
Sequent Calculi for QBFs
Their Relation to Bounded Arithmetic, and the

Complexity of the Witnessing Problem

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieurin

in

Computational Intelligence

by

Dana Jomar
Registration Number 1426666

to the Faculty of Informatics

at the TU Wien

Advisor: Ao. Univ-Prof. Dr. Uwe Egly

Vienna, 31st May, 2021
Dana Jomar Uwe Egly

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Dana Jomar

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 31. Mai 2021
Dana Jomar

iii

Acknowledgements

I wish to express my sincere gratitude to my thesis advisor Prof. Dr. Uwe Egly. He was
the compass that always steered me in the right direction. For his support, guidance,
and above all his patience, I would like to say thank you.

It is also essential to express my gratitude to the people who encouraged me, and gave
the emotional support I needed to continue when I thought I will never finish. To you all
– you know who you are – thank you.

v

Abstract

Gi and G∗
i are Gentzen-like sequent calculi for QBFs, in which applications of the cut rule

are restricted to Σq
i ∪ Πq

i -formulas. The target formula of a quantifier rule in these calculi
is restricted to quantifier-free formulas. By G∗

i -proofs we denote treelike Gi-proofs. The
systems Gi and G∗

i are closely related to the theories Si
2 and T i

2 of bounded arithmetic
[Bus86]. In fact a proof of a bounded arithmetic formula can be translated to a proof of
a QBF. The systems G0 and G∗

0, in which cut formulas are restricted to quantifier-free
formulas (i.e., propositional), are similar to first-order theories T axiomatized by purely
universal formulas. This allows us to explore results proven for T like Herbrands theorem
and the midsequent theorem on G0 and G∗

0.

For a proof system H we define the Σq
k-Witnessing problem to be as follows. Given

a Σq
k-formula, an H-proof of it, and a truth assignment to the free variables, find a

witness for the outermost existentially quantified variables. Morioka proved in [Mor05],
also presented with Cook in [CM05], that the Σq

1-Witnessing problem for G0 and G∗
0 is

NC1-complete. We bring in this thesis all of the elements which were used in the proof
together, and present the end result to the reader.

vii

Contents

Abstract vii

Contents ix

1 Introduction 1
1.1 Organization . 2

2 Complexity Theory 5
2.1 Basic Complexity Theory . 5
2.2 Circuits . 12
2.3 Local Search Problems . 17

3 Quantified Propositional Calculus 23
3.1 Quantified Proof Systems . 25
3.2 Gentzen-style Sequent Calculus for QBF 27

4 Bounded Arithmetic 37
4.1 Syntax of first-order logic . 38
4.2 The language of bounded arithmetic 38
4.3 Axiomatization of bounded arithmetic 40
4.4 Sequent-like calculi for bounded arithmetic 41
4.5 The Translation of Bounded Arithmetic to QBFs 45

5 First-order Results for G0 and G∗
0 61

5.1 Herbrand Theorem . 61
5.2 The Midsequent Theorem . 64

6 The Witnessing Problem for G0 and G∗
0 67

6.1 The Σq
1-Witnessing problem for G0 . 68

6.2 The Σq
1-Witnessing problem for G∗

0 . 78

7 Summary 81

Bibliography 83

ix

CHAPTER 1
Introduction

Quantified Boolean formulas (QBFs) are an extension of propositional logic which allows
quantification over propositional variables. The decision problem of QBFs is PSPACE-
complete and is considered a generalization of the NP-complete problem SAT, the
satisfiability problem of propositional formulas. Many problems from application domains
such as model checking or formal verification are known to be PSPACE-complete, hence
QBFs provide us with a powerful tool to encode them.
QBFs in prenex normal form define a hierarchy of formulas, which corresponds to the
polynomial hierarchy (PH). This implies that any problem that falls into a problem
class in PH can also be represented by a QBF. The hierarchy of QBFs in prenex normal
form is based on the number of existential and universal quantifier alternations in a
formula. It helps to think of QBFs as a game between two players ∃ and ∀. In the current
outermost (leftmost) quantifier block, the corresponding player has the right to choose
an assignment for all the variables in this block. The chosen assignment is applied to the
formula, the formula simplifies under the assignment and the outermost quantifier block
disappears, resulting in the possibility for a move of the other player. The ∃ player will
guess an assignment to the existentially quantified variables trying to satisfy the formula,
and the ∀ player will guess an assignment to the universally quantified variables and tries
to let the QBF evaluate to false. The ∀ player has a winning strategy if and only if the
original formula is false.
Krajíček and Pudlák introduced in [KP90] the sequent calculi KPG for QBFs, and
defined a hierarchy of fragments KPGi, KPG∗

i , such that a KPGi-proof is restricted to
Σq

i ∪ Πq
i -formulas, and KPG∗

i is KPGi but restricted to treelike proofs. Those systems are
closely related to the theories Si

2 and T i
2 of bounded arithmetic [Bus86]. By modifying

the definition of those systems, Cook and Morioka in [Mor05, CM05] introduced new
systems which have a better and more natural correspondence to bounded arithmetic.
They introduced two restrictions. In their system Gi any QBF can be handled; thus, in
contrast to the corresponding system of Krajíček and Pudlák, the new system is complete.

1

1. Introduction

Furthermore, Cook and Morioka restricted the application of the cut rule to Σq
i ∪ Πq

i -
formulas, and restricted the target formula in the quantifier rules to be quantifier-free.
With the new definition they introduced two important new complete proof systems
for proving QBFs, G0 and G∗

0, in which the cut rule is restricted to quantifier-free (i.e.,
propositional) formulas. We note that KPG was originally in [KP90] denoted by G, but
we use KPG to avoid confusion with the later modified calculi.

We present in this thesis the systems KPG, KPGi, KPG∗
i , G, Gi, and G∗

i and show that
corresponding systems are polynomially equivalent for proving Σq

i ∪ Πq
i -formulas. We

also take a look at the relationship between QBFs and bounded arithmetic and how the
systems Gi and G∗

i relate to the theories Si
2 and T i

2.

We focus on the systems G0 and G∗
0 and we present a polynomial-time version of the

midsequent theorem for G∗
0 and a restricted version of the theorem for G0, and we finally

define the witnessing problem and present an NC1 algorithm for the Σq
1-Witnessing

problem for G0.

We aim with this thesis to bring the work of Cook and Morioka in [CM05] and [Mor05]
closer to graduate students. As we follow their footsteps, we explore and discuss the
work of Krajíček and Pudlák in QBFs and bounded arithmetic presented in [Kra95] and
[KP90], till we eventually have all the results that Cook and Morioka used to reach the
NC1-completeness results for the witnessing problem. Please note that this thesis is the
first step towards the full understanding of those two references as they go beyond the
border of first-order theories and prove some interesting results for second-order theories
which are out of the scope of this work.

1.1 Organization

This thesis is organized as follows.

Chapter 2 presents the basics of complexity theory, circuit complexity classes and local
search complexity classes, which will be used for the analysis of the witnessing
problems.

Chapter 3 introduces QBFs, quantified proof systems, the definitions of the calculi KPGi

(for i ≥ 0) from [KP90] and the corresponding calculi Gi from [CM05] both in tree
and dag1 form. A detailed proof of the polynomial equivalence of corresponding
KPG and G systems (for proving formulas in Σq

i ∪ Πq
i) is presented

Chapter 4 is devoted to the basics of bounded arithmetic. In this chapter we rely on
[Kra95] and [KP90] to define a sequent calculus LKB for proving bounded formulas,
present a translation of bounded formulas to QBFs, and prove that if we have an

1directed acyclic graph

2

1.1. Organization

(LKB + Σb
i -IND)-proof of a bounded formula, then we can construct a Gi-proof of

its QBF translation.

Chapter 5 focuses on the restricted systems G0 and G∗
0, where only propositional

formulas can be used as cut formulas. We define the notions of π-prototypes and
the Herbrand π-disjunction for a G0-proof π, and we prove a polynomial-time
version of Gentzen’s midsequent theorem for G∗

0.

Chapter 6 explains the proof that the Σq
1-Witnessing problem is FNC1-complete under

many-one AC0-reductions for both G0 and G∗
0.

3

CHAPTER 2
Complexity Theory

In this chapter we introduce some complexity concepts and results, which are used in
later chapters.

We start with some important complexity classes and the polynomial hierarchy.

2.1 Basic Complexity Theory

Definition 2.1.1
A Boolean function with n inputs and m outputs is a function

f : {0, 1}n −→ {0, 1}m.

Boolean functions define decision problems, which are problems or questions with a
yes/no answers. We often use 1 for yes and 0 for no.

Definition 2.1.2
A Decision Problem (DP) P is the Boolean function P : {0, 1}∗ −→ {0, 1}.

Any DP can be defined by a set of possible instances or inputs I, and a subset Iyes ⊆ I
which specifies the YES-instances of P .

Consider as an example the satisfiability problem (SAT) for propositional logic. Recall
that an assignment is a mapping I : Var(ϕ) −→ {0, 1}, such that Var(ϕ) is the set of
propositional variables in ϕ.

Problem SAT
Input: A Boolean formula ϕ.
Question: Does there exist a satisfying assignment for ϕ?

5

2. Complexity Theory

Note that we restricted the function in the definition of a DP to Boolean functions
(functions whose inputs are finite strings of bits, i.e., elements of {0, 1}∗ and their outputs
are from {0, 1}). This condition is in fact not very restricting since general objects like
integers, pairs, graphs, etc. can be encoded as strings of bits.

An example of such an encoding would be representing a graph G with its adjacency
matrix, i.e., a graph g with n vertices is represented by an n × n matrix A, in which the
element Ai,j is 1 if and only if there is an edge between vertices i and j.

It is in fact with this in mind that we consider a language to represent an encoding of all
YES-instances of a decision problem.

Definition 2.1.3
For a problem X we define the corresponding language ZX as follows.

ZX = {ex : ex is the encoding of x s.t. x is a YES-instance of X}.

We say that a machine decides or computes a language L ⊆ {0, 1}∗ if it computes the
function

fL : {0, 1}∗ −→ {0, 1} where fL(x) = 1 ⇔ x ∈ L.

Determining if an instance of a problem is a YES-instance is equivalent to determining
whether its encoding is in the corresponding language, which is why we use throughout
this work language and problem interchangeably.

In 1950 Alan Turing described a simple mathematical model that is sufficient to model
any computational process. In [AB09] the concept of Turing machines is described very
elegantly based on the following quote from Alan Turing.

“The idea behind digital computers may be explained by saying that these machines are
intended to carry out any operations which could be done by a human computer. The
human computer is supposed to be following fixed rules; he has no authority to deviate
from them in any detail. We may suppose that these rules are supplied in a book, which
is altered whenever he is put on to a new job. He has also an unlimited supply of paper
on which he does his calculations” Alan Turing 1950

The idea is that a Turing machine or an algorithm for computing a function
f : {0, 1}∗ → {0, 1}

is a set of fixed mechanical rules without a constraint on the number of times to apply
each rule. Each rule can be described with a list of elementary reading and writing steps,
and the running time of this machine is the number of these elementary operations. This
is usually a function that depends on the length of the input string.
When this function is polynomial then we say that we have a polynomial Turing machine.

As mentioned earlier general objects can be encoded as strings of bits and that in fact
includes Turing machines (a.k.a algorithms). This entails that an algorithm can be an

6

2.1. Basic Complexity Theory

input to another algorithm. This fact inspired the idea of a universal Turing machine
that can simulate any other Turing machine.

Unless otherwise specified, we always mean universal Turing machines when talking
about Turing machines.

Definition 2.1.4
Let T : N −→ N be some function.

1. A language L is in DTIME(T(n)) if and only if it is computable with a deter-
ministic Turing machine in c · T (n)-time for some constant c > 0.

2. A language L is in NTIME(T(n)) if and only if it is computable with a non-
deterministic Turing machine in c · T (n)-time for some constant c > 0.

Definition 2.1.5 (The class P)
The class P is the class of languages computable in polynomial time with a deterministic
Turing machine, i.e.,

P =
c≥1

DTIME(nc).

Definition 2.1.6 (The class NP – First Definition)
The class NP is the class of languages computable in polynomial time with a non-
deterministic Turing machine, i.e.,

NP =
c≥1

NTIME(nc).

We note that the class P is the class of polynomial time solvable DPs, which roughly
represents the class of feasible problems (or efficiently solvable problems), whereas the
class NP captures the problems whose solutions might be hard to find, however they can
be efficiently verified. So given an input x (the instance of the problem) we can easily
verify that x is a YES instance if we are given the polynomial solution that certifies that
x is a positive instance.

In the following definitions we use the notation M(x, u), where M is a universal Turing
machine that takes x, u ∈ {0, 1}∗ as input such that if u is the encoding of a Turing
machine M then M(x, u) = M (x). A more detailed overview of Turing machines and
their encodings can be found in Chapter 1 of [AB09].

A second definition of the class NP is as follows.

Definition 2.1.7 (The class NP – Second Definition)
We say that a language L ⊆ {0, 1}∗ is in NP if there exist a polynomial p(·) and a
deterministic polynomial time Turing machine M such that

for every x ∈ {0, 1}∗ : x ∈ L ⇔ ∃u ∈ {0, 1}p(|x|) s.t. M(x, u) = 1

7

2. Complexity Theory

where |x| denote the string length of x.

If x ∈ L and u ∈ {0, 1}p(|x|) satisfy M(x, u) = 1 then we call u a certificate or a witness
for x.

Note that the first definition describes the class NP as the class of problems solvable
by a nondeterministic Turing machine in polynomial time, while the second definition
describes it as the class of problems verifiable by a deterministic Turing machine in
polynomial time.

Another significant complexity class is the class coNP, which is defined as follows.

Definition 2.1.8 (The class coNP, related to the first definition of NP)
If L ⊆ {0, 1}∗ is a language, then we denote by L the complement of L. That is,
L = {0, 1}∗\L.

With this we define coNP = {L : L ∈ NP}.

It is important to note that coNP is not the complement of NP. In fact they have a
non-empty intersection, since every language in P is in NP ∩ coNP.

Just like NP, coNP also has a second definition with the use of quantifiers, and while
the "existence" of a witness is enough for NP problems, for coNP problems the condition
must be applicable to "all", thus we can define the class as follows.

Definition 2.1.9 (The class coNP, related to the second definition of NP)
We say that a language L ⊆ {0, 1}∗ is in coNP if there exist a polynomial p(·) and a
deterministic polynomial time Turing machine M such that

for every x ∈ {0, 1}∗ : x ∈ L ⇔ ∀u ∈ {0, 1}p(|x|) s.t. M(x, u) = 1.

An important concept in complexity theory is NP-hardness and NP-completeness.

Definition 2.1.10 (Reducibility)
A language L is polynomial time reducible to a language L , denoted as L ≤p L , if there
is a polynomial time computable function f : {0, 1}∗ −→ {0, 1}∗ such that

for every x ∈ {0, 1}∗ : x ∈ L if and only if f(x) ∈ L .

Definition 2.1.11 (NP-Completeness)
We say that L is NP-hard if L ≤p L for every L ∈ NP (i.e., every language in NP can
be reduced to L).

L is NP-complete if L is NP-hard and L ∈ NP.

8

2.1. Basic Complexity Theory

Theorem 2.1.1.

• The operation of reducibility is transitive, i.e., if L ≤p L and L ≤p L then
L ≤p L .

• If L is NP-hard and L ∈ P then P = NP.

• If L is NP-complete then L ∈ P if and only if P = NP.

Richard Karp proved in [Kar72] 21 NP-complete problems, immediately after Cook’s
paper [Coo71], in which he formalized the notion of polynomial-time reduction and
defined the concept of NP-completeness.

The most significant NP-complete problem today is the previously defined problem SAT.
This implies that if we can find a deterministic polynomial-time algorithm to decide if a
Boolean formula is satisfiable then we can solve any NP problem deterministically and
within polynomial time, which will eventually mean that P = NP.

From a practical point of view, since any NP-complete problem R can be efficiently
reduced to SAT and since practically efficient SAT solvers exist, one can solve R by
reducing it to SAT and then use a SAT solver. This procedure is widely used today, e.g.,
in the field of software verification.

2.1.1 The Polynomial Hierarchy

Intuitively the definition of NP (resp. coNP) implies that a problem is in NP (resp.
coNP) if it is describable with "there exists" (resp. with "for all/every"), but not all
problems can be represented with this simplicity.

Let us consider, for example, the INDSET problem, which is an NP-complete problem.

Problem INDSET
Input: G, k , where G is a graph and k is an integer ≥ 1.
Question: Does G have an independent set (a set of vertices without a common edge)

of size (or rather cardinality) at least k?

The question of the INDSET problem asks about the “existence” of an independent set of
size big enough, however if we modify the question to be “Is the largest independent set
in G of size exactly k?”, then checking the existence of the independent set is not enough.
We also have to compare it with “every” other independent set, which indicates that
such a problem is neither in NP nor in coNP. This motivates the following definition.

Definition 2.1.12 (The class Σp
2)

The class Σp
2 is defined to be the set of all languages L for which there exists a polynomial-

9

2. Complexity Theory

time Turing Machine M and a polynomial q(·) such that

for every x ∈ {0, 1}∗ :
x ∈ L ⇔ ∃u ∈ {0, 1}q(|x|) ∀v ∈ {0, 1}q(|x|) s.t. M(x, u, v) = 1.

Note that Σp
2 contains NP and coNP, and similar to the idea of coNP we can define

the class Πp
2 to contain the problems L such that

for every x ∈ {0, 1}∗ :
x ∈ L ⇔ ∀u ∈ {0, 1}q(|x|) ∃v ∈ {0, 1}q(|x|) s.t. M(x, u, v) = 1.

The difference between the two definitions is the change of the quantifier alternation
from ∃u∀v to ∀u∃v.

We generalize this definition to get the polynomial hierarchy.

Definition 2.1.13 (The Polynomial Hierarchy)
Let i be an arbitrary non-negative integer, and x an arbitrary element from {0, 1}∗.

1. We say that a language L is in Σp
i if there exists a polynomial time Turing machine

M and a polynomial q(·) such that

x ∈ L ⇔ ∃u1 ∈ {0, 1}q(|x|) ∀u2 ∈ {0, 1}q(|x|) · · · Qiui ∈ {0, 1}q(|x|)

s.t. M(x, u1, u2, . . . , ui) = 1,

where Qi is ∀ if i is even and Qi is ∃ if i is odd.

2. We say that L is in Πp
i if there exists a polynomial time Turing machine M and a

polynomial q(·) such that

x ∈ L ⇔ ∀u1 ∈ {0, 1}q(|x|) ∃u2 ∈ {0, 1}q(|x|) · · · Qiui ∈ {0, 1}q(|x|)

s.t. M(x, u1, u2, . . . , ui) = 1,

where Qi is ∃ if i is even and Qi is ∀ if i is odd.

Then the Polynomial Hierarchy is the set PH =
i≥0

Σp
i =

i≥0
Πp

i .

Note that

• Σp
0 = Πp

0 = P,

• Σp
1 = NP and Πp

1 = coNP,

• for every i : coΣp
i = Πp

i , and

10

2.1. Basic Complexity Theory

• for every i : Σp
i ⊆ Πp

i+1.

The question whether PH is a “real” hierarchy is related to one of the most important
open question in computer science, and one of the seven Millennium problems selected
for a 1 million USD prize for the first correct solution: “Does P equal NP?”

The relation of the two problems is captured by the following theorem.

Theorem 2.1.2. If P = NP then PH = P

Proof. [AB09]

By induction on i, we prove that if P = NP then Σp
i , Πp

i ⊆ P.

Base case: i = 1.
If NP = P then Σp

1 = P = coP = coNP = Πp
1 .

Induction hypothesis
For some i ≥ 1, if P = NP then Σp

i , Πp
i ⊆ P.

Induction step
Assuming that NP = P, let L ∈ Σp

i+1. Then by definition there is a polynomial
q(·) such that

x ∈ L ⇔ ∃u1 ∈ {0, 1}q(|x|) ∀u2 ∈ {0, 1}q(|x|) · · · Qi+1ui+1 ∈ {0, 1}q(|x|)

s.t. M(x, u1, u2, . . . , ui+1) = 1

where Qi+1 ∈ {∃, ∀}, and Qi+1 is ∃ if (i + 1) is odd and Qi+1 is ∀ if (i + 1) is even.
Define the language L as follows.

x, u1 ∈ L ⇔ ∀u2 ∈ {0, 1}q(|x|) · · · Qi+1ui+1 ∈ {0, 1}q(|x|)

s.t. M(x, u1, u2, . . . , ui+1) = 1.

The formula representing problems in L has i − 1 quantifier alternations (i.e., i
quantifier blocks) starting with ∀ which implies that L ∈ Πp

i . By the induction
hypothesis we know that Πp

i ⊆ P. This implies that there is a polynomial time
Turing machine M which computes L . Then by plugging it in the definition of L
we get :

x ∈ L ⇔ ∃u1 ∈ {0, 1}q(|x|)M (x, u1) = 1,

which means that L ∈ NP which is assumed to equal P. Therefore L ∈ P.
Analogously we can prove that if L ∈ Πp

i+1 then L ∈ P. However in this case we
will rely on the fact if NP = P then P = coNP as proven in the base case.

11

2. Complexity Theory

Before moving on we define another important complexity class that contains the PH
and is relevant to the topic discussed in this thesis.

Definition 2.1.14
The class PSPACE is the class of problems solvable by a deterministic Turing machine
within polynomial space.
Analogously the class NPSPACE is the class of problems solvable by a nondeterministic
Turing machine within polynomial space.

Walter Savitch proved in [Sav70] that if a non-deterministic Turing machine can solve
a problem within s(n) space, then a deterministic Turing machine can solve the same
problem within s(n)2 space, which implies that PSPACE = NPSPACE.
It is known that PH ⊆ PSPACE, however it is believed but still not proven that this
is a strict containment. Otherwise if PH = PSPACE then every PSAPCE-complete
problem L is also PH-complete, moreover it must be in some PH level, thus if L ∈ Σp

k,
then PH will collapse to Σp

k.

