
DIPLOMARBEIT

Theory of a massively parallel
coherent perfect absorber in a

degenerate 4f-cavity
ausgeführt am

Institut für Theoretische Physik
der Technischen Universität Wien

Institute for Theoretical Physics
Vienna University of Technology

unter der Anleitung von

Univ.Prof. Dipl.-Ing. Dr.techn. Stefan Rotter
Univ.Ass. Dipl.-Ing. Kevin Pichler, BSc

durch

Helmut Hörner
Matrikelnummer 08850092

helmut.hoerner@tuwien.ac.at

Wien, 2. August 2021 ..

Contents
Abstract v

1. Introduction 1
1.1. Coherent Perfect Absorbers (CPAs) 1
1.2. Existing CPA implementations . 2
1.3. The new concept of a mode-independent, universal 4f cavity CPA 3

2. Numerical simulation of light propagation and lenses 9
2.1. Foundations of scalar wave optics and Fourier optics 9

2.1.1. The Helmholtz equation 9
2.1.2. The Rayleigh-Sommerfeld transfer function 10
2.1.3. The Fresnel transfer function 12
2.1.4. Thin spherical lenses . 13
2.1.5. Thin aspherical perfect lenses 17
2.1.6. Wavefront tilt . 19

2.2. Software functionality around 2D FFT 21
2.2.1. Sign conventions . 21
2.2.2. Position-space grid and xy-coordinates 21
2.2.3. Spatial-frequency-space grid and k-space 24
2.2.4. Tilt of the k-vector and mode-ordering 27
2.2.5. Fourier-coefficient vectors 28

2.3. Software implementation of light propagation 29
2.4. Software implementation of lenses 31
2.5. A first, naive simulation approach for a one-way trip through a 4f

cavity . 31
2.6. FFT vs. analytic FT: optimal grid and sampling parameters . . . 33

2.6.1. Oversampled transfer function 35
2.6.2. Critically sampled transfer function 37
2.6.3. Undersampled transfer function 38
2.6.4. Conclusion . 39

2.7. Guard-area and maximum mode number 40
2.8. A refined simulation approach for a one-way trip through a 4f cavity 42

2.8.1. Additional Subroutines . 42
2.8.2. Main program . 43
2.8.3. Simulation result . 45

2.9. Simulating a round-trip through a 4f cavity 46
2.9.1. Round-trip subroutine . 46

i

Contents

2.9.2. Main program . 47
2.9.3. Simulation result . 47

3. A fast and efficient 4f-cavity-CPA simulation 51
3.1. Properties of an ideal partially reflecting mirror 51

3.1.1. Creating a model suitable for scalar optics 53
3.1.2. Plausibility checks . 57

3.2. A simple, one-dimensional CPA as a toy model 57
3.2.1. Reflection coefficient and critical coupling 57
3.2.2. Simulation results . 60
3.2.3. Plausibility check . 62

3.3. Extending the simple 1D approach to 3D: Calculating a 4f-Cavity-CPA 70
3.3.1. Calculating the 4f-cavity reflection matrix from the single-

round-trip transmission matrix 71
3.3.2. Estimating the single-round-trip transmission matrix for

critical absorption . 73
3.3.3. Software implementation 74
3.3.4. Simulation results and plausibility check 75

4. Implementation and simulation results 81
4.1. Effects of propagation simulation method and lens geometry . . . 81

4.1.1. Software Implementation 81
4.1.2. Simulation Results . 82
4.1.3. Discussion . 84

4.2. Eigenmode decomposition of reflection matrix 84
4.2.1. Software implementation 84
4.2.2. Simulation Results . 85

4.3. Exploring the parameter-space for optimization potential 87
4.3.1. Software implementation 88
4.3.2. Mode-dependent attenuation 88
4.3.3. Mode-dependent focal length (and total length) 89
4.3.4. Mode-dependent distance between second lens and perfect

back-mirror . 90
4.4. Sensitivity against deviations from optimal parameters 92

4.4.1. Deviations in the position of the total reflective mirror . . 92
4.4.2. Deviations in the position of the second lens 96
4.4.3. Deviations from critical absorption 98
4.4.4. Sensitivity against mirror tilt 105

5. A refined simulation method using scattering matrices and
transfer matrices 109
5.1. Introduction . 109

ii

Contents

5.2. Simulating the 1D toy-model with transfer matrices and scattering
matrices . 109
5.2.1. One-dimensional cavity without attenuation 109
5.2.2. One-dimensional cavity with absorber 113
5.2.3. One-dimensional cavity with an absorber having partially

reflecting facets . 116
5.3. Simulating a 4f-cavity with transfer matrices and scattering matrices118

5.3.1. Multiport scattering matrices 118
5.3.2. Converting multiport scattering matrices to transfer matrices121
5.3.3. Back-conversion of the cavity’s total transfer matrix into the

corresponding scattering matrix 122
5.3.4. Software implementation 123
5.3.5. Simulation results . 125

6. Conclusion and Outlook 133

Appendix 135
A. Derivations . 135

A.1. Derivation of the Helmholtz-equation (2.9) 135
A.2. Derivation of differential equation (2.12) 138
A.3. Derivation of equations (2.25) and (2.27) 139
A.4. Derivation of equation (2.29) 140
A.5. Calculation of the integral in the derivation of equation (2.35)141
A.6. Derivation of the reflection coefficient (3.5) and the trans-

mission coefficient (3.6) . 141
A.7. Derivation of equation (3.8) 143
A.8. Derivation of equations (3.9) and (3.10) 143
A.9. Proof of energy-conservation condition (3.13) 144
A.10. Proof of phase-condition (3.14) 145
A.11. Proof of unitarity condition (3.15) 146
A.12. Derivation of the condition for the critical complex wavenum-

ber (3.18) . 147
A.13. Derivation of equation (3.22) 149
A.14. Derivation of equation (3.38) 153
A.15. Derivation of equation (3.42) 154

B. Software and hardware tools . 155
C. Software implementation of base functionality 155

C.1. create_ax . 155
C.2. fft2_phys_spatial . 157
C.3. ifft2_phys_spatial . 158
C.4. fft2_basis_func . 159
C.5. create_k_ax . 161
C.6. k_vec_tilt . 162
C.7. sorted_mode_numbers . 163

iii

Contents

C.8. fft2_arr_to_vec . 164
C.9. fft2_vec_to_arr . 166
C.10. RSTF_prop . 168
C.11. FRTF_prop . 170
C.12. prop . 172
C.13. lens . 173
C.14. tilt . 175
C.15. opt_grid_params . 176
C.16. embed_image . 178
C.17. extract_center_image . 179
C.18. round_trip_no_atten . 180
C.19. round_trip_no_atten2 . 182
C.20. round_trip_no_atten3 . 184
C.21. transmision_matrix_round_trip_no_atten 186
C.22. transmision_matrix_round_trip_no_atten2 188
C.23. transmision_matrix_round_trip_no_atten3 190
C.24. create_S_matrix . 192
C.25. convert_S_to_M . 193
C.26. convert_M_to_R . 194
C.27. transmision_matrix_prop 195
C.28. transmission_matrix_lens 196
C.29. downscale_TR_matrix . 197

D. Helper functions . 199
D.1. create_test_image . 199
D.2. plot_fields . 202
D.3. create_eye . 204
D.4. create_zeros . 205
D.5. precision_constants . 206
D.6. pval . 207

E. Simulation main programs . 207
E.1. CPA_sim_001_reflection_matrix 207
E.2. CPA_sim_002_r_curve . 209
E.3. CPA_sim_003_mode_decomposition 211
E.4. CPA_sim_004_vary_atten 214
E.5. CPA_sim_005_vary_f . 216
E.6. CPA_sim_006_vary_length 218
E.7. CPA_sim_007_r_curve_deviate 220
E.8. CPA_sim_008_r_curve_deviate 223
E.9. CPA_sim_009 . 227
E.10. CPA_sim_010 . 231

Acknowledgments 235

List of Figures 237

Bibliography 243

iv

Abstract
Currently existing implementations of so-called Coherent Perfect Absorbers (CPAs)
are in general two-port devices, where two incident beams must be carefully con-
trolled with regard to the exact shape of their transverse mode profile, and also
with regard to the mutual phase relations. As a result, these experimental setups
require very elaborate and delicate tuning, and even with perfect adjustment
they are not able to absorb just any incoming coherent light-beam of matching
wavelength, but only carefully engineered wavefronts.

In this thesis we present a new type of massively parallel, coherent perfect ab-
sorber in the form of a degenerate 4f-cavity. The according theory is derived and
supported by extensive computer simulations. In these numerical simulations,
the expected efficiency of a potential experimental implementation is determined.
Moreover, the sensitivity to deviations from ideal parameters is explored.

This new type of 4f-cavity-CPA requires just one single port to absorb the incident
light wave, and also the incident beam does not need any special wavefront-shaping
to be absorbed. Rather, the 4f-cavity-CPA is capable of perfectly absorbing any
superposition of a very large number of transverse modes, which is a significant
advancement compared to currently existing implementations.

v

1. Introduction

1.1. Coherent Perfect Absorbers (CPAs)
A Coherent Perfect Absorber (or CPA for short) was first theoretically proposed in
an article in Physical Review Letters by Chong et al. in 2010 [1]. It is a device that
completely absorbs incoming light of a specific wavelength and a specific spatial
pattern. In contrast to this, incoming light not matching the required conditions
is always partly reflected.

In analogy to the operating principle of a laser, a CPA is often referred to as an
“Anti-Laser”. The meaning of this becomes clear when we recapitulate how a laser
works: a laser, in essence, consists of a leaky optical cavity, an active medium
acting as gain element, and a pump mechanism that provides the energy for the
gain. If the pumping is strong enough such that the gain reaches a critical level,
then light is emitted from the cavity in the form of an outgoing monochromatic
wave, as sketched in image (a) of figure 1.1.

Figure 1.1.: (a) Schematic of a laser oscillator: a gain medium with complex refractive index
n = n� − in�� , embedded in an optical cavity, emits outgoing coherent waves with defined
phase and spatial pattern at wavelength λ0 when the amount of amplification n�� reaches
a threshold value. (b) Schematic of the time-reversed laser oscillator that realizes a CPA:
when the gain medium is replaced by an absorbing medium with complex refractive index
n∗ = n� + in��, incoming waves with definite phase and spatial pattern [the time-reversed
waves of the lasing mode in (a)] are fully absorbed in the medium. Source: [2]

1

1. Introduction

When this process is considered in a time-reversed manner, then the outgoing
wavefront with a specific wavelength and specific spatial pattern becomes an
incoming wavefront with specific wavelength and spatial pattern, and the gain
element providing just the critical gain becomes a loss element providing just the
critical loss. This is visualized in image (b) of figure 1.1.

1.2. Existing CPA implementations
The first experimental CPA implementation from 2011 is a two-channel device and
is described in [3] as follows:

“A laser beam [...] enters a beam splitter [...]. The two split beams
are directed normally onto opposite sides of a silicon wafer of thickness
110 µm, using a MachZehnder geometry. A phase delay in one of the
beam paths controls the relative phase of the two beams. An addi-
tional attenuator ensures that the input beams have equal intensities,
compensating for imbalances and imperfections. The output beams
are rerouted, via beam splitters into a spectrometer.”

Figure 1.2.: First experimental CPA implementation from 2011. Two split beams are directed
onto opposite sides of a silicon wafer with careful attenuation and phase control, such that
the reflected and transmitted contributions are cancelled out and the incoming signal is
perfectly absorbed. Source: [3]

Another experimentally realized CPA variant is described in [4]. It uses a pair of
passive resonators coupled to a microwave transmission line in the background,
which can completely absorb light in its parity-time (PT-) symmetric phase.

In recent years a special line of research in the CPA domain has developed around
anti-lasing-effects created in disordered materials (“random anti-lasing”). Some
examples of this interesting variant are presented in [5–8].

2

1.3. The new concept of a mode-independent, universal 4f cavity CPA

Whereas the requirement of having to carefully control the phase and wavelength
of the two incoming light beams can be seen as an inconvenient limitation for
non-random CPAs, the core of random anti-lasing experiments lies exactly in
the art of carefully controlling and shaping the incident signal, so that perfect
absorption occurs even if the absorber material has a random structure.

A proof-of-concept experimental setup is described in [8]: microwaves of a well-
defined frequency are generated by a vector network analyser and equally dis-
tributed by a power splitter to eight in-phase/quadrature (IQ) modulators, where
the amplitudes and relative phases of the signals are independently tuned. These
signals are injected into an aluminium waveguide via eight external antennas (four
on each side). The central scattering region of the waveguide contains a disordered
medium consisting of a set of randomly placed Teflon scatterers. Localized ab-
sorption is introduced to the system by placing a monopole antenna with a 50 Ω
resistance in the middle of the disordered region (central antenna).

Figure 1.3.: A microwave random CPA as presented in [8].

1.3. The new concept of a mode-independent,
universal 4f cavity CPA

The currently existing CPA implementations as presented in the previous section
are characterized by the following properties:

• They are usually two-port devices, where the two incident beams must be
carefully controlled not only in terms of their wavelength, but also with regard
to the exact shape of their transverse mode profile and the corresponding
phases.

• The current CPA implementations are not “universal” anti-lasers in the
sense that they are not able to absorb any incoming coherent light-beam of
matching wavelength, but only carefully engineered wavefronts.

3

1. Introduction

This thesis aims to set the foundation for the implementation of a new type of
“universal” CPA with the following characteristics:

• One single port to absorb the incident light wave, so that there is no need to
create two specially correlated beams for the anti-lasing effect to occur.

• No need for wavefront shaping.

• Simple, “non-fiddly” hardware design.

How could this be accomplished? Let us, for a moment, consider the initial idea
on how to create a CPA: a very simple laser in form of a plane-parallel cavity with
a partially-transparent mirror on one side an a perfect mirror on the other side
(figure 1.4) becomes a corresponding anti-laser just by replacing the gain-element
by a loss-element (figure 1.5).

However, this simple design is obviously not yet the universal anti-laser we are
looking for. If, for example, the incident wave is not exactly perpendicular to the
xy-plane, the anti-lasing effect breaks down (see figure 1.6).

Figure 1.4.: A simple plane-parallel cavity with a gain element acting as a laser.

4

1.3. The new concept of a mode-independent, universal 4f cavity CPA

Figure 1.5.: The plane-parallel cavity becomes an anti-laser if the gain is replaced by loss.

Figure 1.6.: The simple plane-parallel cavity does not act as anti-laser anymore if the incident
wave is not exactly perpendicular to the xy-plane.

Thus, we would need a cavity where every ray of light is always reflected into
itself, regardless of the incident angle. And — fortunately — there is such a cavity,
namely a “4f-cavity”, which is depicted in figure 1.7.

What is new compared to the previous type of cavity are the two converging
lenses. The first lens is positioned exactly one focal length f after the left mirror,
and the second lens is positioned two focal lengths after the first lens. The right
mirror is eventually positioned yet another focal length after the second lens, hence
altogether at a distance of four focal lengths after the left mirror.

5

1. Introduction

Figure 1.7.: A plane-parallel 4f cavity.

This arrangement ensures that (all lens-errors and other side-effects aside) each
beam entering the cavity from the left side through the semi-transparent mirror is
always reflected into itself (see figure 1.8).

Figure 1.8.: In a 4f cavity, every light-ray is reflected into itself.

6

1.3. The new concept of a mode-independent, universal 4f cavity CPA

This is true not only for rays perpendicular to the xy-plane, but also for incident
rays at any arbitrary angle (see figure 1.9).

Figure 1.9.: In a 4f-cavity, not only rays perpendicular to the xy-plane, but also rays at any
arbitrary angle are reflected into themselves.

By adding the loss element, we get the final, quite simple design of the universal
4f-cavity CPA (see figure 1.10).

Figure 1.10.: Final design of the universal 4f-cavity CPA (anti-laser).

7

2. Numerical simulation of light
propagation and lenses

2.1. Foundations of scalar wave optics and
Fourier optics

2.1.1. The Helmholtz equation
Our starting point is the classical theory of electrodynamics, with Maxwell’s
equations [9] being the central framework (all calculations in SI units):

6∇ · 6E = ρ

�r�0
(2.1)

6∇ · 6B = 0 (2.2)

6∇ × 6E = −∂ 6B

∂t
(2.3)

6∇ × 6B = µrµ06j + µrµ0�r�0
∂ 6E

∂t
(2.4)

In these equations, 2E is the electric field, 2B the magnetic field, ρ the electric charge
density, and 2j the electric current density. The symbols �0 and µ0 represent the
permittivity and the permeability of free space, and �r and µr are the relative
permittivity and permeability as material constants to represent the behavior of
electromagnetic fields in matter.

We deal with optical wave propagation through linear, isotropic, homogeneous,
nondispersive, dielectric media in the absence of source charges and currents.
Therefore, we can set �r = const, scalar and µr = 1, ρ = 0, and j = 0, and get the
following, simplified set of equations:

9

2. Numerical simulation of light propagation and lenses

6∇ · 6E = 0 (2.5)
6∇ · 6B = 0 (2.6)

6∇ × 6E = −∂ 6B

∂t
(2.7)

6∇ × 6B = µ0�r�0
∂ 6E

∂t
(2.8)

As demonstrated in appendix A.1, one can derive from equations (2.5) to (2.8)
a steady state differential equation for the electromagnetic field, which is the
Helmholtz equation:

6∇2U(6r) + k2U(6r) = 0. (2.9)

The scalar function U(2r, t) in equation (2.9) stands for any of the Ei or Bi

components of the electric or magnetic field.

2.1.2. The Rayleigh-Sommerfeld transfer function
The Helmholtz equation (2.9) allows us to reduce the vectorial calculation of light
propagation in empty space (i.e., calculating the propagation of the vector-fields 2E

and 2B) to the more simple problem of calculating the propagation of the complex-
valued scalar field U(2r) without much loss of generality.

This is justified because, in the problem at hand, effects arising from the vectorial
nature of the 2E and 2B fields, like — for example — polarization effects, can be
neglected. Also, as we are only interested in the electromagnetic field’s stationary
field intensity, it is no problem that we dumped the separated e−iωt part of the
wave equation in the derivation of the Helmholtz equation.

We now suppose that a light wave from a monochromatic source is incident on the
transverse xy-plane traveling in the positive z-direction towards the 4f cavity. The
complex field across the z = 0 plane is represented by U(x,y; 0). Following the
derivation in [10, p. 588], it is our goal to calculate the field U(x,y; z) that appears
at another parallel xy-plane at a distance z to the right of the first plane.

The field U(x,y; z) has a two-dimensional Fourier transform given by

A(kx, ky; z) = F (U(x, y; z))

A(kx, ky; z) =
� ∞

−∞

� ∞

−∞
U(x, y; z)e−i(kxx+kyy) dx dy (2.10)

10

2.1. Foundations of scalar wave optics and Fourier optics

A(kx, ky; z) is called the angular spectrum of U(x, y; z). Accordingly, U(x, y; z) can
be represented as the Inverse Fourier Transform of its angular spectrum by

U(x, y; z) = F −1 (A(kx, ky; z))

U(x, y; z) = 1
(2π)2

� ∞

−∞

� ∞

−∞
A(kx, ky; z)ei(kxx+kyy) dkx dky (2.11)

U(x, y; z) has to fulfill the Helmholtz equation (2.9). Inserting equation (2.11) into
equation (2.9) leads to (see appendix A.2):

∂2A

∂z2 +
�
k2 − k2

x − k2
y

�
A = 0 (2.12)

Equation (2.12) is a differential equation of the form A��(z) + αA(z) = 0 with
α = k2 − k2

x − k2
y. Its characteristic polynomial λ2 + α = 0 has the two solutions

λ = ±i
√

α = ±i
"

k2 − k2
x − k2

y. Therefore, the general solution of the differential
equation (2.12) is given by a superposition of

A = A+ e+iz
√

k2−k2
x−k2

y (2.13)

A = A− e−iz
√

k2−k2
x−k2

y (2.14)

According to physics convention, equation (2.13) represents a wave propagating in
positive z-direction, and equation (2.14) represents a wave propagating in negative
z-direction. Our goal was to describe the field U(x,y; z) that appears on a parallel
xy-plane at a distance z to the right of the first plane with U(x,y; 0). Therefore,
we continue with equation (2.13) as the forward-propagating solution.

For z = 0 we demand A|z=0 = A(kx, ky; 0). By replacing A|z=0 with equation (2.13)
while setting z = 0, this boundary condition simply becomes A+ = A(kx, ky; 0),
and hence the final solution is

A(kx, ky; z) = A(kx, ky; 0) e+iz
√

k2−k2
x−k2

y . (2.15)

This is known as the Rayleigh-Sommerfeld transfer function.

11

2. Numerical simulation of light propagation and lenses

With equations (2.11) and (2.21) it is possible to write down the relation between
the source image plane U(x,y; 0) and the observation plane U(x,y; z) in position
space (cf. figure 2.1):

U(x, y; z) = F −1
�
F (U(x, y; 0)) eiz

√
k2−k2

x−k2
y

�
(2.16)

y

z

U(x,y; 0)

x

U(x,y; z)
Figure 2.1.: Given a field on the source plane U(x,y; 0), we can calulate the field on the
observation plane U(x,y; z).

The numerical, algorithmic equivalent of equations (2.15) and (2.16) — using
discrete (x,y)-coordinate values and the Fast-Fourier-Transform (FFT) method
instead of the Fourier transformation — will become the foundation of our numerical
light propagation simulation, as presented in section 2.3.

2.1.3. The Fresnel transfer function
The Fresnel transfer function is a paraxial approximation of the Rayleigh-Sommerfeld
transfer function. The reason we are considering this approximation is mainly
because it will help us to determine the optimal parameters for the discretised
(x,y)-grid.

To derive the Fresnel transfer function, let us review the Rayleigh-Sommerfeld
transfer function from equation (2.15):

A(kx, ky; z) = A(kx, ky; 0) e+iz
√

k2−k2
x−k2

y

This can be expressed as

A(kx, ky; z) = A(kx, ky; 0) e+iφ(kr) (2.17)

12

2.1. Foundations of scalar wave optics and Fourier optics

with

φ(kr) = z
"

k2 − k2
r and (2.18)

k2
r

def= k2
x − k2

y (2.19)

Developing equation (2.18) into a series around kr = 0 results in

φ(kr) = kz − zk2
r

2k
+ O4(kr) (2.20)

Inserting this expression into equation (2.17) gives

A(kx, ky; z) ≈ A(kx, ky; 0) e
+i

�
kz− zk2

r
2k

�
A(kx, ky; z) ≈ A(kx, ky; 0) eikze−i z

2k
k2

r
(2.19)=⇒

A(kx, ky; z) ≈ A(kx, ky; 0) eikze−i z
2k (k2

x+k2
y)

****k = 2π

λ

A(kx, ky; z) ≈ A(kx, ky; 0) eikze−i λz
4π (k2

x+k2
y) (2.21)

Equation (2.21) is a paraxial approximation of equation (2.15), known as the
Fresnel transfer function. As mentioned in the introduction to this section, we will
use this result in section 2.6 to derive the optimal parameters of the (x,y)-grid.

2.1.4. Thin spherical lenses
To numerically simulate a 4f-cavity as depicted in figure 1.10, it is not only necessary
to simulate light propagation between the lenses, or through the absorber, but we
also need to be able to simulate the optical behavior of the two lenses of the 4f-cavity.

A common method for simulating lenses in numerical simulations is the so-called
“thin lens approximation”. An optical lens is called a thin lens if a light ray entering
at coordinates (x, y) on one face exits at approximately the same coordinates on
the opposite face, i.e., if there is negligible translation of a ray within the lens.
Following the derivation in [11, p. 96ff], we will derive in this section how to
simulate a thin spherical lens.

13

2. Numerical simulation of light propagation and lenses

To understand how to correctly model the behavior of a thin spherical lens math-
ematically, we first consider an actual spherical lens with a finite thickness Δ0
along its optical axis. In case of a convergent lens, the thickness becomes smaller
the farther away from the optical axis we are, and hence can be expressed by a
thickness function Δ(x,y) (see figure 2.2).

Figure 2.2.: The Thickness Function: (a) front view, (b) side view. Source: [11, p. 97]

Light passing the lens at the optical axis experiences a phase delay of φ(0,0) = knΔ0,
with n being the refractive index of the lens material. On the other hand, a light-
beam entering the lens at a certain (x,y)-position only passes a shorter distance
Δ(x, y) through the lens, acquiring a phase delay φlens = knΔ(x,y), and in addition
it has to cover the remaining distance Δ0 − Δ(x, y) through air, thereby acquiring
a further phase delay φair = k (Δ0 − Δ(x, y)). Hence, the total phase delay can be
expressed as

φ(x, y) = φlens(x,y) + φair(x,y)
φ(x, y) = knΔ(x,y) + k (Δ0 − Δ(x, y))
φ(x, y) = knΔ(x,y) + kΔ0 − kΔ(x, y)
φ(x, y) = kΔ0 + (kn − k) Δ(x,y)
φ(x, y) = kΔ0 + k (n − 1) Δ(x,y) (2.22)

The complex field across the xy-plane U �(x,y) directly behind the lens is then
related to the incident complex field U(x,y) directly in front of the lens by

U �(x,y) = U(x,y)eiφ(x,y) (2.22)=⇒
U �(x,y) = U(x,y)eikΔ0+ik(n−1)Δ(x,y)

U �(x,y) = U(x,y)eikΔ0eik(n−1)Δ(x,y) (2.23)

14

2.1. Foundations of scalar wave optics and Fourier optics

To determine the thickness function Δ(x,y), we split the whole lens into three
parts as shown in figure 2.3, and write the total thickness function as the sum of
the three individual thickness functions:

Δ(x,y) = Δ1(x,y) + Δ2(x,y) + Δ3(x,y) (2.24)

Figure 2.3.: (a) Geometry for Δ1, (b) Geometry for Δ2, (c) Geometry for Δ3. From: [11,
p. 98] with color edits

Looking at image (a) of figure 2.3, the thickness function of the first lens segment
Δ1(x,y) can be derived as (see appendix A.3):

Δ1(x,y) = Δ01 − R1

�
1 −

#
1 − x2 + y2

R2
1

�
(2.25)

The middle lens segment as depicted in image (b) of figure 2.3 simply has a constant
thickness Δ02:

Δ2(x,y) = Δ02 (2.26)

The derivation of the thickness function of the third lens segment Δ3 as depicted in
image (c) of figure 2.3 is equivalent to the derivation of Δ1, with the only difference
that the radii of convex and concave curvature must have different signs.

In accordance with [11] we adopt the sign convention that as rays travel from
left to right, each convex surface encountered is taken to have a positive radius
of curvature, while each concave surface is taken to have a negative radius of
curvature. Thus in figure 2.3 the radius of curvature of the left-hand surface of
the lens is a positive number R1, while the radius of curvature of the right-hand
surface is a negative number R2.

15

2. Numerical simulation of light propagation and lenses

This leads to the following result (see appendix A.3):

Δ3(x,y) = Δ02 + R2

�
1 −

#
1 − x2 + y2

R2
2

�
(2.27)

By inserting equations (2.25) to (2.27) into equation (2.24), and taking into account
that Δ0 = Δ01 + Δ02 + Δ03, we can write the total thickness function to be:

Δ(x,y) = Δ0 − R1

�
1 −

#
1 − x2 + y2

R2
1

�
+ R2

�
1 −

#
1 − x2 + y2

R2
2

�
(2.28)

If we assume that x,y � R1, R2 (paraxial approximation), then
"

1 − x2+y2

R2 ≈
1 − x2+y2

2R2 . Inserting this into equation (2.28) results in the simplified expression
(see appendix A.4):

Δ(x,y) = Δ0 − x2 + y2

2

� 1
R1

− 1
R2

�
(2.29)

By simply re-arranging the Lensmaker Equation 1
f

= (n − 1)
�

1
R1

− 1
R2

�
for a thin

lens in air [12, p. 14] we get:

� 1
R1

− 1
R2

�
= 1

f (n − 1) (2.30)

Inserting equation (2.30) into equation (2.29) and calculating the limit Δ0 → 0
(thin lens approximation) finally results in

Δ(x,y) = Δ0 − x2 + y2

2
1

f (n − 1)
(2.23)=⇒

U �(x,y) = U(x,y) eikΔ0 e
ik(n−1)

�
Δ0− x2+y2

2
1

f(n−1)

�
U �(x,y) = U(x,y) eikΔ0 eik(n−1)Δ0 e

−ik✘✘✘(n−1) x2+y2
2f✘✘✘(n−1) |Δ0 → 0

U �(x,y) = U(x,y) e
−i k

2f (x2+y2) (2.31)

In equation (2.31) the complex scalar function U(x,y) represents the light field
immediately before it has passed the lens, and U �(x,y) the field immediately after
it has passed the lens.

16

2.1. Foundations of scalar wave optics and Fourier optics

2.1.5. Thin aspherical perfect lenses
Spherical lenses suffer from spherical aberration, i.e., parallel rays of incident light
do not perfectly converge at the focal point. The farther away the light ray from
the optical axis, the greater the deviation.

However, it is possible to shape an aspherical perfect lens so that all incident light
rays parallel to the optical axis converge at the focal point. In this section we de-
rive how to calculate such an aspherical, perfect lens in the thin lens approximation.

Figure 2.4 shows how an exemplary incident light ray enters the lens parallel to
the optical axis from the left side. The corresponding wavefront is depicted in light
blue. The ray then gets refracted so that it meets the optical axis exactly at the
focal point z = f . The path length between the right face of the lens and the focal
point for a ray entering the lens at position (x, y) is

√
x2 + y2 + f 2.

A ray entering the lens at (x,y) = (0,0) has to cross the distance f between the
right side of the lens and the focal point. In contrast, a ray entering the lens at an
arbitrary position (x,y) has to cross a longer distance

√
x2 + y2 + f 2 between the

right side of the lens and the focal point f .

r

z

f

√
r2 + f 2

r(x,y) F

Figure 2.4.: A perfect, aspherical lens focuses every incident light ray parallel to the optical
axis into the focal point F . The path length between the right face of the lens and the focal
point for a ray passing the lens at position (x, y) is

$
x2 + y2 + f2. This leads directly to

the required phase shift.

17

2. Numerical simulation of light propagation and lenses

Therefore, the difference in path length is

Δs(x,y) =
"

x2 + y2 + f2 − f (2.32)

This means that we need to add a negative phase shift at position (x,y) to
compensate for the extra distance Δs(x,y).

Δφ(x,y) = −k Δs(x,y) (2.32)=⇒
Δφ(x,y) = −k

� "
x2 + y2 + f2 − f

�
(2.33)

Therefore we can write the final solution

U �(x,y) = U(x,y) eiΔφ(x,y) (2.33)=⇒
U �(x,y) = U(x,y) e−ik(

√
x2+y2+f2−f) (2.34)

In equation (2.34) the complex scalar function U(x,y) represents the light field
immediately before it has passed the lens, and U �(x,y) the light field immediately
after it has passed the lens.

Equation (2.34) follows directly from equation (2.33). The latter can be verified
by using the integral formula [13, eq. (13)]. It allows to calculate the necessary
phase delay Δφ(r) for any given function f(r) with r =

√
x2 + y2:

Δφ(r) =
� r

0

−kr�"
f2(r�) + r�2

dr� **f(r�) = f

Δφ(r) =
� r

0

−kr�"
f2 + r�2

dr� (appendix A.5)=⇒

Δφ(r) = −k

� "
r2 + f2 − f

� ***r2 = x2 + y2

Δφ(r) = −k

� "
x2 + y2 + f2 − f

�
(2.35)

Equation (2.35) coincides with the independently derived equation (2.33).

18

2.1. Foundations of scalar wave optics and Fourier optics

2.1.6. Wavefront tilt
For an experimental implementation of the 4f-cavity it is interesting to know the
effect of one of the mirrors not being perfectly aligned (see section 4.4.4). For this
estimation, we need to be able to simulate a mirror whose orientation deviates by
a small angle from the plane-parallel position. The basis for this is that we are
able to apply a “tilt” to a beam wavefront; in our implementation specifically a
tilt α relative to the z-axis in the yz-plane, as depicted in figure 2.5.

y

z
α

α

β

Δs

Figure 2.5.: The incident wavefront experiences a tilt α relative to the z-axis in the yz-plane.

The black, dashed line in figure 2.5 indicates the tilted wavefront, orthogonal to the
tilted direction of propagation. The not-yet-tilted wavefront at negative y-positions
has to pass the extra path-length Δs (indicated in red in figure 2.5). This extra
path-length Δs is a linear function of y, and is determined by the black, dashed
line expressed as z = f(y), wich can be derived in the following way:

y(z) = −z tan (β)
****β = π

2 − α

y(z) = −z tan
�

π

2 − α

�
y(z) = −z cot (α)

z(y) = −y
1

cot (α)
z(y) = −y tan (α) |z(y) = Δs

Δs = −y tan (α) (2.36)

19

2. Numerical simulation of light propagation and lenses

Next we need to replace Δs by a phase quantity. If Δs is positive, then this means
that the light-front has to pass an extra path-length Δs, and the wave-function
ei(kz−ωt) needs to be corrected by a negative phase-shift. Analogously, if Δs is
negative, then the corresponding phase-shift must be positive. This means we have
to reverses the sign when switching from Δs to the phase representation:

Δφ = −kΔs
(2.36)=⇒

Δφ = ky tan (α) (2.37)

Therefore we can write the final solution

U �(x,y) = U(x,y) eiΔφ(y) (2.37)=⇒
U �(x,y) = U(x,y) eiky tan (α) (2.38)

In equation (2.38) the complex scalar function U(x,y) represents the light field
immediately before the tilt, and U �(y) the light field immediately after the tilt.

20

2.2. Software functionality around 2D FFT

2.2. Software functionality around 2D FFT
Fourier optics provides an extremely efficient computational method for simulating
wave optics problems, and the method is a widely used approach in the domain of
simulating optical phenomena like wave diffraction, wave propagation, and many
other effects.

The reason for the efficiency of the method (compared to, e.g., using numerical
integration techniques) is the efficiency of the Fast-Fourier-Transform (FFT) al-
gorithm, which substitutes the analytical Fourier transformations in the various
equations derived in section 2.1. As FFT is at the core of Fourier optics, we have
implemented a set of base functions dealing with certain subtleties around this
topic.

2.2.1. Sign conventions
When it comes to Fourier Transformation there is generally considerable confusion
with regard to the signs. This confusion is caused by the fact that there are two
different sign conventions. In this thesis we will stick to the “Physics Positive Sign
Convention” as follows:

Plane wave propagating in positive z-direction:

U = U0e+ikz (2.39)

Complex refractive index (with κ > 0 representing loss):

ñ = n + iκ (2.40)

Spatial Fourier Transformation:

F (k) =
� ∞

−∞
f(x)e−ikx dx (2.41)

Inverse Spatial Fourier Transformation:

f(x) = 1
2π

� ∞

−∞
F (k)e+ikx dk (2.42)

2.2.2. Position-space grid and xy-coordinates
As shown in figure 2.1, the field U(x,y; z) extends over the xy-plane at a certain
z-position. In a numerical computer simulation, this continuous light field U(x,y; z)

21

2. Numerical simulation of light propagation and lenses

must be represented by an array of discrete complex values. Each entry in this
array then represents the complex value of U(x,y; z) at a certain, discrete (x,y; z)
coordinate point.

Instead of the analytic, non-periodic Fourier Transformation, a 2D Fast Fourier
Transform (FFT) algorithm is to be used. For an N × N grid, the FFT produces
N2 complex Fourier coefficients, which are usually also stored in an array of equal
size.

Although it is possible to choose an odd number for N , FFT works most efficiently
if N is an even number. To visualize what this means for the grid position and
the corresponding coordinates, let us assume an 8 × 8 grid which is to represent a
quadratic area of 2 mm × 2 mm. Figure 2.6 visualizes how such a grid would be
placed (almost) centered along the optical axis on the xy-plane.

-1.0 -0.75 -0.5 -0.25 0.0 0.25 0.5 0.75 mm

0.75 mm

0.50 mm

0.25 mm

0.00 mm

-0.25 mm

-0.50 mm

-0.75 mm

-1.00 mm

x
y

8,1

1,2 1,3 1,4 1,5 1,6 1,7 1,8

7,1

6,1

5,1

4,1

3,1

2,1

1,1

Figure 2.6.: An array of size 8 × 8 representing a quadratic area of 2 mm × 2 mm in the
xy-plane. Each entry in this array represents the complex value of U(x,y; z) at a certain,
discrete (x,y; z) coordinate point in position space. The grid is placed as centered as possible
along the optical axis x = y = 0. The (0,0) cell of the array is visualized in grey. The
apparent lopsidedness is rooted in the FFT. The red numbers represent row and column
indices of the array.

In figure 2.6 two facts immediately catch the eye: Firstly, the coordinate range on
either axis stretches from −1 mm to +0.75 mm, and not from −1 mm to +1 mm as
one would probably expect. This is due to the discrete and periodic nature of the
FFT. Any component of a Fourier decomposition in either axis direction is a wave
with a periodicity that is a multiple of the side length 2 mm. This means that (in

22

2.2. Software functionality around 2D FFT

our example) a period of a Fourier component wave starts at −1 mm and ends
at +1 mm. But the position +1 mm is at the same time already the beginning
of a new period, and hence already part of the next “tile” in the periodic FFT.
Therefore, this apparent lopsidedness in position space is rooted in the FFT.

Another effect of choosing an N × N grid with N being an even number is that
the (x,y) = (0,0) coordinate-point has an exact representation (depicted as the
grey cell in figure 2.6).

It should be noted that the generic FFT of MatLab forces a grid where the co-
ordinates on either side are lopsided towards the opposite axes directions, and
would therefore (in our example) stretch from −0.75 mm to +1 mm. However,
this generic FFT of MatLab does not represent the “Physics Sign Convention” as
explained in section 2.2.1, but rather the “Engineering Sign Convention”. There-
fore we have chosen to implement our own subroutines to match our sign convention.

It is further noteworthy that choosing a grid with an odd number of cells on either
side (e.g. 9 × 9) does not make the lopsidedness in the coordinates go away.
However, in such coordinates there would no longer be an explicit representation
for the U(0,0; z) value.

If L is the nominal length of the x and y axis (e.g. 2 mm in figure 2.6), N the
required number of discrete coordinate values along each axis (e.g. 8 in figure 2.6),
and U(r, c) the position-space-array with r being the row index, and c being the
column index, then the (x,y) coordinates can be calculated using the following
formulas:

x(c) = −L

2 + L

N
(c − 1) with c = 1 . . . N (2.43)

y(r) = −L

2 + L

N
(r − 1) with r = 1 . . . N (2.44)

The following software function related to this section was implemented:

Creation of a vector containing FFT compatible axis coordinates
(almost) symmetric around zero

• Function: create_ax(gpu, N, L)

• Description: Creates a vector with N entries containing the axis coordinates
(almost) symmetric around zero so that the total length corresponds to target
length N minus one step according to the requirements of FFT as explained
above.

• Documentation: appendix C.1.

23

2. Numerical simulation of light propagation and lenses

2.2.3. Spatial-frequency-space grid and k-space
As we deal with a 2D FFT on an xy-grid, two integer parameters nx and ny are
required to identify a specific FFT basis function. Given the Fourier parameters
nx and ny and the nominal side length L in meters, the values of such a basis
function in each cell of the N × N position-space-array U(r,c) (figure 2.6) are
calculated in our implementation as follows:

U(r, c) = N

L(N − 1) ei 2π
N

nx(c−1) ei 2π
N

ny(r−1) (2.45)

In equation (2.45), r and c represent the row- and column-index of the correspond-
ing MatLab array U(r,c) so that 1 ≤ r ≤ N and 1 ≤ c ≤ N .

The normalization factor N
L(N−1) ensures that integrating the squared absolute

values over the whole surface area according to the axes scaling, calculated with
trapz(ax, trapz(ax, U .* conj(U), 2)), always results in one (with ax being
the coordinate vector generated by create_ax(gpu, N, L)). This means that
the FFT Fourier basis functions are always normalized in position space in our
implementation.

Given an N × N array, nx and ny can attain the following values if N is even:

− N

2 < nx ≤ N

2 , nx ∈ Z (2.46)

− N

2 < ny ≤ N

2 , ny ∈ Z (2.47)

For odd values of N this becomes

− N

2 + 1
2 ≤ nx ≤ N

2 − 1
2 , nx ∈ Z (2.48)

− N

2 + 1
2 ≤ ny ≤ N

2 − 1
2 , ny ∈ Z (2.49)

Fourier-transforming a position-space-array U(r,c) by using our MatLab function
fft2_phys_spatial(U, ax) results in a spatial-frequency-space-array A(r,c) of
equal size, where each array cell represents the complex Fourier-factor to be multi-
plied to the corresponding (nx, ny) basis function. Therefore, Fourier-transforming
a normalized basis function according to equation (2.45) consequently results in
an array where only one single cell contains the value 1, whereas all other cells
contain 0 (plus-minus numerical inaccuracies).

24

2.2. Software functionality around 2D FFT

The cell indices r and c of the spatial-frequency-space-array A(r,c) corresponding
to nx and ny can be found by means of the following relations.

If N is even:

r = N

2 + 1 − ny (2.50)

c = N

2 + 1 − nx (2.51)

If N is odd:

r = N

2 + 3
2 − ny (2.52)

c = N

2 + 3
2 − nx (2.53)

Figure 2.7.: (a) Spatial-frequency-space-array representing the the FFT basis function
nx = 1, ny = 0. The grey field marks the nx = 0, ny = 0 position. (b) Position-space-array
representing the FFT basis function nx = 1, ny = 0 on an area of 2 mm × 2 mm. The plot
shows the real part of the complex function values. Because of the basis function being
normalized over the area of just 4 mm2, the function values are relatively large.

The angular wavenumbers kx and ky are related to the transverse mode numbers nx

and ny as follows (with L being the nominal side length of the position-space-array;
e.g. 2 mm in figure 2.6):

25

2. Numerical simulation of light propagation and lenses

kx = 2πnx

L
(2.54)

ky = 2πny

L
(2.55)

The following software functions related to this section were implemented:

2D Fast Fourier Transform

• Function: fft2_phys_spatial(X, ax)

• Description: Performs a 2D Fast-Fourier-Transform (FFT) of the position-
space-array X with xy-coordinates according to the axis coordinates provided
in the ax vector. The output is the Fast Fourier Transform of X (according
to physics sign convention).

• Documentation: appendix C.2.

Inverse 2D Fast Fourier Transform

• Function: ifft2_phys_spatial(fourier_coeff, ax)

• Description: Performs a 2D Inverse Fast-Fourier-Transform (IFFT) of the
spatial-frequency Fourier coefficients array fourier_coeff and generates a
position-space-array Y with xy-coordinates according to the axis coordinates
provided in the ax vector.

• Documentation: appendix C.3.

Generation of normalized FFT basis functions

• Function: fft2_basis_func(gpu, nx, ny, ax, f_space_out)

• Description: Creates a normalized (nx, ny) Fast-Fourier basis function.
The output is either in spatial-frequency space, or in position space.

• Documentation: appendix C.4.

Creation of a vector containing wave numbers matching the axis of the
FFT-transformed position-space-array

• Function: create_k_ax(gpu, ax)

• Description: Creates a vector with the same number of entries as the
ax vector, but containing wave numbers matching the axis of the FFT-
transformed position-space-array (i.e., the spatial-frequency-space-array).

• Documentation: appendix C.5.

26

2.2. Software functionality around 2D FFT

2.2.4. Tilt of the k-vector and mode-ordering
As an elementary wave propagates through the cavity, its 2k-vector is generally
tilted against the z-axis. This is manifested by non-zero values of the kx and/or
ky wave numbers. The larger these numbers, the larger the tilt. Here we derive
how much the total 2k-vector of a propagating wave is tilted against the z-axis with
given nx and ny mode numbers (2ez represents the unit vector in z-direction):

||6k · 6ez|| = ||6k|| ✟✟✟||6ez|| cos (α)

kz = k cos (α)
***k2 = k2

x + k2
y + k2

z =⇒ kz =
"

k2 − k2
x − k2

y"
k2 − k2

x − k2
y = k cos (α)

****k = 2π

λ
(2.56)#�2π

λ

�2
− k2

x − k2
y = 2π

λ
cos (α)

cos (α) = λ

2π

#�2π

λ

�2
− k2

x − k2
y

(2.54)=⇒ (2.55)=⇒

cos (α) = λ

2π

#�2π

λ

�2
−

�2πnx

L

�2
−

�2πny

L

�2

α = arccos

 λ

2π

#�2π

λ

�2
−

�2πnx

L

�2
−

�2πny

L

�2
 (2.57)

It should be noted that the expression under the root can become negative (evanes-
cent modes). In this case there is no more propagation in z-direction, and we can
assume α = π.

As long as the expression under the root stays positive, equation (2.57) shows that
the tilt of the 2k-vector with respect to the z-axis increases strictly monotonically
with n2

x + n2
y. This fact can be used to define an order for all possible nx, ny pairs.

The following software functions related to this section were implemented:

Get angle between k-vector and z-axis

• Function: k_vec_tilt(gpu, nx, ny, ax, lambda)

• Description: Returns the angle with which the k-vector is inclined to the
z-axis given nx and ny.

• Documentation: appendix C.6.

27

2. Numerical simulation of light propagation and lenses

Get vector with all possible nx, ny values ordered by increasing angle
of corresponding k-vectors with respect to the z-axis

• Function: sorted_mode_numbers(gpu, N)

• Description: Returns a vector with all combinations of nx and ny allowed
for an array with side-length N. The entries are sorted according to the angle
that the associated 2k-vectors have with respect to the z-axis.

• Documentation: appendix C.7.

2.2.5. Fourier-coefficient vectors
In our calculations, we occasionally want to represent the behavior of an optical
system by means of a transmission matrix T (or a reflection matrix R, for that
matter). The idea is that if we can represent the Fourier-coefficients of the system’s
input plane by a vector 2a1, we can easily perform a matrix-vector multiplication
like 2a2 = T2a1. The resulting vector 2a2 will then contain all Fourier-coefficients
representing the light-field on the system’s output-plane.

However, the Fourier-coefficients representing the modes on a transverse xy-plane
are, by default, stored in a spatial-frequency-space array, and not in a vector.
Therefore we have implemented two functions to convert such arrays into vectors
and vice versa.

When converting an array into a Fourier-coefficient-vector, our implementation
allows not only a spatial-frequency-space-array as input (which already contains
Fourier coefficients), but optionally also a position-space-array may be provided.
The required Fast-Fourier-Transformation will then be performed automatically
before the matrix-vector transformation.

Equivalently, when back-converting a Fourier-coefficient-vector into an array, it
can be chosen whether the output-array should be in spatial-frequency-space or
position-space. In case of the latter, an Inverse-Fast-Fourier-Transformation will
automatically be performed after the vector-matrix conversion.

The conversion and back-conversion functions both also expect an index vec-
tor, which determines the order of the entries in the Fourier-coefficient-vector.
By the completeness of its entries it also determines whether or not all Fourier-
coefficients are to be taken into account. By default, the vector created by
sorted_mode_numbers(gpu, N) can be used as such an index vector. In that case,
the Fourier-coefficient-vector will contain coefficients in order of modes representing
increasingly tilted 2k-vectors.

28

2.3. Software implementation of light propagation

The following software functions related to this section were implemented:

Convert spatial-frequency-space-array or position-space-array into
Fourier-coefficient-vector

• Function:
fft2_arr_to_vec(input_array, ax, mode_numbers, f_space_in)

• Description: Converts input_array, which may be a position-space-array
or a spatial-frequency-space-array, into a Fourier-coefficient-vector with the
coefficients ordered according to the mode_numbers index vector. The boolean
parameter f_space_in determines, whether input_array is a spatial-
frequency-space-array, or a position-space-array.

• Documentation: appendix C.8.

Convert Fourier-coefficient-vector into spatial-frequency-space-array or
position-space-array

• Function:
fft2_vec_to_arr(gpu, FFT_vec, ax, mode_numbers, f_space_out)

• Description: Converts the Fourier-coefficient vector FFT_vec into a position-
space-array or a spatial-frequency-space-array. The boolean parameter
f_space_out determines, whether the output is a spatial-frequency-space-
array, or a position-space-array.

• Documentation: appendix C.9.

2.3. Software implementation of light
propagation

The following functions implement the Rayleigh-Sommerfeld and Fresnel transfer
functions for propagation of the xy-light-field in z-direction through either empty
space or a material.

With these functions, the propagation of the light field between the lenses as well
as through an absorber can be simulated. The implementation of both propagation
methods allows us to study the effect of the Fresnel approximation in comparison
to the more accurate Rayleigh-Sommerfeld propagator.

29

2. Numerical simulation of light propagation and lenses

Rayleigh-Sommerfeld transfer function propagator

• Function: RSTF_prop(gpu, E_in, ax, z, lambda, n, f_space_in,
f_space_out)

• Description: Takes the xy-input field E_in, which can be either a position-
space-array or a spatial-frequency-space-array, and propagates it in z-direction
over the distance z, using the Rayleigh Sommerfeld transfer function
method as described in section 2.1.2. For propagation in free space, the
parameter n is to be set n = 1, otherwise n is the material-dependent (real
or complex) refractive index. The returned output field is again optionally
either a position-space-array or a spatial-frequency-space-array.

• Documentation: appendix C.10.

Fresnel transfer function propagator

• Function: FRTF_prop(gpu, E_in, ax, z, lambda, n, f_space_in,
f_space_out)

• Description: Works like the function before, but uses the Fresnel transfer
function method as described in section 2.1.3.

• Documentation: appendix C.11.

Universal propagator function

• Function: prop(gpu, E_in, TF, ax, z, lambda, n, f_space_in,
f_space_out)

• Description: Depending on the value of the TF input parameter, either
the Rayleigh Sommerfeld transfer function method, or the Fresnel transfer
function method is used.

• Documentation: appendix C.12.

30

2.4. Software implementation of lenses

2.4. Software implementation of lenses
The following function implements the simulation of a thin spherical lens and a
thin perfect, aspherical lens as described in sections 2.1.4 and 2.1.5.

Thin spherical lens and a thin perfect, aspherical lens

• Function: lens(gpu, ax, lambda, pupil, NA, f, lens_type)

• Description: Returns the phase-mask of a thin spherical lens or perfect
aspherical lens in a position-space-array lens_mask. This array can be
applied by simply multiplying it component-wisely to an input-field-array in
position-space.

• Documentation: appendix C.13.

The theory behind the simulation of lenses is described in section 2.1.2.

2.5. A first, naive simulation approach for a
one-way trip through a 4f cavity

The software functions presented so far (together with two helper functions for
generating test-images and displaying input- and output fields, see appendices D.1
and D.2) allow a first, naive simulation attempt. The program on the next page
simulates how a test-image (an image of the letter “T” in the top left corner) is
transformed when going through the 4f-cavity in a single trip.

In lines 16-21 basic physical simulation parameters (focal length 75 mm, wavelength
800 nm, and lens-type “thin perfect, aspheric lens”) are defined. Line 24 defines
that the (supposedly more accurate) Rayleigh Sommerfield transfer function is to
be used for propagation. Line 25 just defines the test-image. In line 25 the side-
length of the observed xy-plane is defined to be 2.5 mm. In line 27 the xy-grid-size
is (arbitrarily) defined to be 800 × 800.

The simulation itself takes place in lines 33-49. The created test-image (line 37)
is propagated one focal length (line 38), then the lens-mask is applied (line 41).
Further propagation for two focal lengths takes place in line 43. Then the lens-mask
is applied once more (line 45), and the final propagation to the end of the cavity
(one more focal length) is simulated in line 47. The resulting image is displayed in
line 50 (with the absolute value of input- and output-fields being displayed).

31

2. Numerical simulation of light propagation and lenses

1 %%
2 % Test : One−way t r i p through 4 f−c a v i t y with a r b i t r a r y g r i d s i z e
3 % F i l e : one_way_trip_test_simple .m
4 %%
5
6 c l e a r a l l
7 c l o s e a l l
8 gpu = 1 ; % use GPU
9 i f gpu

10 % i n i t i a l i z e GPUs
11 f o r i i = 1 : gpuDeviceCount
12 gpuDevice (i i) ;
13 end
14 end
15
16 % Basic p h y s i c a l s i m u l a t i o n parameters
17 lambda = 800 e −9; % Wavelength i n meters
18 f = 75 e −3; % f o c a l l e n g t h o f l e n s e s 75 mm
19 p u p i l = f a l s e ; % no p u p i l
20 NA = 0 . 0 5 ; % numerical a p e r t u r e o f p u p i l (i f p u p i l == t r u e)
21 lens_type = 2 ; % a s p h e r i c a l , p e r f e c t l e n s
22
23 % t e c h n i c a l s i m u l a t i o n parameters
24 TF = 0 ; % 0 : Rayle igh Sommerfeld , 1 : F r e s n e l
25 test_image = 4 ; % Large o f f −c e n t e r T
26 L = 2 . 5 e −3; % s i d e l e n g t h o f input s i m u l a t i o n g r i d
27 N = 8 0 0 ; % number o f s t e p s a l o n g s i d e each a y i s
28
29 ax = create_ax (gpu , N, L) ; % c r e a t e xy−axes c o o r d i n a t e s
30 % c r e a t e l e n s phase mask
31 [lens_mask , l e n s _ p u p i l] = l e n s (gpu , ax , lambda , pupi l , NA, f , lens_type) ;
32
33 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
34 % SIMULATE SINGLE TRIP IN 4F CAVITY
35 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
36 % Create input image
37 E_in = create_test_image (gpu , ax , test_image , f a l s e) ;
38 % propagate to f i r s t l e n s
39 E = prop (gpu , E_in , TF, ax , f , lambda , 1 , f a l s e , f a l s e) ;
40 % apply l e n s mask
41 E = E . ∗ lens_mask ;
42 % propagate 2 f d i s t a n c e
43 E = prop (gpu , E, TF, ax , 2∗ f , lambda , 1 , f a l s e , f a l s e) ;
44 % apply l e n s mask
45 E = E . ∗ lens_mask ;
46 % proagate f
47 E_out = prop (gpu , E, TF, ax , f , lambda , 1 , f a l s e , f a l s e) ;
48
49 % Display r e s u l t
50 p l o t _ f i e l d s (gpu , 1 , ax , E_in , ' Input F i e l d ' , 3 , E_out , ' Output F i e l d ' , 3) ;

Figure 2.8.: A first, naive simulation attempt: A test-image is propagated one-way through
a 4f-cavity of 4 × 75 mm total length. The result should be an undistorted upside-down
version of the input-image. However, the output image is subject to significant simulation
artifacts.

32

2.6. FFT vs. analytic FT: optimal grid and sampling parameters

Figure 2.8 shows that the simulated output image, which ideally should be just
an upside-down version of the input image, is distorted by a significant amount
of simulation artifacts. In the next chapter we will explore the reasons for these
artifacts, and how to avoid them.

2.6. FFT vs. analytic FT: optimal grid and
sampling parameters

In this chapter we demonstrate — following the line of argumentation in [14,
p. 191] — how to determine the optimal grid spacing and sampling parameters.

The Fresnel Transfer Function approximation in equation (2.21) contains a phase
function whose absolute value increases with the square of the wavenumber vari-
ables kx and ky. Such a function is referred to as “chirp” function. The sampling
of chirp functions can become problematic because of the increasing slope of the
phase of the frequency (cf. [15]).

Only the phase of the chirp term in equation (2.21) is a function of frequency.
Extracting this phase gives:

φc(kx, ky) = −λz

4π

�
k2

x + k2
y

�
(2.58)

It is sufficient to examine only one transverse direction, as the sampling constraints
for the two orthogonal variables can be evaluated separately. Let us choose kx

arbitrarily. To be able to unambiguously reconstruct the phase φc(kx) from discrete
sample values, each two adjacent sample values φc(kx1) and φc(kx1 + Δkx) must
fulfill the condition

|φc(kx1 + Δkx) − φc(kx1)| ≤ π (2.59)

33

2. Numerical simulation of light propagation and lenses

For small values of Δkx this can be expressed as

Δkx

****∂φc

∂kx

max

≤ π
(2.58)=⇒

Δkx

**** ∂

∂kx

�
−λz

4π

�
k2

x + k2
y

��****
max

≤ π

Δkx

****−λz

2π
kx

max

≤ π

Δkx
λz

2π
|kx|max ≤ π

Δkxλz |kx|max ≤ 2π2

Δkx ≤ 2π2

λz |kx|max
(2.60)

This is the sampling condition in k-space for the Fresnel transfer function, which, in
a first approximation, also applies to the Rayleigh Sommerfeld transfer function. It
is equally valid for Δky and |ky|max. To translate this condition into position-space,
one has to remember equation (2.54), from which we can deduce

Δkx = 2π

L

(2.60)=⇒

✁2π
L

≤ ✁2π❆2

λz |kx|max

(2.54)=⇒
1
L

≤ ✚π

λz

L

2✚π nmax
1
L

≤ L

2λznmax
(2.61)

In equation (2.61) L represents the nominal side-length of the xy-grid, and
nmax stands for the largest possible mode number in x or y direction, so that
∀nx, ny : nx ≤ nmax, ny ≤ nmax.

Let N be the number of discrete coordinate-points in either x and y-direction.
Then we can write (see equations (2.46) and (2.48)):

34

2.6. FFT vs. analytic FT: optimal grid and sampling parameters

nmax = N

2
(2.61)=⇒

1
L

≤ L

✁2λz
✁2
N

**** L

N
= Δx

1
L

≤ Δx

λz

Δx ≥ λz

L
(2.62)

This is the sampling condition in position-space, where L represents the nominal
side length of the grid in position-space, and Z is the propagation distance in
z-direction. This sampling condition is equally valid for Δy.

Equation (2.62) can also be expressed in terms of N , which is the number of
discrete coordinate points along the x and y-axis:

Δx = L

N

(2.62)=⇒
L

N
≥ λz

L
1
N

≥ λz

L2

N ≤ L2

λz
(2.63)

2.6.1. Oversampled transfer function
As the transfer-function acts in spatial-frequency-space (or, in our formulation,
more specifically in k-space), it makes most sense to look at equation (2.60) for
distinguishing oversampling and undersampling. It is common to say that the
transfer-function is oversampled if

Δkx <
2π2

λz |kx|max
(2.64)

35

2. Numerical simulation of light propagation and lenses

Consequently (and a bit counter-intuitively) one also speaks of oversampling when
the corresponding condition

Δx >
λz

L
(2.65)

is fulfilled. This condition is met for relatively “short” propagation distances z.
The originally derived condition in equation (2.62) is certainly fulfilled, and so one
would expect no problems with oversampling.

However, a look at figure 2.9 reveals that there is a problem with the inverse
FFT that is required after the application of the transfer-function. Rather than a
constant magnitude value, a window-like function with oscillations at the fringes
appears. Also the phase follows the analytic phase only within this window, and
then starts to deviate.

Figure 2.9.: Left: Magnitude (horizontal line) and unwrapped phase (curved line) of
the oversampled transfer-function match the analytic result. Right: The magnitude and
unwrapped phase of the inverse FFT of the oversampled transfer-function deviate from the
analytic results. The magnitude shows a “window-like” quality with oscillations at the fringes
(instead of the expected constant analytic result, displayed in red). The phase curve also
deviates from the analytic result (blue dashed curve). From: [14, p. 193], with color edits.

