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Abstract: 13 

Synthetic Aperture Radar (SAR) intensity is used as an input to many flood-mapping algorithms. 14 

The appearance of floodwater tends to cause a substantial decrease of backscatter intensity over 15 

scarcely vegetated terrain. However, limitations exist in areas where the SAR backscatter is not 16 

sufficiently sensitive to surface changes, e.g. shadow areas due to topography or obstacles on 17 

the ground, densely forested areas, sand, etc. Thus, we argue that it is of paramount importance 18 

to complement any SAR-based flood extent map with an exclusion map (EX-map) indicating 19 

all areas where the presence of water cannot be derived from SAR intensity observations. In 20 
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this study, we introduce a methodology for generating an EX-map based on the analysis of 21 

time-series of SAR backscatter data. In particular, the identification of the EX-map is based on 22 

the combined use of three temporal indicators based on backscatter statistics, i.e. temporal 23 

median, minimum and standard deviation. As a test case, EX-maps were derived from Sentinel-24 

1 data acquired during the 2014-2019 time period from six representative study sites. Reference 25 

maps were generated using a global land cover map, Digital Elevation Model (DEM)-derived 26 

shadow/layover masks, global urban footprint (GUF) data and a Sand Exclusion Layer (SEL). 27 

The cross-comparison revealed that the EX-map was consistent with reference maps obtained 28 

from other data sources.  29 

Keyword: Sentinel-1, flood risk management, time series analysis, SAR, EX-map (exclusion 30 

map) 31 

1. Introduction 32 

Flooding is a major hazard in both rural and urban areas worldwide, leading to significant 33 

human and economic losses (CRED UNISDR, 2015). Flood mapping plays a central role in 34 

emergency response, relief and post-disaster reconstruction, as well as in disaster risk financing. 35 

For several years, Synthetic Aperture Radar (SAR) data have been widely used for this purpose 36 

because active microwave measurements are highly sensitive to the presence of surface water, 37 

regardless of the sun illumination and weather conditions. SAR-based algorithms enabling 38 

automatic floodwater mapping have reached a certain degree of maturity for bare soils and 39 

sparsely vegetated areas (e.g. Chini et al., 2017; Debusscher and Van Coillie, 2019; Landuyt et 40 

al., 2019; Li et al., 2018; Liang and Liu, 2020; Natsuaki and Nagai, 2020; Schlaffer et al., 2015; 41 

Zhao et al., 2019) where the appearance of floodwater often results in a substantial drop in SAR 42 

backscattering. Generally, open calm water leads to a low backscatter when compared with 43 

surrounding land surfaces (Ulaby and Long, 2014). However, detecting surface water in 44 



3 
 

vegetated and urban areas remains challenging. In vegetated areas, Pierdicca et al., (2018) and 45 

Tsyganskaya et al., (2018a) emphasized the possibility of exploiting an enhancement of the 46 

double-bounce mechanism (i.e. multiple reflections from the horizontal surface and the vertical 47 

structures) caused by the presence of water under the vegetation. Methods exploiting this 48 

behaviour require the SAR signal to penetrate the canopy and reach the ground. Moreover, the 49 

mapping of floodwater in urban areas has improved in recent years because of new methods 50 

exploiting the InSAR multitemporal coherence from single look complex data (Chini et al., 51 

2019; Li et al., 2019b; Pulvirenti et al., 2021, 2016). Applications of such methods have shown 52 

that the frequently observed under-detection of floodwater in built-up environments could be 53 

significantly reduced when compared with more conventional flood mapping methods based 54 

only on SAR intensity. 55 

There are other land cover classes and topographic conditions where the detection of floodwater 56 

using SAR intensity is impeded, e.g. shadow areas caused by topography or obstacles on the 57 

ground (e.g. buildings) hindering the signal to sense the surface. Some land cover classes, such 58 

as layover areas, dry sand (Martinis et al., 2018), tarmac and building areas (Giustarini et al., 59 

2013), in principle, allow the surface to be sensed but the backscattering variations caused by 60 

the presence of water becomes insignificant when compared with the normal “unflooded” 61 

condition. 62 

Nowadays, a majority of methods mentioned above generate binary flood extent maps with two 63 

classes identified: flooded and non-flooded pixels (e.g. Chini et al., 2017, 2019; Cian et al., 64 

2018; Li et al., 2019; Shen et al., 2019; Tsyganskaya et al., 2018a). Several probabilistic flood 65 

mapping approaches have been developed to provide uncertainty information complementing 66 

the flood extent maps (e.g. Giustarini et al., 2016; Schlaffer et al., 2017; Westerhoff et al., 2013). 67 

We argue that one important piece of information that is still missing is maps of areas where 68 

the SAR signal is insensitive to surface changes. In such areas, floodwater cannot be mapped 69 
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with currently available input data and retrieval algorithms, and this information should be 70 

available to any user of SAR-derived flood extent maps. For example, this is a crucial piece of 71 

information when responding to an emergency or for mitigating flood impacts (Matgen et al., 72 

2019). Such complementary information also has high value when integrating observations of 73 

flood extent into flood prediction models. Indeed, SAR-derived flood extent maps are 74 

frequently taken into account when calibrating, evaluating and updating flood inundation 75 

models (e.g., Wood et al., 2016, Hostache et al., 2018). However, as shown in Di Mauro et al., 76 

(2021), errors in satellite-derived flood extent maps may lead to a degradation of model 77 

forecasts when such areas are not clearly identified a priori. It is therefore of primary importance 78 

to identify all insensitive areas that are potentially responsible for large observation biases that 79 

may render assimilation filters inefficient. 80 

To our knowledge, so far only a few studies have addressed the problem of identifying such 81 

insensitive areas. Depending on the type of data considered, these studies can be classified into 82 

two main categories: those making use of ancillary data, e.g. DEM / DSM and Height Above 83 

Nearest Drainage (HAND) (Nobre et al., 2011) and those based solely on the analysis of SAR 84 

data. In order to reduce the floodwater over-detection and to improve the accuracy of flood 85 

maps, shadow/layover areas caused by topography derived from a 30m SRTM DEM were 86 

applied in Benoudjit and Guida, (2019) and Mason et al., (2018). Huang et al., (2017) compared 87 

the ability of two DEM-based terrain indices (i.e. the Multi-resolution Valley Bottom Flatness 88 

(MrVBF) and HAND) to remove the shadow areas in Sentinel-1 based surface water maps. To 89 

extract the same mask for buildings and tall vegetation, LiDAR DSMs with metric spatial 90 

resolution were used (Mason et al., 2018). However, the lack of high-resolution DSMs at global 91 

scale often hampers the generation of shadow/layover masks at the resolution of the SAR data 92 

(Chen et al., 2018). HAND-derived masks were also applied to reduce over-detection in hills 93 

and mountain areas (Zhao et al., 2021). Land use maps were considered in order to exclude 94 
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man-made infrastructures and urbanized areas from the investigated areas (Grimaldi et al., 95 

2020). With respect to SAR intensity-derived exclusion masking, only two studies are currently 96 

available in the scientific literature. Martinis et al., (2018) introduced the Sand Exclusion Layer 97 

(SEL) in order to deal with arid areas characterized by permanent low backscattering values 98 

that might be misclassified as water bodies. By analysing a time series of backscatter obtained 99 

from Sentinel-1, all pixels having at least half of the time backscattering values below -15 dB 100 

are included in the SEL. Another study identified pixels that are not sensitive to surface changes 101 

in the framework of SAR-based soil moisture retrievals (Bauer-Marschallinger et al., 2019). 102 

The authors generated a sensitivity mask in order to identify regions with unreliable Sentinel-103 

1-based surface soil moisture retrievals (SSM). Their mask includes pixels with a low 104 

sensitivity of Sentinel-1 C-band signals to soil moisture variations. The mask mainly includes 105 

pixels representing cities and urban settlements. However, we argue that a sensitivity mask 106 

designed for 500 m resolution SSM products is not adequate for masking high to medium-107 

resolution SAR-based flood extent maps such as those derived from 20 m resolution Sentinel-108 

