of measured values.

The coefficient for the thermal conductivity of water k between the layers, was chosen by
Eicker (2005) as 0.644 W/m ·K. The specific heat capacity cp and the density ρ were chosen in
Section 4.1. The following parameters for the SHS were chosen:

• N = 5

• VΔ = 2.54m3

• hΔ = 0.8959m

• Ah = 2.835m2

• AlΔ = 6.4815m2

• αw = 1.6528 W/m2 ·K

• k = 0.644 W/m ·K

• mixfactor = 5.85984 ·10−4
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In further calculations, the state of charge (SOC) of the SHS, which describes the enthalpy
in the SHS, was used. The SOC is calculated by subtracting the enthalpy level at the minimum
allowed temperature from the measured enthalpy with reference to 0°C. Eq. (4.15) calculates
the enthalpy level at the minimum allowed temperature and Eq. (4.16) calculates the SOC of
the SHS.

Hmin = T min · cpw80 ·ρw80 ·V (4.15)

SOC =
N

∑
i=1

(T i −T min) · cpw80 ·ρw80 ·V/N (4.16)

Hmin is the minimum enthalpy level allowed in the SHS. T min is the minimum allowed tem-
perature in the SHS and T i is the actual temperature of one layer in the SHS.

Simplifications were made in the model. Internal flows which can influence the mixture
of the layers are approximated. The convective heat transfer is neglected. Five layers were
chosen for comparison reasons which was an approximation to the real layer distribution. The
model is technically not restricted to non-physical states but restrictions for its use are stated.
It is not allowed to exceed the temperature above the boiling temperature of water (100°C) and
lower the temperature below the freezing temperature of water (0°C). The layer temperatures
are calculated with the heat capacity and the density of water at a temperature of 80°C. The
SHS model causes a one step delay from its input to its output.

4.2.2 Heatpump
A HP can be used in two ways: First, heating up the heat sink to a desired temperature by

enough heat supply at the heat source, called HP. Second, cooling down the heat source to a
desired temperature by heat exchange at the heat sink, called chiller. In this thesis, only the HP
configuration was used.

The used HP model in this thesis is a model from the AIT (2020). It was designed and
developed in Modelica from Dymola (Dassault Systèmes, 2020; Modelica Association, 2020)
and was packed as a functional mockup unit (FMU), a format to exchange models between
different development software. The model was allowed in this work to be used explicitly.

The HP is used to provide the heat for the heat demand by charging the SHS. Figure 4.3 shows
the model with its input and output. The HP is grouped with a valve G120 at the heatsink and
a valve G130 at the heatsource with two correspondent constant mass flow pumps P10 and P11,
ensuring the designed mass flow for the heat exchangers. The valves G120 and G130 are PID
controlled and shall ensure a desired temperature difference for the heat exchangers by opening
and closing the valve between 0% and 100% and feedback the outlet of the heat exchanger.
ṁsinkout and T sinkout are the mass flow and temperature out of the HP model, at the heat sink,
controlled by the valve G120. ṁsourceout and T sourceout are the mass flow and temperature out of
the HP model, at the heat source, controlled by the valve G130. T sinkin is the temperature into
the HP at the heat sink and T sourcein is the temperature into the HP at the heat source. UHP is
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Figure 4.3: The HP model and its inputs and outputs, set as arrows. The included components are
grouped.

the input for the power of the compressor in %. The valves and pumps at the heat sink and
the heat source are integrated into the model. The following parameters can be adjusted: the
desired temperature difference at the heat sink dT sink, the desired temperature difference at the
heat source dT source, the desired output temperature at the heat sink T setsinkout and the desired
power at the heat sink Q̇sinkdesign . The parameter cs is the compressor scaling and reduces the
design power to a level between 0% and 100%.

dT sink, dT source and T setsinkout were chosen from the datasheet. The FMU is designed for
the design values. The design power value of Q̇sinkdesign is 206 kW according to the datasheet
but the compressor power was reduced to 78%. The power of the real plant HP heat at the
heat sink decreases not linearly with the reduction in percent, but exact curves were not known.
Therefore the Q̇sinkdesign had to be fitted to the data. Because of stability reasons of the FMU
model, it was not possible to optimize the heat power by a least square fit. The metric value
normalized root mean squared error (NRMSE) defined in Section 4.3 between the measured
heat and the simulated heat at the heat sink was minimized to a value of 0.3098 by manually
setting the compressor scaling cs and ensuring stability at the chosen value. The following
parameters were chosen:

• dT sink = 5.52 K

• dT source = 5.9 K

• T setsinkout = 84 °C

• Q̇sinkdesign = 206 kW

• cs = 0.78

The model is technically restricted to physical states. Therefore it is impossible to exceed
the heat sink or heat source temperature above the cooking temperature of water (100°C) and
lower the temperature below the freezing temperature of water (0°C). Further restrictions are
implemented for the internal refrigerant temperature and pressure. The model interrupts if the
heat supply temperature is too low or the input UHP is set between 0% < UHP < 30% for an
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Figure 4.4: The heat exchange model and its inputs and outputs, set as arrows. The included components
are grouped.

undefined duration which can cause nonphysical states internally. The start behaviour of the HP
is not modelled and cannot be simulated. The HP model causes a one step delay from its input
to its output.

4.2.3 Heat exchange
Figure 4.4 shows the heatexchange model with its input and output. The heat exchanger

model is grouped with a constant mass flow pump Pxx and a valve Gxxx which is proportional-
integral-derivative (PID) controlled. The PID controller applies a desired difference temperature
between the input and the output temperature by changing the valve’s position between 0% and
100%. The valve influences the input and output mass flow ṁout of the model and leads to a
maximum mass flow at 100%. The constant mass flow of the pump ensures the desired mass
flow through the heat exchanger.

The input of the heat exchanger model is the heat demand Q̇demand and the demand tem-
perature T demand. The demand temperature is the HT minimum temperature at which a heat
exchange in the correct direction is possible. T in and T out are the input and output temperatures
of the model. Q̇applied is the applied heat and can differ from Q̇demand if the input temperature T in

falls below the demand temperature T demand. The difference heat between Q̇applied and Q̇demand

of the current step will be added as Q̇integrator to the next step heat demand Q̇demand. The fol-
lowing parameters can be adjusted: the heat capacity of the used fluid cp, the maximum mass
flow of the pump ṁmax, the maximum exchangeable heat Q̇max, and the desired temperature
difference of the heat exchanger ΔT . Eq. (4.17) to Eq. (4.27) shows the calculation of the mass
flow ṁout and the temperature T out.
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Q̇demand + Q̇integrator < Q̇max Q̇applied = Q̇demand + Q̇integrator (4.17)

Q̇demand + Q̇integrator > Q̇max Q̇applied = Q̇max (4.18)

ṁtar =
Q̇applied

ΔT tar · cp
(4.19)

ṁtar > ṁmax : ṁtar = ṁmax (4.20)

ΔT =
Q̇applied

ṁtar · cp
(4.21)

T in > T demand : T out = T in −ΔT (4.22)

Q̇applied = Q̇applied (4.23)

ṁout = ṁtar (4.24)

T in < T demand : T out = T in (4.25)

Q̇applied = 0 (4.26)

ṁout = 0 (4.27)

Q̇demand is the heat demand and T demand is the necessary minimum temperature for the heat
demand. Q̇applied is the applied heat of the model, which can differ from the demand. Q̇integrator

is the heat amount that was not exchanged and is added to the heat in the next step. Q̇max is the
maximum possible heat that can be exchanged in one step. cp is the heat capacity of the fluid,
ΔT tar is the desired temperature difference between the input and the output temperature and
ṁtar is the target mass flow with the temperature difference ΔT tar. ṁtar differs from ṁout because
the model pump is limited to a maximum and minimum mass flow ṁmax and ṁmin. ΔT is the
applied temperature difference depending on the mass flow ṁtar. T out is the output temperature
and ṁout the output mass flow.

The parameter ΔT tar had to be fitted to the measured data because there was no datasheet for
the heat exchangers HE1, HE2, HE3, and HE4. A LS fit, described in Section 4.1, was used
to find the parameter by comparing the simulation output T out to the measurement temperature
T 33. Each of the heat exchangers was fitted separately. HT identification data for the input for
each heat exchanger, when only the heat exchanger of interest is active, were collected and the
parameter ΔT tar was fitted.

The fitted temperature ΔT tar for the heat exchangers HE1, HE2, HE3, and HE4 was 5.16K on
average. Due to the fact that similar heat exchangers were used and for simplification reasons,
the value 5K was used. The output mass flow ṁmax is limited by a valve in the output pipe. The
first heat exchanger HE1 has a smaller dimension and lower parameters compared to the others.

The model’s heat capacity was chosen as the heat capacity of water at 80°C. The maximum
possible heat exchange Q̇max was set to 1MW for each component. The desired temperature
difference ΔT tar was set to 5K for each component. The maximum mass flow of the heat
exchange component HE1 was set to 4.3kg/s. The maximum mass flow of the heat exchange
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Figure 4.5: The mixing pipe model and its inputs and outputs, set as arrows.

components HE2, HE3, and HE4 was set to 8.5kg/s

The model restricts the possible heat Q̇demand to the maximum heat Q̇max. If the input temper-
ature T in is higher than the demand temperature T demand, the heat Q̇demand can be exchanged,
although a limitation occurs in the real world system at high heat values Q̇demand caused by the
heat exchanger design or the temperature of the batch consumer (BC). The limitation to the
maximum heat and mass flow leads to a maximum temperature difference of 28K. The heat
exchange model causes a one step delay from its input to its output which corresponds to the
observed behaviour in the data from Subsection 5.1.1.

4.2.4 Mixing Pipe
Several pipes can be connected to one pipe in hydraulic systems, which can be called distrib-

utor pipes. In the plant, distributor pipes are installed to merge the mass flow of the different
heat exchanger flows. The mixing pipe model merges the temperatures relative to their mass
flows. Eight pipes can be connected. Figure 4.5 shows the model with eight inlets T 1 −T 8 and
ṁ1 − ṁ8 and one outlet T out. Eq. (4.28) shows the calculation of the output temperature.

T out =
∑8

i=1 T ini · ṁini

∑8
i=1 ṁini

(4.28)

T ini and ṁini are the temperatures and the mass flow of one inlet and T out is the temperature
of the outlet.

The heat loss through the pipe wall, a possible delay and turbulent flow are neglected. The
outgoing mass flow is not used. Instead of, the calculated mass flow of the connected pump is
used because of the hydraulic balancing.

4.2.5 Pump
The variable mass flow pump is configured to ensure a constant differential pressure of nearly

zero bar. If a connected pump-valve combination changes the valve position, the mass flow
changes. The constant differential pressure pump raises the mass flow to ensure the desired
mass flow and ensure a pressure of nearly zero bar. The connected pumps are, according to
the valve position, supplied by enough pressure. A minimum mass flow ensures a differential
pressure of nearly zero bar if no heat exchange valve is open. The desired differential pressure
is usually configured as low as possible just to overcome the friction of the pipe system.
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Figure 4.6: The pump model and its inputs and outputs, set as arrows.