Therefore, oversampling leads to the so-called “support-area”, which is the center-
window in the observation plane where the simulation agrees with the analytic
result. This support area becomes more limited, the more oversampled the transfer-
function is. The side-length of the support-area in the observation plane is
(cf. [14, p. 198], [11, p. 15ff])

D = λz

Δx
(2.66)

36

2.6. FFT vs. analytic FT: optimal grid and sampling parameters

2.6.2. Critically sampled transfer function
The transfer function is critically sampled when

Δx = λz

L
(2.67)

It is a property of the sampled chirp-function that when the critical sampling
condition of equation (2.68) is fulfilled, both the sampled transfer-function and
the inverse FFT of the transfer-function match exactly their analytic counterparts
(see figure 2.10).

It should be noted that the chirp-function, for which this statement is exactly
true, only describes the Fresnel approximation exactly. However, it is also the
leading term in the series expansion of the phase term in the Rayleigh-Sommerfeld
transfer function. This therefore means that, when the critical sampling condition
is fulfilled, also the Rayleigh-Sommerfeld transfer function works best and creates
the least simulation artifacts.

Figure 2.10.: Left: Magnitude (horizontal line) and unwrapped phase (curved line) of the
critically sampled transfer-function match the analytic result. Right: The same is true for the
inverse FFT of the critically sampled transfer-function. Note that this is only exactly true in
the paraxial approximation of the Fresnel transfer function. For the exact Rayleigh-Sommerfeld
transfer function deviations are still minimized when the critical sampling condition is met.
From: [14, p. 193].

37

2. Numerical simulation of light propagation and lenses

2.6.3. Undersampled transfer function
The transfer function is undersampled when

Δx <
λz

L
(2.68)

This condition is met for relatively “long” propagation distances z. The originally
derived condition in equation (2.62) is no longer fulfilled, and therefore one rightly
expects problems to appear not only in the inverse FFT, but already in the sampled
transfer-function itself.

Figure 2.11.: Left: In the undersampled transfer-function, the phase curve significantly
deviates from the analytic result (blue dashed curve) outside a certain bandwidth-window.
This can lead to significant artifacts. Right: The magnitude oscillates every other sample,
which causes the grey “blur” in the diagram. The analytic solution for the magnitude is
shown as constant, red line. Also, the phase deviates on the fringes compared to the analytic
results (blue, dashed curve). Source: [14, p. 193], with color edits.

As figure 2.11 shows, the phase curve significantly deviates from the analytic result
outside a certain bandwidth-window. This can lead to strong artifacts which
manifest themselves in the inverse FFT diagram on the right side of figure 2.11.
There, the magnitude of the transfer function oscillates every other sample, which
causes the grey “blur” in the diagram. Also, the phase deviates on the fringes
compared to the analytic results.

The source bandwidth limitation in an undersampling situation as shown on the
left side of figure 2.11 can be expressed as (cf. [15])

Bsource ≤ L

2λz
(2.69)

38

2.6. FFT vs. analytic FT: optimal grid and sampling parameters

2.6.4. Conclusion
The Fresnel transfer function, and also the Rayleigh-Sommerfeld transfer function
(in first order) incorporate the Fresnel “chirp” term from equation (2.21), which
is adequately sampled (oversampled) when the condition Δx ≥ λz

L
is fulfilled.

However, it turns out that there is an equivalent chirp term in position space
(namely ei k

2z (x2+y2)), which becomes relevant with the inverse FFT. This chirp-term
is adequately sampled (oversampled) when Δx ≤ λz

L
is fulfilled. Therefore, one

should always attempt to fulfill the critical sampling condition

Δxopt = λz

L
(2.70)

Equivalently, the inequality (2.63) becomes an equation providing the optimal
number of discrete coordinate points along the x- and y-axis.

Nopt = L2

λz
(2.71)

The effect of oversampling (short distance, Δx > λz
L

), is a “support-area”, which is
a square window in the center of the total simulated plane with side-length

D = λz

Δx
(2.72)

Beyond this limit, both the Fresnel transfer function, as well as the Rayleigh-
Sommerfeld transfer function primarily attenuate the field. In case of critical
sampling, the guard-area D is exactly the nominal side-length L of the observation-
grid.

Undersampling (long distance, Δx < λz
L

) leads to source bandwidth limitations
with the condition Bsource ≤ L

2λz
, and quickly results in strong artifacts. Therefore,

undersampling is to be avoided when using the Fresnel transfer function or the
Rayleigh-Sommerfeld transfer function approach.

39

2. Numerical simulation of light propagation and lenses

2.7. Guard-area and maximum mode number
It is good practice to surround the area of interest on the source plane by a so-called
“guard-area”, i.e., to embed the source-grid with side-length L1 in a larger grid
with side length L2. Figure 2.12 shows this setting.

U(x,y; 0) U(x,y; z)

z

2k

L2

s

α

L2

L1

Figure 2.12.: The source field has the side-length L1 (depicted with red shading) and is
guarded by a larger grid with side-length L2. This larger grid represents the whole source
plane U(x,y; 0). A light wave corresponding to a certain ny-mode (depicted in light blue)
is represented by a 6k-vector which is inclined by the angle α with respect to the z-axis.
By simple triangular considerations it becomes clear that there is a maximum angle α,
corresponding to a maximum mode number ny, so that the propagated wave can still be
registered at the observation plane U(x,y; z).

There are two reasons to employ a guard-area: Firstly, as explained in the previous
sections, it can happen (at least in case of oversampling) that not the whole area,
but only a smaller support-area of the source-grid is actually usable. In addition,
the considerations in the previous sections were only exact in the context of the
paraxial Fresnel approximation. This means, that even when we use critical sam-
pling, border-areas on the xy-plane are more prone to become subject to distortion
by numerical artifacts in the context of the Rayleigh-Sommerfeld propagation.

40

2.7. Guard-area and maximum mode number

But there is yet another important reason to use a guard-area in the source-plane.
Figure 2.12 shows an elementary light-wave corresponding to a certain ny-mode
(depicted in light blue). This plane wave is represented by a 2k-vector which is
inclined by the angle α with respect to the z-axis. By simple triangular consider-
ations it becomes clear that the observation plane must have a larger area than
the source-image, so that also such tilted k-vectors are still fully observable on the
observation plane U(x,y; z).

The maximum allowed angle αmax can be calculated as follows:

tan (αmax) = s

z

αmax = arctan
�

s

z

�
(2.73)

For calculating the maximum mode-number nmax = nmax
x = nmax

y , we consider the
kx = 0 axis:

kx = 0 (2.56)=⇒"
k2 − k2

y = k cos (α)

k2 − k2
y = k2 cos2 (α)

k2
y = k2 − k2 cos2 (α)

k2
y = k2

�
1 − cos2 (α)

�
k2

y = k2 sin2 (α)

ky = k sin (α)
****k = 2π

λ

ky = 2π

λ
sin (α) (2.55)=⇒

✟✟2πny

L1
= ✟✟2π

λ
sin (α)

ny = L1
λ

sin (α)
***nmax = nmax

x = nmax
y

nmax = L1
λ

sin (αmax) (2.74)

41

2. Numerical simulation of light propagation and lenses

By inserting equation (2.73) into equation (2.74), we get:

nmax = L1
λ

sin
�

arctan
�

s

z

��
nmax = L1

λ

s
z"

1 + s2
z2

nmax = L1
λ

s

✁z
"

z2+s2

✚✚z2

nmax = L1
λ

s√
z2 + s2 with s = L2 − L1

2 (2.75)

2.8. A refined simulation approach for a one-way
trip through a 4f cavity

Based on the insights of the previous sections it is now clear why the first simulation
attempt in section 2.5 had such a dismal performance: Besides the fact that there
was no guarding area, the resolution of the simulation grid was chosen arbitrarily,
which happened to result in strong undersampling which notoriously produces
heavy artifacts when using the Fresnel transfer function or Rayleigh-Sommerfeld
transfer function method (see section 2.6.3).

In this section we present a refined software approach, that takes the insights of
the previous sections into account.

2.8.1. Additional Subroutines
The following additional subroutines were implemented:

Calculation of optimal grid parameters

• Function: opt_grid_params(L_des, factor, z, z_max, even, lambda)

• Description: The main input parameters of this function are the desired
side-length of the “guarded” input-grid (L_des, corresponding to L1 in
figure 2.12), a factor defining how much larger the “guarding” grid should
be (side-length L2 in figure 2.12), and the propagation distance z. As these
input values generally do not result in an integer value for the optimal
number of discrete coordinate points along the x- and y-axis according to
equation (2.71), the best-matching integer value for N1 is calculated, and
returned together with the corresponding side-length L1 (close to L_des).
Equivalently, it is ensured that the larger side-length L2 of the “guarding”

42

2.8. A refined simulation approach for a one-way trip through a 4f cavity

area exactly matches an integer value N2, and these two values are also
returned. The boolean parameter even allows to force N1 and N2 to be even,
or odd. Further, a parameter z_max has to be passed to the function. It
indicates the longest propagation distance in the simulation (in case that
the propagation function is applied multiple times in a row). This input
allows the function to additionally return the maximum tilt angle αmax and
the maximum transverse mode number nmax according to equations (2.73)
and (2.74).

• Documentation: appendix C.15.

Embed smaller position-space-grid in larger “guarding” grid

• Function: embed_image(gpu, E_in_small, ax_large)

• Description: Embeds smaller position-space-grid in larger “guarding” grid
as shown in figure 2.12.

• Documentation: appendix C.16.

Extract smaller position-space-grid from larger “guarding” grid

• Function: extract_center_image(E_in_large, ax_small)

• Description: Extracts the smaller (position-space) grid from the center of
a larger “guarding” grid (see figure 2.12).

• Documentation: appendix C.17.

2.8.2. Main program
In this section we present a refined version of the program from section 2.5, now
using the additional subroutines from section 2.8.1. Again, the program simulates
how a test-image (an image of the letter “T” in the top left corner) is transformed
when being propagated through the 4f-cavity in a single left-to-right-trip.

In lines 18-23 of the source-code on the following page, basic physical simulation
parameters (focal length 75 mm, wavelength 800 nm, and lens-type “thin perfect,
aspheric lens”) are defined. In line 26, the Rayleigh-Sommerfeld propagation
method is chosen as a propagator. Line 27 just defines the test-image. In line 28
the desired side-length of the xy-plane is defined to be 2.5 mm. Line 29 defines
that the larger “guarding” grid should have the double side-length of the smaller
“guarded” grid.

43

2. Numerical simulation of light propagation and lenses

1 %%
2 % Simple t e s t : one−way t r i p through 4 f c a v i t y
3 % with optimal g r i d s i z e and guarding area
4 % F i l e : one_way_trip_test_opt .m
5 %%
6
7 c l e a r a l l
8 c l o s e a l l
9

10 gpu = 1 ; % use GPU
11 i f gpu
12 % i n i t i a l i z e GPUs
13 f o r i i = 1 : gpuDeviceCount
14 gpuDevice (i i) ;
15 end
16 end
17
18 % Basic p h y s i c a l s i m u l a t i o n parameters
19 lambda = 800 e −9; % Wavelength i n meters
20 f = 75 e −3; % f o c a l l e n g t h o f l e n s e s 75 mm
21 p u p i l = f a l s e ; % no p u p i l
22 NA = 0 . 0 5 ; % numerical a p e r t u r e o f p u p i l (i f p u p i l == t r u e)
23 lens_type = 2 ; % a s p h e r i c a l , p e r f e c t l e n s
24
25 % t e c h n i c a l s i m u l a t i o n parameters
26 TF = 0 ; % 0 : Rayle igh Sommerfeld , 1 : F r e s n e l
27 test_image = 4 ; % Large o f f −c e n t e r T
28 L_des = 2 . 5 e −3; % d e s i r e d s i d e l e n g t h o f input s i m u l a t i o n g r i d
29 f a c t o r = 2 ; % f a c t o r by which embedding g r i d should be l a r g e r
30
31 % c r e a t e optimal g r i d
32 [N1 , L1 , N2 , L2 , alpha_max , n_max] = ...
33 opt_grid_params (L_des , f a c t o r , f , f , true , lambda) ;
34 % d i s p l a y g r i d parameters
35 d i s p (['N1= ' , num2str (N1) , ' N2= ' , num2str (N2) , ' n_max= ' , num2str (n_max)])
36
37 ax1 = create_ax (gpu , N1 , L1) ; % c r e a t e xy−axes c o o r d i n a t e s " s m a l l " g r i d
38 ax2 = create_ax (gpu , N2 , L2) ; % c r e a t e xy−axes c o o r d i n a t e s " l a r g e " g r i d
39
40 % c r e a t e l e n s phase mask
41 [lens_mask , l e n s _ p u p i l] = l e n s (gpu , ax2 , lambda , pupi l , NA, f , lens_type) ;
42
43 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
44 % SIMULATE SINGLE TRIP IN 4F CAVITY
45 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
46 % Create input image
47 E_in = create_test_image (gpu , ax1 , test_image , f a l s e) ;
48 % embed i n " l a r g e " g r i d
49 E = embed_image (gpu , E_in , ax2) ;
50 % propagate to f i r s t l e n s
51 E = prop (gpu , E, TF, ax2 , f , lambda , 1 , f a l s e , f a l s e) ;
52 % apply l e n s mask
53 E = E . ∗ lens_mask ;
54 % propagate 2 f d i s t a n c e
55 E = prop (gpu , E, TF, ax2 , f , lambda , 1 , f a l s e , t r u e) ;
56 E = prop (gpu , E, TF, ax2 , f , lambda , 1 , true , f a l s e) ;
57 % apply l e n s mask
58 E = E . ∗ lens_mask ;
59 % proagate f
60 E = prop (gpu , E, TF, ax2 , f , lambda , 1 , f a l s e , f a l s e) ;
61 % e x t r a c t s m a l l e r c e n t e r image
62 E_out = extract_center_image (E, ax1) ;
63 % Display r e s u l t
64 p l o t _ f i e l d s (gpu , 1 , ax1 , E_in , ' Input F i e l d ' , 3 , E_out , ' Output F i e l d ' , 3) ;

The first lines of code that are really new compared to the initial implementation
on page 32 are the lines 31-35, where the optimal sizes of the small and large
grids are computed and printed out. Please note that the z_max-parameter of
the opt_grid_params-function is set to one focal length f, even if there is a 2f
propagation in the middle of the cavity. This is correct, because the 2f propagation
takes place between the two converging lenses where there is (simply speaking) no
danger of “light-rays leaving the observation plane”.

44

2.8. A refined simulation approach for a one-way trip through a 4f cavity

The simulation itself takes place in lines 43-62. The created test-image (line 46) is
embedded in the larger grid (line 49), and then the larger grid is propagated one
focal length (line 51). After that, the lens-mask is applied (line 53).

Further propagation for two focal lengths takes place in lines 55-56. Please note
that this is broken down into two propagation steps with one focal length each, so
that no undersampling happens. It is also noteworthy that the first propagation
function in line 55 takes a position-space array as input, but returns a spatial-
frequency-space-array (this is defined by the last two boolean parameters). The
second propagation step in line 56 then continues with the spatial-frequency-space-
array as input, and returns a position-space array. This choice makes sense, as
it saves an unnecessary IFFT conversion at the output-end of line 55, and an
unnecessary FFT-conversion at the input-end of line 56.

Then the lens-mask is applied once more (line 58), and the final propagation to
the end of the cavity (one more focal length) is simulated in line 60. After that,
the resulting image is extracted from the center of the embedding grid in line 62,
and subsequently is displayed in line 64 (with the absolute value of input- and
output-fields being displayed).

2.8.3. Simulation result
The program displays the following calculated simulation parameters:

N1=210 N2=418 n_max=52

That means that the optimal “small” grid size N1 × N1 for the given geometry was
computed to be 210 × 210. This grid was then embedded in a N2 × N2 = 418 × 418
“guarding” grid. The maximum traverse mode that can be safely simulated is
(nx, ny) = (52,52).

The visual output is displayed in figure 2.13. As can be seen, the simulation works
much better, and the artifacts from figure 2.8 have vanished.

45

2. Numerical simulation of light propagation and lenses

Figure 2.13.: A refined simulation of a test-image propagated one-way through a 4f-cavity
of 4 × 75 mm total length. This time, the input-image is embedded in a guarding area, and
the grid resolution has been calculated so that there is no oversampling or undersampling.
The artifacts from figure 2.8 have now vanished.

2.9. Simulating a round-trip through a 4f cavity
To simulate a round-trip through a 4f-cavity, we can simply take the one-way-trip-
simulation as demonstrated in the previous section, apply a π phase-shift to the
output (assuming an ideal mirror on the back-plane), and then feed the result into
the very same one-way-trip-simulation once more.

2.9.1. Round-trip subroutine
The following subroutine was implemented:

Simulation of round-trip through 4f-cavity without attenuation

• Function: round_trip_no_atten(gpu, E_in, ax_small, ax_large, TF,
lens_mask, f, lambda, f_space_in, f_space_out)

• Description: Takes the input field and sends it on a round-trip through
a 4f-cavity with given focal length and perfect rear-mirror, assuming no
attenuation. Coordinate-axes-vectors for the smaller input-grid and the
larger guarding-grid must be provided together with a phase-mask for the
lenses. Input and output can both be optionally either in position-space or
in spatial-frequency-space. The propagation method can be chosen by means
of the TF parameter.

• Documentation: appendix C.18.

46

2.9. Simulating a round-trip through a 4f cavity

2.9.2. Main program
Below is the source-code of the main program simulating a round-trip through a
4f-cavity. The structure is equivalent to the program in section 2.8.2, except that
we now use the new round-trip-routine from section 2.9.1.

1 %%
2 % Simple t e s t : round−t r i p through 4 f c a v i t y
3 % with optimal g r i d s i z e and guarding area
4 % F i l e : round_trip_test_opt .m
5 %%
6
7 c l e a r a l l
8 c l o s e a l l
9

10 gpu = 1 ; % use GPU
11 i f gpu
12 % i n i t i a l i z e GPUs
13 f o r i i = 1 : gpuDeviceCount
14 gpuDevice (i i) ;
15 end
16 end
17
18 % Basic p h y s i c a l s i m u l a t i o n parameters
19 lambda = 800 e −9; % Wavelength i n meters
20 f = 75 e −3; % f o c a l l e n g t h o f l e n s e s 75 mm
21 p u p i l = f a l s e ; % no p u p i l
22 NA = 0 . 0 5 ; % numerical a p e r t u r e o f p u p i l (i f p u p i l == t r u e)
23 lens_type = 1 ; %0 : s p h e r i c a l l e n s , 1 : a s p h e r i c a l , p e r f e c t l e n s
24
25 % t e c h n i c a l s i m u l a t i o n parameters
26 TF = 0 ; % 0 : Rayle igh Sommerfeld , 1 : F r e s n e l
27 test_image = 4 ; % Large o f f −c e n t e r T
28 L_des = 2 . 5 e −3; % d e s i r e d s i d e l e n g t h o f input s i m u l a t i o n g r i d
29 f a c t o r = 2 ; % f a c t o r by which embedding g r i d should be l a r g e r
30
31 % c r e a t e optimal g r i d
32 [N1 , L1 , N2 , L2 , alpha_max , n_max] = ...
33 opt_grid_params (L_des , f a c t o r , f , f , true , lambda) ;
34 % d i s p l a y g r i d parameters
35 d i s p (['N1= ' , num2str (N1) , ' N2= ' , num2str (N2) , ' n_max= ' , num2str (n_max)])
36
37 ax1 = create_ax (gpu , N1 , L1) ; % c r e a t e xy−axes c o o r d i n a t e s " s m a l l " g r i d
38 ax2 = create_ax (gpu , N2 , L2) ; % c r e a t e xy−axes c o o r d i n a t e s " l a r g e " g r i d
39
40 % c r e a t e l e n s phase mask
41 [lens_mask , l e n s _ p u p i l] = l e n s (gpu , ax2 , lambda , pupi l , NA, f , lens_type) ;
42 % Create input image
43 E_in = create_test_image (gpu , ax1 , test_image , f a l s e) ;
44 % s i m u l a t e round−t r i p
45 E_out = round_trip_no_atten (...
46 gpu , E_in , ax1 , ax2 , TF, lens_mask , f , lambda , f a l s e , f a l s e) ;
47 % Display r e s u l t
48 p l o t _ f i e l d s (gpu , 1 , ax1 , E_in , ' Input F i e l d ' , 3 , E_out , ' Output F i e l d ' , 3) ;

2.9.3. Simulation result
The program displays the following calculated simulation parameters:

N1=210 N2=418 n_max=52

The visual output is displayed in figure 2.14. As expected with a 4f-cavity, the
output image equals the input-image.

47

2. Numerical simulation of light propagation and lenses

Figure 2.14.: A simulation of a test-image propagated on a single round-trip through a
4f-cavity of 4 × 75 mm total length. The absolute value of the complex-valued fields is
displayed.

At first glance, the output field in figure 2.14 does not seem to show any artifacts.
However, when zooming in to the point where the horizontal and the vertical bar
meet, residual artifacts become visible (see figure 2.15).

Figure 2.15.: Residual artifacts are visible when using the Rayleigh-Sommerfeld propagator,
even when the optimal grid-size is used.

48

2.9. Simulating a round-trip through a 4f cavity

By changing line 26 to TF = 1;, the software is modified so that the (physically less
accurate) Fresnel transfer function will be used instead of the Rayleigh-Sommerfeld
propagator. This eliminates the artifacts (see figure 2.16).

Figure 2.16.: The residual artifacts vanish when the Fresnel propagator with optimal grid-size
is used.

Indeed, this behavior does not come as a surprise. The sampling condition derived
in section 2.6 is only exact for the Fresnel transfer function, but only an approxi-
mation for the Rayleigh-Sommerfeld method. Still, it seems better to generally use
the physically more accurate Rayleigh-Sommerfeld method in our simulations, but
it must be kept in mind that residual artifacts can creep in and might sometimes
reduce the accuracy of a simulation.

As a last check for the method, we make the following two code modifications in
line 27 and 48.

49

2. Numerical simulation of light propagation and lenses

27 test_image = 3 ; % Large c e n t e r e d T with a phase g r a d i e n t

48 p l o t _ f i e l d s (gpu , 1 , ax1 , E_in , ' Input F i e l d ' , 1 , E_out , ' Output F i e l d ' , 1) ;

With these code modifications, a large centered “T” with a phase gradient is
used as input image, and the real part of the complex input- and output-fields is
displayed instead of the absolute value.

Figure 2.17.: Simulation of a test-image with a phase gradient propagated on a round-trip
through a 4f-cavity of 4 × 75 mm total length. The real part of the complex-valued fields is
displayed.

Again, the output image equals the input image, except for a visible phase-shift
of π. This meets the expectations, as the total distance of a single round-trip in
this simulation is 2L = 8f = 8 × 75 mm = 600 mm, and the assumed wavelength
λ = 800 nm fits exactly 750,000 times into this length. Therefore, the only remain-
ing phase-shift stems from the reflection at the total reflective mirror.

Further we notice that there are still not visible artifacts or distortions, although
the phase-gradients in the input image correspond to tilted light-rays in the
corresponding ray-model.

50

3. A fast and efficient
4f-cavity-CPA simulation

In this chapter we develop a fast and efficient method for using the unattenuated
round-trip-simulation of the previous chapter to simulate the effect of the infinite
number of round-trips in an attenuated, plane-parallel 4f-cavity with one perfect
mirror and one partially reflecting mirror as shown in figure 1.10.

3.1. Properties of an ideal partially reflecting
mirror

Correctly modeling the exact amplitude and phase relations of the partially reflect-
ing mirror of the 4f cavity is important for the simulation of the 4f-cavity-CPA.
Interestingly, standard optics textbooks are quite vague when it comes to describing
the exact amplitude and phase relations of the transmitted and reflected light
waves going through a partially reflecting mirror, let alone a partially reflecting
mirror with arbitrary reflection coefficient. What’s more, ever so often it is hinted
that a certain phase is assigned to, e.g., the reflected wave just by convention,
and that all other phase relations are then just following this convention (see,
e.g., [16, p. 450] or [17, p. 1265]).

Or, as Salik puts it in [18, p. 223]:

Students do not receive a consistent description of phase shifts upon
reflection when they consult optical textbooks. [...] The analytical
treatment of phase shifts also takes slightly different forms.

Salik then provides the following explanations for the confusion:

The inconsistency of the phase shifts upon reflection is due in part
to the conventions used in the derivation of the Fresnel equations.
[...] The reflection phase shifts are not to be understood as the phase
change relative to the incident beam; rather, they are in reference
to the assumed directions of the electric field vectors at the point
of incidence. [...] Even though conventions for the assumed field
directions resolve most of the discrepancy, some authors who use the
same conventions calculate these phase shifts differently. [...] What

51

3. A fast and efficient 4f-cavity-CPA simulation

explains the difference between textbooks that use the same conventions
is yet another convention in the expression of polarized states of the
electromagnetic waves. In Eq. (1), we expressed the fields as Acos(kz −
ωt + φ1). However, the same fields can also be expressed as Acos(ωt −
kz + φ2).

That these conventions for the assumed field directions are necessary becomes clear
when one visualizes that the electric and magnetic field-vectors for the incident
light field, the reflected light field, and the refracted light field need three different
coordinate systems, which allow for 8 different coordinate-system conventions, as
depicted in figure 3.1

Figure 3.1.: Eight different conventions for modeling reflection and refraction of linearly
polarized light at a boundary. E and H are the electric and magnetic vectors, n1 and n2 the
refractive indices of the two media. From: [19, p. 136]

52

3.1. Properties of an ideal partially reflecting mirror

Switching between the eight conventions depicted in figure 3.1 can make a phase-
difference of π. To complicate things even further, we additionally have to face the
challenge of the scalar optics simplification. In our simulation we do not implicitly
distinguish between different directions of the 2E and 2B vectors.

3.1.1. Creating a model suitable for scalar optics
Since we are designing a 4f-cavity-CPA, the exact amplitude and phase relations
of the transmitted and reflected light waves at the partially reflecting mirror are
important, and must be accommodated in our scalar-optics model. To deal with
the challenges explained in the previous section, we derive the complex phasor
relations of incoming, reflected, and transmitted light of a partially reflecting
mirror by employing the simple 1D model shown in figure 3.2.

x

ψ1(x) ψ2(x)

0

eikx

teikx

re−ikx

Figure 3.2.: Deriving phasor relations of incoming, reflected, and transmitted light for a
partially reflecting mirror with a simple 1D model.

In this model, a plane wave hits a delta potential of a given height at position
x = 0, where it is partially reflected and transmitted. The superposition of the
incoming and the reflected wave is represented by ψ1(x), and the transmitted wave
is represented by ψ2(x):

ψ1(x) = eikx + re−ikx (3.1)
ψ2(x) = teikx (3.2)

The whole system is governed by a one-dimensional version of the Helmholtz
equation, which we can get by taking equation (2.9) and substituting U(2r) → ψ(x),
2∇2 → ∂2

∂x2 , and k2 → n2(x)k2:

d2

dx2 ψ(x) + n2(x)k2ψ(x) = 0
****· 1

k2

1
k2

d2

dx2 ψ(x) + n2(x)ψ(x) = 0 (3.3)

53

3. A fast and efficient 4f-cavity-CPA simulation

with

n2(x) =
�

1 x � 0
V0δ(x) x = 0.

(3.4)

Solving equation (3.3) under consideration of equation (3.4) with the adequate
matching conditions results in (see appendix A.6):

r = − kV0
kV0 + 2i

(3.5)

t = 2i

kV0 + 2i
(3.6)

Now, let r0 be the absolute value of the reflection coefficient of a partially reflecting
mirror, so that

r0
def= |r| (3.7)

By inserting (3.5) into (3.7), and solving the resulting equation for V0, we get (see
appendix A.7):

V0(r0) = ± 2r0

k
"

1 − r2
0

(3.8)

Inserting this into equations (3.5) and (3.6) allows to express r(r0) and t(r0), i.e.,
the complex-valued reflection coefficient r and transmission coefficient t based on
a given absolute value of the reflection coefficient r0

def= |r| (see appendix A.8).

r(r0) = −r2
0 ± ir0

"
1 − r2

0 (3.9)

t(r0) = 1 − r2
0 ± ir0

"
1 − r2

0 (3.10)

Both equations (3.9) and (3.10) are ambiguous because of the ± sign. However,
as long as we choose the sign consistently in both equations, our calculations will
represent the phase relation between transmitted and reflected light wave at the
partially reflective mirror correctly so that all energy conditions are fulfilled. Of
course, depending on our choice of sign, we will get different results regarding the
phase difference between the incident and the reflected wave. However — as r0 is

54

3.1. Properties of an ideal partially reflecting mirror

constant in a given setup — any deviation between our calculation and an actual ex-
periment with respect to that can be instantly compensated by the experimenter by
adjusting the total length of the 4f-cavity by an according fraction of a wavelength1.

Having said that, let’s visualize the two alternative formulas for the reflection
coefficient r(r0) in figure 3.3 for a reasonable choice.

Figure 3.3.: Two possible formulas to model the phase-difference between the reflected and
the incident beam of a partially reflective mirror as a function of the absolute value of the
reflection coefficient.

As we expect an eiπ = −1 phase jump at total reflection, one could be tempted to
select the upper curve where r(1) = π. However, at second thought, also e−iπ = −1,
so that is not really a criterion. Therefore, we take the fact that, for metals, at
normal incidence, the component of the electric field vector normal to the plane of
incidence suffers a phase change of φ = −π, (see [20, p. 271]), and therefore we
pick the lower curve from figure 3.3.

Hence, our model for calculating the reflection phasor r and transmission phasor t
given the absolute value of the reflection coefficient r0 from now on is:

r(r0) = −r2
0 − ir0

"
1 − r2

0 (3.11)

t(r0) = 1 − r2
0 − ir0

"
1 − r2

0 (3.12)

1 At the end of section 3.2.2, we will put the hypothesis that the choice of sign in equations (3.9)
and (3.10) is irrelevant to the test.

55

3. A fast and efficient 4f-cavity-CPA simulation

Figure 3.4 shows how the arguments of the r(r0) and t(r0) functions develop. One
can clearly see that they maintain a phase distance of exactly π

2 . Also, figure 3.5,
showing the plot of the absolute value of the transmission phasor as a function
of r0, makes sense: the larger the absolute value of the reflection, the smaller the
absolute value of the transmission.

Figure 3.4.: Phase shifts of reflected and transmitted light in relation to the incident light
beam as a function of the absolute value of the reflection coefficient of a partially reflecting
mirror

Figure 3.5.: Absolute value of the transmission coefficient of a partially reflecting mirror as
a function of the absolute value of the reflection coefficient.

56

3.2. A simple, one-dimensional CPA as a toy model

3.1.2. Plausibility checks
Energy conservation

For the sake of energy conservation, we expect for a partially transparent, lossless
mirror:

|r(r0)|2 + |t(r0)|2 = 1 (3.13)

This condition is satisfied as proven in appendix A.9.

Phase difference between transmitted and reflected light

Degiorgio shows in [21] that in a semireflecting lossless mirror – also because of
energy conservation – the phase difference between the transmitted and reflected
optical field always has to be π

2 :

arg (t(r0)) − arg (r(r0)) = π

2 (3.14)

Figure 3.4 shows visually that this condition is fulfilled. The mathematical proof
can be found in appendix A.10.

Unitarity of the scattering matrix

Finally, energy conservation also dictates that the scattering matrix of a partially
reflective, lossless mirror must be unitary (see [16, p. 405]):

SS† =

r t
t r

�

r∗ t∗

t∗ r∗

�
=

1 0
0 1

�
(3.15)

The mathematical proof that the unitarity-condition is fulfilled can be found in
appendix A.11.

3.2. A simple, one-dimensional CPA as a toy
model

3.2.1. Reflection coefficient and critical coupling
We now consider a simple one-dimensional optical cavity of length l enclosed by
two plane-parallel mirrors as depicted in figure 3.6. The right mirror M2 is a
perfect totally reflective mirror with a reflection coefficient r2 = eiπ = −1 and

57

3. A fast and efficient 4f-cavity-CPA simulation

reflectance R2 = |r2|2 = 1. The left mirror M1 is a symmetrical partially reflect-
ing mirror characterized by the complex reflection coefficient r1 and reflectance
R1 = |r1|2 def= r2

0, such that 0 < R < 1. Light propagation within the cavity is
characterized by a complex wavenumber k̃ = k + iκ, with the attenuation constant
κ effective over the whole length l.

x

...

k̃ = k + iκ

M1 M2

l

r2 = eiπ|r1| def= r0

Figure 3.6.: A simple one-dimensional plane-parallel optical cavity with a fully reflective
mirror M2 on the right side and a partially reflective mirror M1 on the left side.

To calculate the reflection coefficient of the total cavity rcav for an incident beam
from the left side, we just have to follow each individual light-path and sum up all
contributions:

• The fraction of light that gets directly reflected at the left mirror: r1

• The fraction of light that gets transmitted through the left mirror, travels
from left to right, gets reflected at the right mirror, travels back from right
to left to left, and then leaves the cavity to the left side after being once
more transmitted through the left mirror: t1e

ik̃lr2e
ik̃lt1

• The fraction of light that gets transmitted through the left mirror, takes a
round-trip, gets reflected at the left mirror, takes another round-trip, and
then leaves the cavity to the left side after being once more transmitted
through the left mirror: t1e

ik̃lr2e
ik̃lr1e

ik̃lr2e
ik̃lt1

• etc.

58

3.2. A simple, one-dimensional CPA as a toy model

rcav = r1 + t1 · eik̃lr2eik̃l · t1

+ t1 · eik̃lr2eik̃l · r1eik̃lr2eik̃l · t1

+ t1 · eik̃lr2eik̃l ·
�
r1eik̃lr2eik̃l

�
2 · t1

+ . . .

rcav = r1 + t2
1r2e2ik̃l

∞)
n=0

�
r1r2e2ik̃l

�
n

∞)

n=0
qn = 1

1 − q
(geometric series)

rcav = r1 + t2
1r2e2ik̃l 1

1 − r1r2e2ik̃l

***r2 = eiπ = −1

(3.16)

rcav = r1 − t2
1e2ik̃l

1 + r1e2ik̃l

rcav = r1 − t2
1

e−2ik̃l + r1

(3.11)=⇒ (3.12)=⇒

rcav = −r2
0 − ir0

"
1 − r2

0 −

�
1 − r2

0 − ir0
"

1 − r2
0

�2

e−2ik̃l − r2
0 − ir0

"
1 − r2

0

(3.17)

Equation (3.16) is consistent with the result presented in [16, p. 422], except for
a π

2 phase-convention in t. In order to realize a coherent perfect absorber, the
reflection coefficient rcav must vanish. Therefore, we have to set the right part of
equation (3.17) equal to zero. This enables us — after a two-page calculation in
appendix A.12 — to express the condition that has to be fulfilled by the complex
wavenumber k̃:

k̃c = 1
2l

2πn − arctan


"

1 − r2
0

r0

 − i
1
2l

ln (r0) with n ∈ Z (3.18)

Because we have defined k̃ = k + iκ, the conditions, which kc = Re (k̃c) and
κc = Im (k̃c) have to fulfill for critical coupling, can be read off directly from
equation (3.18):

kc = Re (k̃c)
(3.18)=⇒

kc = 1
2l

2πn − arctan


"

1 − r2
0

r0

 with n ∈ Z (3.19)

59

3. A fast and efficient 4f-cavity-CPA simulation

κc = Im (k̃c)
(3.18)=⇒

κc = − 1
2l

ln (r0) (3.20)

The total attenuation for one round-trip from left to right and back is obviously
given by e−2κl. Inserting equation (3.20) into this expression, we get:

e−2κcl = e
2l 1

2l
ln (r0)

e−2κcl = r0 (3.21)

This is a remarkably simple and pleasing result. The cavity’s reflection coefficient
rcav vanishes when the absolute value of the left mirror’s reflection coefficient
exactly equals the loss term e−2κcl.

This is often called the impedance-matched situation, because our setup — as it
consists of an optical resonator driven from the exterior via a certain coupling
constant determined by the partially reflective mirror — corresponds to a resonant
circuit, consisting of a “load” with a certain input impedance, driven by a signal
source with an equal output impedance. When the input impedance of the load
matches the output impedance of the source, reflections are minimized (cf. [16,
p. 423]).

3.2.2. Simulation results
By substituting k̃ with 2π

λ
+ iκc in equation (3.17) and further substituting κc with

the result from equation (3.20), we are now in the position to calculate the total
reflectance |rcav|2 of the cavity.

Figures 3.7 and 3.8 show the result of such one-dimensional simulations under the
assumption of L = 300 mm, λ = 800 nm and r0 = 0.7 for critical attenuation and
various over- and under-critical attenuations. As expected, the reflectance drops
to zero at resonance conditions if the attenuation matches the critical attenuation.
These plots coincide very well with figure 11.16 in [16, p. 423].

60

3.2. A simple, one-dimensional CPA as a toy model

Figure 3.7.: Reflectance of a 1D-cavity with an |r| = r0 = 0.7 mirror assuming a coherent
incident light beam with a wavelength of λ = 800 nm. The red curve shows the results with
critical attenuation, the other curves the result with various under-critical attenuations.

Figure 3.8.: Reflectance of a 1D-cavity with an |r| = r0 = 0.7 mirror assuming a coherent
incident light beam with a wavelength of λ = 800 nm. The blue curve shows the result with
critical attenuation, the other curves the results with various over-critical attenuations.

Finally, we can check whether our choice of sign in equations (3.9) and (3.10) really
has no relevant effect to our simulations by calculating the critically attenuated
1D-CPA with either choice of sign.

61

3. A fast and efficient 4f-cavity-CPA simulation

Figure 3.9.: Effect of choice of sign in equations (3.9) and (3.10) to the 1D-CPA-simulation.

As can be seen in figure 3.9, the CPA-effect appears with either choice of sign. The
only difference (assuming an unchanged cavity length) is a minimal shift in the
resonance wavelength.

3.2.3. Plausibility check
We now assume a 1D-cavity without attenuation, i.e., we assume that κ = 0,
and therefore k̃ = k. Replacing k̃ with k in equation (3.17), and doing a lengthy
transformation (see appendix A.13), we can convert equation (3.17) into equa-
tion (3.22), which explicitly shows the real part and the imaginary part of the
cavity’s total (outside) reflection coefficient rcav.

rcav =
�
3r2

0 − 1
�

cos (2kl) − 2r0
"

1 − r2
0 sin (2kl) − 2r2

0

1 + r2
0 − 2r2

0 cos (2kl) + 2r0
"

(1 − r2
0) sin (2kl)

+ i
2r0

"
1 − r2

0 cos (2kl) + (r2
0 − 1) sin (2kl) − 2r0

"
(1 − r2

0)

1 + r2
0 − 2r2

0 cos (2kl) + 2r0
"

(1 − r2
0) sin (2kl)

(3.22)

62

3.2. A simple, one-dimensional CPA as a toy model

Plotting the real part and the imaginary part of rcav reveals a well-known behavior
around the resonance point (see figure 3.10).

Figure 3.10.: The real and imaginary parts of rcav reveal the well-known behavior of resonant
systems around k = kc. (Parameters of the cavity: l = 1 m, r0 = 0.95, κ = 0)

The representation in equation (3.22) with separated real part and imaginary part
allows the calculation of ϕcav = arg (rcav):

ϕcav = arg (rcav)

ϕcav = arctan2 (Re(rcav),Im(rcav)) (3.22)=⇒

ϕcav = arctan2
��

3r2
0 − 1

�
cos (2kl) − 2r0

"
1 − r2

0 sin (2kl) − 2r2
0,

2r0

"
1 − r2

0 cos (2kl) + (r2
0 − 1) sin (2kl) − 2r0

"
(1 − r2

0)
�

(3.23)

63

3. A fast and efficient 4f-cavity-CPA simulation

Figure 3.11 below visualizes the phase behavior of ϕcav around a resonance point.

Figure 3.11.: The phase behavior of the cavity’s outside reflection coefficient ϕcav =
arg (rcav) around the first resonance point. (l = 1 m, r0 = 0.95, κ = 0)

Figure 3.11 shows the behavior of an undamped 4f-cavity’s outside reflection coef-
ficient at the partially reflective mirror around the first resonance point, assuming
a cavity length of l = 1 m, and the absolute value of the reflection coefficient being
r0 = 0.95. One can see a 2π phase shift around k = kc = 2.98 m−1, which can be
calculated using equation (3.19) by setting n = 1, l = 1 m, and r0 = 0.95.

For a plausibility check, we want to refer to the input-output theory of a damped
quantum system, where a single mode in a cavity like our system is governed by
the stochastic quantum Langevin equation as described in [22, p. 3763, eq. (2.13)]:

ȧ(t) = −iω0a(t) − γ

2 a(t) − √
γbin(t) (3.24)

In equation (3.24), bin(t) represents the incoming field, a(t) the harmonic oscillator
cavity field, and γ the damping coefficient of the Markovian damping term, which
stems from the fact that — although we do not assume explicit damping in the
cavity (we chose κ = 0) — there is still energy loss by means of light leaving the
cavity through the partially reflective mirror.

The relation between the incoming field bin(t) and the outgoing field bout(t) is given
by [22, p. 3764, eq. (2.22)]:

bout(t) = bin(t) + √
γa(t). (3.25)

64

3.2. A simple, one-dimensional CPA as a toy model

By Fourier-transforming equations (3.24) and (3.25), the according equations in
frequency-space can be obtained:

−iωa(ω) = −iω0a(ω) − γ

2 a(ω) − √
γbin(ω) (3.26)

bout(ω) = bin(ω) + √
γa(ω) (3.27)

Solving this system of equations leads to the input-output relation

bout(ω) =
i (ω0 − ω) − γ

2
i (ω0 − ω) + γ

2
bin(ω) (3.28)

which can be expressed as

bout(ω) = eiϕQLE(ω)bin(ω) (3.29)

with the phase-difference ϕQLE(ω) being

ϕQLE(ω) = π + 2 arctan
�2 (ω − ω0)

γ

�
. (3.30)

In an equivalent representation, we can re-write equation (3.30) from frequency-
space to k-space:

ϕQLE(k) = π + 2 arctan
�2 (k − k0)

K

�
(3.31)

Equation (3.31) shows the same 2π phase shift at k = k0 as we can also observe in
figure 3.11 at k = kc, which is a first hint that equation (3.23) is correct.

65

3. A fast and efficient 4f-cavity-CPA simulation

However, comparing the first derivative dϕcav

dk
(by calculating the derivative of

equation (3.23)) with the first derivative dϕQLE

dk
(by calculating the derivative of

equation (3.30)) will prove to become a much deeper plausibility check, as it will
reveal that the full-width-at-half-maximum (FWHM) value of dϕ

dk
encodes a very

good estimation of the cavity’s critical damping κc, as derived in equation (3.20).

Please note that the relation between FWHM and critical damping is usually
drawn from the amplitude as a function of frequency or wavenumber. However,
as the cavity that we are currently considering has no explicit damping (we chose
κ = 0), the amplitude of the reflected field is constant and does not carry any
information.

Now let us first consider the first derivative dϕcav

dk
, which follows from equation (3.23),

and can be expressed as:

dϕcav

dk
=

�
2l

�
r2

0 − 1
� �

2r2
0 cos (2kl) − r2

0 − 2r0

"
1 − r2

0 sin (2kl) − 1
��

·�
2r0

	
2

�
r0 + r3

0
�

cos (2kl) +
�
r0 − 2r3

0
�

cos (4kl) +

2
"

1 − r2
0

�
2r2

0 cos (2kl) − r2
0 − 1

�
sin (2kl)

�
− r2

0(4 + r2
0) − 1

�−1
(3.32)

Figure 3.12 shows the behavior of equation (3.32) around the first resonance point,
assuming a cavity length of l = 1 m, and the absolute value of the reflection
coefficient being r0 = 0.95.

Figure 3.12.: The first derivative of the cavity’s outside reflection coefficient phase dϕcav

dk =
d

dk arg (rcav) around a resonance point (l = 1 m, r0 = 0.95, κ = 0).

66

3.2. A simple, one-dimensional CPA as a toy model

In comparison, calculating the first derivative of equation (3.31) yields

dϕQLE

dk
= 4K

4 (k − k0)2 + K2
. (3.33)

By substituting k0 → kc and K → 2κc, and calculating kc and κc according
to equations (3.19) and (3.20), we get a virtually perfect match between dϕcav

dk

(figure 3.12) and dϕQLE

dk
(figure 3.13) around the resonance point.

Figure 3.13.: The first derivative of the cavity’s outside reflection coefficient phase dϕQLE

dk
around the first resonance point, calculated based on the stochastic quantum Langevin
equation (QLE) (parameters: l = 1 m, r0 = 0.95, κ = 0).

To see that the heuristically determined substitution K → 2κc makes sense, we
need to express K as a function of the partially reflective mirror’s transmissivity
|t1|2. The larger |t1|2 gets, the more energy can leave the cavity, and the larger we
therefore expect the QLE damping coefficient K in equation (3.33) to become.

K = 2κc
(3.20)=⇒

K = −❆2
1
❆2l

ln (r0) |r0 = |r1|

K = −1
l

ln (|r1|)
****|r1|2 + |t1|2 = 1 =⇒ |r1| =

"
1 − |t1|2

K = −1
l

ln
� "

1 − |t1|2
�

K = − 1
2l

ln
�
1 − |t1|2

�
(3.34)

67

3. A fast and efficient 4f-cavity-CPA simulation

By developing ln
�
1 − |t1|2

�
around small values of |t1|2, we get

ln
�
1 − |t1|2

�
≈ − |t1|2 (3.35)

Inserting equation (3.35) into equation (3.34) yields the final result

K ≈ |t1|2
2l

(3.36)

As expected, there is an almost linear relation between K and |t1|2 for small values
of |t1|2. Also, the constant factor 1

2l
makes sense from the standpoint of units as

well as 2l being the length of a full round-trip.

In the next step of our plausibility check, we want to find out how FWHM
�dϕQLE

dk

�
is related to κc. To do so, we explicitly perform both substitutions k0 → kc and
K → 2κc in equation (3.33), and get:

dϕQLE

dk
= 2κc

(k − kc)2 + κ2
c

(3.37)

After a brief derivation (see appendix A.14) it turns out that

κc = 1
2 FWHM

�dϕQLE

dk

�
(3.38)

Equipped with this insight, we can now — as a plausibility check for equa-
tion (3.17) — numerically evaluate the FWHM-value of equation (3.32) around
the first resonance-point, to see if the relation from equation (3.38) also holds for
dϕcav

dk
.

68

3.2. A simple, one-dimensional CPA as a toy model

Figure 3.14 shows the result of this calculation. It turns out that in a numerical
evaluation of the chosen example (l = 1 m, r0 = 0.95) the anticipated relation
1
2 FWHM

�
dϕcav

dk

�
= κc holds with an accuracy of three significant digits: κc =

0.025647 m−1, and 1
2 FWHM

�
dϕcav

dk

�
= 0.025652 m−1.

Figure 3.14.: The first derivative of the cavity’s outside reflection coefficient phase dϕcav

dk =
d

dk arg (rcav) around a resonance point (l = 1 m, r0 = 0.95, κ = 0). The red line marks the
full width at half maximum (FWHM). As expected: 1

2 FWHM
�

dϕcav

dk

�
= κc.

69

3. A fast and efficient 4f-cavity-CPA simulation

3.3. Extending the simple 1D approach to 3D:
Calculating a 4f-Cavity-CPA

In this section, we consider a 4f-cavity as depicted in Figure 3.15.

x

y

z

M1 M2

f f f f
l = 4f

|r1| def= r0 r2 = eiπ

k̃ = k + iκ

Figure 3.15.: An optical 4f-cavity with a fully reflective mirror M2 on the right side and a
partially reflective mirror M1 on the left side.

Again, the right mirror M2 is a perfect total reflective mirror with a reflection
coefficient r2 = eiπ = −1 and reflectance R2 = |r2|2 = 1, and the left mirror M1 is
a symmetrical, partially reflecting mirror, characterized by the complex reflection
coefficient r1 and reflectance R1 = |r1|2 def= r2

0, so that 0 < R < 1. Similar as in the
previous section, light propagation within the cavity is characterized by a complex
wavenumber k̃ = k + iκ, with the attenuation constant κ effective over the whole
length l.

In contrast to figure 3.6 there are now two converging lenses inside the cavity.
The first lens is positioned exactly one focal length f after the left mirror, and
the second lens is positioned two focal lengths after the first lens. The right
mirror is eventually positioned yet another focal length after the second lens, hence
altogether at a distance of four focal lengths after the left mirror.
As already explained in section 1.3, this arrangement ensures that (all lens-errors

and other side-effects aside) each beam entering the cavity from the left side
through mirror M1 is always reflected into itself and then bounces back and forth
the optical cavity following the very same path. Therefore, we can expect that the
results from the previous section can be, in first approximation, transferred to this
advanced cavity with satisfying accuracy.

70

3.3. Extending the simple 1D approach to 3D: Calculating a 4f-Cavity-CPA

Using the scalar optics computer simulation developed in chapter 2, we can express
any incident wave-front coming from the left side as a two-dimensional complex
function in the xy-plane. Observing a limited square-shaped xy-area centered
with respect to the optical axis, we can decompose the incoming wavefront into
eigenstates by Fourier Transformation.

Because our computer simulation necessarily decomposes the field on the xy-plane
into a countable number of complex values at the discrete coordinate points of
the digitizing grid (see chapter 2), Fourier Transformation becomes FFT, and the
number of the transverse xy-eigenstates becomes limited and countable. Therefore,
we can express the behavior of the cavity with reflection and transmission matrices.

3.3.1. Calculating the 4f-cavity reflection matrix from the
single-round-trip transmission matrix

Let T̃ be the transmission matrix describing a single round-trip in the cavity,
including attenuation. This means that T̃ describes how an xy-light-field is trans-
formed on its way from the inside surface of the left mirror when it takes a single
round-trip through the whole cavity, i.e., when it propagates from left to right
through both lenses and a potential absorber, gets reflected at the right mirror,
and then propagates from right to left through both lenses and the absorber again
until it hits the inside surface of the left mirror.

To derive this equation we can take the concept from the derivation of equa-
tion (3.17); only this time we use matrix notation. The scalar reflection coefficient
rcav becomes a reflection matrix Rcav, and instead of just propagating with eikz the
whole (more complex) single-round-trip propagation (including the propagation
through two lenses and the attenuation) is represented by the transmission matrix
T̃, which we shall eventually determine by computer simulation.

The total reflection matrix Rcav is obviously the sum of the following components:

• The fraction of light that gets directly reflected at the left mirror: r11

• The fraction of light that gets transmitted through the left mirror, takes a
single round-trip, and then leaves the cavity to the left side after being once
more transmitted through the left mirror: t1T̃t1

• The fraction of light that gets transmitted through the left mirror, takes a
round-trip, gets reflected at the left mirror, takes another round-trip, and
then leaves the cavity to the left side after being once more transmitted
through the left mirror: t1T̃r1T̃t1

• etc.

71

3. A fast and efficient 4f-cavity-CPA simulation

With this approach it is easy to see that we get the following geometric series:

Rcav = r11 + t1T̃t1 + t1T̃r1T̃t1 + t1T̃r1T̃r1T̃t1 + . . .

Rcav = r11 + t2
1T̃ + t2

1r1T̃2 + t2
1r2

1T̃3 + . . .

Rcav = r11 + t2
1T̃

�
1 + r1T̃ + r2

1T̃2 + . . .
�

Rcav = r11 + t2
1T̃

∞)
n=0

�
r1T̃

�n

Rcav = r11 + t2
1T̃

�
1 − r1T̃

�−1

Using the relation t1 = 1 + r1 (see equation (9) in appendix A.6) this finally
becomes

Rcav = r11 + (1 + r1)2 T̃
�
1 − r1T̃

�−1
(3.39)

Considering relation (3.11), Rcav can be expressed as a function of r0, the absolute
value of the left mirror’s reflection coefficient:

Rcav = −
�

r2
0 + ir0

"
1 − r2

0

�
1

+
�

1 − r1r2
0 − ir0

"
1 − r2

0

�2
T̃

�
1 −

�
r2

0 + ir0

"
1 − r2

0

�
T̃

�−1
(3.40)

72

3.3. Extending the simple 1D approach to 3D: Calculating a 4f-Cavity-CPA

3.3.2. Estimating the single-round-trip transmission matrix
for critical absorption

We will eventually calculate the single-round-trip transmission matrix T̃ with a
computer simulation, but given the structure of the 4f-cavity we can estimate that
T̃ has diagonal shape, and the matrix T̃c at critical coupling can be approximated
by

T̃c ≈ 1r2e2ik̃cl
***r2 = eiπ = −1

T̃c ≈ −1e2ik̃cl
***k̃c = kc + iκc

T̃c ≈ −1e2i(kc+iκc)l

T̃c ≈ −1e2ikcle−2κcl (3.21)=⇒
T̃c ≈ −1e2ikclr0

T̃c ≈ r0Tc with Tc
def= −1e2ikcl (3.41)

The transmission matrix Tc in expression (3.41) describes a single round-trip in
the cavity at critical coupling without any attenuation. Attenuation can then be
added by simply multiplying the scalar value r0 to the matrix.

With the help of equation (3.19), it is possible to (approximately) express the
matrix Tc from equation (3.41) as a function of r0. The whole derivation can be
found in appendix A.15.

Tc(r0) ≈ −1e2ikcl (3.19)=⇒
Tc(r0) ≈ 1

�
−r0 + i

"
1 − r2

0

�
(3.42)

73

3. A fast and efficient 4f-cavity-CPA simulation

3.3.3. Software implementation
The following subroutines have been implemented:

Create transmission matrix for a single round-trip through a 4f-cavity
without attenuation

• Function: The function transmission_matrix_round_trip_no_atten(gpu,
ax_small, ax_large, TF, modes, lens_mask, f, lambda) creates all
transverse (x,y)-modes encoded in the modes input vector and sends these
modes on a single round-trip through an unattenuated 4f-cavity with the
given parameters. Based on this, a transmission matrix – corresponding to
Tc in equation (3.41) – is created and returned. The n-th column of the
returned transmission matrix represents the spatial frequency response to
the n-th mode according to the modes input-vector.

• Documentation: appendix C.21.

Main program for calculating the reflection matrix

• Description: The main program listed in appendix E.1 first calculates a
critical wavenumber kc based on equation (3.19), so that the corresponding
critical wavelength λc is as close as possible to the given reference-wavelength
λ0. Then it uses the function described above to create a single-round-
trip transmission matrix Tc for a 4f-cavity without attenuation based on
equation (3.41). Using equation (3.41), the transmission matrix T̃c is cal-
culated. Eventually, the cavity’s total reflection matrix Rcav is calculated
based on equations (3.11) and (3.39). In the remaining lines of the code, the
unitarity of Tc is checked by calculating TcTc

†, and displaying the largest
off-diagnonal absolute value of TcTc

†. Also, the top-left diagonal entry of
Tc is compared with the expected value based on equation (3.42). Finally,
Rcav (with element-wisely squared absolute values) and Tc are visualized
graphically .

• Documentation: appendix E.1.

74

3.3. Extending the simple 1D approach to 3D: Calculating a 4f-Cavity-CPA

3.3.4. Simulation results and plausibility check
The main program described in the previous section gives the following text output:

N1=210 N2=418 n_max=52
max T*T’ off-diagonal value: 0.0001988
estimated diagonal value of T: -0.89443+0.44721i
actual T(1,1) value: -0.89458+0.44678i

The first line shows the used optimal grid size 210 × 210, and the guarding grid size
418 × 418 allows a maximum transverse mode number nx = ny = 52. Therefore,
the chosen maximum mode number of 16 (see line 50 in the listing in appendix E.1)
is well within borders.

The second line of the output shows the maximal non-diagonal absolute value of
TT†. If the matrix T was exactly unitary, this value would be zero. That it is
close to zero indicates that T is at least close to unitarity.

The last two lines reveal good agreement between the estimated diagonal value of
the T-matrix, calculated with equation (3.42), and the simulation result (at least
in the topmost left array entry).

The generated images of the transmission matrix and the element-wisely squared
reflection matrix can be seen on the next two pages in figures 3.16 and 3.17. The
transmission matrix is in very good approximation a diagonal matrix, as expected.
The (element-wisely squared) reflection matrix at critical coupling shows that most
of the reflection almost vanishes completely for all modes up to nx = ny = 16 (with
higher modes showing a bit more reflection than lower modes).

75

3. A fast and efficient 4f-cavity-CPA simulation

Figure 3.16.: The transmission matrix of a round-trip through a 4f-cavity without any
attenuation (the plot shows absolute values). Parameters: f = 75 mm, λ0 = 800 nm.
Observation plane 2.5 mm × 2.5 mm covered by a 210 × 210 grid. Maximum modes:
ny = ny = 16. Lenses: aspherical perfect lenses. Propagation simulation: Rayleigh-
Sommerfeld.

76

3.3. Extending the simple 1D approach to 3D: Calculating a 4f-Cavity-CPA

Figure 3.17.: The reflection matrix of a 4f-cavity-CPA at critical wavelength and atten-
uation (the plot shows squared absolute values). Parameters: f = 75 mm, λ0 = 800 nm.
Observation plane 2.5 mm × 2.5 mm. Maximum modes: nx = ny = 16. Lenses: aspherical
perfect lenses. Propagation simulation: Rayleigh-Sommerfeld.

77

3. A fast and efficient 4f-cavity-CPA simulation

Changing the propagation method to the Fresnel transfer function by modifying
line 29 to TF = 1 makes the reflection matrix noisier, as can be seen in figure 3.18.

Figure 3.18.: The reflection matrix of a 4f-cavity-CPA at critical wavelength and atten-
uation (the plot shows squared absolute values). Parameters: f = 75 mm, λ0 = 800 nm.
Observation plane 2.5 mm × 2.5 mm. Maximum modes: nx = ny = 16. Lenses: aspherical
perfect lenses. Propagation simulation: Fresnel.

However, using the Fresnel transfer function and also switching to spherical lenses
by modifying line 24 to lens_type == 1 produces a strictly diagonal reflection
matrix with a maximal reflectance that is 5 orders of magnitude smaller, and also
does not show significant differences between “lower” and “higher” modes, as can
be seen in figure 3.19 on the next page.

78

3.3. Extending the simple 1D approach to 3D: Calculating a 4f-Cavity-CPA

Figure 3.19.: The reflection matrix of a 4f-cavity-CPA at critical wavelength and atten-
uation (the plot shows squared absolute values). Parameters: f = 75 mm, λ0 = 800 nm.
Observation plane 2.5 mm × 2.5 mm. Maximum modes: nx = ny = 16. Lenses: spherical.
Propagation simulation: Fresnel.

We understand this behavior to be an effect of the paraxial Fresnel-simplification.
The Fresnel propagation simulation with its paraxial approximation is “blind” to
the spherical aberration of the spherical lenses, and also seemingly simplifies the
simulation so that it rather resembles a light-ray-simulation.

79

4. Implementation and simulation
results

4.1. Effects of propagation simulation method
and lens geometry

4.1.1. Software Implementation
The main program CPA_sim_002_r_curve, which is documented in appendix E.2,
iterates through various wavelengths around a critical wavelength and generates
a reflection matrix Rcav for each of these wavelengths. The minimum, average,
and maximum eigenvalue of each of these reflection matrices is stored into a file
(together with the corresponding wavenumber and wavelength).

Besides other parameters, the program allows to choose the following:

• Iterator: Rayleigh-Sommerfeld or Fresnel

• Lenses: spherical lenses or perfect, aspherical lenses

• Attenuation factor: factor determining how much attenuation is simulated.
If this factor is 1, then critical attenuation is simulated; for values smaller or
larger than one, under-critical or over-critical attenuation is simulated.