Oracle

To gain a comprehensive overview of results presented in this thesis, we introduce,
informally, the notion of an oracle.
An oracle is thought of as a black box that can solve a decision problem with one
computational step. An oracle machine is a Turing machine with access to an oracle.
Papadimitriou in [Pap94] writes:
“If C is any deterministic or non-deterministic time complexity class, we can define CA

to be the class of all languages decided (or accepted) by machines of the same sort and
time bound as C, that have now oracle A.”
This means, for example, the class PSAT are all the problems decidable by a deterministic
polynomial-time Turing machine with an access to an oracle that solves SAT (can check
for satisfiability in one computational step).
If the problem that the oracle solves is complete for some class then we can use the name
of the class in the notation, instead of the name of the problem. For example the above
class is the same as PNP, meaning the class of problems solvable by a deterministic
polynomial Turing machine with an access to an oracle that solves some NP-complete
problem.

2.2 Circuits

Intuitively a Boolean circuit is a diagram that shows how one can get an output from
an encoded input with the use of Boolean operations like conjunction, disjunction and

12

2.2. Circuits

negation. The mathematical simplicity of Boolean circuits (relative to Turing machines)
gives the impression that proving lower bounds for circuits is easier than those for Turing
machines, which might eventually lead us to the proof of P = NP.

However, to prove a lower bound means to rule out a smaller size or depth for all circuits,
which is why results on general circuits are mostly weak and rare. This made researchers
focus their efforts on restricted classes of circuits like bounded depth circuits. It was, for
example, proven that the TSP problem (an NP-complete problem) is not in AC0.

We refer the reader to [AB09] for more details on the lower bounds for circuits, and the
issues this field of study faces as well as the corresponding open problems.

We mention in what follows the definitions and results which are important for this thesis.

We call a Boolean function with one output a Boolean connective. A set of Boolean
connectives is called a basis and denoted by Ω. A common example is the de Morgan
basis Ω = {0, 1, ¬, ∨, ∧}.

Definition 2.2.1
A Boolean circuit with input variables x1, x2, . . . , xn, output variables y1, y2, . . . , ym and
the basis of connectives Ω = {g1, g2, . . . , gk} is a labeled acyclic directed graph, in which
nodes with out-degree 0 are labeled by yi’s, nodes with in-degree 0 are labeled by xi’s or
by constants from Ω, and nodes with in-degree a ≥ 1 are labeled by functions from Ω of
arity a.

A Boolean formula is a Boolean circuit in which every node has out-degree at most 1.

Recall that the in-degree (resp. out-degree) of a node in a directed graph is the number
of edges incoming to it (resp. outgoing from it).

The nodes of a circuit are called gates. Most common ones are the AND, OR and NOT
gates. Intuitively those gates behave like the corresponding Boolean connectives (∧, ∨
and ¬).

Another important gate is the majority gate (MAJ) which returns 1 if and only if at
least 50% of its input is 1.

Note that we can get the results of the MAJ gate from AND and OR gates, for example
for three inputs

MAJ(A, B, C) = OR(AND(A, B), AND(B, C), AND(A, C)).

We can also get the OR gate from MAJ as follows
OR(A, B, C) = MAJ(MAJ(A, B), C),

hence the AND gate as well but with the NOT gate
AND(A, B, C) = NOT(OR(NOT(A), NOT(B), NOT(C)))

= NOT(MAJ(MAJ(NOT(A), NOT(B)), NOT(C))).

13

2. Complexity Theory

Definition 2.2.2
Let C be a circuit.

• The size of C is the number of its gates, excluding the NOT gates.
• The depth of C is the maximum length of a directed path in the circuit C.

For a Boolean function f ,

• sizeΩ(f) denotes the minimal size of a circuit with basis Ω computing f , and
• depthΩ(f) denotes the minimal depth of a circuit with basis Ω computing f .

We usually omit the index Ω when we use the de Morgan basis.

Definition 2.2.3
The fan-in of a connective g ∈ Ω is the number of inputs that g takes. Common choices
are fan-in of two (bounded), or unbounded (meaning g can take any number of inputs).

The following theorem motivates the study of circuit complexity for Boolean functions,
and will be useful for us in Chapter 4.

For any language Z ⊂ {0, 1}∗, we define the Boolean function Zn : {0, 1}n → {0, 1} to be
the characteristic function of Z ∩ {0, 1}n.

Theorem 2.2.1. Let Z ⊆ {0, 1}∗ be a language recognizable in polynomial time, i.e.,
Z ∈ P. Then there exist a polynomial p(·) and a sequence of circuits {Cn : n ∈ N} in de
Morgan basis with one output, such that for all n, the following holds.

1. Zn is computed by Cn.

2. The size of Cn is at most p(n), i.e., size(Zn) ≤ p(n) for all n.

2.2.1 Circuit Classes

There are many circuit complexity classes, and they are usually defined as families of
classes. We introduce here the general definition of the most used ones, and then in more
detail the three classes we are interested in.

• P\poly is the class of languages computed by polynomial-size circuits.

• NCk is the class of languages computed in O(logkn) depth, polynomial-size circuits,
with bounded fan-in AND and OR gates and NOT gates.

• ACk is the class of languages computed in O(logkn) depth, polynomial-size circuits,
with unbounded fan-in AND and OR gates and NOT gates.

14

2.2. Circuits

• TCk is the class of languages computed in O(logkn) depth, polynomial-size circuits,
with MAJ and NOT gates.

We have the following containments:

NC0 ⊆ AC0 ⊆ TC0 ⊆ NC1 ⊆ AC1 ⊆ TC1 ⊆ NC2 ⊆ AC2 ⊆ TC2 ⊆ · · · ⊆ P\poly.

We note that when k = 0 then we are speaking of circuits of constant depth O(1) (because
log0n = 1).

Theorem 2.2.2 (Karp and Lipton 1982). Assume that every NP language can be
computed by a family of polynomial size circuits, that is NP ⊆ P\poly.

Then the polynomial hierarchy collapses to its second level, i.e., PH = Σp
2 = Πp

2 .

The relevant classes for us here are NC1, TC0 and AC0 which are defined in more
details as follows.

Definition 2.2.4
NC1 is the class of languages L for which there exist circuit families {Cn : n ∈ N} where
each circuit Cn

• computes the characteristic function of L on inputs of length n,
• consists of AND and OR gates of fan-in two, and NOT gates, and
• has depth O(log n) (and consequently has size nO(1)).

Definition 2.2.5
TC0 is the class of languages L for which there exist circuit families {Cn : n ∈ N} where
each circuit Cn

• computes the characteristic function of L on inputs of length n,
• consists of MAJ gates (with no bound on the fan-in), and NOT gates,
• has depth O(1), and
• has size nO(1).

Definition 2.2.6
AC0 is the class of languages L for which there exist circuit families {Cn : n ∈ N} where
each circuit Cn

• computes the characteristic function of L on inputs of length n,
• consists of AND and OR gates (with no bound on the fan-in), and NOT gates,
• has depth O(1), and
• has size nO(1).

15

2. Complexity Theory

Uniformity

In the definitions above, the complexity classes are defined in terms of non-uniform circuit
families, that is, the existence of a circuit family is enough regardless of whether we can
actually construct it.

However we shall focus on circuits which can be efficiently constructed, or what is known
as uniform circuits. Throughout this thesis we always work with DLogtime-uniform
circuits, defined as follows.

Definition 2.2.7 (DLogtime-uniform)
A circuit family {Cn} is DLogtime-uniform if there exists a deterministic Turing machine
that accepts it in O(log n) time

The following are additional facts about NC1, which will be useful in Chapter 6 when
describing the NC1 algorithm.

Barrington, Immerman, and Straubing proved in [MBIS90] that DLogtime-uniform NC1

is actually equivalent to ALogtime (the class of functions computable by an alternating
Turing machine in logarithmic time). This result is significant because Samuel Buss
in [Bus87] showed that there is an ALogtime algorithm for evaluating a propositional
formula given a truth assignment.
Every NC1 predicate is computed by a DLogtime-uniform family of polynomial-size
propositional formulas. A function f : {0, 1}∗ → {0, 1}∗ is in NC1 if and only if
|f(x)| = |x|O(1) (such that | · | denotes the string length) and the predicate Rf (x, i, c),
which denotes that the ith bit of f(x) is c, is also in NC1 ([Mor05] and [CM05]).

Characterizing the classes AC0 and TC0

Based on [MBIS90] and [Imm99], Morioka laid out in [Mor05] an elegant first-order
characterization of the classes AC0 and TC0.
Consider the first-order language LF O = {0, 1, n, +, ·, ≤, Bit}, such that 0, 1, and n are
constants, + and · are binary functions, and ≤ and Bit are predicates.

We call first-order formulas over LF O FO-sentences, for which the following holds.

• The interpretation of an FO-sentence ϕ is a binary string I ∈ {0, 1}∗.
• n is a natural number that denotes the size of I.
• The function symbols +, ·, and the predicate ≤ have the usual meaning.
• Bit(i) evaluates to true if and only if the ith bit of I is 1.
• The domain of the variables is {1, . . . , n} (i.e., the set of indices of the string I).

An FO-sentence ϕ defines a relation R ⊆ {0, 1}∗ such that I ∈ R if and only if I ϕ (ϕ
evaluates to true under I), and we say that ϕ represents R.

16

2.3. Local Search Problems

For example the FO-sentence ϕ = ¬Bit(n) is the sentence defining the relation R that
represents binary numbers ending with 0 (even numbers), e.g., I = (0, 1, 0) ϕ thus
I ∈ R.

By introducing the majority quantifier M , we get FOM-sentences, such that a sentence
Mxϕ(x) evaluates to true if and only if ϕ(x) is true for at least half of the possible values
for x.

We have the following two theorems

Theorem 2.2.3 (cf. [MBIS90, Imm99, Mor05]). A relation R is in AC0 if and only if
it is representable by an FO-sentence.

Theorem 2.2.4 (cf. [MBIS90, Imm99, Mor05]). A relation R is in TC0 if and only if
it is representable by an FOM-sentence.

2.3 Local Search Problems

In Chapter 6 we come across the fact that some witnessing problems are in fact PLS-
complete. We present in what follows an introduction to the class PLS.

While complexity theory focuses mainly on decision problems, there are problems that
are better represented as search problems.

We often can reduce a search problem to its decision counterpart in polynomial time, for
which reason it is very common to study the decision counterpart instead of studying the
search problem itself. However this approach is not optimal for many reasons, Krentel
showed in [Kre88] that the traveling salesperson search problem is harder than the clique
search problem, even though the decision counterparts of both problems are NP-complete.
This implies that the complexity of search problems depends on properties that are lost
in the translation to decision problems.

Another reason for studying search problems is the fact that it is not always possible
to find a polynomially equal decision problem. It was demonstrated in [BCE+98], that
search problems that are complete for certain complexity classes like PLS (Polynomial
Local Search) are not polynomially equivalent to any decision problem.

We first define search problems and local search problems.

Definition 2.3.1 (Search Problem)
A search problem is a relation R over {0, 1}∗ × {0, 1}∗.

An algorithm solves a search problem R if, when given an x ∈ {0, 1}∗, it either returns a
solution s such that (x, s) ∈ R or reports (correctly) that no such s exists.

17

2. Complexity Theory

Definition 2.3.2 (Local Search Problem)
A local search problem L can be either a maximization or a minimization problem, and
has a set of instances DL ⊆ {0, 1}∗.

For each instance x ∈ DL, there is a finite set of solutions FL(x) ⊆ {0, 1}∗.

For each instance x ∈ DL, and a solution s ∈ FL(x), there is

• a cost cL(x, s) ∈ Z+, and

• a set of neighboring solutions N(x, s) ⊆ FL(x), based on a predefined neighbor-
hood relation. A solution s is locally optimal if it is the optimal solution in its
neighborhood.

An algorithm solves a local search problem L if when given an x ∈ {0, 1}∗, it either
returns a solution s such that (x, s) ∈ RL or reports (correctly) that no such s exists,
where RL = {(x, s) : x ∈ DL, s ∈ FL(x) and s is locally optimal}.

Example 2.1
Recall that a Boolean formula is in 3-CNF if it is of the form C1 ∧ . . . ∧ Ck such that
each Ci is a disjunction of at most three literals.

Let us consider the 3-SAT problem.

Problem 3-SAT
Input: A Boolean formula ϕ in 3-CNF.
Question: Does there exist a satisfying assignment for ϕ?

We can describe 3-SAT as a local search problem as follows. “Given a Boolean formula
ϕ in 3-CNF, find an assignment that satisfies the maximum number of clauses in ϕ”.

Then we have the following.

• The set of instances are Boolean formulas in 3-CNF.

• For an instance ϕ, a solution s ∈ FL(ϕ) is a string of 1s and 0s to denote an
assignment of the formula’s literals, e.g., if ϕ has just four literals l1, l2, l3, l4 then
s = 0000 means assign 0 to all literals, and s = 0100 means assign 1 to l2 and 0 to
the rest of the literals. FL(ϕ) is the set of all possible assignments.

• The cost cL(ϕ, s) of a solution s is the number of satisfied clauses in ϕ.

• The neighborhood of a solution is defined as follows.
N(ϕ, s) = {s |s ∈ FL(ϕ) and hdist(s, s) = 1}, where hdist(s, s) is the Hamming
distance between s and s , (all solutions which differ from s by one literal assignment).
For instance, again, if ϕ has just four literals and s = 0000, then the neighborhood
of s is the set {0001, 0010, 0100, 1000}.

18

2.3. Local Search Problems

• A solution s is locally optimal if it has the maximal cost in its neighborhood.

Note that if ϕ is satisfiable then the algorithm that solves the local search problem will
find a satisfying assignment, since it will be the solution with the maximum cost. If ϕ
is not satisfiable, then the algorithm will find the solutions which satisfy the maximum
number of clauses within their neighborhoods.
Example 2.2
Consider for example the 3-CNF instance.

ϕ = (¬y) ∧ (x ∨ ¬y) ∧ (¬x ∨ y) ∧ (x ∨ y) ∧ (¬y ∨ z) ∧ (¬x ∨ z) ∧ (¬x ∨ y ∨ ¬z) ∧ (x ∨ y ∨ ¬z)

ϕ has three literals and 8 clauses, and it is not satisfiable. The algorithm, however, will
find two locally optimal solutions, or rather assignments for the literals xyz in this exact
order, namely s1 = 111 such that N(ϕ, s1) = {110, 101, 011}, and s2 = 000 such that
N(ϕ, s2) = {001, 010, 100}. Each of s1 and s2 satisfies 7 clauses, which is the maximum
number of satisfied clauses in the respective neighborhood. In the table below we can see
the satisfied clauses by each possible assignment.

Assignment # Sat ¬y x ∨ ¬y ¬x ∨ y x ∨ y ¬y ∨ z ¬x ∨ z ¬x ∨ y ∨ ¬z x ∨ y ∨ ¬z

111 7
011 6
101 6
001 6
110 5
010 5
100 6
000 7

Analogously to P and NP for decision problems, we define the classes FP and FNP for
search problems.

Definition 2.3.3 (The Class FNP (a.k.a NPs))
A search problem R is in FNP if

• for any (x, s) ∈ R, |s| is polynomially bounded in |x|, and
• there is an algorithm that, given the pair (x, s), can verify in polynomial time if

(x, s) ∈ R.

Note that this definition is equivalent to saying: A search problem is in FNP if it can be
solved in polynomial time with a non-deterministic Turing machine.

Definition 2.3.4 (The Class FP (a.k.a Ps))
A search problem is in FP if it can be solved in polynomial time with a deterministic
Turing machine.

These definitions imply the following result.

19

2. Complexity Theory

Lemma 2.3.1 ([JPY85]).

FP = FNP if and only if P = NP.

Definition 2.3.5 (The class PLS)
A local search problem L is in the class of Polynomial Local Search (PLS) problems if
the following conditions hold :

• The set of instances DL is polynomial time recognizable, i.e., for any x we can
check if x ∈ DL in polynomial time,

• each instance x ∈ DL has a finite set of solutions, in which
• each solution s ∈ FL(x) has a polynomially bounded length p(|x|), and
• there exist three polynomial time algorithms which are as follows.

◦ AL: Returns a solution s from FL(x), given instance x.
◦ BL: Checks if s ∈ FL(x), and if it is, computes the cost of s on x.
◦ CL: Given x, s, based on the cost, chooses the optimal solution in the neigh-

borhood (local optimum) of s.

For simplicity, PLS will be used to denote the class of all relations RL, arising from
PLS-problems.

We observe that the definition implicitly defines a standard local search algorithm: Given
x, use AL to produce s (an initial solution), then keep applying BL and CL until a locally
optimal solution is found.

Since the set of solutions is finite, we know that the described algorithm will halt, but
the question is how long will it take to find the optimal solution? The algorithm itself
might take up to exponential time, however other means might be faster.

This gives rise to what is known as the standard algorithm problem:

“Given x, find the local optimum s that would be the output of the standard local search
algorithm for L on input x.”

Johnson, Papadimitriou, and Yannakakis in [JPY85], introduced a couple of lemmas on
how PLS is related to other complexity classes.

Lemma 2.3.2 ([JPY85]). There is a PLS problem L whose standard algorithm problem
is NP-hard.

Proof. Let L be a local search problem with the same instances as SAT (an NP-hard
problem) such that the following holds.

1. The solutions for an instance x with n variables are the truth assignments to those
variables. Truth assignments are represented as elements of {0, 1}n, hence the
solutions represent integers from 0 to 2n − 1.

20

2.3. Local Search Problems

2. The neighborhood of a solution s > 0 is simply N(x, s) = {s−1}, the neighborhood
of 0 is empty.

3. The cost CL(x, s) is 0 if s represents a satisfying assignment for x, otherwise the
cost is the integer s.

4. The initial solution returned by the algorithm AL is simply 2n − 1 (the assignment
where all the variables are set to true) and the goal is to minimize the cost.

The description of L implies that

• we can check in polynomial time, for any x, if x is indeed a Boolean formula (i.e.,
x ∈ DL),

• each instance x has a finite set of solutions, and the size of each solution s is
bounded by the number of variables n in the instance x, and

• the three polynomial-time algorithms AL, BL, and CL, described in the definition
of PLS, exist.

Thus by the definition of the class PLS, L is indeed a PLS problem.

For an instance x of SAT, we assume, without loss of generality, that the integer 0 does
not represent a satisfying assignment for x. Based on the description above, the standard
local search algorithm for L will output 0 if and only if x is not satisfiable. Thus the
standard algorithm problem for L is NP-hard.

Lemma 2.3.3 ([JPY85]). FP ⊆ PLS ⊆ FNP.

Proof. Let R ∈ FP. Then we can formalize it as a PLS problem by defining the three
algorithms AR, BR and CR as follows:

Let AR be the polynomial-time algorithm that solves R (which exists by the definition of
an FP problem).

We define FR(x) = {y : (x, y) ∈ R}, the cost of y on x is 0 if y ∈ FR(x), and the
neighborhood is always the empty set (thus making s a trivial local optimum), which
means BR will use the polynomial-time algorithm to recognize the membership of y, and
CR will always choose y as the optimal local solution. This mean R ∈ PLS which entails
that FP ⊆ PLS.

On the other hand since the definition of PLS implies the existence of the algorithm CL

which can verify that s is the optimal solution for instance x, thus any L ∈ PLS is also
in FNP which implies that PLS ⊆ FNP.

Definition 2.3.6
Let P1 and P2 be two search problems. Then we say that P1 is polynomial-time reducible
to P2 if there exists two polynomial-time functions f , g, such that

21

2. Complexity Theory

for each instance I1 of P1, g(I1) is an instance of P2, and if s is a solution of g(I1) then
f(I1, s) is a solution to I1.

Lemma 2.3.4. If a PLS problem L is NP-hard, then NP = coNP.

Proof. The proof is by Johnson, Papadimitriou, and Yannakakis published in [JPY85].

Let L ∈ PLS be an NP-hard problem, and X be some NP problem.

We shall think of the problem X as a special case of a search problem, where the possible
solutions are singleton sets containing either 1 or 0 (yes or no).

Since L is NP-hard then X is polynomial time reducible to L, meaning there exists two
polynomial time function f and g, such that,

for each Ix, an instance of X, g(Ix) is an instance of L, and if s is a solution for g(Ix)
then f(Ix, s) is a solution for Ix.

Since L is a PLS problem, we know that L always has a solution, (this is implied by its
definition). This means that, for any I0 a NO-instance of X, we get g(I0) an instance of
L, we can find s0 the solution of g(I0) with the algorithms AL, BL, CL, and we will then
have f(I0, s0) = 0.

With the above described procedure we can recognize all NO-instances of X non-
deterministically and in polynomial time, which means that, for any problem X if
X ∈ NP then X ∈ NP. This implies

A ∈ NP ⇒ A ∈ NP
⇒ A ∈ coNP
⇒ NP ⊆ coNP, and

B ∈ coNP ⇒ B ∈ NP
⇒ B ∈ NP
⇒ coNP ⊆ NP

which eventually implies that NP = coNP.

The concept of an oracle machine, introduced earlier in the section of basic complexity
theory, is also applicable in local search problems. Two classes which we will briefly
encounter later in this thesis are the following.

The class FPΣp
i−1 is the class of search problems solvable in polynomial-time by a

deterministic Turing machine with an access to an oracle that can solve a Σp
i−1-complete

problem, and

the class PLSΣp
i−1 is the class of search problems satisfying the conditions in Definition

2.3.5 while having access to an oracle that can solve a Σp
i−1-complete problem

22

CHAPTER 3
Quantified Propositional Calculus

In this chapter we take a look at the size of a shortest proof of valid formulas in some
proof system as a function of the size of the formula, Cook and Reckhow [CR79] have
proved important results connecting proof size in propositional proofs to complexity
theory, which was then generalized to similar results in quantified proofs by Cook and
Morioka in [CM05].

We first start with some definitions and preliminaries.

Definition 3.0.1 (The Syntax of Quantified Boolean Formulas (QBFs))
Given a set of propositional Boolean variables P . The set of QBFs is defined inductively
as follows.

1. The constants ⊥, , and every p ∈ P are QBFs.

2. If ϕ1 and ϕ2 are QBFs then ϕ1 ∨ ϕ2, ϕ1 ∧ ϕ2 and ¬ϕ1 are also QBFs.

3. If ϕ is a QBF then so are ∃p ϕ and ∀p ϕ, where p ∈ P.

We call the propositions p ∈ P atomic formulas.

Definition 3.0.2 (The Semantics of Quantified Boolean Formulas (QBFs))
Let I be an interpretation represented as a set of atoms, such that an atom p is true
under I if and only if p ∈ I. Let ϕ[x/t] denote the replacement of every free occurrence
of x in ϕ with t.