1 images. The main reason for this is due to the fact that land cover classes at various spatial 109 

resolution are recorded differently from a SAR sensor.  110 

As shown by the above-mentioned studies, there are already several masks available. However, 111 

these were defined to exclude specific regions (e.g. shadow/layover, hills/mountains, sand, 112 

urban areas) and designed for specific applications (e.g. water body mapping, soil moisture 113 

retrievals). When it comes to SAR intensity-based approaches for detecting surface changes, 114 

such as those related to floodwater, we argue that a comprehensive and exhaustive mask 115 

including all insensitive areas is still missing. In this paper, we therefore aim to develop and 116 

evaluate a method to extract such a comprehensive “exclusion” map (EX-map) with several 117 

sublayers. It shall identify all pixels that cannot be reliably classified as ‘flooded’ or ‘not 118 

flooded’ using SAR intensity data. We argue that such an accompanying information layer 119 
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would support any flood mapping activity since it would provide critical information enabling 120 

a more efficient and reliable exploitation of the data. Additionally, the EX-map could also be 121 

used in many other applications aiming to measure SAR backscattering changes over time, for 122 

example in the context of soil moisture retrievals. We hypothesize that an orbit-specific EX-123 

map can be obtained through time series analyses of Sentinel-1 C-band SAR data acquired from 124 

the same orbit. To avoid discrepancies due to the combination of various sources of EO data, 125 

the proposed EX-map shall be derived from the same data source as the one used for floodwater 126 

mapping. Thus, the TU Wien Data Cube is a good option for obtaining masks where Sentinel-127 

1 cannot detect floods for physical reasons (Wagner et al., 2020). In our study, the proposed 128 

method is tested on stacks of Sentinel-1 intensity data from Data Cube at 20m resolution 129 

acquired from different AOIs located in various areas across the globe.  130 

The paper is organized as follows: Section 2 describes the multi-temporal indices employed for 131 

deriving the exclusion map and the proposed algorithm. Next, Section 3 introduces six case 132 

studies, located in Europe, Africa, Asia and North America and their associated datasets. The 133 

results are presented and discussed in Section 4 and the application of the EX-map is shown in 134 

Section 5. Finally, conclusions and an outlook to ongoing and future studies are provided in the 135 

final section.  136 

2. Methodology 137 

In this study, we introduce EX-map as an ensemble of pixels that cannot be classified as 138 

‘flooded’ or ‘not flooded’ using SAR intensity observations. Thus, the map is specific to a 139 

particular signal wavelength and acquisition geometry (i.e. orbital track). It contains pixels 140 

belonging to different land cover classes and different SAR geometrical distortions preventing 141 

the classification of floodwater. In this section, the EX-map classification method is described. 142 
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We first present the features proposed to generate the EX-map and explain how these features 143 

are used to derive the EX-map. 144 

2.1. EX-map generation 145 

2.1.1. Rationale 146 

The proposed method relies on the following working hypothesis: When mapping floodwater 147 

using only the intensity information in SAR imagery, areas characterized by permanently low 148 

and high backscattering values, as well as areas characterized by stable backscattering over time 149 

should be excluded from further analysis. The following sections provide details and 150 

explanations on this assumption. 151 

Low backscattering (LB) is typical of i) smooth surfaces, e.g. water bodies, tarmac, where the 152 

specular reflection dominates the entire surface scattering field; ii) land cover classes absorbing 153 

the impinging signal, e.g. very dry surfaces like sand, wet snow, grassland; iii) areas in the 154 

shadow of obstructing objects, e.g. shadows caused by high trees, mountains and buildings. 155 

Such areas prevent the detection of floodwater using single-image, dual-image or even time-156 

series methods because the backscattering in the flooded and unflooded conditions shows 157 

similarly low values. We aim for the exclusion of permanent water-lookalike classes and stable 158 

objects over time because excluding pixels with only temporarily low backscattering values 159 

such as wet snow or specific types of vegetation, e.g. crops, would increase the risk of excluding 160 

potentially flooded areas. As a consequence, the proposed EX-map is expected to include pixels 161 

exhibiting only permanently low backscatter, such as permanent water, smooth tarmac, shadow 162 

and sandy areas.  163 

High backscattering (HB) is typical of urban and steep areas, where foreshortening, layover 164 

and double-bounce develop as a result of the particular geometrical arrangement between the 165 
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sensor Line-of-Sight (LoS) and the object class structure (Ferro et al., 2011; Franceschetti et al., 166 

2002). In particular, when it comes to urban areas, the increase in backscattering caused by the 167 

presence of water is hardly detectable. In fact, the increase of the double-bounce backscatter is 168 

mainly related to the geometric arrangement of the SAR LoS and the building facades while 169 

sensitivity to increasing backscatter caused by floodwater is relatively low (Pulvirenti et al., 170 

2016).  171 

Stable backscattering (SB) is a characteristic area where backscattering remains stable 172 

regardless of surface conditions. The previously mentioned low and high backscattering areas 173 

may also fall into this category. However, permanent water bodies, albeit characterized by 174 

consistently low backscatter values, do not necessarily belong to this behavioural class because 175 

rain or wind occasionally change the roughness of the water surface, thereby causing 176 

temporarily high backscatter values. Land cover classes expected to belong to this class are 177 

densely vegetated areas (e.g. dense forests), where the SAR signal hardly penetrates the 178 

vegetation canopy and does not reach the ground. It should be noted that the canopy penetration 179 

capability of SAR signals depends on their wavelength, as well as the orbit path, i.e. the 180 

incidence angle.  181 

Based on this description of the SAR backscattering classes constituting the EX-map, we argue 182 

that in theory the SB class should include the other two classes (i.e. HB and LB). These classes 183 

tend to produce stable backscatter over time, with the notable exception of water bodies. It is 184 

worth highlighting that each land cover class has its own speckle magnitude rendering it 185 

difficult to accurately define “temporal stability” for all land cover classes. As a consequence, 186 

the proposed strategy is to first classify LB and HB classes, which have rather singular 187 

backscatter values. Next, we can identify the SB class by analysing the stability for the 188 

remaining areas. Therefore, the EX-map is the union of the LB, HB and SB classes. It is worth 189 

mentioning that LB and SB, as well as HB and SB, are expected to partially overlap. Here we 190 
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assume that the targeted EX-map is expected to include the following SAR-based categories: 191 

(1) permanent water bodies; (2) shadow (topographic, urban) and arid areas; (3) layover 192 

(topographic); (4) layover/double-bounce (urban); (5) densely vegetated areas. 193 

2.1.2. Feature extraction 194 

In order to map areas with very low and high backscatter, several texture features can be 195 

considered. For instance, the local Getis-Ord 𝐺𝑖  has already been successfully used as an 196 

indicator of spatial autocorrelation to identify built-up areas (Gamba et al., 2009), to support 197 

crowdsourced-based flood detection (Panteras and Cervone, 2018), to identify hotspots on 198 

freeways (Songchitruksa and Zeng, 2010) and to analyse land surface temperature (Tran et al., 199 

2017). It is a powerful technique for characterizing and quantifying the spatial autocorrelation 200 

of remotely sensed imagery, providing a measure of spatial dependence of neighbouring pixels 201 

(Tran et al., 2017; Wulder and Boots, 1998). Generally, the local Getis-Ord 𝐺𝑖 (Getis and Ord, 202 

1992; Ord and Getis, 1995) is used to identify outliers. The technique allows the identification 203 

of the presence of hot spots (i.e. clusters of high values) and cold spots (i.e. clusters of low 204 

values) over an entire area by looking at the feature of interest, e.g. backscatter values. More 205 

specifically, layover (topographic) and layover/double-bounce (urban) with extremely high 206 

backscatter can be regarded as hot spots in SAR scenes, while permanent water bodies, shadow 207 

(topographic, urban) and arid areas characterized by extremely low backscatter can be 208 

considered as cold spots in SAR images. The standardized local Getis-Ord 𝐺𝑖 statistic is defined 209 

as (Getis and Ord, 1992; Ord and Getis, 1995):  210 

𝐺𝑖 =
∑ 𝑤𝑖,𝑗𝑥𝑗
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𝑆 =  √
∑ 𝑥𝑗

2𝑛
𝑗=1

𝑛
− (�̅�)2                                                            (3) 213 

where  214 

  𝑥𝑗 = the value of variable x at location j 215 

n = the total number of image’s pixels 216 

In this study, the weight matrix 𝑤𝑖,𝑗 is set with a distance lag d=1 and associations follow the 217 

so called “queen’s case”, i.e. all pixels adjacent to 𝑥𝑗 are considered. The spatial resolution of 218 

the local Getis-Ord 𝐺𝑖  image decreases when d increases. Thus, we chose d=1 to keep the spatial 219 

resolution as high as possible. High positive local Getis-Ord 𝐺𝑖 identifies clusters of high values 220 