81

4. Implementation and simulation results

4.1.2. Simulation Results
Rayleigh-Sommerfeld propagator

*
Figure 4.1.: The average, maximum, and minimum eigenvalues of the reflection matrix
of a 4f-cavity-CPA at critical attenuation around the critical wavelength (the plot shows
squared absolute values). Parameters: r2

0 = 0.8, f = 75 mm, λ0 = 800 nm. Maximum
modes: nx = ny = 16. Lenses: aspherical. Propagation simulation: Rayleigh-Sommerfeld.

Figure 4.2.: The average, maximum, and minimum eigenvalues of the reflection matrix
of a 4f-cavity-CPA at critical attenuation around the critical wavelength (the plot shows
squared absolute values). Parameters: r2

0 = 0.8, f = 75 mm, λ0 = 800 nm. Maximum
modes: nx = ny = 16. Lenses: spherical. Propagation simulation: Rayleigh-Sommerfeld.

82

4.1. Effects of propagation simulation method and lens geometry

Fresnel propagator

Figure 4.3.: The average, maximum, and minimum eigenvalues of the reflection matrix
of a 4f-cavity-CPA at critical attenuation around the critical wavelength (the plot shows
squared absolute values). Parameters: r2

0 = 0.8, f = 75 mm, λ0 = 800 nm. Maximum
modes: nx = ny = 16. Lenses: aspherical. Propagation simulation: Fresnel.

Figure 4.4.: The average, maximum, and minimum eigenvalues of the reflection matrix
of a 4f-cavity-CPA at critical attenuation around the critical wavelength (the plot shows
squared absolute values). Parameters: r2

0 = 0.8, f = 75 mm, λ0 = 800 nm. Maximum
modes: nx = ny = 16. Lenses: spherical. Propagation simulation: Fresnel.

83

4. Implementation and simulation results

4.1.3. Discussion
Using the Rayleigh-Sommerfeld propagator in the simulation, a 4×75 mm, r2

0 =
0.8 cavity with aspherical, perfect lenses becomes a CPA at critical attenuation
with very good fidelity. The average reflectance over all eigenmodes practically
vanishes at the resonance point, and also the maximal reflective eigenmode dips to
almost zero, although at a slightly shifted wavelength (see figure 4.1).

Replacing the aspherical by spherical lenses leads to an inferior result (see
figure 4.2). This makes sense because it is to be expected that the spherical
aberration reduces the 4f-effect for the part of the field that is more distant to the
optical axis.

On the other hand, using the Fresnel propagator to simulate an attenuated 4f-
cavity with aspherical, perfect lenses also leads to inferior results (see figure 4.3),
whereas using spherical lenses seemingly results in an almost perfect CPA where
average, minimum, and maximum squared eigenvalues of the reflection matrix
are in perfect agreement (see figure 4.4). This result is to be taken with caution,
though, as it seems to be an effect of the paraxial Fresnel approximation canceling
out the lenses’ spherical aberration.

4.2. Eigenmode decomposition of reflection
matrix

4.2.1. Software implementation
The results presented in this section were produced with the program from ap-
pendix E.3. It generates the reflection-matrix of an attenuated 4f-cavity, then
calculates the corresponding eigenvectors and eigenvalues, and finally writes the
eigenvalues in ascending order into an .xlsx-file. Optionally, the corresponding
eigenmodes (encoded in the eigenvectors) can also be saved as images, and/or
it creates a video where the eigenmodes in ascending order are visualized in an
animation.

84

4.2. Eigenmode decomposition of reflection matrix

4.2.2. Simulation Results

Figure 4.5.: 4f-cavity-CPA at critical attenuation: squared absolute eigenvalues of the re-
flection matrix plotted in ascending order. Parameters: r2

0 = 0.8, λ0 = 800 nm. Observation
plane 2.5 mm × 2.5 mm. Maximum modes: nx = ny = 16. Lenses: aspherical. Propagation
simulation: Rayleigh-Sommerfeld.

Figure 4.5 shows the squared absolute eigenvalues of the reflection matrix of atten-
uated 4f-cavities with different focal lengths in ascending order. The transverse
nx, ny mode numbers have been limited with 16, which results in a total of 1024
transverse modes. The simulation shows that for all chosen cavity lengths, a
majority of the eigenmodes of the reflection matrix show a strong CPA effect.
However, the shorter the cavity gets, the less pronounced the CPA effect becomes
for some of the modes. While with a 4 × 100 mm cavity up to around 1000 of the
1024 modes show a reflectance below 0.002, this is only the case for approximately
800 modes with a 4 × 50 mm cavity.

This effect does not appear when the Fresnel propagator and spherical lenses are
used instead of the Rayleigh-Sommerfeld propagator and aspherical lenses. In this
case, the reflectance of all eigenmodes is computed to be below 10−17 when using
double precision GPU arithmetic. However, even that turns out to be a numerical
artifact. When running the same simulation with, e.g., 34 decimal digits precision2,
this value drops to below 10−55.

2 This is accomplished by initializing gpu = 2 in the source-code, which re-routes all calculations
to the Advanpix Multiprecision Computing Toolbox from www.advanpix.com.

85

www.advanpix.com

4. Implementation and simulation results

Figure 4.6.: The 30 least reflective eigenmodes of the reflection matrix of a 4 × 75 mm
4f-cavity-CPA at critical attenuation, ordered by increasing reflectivity. Parameters: r2

0 = 0.8,
λ0 = 800 nm. Observation plane 2.5 mm × 2.5 mm. Maximum modes: nx = ny = 16.
Lenses: aspherical. Propagation simulation: Rayleigh-Sommerfeld.

Figure 4.6 shows the 30 least reflective (“best absorbed”) eigenmodes of the reflec-
tion matrix of a 4 × 75 mm 4f-cavity-CPA. They correspond to the leftmost modes
in figure 4.5. It can be seen that the CPA-effect is strongest for centrally symmetri-
cal eigenmodes that are concentrated in or around the center region of the xy-plane.

In comparison, figure 4.7 on the following page shows the 30 most reflective (“worst
absorbed”) eigenmodes of the 4f-cavity, which correspond to the rightmost modes
in figure 4.5. These modes are preferably concentrated on the outer border of the
observation plane.

86

4.3. Exploring the parameter-space for optimization potential

Figure 4.7.: The 30 most reflective eigenmodes of the reflection matrix of a 4 × 75 mm
4f-cavity-CPA at critical attenuation, ordered by increasing reflectivity. Parameters: r2

0 = 0.8,
λ0 = 800 nm. Observation plane 2.5 mm × 2.5 mm. Maximum modes: nx = ny = 16.
Lenses: aspherical. Propagation simulation: Rayleigh-Sommerfeld.

4.3. Exploring the parameter-space for
optimization potential

In this chapter we explore the potential for improving the CPA-behavior beyond
the performance depicted in figure 4.5. To do so, we assume for the time being that
it would be possible to adjust certain parameters like, for example, attenuation
or cavity length individually for each of the eigenmodes in figure 4.5. These
considerations do not yet have a specific technical implementation in mind, but
could possibly lead to an improved design.

87

4. Implementation and simulation results

4.3.1. Software implementation
The following subroutines have been additionally implemented to support some of
the simulations in this section:

Simulation of a single round-trip through a 4f-cavity without
attenuation where the positions of the lenses and the back-mirror can
deviate from the optimal f-2f-f-positions

• Function: round_trip_no_atten2(gpu, E_in, ax_small, ax_large,
TF, lens_mask, d1, d2, d3, lambda, f_space_in, f_space_out)

• Description: This function is an enhanced version of the function
round_trip_no_atten as described in appendix C.18. It allows to sepa-
rately define the distance between the partially reflective mirror and the first
lens, between the first lens and the second lens, and between the second lens
and the total reflective, perfect back-mirror.

• Documentation: appendix C.19.

Create transmission matrix for a single round-trip through a 4f-cavity
without attenuation where the positions of the lenses and the
back-mirror can deviate from the optimal f-2f-f-positions

• Function: transmision_matrix_round_trip_no_atten2(gpu, ax_small,
ax_large, TF, modes, lens_mask, d1, d2, d3, lambda)

• Description: This function is an enhanced version of the function
transmision_matrix_round_trip_no_atten as described in appendix C.21.
It allows to separately define the distances between the partially reflective
mirror and the first lens, between the first lens and the second lens, and
between the second lens and the total reflective, perfect back-mirror.

• Documentation: appendix C.22.

4.3.2. Mode-dependent attenuation
We used the program documented in appendix E.4 to study the effect of slightly
overcritical and undercritical attenuation on the various eigenmodes of the critically
attenuated 4 × 50 mm cavity depicted in figure 4.5. It turned out that mode-
dependent variation of the attenuation can not significantly improve the CPA
performance for any of the 1024 modes.

88

4.3. Exploring the parameter-space for optimization potential

4.3.3. Mode-dependent focal length (and total length)
Using the program documented in appendix E.5, we slightly varied both the focal
length, and consequently also the total length of the 4f-cavity, and researched the
effect on the individual eigenmodes of the critically attenuated 4 × 50 mm cavity.
The results are shown in figure 4.8.

For a 4f-cavity with a mode-independent, fixed focal length f0 = 50 mm, eigenmodes
of the reflection matrix above mode number m = 800 quickly become more and more
reflective. However, assuming an individual (optimal) focal length f(m) = f0+c(m)
for each eigenmode, the reflectance can be brought down to almost zero for all modes.
The mode-dependent additive correction factor c(m) for minimal reflectance is in
the range between 0 pm (for eigenmode m = 1 . . . 10) and −959 pm (for eigenmode
m = 1024).

Figure 4.8.: Effect of mode-dependent adjustments of the critically attenuated 4f-cavity’s
focal length (and consequently also of the total length). Parameters: f0 = 50 mm, r2

0 = 0.8,
λ0 = 800 nm. Observation plane 2.5 mm × 2.5 mm. Maximum modes: nx = ny = 16.
Lenses: aspherical. Propagation simulation: Rayleigh-Sommerfeld.

Figure 4.9 depicts the mode-dependent, additive compensation factor c(m) required
to obtain the optimized result in figure 4.8. That this factor is in the 0 · · ·−1000 pm
range is an indicator to expect the 4f-cavity-CPA to be very sensitive against lens
displacements and deviations in the total length.

89

4. Implementation and simulation results

Figure 4.9.: Mode-dependent, additive compensation factor c(m) required to obtain the
optimized result in figure 4.8.

4.3.4. Mode-dependent distance between second lens and
perfect back-mirror

Using the program documented in appendix E.5, we slightly varied the distance
between the second lens and the total reflective, perfect back-mirror, and investi-
gated the effect on the various eigenmodes of the critically attenuated 4 × 50 mm
cavity.

For a 4f-cavity with a mode-independent, fixed distance d3 = f between the second
lens and the total reflective mirror, the eigenmodes of the reflection matrix above
mode number m = 800 quickly become more and more reflective (see figure 4.10).
However, assuming an individual (optimal) distance d3(m) = f + c(m) for each
eigenmode, the reflectance can be brought down to almost zero for all modes. The
mode-dependent additive correction factor c(m) for minimal reflection is in the
range between 0 pm (for eigenmode m = 1 . . . 3) and −3687 pm (for eigenmode
m = 1024).

90

4.3. Exploring the parameter-space for optimization potential

Figure 4.10.: Effect of mode-dependent adjustments of the distance d between the second
lens and the total reflective, perfect mirror. Parameters: f = 50 mm, r2

0 = 0.8, λ0 = 800 nm.
Observation plane 2.5 mm × 2.5 mm. Maximum modes: nx = ny = 16. Lenses: aspherical.
Propagation simulation: Rayleigh-Sommerfeld.

Figure 4.11.: Mode-dependent, additive compensation factor c(m) required to obtain the
optimized result in figure 4.10.

91

4. Implementation and simulation results

4.4. Sensitivity against deviations from optimal
parameters

This section evaluates how sensitive an actual experimental implementation of a
4f-cavity-CPA might be against deviations from optimal parameters.

All simulations in this section share the following set of parameter values:

• base wavelength: λ0 = 785 nm
• focal length:f = 50 mm
• lens type: perfect, aspherical lens
• reflectance of partially reflective mirror: r2

0 = 0.8
• grid size: 2.5 mm × 2.5 mm
• propagation simulation: Rayleigh-Sommerfeld
• maximum mode numbers: nx = ny = 16
• number of calculated points: 900
• area of interest: 1.5 periods around resonance point closest to λ0 (assuming

an optimally configured 4f-cavity)

4.4.1. Deviations in the position of the total reflective
mirror

Parameters

The simulations in this subsection have been carried out using the program de-
scribed in appendix E.7 with the following parameter vectors:

66 % parameter v a r i a t i o n s
67 rho =[1 , 1 , 1 , 1 , 1] ;
68 d1 = [f , f , f , f , f] ;
69 d2 = [f ∗two , f ∗two , f ∗two , f ∗two , f ∗two] ;
70 d3 = [f , f+lambda_c/ four , f+pval (gpu , ' 1e−3 ') , f+pval (gpu , ' 2e−3 ') , f+pval (gpu , ' 5e−3 ')] ;

These parameter vectors define five simulation rounds, each with critical attenuation
and the first and second lens being in the optimal position, but with the total
reflective back mirror (mirror M2 in figure 3.15) in a slightly different position in
each round, namely:

• exactly one focal length after the second lens
• one focal length plus λ

4 after the second lens
• one focal length plus 1 mm after the second lens
• one focal length plus 2 mm after the second lens
• one focal length plus 5 mm after the second lens

92

4.4. Sensitivity against deviations from optimal parameters

Simulation Results

Figure 4.12.: Average over all squared absolute reflection-matrix eigenvalues, compared to
largest and smallest squared absolute reflection-matrix eigenvalues of an optimally configured
4f-cavity-CPA, plotted as a function of the wavelength around the resonance point. Parame-
ters: f = 50 mm, r2

0 = 0.8, λ0 = 785 nm.

Figure 4.13.: Average over all squared absolute reflection-matrix eigenvalues, compared to
the largest and smallest squared absolute reflection-matrix eigenvalues of a 4f-cavity-CPA
with the total reflective mirror moved away from the optimal position by λ0

4 , plotted as a
function of the wavelength around the resonance point of an optimally configured 4f-cavity.
Parameters: f = 50 mm, r2

0 = 0.8, λ0 = 785 nm.

93

4. Implementation and simulation results

Figure 4.14.: Average over all squared absolute reflection-matrix eigenvalues, compared to
the largest and smallest squared absolute reflection-matrix eigenvalues of an 4f-cavity-CPA
with the the total reflective mirror moved away from the optimal position by 1 mm, plotted as
a function of the wavelength around the resonance point of an optimally configured 4f-cavity.
Parameters: f = 50 mm, r2

0 = 0.8, λ0 = 785 nm.

Figure 4.15.: Average over all squared absolute reflection-matrix eigenvalues, compared to
the largest and smallest squared absolute reflection-matrix eigenvalues of a 4f-cavity-CPA
with the total reflective mirror moved away from the optimal position by 2 mm, plotted as a
function of the wavelength around the resonance point of an optimally configured 4f-cavity.
Parameters: f = 50 mm, r2

0 = 0.8, λ0 = 785 nm.

94

4.4. Sensitivity against deviations from optimal parameters

Figure 4.16.: Average over all squared absolute reflection-matrix eigenvalues, compared to
the largest and smallest squared absolute reflection-matrix eigenvalues of a 4f-cavity-CPA
with the total reflective mirror moved away from the optimal position by 5 mm, plotted as a
function of the wavelength around the resonance point of an optimally configured 4f-cavity.
Parameters: f = 50 mm, r2

0 = 0.8, λ0 = 785 nm.

Discussion

An f = 50 mm 4f-cavity with the total reflective back-mirror M2 being displaced
by 1 mm still shows a CPA-behavior where the average over all squared absolute
reflection-matrix eigenvalues goes down below 0.1 at the resonance point (see
figure 4.14). With larger deviations the CPA-effect deteriorates (see figures 4.15
and 4.16).

At first glance it seems that large deviations would lead to some sort of “broad-band”
effect for the least reflective eigenmodes. For example, in figure 4.16, depicting the
situation where the total reflective mirror is moved away from the optimal position
by 5 mm, there is a whole range between Δλ = −0.5 pm and Δλ = −0.22 pm
where the least reflective eigenmodes are practically zero.

However, as figure 4.17 reveals, the minimal reflective mode at each wavelength
is not always the same mode. Therefore, this effect is not really an interesting
broadband-effect.

95

4. Implementation and simulation results

Figure 4.17.: Some of the almost perfectly absorbed eigenmodes of a 4f-cavity-CPA with the
total reflective mirror moved away from the optimal position by 5 mm in the range between
Δλ = −0.5 pm and Δλ = −0.22 pm.

4.4.2. Deviations in the position of the second lens
Parameters

The simulations in this subsection have been carried out using the program de-
scribed in appendix E.7 with the following parameter vectors:

66 % parameter v a r i a t i o n s
67 rho =[1 , 1 , 1 , 1 , 1] ;
68 d1 = [f , f , f , f , f] ;
69 d2 = [f ∗two+pval (gpu , ' 10 e−6 ') , f ∗two+pval (gpu , ' 50 e−6 ') , f ∗two+pval (gpu , ' 100 e−6 ') , ...
70 f ∗two+pval (gpu , ' 200 e−6 ' , f ∗two+pval (gpu , ' 500 e−6 ')] ;
71 d3 = [f−pval (gpu , ' 10 e−6 ') , f−pval (gpu , ' 50 e−6 ') , f−pval (gpu , ' 100 e−6 ') , ...
72 f−pval (gpu , ' 200 e−6 ') , f−pval (gpu , ' 500 e−6 ')] ;

These parameter vectors define five simulation rounds, each with critical attenuation
and the first lens and the total reflective back mirror M2 being in optimal position,
but with the second lens in a slightly different position in each round, namely:

• two focal lengths after the first lens
• two focal lengths plus 0.05 mm after the first lens
• two focal lengths plus 0.1 mm after the first lens
• two focal lengths plus 0.2 mm after the first lens
• two focal lengths plus 0.3 mm after the first lens
• two focal lengths plus 0.5 mm after the first lens

96

4.4. Sensitivity against deviations from optimal parameters

Simulation Results

Figure 4.18.: Average over all squared absolute reflection-matrix eigenvalues of a 4f-cavity-
CPA with the second lens moved away from the optimal position, plotted as a function of
the wavelength around the resonance point of an optimally configured 4f-cavity. Parameters:
f = 50 mm, r2

0 = 0.8, λ0 = 785 nm.

Figure 4.19.: Minimum squared absolute reflection-matrix eigenvalues of a 4f-cavity-CPA
with the the second lens moved away from the optimal position, plotted as a function of
the wavelength around the resonance point of an optimally configured 4f-cavity. Parameters:
f = 50 mm, r2

0 = 0.8, λ0 = 785 nm.

97

4. Implementation and simulation results

Figure 4.20.: Maximum squared absolute reflection-matrix eigenvalues of a 4f-cavity-CPA
with the second lens moved away from the optimal position, plotted as a function of the
wavelength around the resonance point of an optimally configured 4f-cavity. Parameters:
f = 50 mm, r2

0 = 0.8, λ0 = 785 nm.

Discussion

An f = 50 mm 4f-cavity with the second lens displaced by 0.05 mm still shows
a CPA-behavior where the average over all squared absolute reflection-matrix
eigenvalues goes down to 0.1 at the resonance point. With larger deviations the
CPA-effect deteriorates (see figure 4.18).

Like in the previous subsection we observe a pseudo-broadband-effect for the least
reflective eigenmodes (see figure 4.19).

4.4.3. Deviations from critical absorption
In this section we evaluate how the performance of a 4f-CPA is affected when the
absorption deviates from the critical value.

Definition of absorption

Before we can evaluate how a 4f-CPA is affected by an absorption that is a cer-
tain fraction of the critical absorption, we have to clarify how to define “absorption”.

98

4.4. Sensitivity against deviations from optimal parameters

First of all, in our simulations so far we have just multiplied a “critical factor”
e−2κcl = r0 to the single-round-trip transmission-matrix of an unattenuated 4f-
cavity (see equations (3.21) and (3.41)). This is equivalent to assuming uniform
absorption distributed across the whole length of the 4f-cavity.

In an actual experimental setup, however, we would insert an absorbing element
with a certain thickness, as sketched in figure 4.21.

Ei sin (kz − ωt) loss
E �

i sin (kz − ωt + φ)

z

Figure 4.21.: Single-pass-absorption (passing the absorber once).

To define absorption, we assume a coherent electromagnetic field with a fixed
wavelength. Let Ei be the amplitude of the electric field vector in any of the
two directions before having passed the absorber, and E �

i the amplitude of this
electric field vector after having passed the absorber. Then the absorption a shall
be defined as

E�
i
2 = E2

i − aE2
i

E�
i
2 = E2

i (1 − a) (4.1)

As the electromagnetic field intensity is proportional to
*** 2E

***2, and we choose the
representation Ei(z, t) = Ei sin (kz − ωt + Φ), where Ei is is just a real number
representing the amplitude of the electric field vector in the given transverse direc-
tion i, E2

i is also proportional to the intensity (assuming no rotating polarization
and a isotropic, homogeneous medium). Therefore, a is the absorption of intensity.

The factor e−2κcl = r0 that we have used so far in equations (3.21) and (3.41)
expresses the absorption of a single round-trip through the cavity. If we want to
achieve the critical round-trip absorption by means of such an absorber with finite
thickness somewhere in the 4f-cavity, we must consider that the electromagnetic
wave passes the absorber twice, as depicted in figure 4.22.

99

4. Implementation and simulation results

Ei sin (kz − ωt)

mirror

loss

E �
i sin (−kz − ωt + φ)

z

Figure 4.22.: Single-round-trip-absorption (em-wave is passing the absorber twice).

Obviously, in that case (where the wave-front passes the absorber twice) we have
to write:

E�
i
2 = E2

i (1 − a) (1 − a)
E�

i
2 = E2

i (1 − a)2 (4.2)

From that we can derive:

E�
i
2

E2
i

= (1 − a)2

E�
i

Ei
= 1 − a |a → ac�

E�
i

Ei

�
c

= 1 − ac

****�E�
i

Ei

�
c

= e−2κl

e−2κl = 1 − ac
(3.21)=⇒

r0 = 1 − ac (4.3)
ac = 1 − r0 (4.4)

We now replace r0 by ρr0 (see line 85 in the program listed in appendix E.7), and
ac by αac. Both ρ and α are real numbers so that ρ ∈ [0,1] and α ≥ 0. For exam-
ple, α = 0.5 would mean to have an absorption that is 50% of the critical absorption.

100

4.4. Sensitivity against deviations from optimal parameters

The question to be solved is: given a value α, how can the corresponding value ρ
(as required in line 85 of the program listed in appendix E.7) be calculated? The
following simple derivation provides the answer. We start with equation (4.3):

r0 = 1 − ac |r0 → ρr0, a → αac

ρr0 = 1 − αac
(4.4)=⇒

ρr0 = 1 − α (1 − r0)

ρ = 1 − α (1 − r0)
r0

(4.5)

Parameters

Using the program described in appendix E.7, we run five simulations, each with
both lenses and both mirrors in optimal position, but each with different absorption,
namely:

• 25% of the critical absorption
• 50% of the critical absorption
• 100% of the critical absorption
• 200% of the critical absorption
• 400% of the critical absorption

Using equation (4.5), this can be translated into the following parameter vectors
for the program described in appendix E.7:

66 % parameter v a r i a t i o n s
67 rho =(1 −[0.25 , 0 . 5 , 1 , 1 . 5 , 2 , 4] ∗ (1− r0)) / r0 ;
68 d1 = [f , f , f , f , f , f] ;
69 d2 = [f ∗two , f ∗two , f ∗two , f ∗two , f ∗two , f ∗two] ;
70 d3 = [f , f , f , f , f , f] ;

Simulation Results

The following figures show the behavior of an f = 50 mm 4f-cavity for undercritical
attenuation (average squared absolute eigenvalues, minimum squared absolute
eigenvalues, and maximum squared absolute eigenvalues of the reflection matrix):

101

4. Implementation and simulation results

Figure 4.23.: Average over all squared absolute reflection-matrix eigenvalues of a 4f-
cavity-CPA with various undercritical absorption values, plotted as a function of the
wavelength around the resonance point of an optimally configured 4f-cavity. Parameters:
f = 50 mm, r2

0 = 0.8, λ0 = 785 nm.

Figure 4.24.: Minimum squared absolute reflection-matrix eigenvalues of a 4f-cavity-CPA
with various undercritical absorption values, plotted as a function of the wavelength around
the resonance point of an optimally configured 4f-cavity. Parameters: f = 50 mm, r2

0 = 0.8,
λ0 = 785 nm.

102

4.4. Sensitivity against deviations from optimal parameters

Figure 4.25.: Maximum squared absolute reflection-matrix eigenvalues of a 4f-cavity-CPA
with various undercritical absorption values, plotted as a function of the wavelength around
the resonance point of an optimally configured 4f-cavity. Parameters: f = 50 mm, r2

0 = 0.8,
λ0 = 785 nm.

The following three figures depict the simulation results for overcritical absorption:

Figure 4.26.: Average over all squared absolute reflection-matrix eigenvalues of a 4f-cavity-
CPA with various overcritical absorption values, plotted as a function of the wavelength around
the resonance point of an optimally configured 4f-cavity. Parameters: f = 50 mm, r2

0 = 0.8,
λ0 = 785 nm.

103

4. Implementation and simulation results

Figure 4.27.: Minimum squared absolute reflection-matrix eigenvalues of a 4f-cavity-CPA
with various overcritical absorption values, plotted as a function of the wavelength around
the resonance point of an optimally configured 4f-cavity. Parameters: f = 50 mm, r2

0 = 0.8,
λ0 = 785 nm.

Figure 4.28.: Maximum squared absolute reflection-matrix eigenvalues of a 4f-cavity-CPA
with various overcritical absorption values, plotted as a function of the wavelength around
the resonance point of an optimally configured 4f-cavity. Parameters: f = 50 mm, r2

0 = 0.8,
λ0 = 785 nm.

104

4.4. Sensitivity against deviations from optimal parameters

Discussion

The 4f-cavity-CPA turns out to be quite insensitive to deviations from the critical
absorption. Even with just 50% or as much as 200% of the critical absorption, the
average, minimum, and maximum squared absolute eigenvalues of the reflection
matrix stay around or below 0.1 at the resonance point.

4.4.4. Sensitivity against mirror tilt
Software Implementation

For this simulation, we have implemented the function round_trip_no_atten3 (see
appendix C.20). It is an enhanced version of the function round_trip_no_atten2
as described in appendix C.19, which sends an input field on a round-trip through a
4f-cavity, assuming no attenuation. By employing the tilt-function – documented
in appendix C.14 – the new function allows to define the angle in degrees by which
the total reflective back-mirror is tilted relative to the z-axis in the yz-plane. The
theory behind the tilt-function is explained in section 4.4.4.

Based on this, another new function transmision_matrix_round_trip_no_atten3
(see appendix C.23), which is an enhanced version of the function
transmision_matrix_round_trip_no_atten2 (see appendix C.22), creates the
transmission matrix of a 4f-cavity with a slightly tilted back-mirror.

Parameters

The simulations in this subsection have been carried out using the program de-
scribed in appendix E.8 with the following parameter vectors:

66 % parameter v a r i a t i o n s
67 rho= [1 , 1 , 1 , 1 , 1 , 1] ;
68 d1 = [f , f , f , f , f , f] ;
69 d2 = [f ∗two , f ∗two , f ∗two , f ∗two , f ∗two , f ∗two] ;
70 d3 = [f , f , f , f , f , f] ;
71 m i r r o r _ t i l t = [0 . 0 0 5 , 0 . 0 0 3 , 0 . 0 0 1 , 0 . 0 0 0 5 , 0 . 0 0 0 3 , 0 . 0 0 0 1] ; % d e g r e e s

These parameter vectors define six simulation rounds, each with critical attenuation
and all lenses and mirrors being in the optimal position, but with the total reflective
back mirror (mirror M2 in figure 3.15) tilted relative to the z-axis by an angle of
0.005°, 0.003°, 0.001°, 0.0005°, 0.0003°, and 0.0001°.

105

4. Implementation and simulation results

Simulation Results

Figure 4.29.: Average over all squared absolute reflection-matrix eigenvalues of a 4f-cavity-
CPA with various tilt angles of the total reflective mirror, plotted as a function of the
wavelength around the resonance point of an optimally configured 4f-cavity. Parameters:
f = 50 mm, r2

0 = 0.8, λ0 = 785 nm, respectively.

106

4.4. Sensitivity against deviations from optimal parameters

Figure 4.30.: Minimum squared absolute reflection-matrix eigenvalues of a 4f-cavity-CPA with
various tilt angles of the total reflective mirror, plotted as a function of the wavelength around
the resonance point of an optimally configured 4f-cavity. Parameters: f = 50 mm, r2

0 = 0.8,
λ0 = 785 nm.

Figure 4.31.: Maximum squared absolute reflection-matrix eigenvalues of a 4f-cavity-
CPA with various tilt angles of the total reflective mirror, plotted as a function of the
wavelength around the resonance point of an optimally configured 4f-cavity. Parameters:
f = 50 mm, r2

0 = 0.8, λ0 = 785 nm.

107

4. Implementation and simulation results

Figure 4.32.: Squared absolute eigenvalues of the 4f-cavity-CPA reflection-matrix plotted
in ascending order for various tilt angles of the total reflective mirror. Parameters: f =
50 mm, r2

0 = 0.8, λ0 = 785 nm.

Discussion

As to be expected for a cavity with plane-parallel mirrors, the 4f-cavity-CPA is very
sensitive to mirror tilts. Tilting the total reflective mirror by more than 0.0001°
already leads to a noticeable deterioration of the CPA-effect. In an experimental
setup, the effective tilt of both mirrors together should not exceed 0.0005°. At
this value, the average over all squared absolute eigenvalues still reaches 0.1 at the
resonance point (see figure 4.29).

108

5. A refined simulation method
using scattering matrices and
transfer matrices

5.1. Introduction
Although the model for simulating a 4f-cavity, as derived in sections 3.2 and 3.3,
and as used in the computer simulations so far, has proven to be quite useful and
efficient, it nevertheless has certain limitations.

Most noticeably, the computer simulation itself does not directly produce the
interesting CPA-effects arising from the infinite number of round-trips in the
cavity. Rather, the computer only simulates a single round-trip through the cavity
by creating the corresponding transmission matrix, and then this result needs
to be fed into the explicitly derived problem-specific geometric-series-formula (3.39).

Also, with this approach we are, e.g., not able to simulate the effect that residual
reflections on the facets of the lenses or the absorber would have. To overcome
these limitations, we will derive a more refined and more flexible simulation method
in this chapter, using scattering matrices and transfer matrices which (unlike the
simple transmission matrix) are able to deal with incoming and outgoing fields in
both directions at each optical component.

5.2. Simulating the 1D toy-model with transfer
matrices and scattering matrices

5.2.1. One-dimensional cavity without attenuation
In this section we again consider the simple one-dimensional toy-model from
section 3.2 as depicted in figure 3.6. Generally, the scattering matrix of any optical
component in our simple, one-dimensional setting can be expressed as

S =

r t�

t r�

�
(5.1)

109

5. A refined simulation method using scattering matrices and transfer matrices

In equation (5.1), r and t represent the complex reflection coefficient and trans-
mission coefficient for light waves passing from left to right, whereas r� and t�

represent the complex reflection coefficient and transmission coefficient for light
waves passing from right to left.

Let r1 and t1 be the reflection coefficient and transmission coefficient of the partially
reflective, left mirror M1. If we assume the mirror to be symmetric, then we can
substitute in equation (5.1) r = r� = r1, t = t� = t1, and the left mirror’s scattering
matrix S1 becomes:

S1 =

r1 t1
t1 r1

�
(5.2)

Similarly, the scattering matrix of the total reflective, perfect mirror M2 can be
expressed as

S2 =

r2 t2
t2 r2

�
(5.3)

Please note that, for reasons to become obvious soon, we are not substituting t2
with the specific value t2 = 0.

Also the propagation of the light field in either direction between the two mirrors can
be expressed by means of a scattering matrix Sp with the transmission coefficients
t = t� = eikl, and the reflection coefficients set to r = r� = 0. This results in the
following scattering matrix for propagation between mirrors M1 and M2:

Sp =

0 eikl

eikl 0

�
(5.4)

To combine the effects of all individual optical components, the scattering matrices
need to be converted into transfer matrices. Generally, a scattering matrix

S =

S11 S12
S21 S22

�
(5.5)

can be converted into a corresponding transfer matrix M by means of the following
conversion formula:

110

5.2. Simulating the 1D toy-model with transfer matrices and scattering matrices

M (S) =

S12 − S11S22

S21
S11
S21

−S22
S21

1
S21

�
(5.6)

Applying the conversion formula (5.6) to equations (5.2) and (5.3) results in the
following transfer matrices M1 and M2 for the left and right mirror:

M1 =

t1 − r2

1
t1

r1
t1

− r1
t1

1
t1

�
(5.7)

M2 =

t2 − r2

2
t2

r2
t2

− r2
t2

1
t2

�
(5.8)

Note that each expression in the M2 conversion-matrix of equation (5.8) has at
least one term with t2 being the denominator. This is why we have not substituted
t2 with the specific value t2 = 0 in equation (5.3). Although this seems like a
problem at this point, it will eventually turn out not to be, at least for calculating
the cavity’s reflection matrix.

To complete this step of the calculation, we also need to convert the propaga-
tion scattering matrix Sp into a propagation transfer matrix Mp by applying
equation (5.6) to equation (5.4), which results in

Mp =

eikl 0
0 e−ikl

�
(5.9)

With all three transfer matrices in place, we can now calculate the total transfer
matrix Mtot for the entire cavity:

Mtot = M1MpM2
(5.7)(5.9)(5.8)=⇒

Mtot =

t1 − r2

1
t1

r1
t1

− r1
t1

1
t1

�

eikl 0
0 e−ikl

�

t2 − r2

2
t2

r2
t2

− r2
t2

1
t2

�

Mtot =

�
t1 − r2

1
t1

� �
t2 − r2

2
t2

�
eikl − r1r2

t1t2
e−ikl r2

t2

�
t1 − r2

1
t1

�
eikl + r1

t1t2
e−ikl

− r1
t1

�
t2 − r2

2
t2

�
eikl − r2

t1t2
e−ikl − r1r2

t1t2
eikl + 1

t1t2
e−ikl

 (5.10)

The goal of our calculation is to determine the reflection-coefficient rtot of the entire
cavity with respect to an incident wave traveling in the positive x-direction towards
the cavity from the left side. But — as shown in equation (5.1) — this is nothing
else than the top-left entry of the entire cavity’s scattering matrix. Therefore, to

111

5. A refined simulation method using scattering matrices and transfer matrices

determine the reflection coefficient rtot, we just need to back-convert the transfer
matrix Mtot into the corresponding scattering matrix Stot.

Analogously to the opposite operation presented above, a transfer matrix

M =

M11 M12
M21 M22

�
(5.11)

can be converted into a corresponding scattering matrix S by means of the following
conversion formula:

S (M) =

M12
M22

M11 − M12M21
M221

M22
−M21

M22

�
(5.12)

Applying the conversion formula (5.12) to equation (5.10), and simplifying the
expressions, results in the following scattering matrix for the whole unattenuated
4f-cavity:

Stot =

r1 + r2t2
1e2ikl

1−r1r2e2ikl
t1t2eikl

1−r1r2e2ikl

t1t2eikl

1−r1r2e2ikl r2 + r1t2
2e2ikl

1−r1r2e2ikl

 (5.13)

We are interested in the reflection-coefficient rtot, which is the top-left entry in the
scattering matrix Stot:

rtot = r1 + r2t2
1e2ikl

1 − r1r2e2ikl
(5.14)

After renaming k to k̃, the result in equation (5.14) is identical with equation (3.16).
Therefore, we have now proven that this method of using scattering matrices and
transfer matrices can directly produce the reflection-coefficient of a one-dimensional
cavity. Further, it has turned out that the total reflective mirror’s transmission
coefficient t2 does not appear in the final formula. Therefore, the apparent problem
with t2 = 0 in equation (5.8) has disappeared.

112

5.2. Simulating the 1D toy-model with transfer matrices and scattering matrices

5.2.2. One-dimensional cavity with absorber
We are now considering a one-dimensional plane-parallel optical cavity of total
length l with a fully reflective mirror M2 on the right side and a partially reflective
mirror M1 on the left side, as well as an attenuating element of thickness d in the
middle, as depicted in figure 5.1.

x

M1 M2

l

r2 = eiπ|r1| def= r0

d
l−d

2
l−d

2

Figure 5.1.: A simple one-dimensional plane-parallel optical cavity of total length l with a
fully reflective mirror M2 on the right side, as well as a partially reflective mirror M1 on the
left side, and an attenuating element of thickness d in the center.

The scattering matrix of the attenuation element can be expressed as

Sa =

0 eid(k+iκ)

eid(k+iκ) 0

�
(5.15)

Applying the conversion formula (5.6) to equation (5.15) gives the corresponding
transfer matrix :

Ma =

eid(k+iκ) 0

0 e−id(k+iκ)

�
(5.16)

The propagation in either direction between mirror M1 and the left side of the
attenuation element, as well as the propagation in either direction between the right
side of the attenuation element and mirror M2 can be described by the following
scattering matrix:

Sp =

0 eik l−d
2

eik l−d
2 0

�
(5.17)

Again, applying the conversion formula (5.6) to equation (5.17) yields the corre-
sponding transfer matrix:

113

5. A refined simulation method using scattering matrices and transfer matrices

Mp =

eik l−d

2 0
0 e−ik l−d

2

�
(5.18)

Hence, the total transfer matrix Mtot for the entire cavity can be calculated as:

Mtot = M1MpMaMpM2
(5.7)(5.8)(5.16)(5.20)=⇒

Mtot =

t1 − r2

1
t1

r1
t1

− r1
t1

1
t1

�

eik l−d

2 0
0 e−ik l−d

2

�

eid(k+iκ) 0

0 e−id(k+iκ)

�
·

eik l−d

2 0
0 e−ik l−d

2

�

t2 − r2

2
t2

r2
t2

− r2
t2

1
t2

�

Mtot =

 (r1−t1)(r1+t1)(r2−t2)(r2+t2)e2ikl−r1r2e2dκ

t1t2eikledκ
−r2(r1−t1)(r1+t1)e2ikl+r1e2dκ

t1t2eikledκ

r1(r2−t2)(r2+t2)e2ikl−r2e2dκ

t1t2edκeikl
e−ikledκ−r1r2eikle−dκ

t1t2


(5.19)

Applying the conversion formula (5.12) to equation (5.19), and simplifying the
expressions, results in the following scattering matrix for the whole attenuated
cavity:

Stot =

 r2(r1−t1)(r1+t1)e2ikl−r1e2dκ

r1r2e2ikl−e2dκ − t1t2eikledκ

r1r2e2ikl−e2dκ

− t1t2eikledκ

r1r2e2ikl−e2dκ
r1(r2−t2)(r2+t2)e2ikl−r2e2dκ

r1r2e2ikl−e2dκ

 (5.20)

We are interested in the reflection-coefficient rtot, which is the top-left entry in the
scattering matrix Stot:

rtot = r2(r1 − t1)(r1 + t1)e2ikl − r1e2dκ

r1r2e2ikl − e2dκ

***r2 = eiπ = −1

rtot = −(r1 − t1)(r1 + t1)e2ikl − r1e2dκ

−r1e2ikl − e2dκ

rtot = (r1 − t1)(r1 + t1)e2ikl + r1e2dκ

r1e2ikl + e2dκ
(5.21)

Because t1 = 1 + r1 (see equation (9) in appendix A.6), this can be further
simplified:

rtot = (✚✚r1 − 1 − ✚✚r1)(r1 + 1 + r1)e2ikl + r1e2dκ

r1e2ikl + e2dκ

114

5.2. Simulating the 1D toy-model with transfer matrices and scattering matrices

rtot = −(2r1 + 1)e2ikl + r1e2dκ

r1e2ikl + e2dκ

(3.11)=⇒

rtot =
−

�
2

�
−r2

0 − ir0
"

1 − r2
0

�
+ 1

�
e2ikl +

�
−r2

0 − ir0
"

1 − r2
0

�
e2dκ�

−r2
0 − ir0

"
1 − r2

0

�
e2ikl + e2dκ

(5.22)

By setting d = 0 (no attenuation), equation (5.22) reduces to equation (3.17).
On the other hand, taking equation (3.20), and replacing the total cavity length
l with the absorber thickness d, gives the value that κ must take on for critical
attenuation:

κc = − 1
2d

ln (r0) (5.23)

By inserting this value for κ into equation (5.22), and by further substituting
k = 2π

λ
, we can plot the total reflectance |rcav|2 of the cavity as a function of the

wavelength and are expecting to see CPA behavior at certain resonance wavelengths.

Figure 5.2 shows the total reflectance of the cavity as a function of the wavelength
under the assumption of L = 300 mm, λ0 = 800 nm and r0 = 0.7 for critical
attenuation κ = κc. As expected, the reflectance drops to zero at resonance
conditions. This plot perfectly coincides with figure 3.7.

Figure 5.2.: Reflectance of a 1D-cavity with an |r| = r0 = 0.7 partially reflective mirror,
assuming a coherent incident light beam with a wavelength of λ = 800 nm, and an absorber
of thickness d < L in the middle position providing critical attenuation.

115

5. A refined simulation method using scattering matrices and transfer matrices

5.2.3. One-dimensional cavity with an absorber having
partially reflecting facets

In this subsection we are considering a setup just like the one in figure 5.1, with the
only difference that the absorber now has partially reflective facets. These facets
are modeled exactly like the partially reflective, left mirror (however, with their
own reflection coefficient). Therefore, in analogy to equation (5.2), the scattering
matrix describing either of the two facets can be expressed as

S3 =

r3 t3
t3 r3

�
(5.24)

And, in analogy to equation (5.7), the transfer matrix describing each of the two
facet, can be written as:

M3 =

t3 − r2

3
t3

r3
t3

− r3
t3

1
t3

�
(5.25)

By multiplying all five transfer matrices in the according order, we obtain the total
transfer matrix Mtot for the whole cavity:

Mtot = M1MpM3MaM3MpM2
(5.7)(5.8)(5.16)(5.20)(5.25)=⇒

Mtot =

t1 − r2

1
t1

r1
t1

− r1
t1

1
t1

�

eik l−d

2 0
0 e−ik l−d

2

�

t3 − r2

3
t3

r3
t3

− r3
t3

1
t3

�

eid(k+iκ) 0

0 e−id(k+iκ)

�
·

t3 − r2
3

t3
r3
t3

− r3
t3

1
t3

�

eik l−d

2 0
0 e−ik l−d

2

�

t2 − r2

2
t2

r2
t2

− r2
t2

1
t2

�
(5.26)

The calculation proceeds as in the previous two subsections (although now with
much more complex expressions): The scattering matrix Stot for the whole cavity
with a partially reflective absorber can be obtained by explicitly calculating Mtot

and then applying the conversion formula (5.12). The top-left entry of Stot is
the reflection coefficient. After substituting t1 = 1 + r1 (see equation (9) in
appendix A.6), and analogously also substituting t3 = 1+ r3, one gets the following
expression for the cavity’s reflection coefficient:

116

5.2. Simulating the 1D toy-model with transfer matrices and scattering matrices

rtot =e4idk
�
(2r1 + 1)r2

3e2dκ+2ik(l−2d) + (3r1 + 1)r3e2dκ−3idk+ikl + r1e2d(κ−ik)+

(3r1 + 1)(2r3 + 1)r3eik(l−d) − (2r1 + 1)(2r3 + 1)2e2ik(l−d) − r1r2
3
�

·�
e2d(κ+ik) − r1r2

3e2dκ+2ikl − (r1 − 1)r3e2dκ+ik(d+l) − r2
3e4idk−

(r1 − 1)(2r3 + 1)r3eik(3d+l) + r1(2r3 + 1)2e2ik(d+l)
�−1

(5.27)

By substituting k = 2π
λ

, r1 = − |r1|2 − i |r1|
"

1 − |r1|2 (see equation (3.11)), and
analogously r3 = − |r3|2 − i |r3|

"
1 − |r3|2, and by further inserting the critical

value for κ (see equation (5.23)), we can plot the total reflectance |rcav|2 of the
cavity as a function of the wavelength.

Figure 5.3 shows the total reflectance of a critically attenuated cavity (κ = κc) as
a function of the wavelength under the assumption of L = 300 mm, λ0 = 800 nm,
|r1| = 0.7, and a reflection coefficient |r3| = 0.1 for both of the absorber’s facets
(chosen to be small, but not too small, so that some effect becomes visible).
Figure 5.4 depicts the total reflectance of the cavity for the same parameters,
except the absorber-facets having a unrealistically large reflectance of |r3| = 0.5.

Figure 5.3.: Reflectance of a 1D-cavity with an |r1| = 0.7 partially reflective mirror,
λ = 800 nm, and an absorber of thickness d = 10 mm in the center position with partially
reflective facets (|r3| = 0.1), tuned to critical attenuation.

117

5. A refined simulation method using scattering matrices and transfer matrices

Figure 5.4.: Reflectance of a 1D-cavity with an |r1| = 0.7 partially reflective mirror,
λ = 800 nm, and an absorber of thickness d = 10 mm in the middle position with partially
reflective facets (|r3| = 0.5), tuned to critical attenuation.

5.3. Simulating a 4f-cavity with transfer matrices
and scattering matrices

5.3.1. Multiport scattering matrices
To be able to use the method described in section 5.2 for describing a realistic
4f-cavity, one needs to upgrade the 2 × 2 scattering matrices from section 5.2 to
multiport scattering matrices, where each quadrant is not just a scalar reflection
coefficient or transmission coefficient, but rather a whole reflection matrix or
transmission matrix.

Hence, the scattering matrix of any optical component in the 4f-cavity has to be
expressed as

S =

R T�

T R�

�
(5.28)

In equation (5.28), R and T represent the reflection matrix and transmission matrix
for wave fronts passing from left to right, whereas R� and T� represent the reflection
matrix and transmission matrix for wave fronts passing from right to left.

118

5.3. Simulating a 4f-cavity with transfer matrices and scattering matrices

In analogy to equation (5.2), the multiport scattering matrix for the left, partially
reflective mirror can be written as

S1 =

R1 T1
T1 R1

�
(5.29)

Given r0 being the absolute value of the left mirror’s reflection coefficient, so that
r0 = |r1|; then based on equations (3.11) and (3.12) the sub-matrices R1 and T1
are given by the following expressions

R1 = ✶

�
−r2

0 − ir0

"
1 − r2

0

�
(5.30)

T1 = ✶

�
1 − r2

0 − ir0

"
1 − r2

0

�
(5.31)

The symbol ✶ in equations (5.30) and (5.31) represents the unit-matrix. Similarly,
we can write the multiport scattering matrix of the total reflective, perfect mirror
M2 as

S2 =

R2 T2
T2 R2

�
(5.32)

For the total reflective, perfect mirror we can define

R2 = ✶eiπ = −✶ (5.33)
T2 = O (5.34)

The symbol O in equation (5.34) represents the zero-matrix. However, as already
explained in section 5.2.1, converting the scattering matrix from equation (5.32)
with the substitutions 5.33 and 5.33 into the corresponding transfer matrix S2
would directly lead to a singularity-problem. Again (as in section 5.2.1), it turns
out that if we are only interested in the cavity’s total reflection matrix, then we
can safely replace the zero-value T2 sub-matrix with the following diagonal T2
sub-matrix:

T2 = ✶ε (5.35)

119

5. A refined simulation method using scattering matrices and transfer matrices

In equation (5.35), ε can actually be any scalar value, because T2 eventually cancels
itself out in the final result we are interested in (i.e., in the cavity’s reflection
matrix). It seems sensible, though, to replace ε with a small, positive value in the
numerical simulation as this then represents a mirror with almost no transmission.

To create a scattering matrix Sp(z) representing any free-space propagation over
a distance z between the lenses, or between the lenses and the absorber, we
can just calculate the according transmission matrix Tp(z), using the already
established numerical simulation tools, conveniently encapsulated in the new
function transmision_matrix_prop (see appendix C.27), and then build the
following propagation scattering matrix:

Sp(z) =

O Tp(z)
Tp(z) O

�
(5.36)

The same method works for propagation within the absorber, with the only
caveat that the propagation distance z corresponds to the (larger) optical distance
zopt = z Re(n) (with n being the complex refractive index).

Equivalently, to create a scattering-matrix SL representing a thin lens without
reflection, the according transmission matrix TL can also be easily calculated
by using already established numerical simulation tools, again encapsulated in a
new convenience-function transmision_matrix_lens (see appendix C.28). The
corresponding scattering matrix can then be constructed from the transmission
matrix as:

SL =

O TL
TL O

�
(5.37)

Finally, to simulate reflective facets, a scattering matrix just like the S1-partially-
reflective-mirror-matrix from equation (5.38) can be used:

S3 =

R3 T3
T3 R3

�
(5.38)

Let |r3| be the absolute value of the facet’s reflection coefficient, then the sub-
matrices R3 and T3 can be written in analogy to equations (5.30) and (5.31)
as

120

5.3. Simulating a 4f-cavity with transfer matrices and scattering matrices

R3 = ✶

�
− |r3|2 − i |r3|

"
1 − |r3|2

�
(5.39)

T3 = ✶

�
1 − |r3|2 − i |r3|

"
1 − |r3|2

�
(5.40)

5.3.2. Converting multiport scattering matrices to transfer
matrices

Frei et al. describe in [23] how multiport scattering matrices and multiport transfer
matrices can be converted into each other. For converting a multiport scattering
matrix into the corresponding transfer matrix, we assume the scattering matrix S
to consist of four sub-matrices S11, S12, S21, and S22 as shown in equation (5.41):

S =

S11 S12
S21 S22

�
(5.41)

According to [23, p. 2495], this scattering matrix S can be converted into the
corresponding transfer matrix M (S) by means of the following conversion formula,
which is encapsulated in function convert_S_to_M (see appendix C.25):

M (S) =

S12 − S11S−1

21 S22 S11S−1
21

−S−1
21 S22 S−1

21

�
(5.42)

Please note how equation (5.42) resembles equation (5.6), with the only difference
that the scalar multiplication and division operations in equation (5.6) are con-
verted into the equivalent matrix operations in equation (5.42).

Equation (5.42) allows us to convert all the scattering matrices from section 5.3.1
into their corresponding transfer matrices. Analogous to section 5.2.2, we can
then, for example, express the total transfer matrix of a 4f-cavity with an absorber
element of thickness d and complex refractive index n in the center position as
follows:

Mtot = M
�
S1

� · M
�
Sp(f)

�
· M

�
SL

� · M
�

Sp

�
f − d

2

��
· M

�
Sp

�
d

Re(n) ; n

��
·

M
�

Sp

�
f − d

2

��
· M

�
SL

� · M
�
Sp(f)

�
· M

�
S2

�
(5.43)

121

5. A refined simulation method using scattering matrices and transfer matrices

The meaning of all scattering matrices in equation (5.43) is explained in sec-
tion 5.3.1.

To additionally simulate reflective facets of the absorber, we can enhance equa-
tion (5.43) with two M

�
S3

�
terms, and get equation (5.44):

Mtot = M
�
S1

� · M
�
Sp(f)

�
· M

�
SL

� · M
�

Sp

�
f − d Re(n)

2

��
· M

�
S3

� · M
�
Sp (d; n)

�
·

M
�
S3

� · M
�

Sp

�
f − d Re(n)

2

��
· M

�
SL

� · M
�
Sp(f)

�
· M

�
S2

�
(5.44)

5.3.3. Back-conversion of the cavity’s total transfer matrix
into the corresponding scattering matrix

For the final conversion of Mtot into S(Mtot), we define the following four sub-
matrices M11, M12, M21, and M22 as shown in equation (5.45):

Mtot =

M11 M12
M21 M22

�
(5.45)

According to [23, p. 2495], this transfer matrix Mtot can be converted into the
corresponding scattering matrix S

�
Mtot

�
by means of the following conversion

formula:

S
�
Mtot

�
=

M12M−1

22 M11 − M12M−1
22 M21

M−1
22 −M−1

22 M21

�
(5.46)

Having a look at equation (5.28), we see that the cavity’s total reflection matrix R
is just the top-left sub-matrix in equation (5.46). Therefore, to just calculate the
final reflection matrix, we can reduce equation (5.46) for our purpose to

R
�
Mtot

�
= M12M−1

22 (5.47)

The conversion formula in equation (5.47) is encapsulated in function convert_M_to_R
(see appendix C.26).

122

5.3. Simulating a 4f-cavity with transfer matrices and scattering matrices

5.3.4. Software implementation
The following subroutines have been additionally implemented to support the
simulations in this chapter:

Creating a multiport scattering matrix

• Function: create_S_matrix(gpu, R, T)

• Description: Creates a scattering matrix based on the input matrices R
and T, which represent the reflection-sub-matrix and the transmission-sub-
matrix, respectively. The R-matrix goes in the top-left and the bottom-right
quadrants of the resulting scattering matrix; and the T-matrix goes into the
top-right and bottom-left quadrants of the resulting scattering matrix.

• Documentation: appendix C.24.

Converting a scattering matrix into the corresponding transfer matrix

• Function: covert_S_to_M(S)

• Description: Converts the input scattering matrix S into the corresponding
transfer matrix M, using the conversion method described in section 5.3.2.

• Documentation: appendix C.25.

Converting a transfer matrix into a reflection matrix

• Function: covert_M_to_R(M)

• Description: Converts the input transfer matrix M into the top-left quadrant
of the corresponding scattering matrix, which is the reflection matrix R, based
on the theory presented in section 5.3.3.

• Documentation: appendix C.26.

Generating transmission matrix representing propagation through free
space or material

• Function: transmision_matrix_prop(gpu, TF, ax, z, lambda, n,
modes)

• Description: Creates a transmission matrix T representing propagation
through free space or material (with refractive index n) over a distance z.

• Documentation: appendix C.27.

123

5. A refined simulation method using scattering matrices and transfer matrices

Generating a thin lens transmission matrix

• Function: transmission_matrix_lens(gpu, ax, lambda, pupil, NA,
f, lens_type, modes)

• Description: Creates a transmission matrix T representing a thin lens.

• Documentation: appendix C.28.

Downscale transmission or reflection matrix from lager grid size to
smaller grid size

• Function: downscale_TR_matrix(gpu, TR, ax_small, ax_large,
modes_large

• Description: Downscales a transmission or reflection matrix TR which
corresponds to the larger axis coordinates ax_large of the guarding grid
to a smaller transmission or reflection matrix corresponding to the smaller
observation grid coordinates ax_small.

• Documentation: appendix C.29.

Proof-of-concept main program CPA_sim_009

The main program CPA_sim_009, documented in appendix E.9, demonstrates how
the concept of simulating a cavity-CPA by means of scattering matrices and transfer
matrices can be extended from a one-dimensional toy-model (section 5.2) to a
realistic model of a 4f-cavity by calculating the reflection matrix of a 4f-cavity-CPA
with a non-reflecting absorber in the center position.

Simulation main program CPA_sim_010

The main program CPA_sim_010, documented in appendix E.10, uses the method of
scattering and transfer matrices to simulate a 4f-cavity with an absorber in the mid-
dle position. In contrast to the previous proof-of-concept program CPA_sim_009,
it allows to run several simulation rounds with different simulation parameters
(namely, absorber thickness and reflectivity of the absorber facets).

The maximum, average, and minimum eigenvalues of the 4f cavity’s reflection-
matrix are calculated for various wavelengths around a critical wavelength, and
stored into a single file per simulation round. In addition to that, separate files are
generated at each calculated wavelength, containing a full eigenmode decomposi-
tion at the given wavelength with the simulation parameters of the respective round.

124

5.3. Simulating a 4f-cavity with transfer matrices and scattering matrices

5.3.5. Simulation results
Attenuated 4f-cavity without reflections (proof of concept)

Using the main program CPA_sim009 (documented in appendix E.9), we first simu-
late a simple 4f-cavity with a reflection-free absorber of thickness d = 10 mm in the
middle position to proof the concept of the scattering/transfer-matrix approach.
The program creates all required scattering matrices as described in section 5.3.1,
converts them into the corresponding transfer matrices using the method described
in section 5.3.2, and then calculates the total transfer matrix according to equa-
tion (5.43).

Finally, the resulting total transfer matrix is back-converted into the top-left
quadrant of the corresponding scattering matrix (see section 5.3.3), which happens
to be the total cavity’s reflection matrix. This total reflection matrix is then
displayed graphically with element-wisely squared absolute values. In addition, to
visualize the optical properties of the simulated 4f-cavity, all transmission matrices
(for the lenses and the propagation distances), which are created to build the
scattering matrices, are used to create a total transmission matrix simulating a
single (one-way) trip through the 4f-cavity, and the effect of this total transmission
matrix on a simple test-image (an off-center letter T) is visualized.

These are the simulation parameters:
• lenses: f = 100 mm, perfect aspherical
• propagation simulation: Rayleigh-Sommerfeld
• wavelength: λ0 = 785 nm
• absorber: d = 10 mm in center position, critical absorption
• left mirror reflectivity: r2

0 = 0.8
• observation plane: 1.4 mm × 1.4 mm

Figure 5.5.: All generated transmission matrices (for the lenses and the propagation distances)
multiplied together in the right order simulate a one-way trip through the 4f-cavity.

125

5. A refined simulation method using scattering matrices and transfer matrices

Figure 5.6.: The reflection matrix of a 4f-cavity-CPA with an absorber element in center
(tuned to critical absorption), simulated using the scattering/transfer-matrix-method (the
plot shows squared absolute values on a linear color scale). Parameters: f = 100 mm,
λ0 = 785 nm, absorber d = 10 mm. Observation plane 1.4 mm × 1.4 mm. Maximum
modes: nx = ny = 16. Lenses: aspherical perfect lenses. Propagation simulation: Rayleigh-
Sommerfeld.

Figure 5.5 shows the image-flip expected for a single-trip through a 4f-cavity; and
also the reflection matrix depicted in figure 5.6 has the well-known form, similar
to the reflection matrices calculated previously (i.e., uniformly low reflectance for
most of the modes, and a slight increase of reflectance over the most reflective
100-or-so modes).

126

5.3. Simulating a 4f-cavity with transfer matrices and scattering matrices

Figure 5.7 shows the same reflection matrix as depicted in figure 5.6, but this time
with a logarithmic color scale. This representation shows that the diagonal values
of the matrix go down to almost 10−7 for the least reflective eigenmodes, and it
also reveals some “side-band”-noise around the diagonal entries.

Figure 5.7.: The reflection matrix of a 4f-cavity-CPA with an absorber element in center
(tuned to critical absorption), simulated using the scattering/transfer-matrix-method (the
plot shows squared absolute values on a logarithmic color scale). Parameters: f = 100 mm,
λ0 = 785 nm, absorber d = 10 mm. Observation plane 1.4 mm × 1.4 mm. Maximum
modes: nx = ny = 16. Lenses: aspherical perfect lenses. Propagation simulation: Rayleigh-
Sommerfeld.

127

5. A refined simulation method using scattering matrices and transfer matrices

Attenuated 4f-cavity with reflections

Using the main program CPA_sim010 (documented in appendix E.10), we simulate
a 4f-cavity with an absorber with reflective facets of thickness d = 10 mm, or
d = 1 mm, respectively.