Then we define the truth value vI(ϕ) of a QBF inductively as follows:

• If ϕ = then vI(ϕ) = 1.

• If ϕ = ⊥ then vI(ϕ) = 0.

• If ϕ = p ∈ P then vI(ϕ) = 1 if p ∈ I, otherwise vI(ϕ) = 0.

23

3. Quantified Propositional Calculus

• If ϕ = ¬ϕ1 then vI(ϕ) = 1 − vI(ϕ1).

• If ϕ = ϕ1 ∧ ϕ2 then vI(ϕ) = min({vI(ϕ1), vI(ϕ2)}).

• If ϕ = ϕ1 ∨ ϕ2 then vI(ϕ) = max({vI(ϕ1), vI(ϕ2)}).

• If ϕ = ∀p ϕ1 then vI(ϕ) = vI(ϕ1[p/] ∧ ϕ1[p/⊥]).

• If ϕ = ∃p ϕ1 then vI(ϕ) = vI(ϕ1[p/] ∨ ϕ1[p/⊥]).

We say that ϕ is true under I if and only if vI(ϕ) = 1.

Note that to reason about the truth value of a QBF with free variables we need a specific
interpretation I to evaluate those variables. However with closed QBFs (QBFs with no
free variables) there is no need to refer to a particular interpretation.
Example 3.1
To see the importance of I, let I = {y} and consider ϕ(x, y) = x ∧ y.

If ϕ1 = ∃xϕ(x, y) then since y ∈ I and y is free in ϕ1, we can replace each y with ,
and get ϕ1 = ∃x(x ∧).
The formula ϕ1 clearly evaluates to true, i.e., vI(ϕ1) = vI((∧) ∨ (⊥ ∧)) = 1.

If ϕ2 = ∃x∀yϕ(x, y), then ϕ2 has no free variables, which implies that I is no longer
helpful, and we have to consider all possible replacements for y.
In this case ϕ2 will evaluate to false, i.e., vI(ϕ2) = vI(∀y(∧ y) ∨ ∀y(⊥ ∧ y)) = 0.

Definition 3.0.3
Let Qi ∈ {∀, ∃} and pi, qi ∈ P. Then a quantified propositional formula ϕ is in prenex
normal form (PNF) if

ϕ = Q1p1 · · · Qnpnψ(p, q)

and ψ is purely propositional, where p is a sequence of all quantified variables in ϕ and q
is a sequence of all free variables in ϕ.

Stockmeyer and Meyer proved in [SM73] that the problem of evaluating whether a prenex
QBF is true, is a PSPACE-complete problem. This problem is often called QSAT and
is a generalization of SAT.

Prenex QBFs have a hierarchy of their own, which is similar to the polynomial hierarchy
and is defined as follows.

Definition 3.0.4 ([Kra95])
We define a hierarchy of QBFs in prenex normal form as follows.

• Σq
0 = Πq

0 denote the set of propositional formulas.
• The classes Σq

i+1 and Πq
i+1 are the smallest classes satisfying

24

3.1. Quantified Proof Systems

a) Σq
i ∩ Πq

i ⊆ Σq
i+1 ∪ Πq

i+1,
b) both Σq

i+1 and Πq
i+1 are closed under ∨ and ∧,

c) if ϕ ∈ Σq
i+1 then ¬ϕ ∈ Πq

i+1,
d) if ϕ ∈ Πq

i+1 then ¬ϕ ∈ Σq
i+1,

e) Σq
i+1 is closed under existential quantification,

f) Πq
i+1 is closed under universal quantification.

3.1 Quantified Proof Systems

In what follows we use the following notations:

• TAUT: This is the set of propositional tautologies.

• Σ∗: This is the set of all finite strings over the finite alphabet Σ.

• L : This is the set of functions f : Σ∗
1 −→ Σ∗

2, where Σ1, Σ2 are any finite alphabets,
such that f can be computed by a deterministic Turing machine in time bounded
by a polynomial in the size of the input.

• For some string x, we use |x| to denote the length of x, which is the total number
of symbol occurrences in x, and if π is a proof, then |π| would be the size of the
proof π.

Definition 3.1.1
If L ⊂ Σ∗ then a proof system for L is the function f : Σ∗

1 −→ L for some alphabet Σ1
and f in L such that f is onto.

Definition 3.1.2
A proof system for L is polynomially bounded if and only if there is a polynomial p(·)
such that y = f(x) and |x| ≤ p(|y|).
When y = f(x) we say that x is a proof of y, and if the condition |x| ≤ p(|y|) also holds,
we say that x is a short proof of y.

Lemma 3.1.1. [CR79]

NP is closed under complementation, i.e., NP = coNP, if and only if TAUT is in NP.

Proof.

NP is closed under complementation ⇒ TAUT is in NP.
A propositional formula ϕ is satisfiable if and only if ¬ϕ is not valid, i.e., not in
TAUT. This means that SAT is the complement of TAUT. Since SAT is NP-
complete, it is in NP. This implies that if NP is closed under complementation
then TAUT is in NP.

25

3. Quantified Propositional Calculus

TAUT is in NP ⇒ NP is closed under complementation.
If TAUT is in NP then there is a non-deterministic procedure p that accepts
tautologies in polynomial time.
Since SAT is NP-complete, then any L ∈ NP is reducible to SAT, in the sense
that for any instance x ∈ L there exists a polynomial time function f ∈ L such
that x ∈ L if and only if f(x) ∈ SAT.
As mentioned in the proof of the first direction, any propositional formula ϕ is
satisfiable if and only if ¬ϕ is not valid, thus there exist a polynomial-time function
g, such that y ∈ SAT if and only if g(y) ∈ TAUT.
We can define a non-deterministic procedure for accepting L ∈ coNP (the comple-
ment of L) as follows.
For any instance z, accept z to be in L if and only if the procedure p accepts
g(f(z)). We can do this because

z ∈ L if and only if z ∈ L

if and only if f(z) ∈ SAT
if and only if g(f(z)) ∈ TAUT.

This entails that NP is closed under complementation.
Lemma 3.1.2. [CR79]
A set L is in NP if and only if L = ∅ or L has a polynomially bounded proof system.

Proof.

If L is in NP then L = ∅ or L has a polynomially bounded proof system.
If L is in NP then there exists a non-deterministic Turing machine M that accepts
L in polynomial time.
If L = ∅ then the proof is done. Otherwise if L = ∅ then we can define a function f
as follows: If the input x codes a computation of M that accepts y then f(x) = y,
and if not then f(x) = y0 for some fixed y0 ∈ L. Since y (when accepted) is in
L ∈ NP, then by definition the computation x of the Turing machine M that
accepts y is bounded by a polynomial in the size of y, meaning |x| ≤ p(|y|), which
implies that f is a polynomially bounded proof system for L.

If L = ∅ or L has a polynomially bounded proof system then L is in NP.
If L = ∅ then the Turing machine that rejects any input represents L, thus L ∈ NP.
On the other hand if f is a polynomially bounded proof system for L, then we
know that for any input x, f(x) = y if and only if y ∈ L and |x| ≤ p(|y|) for some
polynomial p(·). So we can define a non-deterministic procedure for accepting L
as follows. For input y guess a short proof x of y and then verify f(x) = y. This
procedure implies that L is in NP.

By combining the proofs of Lemma 3.1.1 and Lemma 3.1.2 we get a proof for the following

26

3.2. Gentzen-style Sequent Calculus for QBF

Theorem 3.1.3. There exists a propositional proof system in which every tautology has
a polynomial size proof if and only if the class NP is closed under complementation, i.e.,
NP = coNP holds.

The generalisation of these results to quantified propositional proofs have been introduced
by Cook and Morioka in [CM05].

Definition 3.1.3 (Quantified Propositional Proof System)
A quantified propositional Proof System is a proof system Q : Σ∗

1 −→ L, where Σ1 = {0, 1}
and L is the set of valid QBFs.

Theorem 3.1.4. (i) There exists a quantified propositional proof system Q in which
every valid QBF ϕ has a proof of size polynomial in |ϕ| if and only if NP = PSPACE.

(ii) For every i ≥ 0, there exists a quantified propositional proof system Q in which every
valid Σq

i -formula ϕ has a proof of size polynomial in |ϕ| if and only if NP = Πp
i+1.

Proof.

(i) Let L be any PSPACE problem, and let Q be a quantified propositional proof
system, in which every valid QBF formula ϕ has a proof of size polynomial in |ϕ|. By
definition Q can be computed by a deterministic Turing machine in polynomial-time.
Let MQ be this Turing machine.
Then we can define a non-deterministic procedure that accepts any L ∈ PSPACE
in polynomial time as follows. Reduce L to a QBF, say ϕL, and then accept
L if and only if MQ accepts that ϕL is valid. This implies that L ∈ NP, thus
PSPACE ⊆ NP, and since we already know that NP ⊆ PSPACE, we get
NP = PSPACE.
On the other hand if NP = PSPACE then by Lemma 3.1.2 any L ∈ PSPACE
has a polynomially bounded proof system.

(ii) Similar to the proof of (i). However, we rely on the fact, proven in [Wra76], that
evaluating a Πq

i+1-formula is Πp
i+1-complete, and dually evaluating a Σq

i+1-formula
is Σp

i+1-complete, for any i ≥ 0.

3.2 Gentzen-style Sequent Calculus for QBF

The basic objects of sequent calculi are sequents, i.e., ordered pairs of finite (possibly
empty) sequences of formulas written as

ϕ1, ϕ2, . . . , ϕl −→ ψ1, ψ2, . . . , ψk.

27

3. Quantified Propositional Calculus

The intuitive meaning of such a sequent is that the conjunction of the ϕi’s implies the
disjunction of the ψi’s, i.e., l

i=1 ϕi ⊃ k
i=1 ψi.

We use capital Greek letters (e.g., Γ, Δ, Π) to denote finite sequences of formulas

3.2.1 Propositional Sequent Calculus (PK)

PK has the following three axioms.

ϕ −→ ϕ where ϕ is an atom, ⊥ −→ , −→
In the following inference rules, we use the letters r and l (meaning right and left) to
denote the side at which the rule is applied.

Weakening Rules:

Γ −→ Δ[Wl]
ϕ, Γ −→ Δ

Γ −→ Δ[Wr] Γ −→ Δ, ϕ

Exchange Rules:

Γ1, ϕ, ψ, Γ2 −→ Δ[El] Γ1, ψ, ϕ, Γ2 −→ Δ
Γ −→ Δ1, ϕ, ψ, Δ2[Er] Γ −→ Δ1, ψ, ϕ, Δ2

Contraction Rules:

ϕ, ϕ, Γ −→ Δ[Cl]
ϕ, Γ −→ Δ

Γ −→ Δ, ϕ, ϕ[Cr] Γ −→ Δ, ϕ

The Cut Rule:

Γ −→ Δ, ϕ ϕ, Γ −→ Δ[cut] Γ −→ Δ

Logical Rules:

• Negation (¬):

Γ −→ Δ, ϕ[¬l] ¬ϕ, Γ −→ Δ
ϕ, Γ −→ Δ[¬r] Γ −→ Δ, ¬ϕ

• Conjunction (∧):

ϕ, Γ −→ Δ[∧l1]
ϕ ∧ ψ, Γ −→ Δ

ψ, Γ −→ Δ[∧l2]
ϕ ∧ ψ, Γ −→ Δ

28

3.2. Gentzen-style Sequent Calculus for QBF

Γ −→ Δ, ϕ Γ −→ Δ, ψ[∧r] Γ −→ Δ, ϕ ∧ ψ

• Disjunction (∨):

ϕ, Γ −→ Δ ψ, Γ −→ Δ[∨l]
ϕ ∨ ψ, Γ −→ Δ

Γ −→ Δ, ϕ[∨r1] Γ −→ Δ, ϕ ∨ ψ

Γ −→ Δ, ψ[∨r2] Γ −→ Δ, ϕ ∨ ψ

For convenience we will extend the system by two rules introducing the implication.
Note that to avoid confusion between implication and sequent arrows we use the
symbol ⊃ to denote implication.

• Implication (⊃):

Γ −→ Δ, ϕ ψ, Γ −→ Δ[⊃l]
ϕ ⊃ ψ, Γ −→ Δ

ϕ, Γ −→ Δ, ψ[⊃r] Γ −→ Δ, ϕ ⊃ ψ

Recall that ϕ ⊃ ψ is equivalent to ¬ϕ ∨ ψ, which means that these two rules abbreviate
the derivation of ¬ϕ ∨ ψ (left and right) which can be done by the right application of
the introduction of negation and disjunction as well as the contraction rule.

We define some important notions and notations.

• The formulas Γ, Δ are called side formulas or the context.
• The auxiliary formulas are those which appear in the upper sequent and are not

side formulas, i.e., premise formulas (e.g., ϕ in ∧r).
• The principal formulas are those which appear in the lower sequent and are not

side formulas, i.e., conclusion formulas (e.g., ϕ ∧ ψ in ∧r).
• A PK-proof is a sequence of sequents, in which every sequent is either an axiom or

is derived from previous sequents by one of the inference rules.
• The last sequent in a proof is called the end-sequent.
• If s and t are two inference steps in a proof π, we say that s precedes t if s occurs

in a subproof of π ending with t.
• The successor of a formula ϕ in a proof is defined as follows.

◦ If ϕ is a formula of Γ, then the successor of ϕ is the first occurrence (starting
from left) of ϕ in the left side of the lower sequent.

◦ If ϕ is a formula of Δ, then the successor of ϕ is the first occurrence (starting
from left) of ϕ in the right side of the lower sequent.

29

3. Quantified Propositional Calculus

◦ If ϕ is not a side formula, then the principal formula of a rule is the successor
of ϕ.

• The concept of principal formulas and successor is not defined for the cut rule.

Definition 3.2.1 (Polynomial-size PK-proofs)
A family of sequents has polynomial-size PK-proofs if there exists a polynomial p(·) such
that, for every formula ϕ in the family, there exists a PK-proof of ϕ whose size is at most
p(|ϕ|).
Definition 3.2.2 (Treelike proofs)
A proof where each sequent occurs as an upper sequent of an inference step at most once,
is a treelike proof.

Definition 3.2.3 (p-simulation)
Let Q1 and Q2 be quantified propositional proof systems. We say that Q2 p-simulates
Q1 if and only if there exists a polynomial time function h such that if π1 is a Q1-proof
of ϕ, then h(π1) is a Q2-proof of ϕ.
We say that Q1 and Q2 are p-equivalent if they p-simulate each other.

3.2.2 Sequent Calculi for QBF

Krajíček and Pudlák introduced in [KP90] Gentzen-like sequent calculi for quantified
Boolean formulas. Those systems were denoted as KPG, KPGi and KPG∗

i in [CM05]
(we adopt these names here). Cook and Morioka introduced the systems G, Gi and G∗

i

by modifying the definition of KPG systems to have a better correspondence between
the bounded arithmetic theories T 2

i and S2
i and the defined calculus. We describe the

different proof systems in the following.

Definition 3.2.4 (KPG)
We obtain the system KPG by extending PK with the following rules:

ϕ(p), Γ −→ Δ[∃l] ∃xϕ(x), Γ −→ Δ
Γ −→ Δ, ϕ(ψ)[∃r] Γ −→ Δ, ∃xϕ(x)

ϕ(ψ), Γ −→ Δ[∀l] ∀xϕ(x), Γ −→ Δ
Γ −→ Δ, ϕ(p)[∀r] Γ −→ Δ, ∀xϕ(x)

Conditions for quantifier rule applications are as follows.

• The variable p in ∃l and ∀r does not occur free in the lower sequents, and is called
an eigenvariable.

• ψ can be any proper formula free for substitution for x in ϕ, i.e., no free variable in
ψ should be bounded in ϕ(ψ). We call ψ the target of the corresponding inference.

30

3.2. Gentzen-style Sequent Calculus for QBF

• Additionally, in the axiom ϕ −→ ϕ, ϕ is allowed to be any QBF.

Definition 3.2.5 (KPGi and KPG∗
i)

For i ≥ 1, KPGi is obtained from KPG by requiring that all formulas in the proof to be
in Σq

i ∪ Πq
i . These are the formulas that are in prenex form with at most i − 1 quantifier

alternations.

KPG∗
i is KPGi restricted to treelike proofs.

Definition 3.2.6 (G, Gi and G∗
i)

G is obtained by augmenting PK with the four quantifier-introduction rules from definition
3.2.4, with the additional restriction that the target ψ of every ∀l and ∃r step is quantifier-
free.

For i ≥ 0, Gi is G with cuts restricted to Σq
i ∪ Πq

i -formulas. G∗
i is the treelike version of

Gi.

Definition 3.2.7
Parameter variables are the free variables in a G-proof which occur in the end-sequent.

Note that restricting KPGi to reason only with formulas in Σq
i ∪Πq

i means that KPGi can
not prove all true QBFs, i.e., it is not complete for any fixed i. However the modification
introduced by Cook and Morioka in [CM05] gives us complete proof systems Gi which
have a more natural correspondence with the theories of bounded arithmetic T i

2 and Si
2,

which will be introduced in the next chapter.
For any i ≥ 0, Gi+1 is stronger than Gi, while both can reason about any QBF, Gi+1-
proofs might be shorter, because it allows more complex cut formulas.

We use in the following proof the notion of a subformula, and we shall adopt the definition
by Takeuti in [Tak87] (Definition 6.1 on p.28).

Definition 3.2.8
The set of immediate subformulas of a formula ϕ is defined as follows.

• If ϕ is an atomic formula, then it has no immediate subformulas.
• If ϕ is ¬ϕ1, then the set of immediate subformulas is {ϕ1}.
• If ϕ is ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, or ϕ1 ⊃ ϕ2, then the set of immediate subformulas is

{ϕ1, ϕ2}.
• If ϕ is ∀x ϕ1(x) or ∃x ϕ1(x), then the set of immediate subformulas is {ϕ1(x)}.

The set of subformulas of ϕ is the reflexive transitive closure of the set of immediate
subformulas.

Note that we only need here the immediate subformulas and we mention the definition
of proper subformulas for completeness.

31

3. Quantified Propositional Calculus

Lemma 3.2.1. Let ∃xϕ(x) and ψ be QBFs, and let ϕ(ψ) be the result of substituting ψ
for all free occurrences of x in ϕ(x), where ψ satisfies the restriction for the target formula
in ∀l and ∃r. The following four sequents have cut-free G∗

0-proofs of size O(|ϕ(ψ)|2):

(T1): ψ, ϕ(ψ) −→ ϕ()

(T2): ϕ(ψ) −→ ϕ(⊥), ψ

(T3): ψ, ϕ() −→ ϕ(ψ)

(T4): ϕ(⊥) −→ ψ, ϕ(ψ)

Proof. We use in the proof trees a double line to denote omitted structural rules like
weakening or exchange.

We prove (T1) by induction on the structure of ϕ(x). The other proofs are similar.

Base case: If ϕ(x) = x then we have a cut-free G∗
0-proof for ψ, ψ −→ by two

consecutive application of weakening starting with the axiom −→ . We can
immediately see that the size of the proof is O(|ϕ(ψ)|).

Induction hypothesis: Suppose ϕi is an immediate subformula of ϕ. Then the sequent
ψ, ϕi(ψ) −→ ϕi() has cut-free G∗

0-proof πi of size O(|ϕi(ψ)|2).

Induction step: We distinguish the following cases according to the structure of ϕ.
Case 1. ϕ(x) = ϕ1(x) ∧ ϕ2(x)

By the induction hypothesis we have π1 a proof of ψ, ϕ1(ψ) −→ ϕ1() and π2
a proof of ψ, ϕ2(ψ) −→ ϕ2(). A proof for ψ, ϕ1(ψ)∧ϕ2(ψ) −→ ϕ1()∧ϕ2()
can be constructed as follows.

...
π1
...

ψ, ϕ1(ψ) −→ ϕ1()[El]
ϕ1(ψ), ψ −→ ϕ1()[∧l1]

ϕ1(ψ) ∧ ϕ2(ψ), ψ −→ ϕ1()

...
π2
...

ψ, ϕ2(ψ) −→ ϕ2() [El]
ϕ2(ψ), ψ −→ ϕ2() [∧l2]

ϕ1(ψ) ∧ ϕ2(ψ), ψ −→ ϕ2()[∧r]
ϕ1(ψ) ∧ ϕ2(ψ), ψ −→ ϕ1() ∧ ϕ2()[El]
ψ, ϕ1(ψ) ∧ ϕ2(ψ) −→ ϕ1() ∧ ϕ2()

Additionally to the πi proofs (of size O(|ϕi(ψ)|2) the size is increased about
5 · |ϕ1(ψ)| + 5 · |ϕ2(ψ)| + 4 · |ϕ1()| + 4 · |ϕ2()| + 6 · |ψ| (ignoring the constant
number of additional logical symbols. For example in this proof there are 6
new occurrences of the ∧ symbol).
This entails that we have a proof of size O(|ϕ(ψ)|2).

32

3.2. Gentzen-style Sequent Calculus for QBF

Case 2. Similarly one can prove the cases when ϕ(x) = ϕ1(x) ∨ ϕ2(x) and when
ϕ(x) = ¬ϕ1(x).

Case 3. ϕ(x) = ∀yϕ1(x, y)
By the induction hypothesis we have π1 a proof of ψ, ϕ1(ψ, z) −→ ϕ1(, z).
A proof of ψ, ∀yϕ1(ψ, y) −→ ∀yϕ1(, y) is as follows.

...
π1
...

ψ, ϕ1(ψ, z) −→ ϕ1(, z)[El]
ϕ1(ψ, z), ψ −→ ϕ1(, z)[∀l] ∀yϕ1(ψ, y), ψ −→ ϕ1(, z)[El]

ψ, ∀yϕ1(ψ, y) −→ ϕ1(, z)[∀r]
ψ, ∀yϕ1(ψ, y) −→ ∀yϕ1(, y)

The variable z is the eigenvariable of the ∀r inference.
Similar to the previous cases the size of the proof is still O(|ϕ(ψ)|2), as we had
to increase the size of π1 about 4 · |ϕ1(ψ, z)| + 4 · |ϕ1(, z)| + 4 · |ψ| (ignoring
the constant number of additional logical symbols).

