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0.2 Abstract

Within this thesis we analyze the Lasso estimator and its properties, such as its distribution as well
as methods of inference that are based on a Lasso estimate.

In the first chapter we give a lower bound for the coverage probability of the Lasso’s estimation
error for a large class of sets that satisfy a rather weak condition which depends on the design
matrix. This enables the construction of uniformly valid confidence sets for the entire parameter
vector based on a Lasso estimate in finite samples as well as in an asymptotic setup where the
estimator is tuned to perform conservative model selection. Additionally, we give an asymptotic
probability one confidence set in the case where the Lasso is tuned to perform consistent model
selection.

The second chapter deals with the estimator’s properties, in particular providing its distribution
in high and low dimensions. In the low-dimensional case the distribution is given explicitly by the
cumulative distribution function, but can also be specified by a number of conditional densities
(given the corresponding active sets). We also describe the unique relationship between the Lasso
and the Least-squares estimator. We additionally give insight into the estimator’s model selection
properties and in particular show that in a high-dimensional setting the estimator may not select
certain variables at all, independent of the response.

The final chapter again turns to the topic of Lasso-based confidence sets, extending the concepts
developed in the first chapter: We consider the unknown variance case and explore the question
of how to construct uniformly valid confidence sets for single components. The latter case is
also considered in the case where a partial Lasso is applied (i.e., if some components are not
penalized at all). We also investigate the validity of a procedure that is designed only to cover
the estimator’s non-zero components in an optimal way, meaning that the choice of the confidence
set’s shape depends on the selected model. Finally, we consider an adaptive procedure, where the
confidence set’s shape is optimized for a given sign of the parameter. Hereby the sign is estimated
by a conservative estimation procedure. However, it is shown that this approach does not yield
uniformly valid confidence sets.
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0.3 Deutsche Kurzfassung

Diese Dissertation befasst sich mit dem Lasso Schätzer und seinen Eigenschaften, insbesondere
mit der Verteilung des Schätzers und der Konstruktion von gleichmäßig gültigen Konfidenzmengen
(welche auf dem Lasso basieren).

Im ersten Kapitel wird eine Methode entwickelt, um die minimale Überdeckungswahrschein-
lichkeit des Schätzfehlers für eine Klasse von Mengen zu bestimmen. Die zulässigen Mengen
müssen hierbei lediglich eine recht schwache Bedingung erfüllen, welche von der Regressormatrix
abhängt. Mithilfe dieses Resultats werden sodann auf dem Lasso basierende Konfidenzmengen
konstruiert. Diese sind sowohl für endliche Stichproben, als auch asymptotisch, im Fall eines kon-
servativ eingestellten Lassos, anwendbar. Für den Fall eines konsistent eingestellten Schätzers wird
eine asymptotisch gültige Konfidenzmenge mit Überdeckungswahrscheinlichkeit eins angegeben.

Das zweite Kapitel behandelt die Verteilungseigenschaften des Lasso Schätzers. Hierbei wird
zunächst die Verteilungsfunktion des Schätzers hergeleitet. Im niedrigdimensionalen Fall kann
die Verteilung aber auch mittels (auf die jeweils aktiven Komponenten) bedingte Dichtefunktio-
nen beschrieben werden. Anschließend wird eine spezielle Beziehung zwischen Lasso und Klein-
stquadrateschätzer hergeleitet. In dem Kapitel wird ebenfalls herausgearbeitet, dass der Schätzer
in gewissen hochdimensionalen Situationen manche Regressoren nie, das heisst für keinen Wert der
abhänigen Variable, auswählt. Diese Menge ist hierbei ausschließlich durch die Regressormatrix,
sowie den Penalisierungsvektor bestimmt.

Das dritte Kapitel wendet sich wieder dem Thema der Konfidenzmengen zu und erweitert die
vormals entwickelten Konzepte. Hierbei wird zunächst der Fall der unbekannten Fehlervarianz
behandelt. Es folgt eine Diskussion der Konstruktion von für einzelne Komponenten optimierte
Konfidenzmengen, sowie der Fall des partiellen Lassos, bei dem nicht alle Komponenten penal-
isiert werden. Es folgt eine Analyse, ob eine adaptive (das heißt, von den aktiven Komponenten
abhängige) Wahl der Form der Konfidenzmengen und des zu überdeckenden Sub-Parameters eine
valide Prozedur darstellt. Schließlich wird gezeigt, dass die vorherige Schätzung des Vorzeichen des
wahren Parameters mit darauf folgender Verwendung dieses Ergebnisses in der Konstruktion von
Konfidenzmengen keine asymptotisch korrekten Konfidenzmengen liefert.
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A note on the use of the word “we”

When delving into the world of academic literature one may often find oneself surprised at the
use of the word “we”. While it is perfectly logical to use phrases such as “we show that . . . ” or
“we see that . . . ” for articles with multiple authors, it is also common for single authors to use
this structure. This might seem strange to some readers and while one may argue that the intense
work on certain mathematical problems does encourage certain states of mind in which one might
be unsure of some basic facts of reality, this thesis’ author uses the word “we” to refer to himself
together with the reader. In other words, the author intends to include the reader in the sense of
guiding them through the article.
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Chapter 1

Introduction

Throughout the ages there have been transitions to new eras of human history which were mostly
driven by advances in science and technology. New inventions and technologies, such as the in-
ventions of the wheel, pottery, writing, metal works and so on, have drastically changed the way
humans live, think and work. One of the most notable changes was without doubt the industrial
revolution at the beginning of the 20th century. Of course, the development did not stop there.
Quite to the contrary, where in recent decades we have seen the transition into a new era commonly
referred to as the “digital revolution”. The rapidly advancing digitalization of science as well as
everyday life poses a challenge to the field of statistics in particular. This is due to the wide avail-
ability of vast amounts of data which are being generated and collected in all sorts of settings, be
it website usage, shopping behavior, traffic data. . . (the completion of this list is left to the reader’s
imagination). Given the availability of this so-called “big data”, it is only natural that scientists
as well as governments and coperations want to make good use of the available information. How-
ever, every coin has two sides and the blessing of vast amounts of data being available for many
applications can be a curse in situations where existing methods may not be appropriate, or even
cease to be feasible at all.

In the context of linear regression models, the huge amount of possible explanatory variables
poses a challenge to users who are often interested in rather simple and easily interpretable models.
Since one usually also does not want to choose one’s model completely arbitrarily, numerous so-
called model selection procedures, such as evaluating each possible sub-model1 by some selection-,
or fit-criterion, like the Akaike Information Criterion (AIC) and Bayesian Information Criterion
(BIC), or the iterative addition of variables that decrease one of these criteria the most2, are
employed to enable users to choose their working models in reasonable, data-driven ways. The
above-mentioned procedures, however, come at great computational cost, making their application

1Usually referred to as Full subset selection.
2Usually referred to as Forward selection.
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infeasible if the number of possible models is large3. Moreover, the presence of a model selection
step prior to parameter estimation has been shown to have adverse effects on classical inferential
procedures that do not take the presence of model selection into account. Indeed, the actual
coverage probability4 of these “naive” confidence sets has been shown to fall well below their
nominal levels in such situations (see, for example, Pötscher, 1991 or Kabaila & Leeb, 2006) thus
further complicating the procedure of estimation and conducting inference.

The belief that so-called sparsity may be present in many models, i.e., that the response may
only depend on a few of many, or even infinitely many, possible regressors has lead to a rising interest
in so-called shrinkage estimators. As the name suggests, these estimators shrink the Least-squares
estimate towards, and some components even exactly to zero, thus providing model selection as
well as parameter estimation in a single step. One quite notable example of these estimators is the
Least Absolute Shrinkage and Selection Operator which is better known by its acronym, the Lasso
estimator. It was introduced in Tibshirani (1996) and is defined as the solution to an l1-penalized
version of the Least-squares objective function. The procedure provides many desirable properties,
such as low computational cost5 as well as the ability to still yield unique6 solutions. This holds
even in high-dimensional settings, in which the number of explanatory variables p is larger than
the number of observations n. In such cases the Least-squares estimator, for example, is no longer
unique. Not all properties of this procedure are, however, fully understood yet, in particular and
probably most importantly, its distribution.

Understanding how the Lasso behaves both as an estimator as well as a model selection method
is a vital piece of information a user should consider, or at least be aware of, when applying the
procedure. For a wide range of applications it will be of great importance to know about the
precision of the estimates obtained from using this procedure. This leads to the question of how
confidence regions can be constructed based on the Lasso estimator and how their size can be kept
as small as possible. At this point the issue is best divided into the high- and low-dimensional
frameworks, respectively, where the number of explanatory variables either exceeds the number
of observations or not. For the former case more recent contributions to the academic literature
(e.g. Zhang & Zhang, 2014; Van de Geer et al., 2014) have proposed confidence sets that rely on
“de-biasing” the Lasso. These procedures, however, turn out to be essentially equivalent to using
the Least-squares confidence sets if applied in a low-dimensional framework.

In recent years a number of contributions to academic literature have analyzed the topic of post-
selection inference, a concept that was first proposed by Berk et al. (2013) and aims at constructing
confidence sets that seek to cover a pseudo-true value that is referred to as the parameter given

3Indeed, for a Full subset selection, there are 2p possible submodels for p available explanatory variables.
4At least when considering the classical target for inference.
5For more details on this see for instance Alliney & Ruzinsky (1994); Efron et al. (2004) and Rosset & Zhu (2007).
6Note, however, that even the Lasso estimator is not always unique, as noted, for example, in Tibshirani (2013),

Ewald & Schneider (2020) and Chapter 3 of this thesis.
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the model7. The articles that specifically deal with such confidence sets in relation with the Lasso
estimator include Lee et al. (2016); Tibshirani et al. (2016); Meir & Drton (2017); Zhao et al.
(2017); Kivaranovic & Leeb (2018); Tibshirani et al. (2018); Liu et al. (2018); Zhou et al. (2019)
and Min & Zhou (2019).

However, rather little research has been conducted on the coverage of the true parameter in a
low-dimensional setting. Pötscher & Schneider (2010) have given the optimal8 choice of confidence
interval in an orthogonal regressor setting. This article gives insights into some properties these
confidence sets will have, such as the fact that the Lasso-based confidence intervals will have to be
larger than the confidence intervals that are based on the Least-squares estimator. However, the
“classical” low-dimensional case with correlated regressors has remained a gap in the literature so
far. This thesis’ first major component will be to close this gap.

Turning to the issue of the distribution, Pötscher & Leeb (2009) have provided the distribu-
tion of the Lasso in the orthogonal-regressor (low-dimensional) setup, while Rosset & Zhu (2007);
Tibshirani (2013) and Zhou (2014) have all provided valuable information on the properties of the
estimator. Quite notably, Zhou (2014) has, in a way, produced the distribution of the Lasso by
analyzing the augmented Lasso which enables the reader to recover the distribution of the actual
estimator. However and despite all these contributions, the existing literature has not yet provided
a comprehensive and easy to grasp picture of the estimator’s behavior, i.e., its distribution, and
this shall be the second major component of this thesis. To that end, the cumulative distribution
funcion (cdf) of the Lasso is provided for low-dimensional setups and a new characterization of the
estimator’s distribution is provided for high-dimensional frameworks. Also, the distribution is pre-
sented in more intuitive forms, for example in terms of conditional densities on certain submodels
(so-called active sets). Moreover, facts about the model selection properties in high-dimensional
settings as well as the Lasso’s relationship to the Least-squares estimator in low-dimensional set-
tings are provided. Finally, this thesis gives some insights into the Lasso estimator’s model selection
properties while also touching upon the subject of its uniqueness, a topic that has been covered by
Tibshirani (2013), Ali & Tibshirani (2019) and Ewald & Schneider (2020).

1.1 Contents and publications

To deal with the issues described above, this thesis is organized into three parts: Chapter 2 gives
a procedure on how to conduct inference on the true parameter based on a Lasso estimate in a
low-dimensional setup, i.e., how to construct confidence sets that are based on the Lasso estimator.
Chapter 3 is dedicated to the distribution of the estimator, lending greater understanding of how
this procedure behaves both as an estimator as well as a model selection procedure. Finally, Chapter

7For a brief description refer to Section 2.2.
8In terms of component-wise length.
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4 discusses the question of how to use and extend the theory developed in Chapter 2 to a number
of different settings and applications.

The work within this thesis has been published within two papers. Ewald & Schneider (2018)
deals with the topic of confidence sets that are based on the Lasso estimator and the results
presented there are based on Chapter 2 as well as sections 4.2 and 4.3. Ewald & Schneider (2020) is
largely based on Chapter 3, but also contains additional results regarding the Lasso’s uniqueness.

1.2 General setting and notation

Throughout the thesis we will consider the following linear regression model:

y = Xβ + ε, (1.1)

where y is an (observed) n × 1 response vector, X an n × p (non-random) regressor matrix with
rows xi· and columns x·j . Moreover, β denotes the unknown parameter we are interested in and ε is
an n × 1 error vector that is defined on some probability space (Ω, A , P ). The error, ε, is assumed
to be zero in expectation and its variance-covariance matrix is of the form σ2In with σ > 0 and In

denoting the n-dimensional identity matrix.

As several different settings will be discussed in this thesis, such as high- and low-dimensional
models, or finite-sample as well as asymptotic results, assumptions on X, β and ε will differ between
the sections and are thus not discussed at this point. Note that in the settings considered in this
thesis, the parameter as well as the other quantities will depend on the sample size n. Since the
focus of the thesis lies mostly on finite-sample results, we shall suppress this dependence in the
notation for the most part.

The (weighted or generalized) Lasso estimator, β̂L, is defined as the solution to the Lasso ob-
jective function, a penalized version of the Least-squares objective function:

β̂L = arg min
β∈Rp

L(β),

where the Lasso objective function, L(β), is given by

L(β) = y − Xβ 2
2 + 2

p

j=1
λj |βj |, (1.2)

with λj ≥ 0 being component-specific penalization weights which usually depend on the sample
size n. For later use, we shall denote by λ the vector of penalization weights9, i.e., λ = (λ1, . . . , λp)
and by Λ the diagonal matrix containing λ as its diagonal: Λ = diag(λ). Note that this definition

9This vector is sometimes also referred to as tuning vector.
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of the Lasso includes the Least-squares estimator10 in the sense that these estimators are equal
when λj = 0 for each j ∈ {1, . . . , p}. Also note that the classical Lasso estimator, as proposed by
Tibshirani (1996), is defined with equal penalization-weights λj . However, it may prove beneficial
to users to choose those weights differently. This may be to, for example, account for different
interest in the effects of certain regressors determined by the application at hand. A user may, for
example, choose not to penalize some components, considered to be of particular interest, at all,
thus excluding them from model selection11. This special case will be referred to as the partial
Lasso estimator. The main focus of the analysis will, however, be the case in which all components
underly some level of penalization and despite the theory encompassing the partial case, we shall
mostly think of the penalization weights as being strictly greater than zero. Also note that the
factor two in front of the penalization term in (1.2) is completely arbitrary and could be integrated
into the penalization vector λ. However, defining the problem in this way will simplify some of the
formulae later on.

Next, we define the so-called active set of the Lasso estimator as

A = A(β̂L) = {j ∈ {1, . . . , p} : β̂L,j = 0},

i.e., all components of the estimator that are non-zero. Note that this active set can also be viewed
as the model that is selected by the Lasso when thinking of the estimator as a model selection
procedure.

To analyze the estimator, we will for the most part consider the Lasso’s estimation error,
û = β̂L − β, by looking at a re-parameterized version of the Lasso objective function. Setting as
short-hand notation C = X X and W = X ε, we define

V (u) = L(u + β) − L(β). (1.3)

= u Cu − u W + 2
p

j=1
λj [|uj + βj | − |βj |] .

Note that V is minimized at û.

In case C is invertible, the Least-squares estimator is given by β̂LS = (X X)−1X y and its
corresponding estimation error equals ûLS = β̂LS − β. Next, we will use ι for the vector containing
1’s in all components. R = R ∪ {−∞, ∞} is used to denote the extended real line and 1{·} for the
indicator function. The sup-norm on Rp is denoted by · ∞. Let ej denote the j-th unit vector
in Rp and let sgn(·) denote the sign function with the function being defined component-wise, if
applied to vectors. The empty set and Carthesian product are denoted by ∅ and Π, respectively.

10That is arg minβ∈Rp y − Xβ 2
2.

11To see that this is actually the case, see Chapter 3.
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For a set B ⊆ Rp and a ∈ Rp, we define

a + B = {a + b : b ∈ B},

and for any matrix Z ∈ Rp×p, we define

ZB = {Zb : b ∈ B}

with an analogous definition for set-multiplication by a scalar.
For any index set I ⊆ {1, . . . , p}, and any vector v ∈ Rp we define vI to be the |I|-dimensional

sub-vector of components with indices contained in I. Similarly, for a matrix T ∈ Rn×p, let TI
denote the n×|I| sub-matrix consisting of the columns of T with indices contained in I. We denote
the matrix’ column-space, kernel and rank by span(Z), ker(Z) and rank(Z), respectively. Also, for
Z ∈ R{p×p}, let det (Z) denote the matrix’ determinant.

For d ∈ {−1, 1}p let Od = {z ∈ Rp : djzj ≥ 0 ∀j ∈ {1, . . . , p}} denote the corresponding
orthant of Rp. By Od

int we denote the orthant with strictly positive components only, that is, Od
int =

{z ∈ Rp : djzj > 0}. And for d ∈ {1, −1, 0}p, let Qd = {z ∈ Rp : sgn(zj) = dj ∀j ∈ {1, . . . , p}}.
Let φ(µ,Σ) and Φ(µ,Σ) denote the probability density function (pdf) and cumulative distribution

function (cdf) of a random variable following a normal distribution with mean µ and variance-
covariance matrix Σ. By φ and Φ we denote the pdf and cdf of a standard-normal random variable.

Finally, note that the directional derivative of a function g : Rp → R at a point t ∈ Rp in
direction r ∈ Rp with r 2 = 1 is defined as and denoted by

∂g(t)
∂r

= lim
h 0

g(t + hr) − g(t)
h

.

Having laid out the general notation we can now proceed to the thesis’ first topic which is
confidence sets.
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Chapter 2

Confidence sets based on the Lasso
estimator

2.1 Introduction

The first chapter of the thesis deals with the topic of constructing confidence sets based on the
Lasso estimator. Considering the low-dimensional (p ≤ n) framework, Pötscher & Schneider (2010)
revealed implications of the Lasso estimator’s distributional properties for confidence sets in orthog-
onal regressor settings. In particular they provide formulae for calculating the minimal coverage
probabilities as well as the optimal1 choice of a Lasso-based confidence set in such a case. Gen-
eralizations to a moderate-dimensional setting where p ≤ n but p diverging with n are contained
in Pötscher & Schneider (2011) and Schneider (2016). The former reference also contains a way of
constructing asymptotic probability one confidence sets in the orthogonal regressor setting when
the Lasso is tuned to perform consistent model selection. A similar approach has been taken by
Amann & Schneider (2018) to obtain such confidence sets for the adaptive Lasso2 without assuming
orthogonality of the regressors.

In a high-dimensional setting with p n, confidence regions and confidence intervals in connec-
tion with the Lasso estimator have been treated in a number of papers including Zhang & Zhang
(2014); Van de Geer et al. (2014); Javanmard & Montanari (2014a,b); Van de Geer & Stucky (2016);
Van de Geer (2017); Cai & Guo (2017) and Caner & Kock (2018). All these papers use the idea
of “de-sparsifying” the Lasso estimator which in the case of p ≤ n essentially reduces to using the
Least-squares estimator for inference. In that sense this theory leaves a gap on how to construct
confidence regions based on the Lasso estimator in a low-dimensional framework in order to provide
uncertainty quantification for the Lasso estimator in this case.

Dealing with a related topic, Lockhart et al. (2014) and Tian & Taylor (2017) consider signifi-
1With respect to length.
2For details on that procedure see Zou (2006).
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cance tests for additional variables within a Lasso path.

Returning to the topic of confidence regions, Lee et al. (2016) consider finite-sample results
for confidence intervals in connection with the Lasso estimator, yet these authors take a different
route in that their intervals are not set to cover the true parameter, but a pseudo-true value3

that depends on the selected model and coincides with the true parameter if the selected model is
correct. All inference is conditional on the selected model. Their method is in line with the general
proposal of Berk et al. (2013) who discuss an intricate procedure for obtaining confidence regions
for this pseudo-true parameter after a model selection step. Articles that deal with this so-called
post-selection inference (PoSI), after a Lasso-selection step include Lee et al. (2016); Tibshirani
et al. (2016); Meir & Drton (2017); Zhao et al. (2017); Kivaranovic & Leeb (2018); Tibshirani et al.
(2018); Liu et al. (2018); Zhou et al. (2019) and Min & Zhou (2019). Finally, in a slightly different
setting of a mean model with independent Gaussian errors Hyun et al. (2016) propose tools for
inference that are based on a generalization of the Lasso estimator.

This chapter’s goal is to close the gap between the afore-mentioned results by providing con-
fidence sets that are based on the Lasso estimator for the entire parameter vector in general low-
dimensional regression settings without requiring any restrictive assumptions on either the regressor
matrix, X, or the true parameter vector, β.

As the Lasso estimator’s distribution depends on the true parameter (c.f. Pötscher & Leeb,
2009, or Chapter 3) which is, by definition unknown, we will have to construct confidence sets
whose coverage probabilities cover the entire4 true parameter for each of its possible values with
(at least) our desired nominal coverage probability. Hence, we need to know the smallest coverage
probability over the whole parameter space for a given prospective confidence set in order to
construct valid confidence regions. Because the Lasso estimator’s distribution’s dependence on the
true parameter is rather complicated (c.f. Chapter 3), the task is not straightforward. Also, this
problem cannot be overcome by considering large samples, as this dependence does not vanish in
such settings, at least when considering moving-parameter frameworks in which the finite-sample
distribution is approximated best. Aside from answering the question of how to calculate minimal
coverage probabilities for given sets we will have to ponder on how to choose a confidence set’s
shape in a reasonable way: While it seems straightforward to use an interval in the one-dimensional
case, the matter becomes more intricate when moving to higher dimensions. In this case one may
prioritize certain components over others in the sense that the marginal coverage-probabilities of
a confidence set may differ, or choose to optimize the confidence sets’ shape with respect to its
volume. In case the estimation error’s distribution is independent of the true parameter and has
a Lebesgue density it is easily seen that the volume can be minimized5 by taking an appropriate

3For a brief discussion of this concept, see, for example, Section 2.2.
4I.e., all of its components simultaneously.
5Indeed, to minimize the confidence set’s volume, one will want to add those regions to the set that contain the

true parameter with the highest probability. Clearly, these areas can be identified by searching for those areas where
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contour set of the pdf and centering it at the point-estimator. While this is the case for the Least-
squares estimator, for example, where the volume-optimized confidence sets turn out to be elliptic,
the situation is quite different for the Lasso estimator in case of which the distribution is neither
absolutely continuous, nor independent of the true parameter and hence, the task of finding (near-)
optimal6 shapes requires a bit more thought. Note that even though both finite-sample, as well as
asymptotic distributions of the Lasso are known explicitly (c.f. Chapter 3), this knowledge is not
used in the development of the procedure in this chapter. This is due to, on the one hand, historic
reasons, as the results that are presented in the first chapter precede the ones on the estimator’s
distribution and, on the other hand, due to the quite complicated dependence and non-standard
form of the Lasso’s distribution. However, it is not even necessary to know the full distribution,
as we provide a sharp lower bound for a set’s coverage probability using only properties of the
underlying minimization problem.

Essentially, in this chapter we do the following: It is shown that the minimal coverage probability
of a set satisfying some rather mild conditions occurs when the true parameter’s components are all
large in absolute value. Indeed, it is shown that the minimal coverage probability7 can be calculated
by essentially deferring the minimization into the objective function that defines the estimation
error. We in effect “bound”8 the area the true estimation error can lie in by the minimizers of the
objective functions when the components of the true parameter are large in absolute value with
the different (stochastic) “bounding” functions only depending on the unknown parameter via its
components’ signs. The minimizers of these “bounding” functions turn out to have quite well-
behaved distributions, thus allowing us to obtain an explicit formula for the coverage probability
of a large class of sets that satisfy a condition depending on the regressor matrix.