(i.e. hot spots), while low negative local Getis-Ord 𝐺𝑖 represents clusters of low values (i.e. cold 221 

spots). Here, we propose to apply local 𝐺𝑖 to the temporal median backscattering value derived 222 

from a stack of SAR images in order to classify the LB and HB classes, respectively. We argue 223 

that local 𝐺𝑖 has the advantage of providing backscattering information that is normalized with 224 

respect to the local land cover classes in each image. This is to be preferred over an absolute 225 

indicator that may substantially vary from one image to another, as the backscatter value 226 

depends on several factors, such as the incidence angle and the LoS. Thus, local 𝐺𝑖 mitigates 227 

differences in the backscattering values of different classes due to differences in acquisition 228 

geometry, enabling us to characterize LB and HB in a more robust and systematic way. This is 229 

visible in Figure 1, where it is possible to appreciate how the temporal median backscattering 230 

largely depends on the test site, while the local 𝐺𝑖 is less affected. This is more evident for 231 

layover (topographic) and layover/double-bounce (urban) classes, where the dependence on the 232 

incidence angle is very strong. It is worth considering that the local 𝐺𝑖 used here not only takes 233 

into account the spatial characteristics of classes but also provides information on their temporal 234 

behaviour since it is calculated from the temporal median of the backscattering. 235 
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 236 

Figure 1 Example of local 𝐺𝑖 and multi-temporal median of different land cover classes using 215 images and 167 images, 237 
respectively. 238 

Other multi-temporal statistical features such as the standard deviation have demonstrated their 239 

usefulness in SAR image classification (Clauss et al., 2018; Lin and Perissin, 2018). In this 240 

study, we make use of the multi-temporal standard deviation (𝜎𝑀𝑇) and the multi-temporal 241 

minimum (𝑚𝑖𝑛𝑀𝑇) to identify areas with limited backscatter variations, i.e. densely vegetated 242 

areas, which could be confused with bare soils, sparse/low vegetation if both indexes were not 243 

used.  244 

To show the effectiveness of the three proposed indices for identifying the LB, HB and SB 245 

classes, their values were extracted from different classes. These include land cover classes and 246 

areas known to be affected by radar-specific imaging distortions that should be part of the EX-247 

map, as well as land cover classes where the detection of floodwater using SAR-based intensity 248 

approaches should be possible, e.g. bare soils, sparse/low vegetation. Thus, from all test sites 249 

available, the ROIs of layover (topographic), shadow (topographic, urban) and arid areas, 250 

densely vegetated areas, layover/double-bounce (urban), bare soils, sparse/low vegetation and 251 

permanent water bodies are manually selected by visually inspecting the multi-temporal median 252 

SAR image, various landcover maps and topographic data. The extracted values shown in 253 

Figure 2 are used to analyse the effectiveness of the selected parameters for generating the EX-254 

map. The results indicate that the local 𝐺𝑖 is rather effective in detecting regions with low and 255 
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high backscatter values, although it fails to separate densely vegetated areas from bare soils and 256 

sparse/low vegetation. Concerning the separation of these two remaining classes, we notice in 257 

Figure 2 that the different values of 𝜎𝑀𝑇 and 𝑚𝑖𝑛𝑀𝑇 show a high ability to solve this problem. 258 

It is worth noting that for some classes the multi-temporal standard deviations are higher than 259 

expected. This may be due to the fact that the SAR-based land cover classes cannot be fully 260 

described when considering land cover classes obtained with optical sensors. One example for 261 

this is the layover/double-bounce (urban) class, of which only the double-bounce area is of 262 

interest in our study, while the urban class from the landcover map also contains parking lots, 263 

roads/railways and vegetation/tree close to buildings, etc.  264 

 265 

Figure 2 Example of local 𝐺𝑖, multi-temporal standard deviation and multi-temporal minimum of different land cover classes 266 

(ROIs are selected manually from all Sentinel-1 datasets available, which are composed of 1735 images). 267 

2.1.3. EX-map computation algorithm  268 

The procedure to derive the EX-map follows a decision tree approach. Since SAR 269 

backscattering of a land cover class varies with the acquisition geometry (e.g. topography, 270 

incidence angle and orbit path), adaptive approaches to select classification parameters are 271 

needed. Hence, the proposed method is to first distinguish the LB and HB classes using the 272 
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local 𝐺𝑖 map, before making use of 𝜎𝑀𝑇 and 𝑚𝑖𝑛𝑀𝑇 to separate the SB scattering class from the 273 

areas that remained after the first classification step. The proposed procedure is composed of 274 

the following steps that are also summarized in the block diagram shown in Figure 3: 275 

 276 

Figure 3 Decision tree using temporal indicators for EX-map extraction. The input data is shown in green, the images with 277 

mixed pixels of different land cover classes are shown in blue, the layers of the EX-map are shown in yellow and the final 278 

generated EX-map is shown in red. The 𝑐1, 𝑐2 and 𝑐4 parameters are automatically selected by HSBA.  279 

1) LB and HB usually represent a small fraction of the local 𝐺𝑖 images and it is assumed 280 

that the distribution of LB and background and distribution of HB and background are bimodal 281 

in local 𝐺𝑖 images. However, the identification of LB and HB classes from the entire image 282 

might be difficult because of the imbalanced proportion of pixels between LB/HB and their 283 

background. As a consequence, to identify LB and HB classes, we adopt the hierarchical split-284 

based approach (HSBA) proposed by Chini et al., (2017). HSBA is a statistical modelling-based 285 

classification algorithm, which makes use of hierarchical image splitting, region growing and 286 

adaptive thresholding to identify a class of interest in the entire image. To identify pixels 287 

belonging to LB and HB using HSBA, we classify areas of very low and very high local 𝐺𝑖, 288 

respectively. HSBA is applied twice to classify the LB and HB classes separately. Firstly, 289 

HSBA hierarchically splits the local 𝐺𝑖 image into tiles of various sizes and selects only tiles 290 

with an identifiable bimodal distribution. The selected tiles are expected to contain pixel values 291 

from the target and its background that can be modelled with bimodal Probability Density 292 

Functions (PDFs). The HSBA algorithm is fully automatic and the only parameter that needs 293 

to be set a priori is the local 𝐺𝑖 threshold (𝑐1 for LB and 𝑐2 for HB) for which the PDF of the 294 
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class of interest is expected to be below or above this value. The local 𝐺𝑖 threshold is located 295 

between the mean values of the PDF of the classes of interest (i.e., 𝑃𝐷𝐹𝐿𝐵  and 𝑃𝐷𝐹𝐻𝐵 , 296 

respectively) and the one of the backgrounds. These local 𝐺𝑖 thresholds are then used in HSBA 297 

to search for tiles where a robust parameterization of 𝑃𝐷𝐹𝐿𝐵/𝑃𝐷𝐹𝐻𝐵 is possible. Because of 298 

differences in incidence angles, the backscattering values of the classes of interest vary from 299 

one site to another: it may be that the parametrization of the PDFs is not possible using a 300 

constant 𝑐1and 𝑐2 . To this end, several values were tested, especially for layover (topographic) 301 

and layover/double-bounce (urban) where the backscattering varies significantly depending on 302 

the incidence angle. We tested  𝑐1and 𝑐2  in the intervals [-8 : -5] and [5 : 8] with a step of one. 303 

Since the objective is to select the classes with the lowest and the highest local 𝐺𝑖 values, we 304 

started from -8 for 𝑐1 and 8 for  𝑐2 and we selected the first value that allows to select tiles for 305 

parameterizing 𝑃𝐷𝐹𝐿𝐵  and 𝑃𝐷𝐹𝐻𝐵 . From the local 𝐺𝑖  histogram corresponding to areas 306 

depicted by all selected tiles, 𝑃𝐷𝐹𝐿𝐵  and 𝑃𝐷𝐹𝐻𝐵  are finally parameterized and iterative 307 

thresholding and region growing are applied sequentially in order to identify the LB and HB 308 

classes, respectively. The threshold to select the seed for the region growing is fixed to the local 309 