Case 4. If ϕ(x) = ∃yϕ1(x, y)
By the induction hypothesis we have π1 a proof of ψ, ϕ1(ψ, z) −→ ϕ1(, z).
A proof of ψ, ∃yϕ1(ψ, y) −→ ∃yϕ1(, y) is as follows.

...
π1
...

ψ, ϕ1(ψ, z) −→ ϕ1(, z)[∃r]
ψ, ϕ1(ψ, z) −→ ∃yϕ1(, y)[El]
ϕ1(ψ, z), ψ −→ ∃yϕ1(, y)[∃l] ∃yϕ1(ψ, y), ψ −→ ∃yϕ1(, y)[El]

ψ, ∃yϕ1(ψ, y) −→ ∃yϕ1(, y)
The variable z is the eigenvariable of the ∃l inference.
The size of the proof is again O(|ϕ(ψ)|2).

Lemma 3.2.2. G and KPG are p-equivalent. Moreover, for every i ≥ 1, KPGi and
KPG∗

i are p-equivalent to Gi and G∗
i , respectively, for proving valid Σq

i ∪ Πq
i -formulas.

Proof. The following proof is a detailed version of the proof in [CM05]. We prove that
KPGi and Gi are p-equivalent for every i ≥ 0. The proof is identical for KPG∗

i versus
G∗

i and KPG versus G.

33

3. Quantified Propositional Calculus

KPGi p-simulates Gi

Restricting the target of ∀l and ∃r step in the systems Gi, G∗
i and G to be quantifier-

free means that all quantifier introduction rules only increase quantifier complexity.
This along with the fact that Gi is only allowed to cut formulas from Σq

i ∪Πq
i implies

that a proof of a valid Σq
i ∪ Πq

i -formula in Gi will contain only Σq
i ∪ Πq

i -formula.
We can conclude that any Gi-proof of a Σq

i ∪Πq
i -formula is in fact also a KPGi-proof,

which means that KPGi p-simulates Gi.

Gi p-simulates KPGi

KPGi-proofs contain Σq
i ∪ Πq

i -formulas only, while Gi-proofs could contain any
QBF. However in Gi we are only allowed to cut Σq

i ∪ Πq
i -formulas.

This means that the allowed complexity of cut formulas in both systems is identical,
thus we only need to prove that Gi can simulate the inference rules ∃r and ∀l with
quantified targets.

Case ∃∃r. Note that we use here a double line to denote omitted structural rules
like weakening or exchange.
Let S be the sequent Γ −→ Δ, ∃xϕ(x) which is derived from Γ −→ Δ, ϕ(ψ) in
KPGi such that ψ is quantified.
Using (T1) and (T2) from Lemma 3.2.1, we can get a proof of S in Gi as
follows:

...
Γ −→ Δ, ϕ(ψ)

[Wr]
Γ −→ Δ, ∃xϕ(x), ϕ(ψ)

...proof of (T2) ...
ϕ(ψ) −→ ϕ(⊥), ψ

[∃r]
ϕ(ψ) −→ ∃xϕ(x), ψ

...proof of (T1) ...
ψ, ϕ(ψ) −→ ϕ()

[∃r]
ψ, ϕ(ψ) −→ ∃xϕ(x)

[Cut ψ]
ϕ(ψ) −→ ∃xϕ(x)

[W]
ϕ(ψ), Γ −→ Δ, ∃xϕ(x)

[Cut ϕ(ψ)]
Γ −→ Δ, ∃xϕ(x)

Note that we are allowed to cut on ϕ(ψ) and ψ because we know that both
are in Σq

i ∪ Πq
i , by the definition of KPGi.

Moreover, the conditions for applying the rule ∃r are met, since the rules are
applied to quantifier-free target formulas, namely , ⊥.
We finally note that this proof is of size polynomial in the size of the KPGi-
proof, since the proofs of T1 and T2 are each of size O(|ϕ(ψ)|2) and we increased
them about (9 +α) · |ϕ(x)| + (8 +α) · |ϕ(ψ)|+ 4 · |ψ| + (4 +α) · |Δ|+ (4 +α) · |Γ|,
such that α is the number of formulas in Δ and Γ (which we add in the right
side of the proof by weakening).

Case ∀∀l. Assume that we get the sequent ∀xϕ(x), Γ −→ Δ from ϕ(ψ), Γ −→ Δ
where ψ is quantified. Then the proof of S in Gi is similar to the previous

34

3.2. Gentzen-style Sequent Calculus for QBF

case with the modification that we start with (T3) and (T4) from Lemma
3.2.1.

Definition 3.2.9 (Free-variable Normal Form)
A treelike proof π is in free-variable normal form if

• no parameter variable is used as an eigenvariable in π, and
• every non-parameter variable is used as an eigenvariable exactly once in π.

If a proof π is treelike and in free-variable normal form, then for every non-parameter
variable b, the sequents containing b form a sub-tree of π, whose end-sequent is the upper
sequent of the inference in which b is used as an eigenvariable.

Buss in [Bus98] and other works mentions that we can convert any treelike proof into a
proof in free-variable normal form by simply renaming variables.

In what follows we assume that every treelike proof is in free variable normal form.

35

CHAPTER 4
Bounded Arithmetic

This chapter introduces a family of bounded arithmetic theories which are fragments of
Peano arithmetic. We define a translation of these formulas to QBFs.

To establish the connection between bounded arithmetic and the polynomial hierarchy,
S. Buss defines, in chapter 1 of [Bus86], the polynomial hierarchy within the setting
of bounded quantification, and the class of polynomially bounded functions which are
closed under composition and are defined using the concept of logarithmically (and
polynomially) bounded quantification.

Buss then introduces two types of bounded quantifiers which corresponds to the logarith-
mically (and polynomially) bounded quantification, namely the bounded quantifiers of the
form ∀x ≤ t A(x) or ∃x ≤ t A(x) (which mean ∀x(x ≤ t ⊃ A(x)) and ∃x(x ≤ t ∧ A(x)),
respectively), and sharply bounded quantifiers (a special case of the former) of the form
∀x ≤ |t| A(x) and ∃x ≤ |t| A(x). He then defines a hierarchy of bounded arithmetic
formulas based on the number of bounded quantifier alternations while ignoring sharply
bounded ones, which we will present in this chapter.

An important feature of bounded arithmetic is that computing the truth value of a
bounded arithmetic formula is always bounded by some polynomial q(·) with respect to
the size of the input, and that is because the terms are constructed from polynomial time
computable functions and predicates as seen in the later parts of the thesis.

Before we dive in the first-order theories of bounded arithmetic, we recall the definition
of a well-formed first-order formula.

37

4. Bounded Arithmetic

4.1 Syntax of first-order logic

The syntax of first-order logic is defined over a set of symbols, these symbols can be
divided to

• logical symbols, which are {¬, ∨, ∧, ⊃, ∃, ∀}, and

• non-logical symbols, which include constant, function, and predicate symbols.

Additionally the symbols x, y, z, x1, x , . . . are used to denote variables.

Definition 4.1.1
A term for a given set of symbols can be defined inductively as follows

• A constant, or a variable is a term.
• If t1, . . . , tn are terms, then, for any function symbol f of arity n, f(t1, . . . , tn) is a

term.

Definition 4.1.2
A first-order formula for a given set of symbols can be defined inductively as follows

• If t1, . . . , tn are terms, then, for any predicate symbol P of arity n, P (t1, . . . , tn) is
a formula.

• If ϕ, ϕ1, ϕ2 are formulas, then ¬ϕ, ϕ1 ∨ ϕ2, ϕ1 ∧ ϕ2, ϕ1 ⊃ ϕ2, ∃xϕ, and ∀xϕ are
also formulas.

4.2 The language of bounded arithmetic

The first-order language of bounded arithmetic, denoted by L, contains the following
symbols.

Logical Symbols
∧ And A ∧ B
∨ Or A ∨ B
¬ Not ¬A
⊃ Implication A ⊃ B
∃ Exists ∃xA(x)
∀ For all ∀xA(x)

Function Symbols
0 Zero constant
S Successor function S(x) = x + 1
+ Addition function x + y

38

4.2. The language of bounded arithmetic

· Multiplication function x · y
| | The length of the binary representation |x| = log2(x + 1)
1
2 Divide by two and round down 1

2x

Smash function x#y = 2|x|·|y|

Predicate Symbols
= Equality
≤ Less or equal

Other Symbols
() Parentheses

The function symbols take non-negative integers as input, x and y are variables, and A,
B are formulas.

Definition 4.2.1 (Bounded quantifiers, bounded formula)
Quantifiers of the form ∃x and ∀x are called unbounded quantifiers. We define two types
of bounded quantifiers.

i. A bounded quantifier is of the form ∃x ≤ t or ∀x ≤ t, in which t can be any term
not involving x.

ii. A sharply bounded quantifier is of the form ∃x ≤ |t| or ∀x ≤ |t|, such that t is again
any term not involving x.

A bounded formula is a formula with no unbounded quantifiers.

A sharply bounded formula is a formula containing sharply bounded quantifiers only.

We define a hierarchy of bounded formulas as follows:

Definition 4.2.2 (Definition from Buss in [Bus86])
Σb

k+1 and Πb
k+1 are the smallest sets which satisfy the following conditions.

(1.) Πb
0 = Σb

0 = Δb
0 is the set of sharply bounded formulas of L.

(2.) Σb
k+1 is defined as follows :

(a.) Πb
k ⊆ Σb

k+1.
(b.) If A is in Σb

k+1 then so are (∃x ≤ t A(x)) and (∀x ≤ |t| A(x)) for any term t
not involving x, where x is free in A.

(c.) If A, B ∈ Σb
k+1 then A ∧ B and A ∨ B are in Σb

k+1.
(d.) If A ∈ Σb

k+1 and B ∈ Πb
k+1 then ¬B and B ⊃ A are in Σb

k+1.

(3.) Πb
k+1 is defined as follows:

(a.) Σb
k ⊆ Πb

k+1.
(b.) If A is in Πb

k+1 then so are (∀x ≤ t A(x)) and (∃x ≤ |t| A(x)) for any term t
not involving x, where x is free in A.

39

4. Bounded Arithmetic

(c.) If A, B ∈ Πb
k+1 then A ∧ B and A ∨ B are in Πb

k+1.
(d.) If A ∈ Πb

k+1 and B ∈ Σb
k+1 then ¬B and B ⊃ A are in Πb

k+1.

Note that the classes of bounded formulas in this hierarchy are based on the alternations
of bounded quantifiers only, thus the alternations of sharply bounded quantifiers do not
count.

4.3 Axiomatization of bounded arithmetic

Peano arithmetic is usually axiomatized by a small number of axiom schemata and an
induction schema. Buss in [Bus86] axiomatized bounded arithmetic by increasing the
number of axioms and restricting the induction axioms.

We first define the theory called BASIC.
Definition 4.3.1 (The theory BASIC)
BASIC is a finite set of axioms, which define the simple properties relating the function
and predicate symbols of the language L (the language of bounded arithmetic).

BASIC consists of the following 32 axioms:

1. |0| = 0 18. x + y ≤ x + z ⊃ y ≤ z

2. 0 ≤ x 19. x · (y + z) = (x · y) + (x · z)
3. x + 0 = x 20. x = 0 ⊃ |x| = S(| x

2 |)
4. x · 0 = 0 21. x · (S(y)) = (x · y) + x

5. |S(0)| = S(0) 22. x · y = y · x

6. x = S(x) 23. (x + y) + z = x + (y + z)
7. x + y = y + x 24. x + S(y) = S(x + y)
8. x ≤ x + y 25. 0#x = S(0)
9. y ≤ x ⊃ y ≤ S(x) 26. |x| = |y| ⊃ x#z = y#z

10. x = 0 ⊃ 2 · x = 0 27. |x| = |y| + |z| ⊃ x#u = (y#u) · (z#u)
11. x ≤ y ∨ y ≤ x 28. x#y = y#x

12. x ≤ y ⊃ |x| ≤ |y| 29. |x#y| = S(|x| · |y|)
13 .(x ≤ y ∧ y ≤ x) ⊃ x = y 30. S(0) ≤ x ⊃ (x · y ≤ x · z ←→ y ≤ z)
14. (x ≤ y ∧ y ≤ z) ⊃ x ≤ z 31. x = y

2 ←→ (2 · x = y ∨ S(2 · x) = y)
15. (x ≤ y ∧ x = y) ⊃ S(x) ≤ y 32. x = 0 ⊃ (|2 · x| = S(|x|) ∧ |S(2 · x)| = S(|x|))
16. (x ≤ y ∧ x = y) ⊃ (S(2 · x) ≤ 2 · y ∧ S(2 · x) = 2 · y)
17. x = 0 ⊃ (1#(2 · x) = 2 · (1#x) ∧ 1#(S(2 · x)) = 2 · (1#x))

Definition 4.3.2 (Induction axioms)

40

4.4. Sequent-like calculi for bounded arithmetic

Let Ψ be any set of formulas of L. We define three types of induction axioms.

The general induction axiom Ψ-IND:

For any A ∈ Ψ : A(0) ∧ ∀x (A(x) ⊃ A(S(x))) ⊃ ∀x A(x).

The polynomial induction axiom Ψ-PIND:

For any A ∈ Ψ : A(0) ∧ ∀x (A(x

2) ⊃ A(x)) ⊃ ∀x A(x).

The length induction axiom Ψ-LIND:

For any A ∈ Ψ : A(0) ∧ ∀x (A(x) ⊃ A(S(x))) ⊃ ∀x A(|x|).

We note that while we will use the axioms Ψ-IND and Ψ-PIND in the definition of
theories S2 and T2, we will not need the axiom Ψ-LIND in this thesis. However we
mention it to complete the picture.

In what follows we define, over the language L, fragments of bounded arithmetic known
as the theories T2 and S2.

4.3.1 Theories S2 and T2 of bounded arithmetic

Definition 4.3.3 (The theory T2)
T i

2 is the theory BASIC extended by Σb
i -IND (i.e, the induction axiom for all Σb

i -formulas).

The theory T2 is the union of all theories T i
2.

Definition 4.3.4 (The theory S2)
Si

2 is the theory BASIC extended by Σb
i -PIND (i.e, the polynomial induction axiom for

all Σb
i -formulas).

The theory S2 is the union of all theories Si
2.

We note that the theory BASIC is sometimes denoted by T
(−1)
2 or S

(−1)
2 in the literature.

4.4 Sequent-like calculi for bounded arithmetic

Takeuti in [Tak87] defines the calculus LKe for predicate logic with equality by extending
the propositional PK with quantifier rules and adding the following sequents as additional
possible initial sequents.

For any term s
−→ s = s,

41

4. Bounded Arithmetic

for every function symbol f

t1 = s1, . . . , tk = sk −→ f(t1, . . . , tk) = f(s1, . . . , sk),

and or every predicate symbol R

t1 = s1, . . . , tk = sk, R(t1, . . . , tk) −→ R(s1, . . . , sk),

such that t1, . . . , tk and s1, . . . , sk could be any term.

The rules introducing first-order quantifiers are as follows.

A(a), Γ −→ Δ[∃l] ∃xA(x), Γ −→ Δ
Γ −→ Δ, A(t)[∃r] Γ −→ Δ, ∃xA(x)

A(t), Γ −→ Δ[∀l] ∀xA(x), Γ −→ Δ
Γ −→ Δ, A(a)[∀r] Γ −→ Δ, ∀xA(x)

The term t is any term free for x in A, and a is an eigenvariable that does not occur free
in the lower sequent. Furthermore we assume for simplicity that the formula A in the
axiom A −→ A is atomic.

Lemma 4.4.1 (Takeuti §7. in [Tak87]).

Let A(a1, . . . , ak) be an arbitrary formula, then the sequents

t1 = s1, . . . , tk = sk, A(t1, . . . , tk) −→ A(s1, . . . , sk),

s = t −→ t = s, and

s1 = s2, s2 = s3 −→ s1 = s3

are provable in LKe such that s, t, t1, . . . , tk and s1, . . . , sk are terms.

Now we define the system LKB for bounded arithmetic formulas by extending LKe with
rules allowing the introduction of bounded quantifiers.

a ≤ t, A(a), Γ −→ Δ[∃ ≤l] ∃x ≤ t A(x), Γ −→ Δ
Γ −→ Δ, A(t)[∃ ≤r]

t ≤ s, Γ −→ Δ, ∃x ≤ s A(x)

A(t), Γ −→ Δ[∀ ≤l]
t ≤ s, ∀x ≤ s A(x), Γ −→ Δ

a ≤ t, Γ −→ Δ, A(a)[∀ ≤r] Γ −→ Δ, ∀x ≤ t A(x)

The terms t and s can be any terms not containing x, a does not occur in t, and the
variable a must not occur free in the lower sequent.

We can also introduce inference rules representing the induction axioms.

42

4.4. Sequent-like calculi for bounded arithmetic

Definition 4.4.1
We define the induction inference rules as follows.

(a) IND-rule

A(a), Γ −→ Δ, A(a + 1)
A(0), Γ −→ Δ, A(t)

(b) PIND-rule

A(x
2), Γ −→ Δ, A(a)

A(0), Γ −→ Δ, A(t)

(c) LIND-rule

A(a), Γ −→ Δ, A(a + 1)
A(0), Γ −→ Δ, A(|t|)

The term t is any term and the variable a must not occur free in the lower sequent.

The concept of auxiliary formulas, principal formulas, and successors is the same as
introduced in the definition of PK in Chapter 3. Note however that each of the induction
rules has two auxiliary formulas, e.g., A(a) and A(a + 1) in the IND-rule, and two
principal formulas, e.g., A(0) and A(t) in IND-rule.

According to J. Krajíček, in Chapter 7 of [Kra95], the system LKB is sound and complete,
and any valid sequent formed from bounded formulas can be proven in LKB without
using unbounded quantifiers.

By restricting the formulas in the above rules to those from Σb
i , we get rules equivalent

to the Σb
i -IND (resp. Σb

i -PIND, Σb
i -LIND) axioms introduced in Definition 4.3.2, a fact

that was proven by Buss in [Bus88] by deriving the sequent −→ A(0) ∧ ∀x (A(x) ⊃
A(S(x))) ⊃ ∀x A(x) in LKB with the IND-rule restricted to Σb

i -formulas (similarly for
PIND and LIND).

An important property of sequent calculi is the possibility to eliminate applications of the
cut rule, which was proven by Gentzen for LK (PK + the quantifier rules, but without
equality) in his famous Hauptsatz [Gen35]. It states that each LK-derivation can be
transformed to a cut-free LK-derivation with the same end-sequent.

However eliminating the cut rule completely is not possible for LKB, but its application
can be restricted to formulas satisfying specific properties as was proven by Takeuti in
[Tak87]. For example in LKe we can eliminate all cuts except those in which the cut
formula is of the form t = s.

43

4. Bounded Arithmetic

Definition 4.4.2
A formula A in an LKB derivation with induction rules is called free, if A is an axiom
or if no successor of A is identical to A or to one of the two principal formulas of an
induction rule.

Theorem 4.4.2 ([Kra95]). Assume i ≥ 1.

If the sequent Γ −→ Δ is provable in T i
2 then it has an LKB-proof with the Σb

i -IND rule
in which no cut formula is free.

The same holds for Si
2 and the Σb

i -PIND rule.

A corollary of the original cut elimination is the subformula property which states that
every formula occurring in a derivation is a subformula of the end-sequent. However, just
like the cut elimination theorem, only a weaker form of it is applicable in LKB, which is
the following.

Corollary 4.4.2.1 ([Kra95]). For every i ≥ 1, if Γ −→ Δ is provable in T i
2 (resp. in

Si
2), (i.e, if all formulas in Γ, Δ are Σb

i -formulas), then all formulas in the proof are Σb
i -

or Πb
i -formulas.

Before we present the translation of bounded arithmetic formulas over L to QBFs, we
rely on [Bus88] in what follows to define the bounding polynomial of a formula A of S1

2 .

Definition 4.4.3
The bounding polynomial qt(n) of a term t over the language L, is defined inductively as
follows.

• q0(n) = 1

• qx(n) = n for any variable x

• qS(t)(n) = qt(n) + 1, where S is the successor function

• qt+u(n) = qt(n) + qu(n)

• qt·u(n) = qt(n) + qu(n)

• qt#u(n) = qt(n) · qu(n) + 1

• q|t|(n) = q t
2

(n) = qt(n)

The bounding polynomial qA of a bounded arithmetic formula A over L, is defined
inductively as follows.

• qt=u = qt≤u = qt + qu

44

4.5. The Translation of Bounded Arithmetic to QBFs

• qA∧B = qA∨B = qA⊃B = qA + qB

• q¬A = qA

• q∃x≤tA(n) = q∀x≤tA(n) = qt(n) + qA(n + qt(n))

Note that by definition |t(x1, . . . , xk)| ≤ qt(n) and A(x1, . . . , xk) refers only to numbers
of length ≤ qA(n) where |xi| ≤ n for i ∈ {1, . . . , k}.

4.5 The Translation of Bounded Arithmetic to QBFs

The language of bounded arithmetic L is polynomial-time recognizable, thus by Theorem
2.2.1 any term t(a1, . . . , ak) from L, for |a1|, . . . , |ak| ≤ m, can be computed by a Boolean
circuit Ct in de Morgan basis i.e., {0, 1, ¬, ∧, ∨}, such that Ct is of size polynomial in m.

This means that the circuit Ct computing the term t of the language L can be translated
to a Σq

1-QBF after introducing new atoms for each node in the circuit Ct. We use the
symbols p, q, r, u, . . . to denote the introduced atoms, and ϕm

t (p1, . . . , pk, q) to denote the
Σq

1-QBF, which expresses the statement “There is a computation of the circuit Ct, which
outputs q on inputs p1, . . . , pk”.

In what follows we use the following notations.

• a(i) ∈ {0, 1} is the i-th digit of the binary representation of the integer a (i.e,
a =

i≤|a|
a(i) · 2i), such that if i > |a| then a(i) = 0.

• ϕ(n) and ϕ(p/n) both denote the formula ϕ(p0/n(0), p1/n(1), . . .), such that ϕ is a
QBF with the free atoms p = (p0, p1, . . .).

Definition 4.5.1 (The Translation by Krajíček, Chapter 9 in [Kra95])
Let A(a1, . . . , ak) be a bounded formula in the language L of S2, where |a1|, . . . , |ak| ≤ m.
Let q(·) be a bounding polynomial for the formula A. Moreover let

X := { ∈ {0, 1}∗ | i = 0 for i > |q(m)|}.