The class of sets which satisfy the necessary requirements encompasses the elliptic shape one
would use if the confidence region was based on the Least-squares estimator, thus enabling compar-
isons with the Least-squares confidence ellipse. In analogy to the fixed-width intervals in Pötscher
& Schneider (2010), the confidence regions we consider are random only through their centering
at the Lasso estimator, which is also in line with the setup in the literature for high-dimensional
settings, see for instance Van de Geer et al. (2014). Asymptotically, we distinguish between two
regimes for the tuning parameters which we call conservative and consistent tuning. As suggested
by the results in Pötscher & Schneider (2010), our finite-sample results essentially carry over asymp-
totically when the estimator is tuned conservatively. In the case of consistent tuning, the uniform
convergence rate of the estimator is slower than 1√

n
and we give the asymptotic distribution of the

Lasso estimator when scaled by the appropriate factor corresponding to the uniform convergence
rate, as well as suggesting a simple construction for an asymptotic probability one confidence set

the pdf takes on the largest values.
6With respect to size.
7For a given sign of the true parameter.
8Note that these bounds are constructed for a given ω ∈ Ω and are thus themselves stochastic.
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in that case.

The remaining chapter is organized as follows. In Section 2.2 we will briefly discuss possible
coverage targets, as a further interesting option (other than the “classical” true parameter) has
been the subject of recent academic discussions. In Section 2.3 we set the framework by re-stating
the model, stating the assumptions used in this chapter as well as introducing some notation. The
main result providing the formula for the minimal coverage probability is presented in Section 2.4
and subsequently Section 2.5 is devoted to discussing how to concretely construct the corresponding
confidence sets, as well as their relationship to the confidence ellipse based on the Least-squares
estimator. In Section 2.6 we derive asymptotic results for both the cases of conservative and
consistent model selection. Section 2.7 concludes.

2.2 On inference after model selection and coverage targets

In this section we discuss the choice of target for the confidence sets. Given the above setup it
may at first seem strange that one may be interested in anything but the true parameter β in the
model (1.1) (or a sub-parameter thereof). However, the topic of inference after model selection
turns out not to be trivial at all and we will thus shortly discuss the topic. This discussion will
show that also the choice of coverage target may not be as obvious as it may seem initially either.

In practice users often neglect to take effects of model selection on inferential procedures into
account, and as a result use “naive” tests and confidence sets. The effects of this are potentially
disastrous in terms of actual parameter-coverage in the context of confidence sets (see, for example
Pötscher, 1991 or Kabaila & Leeb, 2006) and type-1 error in the context of testing9 (c.f. Taylor &
Tibshirani, 2015), respectively. Hereby several effects are at play.

The first problem lies in model misspecification, as any of the true model’s left-out variables that
are correlated with some variable contained in selected model will cause a bias in the estimation.
This in turn leads to the confidence sets being centered at an incorrect (i.e., biased) estimate, a
fact that is not taken into account by naive procedures.

The second issue is the selection procedure’s own stochastic properties. As certain models will
be selected based on the response y and hence the random error ε, the traditional assumptions
used to construct tests and confidence sets are severely violated. Indeed, both a variable’s selection
probability as well as a test’s rejection probability will typically depend on the estimated effect
size and are thus far from independent. As a consequence, the conditional probability of falsely
rejecting the null-hypothesis10 given that a variable has been selected by a procedure is inflated.
This leads to an overall inflation of the type-1 error, a fact that has been pointed out by Taylor &
Tibshirani (2015).

9Note that while in this thesis we only discuss confidence sets, the two concepts are closely related as a confidence
set may be obtained by inverting a test and the other way around.

10Of there being no effect for the variable, i.e., βj = 0.
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Given these properties, one may be tempted to conclude that any meaningful kind of inference
is nearly impossible in the presence of large numbers of available explanatory variables, as a test’s
power will be very low11 and component-wise confidence intervals quite long12 in the largest possible
model. On the other hand, the exclusion of important variables within a model selection step will
render the resulting naive confidence sets and tests unusable.

However, a new view on the matter has arisen which eradicates at least the problems induced
by misspecification biases. To cite George Box in saying that “all models are wrong, but some are
useful”, Berk et al. (2013) argue that, since there is no way of determining whether one’s working
model, however large, is correctly specified in the sense that all regressors of the true model (should
there even be one) are contained in the working model, the coverage target should not be the true
parameter from the unknown data-generating model, but the parameter given the model. This
means that the coefficients’ interpretation depends on the selected model. More specifically, let the
index set I ⊆ {1, . . . , p} represent the selection of regressors in a submodel. If the corresponding
sub-matrix containing only those regressors, XI , has full rank, then one may define the so-called
post-selection inference (PoSI) target as

β̃I = (XIXI)−1XIXβ.

Note that in general β̃I = βI , the sub-vector containing the corresponding selection of components
of the parameter vector in the true model. (Clearly also β̃I = β̃J for I = J in general.) The
quantity β̃I is the true parameter in the model

y = XI β̃I +

with error-term such that E( ) = 0, in the sense that XI β̃I is the expectation of the projection
of y onto the space spanned by the regressors that are contained in the set I. Note that in general

differs from ε, the error in the true model.

Conducting inference after model selection for this type of coverage target has been shown to
yield much better results in terms minimal coverage probability when using naive procedures to
construct confidence sets (c.f. Leeb et al., 2015), at least in simple settings. On the other hand, a
method of constructing honest confidence sets that accounts for the presence of any kind of model
selection has been proposed in Berk et al. (2013). However, one would expect methods that are
tailored to the specific kind of model selection to be more efficient13. Thus the idea of covering
the PoSI target has been taken up by a number of authors. Contributions that deal specifically
with PoSI confidence sets after a Lasso-based model selection step include the afore-mentioned Lee
et al. (2016); Tibshirani et al. (2016); Meir & Drton (2017); Zhao et al. (2017); Kivaranovic & Leeb

11If corrected for the global type-1 error.
12When covering the entire parameter vector, i.e., all components simultaneously.
13In the sense that they yield smaller confidence sets, or more powerful tests.
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(2018) and Min & Zhou (2019). Tibshirani et al. (2018) provide a test for a PoSI target after a
Lasso-, Forward-, or Least Angle Regression selection step.

While the topic of covering the PoSI target has been quite actively researched, the one of
inference after model selection for the “classic” coverage target β after a Lasso-selection has not
been covered in this much detail14 with notable contributions being Taylor & Tibshirani (2015) and
Lockhart et al. (2014) who have provided a significance test for each additional variable entering a
Lasso path. The latter concept was later generalized to so-called affine selection procedures (which
include the Lasso) while also removing the assumption of the errors’ Gaussianity, see Tian & Taylor
(2017). Liu et al. (2018) discuss the problem of inference after model selection for both15 kinds of
target.

In this thesis we consider the case of confidence sets that are based on the Lasso estimator and
are designed to cover the true parameter vector, or parts thereof, thus dealing with both of the
above-mentioned issues of inference after model selection, i.e., parameter misspecification in the
working model and accounting for the selection procedure’s stochastic properties.

2.3 Assumptions

Recall model (1.1):
y = Xβ + ε.

We now assume that X, the n × p regressor matrix has full column-rank p and ε, the unobserved
error term, consists of independent and identically distributed components with mean zero and
finite variance σ2 > 0.

2.4 Finite-sample results

As mentioned in this chapter’s introduction, we aim to construct confidence sets for the entire
parameter vector β based on the Lasso estimator β̂L. More formally, this means that for a non-
random set M ⊆ Rp, we consider sets of the form

β̂L − M = {β̂L − m : m ∈ M}

which have to satisfy that the probability of actually covering the unknown parameter β never,
for no value of β, falls below a prescribed level 1 − α with α ∈ [0, 1]. In other words, we need
Pβ(β ∈ β̂L − M) ≥ 1 − α for all β ∈ Rp (where we stress the dependence of the probability measure

14At least in low-dimensional settings; also see Section 2.1.
15The full (true) parameter as well as the PoSI target.
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on β whenever it occurs), so that

inf
β∈Rp

Pβ(β ∈ β̂L − M) ≥ 1 − α.

In order to achieve this, we need to be able to compute this “infimal” (minimal) coverage probability.
For our finite-sample considerations in this and the following subsections we suppose that the errors
follow a normal distribution

ε ∼ N(0, σ2In),

an assumption that will be removed for asymptotic results in Section 2.6. We will show that the
minimum occurs when the components of the unknown parameter become large in absolute value
by essentially doing the following. We reparametrize the objective function defining the Lasso
estimator so that the dependence on the unknown parameter becomes more transparent and easier
to handle. We then consider the limiting cases of the objective functions when all components of
the unknown parameter vector β become large in absolute value, that is, tend to +∞ or −∞. We
will see that it is possible to minimize the resulting objective functions explicitly, with minimizers
that follow a shifted normal distribution that has the same variance-covariance matrix as the Least-
squares estimator and by construction do not depend on the unknown parameter. Finally, we will
show that the minimal coverage probability of the proposed sets is indeed “achieved” for one of
these finitely many limiting cases.

To state the main theorem recall the re-parametrized objective function V which is uniquely
minimized at the estimation error, û = (β̂L −β). Also note that V depends on β, despite this being
suppressed in the notation.

V (u) = u Cu − 2u W + 2
p

j=1
λj [|uj + βj | − |βj |] .

Further note that for a set M ⊆ Rp we have

Pβ(β ∈ β̂L − M) = Pβ(û ∈ M).

The above-mentioned limiting cases of the objective function that we consider are defined as

V d(u) = u Cu − 2u W + 2
p

j=1
λjdjuj , (2.1)

where d = (d1, . . . , dp) ∈ {−1, 1}p. Holding W fixed for a moment, we indeed see that

V d(u) = lim
dj βj →∞
j=1,...,p

V (u).
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As short-hand notation, we write ûd for the unique minimizer of V d.

We commence the analysis of the estimator by proving a result quantifying the maximal distance
between the Lasso and the Least-squares estimator in finite samples.

Proposition 1. For each j = 1, . . . , p we have

(C(β̂L − β̂LS))j ≤ λj .

Proof. We have W = X ε = CûLS where ûLS = β̂LS − β. Consider the directional derivative of V at
its minimizer û in the direction of ej and (−ej), the (negative) j-th unit vector. We have

0 ≤ ∂

∂ej
V (û) = 2(Cû)j − 2Wj + 2λj 1{ûj≥−βj} − 1{ûj<−βj}

≤ 2(Cû)j − 2(CûLS)j + 2λj ,

as well as

0 ≤ ∂

∂(−ej)V (û) = −2(Cû)j + 2Wj + 2λj 1{ûj≤−βj} − 1{ûj>−βj}

≤ −2(Cû)j + 2(CûLS)j + 2λj .

Piecing the two displays’ inequalities together yields the result.

While primarily serving as a technical vehicle in this chapter, Proposition 1 shows an inter-
esting fact about the relationship of the Lasso and the Least-squares estimator, namely that the
distance between the two is bounded by a parallelogram whose size is determined by the size of the
penalization vector’s components, λj . This will be further explored in Chapter 3.

Next, we consider the case in which the sign of the true parameter β is known. In reality,
this may be the case due to prior knowledge about an estimation problem at hand, or follow
from physical constraints, for example. However, one may also simply view this assumption as a
vehicle that gets us part of the way towards a more general result16. To simplify things further, we
assume, without loss of generality17 that β ∈ Oι, i.e., that all components of the true parameter
are non-negative.

The following proposition gives a way of calculating the minimal coverage probability of all sets
satisfying certain shape constraints. This proposition, in fact, is the core of most considerations in
this chapter. The result hinges on the fact that given the knowledge about the parameter vector’s
true sign, the Lasso’s true estimation error can be shown to lie within a set that is framed by a

16In fact, this may prove to be the best view of the assumption, since otherwise, restricting the estimator to the
parameter-space considered would seem more natural.

17Otherwise, one may recover the general case by flipping the signs of the regressor matrix’ corresponding columns.
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number of linear equations that depend on ûι and C. In order to define these sets’ component-wise
restrictions, we first define the following sets. For m ∈ Rp and a positive definite p × p matrix C̄,
we define

A
dj

C̄,j
(m) = {z ∈ Rp : dj(C̄m)j ≤ dj(C̄z)j , djzj ≤ 0} and

B
dj

C̄,j
(m) = {z ∈ Rp : (C̄z)j = (C̄m)j , djzj > 0}

for j = 1, . . . , p.

Proposition 2. If M ⊆ Rp satisfies that

p

j=1
A

ιj

C,j(m) ∪ B
ιj

C,j(m) ⊆ M

for all m ∈ M , then
inf

β∈Oι
Pβ(û ∈ M) = P (ûι ∈ M).

Proof. We first show that infβ∈Oι Pβ(û ∈ M) ≥ P (ûι ∈ M) by showing that for each fixed ω ∈ Ω,
ûι ∈ M implies that û ∈ M as long as βj ≥ 0 for all j. For this, we first show the following two
facts.

(a) (Cûι)j ≤ (Cû)j for all j = 1, . . . , p.

Suppose there exists a j0 such that (Cûι)j0 > (Cû)j0 and note that since all partial derivatives
of V ι must be zero at its minimizer ûι, we have (Cûι)j = Wj − λj for each j = 1, . . . , p . Now
consider the directional derivative of V at its minimizer û in direction ej0 ,

∂V (û)
∂ej0

= 2(Cû)j0 − 2Wj0 + 2λj0 1{ûj0 ≥−βj0 } − 1{ûj0 <−βj0 }

≤ 2(Cû)j0 − 2Wj0 + 2λj0

= 2(Cû)j0 − 2(Cûι)j0 < 0,

which is a contradiction to û minimizing V .

(b) ûj > 0 implies (Cû)j = (Cûι)j for any 1 ≤ j ≤ p.

If ûj > 0 (and hence ûj + βj > 0 when βj ≥ 0), then V is partially differentiable at û with
respect to the jth component. Therefore, we have

∂V (û)
∂uj

= 2(Cû)j − 2Wj + 2λj

= 2(Cû)j − 2(Cûι)j = 0.
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Now, by facts (a) and (b) we have that û ∈ Aι
C(ûι) ∪ Bι

C(ûι). So, by assumption, ûι ∈ M implies
û ∈ M as long as βj ≥ 0 for all j. We have therefore shown that

inf
β∈Oι

Pβ(û ∈ M) ≥ P (ûι ∈ M).

To see the reverse inequality, note that if ûj + βj > 0 for all j, then V is differentiable at û and

∂V (û)
∂u

= 2Cû − 2W + 2λ = 2Cû − 2Cûι = 0,

implying that û = ûι. Also note that ûj + βj > 0 for each j is equivalent to all of the Lasso’s
components being strictly positive, i.e., β̂L ∈ Oι

int, so that

{û ∈ M} ⊆ {ûι ∈ M} ∪ {β̂L /∈ Oι
int}.

Now let κ be a bound in the sup-norm on the set {z ∈ Rp : Cz ∞ ≤ λ ∞} and for an arbitrary
ε > 0, pick β∗ ∈ Rp such that P (ûLS ≤ κι − β∗) ≤ ε, where ûLS = (β̂LS − β∗) ∼ N(0, σ2C−1). Note
that by Proposition 1, this implies that

Pβ∗(β̂L ≤ 0) = Pβ∗(û − ûLS + ûLS ≤ −β∗) ≤ Pβ∗(−κι + ûLS ≤ −β∗) ≤ ε,

yielding
inf

β∈Oι
Pβ(û ∈ M) ≤ Pβ∗(û ∈ M) ≤ P (ûι ∈ M) + ε.

Since ε > 0 was arbitrary, this shows the desired inequality.

Using Proposition 2, we can obtain a result on the minimal coverage probability of a large
class of sets for the general case (i.e., the case where the signs of β are unknown) by applying
the proposition to all possible orthants using a sign-flipping argument. To that end, it will prove
convenient to first describe the sets for which Proposition 2 can be applied orthant-wise.

For m ∈ Rp, a vector d ∈ {−1, 1}p and a matrix C̄ ∈ Rp×p, we define

Ad
C̄

(m) =
p

j=1
A

dj

C̄,j
(m)

=
p

j=1
{z ∈ Rp : dj(C̄m)j ≤ dj(C̄z)j , djzj ≤ 0}.

The set Ad
C̄

(m) is an intersection of 2p half-spaces, p of which determine the orthant the set is
located in via the sign-vector d. The other p half-spaces are defined by hyperplanes that intersect
at the point m. Figure 2.1 shows one example of such a set. Note that in general Ad

C̄
(m) could be

non-empty also for sgn(m) = −d.
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Figure 2.1: The set A−ι
C̄

(m) with ι = (1, 1) , m = (1.5, 2) and C̄ = 1 −0.5
−0.5 1 along with the

hyperplanes defining the set. The point m = (1.5, 2) is displayed as a dot.

Before stating this chapter’s main theorem note the following property which shows how ap-
plying the requirements of Proposition 2 to all orthants can be simplified to a relatively compact-
looking condition.

Lemma 3.

d∈{−1,1}p

p

j=1
A

dj

C̄,j
(m) =

d∈{−1,1}p

p

j=1
A

dj

C̄,j
(m) ∪ B

dj

C̄,j
(m)

Proof. We fix m and C̄, drop the corresponding subscripts and show that the set on the left-hand
side of the equation contains the set on the right-hand side of the equation. To this end, take
any point z from the set on right-hand side. Then there exists a d ∈ {−1, 1}d such that for each
j = 1, . . . , p, z is either contained in A

dj

j or in B
dj

j . We pick l ∈ {−1, 1}p in the following way: if
z ∈ A

dj

j , set lj = dj and if z ∈ B
dj

j , set lj = −dj . Then, by construction, z ∈ Al
j for all j = 1, . . . , p

and therefore z ∈ j Al
j so that z is contained in the set on the left-hand side of the equation.

The sets we consider can now be determined by the following condition.

Condition A. Let C̄ ∈ Rp×p be given. We say that a set M ⊆ Rp satisfies Condition A with
matrix C̄ if

Ad
C̄

(m) ⊆ M

for all d ∈ {−1, 1}p and for all m ∈ M .

Using this notation, we can now state the main theorem which enables us to calculate minimal
coverage probabilities for a large class of sets.
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Theorem 4. If M ⊆ Rp is non-random and satisfies Condition A with C̄ = C, then

inf
β∈Rp

Pβ(û ∈ M) = min
d∈{−1,1}p

P (ûd ∈ M),

where ûd ∼ N(−C−1Λd, σ2C−1).18

Proof. First note that
inf

β∈Rp
Pβ(û ∈ M) = min

d∈{−1,1}p
inf

β∈Od
Pβ(û ∈ M).

Thus, if we can show that
inf

β∈Od
Pβ(û ∈ M) = P (ûd ∈ M)

for each d ∈ {−1, 1}p, the proof is done. Now, fix d and set D = diag(d). We consider the function

Ṽ (u) = V (Du) = u DCDu − 2u DW + 2
p

j=1
λj [|djuj + βj | − |βj |]

= u C̃u − 2u W̃ + 2
p

j=1
λj [|uj + djβj | − |djβj |] ,

where C̃ = DCD, W̃ = DW ∼ N(0, σ2C̃). We write ũ for the minimizer of Ṽ , and, analogously to
Section 2.4, we define ũι to be the minimizer of the function u C̃u − 2u W̃ + 2 p

j=1 λjuj .
If we can show that the set DM satisfies the requirement of Proposition 2 with the matrix C̃

in place of C, we may conclude that

inf
β:djβj≥0

Pβ(ũ ∈ DM) = P (ũι ∈ DM).

Note that û = Dũ, ûd = Dũι and D−1 = D, so that

inf
β∈Od

P (û ∈ M) = inf
β∈Od

P (ũ ∈ DM) = P (ũι ∈ DM) = P (ûd ∈ M),

which proves the formula for the infimal coverage probability. We now show that the set DM

satisfies that
p

j=1
Aι

C̃,j
(Dm) ∪ Bι

C̃,j
(Dm) ⊆ DM

for all m ∈ M . A straightforward calculation shows that this is equivalent to

p

j=1
A

dj

C,j(m) ∪ B
dj

C,j(m) ⊆ M

18Recall that Λ = diag(λ).
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for each m ∈ M which clearly holds by Condition A and Proposition 3. As V d is strictly convex,
the distributional result on ûd immediately follows by solving

∂V d(u)
∂u

= 0

and observing that
W ∼ N(0, σ2C).

Remark 5. Inspection of the preceding proof will show that the characterization of the minimal
coverage probability in Theorem 4 does not depend on the distribution of û and, in principle, holds
for any error distribution, if ûd, are viewed as the minimizers of V d. Do note, however, that the
distributions of our stochastic bounds for the true estimation error, ûd will very much depend on
the distribution of ε. Since the assumption of Gaussian errors is a standard one, non-Gaussian
cases will not be discussed in this thesis.

The distributions of ûd that determine the formula for the infimal coverage probability are
shifted normal distributions with the same variance-covariance matrix as the estimation error of
the corresponding Least-squares estimator, ûLS = β̂LS − β. The distribution’s mean depends on
the regressors and the vector of tuning parameters. This fact is quite useful for the calculation of
minimal coverage probabilities, as the normal distribution probably is one of the best-understood
distributions and easy to calculate numerically using software. Since Condition A for p = 1 simply
requires the corresponding set M to be an interval containing zero, Theorem 4 is indeed a gen-
eralization of the formula in Theorem 5(a) in Pötscher & Schneider (2010), as discussed in the
introduction. (To make the connection, note that the tuning parameter ηn in that reference cor-
responds to a component 1√

n
λj of the vector of tuning parameters in this thesis.) The following

obvious corollary specifies the resulting valid confidence region based on the Lasso estimator.

Corollary 6. Let 0 < α < 1. If M ⊆ Rp is non-random and satisfies Condition A with C̄ = C, as
well as mind∈{−1,1}p P (ûd ∈ M) = 1 − α with ûd ∼ N(−C−1Λd, σ2C−1), then

inf
β∈Rp

Pβ(β ∈ β̂L − M) = 1 − α.

2.5 Constructing a confidence set

We now turn to a discussion of the important matter of how to choose an appropriate set M ⊆ Rp

for some desired level of confidence 1−α by discussing concrete shapes for the confidence regions as
well as their size and relation to confidence sets based on the Least-squares estimator. As mentioned
in the previous section, we need to find a set M ⊆ Rp that satisfies Condition A with C̄ = C and
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such that mind∈{−1,1}p P (ûd ∈ M) = 1 − α where

ûd ∼ N(−C−1Λd, σ2C−1).

The resulting confidence set for β is then the shifted set β̂L − M . If we based the set on the
Least-squares estimator β̂LS instead of β̂L, the canonical and best choice for M in terms of volume
is an ellipse determined by the contour lines of a N(0, σ2C−1)-distribution, the C-ellipse. Given
the fact that the variance-covariance matrix of the distributions of ûd is in fact σ2C−1, in addition
to the fact that the means of the distributions add up to zero, it seems reasonable to consider the
C-ellipse as a shape in connection with the Lasso estimator also. Indeed, it turns out that the
C-ellipse does have some convenient properties. First, it does comply with Condition A which is
shown in the following proposition.

Proposition 7. For any k > 0 the C-ellipse given by

EC(k) = {z ∈ Rp : z Cz ≤ k}

satisfies Condition A with C̄ = C for any k > 0.

Proof. Let m ∈ EC(k) and t ∈ Ad
C(m). We show that t ∈ EC(k). Remember that D = diag(d)

satisfies DD = Ip. Since t ∈ Ad
C(m) we have −Dt ∈ Oι and −DC(m − t) ∈ Oι implying that

t C(m − t) = (Dt) DC(m − t) ≥ 0.