Simulation parameters:

• lenses: f = 100 mm, perfect aspherical
• propagation simulation: Rayleigh-Sommerfeld
• wavelength: λ0 = 785 nm
• absorber: center position, critical absorption, thickness d = 10 mm, or

1 mm
• absorber facets’ reflectance: r2

3 = 10−4, 10−3, 10−2, 0.5.
• left mirror reflectivity: r2

0 = 0.8
• observation plane: 1.4 mm × 1.4 mm

Simulation results:

In figures 5.8 and 5.9, the squared absolute reflection-matrix eigenvalues are plotted
in ascending order for different reflectances for a d = 1 mm and a d = 10 mm
absorber, respectively. Each curve in the two diagrams is plotted for the wavelength
where the average reflectance over all eigenmodes becomes minimal. The following
figures 5.10 to 5.13 show the average and minimal squared reflection-matrix eigen-
values as a function of the wavelength for a d = 1 mm and a d = 10 mm absorber,
respectively.

128

5.3. Simulating a 4f-cavity with transfer matrices and scattering matrices

Figure 5.8.: Squared absolute reflection-matrix eigenvalues of a 4f-cavity-CPA with a reflective
absorber element in the center position plotted in ascending order for different absorber
reflectances. Parameters: f = 100 mm, r2

0 = 0.8, λ0 = 785 nm, absorber d = 1 mm.

Figure 5.9.: Squared absolute reflection-matrix eigenvalues of a 4f-cavity-CPA with a reflective
absorber element in the center position plotted in ascending order for different absorber
reflectances. Parameters: f = 100 mm, r2

0 = 0.8, λ0 = 785 nm, absorber d = 10 mm.

129

5. A refined simulation method using scattering matrices and transfer matrices

Figure 5.10.: Average over all squared absolute reflection-matrix eigenvalues of a 4f-cavity-
CPA with a reflective absorber element in the middle position, plotted as a function of the
wavelength around the resonance point of an optimally configured 4f-cavity. Parameters:
f = 100 mm, r2

0 = 0.8, λ0 = 785 nm, absorber d = 1 mm.

Figure 5.11.: Average over all squared absolute reflection-matrix eigenvalues of a 4f-cavity-
CPA with a reflective absorber element in the center position, plotted as a function of the
wavelength around the resonance point of an optimally configured 4f-cavity. Parameters:
f = 100 mm, r2

0 = 0.8, λ0 = 785 nm, absorber d = 10 mm.

130

5.3. Simulating a 4f-cavity with transfer matrices and scattering matrices

Figure 5.12.: Minimum squared absolute reflection-matrix eigenvalues of a 4f-cavity-CPA
with a reflective absorber element in the middle position, plotted as a function of the
wavelength around the resonance point of an optimally configured 4f-cavity. Parameters:
f = 100 mm, r2

0 = 0.8, λ0 = 785 nm, absorber d = 1 mm.

Figure 5.13.: Minimum squared absolute reflection-matrix eigenvalues of a 4f-cavity-CPA
with a reflective absorber element in the middle position, plotted as a function of the
wavelength around the resonance point of an optimally configured 4f-cavity. Parameters:
f = 100 mm, r2

0 = 0.8, λ0 = 785 nm, absorber d = 10 mm.

131

5. A refined simulation method using scattering matrices and transfer matrices

Discussion

If the effective reflectance of the absorber’s facets becomes larger than 10−4, the
CPA-effect strongly deteriorates. In an experimental implementation it seems
advisable to insert the absorbing element at an angle, so that all potential residual
reflections are directed outside the optical path. The simulations also show that
the thinner absorber with a thickness d = 1 mm causes less deterioration of the
CPA-effect than the thicker d = 10 mm absober.

132

6. Conclusion and Outlook
Currently existing implementations of a Coherent Perfect Absorber (CPA) are in
general two-port devices, where two incident beams must be carefully controlled
with regard to the exact shape of their transverse mode profile, and also with
regard to the mutual phase relations. Because of this, these implementations are
not able to absorb just any incoming coherent light-beam of matching wavelength,
but only carefully engineered wavefronts.

In this thesis, we have presented an entirely new type of “universal” CPA, consisting
of a plane-parallel 4f-cavity with critical absorption. The new type of CPA has
just one single port to absorb the incident light wave, which does not need any
special wavefront-shaping anymore to be absorbed. Rather, the 4f-cavity-CPA
presented in this thesis is capable to absorb any superposition of a very large
number of transverse modes, which is a significant advancement compared to
currently existing CPAs.

The new concept of a 4f-cavity CPA was confirmed by means of theoretical
derivations and corresponding computer simulations. Further, we have shown by
simulating the effects of certain deviations from optimal parameter values that
implementing such a 4f-cavity CPA should be well within the current experimental
possibilities.

Therefore, we hope that the experimental implementation of a 4f-cavity CPA,
which is already on its way at the time of completion of this thesis, will soon prove
the efficiency of this new concept, which promises to be a big step forward towards
a simple, massively parallel and universal single-port CPA implementation. In
future research we hope to be able to further improve the CPA efficiency, and also
to explore how a 4f-cavity CPA might be used for sub-diffraction focusing.

133

Appendix

A. Derivations
A.1. Derivation of the Helmholtz-equation (2.9)
By letting 2∇× act on the Maxwell equation (2.7) from the left side, we get:

6∇ × 6∇ × 6E = −6∇ × ∂ 6B

∂t

6∇ × 6∇ × 6E = − ∂

∂t

�
6∇ × 6B

� (2.8)=⇒

6∇ × 6∇ × 6E = −µ0�r�0
∂2 6E

∂t2

6∇
�

6∇ · 6E
�

− 6∇2 6E = −µ0�r�0
∂2 6E

∂t2
(2.5)=⇒

6∇2 6E = µ0�r�0
∂2 6E

∂t2

****µ0�0 = 1
c2

6∇2 6E = �r

c2
∂2 6E

∂t2

****�r = �r�0
�0

= �

�0
= n2

6∇2 6E = n2

c2
∂2 6E

∂t2

6∇2 6E − n2

c2
∂2 6E

∂t2 = 0 (1)

In equation (1), which is the wave equation for the electric field, the symbol c
stands for the speed of light, and n is the refractive index.

135

Appendix

By letting 2∇× act on the Maxwell equation (2.8) from the left side, we get a wave
equation equivalent to equation (1), but this time for the magnetic field:

6∇ × 6∇ × 6B = µ0�r�0 6∇ × ∂ 6E

∂t

6∇ × 6∇ × 6B = µ0�r�0
∂

∂t

�
6∇ × 6E

� (2.7)=⇒

6∇ × 6∇ × 6B = −µ0�r�0
∂2 6B

∂t2

6∇
�

6∇ · 6B
�

− 6∇2 6B = −µ0�r�0
∂2 6B

∂t2
(2.6)=⇒

6∇2 6B = µ0�r�0
∂2 6B

∂t2

****µ0�0 = 1
c2

6∇2 6B = �r

c2
∂2 6B

∂t2

****�r = �r�0
�0

= �

�0
= n2

6∇2 6B − n2

c2
∂2 6B

∂t2 = 0 (2)

By re-writing equations (1) and (2) in Einstein notation, we get:

∂j∂jEi − n2

c2 ∂2
t Ei = 0 (3)

∂j∂jBi − n2

c2 ∂2
t Bi = 0 (4)

This makes it obvious that the vectorial Laplacian in equation (1) and equation (2)
actually generates six uncoupled, identical equations of the form

6∇2U(6r, t) − n2

c2
∂2

∂t2 U(6r, t) = 0 (5)

where the scalar function U(2r, t) stands for any of the Ei or Bi components.

The components of the 2E and 2B field can be decomposed into fields with harmonic
time dependencies, so that we can assume the following separation ansatz:

U(6r, t) = U(6r)e−iωt (6)

136

Derivations

Following the derivation sketch in [24, p. 3], we insert equation (6) into equation (5),
and get:

6∇2
�
U(6r)e−iωt

�
− n2

c2
∂2

∂t2

�
U(6r)e−iωt

�
= 0�

6∇2U(6r)
�

e−iωt − n2

c2 U(6r) ∂2

∂t2 e−iωt = 0�
6∇2U(6r)

�
✟✟✟e−iωt + n2

c2 ω2U(6r)✟✟✟e−iωt = 0
*****ω2

c2 = k2

6∇2U(6r) + n2k2U(6r) = 0 (7)

This is the Helmholtz equation, which will be the basis for the scalar propagation
mechanism. In empty space, n = 1, and equation (7) becomes

6∇2U(6r) + k2U(6r) = 0 (2.9)

137

Appendix

A.2. Derivation of differential equation (2.12)
This is how inserting equation (2.11) into equation (2.9) results in equation (2.12):

�
�
�1

(2π)2
6∇2

� ∞

−∞

� ∞

−∞
A(kx, ky; z) ei(kxx+kyy) dkx dky +

�
�
�1

(2π)2 k2
� ∞

−∞

� ∞

−∞
A(kx, ky; z) ei(kxx+kyy) dkx dky = 0

�
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

� � ∞

−∞

� ∞

−∞
A(kx, ky; z) eikxxeikyy dkx dky +

k2
� ∞

−∞

� ∞

−∞
A(kx, ky; z) eikxxeikyy dkx dky = 0

� ∞

−∞

� ∞

−∞
∂2

∂x2

�
A(kx, ky; z) eikxxeikyy

�
dkx dky +� ∞

−∞

� ∞

−∞
∂2

∂y2

�
A(kx, ky; z) eikxxeikyy

�
dkx dky +� ∞

−∞

� ∞

−∞
∂2

∂z2

�
A(kx, ky; z) eikxxeikyy

�
dkx dky +� ∞

−∞

� ∞

−∞
A(kx, ky; z)k2 eikxxeikyy dkx dky = 0

� ∞

−∞

� ∞

−∞
A(kx, ky; z) (−1)k2

x eikxxeikyy dkx dky +� ∞

−∞

� ∞

−∞
A(kx, ky; z) (−1)k2

y eikxxeikyy dkx dky +� ∞

−∞

� ∞

−∞
∂2

∂z2 A(kx, ky; z) eikxxeikyy dkx dky +� ∞

−∞

� ∞

−∞
A(kx, ky; z) k2 eikxxeikyy dkx dky = 0

� ∞

−∞

� ∞

−∞

�
∂2

∂z2 A(kx, ky; z) eikxxeikyy + A(kx, ky; z) k2 eikxxeikyy

−A(kx, ky; z) k2
x eikxxeikyy − A(kx, ky; z) k2

y eikxxeikyy

�
dkx dky = 0

138

Derivations

�
∂2

∂z2 A + Ak2 − Ak2
x − Ak2

y

�
✘✘✘✘✘
eikxxeikyy = 0

∂2A

∂z2 +
�
k2 − k2

x − k2
y

�
A = 0 (2.12)

A.3. Derivation of equations (2.25) and (2.27)
Looking at image (a) of figure 2.3, one can derive the thickness function of the
first lens segment Δ1(x,y) as follows:

Δ1(x,y) = Δ01 − δ1 |δ1 = R1 − a1

Δ1(x,y) = Δ01 − R1 + a1

****a1 =
"

R2
1 − r2

Δ1(x,y) = Δ01 − R1 +
"

R2
1 − r2

***r2 = x2 + y2

Δ1(x,y) = Δ01 − R1 +
"

R2
1 − x2 − y2

Δ1(x,y) = Δ01 − R1 + R1

#
1 − x2 + y2

R2
1

Δ1(x,y) = Δ01 − R1

�
1 −

#
1 − x2 + y2

R2
1

�
(2.25)

The derivation of the thickness function of the third lens segment Δ3 as depicted in
image (c) of figure 2.3 is equivalent to the derivation of Δ1, with the only difference
that the radii of convex and concave curvature must have different signs.

In accordance with [11] we adopt the sign convention that as rays travel from
left to right, each convex surface encountered is taken to have a positive radius
of curvature, while each concave surface is taken to have a negative radius of
curvature. Thus in figure 2.3 the radius of curvature of the left-hand surface of
the lens is a positive number R1, while the radius of curvature of the right-hand
surface is a negative number R2. This leads to the following derivation:

139

Appendix

Δ3(x,y) = Δ03 − δ2 |δ2 = −R2 − a2

Δ3(x,y) = Δ03 + R2 + a1

****a2 =
"

(−R2)2 − r2

Δ3(x,y) = Δ03 + R2 +
"

(−R2)2 − r2
***r2 = x2 + y2

Δ3(x,y) = Δ03 + R2 +
"

(−R2)2 − x2 − y2

Δ3(x,y) = Δ03 + R2 − R2

#
1 − x2 + y2

(−R2)2

Δ3(x,y) = Δ03 + R2

�
1 −

#
1 − x2 + y2

R2
2

�
(2.27)

A.4. Derivation of equation (2.29)
If we assume that x � R1, R2 and y � R1, R2 (paraxial approximation), then"

1 − x2+y2

R2 ≈ 1 − x2−y2

2R2 . Inserting this into equation (2.28) results in

Δ(x,y) = Δ0 − R1

�
1 −

�
1 − x2 − y2

2R2
1

��
+ R2

�
1 −

�
1 − x2 − y2

2R2
2

��

Δ(x,y) = Δ0 − R1

�
✘✘✘1 − 1 + x2 − y2

2R2
1

�
+ R2

�
✘✘✘1 − 1 + x2 − y2

2R2
2

�

Δ(x,y) = Δ0 − x2 − y2

2R1
+ x2 − y2

2R2

Δ(x,y) = Δ0 − x2 − y2

2

� 1
R1

− 1
R2

�
(2.29)

140

Derivations

A.5. Calculation of the integral in the derivation of
equation (2.35)

Δφ(r) =
� r

0

−kr�"
f2 + r�2

dr�
****u def= f2 + r�2 =⇒ du

dr� = 2r� =⇒ dr� = du

2r�

Δφ(r) = −k

� r�=r

r�=0

❙❙r�
√

u

du

2❙❙r�

Δφ(r) = −k
1
2

� r�=r

r�=0
u− 1

2 du

Δφ(r) = −k
1
❆2❆

2 u
1
2

***r�=r

r�=0

Δφ(r) = −k
1
❆2❆

2
"

f2 + r�2
****r�=r

r�=0

Δφ(r) = −k

� "
f2 + r2 −

"
f2

�
Δφ(r) = −k

� "
r2 + f2 − f

�

A.6. Derivation of the reflection coefficient (3.5) and the
transmission coefficient (3.6)

The first boundary condition at x = 0 for the one-dimensional Helmholtz-Equation (3.3)
is simply the continuity condition (see figure 3.2).

ψ1(0) = ψ2(0) (8)

By inserting equations (3.1) and (3.2) into condition (8), we get:

��e0 + r��e0 = t��e0

t = 1 + r (9)

This eliminates the phasor t from equations (3.1) and (3.2):

ψ1(x) = eikx + re−ikx (10)
ψ2(x) = (1 + r)eikx (11)

We will need the first derivatives of equations (10) and (11):

141

Appendix

ψ�
1(x) = ikeikx − irke−ikx (12)

ψ�
2(x) = ik(1 + r)eikx (13)

The second boundary condition at x = 0 can be derived by integrating the one-
dimensional Helmholtz-Equation (3.3) over an infinitesimally small range around
x = 0:

lim
�→0

� �

−�

1
k2

∂2ψ(x)
∂x2 dx + lim

�→0

� �

−�
V0δ(x)ψ(x) dx = 0

1
k2

�
ψ�

2(0) − ψ�
1(0)

�
+ V0ψ2(0) = 0

ψ�
2(0) − ψ�

1(0) + V0k2ψ2(0) = 0
ψ�

2(0) = ψ�
1(0) − V0k2ψ2(0) (14)

We can now insert equations (11) to (13) into the second boundary condition (14):

i(1 + r)k��e0 = ik��e0 − irk��e0 − k2V0(1 + r)��e0

✚✚ik + irk = ✚✚ik − irk − k2V0 − k2V0r

2ir✓k + k✁2V0r = −k✁2V0

r(kV0 + 2i) = −kV0

r = − kV0
kV0 + 2i

(9)=⇒ (3.5)

t = 1 − kV0
kV0 + 2i

t = ✟✟kV0 + 2ik − ✟✟kV0
kV0 + 2i

t = 2ik

V0 + 2ik
(3.6)

142

Derivations

A.7. Derivation of equation (3.8)
We start from equation (3.7):

r0
def= |r|

r0 =
√

rr∗

r2
0 = rr∗ (3.5)=⇒

r2
0 =

�
− kV0

kV0 + 2i

� �
− kV0

kV0 − 2i

�
r2

0 = k2V 2
0

k2V 2
0 + 4

r2
0

�
k2V 2

0 + 4
�

= k2V 2
0

k2V 2
0 r2

0 + 4r2
0 = k2V 2

0

k2V 2
0 r2

0 − k2V 2
0 = −4r2

0

V 2
0 k2

�
r2

0 − 1
�

= −4r2
0

V 2
0 k2

�
1 − r2

0
�

= 4r2
0

V 2
0 = 4r2

0
k2 �

1 − r2
0
�

V0(r0) = ± 2r0

k
"

1 − r2
0

(3.8)

A.8. Derivation of equations (3.9) and (3.10)
We start from equation (3.5):

r(r0) = − V0(r0)
2ik − V0(r0)

(3.8)=⇒

r(r0) = −
±✓k 2r0

✁k
√

1−r2
0

±❙k 2r0

❆k
√

1−r2
0

+ 2ik

******·
"

1 − r2
0"

1 − r2
0

r(r0) = − ±✁2r0

±✁2r0 + i✁2
"

1 − r2
0

******·
±r0 − i

"
1 − r2

0

±r0 − i
"

1 − r2
0

r(r0) = −
r2

0 ∓ ir0
"

1 − r2
0

✓✓r
2
0 + 1 − ✓✓r

2
0

r(r0) = −r2
0 ± ir0

"
1 − r2

0 (3.9)

143

Appendix

The transmission coefficient t(r0) can be derived in a one-liner by considering
equation (9) in appendix A.6:

t(r0) = 1 + r(r0) (3.9)=⇒
t(r0) = 1 − r2

0 ± ir0

"
1 − r2

0 (3.10)

A.9. Proof of energy-conservation condition (3.13)
Proof that the energy-conservation condition (equation (3.13)) is satisfied:

|r(r0)|2 + |t(r0)|2 = 1

rr∗ + tt∗ = 1 (3.11)=⇒ (3.12)=⇒�
−r2

0 − ir0

"
1 − r2

0

� �
−r2

0 + ir0

"
1 − r2

0

�
+�

1 − r2
0 − ir0

"
1 − r2

0

� �
1 − r2

0 + ir0

"
1 − r2

0

�
= 1

r4
0 + r2

0
�
1 − r2

0
�

+
�
1 − r2

0
�2

+ r2
0

�
1 − r2

0
�

= 1

✓✓r
4
0 + r2

0 − ✓✓r
4
0 + 1 − 2r2

0 + ❙❙r
4
0 + r2

0 − ❙❙r
4
0 = 1

✭✭✭✭✭✭✭
r2

0 + r2
0 − 2r2

0 + 1 = 1
1 = 1 �

144

Derivations

A.10. Proof of phase-condition (3.14)
Proof that the phase-condition in equation (3.14) is satisfied:

arg (t(r0)) − arg (r(r0)) = π

2
(3.11)=⇒ (3.12)=⇒

arg
�

1 − r2
0 − ir0

"
1 − r2

0

�
− arg

�
r2

0 − ir0

"
1 − r2

0

�
= π

2

arg
�

1 − r2
0 − ir0

"
1 − r2

0

�
��

Re>0 =⇒ arg=arctan (Im
Re)

− arg
�

r2
0 − ir0

"
1 − r2

0

�
��

Re<0,Im<0 =⇒ arg=arctan (Im
Re)−π

= π

2

arctan

−r0
"

1 − r2
0

1 − r2
0

 −
arctan

−r0
"

1 − r2
0

−r2
0

 − π

 = π

2

− arctan

 r0"
1 − r2

0

 − arctan


"

1 − r2
0

r0

 + π = π

2

******s def=

"
1 − r2

0

r2
0

− arctan
�1

s

�
− arctan (s) = −π

2

****arctan (x) = i

2 (ln (1 − ix) − ln (1 + ix))

− i

2

�
ln

�
1 − i

s

�
− ln

�
1 + i

s

��
− i

2 (ln (1 − is) − ln (1 + is)) = −π

2 |·i
1
2

�
ln

�
1 − i

s

�
− ln

�
1 + i

s

��
+ 1

2 (ln (1 − is) − ln (1 + is)) = −i
π

2
1
2

�
ln

�
s − i

s

�
− ln

�
s + i

s

��
+ 1

2 (ln (1 − is) − ln (1 + is)) = −i
π

2
1
2 ln

�
s − i

s

�
− 1

2 ln
�

s + i

s

�
+ 1

2 ln (1 − is) − 1
2 ln (1 + is) = −i

π

2

ln

 #
s − i

s

 − ln

 #
s + i

s

 + ln
� √

1 − is
�

− ln
� √

1 + is
�

= −i
π

2

ln

 #
s − i

s

 + ln
� %

s

s + i

�
+ ln

 #
1 − is

1 + is

 = −i
π

2 |e·

#
s − i

✁s

#
✁s

s + i

#
1 − is

1 + is
= e−i π

2
*** 2

s − i

s + i
· 1 − is

1 + is
·(−i)
(−i) = e−iπ

✘✘✘s − i

s + i
· −s − i

✘✘✘s − i
= −1

− s + i

s + i
= −1

−1 = −1 �

145

Appendix

A.11. Proof of unitarity condition (3.15)
Proof that the scattering matrix from equation (3.15) is unitary:

SS† =

r t
t r

�

r∗ t∗

t∗ r∗

�

SS† =

rr∗ + tt∗ rt∗ + tr∗

rt∗ + tr∗ rr∗ + tt∗

�

SS† =

|r|2 + |t|2 rt∗ + tr∗

rt∗ + tr∗ |r|2 + |t|2
�

(3.13)=⇒

SS† =

1 rt∗ + tr∗

rt∗ + tr∗ 1

�
(15)

Considering equations (3.11) and (3.12) we can write:

rt∗ + tr∗ =
�

−r2
0 − ir0

"
1 − r2

0

� �
1 − r2

0 + ir0

"
1 − r2

0

�
+�

1 − r2
0 − ir0

"
1 − r2

0

� �
−r2

0 + ir0

"
1 − r2

0

�
rt∗ + tr∗ = − r2

0 − ir0

"
1 − r2

0 + r4
0 + ✘✘✘✘✘✘

ir3
0

"
1 − r2

0 − ✘✘✘✘✘✘
ir3

0

"
1 − r2

0 + r2
0

�
1 − r2

0
�

− r2
0 + r4

0 + ✘✘✘✘✘✘
ir3

0

"
1 − r2

0 +
ir0

"
1 − r2

0 − ✘✘✘✘✘✘
ir3

0

"
1 − r2

0 + r2
0

�
1 − r2

0
�

rt∗ + tr∗ = − �
�2r2
0 + ❅

❅2r4
0 + ✓✓r

2
0 − ❙❙r

4
0 + ✓✓r

2
0 − ❙❙r

4
0

rt∗ + tr∗ = 0 (15)=⇒

SS† =

1 0
0 1

�
�

146

Derivations

A.12. Derivation of the condition for the critical complex
wavenumber (3.18)

Derivation for the condition that has to be fulfilled by the critical wavenumber k̃c

(equation (3.18)).

rcav(k̃c) = 0 (3.17)=⇒

− r2
0 − ir0

"
1 − r2

0 −

�
1 − r2

0 − ir0
"

1 − r2
0

�2

e−2ik̃cl − r2
0 − ir0

"
1 − r2

0

= 0

�
−r2

0 − ir0

"
1 − r2

0

� �
e−2ik̃cl − r2

0 − ir0

"
1 − r2

0

�
−

�
1 − r2

0 − ir0

"
1 − r2

0

�2
= 0�

−r2
0 − ir0

"
1 − r2

0

� �
e−2ik̃cl − r2

0 − ir0

"
1 − r2

0

�
=

�
1 − r2

0 − ir0

"
1 − r2

0

�2

e−2ik̃cl − r2
0 − ir0

"
1 − r2

0 =

�
1 − r2

0 − ir0
"

1 − r2
0

�2

−r2
0 − ir0

"
1 − r2

0

e−2ik̃cl =

�
1 − r2

0 − ir0
"

1 − r2
0

�2

−r2
0 − ir0

"
1 − r2

0

+ r2
0 + ir0

"
1 − r2

0

e−2ik̃cl =

�
1 − r2

0 − ir0
"

1 − r2
0

�2
+

�
r2

0 + ir0
"

1 − r2
0

� �
−r2

0 − ir0
"

1 − r2
0

�
−r2

0 − ir0
"

1 − r2
0

e−2ik̃cl =
�
1 − r2

0
�2 − 2i

�
1 − r2

0
�

r0
"

1 − r2
0 − ✘✘✘✘✘✘

r2
0

�
1 − r2

0
� − r4

0 − 2ir3
0

"
1 − r2

0 + ✘✘✘✘✘✘
r2

0
�
1 − r2

0
�

−r2
0 − ir0

"
1 − r2

0

e−2ik̃cl =
1 − 2r2

0 + ✓✓r
4
0 − 2ir0

"
1 − r2

0 +
2ir3

0

"
1 − r2

0 − ✓✓r
4
0 − 2ir3

0

"
1 − r2

0

−r2
0 − ir0

"
1 − r2

0

e−2ik̃cl =
1 − 2r2

0 − 2ir0
"

1 − r2
0

−r2
0 − ir0

"
1 − r2

0

·
−r2

0 + ir0
"

1 − r2
0

−r2
0 + ir0

"
1 − r2

0

e−2ik̃cl =
−r2

0 + ir0
"

1 − r2
0 + 2r4

0 − ✘✘✘✘✘✘✘
2ir3

0

"
1 − r2

0 + ✘✘✘✘✘✘✘
2ir3

0

"
1 − r2

0 + 2r2
0

�
1 − r2

0
�

r4
0 + r2

0
�
1 − r2

0
�

e−2ik̃cl =
−r2

0 + ir0
"

1 − r2
0 + ✚✚2r4

0 + 2r2
0 − ✚✚2r4

0

❙❙r
4
0 + r2

0 − ❙❙r
4
0

e−2ik̃cl =
r2

0 + ir0
"

1 − r2
0

r2
0

147

Appendix

e−2ik̃cl =
r0 + i

"
1 − r2

0

r0

e2ik̃cl = r0

r0 + i
"

1 − r2
0

·
r0 − i

"
1 − r2

0

r0 − i
"

1 − r2
0

e2ik̃cl =
r2

0 − ir0
"

1 − r2
0

✓✓r
2
0 + 1 − ✓✓r

2
0

2ik̃cl = ln
�

r2
0 − ir0

"
1 − r2

0

�
± 2πin

k̃c = 1
2il

ln
�

r2
0 − ir0

"
1 − r2

0

�
± πn

l

k̃c = π

l
n − i

2l
ln

�
r2

0 − ir0

"
1 − r2

0

�
with n ∈ Z (16)

To separate the real part and the imaginary part of k̃c, we can exploit the mathe-
matical relation log (α) = log |α| + i arg (α) to re-write equation (16).

k̃c = π

l
n − i

1
2l

�
ln

****r2
0 − ir0

"
1 − r2

0

**** + i arg
�

r2
0 − ir0

"
1 − r2

0

��
k̃c = π

l
n − i

1
2l

�
ln

� "
r4

0 + r2
0

�
1 − r2

0
��

+ i arg
�

r2
0 − ir0

"
1 − r2

0

��

k̃c = π

l
n − i

1
2l

�����ln
� "

✓✓r
4
0 + r2

0 − ✓✓r
4
0

�
+ i arg

�
r2

0 − ir0

"
1 − r2

0

�
��
Re>0 =⇒ arg=arctan (Im

Re)

 
k̃c = π

l
n − i

1
2l

ln (r0) + i arctan


"

1 − r2
0

r0


k̃c = π

l
n − i

1
2l

ln (r0) − 1
2l

arctan


"

1 − r2
0

r0


k̃c = 1

2l

2πn − arctan


"

1 − r2
0

r0

 − i
1
2l

ln (r0) with n ∈ Z (3.18)

148

Derivations

A.13. Derivation of equation (3.22)
We start from equation (3.17).

rcav = − r2
0 − ir0

"
1 − r2

0 −

�
1 − r2

0 − ir0
"

1 − r2
0

�2

e−2ikl − r2
0 − ir0

"
1 − r2

0

rcav =

�
−r2

0 − ir0
"

1 − r2
0

� �
e−2ikl − r2

0 − ir0
"

1 − r2
0

�
−

�
1 − r2

0 − ir0
"

1 − r2
0

�2

e−2ikl − r2
0 − ir0

"
1 − r2

0

rcav = 1
e−2ikl − r2

0 − ir0
"

1 − r2
0

·
�
−r2

0

�
e−2ikl − r2

0 − ir0

"
1 − r2

0

�

−ir0

"
1 − r2

0

�
e−2ikl − r2

0 − ir0

"
1 − r2

0

�
−

�
1 − r2

0 − ir0

"
1 − r2

0

�2
�

rcav = 1
e−2ikl − r2

0 − ir0
"

1 − r2
0

·
�
−r2

0e−2ikl + r4
0 + ir3

0

"
1 − r2

0 − ir0

"
1 − r2

0e−2ikl

+ir3
0

"
1 − r2

0 − r2
0

�
1 − r2

0
�

−
�

1 − r2
0 − ir0

"
1 − r2

0

�2
�

rcav = 1
e−2ikl − r2

0 − ir0
"

1 − r2
0

·
�
−r2

0e−2ikl + r4
0 + 2ir3

0

"
1 − r2

0 − ir0

"
1 − r2

0e−2ikl

−r2
0 + r4

0 −
�
1 − r2

0
�2

+ 2i
�
1 − r2

0
�

r0

"
1 − r2

0 + r2
0

�
1 − r2

0
��

rcav = 1
e−2ikl − r2

0 − ir0
"

1 − r2
0

·
�
−r2

0e−2ikl + �
�2r4
0 +

2ir3
0

"
1 − r2

0 − ir0

"
1 − r2

0e−2ikl

−✓✓r
2
0 − 1 + 2r2

0 − ✓✓r
4
0 + 2ir0

"
1 − r2

0 − 2ir3
0

"
1 − r2

0 + ✓✓r
2
0 − ✓✓r

4
0

�

rcav =
−r2

0e−2ikl − ir0
"

1 − r2
0e−2ikl − 1 + 2r2

0 + 2ir0
"

1 − r2
0

e−2ikl − r2
0 − ir0

"
1 − r2

0

149

Appendix

rcav = 1
cos (−2kl) + i sin (−2kl) − r2

0 − ir0
"

1 − r2
0

·
	
−r2

0 (cos (−2kl) + i sin (−2kl))

−ir0

"
1 − r2

0 (cos (−2kl) + i sin (−2kl)) − 1 + 2r2
0 + 2ir0

"
1 − r2

0

�

rcav = 1
cos (−2kl) + i sin (−2kl) − r2

0 − ir0
"

1 − r2
0

·
	
−r2

0 cos (−2kl) − ir2
0 sin (−2kl)

−ir0

"
(1 − r2

0) cos (−2kl) + r0

"
(1 − r2

0) sin (−2kl) − 1 + 2r2
0 + 2ir0

"
(1 − r2

0)
�

rcav = 1�
cos (−2kl) − r2

0
�

+ i

�
sin (−2kl) − r0

"
1 − r2

0

� ·

��
2r2

0 − 1 − r2
0 cos (−2kl) + r0

"
(1 − r2

0) sin (−2kl)
�

+i

�
2r0

"
(1 − r2

0) − r2
0 sin (−2kl) − r0

"
(1 − r2

0) cos (−2kl)
��

rcav = 1�
cos (2kl) − r2

0
� − i

�
sin (2kl) + r0

"
1 − r2

0

� ·

��
2r2

0 − 1 − r2
0 cos (2kl) − r0

"
(1 − r2

0) sin (2kl)
�

+i

�
2r0

"
(1 − r2

0) + r2
0 sin (2kl) − r0

"
(1 − r2

0) cos (2kl)
��

·

·
�
cos (2kl) − r2

0
�

+ i

�
sin (2kl) + r0

"
1 − r2

0

�
�
cos (2kl) − r2

0
�

+ i

�
sin (2kl) + r0

"
1 − r2

0

�

rcav = 1�
cos (2kl) − r2

0
�2 +

�
sin (2kl) + r0

"
(1 − r2

0)
�2 ·

��
2r2

0 − 1 − r2
0 cos (2kl) − r0

"
1 − r2

0 sin (2kl)

+i

�
2r0

"
1 − r2

0 + r2
0 sin (2kl) − r0

"
1 − r2

0 cos (2kl)
��

·�
cos (2kl) − r2

0 + i

�
sin (2kl) + r0

"
1 − r2

0

���

150

Derivations

rcav = 1
cos2 (2kl) − 2r2

0 cos (2kl) + r4
0 + sin2 (2kl) + 2r0

"
1 − r2

0 sin (2kl) + r2
0

�
1 − r2

0
� ·

��
2r2

0 − 1 − r2
0 cos (2kl) − r0

"
1 − r2

0 sin (2kl)

+i

�
2r0

"
1 − r2

0 + r2
0 sin (2kl) − r0

"
1 − r2

0 cos (2kl)
��

·�
cos (2kl) − r2

0 + i

�
sin (2kl) + r0

"
1 − r2

0

��� ***cos2 (2kl) + sin2 (2kl) = 1

rcav = 1
1 − 2r2

0 cos (2kl) + ✓✓r
4
0 + 2r0

"
1 − r2

0 sin (2kl) + r2
0 − ✓✓r

4
0

·
��

2r2
0 − 1 − r2

0 cos (2kl) − r0

"
1 − r2

0 sin (2kl)

+i

�
2r0

"
1 − r2

0 + r2
0 sin (2kl) − r0

"
1 − r2

0 cos (2kl)
��

·�
cos (2kl) − r2

0 + i

�
sin (2kl) + r0

"
1 − r2

0

���

rcav = 1
1 + r2

0 − 2r2
0 cos (2kl) + 2r0

"
(1 − r2

0) sin (2kl)
·

��
2r2

0 − 1 − r2
0 cos (2kl) − r0

"
(1 − r2

0) sin (2kl)
� �

cos (2kl) − r2
0
�

−
�

2r0

"
1 − r2

0 + r2
0 sin (2kl) − r0

"
1 − r2

0 cos (2kl)
� �

sin (2kl) + r0

"
1 − r2

0

�
+ i

�
2r0

"
1 − r2

0 + r2
0 sin (2kl) − r0

"
1 − r2

0 cos (2kl)
� �

cos (2kl) − r2
0
�

+i

�
2r2

0 − 1 − r2
0 cos (2kl) − r0

"
(1 − r2

0) sin (2kl)
� �

sin (2kl) + r0

"
(1 − r2

0)
��

151

Appendix

rcav = 1
1 + r2

0 − 2r2
0 cos (2kl) + 2r0

"
(1 − r2

0) sin (2kl)
·

�
2r2

0 cos (2kl) − cos (2kl) − r2
0 cos2 (2kl) −

✭✭✭✭✭✭✭✭✭✭✭✭✭✭
r0

"
1 − r2

0 sin (2kl) cos (2kl)

− �
�2r4
0 + r2

0 + r4
0 cos (2kl) + r3

0

"
1 − r2

0 sin (2kl)

− 2r0

"
1 − r2

0 sin (2kl) − r2
0 sin2 (2kl) +

✭✭✭✭✭✭✭✭✭✭✭✭✭✭
r0

"
1 − r2

0 sin (2kl) cos (2kl)

− 2r2
0 + �

�2r4
0 − r3

0

"
1 − r2

0 sin (2kl) + r2
0 cos (2kl) − r4

0 cos (2kl)

+ 2ir0

"
1 − r2

0 cos (2kl) + ✭✭✭✭✭✭✭✭✭✭
ir2

0 sin (2kl) cos (2kl) − ir0

"
1 − r2

0 cos2 (2kl)

− 2ir3
0

"
1 − r2

0 − ir4
0 sin (2kl) + ir03

"
1 − r2

0 cos (2kl)

+ 2ir2
0 sin (2kl) − i sin (2kl) − ✭✭✭✭✭✭✭✭✭✭

ir2
0 sin (2kl) cos (2kl) − ir0

"
1 − r2

0 sin2 (2kl)

+
2ir3

0

"
1 − r2

0 − ir0

"
1 − r2

0 − ir3
0

"
1 − r2

0 cos (2kl) − ir2
0 sin (2kl) +

ir4
0 sin (2kl)

�

rcav = 1
1 + r2

0 − 2r2
0 cos (2kl) + 2r0

"
(1 − r2

0) sin (2kl)
·

�
3r2

0 cos (2kl) − cos (2kl) − ❙❙r
2
0 + ❙❙r

2
0 +

✘✘✘✘✘✘✘✘✘✘
r3

0

"
1 − r2

0 sin (2kl)

− 2r0

"
1 − r2

0 sin (2kl) − 2r2
0 −

✘✘✘✘✘✘✘✘✘✘
r3

0

"
1 − r2

0 sin (2kl)

+ 2ir0

"
1 − r2

0 cos (2kl) − 2ir0

"
1 − r2

0 +
❤❤❤❤❤❤❤❤❤❤ir3

0

"
1 − r2

0 cos (2kl)

+ir2
0 sin (2kl) − i sin (2kl) −

❤❤❤❤❤❤❤❤❤❤ir3
0

"
1 − r2

0 cos (2kl)
�

rcav =
�
3r2

0 − 1
�

cos (2kl) − 2r0
"

1 − r2
0 sin (2kl) − 2r2

0

1 + r2
0 − 2r2

0 cos (2kl) + 2r0
"

(1 − r2
0) sin (2kl)

+ i
2r0

"
1 − r2

0 cos (2kl) + (r2
0 − 1) sin (2kl) − 2r0

"
(1 − r2

0)

1 + r2
0 − 2r2

0 cos (2kl) + 2r0
"

(1 − r2
0) sin (2kl)

(3.22)

152

Derivations

A.14. Derivation of equation (3.38)
The value of dϕQLE

dk
becomes maximal when the denominator in equation (3.37)

takes on a minimal value. This is the case when k = kc. Therefore, we can write:

dϕQLE

dk

max

= dϕQLE

dk

k=kc

(3.37)=⇒
dϕQLE

dk

max

= 2
κc

(17)

The half-maximum-value is defined as

dϕQLE

dk

max/2

= 1
2

dϕQLE

dk

max

(17)=⇒
dϕQLE

dk

max/2

= 1
κc

(18)

This allows us to calculate the full-width-at-half-maximum (FWHM) value:

dϕQLE

dk

k=kmax/2

!= dϕQLE

dk

max/2

(3.37)=⇒ (18)=⇒

2κc�
kmax/2 − kc

�2
+ κ2

c

= 1
κc

2κ2
c�

kmax/2 − kc

�2
+ κ2

c

= 1

2κ2
c =

�
kmax/2 − kc

�2
+ κ2

c

κ2
c =

�
kmax/2 − kc

�2

κc =
%�

kmax/2 − kc

�2

%�

kmax/2 − kc

�2
= 1

2 FWHM
�dϕQLE

dk

�
κc = 1

2 FWHM
�dϕQLE

dk

�
(3.38)

153

Appendix

A.15. Derivation of equation (3.42)
It is possible to (approximately) express matrix Tc from equation (3.41) as a
function of r0. This can be done using relation (3.19), as is demonstrated in the
following derivation:

Tc(r0) ≈ −1e2ikcl (3.19)=⇒

Tc(r0) ≈ −1e
i2l 1

2l

�
✟✟2πn−arctan

√
1−r2

0
r0

�

Tc(r0) ≈ −1e
−i arctan

√
1−r2

0
r0

******s def=

"
1 − r2

0

r0

Tc(r0) ≈ −1e−i arctan(s)
****arctan (s) = i

2 (ln (1 − is) − ln (1 + is))

Tc(r0) ≈ −1e
1
2 (ln (1−is)−ln (1+is))

Tc(r0) ≈ −1e
1
2 ln (1−is)− 1

2 ln (1+is)

Tc(r0) ≈ −1e
1
2 ln (1−is)e− 1

2 ln (1+is)

Tc(r0) ≈ −1eln
√

1−ise
ln 1√

1+is

Tc(r0) ≈ −1
√

1 − is
1√

1 + is

Tc(r0) ≈ −1

#
1 − is

1 + is

******s def=

"
1 − r2

0

r0

Tc(r0) ≈ −1

'((((&1 − i

√
1−r2

0
r0

1 + i

√
1−r2

0
r0

Tc(r0) ≈ −1

'(((&r0 − i
"

1 − r2
0

r0 + i
"

1 − r2
0

*******·
'(((&r0 − i

"
1 − r2

0

r0 − i
"

1 − r2
0

Tc(r0) ≈ −1

'((((&
�

r0 − i
"

1 − r2
0

�2

✓✓r
2
0 + 1 − ✓✓r

2
0

(3.11)=⇒

Tc(r0) ≈ 1

�
−r0 + i

"
1 − r2

0

�
(3.42)

154

Software and hardware tools

B. Software and hardware tools
All computer software developed in the course of this thesis was written in the
MatLab Language (Version 2020b), and executed on a Windows 10 PC equipped
with a 64-core AMD Ryzen Threadripper CPU and 256 GB RAM. Where possible,
double precision calculations were sped up by two NVIDIA RTX 8000 48GB
GPUs. When precision beyond double precision was required, the Multiprecision
Computing Toolbox for MATLAB from Advanpix3 was used.

C. Software implementation of base functionality
C.1. create_ax
The function create_ax(gpu, N, L) creates a vector with N entries containing
the axis coordinates (almost) symmetric around zero so that the total length
corresponds to the target length L minus one step according to the requirements
of FFT, as explained in section 2.2.2.

Input values:

• gpu: 0: use CPU, 1: use GPU, 2: use mp library

• N: number of steps

• L: nominal length in meters

Return values:

• ax: vector with N entries containing coordinates

• dx: step width in meters

• amax: largest coordinate value in meters

• amin: smallest coordinate value in meters

• axlen: (reduced) axis length in meters

For example, calling create_ax(0, 4, 2) returns ax = [-1, -0.5, 0, 0.5],
amax = 0.5, amin = -1 and axlen = 1.5. With gpu=1, the returned vector is of
type gpuArray. With gpu=2, all returned parameters are high-precision values of
type mp.

3 www.advanpix.com

155

www.advanpix.com

Appendix

Source code:

1 f u n c t i o n [ax , dx , axmax , axmin , ax l e n] = create_ax (gpu , N, L)
2 %%%
3 % Creates a v e c t o r with N e n t r i e s c o n t a i n i n g the a x i s
4 % c o o r d i n a t e s (almost) symmetric around z e r o
5 % so that the t o t a l l e n g t h c o r r e s p o n d s to t a r g e t l e n g t h L
6 % minus one s t e p a c c o r d i n g to the r e q u i r e m e n t s o f FFT.
7 %
8 % example : create_ax (0 , 4 , 2) r e t u r n s
9 % ax = [−1 , −0.5 , 0 , 0 . 5]

10 % dx = 0 . 5 , axmax = 0 . 5 , axmin = −1, a x l e n = 1 . 5
11 %%%
12 % Input parameters :
13 % gpu . . . 0 : use CPU, 1 : use GPU, 2 : use mp l i b r a r y
14 % N . . . number o f s t e p s
15 % L . . . s i d e l e n g t h i n m
16 %
17 % Return v a l u e s :
18 % ax . . . v e c t o r with p o s i t i o n −space−arr ay a x i s c o o r d i n a t e s i n m
19 % dx . . . s t e p width i n m
20 % axmax . . . maximum c o o r d i n a t e va l ue i n m
21 % axmin . . . minimum c o o r d i n a t e valu e i n m
22 % ax l e n . . . (reduced) a x i s l e n g t h i n m
23 %%%
24
25 i f gpu==2
26 % c a l c u l a t e i n mp p r e c i s i o n
27 L = mp(L) ;
28 N = mp(N) ;
29 one = mp(' 1 ') ;
30 two = mp(' 2 ') ;
31 e l s e
32 % CPU or GPU
33 one = 1 ;
34 two = 2 ;
35 end
36 dx = L/N;
37 ax = ((one :N) − N/two) ∗ dx − dx ;
38 i f gpu==1
39 % i f GPU, c o n v e r t to GPU v e c t o r
40 ax = gpuArray (ax) ;
41 end
42 axmax = max(ax) ;
43 axmin = min (ax) ;
44 a x l en = axmax − axmin ;

156

Software implementation of base functionality

C.2. fft2_phys_spatial
The function fft2_phys_spatial(X, ax) performs a 2D Fast Fourier Transform
(FFT) of the position-space-array X holding spatial function values, with xy-
coordinates according to the axis coordinates provided in the ax vector. The
output is the Fast Fourier Transform of X (according to physics sign convention as
described in section 2.2.1), i.e., an array of the same size with spatial-frequency
Fourier coefficients as described in section 2.2.3.

If the input is normalized, so that integrating the squared absolute values over the
whole surface area (according to the axes scaling provided by ax) equals one, i.e., if
trapz(ax, trapz(ax, X .* conj(X), 2)) == 1, then the output is also nor-
malized so that norm(fourier_coeff) == 1.

Input values:

• X: position-space N × N array holding spatial function values

• ax: vector with N entries containing coordinate data

Output values:

• fourier_coeff: Fast Fourier Transform of X

Source code:

1 f u n c t i o n f o u r i e r _ c o e f f = f f t 2 _ p h y s _ s p a t i a l (X, ax)
2 %%
3 % 2D s p a t i a l Fast F o u r i e r Transform a c c o r d i n g to
4 % P h ys i cs S p a t i a l F o u r i e r Transform Convention
5 %%
6 % Input parameters :
7 % X . . . p o s i t i o n −space−arr a y a r r a y h o l d i n g s p a t i a l f u n c t i o n v a l u e s
8 % ax . . . v e c t o r with a x i s c o o r d i n a t e s i n m
9 %

10 % Output :
11 % f o u r i e r _ c o e f f . . . a rr a y with s p a t i a l −f r e q u e n c y F o u r i e r c o e f f i c i e n t s
12 %
13 % i f the input i s normalied , so that
14 % t r a p z (ax , t r a p z (ax , X . ∗ c o n j (X) , 2)) == 1 ,
15 % then the output i s a l s o normal ized so that norm (f o u r i e r _ c o e f f)==1
16 %%
17 ax_len = max(ax)−min (ax) ;
18 f o u r i e r _ c o e f f = f f t s h i f t (i f f t 2 (X ∗ ax_len)) ;

The fact that the ifft2 function is used in line 18 instead of the fft2 function
is because MatLab generically supports the “Engineering Sign Convention” in
FFT, whereas we have implemented the “Physic Sign Convention” as described in
section 2.2.1.

157

Appendix

C.3. ifft2_phys_spatial
The function ifft2_phys_spatial(fourier_coeff, ax) performs a 2D Inverse
Fast-Fourier-Transform (IFFT) of the spatial-frequency Fourier coefficients array
fourier_coeff and generates a position-space-array Y holding spatial function
values, with xy-coordinates according to the axis coordinates provided in the ax
vector as described in section 2.2.3.

If the input is normalized, so that norm(fourier_coeff) == 1, then the output
is also normalized so that the integral of the squared absolute values over the
whole surface area (according to the axes scaling provided by ax) equals one, i.e.,
trapz(ax, trapz(ax, Y .* conj(Y), 2)) == 1.

Input values:

• fourier_coeff: position-space N × N array holding spatial function values

• ax: vector with N entries containing spatial axis coordinates

Output values:

• fourier_coeff: Fast Fourier Transform of X

Source code:

1 f u n c t i o n Y = i f f t 2 _ p h y s _ s p a t i a l (f o u r i e r _ c o e f f , ax)
2 %%
3 % 2D s p a t i a l I n v e r s e Fast F o u r i e r Transform a c c o r d i n g to
4 % Ph y s ic s S p a t i a l F o u r i e r Transform Convention
5 %%
6 % Input parameters :
7 % f o u r i e r _ c o e f f . . . array with s p a t i a l −f r e q u e n c y F o u r i e r c o e f f i c i e n t s
8 % ax . . . v e c t o r with a x i s c o o r d i n a t e s i n m
9 %

10 % Output :
11 % Y . . . p o s i t i o n −space−arr a y h o l d i n g s p a t i a l f u n c t i o n v a l u e s
12 %
13 % i f the input i s normalied , so that norm (f o u r i e r _ c o e f f)==1
14 % then the output i s a l s o normal ized so that
15 % t r a p z (ax , t r a p z (ax , X . ∗ c o n j (X) , 2)) == 1
16 %%
17 ax_len = max(ax)−min (ax) ;
18 Y = f f t 2 (i f f t s h i f t (f o u r i e r _ c o e f f)) / ax_len ;

The fact that the fft2 function is used in line 18 instead of the ifft2 function
is because MatLab generically supports the “Engineering Sign Convention” in
IFFT, whereas we have implemented the “Physics Sign Convention” as described
in section 2.2.1. The factor ax_len ensures normalization and corresponds to the
normalization term in equation (2.45).

158

Software implementation of base functionality

C.4. fft2_basis_func
The function fft2_basis_func(gpu, nx, ny, ax, f_space_out) creates a nor-
malized (nx, ny) Fast-Fourier basis function. The output is either in spatial-
frequency space, or in position space as described in section 2.2.3.

The output-array psi is always normalized. So, if psi is in position-space,
then integrating the squared absolute values of psi over the whole surface area
(according to the axes scaling provided by ax) results in one, i.e.,
trapz(ax, trapz(ax, psi .* conj(psi), 2)) == 1. If psi is in spatial-
frequency space, then norm(psi) == 1.

Input values:

• gpu: 0: use CPU, 1: use GPU, 2: use mp library

• nx: mode number in x-direction

• ny: mode number in y-direction

• ax: vector with spatial axis coordinates

• f_space_out:
true: output in spatial-frequency space
false: output in position space

Output values:

• psi: Array containing the requested normalized (nx, ny) basis function,
depending on the boolean value f_space_out either in position space or in
spatial-frequency space .

159

Appendix

Source code:

1 f u n c t i o n p s i = f f t 2 _ b a s i s _ f u n c (gpu , nx , ny , ax , f_space_out)
2 %%%
3 % Creates the normal ized (nx , ny) Fast−F o u r i e r b a s i s f u n c t i o n
4 % e i t h e r i n p o s i t i o n space or i n s p a t i a l −f r e q u e n c y space
5 %%%
6 % Input parameters :
7 % gpu . . . 0 : use CPU, 1 : use GPU, 2 : use mp l i b r a r y
8 % nx . . . mode number i n x−d i r e c t i o n
9 % ny . . . mode number i n y−d i r e c t i o n

10 % ax . . . v e c t o r with s p a t i a l a x i s c o o r d i n a t e s i n m
11 % f_space_out . . i f true , output i n f−space , o t h e r w i s e i n p o s i t i o n space
12 %
13 % Output :
14 % p s i . . normal ized b a s i s f u n c t i o n
15 % n o r m a l i z a t i o n c o n d i t i o n :
16 % i f ~ f_space_out : t r a p z (ax , t r a p z (ax , p s i . ∗ c o n j (p s i) , 2)) == 1
17 % i f f_space_out : norm (p s i) == 1
18 %%
19 N = l e n g t h (ax) ; % s i d e l e n g t h (number o f s t e p s along each a x i s)
20
21 % c r e a t e empty b a s i s array i n f−space
22 i f gpu == 2
23 p s i = z e r o s (N, 'mp ') ;
24 e l s e i f gpu == 1
25 p s i = z e r o s (N, ' gpuArray ') ;
26 e l s e
27 p s i = z e r o s (N) ;
28 ax = g a t h e r (ax) ;
29 end
30
31 c = f l o o r (N/2) +1; % row− and column index o f the nx=ny=0 c e l l
32 i f c−nx>=1 && c−nx <= N && c−ny>=1 && c−ny <= N
33 p s i (c−ny , c−nx) =1; % c r e a t e normal ized b a s i s f u n c t i o n i n f−space
34 end
35
36 i f ~ f_space_out
37 % output i n p o s i t i o n space r e q u i r e d :
38 % c o n v e r t to s p a t i a l c o o r d i n a t e s by means o f i n v e r s e FFT
39 p s i = i f f t 2 _ p h y s _ s p a t i a l (ps i , ax) ;
40 end

160

Software implementation of base functionality

C.5. create_k_ax
The function create_k_ax(gpu, ax) creates a vector containing wave numbers
matching the axis of the FFT-transformed position-space-array (i.e., the spatial-
frequency-space-array), as explained in section 2.2.2.

Input values:

• gpu: 0: use CPU, 1: use GPU, 2: use mp library

• ax: vector with spatial axis coordinates

Return values:

• k_ax: wave number coordinate vector

Source code:
1 f u n c t i o n k_ax = create_k_ax (gpu , ax)
2 %%%
3 % Creates a v e c t o r with the same number o f e n t r i e s as the
4 % ax vector , but c o n t a i n i n g wave numbers matching the
5 % a x i s o f the FFT−transformed p o s i t i o n −space−arr a y
6 % (i . e . , the s p a t i a l −frequency −space−a rr ay)
7 %%%
8 % Input parameters :
9 % gpu . . . 0 : use CPU, 1 : use GPU, 2 : use mp l i b r a r y

10 % ax . . . v e c t o r with p o s i t i o n −space c o o r d i n a t e s i n m
11 %
12 % Return val ue :
13 % k_ax . . . wave number c o o r d i n a t e v e c t o r
14 %%%
15
16 N = s i z e (ax , 2) ; % number o f e n t r i e s i n ax v e c t o r
17 i f gpu == 2
18 o n e h a l f = mp(' 0 . 5 ') ;
19 one = mp(' 1 ') ;
20 N = mp(N) ;
21 Nhalf = N/mp(' 2 ') ;
22 twopi = mp(' 2∗ p i ') ;
23 e l s e
24 o n e h a l f = 0 . 5 ;
25 one = 1 ;
26 Nhalf = N/ 2 ;
27 twopi = 2∗ p i ;
28 end
29 even = (rem (N, 2) ==0) ; % true , i f N i s even
30 % Create v e c t o r with a l l p o s s i b l e mode numbers , b e g i n n i n g with h i g h e s t
31 i f even
32 n = (Nhalf :−one:− Nhalf+o n e h a l f) ;
33 e l s e
34 n = (Nhalf−o n e h a l f :−one:− Nhalf+o n e h a l f) ;
35 end
36 L = ax (end)−ax (1) ; % reduced l e n g t h o f a x i s i n p o s i t i o n −space
37 L = L∗N/(N−one) ; % nominal l e n g t h o f a x i s i n p o s i t i o n −space
38 k_ax = n ∗ twopi /L ; % c a l c u l a t e k−space c o o r d i n a t e v e c t o r

Lines 17-22 ensure full precision when using the mp library. In line 37 the re-
duced axis length is converted into the nominal axis length (see section 2.2.2 for
more information). The formula used in line 38 corresponds to equations (2.54)
and (2.55).

161

Appendix

C.6. k_vec_tilt
The function k_vec_tilt(gpu, nx, ny, ax, lambda) returns the angle with
which the k-vector is inclined to the z-axis given nx and ny.

Input values:

• gpu: 0: use CPU, 1: use GPU, 2: use mp library

• nx: mode number in x-direction

• ny: mode number in y-direction

• ax: vector with spatial axis coordinates

• lambda: wavelength in propagation direction

Output value:

• alpha: angle between 2k-vector and z-axis.

Source code:
1 f u n c t i o n alpha = k_vec_ti l t (gpu , nx , ny , ax , lambda)
2 %%%
3 % r e t u r n s the a n g l e with which the k−v e c t o r i s i n c l i n e d to
4 % the z−a x i s g i ve n nx and ny
5 %%%
6 % Input parameters :
7 % gpu . . . 0 : use CPU, 1 : use GPU, 2 : use mp l i b r a r y
8 % nx . . . mode number i n x−d i r e c t i o n
9 % ny . . . mode number i n y−d i r e c t i o n

10 % ax . . . v e c t o r with s p a t i a l a x i s c o o r d i n a t e s i n m
11 % lambda . wavelength i n propagat i on d i r e c t i o n
12 %
13 % Output :
14 % alpha . . The a n g l e with which the k−v e c t o r i s i n c l i n e d to the z−a x i s
15 %%
16 i f gpu==2
17 onepi = mp(' p i ') ;
18 twopi = mp(' 2∗ p i ') ;
19 nx = mp(nx) ;
20 ny = mp(ny) ;
21 e l s e
22 onepi = p i ;
23 twopi = 2∗ p i ;
24 end
25 N = s i z e (ax , 2) ; % number o f e n t r i e s i n ax v e c t o r
26 L = ax (end)−ax (1) ; % reduced l e n g t h o f a x i s
27 L = L∗N/(N−1) ; % nominal l e n g t h o f a x i s
28 k0 = twopi /lambda ; % l e n g t h o f t o t a l k−v e c t o r
29 kx = twopi ∗nx/L ; % l e n g t h o f kx v e c t o r
30 ky = twopi ∗ny/L ; % l e n g t h o f ky v e c t o r
31 i f k0^2−kx^2−ky^2>=0
32 alpha = acos (s q r t (k0^2−kx^2−ky ^2) /k0) ;
33 e l s e
34 alpha = onepi ;
35 end

Lines 16-20 ensure full precision when using the mp library. In line 26 the reduced
axis length is converted into the nominal axis length (see section 2.2.2 for more
information). The formula used in line 32 is derived in section 2.2.4. Line 34 will
be reached if there is no propagation in z-direction anymore.

162

Software implementation of base functionality

C.7. sorted_mode_numbers
The function sorted_mode_numbers(gpu, N) returns a vector with all combina-
tions of nx and ny allowed for an array with side-length N. The entries are sorted
according to the angle that the associated 2k-vectors have with respect to the z-axis.

Input values:

• gpu: 1: use GPU, else: use CPU

• N: side length of array

Output value:

• result: vector with all combinations of nx and ny allowed for an array with
side-length N.