The inputs to the model are the applied heat of the heat exchanger, the input temperature, and
the output temperature of the connected system. The temperatures are necessary to calculate
the mass flow with the enthalpy balance. Figure 4.6 shows the variable mass flow pump model
with its inputs and outputs. T in is the incoming temperature which is feed through to the outlet
with the mass flow ṁout. T out is the temperature after the heat exchange and is feed through
to the output with the mass flow ṁout. Q̇applied is the heat that is applied by the connected heat
exchangers. The pump is active if heat Q̇applied is exchanged. The variable mass flow pump
is connected to the SHS with the inlet T in. Further, it is connected to several heat exchangers,
supplied with the temperature T in and the mass flow ṁout. The pump model receives the applied
heat Q̇applied from the heat exchange models with the corresponding temperature T out and calcu-
lates the mass flow ṁout and T out. The following parameters can be adjusted: the heat capacity
of the used fluid cp, the maximum mass flow of the pump ṁmax, and the minimum mass flow
ṁmin of the pump if it is active. Eq. (4.29) shows the calculation of the mass flow.

ṁout =
Q̇applied

cp · (T out −T in)
+ ṁmin (4.29)

cp was chosen in Section 4.1 and ṁmax was chosen from the datasheet and cannot be ex-
ceeded. The minimum mass flow ṁmin is equal to the identified minimum pump mass flow
ṁP9min from Subsection 5.1.3. The calculated mass flow cannot fall below this minimum if the
pump is active. The following parameters were chosen for the pump P9:

• cp = cpw80

• ṁmax = 13.5kg/s

• ṁmin = 1.5056kg/s

The pump model is only active if heat is applied. The model neglects that the pump is active if
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Figure 4.7: The hysteresis controller model and its inputs and outputs, set as arrows.

the HP is active. The model causes no delay. If the enthalpy balance, calculated with the applied
heat and the temperature difference, does not result in a mass flow between its minimum and
maximum, the mass flow is limited and a new output temperature T out is calculated with the
limited mass flow.

4.2.6 Hysteresis Controller
A hysteresis controller controls the HP. It is active if the measured temperature in the SHS

falls below a defined threshold and stops working until another measured temperature reaches
another threshold. The used hysteresis can activate or deactivate the component. It is not
possible to run the component in partial load mode. Figure 4.7 shows the model with its input
and output. The input temperature T upper is connected to the top temperature T 19 in the SHS,
which is compared to the upper limit where the hysteresis output U switches to zero. The input
temperature T lower is connected to the bottom temperature T 23 in the SHS, which is compared
to the lower limit, where the hysteresis output U switches to one. The parameters T 1 and T 2

define the upper and lower limit of the hysteresis and must be set.
Measurement data for the runtime of the HP and the input temperatures into the hysteresis

controller were available. The model output was compared to the measured runtime data and
the parameters were identified by a LS fit. The following parameters were identified for the
hysteresis controller and chosen as the lower and the upper limit:

T upper is connected to the SHS bottom layer
T lower is connected to the SHS top layer

• T upper, limit = 82◦C

• T lower, limit = 78◦C



4.2 Modelling 38

4.2.7 Plant
The plant and the process were described in Chapter 2. The resulting simulation model must

meet the following criteria:

• A simulation duration of 24 hours must be executed in less than 1 minute. The simulation
is executed without the EDCS.

• The error between the simulation and the measured data is not allowed to exceed 10%
except short periods and the error must not exhibit any trend.

• The simulation must be stable and must not interrupt during the whole simulation time.

• The main dynamics of the system, like charging and discharging the SHS, heat loss
through the wall of the SHS, the heat supply via the HP, and the heat transfer through
the heat exchangers, must be mapped by the simulation.

• The main scenarios: ’the SOC is below the lower limit’, ’more heat demand than heat
supply’ and ’run the system after a pause of up to seven days with no heat demand’ must
be mapped by the simulation correctly.

• The simulation must be developed and deployable in Matlab/Simulink (MATLAB, 2019).

• The simulation must be applicable for the EDCS Framework and usable with its con-
trollers.

• The inputs and outputs of the simulation must be usable by the EDCS.

• The simulation states and outputs must be readable by the EDCS.

The main components of the plant are modelled: the HP, heat exchanger, SHS, mixing pipe,
and pump. The components are connected via their out- and inputs. Four heat exchange models
are connected to the mixing pipe model connected to the pump model. Together these compo-
nents are the heat demand part of the plant. The model is connected to its surrounding by the
heat exchangers, the heat loss of the SHS, and the connection of the HP to the internal heat net-
work. Therefore the input data for the simulation consists of the heat demand, the temperature
outside the building for the SHS, and the temperature of the fluid of the internal heat network.
The SOC of the SHS is the comparable output of the simulation for the validation. The plant is
schematically depicted in Figure 2.1.

The main dynamics of the system can be depicted with the model. The following simplifica-
tions were made:

• The pipes and their influence on the heat loss and delay are neglected.

• The warm-up of the components during startup is neglected.

• The logical condition that the pump P9 is active if the HP is active is neglected.
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One step delays are induced by the HP, the SHS, and the heat exchange model. Some param-
eters were calculated by a LS fit based on the biased data.

The combined model is restricted by the maximum number of active HT’s. It is not allowed
to start more than two HT’s simultaneously because the supply pump P9 cannot ensure the nec-
essary mass flow. Further, the heat transfer fluid (HTF) water must not exceed the temperature
range between 5°C and 95°C.

4.3 Verification and Validation
The model and V&V phase is an iterative process where simulation results influence the

V&V and vice versa. The following software principles were applied and tools were used to
assist an error-free development of the simulation:

• Central definition of units

• Documentation

• Component-based software developing

• Version control

• Use of a high level programming language

• Architectural design

The following verification techniques were applied:

• Desk checking is a process where a second person examines the work of the developer to
find errors, ensure completeness, consistency, and clearness of code.

• Face validation means that potential users, engineers, team members, developers, or su-
pervisors together judge whether the model and its results meet the desired accuracy and
objectives.

• Compiling the code means checking the code against syntax errors.

• Automatic static analysers are often executed by the compiler and try to find incorrect,
inefficient, or inconsistent use of code the compiler cannot see.

• Defect testing is executing the code to detect errors in code. Small pieces of code like
components or units are executed just like the complete simulation and known output is
compared to the calculated one.

• Simple tests verify whether the code meets a defined behaviour. A conservation test that
ensures that the net energy flux in and out of a component must be zero is applied.

Verification techniques like the walkthrough, the review, the inspection, or the Turing test
were not applied because of the limited personnel and time resources.

The following validation techniques were applied:
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• Building-block approach divides the system into subsystems, subsystems into compo-
nents, and components into units. The number of included physical effects and the com-
plexity decrease from top to bottom. For each of them, specific validation data can be
used for validation.

• Face validation is the judge of whether a model reaches the desired accuracy and inten-
tion, done together by the development team, potential users, and knowledgeable people.
The model output and the dynamics are examined based on the intuition and subjective
experience of each member.

• Graphical comparison is creating graphs and figures for comparing the model results with
the real world data. Trends, periodicities, behaviour inconsistency, phase shift, constant
errors, etc., are tried to uncover.

• Submodule testing is testing, verifying, and validating all of the simulation modules be-
fore the connected simulation model is tested.

• Sensitivity analysis is the systematically changing of the input and the internal parameters
and examining their output effect of the model. This technique reveals the information
about inputs that impact the result and parameters that change the model’s behaviour if
they are little altered. Before the sensitivity analysis is conducted, an uncertainty analysis
separates parameters into well defined and uncertain values. The uncertain parameters
are of special interest for sensitivity analysis.

• Comparison of means is valuing the agreement between the measured data and the simu-
lated data. A metric based on statistical values can not be developed because of the lack
of experimental data. Eq. (4.30) to Eq. (4.32) calculates the NRMSE, which values the
agreement between the measured and the calculated data.

εerrorj = ymeasj − ysimj (4.30)

ȳmeas =
1
n
·

n

∑
j=1

ymeasj (4.31)

NRMSE = 1−
∑n

j=1 ε2
errorj

∑n
j=1(ymeasj − ȳmeas)2

; −INF < NRMSE < 1 (4.32)

εerrorj is the difference between one measured and one simulated value, ymeasj is one
measured value and ysimj is one simulated value simultaneously. ȳmeas is the mean value
of all measured values ymeasj and n is the number of simulated values. NRMSE is the fit
value that indicates a perfect fit if the value is zero.

• Scenario analysis tests the model by running several chosen scenario inputs and examin-
ing their output and the model behaviour about their validity.

• Historical data validation divides the available data into two groups: The first group,
the larger sample, is used to examine and build the model and identify parameters. The
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second part of the data is used to validate the model. The first 2/3 of the data is used for
the identification and the last 1/3 of the data for the validation.

Hypothesis testing is a method to accept or refuse a model or make a decision between two
different models. In computational physics, hypothesis testing is rarely used because the under-
lying phenomenon is well understood, models exist, and the fit to the measured data is exam-
ined. Therefore no hypothesis testing was applied. The V&V methods were chosen concerning
their applicability in the development team, the available data, and the available resources.

For each component, the V&V was conducted. Components with a higher complexity were
conducted with more V&V activities and components with a lower complexity were conducted
with fewer V&V activities. The V&V was conducted with the last 1/3 of the data, which is
called the validation part. The NRMSE was used as a validation parameter for comparing
simulation output to the measured data. After the components V&V, the complete connected
model controlled by the hysteresis controller was examined. The V&V of the components
followed the same structure:

1. The model’s purpose was defined.

2. Sources of uncertainty were identified and analysed.

3. Scenario analysis was done to identify the influence of the input, the behaviour of the
model, and identify errors in the code.

4. The model output was compared to measured data.

5. Sensitivity analysis was done.

6. A conclusion was presented from the V&V process.

4.4 EDCS
The EDCS is an online, predictive and holistic and reconfigurable control system (Windholz,

2018-2021) and was newly developed in the course of the project EDCSproof. In this thesis,
the EDCS was used to control the heat supply of the plant under study with a heat demand
prediction. Its implementation leads to access to the flexible power price market. Therefore,
a flexible power price was utilized by the EDCS to reduce power costs while ensuring process
quality with optimal heat supply. The EDCS was used with a configuration applicable in future
research when additional components enhance the plant under study.

4.4.1 Controller Structure
The EDCS is a multi-layer model predictive control concept which consists of two layers

called: Operation Planner (OP) and MPC. Further, an observer is implemented for the state



4.4 EDCS 42

estimation, the calculation and adaptation of the prediction data, and the calculation of the
minimum SOC.

The OP calculates trajectories based on linearized models, objectives, constraints, and pre-
diction for chosen plant in- and outputs for heat supply components or states of components
in a facility. It optimizes a long term problem with large time steps and long execution time.
The prediction accuracy is lower than the prediction of the MPC. The OP is used with the most
important constraints, objectives, and predictions.

The MPC is connected to the heat supply components. It calculates the input for the heat
supply components by following the trajectory of the OP, based on linearized models, objec-
tives, constraints, and prediction. The prediction accuracy is higher compared to the OP and the
MPC optimizes a short term problem with small steps and short execution time. The calculated
output from the MPC differs from the trajectory because the layers are calculating results based
on different information. The provided data from the observer is used as the initial value for
calculating the prediction of the OP and the MPC. The MPC is used with detailed constraints,
objectives, and prediction data of the connected components.

The same model functions are used for the OP and the MPC. Active constraints and cost
functions can be chosen for the OP and the MPC independently. They are added as equalities
and inequalities component wise. Several model functions, constraints, and cost functions can
be added per component. Basic thermodynamic laws are stated to connect the components.
The equations are used to calculate future states and inputs. A cost function is minimized by
optimizing the input to the heat supply. The resulting mathematical problem is called a mixed-
integer linear programming (MILP) problem. The EDCS uses the solver Gurobi for solving the
problem (Gurobi Optimization, 2021).