Furthermore, since (m − t) C(m − t) ≥ 0, we have

m C(m − t) ≥ y C(m − t) ≥ 0

which in turn yields
m Cm ≥ m Ct ≥ t Ct ≥ 0.

But this means that k ≥ m Cm ≥ m Ct ≥ t Ct and therefore t ∈ EC(k).

Given that the C-ellipse satisfies Condition A, we still have to calculate the coverage prob-
abilities of 2p Gaussian random variables in order to construct a valid confidence set, perhaps
even iteratively for several sizes. Conveniently, however, it turns out that one only has to con-
sider one of these 2p ûd’s. Indeed, it is sufficient to consider the vertexes of the parallelogram19

{C−1/2Λd : d ∈ {−1, 1}p} that have the largest Euclidean distance from the origin. This is shown
in the next proposition.

19This set can be viewed as a box around the origin that is distorted by the linear Function C−1/2Λ which yields
a parallelogram.
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Proposition 8. For any k > 0, we have that

arg min
d∈{−1,1}p

P ûd ∈ EC(k) = arg max
d∈{−1,1}p

C−1/2Λd 2.

Proof. We transform the ellipse to a sphere and the corresponding normal distribution to have
independent components with equal variances.

P ûd ∈ EC(k) = P C1/2ûd ∈ C1/2EC(k) ,

where C1/2ûd ∼ N(−C−1/2Λd, σ2Ip) and C1/2EC(k) = {z ∈ Rp : z 2
2 ≤ k}. So clearly, the

smallest probability will be achieved for the distribution with mean furthest away from the origin,
which is any d∗ maximizing C−1/2Λd 2 over all d ∈ {−1, 1}p.

Note that if d∗ ∈ {−1, 1}p solves the above optimization problem, so does −d∗. To finally
obtain the confidence ellipse based on the Lasso estimator, pick any such optimizer d∗ and compute
k∗ > 0 so that P (ûd∗ ∈ EC(k∗)) = 1 − α, which is easily done numerically. Note that Proposition 8
also shows that the ellipse EC(k∗), and therefore the resulting confidence set based on the Lasso
estimator, is larger in volume than the one based on the Least-squares estimator, since EC(k∗)
needs to be large enough as to have mass 1 − α with respect to the N(−C−1Λd∗, σ2C−1)-measure
whereas for the ellipse corresponding to the Least-squares estimator, it suffices to have mass 1 − α

with respect to the N(0, σ2C−1)-measure. Clearly, the difference in size will increase as the tuning
parameters become larger. These observations are in line with the findings in Pötscher & Schneider
(2010) who show that a confidence interval based on the Lasso estimator is larger than a confidence
interval based on the Least-squares estimator with the same coverage probability. When comparing
the two confidence sets, we emphasize that since the ellipses are centered at different values20, the
smaller ellipse based on the Least-squares estimator is in general not contained in the ellipse based
on the Lasso estimator. This, as well as the difference in volume between the two ellipses, will also
be illustrated in the below example.

It is quite obvious that the C-ellipse is not optimal as a shape for confidence sets based on the
Lasso estimator, since we can get higher coverage with a set of the same volume by adjusting the
ellipse “towards” the contour lines of the N(−C−1Λd∗, σ2C−1)-distributions (in such a way that
Condition A is preserved). To find the best possible shape, one would have to minimize the volume
of the set over all possible shapes satisfying Condition A subject to the constraint of holding the
prescribed minimal coverage probability. This is a highly complex optimization problem and we
do not dwell further on this subject here, but illustrate possible ways to construct “good” sets, as
shown in the example below. Before discussing this further, note that the following proposition
shows that it is easy to find the closure of an arbitrary subset of Rp with respect to Condition A,

20I.e., β̂L and β̂LS.
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by simply “adding” the required points.

Proposition 9. For any M ⊆ Rp, the set

m∈M d∈{−1,1}p

Ad
C̄

(m)

is the smallest set containing M that satisfies Condition A.

Proof. We start by showing that for any m ∈ Rp, d ∈ {−1, 1}p, we have

Ad
C̄

(t) ⊆ Ad
C̄

(m) for all t ∈ Ad
C̄

(m). (2.2)

Let z ∈ Ad
C̄

(t). Then djzj ≤ 0 and (C̄t)j ≤ (C̄z)j for all j. But since t ∈ Ad
C̄

(m), we also have
(C̄m)j ≤ (C̄t)j for all j so that that (C̄m)j ≤ (C̄z)j for all j and therefore z ∈ Ad

C̄
(m), thus proving

(2.2). So clearly, the set

m∈M d∈{−1,1}p

Ad
C̄

(m)

satisfies Condition A. For each m ∈ M , choose d ∈ {−1, 1}p in such a way that dj = 1 if mj = 0
and dj = − sgn(mj) for mj = 0. We then get m ∈ Ad

C̄
(m), implying that the set in the display

above actually contains M .

We now take a look at an example for p = 2 illustrating the difference between the confidence
ellipse based on the Least-squares estimator and the one based on the Lasso, as well as how to
choose a better shape in terms of volume for the confidence set based on the Lasso estimator.
The simulations and calculations were carried out using the statistical software package R. The
example is set up in the following way. We let n = 20 and generate the (n × 2)-matrix X using
independent and identically distributed standard normal entries that are transformed row-wise by
an appropriate (2 × 2)-matrix in order to get

C = 1 −0.5
−0.5 1

.

We generate the data vector y from the corresponding linear model with σ2 = 1 (so that ε ∼
N(0, In)) and true parameter chosen as β = (1, 0) . We compute the Lasso estimator using the
glmnet-package and tuning parameters λ1 = λ2 = 1

2 . We also considered estimators where the
tuning parameters were chosen by 10-fold cross-validation (as provided in the glmnet-package)
which ended up yielding comparable results for the estimator.

We then construct confidence ellipses with level α = 0.05 based on both the Least-squares and
the Lasso estimator in the manner described earlier in this section. The resulting sets are shown
in Figure 2.2.
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Figure 2.2: The confidence ellipses based on and centered at the Lasso estimator β̂L = (1.15, 0)
(red) and the smaller one based on and centered at the Least-squares estimator β̂LS = (1.35, 0.17)
(blue), respectively.

The plot clearly illustrates the above-mentioned fact that the confidence ellipse based on the
Lasso estimator is larger than the confidence ellipse that is based on the Least-squares estimator.
Also, the two sets are overlapping by a large amount. This is not surprising, as the maximal
distance between the two estimators is bounded, c.f. Proposition 1. However, the Least-squares
ellipse is not entirely contained in the one based on the Lasso, stressing the fact the Theorem 4
yields non-trivial sets.

The above comparison between the two ellipses, however, is somewhat unfair in the sense that
the shape used for both confidence sets is the optimal21 one for the Least-squares estimator, but,
as discussed above, not for the Lasso estimator. With the optimal shape for a Lasso confidence set
being unknown, we at least want to find a shape that improves upon the ellipse. As a basis for
this, we consider the union of the contour sets corresponding to the distributions of ûd, that is, the
2p shifted C-ellipses

U(k) =
d∈{−1,1}p

EC(k) − n−1/2C−1Λd,

where each set in the union is of optimal shape for the corresponding distribution of ûd. As a
starting point we choose the set’s size parameter k so that P (ûd ∈ EC(k) − C−1Λd) = 1 − α. (Note
that k is then simply the parameter of the C-ellipse used for the Least-squares estimator, but any
k > 0 such that U(k) satisfies P (ûd ∈ U(k)) ≥ 1 − α works.) Clearly, this set is still too large
and will not satisfy Condition A, so we need to address these two issues. First, we add all points

21In terms of volume.
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Figure 2.3: (a) Construction of the alternative shape based on 2p = 4 ellipses with two of the
Least-squares-ellipses displayed within the set. (b) The resulting improved confidence set with the
alternative shape (blue) and the previous elliptic shape (red), both based on at the Lasso estimator
β̂L = (1.15, 0) .

necessary so that the resulting set satisfies Condition A. Proposition 9 ensures that

m∈U(k) d∈{−1,1}p

Ad
C(m)

fulfills the desired condition. Note that in this particular case, it is fairly straightforward to see that
this set is simply given by the convex hull of the shifted ellipses U(k). Finally, to get the smallest
set with this shape that still holds the prescribed level of coverage, we iteratively adjust the set
by reducing the parameter k and re-calculate the minimal coverage probability of the resulting set
until the desired minimal coverage probability is reached (up to an arbitrary level of precision).
The resulting alternatively shaped set in our example is depicted in Figure 2.3, (a) showing 2 of
the 2p = 4 ellipses used in the construction and (b) displaying the new confidence set on top of the
elliptic confidence region based on the Lasso as devised before. It is quite obvious that the new
shape has slightly less volume than the ellipse.

2.6 Asymptotic framework

We now derive asymptotic results that hold without assuming normality of the errors. Naturally,
most quantities in our setup depend on the sample size n. While this has been suppressed in

24



the notation used so far, we make this dependence explicit in this subsection. Thus, X = Xn,
C = Cn = XnXn, ε = εn and Wn = Xnεn. Regarding the design matrix we assume that, in addition
to the assumptions in Section 2.3, and for all asymptotic considerations, Xn = (x1·, . . . , xn·) where
xi· ∈ Rp, meaning that the regressor matrix Xn changes with n only by appending rows.

We also need to make assumptions about the asymptotic behavior of the design matrix:

Cn

n
−→ C∞

as n → ∞, where C∞ is finite and positive definite. (Note that this setting assures consistency and
asymptotic normality of the Least-squares estimator, c.f. Theorem 58 in Appendix C, for example.)

In the subsequent analysis we consider a so-called moving-parameter framework, i.e., we also
allow the parameter β to depend on the sample size: β = βn. In practice, also the tuning vector
λ will typically (be chosen to) depend on the sample size, so that λ = λn. In line with the
general notation, let Λn = diag(λn). While not important in the finite-sample analysis, the tuning
parameter’s asymptotic behavior is of vital importance when considering the limiting behavior of
the estimator. We will consider two different regimes of the tuning parameter’s behavior as n gets
large and start with the regime we refer to as conservative tuning.

Before proceeding to the corresponding subsection note that also the estimators β̂L and β̂LS do
depend on the sample size. However, we will continue to suppress this dependence in order to ease
notation.

2.6.1 Conservative tuning

In this regime and throughout this subsection, we require that

λn√
n

−→ λ∞ ∈ [0, ∞)p

as n → ∞. This implies that λn,j

n → 0 for all j = 1, . . . , p , which in turn implies consistency of β̂L

(see Theorem 1 in Knight & Fu, 2000 with the slight modification that in this thesis we allow for
component-wise defined tuning parameters). Similarly to the previous sections let Λ∞ = diag(λ∞).

Remark 10. Such a choice of tuning parameters indeed yields a conservative model selection
procedure in the sense that

lim sup
n→∞

sup
β∈Rp

Pβ β̂j = 0 < 1 (2.3)

for each j = 1, . . . , p. In particular, if βn,j = 0 for each n, we have

lim sup
n→∞

Pβn β̂j = 0 < 1.

The latter statement was also noted by Zou (2006) in Proposition 1.
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Proof. We show (2.3). Note that Proposition 1 entails that

β̂L ∈ β̂LS − 1√
n

Bn,

where
Bn = {z ∈ Rp : | 1

n(Cnz)j | ≤ 1√
n

λn,j for j = 1, . . . , p}.

Since λn converges, we have Bn ⊆ nC−1
n B̄δ with B̄δ = {x ∈ Rp : x ∞ ≤ δ} for some δ > 0. Since

nC−1
n → C−1∞ , the set {nC−1

n : n ∈ N} is bounded in operator sup-norm by Banach-Steinhaus22, so
that the set Bn is uniformly bounded over n in sup-norm by, say, γ > 0. We now fix a component
j and show that lim infn→∞ infβ∈Rp Pβ(β̂L,j = 0) > 0. To this end, define Ψj = Rj−1 × {0} ×Rp−j .
Let ξ2

j,n and ξ2
j,∞ be the positive jth diagonal element of C−1

n and C−1∞ , respectively. Observe that

inf
β∈Rp

Pβ(β̂L,j = 0) ≥ inf
β∈Rp

Pβ (β̂LS − 1√
n

Bn) ∩ Ψj = ∅

≥ inf
β∈Rp

Pβ

√
nβ̂LS,j + γ < 0 or

√
nβ̂LS,j − γ > 0

= 2Φ(− γ
ξi,n

) −→ 2Φ(− γ
ξi,∞ ) > 0

To derive asymptotically valid confidence sets for the general case of independent errors we will
consider an appropriately scaled version of the Lasso estimation error. To that end let

Qn(u) = L u√
n

+ βn − L(βn)

= u Cn
n u − 2u Wn√

n
+ 2√

n

p

j=1
λj |uj +

√
nβn,j | − |√nβn,j | .

Note that this function is minimized at
√

n(β̂L − βn), the scaled estimation error. To implicitly
state the asymptotic distribution of the estimator by considering the asymptotic behavior of the
function Qn in the following proposition. This proposition essentially is Theorem 5 from Knight &
Fu (2000) and can be proven in the same manner simply by adjusting for component-wise tuning.

Proposition 11. Assume that
√

nβn → β∞ ∈ Rp. Then
√

n(β̂L−βn) d−→ û∞ = arg minu∈Rp Q∞(u),
where

Q∞(u) = u C∞u − 2W∞u + 2
p

j=1
λj 1{β∞,j∈R}(|β∞,j + uj | − |β∞,j |) + 1{|β∞,j |=∞} sgn(β∞,j)uj

(2.4)
and W∞ ∼ N(0, σ2C∞).

22C.f., for example, Theorem 57 in Appendix C.
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Note that the vector β∞ takes over the role of
√

nβn in the finite-sample version of the function,
Qn, where the cases of

√
nβn,j = ±∞ are now included in the asymptotic setting. Also, the

assumption of
√

nβn converging in Rp is not a restriction in the sense that, by compactness of
Rp, Proposition 11 characterizes all accumulation points of the distributions (with respect to weak
convergence) corresponding to completely arbitrary sequences of βn.

Similarly to the finite-sample case, we now define û∞ to be the unique minimizer of Q∞, and
for d ∈ {−1, 1}p, we define Qd∞(u) = u C∞u−2W∞u+2 p

j=1 λ∞,jdjuj with unique minimizer ûd∞.

Proposition 12. If M ⊆ Rp satisfies that

p

j=1
A

ιj

C∞,j(m) ∪ B
ιj

C∞,j(m) ⊆ M

for all m ∈ M , then
inf

β∞∈Ōι
Pβ∞(û∞ ∈ M) = P (ûι

∞ ∈ M).

Proof. The first part of the proof is completely analogous to the first part of the proof of Proposi-
tion 2 after identifying

√
nβn with β∞ and dropping the subscript n. To see the reverse inequality,

note that for β∗∞ = (∞, . . . , ∞) ∈ Rp, we actually have Q∞ = Qι∞, so that in this case we have
û∞ = ûι∞ which already yields that

inf
β∞∈Ōι

Pβ∞(û∞ ∈ M) ≤ Pβ∗∞(û∞ ∈ M) = P (ûι
∞ ∈ M).

We can now formulate an asymptotic version of Theorem 4.

Theorem 13. If M ⊆ Rp satisfies Condition A with C̄ = C∞, then

inf
β∞∈Rp

Pβ∞ (û∞ ∈ M) = min
d∈{−1,1}p

P ûd
∞ ∈ M ,

where ûd∞ ∼ N(C−1∞ Λ∞d, σ2C−1∞ ).

Proof. The proof again is completely analogous to the proof of Theorem 4 after identifying
√

nβn

with β∞, dropping the subscript n everywhere and using Proposition 12 instead of Proposition 2.
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Also, replace the orthant Od by its closure Ōd, let again D = diag(d) and note that

V d
∞(u) = V∞(Du)

= u DC∞Du − 2u DW∞ + 2
p

i=1
λj 1{β∞,j∈R}(|β∞,j + djuj | − |β∞,j |) + 1{|β∞,j |=∞} sgn(β∞,j)djuj

= u C̃∞u − 2u W̃∞ + 2
p

i=1
λj 1{djβ∞,j∈R}(|uj + djβ∞,j | − |djtj |) + 1{|djβ∞,j |=∞} sgn(djβ∞,j)uj ,

where C̃∞ = DC∞D and W̃∞ = DW∞.

Given this result we can again construct asymptotically valid confidence sets for the parameter
βn in the following way.

Corollary 14. If M ⊆ Rp satisfies Condition A with C̄ = C∞ and mind∈{−1,1}p P ûd ∈ M =
1 − α, where ûd ∼ N(C−1∞ Λ∞d, σ2C−1∞ ) then

lim inf
n→∞ inf

βn∈Rp
P βn ∈ β̂L − 1√

n
M = 1 − α.

Proof. Let c = lim infn→∞ infβn∈Rp Pβn(β ∈ β̂L − 1√
n

M). Then there exists a sequence βn in Rp

such that Pβn(βn ∈ β̂L − 1√
n

M) → c. Assume that
√

nβn → β∞ ∈ Rp (if the sequence does not
converge, pass to subsequences). Since

Pβn(βn ∈ β̂L − 1√
n

M) = Pβn(
√

n(β̂L − βn) ∈ M) −→ c = Pβ∞(û∞ ∈ M)

as n → ∞ in the notation of Proposition 11. Theorem 13 then yields c ≥ mind∈{−1,1}p P (ûd∞ ∈
M) = 1 − α. To see the reverse inequality, let βn = d ∈ {−1, 1}p and note that for this sequence,
we have

Pβn(βn ∈ β̂L − 1√
n

M) = Pβn(
√

n(β̂L − βn) ∈ M) −→ Pβ∞(û∞ ∈ M)

as n → ∞, where β∞ = (d1∞, . . . , dp∞) ∈ Rp. Note that for this choice of β∞, Pβ∞(û∞ ∈ M) =
P (ûd∞ ∈ M). Since d ∈ {−1, 1}p was arbitrary, c ≤ mind∈{−1,1}p P (ûd∞ ∈ M) = 1 − α follows.

We find that asymptotically in the case of conservative tuning, we essentially get the same
results as in finite samples when assuming normally distributed errors. The only difference is that
the minimal coverage holds asymptotically and that the quantities 1

nCn and 1√
n

Λn have settled to
their limiting values C∞ and Λ∞, respectively.

2.6.2 Consistent tuning

In the second regime and throughout this subsection, we suppose that

1√
n

λn,j −→ ∞
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for at least one j with 1 ≤ j ≤ p as well as

1
nλn,j −→ 0

for all j = 1, . . . , p as n → ∞, where the latter condition ensures estimation consistency of the
estimator. We refer to this regime as consistent tuning to highlight the contrast to conservative
tuning where λn,j converges for each j = 1, . . . , p. Yet we emphasize that in order to ensure
Pβn(β̂L,j = 0) → 1 whenever βn,j = 0, we would need λn,j → ∞ for each j = 1, . . . , p as well
as need additional conditions on the regressor matrix Xn. For a discussion concerning necessary
and sufficient conditions on Xn in this context see Zou (2006), Zhao & Yu (2006) and Yuan & Lin
(2007).

In the case of consistent tuning, the rate of the estimator is no longer 1√
n

, neither when looked
at in a fixed-parameter asymptotic framework (as has been noted by Zou (2006) in Lemma 3),
nor (a fortiori) within a moving-parameter asymptotic framework, as discussed in in Pötscher &
Leeb (2009) in Theorem 2. The latter reference shows that the correct (uniform) convergence rate
depends on the sequence of tuning parameters λn. Since we allow for component-wise tuning, in
fact, the rate depends on the largest component of the vector of tuning parameters, as can be seen
from the following proposition. We define

λmax
n = max

1≤j≤p
λn,j

and λ∗ = (λ∗
1, . . . , λ∗

p) by
λn,j

λmax
n

−→ λ∗
j ∈ [0, 1]

as n → ∞ for each j = 1, . . . , p. Note that λ∗
j = 1 for all j in case all components are equally tuned.

Proposition 15. Assume that nβn/λmax
n → ζ ∈ Rp. Then n(β̂L−β)/λmax

n
p−→ m = arg minu∈Rp Gζ∞(u),

where
Gζ

∞(u) = u C∞u + 2
p

j=1
λ∗

j 1{ζj∈R}(|uj + ζj | − |ζj |) + 1{|ζj |=∞} sgn(ζj)uj .

Proof. Define the function Gn(u) = n[L(βn+ λmax
n
n u)−L(βn)]/(λmax

n )2 and note that Gn is minimized
at n(β̂L − β)/λmax

n . The function Gn is then given by

Gn(u) = u
Cn

n
u − 2 1

λmax
n

u X ε + 2
p

j=1

λn,j

λmax
n

uj + n

λmax
n

βn,j − n

λmax
n

βn,j .

Clearly 1
nu Cnu → u C∞u by assumption. Since Xnεn/λmax

n = (
√

n/λmax
n )Xnεn/

√
n and λmax

n /
√

n →
∞ as well as Xnεn/

√
n = OP (1), the second term in the above display vanishes in probability. To

treat the third term, simply note that λn,j/λmax
n → λ∗

j ∈ [0, 1] and nβn,j/λmax
n → ζj ∈ R by
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assumption. Piecing this together yields

Gn(u) p−→ u C∞u + 2
p

j=1
λ∗

j 1{ζj∈R}(|uj + ζj | − |ζj |) + 1{|ζj |=∞} sgn(ζj)uj = Gζ
∞(u)

as n → ∞. Since Gn and Gζ∞ are strictly convex and Gζ∞ is non-random, it follows by Geyer
(1996)23 that also the corresponding minimizers converge in probability to the minimizer of the
limiting function.

In contrast to the finite-sample and the conservative-tuning case, we make the dependence of
the objective function Gζ∞ on the unknown parameter ζ ∈ Rp apparent in the notation to clarify
what is done in the following. Proposition 15 shows that λmax

n /n is indeed the correct (uniform)
convergence rate as the limit of n(β̂L −βn)/λmax

n is not zero in general. The proposition also reveals
that in the consistently tuned case, when scaled according the correct convergence rate, the limit
of the sequence of estimators is always non-random in a moving-parameter asymptotic framework.
This fact has already been noted for the one-dimensional case in Pötscher & Leeb (2009). This
fact allows us to construct very simple confidence sets in the case of consistent tuning by first
observing that the limit of n(β̂L −βn)/λmax

n is always contained in a bounded set which is described
in Proposition 16. To this end, define the set of all possible minimizers to the asymptotic objective
function as

M =
ζ∈Rp

arg min
u∈Rp

Gζ
∞(u). (2.5)

It turns out that this set can be given explicitly:

Proposition 16. The set M can be written as

z ∈ Rp : |(C∞z)j | ≤ λ∗
j , 1 ≤ j ≤ p = C−1

∞ z ∈ Rp : |zj | ≤ λ∗
j , 1 ≤ p .

Proof. The equality of the two sets given in the above display is trivial. We show that the set M as
defined in (2.5) is equal to the set on the left-hand side and start by proving that M is contained
in that set. Take any m ∈ M. By definition, there exists a ζ ∈ Rp such that m is the minimizer
of Gζ∞. We need to show that |(C∞m)j | ≤ λ∗

j for all j. Assume that |(C∞m)j0 | > λ∗
j for some

1 ≤ j0 ≤ p. If (C∞m)j0 > λ∗
j0 we consider the directional derivative of Gζ∞ at its minimizer m in

the direction of −ej0 to get

∂Gζ∞(m)
∂(−ej0) = −2(C∞m)j + 2λ∗

j0 1{mj+ζj≤0} − 1{mj+ζj>0}

≤ −2(C∞m)j + 2λ∗
j0 < 0,

23The corresponding result is stated as Theorem 56 in Appendix C.
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which is a contradiction to m minimizing Gζ∞. If (Cm)j0 < −λ∗
j0 , then consider the directional

derivative of Gζ∞ at m in the direction of ej0 to arrive at

∂Gζ∞(m)
∂ej0

= 2(C∞m)j + 2λ∗
j0 1{mj+ζj≥0} − 1{mj+ζj<0}

≤ −2(C∞m)j + 2λ∗
j0 < 0,

yielding a contradiction also.
To see the reverse set-inclusion, we need to show that for any m ∈ Rp satisfying |(C∞m)j | ≤ λ∗

j

for all j = 1, . . . , p, there exists a ζ ∈ Rp such that m is the minimizer of Gζ∞. Let ζ = −m ∈ Rp

and consider the directional derivative of Gζ∞ at m in any direction r ∈ Rp with r 2 = 1.