For every m we construct a quantified Boolean formula [[A]]mq(m) with the atoms pi such
that for every i ∈ {1, . . . , k} we have pi = (p0

i , . . . , p
q(m)
i). In what follows we define

[[A]]mq(m) inductively.

1. For A the atomic formula t(a) = s(a):
[[A]]mq(m) := ∃x0, . . . , xq(m), y0, . . . , yq(m) ϕt(p1, . . . , pk, qj/xj) ∧

ϕs(p1, . . . , pk, qj/yj) ∧
0≤i≤q(m)

xi ↔ yi

where x ↔ y has the same meaning as (x ⊃ y) ∧ (y ⊃ x).

45

4. Bounded Arithmetic

2. For A the atomic formula t(a) ≤ s(a):
[[A]]mq(m) := ∃x0, . . . , xq(m), y0, . . . , yq(m) ϕt(p1, . . . , pk, qj/xj) ∧

ϕs(p1, . . . , pk, qj/yj) ∧
0≤i≤q(m) i+1≤j≤q(m)

xj ↔ yj ∧ xi ⊃ yi .

Note that the last conjunct defines the lexicographic order on x, y.

3. For A = ¬A1 then
[[A]]mq(m) := ¬[[A1]]mq(m).

4. For A = A1 ◦ A2 where ◦ ∈ {∧, ∨} then
[[A]]mq(m) := [[A1]]mq(m) ◦ [[A2]]mq(m).

5. For A(a) = ∃x ≤ |t| A1(a, x) then
[[A]]mq(m) :=

∈X
[[b ≤ |t| ∧ A1(a, b)]]mq(m)(q/).

For A(a) = ∀x ≤ |t| A1(a, x) then
[[A]]mq(m) :=

∈X
[[b ≤ |t| ⊃ A1(a, b)]]mq(m)(q/)

where q is the tuple associated with b.

6. For A(a) = ∃x ≤ t A1(a, x), in which t is not of the form |s| then
[[A]]mq(m) := ∃x0, . . . , xq(m)[[b ≤ t ∧ A1(a, b)]]mq(m)(q/x).

For A(a) = ∀x ≤ t A1(a, x), in which t is not of the form |s| then
[[A]]mq(m) := ∀x0, . . . , xq(m)[[b ≤ t ⊃ A1(a, b)]]mq(m)(q/x)

where q is the tuple associated with b.

Many lemmas, corollaries, and theorems presented in what follows, which describe the
strong connection between KPG and bounded arithmetic, were introduced by Krajícek
and Pudlák in [Kra95] and [KP90]. However, even though those results were proven for
KPG, they are applicable for G as well. We already proved in Lemma 3.2.2 that KPG
and G are p-equivalent, and for any i ≥ 0, KPGi and Gi are p-equivalent in proving
Σq

i ∪ Πq
i -formulas.

The accurate notation for the translation of a formula A(a) is [[A(a)]]mq(m)(p), where p
are the atoms associated with the variable a. However, in what follows we omit some
elements of the notation for simplicity (e.g., m, q(m), and (p)). As a reminder, and when
necessary, we add the atoms associated with the variables, specifically when those atoms
are substituted by some ∈ X.

Lemma 4.5.1 (Lemma 9.2.3 in [Kra95]). Let A ∈ Σb
0, t be a term, a a free variable, and

q(·) a bounding polynomial for A(t). Then for every m, there are size mO(1) KPG∗
1-proofs

of
[[t = a ⊃ A(a)]]mq(m) −→ [[A(t)]]mq(m).

46

4.5. The Translation of Bounded Arithmetic to QBFs

Though we do not prove this lemma here, we note that the system KPG0 is not powerful
enough to derive this sequent, mainly because the sequent contains a Σq

1-formula, which is
not allowed in KPG0. Recall that by definition of the translation [[t = a]] is a Σq

1-formula.

Krajíček, in the proof of Theorem 9.2.5 in [Kra95], uses a more general version of this
lemma, and that is when A ∈ Σb

i (in that case the proof of the sequent would be at least
a KPG∗

i -proof). A restricted version of this lemma (with a conjunction on the left side
instead of implication) is presented in [KP90] within the definition of the translation. In
what follows we present it as corollary, and we prove it starting from the previous lemma.
We also prove it for the general case when A ∈ Σb

i for i ≥ 0, but in the system G∗
1 (not

KPG∗
1).

Corollary 4.5.1.1. Let A ∈ Σb
0, t be a term, a a free variable, and q(·) a bounding

polynomial for A(t). Then for every m, there are size mO(1) KPG∗
1-proofs of

[[t = a ∧ A(a)]]mq(m) −→ [[A(t)]]mq(m).

Proof.

We start the proof as follows.

[[A(a)]] −→ [[A(a)]]
[[t = a]], [[t = a]], [[A(a)]] −→ [[A(t)]], [[A(a)]]

[⊃r]
[[t = a]], [[A(a)]] −→ [[A(t)]], [[t = a ⊃ A(a)]]

[[A(t)]] −→ [[A(t)]]
[[A(t)]], [[t = a]], [[A(a)]] −→ [[A(t)]]

[⊃l]
[[(t = a ⊃ A(a)) ⊃ A(t)]], [[t = a]], [[A(a)]] −→ [[A(t)]] · · · S0

By Lemma 4.5.1 and the rule [⊃r] we derive −→ [[(t = a ⊃ A(a)) ⊃ A(t)]] · · · S1

By applying cut on S0 and S1 we get [[t = a]], [[A(a)]] −→ [[A(t)]], then by applying ∧l1,
∧l2, and contraction on this sequent we obtain

[[t = a ∧ A(a)]] −→ [[A(t)]].

In the following lemma we prove that a G∗
1-proof of the above sequent exists when A ∈ Σq

i

for any i ≥ 0. This is possible in G∗
1 because we do not use cut on any formula in Σq

i

when i > 1, though the proof contains such formulas, which is why such a proof can not
be a KPG∗

1-proof. However, with minor changes in the proof below (like the induction
hypothesis, for example) we can prove that a KPG∗

i -proof of the sequent exits.

Lemma 4.5.2. Let A ∈ Σb
i for any i ≥ 0, t be a term, a a free variable, and q(·) a

bounding polynomial for A(t). Then for every m there are size mO(1) G∗
1-proofs of

[[t = a ∧ A(a)]]mq(m) −→ [[A(t)]]mq(m).

Proof.

47

4. Bounded Arithmetic

For any A ∈ Σq
i , such that i ≥ 0, we can get the sequent [[t = a ∧ A(a)]] −→ [[A(t)]], by

applying ∧l1, ∧l2, and contraction on the sequent

[[t = a]], [[A(a)]] −→ [[A(t)]] · · · S

In what follows we prove by mathematical induction on i, that the sequent S has a
G∗

1-proof of size mO(1), for each i ≥ 0.

Base Case
For the case when i = 0, the proof is same of corollary 4.5.1.1 before applying the
conjunction rules.

Induction hypothesis
Let i ≥ 0 and assume that for A ∈ Σb

i , the sequent [[t = a]], [[A(a)]] −→ [[A(t)]] has
a G∗

1-proof of size mO(1).

Induction Step
By the definition of the hierarchy of bounded formulas, if B1, B2 ∈ Σb

i then so are
B1 ∧ B2, B1 ∨ B2, ∃x ≤ t B1(X), and ∀x ≤ |t| B1(x). Moreover, if C ∈ Πb

i then ¬C
and C ⊃ B1 are also in Σb

i .

Thus to prove the lemma for A ∈ Σb
i+1, we need to prove it when A is one of the

following two cases.

Case 1 A = ∀x ≤ s B(a, x)
By the induction hypothesis [[t = a]], [[B(a, b)]] −→ [[B(t, b)]] has a G∗

1-proof of
size mO(1), for some variable b, such that neither a nor b occurs in t.
Let q be the tuple associated with b (as in the definition of the translation above).
We then get the required proof as follows.

We first get the sequent S1:

[[b ≤ s]] −→ [[b ≤ s]]
[[b ≤ s]], [[t = a]] −→ [[b ≤ s]], [[B(t, b)]][⊃r] [[t = a]] −→ [[b ≤ s ⊃ B(t, b)]], [[b ≤ s]] · · · S1

We then derive the sequent S2:

[[t = a]], [[B(a, b)]] −→ [[B(t, b)]] [Wl][[b ≤ s]], [[t = a]], [[B(a, b)]] −→ [[B(t, b)]] [⊃r][[t = a]], [[B(a, b)]] −→ [[b ≤ s ⊃ B(t, b)]] · · · S2

48

4.5. The Translation of Bounded Arithmetic to QBFs

By applying ⊃l with the appropriate structural rules on S1 and S2, we get

[[t = a]], [[b ≤ s ⊃ B(a, b)]] −→ [[b ≤ s ⊃ B(t, b)]] · · · · S3

Starting from S3, we then can derive the needed sequent by applying ∀l and ∀r as
follows.

[[t = a]], [[b ≤ s ⊃ B(a, b)]] −→ [[b ≤ s ⊃ B(t, b)]]
[∀l]

[[t = a]], ∀x [[b ≤ s ⊃ B(a, b)]](q/x) −→ [[b ≤ s ⊃ B(t, b)]]
[∀r]

[[t = a]], ∀x [[b ≤ s ⊃ B(a, b)]](q/x) −→ ∀x[[b ≤ s ⊃ B(t, b)]](q/x)

We recall that by the definition of the translation the end-sequent is the same as

[[t = a]], [[∀x ≤ s B(a, x)]] −→ [[∀x ≤ s B(t, x)]].

Case 2 A = ∃x ≤ |s| B(a, x)
In a similar way like in the previous case, by using weakening, exchange, and ⊃ left
and right, we get for each ∈ X:

[[t = a]], [[b ≤ |s| ⊃ B(a, b)]](q/) −→ [[b ≤ |s| ⊃ B(t, b)]](q/).

Then by repeatedly applying ∨r and then ∨l, along with the appropriate structural
rules we get a proof of

[[t = a]],
∈X

[[b ≤ |s| ⊃ B(a, b)]](q/) −→
∈X

[[b ≤ |s| ⊃ B(t, b)]](q/).

By the definition of the translation we see that the end-sequent is the same as

[[t = a]], [[∃x ≤ |s| B(a, x)]] −→ [[∃x ≤ |s| B(t, x)]].

In what follows we introduce Lemmas 4.5.4 and 4.5.5, in addition to Lemma 4.5.3 to be
used in the proof of the main theorem in this chapter, Theorem 4.5.6. In this theorem
we see how an LKB-proof of a formula A ∈ Σb

i can be reconstructed to get a KPGi-proof
(thus a Gi-proof) of the translation of A. However, in the proofs, we occasionally use
what is known as the substitution rule, which allows simultaneous substitution of formulas
for atoms in one inference step. This rule is usually used as an extension to Frege systems.
Krajícek and Pudlák in Lemma 2.1. in [KP90] use a special case of the substitution rule
and prove that it can be polynomially simulated in KPG and KPGi for any i ≥ 1. The
substitution rule they use is

Γ(a) −→ Δ(a)[sub] Γ(ϕ) −→ Δ(ϕ)

49

4. Bounded Arithmetic

such that ϕ is quantifier-free, a does not occur in ϕ, and all occurrences of a in Γ and Δ
are substituted with ϕ.

Note that we do not always mention the use of structural rules, specially the use of
contraction and exchange. It is important to keep that in mind since these rules are often
applied in the following proofs, but not mentioned.

Lemma 4.5.3 (Lemma 9.2.4 in [Kra95]). Let A be an axiom of BASIC and q(·) a
bounding polynomial of A, then, for all m, there are size mO(1) KPG∗

1-proofs of the
formula [[A]]mq(m).

Proof. A proof of this lemma is sketched in [Kra95] and it relies on the bounded arithmetic
formal system PV (for Polynomially Verifiable) defined by Stephen Cook in [Coo75].

For more details we refer the reader to [Coo75], chapter 4 in [Kra95], and Lemma 9.2.4
in [Kra95].

The following two lemmas are used in the proof of Theorem 4.5.6. To make this proof
somewhat easier to read, we chose to extract those two parts and add them as lemmas.
However, in these lemmas, as well as in the theorem, we follow the proof provided by
Krajíček in [Kra95], while trying to add additional details to better understand the proof.
The original proof by Krajíček does not include the derivation of each used sequent, which
is what we tried to add. However, in our extended proof, we still use some sequents (four
in total) without a derivation. This fact will be mentioned every time such a sequent is
used in the proof.

Lemma 4.5.4. If the sequent [[Γ]], [[A(a)]] −→ [[A(a + 1)]], [[Δ]] has a polynomial-time
constructible KPGi-proof for some Σb

i -formula A, then, for each i ∈ {1, . . . , q(m)}, the
sequent

[[Γ]], [[A(a)]](p) −→ [[A(a + 2i)]](p), [[Δ]] · · · · · · Si

has a polynomial-time KPGi-proof.

Proof. Since we already have a proof of S0 (i.e., [[Γ]], [[A(a)]] −→ [[A(a + 1)]], [[Δ]]) by
assumption, from the sequent Si−1 (i.e., [[Γ]], [[A(a)]](p) −→ [[A(a + 2i−1)]](p), [[Δ]]) we
can derive the sequent Si for each i > 0 as follows.

From the equality axioms and Lemma 4.4.1 we get

[[a + 2i−1 = b]](p, q), [[A(a + 2i−1)]](p) −→ [[A(b)]](q), · · · · · · (1)

such that p are the atoms associated with a, and q are the atoms associated with the
variable b.

By applying cut on Si−1 and (1), we obtain

[[Γ]], [[a + 2i−1 = b]](p, q), [[A(a)]](p) −→ [[A(b)]](q), [[Δ]]. · · · · · · (2)

50

4.5. The Translation of Bounded Arithmetic to QBFs

By substituting p with q in Si−1, such that the elements of p do not occur in [[Γ]] and
[[Δ]], we get

[[Γ]], [[A(b)]](q) −→ [[A(b + 2i−1)]](q), [[Δ]]. · · · · · · (3)

Cut on (2) and (3) yields the sequent

[[Γ]], [[a + 2i−1 = b]](p, q), [[A(a)]](p) −→ [[A(b + 2i−1)]](q), [[Δ]]. · · · · · · (4)

From the equality axioms and Lemma 4.4.1, we can get the following

[[a + 2i−1 = b]](p, q), [[A(b + 2i−1)]](q) −→ [[A(a + 2i)]](p). · · · · · · (5)

By applying cut on (4) and (5) we get

[[Γ]], [[a + 2i−1 = b]](p, q), [[A(a)]](p) −→ [[A(a + 2i)]](p), [[Δ]]. · · · · · · (6)

Then by applying [∃l] (q(m) + 1) times on q, such that q are eigenvariables not occurring
free in the lower sequent, we get

[[Γ]], ∃x[[a + 2i−1 = b]](p, x), [[A(a)]](p) −→ [[A(a + 2i)]](p), [[Δ]]. · · · · · · (7)

We take the sequent −→ ∃x[[a + 2i−1 = b]](p, x) from [Kra95] without a derivation
(sequent (V7) in the original proof by Krajíček). By applying cut on this sequent with (7)
we get Si, which is

[[Γ]], [[A(a)]](p) −→ [[A(a + 2i)]](p), [[Δ]].

Lemma 4.5.5. If the sequent [[Γ]], [[A(a)]] −→ [[A(a + 1)]], [[Δ]] for some Σb
i -formula

A, has a polynomial-time constructible KPGi-proof, then we can construct a KPGi-proof
of the sequent

[[Γ]], [[2q(m) ≥ b]](q), [[A(a)]](p) −→ [[A(a + b)]](p, q), [[Δ]] · · · · · · (Sq(m))

in polynomial-time.

Proof. The idea is similar to the proof of the previous Lemma 4.5.4. By using Si to
denote the sequent [[Γ]], [[2i ≥ b]](q), [[A(a)]](p) −→ [[A(a + b)]](p, q), [[Δ]], we can start
with S0 and then derive Si from Si−1 for each i ∈ {1, . . . , q(m)}
Let p be the atoms associated with a, and let q be a new set of q(m) + 1 atoms associated
with the variable b. Then we can derive S0 as follows

By assumption
[[Γ]], [[A(a)]](p) −→ [[A(a + 20)]](p), [[Δ]][sub] [[Γ]], [[A(a)]](p) −→ [[A(a + b)]](p, q), [[Δ]]

[Wl]
[[Γ]], [[20 ≥ b]](q), [[A(a)]](p) −→ [[A(a + b)]](p, q), [[Δ]]

51

4. Bounded Arithmetic

such that, in the application of the substitution rule we replace the atoms associated
with the term 20 (i.e., 20) by the atoms q associated with b, where 20 does not occur in
[[Γ]], and [[Δ]].

In what follows we derive the sequent Si for each i ∈ {1, . . . , q(m)} from the sequent Si−1
(i.e., [[Γ]], [[2i−1 ≥ b]](q), [[A(a)]](p) −→ [[A(a + b)]](p, q), [[Δ]]).

Let c, d be new variables associated with the atoms u, v.

Applying substitution on Si−1, where p and q do not occur in [[Γ]] and [[Δ]], we get

[[Γ]], [[2i−1 ≥ c]](u), [[A(d)]](v) −→ [[A(d + c)]](v, u), [[Δ]]. · · · · · · (1)

From the equality axioms and Lemma 4.4.1 we have the sequent

[[a + 2i−1 = d]](p, v), [[A(a + 2i−1)]](p) −→ [[A(d)]](v). · · · · · · (2)

We have by Lemma 4.5.4 a proof of the sequent [[Γ]], [[A(a)]](p) −→ [[A(a+2i−1)]](p), [[Δ]]
for each i ∈ {1, . . . , q(m)}. By using this sequent and (2) and applying cut we get

[[Γ]], [[A(a)]](p), [[a + 2i−1 = d]](p, v) −→ [[A(d)]](v), [[Δ]]. · · · · · · (3)

By cut on (1) and (3), we obtain

[[Γ]], [[2i−1 ≥ c]](u), [[A(a)]](p), [[a + 2i−1 = d]](p, v) −→ [[A(d + c)]](v, u), [[Δ]].
· · · · · · (4)

From the sequent (4) we derive (as mentioned in [Kra95], specifically the sequent tagged
with Z4 in the proof by Krajíček)

[[Γ]], [[2i−1 ≥ c]](u), [[A(a)]](p), [[b = 2i−1 + c]](q, u) −→ [[A(a + b)]](p, q), [[Δ]].

We apply ∧l1 and ∧l2, so we get

[[Γ]], [[(2i−1 ≥ c)∧(b = 2i−1+c)]](q, u), [[A(a)]](p) −→ [[A(a+b)]](p, q), [[Δ]]. · · · · · · (5)

Apply ∨l on Si−1 and (5), thus obtaining

[[Γ]], [[2i−1 ≥ b ∨ (2i−1 ≥ c ∧ b = 2i−1 + c)]](q, u), [[A(a)]](p) −→ [[A(a + b)]](p, q), [[Δ]].
· · · · · · (6)

After (q(m) + 1) applications of ∃l (where u are eingenvariables not occurring in the
lower sequents), we get

[[Γ]], ∃x[[2i−1 ≥ b ∨ (2i−1 ≥ c ∧ b = 2i−1 + c)]](q, x), [[A(a)]](p) −→ [[A(a + b)]](p, q), [[Δ]].
· · · · · · (7)

From the sequent [[2i ≥ b]](q) −→ [[2i ≥ b]](q), we derive

[[2i ≥ b]](q) −→ [[2i−1 ≥ b ∨ (2i−1 ≥ c ∧ b = 2i−1 + c)]](q, u),

52

4.5. The Translation of Bounded Arithmetic to QBFs

then with a (q(m) + 1) applications of ∃r, we obtain

[[2i ≥ b]](q) −→ ∃x[[2i−1 ≥ b ∨ (2i−1 ≥ c ∧ b = 2i−1 + c)]](q, x). · · · · · · (8)

Finally by applying cut on (7) and (8) we get Si, which is

[[Γ]], [[2i ≥ b]](q), [[A(a)]](p) −→ [[A(a + b)]](p, q), [[Δ]].

Theorem 4.5.6 (Theorem 9.2.5 in [Kra95]). Let i ≥ 1 and A be a Σb
i -formula. Assume

that A is provable in T i
2, then there is a bounding polynomial q(·) for A, such that, for

all m, formulas [[A]]mq(m) have a KPGi-proofs of size mO(1) (similarly for Si
2 and KPG∗

i).

Proof. By Theorem 4.4.2 and Corollary 4.4.2.1, any T i
2-theorem A has an (LKB+Σb

i -IND)
proof π, in which all formulas are in Σb

i ∪ Πb
i .

The idea of the proof is to translate π to a KPGi-proof of [[A]], using induction on the
structure of π.

We note that through out the proof, if Γ = (A1, . . . , Ak), then we shall use [[Γ]] to denote
[[A1]], . . . , [[Ak]]. Moreover, for any i, we shall use πi to denote the proof of the sequent
Si.

Recall that X := { ∈ {0, 1}∗ | i = 0 for i > |q(m)|} and that q(·) is the bounding
polynomial of all formulas in π.

Base Case
For the base case we have to consider the BASIC axioms, the equality axioms, and the
logical axioms of the form A −→ A. The later two have a straightforward proof, and
proofs of the BASIC axioms follow directly from Lemma 4.5.3.

Induction hypothesis
We assume that all the steps in π up to step n can be translated to KPGi-proofs, i.e.,
the translation of the premise of any rule we might apply in step n + 1 already has a
polynomial-time constructible KPGi-proof.

Induction Step
Step n + 1 in π could fall in one of the following cases.

Case 1. The case of the structural, propositional, cut or the unbounded quantification
rules, the corresponding rules of KPGi are used.

The non-trivial cases are the introduction of the bounded quantifiers and the induction
rule.

53

4. Bounded Arithmetic

Case 2. Let us consider the case [∀ ≤r]:

a ≤ s, Γ −→ Δ, A(a)
[∀ ≤r]

Γ −→ Δ, ∀x ≤ s A(x)

By the induction hypothesis we already have a KPGi-proof for the translation of the top
sequent, from which we shall derive the translation of the bottom sequent. We have two
subcases.
Subcase 2.1. The term s is of the form |t| for some term t.