The observer of the EDCS executes the following tasks:

• Actualize the current states (SOC, exchanged heat at the heat exchanger, and supplied
heat from the HP) of the OP and the MPC.

• Prepare the prediction data for the OP.

• Adapt the heat load prediction utilizing measurement data.

• Calculation of the SOCmin limit.

In the configuration of this thesis, the OP calculated the trajectory for the SOC of the SHS
for the next 96 hours, NpOP = 96, for every 15 minutes, tstepOP = 15. Every 60 minutes, the
OP recalculated the SOC trajectory. The 15 minutes interval between the trajectory values
reduces the computation time and provides the OP enough time to calculate the SOC trajectory,
especially if more components of the facility are added. The prediction of the OP consisted of
the prediction of the power price and the prediction of the heat demand.

The MPC had a prediction horizon of 45 minutes, NpMPC = 45, and calculated a value every
minute, tstepMPC = 1. The output of the MPC was the input U for the HP in percent between 0%
and 100%. The prediction of the MPC consisted of the heat demand.
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Figure 4.8: The implementation of the EDCS in the plant under study schematically. The hysteresis
controller is replaced by the EDCS.

Figure 4.8 shows the implementation of the EDCS in the simulation model. Dashed lines
show the input to the EDCS processed by the observer and the output to the HP processed by
the MPC.

4.4.2 Linearized Models and Parameters
The OP calculates the prediction for the trajectory of the SOC. The MPC calculates the

prediction for the power control input U for the HP. The calculation of the prediction is based on
the prediction data, model functions, constraints, and objectives. The plant’s main components
are implemented as linearized and optimized model functions and their mathematical definitions
can be solved analytically. The following optimized models are implemented:

• storage for the SHS

• heat_pump for the HP

• demand for the heat exchanger

The components pump and mixing pipe of the simulation model are neglected. Both of the
layers, the OP and the MPC, use the same optimized models with different configurations. For
each optimized model, the definitions, the used constraints, model equations, and objectives are
stated for the OP and the MPC. Further, the balance equation for the EDCS is stated.

EDCS storage model

The optimized model storage is an integrator model for the stored energy and a simplification
of the model stated in Subsection 4.2.1. The constraints define the allowed energy level of the
SOC between a maximum and a minimum level. The model equations describe the load and
unload of the SHS with energy and a constant and a variable loss of energy over time. The
objectives are the costs for the deviation between the measured and the trajectory SOC. Further,
the exceeding of the limits is added by a slack variable. From Eq. (4.33) to Eq. (4.36), the
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constraints for the storage are stated:

OP:

SOCmin < SOCpred < SOCmax (4.33)

MPC:

SOCmin < SOCpred +SOCslack (4.34)

SOCpred −SOCslack < SOCmax (4.35)

SOCslack >= 0 (4.36)

The SOCmin is a vector and defines the minimum energy level of the SHS or the minimum
energy level which is needed by a HT. The SOCmax is a vector and defines the maximum
energy level of the SHS and the SOCpred is a vector with the predicted SOC of the SHS. The
SOCslack is a vector with the values exceeding the limits SOCmin and SOCmax.

From Eq. (4.37) to Eq. (4.44), the model equations for the storage are stated:
OP:

SOCL = SOC · (1− tstepOP

60
·SOCvarloss)− SOCfixloss

60
· tstepOP (4.37)

SOCCmwh =
tstepOP

60
·CMWH (4.38)

SOCDmwh =−tstepOP

60
·DMWH (4.39)

SOCpred = SOCL +SOCCmwh +SOCDmwh (4.40)

MPC:

SOCL = SOC · (1− tstepMPC

60
·SOCvarloss)− SOCfixloss

60
· tstepMPC (4.41)

SOCC =
tstepMPC

60
·CMWH (4.42)

SOCD =−tstepMPC

60
·DMWH (4.43)

SOCpred = SOCL +SOCCmwh +SOCDmwh (4.44)

SOCL is a vector with the constant and the variable loss of energy of the storage over time.
The SOCC and SOCD are vectors with the charge and discharge energy flow of the storage.
The SOCpred is initialized with the SOCinit of the SHS calculated by the observer at the corre-
sponding tstep. SOCfixloss is a parameter describing the constant loss of energy of the SHS and
SOCvarloss is a parameter describing the variable loss of energy of the SHS. tstepOP and tstepMPC

are the intervals between two calculated prediction values of the OP respectively MPC. CMWH

and DMWH are vectors for the charge and discharge of the storage based on the heat_pump and
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demand values.
No objectives are used in the storage model of the OP. From Eq. (4.45) to Eq. (4.46) the

objectives for the storage model of the MPC are stated:
MPC:

Otraj = Θtraj ·
NpMPC

∑
j=1

SOCpredj −SOCtrajj (4.45)

Oslack = Θslack ·
NpMPC

∑
j=1

SOCslackj (4.46)

Otraj is the cost for the deviation between the measured and the trajectory SOC and Oslack is
the cost of exceeding the SOC limits by a slack. NpMPC is the prediction horizon of the MPC.
SOCpredj is one predicted SOC and SOCtrajj is the corresponding trajectory SOC in time. Θtraj

is a parameter that scales the deviation between the measured and the trajectory SOC to the
maximum price per MWh. SOCslackj is the exceeding of the SOC limits in one time step and
Θslack is a parameter that scales the slack to the maximum price per MWh.

EDCS heat_pump model

The optimized model heat_pump is a heat supply model and a simplification of the model
stated in Subsection 4.2.2. The constraints limit the heat to the maximum and minimum possible
heat supply. The model equations calculate the predicted input for the HP. The objectives are
the costs for the power consumption in MWh at the actual price, the costs for the startup of the
HP, and the costs for the deviation of the input of the HP. From Eq. (4.47) to Eq. (4.48) the
constraints for the heat_pump are stated:
OP and MPC:

Umin < U <Umax (4.47)

If the HP is active the input to the HP must be between the minimum Umin and the maximum
Umax. U is a vector for the predicted input to the HP between zero and one. Further the HP
must be active after its start for a desired minimum time and inactive after shutdown for a
desired minimum time.

In Eq. (4.48) the model for the heat_pump is stated:
OP and MPC:

Q̇sink = U · Q̇sinkHPmax (4.48)

Q̇sink is a vector for the predicted heat supply of the heat_pump and Q̇sinkHPmax is the maximum
heat supply possible by the HP.

From Eq. (4.49) to Eq. (4.52) the objectives for the heat_pump are stated:
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OP:

Ocosts =
tstepOP

60
·

NpOP

∑
j=1

PHPj · pj (4.49)

OSUOP = ΘSU ·
NpOP−1

∑
j=1

UstartOP (4.50)

MPC:

OdU = ΘdU ·
NpMPC−1

∑
j=1

|Q̇sinkj+1 − Q̇sinkj| (4.51)

OSUMPC = ΘSU ·
NpMPC−1

∑
j=1

UstartMPC (4.52)

Ocosts is the cost for the predicted power consumption PHPj at the predicted price per MWh pj.
OdU is the cost for the predicted change of the input to the HP. ΘdU scales the rate of change of
the input to the maximum price per MWh and a desired maximum rate of change. UstartOP and
UstartMPC are vectors indicating if the HP starts and ΘSU scales the startup costs to the maximum
price per MWh and a desired minimum HP active time. OSUOP and OSUMPC are the costs for the
predicted startup and shutdown of the HP.

EDCS demand model

The optimized model demand is an energy sink model. No model constraints, equations and
objectives are set. Q̇SV is the predicted heat of one heat exchanger.

The EDCS minimizes the scalar OOP and OMPC which are calculated from Eq. (4.53) to
Eq. (4.54):
OP:

OOP = Ocosts +OSUOP (4.53)

MPC:

OMPC = Otraj +Oslack +OdU +OSUMPC (4.54)

OOP and OMPC are the summation of the objectives for each layer which are minimized by the
EDCS separately.

EDCS balance equation

The energy balance for the components are stated in Eq. (4.55). The energy balance must be
fulfilled in each step and connects the models.



4.4 EDCS 47

Figure 4.9: An EDCS operating example. The MPC prediction SOCpred follows the trajectory SOCtraj
of the OP. The SOCmeas is constrained by its lower level with the SOCmin.

Q̇sink +SOCD = Q̇SV1 + Q̇SV2 + Q̇SV3 + Q̇SV4 +SOCC (4.55)

4.4.3 Main functionality
The OP calculates a long term prediction trajectory and the MPC tries to follow the trajectory

with a more accurate prediction of the HT’s but with no information about the power price.
Figure 4.9 shows the operation principle of the EDCS.

The solid black line is the measured enthalpy of the simulation SOCmeas. The red circles are
the trajectory of the OP SOCtraj and the dashed black line is the predicted SOC of the MPC
SOCpred. The dotted black line is the minimum SOCmin which is not allowed to undercut. The
measured SOC differs from the predicted one due to the linearisation of the models used in the
EDCS and the difference between the predicted and the input heat demand data. The prediction
of the MPC differs from the trajectory because of different constraints and objectives, which
are active only for the MPC or the OP, the MPC’s higher accuracy of the heat prediction,
and because the power price prediction data is only available for the OP. The SOC is charged
whenever possible in periods with low costs. The MPC starts the HP if the deviation to the
trajectory becomes too large and the heat prediction demands a higher energy level in the SHS.
Further, the SOC must not fall below the SOCmin.

4.4.4 Observer functionality
In this thesis, the functionality of the observer was extended by a real-time HT prediction

manipulation. The aim of the functionality is to increase the performance and flexibility of the
EDCS and ensure sufficient heat supply when the HT start time prediction is disturbed. This is
accomplished by raising the energy level in the SHS in periods with no heat demand to ensure
a minimum energy level for unpredicted HT’s. Further, measured applied heat is used to adapt
the heat demand prediction in real-time. The following three functions were implemented in
the observer:

• The observer can extend the SOCmin to the future and the past to raise the energy level.
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Figure 4.10: The OP prediction of the SOC, the prediction of the HT with its SOCmin, and the real HT,
starting earlier than predicted.

Figure 4.11: The OP prediction of the SOC with the extended SOCmin of the predicted HT. The real
HT starts earlier than predicted.

• The observer can move the HT’s to another time in the prediction horizon in case of
disturbed start time predictions.

• The observer measures the applied heat of the heat exchangers and reduces too much
predicted heat or adds too little predicted heat in the future.

Each function is described below.

EDCS SOC minimum extension

Due to HT start prediction errors, the SOC can fall below the SOCmin, causing production
quality problems by an insufficient heat supply. The observer can be configured to extend
the SOCmin to reduce the risk of the SOC falling below the SOCmin. Figure 4.10 shows the
prediction of the SOC, which falls below the SOCmin because the start time of the HT prediction
is in the future.

The observer can extend the SOCmin to the future and the past by the parameter tsafety. Fig-
ure 4.11 shows the extension of the SOCmin and the new prediction of the trajectory of the OP.
The SOC does not fall below the SOCmin because of the extension.

The extension of the SOCmin can increase the production safety by a trajectory that remains
at a higher SOC level.