∂Gζ∞(m)
∂r

= 2r C∞m+2
p

j=1
λ∗

j |rj | ≥
p

j=1
−2|(C∞m)jrj |+2λ∗

j |rj | = 2
p

j=1
−|(C∞m)j | + λ∗

j |rj | ≥ 0.

Since the directional derivative is non-negative in any direction r ∈ Rp : r 2 = 1 and Gζ∞ is
(strictly) convex, m must be the minimizer.

Thus M can be viewed as a box that is distorted by the linear function C−1∞ , a bounded set
in Rp. In fact, this turns out to be a parallelogram whose corner points are given by the set
{C−1∞ Λ∗d : d ∈ {−1, 1}p}, where Λ∗ = diag(λ∗). Note that fittingly, these corner points can be
viewed as the equivalent of the means in the normal distributions (determining the minimal coverage
probability) in the conservative case in Theorem 13, appearing without randomness in the limit in
the consistently tuned case. Using Proposition 16, a simple asymptotic confidence set can now be
constructed as is done in the following corollary.

Corollary 17. We have
lim

n→∞ inf
β∈Rp

Pβ β ∈ β̂L − ψ
λmax

n

n
M = 1

for any ψ > 1 and
lim

n→∞ inf
β∈Rp

Pβ β ∈ β̂L − ψ
λmax

n

n
M = 0

for any ψ < 1.

Proof. We start with the case ψ > 1. Let c = lim infn→∞ infβ∈Rp Pβ(β ∈ β̂L − ψλmax
n M/n). By

definition, there exists a subsequence nk and elements βnk
∈ Rp such that

Pβnk
βnk

∈ β̂L − ψ
λmax

nk

nk
M = Pβnk

nk

λmax
nk

(β̂L − βnk
) ∈ ψM −→ c

as k → ∞. Note that ψM = {m ∈ Rp : |(C∞m)j | ≤ ψλ∗
j , 1 ≤ j ≤ p}. Now, pick a further

subsequence nkl
such that λmax

nkl
βnkl

/nkl
converges in Rp to, say, ζ. Proposition 15 then shows that
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Figure 2.4: The set M for C∞ = 1 −0.5
−0.5 1 and λ∗

j = 1 for j = 1, 2.

nkl
(β̂L − βnkl

)/λmax
nkl

converges in probability to the unique minimizer of Gζ∞ as l → ∞. Finally,
Proposition 16 implies that c = 1.

We next look the case where ψ < 1. Let m = C−1∞ λ∗ so that m ∈ M \ ψM. From the proof of
Proposition 16, we know that for ζ = −m we have m = arg minu∈Rp Gζ∞(u). Let βn = nζ/λmax

n . By
Proposition 15, n(β̂L − βn)/λmax

n converges to m in Pβn-probability, so that Pβn(n(β̂L − βn)/λmax
n ∈

dM) → 0.

Note that nothing can be said about the boundary case ψ = 1. This corollary is a generalization
of the simple confidence interval given in Proposition 6 in Pötscher & Schneider (2010). The shape
of the set M is displayed in Figure 2.4 for C∞ = 1 −0.5

−0.5 1 and λ∗
j = 1 for each j ∈ {1, 2}. Note

the set M is not required to satisfy Condition A and, in fact, will not comply with this condition
for certain matrices C∞.

A few properties should be noted here: First, the size of these sets decreases much more slowly
at the rate 1

nλmax
n compared to the case of conservatively tuned model selection, where the size

decreases at rate24 1√
n

. This is in line with Pötscher & Schneider (2010) and shows that one should
refrain from using consistently tuned Lasso estimators if one is interested in inference.

Moreover, it should be noted that the concept of an asymptotic probability one confidence set
is quite non-standard and hard to interpret, as it is questionable in which sense the asymptotic

24However, one should also note here that the confidence regions based on the consistently tuned Lasso may be
smaller, even contained in those based on the conservatively tuned estimator for small sample sizes n. This reflects
the fact that these are merely asymptotically valid, rendering them rather useless for quite small samples.
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distribution of the appropriately scaled estimation error, which is simply point-mass, represents the
finite-sample distribution which (while contracting to a point-mass) has full support on Rp for any
finite n and thus a probability one confidence region would have to be all of Rp (up to Lebesgue
null-sets) for any finite sample. It is thus probably best to view this asymptotic confidence set as
an interesting theoretical construct, rather than a method to conduct meaningful inference and use
a conservatively tuned Lasso estimator in case the latter is desired.

2.7 Discussion and conclusion

This chapter provides a method of constructing confidence sets for the entire parameter vector
that are based on the Lasso estimator. This is done by, for each ω ∈ Ω, bounding the estimation
error (whose distribution depends on the true parameter in an intricate way) by the minimizers
of functions that only depend on the unknown parameter via its sign-vector. These functions’
minimizers have quite well-behaved distributions and can be used to lower-bound the coverage
probability of sets satisfying rather mild conditions that depend on the regressor matrix. Moreover,
it is shown that the resulting bound for the coverage probability is indeed attained for certain
parameters, thus yielding a formula for the minimal coverage probability for such sets.

It is shown that the volumes of the resulting confidence sets are larger than the volume of the
(canonical) Least-squares confidence set. Moreover, the difference in volume depends on the level
of penalization that is governed by the size of the parameter vector λ, whereby smaller penalization
parameters correspond to smaller confidence regions. These findings hold both in finite samples as
well as in asymptotic settings where the estimator is tuned to perform conservative model selection.

When the Lasso is tuned to perform consistent model selection, an asymptotic probability one
confidence region can be constructed. This takes the form of a parallelogram that is determined by
the regressor matrix. The practical use of such a set is, however, debatable, since the asymptotic
distribution of the estimation error, which is simply point-mass, does not reflect the finite-sample
behavior well.

This chapter lays the theoretical foundations for further considerations, as the results and
considerations can be used to obtain solutions for more specific and practice-oriented issues, such
as the unknown variance case, single component-inference and partial Lasso inference. Some of
those questions are discussed in Chapter 4.
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Chapter 3

On the distribution of the Lasso
estimator

3.1 Introduction

Due to the lack of a closed-form expression, the distribution of the Lasso estimator has remained
unknown in the general1 case for quite some time despite its popularity in both theoretical analysis
and practice. The literature on the distributional properties of the Lasso estimator in the low-
dimensional setting (p ≤ n) includes the often-cited paper by Knight & Fu (2000) who derive the
asymptotic distribution when the estimator is tuned to perform conservative model selection, albeit
in an implicit form. Pötscher & Leeb (2009) give a detailed analysis in the framework of a linear
regression model with orthogonal design in which case the problem can be treated component-wise
and an explicit expression of the estimator is available. They derive the distribution of the Lasso
estimator in finite samples as well as in the two asymptotic regimes of consistent and conservative
tuning. They provide valuable insights into the behavior of the estimator by showing that the
component-wise distribution takes the form of a shifted Least-squares estimator conditional on the
estimate differing from zero and point-mass at the origin. However, this does not yield too much
information about the case of larger numbers of regressors with non-trivial dependence structures.
In more recent contributions, Jagannath & Upadhye (2018) give an approximate expression for the
marginal pdfs of the one-dimensional components of a linear transformation of the Lasso estimator,
while Miolane & Montanari (2018) provide concentration inequalities in a high-dimensional setup
under sparsity assumptions on the true parameter.

Most notably, however, Zhou (2014) produced the distribution of the so-called augmented Lasso,
that is, the Lasso estimator augmented by the subgradient of the penalization term β 1 of the Lasso
function2 by carefully examining the Karush Kuhn Tucker (KKT) conditions of a minimization

1I.e., a regression model with several non-orthogonal regressors.
2Evaluated at the Lasso solution.
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problem equivalent to the one used to define the Lasso in this thesis3. While this augmentation
seems redundant, it enables the construction of a bijection between the term X ε and the augmented
estimator. The distribution of the Lasso estimator itself can then be obtained by calculating the
marginal distribution of the augmented estimator. As the distribution of the augmented estimator
is mainly used as a vehicle to obtain more efficient re-sampling algorithms, the link between the
error term and the Lasso, however, is not easy to grasp when using the - quite abstract - approach
presented in this reference, thus leaving room for further analysis.

It turns out that a much more intuitive4 representation the Lasso’s distribution can be obtained
in a rather simple fashion, for example, using a fairly simple argument about convex optimization.
In this way, it is possible to gain a far better understanding of the relationship between the Lasso es-
timator and the error-term, i.e., the random part in our model, and thus ultimately, the distribution
of the estimator itself.

In essence we do the following: We consider a different minimality condition that is based on
directional derivatives. It turns out that using these conditions yields quite well-behaved distribu-
tions conditional on any given active set, i.e., the estimator’s non-zero components. Given these
parts we can then piece together the distribution of the Lasso estimator to obtain its cdf. This line
of reasoning works in both high- and low-dimensional settings, even though much more explicit
results can be obtained in the latter case. Moreover, using this minimality condition it is possible
to establish a unique relationship between the Lasso and the Least-squares estimator in the low-
dimensional case in the form of so-called shrinkage areas5: For each possible value of the Lasso
estimator, one can specify a set containing the corresponding Least-squares estimators.

The chapter also touches upon the topic of the estimator’s uniqueness in high-dimensional
settings and gives an intuitive illustration of the issue. An important contribution on this topic
which provides, for example, sufficient conditions for uniqueness, is Tibshirani (2013), while Ali
& Tibshirani (2019) extend these considerations to the generalized Lasso, which is considered in
this thesis. Finally, Ewald & Schneider (2020) extend this thesis’ findings and give a necessary
and sufficient condition for uniqueness, while Schneider & Tardivel (2020) generalize this result to
penalized Least-squares estimators whose penalties take the shape of a polytope-shaped norm (and
which encompass the Lasso).

We will also see that, in certain situations, the Lasso will not include some regressors in any its
models and this property is purely based on the design matrix as well as the penalty vector. This
is related6 to the concept of SAFE rules (El Ghaoui et al., 2012) and STRONG rules (Tibshirani

3Indeed, the Lasso can be viewed as the minimizer of a differentiable function over a restricted area by splitting
the parameter vector up into positive and negative parts, c.f. Rosset & Zhu (2007).

4In comparison to Zhou (2014).
5We choose the term shrinkage area, since all Least-squares estimates that fall into one of these sets are “shrunk”

to a corresponding Lasso solution by penalizing the estimator’s objective function.
6To learn how these concepts differ from the one that will be introduced in this chapter, refer to Section 3.4.
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et al., 2012) which allow for a removal of certain variables, thus improving the algorithm’s efficiency.

The chapter is organized as follows. After introducing some more notation (Section 3.2) we deal
with the low-dimensional case, obtaining the estimator’s distribution in finite samples in Section 3.3.
We then turn to the afore-mentioned shrinkage areas to describe the Lasso’s relationship with the
Least-squares estimator in Section 3.3.1. We continue by characterizing the Lasso’s distribution
in a high-dimensional setting in Section 3.4 including results on the estimator’s model selection
properties.

3.2 Setting and notation

Recall our linear model (1.1)
y = Xβ + ε.

We now assume that ε, the unobserved error term to be normally distributed: ε ∼ N(0, Inσ2).
Let {D+, D−, D0} be a partition of {1, . . . , p} into three sets (some of which may be empty). It

will be convenient to also describe this partition by a vector d ∈ {−1, 0, 1}p with dj = 1{j∈D+} −
1{j∈D−}. Recall that for such d, we denote by Qd = {z ∈ R : sgn(zj) = dj for j = 1, . . . , p} = {z ∈
Rp : zj < 0 for j ∈ D−, zj > 0 for j ∈ D+, zj = 0 for j ∈ D0}. Note that for m ∈ Rd, m+β ∈ Qd is
a short-hand notation for mj < −βj for j ∈ D−, mj > −βj for j ∈ D+ and mj = −βj for j ∈ D0.
To ease notataion later on let D± = D+ ∪ D− and let C± = XD±XD± .

3.3 The low-dimensional case

Throughout this section, we assume that X has full column rank p, implying that we are considering
the low-dimensional setting where p ≤ n. For our arguments, we again use the re-parametrized
version of the objective function: As in Chapter 2 we shall analyze the Lasso’s distribution by again
considering its estimation error û = β̂L − β which is the minimizer of the function

V (u) = L(β + u) − L(β) = u Cu − 2u W + 2
p

j=1
λj [|uj + βj | − |βj |] ,

where W = X ε ∼ N(0, σ2C).
The main difficulty when analyzing the Lasso estimator is that it is defined as the minimizer to

a non-differentiable function and hence does in general not possess an explicit7 form. Because of
this, previous analyses of the Lasso have considered various minimality conditions for the problem
defining the estimator. Most notable is perhaps the approach that has been adopted by Rosset
& Zhu (2007) as well as Zhou (2014) in which the components of the Lasso are split into positive

7At least not one that has a rather simple form and can be obtained by simply setting the function’s derivative
to zero.
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and negative parts and the Lasso is viewed as the minimizer of a differentiable function whose
components are restricted to being non-negative. The transformed minimization problem can then
be analyzed by looking at the corresponding Karush-Kuhn-Tucker conditions.

Instead of minimizing a differentiable function on a constrained space, we adopt a different
characterization of the Lasso estimator. While the Lasso function is not differentiable everywhere,
all of its directional derivatives exist at each point in Rp. Note that if, at some point of a function,
all directional derivatives are non-negative, the point must be a local minimizer. For strictly convex
functions, a point satisfying this property will be the function’s global minimizer. Conveniently,
it turns out that for the function V this property can be ensured by checking a much simpler
condition. Indeed, it is sufficient to check the directional derivatives in all (positive and negative)
directions of the coordinate axes. This characterization of the minimizer which leads up to this
chapter’s main theorem is stated in the following lemma.

Lemma 18. Let m ∈ Rp. The following are equivalent:

(a) ∂V (m)
∂r ≥ 0 ∀r ∈ Rp : r 2 = 1

(b) ∂V (m)
∂ej

≥ 0 and ∂V (m)
∂(−ej) ≥ 0 for j = 1, . . . , p.

Proof. Only (b) ⇒ (a) needs to be proved. Let d ∈ {−1, 0, 1}p such that m + β ∈ Qd and let
{D−, D+, D0} be the corresponding partition of {1, . . . , p}. A straight-forward calculation shows
that

∂V (m)
∂r

= 2r Cm − 2r W + 2
p

j=1
λj −1{j∈D−}rj + 1{j∈D+}rj + 1{j∈D0}|rj |

=
p

j=1
1{rj≥0} (2Cm − 2W )j + 2λj(−1{j∈D−} + 1{j∈D+∪D0}) rj

+ 1{rj<0} −(2Cm − 2W )j + 2λj(1{j∈D−∪D0} − 1{j∈D+}) (−rj)

=
p

j=1
1{rj≥0}

∂V (m)
∂ej

rj +
p

j=1
1{rj<0}

∂V (m)
∂(−ej) (−rj) ≥ 0.

Using this characterization, we can now state the main theorem which gives a set of probabilities
that make up the whole distribution of û = β̂L − β.

Theorem 19. Let z ∈ Rp. Let d ∈ {−1, 0, 1}p such that z + β ∈ Qd and let {D−, D+, D0} be the
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corresponding partition of {1, . . . , p}. Then

P (ûj ≤ zj for j ∈ D−, ûj ≥ zj for j ∈ D+, ûj = zj for j ∈ D0)

= · · ·
sj ∈[−λj ,λj ]

j∈D0

· · ·
mj ≥zj
j∈D+

· · ·
mj ≤zj
j∈D−

φ(0,σ2C)(Cmβ + sλ) det(C±)dmD−dmD+dsD0 ,

where mβ is given by (mβ)D± = mD±, (mβ)D0 = −βD0 and sλ ∈ Rp is given by (sλ)D− =
−λD− , (sλ)D+ = λD+, (sλ)D0 = sD0.

Remark 20. In the above display mβ denotes the vector that is composed of integration variables for
the estimator’s non-zero components and (plus/minus) the parameter’s components for all others.
Conversely, the vector sλ contains integration variables for the estimator’s zero-components and are
otherwise identical to plus, or minus8, the components of the tuning-vector λ. This is due to the
estimator’s structure, where some components are either shifted towards zero, or exactly to zero,
thus “collapsing” the corresponding dimension. This will become apparent in the theorem’s proof.

Proof of Theorem 19. Since the function V is strictly convex, a point m ∈ Rp minimizes V if and
only if the directional derivatives at this point satisfy ∂V (m)

∂r ≥ 0 for all r ∈ Rp : r = 1. We wish
to find all minimizers m satisfying mj ≤ zj for j ∈ D−, mj ≥ zj for j ∈ D+ and mj = zj for
j ∈ D0. Note that this implies that m + β ∈ Qd. By Lemma 18 together with the fact that the
conditions ∂V (m)

∂ej
≥ 0 and ∂V (m)

∂(−ej) ≥ 0 reduce to ∂V (m)
∂uj

= 0 if V is differentiable at m with respect
to the j-th component, we get that the following necessary and sufficient conditions for such m to
be a minimizer of V : 


Wj = (Cm)j − λj for j ∈ D−

Wj = (Cm)j + λj for j ∈ D+

(Cm)j − λj ≤ Wj ≤ (Cm)j + λj for j ∈ D0

(3.1)

Therefore, m satisfying m + β ∈ Qd is a minimizer of V if and only if W lies in the set

{s ∈ Rp : sj = (Cm)j − λj for j ∈ D−, sj = (Cm)j + λj for j ∈ D+,

(Cm)j − λj ≤ sj ≤ (Cm)j + λj for j ∈ D0},

which can be written as

Cm + {sλ : (sλ)D− = −λD− , (sλ)D+ = λD+ , |sλ,j | ≤ λj for j ∈ D0}.

Since we are interested in all minimizers m of V that satisfy mj ≤ zj for j ∈ D−, mj ≥ zj for
8Depending on the sign.
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j ∈ D+ and mj = zj for j ∈ D0 (i.e., m − z ∈ Qd), we let

➘(z) = {Cm : m − z ∈ Qd} + {s ∈ Rp : sD− = −λD− , sD+ = λD+ , |sj | ≤ λj for j ∈ D0}.

As W follows a N(0, σ2C)-distribution, we have

P (W ∈ ➘(z)) =
➘(z)

φ(0,σ2C)(υ) dυ.

Applying the substitution υ = Cmβ + sλ yields the result.

Given these probabilities for the estimation error, we can now give a formula for the correspond-
ing probabilites of the actual estimator by using a simple shifting argument.

Corollary 21. Let z ∈ Rp satisfy z ∈ Qd.

P (β̂L,j ≥ zj for j ∈ D−, β̂L,j ≤ zj for j ∈ D+, β̂L,j = 0 for j ∈ D0)

= · · ·
sj ∈[−λj ,λj ]

j∈D0

· · ·
sj ≤zj −βj

j∈D+

· · ·
sj ≥zj −βj

j∈D−

φ(0,σ2C)(Cmβ + sλ) det(C±)dmD−dmD+dsD0 ,

where mβ and sλ ∈ Rp are given by (mβ)D± = mD±, (mβ)D0 = (−β)D0 and (sλ)D− = −λD− , sD+ =
λD+, (sλ)D0 = sD0, respectively.

An interesting consequence of this is the fact that the probability of the estimator being equal
to exactly zero can be calculated by integrating the corresponding Gaussian density over the λ-box,
given by [−λ1, λ1] × · · · × [−λp, λp], whose size is clearly determined by the penalization vector λ:

Corollary 22.
P (β̂L = 0) =

λp

−λp

· · ·
λ1

−λ1
φ(Cβ,σ2C)(s) ds.

Theorem 19 now puts us into a position to fully specify the distribution of the Lasso estimator.
In case λj > 0 for all j, one easily sees from the preceding corollary that this distribution is not
absolutely continuous with respect to the p-dimensional Lebesgue-measure and thus no pdf exists
for this distribution. One can, however, represent the distribution through Lebesgue-densities
after conditioning on which components of the estimator are negative, positive, and equal to zero.
Towards this end, define Ed

β = Qd − β. Note that β̂L ∈ Qd if and only if û ∈ Ed
β .

Proposition 23. Assume that P (û ∈ Ed
β) > 0. Then, the distribution of û = β̂L − β, conditional

on the event {û ∈ Ed
β}, can be represented by a d 1-dimensional Lebesgue-density given by

fd(zD±) =
1{û∈Ed

β
}

P (û ∈ Ed
β)

· · ·
sj ∈[−λj ,λj ]

j∈D0

φ(0,σ2C) (Czβ + sλ) det(C±)dsD0 ,
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where zβ is defined by (zβ)D± = zD± and (zβ)D0 = −βD0, and sλ is defined by (sλ)D− = −λD− ,
(sλ)D+ = λD+, and (sλ)D0 = sD0.

Remark 24. Note that the constants P (β̂L ∈ Ed
β) can be calculated using Corollary 21.

Proof of Proposition 23. Observe that

fd(zD±) = ∂

∂zj j∈D±

P ûj ≤ zj for j ∈ D±|û ∈ Ed
β ,

and note that by Theorem 19 we have for any z ∈ Ed
β

P ûj ≤ zj for j ∈ D−, ûj ≥ zj for j ∈ D+|û ∈ Ed
β

= 1
P (û ∈ Ed

β)
P (ûj ≤ zj for j ∈ D−, ûj ≥ zj for j ∈ D+, ûj = −βj for j ∈ D0)

= 1
P (û ∈ Ed

β)
· · ·

sj ∈[−λj ,λj ]
j∈D0

· · ·
mj ≤zj
j∈D+

· · ·
mj ≥zj
j∈D−

φ(0,σ2C)(Cmβ + sλ) det(C±)dmD−dmD+dsD0 ,

where mβ ∈ Rp is defined by (mβ)D± = mD± , and (mβ)D0 = −βD0 and sλ ∈ Rp is defined by
(sλ)D− = −λD− , (sλ)D+ = λD+ , and (sλ)D0 = sD0 . Differentiating with respect to zj : j ∈ D±
and taking the absolute value while noting that the conditional density is zero for all values that
are not contained in the event that is being conditioned on gives the density, thus completing the
proof.

Equipped with even more notation, Ed
β(z) = {s ∈ Ed

β : sj ≤ zj for j = 1, . . . , p}, we can now
give a formula for the cdf of of û = β̂L − β.

Theorem 25. The cdf of û = β̂L − β is given by

F (z) = P (û1 ≤ z1, . . . , ûp ≤ zp) =
d∈{−1,0,1}p Ed

β
(z)

hd(mD±) dν d 1 ,

where νk denotes k-dimensional Lebesgue-measure and where

hd(mD±) = 1{û∈Ed
β

} · · ·
sj ∈[−λj ,λj ]

j∈D0

φ(0,σ2C) (Cmβ + sλ) det(C±)dsD0 ,

with mβ ∈ Rp given by (mβ)D± = mD±, and (mβ)D0 = −βD0 and sλ ∈ Rp given by (sλ)D− = −λD−,
(sλ)D+ = λD+, and (sλ)D0 = sD0.
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Proof. It is easily seen that

P (û1 ≤ z1, . . . , ûp ≤ zp) =
d∈{−1,0,1}p

P (û ∈ Ed
β)

Ed
β

(z)
fd(sD±) dν d 1 .

Plugging in the formula for fd completes the proof.