From the equality axioms we can derive for each ∈ X

[[a = b]](q/), [[b ≤ |t|]](q/) −→ [[a ≤ |t|]].
From this and by applying the rules [∧l1], and [∧l2] and the appropriate structural
rules we get

[[a = b ∧ b ≤ |t|]](q/) −→ [[a ≤ |t|]],
for each ∈ X.
Now, by repeatedly applying [∨l], we get

∈X

([[a = b ∧ b ≤ |t|]](q/)) −→ [[a ≤ |t|]]. · · · · · · S1

Now consider the following proof, in which a double line means omitted structural
rules:

A −→ A[∨r]
A −→ C, A ∨ B C −→ C

[⊃l]
A, (A ∨ B) ⊃ C −→ C

[⊃r]
(A ∨ B) ⊃ C −→ A ⊃ C

Similar to the left side
(A ∨ B) ⊃ C −→ B ⊃ C

[∧r]
(A ∨ B) ⊃ C −→ (A ⊃ C) ∧ (B ⊃ C)

This proof can be generalized, thus starting from

[[a = b ∧ b ≤ |t|]](q/) −→ [[a = b ∧ b ≤ |t|]](q/) for every ∈ X

and [[A(a)]] −→ [[A(a)]] we derive the sequent S2, which is the following.

∈X

[[a = b ∧ b ≤ |t|]](q/) ⊃ [[A(a)]] −→
∈X

[[a = b ∧ b ≤ |t| ⊃ A(a)]](q/).

From S1 we can then construct a proof of the sequent S3 as follows:
π1...
S1 [[A(a)]] −→ [[A(a)]]

[⊃l]

∈X
([[a = b ∧ b ≤ |t|]](q/)) , [[a ≤ |t|]] ⊃ [[A(a)]] −→ [[A(a)]]

[⊃r]
[[a ≤ |t|]] ⊃ [[A(a)]] −→ (

∈X
([[a = b ∧ b ≤ |t|]](q/))) ⊃ [[A(a)]] · · · S3

54

4.5. The Translation of Bounded Arithmetic to QBFs

For each ∈ X we derive the sequent S as follows. Starting from the sequents

[[a = b]](q/) −→ [[a = b]](q/) and [[b ≤ |t|]](q/) −→ [[b ≤ |t|]](q/),

by applying ∧r with the appropriate structural rules, we can derive

[[a = b]](q/), [[b ≤ |t|]](q/) −→ [[A(a)]], [[a = b ∧ b ≤ |t|]](q/).

By applying ⊃l on this sequent and the sequent [[A(a)]] −→ [[A(a)]] (with the
appropriate structural rules), we get

[[a = b ∧ b ≤ |t|]](q/) ⊃ [[A(a)]], [[a = b]](q/), [[b ≤ |t|]](q/) −→ [[A(a)]].

After two application of ⊃r rule, we get

[[a = b ∧ b ≤ |t|]](q/) ⊃ [[A(a)]] −→ [[a = b ⊃ (b ≤ |t| ⊃ A(a))]](q/).

From Lemma 4.5.1 we have

[[a = b ⊃ (b ≤ |t| ⊃ A(a))]](q/) −→ [[a ≤ |t| ⊃ A(a)]](p/).

By applying cut on [[a = b ⊃ (b ≤ |t| ⊃ A(a))]](q/), and repeated application of ∧l
we obtain

∈X

[[a = b ∧ b ≤ |t| ⊃ A(a)]](q/) −→ [[a ≤ |t| ⊃ A(a)]](p/). · · · · · · S

We then drive S4 after repeated application of ∧r on the sequents S (one for each
∈ X) and obtain

∈X

[[a = b ∧ b ≤ |t| ⊃ A(a)]](q/) −→
∈X

[[a ≤ |t| ⊃ A(a)]](p/). · · · · · · S4

Now from S3, S2, and S4 we prove S5 as follows

π3
...

S3

π2
...

S2[cut] [[a ≤ |t|]] ⊃ [[A(a)]] −→
∈X

[[a = b ∧ b ≤ |t| ⊃ A(a)]](q/)

π4
...

S4

[cut] [[a ≤ |t|]] ⊃ [[A(a)]] −→
∈X

[[a ≤ |t| ⊃ A(a)]](p/) · · · S5

Now from the induction hypothesis the upper sequent of ∀ ≤r has a proof, then we
can with an application of ⊃r we get S6 as follows.

[[a ≤ |t|]], [[Γ]] −→ [[Δ]], [[A(a)]][⊃r] [[Γ]] −→ [[Δ]], [[a ≤ |t|]] ⊃ [[A(a)]]

55

4. Bounded Arithmetic

Finally by applying cut on S6 and S5 we get the sequent

[[Γ]] −→ [[Δ]],
∈X

[[a ≤ |t| ⊃ A(a)]](p/).

Thus we now have a KPGi-derivation of the translation of ∀x ≤ sA(x).
Subcase 2.2. s is not of the form |t|

In this case, from the translation of the upper sequent of the ∀ ≤r, we get

[[a ≤ s]], [[Γ]] −→ [[Δ]], [[A(a)]]
[⊃r]

[[Γ]] −→ [[Δ]], [[a ≤ s]] ⊃ [[A(a)]]

After q(m) + 1 application of the [∀r] rule to p, where the elements of p are eigenvariables
not occurring in the lower sequents after applying the rule, we get the end-sequent we
want

[[Γ]] −→ [[Δ]], ∀x0, . . . , xq(m)[[a ≤ s ⊃ A(a)]](p/x)

which is, by the definition of the translation, the same as

[[Γ]] −→ [[Δ]], [[∀x ≤ sA(x)]].

Case 3. [∀ ≤l]:

A(t), Γ −→ Δ
[∀ ≤l]

t ≤ s, ∀x ≤ s A(x), Γ −→ Δ

By the induction hypothesis we already have a KPGi-proof for the translation of the
top sequent, from which we shall derive the translation of the bottom sequent. We have
again two sub-cases.
Subcase 3.1. The term s is of the form |r|, for some term r.

Recall from the definition of the translation that the following holds

[[∀x ≤ s A(x)]] =
∈X

[[a ≤ |r| ⊃ A(a)]](p/).

Without a derivation we take the first sequent from [Kra95] (also tagged with S1 in
the proof by Krajíček)

[[t ≤ |r|]] −→
∈X

[[t = a ∧ a ≤ |r|]](p/). · · · · · · S1

For each ∈ X, we derive the sequent S as follows. From the sequents

[[a ≤ |r|]](p/) −→ [[a ≤ |r|]](p/) and [[A(a)]](p/) −→ [[A(a)]](p/),

by applying ⊃l with the appropriate structural rules, we get

[[t = a]](p/), [[a ≤ |r| ⊃ A(a)]](p/), [[a ≤ |r|]](p/) −→ [[A(a)]](p/).

56

4.5. The Translation of Bounded Arithmetic to QBFs

By applying ∧r on this sequent and the sequent [[t = a]](p/) −→ [[t = a]](p/) (with
the appropriate structural rules), we obtain

[[a ≤ |r| ⊃ A(a)]](p/), [[t = a]](p/), [[a ≤ |r|]](p/) −→ [[t = a ∧ A(a)]](p/).

After reapeated application of ∧l, and ∨r, we get

∈X

[[a ≤ |r| ⊃ A(a)]](p/), [[t = a ∧ a ≤ |r|]](p/) −→
∈X

[[t = a ∧ A(a)]](p/).

· · · · · · S
By applying ∨l on the sequents S (a sequent for each ∈ X), we get the following
sequent

∈X

[[a ≤ |r| ⊃ A(a)]](p/),
∈X

[[t = a ∧ a ≤ |r|]](p/) −→
∈X

[[t = a ∧ A(a)]](p/)

· · · · · · S2
and by cut on S1 and S2, we obtain

[[t ≤ |r|]],
∈X

[[a ≤ |r| ⊃ A(a)]](p/) −→
∈X

[[t = a ∧ A(a)]](p/). · · · · · · S3

From Lemma 4.5.2 we have, for each ∈ X, [[t = a ∧ A(a)]](p/) −→ [[A(t)]]. By
applying [∨l] on these sequents we get

∈X

[[t = a ∧ A(a)]](p/) −→ [[A(t)]]. · · · · · · S4

By applying the cut rule on S3 and S4, we get

[[t ≤ |r|]],
∈X

[[a ≤ |r| ⊃ A(a)]](p/) −→ [[A(t)]]. · · · · · · S5

By the induction hypothesis we have a proof of the upper sequent of the [∀ ≤l] rule,
i.e., [[A(t)]], [[Γ]] −→ [[Δ]] to which with S5 we apply the cut rule to get the sequent

[[t ≤ |r|]],
∈X

[[a ≤ |r| ⊃ A(a)]](p/), [[Γ]] −→ [[Δ]].

Subcase 3.2. The term s is not of the form |r|.
Recall from the definition of the translation that the following holds.

[[∀x ≤ s A(x)]] = ∀x [[a ≤ s ⊃ A(a)]](p\x)

We first take the sequent

[[t ≤ s]] −→ ∃x [[a ≤ s ∧ a = t]](p/x) · · · · · · S1

without a derivation from [Kra95] (also tagged with S1 in the proof by Krajíček).
To get S2, we first derive the following.

57

4. Bounded Arithmetic

[[a ≤ s]] −→ [[a ≤ s]]
[[a ≤ s]] −→ A(a), [[a ≤ s]]

[[A(a)]] −→ [[A(a)]]
[[A(a)]], [[a ≤ s]] −→ [[A(a)]]

[⊃l]
[[a ≤ s ⊃ A(a)]], [[a ≤ s]] −→ [[A(a)]]

After an application of ∧r (with the appropriate structural rules) on this sequent
and the sequent [[a = t]] −→ [[a = t]] we get

[[a ≤ s ⊃ A(a)]], [[a ≤ s]], [[a = t]] −→ [[A(a) ∧ a = t]].

By applying ∧l, we obtain

[[a ≤ s ⊃ A(a)]], [[a ≤ s ∧ a = t]] −→ [[A(a) ∧ a = t]].

We then get S2 as follows.

[[a ≤ s ⊃ A(a)]], [[a ≤ s ∧ a = t]] −→ [[A(a) ∧ a = t]][∀l] ∀x[[a ≤ s ⊃ A(a)]](p\x), [[a ≤ s ∧ a = t]] −→ [[A(a) ∧ a = t]][∃r] ∀x[[a ≤ s ⊃ A(a)]](p\x), [[a ≤ s ∧ a = t]] −→ ∃x[[A(a) ∧ a = t]](p\x)[∃l] ∀x[[a ≤ s ⊃ A(a)]](p\x), ∃x[[a ≤ s ∧ a = t]](p\x) −→ ∃x[[A(a) ∧ a = t]](p\x)

The elements of p in the application of ∃l are eigenvariables not occurring in the
lower sequent.
By cut on S1 and S2 we get

[[t ≤ s]], ∀x[[a ≤ s ⊃ A(a)]](p\x) −→ ∃x[[a = t ∧ A(a)]](p/x). · · · · · · S3

Again from Lemma 4.5.2, we have [[t = a ∧ A(a)]] −→ [[A(t)]] from which we derive
the sequent

∃x[[t = a ∧ A(a)]](p/x) −→ [[A(t)]] · · · · · · S4

where the elements of p are eigenvariables not occurring in the lower sequents after
applying the ∃l rules.
Just like in the previous case, by the cut rule on S3 and S4, we obtain

[[t ≤ s]], ∀x[[a ≤ s ⊃ A(a)]](p\x) −→ [[A(t)]]. · · · · · · S5

By the induction hypothesis we have a proof of the upper sequent of the [∀ ≤l] rule,
i.e., [[A(t)]], [[Γ]] −→ [[Δ]], to which with S5 we apply the cut rule to get the sequent

[[t ≤ s]], ∀x[[a ≤ s ⊃ A(a)]](p\x), [[Γ]] −→ [[Δ]].

Case 4. The cases of the bounded existential rules are the duals of the universal cases.
Case 5. Σb

i -IND rule:

Γ, A(a) −→ A(a + 1), Δ
Γ, A(0) −→ A(t), Δ

58

4.5. The Translation of Bounded Arithmetic to QBFs

One possibility to simulate the induction rule is by applying cuts on the upper sequents
for a = 0, . . . , t − 1, however this would be of an exponential size. As an alternative we
shall use the substitution rule, which we presented above before Lemma 4.5.4.
Since by the induction hypothesis we have a polynomial-time constructible KPGi-proof
of the sequent

[[Γ]], [[A(a)]](p) −→ [[A(a + 1)]](p, q), [[Δ]],

we can derive by Lemma 4.5.5 the sequent

[[Γ]], [[2q(m) ≥ b]](q), [[A(a)]](p) −→ [[A(a + b)]](p, q), [[Δ]].

By the definition of the bounding polynomial q(·), we have |t| ≤ q(m), which entails that
t ≤ 2q(m) is true. Thus [[t ≤ 2q(m)]] is true by the construction of the translation, and a
simulation of the IND-rule in KPGi is as follows

−→ [[2q(m) ≥ t]](r)
[[Γ]], [[2q(m) ≥ b]](q), [[A(a)]](p) −→ [[A(a + b)]](p, q), [[Δ]]

[sub]
[[Γ]], [[2q(m) ≥ t]](r), [[A(0)]] −→ [[A(t)]](r), [[Δ]]

[cut]
[[Γ]], [[A(0)]] −→ [[A(t)]](r), [[Δ]]

such that, in the application of [sub], we are substituting p with 0, and q with r, where p
and q do not occur in [[Γ]] and [[Δ]].

We learned so far that we can translate formulas from bounded arithmetic to QBFs, we
can also transform a proof of a bounded formula to a KPG-proof, and subsequently a
G-proof, of a related QBF. Cook and Morioka in [CM05] (also Morioka in [Mor05]) were
able to utilize this strong connection between QBFs and bounded arithmetic to build on
exiting bounded arithmetic results to prove new complexity results for the Σq

1-Witnessing
problem.

In the following chapters we focus mainly on G0 and G∗
0 and the complexity of the

witnessing problem for these systems.

59

CHAPTER 5
First-order Results

for G0 and G∗
0

As mentioned earlier the modifications introduced by Cook and Morioka in [CM05]
give us complete proof systems Gi, G∗

i , which can reason about any QBF, and have
a correspondence with the theories of bounded arithmetic T i

2 and Si
2. By definition,

the systems Gi differ from each other by the complexity of the cut formula, and the
same holds for the systems G∗

i . This implies that these system are concerned about
the complexity of the proofs, rather than the existence of a proof unlike the theories of
bounded arithmetic.

Note that KPG0 and KPG∗
0 are quantifier-free propositional proof systems i.e., PK.

However G0 and G∗
0 are new systems for QBFs, in which the cut formula of the cut rule

is restricted to a quantifier-free formula. These systems are similar to first-order theories
T axiomatized by purely universal formulas, each of which has an LK-proof with all cuts
on quantifier-free formulas. This result has been proven by Buss in [Bus98].

For the above reasons it seems reasonable to see how applicable are the proof-theoretic
results regarding T to G0 and G∗

0.

5.1 Herbrand Theorem

Herbrand’s fundamental theorem describes a relation between predicate and propositional
logic, and it basically relates the validity of a first-order formula with the validity of a
finite set of propositional formulas. This was an important first step toward automated
deduction in first-order logic.

Intuitively the idea is that a prenex first-order formula ϕ with existential quantifiers is
valid if and only if a disjunction of a finite set of instances of the subformulas of ϕ is

61

5. First-order Results for G0 and G∗
0

valid.
To prove his theorem Herbrand first transforms ϕ, while preserving validity, to a formula
ϕs in prenex normal form with existential quantifiers only through Herbrandization (a
more general case of Skolemization which only preserves satisfiability), which then he
used to prove the statement above.

Definition 5.1.1 (π-prototype, Herbrand π-disjunction)
Let π be a G0-proof with end-sequent −→ ϕ, where ϕ is a QBF in prenex form. Then
any quantifier-free formula ϕ in π that occurs as the auxiliary formula of a quantifier
introduction step is called a π-prototype of ϕ.

We define the Herbrand π-disjunction to be the sequent −→ ϕ1, . . . , ϕm where ϕ1, . . . , ϕm

are all the π-prototypes of ϕ.

Example 5.1
Consider the following G∗

i -proof of the formula −→ ∀x∃y(x ∨ y) ∧ (¬x ∨ y).

−→[∨r2] −→ ¬p ∨
−→ [∨r2]−→ p ∨[∧r] −→ (p ∨) ∧ (¬p ∨)[∃r] −→ ∃y(p ∨ y) ∧ (¬p ∨ y)[∀r] −→ ∀x∃y(x ∨ y) ∧ (¬x ∨ y)

The formula (p ∨) ∧ (¬p ∨) is the only π-prototype in this proof. Therefore the
Herbrand π-disjunction is the sequent −→ (p ∨) ∧ (¬p ∨).

Definition 5.1.2
Let π be a G0-proof of ϕ, where ϕ is a QBF in prenex normal form, i.e., it is of the form

Q1x1 · · · Qkxk ψ(p, x1, . . . , xk)

such that p is a sequence of free variables, Qi ∈ {∃, ∀} for each i ∈ {1, . . . , k}, and ψ is
quantifier-free.

Then, for each π-prototype ϕj of ϕ, there exists a unique sequence ϕj
1, . . . , ϕj

k of proposi-
tional formulas such that

ϕj = ψ(p, ϕj
1, . . . , ϕj

k).

We call ϕj
i the ith component of ϕj .

The following is the G0 form of Herbrand’s theorem for first-order logic. More details
and a proof of the theorem for first-order logic can be found in [Bus98].

We note that the proof of this lemma depends on the fact that the formula to be proven
is in prenex normal form, and all cut formulas in G0-proofs are quantifier-free, i.e., this
particular proof does not work with a different proof system which allows more complex
cut formulas.

62

5.1. Herbrand Theorem

Lemma 5.1.1. Let π be a G0-proof of a sequent −→ ϕ such that ϕ is a QBF in prenex
form. Then the Herbrand π-disjunction is valid, and it has a PK-proof of size polynomial
in |π|.

Proof. This is a more detailed version of the proof of Lemma 3 in [CM05] and Lemma
5.25 in [Mor05]

Assume that π is the sequence S1, . . . , Sk of sequents such that Sk is the sequent −→ ϕ.

For every i ∈ {1, . . . , k}, if sequent Si is Γi −→ Δi, then we define the sequent Si to be
Γi −→ Δi such that

• If Δi has no quantified formulas then Δi = Δi,

• else Δi is obtained by removing all quantified formulas from Δi and adding all
π-prototypes ϕ1, . . . , ϕm.

Note that the following statements hold.

1. Sk is the Herbrand π-disjunction.

2. Because π is a G0-proof of a QBF in prenex normal form, and cut is only allowed
on quantifier-free formulas, then all formulas in Γi must be quantifier-free, for any
i ≥ 0.

3. If all formulas in the sequent Si are quantifier-free, then Si = Si

We prove that Si (and eventually Sk) has a PK-proof of size polynomial in |π|. The proof
is performed by strong induction on i.

Base case: i = 1.

The initial sequents in G0 can be one of these three sequents:

−→ , ⊥ −→ or ψ −→ ψ

where ψ can be any QBF.

If π uses the sequent ψ −→ ψ, then ψ must be quantifier-free, because of the reason
mentioned in point 2. above.

This means that all three possible initial sequents are quantifier-free, thus S1 = S1,
and no additional proof is needed to derive S1.

Induction hypothesis

We assume that for some i ≥ 1 and all j ≤ i, Sj has a PK-proof of size polynomial
in |π|.

63

5. First-order Results for G0 and G∗
0

Induction step
If Si+1 does not have a quantified formula then Si+1 = Si+1 and no additional
proof is needed.
If Si+1 has a quantified formula, then this formula can only be in Δi+1 (note the
statement 2. above). The only non-trivial case is when Si+1 is derived from Sj , for
some j ≤ i, which is quantifier-free, i.e., Sj = Sj . In this case either the weakening
or a quantifier introduction rule was applied on Sj (both on the right side).
If weakening was applied, then we start with Sj , which has by the induction

hypothesis a PK-proof of polynomial size, and then we introduce ϕ1, . . . , ϕm

by applying the weakening on the right side of Sj .
If a quantifier introduction rule was applied, and ϕk is the formula on which

we apply the quantifier rule, we can again apply the weakening to introduce
ϕ1, . . . , ϕk−1, ϕk+1, . . . , ϕm.

Note that in both cases we extended a proof of size polynomial in |π|, with at most
m steps of weakening which implies that the size of the proof is still polynomial in
|π|.

5.2 The Midsequent Theorem

We first recall the original midsequent theorem for first-order logic, introduced by Gerhard
Gentzen in [Gen35]. An English version of the paper is in the book “The Collected
Papers of Gerhard Gentzen” [Gen69].

Theorem 5.2.1 (The Midsequent Theorem for LK). Assume we have an LK-derivation
of the sequent S, where S consists of prenex formulas only. Then S has a treelike cut-
free LK-derivation with a “midsequent” S such that the part of the proof above S is
propositional (i.e., the derivation of S does not include quantifier rules), and the part of
the proof below S consists only of quantifier and structural rules.

Krajíček pointed out in [Kra95] that the theorem holds for KPG, but Cook and Morioka
in [CM05] and Morioka in [Mor05] proved even a polynomial-time version of it for G∗

0,
which is the following.

Theorem 5.2.2 (The polynomial-time Midsequent Theorem for G∗
0). Let π be a G∗

0-proof
of sequent S of the form −→ ϕ, such that ϕ is a QBF in prenex form. Then there exists
a G∗

0-proof π of S such that

(i) π starts with a quantifier-free derivation of the Herbrand π-disjunction Sπ, and

(ii) only contraction, exchange, ∀r, and ∃r inference steps occur between Sπ and the
end-sequent.

64

5.2. The Midsequent Theorem

There is polynomial-time algorithm that converts π to π .

Proof. Recall that the proof π is in free-variable normal form, as we assume in this thesis
that every treelike proof is in this form as mentioned after Definition 3.2.9.