EDCS heat treatment movement

The start of a HT is identified utilizing the measured heat applied at the heat exchangers.
When a difference between real and predicted start time is detected, the observer moves the
prediction data to the time when the heat is measured. Further, it cuts off the SOCmin if no heat
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Figure 4.12: The HT prediction is moved to the measured start of the HT and the extension of the
SOCmin is cut off by the observer. Further the heat prediction was altered during the execution with the
difference between predicted and measured heat data.

can be measured anymore. Figure 4.12 shows the movement of the heat prediction data and the
cut off of the SOCmin by the observer.

EDCS heat treatment distribution

The prediction of the heat demand is not perfect. Therefore the observer measures a differ-
ence between the predicted and measured heat applied at the heat exchangers. If the integral
heat of the prediction fits to the applied prediction reasonably well and only the course of the
HT differs, it is reasonable to distribute the measured difference to the ongoing HT prediction.
The observer calculates the difference between measured heat and predicted heat at the actual
time and distributes the difference heat to the ongoing prediction by reducing the future predic-
tion heat or increasing the future prediction heat. This functionality improves the accuracy of
the prediction in real-time by correcting the prediction of the integral heat in every step.

4.5 Simulation Study
The aim of the simulation study was to examine the influence of unpredicted interactions

of human operators on the production process. In the examined partial automated process,
employees start the processes of the HT’s manually. Therefore, it was presumed that HT’s start
earlier or later than planned ones. If the prediction of the start time is not exactly known, it was
expected that the provided heat by the SHS might be insufficient for the heat demand in some
cases. The SOC falls below the minimum desired energy level of the HT SOCmin and might
influence the product quality negatively. Figure 4.13 shows the SOC below the SOCmin with
extended heat exchange duration caused by insufficient heat supply. The heating up process
time increases and might harm the product quality. Therefore the SOC must be prevented from
falling below the SOCmin.

Furthermore, the robustness of the EDCS against unpredicted HT start times was examined.
The frequency of the SOC falling below the SOCmin can be reduced by the observer parameter
tsafety introduced in Section 4.4.4. It extends the SOCmin to the past and the future and increases
the prediction’s minimum energy level. Further, the HT movement and the HT distribution
functionality introduced in Section 4.4.4 were used. They increase the prediction accuracy and
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Figure 4.13: An example of insufficient heat when the SOC is below the SOCmin in case of unpredicted
HT start times..

the robustness of the EDCS in real-time.
The simulation study compared different controller configurations of the EDCS and its influ-

ence on the undercut of the SOCmin. The parameter tsafety was set to the following three values:
0, 4, and 8 hours. The simulation study was conducted with measured data from October 2019.
The prediction data of the HT’s were created by an exponential function, described in Fuhrmann
et al. (2020) and calculated in Subsection 4.1.1. The start time of the prediction data was shifted
to the past or the future by a maximum of eight hours. A normal distribution calculated the time
shifted values. The normal distribution was chosen because the planned HT start was known
and the assumption was made that the employees can decide whether to start a HT earlier or
later, representing a normally distributed start time. The prediction data represented the planned
production and the real heat data represented the deviation from the planned production start
time. The simulation was repeated 36 times with each parameter value and normally distributed
prediction start time deviations for the heat prediction. The simulation model is deterministic
and the uncertainty of the output was induced only by the prediction data. For comparison
reasons, the simulation was executed once with the hysteresis controller. The output of this
reference simulation execution is called hysteresis benchmark. The influence of the heat supply
of the internal heat network was neglected and it was assumed that the internal heat network
supplies enough heat at all times.

The simulation meets the following criteria, which are necessary for comparing the data:

• The simulation is a terminating simulation with a fixed ending.

• The single simulation executions use the same initialization rules, with independent and
identically distributed inputs.

• The runtime is the same for each execution.

• The independence of the different runs is accomplished by using random numbers for the
normal distribution.

• The variable of interest is comparable between the different runs.

The evaluation of the output is depicted by error bars, a Pareto front and point estimators for
the mean X̄ , the estimator for the variance S2 and an approximate 100(1−α) percent 0 < α < 1
confidence interval. The values can be compared via means and theirs confidence intervals be-
cause the output is independent and identically distributed. The t distribution for the confidence
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Figure 4.14: The number of applied HT’s of each BC.

interval calculation can be used because the sample size is large enough to apply the central
limit theorem.

4.5.1 Data
The applied heat input data for the simulation study was the measured data from the plant

from October 2019. 102 HT’s were conducted. HT’s started between 5 a.m. in the morning
and midnight with the main working time between 6 a.m and 18 a.m. The distribution among
the BC’s of the HT’s was shown in Figure 4.14. The most HT’s were applied on the BC with
the index one and the fewest HT’s were applied on the BC with the index four. The integral of
the heat of each HT per BC is shown in Figure 4.15. The different heat amount per applied HT,
shows that different HT programs were conducted on the BC’s and that the programs were not
distributed equally.

The prediction of the price per MWh is shown in Figure 4.16. The price varies between 57e
and 105e. The price data was measured data from the year 2019 and represents a variable
power price market price. In the simulation study, the price prediction was equal to the input
price of the simulation.

The HT’s prediction data for the EDCS is calculated as described in Subsection 4.1.1. The
unpredicted behaviour of the employees leads to start times which are not exactly known, so the
start time of the exponential prediction data was moved to the future and the past by a maximum
shift of eight hours. The time shift is normally distributed with the parameters: µ = 0 and
σ = 4 hours. Figure 4.17 shows a prediction data example with a disturbed start time. 78% of
the time shifts were less than 4 hours due to the normal distribution.

4.5.2 Evaluation
The output of the simulation study was evaluated by summarizing the output of the 36 exe-

cutions with each parameter and comparing the three output summary values to each other. The
hysteresis benchmark was added to the graphs.

X i are mean values from the different simulation runs i, which are calculated with the output
data of the simulations. Eq. (4.56) shows the calculation of the mean price per MWh per simula-
tion run. The following two equations calculate how often and how long the SOC felt below the
SOCmin. Eq. (4.57) shows the calculation of the mean affected HT’s per simulation execution
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Figure 4.15: The number of HT’s per integral heat demand and BC.

Figure 4.16: The prediction of the price per MWh over 32 hours.

Figure 4.17: The prediction of a HT compared to its real heat demand with a delayed start time.
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and Eq. (4.58) calculates the mean time the SOC was below the SOCmin per execution.

X i_mean_price =
∑n

j=1 pj ·PHPj

∑n
j=1 PHPj

(4.56)

X i_mean_aff_HTs =
nHT_aff

nHT
(4.57)

X i_mean_time_per_aff_HT =
tSOCundercut

nHT_aff
(4.58)

The mean values are calculated as X i_mean_price for the price, X i_mean_aff_HTs for the affected
HT’s, and X i_mean_time_per_aff_HT for the mean time the HT’s are below the SOC_min. They are
calculated for i = [1, ...,W ] for each parameter set. W is the number of executions per parameter
set. pj is the price per MWh and PHPj the correspondent power consumption of the HP. nHT_aff is
the number of the HT’s affected by an insufficient SOC and nHT the number of each simulated
HT per execution. tSOCundercut is the time the SOC is below the SOCmin per execution. The
point estimator for the mean µ is calculated in Eq. (4.59), and the variance σ2 is calculated in
Eq. (4.60). An approximate 100(1−α) percent 0 < α < 1 confidence interval is calculated in
Eq. (4.61).

X̄(W ) =
∑W

i=1 X i

W
(4.59)

S2(W ) =
∑W

i=1(X i − X̄(W ))2

W −1
(4.60)

X̄(W )± tcritical · S2(W )/W (4.61)

X̄(W ) is the point estimator of the mean value and S2(W ) is the point estimator for the vari-
ance of the measured data. tcritical is the critical t-value of the t distribution. 0.95 was set as α
for a 95% confidential interval.
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5 Results and Discussion

This chapter analyses the results of the data preparation and its validation in Section 5.1.
Further, the model validation results are discussed in Section 5.2. The results of the Energy
Demand Control System (EDCS) implementation are stated in Section 5.3. The output of the
simulation study is shown and interpreted in Section 5.4.

5.1 Data Preparation and Validation

5.1.1 Heat measurement Q189, Q190, Q191, and Q192

The heat consumption measurements Q189,Q190,Q191, and Q192, for the heat exchangers
HE1, HE2, HE3, and HE4, show the characteristic batch heat consumption. There is a peak
heat consumption at the beginning of every heat treatment (HT), which is exponentially de-
creasing. At the beginning, the measured heat peaks should result in the temperature drop of
the heat exchangers inflow temperature T 32 to its outflow temperature T 33. Figure 5.1 shows
the measurement devices for the validation of the heat demand data.

In the measured data, the heat consumption peak occurs one step before the temperature
drop measurement in T 33. This shift might result from a one step delay caused by the physical
distance of the temperature measurement devices, the inertia of the sensor, or measurement
errors and not by the heat exchanger component. Therefore, the heat demand data was shifted
one step into the future. The shift was implemented in the model to ensure a correct depiction
of the plant. Figure 5.2 shows in the top graph the inflow T 32 and outflow T 33 temperature of
the heat exchangers and the bottom graph the sum of the measured heat consumption Qsummeas ,

Figure 5.1: The necessary measurement devices for the heat demand data validation are depicted.
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Figure 5.2: The top graph shows the measured input T 32meas and output T 33meas temperature of the
heat demand. The bottom graph shows the heat consumption Qsummeas and the shifted heat consumption
Qsumprep of the heat demand.

Figure 5.3: The necessary measurement devices for the validation of the G120 valve data.

and its right shifted sum Qsumprep . In further calculations, the shifted heat demand data will be
used.

5.1.2 Mass flow valve G120

The mass flow out of the heat pump (HP) at the heat sink side had to be extracted from the
valve position G120 because no mass flow data was recorded. The valve position in % and the
constant mass flow pump P10, define the mass flow out of the HP. It was assumed that the
pump P10 is active if the valve is open. The surrounding temperature data of the valve was
used to evaluate the consistency of the valve position. The output temperature T 11 is the mixing
temperature of T 12 and T 23. T 23 is the bottom layer temperature of the sensible heat storage
(SHS) and is used as the input temperature for the valve because no other measurement device
has been installed. Figure 5.3 shows the measurement devices for the validation of the valve
position.

T 11, T 23, and T 12 were used to calculate the valve position in Eq. (5.1). The valve position
is limited between 0% < G120prep < 100%.
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G120prep =
T11 −T12

T23 −T12
·100 (5.1)

G120prep is the valve position calculated by the input temperatures T23 and T12 and the output
temperature T11. The temperatures T 11, T 12, and T 23, the rotation speed of the HP S7, valve
position G120meas , and the newly calculated valve position G120prep are shown in Figure 5.4. The
top graph shows the temperature measurements around the valve T 12, T 23, and T 12, the second
graph shows the rotation speed of the HP S7meas , and the bottom graph shows the measured and
the prepared valve data G120meas and G120prep .

The temperature T 11 is consistent with the temperature T 12, which is indicated by a constant
temperature difference induced by a constant heat supply. If the valve is completely open,
indicated by a measured valve position of 100%, the temperature T 23 should be equal to the
temperature T 11, which is not the case. Further, the temperature T 11 is not a value between the
temperature T 23 and the temperature T 12 in every step, although it must be. This error might
be the result of the temperature measurement device position T 23 in the SHS. It measures the
layer temperature and the ingoing fluid temperature of the heat demand side.