Remark 26. Inspection of the proofs reveals that the assumption of Gaussian errors is non-
essential. One can thus easily obtain the distribution of the estimator for any kind of error-
distribution that is absolutely continuous with respect to the Lebesgue measure on Rn. The es-
timator’s resulting cdf will be the same as the above formula with the density of X ε replacing
φ(0,σ2C), the term’s pdf when ε ∼ N(0, σ2In).

Figures 3.1 and 3.2 display an example of the distribution of û for C = ( 1 0.5
0.5 1 ), λ1 = λ2 =

0.75 and β = (0, −0.25) . One can see that the Lasso’s estimation error follows a shifted normal
distribution conditional on ûj = −βj for each j with the shift depending on the signs of û + β, as
is to be seen in Figure 3.1. The second figure displays the mass which lies on the set {z ∈ R2 :
z1 = −β1, β2 = 0}, i.e., the density functions h(0,1) and h(0,−1) on their corresponding domains.
The mass on the set {z ∈ R2 : z2 = −β2, β1 = 0} looks qualitatively similar to Figure 3.2. Note
that we do also have some point-mass at (−β), as is pointed out by Corollary 22.

All in all, we can observe quite an interesting picture: Conditionally on all components differing
from zero, the distribution is simply Gaussian. More precisely, the Lasso behaves like a shifted
version of the Least-squares estimator, with the direction of the shift depending on the sign of the
estimator.

Also, looking at the area where at least one component is equal to zero, which coincides with
the axes in the p=2 case, we see that the probability mass of X ε that lies in a neighborhood of
that region is “compressed” into a lower-dimensional density. Indeed, in our example, the density
conditional on the active set A = {2} qualitatively looks similar to a piece-wise Gaussian one. This
is due to the fact that each point of the function h is essentially obtained by integrating a part of
a higher-dimensional normal distribution over an interval, thus reducing the dimension, a fact that
will become even more apparent in the next section.

Remark 27. Note that, using the same assumptions and arguments as in Proposition 11, one
can obtain the asymptotic distribution of the conservatively-tuned Lasso estimator in a moving-
parameter framework for an unknown error-distribution, if taking, for example, the same set of
assumptions as in Section 2.6. This can be done by, again, considering the distribution of the
asymptotic objective function problem defining the Lasso9, V∞(u). Since the minimizer of the Least-
squares part of the objective function converges to a Gaussian distribution, the limiting distribution

9More precisely, V∞ is minimized at the Lasso’s asymptotic estimation error.
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Figure 3.1: The contour lines of the the absolute continuous part of the distribution for C =
( 1 0.5

0.5 1 ), λ = (0.75, 0.75) and β = (0, −0.25) . Note that the area which contains probability mass
that is not absolutely continuous with respect to the two-dimensional Lebesgue measure is displayed
in blue.
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Figure 3.2: The functions h(0,1) and h(0,−1) for C = ( 1 0.5
0.5 1 ), λ = (0.75, 0.75) and β = (0, −0.25) .
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of the Lasso will look like the one in finite samples with Gaussian errors with the limits of the
appropriately scaled parameters replacing their finite-sample counterparts.

3.3.1 The shrinkage areas of the Lasso estimator

Using the conditions for minimality from the proof of Theorem 19, we can establish a direct rela-
tionship between the Least-squares estimator and the Lasso in the following sense: For any point
t ∈ Rp, there exists a set S(t) ⊆ Rp, such that the Lasso estimator assumes the value t if and only
if the Least-squares estimator lies within the set S(t). We refer to the set S(t) as shrinkage area
since the Lasso estimator can be viewed as a procedure that shrinks the Least-squares estimates
from the set S(t) to the point t. This is formalized in the following proposition.

Proposition 28. For each t ∈ Rp there exists a set S(t) ⊆ Rp, such that

β̂LS ∈ S(t) ⇐⇒ β̂L = t.

Moreover, for t ∈ Od, the set S(t) is given by

S(t) = {z ∈ Rp : (Cz)j = (Ct)j + sgn(tj)λj for j ∈ D− ∪ D+, |(C(z − t)j | ≤ λj for j ∈ D0}.

Note that the sets S(t) are disjoint for different t’s.

Proof. Note that we have β̂LS − β = (X X)−1X ε = C−1W . With the minimality conditions (3.1)
from the proof of Theorem 19 and the fact that W = C(β̂LS − β) and some re-arranging we get
that m = β̂L − β minimizes V if and only if β̂LS satisfies




(Cβ̂LS)j = (Cβ̂L)j − λj for j ∈ D−

(Cβ̂LS)j = (Cβ̂L)j + λj for j ∈ D+

|C(β̂LS − β̂L)j | ≤ λj for j ∈ D0,

or, β̂LS ∈ S(t) for β̂L = t, as required.

Given this result we can identify areas in which components of the Least-squares estimator
are shrunk to zero by the Lasso. For p = 2, C = ( 1 0.5

0.5 1 ) and λ = (0.75, 0.75) this leads to the
picture displayed in Figure 3.3. Interestingly, the resulting shrinkage areas for active sets that
exclude exactly one component are simply bands around the coordinate axes. They are, however,
not symmetric around the axes in general. This is caused by the regressors’ correlation which
“distorts” the otherwise axes-parallel and symmetric sets.

The model selection probabilities for each component that are associated with the Lasso can
thus also be calculated using the distribution of the Least-squares estimator (at least in the low-
dimensional case), which is reflected by the following corollary.
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Figure 3.3: The shrinkage areas with respect to β̂LS for C = ( 1 0.5
0.5 1 ) and λ1 = λ2 = 0.75. The blue

parallelogram equals S((0, 0) ) and the yellow areas equal all cases where β̂j = 0 for each j. The
dashed areas are the shrinkage areas for Lasso estimators with exactly one non-zero component.
Note that each line-segment in the dashed area gives a shrinkage set for such a Lasso estimator.

Corollary 29.
P (β̂L,j = 0) = P β̂LS ∈

d∈{−1,0,1}p:
dj =0

t∈Qd

S(t) .

Considering that the Lasso is the minimizer of a penalized version of the Least-squares objective
function, it may not come as a surprise that there is a special relationship between the two proce-
dures. However, the simplicity of the dependence might be a bit unexpected, as, after distorting the
space by C, the components of the (transformed) Least-squares estimator, Cβ̂LS, are either shifted
towards zero by a constant λj , or “collapse” to zero, in case the shift would exceed the distance
from zero, when “translating” it to the (transformed) Lasso estimator, Cβ̂L. This exactly reflects
the behavior of the Lasso in a one-dimensional setting.

While it is interesting in its own right, potential uses of this property are not immediately
apparent, since the probably most obvious application would be another algorithm of computing
the estimator. As any algorithm that makes use of this property would involve the calculation
of the Least-squares estimator, one cannot gain anything in terms of computational efficiency,
since current algorithms are not more (computationally) costly than computing the Least-squares
estimator.
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3.4 The high-dimensional case

In this setting we look at the case where p > n implying that rank(X) < p. Applying the same
reasoning as in the case p ≤ n, we can again give the distribution of the Lasso, albeit in a somewhat
less explicit form. Note that in this case the true parameter is not identified without further
assumptions and we denote by B0 the set of all β ∈ Rp that yield the model given in (3.2), that
is, B0 = {β ∈ Rp : Xβ = µ} where µ = E(y). Furthermore, the Lasso solution need not be unique
anymore without further assumptions on X and λ.

Note that as the true parameter is not identified in this setting, the notion of an “estimation
error” may seem quite arbitrary, as any point β ∈ B0 could be taken as a reference point to define
the error. The distribution of û is thus only defined up to an arbitrary shift corresponding to the
choice of β ∈ B0. It turns out, however, that the distribution of the estimator itself does not depend
on the specific choice of β ∈ B0, but on Xβ only. Indeed, for two parameters β(1) and β(2) satisfying
Xβ(1) = Xβ(2) we will get the same response y for any fixed realization of the error-vector ε. It
would thus be more natural to discuss the distribution of the Lasso estimator itself as the leading
case, however, in order to maintain continuity with the previous parts of the thesis we shall proceed
as in the low-dimensional case and give the distribution for any arbitrary (but fixed) β ∈ B0. We do
not interpret this “estimation error” further, but rather view the quantity û as a technical construct
that is used to obtain the result.

We start with a definition that will prove useful in the following derivations . For m ∈ Rp, let

S(m) = Cm + Πp
j=1Tj(m),

where

Tj(m) =

{sgn(mj + βj)λj} mj + βj = 0

[−λj , λj ] mj + βj = 0.

For a set M ⊂ Rp, we define
S(M) =

m∈M

S(m).

Using these definitions, we are able to state a first high-level result on the estimator’s distribution.

Theorem 30. For any set M ⊆ Rp and any fixed β ∈ B0, we have

P (arg min
u∈Rp

V (u) ∩ M = ∅) = P (W ∈ S(M)),

where W ∼ N(0, σ2C).

Proof. Using the same necessary and sufficient conditions for m ∈ Rp to be a minimizer of V as in
(3.1), we see that

m ∈ arg min V ⇐⇒ W ∈ S(m).
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The sets S(M) can be viewed as shrinkage areas for the term X ε in analogy to the ones defined
for the Least-squares estimator in Section 3.3.1. Also note that the set S depends on β, despite
this being suppressed in the notation. This set can now be used to calculate the probability of a
Lasso solution lying within a set.

Corollary 31. Let the columns of U ∈ Rp×n form a basis of span(X ). The probability that the
estimation error for a fixed β ∈ B0 falls within a set M can be calculated as

P (arg min
u∈Rp

V (u) ∩ M = ∅) = 1{span(X )∩S(M)=∅} ·
U S(M)

φ(0,σ2U CU)(x)dx.

Proof. Take some N ∈ Rp×(p−n) which satisfies rank(N) = p − n and N X = 0. Next, note that
N W = 0 almost surely, since E(X W )=0 and Var(N W ) = σ2N CN = 0. We now have that

P (W ∈ S(M)) = P ((U , N )W ∈ (U , N )S(M))
= P (U W ∈ U S(M) and 0 ∈ U S(M))
= P (U W ∈ U S(M)) · 1{ker(N )∩S(M)=∅}

= 1{ker(N )∩S(M)=∅} ·
U S(M)

φ(0,σ2U CU)(x)dx.

Noting that ker(N ) = span(X ) completes the proof.

Assuming uniqueness10 of the estimator, one can now easily state the cdf of the Lasso estimation
error in the high-dimensional case.

Corollary 32. If the Lasso estimator is unique and U ∈ Rp×n is a matrix containing orthonormal
columns in span(X ) then, for any fixed β ∈ B0, the cdf of û = β̂L − β is given by

F (z) =
U S(R(z))

φ(0,σ2U CU)(x)dx · 1{span(X ) ∩ S(R(z)) = ∅},

where R(z) = {t ∈ Rp : tj ≤ zj ∀j ∈ {1, . . . , p}}.

Proof. Note that
Fβ(z) = P (ûj ≤ zj ∀j ∈ {1, . . . , p}) = P (û ∈ S(R(z))),

and use Corollary 31.

Given the above results we can now state the corresponding result on the distribution of the
actual estimator, β̂L, by shifting this distribution by the true parameter β.

10Otherwise, the meaning of the term “cdf” would be rather- unclear. Necessary and sufficient conditions for
uniqueness of the Lasso estimator with equal penalization weights are given, for example, in Ewald & Schneider
(2020).
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Corollary 33. For any set M ⊆ Rp and any β ∈ B0, we have

P (arg min
β∈Rp

L(β) ∩ M = ∅) = P (W ∈ S̃(M))

where W ∼ N(0, σ2C) and S̃(M) = m∈M S̃(m) with S̃(m) = C(m − β) + Πp
j=1T̃j(m) and

T̃j(m) =

{sgn(mj)λj} mj = 0

[−λj , λj ] mj = 0.

In particular, the distribution of the estimator β̂L does not depend on the choice of β ∈ B0.

Proof. First note that arg minu V (u) = arg minβ L(β) − β. We thus have that for any t ∈ Rp,

t ∈ arg min
β

L(β) ⇐⇒ t − β ∈ arg min
u

V (u).

Using Theorem 30, we get that

t − β ∈ arg min
u

V (u) ⇐⇒ W ∈ C(t − β) + Πp
j=1B̃j = S̃.

Finally, note that S̃ depends on β only via Cβ which assumes the same value for all β ∈ B0.

We could now easily formulate statements on how to calculate these probabilities along the lines
of Corollary 31 and on the cdf of the Lasso in case the estimator is unique. However, given that
the formulae are not very explicit in any case, very little is to be gained by doing so and we shall
thus refrain from that. Instead we will turn our attention to a more interesting implication of the
preceding results. Using Corollary 33, we can see that some models will never be selected by the
Lasso estimator.

Remark 34. Let BM = {β ∈ Rp : βj = 0 ⇐⇒ j ∈ M } denote the parameter-space associated
with some model M ⊆ {1, . . . , p}. Since supp(W ) = span(X ), any model M which satisfies that
S̃(BM ) ∩ span(X ) = ∅ will be selected with probability zero11. Indeed, since C(m − β) =
X X(m − β) ∈ span(X ), we have

span(X ) ∩ S̃(BM ) = ∅ ⇐⇒ span(X ) ∩
m∈BM

C(m − β) + T̃ (BM ) = ∅

⇐⇒ span(X ) ∩ T̃ (BM ) = ∅,

11In fact, the corresponding active sets will never, for no ω ∈ Ω, be selected, since X ε will always, for each ε ∈ Rn

(and hence each ω ∈ Ω), lie within span(X ).
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where

T̃ (BM ) =
m∈BM

Πp
j=1

[−λj , λj ], ∀j /∈ M

sgn(mj)λj , ∀j ∈ M
= Πp

j=1

[−λj , λj ], ∀j /∈ M

{−λj , λj}, ∀j ∈ M .

Note that for all models containing some regressor, i.e., for all M = ∅, T̃ (M ) is the union of
parallel faces of the p-dimensional λ-box and for M = ∅, T̃ (M ) is simply the λ-box itself. This
implies that the model M = ∅ will always have positive probability, if λj > 0 for all j = 1, ..., p.

Remark 34 shows that, in the high-dimensional setting, model selection by the Lasso estimator is
indeed not entirely data-driven in the sense that there is a structural active set, AS = {j : P (β̂L,j =
0) > 0} ⊆ {1, . . . , p} which is only determined by the regressor-matrix X and the penalization-
vector λ. In particular, the true parameter β as well as the error ε do not have any12 influence on
this set. In other words, some models are not being considered by the model selection procedure
even before “looking” at the response vector y. Considering the problem from a different angle, this
means that one can restrict, or implicitly choose, the class of models considered by the selection
procedure by the choice of λ, or the scaling of the regressors. This shows that the scaling of
the regressors and the choice of the penalization parameters have a great influence on the model
selection properties of the Lasso and that it should thus be chosen with great care, as this means to
make an implicit choice of the models under consideration. From Remark 34, we can furthermore
see that the active sets which are being excluded by the model selection procedure merely on basis
of X and λ are determined by observing which faces of the λ-box, Πp

j=1[−λj , λj ], do not intersect
the the span of X , an n-dimensional linear subspace of Rp. This will be made more transparent
in the following simple example.

Example 35. Suppose β = (0, 0) , X = (1, 2) (hence, n = 1 and p = 2). Moreover, assume that
ε ∼ N(0, 1). Take λ1 = λ2. Note that X ε = (ε, 2ε) ∈ span(X ). It is easily seen that

S(m) ∩ span(X ) = ∅

whenever m1 = 0 implying that β̂L,1 = 0 almost surely. Note that this property does not depend
on the distribution of ε, but is merely determined by λ and X. Next, we see that

P (β̂L = 0) = P ((ε, 2ε) ∈ [−λ1, λ1] × [−λ1, λ1])
= P (2ε ∈ [−λ1, λ1])
= Φ(λ1

2 ) − Φ(−λ1
2 ).

12At least as long as one assumes that the distribution of ε has support on all of Rn.
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Next, we have that for t < 0,

P (û2 < t, û1 = −β2) = P ε ≤ t − λ1
2 and 2ε ∈

l<t

{z : z1 = 2l − λ1 and 4l − λ1 ≤ z2 ≤ 4l + λ1}

= P (ε ≤ 2t − λ1
2 )

= Φ(2t − λ1
2 ).

Similarly, we get that for t > 0,

P (û2 > t, û1 = −β2) = 1 − Φ(2t + λ1
2 ).

The distribution of β̂L is thus given by
β̂L,1 =as 0

and β̂L,2 follows the distribution

dF (t) = Φ(2t + λ1
2 ) − Φ(2t − λ1

2 ) δ0(t) + φ(2t − λ1
2 )1{t<0}dt + φ(2t + λ1

2 )1{t>0}dt.

It is interesting to note that the distribution of β̂L,2 is the same as the one of the Lasso esti-
mator13 in the smaller model, yi = 2β2 + εi, where the first regressor is left out. Indeed, using
the Lasso in the smaller model is quite easily seen to be equivalent to using the Lasso in the larger
model in our example, since the procedure only actually considers models that do not contain the
first regressor. This fact is, of course, only valid for the specific form of X and λ. It illustrates
the fact that the models which are being considered by the Lasso estimator with positive probability
do not depend on β and ε, as pointed out in Remark 34. The Lasso is thus not to be viewed as a
purely data-driven model selection procedure in a high-dimensional setup. However, note that the
choice between the mean-model (β1 = β2 = 0) and the single-regressor model (β1 = 0 and β2 = 0)
does very much depend on β and ε. The shrinkage areas for the estimator in this example are dis-
played in Figure 3.4 along with the area the probability mass of X ε is concentrated on. Note that
a shrinkage area for X ε corresponding to a Lasso estimator with exactly one non-zero component
is given by a line-segment that is parallel to one14 of the coordinate axes. Hence, each dash in the
figure actually gives a shrinkage set for such a Lasso estimate. The figure underlines the fact that
this example’s setup only produces models where β̂L,1 = 0.

Assuming the existence of such a structural active set that has cardinality at most15 n, it is
easily seen that, using the Lasso in the high-dimensional model is equivalent to using the Lasso
with the same weights in the corresponding low-dimensional model. This entails that in such cases

13With the same penalization parameter.
14More precisely, it is parallel to the x-axis for β̂L,1 = 0 and parallel to the y-axis for β̂L,2 = 0.
15Note that this is not nessecarily the case, since an n-dimensional linear subspace may intersect more than n faces

of the λ-box.
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Figure 3.4: The shrinkage areas with respect to X ε with the span of X , i.e., the area on which
the probability mass of X ε is concentrated, being displayed in red. The area corresponding to
the zero-estimate, β̂L = (0, 0) , is displayed in blue, while the yellow areas correspond estimates
with both components differing from zero. The areas corresponding to estimates with exactly one
zero-component are displayed as dashed areas (horizontally for β̂L,1 = 0 and vertically for β̂L,2 = 0).

the Lasso solution yields a model in which the parameter of interest is identifiable despite the
model’s high-dimensional nature. If the cardinality of the structural active set is exactly equal to
the sample size n, one can construct confidence sets for the parameter given the model corresponding
to the structural active set16 using the results from Chapter 2. Note that in this case, this target is
simply one particular point from the set of true parameters B0. This is described in more detail in
Section 3.4.1, but to first illustrate the idea, consider Example 35 again:

Example 35 (continued). Here, AS = {2} and the corresponding model is given by

yi = 2β2 + εi.

As mentioned before, the distribution of the Lasso estimator in this is model is equal to the distri-
bution of the Lasso estimator’s second component in the model containing both regressors. Using
this property, we can construct a confidence set for β2, the parameter in the model containing only
the second regressor. In the single-regressor model we can find the optimal confidence set (in terms
of size) using the results from Pötscher & Schneider (2009).

Remark 36. Inspecting the shrinkage sets for X ε from Theorem 30, S(m), more closely, we see
that they are, in fact, not necessarily disjoint for different m’s. Indeed, we will have different

16In the sense of the PoSI target, as described in Section 2.2.
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active sets corresponding to the same value of X ε in some situations. To see this note that,
since S(m) = Cm + T (m), we can take t ∈ ker(X ) and consider S(t + m) = Cm + T (t + m),
where T (t + m) merely depends on the signs of β + m. This entails that any m + t satisfying that
sgn(β + m) = sgn(β + m + t) will also be a solution to the Lasso objective function. Moreover, it
is easily seen that these sets are, in general, not disjoint, since clearly, Tj(m) ⊆ Tj(m̃) whenever
m̃j = 0 and |mj | ≥ 0 for each j = 1, . . . , p and the inclusion being strict whenever m̃j = 0 and
mj = 0 for at least one j.

In Example 35 the Lasso solution is always, for each value of X ε, unique, since the linear span
of X does not intersect the areas that lie in the (non-empty) intersection of shrinkage areas that
correspond to different active sets. It is not difficult, however, to construct an example where the
Lasso solution is not unique anymore, as is seen in the following.

Example 37. Again, take the model from Example 35 with X = (1, 2), β = (0, 0) and suppose
ε ∼ N(0, 1). Choose λ = (1, 2) . Note that λ ∈ span(X ) and thus, for each ε > 0,

X ε = (ε, 2ε) ∈ S (ε + λ1, 0) = (ε + 1, 2ε + 2) + {1} × [−2, 2],

but also
X ε ∈ S (0, ε

2 + λ2
4 ) = (ε + 1, 2ε + 2) + [−1, 1] × {2}.

Note that we now have one solution where the first component equals zero and another one
where the second component is zero. By convexity of the Lasso objective function it follows that
each convex combination of the above minimizers also is a minimizer, yielding a continuum of
solutions for which both components differ from zero. This is reflected in the following display
where for any ψ ∈ [0, 1] we have that

X ε ∈ S ψ(ε + λ1), (1 − ψ)( ε
2 + λ2

4 ) = (ε + 1, 2ε + 2) + {1} × {2}.

Noting that choosing ψ /∈ [0, 1] would yield Tj = −λj for one j ∈ {1, 2} in the previous display,
we see that the convex hull of the points (ε + λ1, 0) and (0, ε

2 + λ2
4 ) indeed contains all solutions

to the Lasso problem whenever ε > 0.
The ambiguity of the estimator in this example is also reflected in Figure 3.5 which illustrates

how the span of X intersects the (non-empty) intersection of the shrinkage areas containing only the
first, only the second, and the shrinkage areas corresponding to models that contain both regressors.

Example 37 shows an already known property of the Lasso from another perspective: The
solution to the Lasso problem is in general not unique. Moreover, if the solution is not unique,
then, by convexity of the problem, there exists a continuum of solutions, a fact that has already
been pointed out by Tibshirani (2013). The example also shows that the set of ε’s which give
ambiguous Lasso-solutions is not necessarily a null set with respect to the distribution of X ε.
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Figure 3.5: The shrinkage areas with respect to X ε in Example 37. The span of X , i.e., the area
on which the probability mass of X ε is concentrated, is displayed in red. The area corresponding
to the zero-estimate, i.e., β̂L = (0, 0) , is displayed in blue, while the yellow areas correspond to
estimates with both components differing from zero. The areas corresponding to estimates with
exactly one zero-component are displayed as dashed areas (horizontally for β̂L,1 = 0 and vertically
for β̂L,2 = 0).
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In our example the problem of a non-unique solution of the Lasso could be overcome by slightly
altering the weights of the estimator. One should bear in mind, however, that this would mean
to implicitly make a choice about the class of models under consideration via the structural active
set, as pointed out in Remark 34.

Clearly, Example 37 shows that the structural active set may be equal to the entire set of
explanatory variables. It is quite obvious that in this simple n = 1, p = 2 example, the Lasso
estimator will always have a structural active set of dimension one, whenever it is unique. In this
case uniqueness of the estimator and the existence of a structural active set with cardinality n go
hand in hand. It turns out, however, that this is not the case in general. Remark 34 shows that the
structural active set can be determined by looking at how many faces of the p-dimensional λ-box
are intersected by the n-dimensional linear subspace that is spanned by the columns of the design
matrix. Increasing the dimensions for both n and p we can quite easily construct an example where
the structural active set is equal to the entire set of regressors and the estimator is unique.