Assume ϕ is of the form Q1x1 . . . Qkxkψ(p, x1, . . . , xk) such that Qi ∈ {∃, ∀} for each
i ∈ {1, . . . , k} and ψ is quantifier-free. Let ϕ1, . . . , ϕm be all the π-prototypes, and let
ϕj

1, . . . , ϕj
k be the components of ϕj .

Since ϕj = ψ(p, ϕj
1, . . . , ϕj

k), each ϕj
i will be in π the target of the ∃r rule or the

eigenvariable of the ∀r rule in the steps that introduce the bounded variable xi into ϕj .
It is possible for such a step to be associated with more than one component say
ϕj1

i , . . . ϕjc
i , however this happens only if the descendants of the prototypes ϕj1 , . . . , ϕjc

are contracted to form one formula at some point in π before the inference introducing
the quantifier is applied.

By Lemma 5.1.1 the Herbrand π-disjunction Sπ has a PK-proof of size polynomial in |π|,
which means that it is enough to prove that we can derive −→ ϕ from Sπ in polynomial
time.

A polynomial-time algorithm that generates π from π would derive −→ ϕ from Sπ by
trying to transform each ϕj into a copy of ϕ with the rules of contraction, exchange, ∀r
and ∃r only, and can be described as follows.

We shall use Q-inference to denote a quantifier introduction step or a contraction step of
two quantified formulas.
Starting from −→ Sπ we apply a Q-inference only after applying all the Q-inferences
that precedes it in π, and during which the exchange rule is applied when needed. We
know that this sequence of steps exists because π exists. And by contradiction we can
prove that the eigenvariable condition in the ∀r steps is not violated.

Assuming that this condition is violated at some point, say when applying the rule on
the variable bj

i = b (in component ϕj
i), we get the following.

• There is another formula in the sequent, in which b occurs as some variable bu
v (in

component ϕu
v), and

• the elimination step of bu
v does not precede that of bj

i in π.

This implies that if πb is the subproof of π which has the elimination step of bj
i as an

end-sequent, then the elimination step of bu
v occurs outside πb, but this contradicts the

fact that π is in free-variable normal form. As a consequence, the eigenvariable condition
can never be violated.

As pointed out in [CM05], this proof does not work if π is not treelike, because this
means that we can not argue with the free-variable normal form, as this is a form of
treelike proofs only (see Definition 3.2.9). Thus, in this case, there might be two ∀r steps

65

5. First-order Results for G0 and G∗
0

on two formulas ψ1 and ψ2 with the same eigenvariable b such that neither precedes the
other in π. In this case when we try to derive −→ ϕ from Sπ we will have at some point
both ψ1 and ψ2 in the same sequent which means it will not be possible to apply the ∀r
rule on any of them. However if all quantifier introduction rules in π are ∃r then this
will no longer be an issue, which is proven in the following theorem.

Theorem 5.2.3. Theorem 5.2.2 holds for G0 if the end-formula is prenex Σq
1.

Proof. The proof is taken from [CM05]

Since the end-formula ϕ is Σq
1, any quantifier introduction step would be ∃r. Due to

the fact that ∀r is not needed here, we do not need to worry about the eigenvariable
condition.

Then we can easily derive a sequent containing m copies of ϕ from the Herbrand π-
disjunction −→ ϕ1, . . . , ϕm, by a repeated application of the ∃r rule.

Morioka in fact shows in his dissertation [Mor05] that the short PK-proof of the Herbrand
π-disjunction as well as π from the midsequent theorem are both in TC0.

Krajíček in [Kra95] proves that treelike PK p-simulates PK, which means that G∗
0 p-

simulates G0 for propositional formulas. For a general p-simulation (without restrictions
on the formulas) the eigenvariables are a major problem.

While we do not have a proof for a general p-simulation, however Morioka in [Mor05]
provides a stronger result than that of Krajíček, stated in the following theorem.

Theorem 5.2.4. G∗
0 p-simulates G0 for proving prenex Σq

1-formulas.

Proof. The proof is taken from [CM05]

Let π be a G0-proof of a sequent S containing one prenex Σq
1-formula. By Theorem 5.2.3

there exists a proof π of S from the Herbrand π-disjunction Sπ.

The proof π is composed of two parts π1π2, such that π1 is a PK-proof rooted at Sπ,
and π2 which is basically repeated application of ∃r and contraction.

Since treelike PK p-simulates PK, then we can get a G∗
0-proof of S by replacing π1 in π

to a treelike version of it with only polynomial size increase.

66

CHAPTER 6
The Witnessing Problem

for G0 and G∗
0

We now have the tools we need to take a closer look at the complexity of the witnessing
problem for the calculi G. We focus in this chapter on the complexity results for the
systems G0 and G∗

0, but we will mention the complexity results for Gi to complete the
picture.

We start by defining the witnessing problem.

Definition 6.0.1
Let i ≥ 0 and let H be either Gi or G∗

i .

For j ≥ 1, define the Σq
j -Witnessing problem for H, written Witness[H, Σq

j], as follows:

The input is (π, v), where π is an H-proof of a Σq
j -QBF ϕ(p) of the form

ϕ(p) = ∃x1 · · · ∃xk ψ(p, x1, . . . , xk)

with ψ prenex Πq
j−1, and v is a truth assignment to the free variables p.

A solution to the problem is a witness for ϕ(v), i.e., a truth assignment u to the variables
x such that ψ(v, u) is true.

Theorem 6.0.1. Witness[G∗
1, Σq

1] and Witness[G1, Σq
1] are complete for FP and PLS,

respectively. More generally, for i ≥ 1, Witness[G∗
i , Σq

i] and Witness[Gi, Σq
i] are complete

for FPΣp
i−1 and PLSΣp

i−1, respectively.

Proof. For a proof of this theorem we refer the reader to Theorem 7 in [CM05] or Theorem
6.2 in [Mor05]

67

6. The Witnessing Problem for G0 and G∗
0

From this theorem it follows that, if G∗
1 p-simulates G1, then FP = PLS.

The systems G0 and G∗
0 were first introduced by Morioka in his dissertation in 2005

[Mor05], in which he studies the complexity of the witnessing problem for those systems.
We present those results in the following two sections.

6.1 The Σq
1-Witnessing problem for G0

Recall that G0 is the sequent-like proof system for QBFs, in which the cut rule is restricted
to quantifier-free (propositional) formulas only.

6.1.1 Witness formulas

Definition 6.1.1 (ith π-witness formula)
Let π be a G0-proof of a Σq

1-QBF ϕ(p) = ∃x1 · · · ∃xkψ(p, x1, . . . , xk) such that ψ is
quantifier-free, and p is a sequence of all free variables on ϕ. Let ϕ1, . . . , ϕm be all the
π-prototypes.

For each j ∈ {1, . . . , m}, we define the formula j = (¬ϕ1 ∧ ¬ϕ2 ∧ · · · ∧ ¬ϕj−1) ∧ ϕj ,
meaning that j is true when ϕj is the first satisfied formula from ϕ1, . . . , ϕm, which
entails that for each satisfying assignment only one j is satisfied.

For each i ∈ {1, . . . , k}, let

ηi =
m

j=1
(j ∧ ϕj

i)

such that ϕj
i is the ith component of the π-prototype ϕj .

We call ηi the ith π-witness formula.

Lemma 6.1.1. Let π be a G0-proof of ϕ(p) = ∃x1 · · · ∃xkψ(p, x1, . . . , xk) such that ψ is
quantifier-free, and ϕ1, . . . , ϕm are all the π-prototypes.

Then for any i ∈ {1, . . . , k}, the sequent l ∧ ϕl
i, ϕj −→ ϕj

i , ϕ1, . . . , ϕj−1 has a short
PK-proof for each l, j ∈ {1, . . . , m}.

Proof. Recall that l = (¬ϕ1 ∧ ¬ϕ2 ∧ . . . ∧ ¬ϕl−1) ∧ ϕl, and ϕj
i is the ith component of

the π-prototype ϕj

Depending on the value of l, each of these sequents can be proven by one of the following
three short PK-proof.

• Case l = j.
We can get the proof starting from the sequent ϕj

i −→ ϕj
i , by applying the rules

exchange, weakening (left and right), and ∧l.

68

6.1. The Σq
1-Witnessing problem for G0

• Case l < j.
The proof in this case starts with ϕl −→ ϕl, we then get the required sequent by
applying the weakening rule left and right, and ∧l repeated (l − 1) times to get l

and then one more to get l ∧ ϕl
i.

• Case l > j.
This means that the left side of the sequent will have ϕj and ¬ϕj , thus starting
from the axiom ϕj −→ ϕj we get, by applying ¬l, the sequent ¬ϕj , ϕj −→, then
just like the previous case, we apply weakening, and ∧l rules multiple times until
we get the final sequent.

The following theorem shows that the π-witness formulas are in fact a solution for
Witness[G0, Σq

1], i.e, the Σq
1-Witnessing problem for G0, and this fact even has a short

PK-proof.

Theorem 6.1.2 (Theorem 8. [CM05]). Let π be a G0-proof of ϕ, a Σq
1-QBF in prenex

normal form, thus ϕ is of the form ∃x1 · · · ∃xkψ(p, x1, . . . , xk), where ψ is quantifier-free
and p is a sequence of all free variables in ϕ.
Let η1, . . . , ηk be the π-witness formulas. Then ψ(p, η1, . . . , ηk) is a tautology and it has
a PK-proof of size polynomial in |π|.
Proof. Throughout this proof we use a double line in tree proofs to indicate the existence
of omitted steps. Those steps could be repeated application of the same rule, applications
of the contraction, weakening, or exchange rule, or a combination of both.

For any subformula ψ of ψ, we prove by structural induction on ψ that, for any fixed
j ∈ {1, . . . , m}, the following two sequents have a short PK-proof

ψ [x/ϕj], ϕj −→ ψ [x/η], ϕ1, . . . , ϕj−1 (denoted by Sψ
1(j))

ψ [x/η], ϕj −→ ψ [x/ϕj], ϕ1, . . . , ϕj−1 (denoted by Sψ
2(j))

such that ϕj is the sequence of all components of the π-prototype ϕj and η is the sequence
of all π-witness formulas.

First we observe that if ψ does not contain any occurrence of the variable x, then
ψ = ψ [x/ϕj] = ψ [x/η], which means that both sequents are the same. We can get both
sequents by applying the weakening and exchange rules on ψ −→ ψ .

We utilize in this proof the fact that the proof systems KPG and G allow the axiom
ψ −→ ψ to be any QBF and do not restrict it to atomic formulas only. Though this is
not crucial because any ϕ −→ ϕ has a short proof w.r.t. the complexity of ϕ.

Base Case Let ψ = xi for some i ∈ {1, . . . , k}, then ψ [x/ϕj] = ϕj
i and ψ [x/η] = ηi =

m

l=1
(l ∧ ϕl

i).

In this case a proof of Sψ
1(j) would be the following.

69

6. The Witnessing Problem for G0 and G∗
0

ϕ1 −→ ϕ1[¬r] −→ ϕ1, ¬ϕ1
ϕ2 −→ ϕ2 [¬r]−→ ϕ2, ¬ϕ2

[∧r] −→ ϕ1, ϕ2, ¬ϕ1 ∧ ¬ϕ2
ϕ3 −→ ϕ3 [¬r]−→ ϕ3, ¬ϕ3

[∧r] −→ ϕ1, ϕ2, ϕ3, ¬ϕ1 ∧ ¬ϕ2 ∧ ¬ϕ3

......

ϕj−1 −→ ϕj−1
[¬r]−→ ϕj−1, ¬ϕj−1

[∧r] −→ ϕ1, ϕ2, . . . , ϕj−1, ¬ϕ1 ∧ ¬ϕ2 ∧ . . . ∧ ¬ϕj−1
[Wl]

ϕj −→ ϕ1, . . . , ϕj−1, ¬ϕ1 ∧ ¬ϕ2 ∧ . . . ∧ ¬ϕj−1

ϕj −→ ϕj
[Wr]

ϕj −→ ϕ1, . . . , ϕj−1, ϕj
[∧r] ϕj −→ ϕ1, . . . , ϕj−1, j

ϕj −→ ϕ1, . . . , ϕj−1, j ϕj
i −→ ϕj

i
[∧r]

ϕj
i , ϕj −→ ϕ1, . . . , ϕj−1, (j ∧ ϕj

i)
[∨r]

ϕj
i , ϕj −→

m

l=1
(l ∧ ϕl

i), ϕ1, . . . , ϕj−1

We can get Sψ
2(j), with (m − 1) application of ∨r (interleaved with the application

of weakening or exchange rules when needed) on the sequents l ∧ ϕl
i, ϕj −→

ϕj
i , ϕ1, . . . , ϕj−1 for each l ∈ {1, . . . , m}. Each of these sequents by Lemma 6.1.1

have a short PK-proof.

Induction hypothesis

We assume that for any ψ a subformual of ψ the sequents Sψ
1(j) and Sψ

2(j) have a
short PK-proof.

Induction Step
We distinguish three cases ψ = ψ1 ∨ ψ2, ψ = ψ1 ∧ ψ2, or ψ = ¬ψ1. The required
sequents can be proven from the proofs assumed to exist in the induction hypothesis.

The following are proofs of the sequent Sψ
1(j). The proofs for Sψ

2(j) are analogous.

ψ = ψ1 ∨ ψ2

A proof of Sψ1
1(j) exists

by the induction hypothesis
...

ψ1[x/ϕj], ϕj −→ ϕ1, . . . , ϕj−1, ψ1[x/η]
[∨r]

ψ1[x/ϕj], ϕj −→ ϕ1, . . . , ϕj−1, (ψ1 ∨ ψ2)[x/η]

A proof of Sψ2
1(j) exists

by the induction hypothesis
...

ψ2[x/ϕj], ϕj −→ ϕ1, . . . , ϕj−1, ψ2[x/η]
[∨r]

ψ2[x/ϕj], ϕj −→ ϕ1, . . . , ϕj−1, (ψ1 ∨ ψ2)[x/η]
[∨l]

(ψ1 ∨ ψ2)[x/ϕj], ϕj −→ ϕ1, . . . , ϕj−1, (ψ1 ∨ ψ2)[x/η]

70

6.1. The Σq
1-Witnessing problem for G0

ψ = ψ1 ∧ ψ2

A proof of Sψ1
1(j) exists

by the induction hypothesis
...

ψ1[x/ϕj], ϕj −→ ϕ1, . . . , ϕj−1, ψ1[x/η]
[∧l]

(ψ1 ∧ ψ2)[x/ϕj], ϕj −→ ϕ1, . . . , ϕj−1, ψ1[x/η]

A proof of Sψ2
1(j) exists

by the induction hypothesis
...

ψ2[x/ϕj], ϕj −→ ϕ1, . . . , ϕj−1, ψ2[x/η]
[∧l]

(ψ1 ∧ ψ2)[x/ϕj], ϕj −→ ϕ1, . . . , ϕj−1, ψ2[x/η]
[∧r]

(ψ1 ∧ ψ2)[x/ϕj], ϕj −→ ϕ1, . . . , ϕj−1, (ψ1 ∧ ψ2)[x/η]

ψ = ¬ψ1

Note that in this case we prove Sψ
1(j) starting from a proof of Sψ1

2(j)

A proof of Sψ1
2(j) exists

by the induction hypothesis
...

ψ1[x/η], ϕj −→ ϕ1, . . . , ϕj−1, ψ1[x/ϕj]
[¬r]

ϕj −→ ϕ1, . . . , ϕj−1, ψ1[x/ϕj], (¬ψ1)[x/η]
[¬l]

(¬ψ1)[x/ϕj], ϕj −→ ϕ1, . . . , ϕj−1, (¬ψ1)[x/η]

By Definition 5.1.2 ψ[x/ϕj] = ϕj , thus the above proof implies that if ψ = ψ and j = m
we will have a short PK-proof of the sequent

Sψ
1(m) = ϕm, ϕm −→ ψ[x/η], ϕ1, . . . , ϕm−1.

On the other hand, by Lemma 5.1.1 the sequent Sπ: −→ ϕ1, . . . , ϕm has a PK-proof of
size polynomial in |π|. This entails that we can construct the following proof

...proof of Sπ ...−→ ϕ1, . . . , ϕm
[Wr]

−→ ψ[x/η], ϕ1, . . . , ϕm

...proof of Sψ
1(m) ...

ϕm −→ ψ[x/η], ϕ1, . . . , ϕm−1
[Cut on ϕm] −→ ψ[x/η], ϕ1, . . . , ϕm−1

by repeatedly cutting the π-prototypes, by applying the cut rule m times each time on
the result of the previous cut and the appropriate Sψ

1(j), we will eventually get a proof of
−→ ψ[x/η].

71

6. The Witnessing Problem for G0 and G∗
0

6.1.2 An NC1-algorithm for Witness[G0, Σq
1]

Buss has shown in [Bus87] that the Boolean formula value problem (i.e., evaluating a
propositional formula under a given truth assignment) has an ALogtime algorithm, and
it was proven by Ruzzo in [Ruz79] that ALogtime (the class of problems solvable in
logarithmic time with an alternating Turing machine) is equivalent to circuits complexity
class ALogtime-uniform NC1 and thus equivalent to DLogtime-uniform NC1 by
[MBIS90].

This means that evaluating the truth of a Boolean formula given an assignment is in
NC1, and to define an NC1 algorithm for solving Witness[G0, Σq

1], it is enough to find
NC1-functions that can recognize occurrences of the components ϕj

i s of the π-prototypes
in a G0-proof π.

This algorithm takes as input an encoded instance of Witness[G0, Σq
1], i.e, an encoding

of (π, v), and outputs an encoded solution, i.e, an encoding of the π-witness formulas ηi.
So to encode G-proofs and QBFs we define the alphabet

ΣQBF = { , ⊥, p, x, 0, 1, (,), ∧, ∨, ¬, ∃, ∀, ⊃, comma, #},

such that,

• comma denotes the comma,

• 0 and 1 are used to denote indices, that is, we shall use p i and x i as an
encoding of pi and xi, in which denote string concatenation and i is the binary
representation of i, i ∈ {0, 1}+,

• the sharp symbol # will be used in the encoding of proofs only (not in formulas),
where a proof will be represented as S1#S2# · · · #Sm, that is, a sequent Si is either
an initial sequent or derived from at most two preceding sequents, and

• we shall use Z to denote a finite string over ΣQBF, and if Z = α1α2 · · · αn then for
1 ≤ i ≤ j : Z[i, j] is the substring αi · · · αj .

In what follows, we argue that we can write FOM-sentences (thus TC0 relations) to
represent the different predicates needed to construct the aforementioned NC1 algorithm.
In these sentences we use the FOM predicate Bit to describe the binary representation
of a string Z over ΣQBF.

In [Bus91] Buss proves that parsing a propositional formula (and even a Frege proof) is
in TC0. These results will be extended in what follows to QBFs and G-proofs. Morioka
mentions in [Mor05] that the fact this is possible was also known to Buss, and it is
possible because counting is possible in TC0, as he states in his dissertation:

“We know from our email correspondence with Samuel Buss that this fact
has been known to Buss and possibly a few others, but, as far as we know,

72

6.1. The Σq
1-Witnessing problem for G0

it has not been explicitly stated in print. NC1 is widely believed to be
the smallest complexity class in which counting is possible. Since parsing
operations require counting in general, apparently TC0 is the smallest class
containing those parsing operations.”

The fact that counting is possible in TC0 enabled Morioka in [Mor05] to prove a TC0

version of the midsequent theorem, in which he describes a procedure to recognize treelike
proofs (G∗-proofs) if they were encoded with a special representation that relies on
brackets. That said, counting is also essential for recognizing formulas in the NC1-
algorithm we aim to describe, because it mainly relies on counting parentheses as well.

We start by defining the notion of an identifier, a tool that will be later used to describe
the predicates that represent the quantifier rules.

Definition 6.1.2
Let the symbol denote string concatenation, i.e, a b = ab. Let ϕ be some formula.
The identifier of ψ, a subformula of ϕ, is a finite string over {1, 2}, denoted by IDϕ(ψ)
and is defined as follows.

• IDϕ(ϕ) is the empty string .

• If ψ = ψ1 ◦ ψ2, with ◦ ∈ {∧, ∨}, then IDϕ(ψ1) = IDϕ(ψ) 1 and IDϕ(ψ2) =
IDϕ(ψ) 2.

• If ψ = ¬ψ1 or ψ = Qx ψ1, with Q ∈ {∀, ∃}, then IDϕ(ψ1) = IDϕ(ψ) 1.

Example. If ϕ = (∀x (ψ1 ∧ ψ2)) ∨ (¬ψ3) then:

IDϕ(∀x (ψ1 ∧ ψ2)) = 1 IDϕ(ψ1 ∧ ψ2) = 11
IDϕ(ψ1) = 111 IDϕ(ψ2) = 112
IDϕ(¬ψ3) = 2 IDϕ(ψ3) = 21

Recall from Section 2.2 the following which will be used in the proofs below.

• Theorem 2.2.4 states that
predicate R is in TC0 if and only if R can be represented by an FOM formula.

• TC0 ⊆ NC1.

Lemma 6.1.3. The following predicates are in TC0:

(1) Formula(Z, i, j), meaning Z[i, j] is a formula,

(2) QBF(Z, i, j), meaning Z[i, j] is a QBF, and

(3) Sequent(Z, i, j), meaning Z[i, j] is a sequent.

Proof sketch. (1) The string Z[i, j] is a formula, if

73

6. The Witnessing Problem for G0 and G∗
0

1. it has an equal number of “(” and “)”,
2. for each u ∈ {i, . . . , j − 1} the number of opening parentheses “(” in Z[i, u]

greater than the number of closing ones “)”, and
3. every string of length 2, which does not occur in a well bracketed formula, is

not allowed to be a substring of Z[i, j]. Examples of length 2 strings, which
are not allowed to occur in a formula: px, ¬∃.

Each of these three statements is FOM-expressible, because, as mentioned before,
counting is possible in TC0.

(2) Z[i, j] is a QBF, if

1. it is a formula, which is FOM expressible as shown in (1), and
2. every occurrence of an x-variable in Z[i, j] should be in the scope of some

quantifier (x should be in a subformula of Z[i, j] whose outer connective is
either ∀ or ∃), this fact can be also checked by counting parentheses.

(3) This case follows from (1) and (2) since a sequent is a sequence of formulas separated
by commas.