𝐺𝑖 value where PDFs of LB (or HB) and the total histogram start diverging, while the threshold 310 

to stop region growing is fixed to the value that minimizes the root-mean-squared error (RMSE) 311 

between 𝑃𝐷𝐹𝐿𝐵 (𝑃𝐷𝐹𝐻𝐵) and the histogram resulting from the region growing. More details 312 

about the classification procedure can be found in Chini et al., (2017). In order to select ranges 313 

of values for the parameters 𝑐1 and 𝑐2, the ROIs covering LB, HB and their background classes 314 

are selected from one SAR image and for each ROI the distribution of local 𝐺𝑖 is obtained (see 315 

example in Figure 4). It is apparent from Figure 4 that our assumption regarding a bimodal 316 

distribution of LB/background and HB/background is valid. Thus, based on the extracted values 317 

shown in Figure 4, the first guesses for  𝑐1 and 𝑐2 are fixed. These values are used for all test 318 

sites considered in this study.  319 
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 320 

Figure 4 Example of a bimodal distribution of LB and HB areas. The histogram is derived from ROIs selected from a local 𝐺𝑖 321 

image (Tile E046N014T1, track 15).  322 

2) As shown in the block diagram (Figure 3), the SB class is identified using 𝜎𝑀𝑇  and 323 

𝑚𝑖𝑛𝑀𝑇 following the extraction of areas with high/low local 𝐺𝑖. Therefore, the remaining class 324 

that needs to be identified as part of the EX-map represents the densely vegetated areas that are 325 

assumed to produce stable backscatter over time. To confirm this hypothesis, 𝜎𝑀𝑇 over a stack 326 

of SAR images was extracted and averaged for the different land cover classes. This analysis 327 

confirms that the densely vegetated areas have the lowest  𝜎𝑀𝑇 mean value and least dispersed 328 

𝜎𝑀𝑇  when compared to the other classes (Figure 2). According to Figure 2, the bare soils, 329 

sparse/low vegetation class is characterized by a higher 𝜎𝑀𝑇 mean value and a larger range of 330 

values, thereby creating some overlap with the densely vegetated area class. Hence, low 331 

vegetation areas (i.e. vegetation with moderate and stable backscatter over time) are defined as 332 

the areas with 𝜎𝑀𝑇 below 1.6 dB according to the median value of the densely vegetated areas 333 

class obtained from the analysis shown in Figure 2. In other words, the threshold separating 334 

densely vegetated areas and other vegetation from bare soils and sparse vegetation, i.e. 𝑐3, is 335 

set to a value of 1.6 dB. The parameter 𝑐3 was fixed at the same value for all test cases because 336 

backscattering from densely vegetated areas is mainly due to volumetric scattering which is less 337 

affected by differences in incidence angles. This is also evident from this land cover’s reduced 338 

spread of 𝜎𝑀𝑇 when compared with that of other classes. Considering the average of the 𝑚𝑖𝑛𝑀𝑇 339 
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for the different land cover classes (Figure 2), densely vegetated areas have higher values of 340 

𝑚𝑖𝑛𝑀𝑇 than bare soils, sparse/low vegetation. From this analysis, we conclude that the densely 341 

vegetated areas class is characterized by relatively low 𝜎𝑀𝑇 and relatively high 𝑚𝑖𝑛𝑀𝑇 when 342 

compared with other classes. One could argue that selecting areas of low 𝜎𝑀𝑇  is sufficient for 343 

mapping areas of stable backscatter. However, the probability of misclassifying areas as stable 344 

because of an insufficient image time sampling is relatively high due to a longer revisit time 345 

when compared with the change in land surface (in some areas, the revisit time of Sentinel-1 is 346 

12 or 24 days instead of 6 days). Therefore, 𝑚𝑖𝑛𝑀𝑇  was used at the same time in order to 347 

remove low vegetation with low 𝜎𝑀𝑇. In the areas classified as ‘densely vegetated areas and 348 

low vegetation’ with low 𝜎𝑀𝑇, we check the distributions of 𝑚𝑖𝑛𝑀𝑇 for different classes that 349 

were included erroneously. Since the maximum number of expected classes is two, HSBA was 350 

applied to identify the class of interest, i.e. “densely vegetated areas”. As for the LB and HB 351 

class detection, a 𝑚𝑖𝑛𝑀𝑇 value, c4, located in-between the mean values of the two classes of 352 

interest, i.e. “densely vegetated areas” and “low vegetation” has to be set. In Figure 5, where 353 

the 𝑚𝑖𝑛𝑀𝑇 boxplots for densely vegetated areas and bare soils, sparse/low vegetation classes 354 

are shown for all test cases, c4 was fixed at -15dB. Based on the number of classes and their 355 

respective mean values, the following decision rules were defined:  356 

i) if only one class is available and its 𝑚𝑖𝑛𝑀𝑇 mean value is higher than 𝑐4, then all 357 

previously selected pixels are part of the class ‘densely vegetated areas’; 358 

ii) if only one class is available and its 𝑚𝑖𝑛𝑀𝑇 mean value is lower than 𝑐4, then all 359 

previously selected pixels are part of the class ‘low vegetation’; 360 

iii) if two classes are available and their 𝑚𝑖𝑛𝑀𝑇 mean values are lower and higher than 361 

𝑐4, respectively, then all pixels belonging to the class with a PDF mean value lower than 362 

𝑐4 are removed using the HSBA; 363 
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iv) if two classes are available and their 𝑚𝑖𝑛𝑀𝑇 mean values are both lower or higher 364 

than 𝑐4, then we are in the same situation as in points i) and ii).  365 

 366 

Figure 5 The multi-temporal minimum distribution of low vegetation and dense forest with the red vertical line showing the 367 
value of -15 dB. Pixels of each class were randomly selected based on a land cover map using 13 study cases.  368 

3) The final step consists of merging the sublayers extracted in steps (1) and (2) in order 369 

to generate the EX-map. 370 

It is worth pointing out that parameters 𝑐1 , 𝑐2  and 𝑐4  are a priori values used to 371 

initialize/constrain the HSBA algorithm, while classes are identified automatically and 372 

adaptively. Consequently, in the entire procedure, the only parameter with a fixed value is 𝑐3.  373 

2.2. Sublayers of the EX-map 374 

Besides the EX-map extraction, the individual sublayers of EX-maps such as permanent water 375 

bodies, layover (topographic) and shadow (topographic, urban) and arid areas provide essential 376 

information for many different EO applications. Therefore, the second objective of this study 377 

is to provide sublayers of the EX-map according to land cover types and different topography 378 

conditions.  379 

Sublayers of LB class: As mentioned in Section 2.1.1, the LB class includes two sublayers, i.e. 380 

permanent water bodies sublayer and shadow (topographic, urban) and arid area. Based on the 381 

fact that the backscatter of permanent water bodies varies in the presence of wind, the 382 

permanent water bodies have much higher variations of temporal backscatter than the shadow 383 

(topographic, urban) and arid areas. Thus, permanent water bodies can be distinguished from 384 

shadow (topographic, urban) and arid areas based on the 𝜎𝑀𝑇, assuming that permanent water 385 
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bodies have a Gaussian PDF with higher mean value with respect to the other two classes. The 386 

permanent water body class is selected using HSBA, assuming that the 𝜎𝑀𝑇  distributions of 387 

water and non-water areas (i.e. shadow (topographic, urban) and arid areas) are two overlapped 388 

Gaussian distributions.  389 

Sublayers of HB class: It has been defined that the HB class contains layover (topographic) 390 

and layover/double-bounce (urban). However, all these areas have similar backscatter 391 

behaviour, which makes it difficult to distinguish them using SAR intensity data. However, in 392 

order to distinguish HB pixels caused by high topography from urban areas, the local incidence 393 

angle (LIA) and the incidence angle from ellipsoid (INC) are computed using a DEM and the 394 

geometry of the SAR acquisition. The areas where the difference of INC and LIA is smaller 395 

than 5 degrees are regarded as layover/double-bounce (urban) areas while the other are pixels 396 

of layover (topographic) areas (Chini et al., 2018).  397 

Sublayers of SB class: The SB class theoretically contains the areas with stable backscatter 398 

over time, such as shadow (topographic, urban) and arid areas, layover (topographic), 399 

layover/double-bounce (urban) and densely vegetated areas. However, the shadow (topographic, 400 

urban) and arid areas were identified in the previous steps as being part of the LB class, and the 401 

layover (topographic) and layover/double-bounce (urban) were previously classified as HB 402 

class. As a matter of fact, the SB class only contains densely vegetated areas. 403 