The HP rotation speed is consistent with the temperature rise and therefore defines when the
valve should be open. The measured valve position rises before the start of the HP. The initial
steep rise of the valve data G120meas at the HP start does not lead to a temperature difference
between the measured temperatures T 12 and T 11. When the HP starts, a closed valve would be
expected.

The identified inconsistency is a result of the missing temperature measurement device at the
inflow to the valve and the inaccurate measured valve data. The prepared valve starts and stops
together with the HP rotation speed and is more consistent with the temperature data compared
to the measured valve data. Therefore, the prepared valve data G120prep was used. A consistency
error remains if the temperature T 23 is higher than the temperature T 11 because of the limitation
of the prepared valve data to 100%.

The constant mass flow of the pump P10 ṁP10 was chosen from the datasheet of the pump as
13.5kg/s. The mass flow out of the HP is calculated in Eq. (5.2).

ṁHPout = ṁP10 ·G120prep (5.2)

ṁHPout is the mass flow out of the HP.

5.1.3 Variable mass flow pump P9
There was no recorded data for the variable mass flow of the supply pump P9. Therefore

the mass flow and the pump runtime had to be identified. Figure 5.5 shows the measurement
devices for the identification and validation of the pump data.
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Figure 5.4: The top graph shows the ingoing and outgoing measured temperatures of the valve G120. The
second graph shows the measured rotation speed of the HP. The bottom graph shows the newly calculated
valve data G120prep compared to the measured valve data G120meas . The HP data and the temperature data
were used for the validation of the valve data.

Figure 5.5: The necessary measurement devices for the identification and validation of the pump P9
data.
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Rules were derived from the measurement data to indicate the activity of the pump P9. The
pump is active if one of the following conditions are true:

• The temperature T 33 decreases with a gradient larger than 1◦C/min.

• The HP is active.

• The heat demand at the heat exchangers HE1, HE2, HE3, or HE4 is > 0.

• One or more of the valves G227, G240, G251, or G262 are open.

The mass flow of the pump is variable and the pump is configured to hold a constant differ-
ential pressure of nearly zero bar. The pressure difference of the hydraulic system depends on
the pump height, which depends on the length and position of the pipes and the valve position
data G227, G240, G251, or G262. The mass flow is calculated utilizing energy conservation
law because no pressure information was available. The variable mass flow is calculated from
Eq. (5.3) to Eq. (5.5). In Eq. (5.3), the prepared heat data is summarized and in Eq. (5.4), the
conservation of energy is stated.

Q̇sumprep = Q189prep +Q190prep +Q191prep +Q192prep (5.3)

Q̇sumprep = cpw80 · (T33 −T19) · ṁP9 (5.4)

ṁP9 =
Q̇sumprep

cpw80 · (T33 −T19)
(5.5)

Q̇sumprep is the sum of the heat for all heat consumers, cpw80 is the specific heat capacity
for water at 80°C, T19 is the temperature in the top layer of the SHS and T33 is the outflow
temperature of the heat exchangers. ṁP9 is the variable pump mass flow of the pump P9.

Whenever the pump is active, it ensures a minimum mass flow even though there is no heat
measured. The unknown minimum mass flow was calculated with a least square (LS) fit. The
enthalpy of the SHS was calculated with the ingoing and outgoing enthalpy and the difference to
the measured enthalpy in the SHS was minimized. The outgoing enthalpy was calculated with
the mass flow ṁP9 and the temperature difference T 19 and T 33. The minimum mass flow ṁP9min

was added to the mass flow ṁP9 and was optimized by the LS fit. The optimized minimum mass
flow of the pump P9 is 1.5056kg/s.

The minimum mass flow ṁP9min is added whenever the pump P9 is active. The maximum
mass flow of the pump was chosen from the datasheet as 13.496kg/s. The mass flow is limited
by its minimum and maximum value. Figure 5.6 shows in the top graph the pump mass flow
ṁP9, in the second graph the inflow temperature T 19 and outflow temperature T 33, in the third
graph the heat demand sum Q̇sumprep , and in the bottom graph the rotation speed of the HP S7meas .
The pump P9 is active whenever one of the stated conditions is active. Between 08:30 and 09:45,
the minimum mass flow ṁP9min is active. This is induced by the heat demand Q̇sumprep and the
difference between the temperatures T 33 and T 19, which demand a lower mass flow calculated
with an energy balance.
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Figure 5.6: The top graph shows the calculated mass flow of the pump P9 ṁP9prep . The second graph
shows the ingoing T 19 and outgoing T 33 measured temperatures of the heat demand which is connected
to the pump P9. The third graph shows the prepared heat consumption of the heat demand. The bottom
graph shows the measured rotation speed of the HP.
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5.1.4 Enthalpy balance SHS
The prepared data was validated by the enthalpy balance around the SHS. The sum of the

ingoing and outgoing enthalpy minus the heat loss through the wall of the tank was calculated
and compared to the measured enthalpy. From Eq. (5.6) to Eq. (5.8), the enthalpy in and out of
the SHS and the enthalpy loss are calculated. From Eq. (5.9) to Eq. (5.12), the absolute enthalpy
in the SHS the state of charge (SOC) and the error between the measured and the calculated
enthalpy, divided by the minimum usable enthalpy level, are calculated. The identification of
the heat loss is shown in Subsection 4.2.1.

hin =
G120prep

100
· ṁP10 · cpw80 · (T12 −T23) (5.6)

hout =ṁP9 · cpw80 · (T33 −T19) (5.7)

hloss =αw ·Al · (Toutside −TSHS) (5.8)

hin is the calculated enthalpy into the SHS, hout is the calculated enthalpy out of the SHS and
hloss is the calculated loss of enthalpy through the wall of the SHS. αw is the heat transfer
coefficient for the wall of the SHS and Al is the area of the wall of the SHS. Toutside is the
measured temperature outside of the SHS and TSHS is the measured temperature inside the
SHS.

SOCmeas = cpw80 ·V ·ρw80 ·TSHS (5.9)

SOCcalc = (hin +hout +hloss) · ts (5.10)

SOCmin = cpw80 ·V ·ρw80 ·T SHSmin (5.11)

SOCerror =
SOCmeas −SOCcalc

SOCmin
(5.12)

SOCmeas is the calculated absolute enthalpy with the measured temperature in the SHS and
SOCcalc is the calculated enthalpy with the ingoing and outgoing enthalpy and the loss of en-
thalpy through the wall. SOCmin is the minimum usable enthalpy level calculated with the
minimum usable temperature T SHSmin . SOCerror is the difference between the measured and
calculated enthalpy divided by the minimum enthalpy. V is the volume of the SHS and ts is the
discretization time which is 60 seconds. The enthalpy was calculated to the reference of 0°C.

Figure 5.7 shows in the top graph the calculated enthalpy SOCcalc compared to the measured
enthalpy SOCmeas in the SHS. The bottom graph shows the difference between the measured
and the calculated enthalpy divided by the minimum usable enthalpy level as the error SOCerror.
The graph depicts the constant loss of energy and the constant error during the operation free
periods. Therefore the loss of energy is modelled accurately and the measured data shows the
behaviour of a thermal energy storage (TES) with energy loss during the charging free periods.
The dynamic behaviour of the data is not consistent and leads to a constant error during the
energy loss periods. The error is up to 20 % during the execution time without a trend.
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Figure 5.7: The measured enthalpy of the SHS SOCmeas is compared to the enthalpy balance of the
ingoing and outgoing enthalpy flow SOCcalc in the top graph. The difference between them is divided by
the minimum enthalpy level in the SHS and depicted as the error SOCerror in the bottom graph.

5.1.5 Conclusion
The following data was prepared and added:

• Q189,Q190,Q191 and Q192 were replaced by their right shifted version.

• The prepared valve data was used to calculate the mass flow through the valves G120
ṁHPout .

• The conservation of energy equation was used to calculate the P9 pump mass flow data
ṁP9.

The prepared heat demand, the added mass flow, the HP power and rotating speed, and the
measured temperatures were used for the modelling and validation. There was no information
about the precision, possible interferences, or range of accuracy of the measurement devices
that keep the data in an unknown range of accuracy and no range of error could be stated.

The consistency of the prepared data by an enthalpy balance is given in Figure 5.7 and shows
that some dynamics cannot be depicted consistently. The error has no trend, but constant errors
arise after dynamic operations. This might be caused by the missing mass flow data, the result
of configurations of the plant which were not known and could not be identified with the data,
or manual interactions at the plant. Further, startup behaviour at the plant was not examined
and not used for the consistency analysis. The data trustworthiness is sufficient because the
main dynamics are depicted without a trend and the error is small enough for a comprehensible
analysis. The data was used for the modelling and verification and validation (V&V) process.

5.2 Model Validation
The first question in this thesis was: ’Is it possible to use the measured data to develop a

valid simulation model of the plant for testing the EDCS’. The validation results answer the
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research question by several V&V methods chosen in Section 4.3. The V&V results are given
from Subsection 5.2.1 to Subsection 5.2.7.

5.2.1 Sensible Heat Storage
The purpose of the SHS model is to simulate the following operations:

• Charging and discharging the SHS by the mass flow and temperature into and out of the
model.

• Heat loss through the wall.

• Heat transfer between the temperature layers.

The following uncertainties were identified:

• Parameter: heat transfer coefficient of the wall αw

The parameter αw estimation was done in Subsection 4.2.1. The mean normalized root
mean squared error (NRMSE) for the calculated heat loss in the validation periods is
0.0827. The error between the calculated and the measured data during the heat loss peri-
ods is constant with deviations up to 1°C for each layer. The real value for the parameter
αw depends on the geometry and the insulating material.

• Parameter: the specific heat capacity cp and the density of water ρ
A fixed specific heat capacity and a fixed density of water at 80°C and a pressure of 1 bar
were chosen for all calculations because of saving computation time. The temperature
range of the SHS is between 60°C and 90°C. In the stated temperature range, the specific
heat capacity of water rises with the temperature increase and vice versa. The density
decreases with the increase of the temperature and vice versa. The difference between the
energy level in the SHS calculated with the IF-97 standard values and the fixed chosen
values divided by the IF-97 standard values is at every temperature level between 60°C
and 90°C lower than 0.01146%.

• Model behaviour: internal flow
The model cannot simulate internal turbulent flow. Temperature changes caused by inter-
nal turbulent flow cannot be simulated and their influence on the temperature distribution
in the SHS was not examined. The mixfactor tightens the temperature distribution over the
volume layers and represents the turbulent flow in a simple way.

The scenario analysis was executed with several charging and discharging scenarios. The anal-
ysis of the SHS model is shown in Figure 5.8. The applied mass flow and temperature inputs
are shown in Table 5.1.

In (1), the layer temperatures tend to the temperature with the higher mass flow. The temper-
ature of the top layer decreases slower compared to the other layers. It asymptotically reaches
70°C, which is the analytical temperature output for the chosen input values in the top volume
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Table 5.1: Input mass flow and input temperatures of the SHS scenario analysis.

number ṁhotin , in kg/s T hotin , in ◦C ṁcoldin , in kg/s T coldin , in ◦C

1 5 80 10 60
2 0 - 10 60
3 10 80 5 60
4 0 - 10 60
5 10 70 0 -
6 10 80 0 -

Figure 5.8: The scenario analysis output temperatures of the SHS for several charge and discharge
scenarios. The constant input sections are separated by vertical lines.

layer. In (2), the mass flow ṁhotin changes to zero resulting in layers with the same tempera-
ture. (3) shows the same behaviour as in (1) vice versa. In (4), the pure unload of the SHS is
shown, which takes up to 48 minutes in the simulation. The analytical calculation of the unload
time with a constant output temperature of 70°C is about 41 minutes. The difference between
analytical and simulated discharging time is caused by the differential equations of the model,
which reduce the heat transfer at lower temperature differences. In (5) and (6), a piecewise load
of the SHS is shown. The scenario analysis output is comprehensible and depicts the expected
behaviour.

