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ABSTRACT: The mechanical behavior of wood products highly depends on structural features on several length scales. 
This leads to a high amount of random fluctuation in mechanical properties at the structural level. In practice, 
homogeneous material behavior within timber elements is assumed and uncertainties in loading and load-bearing capacity 
are considered by using partial safety factors. Those are not directly linked to the mechanical behavior of the considered 
elements. Therefore, a stochastic framework opening up the possibility to establish such links by combining structural 
analysis and probabilistic descriptions of wood could be an important step in timber design. 

For example, in GLT beams the mechanical behavior mostly depends on the tensile properties of individual boards. To 
describe their fluctuations, simulations on this level are performed. The reconstruction of knots and the implementation 
of new fracture mechanical methods allows the prediction of stiffness and strength properties for knot sections. 
Condensation of those results into stiffness and strength profiles permits the development of probabilistic models and the 
random generation of such profiles, and their use in wood product simulations. This can be used for sensitivity analyses 
of timber engineering designs or to obtain probabilistic descriptions of the uncertainties at the level of timber elements. 
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1 INTRODUCTION 123 
The future competitiveness of wood compared to other 
building materials also depends on the development of 
sophisticated simulation tools. Here, one of the main 
challenges encountered is the prediction of load bearing 
capacities based on realistic failure mechanisms. The 
development of new or the optimization of existing wood-
based products and the combined use of wood with other 
materials requires the description of mechanical processes 
and their fluctuations in wood. A multiscale modeling 
approach, starting with the development of a failure 
criterion for clear-wood [1-3], based on simulations of 
lower length scales down to the single cell level, its 
application to realistically modeled wooden boards with 
knots and fiber deviations [4-5] and the resulting 
condensation of computationally obtained effective 
material properties, can be used to transfer information of 
such varying material properties, and, thus, of 
uncertainties on several levels, to the timber structural 
element level [6-7]. Thus, we first present an approach to 
simulate the fracture behavior of knot sections, which in 
future will be used to obtain effective strength values of 
such sections. Then, we show how the results of such 
simulations can be condensed into so-called stiffness and 
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strength profiles, which next can be used in the simulation 
of wood products. Here we extend previous modeling 
approaches for GLT beams [8-13], where such beams 
were subdivided into sections with assigned material 
properties. The latest of these models used constant 
fracture energies for knot sections [14] and employed the 
extended finite element method (XFEM) [15]. In contrast, 
in our contribution, we first reconstruct real experiments 
by virtually reconstructing the lamellas with all knots, 
which allows us to compare each simulated beam with the 
experimentally tested one. In addition, the inclusion of 
cohesive surfaces between the individual lamellas will 
lead to more realistic global failure mechanisms. 
 
2 FRACTURE SIMULATIONS OF 

KNOT SECTIONS 456 
Especially for materials with a complex micro- and 
macro-structure, like wood, crack initiation and 
propagation are subject to multiple interlinked effects. In 
wood, crack growth starts on the microscopic level from 
defects in the cell walls [16]. As those cracks localize – 
close to reaching the peak load – the actual macro crack 
opens. After crack initiation so-called fiber bridging 
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causes toughening effects that result in a cohesive facture 
behavior [17]. 
In order to properly model such cracks, the recently 
emerging phase field method for fracture offers an 
implicit geometric representation of a crack, which, in 
theory, allows topologies of arbitrary complexity [18-19]. 
The original theory is limited to brittle fracture of 
isotropic materials. However, in recent years, 
implementations regarding extensions towards  