3. Study areas and datasets 404 

Six representative study sites located in four different continents were selected for testing and 405 

evaluating the proposed methodology. They are characterized by different land cover classes, 406 

different topographic conditions and different climates. 407 
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3.1. Study areas 408 

Figure 6 depicts the location of the six study sites in four different continents. Three sites have 409 

been frequently affected by flood events in the years for which Sentinel-1 time series are 410 

available. For instance, study site 1, covering the plain of the River Severn (UK), is frequently 411 

hit by flood events, with a particularly high frequency in the period 2016 – 2018. Study site 3, 412 

focusing on the city of Beledweyne (Somalia), was also hit by frequent flooding between 2018 413 

and 2020. Study site 6 covers the Houston area (US), which has frequently been impacted by 414 

the landfalls of hurricanes on the US South-eastern coast. Besides the areas affected by flooding, 415 

the other three test sites were considered relevant test cases as they exhibit land cover classes 416 

that are known to hamper the detection of floodwater using SAR intensity data. In particular, 417 

the identification of permanent low backscattering areas is very useful for flood mapping 418 

algorithms that use a single SAR image as input, as this allows distinguishing floodwater from 419 

permanent water bodies and water-lookalike surfaces. For example, study site 2, located in the 420 

Alps region close to Milan (Italy), was selected because it is composed of numerous 421 

topographic shadow and layover regions and, at the same time, contains many urbanized areas. 422 

Moreover, the region of Beijing (China) in study site 4 contains many small villages and 423 

settlements, while the study site 5 in the area around Wuhan (China) is characterized by a dense 424 

network of rivers and lakes, which are all land cover classes that are highly relevant for this 425 

study. In addition, the selection of test cases from markedly different regions across the world 426 

provides an opportunity to investigate the role of densely vegetated areas characterized by 427 

different vegetation types.  428 
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 429 

Figure 6 Study sites shown in global gall stereographic projection (EPSG: 54016). Different grid colours represent different 430 

projections in the Equi7Grid basic framework. 431 

3.2. Sentinel-1 data 432 

The Sentinel-1 dataset employed in this study is composed of multi-temporal images in 433 

Interferometric Wide Swath (IW) mode with VV polarization that were acquired between 2014 434 

and 2019. All data were pre-processed and provided by the TU Wien Data Cube (Ali et al., 435 

2017) for 13 different tiles of 100 × 100 km2 and with a spatial resolution of 20 m. The data 436 

cube is managed and processed on the Earth Observation Data Centre (EODC) for Water 437 

Resources Monitoring. The EODC uses the high-performance computing platform provided by 438 

the third generation of the Vienna Scientific Cluster (VSC-3), providing easy access to EO data 439 

(Naeimi et al., 2016). In addition, EODC users can process EO data with their own algorithms 440 

and extract the results (Mathieu and Aubrecht, 2018). The Sentinel-1 data cube from TU Wien 441 

is derived by geocoding the SAR backscatter imagery using the python-based SAR Geophysical 442 

Retrieval Toolbox (SGRT), and the Sentinel-1 time-series from this data cube can be analysed 443 

directly in our study. The SAR datasets use the Equi7Grid projection (Bauer-Marschallinger et 444 
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al., 2014) and all Sentinel-1 SAR data were split into 100 ×100 Km2 tiles, as shown in Figure 445 

6. Detailed information on the dataset is reported in Table 1.  446 

Table 1 Detailed information of S1 IW data (D and A stand descending and ascending, respectively) 447 

STUDY 

SITE 

LOCATION EQUI7GRID 

TILE 

TRACK PASS 

ACQUISITION 

TIME 

NUMBER OF 

IMAGES 

1 

River Severn, UK 

(Europe) 

E040N023T1 30 A 

2016.01.06 – 

2018.12.03 
215 

E040N023T1 154 D 

2016.01.03 – 

2018.12.24 

282 

2 Milan, Italy (Europe) 

E046N014T1 15 A 

2016.01.17 – 

2018.12.26 

167 

E046N014T1 66 D 

2016.01.09 – 

2019.01.05 
258 

3 

Beledweyne, Somalia 

(Africa) 

E082N056T1 35 D 
2014.10.20 – 

2019.12.17 

161 

4 Beijing, China (Asia) 

E062N043T1 

47 D 

2016.01.19 – 

2017.12.21 

100 

E062N042T1 101 

5 Wuhan, China (Asia) 

E062N032T1 

113 A 

2016.01.24 – 

2017.12.20 

84 

E063N032T1 99 

6 

Houston, USA (North 

America) 

E084N023T1 

34 A 

2016.04.12 – 

2017.12.27 

67 

E084N024T1 67 

E085N023T1 67 

E085N024T1 67 
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3.3. Evaluation dataset 448 

Due to the uniqueness of the EX-map, there is no similar and independent map/mask currently 449 

available for validation. Thus, we propose to cross-compare the newly generated product with 450 

a map obtained from the ensemble of different datasets, hereafter referred to as the reference, 451 

that together approximate the content of the EX-map. Therefore, the reference map used for 452 

comparison is composed of those land cover classes and SAR image distortions that are 453 

expected to be part of the EX-map. We acknowledge that this does not allow for a complete 454 

quantitative evaluation, but rather for a qualitative evaluation of the results. 455 

The reference is generated using globally available land cover maps derived from both passive 456 

and active Earth Observation data, including: 457 

 1) 30m FROM-GLC map derived from optical data (Gong et al., 2013), from which we have 458 

identified all classes that are supposed to be part of an EX-map;  459 

2) shadow/layover map obtained through simulation using a DEM and the SAR acquisition 460 

geometry of each orbital track used in this study (Kropatsch and Strobl, 1990). It is worth noting 461 

that the 25m resolution DEM provided by Copernicus is used for European study sites 1 and 2 462 

while the 30m SRTM DEM is used for the other study sites. 463 

3) 12m resolution global urban footprint (GUF) data provided by DLR (Esch et al., 2018, 2017, 464 

2011);  465 

4) 20m resolution Sand Exclusion Layer (SEL) using the method proposed in (Martinis et al., 466 

2018) (only involved for the evaluation of the EX-map in study site 3). 467 

During the merging process of the four different sources of information, the layers derived from 468 

SAR data have higher priority than the land cover maps. The reference map was thus created 469 

starting with the layer of lowest priority and stratifying on top of all others. The hierarchy was 470 
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decided based on the reliability of each product (i.e. GUF has a higher spatial resolution (i.e. 471 

12m) than the 30m FROM-GLC map) and follows the listing of the four different layers given 472 

above, i.e. layer (1) having the lowest priority and layer (4) having the highest priority.  473 

In addition, a 30m transition water map that is part of the global water surface map (Pekel et 474 

al., 2016) is also used for comparison with the water sublayer of the EX-map. However, it 475 

should be pointed out that the definition of our water sublayer and transition water are slightly 476 

different: our water sublayer includes water bodies, which can be derived from a multi-temporal 477 

median image (2014 to 2019) while the transition water map containing 10 surface water classes 478 

informs us of the change in seasonality between 1984 and 2015 (Pekel et al., 2016). Thus, only 479 

permanent, new permanent and seasonal-to-permanent water classes are considered for cross 480 

comparison.  481 

4. Results and discussion 482 

In this section, the EX-maps are evaluated using the reference map. Then, two EX-maps 483 

generated over the River Severn, UK (study site 1) and Beledweyne, Somalia (study site 3) are 484 

described and analysed in detail. Finally, the sublayers of the EX-map are evaluated with 485 

different reference datasets derived from the different data sources. 486 
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 487 

Figure 7 EX-maps from all study sites with the optical image from Google Earth as the background. 488 

4.1. EX-map generation  489 

The EX-maps generated over the 6 study sites are shown in Figure 7. In order to evaluate the 490 

quality of the EX-maps, the percentage of each land cover class in and outside the EX-map was 491 

plotted in Figure 8. According to our definition of the EX-map, and depending on the land cover 492 

classes available at the study sites, classes that are expected to be part of the EX-map are forest, 493 

water, impervious surface, layover, shadow, GUF, SEL and wetland, while those expected not 494 

to be part of the EX-map are cropland, grassland, shrubland, bare-land, snow/ice and tundra. 495 