Example 38. Take X = ( 1 1 0
0 1 1 ) and λ = (1, 1, 1) . Moreover, assume that β = (0, 0, 0) and that

ε ∼ N((0, 0) , ( 1 0
0 1 )). Note that the columns of X are in general position17. By Lemma 3 from

Tibshirani (2013) the Lasso solution will thus be unique. When looking at the “active”18 shrinkage
areas with respect to X ε, which are displayed in Figure 3.6, we see that each of the three regressors
could end up in the model with positive probability19. To conclude this example, observe that in
this case, even though every regressor will appear in in some model with positive probability, not
all models are chosen with positive probability. Indeed, note that by Remark 34 the resulting Lasso
estimator will never have three non-zero components, as no corner of the λ-box is intersected by
the linear span of X . Also note that even though each facet of the λ-box is intersected by the linear
span of X , implying that each component of the estimator could be positive, or negative, not all
sign-combinations of the estimator’s components are possible.

We will now consider an example where p = 3 and n = 2 in which the structural active set
contains exactly two regressors.

Example 39. Take X = ( 1 0 1
4 1 0 ) and λ = (1, 1, 1) . Moreover, assume that β = (0, 0, 0) and that

ε ∼ N((0, 0) , ( 1 0
0 1 )) and note that, as in the previous example, the columns of X are in general

(affine) position and the Lasso solution will thus be unique for each realization of ε ∈ R2.
Looking at the intersections of the shrinkage areas for X ε with the span of X , which are

displayed in Figure 3.7, reveals that, in this case, one of the regressors will never enter the model.
Also note that in this example, the each sign-combination of the parameters that are contained in
the structural active set is possible, as the estimator will behave like a low-dimensional Lasso.

17C.f. Definition 54 in Appendix C.1.
18I.e., the ones that have an non-empty intersection with the span of X .
19Note that since X ε follows a normal distribution that is supported on the span of X , each point in the span of

X carries positive probability density.

54



Figure 3.6: The intersection of the shrinkage areas with respect to X ε and the span of X along
with the λ-cube from Example 38. The shrinkage areas corresponding to single-regressor models are
displayed in grey, while the shrinkage areas that correspond to two-regressor models are displayed in
yellow. The intersection of the λ-cube with the span of X , which corresponds to the zero-estimator,
is displayed in blue. The λ-cube itself is displayed in orange.

Figure 3.7: The intersection of the shrinkage areas with respect to X ε and the span of X along
with the λ-cube from Example 39. The shrinkage areas corresponding to single-regressor models are
displayed in grey, while the shrinkage areas that correspond to two-regressor models are displayed in
yellow. The intersection of the λ-cube with the span of X , which corresponds to the zero-estimator
shrinkage set, is displayed in blue. The λ-cube itself is displayed in orange.
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The examples in this section give a brief overview of the Lasso estimator’s (structural) model
selection properties. In these simple examples it is illustrated how the interaction of the regres-
sor matrix X and the penalization vector λ influence the estimator’s structural properties, i.e.,
uniqueness and the estimator’s structural active set. The geometric condition that characterizes
the structural active set that is given in Remark 34 is quite easy to understand on an intuitive level
and has been further formalized in Ewald & Schneider (2020), who give necessary and sufficient
conditions on the Lasso’s uniqueness that are based on the above properties. Interestingly, these
geometric arguments can be generalized to penalized Least-squares estimators whose penalty term
takes the form of any norm with a polytope shape, as is done in Schneider & Tardivel (2020).

Another reference that deals with the topic of accessible models, i.e., models that are chosen by
the Lasso, is Sepehri & Harris (2017) who give a condition for when this is the case. In contrast to
the condition provided here, which is given on Rp, that reference uses geometric considerations in
Rn under a uniqueness assumption.

The theme of variables (not) being selected also appears in El Ghaoui et al. (2012); Ndiaye
et al. (2017) and Tibshirani et al. (2012) who provide the so-called SAFE and STRONG rules,
respectively. The difference is that these rules specify sets of variables that do not enter any Lasso
solution, for no value of the tuning parameter and for a given response y, whereas the structural
active set only depends on X and λ.

We now turn to an interesting implication of the concept of structural active sets.

3.4.1 A note on high-dimensional confidence sets

Dealing with high-dimensional models again raises the question of which parameter, or parameters,
should be the targeted by our analysis, since the true parameter is not identified in the high-
dimensional model.

Interestingly, the PoSI target (see Section 2.2) can be used in the high-dimensional regression
setting to develop a method of inference that is compatible with classical theory. In Example 35 from
Section 3.4, there exists a structural active set AS containing exactly n regressors. Under conditions
in which this property holds more generally, the parameter is identified in the model containing the
regressors that are contained in the structural active set, if we assume that rank(XAS ) = n, i.e., if
all columns of X corresponding to the structural active set, are linearly independent.

Moreover, considering this parameter solves the identifiability issues of the high-dimensional
setup, since, using the notation from Section 2.2, the parameter β̃AS is identified in the model

y = XAS β̃AS + . (3.2)

56



Additionally, in this case the parameter β̃AS is a true parameter in the full model

y = Xβ + ε

in the sense that XAS β̃AS = Xβ and thus, the error vector from model (3.2) is equal to the error
vector from the full model: = ε.

To conclude this section, we note that in cases where the combination of X and λ yields a
setting in which the Lasso estimator possesses a structural active set with exactly n regressors, the
use of the regression parameter given the corresponding model, as proposed by Berk et al. (2013),
yields a well-interpretable model that is also compatible with classical statistical theory. Moreover,
given such a structural active set, the Lasso would be equivalent to a minimization of the Lasso
objective function restricted to certain values being equal to zero, which in turn is equivalent to
using a corresponding20 Lasso in the low-dimensional model containing the sub-matrix of X that
corresponds to the structural active set, as is to be seen in Example 35. Furthermore, this would
enable the construction of confidence sets for the parameter in the model corresponding to the
structural active set, i.e., βAS = (XAS XAS )−1XAS β (for any β ∈ B0), using the methods presented
in Chapter 2. One has to keep in mind, however, that this kind of procedure would be feasible in
a setup yielding an implicit21 non-random selection of a low-dimensional sub-model and that any
other choice of submodel with size n would also yield a valid model, irrespective of the way the
sub-model is chosen, at least as long as the selection procedure is non-random.

3.5 Discussion and conclusion

In this chapter we have analyzed the distribution of the Lasso estimator in finite samples, while
the corresponding asymptotic distribution can be obtained in a similar fashion when additionally
using arguments from Chapter 2. In a low-dimensional setting it is shown that the Lasso estimator
creates so-called shrinkage areas inside of which some the Least-squares estimator’s components
are shrunk to zero, while the other components are shifted towards zero. This implies that the
Least-squares estimator’s distribution’s probability mass is “compressed” into lower-dimensional
densities that can be specified conditional on the Lasso’s active set. As a result the distribution
looks like a pieced-together combination of Gaussian-like densities, whereby each active set has
its own distribution-piece whose dimension depends on the number of non-zero components. The
dimension of each of these densities is given by the number of non-zero components, resulting in
point-mass at the origin. Moreover, the concept of shrinkage areas establishes a unique relationship
between the least-squares estimator and the Lasso.

The form of the distribution is even more intricate in the high-dimensional case in which the
20In the sense that the remaining components’ penalization terms are identical to the ones in the full model.
21By the choice of λ for a given X, for example.

57



estimator may not be unique anymore. In this case, one can again specify shrinkage areas, this time
for the term Xβ. However, this quantity’s probability mass is concentrated on an n-dimensional
linear subspace of Rp. This fact leads to a valuable insight into the behavior of the estimator,
since it is shown that some models will never be selected by the estimator. In fact, it is shown
that what models are excluded merely depend on the regressor matrix and tuning-vector and are
thus not influenced by the observed response data. In some cases the Lasso estimator just selects
a sub-model of a predetermined model, with this structural pre-selection being determined by
the regressor matrix and the tuning-vector. In case this pre-determined structural active set is
low-dimensional, the estimator simply acts like a low-dimensional Lasso in the model containing
the structurally active components. This opens up possibilities of obtaining well-interpretable
confidence regions for the high-dimensional case using the results from the previous chapter, at
least for certain regressor matrices and tuning-vectors. However, it is also shown that the structural
active set is not necessarily low-dimensional and it remains to be seen whether a well-interpretable
and easy-to-verify condition on X and λ can be derived under which this property holds.
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Chapter 4

Extensions

4.1 Introduction

The final chapter provides some extensions to the preceding ones, mostly on the topic of confidence
sets in a low-dimensional setup. Most considerations are conducted in simple settings and should
give a taste of how the previously developed methods can or cannot be applied to, or refined for,
other settings.

In this chapter’s first section we extend the finite-sample results on the confidence sets’ coverage
probabilities from Chapter 2 to the more realistic case of unknown error-variance. The analysis
will show that the results from the previous chapter carry over to this case with only a slight
adjustment of the confidence set’s size parameter which is necessary to account for the estimation
of the error-variance.

In Section 4.3 we discuss the question of how to construct confidence intervals for single compo-
nents of the true parameter that are based on the Lasso estimator using the results from Chapter 2.
To deal with the case where one is primarily interested in just a sub-vector of the true parameter
and hence may not want to penalize these particular components, thus effectively excluding them
from model selection, the partial Lasso estimator is considered in addition to the fully penalized
one as starting point for the development of such confidence intervals. The main challenge in this
section is to find the optimal shape for such a confidence set, i.e., a set that complies with Condi-
tion A from Chapter 2 while giving the smallest possible projection onto the subspace associated
with the component of interest and maintaining the desired level of coverage.

Another question being investigated is the one of whether it is valid to choose the sub-parameter
to be covered based on the Lasso estimator, i.e., to construct a confidence set for the non-zero
estimates only. Using the results of Section 4.3, a simulation study is carried out in a p = 2 setting
to determine whether this proposed procedure, which will certainly appear quite attractive to many
users, can yield valid confidence sets.
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Moreover, if some parameters appear to be very large, one might be tempted to try to use this
information to conclude at least the sign of the true parameter of interest and subsequently take
this knowledge into account when choosing the shape of the confidence set. However, it is shown in
a simple setting that such an adaptive procedure will not yield uniformly valid methods of inference
in a moving-parameter framework, even in large samples, as n → ∞.

Since the sections of this final chapter do not have a common sub-setting of the one introduced
in Section 1.2, the assumptions corresponding to the setups in the sub-sections are presented where
appropriate.

4.2 Confidence sets for unknown error-variance

Throughout Chapter 2 we have assumed the error-variance σ2 to be known. The question now arises,
whether the results obtained in that chapter can also be used if the error-variance is estimated. To
that end recall the finite-sample setting from Section 2.3. As a variance-estimator we consider the
unbiased estimator based on the Least-squares residuals:

σ̂2 = 1
n − p

ε̂LSε̂LS

where ε̂LS = y − Xβ̂LS. To apply the previous results to this setting, we need to make the
penalty-vector, λ, depend on the variance-estimate in the following way. For this subsection, set

λ = σ̂ · l,

where l ∈ Rp
+ some fixed penalization vector1. As already mentioned in Remark 5, the char-

acterization of the minimal coverage probability in Theorem 4 does not depend on the stochastic
properties of ε, but on the minimization problem alone. Hence, the parts of the theorem’s proof
which give the lower bound for the coverage probability also apply in the case we are considering
now. What is left to be done is to determine the distributions of the ûd’s that appear in the lower
bound’s formula. Not too surprisingly, these ûd’s turn out to follow (multivariate) t-distributions
instead of normal distributions, such that the confidence set has to be scaled slightly differently.
This is formalized in the following proposition.

Proposition 40. For λ = σ̂ · l and any non-random M ⊆ Rp that complies with Condition A we
have that

inf
β∈Rp

Pβ(β ∈ β̂L − σ̂M) = min
d∈{−1,1}p

P (ûd ∈ σ̂M) = min
d∈{−1,1}p

P (t̂d ∈ M)

where t̂d ∼ Tn−p(C−1, C−1 diag(l)d) is a multivariate t-distribution2 with n − p degrees of freedom,
correlation matrix C−1 and non-centrality parameter C−1 diag(l)d.

1Note, however, that the vector l may very well depend on n, but is fixed for each n ∈ N.
2As in Definition 52 in Appendix C.1.1.

60



Proof. The first equality follows from the same arguments as in the proof of Theorem 4.
Since {ûd ∈ σ̂M} = {σ̂−1ûd ∈ M}, we simply need to determine the distribution of t̂d = σ̂−1ûd.

We have

t̂d = σ̂−1C−1W + C−1 diag(l)d.

Noting that W ∼ N(0, σC) as well as σ−2ε̂LSε̂LS ∼ χ2
n−p, one sees that t̂d indeed follows a

multivariate t-distribution with n−p degrees of freedom, correlation matrix C−1 and non-centrality
parameter C−1 diag(l)d.

Using Theorem 4 and Proposition 40 one can now construct valid confidence set in cases where
σ2 is estimated by σ̂2 assuming i.i.d. Gaussian errors. Noting that the contour sets of a normal
distribution with variance-covariance matrix Σ and a multivariate t-distribution with the same
variance-covariance matrix have the same shape, i.e., they are both of the form {z ∈ Rp : z Σz ≤ k},
we see that all considerations with respect to the shape of the confidence sets from Section 2.5 also
apply in this setting. The only difference in the resulting confidence sets will be the size parameter
k, since a contour-set of the above-mentioned distributions will correspond to different3 contour-
levels.

4.3 Inference on single components

As users are sometimes interested in only a few (or even just a single) regressors’ effects we will
now consider the case where only one of the true parameter’s components is supposed to be covered
by a confidence set. Hereby we will examine two regimes. One in which each of the estimator’s
components is penalized, hereafter referred to as the full penalization case, and one where the
component of interest is not penalized, which we refer to as partial penalization4. We will start
with the former one.

4.3.1 Full penalization case

Recall model (1.1). We consider the case in which all components are penalized, i.e., λj > 0 for all
j ∈ {1, . . . , p}. Suppose rank(X) = p (implying that p ≤ n).

In this case Theorem 4 can be used to construct a confidence set for one single component of the
true parameter vector, say β1, in the following way: Given a desired level of coverage 1−α, we want
to find a set M ⊆ Rp which complies with Condition A and satisfies that its projection onto the
subspace associated with the component of interest is as short as possible, while the parameter of

3For more details on this refer to Appendix C.1.1.
4A Lasso with a tuning parameter that only penalizes some components is also referred to as a partial Lasso.
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interest is uniformly5 covered with the desired probability 1 − α. For simplicity’s sake, we restrict6

ourselves to symmetric intervals. More formally, the set M should be chosen such that

• M ⊆ Rp satisfies Condition A.

• maxm∈M |m1| ≤ a for some a > 0.

• infβ∈Rp Pβ(û ∈ M) ≥ 1 − α for some 0 < α < 1.

To find such a set, one may first determine the smallest set that complies with Condition A for
each fixed a > 0. Next, a is chosen such that the desired coverage probability is attained. Note
that formally we still construct a confidence set for the entire parameter vector, even though this
set may be unbounded with respect to the components which are not of primary interest. The
analysis will reveal, however, that this will only be the case when the regressors are orthogonal.

Constructing the optimal shape in case p=2:

Throughout the following suppose that p = 2 such that C = ( c11 c12
c12 c22 ) and suppose that C is positive

definite. Assume, without loss of generality7, that c12 ≥ 0 . In case c12 = 0, it is easily seen that
the set

M = {z ∈ R2 : |z1| ≤ a}

complies with Condition A and cannot be enlarged while maintaining a fixed projection onto the
subspace associated with the first component. Also note that in this case the confidence interval
constructed in the above-described way will be equivalent to the procedure proposed by Pötscher
& Schneider (2010).

We thus turn to the more interesting case where c12 > 0. Defining our (prospective) confidence
set on each quadrant Od separately, let the part of the set that lies in the orthant Od be denoted
by Md, such that

M =
d∈{−1,1}2

Md.

We define these four parts in the following way: Take

M ι = M ∩ Oι = {z ∈ Oι : |z1| ≤ a} ∩ {z ∈ Oι : (Cz)1 ≤ (Ca)1}

with a = (a, 0) , a > 0. Next, define

M (−1,1) = M ∩ O(−1,1) = {z ∈ O(−1,1) : |z1| ≤ a} ∩ {z ∈ O(−1,1) : (Cz)2 ≤ (Cb)2}
5For all possible values of β.
6Note that the generalization to asymmetric intervals would be straight-forward given the results that follow in

this section.
7Otherwise construct a confidence interval for β1 from the model yi = β1xi1 + β̃2x̃i2 + εi where β̃2 = −β2 and

x̃i2 = −xi2.
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Figure 4.1: The set M with a = 1 and C = ( 1 0.5
0.5 1 ).

where b = (0, b) is chosen such that (Ca)1 = (Cb)1. The rest of the set is defined by mirroring the
parts of the above defined sets around both axes8:

M−ι = −M ι

and
M (1,−1) = −M (−1,1).

Figure 4.1 shows the shape of the set M for a = 1 and C = ( 1 0.5
0.5 1 ). Note that, even though we

are only interested in a confidence set that provides a bound for one of the components, the need
to comply with Condition A forces us to bound the set in the other component as well whenever
c12 = 0. The interpretation of this fact is the following: As the Lasso can be viewed as a shifted
Least-squares estimator whereby the size and direction of the shift depend (among others) on
both components of the Least-squares estimator, it needs to be ensured that the influence of the
parameter vector’s second component on the shift is also taken into account by the procedure.

We will now proceed by showing that the set M indeed complies with Condition A. Towards
that end we start with a technical lemma that gives some inequalities related to the ones which
appear in the condition.

Lemma 41. Consider v = (v1, v2) ∈ R2 and w = (w1, w2) ∈ R2, suppose that c12 ≥ 0 and that C

is symmetric and positive definite. Then the following holds.
8Note that an asymmetric interval [−ã, a] could easily defined at this point by constructing M (1,1)(ã) as well as

M (1,−1)(ã) and mirroring these sets around both axes to obtain the lower endpoint of the interval.
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(a) If v1 ≤ w1 or v2 ≥ w2, then

(Cv)2 ≤ (Cw)2 =⇒ (Cv)1 ≤ (Cw)1.

(b) If (Cv)1 ≥ (Cw)1 and (Cv)2 ≤ (Cw)2, then

v1 ≥ w1 and v2 ≤ w2.

Proof. To see part (a), assume that the implication does not hold:

(Cv)2 = c12v1 + c22v2 ≤ c12w1 + c22w2 = (Cw)2

and
(Cv)1 = c11v1 + c12w2 > c11w1 + c12v2 = (Cw)1.

Taken together the above inequations yieldc12(v1 − w1) ≤ c22(w2 − v2)

c11(v1 − w1) > c12(w2 − v2).
(4.1)

Now note that (4.1) is equivalent to(v1 − w1) ≤ c22
c12

(w2 − v2)

(v1 − w1) > c12
c11

(w2 − v2)

which implies that
c11c22

c2
12

(w2 − v2) > (w2 − v2), (4.2)

a contradiction in case v2 ≥ w2, since C is positive definite and hence, c11c22
c2

12
> 1. Similarly, (4.1)

implies that
c11c22

c2
12

(v1 − w1) > (v1 − w1), (4.3)

a contradiction in case v1 ≤ w1.
For part (b) note that the two in-equations in the assumption also yields inequations in (4.1).

Hence, also (4.2) applies which yields a contradiction in case v2 > w2. Similarly, (4.3) needs to
hold as well and yields a contradiction for the case w1 > v1.

Proposition 42. The set M , as defined in this subsection, satisfies Condition A.

Proof. We need to show that for each d ∈ {−1, 1}d and each m ∈ M ,

Ad
C(m) ⊆ M.
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We first check this condition for A−ι
C :

• For m ∈ M ι, we have that

A−ι
C (m) =

j∈{1,2}
{z ∈ Oι : (Cz)j ≤ (Cm)j}

⊆ {z ∈ Oι : (Cz)1 ≤ (Cm)1}
⊆ {z ∈ Oι : (Cz)1 ≤ (Ca)1} ⊆ M,

because (Cm)1 ≤ (Ca)1, which follows from m ∈ M ι.

• For m2 ≤ 0, which implies that m ∈ M (1,−1) ∪ M−ι, we have

(Cm)1 = c11m1 + c12m2 ≤ c11a = (Ca)1

(Cm)2 = c12m1 + c22m2 ≤ c12a = (Ca)2,

since c12 ≥ 0 and m1 ≤ a. This implies that

A−ι
C (m) ⊆ A−ι

C (a) ⊆ M ι ⊆ M.

• For m ∈ M (−1,1) first note that by Lemma 41, part (a) (with exchanged indices) we have that

(Cz)1 ≤ (Cm)1 =⇒ (Cz)2 ≤ (Cm)2

for each z ∈ A−ι(m), since m ∈ M (−1,1) implies that z1 ≥ 0 ≥ m1. Now define b̃ such that
(Cm)1 = (Cb̃)1 where b̃ = (0, b̃) . Note that by the above inequality and because m ∈ M (−1,1)

we now have that (Cb̃)2 ≤ (Cm)2 ≤ (Cb)2 which entails that b̃ ≤ b. Since c12 ≥ 0 it follows
that (Cm)1 = (Cb̃)1 ≤ (Cb)1 = (Ca)1 so that

A−ι(m) ⊆ {z ∈ Oι : (Cz)1 ≤ (Cm)1} ⊆ {z ∈ Oι : (Cz)1 ≤ (Ca)1} = M ι.

Next, we verify the condition for A
(1,−1)
C :

• For m ∈ M (−1,1) we have that

A
(1,−1)
C (m) = {z ∈ O(−1,1) : −(Cz)1 ≤ −(Cm)1, (Cz)2 ≤ (Cm)2}

= {z ∈ O(−1,1) : z1 ≥ m1, −(Cz)1 ≤ −(Cm)1, (Cz)2 ≤ (Cm)2}
⊆ {z ∈ O(−1,1) : z1 ≥ −a, (Cz)2 ≤ (Cb)2}
= M (−1,1) ⊆ M,
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where the second equality holds by an argument similar to the proof of Lemma 41.

• For m ∈ M \ M (−1,1), implying that m1 > 0 or m2 < 0, we use the second part of Lemma 41:

(Cz)1 ≥ (Cm)1 and (Cz)2 ≤ (Cm)2 =⇒ z1 ≥ m1 and z2 ≤ m2,

which yields that A
(1,−1)
C (m) = ∅ whenever m1 > 0 or m2 < 0, since A

(1,−1)
C (m) ⊆ O(−1,1).

For Aι
C(m) and A

(−1,1)
C (m) note that

−Ad
C(m) = −{z ∈ Rp : dj(Cz)j ≤ dj(Cm)j , djzj ≥ 0 ∀j}

= {z ∈ Rp : −dj(Cz)j ≤ −dj(C(−m))j , −djzj ≥ 0 ∀j}
= A−d

C (−m).

and that we thus have by the previous results

Aι
C(m) = −A−ι

C (−m) ⊆ −M = M

for all m ∈ M and similarly

A
(−1,1)
C (m) = −A

(1,−1)
C (−m) ⊆ −M = M

for all m ∈ M .

Having established that the set M complies with Condition A, we will now show that this is
indeed the largest set that does so while its projection on the subspace associated with the first
component does not exceed a in absolute value.

Proposition 43. If M̃ ⊆ R2 satisfies Condition A and supm∈M̃ |m1| ≤ a, then

M̃ ⊆ M.

Proof. We assume that M̃ z /∈ M and show that maxm∈M̃ |m1| > a, if M̃ satisfies Condition A:

• z ∈ Oι: Suppose that z /∈ M ι. Lemma 41 then entails9, that

(Cz)j > (Ca)j ∀j ∈ {1, 2}.

Now choose10 ã = (ã, 0) with ã ≥ 0 such that
9Indeed, in case (Cz)2 ≤ (Ca)2 Lemma 41 yields that also (Cz)1 ≤ (Ca)1, since z2 ≥ 0. But then z ∈ M .