• plastic behavior, based on cohesive zone models 
[20],  

• anisotropic constitutive laws [21] and  
• anisotropic fracture energy release rates [22-23]  

were proposed. 
In the phase field method, a sharp crack Γ𝑐𝑐 in a body Ω is 
approximated by a diffusive crack zone Γ𝑐𝑐(𝑑𝑑) where 𝑑𝑑 is 
the so-called phase field variable. 𝑑𝑑 ∈ [0,1] defines the 
crack topology, with 𝑑𝑑 =  0 as the uncracked state and 
𝑑𝑑 =  1  as the fully cracked state. The width of the 
transition zone is characterized by a regularization 
parameter, the so-called length scale parameter.  
The entire theory is built around a variational model of 
Griffith’s theory that is put into an energy minimization 
scheme of the total energy of the system (excluding 
contributions of body and surface loads here): 

Π = � [𝜔𝜔(𝒅𝒅) 𝜓𝜓+(𝜺𝜺) + 𝜓𝜓−(𝜺𝜺)] 𝑑𝑑𝑑𝑑
Ω

+ �𝐺𝐺𝑐𝑐,𝑖𝑖 � 𝛾𝛾𝑖𝑖(𝑑𝑑𝑖𝑖 ,∇𝑑𝑑𝑖𝑖 ,𝑨𝑨𝑖𝑖) 𝑑𝑑𝑑𝑑,
Ω

𝑛𝑛
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where 𝒅𝒅 is a vector of phase field variables of length n, 𝜔𝜔 
is the degradation function that damages the solid,  𝜓𝜓+ is 
the fracture contributing or active part of the strain energy 
density, 𝜓𝜓−  is the inactive or passive part of the strain 
energy density, 𝐺𝐺𝑐𝑐,𝑖𝑖 is the fracture energy release rate of 
the 𝑖𝑖-th phase field variable, 𝑨𝑨𝑖𝑖 is a second order tensor, 
the so-called structural tensor, defining the anisotropic 
properties in form of preferable crack directions or weak 
fracture planes, and 𝛾𝛾𝑖𝑖 is the crack surface density which 
approximates the sharp crack as a volume integral: 

Γ𝑐𝑐,𝑖𝑖 ≈ Γ𝑐𝑐,𝑖𝑖(𝑑𝑑𝑖𝑖) = � 𝛾𝛾𝑖𝑖(𝑑𝑑𝑖𝑖 ,∇𝑑𝑑𝑖𝑖 ,𝑨𝑨𝑖𝑖)𝑑𝑑𝑑𝑑
Ω

 

For modeling the anisotropic behavior of wood, two 
different approaches are applied in this work: To 
distinguish different failure mechanisms, two phase field 
variables are used, one for the longitudinal (L) direction 
and one for the radial-tangential (RT) plane. Additionally, 
the structural tensor is used to scale the phase field’s 
gradient in the RT plane such that the L direction is 
favorable for crack propagation. 
This coupled FEM problem is solved using a so-called 
staggered approach. Here, first, the deformation field is 
fixed and the phase field sub-problem is solved. 
Subsequently, the phase field variables are fixed, and the 
deformation problem is solved using the newly obtained 
phase field variables. 
The model is first tested with a simple single edge notch 
tension test, where the fiber inclination is varied from 0° 
to 90° (see Figure 1). The test clearly shows that the 
expected behavior of having a crack opening along the 

weak axis of the material can be modeled. At the point 
where stresses in L direction dominate, the failure mode 
switches and a crack opens perpendicular to the fiber 
direction. 

  
(a) 0° (b) 50° 

  
(c) 70° (d) 90° 

Figure 1: Single edge notch plates tested for various fiber 
angles. The fiber direction is depicted by green arrows. 
The plates are held both at top and bottom and are loaded 
in form of a prescribed vertical deformation at the top 
edge. The phase field variables are depicted in blue for 
the L direction and red for the RT plane. 
 
By implementing this new approach into previous 
developments of a numerical simulation tool for wooden 
boards [4-6], which is able to consider morphological 
features at the single board level, like virtually 
reconstructed knot inclusions and fiber deviations in their 
vicinities, realistic simulations of complex failure 
mechanisms of not only single wooden boards and their 
use in timber connections but also of more complex wood-
based products, like Glulam and CLT elements, are 
rendered possible.  
 