As shown in Figure 8(a), for six orbital tracks, more than 68% of pixels included in the EX-496 

maps are located in land cover classes that meet our definition of an EX-map. This percentage 497 

is expected to be high in exclusion areas, and low elsewhere. Indeed, with respect to areas not 498 

included in the EX-maps (Figure 8(b)), the majority of pixels belong to cropland, grassland and 499 

sparsely distributed shrubland for all study sites.  500 
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From Table 1, one can notice that the number of images varies from 67 to 282 while the time 501 

span varies from 20 months to 5 years for the different test sites. Although these differences 502 

exist in the dataset composition, the agreement between the EX-map and the expected land 503 

cover classes does not vary substantially. Test site 6 has the smallest number of images and a 504 

shorter time span but the EX-map performs as well as at site 2, which has a longer-term dataset. 505 

From these results, we can infer that datasets spanning more than one year, which is the 506 

common characteristic of all datasets used in this study, are necessary to extract a reliable EX-507 

map. This guarantees the encompassing of pan-seasonal surface changes, which is the case for 508 

many vegetated areas. The satellite repeat cycle is also an important aspect to consider as a 509 

higher repeat cycle guarantees the possibility of having an exhaustive temporal statistic of 510 

backscattering values enabling the accurate sampling of all possible surface variations over time. 511 
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 512 

Figure 8 (a) Land cover classes of pixels included in the EX-map; (b) land cover classes of pixels outside the EX-map. The black 513 

dotted lines separate the classes expected to be inside the EX-map (below the black dotted line) and outside the EX-map 514 

(above the black dotted line); while the numbers indicate the percentage of pixels belonging to classes expected to be part 515 

of the EX-map in regions classified as an EX-map (a) or as not an EX-map (b).  516 

Discrepancies between the two maps come from five main sources: errors in the EX-map, the 517 

difference in spatial resolution of the source data, difference in acquisition time of the images 518 

and reference maps, errors in the reference maps, as well as co-registration errors between 519 

different maps. We suspect the latter making an important contribution, especially on the 520 

boundaries of different land cover classes. Cropland and grassland are present in the EX-map, 521 

albeit at small percentages. This is probably caused by the presence of low-density tree areas 522 

that can be assigned to the EX-map, while they are assigned to cropland and grassland in the 523 
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land cover map. Moreover, when using the 20 m resolution Sentinel-1 data, trees aligned along 524 

crop fields and several single trees near buildings are included in the EX-map due to their stable 525 

high temporal backscatter, while this level of detail is missing in the 30 m resolution global 526 

land cover maps. Furthermore, it is worth noting that the global-scale land cover map was 527 

derived from Landsat 5 TM and Landsat 7 ETM+ acquired between 1981 and 2011, with more 528 

than 70% of the Landsat data acquired after 2006 (Gong et al., 2013), while the Sentinel-1 data 529 

used in this study were acquired between 2014 and 2019. The difference in acquisition time 530 

may also lead to some inconsistencies between the two maps. At the Somalia test site, which is 531 

located in a region dominated by shrubland, the agreement between the EX-map and the 532 

reference is especially low and equal to 8.8% (Figure 8). This outlier will be discussed in 533 

Section 4.1.2. The forest class is also present outside the EX-map, which may be due to the 534 

presence of relatively low-density forest areas, enabling the C-band signal to penetrate the 535 

canopy and to sense the ground surface. 536 

We argue that the above-mentioned sources of discrepancy between the two maps also represent 537 

a point in favour of the proposed EX-map. This clearly shows that there is a necessity to 538 

consider an EX-map of areas where SAR-based intensity algorithms are unable to detect any 539 

changes, e.g. floodwater. In the following section, two test cases with large discrepancies 540 

between the EX-map and reference map are considered to gain a better understanding of the 541 

sources of the identified differences. 542 

4.1.1. Study site 1: River Severn, UK 543 

As shown in Figure 8 (a), about 28.8% of the pixels of the EX-map at study site 1 belong to 544 

grassland and cropland areas, which was not to be expected based on the definition of the EX-545 

map. In order to have a better understanding of the differences between these two classes, we 546 

analyse very high resolution optical images from Google Earth to generate a new reference map 547 



28 
 

(Figure 9(e)). In the selected area in Figure 9(a), and according to the reference data shown in 548 

Figure 9(d), the EX-map (Figure 9(b)) should contain many grassland pixels. Instead, in the 549 

validation map obtained by visual inspection, many grassland pixels had been manually 550 

corrected to forest, thereby increasing the agreement with the EX-map. Two Confusion 551 

matrices from the EX-map using two different reference images are shown in Table 2. The 552 

overall accuracy (OA) and kappa coefficient of the generated EX-map using the manually 553 

derived reference image are 91.06% and 0.39, separately, while the overall accuracy and the 554 

kappa coefficient of the generated EX-map using the auxiliary products-derived reference 555 

image are 89.26% and 0.29. When looking at the numbers in this comparison, it is rather 556 

obvious that it is not possible to reach a perfect match between the two maps due to inherent 557 

differences in the two data sources. This demonstrates the necessity of deriving an EX-map 558 

from SAR data. One could argue that the greater these differences are, the more important it is 559 

to have a SAR-based EX-map.  560 

It is worth noting that discrepancies are still present in the hilly areas indicated by the red box. 561 

High/low local 𝐺𝑖values (Figure 9(c)) seem to indicate that due to shadow and layover, no 562 

reliable SAR-based floodwater detection can be achieved in that area. However, according to 563 

the simulations carried out with the 25m DEM, no shadow or layover is to be expected from 564 

such gentle topography. As a result, no shadow or layover areas were included in the auxiliary 565 

products-derived reference map (Figure 9(d)).  566 
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 567 

Figure 9 A subset of the EX-map derived from study site 1 (track30): grassland and cropland are shown in pink, dense 568 

vegetation is shown in green, impervious surface and GUF are shown in purple. 569 

Table 2 Confusion matrix using 30m reference and manually derived reference: included class contains dense vegetation, 570 

impervious surface/GUF and shadow; excluded class contains grassland and cropland. 571 

OA = 89.26% 

Kappa = 0.29 

30m Reference OA = 91.06% 

Kappa = 0.39 

Manually derived 

Reference 

Included  Excluded Included Excluded 

EX-

map 

Included 1920 2310 EX-

map 

Included 2283 1947 

Excluded 4766 56890 Excluded 3942 57714 

4.1.2. Study site 3: Beledweyne, Somalia 572 

Figure 8 (a) shows that 91.2% of the generated EX-map is composed of shrubland. This is 573 

surprising as we did not expect this class to be included in the EX-map. When considering the 574 
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optical image in Figure 10 (a) and Figure 10 (b), there seem to be no densely vegetated areas 575 

hampering a SAR-based flood detection. The regions depicted in the red boxes are characterized 576 

by relatively high values of local 𝐺𝑖 (Figure 10 (d)) and this is clearly the reason why the areas 577 

were included in the EX-map. From the SRTM DEM data shown in Figure 10 (e), it becomes 578 

apparent that these regions are marked by relatively high topographical variations resulting in 579 

higher temporal median backscatter and thus high local values of 𝐺𝑖 . In other words, the 580 

shrublands are located in a region with high topographic variations and thus high local 𝐺𝑖 values 581 

indicative of layover effects. The area of layover was not included in the reference map because 582 

the resolution of the SRTM was not sufficient to predict this effect. Furthermore, the visual 583 

inspection of the optical images of this area reveals that the shrub area is characterized by 584 

different types of soil or geology (Figure 11), some of which exhibit very high backscattering 585 

values and correspond to areas with higher topography. Our analysis suggests that the EX-map 586 

was indeed correctly extracted for this area. We would argue that this is a further confirmation 587 

of the necessity of generating an EX-map based on SAR time series analyses. 588 
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 589 

Figure 10 Input data sources, land cover classes and derived EX-map for study site 3 located in Beledweyne, Somalia. The 590 

scale of (c), (d), (e) and (f) are the same as (a). 591 

 592 

Figure 11 Example of shrubland with different soil types and elevation. (a) EX-map is shown in yellow with an optical image 593 
from Google Earth as background. (b) Zoom-in of an optical image from Google Earth. (c) 90m resolution STRM DEM 594 

corresponding to (b). 595 
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4.2. Evaluation of EX-map sublayers 596 