10Note that such an ã ≥ 0 exists, since (C(z1, 0) )j ≤ (Cz)j for each j ∈ {1, 2} and hence the set
{z1 ∈ R+ : (C(z1, 0) )j ≤ (Cz)j ∀j ∈ {1, 2}} is non-empty.
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(Cã)j ≤ (Cz)j ∀j ∈ {1, 2}

and such that

(Cã)j0 = (Cx)j0

for some j0 ∈ {1, 2}.

Clearly, we have ã ∈ A−ι
C (z) and (Cã)j0 = (Cz)j0 > (Ca)j0 implying that

ã > a,

so that supm∈M̃ m1 > a.

• z ∈ O(−1,1): Suppose z /∈ M , i.e., (Cz)2 > (Cb)2.

Now choose b̃ ≥ 0 such that (Cb̃)2 = (Cz)2, where b̃ = (0, b̃) . We have that b̃ ∈ A
(1,−1)
C (z) :

Suppose not, i.e., (Cb̃)1 < (Cz)1, then, since b̃ = c12
c22

z1 + z2,

c12b̃ < c11z1 + c12z2 ⇐⇒ c12( c12
c22

z1 + z2) < c11z1 + c12z2 ⇐⇒ c2
12

c11c22
z1 < z1,

a contradiction whenever z1 > 0, since c2
12

c11c22
< 1.

Finally, we have b̃ > b, as c22b̃ = (Cb̃)2 = (Cz)2 > (Cb)2 = c22b and thus also (Cb̃)1 > (Cb)1.
Noting that b̃ ∈ Oι leads us back to the previous case.

• For z ∈ O−ι, we have that z /∈ M ⇐⇒ −z /∈ −M . Noting that, in this case, −z ∈ Oι and
that −M = M reduces this case to the first case. Finally, using the same argument, the case
z ∈ O(1,−1), can be reduced to the case z ∈ O(−1,1).

Remark 44. It is again easily seen that the interval’s half-length, a, must be greater than the
half-length of the (canonical) confidence interval that is based on the Least-squares estimator, i.e.,
the (1 − α

2 )-quantile of the standard normal distribution, since, as described in Chapter 2, 2p = 4
Gaussian random variables11, ûd, need to be covered by the (shifted) confidence set.

Given the preceding remark, one might now be interested in the size difference between the con-
fidence intervals that are constructed based on the Lasso and Least-squares estimates, respectively.
Pötscher & Schneider (2010) have already shown that in the orthogonal regressor case, the length

11Having the same variance-covariance structure as the Least-squares estimator, but different means.
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|c12| 0.25 0.5 0.75 0.9
λ1 = 0 1.96 1.96 1.96 1.96

λ1 = 0.1 2.1 2.4 3.1 4.9
λ1 = 0.5 2.4 2.9 4.5 8.8
λ1 = 1 3.0 3.9 6.5 13.8
λ1 = 2 4.4 5.9 10.5 23.8
λ1 = 3 5.7 7.9 14.5 33.8

Table 4.1: Half-lengths of the 95% confidence intervals based on the fully penalized Lasso estimator
for c11 = c22 = 1, σ2 = 1 and different penalization parameters λ1. (Values rouned to one digit.)

of confidence intervals which are based on the Lasso is greater than the length of the canonical
Least-squares interval as well as that the length of the intervals is increasing in the penalization
parameter12, λ = (λ1, λ1) . Table 4.1 contains the required values of a, i.e., the half-length of the
interval, of the Lasso confidence interval for c11 = c22 = 1 and σ2 = 1 and various combinations of
λ1 and c12. Note that in this case the half-length of the Least-squares interval is 1.96 and that the
Least-squares estimator is equal to the Lasso when λ1 = 0.

The picture that is drawn here is the following: For small values of λ1 and c12 the resulting
confidence interval is only slightly longer than the one based on the Least-squares estimator. For
increasing λ1 and |c12| the required length of the interval increases significantly, in particular in
the latter case, with the length more than doubling as c12 increases from 0.25 to 0.9 for each of the
presented values of λ1 > 0. This effect is even more extreme for larger values of λ1. Two effects are
at work here: On the one hand, the volume of M decreases for fixed a > 0 as c12 increases. On the
other hand, the corners of the distorted λ-box, C−1Λd (d ∈ {−1, 1}p) that are the means of the
normal distributions whose probability mass must be covered shift further apart as c12 increases in
absolute value. Obviously, increasing the components of the tuning vector λ shifts the distribution’s
means further away from the origin, which results in larger confidence sets.

In terms of practical implications, this shows that the “cost” of, in this case Lasso-based,
variable selection in terms of estimation accuracy can be quite severe. Given the construction of
the confidence set in this case, it is not hard to imagine that a version of such a confidence set
will carry an even higher penalty in a setting where more than two components are present and
multiple correlations have to be taken into account. Also note that this property is not unique to
the Lasso, as can be seen in Taylor & Tibshirani (2015), for example.

4.3.2 Partial penalization case

We will now consider the scenario where only some parameters are penalized in the estimation,
i.e., λj = 0 for some j’s. We refer to this type of Lasso estimator as a partial Lasso. Using such

12In this case we choose the weights to be equal and thus the penalization vector λ is specified by a single parameter.
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a choice of penalization vector seems quite attractive in some cases. Indeed, if one is primarily
interested in only a few of the parameter vector’s components, this choice of weights will result in
an estimator that can still yield relatively small models, since all other parameter estimates are
still being shrunk towards, or exactly to, zero while promising smaller confidence intervals for the
sub-parameter in question. It appears reasonable to assume that the penalization’s adverse effects
on the size of the confidence regions that have been outlined so far will be somewhat mitigated if
the parameter of primary interest is not penalized. To verify that this is actually the case and to
quantify the effect’s magnitude we do the following. Let

R = {j ∈ {1, . . . , p} : λj > 0}

denote the index set containing all penalized components and let

N = {j ∈ {1, . . . , p} : λj = 0}

denote the remaining components, which are not subject to any penalization.

Note that the theory developed in the previous parts13 also comprises the partial Lasso case
and valid confidence sets could be constructed using Theorem 4. It is, however, possible to produce
an improved version of the theorem, as Condition A can be slightly relaxed when considering the
partial Lasso. This alternative condition is given in the following.

Condition B. Let C̄ ∈ Rp×p be positive definite. A set M ⊆ Rp satisfies Condition B with matrix
C̄ if

Ad
R,C̄

(m) =
p

j=1
{z ∈ Rp : (C̄z)j = (C̄m)j , djzj ≤ 0 ∀j ∈ N }

∩ {z ∈ Rp : dj(C̄z)j ≥ dj(C̄m)j , djzj ≤ 0 ∀j ∈ R} ⊆ M

for all d ∈ {−1, 1}p and for all m ∈ M .

Remark 45. Condition B is less restrictive than Condition A. Indeed, we have that Ad
R,C̄

(m) ⊆
Ad

C̄
(m) for each m ∈ Rp and each matrix C̄ and hence, a set which satisfies Condition A also

satisfies Condition B.

Proposition 46. If M ⊆ Rp satisfies Condition B with C̄ = C, then

inf
β∈Rp

Pβ (û ∈ M) = min
d∈{−1,1}p

P ûd ∈ M ,

where ûd ∼ N(−C−1Λd, σ2C−1).
13In particular in Chapter 2 and Section 4.3.1.

69



Remark 47. Note that, since λj = 0 for each j ∈ N , the random variables ûd in Proposition 46
only have 2|R| distinct distributions, as their means, which are given by C−1Λd, are identical when
flipping the sign of dj for any j ∈ N .

Proof of Proposition 46. The proof is essentially the same as the proof of Theorem 4 including
the discussion leading up to that result. The only difference is in the proof of the equivalent of
Proposition 2:

First note that in the partial Lasso case the function V (u) can be written as

V (u) = u Cu + 2u W + 2
j∈R

λj (|uj + βj | − |βj |)

and also the functions V d now reduce to

V d(u) = u Cu − 2u W + 2
j∈R

λjujdj .

Instead of Fact (a) in the proof of Proposition 2, the same arguments now yield that

(Cû)j = (Cûι)j ∀j ∈ N

and as before
(Cû)j ≤ (Cûι)j ∀j ∈ R.

From this we see that indeed Condition A may be replaced by Condition B in this setting, while
the rest of the proof is completely analogous.

We will now determine the optimal shape of the confidence set based on the partial Lasso in
case of a model that contains two regressors.

Constructing the optimal shape in case p=2:

As in the previous subsection we will again consider the case of p = 2 where only the second com-
ponent is penalized and we are primarily interested in the first component, which is not penalized
in the estimation. We can now use Condition B to construct a confidence interval for that compo-
nent which is slightly shorter than the one constructed in the previous subsection. Similarly to the
previous case, we now use Proposition 46 to find a set MR = MR(a) which satisfies

• MR ⊆ Rp complies with Condition B.

• maxm∈MR |m1| ≤ a for some a > 0.

• infβ∈Rp Pβ(û ∈ MR) ≥ 1 − α for some 0 < α < 1.
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Figure 4.2: The set MR with a = 1, R = {2} and C = ( 1 0.5
0.5 1 ).

We will again assume that C is positive definite and that, without loss of generality14, c12 ≥ 0.
As in the fully penalized Lasso case it is easily seen that for a diagonal matrix C, the set

M = {z ∈ R2 : |z1| ≤ a}

is the largest set that complies with Condition B and cannot be enlarged while maintaining a fixed
projection onto the subspace associated with the first component. Also, in this case, it is easily seen
that the confidence interval constructed in this way is again equivalent to the procedure proposed by
Pötscher & Schneider (2010), when considering a confidence set for both components. However, note
that in this case, by orthogonality of the regressors, the marginal distribution of the component of
primary interest is simply equal to the Least-squares estimator’s marginal distribution, thus yielding
the same (marginal) confidence interval, since the component of interest is not being penalized.

Turning to the case of c12 > 0 we define the set

M+
R = {z ∈ R2 : |z1| ≤ a, z2 ≥ 0, (Cz)1 ≤ (Ca)1}

where a = (a, 0) and a ≥ 0. Now determine the shape of the confidence set by mirroring the set
M+

R around both axes:

MR = −M+
R ∪ M+

R

14As before, simply consider the model y = x̃·1β̃1 + x·2β2 + ε with x̃·1 = −x·1, in case c12 < 0.

71



An example of the set MR is displayed in Figure 4.2. Note that MR = −MR and that M(a) ⊆
MR(a) for fixed a ≥ 0, as the set now contains additional points in O(−1,1) and O(1,−1). (For a
visualization of this compare Figure 4.2 to Figure 4.1 which displays the set for the full penalization
case with otherwise identical parameters.)

Proposition 48. The set MR satisfies Condition B.

Proof. By symmetry it is again sufficient to verify that Ad
R,C(m) ⊆ MR for d ∈ {−ι, (1, −1) },

where m ∈ MR is arbitrary. By Lemma 41 we have that for m ∈ Rp and z ∈ Rp

(Cz)1 ≥ (Cm)1 and (Cz)2 ≤ (Cm)2 =⇒ z1 ≥ m1 and z2 ≤ m2.

Using this fact we see that for any m ∈ MR

A−ι
R,C(m) ∪ A

(1,−1)
R,C (m) = {z ∈ Rp : z2 ≥ 0, (Cz)1 = (Cm)1, (Cz)2 ≤ (Cm)2}

= {z ∈ Rp : z2 ≥ 0, z1 ≥ m1, (Cz)1 = (Cm)1, (Cz)2 ≤ (Cm)2}
⊆ {z ∈ Rp : z2 ≥ 0, z1 ≥ −a, (Cz)1 = (Cm)1} ⊆ MR,

since m ∈ MR implies that (Cm)1 ≤ (Ca)1.

We now show that the set MR is the largest set with a fixed projection onto the subspace
associated with the first component that satisfies Condition B.

Proposition 49. If M̃R ⊆ R2 satisfies Condition B and that supm∈M̃R |m1| ≤ a, then

M̃R ⊆ MR.

Proof. The proof is completely analogous to the first part of the proof of Proposition 43.

We are again interested in the behavior of the length of the confidence interval in dependence of
both the penalization parameter’s second component, λ2, and the regressors’ correlation. We will
again consider the case where c11 = c22 = 1 and σ2 = 1. Note that in case of an orthogonal design,
i.e., for c12 = 0, the interval is the same as the Least-squares interval (a ≈ 1.96). It is again easy to
see that also in the partial Lasso case the size of a confidence set that is based on that estimator will
be larger than a Least-squares confidence set whenever c12 = 0. Hereby, one can again observe the
same effects as in the previously considered full penalization case. First, note that as in the case of
the fully penalized Lasso there are multiple normal distributions with the same variance-covariance
structure, but different means which have to be covered. This effect will be a bit less severe in the
partial Lasso case, as there will be fewer distinct means for the random variables that have to be
covered, an effect that occurs if not all components are penalized (c.f. Remark 47). Also note that
for fixed a > 0, M(a) ⊆ MR(a) and that both sets decrease15 in volume as |c12| increases.

15For fixed a > 0.
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|c12| 0.25 0.5 0.75 0.9
λ2 = 0 1.96 1.96 1.96 1.96

λ2 = 0.1 2.1 2.3 3 4.6
λ2 = 0.5 2.1 2.4 3.4 6.2
λ2 = 1 2.2 2.6 4.2 8.5
λ2 = 2 2.4 3.3 5.9 13.3
λ2 = 3 2.6 3.9 7.6 18.0

Table 4.2: Half-lengths of the 95% confidence intervals based on the partial Lasso estimator for
c11 = c22 = 1 and σ2 = 1, rounded to one digit.

Table 4.2 displays the half-lengths of the resulting confidence sets for various values of λ2 and
c12. While qualitatively similar to the full penalization case, the results differ from that case in
the following way: For small absolute values of c12 the increase in λ2 is far less pronounced than
before, whereas for large values of c12 the confidence sets still have to be substantially larger than
for small values of this parameter. Note that the resulting confidence sets are considerably smaller
than those that are based on the fully penalized Lasso estimator (Table 4.1). This size difference
is due to the fact that the bias induced by penalizing the component of interest is removed in the
partial Lasso case. The bias induced by penalizing the second component, however, remains due
to the regressors’ correlation. This “carry-over” bias is made visible by the increased size of the
corresponding confidence sets for higher-correlated regressors.

4.4 Adaptive choice of the sub-parameter being covered

In this section we discuss the validity of a procedure that produces confidence sets only for the
non-zero parameter estimates. Since the components of the finally selected model are random,
the choice of shape of the confidence set is consequently random16 as well. It is thus not clear, a
priori, whether such a procedure will result in valid confidence sets in general, as a certain model’s
selection event and the parameter’s coverage event are dependent in an intricate manner. However,
a procedure of this type will be quite attractive to users, since they are, often, only interested in
the components of the active set. Note, however, that we still consider confidence sets designed
to cover the entire parameter vector17, albeit with different priorities18 on certain components,
depending on which model is chosen by the procedure. This is in contrast to the post-selection
inference procedures proposed by Berk et al. (2013) and Lee et al. (2016) as well as similar works

16Note, however, that the shape and size are fixed for any sub-model that may be selected. This means that the
randomness of the confidence set’s shape merely stems from the fact that different parts of the parameter should be
covered in an “optimal” way.

17This, as we have seen in the previous sections, also yields a bound for all components of the parameter vector,
whenever the design matrix’ columns are not orthogonal.

18These priorities will be reflected in the choice of shape for the confidence sets, depending on the selected model.
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(also c.f. Section 2.2). The main goal of this section is to determine whether such a procedure, if
implemented in a rather simple but quite intuitive fashion, will produce valid confidence sets in
the sense that the unconditional probability of the randomly chosen parameter being covered is at
least equal to the nominal coverage probability.

To formalize the procedure, we do the following. For an active set A = A(β̂L) = {j ∈ {1, . . . , p} :
β̂L,j = 0}, we want to construct a confidence set MA ⊆ R|A| for the sub-parameter βA. Given this
definition we will have to consider the special case in which the Lasso estimator yields the empty
model, i.e., β̂L = 0. Note that this model is assumed with positive probability whenever λj > 0 for
all j = 1, . . . , p, as seen in Corollary 22. By the above definition we would thus want to construct a
confidence set for an “empty” parameter, β∅, which would simply mean not to conduct any inference
at all. Despite this being a valid procedure in principle, it seems reasonable that in such a case the
user would be more interested in the question of how close to the origin the entire parameter will
actually be. We thus define this “empty” parameter to be equal to the whole parameter vector:
β∅ = β.

To describe the approach, we denote the powerset by P(·). For each possible sub-model I ∈
P({1, . . . , p}) consider a set MI that is designed to uniformly cover the estimation error and is
fixed with respect to its size and shape. We now estimate the unknown parameter using the Lasso
and from the above family of sets, {MI}I∈P({1,...,p}), pick the one that corresponds to the active
set, MA, and center it at the Lasso estimate. In order to define the overall coverage probability
of this procedure, we first consider the conditional19 coverage probability and multiply it by the
probability of selecting the corresponding model. This is equivalent to the joint probability of
selecting a certain model and covering the corresponding sub-parameter. To cover every possible
model, we now take the sum over all these cases:

Pβ(βA ∈ β̂L − MA) =
I∈P({1,...,p})

Pβ(βI ∈ β̂L − MI and A(β̂L) = I). (4.4)

In lack of a general procedure on how to construct confidence sets for sub-parameters that are
based on the Lasso estimator, we limit ourselves to the case where p = 2 and use the confidence
sets constructed in Chapter 2 in case βA = β and Section 4.3.1 in case A ∈ {{1}, {2}}.

In this setting a simulation study was carried out to determine the respective overall coverage
probability. The simulations were set up in the following way: For a given regressor matrix X

which satisfies that 1
nX X = 1

nC = 1 c∗
12

c∗
12 1 , the response y is generated from the model in (1.1).

Next, the Lasso estimator is calculated for λ = (
√

n,
√

n) and the selected model is recorded, as
well as whether the corresponding parameter is covered by its 95% confidence set. Repeating this
procedure 100,000 times and calculating the means of both the model selection indicators and the
coverage-indicators, we obtain estimates for model the selection probabilities (c.f. Figure 4.4) and,

19For a given active set.
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more importantly, the coverage probabilities as defined in (4.4). Note that the simulation’s margin
of error is upper-bounded by 0.003220. This was repeated for different values of β and c∗

12. The
simulation was carried out using the statistical software package R with the (main) simulation code
being provided in Appendix B.

The results for the coverage probability, which are displayed in Figure 4.3, strongly suggest that
the procedure under consideration is valid: For c∗

12 = 0.5, the lowest coverages have been observed
for large absolute values of β1 and β2 and where sgn(β1) = sgn(β2). Note that in these cases21 the
Lasso almost always selects a model without any zero-components, thus effectively not performing
model selection, as can be seen in Figure 4.4. Hence, this case essentially corresponds to the case of
having to cover ûι and û−ι, respectively as described in Chapter 2. By construction, the coverage
probability is almost exactly 0.95 = 1−α in case sgn(β1) = sgn(β2) and approximately 0.992 in the
case where sgn(β1) = sgn(β2) which corresponds to P (û(−1,1) ∈ M). This is due to the fact that the
minimal coverage probability is attained for large absolute values of the true parameter, as pointed
out in Chapter 2. Indeed, the confidence sets produced in Chapter 2 and Section 4.3.1 are over-
covering the true parameter in case it is small while attaining their nominal coverage probabilities
for large parameters (that have certain signs). This is due to the fact that the Lasso confidence
sets have to correct for the bias that is induced by shrinking the parameter estimates. If the true
parameters actually are almost zero, this bias is over-corrected leading to a higher-than-nominal
coverage probability for the corresponding values of β. As a result of this, we see that in cases
where β is small22 and the empty model is frequently selected by the estimator, the true parameter
is covered by the confidence set in over 99% of cases. A similar effect appears to hold in the setting
where a model with only one non-zero component is selected often: If the non-zero component is
small in absolute value, then the coverage probability is very high, i.e., almost exactly one. Moving
away from that area, the true coverage slightly declines, but still ranges between 0.98 and 0.99
depending on the value of the component of the true parameter that is estimated to be exactly
zero.

This behavior may be attributed to the fact that, while the confidence sets are designed to
cover the entire parameter vector (albeit with a shape that is chosen to be optimized for a specific
sub-parameter), we only review whether the component of interest is covered in the simulations.
This indicates that there may still be some room to improve the length of the component-wise
confidence interval. However, this may only be achieved when the confidence intervals for single
components are not based on Proposition 46, since the shape of the confidence set based on that
result is already optimal in the sense of Proposition 49.

20Note that the simulation’s outcome follows a binomial distribution. Bounding its variance by 0.52

N
, where N

denotes the number of repetitions, and using an approximation by the normal distribution, one may add and subtract
two standard deviations to obtain the end-points of a 95.4% confidence interval.

21I.e., in cases all components of β are large in absolute value.
22In the Euclidean norm, for example.
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Turning to a different choice of parameter, c∗
12 = 0.25, we see a qualitatively similar picture

to the previous choice of parameter: The coverage is very high for small β’s and decreases as the
components of the true parameter get larger. Despite being lower than for the previous value of c∗

12,
the true coverage probability always lies above 0.95. This can be explained by a now less severe
over-correction compared to the previous case, as there is now less correlation between the two
regressors. The coverage and model selection probabilities for this case are visualized in Figure A.1
which can be found in Appendix A.

For c∗
12 = 0.75, the picture is again similar. However, the area in which the parameter of interest

is covered with probability almost equal to 1 now stretches over all parameters that do not have
components with differing signs and a large norm. This is again to be attributed to the larger
correlation in this case, which in turn leads to stronger over-correction for non-coverage-minimizing
parameters. The results for this correlation parameter are visualized in Figure A.3 which can again
be found in Appendix A.

Finally, to ensure that the results are not the result of the specific choice of design matrix
X, another set of simulations was run, this time generating a new regressor-matrix X for each
repetition. The results confirm the above findings, but are not reported, as they hardly give any
new insights.

Summing things up, the results of the simulation study indicate that the proposed procedure
which includes a different choice of sub-parameter to be covered for each selected model is valid in
the sense that the resulting overall coverage probability for the quantity of interest never, i.e., for
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no value of β, falls below the confidence set’s nominal level 1 − α. At first this may seem to be in
contrast to findings of Kabaila & Leeb (2006) who show that, in a classical model selection setting,
the true coverage probability of “naive” confidence sets for the true (sub)parameter often falls well
below the nominal coverage probability. This, however, is not a contradiction at all, since the
confidence sets that are constructed in this simulation are not naive by any means, but designed to
account for the Lasso’s model selection properties and cover the true parameter uniformly. Indeed,
it seems to rather over-cover the desired parameter in cases of a single-regressor model being chosen
by the procedure. Naturally, there is room for further research, both in terms of giving an analytical
confirmation of these results in higher dimensions (i.e., p > 2), as well as a more optimal choice of
confidence set for certain sub-parameters of interest.

4.5 Adaptive confidence regions

As previously shown, the minimal coverage probability for the proposed confidence sets is assumed
when the components of the true parameter vector are, or become, large in absolute value, i.e., as
|βj | → ∞ for each j. Hereby the coverage-minimizing signs of β depend on the (sequence of the)
regressor matrix X. Knowing the signs of the true parameter vector, at least partially, would allow
us to construct confidence sets that are smaller in volume than the sets proposed in Chapter 2
using Proposition 2. In this case it is sufficient to ensure that the minimal coverage probability
over all β’s having certain signs is sufficiently large, thus reducing the number of random variables,
ûd, that have to be covered, if a confidence set is constructed in the way described in the previous
parts of this thesis. Being aware of the fact that Lasso-based confidence sets can be reduced in
size by either penalizing only some of the parameters, or by considering only some components,
one may ask the question whether information about the parameter’s true sign can also be used to
obtain smaller confidence sets.