Source code:
1 f u n c t i o n r e s u l t = sorted_mode_numbers (gpu , N)
2 %%
3 % Returns a v e c t o r with a l l combinat ions o f nx and ny up to n_max
4 % orde red by i n c r e a s i n g a n g l e o f c o r r e s p o n d i n g k−v e c t o r s with r e s p e c t
5 % to the z−a x i s
6 %%
7 % Input parameters :
8 % gpu : 1 : use GPU, e l s e : use CPU
9 % N : s i d e l e n g t h o f a rr a y

10 %
11 % Output :
12 % r e s u l t : v e c t o r with a l l combinat ions o f nx and ny up to n_max
13 % (f i r s t column : nx−values , second column : ny−v a l u e s)
14 %%
15 n_max = f l o o r (N/2) ; % maximum v al u e f o r nx , ny
16 odd = (rem (N, 2) ~=0) ; % i f true , then N i s odd
17 % (1) c r e a t e r e s u l t column v e c t o r with t h r e e columns and as many l i n e s as
18 % r e q u i r e d f o r a l l p o s s i b l e nx/ny combinations
19 % (2) c r e a t e temp l i n e v e c t o r with a l l v a l u e s nx or ny can take on
20 i f odd
21 i f gpu == 1
22 r e s u l t = z e r o s ((1+n_max∗2) ^ 2 , 3 , ' gpuArray ') ;
23 temp = gpuArray ([−n_max : n_max]) ;
24 e l s e
25 r e s u l t = z e r o s ((1+n_max∗2) ^ 2 , 3) ;
26 temp = [−n_max : n_max] ;
27 end
28 e l s e
29 i f gpu == 1
30 r e s u l t = z e r o s ((n_max∗2) ^ 2 , 3 , ' gpuArray ') ;
31 temp = gpuArray ([−n_max+1:n_max]) ;
32 e l s e
33 r e s u l t = z e r o s ((n_max∗2) ^ 2 , 3) ;
34 temp = [−n_max+1:n_max] ;
35 end
36 end
37 % F i l l f i r s t column with i n c r e a s i n g nx−v a l u e s
38 % so that each nx−v a l u e i s r e p e a t e d n times
39 r e s u l t (: , 1) = repelem (temp , width (temp)) ' ;
40 % F i l l second column with ny−v a l u e s so that the f i r s t two columns
41 % ar e now f i l l e d with a l l p o s s i b l e nx and ny combinations
42 r e s u l t (: , 2) = repmat (temp , 1 , width (temp)) ' ;
43 % F i l l t h i r d column with nx^2+ny ^2
44 r e s u l t (: , 3) = r e s u l t (: , 1) .^2+ r e s u l t (: , 2) . ^ 2 ;
45 % Sort p r i m a r i l y by the t h i r d column , and i f ambiguous ,
46 % s u b s e q u e n t l y by the f i r s t and second column .
47 r e s u l t = s o r t r o w s (r e s u l t , [3 , 1 , 2]) ;
48 % r e t u r n f i r s t and second column as r e s u l t
49 r e s u l t = r e s u l t (: , 1 : 2) ;

163

Appendix

C.8. fft2_arr_to_vec
The function fft2_arr_to_vec(input_array, ax, mode_numbers, f_space_in)
converts input_array, which may be a position-space-array or a spatial-frequency-
space-array, into a Fourier-coefficient-vector with the coefficients ordered according
to the mode_numbers index vector. The boolean parameter f_space_in determines
whether input_array is a spatial-frequency-space-array, or a position-space-array.

Input values:

• input_array: spatial-frequency-space or position-space input array

• ax: vector with spatial axis coordinates

• mode_numbers: column vector with combinations of nx and ny, determining
which modes are to be considered and also determining the order of the
entries in the generated Fourier-coefficients vector

• f_space_in:
if true: input_array is a spatial-frequency-space-array
if false: input_array is a position-space-array.

Output value:

• FFT_vec: vector with Fourier coefficients, ordered according to the mode_numbers
vector

164

Software implementation of base functionality

Source code:
1 f u n c t i o n FFT_vec = fft2_arr_to_vec (input_array , ax , mode_numbers , f_space_in)
2 %%
3 % Converts p o s i t i o n −space−arr ay or s p a t i a l −frequency −space−ar r a y
4 % i n t o a Fourier −c o e f f i c i e n t −v e c t o r with the c o e f f i c i e n t s order ed
5 % a c c o r d i n g to the provided mode_numbers input v e c t o r
6 %%
7 % Input :
8 % input_array . . s p a t i a l −frequency −space or p o s i t i o n −space input array
9 % ax v e c t o r with s p a t i a l a x i s c o o r d i n a t e s i n m

10 % mode_numbers . v e c t o r with ny , ny quantum numbers i n a s p e c i f i c o r d e r
11 % f_space_in . . . i f t r u e : FFT_arr i s a s p a t i a l −frequency −space−array ,
12 % i f f a l s e : FFT_arr i s a p o s i t i o n −space−arr a y .
13 %
14 % Output :
15 % FFT_vec v e c t o r with F o u r i e r c o e f f i c i e n t s , o rd e red a c c o r d i n g to
16 % mode_numbers v e c t o r
17 %%
18 N = width (input_array) ;
19 % Determine c so that A(c , c) c o r r e s p o n d s to nx=ny=0 (A being f−space−a rr a y)
20 c = f l o o r (N/2) +1;
21
22 i f ~ f_space_in
23 % p o s i t i o n −space−arr a y as input −>
24 % c o n v e r t to s p a t i a l −frequency −space−arr a y f i r s t
25 input_array = f f t 2 _ p h y s _ s p a t i a l (input_array , ax) ;
26 end
27 % c o n v e r t nx , ny v a l u e s from mode_numbers v e c t o r i n t o
28 % l i n e a r index v e c t o r f o r the input a r r a y
29 idx_vec = (c−mode_numbers (: , 1) −1)∗N + c−mode_numbers (: , 2) ;
30 % c o n v e r t a r r a y i n t o v e c t o r a c c o r d i n g to s o r t index
31 FFT_vec = input_array (idx_vec) ;

165

Appendix

C.9. fft2_vec_to_arr
The function fft2_vec_to_arr(gpu, FFT_vec, ax, mode_numbers,
f_space_out) converts the Fourier-coefficient vector FFT_vec into a position-space-
array or a spatial-frequency-space-array. The boolean parameter f_space_out
determines, whether the output is a spatial-frequency-space-array, or a position-
space-array.

Input values:

• gpu: 0: use CPU, 1: use GPU, 2: use mp library

• FFT_vec: Vector with Fourier coefficients, ordered according to the
mode_numbers vector

• ax: vector with spatial axis coordinates

• mode_numbers: column vector with combinations of nx and ny, determining
which modes are to be considered and also determining how to interpret the
order of the entries in the FFT_vec input vector.

• f_space_out:
if true: The output is a spatial-frequency-space-array
if false: The output is a position-space-array.

Output value:

• FFT_arr: spatial-frequency-space or position-space output array (according
to f_space_out)

166

Software implementation of base functionality

Source code:
1 f u n c t i o n FFT_arr = fft2_vec_to_arr (gpu , FFT_vec , ax , mode_numbers , f_space_out)
2 %%
3 % Converts the Fourier −c o e f f i c i e n t v e c t o r FFT_vec i n t o a
4 % p o s i t i o n −space−arr ay or a s p a t i a l −frequency −space−arr a y .
5 % The e n t r i e s i n the input v e c t o r FFT_vec ar e a s s o c i a t e d to the
6 % a c c o r d i n g nx/ny−modes by means o f the mode_numbers v e c t o r
7 %%
8 % Input :
9 % FFT_vec v e c t o r with F o u r i e r c o e f f i c i e n t s , o rd ered a c c o r d i n g to

10 % mode_numbers v e c t o r
11 % ax v e c t o r with s p a t i a l a x i s c o o r d i n a t e s i n m
12 % mode_numbers . v e c t o r with ny , ny quantum numbers
13 % f_space_out . . i f t r u e : FFT_arr i s a s p a t i a l −frequency −space−array ,
14 % i f f a l s e : FFT_arr i s a p o s i t i o n −space−arr a y .
15 %
16 % Output :
17 % FFT_arr s p a t i a l −frequency −space or p o s i t i o n −space output a rr ay
18 %%
19
20 % s i d e −l e n g t h o f output arr ay
21 N = width (ax) ;
22 % the input v e c t o r FFT_vec i s probably s m a l l e r than the NxN output a rr a y
23 % n i s the s i d e l e n g t h the output a r r a y would have i f i t s was matching FFT_vec
24 n = s q r t (h e i g h t (FFT_vec)) ;
25 % Determine c so that A(c , c) c o r r e s p o n d s to nx=ny=0 (A being f−space−arr a y)
26 c = f l o o r (N/2) +1;
27
28 % c r e a t e empty NxN output a rr ay
29 i f gpu == 2
30 FFT_arr = z e r o s (N, 'mp ') ;
31 e l s e i f gpu == 2
32 FFT_arr = z e r o s (N, ' gpuArray ') ;
33 e l s e
34 FFT_arr = z e r o s (N) ;
35 end
36
37 % c o n v e r t nx , ny v a l u e s from mode_numbers v e c t o r i n t o
38 % l i n e a r index v e c t o r f o r the NxN output a rr a y
39 idx_vec = (c−mode_numbers (: , 1) −1)∗N + c−mode_numbers (: , 2) ;
40 % i n s e r t the v a l u e s from FFT_vec at the c o r r e s p o n d i n g p o s i t i o n s i n FFT_arr
41 FFT_arr (idx_vec) = reshape (FFT_vec , n , n) ;
42 i f ~ f_space_out
43 % output i n p o s i t i o n −space r e q u e s t e d −> i n v e r s e FFT
44 FFT_arr = i f f t 2 _ p h y s _ s p a t i a l (FFT_arr , ax) ;
45 end

167

Appendix

C.10. RSTF_prop
The function RSTF_prop(gpu, E_in, ax, z, lambda, n, f_space_in,
f_space_out) takes the xy-input field E_in, which can be either a position-
space-array or a spatial-frequency-space-array, and propagates it in z-direction over
the distance z using the Rayleigh-Sommerfeld transfer function method,
as described in section 2.1.2. For propagation in free space, the parameter n is to
be set n = 1, otherwise n is the material-dependent (real or complex) refractive
index. The returned output field is again optionally either a position-space-array
or a spatial-frequency-space-array.

Input values:

• gpu: 0: use CPU, 1: use GPU, 2: use mp library

• E_in: xy-input-field, can be either a position-space-array or a spatial-
frequency-space-array

• ax: vector with spatial axis coordinates

• z: distance by which E_in is to be propagated in z-direction

• lambda: empty space wavelength

• n: refractive index (1 for empty space propagation)

• f_space_in:
if true: E_in is a spatial-frequency-space-array
if false: E_in is a position-space-array

• f_space_out:
if true: output as a spatial-frequency-space-array
if false: output as a position-space-array

Output value:

• E_out: spatial-frequency-space or position-space output array (according to
f_space_out), containing the propagated field

168

Software implementation of base functionality

Source code:
1 f u n c t i o n E_out=RSTF_prop(gpu , E_in , ax , z , lambda , n , f_space_in , f_space_out)
2 %%
3 % Propagates the input f i e l d E_in i n z−d i r e c t i o n
4 % Rayleigh Sommerfeld t r a n s f e r f u n c t i o n approach .
5 % s e e : Voelz D, " Computational F o u r i e r o p t i c s " , (4 . 1 9)
6 % r e q u i r e s z >> lambda
7 % propagat i on only i f s q r t (kx^2+ky ^2) <2∗ p i /lambda
8 %
9 % Input parameters :

10 % gpu 0 : use CPU, 1 : use GPU, 2 : use mp l i b r a r y
11 % E_in input f i e l d (i n e i t h e r p o s i t i o n −space or f−space)
12 % ax v e c t o r with s p a t i a l a x i s c o o r d i n a t e s i n m
13 % z p r op ag at io n d i s t a n c e i n z−d i r e c t i o n
14 % lambda empty space wavelength
15 % n r e f r a c t i v e index
16 % f_space_in i f t r u e : E_in i s a s p a t i a l −frequency −space arr ay
17 % i f f a l s e : E_in i s a p o s i t i o n −space a rr a y
18 % f_space_out i f t r u e : output i s a s p a t i a l −frequency −space arr ay
19 % i f f a l s e : output i s a p o s i t i o n −space arr ay
20 % Output :
21 % E_out f i e l d a f t e r p ro pagat ion i n f−space or p o s i t i o n −space−arr a y
22 %%
23 kxy = create_k_ax (gpu , ax) ; % axes c o o r d i n a t e s i n k−space
24 [kx ky] = meshgrid (kxy) ; % c o o r d i n a t e g r i d i n k−space
25 i f gpu==2
26 % high−p r e c i s i o n c o n s t a n t s when u s i n g mp l i b r a r y
27 k_tot = mp(' 2 ∗ p i ') / lambda ;
28 two = mp(' 2 ') ;
29 e l s e
30 % double−p r e c i s i o n c o n s t a n t s when u s i n g CPU or GPU
31 k_tot = 2 ∗ p i / lambda ;
32 two = 2 ;
33 end
34 % c a l c u l a t e kz−v e c t o r
35 kz = s q r t (complex (k_tot ^ two − kx . ^ two − ky . ^ two)) ;
36 % an gu la r spectrum o f propagator i n z−d i r e c t i o n
37 angs_prop_z = exp (complex (i ∗ n ∗ kz ∗ z)) ;
38
39 i f ~ f_space_in
40 % input not i n f−space , c o n v e r t to f−space
41 E_in = f f t 2 _ p h y s _ s p a t i a l (E_in , ax) ;
42 end
43
44 % Apply an g ul a r spectrum o f propagator i n f−space
45 E_out = E_in . ∗ angs_prop_z ;
46
47 i f ~ f_space_out
48 % output not i n f−space , c o n v e r t to p o s i t i o n −space
49 E_out = i f f t 2 _ p h y s _ s p a t i a l (E_out , ax) ;
50 end

Lines 25-28 ensure full numerical precision when using the mp library. For the
theory of the propagator in lines 34-37 see section 2.1.2.

169

Appendix

C.11. FRTF_prop
The function FRTF_prop(gpu, E_in, ax, z, lambda, n, f_space_in,
f_space_out) takes the xy-input field E_in, which can be either a position-
space-array or a spatial-frequency-space-array, and propagates it in z-direction
over the distance z, using the Fresnel transfer function method, as described
in section 2.1.3. For propagation in free space, the parameter n is to be set
n = 1, otherwise n is the material-dependent (real or complex) refractive index.
The returned output field is again optionally either a position-space-array or a
spatial-frequency-space-array.

Input values:

• gpu: 0: use CPU, 1: use GPU, 2: use mp library

• E_in: xy-input-field, can be either a position-space-array or a spatial-
frequency-space-array

• ax: vector with spatial axis coordinates

• z: distance by which E_in is to be propagated in z-direction

• lambda: empty space wavelength

• n: refractive index (1 for empty space propagation)

• f_space_in:
if true: E_in is a spatial-frequency-space-array
if false: E_in is a position-space-array

• f_space_out:
if true: output as a spatial-frequency-space-array
if false: output as a position-space-array

Output value:

• E_out: spatial-frequency-space or position-space output array (according to
f_space_out), containing the propagated field

170

Software implementation of base functionality

Source code:
1 f u n c t i o n E_out=FRTF_prop(gpu , E_in , ax , z , lambda , n , f_space_in , f_space_out)
2 %%
3 % Propagates the input f i e l d E_in i n z−d i r e c t i o n
4 % F r e s n e l t r a n s f e r f u n c t i o n approach .
5 % (p a r a x i a l approximation)
6 %
7 % Input parameters :
8 % gpu 0 : use CPU, 1 : use GPU, 2 : use mp l i b r a r y
9 % E_in input f i e l d (i n e i t h e r p o s i t i o n −space or f−space)

10 % ax v e c t o r with s p a t i a l a x i s c o o r d i n a t e s i n m
11 % z p r op ag at io n d i s t a n c e i n z−d i r e c t i o n
12 % lambda empty space wavelength
13 % n r e f r a c t i v e index
14 % f_space_in i f t r u e : E_in i s a s p a t i a l −frequency −space arr ay
15 % i f f a l s e : E_in i s a p o s i t i o n −space a rr a y
16 % f_space_out i f t r u e : output i s a s p a t i a l −frequency −space arr ay
17 % i f f a l s e : output i s a p o s i t i o n −space arr ay
18 % Output :
19 % E_out f i e l d a f t e r p ro pagat ion i n f−space or p o s i t i o n −space−a rr a y
20 %%
21 kxy = create_k_ax (gpu , ax) ; % axes c o o r d i n a t e s i n k−space
22 [kx ky] = meshgrid (kxy) ; % c o o r d i n a t e g r i d i n k−space
23 i f gpu==2
24 % high−p r e c i s i o n c o n s t a n t s when u s i n g mp l i b r a r y
25 k_tot = mp(' 2∗ p i ') / lambda ;
26 two = mp(' 2 ') ;
27 f o u r p i = mp(' 4∗ p i ') ;
28 e l s e
29 % double−p r e c i s i o n c o n s t a n t s when u s i n g CPU or GPU
30 k_tot = 2 ∗ p i / lambda ;
31 two = 2 ;
32 f o u r p i = 4 ∗ p i ;
33 end
34 % an gu la r spectrum o f propagator i n z−d i r e c t i o n
35 angs_prop_z = exp (complex (i ∗ z ∗ n ∗ (k_tot − ...
36 lambda ∗ (kx . ^ two + ky . ^ two) / f o u r p i))) ;
37
38 i f ~ f_space_in
39 % input not i n f−space , c o n v e r t to f−space
40 E_in = f f t 2 _ p h y s _ s p a t i a l (E_in , ax) ;
41 end
42
43 % Apply an g ul a r spectrum o f propagator i n f−space
44 E_out = E_in . ∗ angs_prop_z ;
45
46 i f ~ f_space_out
47 % output not i n f−space , c o n v e r t to p o s i t i o n −space
48 E_out = i f f t 2 _ p h y s _ s p a t i a l (E_out , ax) ;
49 end

Lines 23-27 ensure full numerical precision when using the mp library. For the
theory of the propagator in lines 34-36 see section 2.1.3.

171

Appendix

C.12. prop
The function prop(gpu, E_in, TF, ax, z, lambda, n, f_space_in,
f_space_out) takes the xy-input field E_in, which can be either a position-
space-array or a spatial-frequency-space-array, and propagates it in z-direction
over the distance z, using either the Rayleigh-Sommerfeld transfer func-
tion method as described in section 2.1.2, or the Fresnel transfer function
method, as described in section 2.1.3. The distinction is made by means of the
TF input parameter. For propagation in free space, the parameter n is to be set
n = 1, otherwise n is the material-dependent (real or complex) refractive index.
The returned output field is again optionally either a position-space-array or a
spatial-frequency-space-array.

Input values:

• gpu: 0: use CPU, 1: use GPU, 2: use mp library

• E_in: xy-input-field, can be either a position-space-array or a spatial-
frequency-space-array

• TF: propagation method to be used
0: Rayleigh-Sommerfeld transfer function
1: Fresnel transfer function

• ax: vector with spatial axis coordinates

• z: distance by which E_in is to be propagated in z-direction

• lambda: empty space wavelength.

• n: refractive index (1 for empty space propagation).

• f_space_in:
if true: E_in is a spatial-frequency-space-array
if false: E_in is a position-space-array.

• f_space_out:
if true: output as a spatial-frequency-space-array
if false: output as a position-space-array.

Output value:

• E_out: spatial-frequency-space or position-space output array (according to
f_space_out), containing the propagated field

172

Software implementation of base functionality

Source code:
1 f u n c t i o n E_out=prop (gpu , E_in , TF, ax , z , lambda , n , ...
2 f_space_in , f_space_out)
3 %%
4 % Propagates the input f i e l d E_in i n z−d i r e c t i o n
5 % e i t h e r with Rayle igh Sommerfeld t r a n s f e r f u n c t i o n approach
6 % or with F r e s n e l T r a n s f e r Function approach
7 %%
8 % Input parameters :
9 % gpu 0 : use CPU, 1 : use GPU, 2 : use mp l i b r a r y

10 % E_in input f i e l d (i n e i t h e r p o s i t i o n −space or f−space)
11 % TF 0 : use Rayle igh Sommerfeld T r a n s f e r f u c t i o n
12 % 1 : use F r e s n e l T r a n s f e r Function
13 % ax v e c t o r with s p a t i a l a x i s c o o r d i n a t e s i n m
14 % z propagat i on d i s t a n c e i n z−d i r e c t i o n
15 % lambda empty space wavelength
16 % n r e f r a c t i v e index
17 % f_space_in i f t r u e : E_in i s a s p a t i a l −frequency −space arr ay
18 % i f f a l s e : E_in i s a p o s i t i o n −space a rr a y
19 % f_space_out i f t r u e : output i s a s p a t i a l −frequency −space arr ay
20 % i f f a l s e : output i s a p o s i t i o n −space arr ay
21 % Output :
22 % E_out f i e l d a f t e r p ro pagat ion i n f−space or p o s i t i o n −space−arr a y
23 %%
24 i f TF == 0
25 E_out = RSTF_prop(gpu , E_in , ax , z , lambda , n , f_space_in , f_space_out) ;
26 e l s e
27 E_out = FRTF_prop(gpu , E_in , ax , z , lambda , n , f_space_in , f_space_out) ;
28 end

C.13. lens
The function lens(gpu, ax, lambda, pupil, NA, f, lens_type) returns the
phase-mask of a thin spherical lens or perfect aspherical lens in a position-space-
array lens_mask. This array can be applied by simply multiplying it component-
wisely to an input-field-array in position-space.

Input values:

• gpu: 0: use CPU, 1: use GPU, 2: use mp library

• ax: vector with spatial axis coordinates

• lambda: empty space wavelength

• pupil: if true, a pupil is simulated, otherwise not

• NA: numerical aperture of the pupil (if activated)

• f: focal length

• lens_type: 1: thin spherical lens, 2: thin, perfect aspherical lens.

Output values:

• lens_mask: Phase-mask of the lens. To be applied to an input-field given in
a position-space-array by component-wise multiplication: .* lens_mask.

• lens_pupil: position-space-array containing the pupil-mask. If lens_mask
== false, or NA is very large, then this array contains only ones.

173

Appendix

Source code:
1 f u n c t i o n [lens_mask , l e n s _ p u p i l] = ...
2 l e n s (gpu , ax , lambda , pupi l , NA, f , lens_type)
3 %%%
4 % Returns the phase−s h i f t −mask o f a t h i n s p h e r i c a l or p e r f e c t a s p h e r i c a l l e n s
5 % s e e : h t t p s : / /www. i u e . tuwien . ac . at /phd/ k i r c h a u e r / node51 . html
6 % s e e : h t t p s : / / en . w i k i p e d i a . org / w i k i / Thin_lens
7 % wave o p t i c s : h t t p s : / / o n l i n e l i b r a r y . w i l e y . com/ d o i / 1 0 . 1 0 0 2 / 0 4 7 1 2 1 3 7 4 8 . ch2
8 %%%
9 %% Input values :

10 % gpu 0 : use CPU, 1 : use GPU, 2 : use mp l i b r a r y
11 % ax v e c t o r with s p a t i a l a x i s c o o r d i n a t e s i n m
12 % lambda ermpty space wavelength
13 % p u p i l a c i t i v a t e p u p i l t r u e / f a l s e
14 % NA numerical a p e r t u r e
15 % f f o c a l l e n g t h o f l e n s
16 % lens_type . 1 : t h i n s p h e r i c a l l e n s , 2 : t h i n p e r f e c t a s p h e r i c a l l e n s
17 %
18 % Outputs :
19 % lens_mask . . apply to p o s i t i o n −space array with . ∗ lens_mask ;
20 % l e n s _ p u p i l . masks o f f the area o u t s i d e the l e n s
21 %%%
22 [X,Y] = meshgrid (ax) ; % c o o r d i n a t e g r i d i n xy−p o s i t i o n −space
23 i f gpu==2
24 % high−p r e c i s i o n c o n s t a n t s when u s i n g mp l i b r a r y
25 k0 = mp(' 2∗ p i ') /lambda ;
26 two = mp(' 2 ') ;
27 e l s e
28 % double−p r e c i s i o n c o n s t a n t s when u s i n g CPU or GPU
29 k0 = 2∗ p i /lambda ;
30 two = 2 ;
31 end
32
33 R = s q r t (X. ^ two+Y. ^ two) ; % r a d i a l c o o r d i n a t e g r i d
34 lens_R = f ∗ tan (a s i n (NA)) ; % l e n s a p e r t u r e r a d i u s
35 i f p u p i l
36 % p u p i l a c t i v a t e d : r e t u r n r e a l p u p i l mask
37 l e n s _ p u p i l = (R<lens_R) ;
38 e l s e
39 % p u p i l not a c t i v a t e d : r e t u r n j u s t n e u t r a l " ones " mask
40 i f gpu == 2
41 l e n s _ p u p i l = ones (width (ax) , 'mp ') ;
42 e l s e i f gpu==1
43 l e n s _ p u p i l = ones (width (ax) , ' gpuArray ') ;
44 e l s e
45 l e n s _ p u p i l = ones (width (ax)) ;
46 end
47 end
48
49 % Create l e n s mask
50 i f lens_type == 1
51 % t h i n s p h e r i c a l l e n s
52 lens_mask = exp(− i ∗ k0 /(two∗ f) . ∗ (X. ^ two + Y. ^ two)) ;
53 e l s e
54 % t h i n a s p h e r i c a l p e r f e c t l e n s
55 lens_mask = exp(− i ∗ k0 . ∗ (s q r t (f ^ two + X. ^ two + Y. ^ two)−f)) ;
56 end
57
58 % Apply p u p i l mask
59 i f p u p i l
60 lens_mask = lens_mask . ∗ l e n s _ p u p i l ;
61 end

Lines 23-26 ensure full numerical precision when using the mp library. For the
theory of the lens simulations in lines 49-56 see sections 2.1.4 and 2.1.5.

174

Software implementation of base functionality

C.14. tilt
The function tilt(gpu, ax, lambda, alpha) returns a phase-mask which tilts
the wavefront by the angle alpha against the z-axis in the yz-plane. The returned
phase-mask-array can be applied by simply multiplying it component-wisely to an
input-field-array in position-space.

Input values:

• gpu: 0: use CPU, 1: use GPU, 2: use mp library

• ax: vector with spatial axis coordinates

• lambda: empty space wavelength.

• alpha: angle by which the wavefront should be tilted against the z-axis in
the yz-plane.

Output values:

• tilt_mask: Phase-mask of the tilt. To be applied to an input-field given in
a position-space-array by component-wise multiplication: .* tilt_mask.

Source code:
1 f u n c t i o n ti lt_mask = t i l t (gpu , ax , lambda , alpha)
2 %%%
3 % Returns the phase−s h i f t −mask which t i l t s the wavefront with alpha
4 % i n the yz plane
5 % s e e : D. Voelz : Computational F o u r i e r Optics , p . 8 9 f f
6 %%%
7 %% Input values :
8 % gpu 0 : use CPU, 1 : use GPU, 2 : use mp l i b r a r y
9 % ax v e c t o r with s p a t i a l a x i s c o o r d i n a t e s i n m

10 % lambda empty space wavelength
11 % alpha a n g l e by which the wavefront should be t i l t e d i n the yz plane
12 %
13 % Outputs :
14 % ti lt_mask . . apply to p o s i t i o n −space a rr ay with . ∗ ti lt_mask ;
15 %%%
16
17 [one , two , four , e i g h t , twopi] = p r e c i s i o n _ c o n s t a n t s (gpu) ;
18 [X,Y] = meshgrid (ax) ; % s i m u l a t i o n g r i d
19 k0 = twopi /lambda ;
20 ti lt_mask = exp (i ∗ k0 ∗ Y ∗ tan (alpha)) ; % t i l t mask

The theory leading to the phase-mask formula in line 20 is explained in section 4.4.4.

175

Appendix

C.15. opt_grid_params
The main input parameters of this function are the desired side-length of the
“guarded” input-grid (L_des, corresponding to L1 in figure 2.12), a factor defining
how much larger the “guarding” grid should be (side-length L2 in figure 2.12), and
the propagation distance z. As these input values generally do not result in an
integer value for the optimal number of discrete coordinate points along the x- and
y-axis according to equation (2.71), the best-matching integer value for N1 is calcu-
lated, and returned together with the corresponding side-length L1 (close to L_des).

Equivalently, it is ensured that the larger side-length L2 of the “guarding” area
exactly matches an integer value N2, and these two values are also returned. The
boolean parameter even allows to force N1 and N2 to be even, or odd.

Further, a parameter z_max has to be passed to the function. It indicates the
longest propagation distance in the simulation (in case that the propagation func-
tion is applied multiple times in a row). This input allows the function to also
return the maximum tilt angle αmax and the maximum transverse mode number
nmax according to equations (2.73) and (2.74).

Input values:

• L_des: desired side-length of the embedded (smaller) “guarded” grid

• factor: factor by which the side length of the embedding “guarding” grid is
larger than the “guarded” grid

• z: propagation distance (single propagation)

• z_max: maximum propagation distance (i.e., the total maximum distance in
case multiple propagations in a row are simulated)

• even: if true: the return values N1 and N2 are even numbers; if false: the
return values N1 and N2 are odd numbers

• lambda: wavelength in empty space

Output values:

• N1: number of discrete coordinate points along the x- and y-axis of the
(smaller) “guarded” grid

• L1: side-length of the (smaller) “guarded” grid (close to L_des)

• N2: number of discrete coordinate points along the x- and y-axis of the
(larger) “guarding” grid

176

Software implementation of base functionality

• L2: side-length of the (larger) “guarding” grid

• alpha_max: maximum tilt angle αmax (as depicted in figure 2.12)

• n_max: maximum allowed nx and ny mode numbers

Source code:
1 f u n c t i o n [N1 , L1 , N2 , L2 , alpha_max , n_max] = ...
2 opt_grid_params (L_des , f a c t o r , z , z_max , even , lambda)
3 %%
4 % C a l c u l a t e s the optimal g r i d parameters f o r p ro pagat ion d i s t a n c e z
5 % L_des i s the s i d e l e n g t h o f the input g r i d
6 % To a l l o w f o r d i f f r a c t i o n waves to be d e t e c t e d a f t e r propagation ,
7 % the input g r i d i s embedded i n a l a r g e r gr id , which s i d e s a r e l a r g e r
8 % by " f a c t o r " . The g r i d a f t e r p ro p g at i on i s then l a r g e enough to s t i l l
9 % d e t e c t the d i f f r a c t e d waves , provided a l l waves f u l f i l l ny=ny<n_krit .

10 %
11 % Input parameters :
12 % L_des d e s i r e d s i d e −l e n g t h o f (s m a l l e r) " guarded " g r i d
13 % f a c t o r f a c t o r by which the embedding gr id ' s s i d e s a r e l a r g e r
14 % z prop ag at i o n d i s t a n c e (s i n g l e p ro pagat ion)
15 % z_max maximum p ro pagat ion d i s t a n c e (i f m u l t i p l e p r o p a g a t i o n s)
16 % even I f t r u e : even number o f s t ep s , i f f a l s e : odd number
17 % lambda wave l e n g t h i n empty space
18 %
19 % Outputs :
20 % N1 Number o f s t eps , embedded (s m a l l e r) g r i d
21 % L1 Side−l e n g t h o f embedded (s m a l l e r) g r i d
22 % N2 Number o f s t eps , embedding (l a r g e r) g r i d
23 % L2 Side−l e n g t h o f embedding (l a r g e r) g r i d
24 % alpha_max maximum a n g l e f o r p ro pagat in g r a y s
25 % n_max maximum a l l o we d ny ny mode numbers
26 %%
27
28 % e s t i m a t i o n f o r the s i d e −l e n g t h o f the l a r g e r g r i d
29 L2 = L_des ∗ f a c t o r ;
30 % best −matching i n t e g e r optimal number o f s t e p s f o r L2
31 N2 = round (L2 ^2/(lambda∗ z)) ;
32 i f even
33 % even number o f s t e p s demanded
34 i f rem (N2 , 2) ~=0
35 % make N2 even
36 N2 = N2 + 1 ;
37 end
38 e l s e
39 % odd number o f s t e p s demanded
40 i f rem (N2 , 2)==0
41 % make N2 odd
42 N2 = N2 + 1 ;
43 end
44 end
45 % back−c a l c u l a t e e xact s i d e −l e n g t h L2 o f the l a r g e r g r i d matching N2
46 L2 = s q r t (N2∗lambda∗ z) ;
47
48 N1 = round (N2/ f a c t o r) ; % number o f s t e p s f o r s m a l l e r g r i d
49 i f even
50 % even number o f s t e p s demanded
51 i f rem (N1 , 2) ~=0
52 % make N1 even
53 N1 = N1 + 1 ;
54 end
55 e l s e
56 % odd number o f s t e p s demanded
57 i f rem (N1 , 2)==0
58 % make N1 odd
59 N1 = N1 + 1 ;
60 end
61 end
62 L1 = L2∗N1/N2 ; % ex ac t s i d e −l e n g t h o f s m a l l e r g r i d
63 s = (L2−L1) / 2 ; % e x c e s s s i d e l e n g t h i n one a x i s d i r e c t i o n
64 alpha_max = atan (s /z_max) ; % c r i t i c a l a n g l e
65 n_max = f l o o r (L1/lambda∗ s i n (alpha_max)) ;

177

Appendix

C.16. embed_image
Function embed_image(gpu, E_in_small, ax_large) takes the smaller position-
space-grid E_in_small and embeds it in a larger grid whose side-length is defined
by ax_large (see figure 2.12).

Input values:

• gpu: 0: use CPU, 1: use GPU, 2: use mp library

• E_in_small: “smaller”, to-be-embedded position-space array

• ax_large: Vector with spatial axis coordinates of larger grid. Alternatively,
ax_large can be an integer value. If that is the case, it defines the N2 value,
i.e., the number of discrete coordinate points along the axes of the larger
grid.

Output value:

• E_out_large: larger “guarding” grid, embedding the input-grid in its center

Source code:
1 f u n c t i o n E_out_large = embed_image (gpu , E_in_small , ax_large)
2 %%%
3 % Embeds the s m a l l e r (p o s i t i o n −space) g r i d E_in_small
4 % i n a l a r g e r " guarding " g r i d .
5 %%%
6 % Input parameters :
7 % gpu 0 : use CPU, 1 : use GPU, 2 : use mp l i b r a r y
8 % E_in_small . . . " s m a l l e r " , to−be−embedded p o s i t i o n −space a rr a y
9 % ax_large c o o r d i n a t e v e c t o r o f l a r g e r g r i d .

10 % A l t e r n a t i v e l y ax_large can be an i n t e g e r v a lu e .
11 % I t that i t the case , i t d e f i n e s the N2 value , i . e . , the
12 % number o f d i s c r e t e c o o r d i n a t e p o i n t s along the axes
13 % Output :
14 % e_out_large . . l a r g e r gr id , embedding the input−g r i d i n i t s c e n t e r
15 %%%
16 s_small = s i z e (E_in_small) ;
17 s _ l a r g e = s i z e (ax_large) ;
18 p i x e l s _ l a r g e = s _ l a r g e (2) ;
19 p i x e l s _ s m a l l = s_small (2) ;
20 i f p i x e l s _ l a r g e==1
21 % i f ax i s i n t val ue i n s t e a d o f a v e c t o r −> j u s t i n t e r p r e t as N2 v a l u e
22 p i x e l s _ l a r g e = ax_large ;
23 end
24 o f f s = (p i x e l s _ l a r g e −p i x e l s _ s m a l l) /2+1;
25 i f gpu == 2
26 E_out_large=z e r o s (p i x e l s _ l a r g e , 'mp ') ;
27 e l s e i f gpu==1
28 E_out_large=z e r o s (p i x e l s _ l a r g e , ' gpuArray ') ;
29 e l s e
30 E_out_large=z e r o s (p i x e l s _ l a r g e) ;
31 end
32 E_out_large (o f f s : o f f s+p i x e l s _ s m a l l −1, o f f s : o f f s+p i x e l s _ s m a l l −1) = E_in_small ;

178

Software implementation of base functionality

C.17. extract_center_image
Function extract_center_image(E_in_large, ax_small) extracts the smaller
sub-grid from the center of position-space-grid E_in_large. The size of the smaller
grid is defined by ax_small (see figure 2.12).

Input values:

• gpu: 0: use CPU, 1: use GPU, 2: use mp library

• E_in_large: “larger” position-space grid in which the smaller grid is embed-
ded

• ax_small: Vector with spatial axis coordinates of smaller grid. Alternatively,
ax_small can be an integer value. If that is the case, it defines the N1 value,
i.e., the number of discrete coordinate points along the axes of the smaller
grid.

Output value:

• E_out_small: smaller grid, extracted from the center of the larger grid

Source code:
1 f u n c t i o n E_out_small = extract_center_image (E_in_large , ax_small)
2 %%
3 % E x t r a c t s the s m a l l e r (p o s i t i o n −space) g r i d from the c e n t e r
4 % o f a l a r g e r " guarding " g r i d .
5 %%
6 % Input parameters :
7 % E_in_large . . . " l a r g e r " embedding p o s i t i o n −space arr a y
8 % ax_small c o o r d i n a t e v e c t o r o f s m a l l e r g r i d .
9 % A l t e r n a t i v e l y ax_small can be an i n t e g e r v al ue .

10 % I t that i t the case , i t d e f i n e s the N1 value , i . e . , the
11 % number o f d i s c r e t e c o o r d i n a t e p o i n t s along the axes
12 % Output :
13 % E_out_small . . s m a l l e r gr id , e x t r a c t e d from the c e n t e r o f the l a r g e r g r i d
14 %%
15
16 %% Creates an input f i e l d with some image
17 %
18 %% Inputs :
19 % E_in_large : l a r g e image i n s p a t i a l c o o r d i n a t e s
20 % ax2 : s p a t i a l c o o r d i n a t e v e c t o r with r e a l p h y s i c a l l e n g t h u n i t s
21 % : (assuming y i s the same) o f s m a l l image
22
23 %% Output :
24 % E_out : s m a l l image
25 s _ l a r g e = s i z e (E_in_large) ;
26 s_small = s i z e (ax_small) ;
27 p i x e l s _ l a r g e = s _ l a r g e (2) ;
28 p i x e l s _ s m a l l = s_small (2) ;
29 i f p i x e l s _ s m a l l==1
30 % i f ax i s i n t valu e i n s t e a d o f a v e c t o r −> j u s t i n t e r p r e t as N1 v a lu e
31 p i x e l s _ s m a l l = ax_small ;
32 end
33 o f f s = (p i x e l s _ l a r g e −p i x e l s _ s m a l l) /2+1;
34
35 E_out_small = E_in_large (o f f s : o f f s+p i x e l s _ s m a l l −1, o f f s : o f f s+p i x e l s _ s m a l l −1) ;

179

Appendix

C.18. round_trip_no_atten
The function round_trip_no_atten(gpu, E_in, ax_small, ax_large, TF,
lens_mask, f, lambda, f_space_in, f_space_out) takes the input field E_in
and sends it on a round-trip through a 4f-cavity with given focal length f and perfect
rear-mirror, assuming no attenuation. Two coordinate-axis-vectors ax_small for
the smaller input-grid and ax_large for the larger guarding-grid (see figure 2.12)
must be provided together with the wavelength lambda and an array lens_mask,
representing the phase-mask of choice for the lenses. The output is again optionally
either in position-space or in spatial-frequency-space.

Input values:

• gpu: 0: use CPU, 1: use GPU, 2: use mp library

• E_in: xy-input-field, can be either a position-space-array or a spatial-
frequency-space-array

• ax_small: vector with spatial axis-coordinates matching E_in

• ax_large: vector with spatial axis-coordinates for larger guarding-grid

• TF: propagation method to be used
0: Rayleigh-Sommerfeld transfer function
1: Fresnel transfer function

• lens_mask: position-space phase-mask of the lenses (dimensions must match
ax_large)

• lambda: empty space wavelength.

• f: focal length of the lenses

• f_space_in:
if true: E_in is a spatial-frequency-space-array
if false: E_in is a position-space-array.

• f_space_out:
if true: output as a spatial-frequency-space-array
if false: output as a position-space-array.

Return value:

• E_out: array containing the resulting field after a single round-trip

180

Software implementation of base functionality

Source code:
1 f u n c t i o n E_out = round_trip_no_atten (gpu , E_in , ax_small , ax_large , ...
2 TF, lens_mask , f , lambda , f_space_in , f_space_out)
3 %%
4 % S i m u l at e s a s i n g l e round−t r i p through a 4 f−c a v i t y without a t t e n u a t i o n
5 %
6 % Input parameters :
7 % gpu 0 : use CPU, 1 : use GPU, 2 : use mp l i b r a r y
8 % E_in input f i e l d (i n e i t h e r p o s i t i o n −space or f−space)
9 % ax_small . . v e c t o r with s p a t i a l a x i s c o o r d i n a t e s matching E_in

10 % ax_large . . v e c t o r with s p a t i a l a x i s c o o r d i n a t e s f o r l a r g e r guarding g r i d
11 % TF 0 : use Rayle igh Sommerfeld T r a n s f e r f u n c t i o n
12 % 1 : use F r e s n e l T r a n s f e r Function
13 % lens_mask . p o s i t i o n −space phase−mask o f the l e n s e s
14 % f f o c a l l e n g t h
15 % lambda empty space wavelength
16 % f_space_in i f t r u e : E_in i s a s p a t i a l −frequency −space arr ay
17 % i f f a l s e : E_in i s a p o s i t i o n −space a rr a y
18 % f_space_out i f t r u e : output i s a s p a t i a l −frequency −space arr ay
19 % i f f a l s e : output i s a p o s i t i o n −space arr ay
20 %
21 % Output :
22 % E_out f i e l d a f t e r p ro pagat ion i n f−space or p o s i t i o n −space−arr a y
23 %%
24
25 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
26 % prep are input
27 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
28 i f f_space_in
29 % i f input i n f−space , c o n v e r t to p o s i t i o n −space
30 E_in = i f f t 2 _ p h y s _ s p a t i a l (E_in , ax_small) ;
31 end
32 E = embed_image (gpu , E_in , ax_large) ; % embed input i n " l a r g e " g r i d
33
34 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
35 % " l e f t −to−r i g h t " f i r s t t r i p
36 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
37 % propagate to f i r s t l e n s
38 E = prop (gpu , E, TF, ax_large , f , lambda , 1 , f a l s e , f a l s e) ;
39 % apply l e n s mask
40 E = E . ∗ lens_mask ;
41 % propagate 2 f d i s t a n c e
42 E = prop (gpu , E, TF, ax_large , f , lambda , 1 , f a l s e , t r u e) ;
43 E = prop (gpu , E, TF, ax_large , f , lambda , 1 , true , f a l s e) ;
44 % apply l e n s mask
45 E = E . ∗ lens_mask ;
46 % proagate f
47 E = prop (gpu , E, TF, ax_large , f , lambda , 1 , f a l s e , f a l s e) ;
48
49 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
50 % Phase−s h i f t on back−m i r r o r
51 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
52 E = −E ;
53
54 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
55 % " r i g h t −to−l e f t " r e t u r n t r i p
56 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
57 % propagate to f i r s t l e n s
58 E = prop (gpu , E, TF, ax_large , f , lambda , 1 , f a l s e , f a l s e) ;
59 % apply l e n s mask
60 E = E . ∗ lens_mask ;
61 % propagate 2 f d i s t a n c e
62 E = prop (gpu , E, TF, ax_large , f , lambda , 1 , f a l s e , t r u e) ;
63 E = prop (gpu , E, TF, ax_large , f , lambda , 1 , true , f a l s e) ;
64 % apply l e n s mask
65 E = E . ∗ lens_mask ;
66 % proagate f
67 E = prop (gpu , E, TF, ax_large , f , lambda , 1 , f a l s e , f a l s e) ;
68
69 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
70 % prep are output
71 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
72 E_out = extract_center_image (E, ax_small) ; % e x t r a c t s m a l l e r c e n t e r image
73 i f f_space_out
74 % i f output i n f−space , c o n v e r t from p o s i t i o n −space to to f−space
75 E_out = f f t 2 _ p h y s _ s p a t i a l (E_out , ax_small) ;
76 end

181

Appendix

C.19. round_trip_no_atten2
The function round_trip_no_atten2 is an enhanced version of the function
round_trip_no_atten as described in appendix C.18. It allows to separately
define the distances between the partially reflective mirror and the first lens, be-
tween the first lens and the second lens, and between the second lens and the total
reflective, perfect back-mirror.

Input values:

• gpu: 0: use CPU, 1: use GPU, 2: use mp library

• E_in: xy-input-field, can be either a position-space-array or a spatial-
frequency-space-array

• ax_small: vector with spatial axis-coordinates matching E_in

• ax_large: vector with spatial axis-coordinates for larger guarding-grid

• TF: propagation method to be used
0: Rayleigh-Sommerfeld transfer function
1: Fresnel transfer function

• lens_mask: position-space phase-mask of the lenses (dimensions must match
ax_large)

• lambda: empty space wavelength

• d1: distance between partially reflective mirror and first lens

• d2: distance between first lens and second lens

• d3: distance between second lens and total reflective back-mirror

• f_space_in:
if true: E_in is a spatial-frequency-space-array
if false: E_in is a position-space-array

• f_space_out:
if true: output as a spatial-frequency-space-array
if false: output as a position-space-array.

Return value:

• E_out: array containing the resulting field after a single round-trip

182

Software implementation of base functionality

Source code:
1 f u n c t i o n E_out = round_trip_no_atten2 (gpu , E_in , ax_small , ax_large , ...
2 TF, lens_mask , d1 , d2 , d3 , lambda , f_space_in , f_space_out)
3 %%
4 % S i m u l at e s a s i n g l e round−t r i p through a 4 f−c a v i t y without a t t e n u a t i o n
5 % the d i s t a n c e between second l e n s and r e a r m i r r o r i s a d j u s t a b b l e (param d)
6 %
7 % Input parameters :
8 % gpu 0 : use CPU, 1 : use GPU, 2 : use mp l i b r a r y
9 % E_in input f i e l d (i n e i t h e r p o s i t i o n −space or f−space)

10 % ax_small . . v e c t o r with s p a t i a l a x i s c o o r d i n a t e s matching E_in
11 % ax_large . . v e c t o r with s p a t i a l a x i s c o o r d i n a t e s f o r l a r g e r guarding g r i d
12 % TF 0 : use Rayle igh Sommerfeld T r a n s f e r f u n c t i o n
13 % 1 : use F r e s n e l T r a n s f e r Function
14 % lens_mask . p o s i t i o n −space phase−mask o f the l e n s e s
15 % d1 d i s t a n c e between p a r t i a l l y r e f l e c t i v e m i r r o r and f i r s t l e n s
16 % d2 d i s t a n c e between f i r s t l e n s and second l e n s
17 % d3 d i s t a n c e between second l e n s and t o t a l r e f l e c t i v e back−m i r r o r
18 % lambda empty space wavelength
19 % f_space_in i f t r u e : E_in i s a s p a t i a l −frequency −space a rr ay
20 % i f f a l s e : E_in i s a p o s i t i o n −space a rr a y
21 % f_space_out i f t r u e : output i s a s p a t i a l −frequency −space arr ay
22 % i f f a l s e : output i s a p o s i t i o n −space arr ay
23 %
24 % Output :
25 % E_out f i e l d a f t e r p ro pagat ion i n f−space or p o s i t i o n −space−arr a y
26 %%
27 d 2 h a l f = d2 / pval (gpu , ' 2 ') ;
28 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
29 % prep are input
30 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
31 i f f_space_in
32 % i f input i n f−space , c o n v e r t to p o s i t i o n −space
33 E_in = i f f t 2 _ p h y s _ s p a t i a l (E_in , ax_small) ;
34 end
35 E = embed_image (gpu , E_in , ax_large) ; % embed input i n " l a r g e " g r i d
36
37 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
38 % " l e f t −to−r i g h t " f i r s t t r i p
39 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
40 % propagate to f i r s t l e n s
41 E = prop (gpu , E, TF, ax_large , d1 , lambda , 1 , f a l s e , f a l s e) ;
42 % apply l e n s mask
43 E = E . ∗ lens_mask ;
44 % propagate to second l e n s
45 E = prop (gpu , E, TF, ax_large , d2hal f , lambda , 1 , f a l s e , t r u e) ;
46 E = prop (gpu , E, TF, ax_large , d2hal f , lambda , 1 , true , f a l s e) ;
47 % apply l e n s mask
48 E = E . ∗ lens_mask ;
49 % proagate d3 to rear −m i r r o r
50 E = prop (gpu , E, TF, ax_large , d3 , lambda , 1 , f a l s e , f a l s e) ;
51
52 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
53 % Phase−s h i f t on back−m i r r o r
54 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
55 E = −E ;
56
57 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
58 % " r i g h t −to−l e f t " r e t u r n t r i p
59 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
60 % propagate back to second l e n s
61 E = prop (gpu , E, TF, ax_large , d3 , lambda , 1 , f a l s e , f a l s e) ;
62 % apply l e n s mask
63 E = E . ∗ lens_mask ;
64 % propagate d2 d i s t a n c e
65 E = prop (gpu , E, TF, ax_large , d2hal f , lambda , 1 , f a l s e , t r u e) ;
66 E = prop (gpu , E, TF, ax_large , d2hal f , lambda , 1 , true , f a l s e) ;
67 % apply l e n s mask again
68 E = E . ∗ lens_mask ;
69 % propagate d1
70 E = prop (gpu , E, TF, ax_large , d1 , lambda , 1 , f a l s e , f a l s e) ;
71
72 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
73 % prep are output
74 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
75 E_out = extract_center_image (E, ax_small) ; % e x t r a c t s m a l l e r c e n t e r image
76 i f f_space_out
77 % i f output i n f−space , c o n v e r t from p o s i t i o n −space to to f−space
78 E_out = f f t 2 _ p h y s _ s p a t i a l (E_out , ax_small) ;
79 end

183

Appendix

C.20. round_trip_no_atten3
The function round_trip_no_atten3 is an enhanced version of the function
round_trip_no_atten2 as described in appendix C.19. By employing the tilt-
function, documented in C.14, it allows to define the angle in degrees by which
the total reflective back-mirror is tilted relative to the z-axis in the yz-plane (see
lines 57-61 in the following source-code).

Input values:

• gpu: 0: use CPU, 1: use GPU, 2: use mp library

• E_in: xy-input-field, can be either a position-space-array or a spatial-
frequency-space-array

• ax_small: vector with spatial axis-coordinates matching E_in

• ax_large: vector with spatial axis-coordinates for larger guarding-grid

• TF: propagation method to be used
0: Rayleigh-Sommerfeld transfer function
1: Fresnel transfer function

• lens_mask: position-space phase-mask of the lenses (dimensions must match
ax_large)

• lambda: empty space wavelength

• d1: distance between partially reflective mirror and first lens

• d2: distance between first lens and second lens

• d3: distance between second lens and total reflective back-mirror

• mirror_tilt: angle in degrees by which the total reflective back-mirror is
tilted relative to the z-axis in the yz-plane

• f_space_in:
if true: E_in is a spatial-frequency-space-array
if false: E_in is a position-space-array.

• f_space_out:
if true: output as a spatial-frequency-space-array
if false: output as a position-space-array.

Return value:

• E_out: array containing the resulting field after a single round-trip

184

Software implementation of base functionality

Source code:
1 f u n c t i o n E_out = round_trip_no_atten3 (gpu , E_in , ax_small , ax_large , ...
2 TF, lens_mask , d1 , d2 , d3 , m i r r o r _ t i l t , lambda , f_space_in , f_space_out)
3 %%
4 % S i m u l at e s a s i n g l e round−t r i p through a 4 f−c a v i t y without a t t e n u a t i o n
5 % the d i s t a n c e between second l e n s and r e a r m i r r o r i s a d j u s t a b b l e (param d)
6 %
7 % Input parameters :
8 % gpu 0 : use CPU, 1 : use GPU, 2 : use mp l i b r a r y
9 % E_in input f i e l d (i n e i t h e r p o s i t i o n −space or f−space)

10 % ax_small . . v e c t o r with s p a t i a l a x i s c o o r d i n a t e s matching E_in
11 % ax_large . . v e c t o r with s p a t i a l a x i s c o o r d i n a t e s f o r l a r g e r guarding g r i d
12 % TF 0 : use Rayle igh Sommerfeld T r a n s f e r f u n c t i o n
13 % 1 : use F r e s n e l T r a n s f e r Function
14 % lens_mask . p o s i t i o n −space phase−mask o f the l e n s e s
15 % d1 d i s t a n c e between p a r t i a l l y r e f l e c t i v e m i r r o r and f i r s t l e n s
16 % d2 d i s t a n c e between f i r s t l e n s and second l e n s
17 % d3 d i s t a n c e between second l e n s and t o t a l r e f l e c t i v e back−m i r r o r
18 % m i r r o r _ t i l t a n g l e i n d e gr e e by which the backmirror i s t i t l e d i n yz plane
19 % lambda empty space wavelength
20 % f_space_in i f t r u e : E_in i s a s p a t i a l −frequency −space arr ay
21 % i f f a l s e : E_in i s a p o s i t i o n −space a rr a y
22 % f_space_out i f t r u e : output i s a s p a t i a l −frequency −space arr ay
23 % i f f a l s e : output i s a p o s i t i o n −space arr a y
24 %
25 % Output :
26 % E_out f i e l d a f t e r p ro pagat ion i n f−space or p o s i t i o n −space−arr a y
27 %%
28 d 2 h a l f = d2 / pval (gpu , ' 2 ') ;
29 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
30 % prep are input
31 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
32 i f f_space_in
33 % i f input i n f−space , c o n v e r t to p o s i t i o n −space
34 E_in = i f f t 2 _ p h y s _ s p a t i a l (E_in , ax_small) ;
35 end
36 E = embed_image (gpu , E_in , ax_large) ; % embed input i n " l a r g e " g r i d
37
38 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
39 % " l e f t −to−r i g h t " f i r s t t r i p
40 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
41 % propagate to f i r s t l e n s
42 E = prop (gpu , E, TF, ax_large , d1 , lambda , 1 , f a l s e , f a l s e) ;
43 % apply l e n s mask
44 E = E . ∗ lens_mask ;
45 % propagate to second l e n s
46 E = prop (gpu , E, TF, ax_large , d2hal f , lambda , 1 , f a l s e , t r u e) ;
47 E = prop (gpu , E, TF, ax_large , d2hal f , lambda , 1 , true , f a l s e) ;
48 % apply l e n s mask
49 E = E . ∗ lens_mask ;
50 % proagate d to rear −m i r r o r
51 E = prop (gpu , E, TF, ax_large , d3 , lambda , 1 , f a l s e , f a l s e) ;
52
53 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
54 % back−m i r r o r : Phase−s h i f t and t i l t
55 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
56 E = −E ; % phase−s h i f t
57 i f m i r r o r _ t i l t ~= 0
58 beam_tilt = 2 ∗ m i r r o r _ t i l t ;
59 ti lt_mask = t i l t (gpu , ax_large , lambda , beam_tilt ∗ p i /180) ;
60 E = E . ∗ ti lt_mask ;
61 end
62
63 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
64 % " r i g h t −to−l e f t " r e t u r n t r i p
65 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
66 % propagate back to second l e n s
67 E = prop (gpu , E, TF, ax_large , d3 , lambda , 1 , f a l s e , f a l s e) ;
68 % apply l e n s mask
69 E = E . ∗ lens_mask ;
70 % propagate d2 d i s t a n c e
71 E = prop (gpu , E, TF, ax_large , d2hal f , lambda , 1 , f a l s e , t r u e) ;
72 E = prop (gpu , E, TF, ax_large , d2hal f , lambda , 1 , true , f a l s e) ;
73 % apply l e n s mask again
74 E = E . ∗ lens_mask ;
75 % propagate d1
76 E = prop (gpu , E, TF, ax_large , d1 , lambda , 1 , f a l s e , f a l s e) ;
77
78 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
79 % prep are output
80 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
81 E_out = extract_center_image (E, ax_small) ; % e x t r a c t s m a l l e r c e n t e r image
82 i f f_space_out
83 % i f output i n f−space , c o n v e r t from p o s i t i o n −space to to f−space
84 E_out = f f t 2 _ p h y s _ s p a t i a l (E_out , ax_small) ;
85 end

185

Appendix

C.21. transmision_matrix_round_trip_no_atten
The function transmision_matrix_round_trip_no_atten(gpu, ax_small,
ax_large, TF, modes, lens_mask, f, lambda) creates all transverse (x,y)-
modes encoded in the modes input vector and sends these modes on a single
round-trip through an unattenuated 4f-cavity with the given parameters. Based
on this, a transmission matrix is created and returned. The n-th column of the
returned transmission matrix represents the spatial frequency response to the n-th
mode according to the modes input-vector.

A coordinate-axis-vector ax_small for the smaller input-grid and ax_large for
the larger guarding-grid (see figure 2.12) must be provided together with the
wavelength lambda and an array lens_mask, representing the phase-mask of choice
for the lenses.

Input values:

• gpu: 0: use CPU, 1: use GPU, 2: use mp library

• ax_small: vector with spatial axis-coordinates matching E_in

• ax_large: vector with spatial axis-coordinates for larger guarding-grid

• TF: propagation method to be used
0: Rayleigh-Sommerfeld transfer function
1: Fresnel transfer function

• modes: vector with all combinations of nx and ny to be considered (first
column: nx-values, second column: ny-values)

• lens_mask: position-space phase-mask of the lenses (dimensions must match
ax_large)

• lambda: empty space wavelength

• f: focal length of the lenses

Return value:

• T: Transmission matrix. The n-th column represents the spatial frequency
response to the n-th mode according to the modes input-vector.

186

Software implementation of base functionality

Source code:
1 f u n c t i o n T = transmision_matrix_round_trip_no_atten (...
2 gpu , ax_small , ax_large , TF, modes , lens_mask , f , lambda) ;
3 %%
4 % Creates a t r a n s m i s s i o n matrix f o r a s i n g l e round−t r i p through a
5 % 4 f−c a v i t y without a t t e n u a t i o n
6 %%
7 % Input parameters :
8 % gpu 0 : use CPU, 1 : use GPU, 2 : use mp l i b r a r y
9 % ax_small . . v e c t o r with s p a t i a l a x i s c o o r d i n a t e s f o r the area o f i n t e r e s t

10 % ax_large . . v e c t o r with s p a t i a l a x i s c o o r d i n a t e s f o r l a r g e r guarding g r i d
11 % TF 0 : use Rayle igh Sommerfeld T r a n s f e r f u n c t i o n
12 % 1 : use F r e s n e l T r a n s f e r Function
13 % modes v e c t o r with a l l combinations o f nx and ny up to be c o n s i d e r e d
14 % (f i r s t column : nx−values , second column : ny−v a l u e s)
15 % lens_mask . p o s i t i o n −space phase−mask o f the l e n s e s
16 % f f o c a l l e n g t h
17 % lambda empty space wavelength
18 %
19 % Output :
20 % T Transmiss ion matrix . The n−th column r e p r e s e n t s the s p a t i a l
21 % f r e q u e n c y r e s p o n s e to the n−th mode a c c o r d i n g to the modes
22 % input−v e c t o r
23 %%
24
25 % g e n e r a t e a l l −z e r o matrix i n a data format matching the gpu parameter
26 T = c r e a t e _ z e r o s (gpu , s i z e (modes , 1)) ;
27 % i t e r a t e through a l l modes
28 p a r f o r idx = 1 : h e i g h t (modes)
29 nx = modes (idx , 1) ;
30 ny = modes (idx , 2) ;
31 % g e n e r a t e (nx , ny) mode
32 ps i_in = f f t 2 _ b a s i s _ f u n c (gpu , nx , ny , ax_small , f a l s e) ;
33 % s i m u l a t e round−t r i p
34 psi_out = round_trip_no_atten (gpu , psi_in , ax_small , ax_large , TF, ...
35 lens_mask , f , lambda , f a l s e , f a l s e) ;
36 % add column to t r a n s m i s s i o n matrix
37 T(: , idx) = fft_arr_to_vec (psi_out , ax_small , modes , f a l s e) ;
38 end

In line 26, an empty (all-zero) T-matrix in the data format indicated by the
gpu-parameter is created (see appendix D.4). The parallelized loop starting in
line 28 iterates through all modes encoded in the modes input-vector. In line
32, an (nx,ny)-mode input-field psi_in is generated, and then sent on a single-
round-trip through the 4f-cavity in lines 34 and 35 (see appendix C.18). The
resulting array in position-space psi_out is then converted into a column-vector
in spatial-frequency-space, and this vector is added to the matching column of the
T-matrix (line 37).