 
Figure 2: Crack between two knots. The blue region 
depicts crack phase field 𝒅𝒅𝟏𝟏 > 𝟎𝟎.𝟗𝟗𝟗𝟗, the red region crack 
phase field 𝒅𝒅𝟐𝟐 > 𝟎𝟎.𝟗𝟗𝟗𝟗 . The green and yellow arrows 
depict the fiber directions, where the more yellow an 
arrow is, the more it deviates from the beam’s 
longitudinal axis. 



 
In order to gain insight into the capabilities of the model 
being able to compute complex crack geometries, a tensile 
test of a specimen including two knots was performed (see 
Figure 2). The crack initiation starts at the lower knot in a 
region that is highly stressed perpendicular to the fiber and 
then propagates upwards. Obviously, by geometrically 
describing cracks as a continuous field, it is possible to 
model very complex crack topologies. 
 
3 DERIVATION OF EFFECTIVE 

MATERIAL PROPERTY PROFILES 
The detailed simulation of entire timber structures 
including all their local defects, like knots, up to the point 
of failure is most likely not feasible. However, by being 
able to compute the failure mechanisms of arbitrary 
sections of wooden boards, it is possible to consider the 
spatial variability and uncertainty of mechanical 
properties, in particular stiffness and strength, of single 
boards with effective material profiles. 

 
An example of such a condensed effective material profile 
is shown in the following [5]. Here, bending stiffness 
profiles are compared for a board subjected to four-point 
bending. For the experimental profile, a strain field on the 
board surface was computed by using digital image 
correlation measurements and by estimating the local 
cross sectional bending stiffness of the board with linear 
fits into the strain fields (see Figure 3 for the modeling 
approach). For the numerical simulations, the virtually 
reconstructed board with computed fiber deviations was 
subjected to the same boundary conditions in an elastic 
FEM simulation. The comparison of a sample board in 
Figure 4 shows the capabilities of our well-validated 
numerical simulation tool to capture even local stiffness 
effects accurately. 
 
For the simulation of GLT beams in the next section, this 
approach is now simplified even further. Instead of 
continuous stiffness profiles, we now introduce piecewise 
constant ones, according to a previous subdivision of 

 

Figure 3: Modeling approach for obtaining effective material properties based on commonly used laser scanning of timber 
boards during the strength grading process [5] 

 

Figure 4: Comparison of experimentally and numerically obtained bending stiffness profiles [5] 



individual lamellas into knot and clear wood sections. The 
abovementioned simulations were performed not just for 
a single board section but for all previously defined 
sections of a lamella (see Figure 5). The obtained results 
can be evaluated and processed into piecewise constant 
stiffness and strength profiles. For the latter ones, 
previously determined indicating properties (IPs) for knot 
groups under longitudinal tension [24] were used instead 
of fracture mechanics simulations. As for other wood 
product types additional effective strength properties 
might be of interest, the same workflow could also be 
applied, e.g. for shear or perpendicular-to-grain virtual 
loading conditions. 
 

 

Figure 5: During the virtual reconstruction process, knots are 
grouped into so-called knot sections, for which FE models are 
generated. The corresponding simulation results information is 
then condensed into stiffness and strength profiles. 

4 SIMULATION OF WOOD PRODUCTS 
The previously obtained profiles of piecewise constant 
and effective material properties are now assigned to GLT 
beams, where the positions of the scanned and virtually 
reconstructed lamellas are known. This allows for the 
direct comparison of numerical and experimental results, 
with respect to the beams’ load-bearing behavior, i.e. 
global bending strength and failure mechanisms.  
The GLT beam model (see Figure 6) is subjected to a four-
point bending test, where discrete cracks in timber boards 
by means of XFEM and delamination between lamellas 
using cohesive surface properties are considered. For the 