The true signs of β are, however, rarely23 known. It may thus may seem compelling to try
and estimate, or test for, the signs of the parameter vector prior to choosing the shape for the
confidence set. The reasoning behind this idea is that a “sufficiently conservative” test for the signs
may, at least asymptotically, as n −→ ∞, detect the true sign, thus enabling the user to construct
the confidence set as if the signs of the true parameter vector were known.

To explore this idea, we will thus consider an asymptotic framework and make the dependence
of the parameters on the sample size explicit again, so that X = Xn and λ = λn. And as before, we
will suppress the dependence of the estimators β̂L and β̂LS on n in the notation. We will consider
the very simple case of the mean-model where Xn = ι for each n ∈ N (hence, p = 1). The model
thus reads

yi = β + εi (4.5)
23Note that the signs may be known due to some external information about the model. One may argue that this

should rather be reflected in one’s choice of estimator, which would lead to a different procedure.
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where 1 ≤ i ≤ n, εi ∼iid N(0, 1) and β ∈ R is the parameter of interest. Note that the Lasso can
be stated explicitly in this simple model:

β̂L = (β̂LS − ηn)1{β̂LS>ηn} + (β̂LS + ηn)1{β̂LS<−ηn}, (4.6)

where ηn = 1
nλn. Suppose that

√
nηn −→ η < ∞ as n −→ ∞, thus putting us into a conservative

model selection framework. We now want to define the sign estimator that will be used to determine
the sign of the parameter of interest in a conservative manner. It appears reasonable to base the
sign estimator on the Least-squares estimator, as this estimator is unbiased and consistent. We
thus define the sign estimator as

ŝn = 1{β̂LS>n−γ} − 1{β̂LS<−n−γ},

where 0 < γ < 1
2 is a tuning parameter that determines the procedure’s “conservativeness”. The

procedure is to be interpreted in the following way: if ŝn = 0 we cannot determine whether the true
sign is positive, negative, or actually zero based on the given sample size. The decision whether
ŝ = 0 can also be interpreted as a statistical test of the question where the outcome ŝ = 0 does not
reject the null-hypothesis sgn(β) = 0. If, however, the null-hypothesis is rejected in the pretest,
then the observed sign is taken as an estimate for the true sign. Note that since γ < 1

2 this
procedure is more conservative than the Lasso in the sense that its “critical values” go to zero at
a rate that is slower than 1√

n
. Indeed, we have that

lim
n→∞ sup

β∈R
P (ŝn · sgn(β) = −1) = lim

n→∞ Φ −n−γ+ 1
2 = 0.

Since the case ŝn = 0 is to be interpreted as “undecided”, the estimator ŝn is uniformly consistent
in the sense that the supremum probability of obtaining a wrong sign-estimate tends to zero as n

goes to infinity. Hereby the rate of convergence depends on the tuning parameter γ.

Having obtained the sign-estimates, we denote the corresponding length-minimizing confidence
intervals Kn(ŝ) in the following way:

• Kn(1) = [β̂L − an, β̂L + bn]

• Kn(−1) = [β̂L − bn, β̂L + an]

• Kn(0) = [β̂L − cn, β̂L + cn]

where cn is chosen such that Φ(
√

ncn +
√

nηn) − Φ(−√
ncn +

√
nηn) = 1 − α for some prescribed

level α ∈ (0, 1). To determine the smallest confidence interval for the known-sign cases, we do the
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following: For an ≥ 0 and bn ≥ 0 and β ≥ 0 Proposition 2 yields24

inf
β≥0

Pβ(β ∈ [β̂L − an, β̂L + bn]) = inf
β≥0

Pβ(−bn ≤ β̂L − β ≤ an)

= P (−bn ≤ û+ ≤ an)
= P (−√

nbn +
√

nηn ≤ √
n(û+ + ηn) ≤ √

nan +
√

nηn)
= Φ(

√
nan +

√
nηn) − Φ(−√

nbn +
√

nηn).

where û+ ∼ N(−ηn, 1
n). From the previous display, we see that setting

√
nan +

√
nηn = Φ−1(1− α

2 )
and −√

nbn +
√

nηn = −Φ−1(1 − α
2 ) will yield the shortest interval having coverage probability

1 − α. This interval can, however, only be chosen as long as Φ−1(1 − α
2 ) ≥ √

nηn, since otherwise,
either an < 0 or bn < 0, thus violating Condition A. In case Φ−1(1 − α

2 ) <
√

nηn it is easy to
see that choosing an = 0 and bn such that Φ(

√
nηn) − Φ(−√

nbn +
√

nηn) = 1 − α will yield the
shortest interval. Inspection of the above formulae shows that the shortest Lasso-based confidence
interval for a known sign is simply given by the “standard” confidence set based on the Least-
squares estimator whenever the Lasso is contained in that interval. When, by heavy penalization,
the Lasso lies outside the Least-squares interval, the estimator is taken as the end-point that is
closer to the origin and the other endpoint is chosen to achieve the desired coverage probability.
Note that by symmetry, the length-minimizing an and bn are identical in case β < 0 and hence for
Kn(−1).

Note that, as mentioned earlier, we have infβn∈R P (βn ∈ Kn(0)) = 1−α and infβ: sgn(β)=s P (β ∈
Kn(s)) = 1 − α for s ∈ {−1, 1}. The the vital question now is whether the proposed procedure,
which switches between these intervals, yields asymptotically valid confidence sets, that is, whether

lim inf
n→∞ inf

β∈R
P (β ∈ Kn(ŝn)) ≥ 1 − α.

It turns out that this does not hold, as is shown in the following result.

Proposition 50. Let Kn(s) be the above-defined minimum-length confidence intervals for known
signs s ∈ {−1, 1} and unknown sign s = 0 and assume that

√
nηn −→ η < ∞. For the adaptive

confidence interval based on the sign estimator ŝn = 1{β̂LS>n−γ} − 1{β̂LS<−n−γ} and α < 1
2 we have

that
lim inf
n→∞ inf

β∈R
Pβ(β ∈ Kn(ŝn)) < 1 − α.

Proof. To show that the actual coverage probability may indeed fall below the nominal level of 1−α

in the limit, as n → ∞, it is sufficient to find a sequence (βn)n≥1 such that P (βn ∈ Kn(ŝn)) −→
q < 1 − α.

Note that since
√

nηn −→ η < ∞, we have that
√

n cn −→ c > Φ−1(1 − α
2 ) as n → ∞ (at

least along some subsequence). For later use let û∞
LS = limn→∞

√
nûLS = limn→∞

√
n(β̂LS − βn) and

24Note that Condition A merely requires the confidence set to be an interval containing β̂L in case p = 1.
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note that both
√

nûLS and û∞
LS follow a standard normal distribution. Now take the sequence

βn = n−γ − n− 1
2

c + η + Φ−1(1 − α
2 )

2 .

First note that for this sequence of parameters we have

P (β̂LS ≥ ηn) = P (
√

n(β̂LS − βn) ≥ √
nηn − √

nβn) = Φ(−√
nηn +

√
nβn) −→ 1

as n goes to infinity and hence, by (4.6),

β̂L = β̂LS − ηn + op(1).

The desired coverage probability is now given by

P (βn ∈ Kn(ŝn)) = P (βn ∈ Kn(1), ŝn = 1) + P (βn ∈ Kn(−1), ŝn = −1) + P (βn ∈ Kn(0), ŝn = 0).

We will now treat these three terms separately. As we have seen before, the form of Kn(1) depends
on ηn. We thus first consider the case25 where

√
nηn < Φ−1(1 − α

2 ) for each n:

P (βn ∈ Kn(1) and ŝn = 1)

= P β̂LS − 1√
n

Φ−1(1 − α
2 ) ≤ βn ≤ β̂LS + 1√

n
Φ−1(1 − α

2 ) and β̂LS > n−γ + o(1)

= P −Φ−1(1 − α
2 ) ≤ √

n(β̂LS − βn) ≤ Φ−1(1 − α
2 )

√
n and

√
n(β̂LS − βn) >

√
n(n−γ − βn) + o(1)

= P
√

nûLS > 1
2(c + η + Φ−1(1 − α

2 )) and − Φ−1(1 − α
2 ) ≤ √

nûLS ≤ Φ−1(1 − α
2 ) + o(1) = o(1),

since c + η + Φ−1(1 − α
2 ) > 2Φ−1(1 − α

2 ) and the event in the last line of the above display is thus
empty. When

√
nηn ≥ Φ−1(1 − α

2 ) for each n, we have

P (βn ∈ Kn(1) and ŝn = 1) = P β̂L ≤ βn ≤ β̂L + bn and β̂LS > n−γ

= P −bn ≤ β̂LS − ηn − β ≤ and β̂LS − β > n−γ − β + o(1)

≤ P
√

n(n−γ − β) <
√

n(β̂LS − β) ≤ √
nηn + o(1)

= P
c+η+Φ−1(1− α

2 )
2 <

√
nûLS ≤ η + o(1) = o(1),

since the probability in the last line of the above display is eventually empty, as Φ−1(1− α
2 ) > 0 and

c > η. (To see the latter inequality note that in the limit we have 1 − α = Φ(c + η) − Φ(−c + η) ≤
1 − Φ(−c + η) =⇒ Φ(−c + η) < 1

2 =⇒ c ≥ η, since α < 1
2 .)

25Assume that either
√

nηn < Φ−1(1 − α
2 ) for each n, or

√
nηn ≥ Φ−1(1 − α

2 ) for each n, otherwise pass to
subsequences.

81



Next, we see that

P (βn ∈ Kn(−1), ŝn = −1) ≤ P (ŝn = −1) = P (β̂LS < −n−γ) −→ 0

as n −→ ∞. Finally, we have

P (βn ∈ Kn(0) and ŝn = 0)

= P β̂LS − ηn − cn ≤ βn ≤ β̂LS − ηn + cn and − n−γ ≤ β̂LS ≤ n−γ + o(1)

= P
√

n(−cn + ηn) ≤ √
nûLS ≤ √

n(cn + ηn) and − 2n
1
2 −γ + O(1) ≤ √

nûLS ≤ c+η+Φ−1(1− α
2 )

2 + o(1)

= P c + η ≤ û∞
LS ≤ c + η and û∞

LS ≤ c+η+Φ−1(1− α
2 )

2 + o(1)

= Φ c+η+Φ−1(1− α
2 )

2 − Φ(−c + η) + o(1)

= 1 − α − Φ(c + η) − Φ c+η+Φ−1(1− α
2 )

2 + o(1).

Since c + η > Φ−1(1 − α
2 ), we eventually have P (βn ∈ Kn(0) and ŝn = 0) < 1 − α, completing the

proof.

Remark 51. Note that the assumption that α < 1
2 is not too restrictive, since for almost all

practical purposes α is typically chosen to be “close” to zero. Indeed, α ≥ 1
2 would mean that the

resulting “confidence set” is more likely not to contain the true parameter than it is to contain it,
a choice that seems strange in almost any imaginable application.

Proposition 50 shows that the proposed adaptive procedure does not yield valid confidence sets.
Even though the procedure has no problems with parameter-sequences of order 1√

n
by using a

pre-test, or sign-estimator of higher order, n−γ , the “problematic” rate of parameter sequences is
merely shifted to the pre-test’s rate. Also note that this problem arises, since the pre-test and the
corresponding estimators are (necessarily) dependent. Considering the simplicity of the model and
the fact that the assumptions in the setting under consideration are quite standard, this highly
suggests that adaptive procedures for producing confidence sets are not uniformly valid in a larger
class of settings.

4.6 Conclusion

In this chapter we have seen that the approach to construct confidence sets that are based on the
Lasso estimator that is presented in Chapter 2 easily extends to the unknown variance case, where
σ2 has to be estimated, with only minor adaptations.

We also explored what Lasso-based confidence sets that are constructed based on the theory
that has been developed in Chapter 2 look like when optimized to cover just one of the parameter
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vector’s components in a two-dimensional setup. It is illustrated that the length of these intervals
increases with both the absolute correlation between the regressors, and the size of the penalization
parameter. Similarly, a confidence set is also constructed for a partial Lasso where the non-penalized
component of the parameter vector is to be covered. This approach somewhat mitigates the adverse
effects of size of the intervals that arise from the regressor’s correlation.

To study whether the shape and sub-parameter to be covered may be chosen in dependence of
the Lasso’s initial outcome, a simulation study was carried out. In the considered two-dimensional
setting the results indicate that such a procedure may indeed be valid.

Finally, it is shown that an adaptive procedure for producing confidence sets in which the sign
of the true parameter is first tested with a higher order pre-test does not yield valid inference, as
the “problematic” sequences of parameters are merely shifted to the pre-test’s order.
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Closing remarks

In this thesis, we have made advances in the knowledge about and understanding of the Lasso
estimator.

We have found a stochastic bound for the Lasso’s estimation error which enables the construction
of uniformly valid confidence sets for the entire parameter vector in the, in practice quite relevant,
low-dimensional setting, which had not been fully covered in the academic literature so far. To
that end, we have derived a formula for the minimal coverage probability of a large class of sets
that satisfy a rather mild condition which depends on the model’s design matrix.

We have further explored various aspects of such confidence sets, such as the choice of shape both
for the full parameter vector of interest, as well as a version that is optimized for a single component.
We have also compared the Lasso and its confidence sets with the Least-squares estimator, showing
that the resulting confidence sets will be larger than those based on the Least-squares estimator.

Last, but not least, we have thoroughly analyzed the Lasso estimator’s distribution in both low-
and high-dimensional settings and given its cumulative distribution function. While other authors
had already provided this distribution in different ways before, the approach taken in this thesis is
much more intuitive and easier to grasp. Furthermore, we have described the connection between
the Lasso and the Least-squares estimator by giving a one-to-one relation between the two. In
the high-dimensional setting we have also gained better insights in the estimator’s behavior and in
particular its model selection properties, showing the importance of the choice of the regressors’
scaling to the procedure’s users.

The author would like to thank his readers for their interest and hopes that they found the
thesis to be stimulating. And while it has most likely not answered all questions regarding the
topic, the author hopes that this thesis has given the reader a few illuminating insights, while
sparking a few more questions and ideas that will lead to further research.
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Appendix A

Additional figures

This chapter presents additional figures that were left out of the main part as not to disturb the
reading flow. The figures display the (unconditional) coverage1 of the confidence sets constructed
in Section 4.4 for two additional examples of covariance matrices of the regressors. Apart from
indicating that the procedure indeed yields valid confidence sets, one can see that the produces
more and conservative sets for the points that are not “close” to the minimal coverage probability
as the absolute correlation between the regressors increases. This can be seen in Figure A.1 and
Figure A.3. Additionally, the corresponding (simulated) model selection probabilities are displayed
in Figure A.2 and Figure A.2.

1I..e, formula (4.4).
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Appendix B

Simulation code

This Chapter contains the essential code used for the Monte Carlo simulations that were performed
to obtain the results in Section 4.5. The simulations were conducted using the statistical software
package R.

The code in the succeeding display generates response data y for given regressor matrix, tuning
parameter λ and regression parameter β. It then calculates the Lasso estimator and checks whether
the true parameter is covered by the Confidence set that is constructed using an elliptic shape.
Finally, the above-described steps are repeated for a given number of times and averages over the
results taken to arrive at the (approximate) model selection probabilities of the estimator, as well
as coverage probabilities both conditional and unconditional on the selected model. Note that the
conditional coverage probabilities are less accurate than the unconditional ones, as less observations
are available per selected model. The results should thus be viewed bearing the model selection
probability in mind, especially if it is quite low.

lassofkt <- function(y_, X_, lambda_, par_){
t(y_-X_ %*% par_)%*%(y_-X_ %*% par_)+2*lambda_*sum(abs(par_))
}

lasso <- function(lambda_,y_,X_,digits=3){
round(optim(par=c(0,0), lassofkt, y_=y_, X_=X_, lambda_=lambda_)$par,
digits=digits)
}

sim.fkt1a <-
function(X, beta=c(0,0), sd.epsilon=1, lambda=NULL, a=3.9, k=14.7, n.rep=100000,
digits=3){
n <- length(X[,1])
XX <- t(X) %*%X
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sqrt.n <- sqrt(n)
if(is.null(lambda)){lambda <- sqrt.n}
cvrd.vec <- rep(0, times=n.rep)
model.vec <- rep("00", times=n.rep)
C <- t(X) %*% X/n
for(i in 1:n.rep){
epsilon <- rnorm(n=n, mean=0, sd=sd.epsilon)
y <- X %*% beta+epsilon
beta.hat <- lasso(lambda_=lambda, y_=y, X_=X, digits = digits)
if(beta.hat[1]==0 && beta.hat[2]==0){
if(t(beta.hat-beta) %*% XX %*% (beta.hat-beta) < k){cvrd.vec[i] <- 1}
}
else if(beta.hat[1]!=0 && beta.hat[2]!=0){
model.vec[i] <- "11";
if(t(beta.hat-beta) %*% XX %*% (beta.hat-beta) < k){cvrd.vec[i] <- 1}
}
else if(beta.hat[2]==0){
model.vec[i] <- "10";
if(sqrt.n*abs(beta[1]-beta.hat[1])<a){cvrd.vec[i]<- 1}
}
else{
model.vec[i] <- "01"; if(sqrt.n*abs(beta[2]-beta.hat[2])<a){cvrd.vec[i]<- 1}
}
}

res <- NULL
res$coverage <- mean(cvrd.vec)
res$model <- c(sum(model.vec=="00"), sum(model.vec=="01"),
sum(model.vec=="10"),sum(model.vec=="11"))
res$cond_coverage00 <- mean(cvrd.vec[model.vec=="00"])
res$cond_coverage01 <- mean(cvrd.vec[model.vec=="01"])
res$cond_coverage10 <- mean(cvrd.vec[model.vec=="10"])
res$cond_coverage11 <- mean(cvrd.vec[model.vec=="11"])
return(res)
}

The function has been slightly altered to generate a new regressor matrix X in each repetition
to verify that the results do not depend on the particular regression matrix. The adapted function
is not reported as the changes are quite minor.
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Note that the constants defining the size of the confidence sets were obtained using numerical
integration in the software package Mathematica. Since this is a straight-forward process, these
codes will not be presented here.

101



102



Appendix C

Definitions and results used in the
thesis

This chapter gives an overview of generally known results that are used or mentioned in the thesis.
To avoid confusion, it also gives the definitions of some concepts that sometimes are defined in
slightly different ways.

C.1 Definitions

C.1.1 Multivariate t-distributions

This Section is based on Kotz & Nadarajah (2004).
In general there are multiple forms of multivariate t-distributions, we will present the most

common and most natural one, in the sense that it can be derived from the a multivariate normal
distribution in the same way the univariate t-distribution can be derived from a univariate normal
distribution.

Definition 52. Let Z be a random vector following a p-variate normal distribution with mean zero
and variance-covariance matrix Σ ∈ Rp×p. Moreover, let χk denote an independent χ2 distributed
variable and let µ ∈ Rp. Then, the variable

T = Z
χk
k

− µ

is said to follow a multivariate t-distribution with k degrees of freedom, correlation matrix Σ
and non-centrality parameter µ and has the Lebesgue-density

f(z) =
Γ(k+p

2 )
(πk)(p/2)Γ(k

2 ) det(Σ)
1 + z Σ−1z

k

− k+p
2

, (C.1)
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where Γ(·) denotes the Gamma function.

Remark 53. It is easily seen that if Z ∼ N(0, Σ) for some p-dimensional correlation matrix Σ and
T follows a (central) t-distribution with correlation matrix Σ and any number of degrees of freedom
k, then the contour lines of the distributions of T and Z have the same shape in the sense that for
each ≥ 0 there exists an ρ ≥ 0 such that

{z ∈ Rp : f(z) ≤ } = {z ∈ Rp : φ(0,Σ)(z) ≤ ρ},

since the contour sets of both densities will be of the form

{x ∈ Rp : x Σ−1x ≤ ρ},

for some constant ρ ≥ 0, as is seen by inspecting the corresponding Lebesgue densities. Note,
however, that any set of the form {z ∈ Rp : z Σ−1z ≤ ρ} will correspond to different contour-levels
for the two distributions, in general.

C.1.2 General position

The concept of the regressor matrix’ columns being in general position can shown to be a sufficient
condition for uniqueness of the Lasso, c.f. Lemma 3 in Tibshirani (2013)1. Since it is easily confused
with another concept of the same name, the definition is given in the following.

Definition 54 (General Position). We say that the matrix X ∈ Rn×p has columns in general
position if no k-dimensional affine subspace L ⊆ Rn, for k < min{n, p}, contains more than k + 1
elements of the set {±x·1, . . . , ±x·p}, excluding antipodal pairs.

Another way of saying this: The affine span of any k + 1 points s1xi,1, . . . , sk+1xi,k+1 , for
arbitrary signs s1, . . . , sk+1 ∈ {−1, 1}, does not contain any element of {±x·i : i = i1, . . . , ik+1}.

C.2 On the asymptotics of convex stochastic optimization

In this section we take a look at the result that ensures that the minimizers of a sequence of
convergent random functions indeed converges in distribution to the minimizer of the limiting
function, thus enabling the proofs of Proposition 11 and Proposition 15. This result has been
provided by Geyer (1996) and are much more general than needed in our application. To keep
the notation as simple as possible we shall thus give a simplified version of the main result that is
sufficient for our needs.

We start with a definition.
1The definition given here is also based on this reference, but clarifies that the subspaces used to define the

condition are indeed affine subspaces.
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Definition 55. Let C(Rp) denote the space of all continuous functions from Rp to R. Let

F K = sup
x∈K

|F (x)|.

We say that a sequence {Fn}n≥1 ⊆ C(Rp) converges to a function F ∈ C(Rp) in the topology of
uniform convergence on compact sets, if

Fn − F K −→ 0

as n −→ ∞ for every compact subset K of Rp.

Albeit not completely obvious it can be shown that this notion of convergence is induced by
the metric

d(F ; G) =
∞

n=1

2−n F − G Bn

1 + F − G Bn

where Bn denotes a ball around zero having radius n and the space C(Rp) equipped with the
topology of uniform convergence is in fact a metric space.

Equipped with this concept we can now state the theorem that enables the asymptotic results
in Chapter 2.

Theorem 56. Suppose Fn is a sequence of random elements of the Polish space C(Rp) of all
continuous functions from Rp to R with the metric of uniform convergence on compact sets and
F is another random element of that Polish space having the property that F has a unique global
minimizer almost surely. Suppose xn is a sequence of random vectors. If fn −→d f and xn is
bounded in probability and Fn(xn) − infy∈Rp Fn(y) −→d 0, then

xn −→d x

where x is another random vector and

Fn(xn) −→d F (x)

and F (x) = infy∈Rp F (y) almost surely.

C.3 Further results

This Section contains two classical results from both Functional Analysis as well as Probability
Theory that are used in the thesis. We start with The Banach-Steinhaus Theorem which is used
in the proof of Remark 10.

105



Theorem 57 (Banach-Steinhaus2). Let X be a Banach space and let Y be a normed linear space.
Let {Tα} be a family of bounded linear operators from X to Y and let · op denote the operator
norm. If for each x ∈ X the set {Tαx} is bounded, then the set { Tα op} is bounded.

We now turn to the Central Limit Theorem which ensures the asymptotic normality of the Least-
squares estimator in our setting and thus also enables the analysis of the asymptotic behavior of the
Lasso estimator in Section 2.6.1. The following version of the CLT is Theorem 4.7 from Pötscher
& Prucha (2001) with the notation being adapted to the one used in this dissertation.

Theorem 58 (Central Limit Theorem). Let εn,i, i ≥ 1 be a sequence of i.i.d. random variables
with E(εn,i = 0) and E(ε2

n,i) < ∞. Let X = Xn = (xij) be a sequence of real non-stochastic n × p

matrices with limn→∞ 1
nXnXn = C∞. Then

1√
n

Xnεn −→ N(0, σ2C∞)

as n −→ ∞.

2As formulated in Friedman (1982), p.139.
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