Note that parentheses play a very important role in parsing formulas, which is why they
need to follow a strict syntax, in which parentheses are not optional. They will always be
used to mark the scope of each connective or quantifier, for example (A ∧ B) ∨ C should
be ((A ∧ B) ∨ C) and ∀x∃yA(x, y) should be (∀x(∃yA(x, y))).

Lemma 6.1.4. There is a TC0 function that outputs IDϕ(ψ) given Z, i, j, a, b such that
i ≤ a ≤ b ≤ j, and Z[i, j], Z[a, b] encode the formulas ϕ, ψ respectively.

Proof. Let f : x → IDϕ(ψ), with x = (Z, i, j, a, b), be the formula described in the lemma.
Let Rf (x, k, b) be a predicate representing the statement “the kth bit of IDϕ(ψ) is b”. To
prove that IDϕ(ψ) is TC0 recognizable, it is enough to show that the predicate Rf (x, k, b)
is in TC0.

This is indeed the case, since we can describe how this function works as follows.

By the definition of IDϕ(ψ), b is either the empty string, 1, or 2.

b is not the empty string (1 or 2) if and only if

(i) there exists l, m such that Z[l, m] is a subformula of ϕ,
(ii) ψ is a subformula of Z[l, m], and
(iii) the number of “(” in Z[i, l − 1] minus the number of “)” in Z[i, l − 1] is equal to i.

This intuitively means a bracket is still not closed before the subformula, which
entails that ψ should be in the scope of a logical connective.

74

6.1. The Σq
1-Witnessing problem for G0

Thus if these conditions are satisfied and αl−1 ∈ {∧, ∨} then b is 2. If the conditions are
satisfied and αl−1 is neither ∧ nor ∨ then b is 1, otherwise b is the empty string.

Lemma 6.1.5. Let

• ExistsLeft(Si, Sj),

• ExsitsRight(Si, Sj),

• ForAllLeft(Si, Sj), and

• ForAllRight(Si, Sj)

be predicates, such that each is true if and only if sequent Si can be derived from sequent
Sj by the corresponding quantifier rule.

These predicates are FOM-expressible.

Proof. The goal is to describe, for each of these predicates, an FOM formula which
expresses it.

In what follow we describe the formula ϕER = ϕ1 ∧ ϕ2 which expresses the predicate
ExistsRight.

Let ϕ1 be the formula expressing that the sequents Si and Sj are identical except for the
principal formula and the auxiliary formula, denoted by P and A respectively, and that
the principal formula P is of the form ∃x C for some variable x.

Let ϕ2 express that there exists a propositional subformula B of A and a variable x such
that A is the result of substituting every occurrence of x in C by B, (i.e, P = ∃x C and
A = C[x/B]), which can be described as follows: For each subformula C of C, there
exist a subformula A of A where IDC(C) = IDA(A) such that

• if C is the atomic formula x then A = B,

• if C is atomic but not x then C = A , and

• if C is not atomic then C and A have the same principal (top-level) connective.

All of the mentioned conditions are indeed FOM expressible.

A formula ϕEL expressing the predicate ExistsLeft is constructed similarly but with an
additional condition which ensure that B is the atomic formula xa such that xa is a free
variable (an eigenvariable) that does not occur in Si (the lower sequent).

The formulas ϕFL and ϕFR expressing the predicates ForAllLeft and ForAllRight can be
described analogously.

75

6. The Witnessing Problem for G0 and G∗
0

Definition 6.1.3
Define Inf1(Si, Sj) to be true if and only if sequent Si is derivable from sequent Sj by a
unary inference rule, where Si, Sj are given as strings over QBFs. Similarly, Inf2(Si, Sj , Sk)
is true if and only if Si is derivable from two sequents Sj and Sk by a binary inference
rule.

Lemma 6.1.6. Both Inf1 and Inf2 are FOM-expressible.

Proof.

• We first consider Inf1(Si, Sj).
The previous lemma states that there exists an FOM formula that expresses that
Si is derived from Sj by applying a quantifier rule.
The structural rules as well as the unary propositional rules are easily expressible
by an FOM formula, for example, for the rule weakening right we just need to
check that Si and Sj are identical except for the rightmost formula in Si.

• Next we consider Inf2(Si, Sj , Sk).
We have four binary inference rules:

◦ For the rule ∧r, the FOM formula should check:
(i) Si, Sj and Sk are identical except for their rightmost formula. Meaning if

Zi[1, li] is the string representing Si, Zj [1, lj] representing Sj , and Zk[1, lk]
representing Sk, then there is some α ≤ li, lj , lk such that Zi[1, α] =
Zj [1, α] = Zk[1, α] and Zi[α, li], Zj [α, lj], and Zk[α, lk] are formulas.

(ii) If A is the rightmost formula of Sj and B is the rightmost formula of Sk

then A ∧ B is the rightmost formula of Si

◦ For the rule ∨l, analogously the formula should check:
(i) Si, Sj and Sk are identical except for their leftmost formula.
(ii) If A is the leftmost formula of Sj and B is the leftmost formula of Sk then

A ∨ B is the leftmost formula of Si

◦ For the rule ⊃l, the formula should check:
(i) If the rightmost formula in Sj is ϕ and the leftmost formula in Sk is ψ,

then the rightmost formula in Si is ϕ ⊃ ψ, and
(ii) Si without the leftmost formula is identical to Sj without the rightmost

formula, and Sk without the leftmost formula.
◦ For the cut rule, the FOM formula should check:

(i) Si, Sj without the rightmost formula and Sk without the leftmost formula
are identical.

(ii) The rightmost formula of Sj and the leftmost formula of Sk are identical

76

6.1. The Σq
1-Witnessing problem for G0

Lemma 6.1.7. The following predicates are FOM-expressible:

• ProofG0(Z, i, j), which is true if and only if Z[i, j] is a G0-proof,

• Prototype(Z, i, j, u, v), which holds if and only if Z[i, j] is a G0-proof of a QBF in
prenex form and Z[u, v] is a π-prototype, and

• Component(Z, i, j, k, l), which is true if and only if Z[i, j] is the kth component of
the lth π-prototype Al.

Proof.

• ProofG0(Z, i, j)
From Lemma 6.1.3, we know that recognizing sequents is FOM-expressible, and by
Lemmas 6.1.5 and 6.1.6 checking if a sequent is derived by applying an inference or
a quantifier rule on previous sequents is also FOM-expressible.
This implies that we can use the predicates defined in these lemmas to define the
predicate ProofG0(Z, i, j) thus it is FOM-expressible.

• Prototype(Z, i, j, u, v)
Since ProofG0 is FOM-expressible as well as the quantifier introduction rules which
means we can express with an FOM formula that Z[i, j] is a G0-proof and that
Z[u, v] is the auxiliary formula of a quantifier introduction step.

• Component(Z, i, j, k, l)
This also can be expressed by an FOM formula, since we can identify prototypes
with the predicate Prototype.
Similarly to ϕ2 in the proof of ExistsRight in Lemma 6.1.5, we can express that there
exists a subformula B of the prototype A and a variable x such that A is the result
of substituting every occurrence of x in C by B, (C being the propositional part of
the end-sequent of the proof, thus B would be a component of the prototype).

Theorem 6.1.8. The Σq
1-Witnessing problem for G0 is solvable by an NC1-function

Proof. As proved by Buss a problem is solvable by an NC1-function if and only if there
exists an Alogtime Turing machine that solves it. This means it is enough to describe
an Alogtime Turing machine that can recognize the π-witness formulas, given a string
Z which encodes a G0-proof and an assignment to the free variables of a Σq

1-formula.

In the previous lemmas we proved that whether a string over ΣQBF is a formula, π-
prototype, a component of a prototype, or a G0-proof is TC0-recognizable and thus

77

6. The Witnessing Problem for G0 and G∗
0

Alogtime-recognizable. If we fix an ordering on the π-prototypes to be the order in
which they appear in Z. We can now define the Alogtime Turing machine M as follows.

M takes as input the tuple (Z, i, c), such that |Z| = n, and accepts it if and only if there
exists r ∈ {1, . . . , n} such that

• Z[1, r] encodes π, a G0-proof of a QBF,
• Z[r + 1, n] encodes a truth assignment v, and
• ηi (the ith π-witness formula) evaluates to c ∈ { , ⊥} under v.

The first two involve the TC0 predicates mentioned earlier, and since the evaluation
of a Boolean formula under a given assignment is in Alogtime, M can guess a j and
then verify that ϕj

i , ϕj , and ¬ϕl for each l < j are true under v (such that ϕj and ϕl are
prototypes, and ϕj

i is the ith component of the prototype ϕj).

In each computation path, M needs to guess indices of Z, each of which has log n bits,
which entails that M runs in alternating time O(log n).

6.2 The Σq
1-Witnessing problem for G∗

0

Recall that G∗
0 is the system for treelike proofs for QBFs, in which the cut rule is restricted

to quantifier-free (propositional) formulas only.

Definition 6.2.1
Let F and G be two functions. We say that F is many-one AC0-reducible to G if there
exist two AC0-function g, h such that F (x) = g(G(h(x))).

Definition 6.2.2
A function F is said to be hard for FNC1 under many-one AC0-reductions if and only
if every NC1-function is many-one AC0-reducible to it. F is complete for FNC1 if F
itself is in FNC1.

Theorem 6.2.1. Witness[G∗
0, Σq

1] is hard for FNC1 under many-one AC0-reductions.

Proof.

Let f be a DLogtime-uniform NC1-function. The goal is to find an AC0-reduction to
Witness[G∗

0, Σq
1].

We assume without loss of generality that there exists a polynomial p(·) such that

for any n f : {0, 1}n −→ {0, 1}p(n).

78

6.2. The Σq
1-Witnessing problem for G∗

0

Since every NC1 predicate is computed by a DLogtime-uniform family of polynomial-
size propositional formulas, and since the predicate Rf (x, i, c) (which denotes that the ith
bit of f(x) is c) is in NC1, there exists a DLogtime-uniform family of polynomial-size
propositional formulas {An}n, such that for each n = |x|, An(x, i) evaluates to true if and
only if the ith bit of f(x) is 1, where x and i are represented in An by the propositional
variables q and r respectively.

Let m = p(n), and for each i ∈ {1, . . . , m} let i represent the truth assignments of the
variables in r. We define the sequent Sn as follows :

−→ ∃y1 · · · ym[(y1 ↔ An(q, 1)) ∧ . . . ∧ (ym ↔ An(q, m))]

where yi ↔ An(q, i) is used as an abbreviation of (yi ∧ An(q, i)) ∨ (¬yi ∧ ¬An(q, i)).

Assume πn is the G∗
0-proof of Sn, and v is the truth assignments to the variables in q.

Then, given the solution for Witness[G∗
0, Σq

1] over (πn, v), i.e., an assignment u to the y
variables, we can get an AC0-function that computes f (since by the definition of Sn, yi

is true if and only if An(q, i)).

It remains to show that an AC0-function can output for each x a G∗
0-proof π|x| for S|x|

of size polynomial in |x|. We outline in what follows such a proof.

For each i ∈ {1, . . . , m}, we can construct a G∗
0-proof for the sequent

−→ A|x|(q, i) ↔ A|x|(q, i),

by repeatedly applying ∧r on these sequents, we get

−→ (A|x|(q, 1) ↔ A|x|(q, 1)) ∧ . . . ∧ (A|x|(q, m) ↔ A|x|(q, m)).

After m application of ∃r we get the proof π|x| of

−→ ∃y1 · · · ym[(y1 ↔ A|x|(q, 1)) ∧ . . . ∧ (ym ↔ A|x|(q, m))].

An AC0-function can output πn because each line of πn has a highly uniform structure
and it is easy to determine what the jth sequent of πn should look like for any j.

We conclude then the next theorem from theorem 6.1.8 and theorem 6.2.1.

Theorem 6.2.2. Witness[G0, Σq
1] and Witness[G∗

0, Σq
1] are both complete for FNC1

under many-one AC0 reduction.

79

CHAPTER 7
Summary

Proving whether a given QBF evaluates to true is a PSPACE-complete problem [SM73].
Many problems from application domains like model checking or formal verification are
known to be PSPACE-complete, hence QBFs provide us with a powerful tool to encode
them. Proving lower bounds with the help of a solid proof system for QBFs can help
us extract strategies to improve QBF solvers, which is why the work of researchers like
Morioka, Cook, Krajíček, Pudlák, and others is extremely important.
The literature in this research area is often very hard to read, because proofs are often
sketched and important details are omitted in intricate proof constructions. A witness
for this fact is [KP90] or [Kra95]. We aim with this thesis to make the work of these
scholars more readable and accessible.

To get the full picture, complexity classes that are relevant to the results provided
by Cook and Morioka are first presented. Classes from the polynomial hierarchy are
interesting here because QBFs in prenex normal form define a hierarchy of formulas Σq∞
that corresponds to the polynomial hierarchy (PH) [Wra76]. Hence any problem from
the PH can be represented by a prenex QBF with a specific quantifier prefix.

Circuits complexity classes on the other hand, are the main ingredient used in proving
the complexity of the Σq

1-Witnessing problem for G0 and G∗
0, and that is based on a

first-order characterization of the classes AC0 and TC0.

The last section in the complexity chapter was dedicated to the complexity classes of
local search problems. We presented in this thesis the classes FP, FNP, and PLS, and
their relation to the polynomial hierarchy to better understand the results proved in
[CM05] and [Mor05] for the general witnessing problem.

Krajíček and Pudlák introduced in [KP90] the sequent calculi KPG for QBFs, and
defined a hierarchy of fragments KPGi, KPG∗

i , such that a KPGi-proof is restricted to
Σq

i ∪ Πq
i formulas, and KPG∗

i is KPGi but restricted to treelike proofs. Those systems are
closely related to the theories Si

2 and T i
2 of bounded arithmetic [Bus86]. By modifying

81

7. Summary

the definition of those systems, Cook and Morioka in [Mor05, CM05] introduced new
systems which have a better and more natural correspondence to bounded arithmetic.
They introduced two restrictions. In their system Gi any QBF can be handled, thus, in
contrast to the corresponding system of Krajíček and Pudlák, the new system is complete.
Furthermore, Cook and Morioka restricted the application of the cut rule to Σq

i ∪ Πq
i

formulas, and restricted the target formula in the quantifier rules to be quantifier-free.
With the new definition they introduced two new complete proof systems for proving
QBFs, G0 and G∗

0, in which the cut rule is restricted to quantifier-free (i.e., propositional)
formulas. Cook and Morioka also proved that G and KPG are p-equivalent. In this
thesis we presented a more detailed version of the p-equivalence proof in Lemma 3.2.2
(Lemma 5.10. [Mor05], Lemma 1. [CM05])), and Lemma 3.2.1 (Lemma 5.8. in [Mor05],
Lemma 2. in [CM05]).

One of the very important and trickiest result presented in this thesis is the strong
connection between QBFs and fragments of bounded arithmetic, however the hardest
part is the additional detailed description of the relation between the system G (and its
restrictions) and restricted version of the theories S2 and T2 in bounded arithmetic.

Theorem 4.5.6 (Theorem 9.2.5 in [Kra95]) describes how a bounded arithmetic proof
of a formula A can be translated to a QBF proof of its translation ||A||. Based on the
proof outlined by Krajícek a more detailed proof is presented in this work. However
some sequents used in the proof are not proven in detail, but rather taken from [Kra95]
without proof. As an effort to complete the proof, Corollary 4.5.1.1 and Lemma 4.5.2
were introduced. To make the proof more readable two parts of the proof are introduced
as lemmas before the theorem, namely Lemma 4.5.4 and Lemma 4.5.5.

Because of the connection between QBFs and bounded arithmetic, Cook and Morioka
were able to use results proven in bounded arithmetic to prove that the Σq

1-Witnessing
problem for G∗

1 is FP-complete and the Σq
1-Witnessing problem for G1 is PLS-complete

(Theorem 7 in [CM05], Theorem 6.2 in [Mor05]). Though these proofs are not presented in
this thesis, the theorem itself, Theorem 6.0.1, is included because one of its implications is
that G∗

1 does not necessarily p-simulate G1. This entails that the fact that G∗
0 p-simulate

G0 for proving Σq
1-formulas is not a trivial result.

First-order theories T axiomatized by purely universal formulas, have an LK-proof with
all cuts on quantifier-free formulas as proved by Buss in [Bus98], which seem similar to
the two complete proof systems G0 and G∗

0, first introduced by Cook and Morioka in
[CM05] and by Morioka in [Mor05]. This fact motivated the study of first-order results
for QBFs, results which were proved by Buss for the theories T in [Bus98]. This lead to
a polynomial-time version of the midsequent theorem for G∗

0, i.e., Theorem 5.2.2, and a
version of Herbrand Theorem for G0, i.e., Theorem 5.1.1. These results were the base
that was used to describe an NC1 algorithm for Σq

1-Witnessing problem for G0 and G∗
0.

Though Cook and Morioka provided complexity results for Σq
i -Witnessing for Gi and for

G∗
i , Σq

1-Witnessing for G1 and for G∗
1, and Σq

1-Witnessing for G0 and G∗
0, the complexity

of Σq
i -Witnessing problem for G0 and G∗

0 for i > 1 is still open.

82

Bibliography

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern
Approach. Cambridge University Press, New York, NY, USA, 1st edition,
2009.

[BCE+98] Paul Beame, Stephen Cook, Jeff Edmonds, Russell Impagliazzo, and Toniann
Pitassi. The relative complexity of NP search problems. Journal of Computer
and System Sciences, 57(1):3 – 19, 1998.

[Bus86] Samuel R. Buss. Bounded arithmetic. Bibliopolis, 1986.

[Bus87] Samuel R. Buss. The Boolean formula value problem is in ALOGTIME. In
STOC, 1987.

[Bus88] Samuel R. Buss. Weak formal systems and connections to computa-
tional complexity. Available at https://www.math.ucsd.edu/~sbuss/
ResearchWeb/weakformaltopics/, January-May 1988. Student-written
lecture notes at U.C.Berkley.

[Bus91] Samuel R. Buss. Propositional consistency proofs. Annals of Pure and Applied
Logic, 52(1):3 – 29, 1991.

[Bus98] Samuel R. Buss. Chapter 1: An introduction to proof theory. In Samuel R.
Buss, editor, Handbook of Proof Theory. Elsevier, 1998.

[CM05] Stephen A. Cook and Tsuyoshi Morioka. Quantified propositional calculus and
a second-order theory for NC1. Archive for Mathematical Logic, 44:711–749,
2005.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In STOC,
1971.

[Coo75] Stephen A. Cook. Feasibly constructive proofs and the propositional calculus
(preliminary version). In Proceedings of the Seventh Annual ACM Symposium
on Theory of Computing, STOC ’75, page 83–97, New York, NY, USA, 1975.
Association for Computing Machinery.

83

 https://www.math.ucsd.edu/~sbuss/ResearchWeb/weakformaltopics/
 https://www.math.ucsd.edu/~sbuss/ResearchWeb/weakformaltopics/

Bibliography

[CR79] Stephen A. Cook and Robert A. Reckhow. The relative efficiency of proposi-
tional proof systems. J. Symb. Log., 44:36–50, 1979.

[Gen35] Gerhard Gentzen. Untersuchungen über das logische Schließen I und II.
Mathematische Zeitschrift, 39:176–210 und 405–431, 1935.

[Gen69] 3. investigations into logical deduction. In M.E. Szabo, editor, The Collected
Papers of Gerhard Gentzen, volume 55 of Studies in Logic and the Foundations
of Mathematics, pages 68 – 131. Elsevier, 1969.

[Imm99] Neil Immerman. Descriptive complexity. In Graduate Texts in Computer
Science, 1999.

[JPY85] David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. How
easy is local search? 26th Annual Symposium on Foundations of Computer
Science (sfcs 1985), pages 39–42, 1985.

[Kar72] Richard M. Karp. Reducibility among combinatorial problems. In R. Miller
and J. Thatcher, editors, Complexity of Computer Computations, pages 85–103.
Plenum Press, 1972.

[KP90] Jan Krajícek and Pavel Pudlák. Quantified propositional calculi and fragments
of bounded arithmetic. Math. Log. Q., 36:29–46, 1990.

[Kra95] Jan Krajíček. Bounded Arithmetic, Propositional Logic and Complexity Theory.
Cambridge University Press, 1995.

[Kre88] Mark W. Krentel. The complexity of optimization problems. Journal of
Computer and System Sciences, 36(3):490 – 509, 1988.

[MBIS90] David A. Mix-Barrington, Neil Immerman, and Howard Straubing. On
uniformity within NC1. J. Comput. Syst. Sci., 41(3):274–306, December 1990.

[Mor05] Tsuyoshi Morioka. Logical approaches to the complexity of search problems:
proof complexity, quantified propositional calculus, and bounded arithmetic.
PhD thesis, Graduate Department of Computer Science, University of Toronto,
2005.

[Pap94] Christos H. Papadimitrio. Computational complexity. Addison-Wesley, 1994.

[Ruz79] Walter L. Ruzzo. On uniform circuit complexity. 20th Annual Symposium on
Foundations of Computer Science (sfcs 1979), pages 312–318, 1979.

[Sav70] Walter J. Savitch. Relationships between nondeterministic and deterministic
tape complexities. Journal of Computer and System Sciences, 4(2):177 – 192,
1970.

[SM73] Larry J. Stockmeyer and Albert R. Meyer. Word problems requiring exponen-
tial time. In STOC 1973, 1973.

84

Bibliography

[Tak87] Gaisi Takeuti. Proof theory. North-Holland, 2nd edition, 1987.

[Wra76] Celia Wrathall. Complete sets and the polynomial-time hierarchy. Theor.
Comput. Sci., 3(1):23–33, 1976.

85

	Abstract
	Contents
	Introduction
	Organization

	Complexity Theory
	Basic Complexity Theory
	Circuits
	Local Search Problems

	Quantified Propositional Calculus
	Quantified Proof Systems
	Gentzen-style Sequent Calculus for QBF

	Bounded Arithmetic
	Syntax of first-order logic
	The language of bounded arithmetic
	Axiomatization of bounded arithmetic
	Sequent-like calculi for bounded arithmetic
	The Translation of Bounded Arithmetic to QBFs

	First-order Results for G0 and G0*
	Herbrand Theorem
	The Midsequent Theorem

	The Witnessing Problem for G0 and G0*
	The 1q-Witnessing problem for G0
	The 1q -Witnessing problem for G0*

	Summary
	Bibliography