The simulation was executed with the validation data to evaluate the fit between the mea-
sured and the calculated data. The inputs to the model were the measured mass flow and the
corresponding temperatures. The temperature layers of the model were compared to the mea-
sured temperatures of the SHS. Figure 5.9 shows the temperature of the layers of the SHS from
top to bottom. The top graph shows the measured temperatures, the second graph shows the
calculated temperatures, and the bottom graph shows the absolute difference between the tem-
peratures. The heat loss can be simulated with an error of less than 1°C, which is indicated by
the horizontal temperature difference in the bottom graph. The dynamic of the charging and
discharging is depicted with an absolute temperature error up to 6°C, which is caused by a more
and faster change of temperature in the measured data caused by initial cold water in the pipes,
data inaccuracies, or short circuits between the HP and the heat demand circuits through the
SHS. In addition, the temperature measurement devices react more sensitive to the incoming
mass flow, while the temperature in the volume layer can differ from the measured one.

Figure 5.10 shows the enthalpy of the simulation compared to the measured enthalpy. The
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Figure 5.9: The measured temperatures of the SHS are shown the top graph and the calculated temper-
atures of the SHS model conducted with measured input are shown the second graph. The differences
between the measured and the calculated temperatures are depicted in the bottom graph.

top graph shows the comparison between the measured and the calculated enthalpy. The bottom
graph shows the enthalpy difference divided by the minimum usable enthalpy. The NRMSE is
0.2074. The maximum error in one time step is less than 5%.

The sensitivity analysis was conducted with the following parameters:

• The heat transfer coefficient αw.

• The mixing factor mixfactor.

Both parameters were examined by simulating a reference SOC with the original parameter
and comparing the new SOC with the reference SOC. The error is calculated in Eq. (5.13).

SOCerr =
SOCref −SOCnew_parameter

SOCref
(5.13)

The SOCerr is the error compared to a reference SOCref in percent.
The sensitivity analysis for the heat transfer coefficient αw was conducted with two different

values. The original value for the heat transfer coefficient αwref, which is set in the simulation,
is 1.6528 W/m2 ·K. One value above and one value below the original value, with a deviation of
0.1 W/m2 ·K, were chosen and executed in the sensitivity analysis. The output temperature was set
to a constant value of 10°C for each run. Figure 5.11 shows the SOC of the SHS with different
values for the heat transfer coefficients αw1 and αw2 and the error of the SOC compared to the
SOCref. The error was calculated as stated in Eq. (5.13). The error is approximately symmetric
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Figure 5.10: The measured enthalpy level of the SHS and the enthalpy level of the SHS model con-
ducted with measured input is compared in the top graph. The difference between the measured and
the calculated enthalpy is divided by the minimum usable energy level and depicted as the error in the
bottom graph.

for both αw values and leads to a negative or positive trend during the loss of energy periods
when no heat load process is active. If the parameter αw is not evaluated exactly, the dynamic
behaviour of the load process of the SOC is influenced only in its beginning. The start level of
the increase of energy is affected. The deviation to the reference SOC caused by an incorrectly
chosen αw leads to more or less energy loss in the SHS, which has an increased affect if the
idle period of the HP is long. The error after 20 hours idle period is approximately 0.005%.
Therefore a deviation of ±0.1 W/m2 ·K for the parameter αw can affect the reliability but seems
not to decrease the simulation performance if the idle period of the HP is in the range of 24
hours. If the idle time gets longer, an inaccurate chosen parameter causes a significant trend in
the calculated enthalpy data.

The sensitivity analysis for the mixing factor mixfactor was conducted with two different val-
ues. The original value for the mixing factor mixfactor set in the simulation is 5.8598 ·10−4. One
value above and one value below the original value, with a deviation of 4 · 10−4 were chosen
and executed in the sensitivity analysis. The output temperature was set to a constant value of
10°C for each run. Figure 5.12 shows the SOC of the SHS with different values for the mixing
factor mixfactor_1 and mixfactor_2 and the error of the SOC compared to the SOCref. The error
was calculated as stated in Eq. (5.13). The error is approximately symmetric for both mixfactor

values and leads to a constant offset during the loss of energy periods when no heat charge
process is active. Unlike the influence of the parameter αw, the mixfactor influences the dynamic
behaviour during the charge and discharge process. A deviation of the parameter mixfactor by
4 ·10−4 results in the same error range as the deviation chosen for the parameter αw. Therefore
the parameter mixfactor has more influence and must be chosen more carefully. An inaccurate
chosen parameter mixfactor leads to a constant error during the HP idle time and a dynamic error
with changing signs during the charge and discharge process.

The model SHS depicts the main dynamics measured in the data with an adequate level of
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Figure 5.11: The SHS model is executed with measured data and different heat transfer coefficients αw.
The SOC of each run is compared to the SOC with the original heat transfer coefficient in the top graph.
In the bottom graph the SOC is divided by the SOC calculated with the original parameter and depicted
as error.

Figure 5.12: The SHS model is executed with measured data and different mixing factor mixfactor. The
SOC of each run is compared to the SOC with the original mixing factor in the top graph. In the bottom
graph the SOC is divided by the SOC calculated with the original parameter and depicted as error.
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error. The model leads to no trend or offset in the data. Several parameters are defined by
the geometry or the fluid, which should be chosen as exact as possible while others must be
identified. The influence of deviations of the parameters was examined.

5.2.2 Heatpump
The purpose of the HP model is to simulate the heat supply for the SHS. The HP transports

heat from its heat source to its heat sink. The ingoing water at the heat sink side shall be heated
up to a desired temperature.

The following uncertainties were identified:

• Parameter: CompressorScaling
The actual configuration of the HP in the plant during October 2019 was not exactly
known. Some parts were replaced and in October the rotation speed was reduced leading
to less heat supply at the heat sink which does not decrease linearly with the rotation
speed. The design values are not reached in the data, so plausible parameters were chosen
during the modelling process to depict the measured power. The available model cannot
depict the heat supply data exactly.

• Model behaviour: Variable mass flow and temperature level
The installed HP in the plant has two proportional-integral-derivative (PID) controlled
mixing valves for the output temperature. The used model either supplies a constant mass
flow with variable temperature output or a constant temperature output with a variable
mass flow if enough heat is supplied at the heat source side. The behaviour depends on
the inlet temperature and does not reflect the behaviour of the controller in the plant.

• Model behaviour: Start behaviour
The model does not simulate the start behaviour of the HP. Therefore, more heat is avail-
able at the model startup compared to the real component since a startup behavior with a
heating-up process is expected in the first few minutes.

The scenario analysis was conducted with different sets of constant inputs to the HP model.
The inputs U , T sinkin and T sourcein were altered. Figure 5.13 shows the input and the output of
the HP executed with the scenario analysis values. The top graph shows the heat supply at the
sink Q̇sink and the heat source Q̇source side of the model. The second graph shows the mass flow
at the heat sink side ṁsink. The mass flow at the source side is approximately constant in the
examined range of operation conditions. The third graph shows the input temperatures to the
heat sink and the heat source side T sinkin and T sourcein . The output temperature at the heat sink is
the constant design output temperature 84°C. The bottom graph shows the input U to the model.
In each interval, only one parameter was changed and its influence was examined.

In (1), the HP reaches its steady state. From (2) to (5) the input is changed from U = 0.25
to U = 1 in 0.25 steps. The power at the heat sink side corresponds to the input U linearly and
the HP model takes up to three minutes to reach a new steady state. In (6) and (7), the input
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Figure 5.13: The scenario analysis of the model HP is conducted several constant input data. The
output heat is shown in the top graph. The output mass flow is shown in the second graph. The input
temperatures are shown in the third graph. The input U to the HP is shown in the bottom graph. The
constant input sections are separated by vertical lines.

temperature at the heat source side is changed, which has a significant influence on the heat
supply at the heat sink side. A temperature change of 5°C leads to an approximate increase or
decrease of heat of 12%. In (8), design values are applied and in (9), the temperature T sinkin is
set to 60°C and rises from (10) to (12) up to 80°C. The maximum mass flow of the connected
pump of ṁsinkout = 9.897kg/s cannot be reached at a temperature of 80°C. The maximum mass
flow will be reached at a temperature of 84°C. From (11) to (12) temperature steps of 5°C are
added to the temperature T sinkin . This leads to the most mass flow increase, compared to the
other temperature steps which indicates a non-linear behaviour of the model if the temperature
difference at the sink side is lower than the design values.

The HP model was executed with the validation data. The power of the HP was reduced to
78% in the measured configuration. Therefore a deviation to the nominal power of 207kW at the
heat sink side of the HP was expected during the validation simulation and must be simulated
by the model. Figure 5.14 shows the simulation of the HP compared to the measured data.
In the top graph, the calculated power Q̇calc is compared to the measured power Q̇meas of the
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Figure 5.14: The HP model is conducted with measured input. The output of the HP at the heat sink
side is compared to the measured values. In the top graph the heat is compared. In the second graph the
output mass flow is compared. In the bottom graph the output temperatures are compared.

HP at the heat sink side. The second graph shows the calculated mass flow ṁcalc compared
to the measured mass flow of the HP ṁmeas and the bottom graph shows the calculated output
temperature T calc compared to the measured temperature T meas of the HP at the heat sink side.
The calculated power stays at an approximately constant value compared to the measured power.
The difference of the sum of the heat between the calculated heat and the measured heat is
approximately 9.32 MW in 7 days and the error is about 0.023%, Eq. (5.14) to Eq. (5.17). The
calculated mass flow of the HP is higher compared to the measured mass flow. The calculated
temperature of the HP is constant until the maximum mass flow is reached.

Q̇sinkmeas = 407.55MW (5.14)

Q̇sinkcalc = 416.88MW (5.15)

Q̇sinkdiff = |Q̇sinkmeas − Q̇sinkcalc |= 9.32MW (5.16)

Q̇sinkerr =
|Q̇sinkmeas − Q̇sinkcalc |)

Q̇sinkmeas

= 0.023% (5.17)

Q̇sinkcalc is the integrated calculated heat and Q̇sinkmeas is the integrated measured heat at the
heat sink side of the executed time. Q̇sinkdiff is the difference between the measured and the
calculated heat and Q̇sinkerr is the difference of the heat divided by the measured heat.

The sensitivity analysis result, shows that the output heat at the sink side decreases linearly
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with the input U . The CompressorScaling parameter influences the output heat at the heat sink
side linearly too. The heat exchange parameters are design parameters and should be chosen as
stated in the datasheet of the HP and were not examined.

The model HP can depict the main dynamics. The behaviour of the model differs from the
measured data as the model output temperature and the heat supply at the heat sink side are con-
stant, and the output mass flow is dynamically rising until the desired temperature difference at
the heat sink side is reached. The mass flow at the heat sink side is lower than the measured one
until the designed temperature is reached. The error of the integrated heat during the execution
is reasonably low.

5.2.3 Heat exchange
The purpose of the heat exchange model is to simulate the following operations:

• Calculate an output temperature and mass flow based on the input temperature, the heat
demand, the demand temperature, and the model limitations.