former a modified traction-separation law is used, where 
the strength value is assigned to the section according to 
the corresponding strength profile of the lamella and 
constant fracture energies (𝐺𝐺 = 20.0 Nmm/mm2 ) are 
used. For the simulation of the quasi-delamination effect, 
which allows vertical cracks to “jump” to another 
location, both constant strength (𝑓𝑓𝑛𝑛 = 100.0 N/mm2 and 
𝑓𝑓𝑠𝑠 = 𝑓𝑓𝑡𝑡 = 10.0 N/mm2 )  and fracture energy ( 𝐺𝐺 =
1.0 Nmm/mm2) properties are assigned. This approach 
allows the representation of the rather complex failure 
behavior of GLT beams in a simplified way with 
restrictions regarding crack directions (only vertical ones 
in lamellas) and crack initiation. The test series consisted 
of four different GLT beam setups, with two groups of 
beam types with four lamellas and two groups of beam 
types with ten lamellas. In addition, by introducing two 
different strength classes this leads to a total of four GLT 
beam types (A/T14-4 = type A with 4 lamellas of strength 
class T14, B/T22-4, D/T14-10 and E/T22-10). The exact 
dimensions and the description of the experimental 
findings can be found in [25]. For the numerical 
simulations the commercial FE software Abaqus (from 
Dassault Systèmes, Vélizy-Villacoublay, France) was 
used and all simulations were performed on a high-
performance computer cluster. 
 
4.1 Mesh size study 
To determine an efficient FE mesh size with regard to 
sufficient accuracy and manageable simulation times, we 
first varied the mesh size by controlling the number of 
elements in thickness direction per lamella from one to 
five elements. All other simulation parameters were kept 
constant. The resulting differences in load bearing 
capacities can be seen in Figure 7 for all four beam types. 
For better comparability, the load-bearing capacities were 
normalized to the simulation result of the finest mesh (five 
elements per lamella in thickness direction). It can be 
noticed that except for two outliers, a mesh size of three 
elements per timber board height is sufficient. In the 
model of the outlier (marked in Figure 7a) a clear wood 
lamella was present at the tensile loaded edge. Thus, the 
models with one or two elements per board thickness 
cannot capture the high tensile stresses close to the bottom 
edge and failure occurred in adjacent knot sections. In 
contrast, the finer meshes led to failure of mentioned clear 
wood section. The outlier in Figure 7d is caused by the 

 

Figure 6: GLT modeling approach and test setup 



inability of the coarse mesh model to correctly capture a 
load redistribution effect and subsequent load increase, 
which can be modeled by finer meshes. 
 
4.2 Failure mechanisms 
As already mentioned, all GLT beam simulation models 
are based on real experimental setups with realistic 
consideration of knot sections. Thus, an emphasis of this 
work was on the representation of experimentally 
observed failure mechanisms, which differ for the various 
beam setups, i.e. number of laminations and strength 
class, which has been shown in [25]. In that paper, also 
failure modes were documented in detail.  
An exemplary comparison of numerically and 
experimentally obtained failure mechanisms is shown in 
Figure 8 for a beam of Type B. Within the higher strength 
class (T22), a rather small number of knot sections is 
present in the bottom lamella. Thus, failure starts in the 
first knot section in the right quarter of the model and then 

extends towards the beam’s left end. For this strength 
class, very similar mechanisms could also be observed in 
the experiments. 
Another comparison is shown in Figure 9 for a GLT beam 
of type D (10 laminations and strength class T14). Here, 
the lower strength class leads to a rather localized and 
brittle failure mechanism in the region with the highest 
bending moment. The first three lamellas (from the 
bottom) fail first in vertical direction, before the cracks 
extend in horizontal direction. Although the exact location 
of the initial vertical crack could not be predicted, the 
general failure mechanisms could be reproduced very 
well. 
 