The proposed method also provides a second layer of information, i.e. it splits the EX-map into 597 

five sublayers including shadow (topographic, urban) and arid areas, permanent water bodies, 598 

layover (topographic), layover/double-bounces (urban) and densely vegetated areas. In this 599 

section, the accuracy of four of the five sublayers is evaluated using different reference data 600 

sets, taking the kappa coefficient and the OA as performance measures. In particular, water is 601 

compared with the 30m global surface water map (Pekel et al., 2016), layover/double-bounce 602 

(urban) is evaluated using the 12m resolution GUF data, while layover (topographic) and 603 

shadow (topographic, urban) and arid areas are assessed using the layover/shadow masks 604 

derived by means of a DEM considering the geometrical characteristic of the specific SAR 605 

acquisition orbit and SEL extracted from SAR time-series (Martinis et al., 2018). Regarding 606 

the sublayer of the densely vegetated areas, it was not possible to evaluate it because this 607 

sublayer is rather unique and no similar reference data set was available. The permanent water 608 

bodies sublayer was evaluated at all test sites, except in Beledweyne (Somalia) because no 609 

permanent water bodies were classified in that region. Kappa coefficients higher than 0.6 and 610 

the OAs higher than 0.9 for all test sites (Table 3) indicate that the permanent water bodies 611 

sublayer generated is reliable. 612 

Table 3 Evaluation results of selected sublayers in the EX-map generated at different study sites (study site is abbreviated to 613 

SS in this table) 614 

 

PERMANENT 

WATER BODIES 

LAYOVER 

(TOPOGRAPHIC) 

SHADOW (TOPOGRAPHIC, 

URBAN) AND ARID AREAS 

LAYOVER/DOUBLE-

BOUNCE (URBAN) 

Kappa OA Kappa OA Kappa OA Kappa OA 

SS1_TRACK 

30 

0.76 0.99 - - - -  0.34 0.96 

SS1_TRACK 

154 

0.83 0.99 - - - - 0.23 0.96 
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SS2_TRACK 

15 

0.96 1.00 0.69 0.94 0.24 0.99 0.21 0.88 

SS2_TRACK 

66 

0.95 1.00 0.66 0.95 0.29 0.98 0.13 0.88 

SS3 - - - - 0.48 0.95 0.01 0.78 

SS4 0.68 0.99 - - - - 0.15 0.82 

SS5 0.62 0.96 - - - - 0.22 0.93 

SS6 0.82 0.99 - - - - 0.18 0.95 

Sublayers representing layover (topographic) and shadow (topographic, urban) and arid areas 615 

were only evaluated on the Italian and Somalia sites, as they are the only two sites with 616 

significant mountainous (i.e. the Alps) and arid areas. This allows for the extraction of 617 

consistent shadow and layover masks by means of a DEM and SEL mask using time-series of 618 

SAR data. In fact, the layover and shadow caused by low topography could be missed entirely 619 

due to the rather low resolution of DEMs. As shown in Table 3, the layover (topographic) 620 

sublayer matches the reference layover reasonably well. The kappa coefficient is higher than 621 

0.6 and OA is higher than 0.9. On the other hand, the shadow (topographic, urban) and arid 622 

areas sublayer correspond poorly with the shadow mask from the DEM and SEL since the kappa 623 

coefficients are 0.24, 0.29 and 0.48 for the three different tracks. The low kappa coefficient 624 

values are arguably caused by inaccurate DEM-derived shadow masks and different definitions 625 

of arid areas. Indeed, a more in-depth analysis of the results reveals that the shadow areas 626 

extracted from the DEM largely underestimate the actual SAR shadow areas. This becomes 627 

apparent in Figure 12, where the EX-map shadow (topographic, urban) and arid areas sublayer 628 

and the reference shadow mask generated by DEM are shown in blue and yellow, respectively, 629 

while the area where the two layers overlap is depicted in red. The visual inspection of the SAR 630 

temporal median backscattering image highlights that low backscattering values over 631 

mountainous regions, i.e. shadow, overlap well with the EX-map shadow (topographic, urban) 632 

and arid areas sub-layer, while this is not the case for the DEM-based shadow mask. This is 633 

further confirmed by calculating the average of the temporal median backscattering values 634 
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within pixels belonging to the EX-map and DEM-based shadow. The values are -20 dB and -635 

13 dB, respectively, where -20 dB can be considered more realistic for the shadow (topographic, 636 

urban) and arid areas class than -13 dB. Therefore, we argue that the shadow (topographic, 637 

urban) and arid areas sublayer provided by the generated EX-map outperforms the DEM-638 

derived shadow mask due to the relatively low resolution of the DEM.  639 

 640 

Figure 12 Example of a shadow sublayer in the EX-map and a reference shadow mask: shadow sublayers in blue, reference 641 

shadow mask in yellow and the overlapped areas of shadow sublayer and reference shadow mask in red. Background is 642 

temporal median image. 643 

With respect to layover/double bounce (urban) sublayers in the EX-map, the kappa is quite low 644 

when using GUF as reference data while OAs are very high (Table 3). The low value of the 645 

kappa coefficient could be explained by the fact that, while the EX-map urban sublayer 646 

represents only layover/double-bounce from buildings (high values of backscattering), the GUF 647 

also contains other targets, such as car parks, gardens, etc. An example of this is shown in 648 

Figure 13.     649 
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 650 

Figure 13 Example of layover/double-bounce (urban) sublayer in the EX-map and reference urban mask (GUF). Green shows 651 

only the layover/double-bounce (urban) sublayer in the EX-map, ginger, only the GUF and white, the intersection of the 652 

layover/double-bounce (urban) sublayer in the EX-map and the GUF. The background is the multi-temporal median image. 653 

The validation of each sublayer has been useful to evaluate the quality and reliability of each 654 

sublayer and, at the same, to assess the EX-map itself.  655 

5. Applications of the EX-map 656 

In this section, the EX-map is applied and tested in the context of floodwater mapping. For 657 

three different test cases, flood extent maps obtained through SAR-based change detection and 658 

the associated EX-maps are extracted from SAR time series analyses. The three flood events 659 

here considered are: a) the River Severn and the city of Tewkesbury (UK), on 11 February 2016; 660 

b) the Webi Shebelle River and the city of Beledweyne (Somalia) on 6 May 2018; c) Hurricane 661 

Harvey-related flooding in the metropolitan area of Houston (USA), on 30 August 2017. For 662 

all three events, the floodwater maps were obtained via the change detection approach proposed 663 

in Chini et al., (2017) using Sentinel-1 images from the same orbits that were used for 664 

generating the EX-maps. Moreover, the flooding in Houston was mapped using the methods 665 

described in Chini et al. (2018, 2019). Finally, we briefly describe an idea for using the EX-666 

map in hydrological models.  667 
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5.1. Case of the River Severn flood (UK), 11 February 2016 668 

The flood image was acquired on 11 February 2016 during the flood event and the reference 669 

image was acquired on 24 January 2017 after the flood. As shown in Figure 14, the HSBA-670 

derived flood extent map is represented in blue and the generated EX-map is displayed in yellow. 671 

This example indicates that there is hardly any overlap between the EX-map and the flood 672 

extent map obtained. However, a small overlapping area depicted in red covers permanent water 673 

bodies that were not removed by change detection, probably due to wind affecting one of the 674 

two image acquisitions. In general, it can be observed that many exclusion pixels are located in 675 

the vicinity of the floodwater. This result, in particular, highlights the importance of 676 

complementing the flood extent maps with an EX-map, as it informs end users of areas where 677 

no classification of floodwater is possible. An interesting example of this is the zoom-in box in 678 

Figure 14, depicting the town of Tewkesbury, which is prone to flooding (Giustarini et al., 2013) 679 

and largely included in the EX-map. 680 

 681 

Figure 14 Change detection-based flood map and EX-map of the River Severn, UK. 682 
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5.2. Case of the Beledweyne flood (Somalia), 6 May 2018 683 

As a second case study, we selected a flooding of the Webi Shebelle River, which occurred in 684 

the region of the city of Beledweyne, Somalia on 6 May 2018. A Sentinel-1 IW image acquired 685 

on 8 May 2018 is used as the flood image while an image acquired on 13 May 2017 is 686 

considered as the reference image. In Figure 15 (a), the extent of the EX-map and floodwater 687 

map is shown in yellow and blue, respectively, while the overlapping area is indicated in red. 688 