• Prevent the heat exchange if temperatures are below the demand temperature.

• Integrate not exchanged heat to the following steps.

The following uncertainties were identified:

• Parameter: the desired temperature difference ΔT tar

The design parameter ΔT tar was not known. It was fitted with a LS fit for each heat
exchanger separately. The mean value of the ΔT tar temperature for each of the four heat
exchangers was chosen as a parameter for the models. The real temperature difference
parameter might be different. The exact behaviour of the heat exchanger could not be
identified because a mixing valve limits the ingoing mass flow to the heat exchanger and
a ball valve limits the outgoing mass flow and the control design was not exactly known.

• Parameter: the maximum heat exchange is limited to the parameter Q̇max

The chosen value for the maximum heat exchange is one MW. The chosen value is the
maximum heat exchange value in the measured data. The real maximum value depends
on the maximum possible temperature difference between the two fluids, the mass of the
batch consumer (BC) tanks, and the connected hydraulic components.

• Model behaviour: output temperature
The temperature of the BC’s are not used. Instead of the biased heat measurement data
was used which does not reflect the exact heating process. Therefore, the output temper-
ature is biased.

• Model behaviour: controller behaviour
The heat exchanger output temperature and mass flow are influenced by an ingoing PID
controlled valve and an outgoing ball valve. The behaviour of the PID controller can be
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Figure 5.15: In the scenario analysis, several constant input values are applied on the heat exchange
model. The top graph shows the input, output, and demand temperature. The second graph shows the
mass flow out of the model and the bottom graph shows the the heat demand compared to the heat
applied.

traced in the measured valve data, but the complete identification of the controller struc-
ture is not possible. Therefore, the model does not depict the complete control behaviour.

The scenario analysis was conducted for one heat exchange model. The input temperature T in

and the demand heat Q̇demand were altered. Figure 5.15 shows the output of the heat exchange
model executed with the scenario analysis values. The top graph shows the input and output
temperatures T in and T out of the model and the demand temperature T demand. The second graph
shows the mass flow out of the model ṁout and the bottom graph shows the heat demand Q̇demand

and heat applied Q̇applied to the model.
From (1) to (4), the input temperature T in decreases from 80°C to 50°C in 10°C steps. The

heat cannot be exchanged if the input temperature is below the demand temperature T demand.
From (5) to (6), integrated heat from the previous and the actual steps are exchanged because
the input temperature T in is above the demand temperature T demand. The maximum heat of
Q̇max = 1MW is exchanged because of the integrated heat. From (7) to (8), the heat demand
increases to 0.8 MW and 1 MW, resulting in a wider difference between the output and the
input temperature. From (9) to (13) the heat demand decreases in the following steps: 1MW,
0.3MW, 0.2MW, 0.1MW, 0.05MW and 0.01MW. The decrease of the heat demand leads to the
desired model parameter temperature difference between the input and output temperature and
a decreased mass flow. This behaviour was identified in the measured data if measured heat
decreases and the valve closes to ensure the desired temperature difference.
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Figure 5.16: The heat exchange model is executed with measured data. The graph shows the tempera-
tures into and out of the model. The measured output temperature is compared to the calculated output
temperature.

The model was executed with the validation data. The second heat exchanger and its mea-
sured data were chosen and data segments were selected and combined, where only the chosen
heat exchanger was active. Figure 5.16 shows the execution of the model with the measured
data. The graph shows the input and output temperatures T in and T outcalc and the measured
output temperature T outmeas of the heat exchanger. At the beginning of a HT, the calculated tem-
perature decreases sharply compared to the measured one, which is a consequence of the pulsed
heat demand data. This behaviour indicates an approximately stable heat exchange where the
tank and its surrounding mass is heated up, which cannot be depicted in the model. The ongoing
calculated temperature fits to the measured data reasonably well. Five different measured HT’s
were used for the validation.

The heat exchange models are used in the simulation as a combination of four heat exchang-
ers, connected to the mixing pipe and the pump model. The combined model was executed with
the validation data. The input temperature, the heat demand, and the temperature demand for
the four heat exchangers were the input to the combined model. Figure 5.17 shows the execution
of the combined model. The top graph shows the heat demand Q̇demand and the bottom graph
shows the input temperature T in, the calculated output temperature T outcalc and the measured
output temperature T outmeas . The output temperature of the combined model fits reasonably well
to the measured temperature if the heat demand is above 0.1MW. If the measured heat demand
is below 0.1MW, the minimum constant mass flow of the pump P9 is active and a decreasing
temperature difference between the input and the output temperature is calculated by the model.
This might be a consequence of the missing information of the controller settings, the missing
mass flow data of the heat sink models, biased heat demand data, biased temperature measure-
ment data, or heat loss through the pipes, which are not modelled. The temperature and the
mass flow during a heat demand above 0.1MW can be simulated with small deviations. The
temperature drop at the beginning of a HT cannot be simulated correctly.

The sensitivity analysis shows that a lower chosen Q̇max value changes the exponential char-
acteristic of the heat demand data by limiting the maximum values, which was not desired. Its
main function is to prevent the uncontrolled rise of the heat in the heat exchange in the model
by the integrator caused by insufficient heat supply of the SHS.

The heat exchanger model analysis and its execution with the validation data showed that the
main dynamics were simulated with a significant bias at the beginning of a HT caused by the
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Figure 5.17: Four heat exchange models are grouped with the mixing pipe model and the pump model.
They are executed with measured data. The top graph shows the measured heat demand as input data to
the model and the bottom graph shows the temperatures into and out of the model. The measured output
temperature is compared to the calculated output temperature.

use of the heat data instead of the temperature data. The combined model leads to a decrease
of the fit if the heat demand is below 0.1 MW, by a reduced temperature difference between the
output and the input temperature. This is caused by the minimum pump mass flow and missing
additional data. The model can exchange the heat demand consistently and comprehensibly.

5.2.4 Mixing Pipe
The purpose of the model mixing pipe is to mix the connected inlets into one outlet. The

calculated outlet mass flow and temperature are proportional to the inlets’ mass flow and their
corresponding temperatures. The pipe simulates no temperature loss over time and no losses
caused by friction or turbulent flow.

No sources of uncertainty could be identified. The scenario analysis showed the expected
proportional behaviour. The comparison of measured data with the simulation output was not
possible because no measured data was available for this purpose. No parameters can be altered,
so no sensitivity analysis was conducted. The output was compared with an analytical solution
and is reliable for its purpose.

5.2.5 Pump
The purpose of the model pump is to simulate the summarized variable mass flow demanded

by all of the heat demand models. It further limits the heat exchange to the maximum mass
flow.

The following uncertainties were identified:

• Model behaviour: the variable mass flow
The difference pressure height of the system on which the pump is connected was un-
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Figure 5.18: The number of start and stop times of the HP model active time compared to the HP
measured active time. The difference is depicted as error in minutes.

known. Further, the pressure height depends on the valve of the heat exchangers which
was unknown too. An exact mass flow could not be calculated.

Comparing measured data with the model output was not possible because no measured data
was available for this purpose. The scenario analysis showed the expected behaviour of the
pump if the heat demand and the corresponding temperatures result in a mass flow between the
minimum and the maximum mass flow. The pump limits the mass flow to the maximum mass
flow if the enthalpy of the heat demand and the temperature difference results in more mass
flow than the maximum mass flow. This scenario occurs if more than two heat exchangers start
simultaneously. In this case, only limited heat can be exchanged. The limitation to the minimum
mass flow happens if the enthalpy of the heat demand and the temperature difference results in
a lower mass flow than the minimum mass flow. The output of the model was verified by its
analytical solution and is reliable for its purpose. The pump cannot supply the heat demand
from more than two heat exchangers simultaneously because of its maximum mass flow, which
reflects the current configuration in the plant.

5.2.6 Hysteresis Controller
The purpose of the Hysteresis Controller is to start the HP if a measured value in the SHS

is below a defined limit and stops the HP if another measured value in the SHS reaches its
configured limit. The HP is started or stopped with the values one and zero without partial
control.

The following uncertainties were identified:

• Parameter: The upper and lower limit T upper, limit and T lower, limit
The parameters could be identified out of the measured data. Inaccuracies in the measured
data of the SHS lead to an uncertainty of the parameters.

The scenario analysis showed that the hysteresis controller starts at the desired temperature
and stops if the upper limit temperature is reached. The hysteresis controller was executed
with the measured data and its output was compared to the runtime of the HP. The hysteresis
controller fits to the implemented controller with start and stop time errors of one and two
minutes. Figure 5.18 shows the error of the start time in the validation period.
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The hysteresis controller validation showed that the hysteresis parameter can be examined
exactly with an error time of about one to two minutes. Imprecise measurement devices in the
SHS or measurement inaccuracies in the recording system may cause the evaluated error.

5.2.7 Complete System
The components are connected and controlled with the hysteresis controller. The input to

the complete system are the measured heat demand data, temperature data outside the building
for the heat loss of the SHS, and measured temperature data of the internal heat network. The
simulation was executed with validation data and the simulated SOC of the SHS was compared
to the measured SOC. Figure 5.19 shows in the top graph the calculated enthalpy of the SHS
SOCcalc compared to the measured enthalpy SOCmeas. The difference between the calculated
and the measured enthalpy divided by the minimum usable enthalpy SOCerror is depicted in the
bottom graph.

The main dynamics of the system are depicted correctly. The start of a HT leads to an
error in the SOC. The HP and the hysteresis controller model lead to an offset error after a
charging process of less than 1%. The constant loss of energy during the operation free periods
is modelled accurately. The dynamic behaviour of the system can be depicted with an error of
up to approximately 10 %. The error might be a result of the missing start behaviour of the
pipes, biased heat demand data, or the neglection of the startup behaviour of the HP. It was
assumed that the error was not induced by the biased data, but by lack of model functionality
because the deviation between the measured and simulated output is larger than the expected
measurement errors. Manual actions during the processes are not simulated adequately. There
is no trend in the error. The NRMSE between the calculated and the measured SOC is 0.5815.
The simulation model is reliable enough for the implementation of the EDCS and fulfils the
requirements stated in Section 2.3.

Every component and the assembly were validated. The conducted methods of Section 4.3
led to a trustworthy level of confidence in the simulation. Based on the existing and prepared
data, it was possible to identify the plant’s most important procedures and configurations. The
pipe system and its influence on the startup of the system were neglected. Further, the startup
behaviour of the HP and the heat exchanger were not examined and neglected. Essential results
for the main components like the scenario analysis, the sensitivity analysis, and the comparison
of the output with measured data were shown. The execution of the complete model with
measured input data was comprehensible and reliable. The validation is based on the biased
available measured data. No range of uncertainty for the measured data for the validation could
be stated. The EDCS can be implemented and tested in the simulation.

The simulation was stable and did not interrupt during a simulation runtime of 30 days. Its
execution time depends on the used computer, the configuration, and on the HP model, which
is an imported functional mockup unit (FMU) and limits the computation time. The execution
time for the simulation with the hysteresis controller on an i7-1065g7 CPU 1.30GHz with the
operating system Windows 10 2021 took about 5 minutes.
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Figure 5.19: The complete model is executed with measured input. In the top graph, the SHS enthalpy
SOCcalc is compared to the measured SHS enthalpy SOCmeas. The bottom graph shows the difference
between the measured and the calculated SOC divided by the minimum usable enthalpy level of the SHS
SOCerror.