187

Appendix

C.22. transmision_matrix_round_trip_no_atten2
The function transmision_matrix_round_trip_no_atten2 is an enhanced ver-
sion of the function transmision_matrix_round_trip_no_atten as described in
appendix C.21. It allows to separately define the distances between the partially
reflective mirror and the first lens, between the first lens and the second lens, and
between the second lens and the total reflective, perfect back-mirror.

Input values:

• gpu: 0: use CPU, 1: use GPU, 2: use mp library

• ax_small: vector with spatial axis-coordinates matching E_in

• ax_large: vector with spatial axis-coordinates for larger guarding-grid

• TF: propagation method to be used
0: Rayleigh-Sommerfeld transfer function
1: Fresnel transfer function

• modes: vector with all combinations of nx and ny to be considered (first
column: nx-values, second column: ny-values)

• lens_mask: position-space phase-mask of the lenses (dimensions must match
ax_large)

• d1: distance between partially reflective mirror and first lens

• d2: distance between first lens and second lens

• d3: distance between second lens and total reflective back-mirror

• lambda: empty space wavelength

Return value:

• T: Transmission matrix. The n-th column represents the spatial frequency
response to the n-th mode according to the modes input-vector.

188

Software implementation of base functionality

Source code:
1 f u n c t i o n T = transmision_matrix_round_trip_no_atten2 (...
2 gpu , ax_small , ax_large , TF, modes , lens_mask , d1 , d2 , d3 , lambda) ;
3 %%
4 % Creates a t r a n s m i s s i o n matrix f o r a s i n g l e round−t r i p through a
5 % 4 f−c a v i t y without a t t e n u a t i o n where the d i s t a n c e o f the t o t a l
6 % r e f l e c t i v e m i r r o r i s a d j u s t a b l e (parameter d)
7 %%
8 % Input parameters :
9 % gpu 0 : use CPU, 1 : use GPU, 2 : use mp l i b r a r y

10 % ax_small . . v e c t o r with s p a t i a l a x i s c o o r d i n a t e s f o r the area o f i n t e r e s t
11 % ax_large . . v e c t o r with s p a t i a l a x i s c o o r d i n a t e s f o r l a r g e r guarding g r i d
12 % TF 0 : use Rayle igh Sommerfeld T r a n s f e r f u n c t i o n
13 % 1 : use F r e s n e l T r a n s f e r Function
14 % modes v e c t o r with a l l combinations o f nx and ny up to be c o n s i d e r e d
15 % (f i r s t column : nx−values , second column : ny−v a l u e s)
16 % lens_mask . p o s i t i o n −space phase−mask o f the l e n s e s
17 % f f o c a l l e n g t h
18 % d1 d i s t a n c e between p a r t i a l l y r e f l e c t i v e m i r r o r and f i r s t l e n s
19 % d2 d i s t a n c e between f i r s t l e n s and second l e n s
20 % d3 d i s t a n c e between second l e n s and t o t a l r e f l e c t i v e back−m i r r o r
21 % lambda empty space wavelength
22 %
23 % Output :
24 % T Transmiss ion matrix . The n−th column r e p r e s e n t s the s p a t i a l
25 % f r e q u e n c y r e s p o n s e to the n−th mode a c c o r d i n g to the modes
26 % input−v e c t o r
27 %%
28
29 % g e n e r a t e a l l −z e r o matrix i n a data format matching the gpu parameter
30 T = c r e a t e _ z e r o s (gpu , s i z e (modes , 1)) ;
31 % i t e r a t e through a l l modes
32 p a r f o r idx = 1 : h e i g h t (modes)
33 nx = modes (idx , 1) ;
34 ny = modes (idx , 2) ;
35 % g e n e r a t e (nx , ny) mode
36 ps i_in = f f t 2 _ b a s i s _ f u n c (gpu , nx , ny , ax_small , f a l s e) ;
37 % s i m u l a t e round−t r i p
38 psi_out = round_trip_no_atten2 (gpu , psi_in , ax_small , ax_large , TF, ...
39 lens_mask , d1 , d2 , d3 , lambda , f a l s e , f a l s e) ;
40 % add column to t r a n s m i s s i o n matrix
41 T(: , idx) = fft_arr_to_vec (psi_out , ax_small , modes , f a l s e) ;
42 end

189

Appendix

C.23. transmision_matrix_round_trip_no_atten3
The function transmision_matrix_round_trip_no_atten3 is an enhanced ver-
sion of the function transmision_matrix_round_trip_no_atten2 as described
in appendix C.22. It allows to define the angle in degrees by which the total
reflective back-mirror is tilted against the z-axis in the yz-plane.

Input values:

• gpu: 0: use CPU, 1: use GPU, 2: use mp library

• ax_small: vector with spatial axis-coordinates matching E_in

• ax_large: vector with spatial axis-coordinates for larger guarding-grid

• TF: propagation method to be used
0: Rayleigh-Sommerfeld transfer function
1: Fresnel transfer function

• modes: vector with all combinations of nx and ny to be considered (first
column: nx-values, second column: ny-values)

• lens_mask: position-space phase-mask of the lenses (dimensions must match
ax_large)

• d1: distance between partially reflective mirror and first lens

• d2: distance between first lens and second lens

• d3: distance between second lens and total reflective back-mirror

• mirror_tilt: angle in degrees by which the total reflective back-mirror is
tilted against the z-axis in the yz-plane

• lambda: empty space wavelength

Return value:

• T: Transmission matrix. The n-th column represents the spatial frequency
response to the n-th mode according to the modes input-vector.

190

Software implementation of base functionality

Source code:
1 f u n c t i o n T = transmision_matrix_round_trip_no_atten3 (gpu , ax_small , ...
2 ax_large , TF, modes , lens_mask , d1 , d2 , d3 , m i r r o r _ t i l t , lambda) ;
3 %%
4 % Creates a t r a n s m i s s i o n matrix f o r a s i n g l e round−t r i p through a
5 % 4 f−c a v i t y without a t t e n u a t i o n where the d i s t a n c e o f the t o t a l
6 % r e f l e c t i v e m i r r o r i s a d j u s t a b l e (parameter d)
7 %%
8 % Input parameters :
9 % gpu 0 : use CPU, 1 : use GPU, 2 : use mp l i b r a r y

10 % ax_small . . v e c t o r with s p a t i a l a x i s c o o r d i n a t e s f o r the area o f i n t e r e s t
11 % ax_large . . v e c t o r with s p a t i a l a x i s c o o r d i n a t e s f o r l a r g e r guarding g r i d
12 % TF 0 : use Rayle igh Sommerfeld T r a n s f e r f u n c t i o n
13 % 1 : use F r e s n e l T r a n s f e r Function
14 % modes v e c t o r with a l l combinations o f nx and ny up to be c o n s i d e r e d
15 % (f i r s t column : nx−values , second column : ny−v a l u e s)
16 % lens_mask . p o s i t i o n −space phase−mask o f the l e n s e s
17 % d1 d i s t a n c e between p a r t i a l l y r e f l e c t i v e m i r r o r and f i r s t l e n s
18 % d2 d i s t a n c e between f i r s t l e n s and second l e n s
19 % d3 d i s t a n c e between second l e n s and t o t a l r e f l e c t i v e back−m i r r o r
20 % m i r r o r _ t i l t a n g l e i n d e gr e e by which the backmirror i s t i t l e d i n yz plane
21 % lambda empty space wavelength
22 %
23 % Output :
24 % T Transmiss ion matrix . The n−th column r e p r e s e n t s the s p a t i a l
25 % f r e q u e n c y r e s p o n s e to the n−th mode a c c o r d i n g to the modes
26 % input−v e c t o r
27 %%
28
29 % g e n e r a t e a l l −z e r o matrix i n a data format matching the gpu parameter
30 T = c r e a t e _ z e r o s (gpu , s i z e (modes , 1)) ;
31 % i t e r a t e through a l l modes
32 p a r f o r idx = 1 : h e i g h t (modes)
33 nx = modes (idx , 1) ;
34 ny = modes (idx , 2) ;
35 % g e n e r a t e (nx , ny) mode
36 ps i_in = f f t 2 _ b a s i s _ f u n c (gpu , nx , ny , ax_small , f a l s e) ;
37 % s i m u l a t e round−t r i p
38 psi_out = round_trip_no_atten3 (gpu , psi_in , ax_small , ax_large , TF, ...
39 lens_mask , d1 , d2 , d3 , m i r r o r _ t i l t , lambda , f a l s e , f a l s e) ;
40 % add column to t r a n s m i s s i o n matrix
41 T(: , idx) = fft_arr_to_vec (psi_out , ax_small , modes , f a l s e) ;
42 end

191

Appendix

C.24. create_S_matrix
The function create_S_matrix(gpu, R, T) creates a scattering matrix based on
the input matrices R and T, which represent the reflection-sub-matrix and the
transmission-sub-matrix, respectively. The R-matrix goes in the top-left and the
bottom-right quadrant of the resulting scattering matrix; and the T-matrix goes
into the top-right and bottom-left quadrant of the resulting scattering matrix.

The input matrices R and T must be square and of same size. The output scattering-
matrix S has twice the side-length than the input-matrices.

Input values:

• gpu: 0: use CPU, 1: use GPU, 2: use mp library

• R: reflection matrix, must be square

• T: transmission matrix, must be square and of same size as R

Return value:

• S: Scattering matrix. The R-matrix goes in the top-left and the bottom-right
quadrant of the scattering matrix; and the T-matrix goes into the top-right
and bottom-left quadrant of the scattering matrix.

Source code:
1 f u n c t i o n S = create_S_matrix (gpu , R, T)
2 %%
3 % Creates a S c a t t e r i n g Matrix S from
4 % r e f l e c t i o n matrix R and t r a n s m i s s i o n matrix T
5 %%
6 % Input parameters :
7 % gpu 0 : use CPU, 1 : use GPU, 2 : use mp l i b r a r y
8 % R R e f l e c t i o n Matrix
9 % T Transmiss ion Marix

10 %
11 % Output :
12 % S S c a t t e r i n g Matrix
13 %%
14
15 szR = s i z e (R) ;
16 szT = s i z e (T) ;
17 i f ~ i s e q u a l (szR , szT)
18 e r r o r (' Error ! R and T must have same dimensions ! ')
19 end
20 s z = szR ;
21 i f s z (1) ~= s z (2)
22 e r r o r (' Error ! R and T must be square m a t r i c e s ! ')
23 end
24
25 S = c r e a t e _ z e r o s (gpu , s z (1) ∗2) ;
26 i f gpu == 0
27 R = g a t h e r (R) ;
28 T = g a t h e r (T) ;
29 end
30 S (1 : s z (1) , 1 : s z (1))=R; % l e f t top quadrant : R
31 S (1 : s z (1) , s z (1) +1:2∗ s z (1))=T; % r i g h t top quadrant : T
32 S (s z (1) +1:2∗ s z (1) , 1 : s z (1))=T; % l e f t bottom quadrant : T
33 S (s z (1) +1:2∗ s z (1) , s z (1) +1:2∗ s z (1))=R; % r i g h t bottom quadrant : R

192

Software implementation of base functionality

C.25. convert_S_to_M
The function convert_S_to_M(S) converts the input scattering matrix S into
the corresponding transfer matrix M, using the conversion method described in
section 5.3.2.

Input values:

• S: scattering matrix, must be square and have even side-length

Return value:

• M: corresponding transfer matrix

Source code:
1 %%
2 % Converts s c a t t e r i n g matrix S to t r a n s f e r matrix M
3 %%
4 % Input parameters :
5 % S S c a t t e r i n g Matrix
6 %
7 % Output :
8 % M T r a n s f e r Matrix
9 %%

10 s z = s i z e (S) ;
11 i f s z (1) ~= s z (2)
12 e r r o r (' Error ! S must be a sqare −shaped matrix ! ')
13 end
14 i f rem (s z (1) , 2) ~= 0
15 e r r o r (' Error ! S must have an even s i d e l e n g t h ! ')
16 end
17 qsz = s z (1) / 2 ; % quadrant s i d e l e n g t h
18
19 % break down S matrix i n t o quadrant m a t r i c e s
20 S11 = S (1 : qsz , 1 : qsz) ; % top l e f t quadrant
21 S12 = S (1 : qsz , qsz +1:2∗ qsz) ; % top r i g h t quadrant
22 S21 = S (qsz +1:2∗ qsz , 1 : qsz) ; % bottom l e f t quadrant
23 S22 = S (qsz +1:2∗ qsz , qsz +1:2∗ qsz) ; % bottom r i g h t quadrant
24
25 % c r e a t e Transfer −matrix
26 M=S ;
27 invS21 = inv (S21) ;
28 S11invS21 = S11 ∗ invS21 ;
29 M(1 : qsz , 1 : qsz) = S12 − S11invS21 ∗ S22 ; % top l e f t quadrant
30 M(1 : qsz , qsz +1:2∗ qsz) = S11invS21 ; % top r i g h t quadrant
31 M(qsz +1:2∗ qsz , 1 : qsz) = −invS21 ∗ S22 ; % bottom l e f t quadrant
32 M(qsz +1:2∗ qsz , qsz +1:2∗ qsz) = invS21 ; % bottom r i g h t quadrant

193

Appendix

C.26. convert_M_to_R
The function convert_M_to_R(M) converts the input transfer matrix M into the
top-left quadrant of the corresponding scattering matrix, which is the reflection
matrix R, based on the theory presented in section 5.3.3.

Input values:

• M: transfer matrix, must be square and have even side-length

Return value:

• R: top-left quadrant of the corrsponding scattering matrix, which is the
reflection matrix.

Source code:
1 f u n c t i o n R = convert_M_to_R (M)
2 %%
3 % Converts t r a n s f e r matrix M to l e f t upper quadrant o f s c a t t e r i n g matrix S
4 % which i s the R e f l e c t i o n Matrix R
5 %%
6 % Input parameter :
7 % M T r a n s f e r Matrix
8 %
9 % Output :

10 % R R e f l e c t i o n Matrix
11 %%
12 s z = s i z e (M) ;
13 i f s z (1) ~= s z (2)
14 e r r o r (' Error ! T must be a sqare −shaped matrix ! ')
15 end
16 i f rem (s z (1) , 2) ~= 0
17 e r r o r (' Error ! T must have an even s i d e l e n g t h ! ')
18 end
19 qsz = s z (1) / 2 ; % quadrant s i d e l e n g t h
20
21 % break down T matrix i n t o quadrant m a t r i c e s
22 M12 = M(1 : qsz , qsz +1:2∗ qsz) ; % top r i g h t quadrant
23 M22 = M(qsz +1:2∗ qsz , qsz +1:2∗ qsz) ; % bottom r i g h t quadrant
24
25 % c r e a t e R−matrix
26 R = M12/M22 ; % top l e f t quadrant o f s c a t t e r i n g matrix = r e f l e c t i o n matrix

194

Software implementation of base functionality

C.27. transmision_matrix_prop
The function transmision_matrix_prop(gpu, TF, ax, z, lambda, n, modes)
creates a transmission matrix T representing propagation through free space or
material (with refractive index n) over a distance z.

Input values:
• gpu: 0: use CPU, 1: use GPU, 2: use mp library
• TF: propagation method to be used

0: Rayleigh-Sommerfeld transfer function
1: Fresnel transfer function

• ax: vector with spatial axis coordinates
• z: propagation distance
• lambda: empty space wavelength.
• n: complex refractive index (1 for empty space propagation)
• modes: column vector with all combinations of nx and ny to be considered

(first column: nx-values, second column: ny-values)
Output value:

• T: Transmission matrix. The n-th column represents the spatial frequency
response to the n-th mode according to the modes input-vector.

Source code:
1 f u n c t i o n T = transmision_matrix_prop (gpu , TF, ax , z , lambda , n , modes)
2 %%
3 % Creates a t r a n s m i s s i o n matrix f o r p ro pagat ion through f r e e space
4 % or a b s o r b e r (with r e f r a c t i v e index n)
5 %%
6 % Input parameters :
7 % gpu 0 : use CPU, 1 : use GPU, 2 : use mp l i b r a r y
8 % TF 0 : use Rayle igh Sommerfeld T r a n s f e r f u c t i o n
9 % 1 : use F r e s n e l T r a n s f e r Function

10 % ax v e c t o r with s p a t i a l a x i s c o o r d i n a t e s i n m
11 % z p r op ag at io n d i s t a n c e i n z−d i r e c t i o n
12 % lambda empty space wavelength
13 % n d i f f r a c t i o n index
14 % modes v e c t o r with a l l combinations o f nx and ny up to be c o n s i d e r e d
15 % (f i r s t column : nx−values , second column : ny−v a l u e s)
16 %
17 % Output :
18 % T Transmiss ion matrix . The n−th column r e p r e s e n t s the s p a t i a l
19 % f r e q u e n c y r e s p o n s e to the n−th mode a c c o r d i n g to the modes
20 % input−v e c t o r
21 %%
22
23 % g e n e r a t e a l l −z e r o matrix i n a data format matching the gpu parameter
24 T = c r e a t e _ z e r o s (gpu , s i z e (modes , 1)) ;
25 % i t e r a t e through a l l modes
26 p a r f o r idx = 1 : h e i g h t (modes)
27 nx = modes (idx , 1) ;
28 ny = modes (idx , 2) ;
29 % g e n e r a t e (nx , ny) mode
30 ps i_in = f f t 2 _ b a s i s _ f u n c (gpu , nx , ny , ax , t r u e) ;
31 % s i m u l a t e p ro pagat ion
32 psi_out = prop (gpu , psi_in , TF, ax , z , lambda , n , true , t r u e) ;
33 % add column to t r a n s m i s s i o n matrix
34 T(: , idx) = fft_arr_to_vec (psi_out , ax , modes , t r u e) ;
35 end

195

Appendix

C.28. transmission_matrix_lens
The function transmission_matrix_lens(gpu, ax, lambda, pupil, NA, f,
lens_type, modes) creates a transmission matrix T representing a thin lens.

Input values:
• gpu: 0: use CPU, 1: use GPU, 2: use mp library

• ax: vector with spatial axis coordinates

• lambda: empty space wavelength

• pupil: if true, a pupil is simulated, otherwise not

• NA: numerical aperture of the pupil (if activated)

• f: focal length

• lens_type: 1: thin spherical lens, 2: thin, perfect aspherical lens

• modes: column vector with all combinations of nx and ny to be considered
(first column: nx-values, second column: ny-values)

Output value:
• T: Transmission matrix. The n-th column represents the spatial frequency

response to the n-th mode according to the modes input-vector.
Source code:

1 f u n c t i o n T = transmis ion_matr ix_lens (gpu , ax , lambda , pupi l , NA, f , ...
2 lens_type , modes)
3 %%
4 % Creates a t r a n s m i s s i o n matrix f o r a t h i n l e n s
5 %%
6 % Input parameters :
7 % gpu 0 : use CPU, 1 : use GPU, 2 : use mp l i b r a r y
8 % ax v e c t o r with s p a t i a l a x i s c o o r d i n a t e s i n m
9 % lambda ermpty space wavelength

10 % p u p i l a c i t i v a t e p u p i l t r u e / f a l s e
11 % NA numerical a p e r t u r e
12 % f f o c a l l e n g t h o f l e n s
13 % lens_type . 1 : t h i n s p h e r i c a l l e n s , 2 : t h i n p e r f e c t a s p h e r i c a l l e n s
14 % modes v e c t o r with a l l combinations o f nx and ny up to be c o n s i d e r e d
15 % (f i r s t column : nx−values , second column : ny−v a l u e s)
16 %
17 % Output :
18 % T Transmiss ion matrix . The n−th column r e p r e s e n t s the s p a t i a l
19 % f r e q u e n c y r e s p o n s e to the n−th mode a c c o r d i n g to the modes
20 % input−v e c t o r
21 %%
22
23 % g e n e r a t e a l l −z e r o matrix i n a data format matching the gpu parameter
24 T = c r e a t e _ z e r o s (gpu , s i z e (modes , 1)) ;
25 % i t e r a t e through a l l modes
26 lens_mask = l e n s (gpu , ax , lambda , pupi l , NA, f , lens_type) ;
27 p a r f o r idx = 1 : h e i g h t (modes)
28 nx = modes (idx , 1) ;
29 ny = modes (idx , 2) ;
30 % g e n e r a t e (nx , ny) mode
31 ps i_in = f f t 2 _ b a s i s _ f u n c (gpu , nx , ny , ax , f a l s e) ;
32 % s i m u l a t e l e n s
33 psi_out = psi_in . ∗ lens_mask ;
34 % add column to t r a n s m i s s i o n matrix
35 T(: , idx) = fft_arr_to_vec (psi_out , ax , modes , f a l s e) ;
36 end

196

Software implementation of base functionality

C.29. downscale_TR_matrix
The function downscale_TR_matrix(gpu, TR, ax_small, ax_large,
modes_large downscales a transmission or reflection matrix TR which corresponds
to the larger axis coordinates ax_large of the guarding grid to a smaller transmis-
sion or reflection matrix corresponding to the smaller observation grid coordinates
ax_small.

Input values:

• gpu: 0: use CPU, 1: use GPU, 2: use mp library

• TR: transmission or reflection matrix to be down-scaled, corresponding to the
axis coordinates encoded in the ax_large coordinate vector.

• ax_small: coordinate vector containing the axis coordinates of the smaller ob-
servation grid which corresponds to the to-be calculated output transmission
or reflection matrix

• ax_large: coordinate vector containing the axis coordinates of the larger
guarding grid

• modes: column vector with all combinations of nx and ny encoded in the TR
input matrix (first column: nx-values, second column: ny-values).

Output values:

• TR_small: Downscaled transmission or reflection matrix. The n-th column
represents the spatial frequency response to the n-th mode according to the
modes_small output-vector.

• modes_small: column vector with all combinations of nx and ny encoded
in the TR_small output matrix (first column: nx-values, second column:
ny-values).

197

Appendix

Source code:
1 f u n c t i o n [TR_small , modes_small] = downscale_TR_matrix (...
2 gpu , TR, ax_small , ax_large , modes_large)
3 %%
4 % Downscales Transmiss ion Matrix or R e f l e c t i o n Matrix o f l a r g e r
5 % embedding g r i d to s m a l l e r Transmiss ion Matrix or R e f l e c t i o n Matrix
6 % o f o b s e r v a t i o n area
7 %%%
8 % Input parameters :
9 % gpu 0 : use CPU, 1 : use GPU, 2 : use mp l i b r a r y

10 % TR Tranmission Matrix or R e f l e c t i o n Matrix o f " l a r g e " Grid
11 % ax_small v e c t o r with s p a t i a l a x i s c o o r d i n a t e s o f s m a l l g r i d
12 % ax_large v e c t o r with s p a t i a l a x i s c o o r d i n a t e s o f l a r g e g r i d
13 % modes_large .
14 %
15 % Output :
16 % TR_small downsized Tranmission Matrix or R e f l e c t i o n Matrix
17 % modes_small .
18 %%%
19 N_small = width (ax_small) ;
20 modes_small = sorted_mode_numbers (gpu , N_small) ;
21 TR_small = c r e a t e _ z e r o s (gpu , s i z e (modes_small , 1)) ;
22 p a r f o r idx = 1 : h e i g h t (modes_small)
23 nx = modes_small (idx , 1) ;
24 ny = modes_small (idx , 2) ;
25 ps i_in = f f t 2 _ b a s i s _ f u n c (gpu , nx , ny , ax_small , f a l s e) ; % g e n e r a t e (nx , ny) mode
26 E = embed_image (gpu , psi_in , ax_large) ; % embed input i n " l a r g e " g r i d
27 E_vec = fft_arr_to_vec (E, ax_large , modes_large , f a l s e) ;
28 E_vec = TR∗E_vec ;
29 E = fft2_vec_to_arr (gpu , E_vec , ax_large , modes_large , f a l s e) ;
30 E = extract_center_image (E, ax_small) ; % e x t r a c t s m a l l e r c e n t e r image
31 TR_small (: , idx) = fft_arr_to_vec (E, ax_small , modes_small , f a l s e) ;
32 end

198

Helper functions

D. Helper functions
D.1. create_test_image
The function create_test_image(gpu, ax, image, f_space_out) creates an
array either in position-space or in spatial-frequency-space, which contains a field
representing a test-image. Six different test-images are available.

Input values:

• gpu: 0: use CPU, 1: use GPU, 2: use mp library

• ax: vector with spatial axis coordinates

• image:
1: small centered T
2: large centered T
3: large centered T with a phase gradient
4: large off-center T
5: large off-center T with a phase gradient
6: centered square-beam (1/5 size)

• f_space_out:
if true: output as a spatial-frequency-space-array
if false: output as a position-space-array.

Return value:

• E_out: array containing the test-image

199

Appendix

Source code:
1 f u n c t i o n E_out = create_test_image (gpu , ax , image , f_space_out)
2 %%
3 % Creates a t e s t image
4 %
5 % Input parameters :
6 % gpu 0 : use CPU, 1 : use GPU, 2 : use mp l i b r a r y :
7 % ax v e c t o r with s p a t i a l a x i s c o o r d i n a t e s i n m
8 % image 1 : s m a l l c e n t e r e d T
9 % 2 : l a r g e c e n t e r e d T

10 % 3 : l a r g e c e n t e r e d T with a phase g r a d i e n t
11 % 4 : l a r g e o f f −c e n t e r T
12 % 5 : l a r g e o f f −c e n t e r T with a phase g r a d i e n t
13 % 6 : 1/5 square beam
14 % f_space_out i f t r u e : output i s a s p a t i a l −frequency −space arr ay
15 % i f f a l s e : output i s a p o s i t i o n −space array
16 % Output :
17 % E_out Test image e i g t e r i n p o s i t i o n −space or f−space
18 %%
19 p i x e l s = width (ax) ;
20 i f gpu==2
21 E_out = z e r o s (p i x e l s , 'mp ') ;
22 e l s e i f gpu == 1
23 E_out = z e r o s (p i x e l s , ' gpuArray ') ;
24 e l s e
25 E_out = z e r o s (p i x e l s) ;
26 end
27 s wi t ch image
28 c a s e 1
29 % s m a l l T
30 a = i n t 1 6 (2000/4096∗ p i x e l s) ;
31 b = i n t 1 6 (2200/4096∗ p i x e l s) ;
32 c = i n t 1 6 (2020/4096∗ p i x e l s) ;
33 d = i n t 1 6 (1940/4096∗ p i x e l s) ;
34 e = i n t 1 6 (2070/4096∗ p i x e l s) ;
35 E_out (a : b , a : c) =1; % h o r i z o n t a l bar
36 E_out (a : c , d : e) =1; % v e r t i c a l bar
37
38 c a s e 2
39 % l a r g e T
40 a = i n t 1 6 (1300/4096∗ p i x e l s) ;
41 b = i n t 1 6 (1700/4096∗ p i x e l s) ;
42 c = i n t 1 6 ((4096 −1300) /4096∗ p i x e l s) ;
43 d = i n t 1 6 (3000/4096∗ p i x e l s) ;
44 e = i n t 1 6 (1900/4096∗ p i x e l s) ;
45 f = i n t 1 6 (2200/4096∗ p i x e l s) ;
46 E_out (a : b , a : c) =1; % h o r i z o n t a l bar
47 E_out (a : d , e : f) =1; % v e r t i c a l bar
48
49 c a s e 3
50 % l a r g e T with phase s h i f t s
51 a = f i x (1300/4096∗ p i x e l s) ;
52 b = f i x (1700/4096∗ p i x e l s) ;
53 c = f i x ((4096 −1300) /4096∗ p i x e l s) ;
54 d = f i x (3000/4096∗ p i x e l s) ;
55 e = f i x (1900/4096∗ p i x e l s) ;
56 f = f i x (2200/4096∗ p i x e l s) ;
57 % v e r t i c a l bar
58 % l i n e b+1:d , column e : f
59 E_out (b+1:d , e : f) =exp (i ∗ repelem (((1 : (d−b)) ') . / (d−b) ∗2∗ pi , 1 , f−e+1)) ;
60 % h o r i z o n t a l bar
61 % l i n e a : b , column a : c
62 E_out (a : b , a : c) =exp (i ∗ repelem (1 : (c−a+1) , b−a +1 ,1) . / (c−a+1)∗ p i) ;
63
64 c a s e 4
65 % l a r g e o f f −c e n t e r T
66 o f f s e t =−900;
67 a = f i x ((1300+ o f f s e t) /4096∗ p i x e l s) ;
68 b = f i x ((1700+ o f f s e t) /4096∗ p i x e l s) ;
69 c = f i x ((4096 −1300+ o f f s e t) /4096∗ p i x e l s) ;
70 d = f i x ((3000+ o f f s e t) /4096∗ p i x e l s) ;
71 e = f i x ((1900+ o f f s e t) /4096∗ p i x e l s) ;
72 f = f i x ((2200+ o f f s e t) /4096∗ p i x e l s) ;
73 % v e r t i c a l bar
74 % l i n e b+1:d , column e : f
75 E_out (b+1:d , e : f) = 1 ;%exp (i ∗ repelem (((1 : (d−b)) ') . / (d−b) ∗2∗ pi , 1 , f−e+1)) ;
76 % h o r i z o n t a l bar
77 % l i n e a : b , column a : c
78 E_out (a : b , a : c) = 1 ; %exp (i ∗ repelem (1 : (c−a+1) , b−a +1 ,1) . / (c−a+1)∗ p i) ;

200

Helper functions

80 c a s e 5
81 % l a r g e o f f −c e n t e r T with phase s h i f t s
82 o f f s e t =−900;
83 a = f i x ((1300+ o f f s e t) /4096∗ p i x e l s) ;
84 b = f i x ((1700+ o f f s e t) /4096∗ p i x e l s) ;
85 c = f i x ((4096 −1300+ o f f s e t) /4096∗ p i x e l s) ;
86 d = f i x ((3000+ o f f s e t) /4096∗ p i x e l s) ;
87 e = f i x ((1900+ o f f s e t) /4096∗ p i x e l s) ;
88 f = f i x ((2200+ o f f s e t) /4096∗ p i x e l s) ;
89 % v e r t i c a l bar
90 % l i n e b+1:d , column e : f
91 E_out (b+1:d , e : f) = exp (i ∗ repelem (((1 : (d−b)) ') . / (d−b) ∗2∗ pi , 1 , f−e+1)) ;
92 % h o r i z o n t a l bar
93 % l i n e a : b , column a : c
94 E_out (a : b , a : c) = exp (i ∗ repelem (1 : (c−a+1) , b−a +1 ,1) . / (c−a+1)∗ p i) ;
95
96 c a s e 6
97 % 1/5 s q a r e beam
98 dx = ax (2)−ax (1) ;
99 w = (max(ax)−min (ax)+dx)/5+dx ;

100 [X2 , Y2] = meshgrid (ax , ax) ;
101 E_out = (abs (X2/w) <=1/2) . ∗ (abs (Y2/w) <=1/2) ;
102 i f gpu==2
103 E_out = mp(E_out) ;
104 e l s e i f gpu==1
105 E_out = gpuArray (E_out) ;
106 end
107
108 end
109
110 i f f_space_out
111 E_out = f f t 2 _ p h y s _ s p a t i a l (E_out , ax) ;
112 end

201

Appendix

D.2. plot_fields
The function plot_fields(gpu, zoom, ax, field1, title1, mode1, field2,
title2, mode2, field3, title3, mode3) plots up to three fields (which must
be provided as position-space arrays) next to each other. The axes are labeled
according to the coordinate-vector ax. Each plot can be assigned a separate title
heading, and it can be chosen separately for each plot whether the real-parts, the
imaginary-parts, the absolute values, or the squared absolute values are to be
plotted.

Input values:

• gpu: 0: use CPU, 1: use GPU, 2: use mp library

• zoom: zoom-factor

• ax: vector with spatial axis coordinates

• field1: first field to be plotted (must be provided in position-space)

• title1: title heading for the first field

• mode1: determines what to display in the first plot (1: real part, 2: imaginary
part, 3: absolute value, 4: absolute value squared)

• field2 (optional): second field to be plotted (must be provided in position-
space)

• title2 (optional): title heading for the second field

• mode2 (optional): determines what to display in the second plot (1: real part,
2: imaginary part, 3: absolute value, 4: absolute value squared)

• field3 (optional): third field to be plotted (must be provided in position-
space)

• title3 (optional): title heading for the third field

• mode3 (optional): determines what to display in the third plot (1: real part,
2: imaginary part, 3: absolute value, 4: absolute value squared)

202

Helper functions

Source code:
1 f u n c t i o n p l o t _ f i e l d s (gpu , zoom , ax , f i e l d 1 , t i t l e 1 , mode1 , ...
2 f i e l d 2 , t i t l e 2 , mode2 , f i e l d 3 , t i t l e 3 , mode3)
3 %%%
4 % P l o t s up to t h r e e f i e l d s next to each o t h e r
5 % Based on a program by Ori Katz (Hebrew U n i v e r s i t y o f Jerusalem)
6 % extended by Helmut Hoerner (Vienna u n i v e r s i t y o f Technology)
7 %
8 % Inputs parameters :
9 %

10 % gpu 0 : use CPU, 1 : use GPU, 2 : use mp l i b r a r y
11 % zoom zoom f a c t o r
12 % ax v e c t o r with s p a t i a l a x i s c o o r d i n a t e s i n m
13 % f i e l d 1 matrix with f i r s t f i e l d to be p l o t t e d
14 % t i t l e 1 t e x t s t r i n g c o n t a i n i n g t i t l e f o r f i r s t p l o t
15 % mode1 1 : d i s p . r e a l , 2 : d i s p . imag , 3 : d i s p . abs , 4 : d i s p . abs ^2
16 % f i e l d 2 matrix with second f i e l d to be p l o t t e d
17 % t i t l e 2 t e x t s t r i n g c o n t a i n i n g t i t l e f o r second p l o t
18 % mode2 1 : d i s p . r e a l , 2 : d i s p . imag , 3 : d i s p . abs , 4 : d i s p . abs ^2
19 % f i e l d 3 matrix with t h i r d f i e l d to be p l o t t e d
20 % t i t l e 3 t e x t s t r i n g c o n t a i n i n g t i t l e f o r t h i r d p l o t
21 % mode3 1 : d i s p . r e a l , 2 : d i s p . imag , 3 : d i s p . abs , 4 : d i s p . abs ^2
22 %%%
23
24 cm=1e −2; mm=1e −3; um=1e −6; nm=1e −9;
25
26 ROI = 2 ∗ abs (complex (ax (1))) ;
27 i f gpu == 1
28 % I f gpu , c o n v e r t gpuArray double to " normal " double
29 ROI = g a t h e r (ROI) ;
30 end
31 ROI = ROI / zoom ;
32 f i g u r e (1)
33
34 img_count = 1 ;
35 i f e x i s t (' f i e l d 2 ' , ' var ')
36 img_count = img_count + 1 ;
37 end
38 i f e x i s t (' f i e l d 3 ' , ' var ')
39 img_count = img_count + 1 ;
40 end
41
42 s u b p l o t (1 , img_count , 1) ;
43 i f mode1 == 1
44 imagesc (ax/mm, ax/mm, r e a l (f i e l d 1)) ;
45 e l s e i f mode1 == 2
46 imagesc (ax/mm, ax/mm, imag (f i e l d 1)) ;
47 e l s e i f mode1 == 3
48 imagesc (ax/mm, ax/mm, abs (f i e l d 1)) ;
49 e l s e i f mode1 == 4
50 imagesc (ax/mm, ax/mm, abs (f i e l d 1) . ^ 2) ;
51 end
52 x l a b e l (' (mm) ')
53 y l a b e l (' (mm) ')
54 a x i s image
55 t i t l e (t i t l e 1) ;
56 a x i s (ROI/2∗[−1 1 −1 1] /mm) ;
57
58
59 i f img_count >= 2
60 % p l o t second image , i f provided
61 s u b p l o t (1 , img_count , 2) ;
62 i f mode2 == 1
63 imagesc (ax/mm, ax/mm, r e a l (f i e l d 2)) ;
64 e l s e i f mode2 == 2
65 imagesc (ax/mm, ax/mm, imag (f i e l d 2)) ;
66 e l s e i f mode2 == 3
67 imagesc (ax/mm, ax/mm, abs (f i e l d 2)) ;
68 e l s e i f mode2 == 4
69 imagesc (ax/mm, ax/mm, abs (f i e l d 2) . ^ 2) ;
70 end
71 x l a b e l (' (mm) ')
72 y l a b e l (' (mm) ')
73 a x i s image
74 t i t l e (t i t l e 2) ;
75 a x i s (ROI/2∗[−1 1 −1 1] /mm) ;
76 end

203

Appendix

78 i f img_count >= 3
79 % p l o t t h i r d image , i f provided
80 s u b p l o t (1 , img_count , 3) ;
81 i f mode3 == 1
82 imagesc (ax/mm, ax/mm, r e a l (f i e l d 3)) ;
83 e l s e i f mode3 == 2
84 imagesc (ax/mm, ax/mm, imag (f i e l d 3)) ;
85 e l s e i f mode3 == 3
86 imagesc (ax/mm, ax/mm, abs (f i e l d 3)) ;
87 e l s e i f mode3 == 4
88 imagesc (ax/mm, ax/mm, abs (f i e l d 3) . ^ 2) ;
89 end
90 x l a b e l (' (mm) ')
91 y l a b e l (' (mm) ')
92 a x i s image
93 t i t l e (t i t l e 3) ;
94 a x i s (ROI/2∗[−1 1 −1 1] /mm) ;
95 end

D.3. create_eye
The function create_eye(gpu, N) simply creates an N-by-N identity matrix with
ones on the main diagonal and zeros elsewhere. The returned matrix has a data-
format matching the gpu parameter (Array, gpuArray, or mp).

Input values:

• gpu: 0: use CPU, 1: use GPU, 2: use mp library

• N: number of rows and columns

Return value:

• T: identity matrix
if gpu is 0, this is an Array
if gpu is 1, this is a gpuArray
if gpu is 2, this is a mp array

Source code:
1 f u n c t i o n I = create_eye (gpu , N)
2 %%%
3 % c r e a t e s a N−by_N u ni ty matrix
4 % i n the data format r e q u i r e d f o r the GPU s e t t i n g
5 %%%
6 % Input parameters :
7 % gpu 0 : use CPU, 1 : use GPU, 2 : use mp l i b r a r y
8 %
9 % Output :

10 % I . . N−by_N u ni ty matrix
11 %%%
12 i f gpu == 2
13 I = eye (N, 'mp ') ;
14 e l s e i f gpu == 1
15 I = eye (N, ' gpuArray ') ;
16 e l s e
17 I = eye (N) ;
18 end

204

Helper functions

D.4. create_zeros
The function create_zeros(gpu, N) simply creates an N-by-N array of all ze-
ros. The returned matrix has a data-format matching the gpu parameter (Array,
gpuArray, or mp).

Input values:

• gpu: 0: use CPU, 1: use GPU, 2: use mp library

• N: number of rows and columns

Return value:

• Z: array with all zeros
if gpu is 0, this is an Array
if gpu is 1, this is a gpuArray
if gpu is 2, this is a mp array

Source code:
1 f u n c t i o n Z = c r e a t e _ z e r o s (gpu , N)
2 %%%
3 % c r e a t e s a N−by_N a rr a y o f a l l z e r o s
4 % i n the data format r e q u i r e d f o r the GPU s e t t i n g
5 %%%
6 % Input parameters :
7 % gpu 0 : use CPU, 1 : use GPU, 2 : use mp l i b r a r y
8 %
9 % Output :

10 % I . . N−by_N a rr ay o f a l l z e r o s
11 %%%
12 i f gpu == 2
13 Z = z e r o s (N, 'mp ') ;
14 e l s e i f gpu == 1
15 Z = z e r o s (N, ' gpuArray ') ;
16 e l s e
17 Z = z e r o s (N) ;
18 end

205

Appendix

D.5. precision_constants
The function precision_constants(gpu) returns the constants 1, 2, 4, 8, and 2π
in a data format matching the gpu parameter.

Input value:

• gpu: 0: use CPU, 1: use GPU, 2: use mp library

Return value:

• one: the value 1. Data type: mp if gpu == 2, else integer

• two: the value 2. Data type: mp if gpu == 2, else integer

• four: the value 4. Data type: mp if gpu == 2, else integer

• eight: the value 8. Data type: mp if gpu == 2, else integer

• twopi: the value 2π. Data type: mp if gpu == 2, else double

Source code:
1 f u n c t i o n [one , two , four , e i g h t , twopi] = p r e c i s i o n _ c o n s t a n t s (gpu)
2 %%%
3 % c r e a t e s the numerica l c o n s t a n t s 1 , 2 , 4 , 8 and 2∗ p i
4 % i n the data format r e q u i r e d f o r the GPU s e t t i n g
5 %%%
6 % Input parameters :
7 % gpu 0 : use CPU, 1 : use GPU, 2 : use mp l i b r a r y
8 %
9 % Outputs :

10 % one c o n s t a n t 1
11 % two c o n s t a n t 2
12 % f o u r . . . c o n s t a n t 4
13 % twopi . . c o n s t a n t 2∗ p i
14 %%%
15
16 i f gpu == 2
17 % mp l i b r a r y use
18 one = mp(' 1 ') ;
19 two = mp(' 2 ') ;
20 f o u r = mp(' 4 ') ;
21 e i g h t = mp(' 8 ') ;
22 twopi = mp(' 2∗ p i ') ;
23 e l s e
24 % CPU or GPU use
25 one = 1 ;
26 two = 2 ;
27 f o u r = 4 ;
28 e i g h t = 8 ;
29 twopi = 2∗ p i ;
30 end

206

Simulation main programs

D.6. pval
The function pval(gpu, x) takes a scalar value encoded in the input string-
parameter x and returns it as value parameter matching the gpu-setting.

Input value:

• gpu: 0: use CPU, 1: use GPU, 2: use mp library

• x: value encoded as string

Return value:

• y: numerical value. Data type: mp if gpu == 2, else double or integer

Source code:
1 f u n c t i o n y = pval (gpu , x)
2 %%%
3 % c o n v e r t s the s c a l a r input x (provided as s t r i n g) i n t o the data format
4 % r e q u i r e d f o r the GPU s e t t i n g
5 %%%
6 % Input parameters :
7 % gpu 0 : use CPU, 1 : use GPU, 2 : use mp l i b r a r y
8 % x s c a l a r v a lu e encoded as s t r i n g
9 %

10 % Output :
11 % y numerica l va lu e . I f gpu==2: data type mp, e l s e double
12 %%%
13 i f gpu == 2
14 y = mp(x) ;
15 e l s e
16 y = e v a l (x) ;
17 end

E. Simulation main programs
E.1. CPA_sim_001_reflection_matrix
The program on the following page is used to calculate the results in section 3.3.4.
It first calculates in lines 32-39 a critical wavenumber kc based on equation (3.19),
so that the corresponding critical wavelength λc is as close as possible to the given
reference-wavelength λ0. Then it uses the function described in appendix C.21 to
create a single-round-trip transmission matrix T for a 4f-cavity without attenuation,
corresponding to Tc in equation (3.41) (lines 55-57). Using equation (3.41),
the transmission matrix T_atten, corresponding to T̃c, is calculated (line 69).
Eventually, in lines 71-74, the cavity’s total reflection matrix R is calculated based
on equations (3.11) and (3.39). In the remaining lines of code, the unitarity of
the matrix T is checked by calculating TT† in line 60, and displaying the largest
off-diagnonal absolute value of TT† (line 61-62). Also, in lines 64-66, the top-left
diagonal entry of T is compared with the expected value based on equation (3.42).
Finally, R (with element-wisely squared absolute values) and T are visualized
graphically.

207

Appendix

1 %%
2 % C a l c u l a t i n g R e f l e c i t o n Matrix from
3 % 4 f−c a v i t y round−t r i p t r a n s m i s s i o n matrix
4 % F i l e : CPA_sim_001_reflection_matrix .m
5 %%
6 c l e a r a l l
7 c l o s e a l l
8 gpu = 1 ; % 0 : CPU, 1 : GPU, 2 : mp l i b r a r y
9 i f gpu == 1

10 f o r i i = 1 : gpuDeviceCount
11 gpuDevice (i i) ; % i n i t i a l i z e GPUs
12 end
13 e l s e i f gpu == 2
14 mp. D i g i t s (3 4) ; % De f i n e numerical p r e c i s i o n f o r mp l i b r a r y
15 end
16 % c r e a t e c o n s t a n t s 1 , 2 , 4 , 8 , 2∗ p i i n r e q u i r e d data format
17 [one , two , four , e i g h t , twopi] = p r e c i s i o n _ c o n s t a n t s (gpu) ;
18
19 % Basic p h y s i c a l s i m u l a t i o n parameters
20 lambda_0 = pval (gpu , ' 800 e−9 ') ; % base wavelength [m]
21 f = pval (gpu , ' 75 e−3 ') ; % f o c a l l e n g t h o f l e n s e s [m]
22 p u p i l = f a l s e ; % p u p i l yes /no
23 NA = pval (gpu , ' 0 . 0 5 ') ; % numerical a p e r t u r e o f p u p i l
24 lens_type = 2 ; % 1 : s p h e r i c a l 2 : a s p h e r i c a l , p e r f e c t l e n s
25 r0 = pval (gpu , ' s q r t (0 . 8) ') ; % r e f l e c t i o n c o e f f i c i e n t l e f t m i r r o r
26
27 % t e c h n i c a l s i m u l a t i o n parameters
28 TF = 0 ; % 0 : Rayle igh Sommerfeld , 1 : F r e s n e l
29 L_des = pval (gpu , ' 2 . 5 e−3 ') ; % d e s i r e d s i d e l e n g t h o f s m a l l e r g r i d
30 f a c t o r = 2 ; % f a c t o r by which embedding g r i d should be l a r g e r
31
32 % l o n g i t u d i n a l mode number b e s t matching lambda_0
33 l_mode = round ((atan (s q r t (one−r0 ^ two) / r0)) / twopi+e i g h t ∗ f /lambda_0) ;
34 % c r i t i c a l wavenumber b e s t matching lambda_0
35 k_c = twopi ∗l_mode /(e i g h t ∗ f) − (atan (s q r t (1− r0 ^ two) / r0)) /(e i g h t ∗ f) ;
36 % c r i t i c a l wavelength b e s t matching lambda_0
37 lambda_c = twopi /k_c ;
38 % We use the c r i t i c a l wavelength f o r s i m u l a t i o n
39 lambda = lambda_c ;
40
41 % c r e a t e optimal g r i d
42 [N_small , L_small , N_large , L_large , alpha_max , n_max] = ...
43 opt_grid_params (L_des , f a c t o r , f , f , true , lambda) ;
44 % d i s p l a y g r i d parameters
45 d i s p (['N1= ' , num2str (N_small) , ' N2= ' , num2str (N_large) , ' n_max= ' , num2str (n_max)])
46 % c r e a t e xy−axes c o o r d i n a t e s f o r " s m a l l " and " l a r g e " g r i d
47 ax_small = create_ax (gpu , N_small , L_small) ;
48 ax_large = create_ax (gpu , N_large , L_large) ;
49 % Create v e c t o r with xy−modes up to n=32/2=16
50 modes = sorted_mode_numbers (gpu , 32) ;
51 no_of_modes = s i z e (modes , 1) ;
52 % c r e a t e l e n s phase mask
53 [lens_mask , l e n s _ p u p i l] = l e n s (gpu , ax_large , lambda , pupi l , NA, f , lens_type) ;
54
55 % g e n e r a t e t r a n s m i s s i o n matrix f o r one−round−t r i p (no a t t e n u a t i o n)
56 T = transmision_matrix_round_trip_no_atten (gpu , ax_small , ax_large , ...
57 TF, modes , lens_mask , f , lambda) ;
58
59 % check u n i t a r i t y o f t r a n s m i s s i o n matrix
60 TT = T∗T ' ;
61 maxval = max(abs (abs (TT)−eye (s i z e (T, 1))) , [] , ' a l l ') ;
62 d i s p (['max T∗T ' ' o f f −d i a g o n a l v al u e : ' , num2str (maxval)]) ;
63
64 % compare d i a g o n a l v al u e o f t r a n s m i s s i o n matrix with expected val ue
65 d i s p ([' e s t i m a te d d i a g o n a l v a l u e o f T: ' , num2str(−r0+i ∗ s q r t (1− r0 ^2))]) ;
66 d i s p ([' a c t u a l T(1 , 1) v al u e : ' , num2str (T(1 , 1))]) ;
67
68 % C a l c u l a t e t r a n s m i s s i o n matrix ∗ with ∗ a t t e n u a t i o n
69 T_atten = r0 ∗T;
70
71 % C a l c u l a t e r e f l e c t i o n matrix
72 I = create_eye (gpu , no_of_modes) ;
73 r1 = −r0 ^ two − i ∗ r0 ∗ s q r t (one − r0 ^ two) ; % l e f t m i r r o r r e f l . c o e f f .
74 R = I ∗ r1 + (one + r1) ^ two ∗ T_atten / (I − r1 ∗ T_atten) ;
75
76 % Display R e f l e c t i o n Matrix
77 f i g u r e (1) ;
78 imagesc (abs (R) . ^ 2)
79 a x i s square
80 t i t l e (' R e f l e c t i o n Matrix Squared ')
81
82 % Display Transmiss ion Matrix
83 f i g u r e (2) ;
84 imagesc (abs (T))
85 a x i s square
86 t i t l e (' Transmiss ion Matrix (no a t t e n u a t i o n) ')

208

Simulation main programs

E.2. CPA_sim_002_r_curve
The following source-code is used to calculate the results in section 4.1.1. It allows
to calculate the maximum, average, and minimum eigenvalue of a 4f cavity’s reflec-
tion matrix for various wavelengths around a critical wavelength. The attenuation
can be set to exactly critical attenuation, or alternatively to arbitrary overcritical
or undercritical values. The results are written into a file in .xlsx (MS Excel)
format.

In lines 25-32 basic physical simulation parameters are defined; amongst them the
base wavelength lambda_0 in line 26, the focal length in line 27, and the type of
lens to be used in line 30. The parameter r0 in line 31 is the absolute value of
the left mirror’s reflection coefficient. Finally, rho in line 32 is the factor by which
the critical attenuation gets multiplied. Consequently, rho=1 results in exactly
critical attenuation, whereas a value smaller (larger) than 1 results in undercritical
(overcritical) attenuation.

1 %%
2 % C a l c u l a t i n g max(EV(R)) , avg (EV(R)) , min (EV(R))
3 % o f a at t en u ate d 4 f−c a v i t y
4 % over a range o f wavelengths
5 % F i l e : CPA_sim_002_r_curve .m
6 %%
7
8 c l e a r a l l
9 c l o s e a l l

10 f o l d e r = ' 002\\ ' ; % f o l d e r f o r s a v i n g r e s u l t s
11 gpu = 1 ; % 0 : CPU, 1 : GPU, 2 : mp l i b r a r y
12 i f gpu == 1
13 % i n i t i a l i z e GPUs
14 f o r i i = 1 : gpuDeviceCount
15 gpuDevice (i i) ;
16 end
17 e l s e i f gpu == 2
18 % D ef i ne numerica l p r e c i s i o n f o r mp l i b r a r y
19 mp. D i g i t s (3 4) ;
20 end
21 % c r e a t e c o n s t a n t s 1 , 2 , 4 , 8 , 2∗ p i i n r e q u i r e d data format
22 [one , two , four , e i g h t , twopi] = p r e c i s i o n _ c o n s t a n t s (gpu) ;
23 pm = pval (gpu , ' 1e−12 ') ; % one pico −meter
24
25 % Basic p h y s i c a l s i m u l a t i o n parameters
26 lambda_0 = pval (gpu , ' 800 e−9 ') ; % base wavelength [m]
27 f = pval (gpu , ' 75 e−3 ') ; % f o c a l l e n g t h o f l e n s e s [m]
28 p u p i l = f a l s e ; % p u p i l yes /no
29 NA = pval (gpu , ' 0 . 0 5 ') ; % numerical a p e r t u r e o f p u p i l
30 lens_type = 1 ; % 1 : s p h e r i c a l 2 : a s p h e r i c a l , p e r f e c t l e n s
31 r0 = pval (gpu , ' s q r t (0 . 8) ') ; % r e f l e c t i o n c o e f f i c i e n t l e f t m i r r o r
32 rho = pval (gpu , ' 1 ') ; % how much c r i t . a t t e n u a t i o n ?
33
34 % t e c h n i c a l s i m u l a t i o n parameters
35 TF = 0 ; % 0 : Rayle igh Sommerfeld , 1 : F r e s n e l
36 L_des = pval (gpu , ' 2 . 5 e−3 ') ; % d e s i r e d s i d e l e n g t h o f s m a l l e r g r i d
37 f a c t o r = 2 ; % f a c t o r by which embedding g r i d should be l a r g e r
38
39 % l o n g i t u d i n a l mode number b e s t matching lambda_0
40 l_mode = round ((atan (s q r t (one−r0 ^ two) / r0)) / twopi+e i g h t ∗ f /lambda_0) ;
41 % c r i t i c a l wavenumber b e s t matching lambda_0
42 k_c = twopi ∗l_mode /(e i g h t ∗ f) − (atan (s q r t (1− r0 ^ two) / r0)) /(e i g h t ∗ f) ;
43 % c r i t i c a l wavelength b e s t matching lambda_0
44 lambda_c = twopi /k_c ;
45
46 % c r e a t e optimal g r i d
47 [N_small , L_small , N_large , L_large , alpha_max , n_max] = ...
48 opt_grid_params (L_des , f a c t o r , f , f , true , lambda_0) ;
49 % d i s p l a y g r i d parameters
50 d i s p (['N1= ' , num2str (N_small) , ' N2= ' , num2str (N_large) , ' n_max= ' , num2str (n_max)])
51 % c r e a t e xy−axes c o o r d i n a t e s f o r " s m a l l " and " l a r g e " g r i d
52 ax_small = create_ax (gpu , N_small , L_small) ;
53 ax_large = create_ax (gpu , N_large , L_large) ;

209

Appendix

54 % Create v e c t o r with xy−modes up to n=32/2=16
55 modes = sorted_mode_numbers (gpu , 32) ;
56 no_of_modes = s i z e (modes , 1) ;
57 % c r e a t e l e n s phase mask
58 [lens_mask , l e n s _ p u p i l] = l e n s (gpu , ax_large , lambda_0 , pupi l , NA, f , lens_type) ;
59 % d e f i n e area o f i n t e r e s t and i t e r a t e through i t
60 p o i n t s = pval (gpu , ' 300 ') ;% number o f p o i n t s to be c a l c u l a t e d
61 p e r i o d = twopi /(e i g h t ∗ f) ; % p e r i o d between r e s o n a n c e p o i n t s
62 aoi_width = p e r i o d / f o u r ; % area−of−i n t e r e s t width : a quater o f a p e r i o d
63 dk = aoi_width / p o i n t s ; % d e l t a k
64 s =0; % counting −up−index
65 f o r idx = round (p o i n t s /two) :−1:− round (p o i n t s /two)
66 s = s + 1 ;
67 k = k_c +idx ∗ dk ;
68 lambda = twopi /k ;
69
70 % g e n e r a t e t r a n s m i s s i o n matrix f o r one−round−t r i p (no a t t e n u a t i o n)
71 T = transmision_matrix_round_trip_no_atten (gpu , ax_small , ax_large , ...
72 TF, modes , lens_mask , f , lambda) ;
73
74 % C a l c u l a t e t r a n s m i s s i o n matrix ∗ with ∗ a t t e n u a t i o n
75 T_atten = r0 ∗ rho ∗T;
76
77 % C a l c u l a t e r e f l e c t i o n matrix
78 I = create_eye (gpu , no_of_modes) ;
79 r1 = −r0 ^ two − i ∗ r0 ∗ s q r t (one − r0 ^ two) ; % l e f t m i r r o r r e f l . c o e f f .
80 R = I ∗ r1 + (one + r1) ^ two ∗ T_atten / (I − r1 ∗ T_atten) ;
81 EV = e i g (R) ; % E i g e n v a l u e s o f r e f l e c t i o n matrix
82 x l s (s , 1) = idx ;
83 x l s (s , 2) = lambda / pm; % wavelength i n pm
84 x l s (s , 3) = (lambda−lambda_c) / pm; % d e l t a lambda i n pm
85 x l s (s , 4) = max(abs (EV)) ; % l a r g e s t e i g e n v a l u e
86 x l s (s , 5) = mean (abs (EV)) ; % mean e i g e n v a l u e
87 x l s (s , 6) = min (abs (EV)) ; % s m a l l e s t e i g e n v a l u e
88 x l s (s , 7) = x l s (s , 4) ^ 2 ; % l a r g e s t e i g e n v a l u e squared
89 x l s (s , 8) = x l s (s , 5) ^ 2 ; % mean e i g e n v a l u e squared
90 x l s (s , 9) = x l s (s , 6) ^ 2 ; % s m a l l e s t e i g e n v a l u e squared
91
92 d i s p ([' idx : ' , num2str (idx) , ...
93 ' max EV: ' , num2str (max(abs (EV))) , ...
94 ' mean EV: ' , num2str (mean (abs (EV))) , ...
95 ' min EV: ' , num2str (min (abs (EV)))])
96 end
97 % save r e s u l t s
98 f i l e n a m e = s t r c a t (f o l d e r , ' EV_atten ' , num2str (rho , 4)) ;
99 i f lens_type == 1

100 f i l e n a m e = s t r c a t (f i l en a me , ' _ s p h e r i c a l ') ;
101 e l s e
102 f i l e n a m e = s t r c a t (f i l en a me , ' _ a s p h e r i c a l ') ;
103 end
104 f i l e n a m e = s t r c a t (f i l en a me , '_f_ ' , num2str (f ∗1000 ,4)) ;
105 i f TF == 0
106 f i l e n a m e = s t r c a t (f i l en a me , '_RS ') ;
107 e l s e
108 f i l e n a m e = s t r c a t (f i l en a me , '_FR ') ;
109 end
110 f i l e n a m e = s t r c a t (f i l en a me , ' . x l s x ') ;
111 w r i t e m a t r i x (x l s , f i l e n a m e) ;

Among the technical simulation parameters in lines 34-37 there is the parameter
TF which defines the propagator method to be used (Rayleigh-Sommerfeld propaga-
tor as described in section 2.1.2, or Fresnel propagator, as described in section 2.1.3).

In lines 39-44, the critical wavenumber and critical wavelength best matching the
reference wavelength lambda_0 are calculated. Lines 46-53 determine the optimal
sizes for the sampling grid and the guarding grid (see sections 2.6 and 2.7). Line
55 defines the highest transverse xy mode to be included in the simulation.

The core part of the program starts in line 60. The number of points to be
calculated is defined in line 61, and also the area of interest (in above program it
is a quarter of a period around the resonance point, see line 63). The loop starting
in line 66 iterates through various wavenumbers in the area of interest.

210

Simulation main programs

Using method transmission_matix_round_trip (see appendix C.21), the trans-
mission-matrix T of an unattenuated 4d-cavity with the given physical parameters
and the wavenumber of the current loop-iteration is generated.

In line 76, the attenuation-factor is multiplied to the transmission matrix of the
unattenuated cavity. Based on that, the total reflection matrix R of the cavity is
calculated in lines 78-81 using equation (3.39).

Finally the eigenvalues of R are calculated in lines 82-96. The smallest, average,
and largest eigenvalues are stored in the xls-array. When the loop has ended
and all data-points are calculated, a file-name describing the used parameters is
generated in lines 99-111, and the results are finally written into a file in line 112.