4.3 Prediction of load-bearing capacity 
Figure 10 shows the model’s capability to predict both 
system stiffness and load-bearing capacity in comparison 
to the experiments. The system stiffness was evaluated for 
both simulations and experiments by evaluating the 

 

Figure 7: Dependency of mesh size (number of finite elements per lamella in thickness direction) on the load-bearing 
capacity Fsim , with Fsim being normalized to Fsim for five elements per lamella in thickness direction, for all four beam 
types: (a) A/T14-4, (b) B/T22-4, (c) D/T14-10 and (d) E/T22-10. The orange color marks outliers, defined by a 
difference >4% the results with three elements compared to the ones for five elements. [26] 

(a)                                      (b)                                      (c)                                      (d) 

 

Figure 9: (a) numerically [26] and (b) experimentally [25] obtained failure mechanisms for a GLT beam of type B (4 
laminations, T22) 

 

 

Figure 8: (a) numerically [26] and (b) experimentally [25] obtained failure mechanisms for a GLT beam of type D (10 
laminations, T14) 



stiffness in the load-displacement diagrams linearly 
between 10 % and 40 % of the maximum load. As can be 
clearly seen the model approximates the experimental 
system stiffness very well.  
To estimate the GLT load-bearing capacity, the following 
approach is used to determine the peak load. If the load 
decreases during the simulation by at least 3 %, the 
corresponding load before the load drop is defined as the 
maximum simulation load. In addition, two energy 
criteria must be fulfilled, which limit the amount of 
viscous regularization energies to obtain reasonable 
solutions. As can be seen on the right of Figure 10, the 
maximum loads can also be predicted well with a 
coefficient of determination of 𝑅𝑅2 = 0.88. 
 
 
5 CONCLUSIONS AND OUTLOOK 
Our main research aim is to use this simulation approach 
in the development of new wood composites by making 
the material wood more predictable and thus more 
interesting for engineering applications. As the simulation 
of larger structures of wood-based products, where all 
inhomogeneities are modeled in high detail, might be not 
feasible in the near future, we developed a framework for 
sensitivity analysis and robust design optimization of 
structures made out of wood-based products [6,27], which 
is based on a random material model for both stiffness and 
strength properties of individual laminations.  
By combining detailed simulations on various length 
scales and condensing this information into so-called 
stiffness and strength profiles, we are able to also simulate 
realistic failure mechanisms on the wood product level 
and to estimate their load-bearing capacities. 
Thus, this concept must be consistently improved on 
several levels, as presented in this paper. The proper 
estimation of strength properties for knot sections is one 
of the main focuses of current research efforts. Another 
important step towards a complete modeling concept for 
mass timber components is the adequate condensation of 
the obtained local material properties and their 
fluctuations into models with lower degrees of detail, but 

which must still be able to capture all important system 
effects.  
Finally, the validation of such an approach on all levels, 
like the detailed reconstruction of GLT beams and the 
comparison to experimentally obtained failure 
mechanisms, completes our modeling strategy. 
Next, by also developing random process models, able to 
capture the characteristics of the stiffness and strength 
profiles, also predictions on statistical strength properties 
of various strength classes can be made. A previous 
application of such an approach [7] already showed that 
for CLT plates under concentrated loading the use of such 
strength profiles led to very good estimates of not only the 
mean value but also the standard deviations of the bending 
strength.  
In another application [28], stiffness profiles are used in a 
metamodel assisted optimization of glued laminated 
timber systems by reordering laminations using 
metaheuristic algorithms. This allows the optimized 
assignment of a batch of laminations to a set of GLT 
beams, such that an optimized load-bearing behavior is 
achieved. 
This framework also can be easily incorporated into 
existing workflows where specific mechanical models are 
already established. An additional further development of 
all individual steps within this framework, e.g. by 
improving fracture mechanics simulations of knot 
sections, will lead to improved prediction capabilities and, 
thus, more efficient timber structures. 
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