5.3 EDCS
The second research question was: ’Can the EDCS be used to control the investigated en-

ergy supply system’. This question is answered by the simulation results with the implemented
EDCS. The heat demand prediction data from Subsection 4.1.1 was used to execute the simu-
lation of the model with the implemented EDCS and the configuration defined in Section 4.4.
The start time of the HT’s were moved to the past and the future and differs from the predicted
start time. The integral heat data for the HT’s was exactly known. The output is presented in
Figure 5.20. The simulated enthalpy SOCcalc is compared to the SOC trajectory SOCtraj. The
SOCmin of the HT’s is shown. The measured SOC differs from its trajectory because the start
time and the course of the HT’s were not exactly known. The difference between the trajectory
and the measured SOC shows that the observer moves the prediction continuously into the fu-
ture leading to a constant high SOC until the HT starts. The extension of the SOCmin prevents
the SOC from falling below the SOCmin.

The EDCS tries to charge the SHS at times where the power price is low. Figure 5.21 shows
that the consumption of power at a low power price is not always possible. Especially before

Figure 5.20: The simulated SOC, the SOCmin of the heat demand, and the trajectory SOCtraj of the
Operation Planner (OP). The simulation was executed with the implemented EDCS.
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Figure 5.21: The power consumption of the HP is compared to the price per MWh.

the price increases, the power consumption is higher compared to the power consumption after
the increase. If heat is demanded and the SHS could not provide the heat demand, the EDCS
must start the HP because of constraints, despite the price being high.

The operating example of the EDCS showed that the EDCS can control the heat supply of the
plant under study. The flexible power price market was used to charge the SHS in periods with
low electricity price. The additional HT observer functionality increases the performance of the
EDCS by updating the prediction accuracy in real-time. The movement of the HT prediction
corrects imprecise predicted start times. The distribution of heat corrects the course of the HT to
ensure a correct integral heat amount for the prediction. The extension of the SOCmin raises the
energy level before the HT start and reduces the probability of the undercut of the SOCmin. The
EDCS can be configured for the desired objectives and its execution produced comprehensible
and error-free output. The calculation of the optimization was feasible and the objectives were
fulfilled.

The result is restricted by the use of the heat demand data. The heat demand does not reflect
the real temperature trajectory, which must be applied to the product. It was assumed that
sufficient heat is available for the process if the SOC remains above the SOCmin and the desired
temperature trajectory can be applied. Investigations on the real plant are necessary to prove
this assumption. Further, the simulation was developed with simplifications. The influence of
the simplifications on the performance of the EDCS must be examined.

5.4 Simulation Study
The follwoing two research questions shall be answered by the simulation study: ’How robust

is the EDCS against unpredicted interactions of human operators’ and ’Which influence has the
EDCS on the cost and quality of the process’. The first result is depicted in Figure 5.22, which
shows the mean HT’s affected by an undercut of the SOCmin and their confidence interval. It
is shown, that unpredicted HT start times influence the heat supply of the HT’s by inducing an
insufficient SOC level. The EDCS reduces the mean affected HT’s by approximately 50% to
a level lower than 4% in each configuration compared to the hysteresis benchmark. 103 HT’s
were conducted per simulation execution. The HT movement functionality of the observer
ensures sufficient heat supply for each HT which starts later than planned. The parameter tsafety

reduces the insufficient heat supply of the HT’s which start earlier than planned. The mean
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Figure 5.22: The HT’s which are affected by an undercut of the SOCmin are evaluated. The mean
affected HT’s and the confidence interval of the execution with the EDCS and each parameter set is
shown. The results are compared to the hysteresis benchmark. W = 36 simulation executions for each
parameter set.

Figure 5.23: The time a HT is affected by an undercut of the SOCmin is evaluated. The mean time per
affected HT and the confidence interval of the execution with the EDCS and each parameter set is shown.
The results are compared to the hysteresis benchmark. W = 36 simulation executions for each parameter
set.

affected HT’s decrease with the increase of the parameter tsafety. Affected HT’s with a start time
deviation to the planned start time of less than four hours can be reduced to almost zero with
the parameter tsafety = 4hours.

Analogous to the mean affected HT’s, a mean time per SOC undercut can be evaluated. The
mean time that the SOC falls below the SOCmin per affected HT decreases with the increase of
the parameter tsafety. The mean time is below the hysteresis benchmark time in each configura-
tion. This is a result of the appropriate start of the HP when the EDCS recognizes the undercut
of the SOCmin. Figure 5.23 shows the mean time that the SOC is below the SOCmin and its
confidence interval.

The EDCS is able to ensure sufficient heat supply for each HT with a perfect start time
prediction. Unpredicted interactions by human operators influence the controllers performance
negatively. The deviation of the predicted HT’s start time to the real start time can cause the SOC
to fall below the SOCmin. This influences the production process and the product is not heated
up in the desired necessary time, which can harm the product quality. The simulation study
showed that the EDCS is a robust control system against unpredicted HT start time deviations.
Without the extension of the SOCmin, the EDCS can reduce the affected HT’s compared to the
hysteresis benchmark while ensuring a stable and feasible control. The parameter tsafety can
increase the EDCS performance further. The higher the parameter tsafety is chosen, the lower
the probability of the SOC falling below the SOCmin. The number of affected HT’s and the
time duration the SOC is below the SOCmin can significantly be reduced by using the tsafety
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Figure 5.24: The median of the power consumption per parameter set with its percentile and the max-
imum and minimum values compared to the hysteresis benchmark. W = 36 simulation executions for
each parameter set.

Figure 5.25: The price per MWh is evaluated. The mean price per MWh and the confidence interval of
the execution with the EDCS and each parameter set is shown. The results are compared to the hysteresis
benchmark. W = 36 simulation executions for each parameter set.

parameter.
The influence of the EDCS on the costs of the process can be analysed by the power con-

sumption and the price per consumed MWh. The boxplot of the energy consumption for the
executions with the different parameter sets is shown in Figure 5.24. The median consumed
energy is higher compared to the hysteresis benchmark in all three cases, although the energy
consumption by the HT’s is the same for each execution. This indicates more loss of energy
in the SHS during the executions with the EDCS. The heat loss is caused by energy that is not
used at the appropriate time because the HT start time is shifted to the future. At high energy
levels induced by high tsafety values, the heat loss is higher compared to low energy levels.

Figure 5.25 shows the mean price per MWh and its confidence interval for the execution of
the different parameter sets. The mean price is approximately 4e per MWh lower compared to
the hysteresis benchmark and is the lowest for the parameter tsafety = 8hours. The study shows,
that power is consumed at a low price level if possible.

The cost of the power consumption is obtained by multiplying the prices times the consump-
tion. Figure 5.26 shows the boxplot of the costs. The higher the parameter tsafety is chosen, the
higher are the costs for the execution with the EDCS caused by the high energy consumption
induced by the additional loss of energy. The overall costs are lower compared to the hysteresis
benchmark. The EDCS reduces the sum of the costs because the cost reduction for charging the
SHS during a low price level is higher than the cost of the additional heat loss.

The EDCS can reduce costs and ensure process quality at the same time. The simulation
study shows that energy is consumed at low price levels whenever possible. The influence of a
flexible power price increases as the price range widens. The use of a photovoltaic system and
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Figure 5.26: The cost of the power consumption is evaluated. The median of the costs per parameter
set with its percentile and the maximum and minimum values. The results are compared to the hysteresis
benchmark. W = 36 simulation executions for each parameter set.

Figure 5.27: The Pareto front shows the correlation between the mean affected HTs and the costs if the
parameter SOCmin is adjusted. The values of the execution of the hysteresis is marked as a red cross.

heat recovery can decrease the price per MWh further. At the same time, the EDCS ensures the
quality of the production processes by a sufficient heat supply. With the observer functionality
disturbances in the prediction of the start times can be managed effectively.

The simulation of the plant controlled with the EDCS reduced the costs and the affected HT’s,
compared to the hysteresis benchmark. A Pareto front arises in which the desired trade-off
between the affected HT’s and the costs for the consumed power can be chosen in Figure 5.27.
The values for the different parameter sets are shown. The hysteresis benchmark value is added.
The economic decision in the Pareto front depends on the consequences the undercut of the SOC
has on the product quality. This relation is not examined yet. A valuation of the consequences
of harmed products must be done in future research.
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6 Resume and Outlook

In this thesis, a simulation model was developed, verified, and validated utilizing measure-
ment data from the plant under study from October 2019. The biased data was prepared to reach
the necessary level of confidence and consistency. The main components of the examined plant,
the SHS, the HP, and the heat demand, were modelled, verified, and validated. Further minor
hydraulic models are added. The connected simulation depicts the main dynamics of the plant.
The validation confirmed a reliable simulation model that does not lead to a trend or a constant
error compared to the measured data. The processes are mapped comprehensibly and reliably.
A valid simulation based on measured data of the investigated plant is available for testing the
EDCS (Research Question 1).

The control framework EDCS was implemented in the developed simulation model and ex-
ecuted without errors. The prediction of the EDCS is comprehensible. The execution of the
simulation with the EDCS in the examined scenarios was stable, feasible, and the controller
achieved the desired objectives. The HT functionality implemented in the observer enhances
the performance of the EDCS by improving the prediction quality in real-time. Prediction start
time inaccuracies and the integral amount of heat can be corrected in the prediction. It was
shown that the EDCS can be used to control the investigated energy supply system (Research
Question 2).

The simulation study showed that the EDCS can ensure process safety despite HT start time
deviations. The added observer functionality reduces product quality issues effectively. The
robustness of the EDCS is validated by the simulation study (Research Question 3). Further,
the simulation study shows that the EDCS utilizes the flexible power price to reduce the power
costs compared to a hysteresis controller. The EDCS fulfils its aim to optimize the heat supply
and simultaneously reducing costs and providing process safety (Research Question 4).

Still, the model error could be further reduced. The accuracy of the models can be improved
by simulating the pipe network and its influence on the heat loss and the start up behaviour.
Well chosen validation experiments substantiate the validation process. Measurement devices
for the mass flow help to increase the simulation accuracy and the validation possibilities. With
the knowledge of the precision of the measurement devices, a range of error can be depicted.
Nondeterministic model components increase the reliability into the simulation model. Addi-
tional parts of the plant can be implemented, verified, and validated. The underlying control
structure consists of several PID controlled valves could be investigated and improved.

The EDCS could be tested with and validated on the extended simulation model. The in-
fluence of the EDCS on the performance and process quality should be examined further. The
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robustness and the stability of the EDCS must be investigated in further examinations. Addi-
tional simulation studies could evaluate the influence of an inaccurate predicted power price.
The observer functionality and its real-time prediction correction could be investigated with
imprecise predicted integral heat amounts per HT.

Future research on the plant and the EDCS should examine the influence of insufficient en-
ergy supply on the product quality. The costs of possible harmed products must be evaluated
and influence the Pareto optimum. Further, the influence of the EDCS parameters on the pro-
cess safety and the costs could be examined. A factorial experiment can examine the influence
of the parameters on the EDCS. The most influential parameters could be investigated further.
The extended simulation model, allows more ’what if’ analysis that is worthwhile for the plant
operator. The observer can be enhanced by a function that moves the HT’s prediction to an
earlier start time instead of using the parameter tsafety. The SOC will be held at a sufficiently
high level until the HT starts. This function decreases the flexibility of the EDCS, but increase
product safety.
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