E.3. CPA_sim_003_mode_decomposition
The program on the following page is used to calculate the results in section 4.2.
It generates the reflection-matrix of an attenuated 4f-cavity, then calculates the
corresponding eigenvectors and eigenvalues, and finally writes the eigenvalues in
ascending order into an .xlsx-file. Optionally, the corresponding eigenmodes
(encoded in the eigenvectors) can also be saved as images, and/or it creates a video
where the eigenmodes in ascending order are visualized in an animation.

In line 8 it can be chosen whether or not a video should be created. Line 9 allows
to choose whether or not the eigenmodes should be saved as images. The output
folder is determined in line 10. Basic physical simulation parameters are defined
in lines 22-29; among others the type of lenses to be used (line 27). Lines 31-34
are used for defining technical simulation parameters, including the propagation
simulation to be used (Rayleigh-Sommerfeld or Fresnel propagation).

In lines 36-43, the program then calculates a critical wavenumber kc based on
equation (3.19), so that the corresponding critical wavelength λc is as close as
possible to the given reference-wavelength λ0. Then it uses the function described
in appendix C.21 to create a single-round-trip transmission matrix T for a 4f-cavity
without attenuation, corresponding to Tc in equation (3.41) (lines 59-61). Using
equation (3.41), the transmission matrix T_atten, corresponding to T̃c, is calcu-
lated (line 64). Eventually, in lines 66-69, the cavity’s total reflection matrix R is
calculated based on equations (3.11) and (3.39).

In lines 71-76, the eigensystem of the reflection matrix is determined, a meaningful
file name is generated (lines 78-91), and the squared absolute eigenvalues are stored
in ascending order into a file together with the ascending mode numbers (lines
92-95).

211

Appendix

1 %%%
2 % C a l c u l a t e s a l l r e f l e c t i o n −eigenmodes o f a 4 f−c a v i t y CPA and s a v e s
3 % them i n t o s e p a r a t e image f i l e s and a l s o i n a v i de o f i l e
4 % F i l e : CPA_sim_003_mode_decomposition .m
5 %%%
6 c l e a r a l l
7 c l o s e a l l
8 c r e a t e _ v i d e o = t r u e ; % c r e a t e v i d e o o f eigenmodes ?
9 create_images = t r u e ; % c r e a t e images o f eigenmodes ?

10 f o l d e r = ' 003\\ ' ; % f o l d e r f o r s a v i n g r e s u l t s
11 gpu = 1 ; % 0 : CPU, 1 : GPU, 2 : mp l i b r a r y
12 i f gpu == 1
13 f o r i i = 1 : gpuDeviceCount
14 gpuDevice (i i) ; % i n i t i a l i z e GPUs
15 end
16 e l s e i f gpu == 2
17 mp. D i g i t s (3 4) ; % d e f i n e numerica l p r e c i s i o n f o r mp l i b r a r y
18 end
19 % c r e a t e c o n s t a n t s 1 , 2 , 4 , 8 , 2∗ p i i n r e q u i r e d data format
20 [one , two , four , e i g h t , twopi] = p r e c i s i o n _ c o n s t a n t s (gpu) ;
21
22 % Basic p h y s i c a l s i m u l a t i o n parameters
23 lambda_0 = pval (gpu , ' 800 e−9 ') ; % base wavelength [m]
24 f = pval (gpu , ' 99 e−3 ') ; % f o c a l l e n g t h o f l e n s e s [m]
25 p u p i l = f a l s e ; % p u p i l yes /no
26 NA = pval (gpu , ' 0 . 0 5 ') ; % numerical a p e r t u r e o f p u p i l
27 lens_type = 2 ; % 1 : s p h e r i c a l 2 : a s p h e r i c a l , p e r f e c t l e n s
28 r0 = pval (gpu , ' s q r t (0 . 8) ') ; % r e f l e c t i o n c o e f f i c i e n t l e f t m i r r o r
29 rho = pval (gpu , ' 1 ') ; % how much c r i t . a t t e n u a t i o n ?
30
31 % t e c h n i c a l s i m u l a t i o n parameters
32 TF = 0 ; % 0 : Rayle igh Sommerfeld , 1 : F r e s n e l
33 L_des = pval (gpu , ' 2 . 5 e−3 ') ; % d e s i r e d s i d e l e n g t h o f s m a l l e r g r i d
34 f a c t o r = 2 ; % f a c t o r by which embedding g r i d should be l a r g e r
35
36 % l o n g i t u d i n a l mode number b e s t matching lambda_0
37 l_mode = round ((atan (s q r t (one−r0 ^ two) / r0)) / twopi+e i g h t ∗ f /lambda_0) ;
38 % c r i t i c a l wavenumber b e s t matching lambda_0
39 k_c = twopi ∗l_mode /(e i g h t ∗ f) − (atan (s q r t (1− r0 ^ two) / r0)) /(e i g h t ∗ f) ;
40 % c r i t i c a l wavelength b e s t matching lambda_0
41 lambda_c = twopi /k_c ;
42 % We use the c r i t i c a l wavelength f o r s i m u l a t i o n
43 lambda = lambda_c ;
44
45 % c r e a t e optimal g r i d
46 [N_small , L_small , N_large , L_large , alpha_max , n_max] = ...
47 opt_grid_params (L_des , f a c t o r , f , f , true , lambda) ;
48 % d i s p l a y g r i d parameters
49 d i s p (['N1= ' , num2str (N_small) , ' N2= ' , num2str (N_large) , ' n_max= ' , num2str (n_max)])
50 % c r e a t e xy−axes c o o r d i n a t e s f o r " s m a l l " and " l a r g e " g r i d
51 ax_small = create_ax (gpu , N_small , L_small) ;
52 ax_large = create_ax (gpu , N_large , L_large) ;
53 % Create v e c t o r with xy−modes up to n=32/2=16
54 modes = sorted_mode_numbers (gpu , 32) ;
55 no_of_modes = s i z e (modes , 1) ;
56 % c r e a t e l e n s phase mask
57 [lens_mask , l e n s _ p u p i l] = l e n s (gpu , ax_large , lambda , pupi l , NA, f , lens_type) ;
58
59 % g e n e r a t e t r a n s m i s s i o n matrix f o r one−round−t r i p (no a t t e n u a t i o n)
60 T = transmision_matrix_round_trip_no_atten (gpu , ax_small , ax_large , ...
61 TF, modes , lens_mask , f , lambda) ;
62
63 % C a l c u l a t e t r a n s m i s s i o n matrix ∗ with ∗ a t t e n u a t i o n
64 T_atten = r0 ∗ rho ∗ T;
65
66 % C a l c u l a t e r e f l e c t i o n matrix
67 I = create_eye (gpu , no_of_modes) ;
68 r1 = −r0 ^ two − i ∗ r0 ∗ s q r t (one − r0 ^ two) ; % l e f t m i r r o r r e f l . c o e f f .
69 R = I ∗ r1 + (one + r1) ^ two ∗ T_atten / (I − r1 ∗ T_atten) ;
70
71 % E i g e n v a l u e s and E i g e n v e c t o r s o f r e f l e c t i o n matrix
72 [V, D] = e i g (R) ; % E i g e n v e c t o r s and d i a g o n a l e i g e n v a l u e matrix
73 EV = diag (D) ; % ge t E i g e n v a l u e s from d i a g o n a l D matrix
74 EVS = abs (EV) . ^ 2 ; % E i g e n v a l u e s squared
75 [EVS_sorted , sortEVS_idx] = s o r t (EVS) ; % s o r t sqared e i g e n v a l u e s
76 V_sorted = V(: , sortEVS_idx) ; % e i g e n v e c t o r s s o r t e d by e i g e n v a l u e s

212

Simulation main programs

78 % g e n e r a t e f i l e n a m e
79 f i l e n a m e = s t r c a t (f o l d e r , ' modes_atten ' , num2str (rho , 4)) ;
80 i f lens_type == 1
81 f i l e n a m e = s t r c a t (f i l e na me , ' _ s p h e r i c a l ') ;
82 e l s e
83 f i l e n a m e = s t r c a t (f i l e na me , ' _ a s p h e r i c a l ') ;
84 end
85 f i l e n a m e = s t r c a t (f i l enam e , '_f_ ' , num2str (f ∗1000 ,4)) ;
86 i f TF == 0
87 f i l e n a m e = s t r c a t (f i l e na me , '_RS ') ;
88 e l s e
89 f i l e n a m e = s t r c a t (f i l e na me , '_FR ') ;
90 end
91 f i l e n a m e = s t r c a t (f i l ena m e , ' . x l s x ') ;
92 % g e n e r a t e r e s u l t matrix
93 x l s = [1 : s i z e (EVS, 1)] ' ; % 1 s t column : a s c e n d i n g number o f mode
94 x l s (: , 2) = EVS_sorted ; % second column : squared e i g e n v a l u e s
95 w r i t e m a t r i x (x l s , f i l e n a m e) ;
96
97 i f c r e a t e _ v i d e o | | create_images
98 i f c r e a t e _ v i d e o
99 % c r e a t e video− f i l e

100 v i d f i l e n a m e = s t r c a t (f o l d e r , ' modes ' , ' . mp4 ') ;
101 v i d f i l e = VideoWriter (v i d f i l e n a m e , 'MPEG−4 ') ;
102 open (v i d f i l e) ;
103 end
104 % i t e r a t e through a l l eigenmodes o f the r e f l e c t i o n matrix
105 f o r idx = 1 : s i z e (modes) ;
106 EigenMode = fft2_vec_to_arr (gpu , V_sorted (: , idx) , ax_small , modes , f a l s e) ;
107 p l o t _ f i e l d s (gpu , 1 , ax_small , EigenMode , " input " , 1)
108 % c o l o r −coding symmetric around z e r o
109 maxval = max(r e a l (EigenMode) , [] , ' a l l ') ;
110 minval = min (r e a l (EigenMode) , [] , ' a l l ') ;
111 e x t v a l = g a t h e r (max ([abs (minval) , abs (maxval)])) ;
112 c o l o r b a r (" o f f ") ;
113 c a x i s ([− e xtv a l , e x t v a l]) ;
114 t i t l e (s t r c a t (" R e f l e c t a n c e : " , num2str (EVS_sorted (idx)))) ;
115 i f c r e a t e _ v i d e o
116 % w r i t e image as to frames to video f i l e
117 writeVid eo (v i d f i l e , get frame (1)) ;
118 writ eVi d e o (v i d f i l e , get frame (1)) ;
119 end
120 i f create_images
121 imgf i lename = s p r i n t f ('%05d ' , idx) ;
122 imgf i lename = s t r c a t (f o l d e r , imgfi lename , ' . png ') ;
123 % save image i n s e p a r a t e png−image− f i l e
124 s a v e a s (1 , imgf i lename) ;
125 end
126 end
127 i f c r e a t e _ v i d e o
128 % c l o s e video f i l e
129 c l o s e (v i d f i l e) ;
130 end
131 end

The rest of the program, starting in line 97, is only executed if a video is to be
created, or the eigenmodes are to be saved as images. If required, a video-file is
created in lines 98-103. Then, starting from line 105, a loop iterates through all
eigenvalues (in ascending order). For each eigenvalue, the corresponding eigen-
vector is converted into an array in line 106 using the function fft2_vec_to_arr
(see appendix C.9). In lines 107-114 the real value part of the currently processed
eigenmode is plotted, and the color-coding is adjusted so that the zero-value has
always the same color for all iterations.

In lines 115-119, the created image is added to the video file twice, so that two
frames in the video always display the same image and the resulting video has an
acceptable speed. In lines 120-125, the created image is saved as .png file with a
filename encoding the mode number (with leading zeros). Finally, in lines 127-130,
the video file is closed.

213

Appendix

E.4. CPA_sim_004_vary_atten
The program listed below first generates the reflection-matrix Rcrit of a critically
attenuated 4f-cavity, and calculates the corresponding eigenvectors and eigenval-
ues (lines 1-73). It does so by using the same program logic as the program in
appendix E.3. Then it runs through a loop (lines 81-96) where in each iteration a
modified reflection-matrix R(a) with a slightly overcritical or undercritical attenu-
ations a is calculated.

For each of the original eigenvectors 2vm (with m being the index number of the
eigenmode), the reflectance R(a,m) = |R(a) 2vm|2 is calculated in line 88. If the
reflectance R(a,m) for a specific mode m is lower than the best reflectance so far,
then the program remembers this value as the new best-so-far reflectance together
with the factor by which the attenuation a is larger or smaller than the critical
attenuation for this mode (lines 89-94).

Finally, the results are collected into an output-array and stored into a file (lines
98-105).

1 %%%
2 % C a l c u l a t e s a l l r e f l e c t i o n −eigenmodes o f a 4 f−c a v i t y CPA
3 % and v a r i e s the a t t e n u a t i o n to f i n d the optimal a t t e n u a t i o n f o r each mode
4 % F i l e : CPA_sim_004_vary_atten .m
5 %%%
6 c l e a r a l l
7 c l o s e a l l
8 f o l d e r = ' 004\\ ' ; % f o l d e r f o r s a v i n g r e s u l t s
9 gpu = 1 ; % 0 : CPU, 1 : GPU, 2 : mp l i b r a r y

10 i f gpu == 1
11 f o r i i = 1 : gpuDeviceCount
12 gpuDevice (i i) ; % i n i t i a l i z e GPUs
13 end
14 e l s e i f gpu == 2
15 mp. D i g i t s (3 4) ; % d e f i n e numerica l p r e c i s i o n f o r mp l i b r a r y
16 end
17 % c r e a t e c o n s t a n t s 1 , 2 , 4 , 8 , 2∗ p i i n r e q u i r e d data format
18 [one , two , four , e i g h t , twopi] = p r e c i s i o n _ c o n s t a n t s (gpu) ;
19
20 % Basic p h y s i c a l s i m u l a t i o n parameters
21 lambda_0 = pval (gpu , ' 800 e−9 ') ; % base wavelength [m]
22 f = pval (gpu , ' 50 e−3 ') ; % f o c a l l e n g t h o f l e n s e s [m]
23 p u p i l = f a l s e ; % p u p i l yes /no
24 NA = pval (gpu , ' 0 . 0 5 ') ; % numerical a p e r t u r e o f p u p i l
25 lens_type = 2 ; % 1 : s p h e r i c a l 2 : a s p h e r i c a l , p e r f e c t l e n s
26 r0 = pval (gpu , ' s q r t (0 . 8) ') ; % r e f l e c t i o n c o e f f i c i e n t l e f t m i r r o r
27
28 % t e c h n i c a l s i m u l a t i o n parameters
29 TF = 0 ; % 0 : Rayle igh Sommerfeld , 1 : F r e s n e l
30 L_des = pval (gpu , ' 2 . 5 e−3 ') ; % d e s i r e d s i d e l e n g t h o f s m a l l e r g r i d
31 f a c t o r = 2 ; % f a c t o r by which embedding g r i d should be l a r g e r
32
33 % l o n g i t u d i n a l mode number b e s t matching lambda_0
34 l_mode = round ((atan (s q r t (one−r0 ^ two) / r0)) / twopi+e i g h t ∗ f /lambda_0) ;
35 % c r i t i c a l wavenumber b e s t matching lambda_0
36 k_c = twopi ∗l_mode /(e i g h t ∗ f) − (atan (s q r t (1− r0 ^ two) / r0)) /(e i g h t ∗ f) ;
37 % c r i t i c a l wavelength b e s t matching lambda_0
38 lambda_c = twopi /k_c ;
39 % We use the c r i t i c a l wavelength f o r s i m u l a t i o n
40 lambda = lambda_c ;
41
42 % c r e a t e optimal g r i d
43 [N_small , L_small , N_large , L_large , alpha_max , n_max] = ...
44 opt_grid_params (L_des , f a c t o r , f , f , true , lambda) ;
45 % d i s p l a y g r i d parameters
46 d i s p (['N1= ' , num2str (N_small , 5) , ' N2= ' , num2str (N_large , 5) , ' n_max= ' , num2str (n_max , 5)])
47 % c r e a t e xy−axes c o o r d i n a t e s f o r " s m a l l " and " l a r g e " g r i d
48 ax_small = create_ax (gpu , N_small , L_small) ;
49 ax_large = create_ax (gpu , N_large , L_large) ;

214

Simulation main programs

50 % Create v e c t o r with xy−modes up to n=32/2=16
51 modes = sorted_mode_numbers (gpu , 32) ;
52 no_of_modes = s i z e (modes , 1) ;
53 % c r e a t e l e n s phase mask
54 [lens_mask , l e n s _ p u p i l] = l e n s (gpu , ax_large , lambda , pupi l , NA, f , lens_type) ;
55
56 % g e n e r a t e t r a n s m i s s i o n matrix f o r one−round−t r i p (no a t t e n u a t i o n)
57 T = transmision_matrix_round_trip_no_atten (gpu , ax_small , ax_large , ...
58 TF, modes , lens_mask , f , lambda) ;
59
60 % C a l c u l a t e t r a n s m i s s i o n matrix with c r i t i c a l a t t e n u a t i o n
61 T_atten = r0 ∗ T;
62
63 % C a l c u l a t e r e f l e c t i o n matrix
64 I = create_eye (gpu , no_of_modes) ;
65 r1 = −r0 ^ two − i ∗ r0 ∗ s q r t (one − r0 ^ two) ; % l e f t m i r r o r r e f l . c o e f f .
66 R = I ∗ r1 + (one + r1) ^ two ∗ T_atten / (I − r1 ∗ T_atten) ;
67
68 % E i g e n v a l u e s and E i g e n v e c t o r s o f r e f l e c t i o n matrix
69 [V, D] = e i g (R) ; % E i g e n v e c t o r s and d i a g o n a l e i g e n v a l u e matrix
70 EV = diag (D) ; % ge t E i g e n v a l u e s from d i a g o n a l D matrix
71 EVS = abs (EV) . ^ 2 ; % E i g e n v a l u e s squared
72 [EVS_sorted , sortEVS_idx] = s o r t (EVS) ; % s o r t sqared e i g e n v a l u e s
73 V_sorted = V(: , sortEVS_idx) ; % e i g e n v e c t o r s s o r t e d by e i g e n v a l u e s
74
75 % R e s u l t s
76 x l s 1 (1 : no_of_modes) =0; % mode number
77 x l s 2 (1 : no_of_modes)=pval (gpu , ' 0 ') ; % l o w e s t r e f l e c t a n c e
78 x l s 3 (1 : no_of_modes)=pval (gpu , ' 0 ') ; % rho f o r l o w e s t r e f l e c t i o n
79
80
81 % i t e r a t e from 0 . 9 9 to 1 . 0 1 c r i t i c a l a t t e n u a t i o n
82 f o r rho = pval (gpu , ' 0 . 9 9 ') : pval (gpu , ' 0 . 0 0 0 1 ') : pval (gpu , ' 1 . 0 1 ')
83 T_atten = r0 ∗ rho ∗ T;
84 R = I ∗ r1 + (one + r1) ^ two ∗ T_atten / (I − r1 ∗ T_atten) ;
85 % t e s t a l l modes with c u r r e n t damping and k
86 d i s p ([' Test ing ' , ' rho ' , num2str (rho , 5)])
87 p a r f o r m = 1 : no_of_modes ;
88 r e f l = norm (R∗ V_sorted (: ,m)) ^ 2 ; % c a l c u l a t e r e f l e c t a n c e
89 i f x l s 1 (m)==0 | | r e f l < x l s 2 (m)
90 % f i r s t data point , or l o w e s t r e f l e c t a n c e so f a r
91 x l s 1 (m) = m; % mode number
92 x l s 2 (m) = r e f l ; % l o w e s t r e f l e c t a n c e so f a r
93 x l s 3 (m) = rho ; % rho f o r l o w e s t r e f l e c t a n c e
94 end
95 end
96 end
97
98 % c o l l e c t r e s u l t s
99 x l s (: , 1)=x l s 1 ' ; % mode number

100 x l s (: , 2)=EVS_sorted ' ; % o r i g i n a l r e f l e c t a n c e
101 x l s (: , 3)=x l s 2 ' ; % l o w e s t r e f l e c t a n c e
102 x l s (: , 4)=x l s3 ' ; % rho f o r l o w e s t r e f l e c t a n c e
103
104 f i l e n a m e = s t r c a t (f o l d e r , ' opt_atten . x l s x ') ;
105 w r i t e m a t r i x (x l s , f i l e n a m e) ;

215

Appendix

E.5. CPA_sim_005_vary_f
The program listed below is used to calculate the results in section 4.3.3. It
first generates the reflection-matrix Rcrit of a critically attenuated 4f-cavity, and
calculates the corresponding eigenvectors and eigenvalues (lines 1-74). It does so
by using the same program logic as the program in appendix E.3. Then it runs
through a loop (lines 83-106) where in each iteration a modified 4f-cavity-reflection-
matrix R(f) for a slightly modified focal length f = f0 +c is generated (lines 85-91).

For each of the original eigenvectors 2vm (with m being the index number of the
eigenmode), the reflectance R(c,m) = |R(f0 + c) 2vm|2 is calculated in line 95. If
the reflectance R(c,m) for a specific mode m is lower than the best reflectance
so far, then the program remembers this value as the new best-so-far reflectance
together with the additive correction factor c (lines 99-104).

Finally, the results are collected into an output-array and stored into a file (lines
108-115).

1 %%%
2 % C a l c u l a t e s a l l r e f l e c t i o n −eigenmodes o f a 4 f−c a v i t y CPA
3 % and v a r i e s the a t t e n u a t i o n to f i n d b e s t a t t e n u a t i o n f o r each mode
4 % F i l e : CPA_sim_005_vary_f .m
5 %%%
6 c l e a r a l l
7 c l o s e a l l
8 f o l d e r = ' 005\\ ' ; % f o l d e r f o r s a v i n g r e s u l t s
9 gpu = 1 ; % 0 : CPU, 1 : GPU, 2 : mp l i b r a r y

10 pm = pval (gpu , ' 1e−12 ') ; % one pico −meter
11 i f gpu == 1
12 f o r i i = 1 : gpuDeviceCount
13 gpuDevice (i i) ; % i n i t i a l i z e GPUs
14 end
15 e l s e i f gpu == 2
16 mp. D i g i t s (3 4) ; % d e f i n e numerica l p r e c i s i o n f o r mp l i b r a r y
17 end
18 % c r e a t e c o n s t a n t s 1 , 2 , 4 , 8 , 2∗ p i i n r e q u i r e d data format
19 [one , two , four , e i g h t , twopi] = p r e c i s i o n _ c o n s t a n t s (gpu) ;
20
21 % Basic p h y s i c a l s i m u l a t i o n parameters
22 lambda_0 = pval (gpu , ' 800 e−9 ') ; % base wavelength [m]
23 f = pval (gpu , ' 50 e−3 ') ; % f o c a l l e n g t h o f l e n s e s [m]
24 p u p i l = f a l s e ; % p u p i l yes /no
25 NA = pval (gpu , ' 0 . 0 5 ') ; % numerical a p e r t u r e o f p u p i l
26 lens_type = 2 ; % 1 : s p h e r i c a l 2 : a s p h e r i c a l , p e r f e c t l e n s
27 r0 = pval (gpu , ' s q r t (0 . 8) ') ; % r e f l e c t i o n c o e f f i c i e n t l e f t m i r r o r
28
29 % t e c h n i c a l s i m u l a t i o n parameters
30 TF = 0 ; % 0 : Rayle igh Sommerfeld , 1 : F r e s n e l
31 L_des = pval (gpu , ' 2 . 5 e−3 ') ; % d e s i r e d s i d e l e n g t h o f s m a l l e r g r i d
32 f a c t o r = 2 ; % f a c t o r by which embedding g r i d should be l a r g e r
33
34 % l o n g i t u d i n a l mode number b e s t matching lambda_0
35 l_mode = round ((atan (s q r t (one−r0 ^ two) / r0)) / twopi+e i g h t ∗ f /lambda_0) ;
36 % c r i t i c a l wavenumber b e s t matching lambda_0
37 k_c = twopi ∗l_mode /(e i g h t ∗ f) − (atan (s q r t (1− r0 ^ two) / r0)) /(e i g h t ∗ f) ;
38 % c r i t i c a l wavelength b e s t matching lambda_0
39 lambda_c = twopi /k_c ;
40 % We use the c r i t i c a l wavelength f o r s i m u l a t i o n
41 lambda = lambda_c ;
42
43 % c r e a t e optimal g r i d
44 [N_small , L_small , N_large , L_large , alpha_max , n_max] = ...
45 opt_grid_params (L_des , f a c t o r , f , f , true , lambda) ;
46 % d i s p l a y g r i d parameters
47 d i s p (['N1= ' , num2str (N_small) , ' N2= ' , num2str (N_large) , ' n_max= ' , num2str (n_max)])
48 % c r e a t e xy−axes c o o r d i n a t e s f o r " s m a l l " and " l a r g e " g r i d
49 ax_small = create_ax (gpu , N_small , L_small) ;
50 ax_large = create_ax (gpu , N_large , L_large) ;

216

Simulation main programs

51 % Create v e c t o r with xy−modes up to n=32/2=16
52 modes = sorted_mode_numbers (gpu , 32) ;
53 no_of_modes = s i z e (modes , 1) ;
54 % c r e a t e l e n s phase mask
55 [lens_mask , l e n s _ p u p i l] = l e n s (gpu , ax_large , lambda , pupi l , NA, f , lens_type) ;
56
57 % g e n e r a t e t r a n s m i s s i o n matrix f o r one−round−t r i p (no a t t e n u a t i o n)
58 T = transmision_matrix_round_trip_no_atten (gpu , ax_small , ax_large , ...
59 TF, modes , lens_mask , f , lambda) ;
60
61 % C a l c u l a t e t r a n s m i s s i o n matrix with c r i t i c a l a t t e n u a t i o n
62 T_atten = r0 ∗ T;
63
64 % C a l c u l a t e r e f l e c t i o n matrix
65 I = create_eye (gpu , no_of_modes) ;
66 r1 = −r0 ^ two − i ∗ r0 ∗ s q r t (one − r0 ^ two) ; % l e f t m i r r o r r e f l . c o e f f .
67 R = I ∗ r1 + (one + r1) ^ two ∗ T_atten / (I − r1 ∗ T_atten) ;
68
69 % E i g e n v a l u e s and E i g e n v e c t o r s o f r e f l e c t i o n matrix
70 [V, D] = e i g (R) ; % E i g e n v e c t o r s and d i a g o n a l e i g e n v a l u e matrix
71 EV = diag (D) ; % ge t E i g e n v a l u e s from d i a g o n a l D matrix
72 EVS = abs (EV) . ^ 2 ; % E i g e n v a l u e s squared
73 [EVS_sorted , sortEVS_idx] = s o r t (EVS) ; % s o r t sqared e i g e n v a l u e s
74 V_sorted = V(: , sortEVS_idx) ; % e i g e n v e c t o r s s o r t e d by e i g e n v a l u e s
75
76 % R e s u l t s
77 x l s 1 (1 : no_of_modes) =0; % mode number
78 x l s 2 (1 : no_of_modes) =0; % o r i g i n a l r e f l e c t a n c e
79 x l s 3 (1 : no_of_modes)=pval (gpu , ' 0 ') ; % l o w e s t r e f l e c t a n c e
80 x l s 4 (1 : no_of_modes)=pval (gpu , ' 0 ') ; % l e n g t h _ f a c t o r f o r l o w e s t r e f l e c t i o n
81
82
83 % i t e r a t e through v a r i o u s v a l u e s o f the c o r r e c t i o n f a c t o r c
84 f o r c = −1000:10 % a d d i t i v e c o r r e c t i o n i n pm
85 % g e n e r a t e t r a n s m i s s i o n matrix f o r one−round−t r i p (no a t t e n u a t i o n)
86 T = transmision_matrix_round_trip_no_atten (gpu , ax_small , ax_large , ...
87 TF, modes , lens_mask , f + c ∗pm, lambda) ;
88 % c a l c u l a t e a t t e n u a t ed t r a n s m i s s i o n matrix
89 T_atten = r0 ∗ T;
90 % c a l u l a t e r e f l e c i t o n matrix
91 R = I ∗ r1 + (one + r1) ^ two ∗ T_atten / (I − r1 ∗ T_atten) ;
92 % t e s t a l l modes with c u r r e n t damping and k
93 d i s p ([' t e s t i n g ' , ' c ' , num2str (c , 5)])
94 p a r f o r m = 1 : no_of_modes ;
95 r e f l = norm (R∗ V_sorted (: ,m)) ^ 2 ; % c a l c u l a t e r e f l e c t a n c e
96 i f c == 0
97 x l s 2 (m) = r e f l ; % o r i g i n a l r e f l e c t a n c e
98 end
99 i f x l s 1 (m)==0 | | r e f l < x l s 3 (m)

100 % f i r s t data point , or l o w e s t r e f l e c t a n c e so f a r
101 x l s 1 (m) = m; % mode number
102 x l s 3 (m) = r e f l ; % r e f l e c t a n c e
103 x l s 4 (m) = c ; % c [pm] f o r l o w e s t r e f l e c t a n c e
104 end
105 end
106 end
107
108 % c o l l e c t r e s u l t s
109 x l s (: , 1)=x l s 1 ' ; % mode number
110 x l s (: , 2)=x l s 2 ' ; % o r i g i n a l r e f l e c t a n c e
111 x l s (: , 3)=x l s3 ' ; % improved r e f l e c t a n c e
112 x l s (: , 4)=x l s 4 ' ; % f _ c o r r [pm]
113
114 f i l e n a m e = s t r c a t (f o l d e r , ' opt_f . x l s x ') ;
115 w r i t e m a t r i x (x l s , f i l e n a m e) ;

217

Appendix

E.6. CPA_sim_006_vary_length
The program listed below is used to calculate the results in section 4.3.4. It
first generates the reflection-matrix Rcrit of a critically attenuated 4f-cavity, and
calculates the corresponding eigenvectors and eigenvalues (lines 1-74). It does so by
using the same program logic as the program in appendix E.3. Then it runs through
a loop (lines 83-106) where in each iteration a modified 4f-cavity-reflection-matrix
R(f0, d) with the same focal length f0, but a deviating distance d between the
second lens and the perfect back-mirror is generated (lines 85-91).

For each of the original eigenvectors 2vm (with m being the index number of the
eigenmode), the reflectance R(d,m) = |R(f0, d) 2vm|2 is calculated in line 95. If the
reflectance R(d,m) for a specific mode m is lower than the best reflectance so far,
then the program remembers this value as the new best-so-far reflectance together
with the additive correction factor d (lines 99-104).

Finally, the results are collected into an output-array and stored into a file (lines
108-115).

1 %%%
2 % C a l c u l a t e s a l l r e f l e c t i o n −eigenmodes o f a 4 f−c a v i t y CPA
3 % and v a r i e s the a t t e n u a t i o n to fond b e s t a t t e n u a t i o n f o r each mode
4 % F i l e : CPA_sim_006_vary_length .m
5 %%%
6 c l e a r a l l
7 c l o s e a l l
8 f o l d e r = ' 006\\ ' ; % f o l d e r f o r s a v i n g r e s u l t s
9 gpu = 1 ; % 0 : CPU, 1 : GPU, 2 : mp l i b r a r y

10 pm = pval (gpu , ' 1e−12 ') ; % one pico −meter
11 i f gpu == 1
12 f o r i i = 1 : gpuDeviceCount
13 gpuDevice (i i) ; % i n i t i a l i z e GPUs
14 end
15 e l s e i f gpu == 2
16 mp. D i g i t s (3 4) ; % d e f i n e numerica l p r e c i s i o n f o r mp l i b r a r y
17 end
18 % c r e a t e c o n s t a n t s 1 , 2 , 4 , 8 , 2∗ p i i n r e q u i r e d data format
19 [one , two , four , e i g h t , twopi] = p r e c i s i o n _ c o n s t a n t s (gpu) ;
20
21 % Basic p h y s i c a l s i m u l a t i o n parameters
22 lambda_0 = pval (gpu , ' 800 e−9 ') ; % base wavelength [m]
23 f = pval (gpu , ' 50 e−3 ') ; % f o c a l l e n g t h o f l e n s e s [m]
24 p u p i l = f a l s e ; % p u p i l yes /no
25 NA = pval (gpu , ' 0 . 0 5 ') ; % numerical a p e r t u r e o f p u p i l
26 lens_type = 2 ; % 1 : s p h e r i c a l 2 : a s p h e r i c a l , p e r f e c t l e n s
27 r0 = pval (gpu , ' s q r t (0 . 8) ') ; % r e f l e c t i o n c o e f f i c i e n t l e f t m i r r o r
28
29 % t e c h n i c a l s i m u l a t i o n parameters
30 TF = 0 ; % 0 : Rayle igh Sommerfeld , 1 : F r e s n e l
31 L_des = pval (gpu , ' 2 . 5 e−3 ') ; % d e s i r e d s i d e l e n g t h o f s m a l l e r g r i d
32 f a c t o r = 2 ; % f a c t o r by which embedding g r i d should be l a r g e r
33
34 % l o n g i t u d i n a l mode number b e s t matching lambda_0
35 l_mode = round ((atan (s q r t (one−r0 ^ two) / r0)) / twopi+e i g h t ∗ f /lambda_0) ;
36 % c r i t i c a l wavenumber b e s t matching lambda_0
37 k_c = twopi ∗l_mode /(e i g h t ∗ f) − (atan (s q r t (1− r0 ^ two) / r0)) /(e i g h t ∗ f) ;
38 % c r i t i c a l wavelength b e s t matching lambda_0
39 lambda_c = twopi /k_c ;
40 % We use the c r i t i c a l wavelength f o r s i m u l a t i o n
41 lambda = lambda_c ;
42
43 % c r e a t e optimal g r i d
44 [N_small , L_small , N_large , L_large , alpha_max , n_max] = ...
45 opt_grid_params (L_des , f a c t o r , f , f , true , lambda) ;
46 % d i s p l a y g r i d parameters
47 d i s p (['N1= ' , num2str (N_small , 5) , ' N2= ' , num2str (N_large , 5) , ' n_max= ' , num2str (n_max , 5)])

218

Simulation main programs

48 % c r e a t e xy−axes c o o r d i n a t e s f o r " s m a l l " and " l a r g e " g r i d
49 ax_small = create_ax (gpu , N_small , L_small) ;
50 ax_large = create_ax (gpu , N_large , L_large) ;
51 % Create v e c t o r with xy−modes up to n=32/2=16
52 modes = sorted_mode_numbers (gpu , 32) ;
53 no_of_modes = s i z e (modes , 1) ;
54 % c r e a t e l e n s phase mask
55 [lens_mask , l e n s _ p u p i l] = l e n s (gpu , ax_large , lambda , pupi l , NA, f , lens_type) ;
56
57 % g e n e r a t e t r a n s m i s s i o n matrix f o r one−round−t r i p (no a t t e n u a t i o n)
58 T = transmision_matrix_round_trip_no_atten (gpu , ax_small , ax_large , ...
59 TF, modes , lens_mask , f , lambda) ;
60
61 % C a l c u l a t e t r a n s m i s s i o n matrix with c r i t i c a l a t t e n u a t i o n
62 T_atten = r0 ∗ T;
63
64 % C a l c u l a t e r e f l e c t i o n matrix
65 I = create_eye (gpu , no_of_modes) ;
66 r1 = −r0 ^ two − i ∗ r0 ∗ s q r t (one − r0 ^ two) ; % l e f t m i r r o r r e f l . c o e f f .
67 R = I ∗ r1 + (one + r1) ^ two ∗ T_atten / (I − r1 ∗ T_atten) ;
68
69 % E i g e n v a l u e s and E i g e n v e c t o r s o f r e f l e c t i o n matrix
70 [V, D] = e i g (R) ; % E i g e n v e c t o r s and d i a g o n a l e i g e n v a l u e matrix
71 EV = diag (D) ; % ge t E i g e n v a l u e s from d i a g o n a l D matrix
72 EVS = abs (EV) . ^ 2 ; % E i g e n v a l u e s squared
73 [EVS_sorted , sortEVS_idx] = s o r t (EVS) ; % s o r t sqared e i g e n v a l u e s
74 V_sorted = V(: , sortEVS_idx) ; % e i g e n v e c t o r s s o r t e d by e i g e n v a l u e s
75
76 % R e s u l t s
77 x l s 1 (1 : no_of_modes) =0; % mode number
78 x l s 2 (1 : no_of_modes) =0; % o r i g i n a l r e f l e c t a n c e
79 x l s 3 (1 : no_of_modes)=pval (gpu , ' 0 ') ; % l o w e s t r e f l e c t a n c e
80 x l s 4 (1 : no_of_modes)=pval (gpu , ' 0 ') ; % l e n g t h _ f a c t o r f o r l o w e s t r e f l e c t i o n
81
82
83 % i t e r a t e through v a r i o u s v a l u e s f o r d i n pm
84 f o r d = −4000:10
85 % g e n e r a t e t r a n s m i s s i o n matrix f o r one−round−t r i p (no a t t e n u a t i o n)
86 T = transmision_matrix_round_trip_no_atten2 (gpu , ax_small , ax_large , ...
87 TF, modes , lens_mask , f , f , f + d∗pm, lambda) ;
88 % c a l c u l a t e a t t e n u a t ed t r a n s m i s s i o n matrix
89 T_atten = r0 ∗ T;
90 % c a l u l a t e r e f l e c t i o n matrix
91 R = I ∗ r1 + (one + r1) ^ two ∗ T_atten / (I − r1 ∗ T_atten) ;
92 % t e s t a l l modes with c u r r e n t damping and k
93 d i s p ([' Test ing ' , ' d ' , num2str (d , 5)])
94 p a r f o r m = 1 : no_of_modes ;
95 r e f l = norm (R∗ V_sorted (: ,m)) ^ 2 ; % c a l c u l a t e r e f l e c t a n c e
96 i f d == 0
97 x l s 2 (m) = r e f l ; % o r i g i n a l r e f l e c t a n c e
98 end
99 i f x l s 1 (m)==0 | | r e f l < x l s 3 (m)

100 % f i r s t data point , or l o w e s t r e f l e c t a n c e so f a r
101 x l s 1 (m) = m; % mode number
102 x l s 3 (m) = r e f l ; % r e f l e c t a n c e
103 x l s 4 (m) = d ; % d [pm] f o r l o w e s t r e f l e c t a n c e
104 end
105 end
106 end
107
108 % c o l l e c t r e s u l t s
109 x l s (: , 1)=x l s 1 ' ; % mode number
110 x l s (: , 2)=x l s 2 ' ; % o r i g i n a l r e f l e c t a n c e
111 x l s (: , 3)=x l s 3 ' ; % improved r e f l e c t a n c e
112 x l s (: , 4)=x l s 4 ' ; % d [pm]
113
114 f i l e n a m e = s t r c a t (f o l d e r , ' opt_length3 . x l s x ') ;
115 w r i t e m a t r i x (x l s , f i l e n a m e) ;

219

Appendix

E.7. CPA_sim_007_r_curve_deviate
The program listed below is used to calculate the results in section 4.4 and is
an enhanced version of the program CPA_sim_002_r_curve as documented in
appendix E.2. Like CPA_sim_002_r_curve, it allows to calculate the maximum,
average, and minimum eigenvalues of a 4f cavity’s reflection-matrix for various
wavelengths around a critical wavelength. However, this enhanced program version
not only allows to vary the attenuation, but also allows

• to vary the positions of the two lenses and the back-mirror, so that the
distances may deviate from the optimal f-2f-f distances, and

• to run multiple simulations in a row, each with a different set of parameters.

The result of each simulation is written into a separate file in .xlsx (MS Excel)
format.

In lines 25-32, basic physical simulation parameters common for all simulation
rounds are defined; amongst them the base wavelength lambda_0 in line 26, the
focal length in line 27, and the type of lens to be used in line 30. The parameter
r0 in line 31 is the absolute value of the left mirror’s reflection coefficient.

Among the technical simulation parameters in lines 34-37 there is the parameter
TF which defines the propagator method to be used (Rayleigh-Sommerfeld propaga-
tor as described in section 2.1.2, or Fresnel propagator, as described in section 2.1.3).

In lines 39-44, the critical wavenumber and critical wavelength best matching the
reference wavelength lambda_0 are calculated. Lines 46-53 determine the optimal
sizes for the sampling grid and the guarding grid (see sections 2.6 and 2.7). Line
55 defines the highest transverse xy-mode to be included in the simulation.

1 %%%
2 % C a l c u l a t i n g max(EV(R)) , avg (EV(R)) , min (EV(R))
3 % o f an at t e n u a t e d 4 f−c a v i t y with d e v i a t i n g parameters
4 % over a range o f wavelengths
5 % F i l e : CPA_sim_007_r_curve_deviate .m
6 %%%
7
8 c l e a r a l l
9 c l o s e a l l

10 f o l d e r = ' 007\\ ' ; % f o l d e r f o r s a v i n g r e s u l t s
11 gpu = 1 ; % 0 : CPU, 1 : GPU, 2 : mp l i b r a r y
12 i f gpu == 1
13 % i n i t i a l i z e GPUs
14 f o r i i = 1 : gpuDeviceCount
15 gpuDevice (i i) ;
16 end
17 e l s e i f gpu == 2
18 % De f i n e numerical p r e c i s i o n f o r mp l i b r a r y
19 mp. D i g i t s (3 4) ;
20 end
21 % c r e a t e c o n s t a n t s 1 , 2 , 4 , 8 , 2∗ p i i n r e q u i r e d data format
22 [one , two , four , e i g h t , twopi] = p r e c i s i o n _ c o n s t a n t s (gpu) ;
23 pm = pval (gpu , ' 1e−12 ') ; % one pico −meter

220

Simulation main programs

25 % Basic p h y s i c a l s i m u l a t i o n parameters
26 lambda_0 = pval (gpu , ' 785 e−9 ') ; % base wavelength [m]
27 f = pval (gpu , ' 50 e−3 ') ; % f o c a l l e n g t h o f l e n s e s [m]
28 p u p i l = f a l s e ; % p u p i l yes /no
29 NA = pval (gpu , ' 0 . 0 5 ') ; % numerical a p e r t u r e o f p u p i l
30 lens_type = 2 ; % 1 : s p h e r i c a l 2 : a s p h e r i c a l , p e r f e c t l e n s
31 r0 = pval (gpu , ' s q r t (0 . 8) ') ; % r e f l e c t i o n c o e f f i c i e n t l e f t m i r r o r
32 rho = pval (gpu , ' 1 ') ; % how much c r i t . a t t e n u a t i o n ?
33
34 % t e c h n i c a l s i m u l a t i o n parameters
35 TF = 0 ; % 0 : Rayle igh Sommerfeld , 1 : F r e s n e l
36 L_des = pval (gpu , ' 2 . 5 e−3 ') ; % d e s i r e d s i d e l e n g t h o f s m a l l e r g r i d
37 f a c t o r = 2 ; % f a c t o r by which embedding g r i d should be l a r g e r
38
39 % l o n g i t u d i n a l mode number b e s t matching lambda_0
40 l_mode = round ((atan (s q r t (one−r0 ^ two) / r0)) / twopi+e i g h t ∗ f /lambda_0) ;
41 % c r i t i c a l wavenumber b e s t matching lambda_0
42 k_c = twopi ∗l_mode /(e i g h t ∗ f) − (atan (s q r t (1− r0 ^ two) / r0)) /(e i g h t ∗ f) ;
43 % c r i t i c a l wavelength b e s t matching lambda_0
44 lambda_c = twopi /k_c ;
45
46 % c r e a t e optimal g r i d
47 [N_small , L_small , N_large , L_large , alpha_max , n_max] = ...
48 opt_grid_params (L_des , f a c t o r , f , f , true , lambda_0) ;
49 % d i s p l a y g r i d parameters
50 d i s p (['N1= ' , num2str (N_small , 5) , ' N2= ' , num2str (N_large , 5) , ' n_max= ' , num2str (n_max , 5)])
51 % c r e a t e xy−axes c o o r d i n a t e s f o r " s m a l l " and " l a r g e " g r i d
52 ax_small = create_ax (gpu , N_small , L_small) ;
53 ax_large = create_ax (gpu , N_large , L_large) ;
54 % Create v e c t o r with xy−modes up to n=32/2=16
55 modes = sorted_mode_numbers (gpu , 32) ;
56 no_of_modes = s i z e (modes , 1) ;
57 % c r e a t e l e n s phase mask
58 [lens_mask , l e n s _ p u p i l] = l e n s (gpu , ax_large , lambda_0 , pupi l , NA, f , lens_type) ;
59
60 % d e f i n e area o f i n t e r e s t and i t e r a t e through i t
61 p o i n t s = pval (gpu , ' 900 ') ;% number o f p o i n t s to be c a l c u l a t e d
62 p e r i o d = twopi /(e i g h t ∗ f) ; % p e r i o d between r e s on a n c e p o i n t s
63 aoi_width = p e r i o d ∗ pval (gpu , ' 1 . 5 ') ; % area−of−i n t e r e s t width 1 . 5 p e r i o d s
64 dk = aoi_width / p o i n t s ; % d e l t a k
65
66 % parameter v a r i a t i o n s
67 rho =[1 , 1 , 1 , 1 , 1] ;
68 d1 = [f , f , f , f , f] ;
69 d2 = [f ∗two , f ∗two , f ∗two , f ∗two , f ∗two] ;
70 d3 = [f , f+lambda_c/ four , f+pval (gpu , ' 1e−3 ') , f+pval (gpu , ' 2e−3 ') , f+pval (gpu , ' 5e−3 ')] ;
71
72 % i t e r a t e through the parameter v a r i a t i o n s
73 f o r r = 1 : width (d1)
74 s =0; % counting −up−index
75 f o r idx = round (p o i n t s /two) :−1:− round (p o i n t s /two)
76 s = s + 1 ;
77 k = k_c +idx ∗ dk ;
78 lambda = twopi /k ;
79
80 % g e n e r a t e t r a n s m i s s i o n matrix f o r one−round−t r i p (no a t t e n u a t i o n)
81 T = transmision_matrix_round_trip_no_atten2 (gpu , ax_small , ax_large , ...
82 TF, modes , lens_mask , d1 (r) , d2 (r) , d3 (r) , lambda) ;
83
84 % C a l c u l a t e t r a n s m i s s i o n matrix ∗ with ∗ a t t e n u a t i o n
85 T_atten = r0 ∗ rho (r) ∗T;
86
87 % C a l c u l a t e r e f l e c t i o n matrix
88 I = create_eye (gpu , no_of_modes) ;
89 r1 = −r0 ^ two − i ∗ r0 ∗ s q r t (one − r0 ^ two) ; % l e f t m i r r o r r e f l . c o e f f .
90 R = I ∗ r1 + (one + r1) ^ two ∗ T_atten / (I − r1 ∗ T_atten) ;
91 EV = e i g (R) ; % E i g e n v a l u e s o f r e f l e c t i o n matrix
92 x l s (s , 1) = idx ;
93 x l s (s , 2) = lambda / pm; % wavelength i n nm
94 x l s (s , 3) = (lambda−lambda_c) / pm; % d e l t a lambda i n pm
95 x l s (s , 4) = max(abs (EV)) ; % l a r g e s t e i g e n v a l u e
96 x l s (s , 5) = mean (abs (EV)) ; % mean e i g e n v a l u e
97 x l s (s , 6) = min (abs (EV)) ; % s m a l l e s t e i g e n v a l u e
98 x l s (s , 7) = x l s (s , 4) ^ 2 ; % l a r g e s t e i g e n v a l u e squared
99 x l s (s , 8) = x l s (s , 5) ^ 2 ; % mean e i g e n v a l u e squared

100 x l s (s , 9) = x l s (s , 6) ^ 2 ; % s m a l l e s t e i g e n v a l u e squared
101
102 d i s p ([' idx : ' , num2str (idx , 5) , ...
103 ' max EV: ' , num2str (max(abs (EV)) , 5) , ...
104 ' mean EV: ' , num2str (mean (abs (EV)) , 5) , ...
105 ' min EV: ' , num2str (min (abs (EV)) , 5)])
106 end
107 % save r e s u l t s
108 f i l e n a m e = s t r c a t (f o l d e r , 'EV_var_ ' , num2str (r , 5) , ' . x l s x ') ;
109 w r i t e m a t r i x (x l s , f i l e n a m e) ;
110 end

221

Appendix

The core part of the program starts in line 60. The number of points to be
calculated is defined in line 61, and also the area of interest (in the program on
the previous page it is 1.5 times a period around the resonance point, see line 63).

In lines 66-70 a number of parameter vectors are defined. They all have to be of
the same size, and the number of entries defines the number of simulations to be
performed:

• rho: This vector in line 67 defines the factors by which the critical attenuation
gets multiplied in each simulation round. Consequently, a value of 1 results
in exactly critical attenuation, whereas a value smaller (larger) than 1 results
in undercritical (overcritical) attenuation.

• d1: This vector in line 68 defines the position of the first lens in each
simulation round.

• d2: This vector in line 69 defines the distance between the first and the
second lens in each simulation round.

• d3: This vector in line 70 defines the distance between the second lens and
the total reflective back-mirror in each simulation round.

Hence, the vectors defined in lines 66-70 specify five simulation rounds, each with
critical attenuation and the first and second lens being in the optimal position,
but with the back mirror in a slightly different position in each round (positions f ,
f + λ

4 , f + 1 mm, f + 2 mm, and f + 5 mm).

The loop starting in line 73 iterates through all simulation rounds. The inner loop,
starting in line 75, iterates through various wavenumbers in the area of interest.

Using method transmission_matix_round_trip (see appendix C.21), the trans-
mission-matrix T of an unattenuated 4d-cavity with the given physical parameters
and the wavenumber of the current loop-iteration is generated.

In line 85, the attenuation-factor is multiplied to the transmission matrix of the
unattenuated cavity. Based on that, the total reflection matrix R of the cavity is
calculated in lines 87-90 using equation (3.39).

Finally the eigenvalues of R are calculated in lines 91. The smallest, average and
largest eigenvalue is stored in the xls-array. When the inner loop has ended and
all data-points of the current simulation-round have been calculated, a unique
file-name is generated in line 108, and the results are finally written into a file in
line 109.

222

Simulation main programs

E.8. CPA_sim_008_r_curve_deviate
The program listed below was used to calculate the results of the “tilted-back-
mirror”-simulations in section 4.4. It is an enhanced version of the program
CPA_sim_007_r_curve_deviate as documented in appendix E.7. Like
CPA_sim_007_r_curve_deviate, it supports multiple simulation-rounds with vary-
ing simulation-parameters, and calculates in each round the maximum, average,
and minimum eigenvalues of a 4f cavity’s reflection-matrix for various wavelengths
around a critical wavelength. However, this enhanced program version does not
only allow to vary the attenuation and the positions of the two lenses or the
back-mirror in each round, but also

• allows to vary the angle of the back mirror against the z-axis in the yz-plane
in each round, and

• writes all squared absolute eigenvalues at resonance wavelength in ascending
order into a separate .xlsx-file in each simulation-round, similar to the
CPA_sim_003_mode_decomposition program (see appendix E.3).

In lines 25-32, basic physical simulation parameters common for all simulation
rounds are defined; amongst them the base wavelength lambda_0 in line 26, the
focal length in line 27, and the type of lens to be used in line 30. The parameter
r0 in line 31 is the absolute value of the left mirror’s reflection coefficient.

Among the technical simulation parameters in lines 34-37 there is the parameter
TF which defines the propagator method to be used (Rayleigh-Sommerfeld propaga-
tor as described in section 2.1.2, or Fresnel propagator, as described in section 2.1.3).

In lines 39-44, the critical wavenumber and critical wavelength best matching the
reference wavelength lambda_0 are calculated. Lines 46-53 determine the optimal
sizes for the sampling grid and the guarding grid (see sections 2.6 and 2.7). Line
55 defines the highest transverse xy-mode to be included in the simulation.

The core part of the program starts in line 60. The number of points to be
calculated is defined in line 61, and also the area of interest (in the program below
it is 1.5 times a period around the resonance point, see line 63).

223

Appendix

1 %%
2 % C a l c u l a t i n g max(EV(R)) , avg (EV(R)) , min (EV(R))
3 % o f a a t t e n u a t e d 4 f−c a v i t y with d e v i a t i n g parameters
4 % over a range o f wavelengths
5 % F i l e : CPA_sim_008_r_curve_deviate .m
6 %%
7
8 c l e a r a l l
9 c l o s e a l l

10 f o l d e r = ' 008\\ ' ; % f o l d e r f o r s a v i n g r e s u l t s
11 gpu = 1 ; % 0 : CPU, 1 : GPU, 2 : mp l i b r a r y
12 i f gpu == 1
13 % i n i t i a l i z e GPUs
14 f o r i i = 1 : gpuDeviceCount
15 gpuDevice (i i) ;
16 end
17 e l s e i f gpu == 2
18 % De f i n e numerical p r e c i s i o n f o r mp l i b r a r y
19 mp. D i g i t s (3 4) ;
20 end
21 % c r e a t e c o n s t a n t s 1 , 2 , 4 , 8 , 2∗ p i i n r e q u i r e d data format
22 [one , two , four , e i g h t , twopi] = p r e c i s i o n _ c o n s t a n t s (gpu) ;
23 pm = pval (gpu , ' 1e−12 ') ; % one pico −meter
24
25 % Basic p h y s i c a l s i m u l a t i o n parameters
26 lambda_0 = pval (gpu , ' 785 e−9 ') ; % base wavelength [m]
27 f = pval (gpu , ' 50 e−3 ') ; % f o c a l l e n g t h o f l e n s e s [m]
28 p u p i l = f a l s e ; % p u p i l yes /no
29 NA = pval (gpu , ' 0 . 0 5 ') ; % numerical a p e r t u r e o f p u p i l
30 lens_type = 2 ; % 1 : s p h e r i c a l 2 : a s p h e r i c a l , p e r f e c t l e n s
31 r0 = pval (gpu , ' s q r t (0 . 8) ') ; % r e f l e c t i o n c o e f f i c i e n t l e f t m i r r o r
32 rho = pval (gpu , ' 1 ') ; % how much c r i t . a t t e n u a t i o n ?
33
34 % t e c h n i c a l s i m u l a t i o n parameters
35 TF = 0 ; % 0 : Rayle igh Sommerfeld , 1 : F r e s n e l
36 L_des = pval (gpu , ' 2 . 5 e−3 ') ; % d e s i r e d s i d e l e n g t h o f s m a l l e r g r i d
37 f a c t o r = 2 ; % f a c t o r by which embedding g r i d should be l a r g e r
38
39 % l o n g i t u d i n a l mode number b e s t matching lambda_0
40 l_mode = round ((atan (s q r t (one−r0 ^ two) / r0)) / twopi+e i g h t ∗ f /lambda_0) ;
41 % c r i t i c a l wavenumber b e s t matching lambda_0
42 k_c = twopi ∗l_mode /(e i g h t ∗ f) − (atan (s q r t (1− r0 ^ two) / r0)) /(e i g h t ∗ f) ;
43 % c r i t i c a l wavelength b e s t matching lambda_0
44 lambda_c = twopi /k_c ;
45
46 % c r e a t e optimal g r i d
47 [N_small , L_small , N_large , L_large , alpha_max , n_max] = ...
48 opt_grid_params (L_des , f a c t o r , f , f , true , lambda_0) ;
49 % d i s p l a y g r i d parameters
50 d i s p (['N1= ' , num2str (N_small , 5) , ' N2= ' , num2str (N_large , 5) , ' n_max= ' , num2str (n_max , 5)])
51 % c r e a t e xy−axes c o o r d i n a t e s f o r " s m a l l " and " l a r g e " g r i d
52 ax_small = create_ax (gpu , N_small , L_small) ;
53 ax_large = create_ax (gpu , N_large , L_large) ;
54 % Create v e c t o r with xy−modes up to n=32/2=16
55 modes = sorted_mode_numbers (gpu , 32) ;
56 no_of_modes = s i z e (modes , 1) ;
57 % c r e a t e l e n s phase mask
58 [lens_mask , l e n s _ p u p i l] = l e n s (gpu , ax_large , lambda_0 , pupi l , NA, f , lens_type) ;
59
60 % d e f i n e area o f i n t e r e s t and i t e r a t e through i t
61 p o i n t s = pval (gpu , ' 900 ') ;% number o f p o i n t s to be c a l c u l a t e d
62 p e r i o d = twopi /(e i g h t ∗ f) ; % p e r i o d between r e s o n a n c e p o i n t s
63 aoi_width = p e r i o d ∗ pval (gpu , ' 1 . 5 ') ; % area−of−i n t e r e s t width 1 . 5 p e r i o d s
64 dk = aoi_width / p o i n t s ; % d e l t a k
65
66 % parameter v a r i a t i o n s
67 rho= [1 , 1 , 1 , 1 , 1 , 1] ;
68 d1 = [f , f , f , f , f , f] ;
69 d2 = [f ∗two , f ∗two , f ∗two , f ∗two , f ∗two , f ∗two] ;
70 d3 = [f , f , f , f , f , f] ;
71 m i r r o r _ t i l t = [0 . 0 0 5 , 0 . 0 0 3 , 0 . 0 0 1 , 0 . 0 0 0 5 , 0 . 0 0 0 3 , 0 . 0 0 0 1] ; % d e g r e e s

In lines 66-70 a number of parameter vectors are defined. They all have to be of
the same size, and the number of entries defines the number of simulations to be
performed:

224

Simulation main programs

73 % i t e r a t e through the paramter v a r i a t i o n s
74 f o r r = 1 : width (d1)
75 s =0; % counting −up−index
76 f o r idx = round (p o i n t s /two) :−1:− round (p o i n t s /two)
77 s = s + 1 ;
78 k = k_c +idx ∗ dk ;
79 lambda = twopi /k ;
80
81 % g e n e r a t e s i n g l e −round−t r i p t r a n s m i s s i o n matrix no a t t e n u a t i o n)
82 T = transmision_matrix_round_trip_no_atten3 (gpu , ax_small , ax_large , ...
83 TF, modes , lens_mask , d1 (r) , d2 (r) , d3 (r) , m i r r o r _ t i l t (r) , lambda) ;
84
85 % C a l c u l a t e t r a n s m i s s i o n matrix ∗ with ∗ a t t e n u a t i o n
86 T_atten = r0 ∗ rho (r) ∗ T;
87
88 % C a l c u l a t e r e f l e c t i o n matrix
89 I = create_eye (gpu , no_of_modes) ;
90 r1 = −r0 ^ two − i ∗ r0 ∗ s q r t (one − r0 ^ two) ; % l e f t m i r r o r r e f l . c o e f f .
91 R = I ∗ r1 + (one + r1) ^ two ∗ T_atten / (I − r1 ∗ T_atten) ;
92 [V, D] = e i g (R) ; % E i g e n v e c t o r s and d i a g o n a l e i g e n v a l u e matrix
93 EV = diag (D) ; % ge t r e f l e c t i o n matrix e i g e n v a l u e s from D matrix
94
95 i f idx == 0
96 %%
97 % at c r i t i c a l wavelength :
98 % g e n e r a t e eigenmode decomposit ion
99 %%

100 EVS = abs (EV) . ^ 2 ; % E i g e n v a l u e s squared
101 [EVS_sorted , sortEVS_idx] = s o r t (EVS) ; % s o r t sqared e i g e n v a l u e s
102 V_sorted = V(: , sortEVS_idx) ; % e i g e n v e c t o r s s o r t e d by e i g e n v a l u e s
103 % g e n e r a t e r e s u l t matrix
104 mode_xls = [1 : s i z e (EVS, 1)] ' ; % 1 s t column : a s c e n d i n g number o f mode
105 mode_xls (: , 2) = EVS_sorted ; % second column : squared e i g e n v a l u e s
106 % save eigenmode decompoition r e s u l t s
107 filename_m = s t r c a t (f o l d e r , ' modes_ ' , num2str (r , 5) , ' . x l s x ') ;
108 w r i t e m a t r i x (mode_xls , filename_m) ;
109 end
110
111 x l s (s , 1) = idx ;
112 x l s (s , 2) = lambda / pm; % wavelength i n nm
113 x l s (s , 3) = (lambda−lambda_c) / pm; % d e l t a lambda i n pm
114 x l s (s , 4) = max(abs (EV)) ; % l a r g e s t e i g e n v a l u e
115 x l s (s , 5) = mean (abs (EV)) ; % mean e i g e n v a l u e
116 x l s (s , 6) = min (abs (EV)) ; % s m a l l e s e i g e n v a l u e
117 x l s (s , 7) = x l s (s , 4) ^ 2 ; % l a r g e s t e i g e n v a l u e squared
118 x l s (s , 8) = x l s (s , 5) ^ 2 ; % mean e i g e n v a l u e squared
119 x l s (s , 9) = x l s (s , 6) ^ 2 ; % s m a l l e s e i g e n v a l u e squared
120
121 d i s p ([' idx : ' , num2str (idx , 5) , ...
122 ' max EV: ' , num2str (max(abs (EV)) , 5) , ...
123 ' mean EV: ' , num2str (mean (abs (EV)) , 5) , ...
124 ' min EV: ' , num2str (min (abs (EV)) , 5)])
125 end
126 % save r e s u l t s
127 f i l e n a m e = s t r c a t (f o l d e r , 'EV_var_ ' , num2str (r , 5) , ' . x l s x ') ;
128 w r i t e m a t r i x (x l s , f i l e n a m e) ;
129 end

• rho: This vector in line 67 defines the factors by which the critical attenuation
gets multiplied in each simulation round. Consequently, a value of 1 results
in exactly critical attenuation, whereas a value smaller (larger) than 1 results
in undercritical (overcritical) attenuation.