For this event, a flood extent map provided by UNITAR 689 

(https://unitar.org/unosat/node/44/2796) is considered as an independent reference data set. It 690 

was manually derived using Radarsat-2 and cloud-free optical data acquired on 9 May 2018. 691 

The availability of this dataset provides some further insights on the usefulness of the EX-map 692 

(Figure 15(b)). In Figure 15(b), pixels in violet identify areas with an overlap between the EX-693 

map and the UNITAR floodwater map. The overlapping areas are mostly located in urban areas 694 

(red box). Moreover, the under-detected floodwater areas in the black box (Figure 15(b)) are 695 

also part of the EX-map. Following the observation of Martinis et al. (2018), these areas are 696 

characterized by a stable, permanently low backscatter of around -20 dB that is not significantly 697 

impacted by the appearance of floodwater. Moreover, Table 4 shows the confusion matrix 698 

computed on the UNITAR flood map and intensity change detection-based flood map with and 699 

without considering the EX-map. The OA increases from 95.92% to 97.02% and the kappa 700 

coefficient increases from 0.40 to 0.48 when considering the EX-map. It can be argued that this 701 

result is further evidence of the added value of the EX-map for stakeholders in flood 702 

management.  703 

https://unitar.org/unosat/node/44/2796
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 704 

Figure 15 Comparison of the EX-map with a change detection-based flood extent map and flood extent reference in 705 

Beledweyne, Somalia.  706 

Table 4 Confusion matrix using a change detection-based flood map and manually derived reference map, applying and not 707 

applying the EX-map.  708 

OA = 95.92% 

Kappa = 0.40 

Manually derived 

flood map 
OA = 97.02% 

Kappa = 0.48 

Manually derived 

flood map using EX-

map 

Flood  No flood Flood No flood 

Change 

detection-

based flood 

map 

Flood 357217 165388 Change 

detection-

based flood 

map using 

EX-map 

Flood 352754 160601 

No 

flood 

820034 22822361 

No 

flood 

60282 23091363 

 709 
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5.3. Case of the Houston flood (USA), 29 August 2017 710 

As a third case study, we selected the Hurricane Harvey-related flooding in the metropolitan 711 

area of Houston in August 2017. In this case, the EX-map was compared with the SAR-based 712 

floodwater extracted using not only the SAR intensity (Chini et al., 2017) (Figure 16 (a)) but 713 

also the InSAR coherence (Chini et al., 2019) (Figure 16 (b)). In Figure 16 (a), pixels in yellow 714 

and blue represent non-overlapping regions of the EX-map and the SAR intensity-based flood 715 

map (i.e. mainly flooded regions over open areas), while pixels in red represent the overlapping 716 

part. The small number of pixels in red are located on the edge of the EX-map and are probably 717 

due to an underlying mixture of different land cover classes. Moreover, Figure 16 (b) provides 718 

the comparison between the EX-map and the floodwater map that is derived from InSAR 719 

coherence, in addition to SAR intensity data. The advanced mapping approach means that the 720 

flood extent map includes both flooded open areas and a significant part of flooded buildings. 721 

Pixels in green indicate the urban flood map, and pixels in violet represent the overlap between 722 

the EX-map and the urban flood map. As shown in Figure 16 (b), the high number of pixels in 723 

violet represent the flooded buildings that could only be identified by considering InSAR 724 

coherence in addition to SAR intensity data. This result supports our initial assumption that an 725 

EX-map provides essential additional information for SAR intensity-based flood maps. 726 

 727 
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Figure 16 Comparison of the EX-map with a change detection-based flood extent map and urban flood extent using InSAR 728 

coherence in Houston, USA. 729 

5.4. Assimilating the EX-map in hydrological-shallow water models  730 

Hydrodynamic models are powerful tools for simulating and predicting flood inundations. 731 

Besides the different input data (e.g. precipitation, streamflow, DEM) that are necessary for 732 

running these models, there is a need for additional data to enable the reduction of their 733 

prediction uncertainty. In this context, the assimilation of SAR data into flood forecasting 734 

models has proven its value for reducing the uncertainties (Cooper et al., 2019; Dasgupta et al., 735 

2021a, 2021b; Di Mauro et al., 2021.). However, Di Mauro et al. (2021) also shows that the 736 

effectiveness of the assimilation of SAR-derived flood maps into a flood forecasting model 737 

significantly drops when there are significant errors in the observation. Prior to the assimilation 738 

it is therefore of primary importance to mask out areas where the SAR observations do not 739 

provide any reliable information on the flood situation. As a matter of fact, our EX-maps are 740 

expected to provide relevant information for increasing the performance of the assimilation. In 741 

this way, SAR information is assimilated only in the areas outside EX-maps while other 742 

auxiliary data can be analysed in the areas included in EX-maps. 743 

6. Conclusions 744 

In this study, we introduced an automatic approach for generating an exclusion map, i.e. EX-745 

map representing areas that cannot be classified as flooded or unflooded using SAR intensity 746 

data. We argue that the generation of an EX-map is of paramount importance when mapping 747 

floodwater using SAR intensity-based approaches. To this end, the EX-map includes shadow 748 

and layover caused by mountains/buildings, sand areas, permanent water bodies and densely 749 

vegetated areas. To obtain this map, we proposed an automatic method using three 750 

temporal/spatial indicators, namely the local Getis-Ord 𝐺𝑖 computed using the multi-temporal 751 
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median backscatter, multi-temporal minimum and multi-temporal standard deviation, extracted 752 

from the C-Band Sentinel-1 IW SAR time series from the EODC data-cube. While previous 753 

methods use masks derived from auxiliary datasets, our EX-map is exclusively derived from 754 

time series of SAR data. It is therefore better tailored to data that are also used to extract the 755 

floodwater extent. Moreover, the proposed method provides five valuable EX-map sublayers 756 

representing specific land cover and SAR image distortion classes. The sublayer information 757 

could also be used to remove the layover/double-bounce (urban) sublayer from the EX-map for 758 

algorithms enabling the detection of floodwater in urban areas based on multitemporal InSAR 759 

coherence (Chini et al., 2019; Pulvirenti et al., 2021).  760 

The proposed method was tested and evaluated on 6 study sites using Sentinel-1 IW images 761 

with a spatial resolution of 20 m that were acquired from eight orbital tracks. The quality of the 762 

EX-map was evaluated by a cross-comparison with globally available land cover maps. The 763 

observed discrepancies between the EX-map and the dataset used for cross-comparison are 764 

mainly located in densely vegetated areas (i.e. dense forests) and urban areas affected by 765 

layover/double-bounce. They can be largely explained by inherent differences in the definition 766 

between the EX-map and reference dataset. We argue that the definition of the EX-map is more 767 

appropriate than the ones of other reference datasets when dealing with SAR-based retrievals. 768 

Moreover, the analysis of the second informative layer, i.e. the five EX-map sublayers, supports 769 

our conclusion: the layover areas caused by topography and permanent water bodies were 770 

covered by the EX-map with satisfying accuracy, i.e. the kappa coefficients and OAs were 771 

higher than 0.6; the shadow (topographic, urban) and arid areas in the EX-map were better 772 

classified compared to the DEM-derived shadow mask and SEL and the layover/double-bounce 773 

(urban) sublayer in the EX-map only included the layover/double-bounce areas in built-up 774 

environments. The EX-map still shows limitations in the low vegetation areas (e.g. grassland, 775 
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cropland and shrubland), because in some regions, low vegetation with a stable backscatter 776 

behaviour over time, is difficult to distinguish from the densely vegetated areas. 777 

The usefulness and effectiveness of this new product are further tested in the framework of 778 

three different flood events occurring in different parts of the world. The results provide 779 

evidence that the EX-map highlights most of the areas affected by classification errors, 780 

demonstrating that the EX-map adds value to flood extent maps obtained with conventional 781 

SAR-based flood mapping methods. 782 

It can be argued that besides complementing flood mapping, the proposed EX-map may also 783 

support the assimilation of flood extent maps into hydrological-hydraulic models. In the next 784 

step, the proposed EX-map will therefore be applied to mask out areas that should not be 785 

considered when assimilating SAR-based flood extent observations into hydrological-shallow 786 

water models. Other applications of EX-map are planned to be investigated. Indeed, we 787 

hypothesize that the availability of EX-MAP has the potential to support different geophysical 788 

parameter retrievals relying on backscattering intensity, e.g. soil moisture. 789 
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