• d1: This vector in line 68 defines the position of the first lens in each
simulation round.

• d2: This vector in line 69 defines the distance between the first and the
second lens in each simulation round.

• d3: This vector in line 70 defines the distance between the second lens and
the total reflective back-mirror in each simulation round.

• mirror_tilt: Angle in degrees by which the mirror is tilted relative to the
z-axis in the yz-plane.

225

Appendix

Hence, the vectors defined in lines 66-71 specify six simulation rounds, each with
critical attenuation and all lenses and mirrors in optimal position, but with the
back mirror tilted between 0.005° and 0.0001°.

The loop starting in line 74 iterates through all simulation rounds. The inner loop,
starting in line 76, iterates through various wavenumbers in the area of interest.

Using method transmission_matix_round_trip (see appendix C.21), the trans-
mission-matrix T of an unattenuated 4d-cavity with the given physical parameters
and the wavenumber of the current loop-iteration is generated.

In line 86, the attenuation-factor is multiplied to the transmission matrix of the
unattenuated cavity. Based on that, the total reflection matrix R of the cavity is
calculated in lines 88-91 using equation (3.39).

Finally the eigenvalues of R are calculated in lines 92-93. When the inner loop is
exactly at the critical wavelength, all squared absolute eigenvalues are sorted in
ascending order, and stored into a separate .xlsx-file (lines 95-109).

In each iteration of the inner loop, the smallest, average, and largest eigenvalues
are stored in the xls-array. When the inner loop has ended and all data-points of
the current simulation-round have been calculated, a unique file-name is generated
in line 128, and the results are finally written into a file in line 128.

226

Simulation main programs

E.9. CPA_sim_009
The program below demonstrates how the concept of simulating a 4f-cavity-CPA
by means of scattering matrices and transfer matrices can be extended from a one-
dimensional toy-model (section 5.2) to a realistic model of a 4f-cavity (section 5.3).

1 %%
2 % F i l e : CPA_sim_009D .m
3 % Proof o f Concept : 4 f−Cavity−CPA s i m u l a t i o n with
4 % S c a t t e r i n g and T r a n s f e r M a t r i c e s
5 %%
6
7 c l e a r a l l
8 c l o s e a l l
9 gpu = 1 ; % 0 : CPU, 1 : GPU, 2 : mp l i b r a r y

10 i f gpu == 1
11 % i n i t i a l i z e GPUs
12 f o r i i = 1 : gpuDeviceCount
13 gpuDevice (i i) ;
14 end
15 e l s e i f gpu == 2
16 % D ef i ne numerica l p r e c i s i o n f o r mp l i b r a r y
17 mp. D i g i t s (3 4) ;
18 end
19 % c r e a t e c o n s t a n t s 1 , 2 , 4 , 8 , 2∗ p i i n r e q u i r e d data format
20 [one , two , four , e i g h t , twopi] = p r e c i s i o n _ c o n s t a n t s (gpu) ;
21 pm = pval (gpu , ' 1e−12 ') ; % one pico −meter
22
23 % Basic p h y s i c a l s i m u l a t i o n parameters
24 lambda_0 = pval (gpu , ' 785 e−9 ') ; % base wavelength [m]
25 f = pval (gpu , ' 0 . 1 0 0 ') ; % f o c a l l e n g t h o f l e n s e s [m]
26 p u p i l = f a l s e ; % p u p i l yes /no
27 NA = pval (gpu , ' 0 . 0 5 ') ; % numerical a p e r t u r e o f p u p i l
28 lens_type = 2 ; % 1 : s p h e r i c a l 2 : a s p h e r i c a l , p e r f e c t l e n s
29 r0 = pval (gpu , ' s q r t (0 . 8) ') ; % r e f l e c t i o n c o e f f i c i e n t l e f t m i r r o r
30
31 % t e c h n i c a l s i m u l a t i o n parameters
32 TF = 0 ; % 0 : Rayle igh Sommerfeld , 1 : F r e s n e l
33 L_des = pval (gpu , ' 1 . 4 e−3 ') ; % d e s i r e d s i d e l e n g t h o f s m a l l e r g r i d
34 f a c t o r = 1 . 2 5 ; % f a c t o r by which embedding g r i d should be l a r g e r
35
36 % l o n g i t u d i n a l mode number b e s t matching lambda_0
37 l_mode = round ((atan (s q r t (one−r0 ^ two) / r0)) / twopi+e i g h t ∗ f /lambda_0) ;
38 % c r i t i c a l wavenumber b e s t matching lambda_0
39 k_c = twopi ∗l_mode /(e i g h t ∗ f) − (atan (s q r t (1− r0 ^ two) / r0)) /(e i g h t ∗ f) ;
40 % c r i t i c a l wavelength b e s t matching lambda_0
41 lambda_c = twopi /k_c ;
42
43 % c r e a t e optimal g r i d
44 [N_small , L_small , N_large , L_large , alpha_max , n_max] = ...
45 opt_grid_params (L_des , f a c t o r , f , f , true , lambda_c) ;
46 % d i s p l a y g r i d parameters
47 d i s p (['N1= ' , num2str (N_small , 5) , ' N2= ' , num2str (N_large , 5) , ' n_max= ' , num2str (n_max , 5)])
48 % c r e a t e xy−axes c o o r d i n a t e s f o r " s m a l l " and " l a r g e " g r i d
49 ax_small = create_ax (gpu , N_small , L_small) ;
50 ax_large = create_ax (gpu , N_large , L_large) ;
51 % Create v e c t o r with a l l xy−modes
52 modes_large = sorted_mode_numbers (gpu , N_large) ;
53 no_of_modes = s i z e (modes_large , 1) ;
54 % c r e a t e l e n s phase mask
55 [lens_mask , l e n s _ p u p i l] = l e n s (gpu , ax_large , lambda_c , pupi l , NA, f , lens_type) ;
56
57 % Absorber data
58 d_absorb = pval (gpu , ' 0 . 0 1 ') ;
59 nr = pval (gpu , ' 1 . 5 ') ;
60 n i = −l o g (r0) /(two∗ d_absorb ∗k_c) ;
61 n_absorb = nr + i ∗ n i ;
62 d_absorb_opt = d_absorb ∗ nr ; % o p t i c a l t h i c k n e s s a b s o r b e r
63
64 % Si mu l at i on at k=k_c and lambda = lambda_c
65 k = k_c ;
66 lambda = twopi /k ;
67
68 I = create_eye (gpu , no_of_modes) ; % un i t y matrix
69 Z = c r e a t e _ z e r o s (gpu , no_of_modes) ; % z e r o matrix
70
71 %%
72 % Create L e f t Mirror S c a t t e r i n g Matrix S1 .
73 % Then c r e a t e T r a n s f e r Matrix M1 from S c a t t e r i n g Matrix S1 .
74 %%
75 r1 = −r0 ^ two − i ∗ r0 ∗ s q r t (one − r0 ^ two) ; % l e f t m i r r o r r e f l . c o e f f .
76 t1 = one + r1 ; % l e f t m i r r o r t r a n s m i s s i o n c o e f f .
77 S1 = create_S_matrix (gpu , I ∗ r1 , I ∗ t1) ;
78 M1 = convert_S_to_M (S1) ;

227

Appendix

80 %%%
81 % Create TP_d1 : Transmiss ion matrix from prop agat ion o f d i s t a n c e d1
82 % (d i s t a n c e between f i r s t l e n s to begin o f a b s o r b e r and
83 % a l s o d i s t a n c e between end o f a b s o r b e r and begin o f second l e n s)
84 % Then c r e a t e S c a t t e r i n g Matrix SP_d1 from Transmiss ion Matrix TP_d1 .
85 % Then c r e a t e T r a n s f e r Matrix MP_d1 from S c a t t e r i n g Matrix SP_d1 .
86 %%%
87 d1 = f−d_absorb_opt /two ;
88 TP_d1 = transmision_matrix_prop (...
89 gpu , TF, ax_large , d1 , lambda , 1 , modes_large) ;
90 SP_d1 = create_S_matrix (gpu , Z , TP_d1) ;
91 MP_d1 = convert_S_to_M (SP_d1) ;
92
93 %%
94 % Create TA: Transmiss ion matrix f o r p ropagat ion through a b s o r b e r
95 % Then c r e a t e S c a t t e r i n g Matrix SSA from Transmiss ion Matrix TA.
96 % Then c r e a t e T r a n s f e r Matrix MA from S c a t t e r i n g Matrix SA .
97 %%
98 TA = transmision_matrix_prop (...
99 gpu , TF, ax_large , d_absorb , lambda , n_absorb , modes_large) ;

100 SA = create_S_matrix (gpu , Z , TA) ;
101 MA = convert_S_to_M (SA) ;
102
103 %%
104 % Create TL: Transmiss ion matrix f o r l e n s
105 % Then c r e a t e S c a t t e r i n g Matrix SL from Transmiss ion Matrix TL.
106 % Then c r e a t e T r a n s f e r Matrix ML from S c a t t e r i n g Matrix SL .
107 %%
108 TL = transmis ion_matr ix_lens (...
109 gpu , ax_large , lambda , pupi l , NA, f , lens_type , modes_large) ;
110 SL = create_S_matrix (gpu , Z , TL) ;
111 ML = convert_S_to_M (SL) ;
112
113 %%%
114 % Create TP_f : Transmiss ion matrix from prop agat ion o f d i s t a n c e f
115 % Then c r e a t e S c a t t e r i n g Matrix SP_f from Transmiss ion Matrix TP_f .
116 % Then c r e a t e T r a n s f e r Matrix MP_f from S c a t t e r i n g Matrix SP_f .
117 %%%
118 TP_f = transmision_matrix_prop (...
119 gpu , TF, ax_large , f , lambda , 1 , modes_large) ;
120 SP_f = create_S_matrix (gpu , Z , TP_f) ;
121 MP_f = convert_S_to_M (SP_f) ;
122
123 %%
124 % Create Right Mirror S c a t t e r i n g Matrix S2 .
125 % Then c r e a t e T r a n s f e r Matrix M2 from S c a t t e r i n g Matrix S2 .
126 %%
127 e p s i l o n = pval (gpu , ' 1e−18 ') ;
128 S2 = create_S_matrix (gpu , −I , I ∗ e p s i l o n) ;
129 M2 = convert_S_to_M (S2) ;
130
131 %%
132 % Create Total 4 f c a v i t y T r a n s f e r Matrix T4f
133 % L e f t m i r r o r − propagate f − l e n s − propagate d1 − propagate through
134 % a b s o r b e r − propagate d1 − l e n s − proagate f − r i g h t m i r r or
135 %%
136 M4f = M1 ∗ MP_f ∗ ML ∗ MP_d1 ∗ MA ∗ MP_d1 ∗ ML ∗ MP_f ∗ M2;
137
138 %%
139 % (P a r t i a l l y) c o n v e r t t o t a l Cavity T r a n s f e r Matrix i n t o t o t a l Cavity
140 % S c a t t e r i n g Matrix (j u s t the top−l e f t quadrant − which i s the (o u s i d e)
141 % Cavity R e f l e c t i o n Matrix R) , and downscale to o b s e r v a t i o n g r i d
142 %%
143 R_large = convert_M_to_R (M4f) ;
144 [R_small , modes_small] = ...
145 downscale_TR_matrix (gpu , R_large , ax_small , ax_large , modes_large) ;
146
147 %%
148 % Show R e f l e c t i o n Matrix element−w i s e l e y squared
149 %%
150 f i g u r e (2) ;
151 imagesc (abs (R_small) . ^ 2)
152 a x i s square
153 t i t l e (' R e f l e c t i o n Matrix Squared ')
154
155 %%
156 % Show e f f e c t o f s i n g l e −t r i p t r a n s m i s s i o n matrix on t e s t −image
157 %%
158 T_large = TP_f ∗ TL ∗ TP_d1 ∗ TA ∗ TP_d1 ∗ TL ∗ TP_f ; % s i n g l e t r i p t r a n s m i s s i o n matrix
159 [T_small , modes_small] = ...
160 downscale_TR_matrix (gpu , T_large , ax_small , ax_large , modes_large) ;
161 E_in = create_test_image (gpu , ax_small , 4 , f a l s e) ;
162 E_vec = fft_arr_to_vec (E_in , ax_small , modes_small , f a l s e) ;
163 E_vec = T_small∗E_vec ;
164 E = fft2_vec_to_arr (gpu , E_vec , ax_small , modes_small , f a l s e) ;
165 p l o t _ f i e l d s (gpu , 1 , ax_small , E_in , ' Input F i e l d ' , 3 , E, ' Output F i e l d ' , 3) ;

228

Simulation main programs

In lines 23-29, basic physical simulation parameters are defined; amongst them the
base wavelength lambda_0 in line 24, the focal length in line 25, and the type of
lens to be used in line 28. The parameter r0 in line 29 is the absolute value of the
left mirror’s reflection coefficient.

Among the technical simulation parameters in lines 31-34 there is the parameter
TF which defines the propagator method to be used (Rayleigh-Sommerfeld propaga-
tor as described in section 2.1.2, or Fresnel propagator, as described in section 2.1.3).

In lines 36-41, the critical wavenumber and critical wavelength best matching the
reference wavelength lambda_0 are calculated. Lines 43-45 determine the optimal
sizes for the sampling grid and the guarding grid (see sections 2.6 and 2.7). In
lines 49 and 50, the discrete axes coordinate vectors for the smaller and larger
grid are created. The transfer matrices and scattering matrices correspond to
the larger guarding grid size. Consequently a vector containing all transverse
nx/ny mode numbers matching the side length of the larger grid is created (line 52
and 53). In line 55, a phase-mask to be used for simulating the two lenses is created.

The program is to simulate a 4f-cavity with an absorber of thickness d = 10 mm in
the center position. The parameters of the absorber are defined in lines 57-62. After
the thickness (line 58), the real and imaginary parts of the absorber’s refractive
index are defined in lines 59-61. The real part of the refractive index increases the
optical thickness of the absorber (line 62).

The simulation itself starts in line 71. In lines 71-78, the scattering matrix S1
for the (partially reflective) left mirror is created; and then converted into the
corresponding transfer matrix M1.

In lines 80-91, a transmission matrix TP_d1 is created, which is able to simulate the
propagation corresponding to the distance between the first lens and the beginning
of the center-position absorber, and between the end of the center-position absorber
and the second lens, respectively. From this transmission matrix TP_d1, a scatter-
ing matrix S_d1 is generated, which is eventually converted into the corresponding
transfer matrix M_d1.

In lines 93-101, a transmission matrix TA is created, simulating the propagation
through the absorber (considering the optical propagation distance and the complex
refractive index). From this transmission matrix TA, a scattering matrix SA is
generated, which is eventually converted into the corresponding transfer matrix
MA.

In lines 103-111, a transmission matrix TL is created, which is able to simulate the
effect of the thin lens. From this transmission matrix TL, a scattering matrix SL is
generated, which is eventually converted into the corresponding transfer matrix ML.

229

Appendix

In lines 113-121, a transmission matrix TP_f is created, which is able to simulate
the propagation distance of one focal length, which is the distance between the first
mirror and the first lens, and also between the second lens and the total reflective
mirror, respectively. From this transmission matrix TP_f, a scattering matrix S_f is
generated, which is eventually converted into the corresponding transfer matrix M_f.

In lines 123-129, the scattering matrix S2 for the right (total reflective) mirror
is created; and then converted into the corresponding transfer matrix M2. Please
note that the sub-matrix of the scattering-matrix that is representing the total
reflective mirror’s transmission behavior is not set to a zero-value-matrix, but
rather to a diagonal matrix with a small epsilon-value to avoid singularity when
S2 is converted to M2. As explained in section 5.2.1, this is no problem, as this
specific value does not affect the resulting total reflection matrix.

In line 136, the total transfer matrix M4f for the whole 4f-cavity is calculated by
multiplying all transfer matrices in the correct order. From this M4f matrix the
top-left quadrant of the corresponding scattering matrix is calculated in line 143,
which happens to be the cavity’s reflection matrix. As the whole calculation is
done based on the larger guarding-grid, the reflection-matrix is finally down-sized
to the reflection matrix R_small, corresponding to the smaller observation grid
size (lines 114-115).

Eventually, in lines 147-154, the reflection matrix with element-wisely squared
values is displayed, and in lines 155-163 the total transmission matrix for a single
trip through the cavity is calculated, and its effect on a simple test image (an
off-center letter “T”) is demonstrated.

230

Simulation main programs

E.10. CPA_sim_010
The program presented in this section again uses the method of scattering and
transfer matrices to simulate a 4f-cavity with an absorber in the middle position.
In contrast to the previous proof-of-concept program CPA_sim_009, it allows to run
several simulation rounds with different simulation parameters (namely, absorber
thickness and reflectivity of the absorber facets).

The maximum, average, and minimum eigenvalues of the 4f cavity’s reflection-
matrix are calculated for various wavelengths around a critical wavelength, and
stored into a single file per simulation round. In addition to that, separate files are
generated at each calculated wavelength, containing a full eigenmode decomposi-
tion at the given wavelength with the simulation parameters of the respective round.

1 %%
2 % F i l e : CPA_sim_010 .m
3 % 4 f−Cavity−CPA s i m u l a t i o n with S c a t t e r i n g M a t r i c e s
4 % and T r a n s f e r M a t r i c e s and r e f l e c t i v e f a c e t s on a b s o r b e r
5 %%
6
7 c l e a r a l l
8 c l o s e a l l
9 f o l d e r = ' 010\\ ' ; % f o l d e r f o r s a v i n g r e s u l t s

10 gpu = 1 ; % 0 : CPU, 1 : GPU, 2 : mp l i b r a r y
11 i f gpu == 1
12 % i n i t i a l i z e GPUs
13 f o r i i = 1 : gpuDeviceCount
14 gpuDevice (i i) ;
15 end
16 e l s e i f gpu == 2
17 % D ef i ne numerica l p r e c i s i o n f o r mp l i b r a r y
18 mp. D i g i t s (3 4) ;
19 end
20 % c r e a t e c o n s t a n t s 1 , 2 , 4 , 8 , 2∗ p i i n r e q u i r e d data format
21 [one , two , four , e i g h t , twopi] = p r e c i s i o n _ c o n s t a n t s (gpu) ;
22 pm = pval (gpu , ' 1e−12 ') ; % one pico −meter
23
24 % Basic p h y s i c a l s i m u l a t i o n parameters
25 lambda_0 = pval (gpu , ' 785 e−9 ') ; % base wavelength [m]
26 f = pval (gpu , ' 0 . 1 0 0 ') ; % f o c a l l e n g t h o f l e n s e s [m]
27 p u p i l = f a l s e ; % p u p i l yes /no
28 NA = pval (gpu , ' 0 . 0 5 ') ; % numerical a p e r t u r e o f p u p i l
29 lens_type = 2 ; % 1 : s p h e r i c a l 2 : a s p h e r i c a l , p e r f e c t l e n s
30 r0 = pval (gpu , ' s q r t (0 . 8) ') ; % r e f l e c t i o n c o e f f i c i e n t l e f t m i r r o r
31
32 % t e c h n i c a l s i m u l a t i o n parameters
33 TF = 0 ; % 0 : Rayle igh Sommerfeld , 1 : F r e s n e l
34 L_des = pval (gpu , ' 1 . 4 e−3 ') ; % d e s i r e d s i d e l e n g t h o f s m a l l e r g r i d
35 f a c t o r = 1 . 2 5 ; % f a c t o r by which embedding g r i d should be l a r g e r
36
37 % l o n g i t u d i n a l mode number b e s t matching lambda_0
38 l_mode = round ((atan (s q r t (one−r0 ^ two) / r0)) / twopi+e i g h t ∗ f /lambda_0) ;
39 % c r i t i c a l wavenumber b e s t matching lambda_0
40 k_c = twopi ∗l_mode /(e i g h t ∗ f) − (atan (s q r t (1− r0 ^ two) / r0)) /(e i g h t ∗ f) ;
41 % c r i t i c a l wavelength b e s t matching lambda_0
42 lambda_c = twopi /k_c ;
43
44 % c r e a t e optimal g r i d
45 [N_small , L_small , N_large , L_large , alpha_max , n_max] = ...
46 opt_grid_params (L_des , f a c t o r , f , f , true , lambda_c) ;
47 % d i s p l a y g r i d parameters
48 d i s p (['N1= ' , num2str (N_small , 5) , ' N2= ' , num2str (N_large , 5) , ' n_max= ' , num2str (n_max , 5)])
49 % c r e a t e xy−axes c o o r d i n a t e s f o r " s m a l l " and " l a r g e " g r i d
50 ax_small = create_ax (gpu , N_small , L_small) ;
51 ax_large = create_ax (gpu , N_large , L_large) ;
52 % Create v e c t o r with a l l xy−modes
53 modes_large = sorted_mode_numbers (gpu , N_large) ;
54 no_of_modes_large = s i z e (modes_large , 1) ;
55 % c r e a t e l e n s phase mask
56 [lens_mask , l e n s _ p u p i l] = l e n s (gpu , ax_large , lambda_c , pupi l , NA, f , lens_type) ;

231

Appendix

58 % d e f i n e area o f i n t e r e s t
59 p o i n t s = pval (gpu , ' 900 ') ;% number o f p o i n t s to be c a l c u l a t e d
60 p e r i o d = twopi /(e i g h t ∗ f) ; % p e r i o d between r e s o n a n c e p o i n t s
61 aoi_width = p e r i o d ∗ pval (gpu , ' 1 . 5 ') ; % area−of−i n t e r e s t width 1 . 5 p e r i o d s
62 dk = aoi_width / p o i n t s ; % d e l t a k
63
64 I = create_eye (gpu , no_of_modes_large) ; % un i ty matrix
65 Z = c r e a t e _ z e r o s (gpu , no_of_modes_large) ; % z e r o matrix
66 r1 = −r0 ^ two − i ∗ r0 ∗ s q r t (one − r0 ^ two) ; % l e f t m i r r o r r e f l . c o e f f .
67 t1 = one + r1 ; % l e f t m i r r o r t r a n s m i s s i o n c o e f f .
68
69 %%%%%%%%%%%%%%%%%%%%%%%%%%%
70 % parameter v e c t o r s
71 %%%%%%%%%%%%%%%%%%%%%%%%%%%
72 % s i m u l a t e r e f l e c t i n g a b s o r b e r f a c e t s
73 a b s o r b e r _ f a c e t s = [true , true , true , true , true , true , true , t r u e] ;
74 % a b s o r b e r r e f l e c t i o n s
75 r a f 4 = pval (gpu , ' s q r t (1 e −4) ') ;
76 r a f 3 = pval (gpu , ' s q r t (1 e −3) ') ;
77 r a f 2 = pval (gpu , ' s q r t (1 e −2) ') ;
78 r a f 0 5 = pval (gpu , ' s q r t (0 . 5) ') ;
79 r a f 0 = [r a f 4 , ra f 3 , ra f 2 , ra f05 , r a f 4 , ra f 3 , ra f 2 , r a f 0 5] ;
80 % a b s o r b e r t h i c k n e s s
81 d1mm = pval (gpu , ' 0 . 0 0 1 ') ;
82 d10mm = pval (gpu , ' 0 . 0 1 ') ;
83 d_absorb = [d10mm, d10mm, d10mm, d10mm, d1mm, d1mm, d1mm, d1mm] ;
84
85 %%
86 % i t e r a t e through the parameter v a r i a t i o n s
87 %%
88 f o r r = 1 : width (d_absorb)
89 d i s p (['SIMULATION ROUND: ' , num2str (r , 5)])
90 % Absorber data
91 nr = pval (gpu , ' 1 . 5 ') ;
92 n i = −l o g (r0) /(two∗ d_absorb (r) ∗k_c) ;
93 n_absorb = nr + i ∗ n i ;
94 d_absorb_opt = d_absorb (r) ∗ nr ; % o p t i c a l t h i c k n e s s a b s o r b e r
95 r a f = −r a f 0 (r) ^ two − i ∗ r a f 0 (r) ∗ s q r t (one − r a f 0 (r) ^ two) ; % absorb . f a c e t r e f l . c o e f f .
96 t a f = one + r a f ; % a b s o r b e r f a c e t t r a n s m i s s i o n c o e f f .
97 s =0; % counting −up−index
98 f o r idx = round (p o i n t s /two) :−1:− round (p o i n t s /two)
99 s = s + 1 ;

100 k = k_c +idx ∗ dk ;
101 lambda = twopi /k ;
102
103 %%
104 % Create L e f t Mirror S c a t t e r i n g Matrix S1 .
105 % Then c r e a t e T r a n s f e r Matrix M1 from S c a t t e r i n g Matrix S1 .
106 %%
107 r1 = −r0 ^ two − i ∗ r0 ∗ s q r t (one − r0 ^ two) ; % l e f t m i r r o r r e f l . c o e f f .
108 t1 = one + r1 ; % l e f t m i r r o r t r a n s m i s s i o n c o e f f .
109 S1 = create_S_matrix (gpu , I ∗ r1 , I ∗ t1) ;
110 M1 = convert_S_to_M (S1) ;
111
112 %%%
113 % Create TP_d1 : Transmiss ion matrix from p ro pagat ion o f d i s t a n c e d1
114 % (d i s t a n c e between f i r s t l e n s to begin o f a b s o r b e r and
115 % a l s o d i s t a n c e between end o f a b s o r b e r and begin o f second l e n s)
116 % Then c r e a t e S c a t t e r i n g Matrix SP_d1 from Transmiss ion Matrix TP_d1 .
117 % Then c r e a t e T r a n s f e r Matrix MP_d1 from S c a t t e r i n g Matrix SP_d1 .
118 %%%
119 d1 = f−d_absorb_opt/two ;
120 TP_d1 = transmision_matrix_prop (...
121 gpu , TF, ax_large , d1 , lambda , 1 , modes_large) ;
122 SP_d1 = create_S_matrix (gpu , Z , TP_d1) ;
123 MP_d1 = convert_S_to_M (SP_d1) ;
124
125 %%
126 % Create TA: Transmiss ion matrix f o r p ro pagat ion through a b s o r b e r
127 % Then c r e a t e S c a t t e r i n g Matrix SA from Transmiss ion Matrix TA.
128 % Then c r e a t e T r a n s f e r Matrix MA from S c a t t e r i n g Matrix SA .
129 %%
130 TA = transmision_matrix_prop (...
131 gpu , TF, ax_large , d_absorb (r) , lambda , n_absorb , modes_large) ;
132 SA = create_S_matrix (gpu , Z , TA) ;
133 MA = convert_S_to_M (SA) ;
134
135 %%%
136 % I f r e q u i r e d : Create Absorber Facet S c a t t e r i n g Matrix SAF .
137 % I t d e s c r i b e s the r e f l e c t i o n on the l e f t a b s o r b e r s i d e .
138 % Then c r e a t e T r a n s f e r Matrix TAF from S c a t t e r i n g Matrix SAF .
139 %%%
140 i f a b s o r b e r _ f a c e t s (r)
141 SF = create_S_matrix (gpu , I ∗ r a f , I ∗ t a f) ;
142 MF = convert_S_to_M (SF) ;
143 end

232

Simulation main programs

145 %%
146 % Create TL: Transmiss ion matrix f o r l e n s
147 % Then c r e a t e S c a t t e r i n g Matrix SL from Transmiss ion Matrix TL.
148 % Then c r e a t e T r a n s f e r Matrix ML from S c a t t e r i n g Matrix SL .
149 %%
150 TL = transmis ion_matr ix_lens (...
151 gpu , ax_large , lambda , pupi l , NA, f , lens_type , modes_large) ;
152 SL = create_S_matrix (gpu , Z , TL) ;
153 ML = convert_S_to_M (SL) ;
154
155 %%%
156 % Create TP_f : Transmiss ion matrix from prop agat ion o f d i s t a n c e f
157 % Then c r e a t e S c a t t e r i n g Matrix SP_f from Transmiss ion Matrix TP_f .
158 % Then c r e a t e T r a n s f e r Matrix TP_f from S c a t t e r i n g Matrix SP_f .
159 %%%
160 TP_f = transmision_matrix_prop (...
161 gpu , TF, ax_large , f , lambda , 1 , modes_large) ;
162 SP_f = create_S_matrix (gpu , Z , TP_f) ;
163 MP_f = convert_S_to_M (SP_f) ;
164
165 %%
166 % Create Right Mirror S c a t t e r i n g Matrix S2 .
167 % Then c r e a t e T r a n s f e r Matrix M2 from S c a t t e r i n g Matrix S2 .
168 %%
169 e p s i l o n = pval (gpu , ' 1e−18 ') ;
170 S2 = create_S_matrix (gpu , −I , I ∗ e p s i l o n) ;
171 M2 = convert_S_to_M (S2) ;
172
173 %%
174 % Create Total 4 f c a v i t y T r a n s f e r Matrix M4f
175 % L e f t m i r r or − propagate f − l e n s − propagate d1 − propagate through
176 % a b s o r b e r − propagate d1 − l e n s − proagate f − r i g h t m i rr o r
177 %%
178 i f a b s o r b e r _ f a c e t s (r)
179 M4f = M1 ∗ MP_f ∗ ML ∗ MP_d1 ∗ MF ∗ MA ∗ MF ∗ MP_d1 ∗ ML ∗ MP_f ∗ M2;
180 e l s e
181 M4f = M1 ∗ MP_f ∗ ML ∗ MP_d1 ∗ MA ∗ MP_d1 ∗ ML ∗ MP_f ∗ M2;
182 end
183
184 %%%
185 % (P a r t i a l l y) c o n v e r t t o t a l Cavity T r a n s f e r Matrix i n t o t o t a l Cavity
186 % S c a t t e r i n g Matrix (j u s t the top−l e f t quadrant − which i s the (o u s i d e)
187 % Cavity R e f l e c t i o n Matrix R) , and downscale to o b s e r v a t i o n g r i d
188 %%%
189 R_large = convert_M_to_R (M4f) ;
190 [R_small , modes_small] = ...
191 downscale_TR_matrix (gpu , R_large , ax_small , ax_large , modes_large) ;
192
193 %%%
194 % C a l c u l a t e E i g e n v e c t o r s and E i g e n v a l u e s
195 %%%
196 [V, D] = e i g (R_small) ; % E i g e n v e c t o r s and d i a g o n a l e i g e n v a l u e matrix
197 EV = diag (D) ; % ge t r e f l e c t i o n matrix e i g e n v a l u e s from D matrix
198
199 %%
200 % g e n e r a t e eigenmode decomposit ion f o r the c u r r e n t wavelength
201 %%
202 EVS = abs (EV) . ^ 2 ; % E i g e n v a l u e s squared
203 [EVS_sorted , sortEVS_idx] = s o r t (EVS) ; % s o r t sqared e i g e n v a l u e s
204 V_sorted = V(: , sortEVS_idx) ; % e i g e n v e c t o r s s o r t e d by e i g e n v a l u e s
205 % g e n e r a t e r e s u l t matrix
206 mode_xls = [1 : s i z e (EVS, 1)] ' ; % 1 s t column : a s ce n d i n g number o f mode
207 mode_xls (: , 2) = EVS_sorted ; % second column : squared e i g e n v a l u e s
208 % save eigenmode decompoition r e s u l t s
209 i dx _s tr = s p r i n t f ('%04d ' , idx) ;
210 filename_m = s t r c a t (f o l d e r , ' modes_ ' , num2str (r , 5) , ...
211 '_ ' , idx_str , ' . x l s x ') ;
212 w r i t e m a t r i x (mode_xls , filename_m) ;
213 x l s (s , 1) = idx ;
214 x l s (s , 2) = lambda / pm; % wavelength i n nm
215 x l s (s , 3) = (lambda−lambda_c) / pm; % d e l t a lambda i n pm
216 x l s (s , 4) = max(abs (EV)) ; % l a r g e s t e i g e n v a l u e
217 x l s (s , 5) = mean (abs (EV)) ; % mean e i g e n v a l u e
218 x l s (s , 6) = min (abs (EV)) ; % s m a l l e s t e i g e n v a l u e
219 x l s (s , 7) = x l s (s , 4) ^ 2 ; % l a r g e s t e i g e n v a l u e squared
220 x l s (s , 8) = x l s (s , 5) ^ 2 ; % mean e i g e n v a l u e squared
221 x l s (s , 9) = x l s (s , 6) ^ 2 ; % s m a l l e s t e i g e n v a l u e squared
222
223 d i s p ([' idx : ' , num2str (idx , 5) , ...
224 ' max EV: ' , num2str (max(abs (EV)) , 5) , ...
225 ' mean EV: ' , num2str (mean (abs (EV)) , 5) , ...
226 ' min EV: ' , num2str (min (abs (EV)) , 5)])
227 end
228 f i l e n a m e = s t r c a t (f o l d e r , 'EV_var_ ' , num2str (r , 5) , ' . x l s x ') ;
229 w r i t e m a t r i x (x l s , f i l e n a m e) ; % save r e s u l t s
230 end

233

Appendix

Lines 1-56 of the above source code are practically identical to the source code
in appendix E.9, except for line 9, where the folder for saving the result files is
defined. In lines 58-62 the “area of interest” around the resonance point, and the
number of points to be calculated are defined. In lines 66 and 67, the complex
reflection and transmission coefficients of the left, partially reflective, mirror are
calculated according to equations (3.9) and (3.10).

In lines 69-83, parameter vectors are defined which determine the round-dependent
simulation parameters. In the source-code above, each of the parameter vectors
has eight entries, meaning that there are eight simulation rounds. The vector
absorber_facets defines that in all of the simulations an absorber with reflecting
facets is to be simulated. In line 79 it is determined by vector raf0 that the
absolute value of the facets’ reflection coefficient should be 0, 10−4, 10−3, 10−2,
and 0.5, in each of the first four simulation rounds, and then again in the next four
rounds. Finally, vector d_absorb is initiated with eight entries, defining that the
absorber thickness is 10 mm in the first four rounds, and then 1 mm in the next
four rounds.

The loop starting in line 88 iterates through all simulation rounds. The real
part of the absorber’s refractive index is defined to be 1.5 in line 91. The imag-
inary part of the absorber’s refractive index is defined in line 92 according to
equation (5.23). In lines 95 and 96, the complex reflection and transmission coef-
ficient of the absorber’s facets is calculated according to equations (5.39) and (5.40).

The core part of the simulation starts with the loop in line 98, where the program
iterates through all of the wavenumbers in the area of interest. The scattering
matrices, and according transfer matrices are calculated in lines 103-171, just
as in the CPA_sim_009 program (see appendix E.10). The only new aspect is
the calculation of the facets’ scattering matrix SF and transfer matrix MF in lines
135-143. In lines 173-182 the cavity’s total transfer matrix is calculated (either with
or without reflecting facets). In lines 184-191, the cavity’s total reflection matrix
is calculated from the total transfer matrix, and then down-converted from the
size of the simulation-grid to the smaller size of the observation grid by employing
the method downscale_TR_matrix (see appendix C.29).

In lines 193-197, the eigenvalues and eigenvectors of the reflection matrix are
calculated. In lines 199-212, a file is generated for each data point, containing the
squared absolute value of all eigenvalues in ascending order.

Finally, in lines 213-221, the smallest, average, and largest absolute eigenvalues
at each wavelength are added to the xls array, so that all of this data over the
complete area of interest can be stored in a single, separate file after each simulation
round (line 228-229).

234

Acknowledgments
First and foremost I am extremely grateful to my supervisors, Prof. Stefan Rotter
and Dipl.-Ing. Kevin Pichler for their invaluable advice, continuous support, and
their patience during this thesis research project. Additionally, I would like to
express gratitude to Dr. Andre Brandstötter, who kindly supported me in the
initial phase of my project. I would also like to thank Prof. Ori Katz, Gil Weinberg
and Yevgeny Slobodkin from the Department of Applied Physics at the Hebrew
University of Jerusalem for the experimental collaboration, which hopefully will
soon back the calculations in this thesis with solid experimental data. Finally, I
would like to thank my wife Michelle, who not only supported me emotionally
during the compilation of this thesis, but occasionally also helped to fix some of
my broken English.

235

List of Figures

1.1. (a) Schematic of a laser oscillator. (b) Schematic of the time-reversed
laser oscillator that realizes a CPA 1

1.2. First experimental CPA implementation from 2011. 2
1.3. A microwave random CPA . 3
1.4. A simple plane-parallel cavity with a gain element acting as a laser. 4
1.5. The plane-parallel cavity becomes an anti-laser if the gain is replaced

by loss. 5
1.6. The simple plane-parallel cavity does not act as anti-laser anymore

if the incident wave is not exactly perpendicular to the xy-plane. . 5
1.7. A plane-parallel 4f cavity. 6
1.8. In a 4f cavity, every light-ray is reflected into itself. 6
1.9. In a 4f-cavity, not only rays perpendicular to the xy-plane, but also

rays at any arbitrary angle are reflected into themselves. 7
1.10. Final design of the universal 4f-cavity CPA (anti-laser). 7

2.1. Given a field on the source plane U(x,y; 0), we can calulate the field
on the observation plane U(x,y; z). 12

2.2. The Thickness Function: (a) front view, (b) side view 14
2.3. (a) Geometry for Δ1, (b) Geometry for Δ2, (c) Geometry for Δ3. 15
2.4. A perfect, aspherical lens focuses every incident light ray parallel to

the optical axis into the focal point F 17
2.5. The incident wavefront experiences a tilt α relative to the z-axis in

the yz-plane. 19
2.6. An array of size 8 × 8 representing a quadratic area of 2 mm × 2 mm

in the xy-plane. 22
2.7. (a) Spatial-frequency-space-array representing the the FFT basis

function nx = 1, ny = 0. (b) Position-space-array representing the
FFT basis function nx = 1, ny = 0. 25

2.8. A first, naive simulation attempt. 32
2.9. Left: Magnitude and unwrapped phase of the oversampled transfer-

function. Right: Magnitude and unwrapped phase of the inverse
FFT of the oversampled transfer-function. 36

2.10. Left: Magnitude and unwrapped phase of the critically sampled
transfer-function. Right: Magnitude and unwrapped phase of the
inverse FFT of the critically sampled transfer-function. 37

237

LIST OF FIGURES

2.11. Left: Magnitude and unwrapped phase of the underrsampled transfer-
function. Right: Magnitude and unwrapped phase of the inverse
FFT of the undersampled transfer-function. 38

2.12. The source field has the side-length L1 and is guarded by a larger
grid with side-length L2. 40

2.13. A refined simulation of a test-image propagated one-way through a
4f-cavity of 4 × 75 mm total length. 46

2.14. A simulation of a test-image propagated on a single round-trip
through a 4f-cavity of 4 × 75 mm total length. 48

2.15. Residual artifacts are visible when using the Rayleigh-Sommerfeld
propagator, even when the optimal grid-size is used. 48

2.16. The residual artifacts vanish when the Fresnel propagator with
optimal grid-size is used. 49

2.17. Simulation of a test-image with a phase gradient propagated on a
round-trip through a 4f-cavity of 4 × 75 mm total length. 50

3.1. Eight different conventions for modeling reflection and refraction of
linearly polarized light at a boundary. 52

3.2. Deriving phasor relations of incoming, reflected, and transmitted
light for a partially reflecting mirror with a simple 1D model. . . . 53

3.3. Two possible formulas to model the phase-difference between the
reflected and the incident beam of a partially reflective mirror. . . 55

3.4. Phase shifts of reflected and transmitted light of a partially reflecting
mirror in relation to the incident light beam. 56

3.5. Absolute value of the transmission coefficient of a partially reflecting
mirror as a function of the absolute value of the reflection coefficient. 56

3.6. A simple one-dimensional plane-parallel optical cavity with a fully
reflective mirror M2 on the right side and a partially reflective mirror
M1 on the left side. 58

3.7. Reflectance of a 1D-cavity with an |r| = r0 = 0.7 mirror assuming a
coherent incident light beam with a wavelength of λ = 800 nm with
various under-critical attenuations. 61

3.8. Reflectance of a 1D-cavity with an |r| = r0 = 0.7 mirror assuming a
coherent incident light beam with a wavelength of λ = 800 nm with
various over-critical attenuations. 61

3.9. Effect of choice of sign in equations (3.9) and (3.10) to the 1D-CPA-
simulation. 62

3.10. The real and imaginary parts of rcav reveal the well-known behavior
of resonant systems around k = kc. 63

3.11. The phase behavior of the cavity’s outside reflection coefficient
around a resonance point. 64

3.12. The first derivative of the cavity’s outside reflection coefficient phase
dϕcav

dk
= d

dk
arg (rcav) around a resonance point. 66

238

LIST OF FIGURES

3.13. The first derivative of the cavity’s outside reflection coefficient phase
dϕQLE

dk
around the first resonance point calculated based on the

stochastic quantum Langevin equation (QLE). 67
3.14. The first derivative of the cavity’s outside reflection coefficient phase

dϕcav

dk
= d

dk
arg (rcav) around a resonance point. 69

3.15. An optical 4f-cavity with a fully reflective mirror M2 on the right
side and a partially reflective mirror M1 on the left side. 70

3.16. The transmission matrix of a round-trip through a 4f-cavity without
any attenuation. Lenses: aspherical perfect lenses. Propagation
simulation: Rayleigh-Sommerfeld. 76

3.17. The reflection matrix of a 4f-cavity-CPA at critical wavelength
and attenuation. Lenses: aspherical perfect lenses. Propagation
simulation: Rayleigh-Sommerfeld. 77

3.18. The reflection matrix of a 4f-cavity-CPA at critical wavelength
and attenuation. Lenses: aspherical perfect lenses. Propagation
simulation: Fresnel. 78

3.19. The reflection matrix of a 4f-cavity-CPA at critical wavelength and
attenuation. Propagation simulation: Fresnel. 79

4.1. The average, maximum, and minimum eigenvalues of the reflection
matrix of a 4f-cavity-CPA at critical attenuation around the critical
wavelength. Lenses: aspherical. Propagation simulation: Rayleigh-
Sommerfeld. 82

4.2. The average, maximum, and minimum eigenvalues of the reflection
matrix of a 4f-cavity-CPA at critical attenuation around the critical
wavelength. Lenses: spherical. Propagation simulation: Rayleigh-
Sommerfeld. 82

4.3. The average, maximum, and minimum eigenvalues of the reflection
matrix of a 4f-cavity-CPA at critical attenuation around the critical
wavelength. Lenses: aspherical. Propagation simulation: Fresnel. . 83

4.4. The average, maximum, and minimum eigenvalues of the reflection
matrix of a 4f-cavity-CPA at critical attenuation around the critical
wavelength. Lenses: spherical. Propagation simulation: Fresnel. . 83

4.5. 4f-cavity-CPA at critical attenuation: squared absolute eigenvalues
of the reflection matrix plotted in ascending order. 85

4.6. Least reflective eigenmodes of the reflection matrix of a 4 × 75 mm
4f-cavity-CPA at critical attenuation. 86

4.7. Most reflective eigenmodes of the reflection matrix of a 4 × 75 mm
4f-cavity-CPA at critical attenuation. 87

4.8. Effect of mode-dependent adjustments of the critically attenuated
4f-cavity’s focal length (and consequently also of the total length). 89

4.9. Mode-dependent, additive compensation factor c(m) required to
obtain the optimized result in figure 4.8. 90

239

LIST OF FIGURES

4.10. Effect of mode-dependent adjustments of the distance d between
the second lens and the total reflective, perfect mirror. 91

4.11. Mode-dependent, additive compensation factor c(m) required to
obtain the optimized result in figure 4.10. 91

4.12. Average over all squared absolute reflection-matrix eigenvalues, com-
pared to largest and smallest squared absolute reflection-matrix
eigenvalues of an optimally configured 4f-cavity-CPA. 93

4.13. Average over all squared absolute reflection-matrix eigenvalues, com-
pared to the largest and smallest squared absolute reflection-matrix
eigenvalues of a 4f-cavity-CPA with the total reflective mirror moved
away from the optimal position by λ0

4 93
4.14. Average over all squared absolute reflection-matrix eigenvalues, com-

pared to the largest and smallest squared absolute reflection-matrix
eigenvalues of an 4f-cavity-CPA with the the total reflective mirror
moved away from the optimal position by 1 mm. 94

4.15. Average over all squared absolute reflection-matrix eigenvalues, com-
pared to the largest and smallest squared absolute reflection-matrix
eigenvalues of a 4f-cavity-CPA with the total reflective mirror moved
away from the optimal position by 2 mm. 94

4.16. Average over all squared absolute reflection-matrix eigenvalues, com-
pared to the largest and smallest squared absolute reflection-matrix
eigenvalues of a 4f-cavity-CPA with the total reflective mirror moved
away from the optimal position by 5 mm. 95

4.17. Some of the almost perfectly absorbed eigenmodes of a 4f-cavity-
CPA with the total reflective mirror moved away from the optimal
position by 5 mm. 96

4.18. Average over all squared absolute reflection-matrix eigenvalues of a
4f-cavity-CPA with the second lens moved away from the optimal
position. 97

4.19. Minimum squared absolute reflection-matrix eigenvalues of a 4f-
cavity-CPA with the the second lens moved away from the optimal
position. 97

4.20. Maximum squared absolute reflection-matrix eigenvalues of a 4f-
cavity-CPA with the second lens moved away from the optimal
position. 98

4.21. Single-pass-absorption (passing the absorber once). 99
4.22. Single-round-trip-absorption (em-wave is passing the absorber twice).100
4.23. Average over all squared absolute reflection-matrix eigenvalues of a

4f-cavity-CPA with various undercritical absorption values. 102
4.24. Minimum squared absolute reflection-matrix eigenvalues of a 4f-

cavity-CPA with various undercritical absorption values. 102
4.25. Maximum squared absolute reflection-matrix eigenvalues of a 4f-

cavity-CPA with various undercritical absorption values. 103

240

LIST OF FIGURES

4.26. Average over all squared absolute reflection-matrix eigenvalues of a
4f-cavity-CPA with various overcritical absorption values. 103

4.27. Minimum squared absolute reflection-matrix eigenvalues of a 4f-
cavity-CPA with various overcritical absorption values. 104

4.28. Maximum squared absolute reflection-matrix eigenvalues of a 4f-
cavity-CPA with various overcritical absorption values. 104

4.29. Average over all squared absolute reflection-matrix eigenvalues of a
4f-cavity-CPA with various tilt angles of the total reflective mirror. 106

4.30. Minimum squared absolute reflection-matrix eigenvalues of a 4f-
cavity-CPA with various tilt angles of the total reflective mirror. . . 107

4.31. Maximum squared absolute reflection-matrix eigenvalues of a 4f-
cavity-CPA with various tilt angles of the total reflective mirror. . . 107

4.32. Squared absolute eigenvalues of the 4f-cavity-CPA reflection-matrix
plotted in ascending order for various tilt angles of the total reflective
mirror. 108

5.2. Reflectance of a 1D-cavity with an partially reflective mirror, and
an absorber of thickness d < L in the middle position providing
critical attenuation. 115

5.3. Reflectance of a 1D-cavity with an partially reflective mirror, and
an absorber of thickness d = 10 mm in the center position with
partially reflective facets (|r3| = 0.1), tuned to critical attenuation. . 117

5.4. Reflectance of a 1D-cavity with an partially reflective mirror, and
an absorber of thickness d = 10 mm in the center position with
partially reflective facets (|r3| = 0.5), tuned to critical attenuation. 118

5.5. All generated transmission matrices multiplied together in the right
order simulate a one-way trip through the 4f-cavity. 125

5.6. The reflection matrix of a critically attenuated 4f-cavity-CPA with
an absorber element in the center position, simulated using the
scattering/transfer-matrix-method (linear color scale). 126

5.7. The reflection matrix of a critically attenuated 4f-cavity-CPA with
an absorber element in the center position, simulated using the
scattering/transfer-matrix-method (logarithmic color scale). 127

5.8. Squared absolute reflection-matrix eigenvalues of a 4f-cavity-CPA
with a reflective absorber element d = 1 mm in the center position
plotted in ascending order for different absorber reflectances. . . . 129

5.9. Squared absolute reflection-matrix eigenvalues of a 4f-cavity-CPA
with a reflective absorber element d = 10 mm in the center position
plotted in ascending order for different absorber reflectances. . . . 129

5.10. Average over all squared absolute reflection-matrix eigenvalues of a
4f-cavity-CPA with a reflective absorber element d = 1 mm in the
center position. 130

241

LIST OF FIGURES

5.11. Average over all squared absolute reflection-matrix eigenvalues of a
4f-cavity-CPA with a reflective absorber element d = 10 mm in the
center position. 130

5.12. Minimum squared absolute reflection-matrix eigenvalues of a 4f-
cavity-CPA with a reflective absorber element d = 1 mm in the
center position. 131

5.13. Minimum squared absolute reflection-matrix eigenvalues of a 4f-
cavity-CPA with a reflective absorber element d = 10 mm in the
center position. 131

242

Bibliography
[1] Y. D. Chong, L. Ge, H. Cao, and A. D. Stone. Coherent Perfect Absorbers:

Time-Reversed Lasers. Physical Review Letters 105, 053901 (2010).

[2] S. Longhi. Backward lasing yields a perfect absorber. Physics 3, 61 (2010).

[3] W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao. Time-Reversed
Lasing and Interferometric Control of Absorption. Science 331, 889 (2011).

[4] Y. Sun, W. Tan, H.-q. Li, J. Li, and H. Chen. Experimental demonstration of
a coherent perfect absorber with PT phase transition. Physical review letters
112, 143903 (2014).

[5] C. W. Hsu, A. Goetschy, Y. Bromberg, A. D. Stone, and H. Cao. Broadband
Coherent Enhancement of Transmission and Absorption in Disordered Media.
Physical Review Letters 115, 223901 (2015).

[6] H. Li, S. Suwunnarat, R. Fleischmann, H. Schanz, and T. Kottos. Random
Matrix Theory Approach to Chaotic Coherent Perfect Absorbers. Physical
Review Letters 118, 044101 (2017).

[7] D. G. Baranov, A. Krasnok, and A. Alù. Coherent virtual absorption based
on complex zero excitation for ideal light capturing. Optica 4, 1457 (2017).

[8] K. Pichler, M. Kühmayer, J. Böhm, A. Brandstötter, P. Ambichl, U. Kuhl,
and S. Rotter. Random anti-lasing through coherent perfect absorption in a
disordered medium. Nature 567, 351 (2019).

[9] J. C. Maxwell. A Treatise on Electricity and Magnetism. Clarendon Press,
Oxford (1873).

[10] B. Kress. Applied digital optics : from micro-optics to nanophotonics. Wiley,
Chichester, U.K (2009).

[11] J. W. Goodman. Introduction to Fourier Optics. McGraw Hill, second edn.
(1996).

[12] J. Greivenkamp. Field guide to geometrical optics. SPIE Press, Bellingham,
Wash (2004).

243

BIBLIOGRAPHY

[13] N. George and X. Chen. Extended depth-of-field lenses and methods for their
design, optimization and manufacturing. United States Patent US 7,898,746
B2 (2011).

[14] D. Voelz. Computational fourier optics : a MATLAB tutorial. SPIE Press,
Bellingham, Wash (2011).

[15] D. G. Voelz and M. C. Roggemann. Digital simulation of scalar optical
diffraction: revisiting chirp function sampling criteria and consequences. Appl.
Opt. 48, 6132 (2009).

[16] A. E. Siegman. Lasers (Revised). UNIVERSITY SCIENCE BOOKS (1986).

[17] Springer Handbook of Lasers and Optics. Springer-Verlag GmbH (2012).

[18] E. Salik. Quantitative investigation of Fresnel reflection coefficients by
polarimetry. American Journal of Physics 80, 216 (2012).

[19] G. Friedmann and H. S. Sandhu. Phase Change on Reflection from Isotropic
Dielectrics. American Journal of Physics 33, 135 (1965).

[20] G. B. Friedmann and H. S. Sandhu. Phase changes on reflection from a
metallic surface. American Journal of Physics 56, 270 (1988).

[21] V. Degiorgio. Phase shift between the transmitted and the reflected optical
fields of a semireflecting lossless mirror is pi/2. American Journal of Physics
48, 81 (1980).

[22] C. W. Gardiner and M. J. Collett. Input and output in damped quantum
systems: Quantum stochastic differential equations and the master equation.
Physical Review A 31, 3761 (1985).

[23] J. Frei, X.-D. Cai, and S. Muller. Multiport S-Parameter and T-Parameter
Conversion With Symmetry Extension. IEEE Transactions on Microwave
Theory and Techniques 56, 2493 (2008).

[24] A. Orefice, R. Giovanelli, and D. Ditto. Helmholtz wave trajectories in classical
and quantum physics (2011).

244

	Abstract
	Introduction
	Coherent Perfect Absorbers (CPAs)
	Existing CPA implementations
	The new concept of a mode-independent, universal 4f cavity CPA

	Numerical simulation of light propagation and lenses
	Foundations of scalar wave optics and Fourier optics
	The Helmholtz equation
	The Rayleigh-Sommerfeld transfer function
	The Fresnel transfer function
	Thin spherical lenses
	Thin aspherical perfect lenses
	Wavefront tilt

	Software functionality around 2D FFT
	Sign conventions
	Position-space grid and xy-coordinates
	Spatial-frequency-space grid and k-space
	Tilt of the k-vector and mode-ordering
	Fourier-coefficient vectors

	Software implementation of light propagation
	Software implementation of lenses
	A first, naive simulation approach for a one-way trip through a 4f cavity
	FFT vs. analytic FT: optimal grid and sampling parameters
	Oversampled transfer function
	Critically sampled transfer function
	Undersampled transfer function
	Conclusion

	Guard-area and maximum mode number
	A refined simulation approach for a one-way trip through a 4f cavity
	Additional Subroutines
	Main program
	Simulation result

	Simulating a round-trip through a 4f cavity
	Round-trip subroutine
	Main program
	Simulation result

	A fast and efficient 4f-cavity-CPA simulation
	Properties of an ideal partially reflecting mirror
	Creating a model suitable for scalar optics
	Plausibility checks

	A simple, one-dimensional CPA as a toy model
	Reflection coefficient and critical coupling
	Simulation results
	Plausibility check

	Extending the simple 1D approach to 3D: Calculating a 4f-Cavity-CPA
	Calculating the 4f-cavity reflection matrix from the single-round-trip transmission matrix
	Estimating the single-round-trip transmission matrix for critical absorption
	Software implementation
	Simulation results and plausibility check

	Implementation and simulation results
	Effects of propagation simulation method and lens geometry
	Software Implementation
	Simulation Results
	Discussion

	Eigenmode decomposition of reflection matrix
	Software implementation
	Simulation Results

	Exploring the parameter-space for optimization potential
	Software implementation
	Mode-dependent attenuation
	Mode-dependent focal length (and total length)
	Mode-dependent distance between second lens and perfect back-mirror

	Sensitivity against deviations from optimal parameters
	Deviations in the position of the total reflective mirror
	Deviations in the position of the second lens
	Deviations from critical absorption
	Sensitivity against mirror tilt

	A refined simulation method using scattering matrices and transfer matrices
	Introduction
	Simulating the 1D toy-model with transfer matrices and scattering matrices
	One-dimensional cavity without attenuation
	One-dimensional cavity with absorber
	One-dimensional cavity with an absorber having partially reflecting facets

	Simulating a 4f-cavity with transfer matrices and scattering matrices
	Multiport scattering matrices
	Converting multiport scattering matrices to transfer matrices
	Back-conversion of the cavity's total transfer matrix into the corresponding scattering matrix
	Software implementation
	Simulation results

	Conclusion and Outlook
	Appendix
	Derivations
	Derivation of the Helmholtz-equation (2.9)
	Derivation of differential equation (2.12)
	Derivation of equations (2.25) and (2.27)
	Derivation of equation (2.29)
	Calculation of the integral in the derivation of equation (2.35)
	Derivation of the reflection coefficient (3.5) and the transmission coefficient (3.6)
	Derivation of equation (3.8)
	Derivation of equations (3.9) and (3.10)
	Proof of energy-conservation condition (3.13)
	Proof of phase-condition (3.14)
	Proof of unitarity condition (3.15)
	Derivation of the condition for the critical complex wavenumber (3.18)
	Derivation of equation (3.22)
	Derivation of equation (3.38)
	Derivation of equation (3.42)

	Software and hardware tools
	Software implementation of base functionality
	create_ax
	fft2_phys_spatial
	ifft2_phys_spatial
	fft2_basis_func
	create_k_ax
	k_vec_tilt
	sorted_mode_numbers
	fft2_arr_to_vec
	fft2_vec_to_arr
	RSTF_prop
	FRTF_prop
	prop
	lens
	tilt
	opt_grid_params
	embed_image
	extract_center_image
	round_trip_no_atten
	round_trip_no_atten2
	round_trip_no_atten3
	transmision_matrix_round_trip_no_atten
	transmision_matrix_round_trip_no_atten2
	transmision_matrix_round_trip_no_atten3
	create_S_matrix
	convert_S_to_M
	convert_M_to_R
	transmision_matrix_prop
	transmission_matrix_lens
	downscale_TR_matrix

	Helper functions
	create_test_image
	plot_fields
	create_eye
	create_zeros
	precision_constants
	pval

	Simulation main programs
	CPA_sim_001_reflection_matrix
	CPA_sim_002_r_curve
	CPA_sim_003_mode_decomposition
	CPA_sim_004_vary_atten
	CPA_sim_005_vary_f
	CPA_sim_006_vary_length
	CPA_sim_007_r_curve_deviate
	CPA_sim_008_r_curve_deviate
	CPA_sim_009
	CPA_sim_010

	Acknowledgments
	List of Figures
	Bibliography

